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ANALYSIS OF ALGORITHMS AND RESEARCHING COMPUTING

1.0 Objective 

After going through this unit, you will be able to: 

• What is an algorithm? 

• What is the need of algorithm? 

• What is the role of algorithm in computing? 

• How to analyse algorithm? 

• How to design an algorithm? 

• What is Growth function? 

• List of standard notation and common functions? 

1.1 Introduction 

In this chapter, you will learn what is an algorithm and its importance in computer 
technologies. It covers some suitable examples as well. Along with we will get the 
idea about growth function, standard notations and functions which are additional 
interesting ingredients of the algorithms.  

1.2 The Role of Algorithms in Computing 

1.2.1 Algorithms 

Algorithm is step by step procedure which takes input value, process it or 
apply some computational techniques and produce some output value. In 
another way we can state the algorithm as a list of steps which transform the 
input to output using some processing function. We can also consider 
algorithm is a tool for solving some computational problems. Algorithm state 
the relationship of input and output.  

 

 

 

Fig1: Illustration of Algorithm 

Input 
Output 

Algorithm 
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For example – if we need to sort the numbers in ascending order then it requires 
the formulate the problem as follows: 

 Input: A sequence of n numbers ( n1,n2,n3,…,nn) 

 Output: (n1’,n2’,n3’,…,nn’ ) such that n1’<=n2’<=…<=nn’) 

Now we can take one example to solve this problem with numerical values. 

So, the input is (5,2,4,6,1), and after sorting the output should be (1,2,4,5,6). Input 
sequence is called as instance of a problem.  

An algorithm is to accurate if for every input it halts with the accurate output. We 
can use flowchart to represent the sequence of steps in pictorial form.  

Characteristics of Algorithm 

The Algorithm designed is language independent, i.e. they are just plain 
instructions set that can be implemented in any language, and the output will be 
the same, as expected. 

Following are the key characteristics of algorithm - 

• Well-Defined Inputs: If an algorithm says to take inputs instance, it should 
be clear that which type of inputs in required for processing. 

• Well-Defined Outputs: The algorithm must clearly define that what type 
of output will be generated. 

• Finiteness: The algorithm should not end up in an infinite loop. 

• Feasibility: The algorithm must be generic and practical, such that it can 
be executed upon available resources.  

• Language Independent: It must be just plain instructions set that can be 
implemented in any language, and yet the output will be same, as expected. 

1.3 Algorithms as a technology 

Consider the scenario, computers were tremendously fast and memory of computer 
was free as well. You would still like to prove that your solution method terminates 
with the correct answer. If computers were tremendously fast, any accurate method 
for solving a problem would give accurate result. 
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Every implementation should be in the proper bounded software engineering 

practice environment. But as a human being, we use to like to work on simple and 

easiest method to implement the solution for problem. As if we consider that 

computer is very fast but not infinite fast and memory also the integral part of 

scenario as memory costing is also very expensive. 

 So, computing time is a bounded resource, and so is space in memory. You should 

use these resources sensibly or as per your project need, and algorithms that are 

efficient in terms of time or space will help you do so. 

Algorithms and other technologies  

As algorithm should be effective and correct algorithm selection is the art and for 

implementation purpose, selection of hardware is also important part. As 

technological changes are happened at every single day and which help us to do 

our work more effectively. Algorithm is also get the similar importance as it save 

your reverse engineering or reframing the implementation of problem. Ultimately 

it helps for different technologies to take proper decision such as web technology, 

networking, wired and wireless network; etc. 

1.4 Getting Started 

1.3.1 Insertion sort 

First algorithm is insertion sort. It is just like playing cards game as you can insert 

the card in between two cards and make the sequence. The logic is to arrange list 

in ascending order using insertion sort. 

Input: A sequence of n numbers ( n1,n2,n3,…,nn) 

Output: (n1’,n2’,n3’,…,nn’ ) such that n1’<=n2’<=…<=nn’) 

So, firstly we have our number in the form of array with size n and the numbers we 

need to sort can be called as keys. We can implement it in any language but in this 

chapter, we will illustrate it using C programming language. In insertion sort, 

procedure should be follow in following steps –  
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Pseudo code  

Insertion_Sort(Arr) 

 For j = 2 to Arr.length 

 key =Arr[j] 

 i = j-1 

 while( i > 0 and Arr[i] > key) 

  Arr[i+1] = Arr[i] 

  i =i – 1 

 Arr[i+1] = key 

Loop invariants help us to check the algorithm is correct understand why an 
algorithm is correct. We must show three things about a loop invariant:  

• Initialization: It is first iteration of the loop.  

• Maintenance: If it is true before an iteration of the loop, it remains true before 
the next iteration.  

• Termination: When the loop terminates, the invariant gives us a useful 
property that helps show that the algorithm is correct. 

For example –  

22, 21, 23, 15, 16 

Let us loop for i = 1 (second element of the array) to 4 (last element of the array) 

i = 1. Since 21 is smaller than 22, move 22 and insert 21 before 22 
21, 22, 23, 15, 16 

i = 2. 23 will remain at its position as all elements in A[0..i-1] are smaller than 23 
21, 22, 23, 15, 16 

i = 3. 15 will move to the beginning and all other elements from 21 to 23 will 
move one position ahead of their current position. 
15, 21, 22, 23, 16 
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i = 4. 16 will move to position after 15, and elements from 21 to 23 will move 
one position ahead of their current position. 
15, 16, 21, 22, 23 

Program –  

void insertionSort(int a1[], int n)  

{  

    int i, key, j;  

    for (i = 1; i < n; i++) {  

        key = a1[i];  

        j = i - 1;  

  /* Move elements of a1[0..i-1], that are greater than key, to one 
position ahead  

          of their current position */ 

        while (j >= 0 && a1[j] > key) {  

            a1[j + 1] = a1[j];  

            j = j - 1;  

        }  

        a1[j + 1] = key;  

    }  

}  

Pseudocode conventions  

We use the following conventions in our pseudocode. Indentation indicates block 
structure. For example,  

1. the body of the for loop that begins on line 1 consists of lines 2–8 

2. body of the while loop that begins on line 5 contains lines 6–7 but not line 8.  

Our indentation style applies to if-else statements2 as well. Using indentation 
instead of conventional indicators of block structure, such as begin and end 



7

Chapter 1: Design Strategies - Role of Algorithm

statements, greatly reduces clutter while preserving, or even enhancing, clarity. The 
looping constructs while, for, and repeat-until and the if-else conditional construct 
have interpretations similar to those in C, C++, Java, Python, and Pascal. 

1.3.2 Analyzing algorithms 

Analysing an algorithm means predicting the required resources for the solving 
problem statement. Resources means computer hardware such as memory, 
bandwidth and communication channel. But the majorly computer hardware used 
for solving problem statement is primary concern, but most often it is 
computational time that we want to measure.  

Generally, we used to do analysis of several algorithm and then pick up the efficient 
one. It is our practice to check whether we are using right algorithm or not. Before 
we can analyze an algorithm, we must have a model of the implementation 
technology that we will use, including a model for the resources of that technology 
and their costs.  

Most of times, we shall assume a generic one processor, random-access machine 
(RAM) model of computation as our implementation technology and understand 
that our algorithms will be implemented as computer programs. In the RAM model, 
instructions are executed one after another, with no concurrent operations. 

So, following example will gives you the detail idea about how to analyse the 
problem and how the algorithm plays important role to solve the problem. 

Analysis of insertion sort  

Following program will gives you the idea about insertion sort. 

void insertionSort(int a1[], int n)  

{  

    int i, key, j;  

    for (i = 1; i < n; i++) {  

        key = a1[i];  

        j = i - 1;  

  /* Move elements of a1[0..i-1], that are greater than key, to one 
position ahead  
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          of their current position */ 

        while (j >= 0 && a1[j] > key) {  

            a1[j + 1] = a1[j];  

            j = j - 1;  

        }  

        a1[j + 1] = key;  

    }  

}  

Observations are –  

1. Its total time requires is based on number of inputs. (sorting 5 numbers will take 
less time as compare to sorting 50 numbers) 

2. If the size of array or list is same but some number of the first list is sorted and 
another list is fully unsorted then first list will take less time as compare to 
whole unsorted list. 

3. The time taken by an algorithm raises with the size of the input, so it is 
traditional to define the running time of a program as a function of the size of 
its input.  

4. So, most important part of analysis is “running time” and “size of input”.  

5. The running time of an algorithm on a particular input is the number of 
primitive processes or “steps” executed.  

6. It is suitable to define the notion of step so that it is as machine-independent as 
possible. 

Analysis of bubble sort  

The main body of the code for bubble sort looks something like this:  

for (i = n-1; i<=i; j++)  

if (a[j] > a[j+1])  

swap a[j] and a[j+1]; 
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Observations are -  

1. This looks like the double. The innermost statement, the if, takes O(1) time. It 
doesn‟t necessarily take the same time when the condition is true as it does 
when it is false, but both times are bounded by a constant. But there is an 
important difference here.  

2. The outer loop executes n times, but the inner loop executes a number of times 
that depends on i. The first time the inner for executes, it runs i = n-1 times. The 
second time it runs n-2 times, etc. The total number of times the inner if 
statement executes is therefore: 

(n-1) + (n-2) + ... + 3 + 2 + 1  

This is the sum of an arithmetic series.  

 

The value of the sum is n(n-1)/2. So the running time of bubble sort is O(n(n-1)/2), 
which is O((n2 -n)/2). Using the rules for big-O given earlier, this bound simplifies 
to O((n2 )/2) by ignoring a smaller term, and to O(n2 ), by ignoring a constant 
factor. Thus, bubble sort is an O(n2 ) algorithm. 

1.3.3 Designing algorithms 

We can choose from a wide range of algorithm design techniques.  

Design techniques are – 

1. Brute force/ Exhaustive search 

2. Divide and Conquer 

3. Transformation 

4. Dynamic programming 

5. Greedy programming 

6. Iterative improvement/ incremental approach 

7. Randomization 
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For insertion sort, we used an incremental approach: having sorted the subarray 
A[1 .. j – 1], we inserted the single element A[j] into its proper place, yielding the 
sorted subarray A[1.. j]. 

The divide and conquer approach 

Many algorithm has different designing techniques like merge sort or quick sort 
has recursive structure. So, the observation is – 

1. Many algorithms are recursive in structure: to solve a given problem, they call 
themselves recursively one or more times to deal with closely related 
subproblems.  

2. These algorithms follow a divide-and-conquer approach: they break the 
problem into several subproblems that are similar to the original problem but 
smaller in size, solve the subproblems recursively, and  

3. Combine these solutions to create a solution to the original problem.  

The divide-and-conquer paradigm involves three steps at each level of the 
recursion:  

1. Divide the problem into a number of subproblems that are smaller instances of 
the same problem.  

2. Conquer the subproblems by solving them recursively. If the subproblem sizes 
are small enough, however, just solve the subproblems in a straightforward 
manner.  

3. Combine the solutions to the subproblems into the solution for the original 
problem.  

5 2 3 1 4 7 9 8 6 10 

 

 

           

 

 

1 2 3 4 5 6 7 8 9 10 
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The merge sort algorithm closely follows the divide-and-conquer paradigm. 
Intuitively, it operates as follows.  

• Divide: Divide the n-element sequence to be sorted into two sub-sequences       

of n=2 elements each.  

• Conquer: Sort the two sub-sequences recursively using merge sort.  

• Combine: Merge the two sorted sub-sequences to produce the sorted answer 

 

1.5 Growth of Functions 

Growth function gives a simple description of the algorithm’s efficiency and also 
allows us to compare the relative performance of alternative algorithms. Following 
steps need to consider – 

1. Once the input size n becomes large enough, merge sort, with its ‚θ(nlg n) 
worst-case running time, beats insertion sort, whose worst-case running time is 
θ(n2).  

2. The extra precision is not usually worth the effort of computing it.  

3. For large enough inputs, the multiplicative constants and lower-order terms of 
an exact running time are dominated by the effects of the input size itself.  
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4. When we look at input sizes large enough to make only the order of growth of 
the running time relevant, we are studying the asymptotic efficiency of 
algorithms. 

That is, we are concerned with how the running time of an algorithm increases with 
the size of the input in the limit, as the size of the input increases without bound. 
Usually, an algorithm that is asymptotically more efficient will be the best choice 
for all but very small inputs. 

Complexity of Algorithms  

The complexity of an algorithm M is the function f(n) which gives the running time 
and/or storage space necessity of the algorithm in terms of the size n of the input 
data. The storage space essential by an algorithm is simply a multiple of the data 
size n.  

Complexity shall refer to the running time of the algorithm. The function f(n), gives 
the running time of an algorithm, depends not only on the size n of the input data 
but also on the particular data.  

The complexity function f(n) for certain cases are:  

1. Best Case : The minimum possible value of f(n) is called the best case.  

2. Average Case : The expected value of f(n).  

3. Worst Case : The maximum value of f(n) for any key possible input.  

The field of computer science, which studies efficiency of algorithms, is known as 
analysis of algorithms. Algorithms can be evaluated by a variety of criteria. Most 
often we shall be interested in the rate of growth of the time or space required to 
solve larger and larger instances of a problem. We will associate with the problem 
an integer, called the size of the problem, which is a measure of the quantity of 
input data. 

1.4.1 Asymptotic notation 

The notations we use to define the asymptotic running time of an algorithm are 
defined in terms of functions whose domains are the set of natural numbers 
N={0,1,2,…}.  

