
SUBJECT CODE : 88701

SOFTWARE QUALITY
ASSURANCE

T.Y.B.SC.(IT)
SEMESTER - VI (CBCS)

ipin Enterprises
Tantia Jogani Industrial Estate, Unit No. 2,
Ground Floor, Sitaram Mill Compound,
J.R. Boricha Marg, Mumbai - 400 011

Programe Co-ordinator : Shri. Mandar Bhanushe
Head, Faculty of Science and Technology,
IDOL, University of Mumbai – 400098.

Course Co-ordinator : Ms. Gouri Sawant
Assistant Professor, B.Sc. IT, IDOL,
University of Mumbai - 400098.

Editor : Dr. T.Parimalam
Associate Professor and Head in Computer Science,
Nandha Arts and Science College,
Erode, 638052.

Course Writers : Vinay Vikas Shahapurkar
Assistant Professor,
Bunts Sangha's S.M. Shetty College of Science,
Commerce and Management Studies, Powai.

: Avneet Kaur
Assistant Professor,
Bunts Sangha's S.M. Shetty College of Science,
Commerce and Management Studies, Powai.

: Dr. Triveni Koul
Assistant Professor,
Yashwantrao Chavan College of Arts Commerce and Science,
Koper Khairane.

: Sameera Salim Ibrahim
Assistant Professor,
SIES (Nerul) College of Arts, Science & Commerce.

: Akshata Laddha
Assistant Professor,
Dilkap Research Institute of Engineering and
Management Studies, Neral.

October 2022, Print I

© UNIVERSITY OF MUMBAI

Prof. Prakash Mahanwar
Director

IDOL, University of Mumbai.

Prof. (Dr.) D. T. Shirke
Offg. Vice Chancellor

University of Mumbai, Mumbai.

Prin. Dr. Ajay Bhamare
Offg. Pro Vice-Chancellor,

University of Mumbai.

Published by
Director

Institute of Distance and Open Learning, University of Mumbai,Vidyanagari, Mumbai - 400 098.

DTP COMPOSEDAND PRINTED BY
Mumbai University Press,

Vidyanagari, Santacruz (E), Mumbai - 400098.

Unit - I

1. Introduction to Quality 1

2. Software Quality 37

Unit - II

3. Fundamentals of Software Testing 76

4. Challenges in Software Testing 115

Unit - III

5. Unit Testing: Boundary Value Testing, Equivalence Testing 165

6. Decision Table Based Testing, Path Testing, Data Flow Testing 192

Unit - IV

7. Software Verification and Validation 213

8. V-Test Model 237

Unit - V

9. Levels of Testing 249

10. Special Tests 263

CONTENTS
Chapter No. Title Page No

B. Sc. (Information Technology) Semester – VI

Periods per week (1 Period is 50 minutes) 5

Credits 2

 Hours Marks

Evaluation System Theory Examination 2½ 75

Internal -- 25

Unit Details Lectures

I Introduction to Quality: Historical Perspective of Quality, What is

Quality? (Is it a fact or perception?), Definitions of Quality, Core

Components of Quality, Quality View, Financial Aspect of Quality,

Customers, Suppliers and Processes, Total Quality Management

(TQM), Quality Principles of Total Quality Management, Quality

Management Through Statistical Process Control, Quality Management

Through Cultural Changes, Continual (Continuous) Improvement

Cycle, Quality in Different Areas, Benchmarking and Metrics, Problem

Solving Techniques, Problem Solving Software Tools.

Software Quality: Introduction, Constraints of Software Product

Quality Assessment, Customer is a King, Quality and Productivity

Relationship, Requirements of a Product, Organisation Culture,

Characteristics of Software, Software Development Process, Types of

Products, Schemes of Criticality Definitions, Problematic Areas of

Software Development Life Cycle, Software Quality Management,

Why Software Has Defects? Processes Related to Software Quality,

Quality Management System Structure, Pillars of Quality Management

System, Important Aspects of Quality Management.

12

II Fundamentals of testing: Introduction, Necessity of testing, What is

testing? Fundamental test process, The psychology of testing,

Historical Perspective of Testing, Definitions of Testing, Approaches

to Testing, Testing During Development Life Cycle, Requirement

Traceability Matrix, Essentials of Software Testing, Workbench,

Important Features of Testing Process, Misconceptions About Testing,

Principles of Software Testing, Salient Features of Good Testing, Test

Policy, Test Strategy or Test Approach, Test Planning, Testing Process

and Number of Defects Found in Testing, Test Team Efficiency,

Mutation Testing, Challenges in Testing, Test Team Approach, Process

Problems Faced by Testing, Cost Aspect of Testing, Establishing

Testing Policy, Methods, Structured Approach to Testing, Categories

of Defect, Defect, Error, or Mistake in Software, Developing Test

Strategy, Developing Testing Methodologies (Test Plan), Testing

Process, Attitude Towards Testing (Common People Issues), Test

Methodologies/Approaches, People Challenges in Software Testing,

Raising Management Awareness for Testing, Skills Required by Tester,

12

Course Name: Software Quality Assurance Course Code: 88701

Testing throughout the software life cycle, Software development

models, Test levels, Test types, the targets of testing, Maintenance

testing

III Unit Testing: Boundary Value Testing: Normal Boundary Value

Testing, Robust Boundary Value Testing, Worst-Case Boundary Value

Testing, Special Value Testing, Examples, Random Testing, Guidelines

for Boundary Value Testing, Equivalence Class Testing: Equivalence

Classes, Traditional Equivalence Class Testing, Improved Equivalence

Class Testing, Edge Testing, Guidelines and Observations. Decision

Table–Based Testing: Decision Tables, Decision Table Techniques,

Cause-and-Effect Graphing, Guidelines and Observations, Path

Testing: Program Graphs, DD-Paths, Test Coverage Metrics, Basis

Path Testing, Guidelines and Observations, Data Flow Testing:

Define/Use Testing, Slice-Based Testing, Program Slicing Tools.

12

IV Software Verification and Validation: Introduction, Verification,

Verification Workbench, Methods of Verification, Types of reviews on

the basis od Stage Phase, Entities involved in verification, Reviews in

testing lifecycle, Coverage in Verification, Concerns of Verification,

Validation, Validation Workbench, Levels of Validation, Coverage in

Validation, Acceptance Testing, Management of Verification and

Validation, Software development verification and validation activities.

V-test Model: Introduction, V-model for software, testing during

Proposal stage, Testing during requirement stage, Testing during test

planning phase, Testing during design phase, Testing during coding,

VV Model, Critical Roles and Responsibilities.

12

V Levels of Testing: Introduction, Proposal Testing, Requirement

Testing, Design Testing, Code Review, Unit Testing, Module Testing,

Integration Testing, Big-Bang Testing, Sandwich Testing, Critical Path

First, Sub System Testing, System Testing, Testing Stages.

Special Tests: Introduction, GUI testing, Compatibility Testing,

Security Testing, Performance Testing, Volume Testing, Stress

Testing, Recovery Testing, Installation Testing, Requirement Testing,

Regression Testing, Error Handling Testing, Manual Support Testing,

Intersystem Testing, Control Testing, Smoke Testing, Adhoc Testing,

Parallel Testing, Execution Testing, Operations Testing, Compliance

Testing, Usability Testing, Decision Table Testing, Documentation

Testing, Training testing, Rapid Testing, Control flow graph,

Generating tests on the basis of Combinatorial Designs, State Graph,

Risk Associated with New Technologies, Process maturity level of

Technology, Testing Adequacy of Control in New technology usage,

Object Oriented Application Testing, Testing of Internal Controls,

COTS Testing, Client Server Testing, Web Application Testing,

Mobile Application Testing, eBusiness eCommerce Testing, Agile

Development Testing, Data Warehousing Testing.