Such notations are suitable for describing the worst-case running-time function 
T(n), which frequently is defined only on integer input sizes. We sometimes find it 
convenient, however, to abuse asymptotic notation in a variation of ways.  
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For example, we might extend the notation to the domain of real numbers or, 
alternatively, restrict it to a subset of the natural numbers. We should make sure, 
however, to understand the precise meaning of the notation so that when we abuse, 
we do not misuse it.  

This section defines the basic asymptotic notations and also presents some common 
abuses. The following notations are commonly use notations in performance 
analysis and used to characterize the complexity of an algorithm: 

1. Big–OH (O) 1, 

2. Big–OMEGA (Ω), 

3. Big–THETA (θ) and 

4. Little–OH (o) 

1. Big-OH (Upper Bound) 

f(n) = O(g(n)), (pronounced order of or big oh), says that the 
growth rate of f(n) is less than or equal (<) that of g(n). 

 

2. Big OMEGA Ω (Lower Bound) 

f(n) = Ω(g(n)) (pronounced omega), says that the growth rate of f(n) is greater 
than or equal to (>) that of g(n). 
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In 1892, P. Bachmann invented a notation for characterizing the asymptotic 
behaviour of functions. His invention has come to be known as big oh notation. 

3. Big-THETA θ(Same order) 

f(n) = θ(g(n)) (pronounced theta), says that the growth rate of f(n) equals (=) the 
growth rate of g(n) [if f(n) = O(g(n)) and T(n) = Ω (g(n)]. 

4. Little-OH (o) 

T(n) = o(p(n)) (pronounced little oh), says that the growth rate of T(n) is less 
than the growth rate of p(n) [if T(n) = O(p(n)) and T(n) ≠ θ(p(n))]. 

1.4.2 Standard notations and common functions.  

Monotonicity 

1. A function f(n) is monotonically increasing if m ≤ n implies f(m) ≤ f(n).  

2. Similarly, it is monotonically decreasing if m ≤ n implies f(m) ≥ f(n).  

3. A function f(n) is strictly increasing if m < n implies f(m) < f(n) and strictly 
decreasing if m < n implies f(m) > f(n). 
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Floors and ceilings 

For any real number x, we denote the greatest integer less than or equal 
to x by ⌊x⌋ (read "the floor of x") and the least integer greater than or equal 
to x by ⌈x⌉ (read "the ceiling of x").  

For all real x, 

(3.3)  
 

For any integer n, 

⌈n/2⌉ + ⌊n/2⌋ = n, 

and for any real number n ≥ 0 and integers a, b > 0, 

(3.4)  
 

(3.5)  
 

(3.6)  
 

(3.7)  
 

The floor function f(x) = ⌊x⌋ is monotonically increasing, as is the ceiling 
function f(x) = ⌈x⌉. 

Modular arithmetic 

For any integer a and any positive integer n, the value a mod n is 
the remainder (or residue) of the quotient a/n: 

(3.8)  
 

  

Given a precise notion of the remainder of one integer when divided by another, it 
is convenient to provide special notation to specify equality of remainders.  

If (a mod n) = (b mod n), we write a ≡ b (mod n) and say that a is equivalent to b, 
modulo n. In other words, a ≡ b (mod n) if a and b have the same remainder when 
divided by n. Equivalently, a ≡ b (mod n) if and only if n is a divisor of b - a.  

We write a ≢ b (mod n) if a is not equivalent to b, modulo n. 
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Polynomials 
Given a nonnegative integer d, a polynomial in n of degree d is a function p(n) of 
the form 

 

• where the constants a0, a1, ..., ad are the coefficients of the polynomial 
and ad ≠ 0. A polynomial is asymptotically positive if and only if ad > 0.  

• For an asymptotically positive polynomial p(n) of degree d, we have p(n) 
= Θ(nd). 

• For any real constant a ≥ 0, the function na is monotonically increasing, and for 
any real constant a ≤ 0, the function na is monotonically decreasing.  

We say that a function f(n) is polynomially bounded if f(n) = O(nk) for some 
constant k. 

Exponentials 
For all real a > 0, m, and n, we have the following identities: 

a0 = 1, 

a1 = a, 

a-1 = 1/a, 

(am)n = amn, 

(am)n = (an)m, 

am an = am+n. 

For all n and a ≥ 1, the function an is monotonically increasing in n. When 
convenient, we shall assume 00 = 1. 

The rates of growth of polynomials and exponentials can be related by the 
following fact. For all real constants a and b such that a > 1, 

(3.9)  
 

from which we can conclude that 
nb = o(an). 
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Thus, any exponential function with a base strictly greater than 1 grows faster than 
any polynomial function. 

Using e to denote 2.71828..., the base of the natural logarithm function, we have 
for all real x, 

(3.10)  

 

where "!" denotes the factorial function defined later in this section. For all real x, 
we have the inequality 

(3.11)  
 

where equality holds only when x = 0. When |x| ≤ 1, we have the approximation 

(3.12)  
 

When x → 0, the approximation of ex by 1 + x is quite good: 

ex = 1 + x + Θ(x2). 

(In this equation, the asymptotic notation is used to describe the limiting behavior 
as x → 0 rather than as x → ∞.) We have for all x, 

(3.13)  
 

Logarithms 

We shall use the following notations: 

lg n = log2 n (binary logarithm) , 

ln n = loge n (natural logarithm) , 

lgk n = (lg n)k (exponentiation) , 

lg lg n = lg(lg n) (composition) . 

An important notational convention we shall adopt is that logarithm functions will 
apply only to the next term in the formula, so that lg n + k will mean (lg n) + k and 
not lg(n + k). If we hold b > 1 constant, then for n > 0, the function logb n is strictly 
increasing. 
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For all real a > 0, b > 0, c > 0, and n, 

(3.14)  

 

(3.15)  

 

where, in each equation above, logarithm bases are not 1. 

By equation (3.14), changing the base of a logarithm from one constant to another 
only changes the value of the logarithm by a constant factor, and so we shall often 
use the notation "lg n" when we don't care about constant factors, such as in O-
notation. Computer scientists find 2 to be the most natural base for logarithms 
because so many algorithms and data structures involve splitting a problem into 
two parts. 

There is a simple series expansion for ln(1 + x) when |x| < 1: 

 

We also have the following inequalities for x > -1: 

(3.16)  
 

where equality holds only for x = 0. 

We say that a function f(n) is polylogarithmically bounded if f(n) = O(lgk n) for 
some constant k. We can relate the growth of polynomials and polylogarithms by 
substituting lg n for n and 2a for a in equation (3.9), yielding 

 

From this limit, we can conclude that 

lgb n = o(na) 
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for any constant a > 0. Thus, any positive polynomial function grows faster than 
any polylogarithmic function. 

Factorials 

The notation n! (read "n factorial") is defined for integers n ≥ 0 as 

 

Thus, n! = 1 · 2 · 3 n. 

A weak upper bound on the factorial function is n! ≤ nn, since each of the n terms 
in the factorial product is at most n. Stirling's approximation, 

(3.17)  
 

where e is the base of the natural logarithm, gives us a tighter upper bound, and a 
lower bound as well. 

(3.18)  

 

where Stirling's approximation is helpful in proving equation (3.18). The following 
equation also holds for all n ≥ 1: 

(3.19)  
 

where 

(3.20)  
 

Functional iteration 

We use the notation f(i)(n) to denote the function f(n) iteratively applied i times to 
an initial value of n. Formally, let f(n) be a function over the reals. For nonnegative 
integers i, we recursively define 

 

For example, if f(n) = 2n, then f(i)(n) = 2in. 
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The iterated logarithm function 

We use the notation lg* n (read "log star of n") to denote the iterated logarithm, 
which is defined as follows. Let lg(i) n be as defined above, with f(n) = lg n. Because 
the logarithm of a nonpositive number is undefined, lg(i) n is defined only if lg(i-

1) n > 0. Be sure to distinguish lg(i) n (the logarithm function applied i times in 
succession, starting with argument n) from lgi n (the logarithm of n raised to the ith 
power). The iterated logarithm function is defined as 

lg* n = min {i = 0: lg(i) n ≤ 1}. 

The iterated logarithm is a very slowly growing function: 

lg* 2 = 1, 

lg* 4 = 2, 

lg* 16 = 3, 

lg* 65536 = 4, 

lg*(265536) = 5. 

Since the number of atoms in the observable universe is estimated to be about 1080, 
which is much less than 265536, we rarely encounter an input size n such that 
lg* n > 5. 

Fibonacci numbers 

The Fibonacci numbers are defined by the following recurrence: 

(3.21)  

 

Thus, each Fibonacci number is the sum of the two previous ones, yielding the 
sequence 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... . 

Fibonacci numbers are related to the golden ratio φ and to its conjugate , which 
are given by the following formulas: 
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(3.22)  

 

Specifically, we have 

(3.23)  
 

which can be proved by induction . Since , we have , so 
that the ith Fibonacci number Fi is equal to  rounded to the nearest integer. 
Thus, Fibonacci numbers grow exponentially. 

1.6  Let us Sum Up 

In this chapter, we have learn the concept of Algorithm, characteristics of 
algorithm, asymptotic notation and standard functions. As per given in the 
“Introduction to Algorithm” book by CORMEN’s, all authors define the 
asymptotic notations in the different way, although the various descriptions settle 
in most common situations. Some of the substitute definitions include functions 
that are not asymptotically nonnegative, as long as their absolute values are 
appropriately bounded. 
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1.8 Bibliography 

Exercises 

1. Calculate the analysis of simple for loop  

for (i = 1; i<=n; i++)  

v[i] = v[i] + 1; 

2.     Calculate analysis of matrix multiply  

for (i = 1; i<=n; i++)  

for (j = 1; j<=n; j++)  

C[i, j] = 0;  

for (k = 1; k<=n; k++)  

C[i, j] = C[i, j] + A[i, k] * B[k, j]; 

3. Suppose we are comparing implementations of insertion sort and merge sort 
on the same machine. For inputs of size n, insertion sort runs in 8n2 steps, 
while merge sort runs in 64n lg n steps. For which values of n does insertion 
sort beat merge sort? 

4. What is the smallest value of n such that an algorithm whose running time is 
100n2 runs faster than an algorithm whose running time is 2n on the same 
machine? 
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Unit I 

2 
DESIGN STRATEGIES 

DIVIDE AND CONQUER AND  
RANDOMIZED ALGORITHM 

Unit Structure 

1.0 Objective 

2.1 Introduction 

2.2 Divide-and-Conquer 

 2.2.1 The maximum-subarray problem 

 2.2.2 Strassen’s algorithm for matrix multiplication 

 2.2.3 The substitution method for solving recurrences 

2.3 Probabilistic Analysis and Randomized Algorithms 

2.3.1 The hiring problem 

2.3.2 Indicator random variables 

2.3.3 Randomized algorithms 

2.4 Let us Sum Up 

2.5  List of references 

2.6  Bibliography 

2.7 Exercise 

2.0 Objective 

After going through this unit, you will be able to: 

• What is divide and conquer concept? 

• What is the need of Probabilistic algorithm? 

• What is Randomized Algorithms? 
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2.1 Introduction 

In this chapter, we will learn more algorithms based on divide-and-conquer. The 
first one solves the maximum-subarray problem: it is takings as input an array of 
numbers, and it determines the contiguous subarray whose values have the greatest 
sum. Then we shall see two divide-and-conquer algorithms for multiplying n x n 
matrices. We can also learn Strassen’s algorithm, probabilistic Analysis and 
randomised algorithm. 

2.2 Divide-and-Conquer 

Divide and conquer is a design algorithm technique which is well known to 
breaking down efficiency barriers.  

Divide and conquer algorithm consists of three parts:  

Divide: Divide the problem into sub problems. The sub problems are solved 
recursively.  

Conquer: The solution to the original problem is then formed from the solutions to 
the sub problems (patching together the answers).  

Combine: Combine the solutions to the subproblems into the solution for the 
original problem. 

Traditionally, routines in which the text contains at least two recursive calls are 
called divide and conquer algorithms, while routines whose text contains only one 
recursive call are not.  

Divide–and–conquer is a very powerful use of recursion. When the subproblems 
are large enough to solve recursively, we call that the recursive case. Once the 
subproblems become small enough that we no longer recurse, we say that the 
recursion “bottoms out” and that we have gotten down to the base case. Sometimes, 
in addition to subproblems that are smaller instances of the same problem, we have 
to solve subproblems that are not quite the same as the original problem. We 
consider solving such subproblems as part of the combine step. 

Recurrences 

Recurrences go hand in hand with the divide-and-conquer paradigm, because they 
give us a natural way to characterize the running times of divide-and-conquer 
algorithms. A recurrence is an equation or inequality that describes a function in 
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terms of its value on smaller inputs. For example, the worst-case running time T(n) 
of the MERGE-SORT procedure by the recurrence. 

 

whose solution we claimed to be  

 

There are 3 methods to solving recurrences 

1. In the substitution method, we guess a bound and then use mathematical 
induction to prove our guess correct.  

2. The recursion-tree method converts the recurrence into a tree whose nodes 
represent the costs incurred at various levels of the recursion. We use 
techniques for bounding summations to solve the recurrence.  

3. The master method provides bounds for recurrences of the form. It is used to 
determine the running times of the divide-and-conquer algorithms for the 
maximum-subarray problem and for matrix multiplication. 

2.2.1 The maximum-subarray problem 

As we can consider problem of maximum subarray sum. The problem of maximum 
subarray sum is basically finding the part of an array whose elements has the largest 
sum. If all the elements in an array are positive then it is easy, find the sum of all 
the elements of the array and it has the largest sum over any other subarrays you 
can make out from that array. 

For example – 2,1,4,3,5 

Maximum sum = 2+1+4+3+5 = 15 

But the problem gets more interesting when some of the elements are negative then 
the subarray whose sum of the elements is largest over the sum of the elements of 
any other subarrays of that element can lie anywhere in the array. 