12

Books and References:

Sr. No. Title Author/s Publisher Edition Year

 1. Software Testing and

Continuous Quality

Improvement

William E. Lewis CRC

Press

Third 2016

2 Software Testing:

Principles, Techniques

and Tools

M. G. Limaye TMH 2017

3. Foundations of Software

Testing

Dorothy Graham, Erik

van Veenendaal,

Isabel Evans, Rex

Black

Cengage

Learning

3rd

4. Software Testing: A

Craftsman’s Approach

Paul C. Jorgenson CRC

Press

4th 2017

 1

UNIT - I

1
INTRODUCTION TO QUALITY

Unit Structure

1.0 Objectives

1.1 Introduction

1.2 Historical Perspective of Quality

1.3 What is Quality? (Is it a fact or perception?)

1.4 Definitions of Quality

1.5 Core Components of Quality

1.6 Quality View

1.7 Financial Aspect of Quality

1.8 Definition of Quality

1.9 Customers, Suppliers and Processes

1.10 Total Quality Management (TQM)

1.11 Quality Principles of ‘Total Quality Management’

1.12 Quality Management Through Statistical Process Control

1.13 Quality Management Through Cultural Changes

1.14 Continual (Continuous) Improvement Cycle

1.15 Quality in Different Areas

1.16 Benchmarking and Metrics

1.17 Problem Solving Techniques

1.18 Problem Solving Software Tools

1.19 Quality Tips

1.20 Summary

1.21 Exercises

1.22 References

1.0 OBJECTIVES

Objectives of Quality Assurance are as follows:

 It helps monitor the software development method and the final

software developed.

 It guarantees that the software project is implementing the standards

and procedures set by the management.

 It helps in the notification of groups and individuals about its events

and consequences.

 2

Software Quality

Assurance

 It guarantees that the problems, which are not solved within the

software, are addressed by the higher administration.

 It helps recognize and fix shortages in the product, process, or

standards.

1.1 INTRODUCTION

Evolution of mankind can be seen as a continuous effort to make things

better and convenient through improvements linked with inventions of

new products. Since time immemorial, humans have used various products

to enhance their lifestyle. Initially, mankind was completely dependent on

nature for satisfying their basic needs for food, shelter and clothing. With

evolution, human needs increased from the basic level to substantial

addition of derived needs to make life more comfortable. As civilisation

progressed, humans started converting natural resources into things which

could be used easily to satisfy their basic as well as derived needs.

Earlier, product quality was governed by the individual skill and it differed

from instance to instance depending upon the creator and the process used

to make it at that instance. Every product was considered as a separate

project and every instance of the manufacturing process led to products of

different quality attributes. Due to increase in demand for same or similar

products which were expected to satisfy same/similar demands and

mechanisation of the manufacturing processes, the concept of product

specialisation and mass production came into existence. Technological

developments made production faster and repetitive in nature.

Now, we are into the era of specialised mass production where producers

have specialised domain knowledge and manufacturing skill required for

particular product creation, and use this knowledge and skill to produce

the product in huge qualities. The market is changing considerably from

monopoly to fierce competition but still maintaining the individual

product identity in terms of attributes and characteristics. There are large

number of buyers as well as sellers in the market, providing and

demanding similar products, which satisfy similar demands. Products may

or may not be exactly the same but may be similar or satisfying similar

needs/demands of the users. They may differ from one another to some

extent on the basis of their cost, delivery schedule to acquire it, features,

functionalities present/absent, etc. These may be termed as attributes of

the quality of a product.

We will be using the word ‘product’ to represent ‘product’ as well as

‘service’, as both are intended to satisfy needs of users/customers. Service

may be considered as a virtual product without physical existence but

satisfying some needs of users.

1.2 HISTORICAL PERSPECTIVE OF QUALITY

Quality improvement is not a new pursuit for mankind. The field of

quality and quality improvement has its roots in agriculture. Early efforts

 3

Introduction to Quality

of quality improvement in agriculture may be attributed to statistical

research conducted in Britain, in early 20
th

 century, to assist farmers in

understanding how to plan the crops and rotate the plan of cultivation to

maximise agricultural production while maintaining the soil quality at the

same time.

This work inspired Walter Shewhart at Bell Laboratories to develop

quality improvement programs through planned efforts. He adopted the

concepts developed initially for agriculture to implement quality

improvement programs for products and to reduce the cost to customer

without affecting profitability for the manufacturer. Changes brought in by

Walter Shewhart motivated Dr Edward Deming to implement quality

improvement programs as a way to improve product quality. He devoted

his life to teaching and improving quality methods and practices across the

world through ‘Total Quality Management’ methodology.

Dr. Deming demonstrated his ideas of ‘Total Quality Management’

through continual improvement in Japan. Dr Joseph Juran also

implemented quality improvement through measurement programs using

different quality tools for assessment and improvement. Japanese

producers fully embraced quality improvement methodologies and started

to integrate the concepts of ‘Total Quality Management’ in their

industries. The Dramatic improvement in quality of products in Japan after

1950 due to the revolutionary ideas of continual improvement through

process measurement are still considered legendary.

During the last few decades, the Japanese industry has successfully

utilised quality tools and ‘Total Quality Management’ methodologies as

part of their successful effort to become a leading nation in a

manufacturing and supplying a vast array of electronics, automotive and

other products to the entire world. Quality of the products is established

and continually improved in terms of features, consistent performance,

lesser costs, reasonable delivery schedule, etc. in order to enhance the

satisfaction of the customer. Japanese products started dictating the quality

parameters in world market to the extent that many nations adopted

quality improvement programs at national level to face the competition

from the Japanese industry. Quality of Japanese products stems from the

systematic organisation and understanding of processes used in all aspects

of product development, and introduction of tools and methodologies that

permit monitoring and understanding about what is happening in different

processes of manufacturing and management of interactions of those

processes. Japanese quality improvement programs created the sets of

interrelated processes which assure the same product quality in repetitive

manner and in large number to satisfy the demand of a huge market.

Defects are analysed and root causes of the defects are identified and

eliminated through continual process improvement. This has helped in

optimising the processes to produce better results in repetitive manner.

 4

Software Quality

Assurance

1.3 WHAT IS QUALITY? (IS IT A FACT OR

PERCEPTION?)

What is quality, is an important question but does not have a simple

answer. Some people define it as a fact while others define it as a

perception of customer/user.

We often talk about quality of a product to shortlist or select the best

product among the equals when we wish to acquire one. We may not have

a complete idea about the meaning of quality or what we are looking for

while selecting a product, if somebody questions us about the reason for

choosing one product over the other. This is a major issue faced by the

people working in quality field even today as it is very difficult to decide

what contributes customer loyalty or first-time sale and subsequent repeat

sale. The term ‘quality’ means different things to different people at

different times, different places and for difficult products. For example, to

some users, a quality product may be one, which has no/less defects and

work exactly as expected and matches with his/her concept of cost and

delivery schedule along with services offered. Such a thought may be a

definition of quality – ‘Quality is fitness for use’.

However, some other definitions of quality are also widely discussed.

Quality defined as, ‘Conformance to specifications’ is a position that

people in the engineering industry often promote because they can do very

little to change the design of a product and have to make a product as per

the design which will best suite the user’s other expectations like less cost,

fast delivery and good service support. Others promote wider views,

which may include the attribute of a product which satisfies /exceeds the

expectations of the customer. Some believe that quality is a judgement or

perception of the customer/user about the attributes of a product, as all the

features may not be known or used during the entire life of a product.

Quality is the extent to which the customers/users believe that the product

meets or surpasses their needs and expectations. Others believe that

quality means delivering product that,

 Meet customer standards, either as defined by the customer or defined

by the normal usage or by some national or international bodies.

(Standard may or may not be as defined by the supplier of the

product. Typically for consumer goods, standard is defined by market

forces and likes and dislikes of users in general.)

 Meet and fulfill customer needs which include expressed needs as

well as implied requirements derived by business analysts and system

analysts. Expressed needs are available in the form of requirement

statement generated by users while implied needs definition may

require supplier to understand customer business and provide the

solution accordingly.

 One must try to meet customer expectations as maximum as possible.

If something is given more than the requirements of the customer, it

should be declared before transition, so that customer surprises can be

 5

Introduction to Quality

avoided. At the same time, if some aspect of the specified

requirements has not been included in the product, it should be

declared. This is essential so that the customer may understand the

deliverables accordingly. Expectations may be at the top of customer

needs may be useful in creating brand loyalty through customer

delight. (Trying to get customer delight after informing customer

about it.)

 Meet anticipated/unanticipated future needs and aspirations of

customers by understanding their businesses and future plans. One

may need to build a software and system considering some future

requirements. Every product including software has a life span and

due to technological inventions as well as new ways of doing things,

older systems become obsolete, either technicallyor economically.

How much of the future must be considered for the given product may

be a responsibility of the customer or the supplier or a joint

responsibility. Every product has some defined life span and may

have to extrapolate future needs accordingly.

Others may simply ignore these definitions of quality and say, ‘I’ll know

the quality of a product when I see it’. It seems that we all ‘know’ or

‘feel’ somehow what the meaning of quality is, though it is very difficult

to put it in words. Something that fulfils/exceeds customer’s preconceived

ideas about the quality is likely to be called as a quality product.

We will try to examine tools and methods which can be used to improve

product quality through process approach, add value through

brainstorming by producers, consumers, customers and all stakeholders

about new features which may be included/old features which may be

excluded from the product, decrease costs, improve schedule and help

products to conform better with respect to the expressed and implied

requirements. Use of quality tools and methodologies can help people

engage in production related activities to improve quality of the products

delivered to final user and achieve customer satisfaction.

1.4 DEFINITIONS OF QUALITY

For achieving quality of a product, one must define it insome measurable

terms which can be used as a reference to find whether quality is really

met or not. There are many views and definitions of quality given by

stalwarts working in quality improvement and quality management arena.

These definitions describe different perceptions toward quality of

products. Some of these are,

1. Customer-Based Definition of Quality:

Quality product must have ‘Fitness for use’ and must meet customer

needs, expectations and help in achieving customer satisfaction and

possibly customer delight. Any product can be considered as a quality

product if it satisfies its purpose of existence through customer

 6

Software Quality

Assurance

satisfaction. This definition is mainly derived by an approach to quality

management through ‘Quality is fitness for use’.

2. Manufacturing-Based Definition of Quality:

This definition is mainly derived from engineering product manufacturing

where it is not expected that the customer knows all requirements of the

product, and many product level requirements are defined by architects

and designers on the basic of customer feedback/survey. Market research

may have to generate requirement statement on the basis of perception of

probable customers about what features and characteristics of a product

are expected by the market. A quality product must have a definition of

requirement specifications, design specifications, etc. and the product

must conform to these specifications. The development methodologies

used for the purpose must be capable of producing the right product in

first go and must result into a product having no/minimum defects. This

approach gives the definition of ‘Conformance to requirements’.

3. Product-Based Definitions of Quality:

The product must have something that other similar products do not have

which help the customer satisfy his/her needs in a better way. These

attributes must add value for the customer/user so that he/she can

appreciate the product in comparison to competing products. This makes

the product distinguishable from similar products in the market. Also, the

customers must feel proud of at owning it due to inherent attributes and

characteristics.

4. Value-Based Definition of Quality:

A product is the best combination of price and features or attributes

expected by or requirements by the customers. The customer must get

value for his investment by buying the product. The cost of a product has

direct relationship with the value that the customer finds in it. More value

for the customer helps in better appreciation of a product. Many times, it is

claimed that ‘People do not buy products, they buy benefits’.

5. Transcendent Quality:

To many users/customers, it is not clear what is meant by a ‘quality

product’, but as per their perception it is something good and they may

want to purchase it because of some quality present/absent in the product.

The customer will derive the value and may feel the pride of ownership.

Definitions 2, 3 and 4 are traditionally associated with the idea of a

product quality that,

 A product must have zero/minimum defects so that it does not

prohibit normal usage by the users. When users buy a product, they

expect minimum/no failures.

 It can be purchased at a reasonable price with relation to the value

users may derive from it. The customer may undertake cost benefit

 7

Introduction to Quality

analysis of the product and if benefits equal or exceed cost, it may be

bought.

Customer centric product development forces the industry to look inside

its own premises and thought process, making it compulsory to understand

the customer. This forces the producer to create products that prospective

customers may want to buy and not ones that designers think people want

to receive.

The most interesting definition of quality is ‘I do not know what it is, but

if I’m delighted by acquiring it, I’llbuy it!’ This means that those

products are better in quality which possess some characteristics that

attract customers to purchase them. Though the requirements of a product

may differ from customer to customer, place to place and time to time, in

general, the product must be,

 Less expensive with higher returns or higher values for the customer,

satisfying cost benefit analysis. Directly or indirectly, every owner

would be performing cost benefit analysis before arriving at a

decision to purchase something.

 Inherent of required features or attributes expected by the customer

which make it fit for use. If product is of no use to users, they will

never purchase it.

 Without any defect or with few defects so that its usage is uninhibited

and failure or repairs would be as less as possible. If the product is

very reliable, it may be liked by prospective buyers.

 With desirable cosmetic attributes.

Often, we are not aware that we want a certain product, but when we see

their attributes, we feel like buying it. It may include cosmetic

requirements like user interfaces, ease of use, etc.

Many of the above statements are based upon the users or customers

perception about quality of the product that they wish to buy. Some of

these characteristics are often attributes of products delivered by Japanese

manufacturers to consumer market. Mainly, the contributors to quality

would be that the failure rate are less, repairs are easier and fast, products

are consistent in performance and work better than other similar products

in the market and do not give any surprises to customers during use. The

reasons for such improvement in the quality are a continuous/continual

improvement in all aspects of product development through requirement

capturing, design, development, testing, deployment and maintenance.

There is one more angle to the definition of quality of a product. Any

improvement in the product quality must result into a better product, and it

must give benefits to the customer finally. The benefits may be in terms of

more or better features, less wait time, less cost, better service, etc. Thus,

quality improvement has direct relationship with fulfilling customer

requirements or giving more and more customer satisfaction.

 8

Software Quality

Assurance

Many people speak about not only achieving customer satisfaction but

exceeding customer expectations to achieve customer delight. There is a

signal of caution about exceeding customer expectations. Any feature

which surprises a customer may not be appreciated by him/her and may be

termed as a defect. Exceeding expectations without informing the

customer about what they can expect in addition to defined requirements

can be dangerous and may result in rejection of such products.

1.5 CORE COMPONENTS OF QUALITY

Quality of a product must be driven by customer requirements and

expectations from the product. Those expectations may be expressed as a

part of requirement specifications defined or may be implied one which is

generally accepted as requirements. It must have some important

characteristics that may help customer in getting more and more benefits

and satisfaction by using the product. Some postulates of quality are.

1.5.1 Quality Is Based on Customer Satisfaction By Acquiring A

Product:

Quality is something perceived by a customer while using a product. The

effort of a quality product, delivered and used by a customer, on his

satisfaction and delight is the most important factor in determining

whether the quality has been achieved or not. It talks about the ability of a

product or service to satisfy a customer by fulfilling his needs or purpose

for which it is acquired. It may come through the attributes of a product,

time required for a customer to acquire it, price a customer is expected to

pay for it and so many other factors associated with the product as well as

the organisation producing or distributing it. All these factors may or may

not be governed by the manufacturer alone but may be dependent on

quality of inputs. This point stresses a need that a producer must

understand the purpose or usage of a product and then devise a quality

plan for it accordingly, to satisfy the purpose of the product.

1.5.2 The Organisation Must Define Quality Parameters Before It

Can Be Achieved:

We have already discussed that quality is a perception of a customer about

satisfaction of needs or expectation. It is difficult for the manufacturer to

achieve the quality of product without knowing what customer is looking

for while purchasing it. If product quality is defined in some measurable

terms, it can help the manufacturer in deciding whether the product quality

has been achieved or not during its manufacturing and delivery. In order to

meet some criteria of improvement and ability to satisfy a customer, one

must follow a cycle of ‘Define’, ‘Measure’, ‘Monitor’, ‘Control’ and

‘Improve’. The cycle of improvements through measurements is described

below,

Define:

There must be some definition of what is required in the product, in terms

of attributes or characteristics of a product, and in how much quantity it is

 9

Introduction to Quality

required to derive customer satisfaction. Features, functionalities and

attributes of the product must be measured in quantitative terms, and it

must be a part of requirement specification as well as acceptance criteria

defined for it. The supplier as well as the customer must know what ‘Must

be’, what ‘Should be’ and what ‘Could be’ present in the product so

delivered and also what ‘Must not be’, ‘Should not be’ and ‘Could not be’

present in the product.

Measure:

The quantitative measures must be defined as an attribute of quality of a

product. Presence or absence of these attributes in required quantities acts

as an indicator of product quality achievement. Measurement also gives a

gap between what is expected by a customer and what is delivered to him

when the product is sold. This gap may be considered as a lack of quality

for that product. This may cause customer dissatisfaction or rejection by

the customer.