For example – 2,-1,4,-3,5 

Maximum sum = 2-1+4-3+5 = 7 
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Brute force solution  

The Brute Force technique to solve the problem is simple. Just iterate through every 
element of the array and check the sum of all the subarrays that can be made starting 
from that element i.e., check all the subarrays and this can be done in nC2 ways i.e., 
choosing two different elements of the array to make a subarray. Thus, the brute 
force technique is of Θ(n2) time. However,  we can solve this in Θ(nlog(n)) time 
using divide and conquer. 

As we know that the divide and conquer solves a problem by breaking into 
subproblems, so let's first break an array into two parts. Now, the subarray with 
maximum sum can either lie entirely in the left subarray or entirely in the right 
subarray or in a subarray consisting both i.e., crossing the middle element. 

 

The first two cases where the subarray is entirely on right or on the left are 
actually the smaller instances of the original problem. So, we can solve them 
recursively by calling the function to calculate the maximum sum subarray on 
both the parts. 

Max_sum_subarray(array, low, high) 

{ 

  if (high == low) // only one element in an array 

  { 

    return array[high] 

  } 

  mid = (high+low)/2 

  Max_sum_subarray(array, low, mid) 

  Max_sum_subarray(array, mid+1, high) 

} 
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We are making Max_sum_subarray is a function to calculate the maximum sum 
of the subarray in an array. Here, we are calling the 
function Max_sum_subarray for both the left and the right subarrays i.e., 
recursively checking the left and the right subarrays for the maximum sum 
subarray. 

Now, we have to handle the third case i.e., when the subarray with the maximum 
sum contains both the right and the left subarrays (containing the middle 
element). At a glance, this could look like a smaller instance of the original 
problem also but it is not because it contains a restriction that the subarray must 
contain the middle element and thus makes our problem much more narrow and 
less time taking. 

So, we will now make a function called Max_crossing_subarray to calculate the 
maximum sum of the subarray crossing the middle element and then call it 
inside the Max_sum_subarray function. 

max_sum_subarray(array, low, high) 

{ 

  if (high == low) // only one element in an array 

  { 

    return array[high]; 

  } 

  mid = (high+low)/2; 

  maximum_sum_left_subarray = max_sum_subarray(array, low, mid) 

  maximum_sum_right_subarray = max_sum_subarray(array, mid+1, high) 

  maximum_sum_crossing_subarray = max_crossing_subarray(array, low, mid, 
high); 

  // returning the maximum among the above three numbers 

  return maximum(maximum_sum_left_subarray, maximum_sum_right_subarray, 
maximum_sum_crossing_subarray); 

} 
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Here, we are covering all three cases mentioned above to and then just returning 
the maximum of these three.  

Now, let's write the max_crossing_subarray function. 

The max_crossing_subarray function is simple, we just have to iterate over the 
right and the left sides of the middle element and find the maximum sum. 

 

max_crossing_subarray(int ar[], int low, int mid, int high)                                               

{ 

  left_sum = -infinity 

  sum = 0 

  for (i=mid downto low) 

  { 

    sum = sum+ar[i] 

    if (sum>left_sum) 

      left_sum = sum 

  } 

  right_sum = -infinity; 

  sum = 0 

  for (i=mid+1 to high) 
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  { 

    sum=sum+ar[i] 

    if (sum>right_sum) 

      right_sum = sum 

  } 

  return (left_sum+right_sum) 

} 

Here, our first loop is iterating from the middle element to the lowest element of 
the left subarray to find the maximum sum and similarly the second loop is iterating 
from the middle+1 element to the highest element of the subarray to calculate the 
maximum sum of the subarray on the right side. And finally, we are returning 
summing both of them and returning the sum which is calculated from the subarray 
crossing the middle element. 

2.2.2 Strassen’s algorithm for matrix multiplication 

The matrix multiplication of algorithm due to Strassens is the most dramatic 
example of divide and conquer technique (1969). The usual way to multiply two n 
x n matrices A and B, yielding result matrix C as follows :  

for i := 1 to n do  

for j :=1 to n do  

c[i, j] := 0;  

for K: = 1 to n do  

c[i, j] := c[i, j] + a[i, k] * b[k, j]; 

This algorithm requires n3 scalar multiplication‟s (i.e. multiplication of single 
numbers) and n3 scalar additions. So we naturally cannot improve upon. We apply 
divide and conquer to this problem. For example let us considers three 
multiplication like this: 
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Then Cij can be found by the usual matrix multiplication algorithm, 

 

This leads to a divide–and–conquer algorithm, which performs nxn matrix 
multiplication by partitioning the matrices into quarters and performing eight 
(n/2)x(n/2) matrix multiplications and four (n/2)x(n/2) matrix additions. 

 

Which leads to T (n) = O (n3), where n is the power of 2. Strassens insight was to 
find an alternative method for calculating the Cij, requiring seven (n/2) x (n/2) 
matrix multiplications and eighteen (n/2) x (n/2) matrix additions and subtractions: 

 

This method is used recursively to perform the seven (n/2) x (n/2) matrix 
multiplications, then the recurrence equation for the number of scalar 
multiplications performed is: 
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So, concluding that Strassen‟s algorithm is asymptotically more efficient than the 
standard algorithm. In practice, the overhead of managing the many small matrices 
does not pay off until „n‟ revolves the hundreds. 

2.2.3 The substitution method for solving recurrences 

One way to solve a divide-and-conquer recurrence equation is to use the iterative 
substitution method. This is a “plug-and-chug” method. In using this method, we 
assume that the problem size n is fairly large and we than substitute the general 
form of the recurrence for each occurrence of the function T on the right-hand side. 
For example, performing such a substitution with the merge sort recurrence 
equation yields the equation. 

T(n) = 2 (2 T(n/22 ) + b (n/2)) + b n  

= 22 T(n/22 ) + 2 b n  

Plugging the general equation for T again yields the equation.  

T(n) = 22 (2 T(n/23 ) + b (n/22 )) + 2 b n  

= 23 T(n/23 ) + 3 b n 
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The hope in applying the iterative substitution method is that, at some point, we 
will see a pattern that can be converted into a general closed-form equation (with 
T only appearing on the left-hand side). In the case of merge-sort recurrence 
equation, the general form is:  

T(n) = 2i T (n/2i) + i b n  

Note that the general form of this equation shifts to the base case, T(n) = b, where 
n = 2i, that is, when i = log n, which implies: 

  

T(n) = b n + b n log n. 

In other words, T(n) is O(n log n). In a general application of the iterative 
substitution technique, we hope that we can determine a general pattern for T(n) 
and that we can also figure out when the general form of T(n) shifts to the base 
case. 

2.3 Probabilistic Analysis and Randomized Algorithms 

Probabilistic analysis of algorithms is an approach to estimate the computational 
complexity of an algorithm or a computational problem. It starts from an 
assumption about a probabilistic distribution of the set of all possible inputs. This 
assumption is then used to design an efficient algorithm or to derive the complexity 
of a known algorithm. 

2.3.1 The hiring problem 

Suppose that you need to hire a new office assistant. Your previous attempts at 
hiring have been unsuccessful, and you decide to use an employment agency. The 
employment agency sends you one candidate each day. You interview that person 
and then decide either to hire that person or not. You must pay the employment 
agency a small fee to interview an applicant. To actually hire an applicant is more 
costly, however, since you must fire your current office assistant and pay a 
substantial hiring fee to the employment agency. You are committed to having, at 
all times, the best possible person for the job. Therefore, you decide that, after 
interviewing each applicant, if that applicant is better qualified than the current 
office assistant, you will fire the current office assistant and hire the new applicant. 
You are willing to pay the resulting price of this strategy, but you wish to estimate 
what that price will be. The procedure HIRE-ASSISTANT, given below, expresses 
this strategy for hiring in pseudocode. It assumes that the candidates for the office 



33

Chapter 2: Divide and Conquer and  Randomized Algorithm

assistant job are numbered 1 through n. The procedure assumes that you are able 
to, after interviewing candidate i, determine whether candidate i is the best 
candidate you have seen so far. To initialize, the procedure creates a dummy 
candidate, numbered 0, who is less qualified than each of the other candidates. 

HIRE-ASSISTANT(n) 

best =0 // candidate 0 is a least-qualified dummy candidate  

for i = 1 to n  

interview candidate i  

if candidate i is better than candidate best  

best = i  

hire candidate i  

We focus not on the running time of HIRE-ASSISTANT, but instead on the costs 
incurred by interviewing and hiring. On the surface, analyzing the cost of this 
algorithm may seem very different from analyzing the running time of, say, merge 
sort. The analytical techniques used, however, are identical whether we are 
analyzing cost or running time. In either case, we are counting the number of times 
certain basic operations are executed.  

Interviewing has a low cost, say ci, whereas hiring is expensive, costing ch. Letting 
m be the number of people hired, the total cost associated with this algorithm is 
O(cin+chm). No matter how many people we hire, we always interview n 
candidates and thus always incur the cost cin associated with interviewing. We 
therefore concentrate on analyzing chm, the hiring cost. This quantity varies with 
each run of the algorithm. This scenario serves as a model for a common 
computational paradigm. We often need to find the maximum or minimum value 
in a sequence by examining each element of the sequence and maintaining a current 
“winner.” The hiring problem models how often we update our notion of which 
element is currently winning. 

Worst-case analysis  

In the worst case, we actually hire every candidate that we interview. This situation 
occurs if the candidates come in strictly increasing order of quality, in which case 
we hire n times, for a total hiring cost of O(Chn). Of course, the candidates do not 
always come in increasing order of quality. In fact, we have no idea about the order 
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in which they arrive, nor do we have any control over this order. Therefore, it is 
natural to ask what we expect to happen in a typical or average case. 

Probabilistic analysis 

Probabilistic analysis is the use of probability in the analysis of problems. Most 
commonly, we use probabilistic analysis to analyze the running time of an 
algorithm. Sometimes we use it to analyze other quantities, such as the hiring cost 
in procedure HIRE-ASSISTANT. In order to perform a probabilistic analysis, we 
must use knowledge of, or make assumptions about, the distribution of the inputs. 
Then we analyze our algorithm, computing an average-case running time, where 
we take the average over the distribution of the possible inputs. Thus we are, in 
effect, averaging the running time over all possible inputs. When reporting such a 
running time, we will refer to it as the average-case running time. We must be very 
careful in deciding on the distribution of inputs. For some problems, we may 
reasonably assume something about the set of all possible inputs, and then we can 
use probabilistic analysis as a technique for designing an efficient algorithm and as 
a means for gaining insight into a problem. For other problems, we cannot describe 
a reasonable input distribution, and in these cases we cannot use probabilistic 
analysis. For the hiring problem, we can assume that the applicants come in a 
random order. What does that mean for this problem? We assume that we can 
compare any two candidates and decide which one is better qualified; that is, there 
is a total order on the candidates. Thus, we can rank each candidate with a unique 
number from 1 through n, using rank(i) to denote the rank of applicant i, and adopt 
the convention that a higher rank corresponds to a better qualified applicant. The 
ordered list (rank(1),rank(2),…rank(n)) is a permutation of the list (1,2,…,n). 
Saying that the applicants come in a random order is equivalent to saying that this 
list of ranks is equally likely to be any one of the n! permutations of the numbers 1 
through n. Alternatively, we say that the ranks form a uniform random permutation; 
that is, each of the possible n! permutations appears with equal probability.  

Randomized algorithms 

In order to use probabilistic analysis, we need to know something about the 
distribution of the inputs. In many cases, we know very little about the input 
distribution. Even if we do know something about the distribution, we may not be 
able to model this knowledge computationally. Yet we often can use probability 
and randomness as a tool for algorithm design and analysis, by making the behavior 
of part of the algorithm random. In the hiring problem, it may seem as if the 
candidates are being presented to us in a random order, but we have no way of 
knowing whether or not they really are. Thus, in order to develop a randomized 
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algorithm for the hiring problem, we must have greater control over the order in 
which we interview the candidates. We will, therefore, change the model slightly. 
We say that the employment agency has n candidates, and they send us a list of the 
candidates in advance. On each day, we choose, randomly, which candidate to 
interview. Although we know nothing about the candidates (besides their names), 
we have made a significant change. Instead of relying on a guess that the candidates 
come to us in a random order, we have instead gained control of the process and 
enforced a random order. More generally, we call an algorithm randomized if its 
behavior is determined not only by its input but also by values produced by a 
random-number generator. We shall assume that we have at our disposal a random-
number generator RANDOM. A call to RANDOM(a,b) returns an integer between 
a and b, inclusive, with each such integer being equally likely. For example, 
RANDOM(0,1) produces 0 with probability 1/2, and it produces 1 with probability 
1/2. A call to RANDOM(3,7) returns either 3, 4, 5, 6, or 7, each with probability 
1/5. Each integer returned by RANDOM is independent of the integers returned on 
previous calls. You may imagine RANDOM as rolling a(b-a+1) -sided die to obtain 
its output. (In practice, most programming environments offer a pseudorandom-
number generator: a deterministic algorithm returning numbers that “look” 
statistically random.) When analyzing the running time of a randomized algorithm, 
we take the expectation of the running time over the distribution of values returned 
by the random number generator. We distinguish these algorithms from those in 
which the input is random by referring to the running time of a randomized 
algorithm as an expected running time. In general, we discuss the average-case 
running time when the probability distribution is over the inputs to the algorithm, 
and we discuss the expected running time when the algorithm itself makes random 
choices. 