Monitor:

Ability of the product to satisfy customer expectations defines the quality

of a product. There must be some mechanism available with the

manufacturer to monitor the processes used in development, testing and

delivering a product to a customer and their outcome, i.e., attributes of

product produced using the processes, to ensure that customer satisfaction

is incorporated in the deliverables given to the customer. Derivations from

the specifications must be analysed and reasons of these derivations must

be sorted out to improve product and process used for producing it. An

organisation must have correction as well as corrective and preventive

action plans to remove the reasons of deviations/deficiencies in the

product as well as improve the processes used for making it.

Control:

Control gives the ability to provide desired results and avoid the undesired

things going to a customer. Controlling function in the organisation,

properly called as ‘quality control’ or ‘verification and validation’, may be

given a responsibility to control product quality at micro level while the

final responsibility of overall organisational control is entrusted with the

management, popularly called as ‘quality assurance’. Management must

put some mechanism in place for reviewing and controlling the progress

of product development and testing, initiating actions on

deviations/deficiencies observed in the product as well as the process.

Improve:

Continuous/continual improvements are necessary to maintain ongoing

customer satisfaction and overcome the possible competition, customer

complaints, etc. If some producer enjoys very high customer satisfaction

and huge demand for his product, competitors will try to enter the market.

They will try to improve their products further to beat the competition.

 10

Software Quality

Assurance

Improvement may be either of two different approaches viz. continuous

improvement and continual improvement as the case may be.

1.5.3 Management Must Lead The Organisation Through

Improvement Efforts:

Quality must be perceived by a customer to realise customer satisfaction.

Many factors must be controlled by a manufacturer in order to attain

customer satisfaction. Management is the single strongest force existing in

an organisation to make the changes as expected by a customer; it

naturally becomes the leader in achieving customer satisfaction, quality of

product and improvement of the processes used through various programs

of continuous/continual improvement. Quality management must be

driven by the management and participated by all employees.

Management should lead the endeavour of quality improvement program

in the organisation by defining vision, mission, policies, objectives,

strategies, goals and values for the organisation and show the existence of

the same in the organisation by self-examples. Entire organisation should

initiate the behavioural and leadership aspects of the management. Every

word and action by the management may be seen and adopted by the

employees. Quality improvement is also termed as a ‘cultural change

brought in by management’.

Organisation based policies, procedures, methods, standards, systems etc.

are defined and approved by the management. Adherence to these systems

must be monitored continuously and deviation/deficiencies must be

tracked. Actions resulting from the observed deviations/deficiencies shall

be viewed as the areas which need improvements. The improvements may

be required in enforcement or definition of policies and procedures,

methods, standards, etc. Management must have quality planning at

organisation level to support improvement actions.

1.5.4 Continuous Process (Continual) Improvement is Necessary:

There was an old belief that quality can be improved by more inspection,

testing and rework, scrap, sorting, etc. it was expected that a customer

must inspect the product and report the defects as and when they were

reported by the customer. This added to the cost of inspection,

segregation, failure, rework, etc. for the customer and reduced the profit

margins for the manufacturer or increased the price for the customer. At

the same time, customer’s right to receive a good product was withdrawn.

For improving the competitive cost advantage to producer as well as

customer, quality must be produced with an aim of first time right and

must be improved continuously/ continually. For the customer, total cost

product is inclusive of cost of purchase and maintenance. Total cost is

more important to him than the purchase tag. The first step for producing

quality is the definition of processes used for producing the product and

the cycle of continuous or continual improvement (Plan-Do-Check-Act or

Define-Measure-Monitor-Control-Improve) to refine and redefine

processes to achieve targeted improvements. It needs ‘Planning’ for

 11

Introduction to Quality

quality, ‘Doing’ as per the defined plans, ‘Checking’ the outcome at each

stage with expected results and taking ‘Actions’ on the variances

produced. Refer Table 1.1 for comparison between continuous and

continual improvement.

1.6 QUALITY VIEW

Stakeholders are the people or entities interested in success / failure of a

project or product or organisation in general. Every product / project /

organisation has several stakeholders interested in its betterment. Quality

is viewed differently by different stakeholders of the product / project /

organisation as per their role in entire spectrum. Some quality models put

all stakeholders for the project and product in six major categories. These

stakeholders benefit directly or indirectly, if the project / product /

organization becomes successful, and suffer, if the organisation or project

fails.

Customer:

Customer is the main stakeholder for any product/project. The customer

will be paying for the product to satisfy his requirements. He/she must

benefit by acquiring a new product. Sometimes, the customer and user can

be different entities but here, we are defining both as same entity

considering customer as a user. Though sometimes late delivery penalty

clauses are included in contract, the customer is interested in the product

delivery with all features on defined scheduled time and may not be

interested in getting compensated for the failures or delayed deliveries.

Supplier:

Suppliers give inputs for making a project/product. As an organisation

becomes successful, more and more projects are executed, and suppliers

can make more business, profit and expansion. Suppliers can be external

or internal to the organisation. External suppliers may include people

supplying machines, hardware, software, etc. for money while internal

suppliers may include other functions such as system administrator,

training provider, etc, which are supporting projects/product development.

 12

Software Quality

Assurance

Employee:

People working in a project/an organisation may be termed as employees.

These people may be permanent temporary workers but may not be

contractual labours having no stake in product success. (Contractual

workers may come under supplier category.) As the projects organisations

become successful, people working on these projects in these

organisations get more recognition, satisfaction, pride, etc. They feel

proud to be part of a successful mission.

Management:

People managing the organization / project may be termed as management

in general. Management may be divided further into project management,

staff management, senior management, investors, etc. Management needs

more profit, recognition, turnover improvements, etc to make their vision

and mission successful. Successful projects give management many

benefits like expanding customer base, getting recognition, more profit,

more business, etc.

There are two more stakeholders in the success as well as failure of any

project / product / organisation. Many times, we do not feel their existence

at project level or even at organisation level. But they do exist at macro

level.

Society:

Society benefits as well as suffers due to successful projects

/organisations. It is more of a perception of an individual looking towards

the success of the organisation. Successful organisations / projects

generate more employment, and wealth for the people who are in the

category of customer, supplier, employee, management, etc. It also affects

the resource availability at local as well as global level like water, roads,

power supply, etc. It also affects economics of a society to a larger extent.

Major price rise has been seen in industry dominated areas as the paying

capacity of people in these areas is higher than other areaswhere there is

no such industry.

Government:

Government may be further categorised as local government, state

government, central government, etc. Government benefits as well as

suffers due to successful projects/organisations. Government may get

higher taxes, export benefits, foreign currency, etc, from successful

projects organisations, People living in those areas may get employment

and overall wealth of the nation improves. At the same time, there may be

pressure on resources like water, power, etc. There may be some problems

in terms of money availability and flow as success leads to more buying

power and inflation.

Quality perspective of all these stakeholders defines their expectations

from organisation projects. We may feel that superficially these views

 13

Introduction to Quality

may differ from each other though finally they may be leading to the same

outcome, If these views match perfectly and there is no gap in the

stakeholder's expectations, then organisational performance and

effectiveness can he improved significantly as collective efforts from all

stakeholders, If the views differ significantly, this may lead to discord and

hamper improvement. Let us discuss two important views of quality which

mainly defines the expectations from a project and success of a project at

unit level viz. customer's view and developer's view of quality.

1.6.1 Customer's View of Quality:

Customer's view of quality of product interprets customer requirements

and expectation for getting a better product at defined schedule, cost and

with adequate service alone with required features and functionalities.

Customer is paying some cost to get a product because he finds value in

such acquisition.

Delivering Right Product:

The products received by customers must be useful to satisfy their needs

and expectations. It may or may not be the correct product from

manufacturer's perspective or what business analyst/system designer may

think. There is a possibility that development team including testers may

ask several queries about the requirements of the product to get them

clarified but the final decision about the requirements definition shall be

with customer. If customer confirms that the requirements are correct not

correct, then there is no possibility of further argument about the

validity/invalidity of requirements.

Satisfying Customer's Needs:

The product may or may not be the best product, as per the manufacturer's

views or those which are available in the market, which can be made from

the given set of requirements and constraints. There are possibilities of

different alternatives for overcoming the constraints and implementing the

requirements, Basic constraint in product development and testing is that

product must be capable of satisfying customer needs. Needs are ‘must’

among requirements from customer's perspective. They may be part of

processes for doing requirement analysis and selection of approach for

designing on the basis of decision analysis and resolution, using some

techniques such as cost-benefit analysis, etc. which suites best in the given

situation. This must help organisation to achieve customer satisfaction

through product development and delivery.

Meeting Customer Expectations:

Customer expectations may be categorised into two parts viz. expressed

expectations and implied expectations. Expectations documented and

given formally by the customer are termed as ‘expressed requirements’

while ‘implied expectations’ are those, which may not forma part of

requirement specifications formally but something which is expected by

customer by default. It is a responsibility of a developing organisation to

 14

Software Quality

Assurance

convert, as many as possible, implied requirements into expressed

requirements by asking queries or eliciting requirements. One must target

for 100°a conversion of implied requirements into expressed requirements,

though difficult, as developer may refuse to accept the defect belonging to

implied requirements simply because it is not a part of requirement

statement and they may not be aware of such things.

Treating Every Customer with Integrity, Courtesy, and Respect:

Customer and the requirements assessed (both expressed as well as

implied) are very important for a developing organisation as customer will

be paying on the basis of value he finds in the product. Definition of the

requirements is a first step to satisfy the customer through ‘Conformance

to Requirements’. Requirements may be documented by anybody,

generally development team, but customer is the owner of the

requirements. Organisation shall believe and understand that the customer

understands what is required by him. How to achieve these requirements is

a responsibility of a developing organisation. He may be given

suggestions, sharing some past experiences and knowledge gained in

similar projects but manufacturer shall not define requirements or thrust or

push the requirements to customer. It is quite often quoted that the

customer does not know or understand his requirements. This opinion

cannot be bought by anybody.

Customer telephone calls and mails must be answered with courtesy and

in reasonable time. The information provided to the customer must be

accurate and he/she must be able to depend on this information. The

customer is not a hindrance to the project development but he is the

purpose of the business and producer must understand this.

1.6.2 Supplier's View of Quality:

Supplier is a development organisation in the context of software

application development, Supplier has some expectations or needs, which

must be satisfied by producing a product and selling it to customer.

Supplier expectations may range from profitability, name in market, repeat

orders, customer satisfaction, etc. These expectations may be fulfilled in

the following ways,

Doing the Right Things:

Supplier is intended to do right things for the fir time so that there is no

waste, scrap, rework, etc. Wastes like rework, scrap, and repairs are

produced by hidden factory for which there is no customer, Changes in

requirements are considered as problems during product development, if

supplier is expected to absorb the costs associated with it. Changes in

requirement cause rework of design, development, testing etc. This adds to

the cost of development but if the price remains same, it is a loss for

manufacturer. It also adds to fatigue and frustration of the people involved

in development as they find no value in reworking, sorting, scrapping, etc.

Following right processes to get the product required by the customer and

achieving customer satisfaction and profits as well as job satisfaction may

 15

Introduction to Quality

be the expectations of a supplier. Suppliers may require clear and correct

definition of deliverables, time schedules, attributes of product, etc.

Doing It the Right Way:

A producer may have his own methods, standards and processes to

achieve the desired outputs. Sometimes, customer may impose the

processes defined by him for building the product on the producer. Ability

of development process to produce the product as required by the

customer defines the capability of development process. These process

definitions may be an outcome of quality standards or models or business

models adopted by the supplier or customer. As organisation matures, the

processes towards excellence- by refining and redefining processes and

process capability- must improve continually/continuously. As the

processes reach optimisation, they must result into better quality products

and more satisfaction for the customer and also fulfill vendor

requirements.

Doing it Right the First Time:

Doing right things at the first time may avoid frustration, scrap, rework,

etc. and improve profitability, reduce cost and improve customer

satisfaction for the supplier. Doing right things at the first time improves

performance, productivity and efficiency of a manufacturing process. This

directly helps in improving profitability and gives advantage in a

competitive market. Supplier would always like to follow the capable

processes which can get the product right at the first attempt.

Doing It on Time:

All resources for developing a new product are scarce and time factor has

a cost associated with it. The value of money changes as time changes.

Thus, money received late is as good as less money received. If the

customer is expected to pay on each milestone, then the producer has to

deliver milestones on time to realise money on time. Delay in delivery

represents a problem with processes, starting from getting requirements,

estimation of efforts and schedule and goes up to delivery and

development.

Difference between the two views discussed above (Customer's view vs

Supplier's view) creates problem for manufacturer as Well as customer

when it comes to requirement gathering, acceptance testing, etc. It may

result into mismatch of expectation and service level, which would be

responsible for introducing defects in the product in terms of

functionalities, features, cost, delivery schedule, etc. Sometimes these

views are considered as two opposite sides of a coin or two poles of the

Earth which can never match. The difference between two views is treated

as a gap.

In many cases, the customer wants to dictate the terms as he is going to

pay for the product and the processes used for making it, while the

supplier wants customer to accept whatever is produced. Wherever the gap

 16

Software Quality

Assurance

is less, the ability of a product to satisfy customer needs is considered

better. At the same time, it helps a development organisation as well as a

customer to get their parts of benefits from steady processes. On the

contrary, larger gap causes more problems in development, distorted

relations between two parties and may result into loss for both. Quality

processes must reduce the gap between two views effectively.

Effectiveness of a quality process may be defined as the ability of the

processes and the product to satisfy both or all stakeholders in achieving

their expectations.

Figure 1.1 explains a gap between actual product, requirements for the

product and customer expectations from the product. It gives two types of

gaps, viz. user's gap and producer's gap.

1.6.3 User's Gap/Requirement Gap:

User's gap is a gap between requirement specifications for the product and

user expectations from it. This gap focuses on the difference in the final

product attributes as defined by requirement dements with respect to the

intents of the user. Developers must convert user needs into the product

requirement specifications and create the product exactly as per these

specifications. This may need understanding and interpretation of

customer's business flow and requirements, and how the product is

intended to be used by the customer to satisfy his business requirements.

Closing User's Gap:

User's gap represents the failure seen by the customer in terms of

difference between user needs and product specifications. An organisation

must apply some processes and methods so that user's gap can be closed

effectively or reduced to as little as possible, Methods for closing these

gaps may depend on organisation's way of thinking, resource availability,

type of customer, customer's thought process, etc. Some of these methods

are mentioned below.

Customer Survey:

Customer surveys are essential when an organisation is producing a

product for a larger market where a mismatch between the product and

 17

Introduction to Quality

expectation can be a major problem to producer. It may also be essential

for projects undertaken for a single customer such as mission critical

projects where failure of the project has substantial impact on the

customer as well as producer. For a larger market, survey may be

conducted by marketing function or business analyst to understand user

requirements and collate them into specification documents for the

product. Survey teams decide present and future requirements for the

product and the features required by the potential customers.

For a single customer, a survey is conducted by business analyst and

system analyst to analyse the intended use of the product under

development and the possible environment of usage. Domain experts from

the development side may visit the customer organisation to understand

the specific requirements and work flow related to domain to incorporate

it into the product to be developed.

Joint Application Development (JAD):

Applications are developed jointly by customer and manufacturer where

there is close co-ordination between two teams. In joint application

development, users or customers may be overseeing the system

development and closely monitor requirements specifications,

architecture, designs, coding, testing and test results. The applications

produced by this method may follow top-down approach where user

interfaces and framework are developed first and approved by the users

and then logic is built behind it. Some people may call joint application

development as an agile methodology of development where developers

collaborate with customer during development.

User Involvement in Application Development:

This approach works on the similar lines of joint application development

(JAD). User may be involved in approving requirement specifications,

design specification, application user interfaces, etc. He/she may have to

answer the queries asked by developers and provide clarifications, if any.

An organisation may develop a prototype, model, etc, to understand user

requirements and get approval from the user team. If the organisation is

producing products for a larger market, few representative users may be

considered for collecting requirement specifications, test case designing

and acceptance testing of the application under development.

1.6.4 Producer's Gap/Development Gap:

Producer's gap is a gap between product actually delivered and the

requirement and design specifications developed for the product. The

requirement specifications written by business analyst may not be

understood in the same way by the development team. There are

communication losses at each stage and business analyst and

developers/testers may not be located next to each other to provide

explanation for each and every requirement. More stages of

communication may lead to more gaps and more distortion of

 18

Software Quality

Assurance

requirements. The product so produced and requirement specifications

used may differ significantly creating producer's gap

Closing Producer's Gap:

Producer's gap represents a failure on part of development team to convert

requirements into product. Producer's gap can be seen as the defects found

in in-house testing. Producer's gap is due to process failure at producer's

place and there must he process improvement plans to close this gap

Process Definition:

Development and testing processes must be sufficiently mature to handle

the transfer of information from one person or one stage to another during

software development life cycle. There must be continuous " Do' and

Check" processes to build better products and get feedback about the

process performance. Such product development has lifecycle testing

activities associated with development.