2.3.2 Indicator random variables 

In order to analyze many algorithms, including the hiring problem, we use indicator 
random variables. Indicator random variables provide a convenient method for 
converting between probabilities and expectations. Suppose we are given a sample 
space S and an event A. Then the indicator random variable I {A} associated with 
event A is defined as 

 

As a simple example, let us determine the expected number of heads that we obtain 
when flipping a fair coin. Our sample space is S = {H, T}, with Pr{H} = Pr{T}=1/2. 
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We can then define an indicator random variable XH , associated with the coin 
coming up heads, which is the event H. This variable counts the number of heads 
obtained in this flip, and it is 1 if the coin comes up heads and 0 otherwise. We 
write 

  

The expected number of heads obtained in one flip of the coin is simply the 
expected value of our indicator variable XH : 

  

Thus the expected number of heads obtained by one flip of a fair coin is 1/2. As the 
following lemma shows, the expected value of an indicator random variable 
associated with an event A is equal to the probability that A occurs. 

2.3.3 Randomized algorithms 

In the previous section, we showed how knowing a distribution on the inputs can 
help us to analyze the average-case behavior of an algorithm. Many times, we do 
not have such knowledge, thus precluding an average-case analysis. As mentioned 
in Section 5.1, we may be able to use a randomized algorithm. For a problem such 
as the hiring problem, in which it is helpful to assume that all permutations of the 
input are equally likely, a probabilistic analysis can guide the development of a 
randomized algorithm. Instead of assuming a distribution of inputs, we impose a 
distribution. In particular, before running the algorithm, we randomly permute the 
candidates in order to enforce the property that every permutation is equally likely. 
Although we have modified the algorithm, we still expect to hire a new office 
assistant approximately ln n times. But now we expect this to be the case for any 
input, rather than for inputs drawn from a particular distribution.  

Let us further explore the distinction between probabilistic analysis and 
randomized algorithms. In Section 5.2, we claimed that, assuming that the 
candidates arrive in a random order, the expected number of times we hire a new 
office assistant is about ln n. Note that the algorithm here is deterministic; for any 
particular input, the number of times a new office assistant is hired is always the 
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same. Furthermore, the number of times we hire a new office assistant differs for 
different inputs, and it depends on the ranks of the various candidates. Since this 
number depends only on the ranks of the candidates, we can represent a particular 
input by listing, in order, the ranks of the candidates, i.e., ((rank(1), 
rank(2),…rank(n)). Given the rank list A1 = (1,2,3,4,5,6,7,8,910), a new office 
assistant is always hired 10 times, since each successive candidate is better than the 
previous one, and lines 5–6 are executed in each iteration. Given the list of ranks 
A2 =(10,9,8,7,6,5,4,3,2,1), a new office assistant is hired only once, in the first 
iteration. Given a list of ranks A3=(5, 2, 1, 8, 4, 7, 10, 9, 3, 6), a new office assistant 
is hired three times, upon interviewing the candidates with ranks 5, 8, and 10. 
Recalling that the cost of our algorithm depends on how many times we hire a new 
office assistant, we see that there are expensive inputs such as A1, inexpensive 
inputs such as A2, and moderately expensive inputs such as A3. Consider, on the 
other hand, the randomized algorithm that first permutes the candidates and then 
determines the best candidate. In this case, we randomize in the algorithm, not in 
the input distribution. Given a particular input, say A3 above, we cannot say how 
many times the maximum is updated, because this quantity differs with each run of 
the algorithm. The first time we run the algorithm on A3, it may produce the 
permutation A1 and perform 10 updates; but the second time we run the algorithm, 
we may produce the permutation A2 and perform only one update. The third time 
we run it, we may perform some other number of updates. Each time we run the 
algorithm, the execution depends on the random choices made and is likely to differ 
from the previous execution of the algorithm. For this algorithm and many other 
randomized algorithms, no particular input elicits its worst-case behavior. Even 
your worst enemy cannot produce a bad input array, since the random permutation 
makes the input order irrelevant. The randomized algorithm performs badly only if 
the random-number generator produces an “unlucky” permutation. For the hiring 
problem, the only change needed in the code is to randomly permute the array. 

RANDOMIZED-HIRE-ASSISTANT(n)  

randomly permute the list of candidates  

best = 0 // candidate 0 is a least-qualified dummy candidate  

for i = 1 to n  

interview candidate i  

if candidate i is better than candidate best  

best  = i  

hire candidate i  
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With this simple change, we have created a randomized algorithm whose 
performance matches that obtained by assuming that the candidates were presented 
in a random order. 

2.4 Let us Sum Up 

In this chapter we have learned various probabilistic Analysis and Randomised 
algorithms.  

2.5  List of references 

1. https://www.codesdope.com/blog/article/maximum-subarray-sum-using-
divide-and-conquer/ 

2.  Introduction to Algorithms, Third Edition, Thomas H. Cormen, Charles E. 
Leiserson, Ronald L. Rivest, Clifford Stein, PHI Learning Pvt. Ltd-New 
Delhi (2009). 

3.  https://www.javatpoint.com/algorithms-and-functions 

4.  Dr. L. V. N. Prasad, Professor, lecture notes on Design And Analysis Of 
Algorithms 

2.6 Exercise 

 1. Explain the concept of divide and conquer. 

 2. Explain the idea of Strassen’s algorithm for matrix multiplication. 

 3. Describe the concept of randomized algorithm. Write down algorithm for the 
same. 
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3.1  Objective 

After going through this unit, you will be able to: 

• What is dynamic programming? 

• What is the need of greedy algorithm? 

• What is the elementary graph algorithm? 

• How to solve the single source shortest path problems? 

3.2  Introduction 

In this section, we will learn dynamic programming, greedy algorithms, graph 
algorithms, representation of graph, spanning tree and single source shortest path. 

3.3  Dynamic Programming 

We typically apply dynamic programming to optimization problems. Such 
problems can have many possible solutions. Each solution has a value, and we wish 
to find a solution with the optimal (minimum or maximum) value. We call such a 
solution an optimal solution to the problem, as opposed to the optimal solution, 
since there may be several solutions that achieve the optimal value.  

When developing a dynamic-programming algorithm, we follow a sequence of four 
steps:  

1. Characterize the structure of an optimal solution.  

2. Recursively define the value of an optimal solution.  

3. Compute the value of an optimal solution, typically in a bottom-up fashion.  

4. Construct an optimal solution from computed information. 

3.3.1 Rod cutting 

Given a rod of length n inches and an array of prices that contains prices of all 
pieces of size smaller than n. Determine the maximum value obtainable by cutting 
up the rod and selling the pieces. For example, if length of the rod is 8 and the 
values of different pieces are given as following, then the maximum obtainable 
value is 22 (by cutting in two pieces of lengths 2 and 6)  
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length   | 1   2   3   4   5   6   7   8   

-------------------------------------------- 

price    | 1   5   8   9  10  17  17  20 

And if the prices are as following, then the maximum obtainable value is 24 (by 
cutting in eight pieces of length 1)  

length   | 1   2   3   4   5   6   7   8   

-------------------------------------------- 

price    | 3   5   8   9  10  17  17  20 

A naive solution for this problem is to generate all configurations of different 
pieces and find the highest priced configuration. This solution is exponential in 
term of time complexity. Let us see how this problem possesses both important 
properties of a Dynamic Programming (DP) Problem and can efficiently solved 
using Dynamic Programming. 

1)  Optimal Substructure:  
We can get the best price by making a cut at different positions and 
comparing the values obtained after a cut. We can recursively call the 
same function for a piece obtained after a cut. 
Let cutRod(n) be the required (best possible price) value for a rod of 
length n. cutRod(n) can be written as following. 
cutRod(n) = max(price[i] + cutRod(n-i-1)) for all i in {0, 1 .. n-1} 

2)  Overlapping Subproblems  
Following is simple recursive implementation of the Rod Cutting problem. 
The implementation simply follows the recursive structure.  

3.3.2 Elements of dynamic programming 

There are basically three elements that characterize a dynamic programming 
algorithm:- 

1. Substructure: Decompose the given problem into smaller subproblems. 
Express the solution of the original problem in terms of the solution for 
smaller problems. 

2. Table Structure: After solving the sub-problems, store the results to the 
sub problems in a table. This is done because subproblem solutions are 
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reused many times, and we do not want to repeatedly solve the same 
problem over and over again. 

3. Bottom-up Computation: Using table, combine the solution of smaller 
subproblems to solve larger subproblems and eventually arrives at a 
solution to complete problem. 

Bottom-up means:- 

i.  Start with smallest subproblems. 

ii.   Combining their solutions obtain the solution to sub-problems of  
increasing size. 

iii.  Until solving at the solution of the original problem. 

Development of Dynamic Programming Algorithm 

It can be broken into four steps: 

1. Characterize the structure of an optimal solution. 

2. Recursively defined the value of the optimal solution. Like Divide and 
Conquer, divide the problem into two or more optimal parts recursively. 
This helps to determine what the solution will look like. 

3. Compute the value of the optimal solution from the bottom up (starting with 
the smallest subproblems) 

4. Construct the optimal solution for the entire problem form the computed 
values of smaller subproblems. 

Applications of dynamic programming 

1. 0/1 knapsack problem 

2. Mathematical optimization problem 

3. All pair Shortest path problem 

4. Reliability design problem 

5. Longest common subsequence (LCS) 

6. Flight control and robotics control 

7. Time-sharing: It schedules the job to maximize CPU usage 
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3.3.3 Longest common subsequence 

The longest common subsequence problem is finding the longest sequence which 
exists in both the given strings. 

Subsequence 

Let us consider a sequence S = <s1, s2, s3, s4, …,sn>. 

A sequence Z = <z1, z2, z3, z4, …,zm> over S is called a subsequence of S, if and 
only if it can be derived from S deletion of some elements. 

Common Subsequence 

Suppose, X and Y are two sequences over a finite set of elements. We can say 
that Z is a common subsequence of X and Y, if Z is a subsequence of both X and Y. 

If a set of sequences are given, the longest common subsequence problem is to find 
a common subsequence of all the sequences that is of maximal length. 

Algorithm  

 

LCS-LENGTH takes two sequences X = (x1, x2,…, xm) and Y = (y1, y2,…,yn) 
as inputs. It stores the c[i, j] values in a table c[0..m, 0..n] and it computes the 
entries in row-major order. (That is, the procedure fills in the first row of c from 
left to right, then the second row, and so on.) The procedure also maintains the 
table b[1..m,1..n] to help us construct an optimal solution. Intuitively, b[i, j] points 
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to the table entry corresponding to the optimal subproblem solution chosen when 
computing c[i, j]. The procedure returns the b and c tables; c[m,n] contains the 
length of an LCS of X and Y. 

3.4 Greedy algorithm 

Algorithms for optimization problems typically go through a sequence of steps, 
with a set of choices at each step. For many optimization problems, using dynamic 
programming to determine the best choices is overkill; simpler, more efficient 
algorithms will do. A greedy algorithm always makes the choice that looks best at 
the moment. That is, it makes a locally optimal choice in the hope that this choice 
will lead to a globally optimal solution. This chapter explores optimization 
problems for which greedy algorithms provide optimal solutions. 

3.4.1 An activity-selection problem 

The problem of scheduling several competing activities that require exclusive use 
of a common resource, with a goal of selecting a maximum-size set of mutually 
compatible activities. Suppose we have a set S = {a1, a2,…an} of n proposed 
activities that wish to use a resource, such as a lecture hall, which can serve only 
one activity at a time. Each activity ai has a start time si and a finish time fi , 
where 0 si < fi < ∞. If selected, activity ai takes place during the half-open time 
interval (si,fi). Activities ai and aj are compatible if the intervals (si,fi) and (si,fi) 
do not overlap. That is, ai and aj are compatible if si >= fj or sj >= fi. In the activity-
selection problem, we wish to select a maximum-size subset of mutually 
compatible activities. We assume that the activities are sorted in monotonically 
increasing order of finish time:  

f1<= f2 <=  f3 <= fn1 <= fn  

i 1 2 3 4 5 6 7 8 9 10 11 

si 1 3 0 5 3 5 6 8 8 2 12 

fi 4 5 6 7 9 9 10 11 12 14 16 

  

 For this example, the subset {a3, a9, a11} consists of mutually compatible 
activities. It is not a maximum subset, however, since the subset {a1, a4, a8, a11} 
is larger. In fact, {a1, a4, a8, a11} is a largest subset of mutually compatible 
activities; another largest subset is {a2, a4, a9, a11}. 
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3.4.2 Elements of the greedy strategy 

A greedy algorithm obtains an optimal solution to a problem by making a sequence 
of choices. At each decision point, the algorithm makes choice that seems best at 
the moment. This heuristic strategy does not always produce an optimal solution, 
but as we saw in the activity-selection problem, sometimes it does. This section 
discusses some of the general properties of greedy methods. We went through the 
following steps:  

1.  Determine the optimal substructure of the problem.  

2.  Develop a recursive solution. 

3.  Show that if we make the greedy choice, then only one subproblem remains.  

4.  Prove that it is always safe to make the greedy choice. (Steps 3 and 4 can 
occur in either order.)  

5.  Develop a recursive algorithm that implements the greedy strategy.  

6.  Convert the recursive algorithm to an iterative algorithm. 

Elements are as follows -  

Greedy-choice property The first key ingredient is the greedy-choice property: 
we can assemble a globally optimal solution by making locally optimal (greedy) 
choices. In other words, when we are considering which choice to make, we make 
the choice that looks best in the current problem, without considering results from 
subproblems. 

A problem exhibits optimal substructure if an optimal solution to the problem 
contains within it optimal solutions to subproblems. This property is a key 
ingredient of assessing the applicability of dynamic programming as well as greedy 
algorithms. We usually use a more direct approach regarding optimal substructure 
when applying it to greedy algorithms. 

The 0-1 knapsack problem is the following. A thief robbing a store finds n items. 
The ith item is worth i dollars and weighs wi pounds, where i and wi are integers. 
The thief wants to take as valuable a load as possible, but he can carry at most W 
pounds in his knapsack, for some integer W. Which items should he take? (We call 
this the 0-1 knapsack problem because for each item, the thief must take it or leave 
it behind; he cannot take a fractional amount of an item or take an item more than 
once.)  
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In the fractional knapsack problem, the setup is the same, but the thief can take 
fractions of items, rather than having to make a binary (0-1) choice for each item. 
You can think of an item in the 0-1 knapsack problem as being like a gold ingot 
and an item in the fractional knapsack problem as more like gold dust. 

3.3.3 Huffman codes 

Huffman codes compress data very effectively: savings of 20% to 90% are typical, 
depending on the characteristics of the data being compressed. We consider the 
data to be a sequence of characters. Huffman’s greedy algorithm uses a table giving 
how often each character occurs (i.e., its frequency) to build up an optimal way of 
representing each character as a binary string. Suppose we have a 100,000-
character data file that we wish to store compactly. We observe that the characters 
in the file occur with the frequencies.  

 a b c d e f 

Frequency (in thousands) 45 13 12 16 9 5 

Fixed-length codeword 000 001 010 011 100 101 

Variable-length codeword 0 101 100 111 1101 1100 

 

That is, only 6 different characters appear, and the character a occurs 45,000 times. 
We have many options for how to represent such a file of information. Here, we 
consider the problem of designing a binary character code (or code for short) in 
which each character is represented by a unique binary string, which we call a 
codeword. If we use a fixed-length code, we need 3 bits to represent 6 characters: 
a = 000, b = 001, ..., f = 101. This method requires 300,000 bits to code the entire 
file. Can we do better? A variable-length code can do considerably better than a 
fixed-length code, by giving frequent characters short codewords and infrequent 
characters long codewords. Figure shows such a code; here the 1-bit string 0 
represents a, and the 4-bit string 1100 represents f.  

This code requires  

(45x1) + (13x3)  + (12x3 ) + (16x3) + (9x4 ) + (5x4) x 1,000 = 224,000 bits. 

to represent the file, a savings of approximately 25%. In fact, this is an optimal 
character code for this file. 
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3.5  Elementary Graph Algorithms 

In this topic presents methods for representing a graph and for searching a graph. 
Searching a graph means systematically following the edges of the graph so as to 
visit the vertices of the graph. A graph-searching algorithm can discover much 
about the structure of a graph. Many algorithms begin by searching their input 
graph to obtain this structural information. Several other graph algorithms elaborate 
on basic graph searching. Techniques for searching a graph lie at the heart of the 
field of graph algorithms. 

3.5.1 Representations of graphs 

A graph is a data structure that consists of the following two components: 
1. A finite set of vertices also called as nodes. 
2. A finite set of ordered pair of the form (u, v) called as edge. The pair is ordered 
because (u, v) is not the same as (v, u) in case of a directed graph(di-graph). The 
pair of the form (u, v) indicates that there is an edge from vertex u to vertex v. 
The edges may contain weight/value/cost. 

Graphs are used to represent many real-life applications: Graphs are used to 
represent networks. The networks may include paths in a city or telephone 
network or circuit network. Graphs are also used in social networks like linkedIn, 
Facebook. For example, in Facebook, each person is represented with a vertex(or 
node). Each node is a structure and contains information like person id, name, 
gender, and locale. See this for more applications of graph. 

Following is an example of an undirected graph with 5 vertices. 

 

The following two are the most commonly used representations of a graph. 
1. Adjacency Matrix 
2. Adjacency List 
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There are other representations also like, Incidence Matrix and Incidence List. 
The choice of graph representation is situation-specific. It totally depends on the 
type of operations to be performed and ease of use. 

Adjacency Matrix: 

Adjacency Matrix is a 2D array of size V x V where V is the number of vertices 
in a graph. Let the 2D array be adj[][], a slot adj[i][j] = 1 indicates that there is an 
edge from vertex i to vertex j. Adjacency matrix for undirected graph is always 
symmetric. Adjacency Matrix is also used to represent weighted graphs. If 
adj[i][j] = w, then there is an edge from vertex i to vertex j with weight w. 

The adjacency matrix for the above example graph is: 

 

Pros: Representation is easier to implement and follow. Removing an edge 
takes O(1) time. Queries like whether there is an edge from vertex ‘u’ to vertex 
‘v’ are efficient and can be done O(1). 

Cons: Consumes more space O(V^2). Even if the graph is sparse(contains less 
number of edges), it consumes the same space. Adding a vertex is O(V^2) time. 
Please see this for a sample Python implementation of adjacency matrix. 

Adjacency List: 
An array of lists is used. The size of the array is equal to the number of vertices. 
Let the array be an array[]. An entry array[i] represents the list of vertices 
adjacent to the ith vertex. This representation can also be used to represent a 
weighted graph. The weights of edges can be represented as lists of pairs. 
Following is the adjacency list representation of the above graph. 
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3.5.2 Breadth-first search 

Breadth-first search is one of the simplest algorithms for searching a graph and the 
archetype for many important graph algorithms. Prim’s minimum-spanning-tree 
algorithm and Dijkstra’s single-source shortest-paths algorithm  use ideas similar 
to those in breadth-first search. Given a graph G = (V; E) and a distinguished source 
vertex s, breadth-first search systematically explores the edges of G to “discover” 
every vertex that is reachable from s. It computes the distance (smallest number of 
edges) from s to each reachable vertex. It also produces a “breadth-first tree” with 
root s that contains all reachable vertices. For any vertex reachable from s, the 
simple path in the breadth-first tree from s to corresponds to a “shortest path” from 
s to in G, that is, a path containing the smallest number of edges. The algorithm 
works on both directed and undirected graphs. 

BFS(G, s) 

for each vertex u ∈ G.V -  {s}  

u.color = WHITE  

u.d = ∞  

u.π =  NIL  

s.color = GRAY  

s.d - 0  

s.π = NIL  

Q = φ 

ENQUEUE(Q,s) 

while Q ≠ φ 
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u = DEQUEUE(Q) 

for each v ∈ G.Adj[u] 

if v.color = = WHITE 

v.color = GRAY 

v.d = u.d + 1 

v.π = u 

ENQUEUE(Q,v) 

u.color = BLACK 

 

 

The procedure BFS works as follows. With the exception of the source vertex s, 
lines 1–4 paint every vertex white, set u:d to be infinity for each vertex u, and set 
the parent of every vertex to be NIL. Line 5 paints s gray, since we consider it to 
be discovered as the procedure begins. Line 6 initializes s.d to 0, and line 7 sets the 
predecessor of the source to be NIL. Lines 8–9 initialize Q to the queue containing 
just the vertex s. The while loop of lines 10–18 iterates as long as there remain gray 
vertices, which are discovered vertices that have not yet had their adjacency lists 
fully examined. 
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3.5.3 Depth-first search 

As in breadth-first search, whenever depth-first search discovers a vertex during a 
scan of the adjacency list of an already discovered vertex u, it records this event by 
setting v’s predecessor attribute v.π to u. Unlike breadth-first search, whose 
predecessor subgraph forms a tree, the predecessor subgraph produced by a depth-
first search may be composed of several trees, because the search may repeat from 
multiple sources. Therefore, we define the predecessor subgraph of a depth-first 
search slightly differently from that of a breadth-first search:  

 

The predecessor subgraph of a depth-first search forms a depth-first forest 
comprising several depth-first trees. The edges in E are tree edges. As in breadth-
first search, depth-first search colors vertices during the search to indicate their 
state. Each vertex is initially white, is grayed when it is discovered in the search, 
and is blackened when it is finished, that is, when its adjacency list has been 
examined completely. This technique guarantees that each vertex ends up in exactly 
one depth-first tree, so that these trees are disjoint. 
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3.6  Minimum Spanning Trees 

Minimum spanning tree. An edge-weighted graph is a graph where we associate 
weights or costs with each edge. A minimum spanning tree (MST) of an edge-
weighted graph is a spanning tree whose weight (the sum of the weights of its 
edges) is no larger than the weight of any other spanning tree. Assumptions. The 
graph is connected. 

3.6.1 Growing a minimum spanning tree 

Assume that we have a connected, undirected graph G = (V, E) with a weight 
function w : E -> R, and we wish to find a minimum spanning tree for G. The two 
algorithms we consider in this chapter use a greedy approach to the problem, 
although they differ in how they apply this approach. This greedy strategy is 
captured by the following generic method, which grows the minimum spanning 
tree one edge at a time. The generic method manages a set of edges A, maintaining 
the following loop invariant: Prior to each iteration, A is a subset of some minimum 
spanning tree.  

At each step, we determine an edge (u,v) that we can add to A without violating 
this invariant, in the sense that AU {(u,v)} is also a subset of a minimum spanning 
tree.  

We call such an edge a safe edge for A, since we can add it safely to A while 
maintaining the invariant. 

 

3.6.2 Algorithms of Kruskal and Prim 

Kruskal’s algorithm finds a safe edge to add to the growing forest by finding, of all 
the edges that connect any two trees in the forest, an edge (u,v) of least weight. Let 
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C1 and C2 denote the two trees that are connected by (u,v). Since (u,v) must be a 
light edge connecting C1 to some other tree, Corollary 23.2 implies that (u,v)  is a 
safe edge for C1. Kruskal’s algorithm qualifies as a greedy algorithm because at 
each step it adds to the forest an edge of least possible weight. Our implementation 
of Kruskal’s algorithm is like the algorithm to compute connected components. It 
uses a disjoint-set data structure to maintain several disjoint sets of elements. Each 
set contains the vertices in one tree of the current forest.  

The operation FIND-SET(u) returns a representative element from the set that 
contains u. Thus, we can determine whether two vertices u and belong to the same 
tree by testing whether FIND-SET(u) equals FIND-SET(v) To combine trees, 
Kruskal’s algorithm calls the UNION procedure. 
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Figure shows how Kruskal’s algorithm works. Lines 1–3 initialize the set A to the 
empty set and create |V| trees, one containing each vertex. The for loop in lines 5–
8 examines edges in order of weight, from lowest to highest.  

The loop checks, for each edge (u,v) whether the endpoints u and belong to the 
same tree. If they do, then the edge (u,v) cannot be added to the forest without 
creating a cycle, and the edge is discarded. Otherwise, the two vertices belong to 
different trees. In this case, line 7 adds the edge (u,v) to A, and line 8 merges the 
vertices in the two trees. 

Prim’s algorithm 
Prim's Algorithm is used to find the minimum spanning tree from a graph. Prim's 
algorithm finds the subset of edges that includes every vertex of the graph such that 
the sum of the weights of the edges can be minimized. 

Prim's algorithm starts with the single node and explore all the adjacent nodes with 
all the connecting edges at every step. The edges with the minimal weights causing 
no cycles in the graph got selected. 

Algorithm 

o Step 1: Select a starting vertex 

o Step 2: Repeat Steps 3 and 4 until there are fringe vertices 

o Step 3: Select an edge e connecting the tree vertex and fringe vertex that has 
minimum weight 

o Step 4: Add the selected edge and the vertex to the minimum spanning tree T 
[END OF LOOP] 

o Step 5: EXIT 
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Example – 

Construct a minimum spanning tree of the graph given in the following figure by 
using prim's algorithm. 

 

Solution – 

o Step 1 : Choose a starting vertex B. 

o Step 2: Add the vertices that are adjacent to A. the edges that connecting the 
vertices are shown by dotted lines. 

o Step 3: Choose the edge with the minimum weight among all. i.e. BD and add 
it to MST. Add the adjacent vertices of D i.e. C and E. 

o Step 3: Choose the edge with the minimum weight among all. In this case, the 
edges DE and CD are such edges. Add them to MST and explore the adjacent 
of C i.e. E and A. 

o Step 4: Choose the edge with the minimum weight i.e. CA. We can't choose 
CE as it would cause cycle in the graph. 

The graph produces in the step 4 is the minimum spanning tree of the graph 
shown in the above figure. 

The cost of MST will be calculated as; 

cost(MST) = 4 + 2 + 1 + 3 = 10 units. 
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3.7  Single-Source Shortest Paths 

The single source shortest path algorithm (for arbitrary weight positive or negative) 
is also known Bellman-Ford algorithm is used to find minimum distance from 
source vertex to any other vertex. The single-destination shortest path problem, in 
which we have to find shortest paths from all vertices in the directed graph to a 
single destination vertex v. This can be reduced to the single-source shortest path 
problem by reversing the arcs in the directed graph.  

3.7.1 The Bellman-Ford algorithm 

   The Bellman-Ford algorithm solves the single-source shortest-paths problem in 
the general case in which edge weights may be negative. Given a weighted, directed 
graph G = (V, E) with source s and weight function w : E -> R, the Bellman-Ford 
algorithm returns a boolean value indicating whether or not there is a negative-
weight cycle that is reachable from the source. If there is such a cycle, the algorithm 
indicates that no solution exists. If there is no such cycle, the algorithm produces 
the shortest paths and their weights. The algorithm relaxes edges, progressively 
decreasing an estimate :d on the weight of a shortest path from the source s to each 
vertex v ∈ V until it achieves the actual shortest-path weight (s,v). The algorithm 
returns TRUE if and only if the graph contains no negative-weight cycles that are 
reachable from the source. 
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3.7.2 Single-source shortest paths in directed acyclic graphs 

By relaxing the edges of a weighted DAG (Directed Acyclic Graph) G = (V, E) 
according to a topological sort of its vertices, we can figure out shortest paths from 
a single source in ∅(V+E) time. Shortest paths are always well described in a dag, 
since even if there are negative-weight edges, no negative-weight cycles can exist. 