Work Product Review:

As the stages of software development life cycle progresses, one may have

to keep a close watch on artifacts produced during each stage to find if any

inconsistency has been introduced with respect to earlier phase.

Generation of requirement traceability matrix is an important factor in this

approach.

1.7 FINANCIAL ASPECT OF QUALITY

Earlier, people were of the opinion that more price of a product represents

better quality as it involves more inspection, testing, sorting, etc, and

ensures that only good parts are supplied to the customer, Sales price was

defined as,

Sales price = Cost of manufacturing + Cost of Quality + Profit

If we consider the monopoly way of life, this approach may be considered

good since the price is decided by the manufacturer depending upon three

factors described above. Unfortunately, monopoly does not exist in real

world. If any product enjoys higher profitability, more number of

producers would enter into competition.

Number of sellers may exceed number of buyers. When the products

produced match in all aspects, the cost would decide the quantity of sale.

The competitor who reduces the price, may get more volume of sale if all

other things remain constant. Reducing the sales price reduces percentage

profit. For maintaining profit, the producer may try to reduce cost of

production without compromising on the quality aspect.

Thus, in a competitive environment, the equation changes to

Profit = Sales price - [Cost of manufacturing + Cost of Quality]

 19

Introduction to Quality

1.7.1 Cost of Manufacturing:

Cost of manufacturing is a cost required for developing the right product

by right method at the first time. The money involved in resources like

material, people, licenses, etc. forms a cost of manufacturing. The cost of

manufacturing remains constant over the lime span for the given project

and given technology and it has a direct relationship with the efforts. It can

be reduced through improvements in technology and productivity but it

may need longer time frame. The cost involved in requirement analysis,

designing, development and coding are the casts associated with

manufacturing.

1.7.2 Cost of Quality:

Cost of quality represents the part of cost of production incurred in

improving or maintaining quality of a product. Some people keep cost of

manufacturing and cost of quality as separate while others may include

them under cost of production. Cost of manufacturing may be supported

by cost of quality and there exists anointer relationship between the two

costs.

Cost of quality includes all the efforts and cost incurred in prevention of

defects, appraisal of product to find whether it is suitable to customer or

not and fixing of defects or failures at various levels as and when they are

reported and conducting any retesting, regression testing, etc.

Cost of Prevention:

An organisation may have defined processes, guidelines, standards of

development, testing, etc. It may define a program of imparting training to

all people involved in development and testing. This may represent a cost

of prevention. Creation and use of formats, templates, etc. acquiring

various process models and standards, etc, also represent a cost of

prevention. This is an investment by an organisation and it is supposed to

yield returns. This is also termed as ‘Green money’. Generally, it is

believed that 1 part of cost of prevention can reduce 10 parts of cost of

appraisal and 100parts of cost of failure.

Cost of Appraisal:

An organisation may perform various levels of reviews and testing to

appraise the equality of the product and the process followed for

developing the product. The cost incurred in first time reviews and testing

is called as the cost of appraisal. There is no return on investment but this

helps in identifying the process capabilities and process related problems,

if any. This is termed as ‘Blue money’ as it can be recovered from the

customer. Generally, it is believed that 1 part of cost of appraisal can

reduce 10parts of cost of failure.

Cost of Failure:

Cost of failure starts when there is any defect or violation detected at any

stage of development including post-delivery efforts spent on defect

 20

Software Quality

Assurance

fixing. Any extent of rework, retesting, sorting, scrapping, regression

testing, late payments, sales under concession, etc. represents cost of

failure. There may be some indirect costs such as loss of goodwill, not

getting customer references, not getting repeat orders, and customer

dissatisfaction associated with the failure to produce the right product. The

cost incurred due to some kind of failure is represented as cost of failure.

This is termed as 'Red money'. This cost affects the profitability of the

project organisation badly.

On the basis of quality focus, organisations may be placed in 2 categories

viz, organisations which are less quality conscious (termed as ‘q’) and

organisations which are more quality conscious (termed as 'Q'). The

conscious (termed as 'q') and organisations which are more quality

conscious (termed as 'Q'). The distribution of cost of quality for these two

types may be represented as below. Please refer Fig. 1.2

The bottommost rectangle represents cost of prevention. As the

organisation's quality consciousness increases, prevention cost increases

substantially due to introduction of various process requirements. The

organization may have defined processes, methods, work instructions,

standards, guidelines, templates, formats etc. Teams are supposed to use

them while building a product or testing it, and conduct audits which need

resources, time and money. Project teams may create project plan, test

plan, assess the risks and issues faced during development, decide on the

actions to reduce their probabilities/impacts, etc. More cost of prevention

may be justifiable for a project/product only if it reduces the cost of

failure.

Middle rectangle represents cost of appraisal. As quality consciousness

increases, cost of appraisal also increases. An organisation may prepare

various plans (such as quality plan and test plan) and then review these

plans, write the test cases, define test data, execute test cases, analyse

defects and initiate actions to prevent defect recurrence. There may be

checklists, guidelines, etc. used for verification and validation activities.

The cost incurred in appraisal must be justifiable and must reduce cost of

failure.

 21

Introduction to Quality

The topmost rectangle represents cost of failure, Cost of failure includes

the cost associated with any failure which may range from rework,

retesting, etc. including customer dissatisfaction or loss of revenue, etc.

As quality consciousness improves, failure cost must reduce representing

better quality of products offered and higher customer satisfaction. Thus,

the overall cost of quality must reduce as quality consciousness of the

organisation increases.

1.8 DEFINITION OF QUALITY

Let us try to redefine and understand the meaning of the term ‘Quality’

with a new perspective. Many definitions of the word ‘Quality’ are

available and are used at different forums by different people. Most of

these definitions show some aspect of quality. While no definition is

completely wrong, no definition is completely right also. Few of the

definitions prescribed for quality are,

Predictable Degree of Uniformity, Dependability at Low Cost and

Suited to Market:

This definition stresses on quality as an attribute of product which is

predictable and uniform in behaviour throughout product usage and

stresses on the ability of a product to give consistent results again and

again. One must be able to predict the product behaviour beforehand. It

talks about reduction in variability of a product in terms of features,

performance, etc. It also defines the dependability aspect of quality

product. One must expect reliable results from quality products every time

they are used. Quality product must be the cheapest one as it talks about

reducing failure cost of quality hike rework, scrap, sorting, etc. The most

important thing about product quality is that it must help the product to

suite the market needs or expectations. This necessitates that the

manufacturer should produce those products which can be sold in the

market.

Degree to Which a Set of Inherent Characteristics of the Product /

Service Fulfils the Requirements:

This definition of quality stresses the need that the product must conform

to defined and documented requirement statement as well as expectations

of users, Higher degree of fulfilments of these requirements makes a

product better in terms of quality. There must be something in the product,

defined as attributes of product', which ensures customer satisfaction. The

attributes must be inborn in the product, indicating capable processes used

for developing such a product.

Ability of a Product or Service That Bears Upon Its Ability to Satisfy

Implied or Expressed Need:

This definition of quality of product is derived from the approach of

‘Fitness for use’, It talks about a product achieving defined requirements

as well as implied requirements, satisfying needs of customer for which it

 22

Software Quality

Assurance

is being used. Better ability of a product to fulfill requirements makes a

product better, from quality perspective.

1.9 CUSTOMERS, SUPPLIERS AND PROCESSES

For any organisation, there are some suppliers supplying the inputs

required and some customers who will be buying the outputs produced.

Suppliers and customers may be internal or external to the organisation. In

the larger canvas, an entire organisation can be viewed as the component

in a huge supply chain of the world where products are made by

converting some inputs which may act as inputs to the next stage. External

suppliers provide input to the organisation and external customer receive

the output of the organisation. In turn, suppliers may be customers for

some other organisations and customer may be acting as suppliers for

somebody else down the line.

Internal Customer:

Internal customers are the functions and projects serviced and supported

by some other functions projects. System administration may have

projects as their customer while purchasing may have system

administration as their customer. During value chain, each function must

understand its customers and suppliers. Each function must try to fulfill its

customer requirements. This is one of the important considerations behind

‘Total Quality Management’ where each and every individual in

supplychain must identify and support hi customer, If internal customers

are satisfied, this will automatically satisfy external customer as it sets the

tone and perspective for everybody.

External Customer:

External customers are the external people to the organisation who will be

paying for the services offered by the organisation. These are the people

who will be actually buying products from the organisation. As the

organisation concentrates on external customer for their satisfaction, it

must improve equality of its output.

1.10 TOTAL QUALITY MANAGEMENT (TQM)

‘Total quality management’ principle intends to view internal and

external customers as well as internal and external suppliers for each

process, project and for entire organisation as a whole. The process and

factions of an organisation can be broken down into component elements,

which act as suppliers/customers to each other during the work flow. Each

supplier eventually also becomes a customer at some other moment and

vice-versa. If one can take care of his/her customer (whether internal or

external) with an intention to satisfy him, it may result into customer

satisfaction and continual improvement for the organisation.

Supply chain relationship may be defined graphically as, shown in Fig. 1.3

 23

Introduction to Quality

‘Total quality management’ (TQM) is the application of quality principles

to all facets and business processes of an organisation. It talks about

applying quality methods to the entire organisation whether a given

function or part of the organisation faces external customer(s) or not. One

clear definition of quality involves satisfying one's customer irrespective

of whether he/she is outside or inside the organisation. This

implementation of customer satisfaction has different meanings for

different parts of an organisation.

Quality Management Approach:

Dr Edward Deming implemented quality management system driven by

‘Total Quality Management’ and ‘Continual Improvement’ in

Japanese environment. It resulted into repetitive, cost-effective processes

with an intention to satisfy customer requirements and achieve customer

satisfaction. Implementation was inclined toward assessment of quality

management system which was adoptive to the utility of tools for

understanding data produced by the process measurements, Dr Deming

proposed principles for quality management that are widely used by the

quality practitioners.

1.11 QUALITY PRINCIPLES OF 'TOTAL QUALITY

MANAGEMENT

‘Total quality management’ works on some basic principles of quality

management definition and implementation. These have evolved over a

span of experimentation and deployment of quality culture in

organisations.

1.11.1 Develop Constancy of Purpose of Definition and Deployment of

Various Initiatives:

Management must create constancy of purpose for products and processes,

allocating resources adequately to provide for long term as well as short

term needs rather than concentrating on short term profitability: suppliers

and organisation must have an intent to become competitive in the world,

to stay in business and to provide jobs to people and welfare of the

society. The processes followed during entire lifecycle at product

development from requirement capturing till final delivery must be

consistent with each other and must be followed over a larger horizon,

Decisions taken by management at different instances must be consistent

and based upon same standards, rules and regulations. Different initiatives

 24

Software Quality

Assurance

by management must have relationships with each other and must be able

to satisfy the vision of the organisation.

1.11.2 Adapting to New Philosophy of Managing People/Stakeholders

by Building Confidence and Relationships:

Management must adapt to the new philosophies of doing work and

getting the work done from its people and suppliers. We are in a new

economic era where skills make an individual indispensable. The process

started in Japan and is perceived as a model throughout the world for

improving quality of working as well as products.

We can no longer live with commonly accepted levels of delays, mistakes,

defective materials, rejections and poor workmanship. Transformation of

management style to total quality management is necessary to take the

business and industry on the path of continued improvements.

1.11.3 Declare Freedom from Mass Inspection of Incoming/Produced

Output:

It was a common belief earlier that for improving quality of a product, one

needs to have rigorous inspection program followed by huge rework,

sorting, scrapping, etc. It was believed that one must check everything to

ensure that no defect goes to customer. But there is a need for change in

thinking of management and people as mass inspection results into huge

cost overrun and product produced is of inferior quality. There must be an

approach for elimination of mass inspection followed by cost of failure as

the way to achieve quality of products. Improving quality of products

requires setting up the right processes of development and measurement of

process capabilities and statistical evidence of built-in quality in all

departments and functions.

1.11.4 Stop Awarding of Lowest Price Tag Contracts to Suppliers:

Organisations must end the practice of comparing unit purchase price as a

criterion of awarding contracts. Vendor selection must be done on the

basis of total cost including price, rejections, etc. Organisations must

perform measurements of quality of supply along with price and do the

source selection on the basis of final cost paid by it in terms of

procurement, rework, maintenance, operations, etc. It must reduce the

number of suppliers by eliminating those suppliers that do not qualify with

statistical evidences of quality of their supply. This will automatically

reduce variation and improve consistency. Aim of vendor selection is to

minimise total cost, not merely initial cost of purchasing, by minimising

variations in the vendor supplied product. This may be achieved by

moving towards lesser/single supplier, on a long-term relationship of

loyalty and trust. Organisations must install statistical process control in

development even at vendor site and reduce the variation in place of

inspecting each and every piece.

 25

Introduction to Quality

1.11.5 Improve Every Process Used for Development and Testing of

Product:

Improve every process of planning, production and service to the customer

and other support processes constantly. Processes have interrelationships

with each other and one process improvement affects other processes

positively. Search continually for problems in these processes in terms of

variations in order to improve every activity in the organisation- to

improve quality and productivity and decrease the cost of production as

well as cost of quality continuously. Institutionalise innovations and

improvements of products and processes used to make them. It is

management’s job to work continually for optimising processes.

1.11.6 Institutionalise Training Across the Organisation for all People:

An organisation must institute modem methods of training which may

include on-the-job training, classroom training, self-study, etc. for all

people, including management, to make better use of their abilities. New

skills are required to keep up with the changes in materials, methods,

product and service design, infrastructure,

techniques and service Skill levels of people can be enhanced to make

them suitable for better performance by planning different training

programs, Training technical as well as nontechnical should focus on

improving present skills and acquiring new skills Customer requirements

may also change and people may need training to understand changes in

customer expectations, Suppliers may he included in training programs to

derive better output from them.

1.11.7 Institutionalise Leadership Throughout Organisationat Each

Level:

An organisation must adopt and institute leadership at all levels with the

aim of helping people to do their jobs in a better way. Responsibility of

managers and supervisors must be changed from controlling people to

mentoring, guiding, and supporting them. Also, their focus should shift

from number of work items to be produced to quality of output.

Improvement in quality will automatically improve productivity by

reducing `` scrap, inspection, rework, etc. Management must ensure that

immediate actions are taken on reports of inherited defects, maintenance

requirements, poor tools, fuzzy operational definitions and all conditions

detrimental to quality of products and services offered to final users,

1.11.8 Drive Out Fear of Failure from Employees:

An organisation must encourage elective two-way communication and

other means to drive out fear of failure from the minds of all employees.

Employees can work effectively and more productively to achieve better

quality output when there is no fear of failure, People may not try new

things if they are punished for failure.

 26

Software Quality

Assurance

Management should not stop or discount feedback coming to them even if

it is negative. Giving positive as well as negative feedback should be

encouraged, and it must be used to perform SWOT analysis followed by

actions. Fear is something which creates stress in minds of people,

prohibiting them from working on new ways of doing Things, Fear can

cause disruption in decision-taking process which may result into

excessive defense and also, major defects in the product. People may not

be able to perform under stress.

1.11.9 Break Down Barriers Between Functions/Departments:

Physical as well as psychological breaking down of barriers between

departments and staff areas may create a force of cohesion, People start

performing as a lam and there is synergy of group activities. People in

different areas must work as a team to tackle problems that may be

encountered with products and customer satisfaction, Ultimate aim of the

organisation must be to satisfy customers. All people working together

and helping each other to solve the problems faced by customers can help

in achieving this ultimate aim.

1.11.10 Eliminate Exhortations By Numbers, Goals, Targets:

Eliminate use of slogans, posters and exhortations of the work force,

demanding ‘Zero Defects’ and new levels of productivity, without

providing methods and guidance about how to achieve it. Such

exhortations create adverse relationships between supervisors and

workers. Main cause of low quality and productivity is in the processes

used for production as the numbers to be achieved may be beyond the

capability of the processes followed by the workers. This may induce

undue frustration and stress and may lead to failures. The Organisation

shall have methods to demonstrate that the targets can be achieved with

smart work.