Example –  

 

Step1: To topologically sort vertices apply DFS (Depth First Search) and then 
arrange vertices in linear order by decreasing order of finish time. 
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Now, take each vertex in topologically sorted order and relax each edge. 

 

1. adj [s] →t, x   

2. 0 + 3 < ∞   

3. d [t] ← 3   

4. 0 + 2 < ∞   

5. d [x] ← 2   

 

1. adj [t] → r, x   

2. 3 + 1 < ∞   

3. d [r] ← 4   

4. 3 + 5 ≤ 2   
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1. adj [x] → y   

2. 2 - 3 < ∞   

3. d [y] ← -1   

 

1. adj [y] → r   

2. -1 + 4 < 4   

3. 3 <4   

4. d [r] ← 3   

 

Thus the Shortest Path is: 

1. s to x is 2   

2. s to y is -1   

3. s to t is 3   

4. s to r is 3   
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3.7.3 Dijkstra’s algorithm 

4 Dijkstra’s algorithm is very similar to Prim’s algorithm for minimum 
spanning tree. Like Prim’s MST, we generate a SPT (shortest path 
tree) with given source as root. We maintain two sets, one set contains 
vertices included in shortest path tree, other set includes vertices not yet 
included in shortest path tree. At every step of the algorithm, we find a 
vertex which is in the other set (set of not yet included) and has a minimum 
distance from the source. 

5 Below are the detailed steps used in Dijkstra’s algorithm to find the shortest 
path from a single source vertex to all other vertices in the given graph. 
Algorithm 

 1)  Create a set sptSet (shortest path tree set) that keeps track of vertices 
included in shortest path tree, i.e., whose minimum distance from 
source is calculated and finalized. Initially, this set is empty. 

2)  Assign a distance value to all vertices in the input graph. Initialize all 
distance values as INFINITE. Assign distance value as 0 for the 
source vertex so that it is picked first. 

3)  While sptSet doesn’t include all vertices 

  a) Pick a vertex u which is not there in sptSet and has minimum 
distance value. 

  b) Include u to sptSet. 

  c) Update distance value of all adjacent vertices of u. To update the 
distance values, iterate through all adjacent vertices. For every 
adjacent vertex v, if sum of distance value of u (from source) and 
weight of edge u-v, is less than the distance value of v, then update 
the distance value of v. 

6 Let us understand with the following example: 
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7 The set sptSet is initially empty and distances assigned to vertices are {0, 
INF, INF, INF, INF, INF, INF, INF} where INF indicates infinite. Now pick 
the vertex with minimum distance value. The vertex 0 is picked, include it 
in sptSet. So sptSet becomes {0}. After including 0 to sptSet, update 
distance values of its adjacent vertices. Adjacent vertices of 0 are 1 and 7. 
The distance values of 1 and 7 are updated as 4 and 8. Following subgraph 
shows vertices and their distance values, only the vertices with finite 
distance values are shown. The vertices included in SPT are shown in green 
colour. 

8  
 

 

9 Pick the vertex with minimum distance value and not already included in 
SPT (not in sptSET). The vertex 1 is picked and added to sptSet. So sptSet 
now becomes {0, 1}. Update the distance values of adjacent vertices of 1. 
The distance value of vertex 2 becomes 12. 

 

10 Pick the vertex with minimum distance value and not already included in 
SPT (not in sptSET). Vertex 7 is picked. So sptSet now becomes {0, 1, 7}. 
Update the distance values of adjacent vertices of 7. The distance value of 
vertex 6 and 8 becomes finite (15 and 9 respectively). 
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11 Pick the vertex with minimum distance value and not already included in 
SPT (not in sptSET). Vertex 6 is picked. So sptSet now becomes {0, 1, 7, 
6}. Update the distance values of adjacent vertices of 6. The distance value 
of vertex 5 and 8 are updated. 

 

12 We repeat the above steps until sptSet does include all vertices of given 
graph. Finally, we get the following Shortest Path Tree (SPT). 
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3.8 Let us Sum Up 

In this section, we have studied dynamic programming, greedy approach, graph 
algorithm, spanning tree and single source shortest path algorithm precisely.  

3.9 List of References 

1. https://www.javatpoint.com/prim-algorithm 

2. Introduction to Algorithms, Third Edition, Thomas H. Cormen, Charles E. 
Leiserson, Ronald L. Rivest, Clifford Stein, PHI Learning Pvt. Ltd-New Delhi 
(2009). 

3.10 Exercises 

1. Determine an LCS of (1, 0, 0, 1, 0, 1, 0, 1) and (0, 1, 0, 1, 1, 0, 1, 1, 0). 

2. Prove that the fractional knapsack problem has the greedy-choice property. 

3. Show how to solve the fractional knapsack problem in O(n) time. 

4. Given an adjacency-list representation of a directed graph, how long does it take 
to compute the out-degree of every vertex? How long does it take to compute the 
in-degrees? 
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Unit III 

4 
NUMBER-THEORETIC ALGORITHMS  

AND NP – COMPLETENESS 
 

Unit Structure: - 

4.0     Objective. 

4.1     Introduction. 

4.2     Number Theory. 

4.3     Elementary number-theoretic notions 
 4.3.1   Divisibility and Divisors. 
 4.3.2   Prime and Composite Numbers. 

4.4     Greatest Common divisor. 
 4.4.1   Euclid’s Algorithm. 

4.5     Modular Arithmetic. 

4.6     The Chinese Remainder theorem. 

4.7     Powers of an element. 

4.8     The RSA public-key cryptosystem 

4.9     NP-Completeness. 
 4.9.1    Decision vs Optimization Problems 
 4.9.2    What is Reduction? 
 4.9.3    How to prove that a given problem is NP complete? 

4.10    Approximation Algorithms. 

 4.10.1   Introduction to Approximation Algorithms. 
 4.10.2   The vertex-cover problem. 
 4.10.3   The traveling-salesman problem. 
 4.10.4   The set-covering problem. 
 4.10.5   Subset-sum problem 
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4.11    Summary 

4.12    References 

4.13    Bibliography 

4.14    Exercise 

4.0 Objective 

Algorithms are heavily based on Number Theory. So many day to day problems 
can be solved with simple numerical methods. We are trying to include such 
materials in this topic. 

4.1 Introduction 

Number theory was once viewed as a beautiful but largely useless subject in pure 
mathematics. Today number-theoretic algorithms are used widely, due in large part 
to the invention of cryptographic schemes based on large prime numbers. These 
schemes are feasible because we can find large primes easily, and they are secure 
because we do not know how to factor the product of large primes (or solve related 
problems, such as computing discrete logarithms) efficiently. This chapter presents 
some of the number theory and related algorithms that underlie such applications 

4.2  Number Theory 

Number Theory is widely used in Computer science as well as Mathematics. 
Many algorithms and techniques are dependent on Number Theory. Mostly 
Number theory is used in cryptographic study.  

4.3   Elementary number-theoretic notions 

This section provides a brief review of notions from elementary number theory 
concerning the set of integers and the set of natural numbers. 

4.3.1   Divisibility and divisors 

Let us consider set Z= {…., - 2, -1,0,1, 2….} of Integers and Set N = {0, 1, 2 
….}, the divisibility and divisors are defined as follows: 

The notation d | a (d divides a ) means a = kd for some integer k. d is called as 
divisor of a.  
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4.3.2   Prime and composite numbers 

Let us consider set Z= {…., - 2, -1,0,1, 2….} of Integers and Set N = {0, 1, 2 
….}, Prime and composite numbers are defined as follows: 

An integer a > 1 whose only divisors are the trivial divisors 1 and a is a prime 
number or, more simply, a prime. Primes have many special properties and play a 
critical role in number theory. The first 20 primes, in order, are 

2, 3, 5, 7 ,11, 13, 17, 19; 23, 29, 31, 37, 41, 43, 47, 53,  59, 61, 67, 71 

if integer a > 1 is not prime then it is a composite number. 

4.4    Greatest common divisor 

In this section, we describe Euclid’s algorithm for efficiently computing the 
greatest common divisor of two integers. When we analyze the running time, we 
shall see a surprising connection with the Fibonacci numbers, which yield a 
worst-case input for Euclid’s algorithm.  

3.4.1    Euclid’s algorithm 

Euclid’s algorithm is recursive program to find out GCD of a non-negative 
number. In principle, we can compute gcd(a,b),  for positive integers a and b from 
the prime factorizations of a and b. The inputs a and b are arbitrary non-negative 
numbers.  

EUCLID (a,b) 
 if(b = = 0) 
  return a 
 else return EUCLID(b, a mod b) 

 

Consider example of calculating GCD( 30,21) 

EUCLID (30, 21) 
EUCLID (30, 21) =   EUCLID (21, 30 mod 21)   
 =   EUCLID (21, 9)   
EUCLID (21, 9)   =   EUCLID (21, 21 mod 9)   
 =   EUCLID (9, 3)   
EUCLID (9, 3)   =   EUCLID (3, 9 mod 3)   
 =   EUCLID (3, 0ddd)   
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The worst case time complexity is calculated with the sum of a + b. As all 
positive integers have common divisor as 1, time complexity will have an upper 
bound of O(a+b). 

4.5   Modular Arithmetic 

Modular Arithmetic is system of integers where we are considering the 
remainders. This concept is highly used in cryptographic services. Given an 
integer x > 1, defined as modulus, two integers a  and b are said to be congruent 
modulo x, if x is a divisor of their difference (i.e., if there is an integer x such that 
a − b = kx).  

Congruence modulo x is a congruence relation, meaning that it is an equivalence 
relation that is compatible with the operations of addition, subtraction, and 
multiplication. Congruence modulo n is denoted: 

A === b mod x. 

Solving modular linear equations:- 

We now consider the problem of finding solutions to the equation  

ax === b (mod n) 

Where a > 0 and n > 0. This problem has several applications like RSA public-
key cryptosystem. Assuming a, b, and n are given, and aim to find all values of x, 
modulo n, that satisfy equation The equation may have zero, one, or more than 
one such solution. 

MODULAR-LINEAR-EQUATION-SOLVER (a,b,n) 
 (d, x’,y’) = EXTENDED-EUCLID (a , n ) …………………x0 = x’(b/d) 

mod n  
 if d | b 
 for i = 0 to d-1 
               print (x0 + i( n | d) ) mod n  
 else print “no solutions” 

 

MODULAR-LINEAR-EQUATION-SOLVER performs O (lg n + gcd (a, n)) 
arithmetic operations, since EXTENDED-EUCLID performs O(lg n) arithmetic 
operations, and each iteration of the for loop of lines 4–5 performs a constant 
number of arithmetic operations. 
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4.6    Chinese Remainder Theorem. 

Let us consider set of pairwise relatively prime integers m1, m2, . . . , mr. Then the 
system of simultaneous congruence’s 

x ≡ a1 (mod m1) 
x ≡ a2 (mod m2) 

. 

. 

. 
x ≡ ar (mod mr) 

The above equation has a unique solution modulo M = m1,m2, · · · mr, for any 
given integers a1, a2, . . . , ar. 

Proof of CRT. 

Put M = m1 · · · mr and for each k = 1, 2, . . . , r let Mk =M/mk. 

Then gcd(Mk, mk) = 1 for all k.  

Let yk be an inverse of Mk modulo mk, for each k. Then by definition of inverse 
we have Mkyk ≡ 1 (mod mk). Let, 

x = a1M1x1 + a2M2x2 + · · · + arMrxr.MOD M 

Here x is the solution for above problem. Since operator m1, . . . , mr are pairwise 
relatively prime, any two simultaneous solutions to the system must be congruent 
modulo M. Thus the solution is a unique congruence class modulo M, and the value 
of x computed above is in that class. 

Example:- 

x===1 (mod 5) 

x=== 1(mod 7) 

x=== 3(mod 11) 

Here 5, 7 and 11 are co-prime to each other therefore we will find out solution with 
Chinese Remainder Theorem. 

As all numbers are relatively co-prime. We can write 

gcd ( 5,7)  =  gcd (7,11) = gcd(5, 11)  =1 
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Find M, 

We have formula for M = m1 * m2 * m3.   ( m1…..mn are co-prime numbers) 

Here m1 = 5, m2 = 7, m3 = 11. 

Therefore,   M = m1 * m2 * m3.    = 5 * 7 * 11 = 385. 

Modulo M1…Mn are defined as Mi = M / mi 

Therefore,  

M1 = M / m1 = 385 / 5 = 77. 

M2 = M / m2 =  385 /  7   = 55. 

M3 = M / m3  = 385 / 11 = 35. 

Now we have to calculate xi value, 

Mixi (mod mi) = 1. 

Let us Calculate x1 

M1x1 (mod m1) = 1 

77. x1 (mod 5) = 1 

2. x1 (mod 5)  = 1  …… (77 mod 5 = 2) 

x1 = 3  ……….  ( (2 * 3 ) mod 5 = 1) 

Let us Calculate x2 

M2x2 (mod m2) = 1 

55. x2 (mod 7) = 1 

6. x2 (mod 7)  = 1  …… (55 mod 7 = 6) 

x2 = 6  ……….  ( (6 * 6 ) mod 7 = 1) 

Let us Calculate x3 

M3x3 (mod m3) = 1 

35. x3 (mod 11) = 1 

2. x3 (mod 11)  = 1  …… (35 mod 11 = 2) 

X3 = 6  ……….  ( (2 * 6 ) mod 11 = 1) 



70

ANALYSIS OF ALGORITHMS AND RESEARCHING COMPUTING

Let us find out x 

x = (a1M1x1 + a2M2x2 + · · · + arMrxr.) mod M 

= ((77 * 3 * 1) + (55 * 6 * 1) + (35 * 6 * 3)) mod 385 

=  (231 + 330 + 631 ) mod 385 

= 1191 mod 385 

= 36 

4.7    Powers of an element: 

Just as we often consider the multiples of a given element a, modulo n, we consider 
the sequence of powers of a,modulo n. 

a0, a1, a2, a3,… 

modulo n. Indexing from 0, the 0th value in this sequence is a0 mod n D 1, and the 
ith value is ai mod n. For example, the powers of 3 modulo 7 are  

i 0 1 2 3 4 5 6 7 8 

3i mod 7 1 3 2 6 4 5 1 3 2 

4.8    The RSA public-key cryptosystem 

In the RSA public-key cryptosystem, a participant creates his or her public and 
secret keys with the following procedure: 

1.  Select at random two large prime numbers p and q such that p =/ q. The 
primes p and q might be, say, 1024 bits each. 

2.  Compute n = pq. 

3.  Select a small odd integer e that is relatively prime to pi (n) which, by 
equation equals (p-1)(q-1) 

4.  Compute d as the multiplicative inverse of e, modulo pi(n). guarantees that d 
exists and is uniquely defined. We can use the technique of 

5.  Publish the pair P =(e, n)  as the participant’s RSA public key. 

6.  Keep secret the pair S =(d,n)as the participant’s RSA secret key. 
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4.9    NP-Completeness:- 

P v/s NP Problem is very famous issue in computer Science.  The Abbrevations are 
defined as follows:- 

P is set of problems that can be solved by a deterministic Turing machine in 
Polynomial time.  

NP is set of decision problems that can be solved by a Non-deterministic Turing 
Machine in Polynomial time.  

Here, Polynomial time is defined as fixed or known amount of interval. Further we 
can say, P is subset of NP (any problem that can be solved by deterministic machine 
in polynomial time can also be solved by non-deterministic machine in polynomial 
time). 

Informally, NP is set of decision problems which can be solved by a polynomial 
time via a “Lucky Algorithm” ,a magical algorithm that always makes a right guess 
among the given set of choices. 

NP-complete problems are the hardest problems in NP set.  A decision problem L 
is NP-complete if: 

1) L is in NP (Any given solution for NP-complete problems can be verified 
quickly, but there is no efficient known solution). 

2) Every problem in NP is reducible to L in polynomial time (Reduction is defined 
below). 

4.9.1   Decision vs Optimization Problems:- 

NP-completeness applies to the realm of decision problems.  It was set up this way 
because it’s easier to compare the difficulty of decision problems than that of 
optimization problems.   In reality, though, being able to solve a decision problem 
in polynomial time will often permit us to solve the corresponding optimization 
problem in polynomial time (using a polynomial number of calls to the decision 
problem). So, discussing the difficulty of decision problems is often really 
equivalent to discussing the difficulty of optimization problems. (Source Ref 2). 

For example, consider the vertex cover problem (Given a graph, find out the 
minimum sized vertex set that covers all edges). It is an optimization problem. 
Corresponding decision problem is, given undirected graph G and k, is there a 
vertex cover of size k? 
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4.9.2   What is Reduction? 

Let L1 and L2 be two decision problems. Suppose algorithm A2 solves L2. That 
is, if y is an input for L2 then algorithm A2 will answer Yes or No depending upon 
whether y belongs to L2 or not. 

The idea is to find a transformation from L1 to L2 so that the algorithm A2 can be 
part of an algorithm A1 to solve L1. 

Learning reduction in general is very important. For example, if we have library 
functions to solve certain problem and if we can reduce a new problem to one of 
the solved problems, we save a lot of time. Consider the example of a problem 
where we have to find minimum product path in a given directed graph where 
product of path is multiplication of weights of edges along the path. If we have 
code for Dijkstra’s algorithm to find shortest path, we can take log of all weights 
and use Dijkstra’s algorithm to find the minimum product path rather than writing 
a fresh code for this new problem. 

4.9.3   How to prove that a given problem is NP complete? 

From the definition of NP-complete, it appears impossible to prove that a problem 
L is NP-Complete.  By definition, it requires us to that show every problem in NP 
is polynomial time reducible to L.   Fortunately, there is an alternate way to prove 
it.   The idea is to take a known NP-Complete problem and reduce it to L.  If 
polynomial time reduction is possible, we can prove that L is NP-Complete by 
transitivity of reduction (If a NP-Complete problem is reducible to L in polynomial 
time, then all problems are reducible to L in polynomial time). 

4.10   Approximation Algorithms:- 

An Approximate Algorithm is considered as solution for NP-COMPLETENESS in 
a optimized way. E.g.  vertex cover problem, the optimization problem is to find 
the vertex cover with fewest vertices, and the approximation problem is to find the 
vertex cover with few vertices. 

4.10.1   Introduction to Approximation Algorithms 

An approximation scheme for an optimization problem is an approximation 
algorithm that takes as input not only an instance of the problem, but also a value ɛ 
> 0 such that for any fixed ɛ, the scheme is a (1 + ɛ) approximation algorithm. We 
say that an approximation scheme is a polynomial-time approximation scheme if 
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for any fixed ɛ > 0, the scheme runs in time polynomial in the size n of its input 
instance. 

The running time of a polynomial-time approximation scheme can increase very 
rapidly as ɛ decreases. For example, the running time of a polynomial-time 
approximation scheme might be O(n2/ɛ).  Ideally, if ɛ decreases by a constant factor, 
the running time to achieve the desired approximation should not increase by more 
than a constant factor (though not necessarily the same constant factor by which ɛ 
decreased). 

4.10.2   Vertex Cover 

The vertex-cover problem is to find a vertex cover of minimum size in a given 
undirected graph. We call such a vertex cover an optimal vertex cover. This 
problem is the optimization version of an NP-complete decision problem. A vertex 
cover of a graph is a subset of vertices which covers all edges. An edge is said to 
be covered if its endpoints are covered.  

A vertex cover of an undirected graph G =(V, E) is a subset V’ ⸦  V such that if 
(u, v) is an edge of G, then either u ∈ V’or v ∈  V’ (or both). The size of a vertex 
cover is the number of vertices in it. 

APPROX-VERTEX-COVER(G) 

C = ∅ 

E’ = G. E 

While E ≠ ∅ 

let (u, v) be an arbitrary edge of E’ 

C = C ∪ {𝑢𝑢, 𝑣𝑣} 

remove from E’ every edge incident on either u or v 

return C 
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The operation of APPROX-VERTEX-COVER.  

(a)  The input graph G, which has 7 vertices and 8 edges. 

(b)  The edge (b, c), shown heavy, is the first edge chosen by APPROX-
VERTEXCOVER. Vertices b and c, shown lightly shaded, are added to the 
set C containing the vertex cover being created. Edges (a, b), (c, e), and (c, 
d), shown dashed, are removed since they are now covered by some vertex 
in C.  

(c)  Edge (e, f) is chosen; vertices e and f are added to C.  

(d)  Edge (d, g) is chosen; vertices d and g are added to C.  

(e)  The set C, which is the vertex cover produced by APPROX-VERTEX-
COVER, contains the six vertices b, c, d, e, f, g.  

(f)  The optimal vertex cover for this problem contains only three vertices: b, d, 
and e. 

4.10.3   Travelling Salesman Problem (TSP): 

Given a set of cities and distance between every pair of cities, the problem is to find 
the shortest possible route that visits every city exactly once and returns to the 
starting point. 



75

Chapter 4: Number-Theoretic Algorithms and NP – Completeness

Note the difference between Hamiltonian Cycle and TSP. The Hamiltoninan cycle 
problem is to find if there exist a tour that visits every city exactly once. Here we 
know that Hamiltonian Tour exists (because the graph is complete) and in fact 
many such tours exist, the problem is to find a minimum weight Hamiltonian Cycle. 

APPROX-TSP-TOUR(G,c) 

select a vertex r ∈ G. V to be a “root” vertex 

compute a minimum spanning tree T for G from root r 

Let H be a list of vertices, ordered according to when they are first visited in a 
preorder tree walk of T  

return the hamiltonian cycle H 

 

The operation of APPROX-TSP-TOUR.  

(a)  A complete undirected graph. Vertices lie on intersections of integer grid 
lines. For example, f is one unit to the right and two units up from h. The cost 
function between two points is the ordinary Euclidean distance. 

 (b)  A minimum spanning tree T of the complete graph, as computed by MST-
PRIM. Vertex a is the root vertex. Only edges in the minimum spanning tree 
are shown. The vertices happen to be labeled in such a way that they are 
added to the main tree by MST-PRIM in alphabetical order.  

(c)  A walk of T , starting at a. A full walk of the tree visits the vertices in the 
order a, b, c, b, h, b, a, d, e, f, e, g, e, d ,a. A preorder walk of T lists a vertex 
just when it is first encountered, as indicated by the dot next to each vertex, 
yielding the ordering a, b, c, h, d, e, f, g.  
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(d)  A tour obtained by visiting the vertices in the order given by the preorder 
walk, which is the tour H returned by APPROX-TSP-TOUR. Its total cost is 
approximately 19:074. (e) An optimal tour H * for the original complete 
graph. Its total cost is approximately 14,715. 

4.10.4   The set-covering problem 

The set-covering problem is an optimization problem that models many problems 
that require resources to be allocated. Its corresponding decision problem 
generalizes the NP-complete vertex-cover problem and is therefore also NP-hard. 
The approximation algorithm developed to handle the vertex-cover problem 
doesn’t apply here, however, and so we need to try other approaches. 

GREEDY-SET-COVER(X, F) 

U = X 

C = D  

while U ≠  ∅ 

select an S ∈ F that maximizes |S ∩ U | 

U = U - S 

C = C ∪ {S} 

return C 

 

An instance (X, F) of the set-covering problem, where X consists of the 12 black 
points and F = {S1, S2,  S3,  S4,  S5, S6}. A minimum-size set cover is C = {S3, 
S4, S5} , with size 3. The greedy algorithm produces a cover of size 4 by selecting 
either the sets S1, S4, S5, and S3 or the sets S1, S4, S5, and S6, in order. 
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The subset sum problem is a decision problem in computer science. In its most 
general formulation, there is a multiset S of integers and a target sum T, and the 
question is to decide whether any subset of the integers sum to precisely T.[1] The 
problem is known to be NP-complete. Moreover, some restricted variants of it are 
NP-complete too, for example:[1] 

The variant in which all input integers are positive. 

The variant in which input integers may be positive or negative, and T = 0. For 
example, given the set { 7,-3,-2,9000,5,8|}.{ 7,-3,-2,9000,5,8}, the answer is yes 
because the subset{-3,-2,5\}{-3,-2,5} sums to zero. 

Subset sum can also be regarded as an optimization problem: find a subset whose 
sum is as close as possible to T. It is NP-hard, but there are several algorithms that 
can solve it reasonably fast in practice. 

4.10.5   The Subset Sum Problem:- 

For the given the set S = {x1, x2, x3, … xn } of positive integers and t, is there a 
subset of S that adds up to t. Subset Sum is an optimization problem, what subset 
of S adds up to the greatest total <= t.  Here, we use the notation S + x = { s+x : s 

 S}. we have a merge lists algorithm that runs in time proportional to the sum of 
the lengths of the two lists. 

EXACT-SUBSET-SUM(S,t) 

1 n <-  |S| 

2 L0 = <0> 

3 for i =  1 to n 

4 Li = MERGE-LISTS(Li-1, Li-1 +xi) 

5 remove from Li every element that is greater than t 

6 return the largest element in Ln 

4.11      Summary:- 

Generally algorithm writing is a novel idea. Writing optimized algorithm is 
necessary thing in computer science. Here we have attempted to provide timewise 
and spacewise running of given algorithm. 
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4.14      Exercise: - 

• What is NP Problem? 

• Explain Vertex Cover Problem? 

• Explain Set Cover Problem? 

• How travelling salesman problem comes under NP Problem? 

• What is running time of Vertex Cover problem in worst case? 
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Unit IV 

5 
RESEARCHING COMPUTING 

Unit Structure 

5.0     Introduction,  

5.1     Purpose and products of research,  

5.2     Overview of research process,  

5.3     Internet research,  

5.4     Participants and research ethics,  

5.5     Reviewing literature, 

5.6     Design and creation, 

5.7     Experiments,  

5.8     Quantitative data analysis,  

5.9     Presentation of research. 

5.10   References and Bibliography 

5.11   Exercise 

5.0 Introduction 

Generally, Research is creation and presentation of new knowledge, ideas based on 
existing concept. These ideas can be presented in regular or creative approaches. 
These are used to generate new ideas, concepts ,methodologies and products as an 
output. One need to thoroughly  

5.1     Purpose of research 

▪ To add to the body of knowledge 

▪ To solve a problem 
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▪ To find out what happens 

▪ To find the evidence to inform practice 

▪ To develop a greater understanding of people and their world 

▪ To predict, plan and control 

▪ To contribute to other people's wellbeing 

▪ To test or disprove a theory 

▪ To come up with a better way 

▪ To understand another person's point of view 

▪ To create more interest in the researcher; 

5.1     Products of research 

▪ A new or improved product 

▪ A new theory 

▪ A re-interpretation of an existing theory 

▪ A new or improved research tool or technique 

▪ A new or improved model or perspective 

▪ An in-depth study of a particular situation 

▪ An exploration of a topic, media, or field 

▪ A critical analysis. 

5.2     The Research Process 

Research writing is an innovative idea to work on. It is nothing but organization of 
new concepts with the support of old concepts and hypothesis. One need to present 
his / her ideas in a logical way and larger context. There are few steps which 
together make research. 

• Identify a Research Problem 

The problem is based on general topic and issues. We need to find out the correct 
issue and problem to find out the exact solution. 
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• Review the Literature 

Literature is nothing but the available material which will decide the direction 
of the research. Literature is findings of experienced person and we can embed 
their experienced views in our research. 

• Determine Research Question 

Any Research should be guided with a proper research question. A good 
question should have following characteristics:-  

o It must be understandable to researcher and to others. 

o It should be capable of developing into a manageable research design, so 
data may be collected in relation to it. Extremely abstract terms are 
unlikely to be suitable. 

o Connect with established theory and research. There should be a literature 
on which you can draw to illuminate how your research question(s) should 
be approached. 

o Be neither too broad nor too narrow. See Appendix A for a brief 
explanation of the narrowing process and how your research question, 
purpose statement, and hypothesis(es) are interconnected. 

• Develop Research Methods:- 

A good research is based on good research methods. Research methods 
provides input required to carry out a research. The Data is retrieved from 
Online/Offline Survey, Field visit and past research papers or documentation. 

• Collect & Analyze Data 

Collecting and analyzing data provides an excellent view regarding to output 
of the problems.  

• Document the Work 

Writing or documenting work is a disciplined work. While presenting 
research process is quite difficult to organize the data and presenting. 

• Communicate Your Research 

It is very important to verify your result with targeted audience. While 
communicating your research researcher should follow research methods 
followed while developing research work.s 
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5.3      Internet research 

Internet research is a research method in which information and data collected from 
Internet. Various qualitative journals and articles are available which are used to 
retrieve the information. As a practice there are variety of journals available which 
can be used to support the research.  

One can collect various reviews and surveys through internet. There are various 
tools and techniques available to categorize the information.  After searching you 
can get thousands of quick results for some topics. You can subscribe freely to 
several sites to receive updates regarding to your topic. You can subscribe to 
several groups also. Internet research is not like offline resource who are bound to 
certain limitation. Offline resources also makes restriction on availability. Internet 
research can provide quick, immediate, and worldwide access to information, 
although results may be affected by unrecognized bias, difficulties in verifying a 
writer's credentials (and therefore the accuracy or pertinence of the information 
obtained) and whether the searcher has sufficient skill to draw meaningful results 
from the abundance of material typically available.[2]  

5.4     Participants and research ethics 

• Discuss intellectual property frankly 

Researcher can work on any predefined or well-known topic. It is highly 
possible that there might be a valuable research that is carried out by other. 
Even there are so many people who directly or indirectly support and 
contribute your research. It is important to give credit in the form of citation 
to all people and resources who support in your research. Here authorship 
should reflect the contribution. 

Researchers also need to meet their ethical obligations once their research is 
published: If authors learn of errors that change the interpretation of research 
findings, they are ethically obligated to promptly correct the errors in a 
correction, retraction, erratum or by other means. 

• Be conscious of multiple roles 

Perhaps one of the most common multiple roles for researchers is being both 
a mentor and lab supervisor to students they also teach in class. Psychologists 
need to be especially cautious that they don't abuse the power differential 
between themselves and students, say experts. They shouldn't, for example, 
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use their clout as professors to coerce students into taking on additional 
research duties. 

• Follow informed-consent rules 

Experts also suggest covering the likelihood, magnitude and duration of harm 
or benefit of participation, emphasizing that their involvement is voluntary 
and discussing treatment alternatives, if relevant to the research. Keep in 
mind that the Ethics Code includes specific mandates for researchers who 
conduct experimental treatment research. Specifically, they must inform 
individuals about the experimental nature of the treatment, services that will 
or will not be available to the control groups, how participants will be 
assigned to treatments and control groups, available treatment alternatives 
and compensation or monetary costs of participation. If research participants 
or clients are not competent to evaluate the risks and benefits of participation 
themselves--for example, minors or people with cognitive disabilities--then 
the person who's giving permission must have access to that same 
information, says Koocher. 

• Respect confidentiality and privacy 

It is very important to preserve confidentiality and privacy of your concepts 
and idea. One should also keep privacy on research method also. 

5.5      Reviewing literature 

Literature review is nothing but analyzing , summarizing previous work and 
opinion of expert researchers. There are two kinds of literature review :- 

Dissertation literature review 

Researcher can write literature review for dissertation purpose. In this kind of 
analysis researcher has to focus on detailed analysis. Researcher should write brief 
summery on given topic.  

Stand-alone literature review 

If Researcher are writing a stand-alone paper, give some background on the topic 
and its importance, discuss the scope of the literature you will review (for example, 
the time period of your sources), and state your objective.  

We can write review in following columns.  
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• Introduction 

Introduction is used to define focus and objective of literature review.  

• Body 

This section is more divided into subsections depending on length of the 
review. This is quite important and interesting section of writing. One has to 
be very dedicated while writing this section. There are some guidelines to 
write the statement which is listed below:- 

o Summarize and synthesize:  

        Give an overview of the main points of each source and combine them 
into a coherent whole 

o Analyze and interpret:  

         Don’t just paraphrase other researchers—add your own interpretations 
where possible, discussing the significance of findings in relation to 
the literature as a whole 

o Critically evaluate:  

        Mention the strengths and weaknesses of your sources 

o Write in well-structured paragraphs:  

         Use transition words and topic sentences to draw connections, 
comparisons and contrasts 

5.6     Defining Design and Creation 

Research design is the framework of research methods and techniques that allows 
researchers to work in  research methods that are suitable for the subject matter and 
set up their studies up for success. It includes the type of research (experimental, 
survey, correlational, semi-experimental, review) and also its sub-type 
(experimental design, research problem, descriptive case-study). Design is made 
up of three categories viz. Data collection, measurement, and analysis. 

The essential elements of the research design are: 

• Accurate purpose statement 

• Techniques to be implemented for collecting and analyzing research 

• The method applied for analyzing collected details 
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• Type of research methodology 

• Probable objections for research 

• Settings for the research study 

• Timeline 

• Measurement of analysis 

Following characteristics are considered while developing research design:- 

• Neutrality:  

The design should be neutral, it should not be in influence of any other pre-
concept. 

• Reliability:  

Research design should be according to standard rules and regularity which 
improves reliability. 

• Validity:  

Design must be validated and verified with available tools.  

• Generalization:  

The outcome of your design should apply to a population and not just a 
restricted sample.  

Research design is broadly categorized in five categories: - 

• Descriptive research design:  

In a descriptive design, a researcher is solely interested in describing the 
situation or case under their research study. It is a theory-based design 
method which is created by gathering, analyzing, and presenting collected 
data.  

• Experimental research design:  

Experimental research design establishes a relationship between the cause 
and effect of a situation. It is a causal design where one observes the impact 
caused by the independent variable on the dependent variable.  

• Correlational research design:  
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Correlational research is a non-experimental research design technique that 
helps researchers establish a relationship between two closely connected 
variables.  

• Diagnostic research design:  

In diagnostic design, the researcher is looking to evaluate the underlying 
cause of a specific topic or phenomenon. This method helps one learn more 
about the factors that create troublesome situations.  

5.7    Experimental research 

Experimental research is research conducted with a scientific approach using two 
sets of variables. The first set acts as a constant, and second as Quantitative research 
methods. This method is used when we don’t have previous data and we need to 
generate new data.  

There are three primary types of experimental design: 

• Pre-experimental research design: A group, or various groups, are kept 
under observation after implementing factors of cause and effect.  

• True experimental research design: True experimental research relies on 
statistical analysis to prove or disprove a hypothesis, making it the most 
accurate form of research.  

• Quasi-experimental research design: The word “Quasi” indicates 
similarity. A quasi-experimental design is similar to experimental, but it is 
not the same. The difference between the two is the assignment of a control 
group.  

Advantages of experimental research 

• Experimental research allows you to test your idea in a controlled 
environment before taking it to market. It also provides the best method to 
test your theory, thanks to the following advantages: 

• Researchers have a stronger hold over variables to obtain desired results. 

• The subject or industry does not impact the effectiveness of experimental 
research. Any industry can implement it for research purposes. 

• The results are specific. 
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• After analyzing the results, you can apply your findings to similar ideas or 
situations. 

• You can identify the cause and effect of a hypothesis. Researchers can further 
analyze this relationship to determine more in-depth ideas. 

• Experimental research makes an ideal starting point. The data you collect is 
a foundation on which to build more ideas and conduct more research. 

• Whether you want to know how the public will react to a new product or if a 
certain food increases the chance of disease, experimental research is the best 
place to start. Begin your research by finding subjects using QuestionPro 
Audience and other tools today. 

5.8    Quantitative Data: Definition 

Quantitative data is defined as the value of data in the form of counts or numbers 
where each data-set has an unique numerical value associated with it.  

Quantitative data use various available tools for measuring  

The most common types of quantitative data are as below: 

Counter: Count equated with entities.  

Measurement of physical objects: Calculating measurement of any physical 
thing.  

Sensory calculation: Mechanism to naturally “sense” the measured parameters to 
create a constant source of information.  

Projection of data: Future projection of data can be done using algorithms and 
other mathematical analysis tools.  

Quantification of qualitative entities: Identify numbers to qualitative 
information.  

Quantitative Data: Collection Methods 

There are two main Quantitative Data Collection Methods: 

Surveys: Traditionally, surveys were conducted using paper-based methods and 
have gradually evolved into online mediums. It is always effective method of 
collecting data. Questions are based on relative topics.  
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Longitudinal Studies: A type of observational research in which the market 
researcher conducts surveys from a specific time period to another, i.e., over a 
considerable course of time, is called longitudinal survey.  

Cross-sectional Studies: A type of observational research in which the market 
research conducts surveys at a particular time period across the target sample is 
known as cross-sectional survey. This survey type implements a questionnaire to 
understand a specific subject from the sample at a definite time period. 

Online/Telephonic Interviews: Telephone-based interviews are no more a 
novelty but these quantitative interviews have also moved to online mediums such 
as Skype or Zoom. Irrespective of the distance between the interviewer and the 
interviewee and their corresponding time zones, communication becomes one-click 
away with online interviews. In case of telephone interviews, the interview is 
merely a phone call away. 

Computer Assisted Personal Interview: This is a one-on-one interview technique 
where the interviewer enters all the collected data directly into a laptop or any other 
similar device. The processing time is reduced and also the interviewers don’t have 
to carry physical questionnaires and merely enter the answers in the laptop. 

Advantages of Quantitative Data 

• Conduct in-depth research: Since quantitative data can be statistically 
analyzed, it is highly likely that the research will be detailed. 

• Minimum bias: There are instances in research, where personal bias is 
involved which leads to incorrect results. Due to the numerical nature of 
quantitative data, the personal bias is reduced to a great extent. 

• Accurate results: As the results obtained are objective in nature, they are 
extremely accurate. 

Disadvantages of Quantitative Data 

• Restricted information: Because quantitative data is not descriptive, it 
becomes difficult for researchers to make decisions based solely on the 
collected information. 

• Depends on question types: Bias in results is dependent on the question 
types included to collect quantitative data. The researcher’s knowledge of 
questions and the objective of research are exceedingly important while 
collecting quantitative data. 
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5.9     Presentation in brief:  

While presenting a research you should clearly mention your objective and research 
question before audience. Author or Presenter should reach along with research 
question an solution. It is very important, when considering your audience, to 
know:  

• who they are? 

• what their prior knowledge of the topic will be ? 

• why they are likely to be interested? 

• what their needs are and how you can help them? 

The presentation should include: a short intro, your hypotheses, a brief description 
of the methods, tables and/or graphs related to your findings, and an interpretation 
of your data.  

The trick to giving good presentations is distilling your information down into a 
few bulleted lists, diagrams, tables and graphs.  

The Presentation should be divided into following groups: 

• Introduction . Explain why your work is interesting. Place the study in 
context – how does it relate to / follow from the scientific literature on this 
subject. If it relates to any applied issues (e.g., environmental problems), 
mention this here. Use some pretty visuals (photographs, drawings, etc.) to 
get the audience excited about the issue and questions you are addressing. 
Clearly state your hypotheses. 

• Materials and Methods . Clearly summarize the design. Shows a picture of 
your organisms and justify why they are appropriate for addressing the 
questions mentioned above. Show a picture of your lab setup and/or of a 
person doing some of the lab work. Show a diorama of your experimental 
design (with sample sizes, number of replicates, sampling frequency, etc.). 
Mention what parameters you measured but do not go into detail on exact 
procedures used. Do state what statistical tests you used to analyze your data. 

• Results. First show a photograph (or sketch) that shows an interesting 
qualitative results (e.g., trays of plants in which one set is noticeably bigger 
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than the other, a drawing of a happy Daphnia) and state that result. Then 
display the results in graphical form, reminding the audience of your 
hypothesis and stating whether it was supported as you do so. Use simple, 
clean, clearly labeled graphs with proper axis labels (no extraneous 3-D 
effects please). Do not use light colors (yellow, light green, or pink) in your 
figures, they do not show up well when projected. Indicate the results of the 
statistical tests on the slides by including values (or asterisks/letters that 
indicate the significance level) on the same slides with the graphs. 

• Implications and Conclusions . Correctly interpret your results. 
Constructively address sources of error and methodological difficulties. 
Place your results in context and draw mplications from them. 

• Acknowledgments. Thank anyone who provided advice or assistance. 
Verbally thank your audience for their attention and tell them you would be 
happy to answer any questions. 
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5.10    Exercise:- 

• What is research? 

• What do you mean by plagiarism? 

• What research ethics should be followed by researcher? 

• How to write a research paper? 
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