1.11.11 Eliminate Arbitrary Numerical Targets Which Are Not

supported By Processes:

Eliminate work standards that prescribe quotas for the work force and

numerical goals for managers to be achieved. Substitute the quotas with

mentoring and support to people, and helpful leadership in order to

achieve continual improvement in quality and productivity of the

processes, Numerical goals should not become the definition of

achievement/targets. There must be a methodology to define what

achievement is and what must be considered as a stretched target.

1.11.12 Permit Pride of Workmanship for Employees:

Remove the barriers that take away the pride of workmanship for workers

and management. People must feel proud of the work they are doing, and

know how they are contributing to organisational vision. This implies

complete abolition of the annual appraisal of performance and of

‘management by objective’. Responsibility of managers and supervisors

 27

Introduction to Quality

must be changed from sheer numbers to quality of output. Management

must understand managing by facts.

1.11.13 Encourage Education of New Skills and Techniques:

Institute a rigorous program of education and training for people working

in different areas and encourages lf-improvement programs for everyone.

What an organisation needs is not just good people; it needs people who

can improve themselves with education to accept new challenges.

Advances in competitive position will have their roots in knowledge

gained by people during such trainings.

1.11.14 Top Management Commitment and Action to Improve

Continually:

Clearly define top management's, commitment to ever-improving quality

and productivity and their obligation to implement quality principles

throughout the organisation. It is not sufficient that the top management

commits for quality and productivity but employees must also see and

perceive their commitment. They must know what it is that they are

committed to i.e., what they must do in order to show their commitment.

1.12 QUALITY MANAGEMENT THROUGH

STATISTICAL PROCESS CONTROL

Dr Joseph Juran is a pioneer of statistical quality control with a definition

of improvement cycle through Define, Measure, Monitor, Control and

Improve (DMMCI). One must understand the interrelationships among

customers, suppliers and processes used in development, testing, etc, and

establish quality management based on metrics program. There are three

parts of the approach, namely,

1.12.1 Quality Planning At All Levels:

Quality is not an accident but is a result of deliberate effort to achieve

something which is defined in advance. An organisation must have a

definition of what they wish to achieve Quality improvement must be

planned at all levels of organisation and then only it can be achieved.

Quality planning happens at two levels viz.organisation level and

individual department function project level.

Quality Planning at Organisation Level:

Quality must he planned at organisation level first. It must be in the form

of policy definition and strategic quality plans on the basis of vision,

missions) and policies set by senior management. Planning process must

attempt to discover who the customers are at present and who will be the

customers in future, and what are and will be their needs and expectations

from the organisation. The needs of the present or future customers must

be expressed in numeric term so that the actions can be planned and

progress can be measured. The presence or absence of different attributes

 28

Software Quality

Assurance

to the extent required shall define the quality level of the product or

services.

Quality Planning at Unit Level:

Quality planning at unit level must be done by the people responsible for

managing the unit. Operational quality plans must be in sync with

organisational policies and strategies. Project plan and quality plan at unit

level must be consistent with the strategic quality plans at organisation

level and must be derived from the organisation's vision and mission(s).

1.12.2 Quality Control:

Quality control process attempts to examine the present product at various

levels with the defined standards so that an organisation may appraise the

outcome of the processes. Removing defects in the processes to improve

their capability can help to reach new levels of improved quality. (e.g.,

process improvement must be targeted towards lowering defects, reducing

cost, and improving customer satisfaction.) It must measure the deviations

with respect to the number of achievements planned in quality planning so

that the organization can initiate the actions to reduce the deviations to

minimum level.

1.12.3 Quality Improvement:

Improvement process attempts to continuously improve the quality of the

process used for producing products. Quality of the process is measured

on the basis of the attributes of the products produced. There isno end to

quality improvements and it needs to take newer challenges again and

again. Finding deviations in the attributes of products and processes with

respect to planned levels and permissible tolerances available shall guide

the organisation to find the weak areas where actions may be prioritised.

1.13 QUALITY MANAGEMENT THROUGH

CULTURAL CHANGES

Philip Crosby's approach to quality improvement is based on cultural

change in an organisation towards total quality management. Quality

management through cultural change defines quality improvements as a

cultural change driven by management. It involves,

 Identifying areas in which quality can be improved depending upon

process capability measurements and organisational priorities. An

organisation must setup cross functional working groups (quality

circles or quality improvement teams) and try to improve awareness

about the customer needs, quality and process measurements. The

organisation may not be able to improve in all areas at a time and

prioritisation maybe essential depending upon some techniques such

as Pareto analysis, Cost benefit analysis, etc. It must prioritise the

improvements depending upon the resources available and

efforts/investments required and the benefits derived from such

improvements.

 29

Introduction to Quality

 Instituting teams representing different functions and areas for quality

improvement can help in setting the change of culture. Improving

quality of the processes of development, testing, managing, etc, is a

team work led by management directives. A single person may not be

able to institutionalise improvements across the Organisation,

Improvements in processes automatically improve the product and

customer satisfaction.

 Setting measurable goals in each area of an organisation can help in

improving processes at all levels. Goals may at as stretched targets

with respect to what is currently achieved by the organisation. Goals

may be set with reference to customer expectations or something

which may give competitive advantage to the organisation in the

market.

 Giving recognition to achievers of quality goals will boost their

morale and set a positive competition among the teams leading to

organisational improvements. This can lead to dramatic improvements

in all areas. Management must demonstrate commitment to quality

improvement, and recognition of achievements is a step in this

direction.

 Repeating quality improvement cycle continuously by stretching

goals further for next phase of improvements is required to maintain

and improve the status further. The organisation must evaluate the

goals to be achieved in short term, long term, and the combination of

both to realise organisational vision.

1.14 CONTINUAL (CONTINUOUS) IMPROVEMENT

CYCLE

Plan, Do, Check, and Act (PDCA) Cycle:

Continual (Continuous) improvement cycle is based on systematic

sequence of Plan Do-Check-Act activities representing a never-ending

cycle of improvements. PDCA cycle was initially implemented in

agriculture. It was implemented later in the electronic industry.TQM has

made the PDCA cycle famous in all industries. PDCA improvement cycle

can be thought of as a wheel of improvement continually (continuously)

rolling up the problem-solving hill and achieving better and better results

for the organisation in each iteration. Stages of continual (Continuous)

improvement through PDCA cycle are,

Plan:

An organisation must plan for improvements on the basis of its vision and

mission definition. Planning includes answering all questions like who,

when, where, why, what, how, etc, about various activities and selling

expectations. Expected results must be defined in quantitative terms and

actions must be planned to achieve answers to these questions, Quality

planning at unit level must be in sync with quality planning at organisation

 30

Software Quality

Assurance

level. Baseline studies are important for planning. Baseline studies define

where one is standing and vision defines where one wishes to reach.

Do:

An organisation must work in the direction set by the plan devised in

earlier phase for improvements. Plan is not everything but a roadmap. It

sets the direction but execution is also important, Actual execution of a

plan can determine whether the results as expected are achieved or not.

Plan sets the tone while execution makes the plan work. 'Do' process need

inputs like resources, hardware, software, training, etc. for execution of a

plan.

Check:

An organisation must compare actual outcome of 'Do' stage with reference

or expected results which are planned outcomes. It must be done

periodically to assess whether the progress is in proper direction or not,

und whether the plan is right or not, Expected and actual results must be in

numerical terms, and compared at some periodicity as defined in the plan.

Act:

If any deviations (positive or negative) are observed in actual outcome

with respect to planned results, the organisation may need to decide

actions to correct the situation. The actions my include changing the plan,

approach or expected outcome as the case may be. One may have to

initiate corrective and or preventive actions as per the outcome of ‘Check’.

When expected results and actuals match with given degree of variation,

one may understand that the plan is going in the right direction. Running

faster or slower than the plan will need action. Figure 1.4 shows

diagrammatically PDCA cycle of continual improvement.

 31

Introduction to Quality

1.15 QUALITY IN DIFFERENT AREAS

Let us try to understand quality attributes of various products in different

areas. Different domains need different quality factors. They may be

derived from the customers/users of the domains. Here are few examples

of some domains showing customer expectations in terms of quality for

various products. These are generic expectations of customers in certain

areas and may differ for some individual examples depending upon

specific requirements. Definition of quality expectations will vary from

instance to instance depending on the domain under consideration, type of

product, type of customer, other competitive products, and their features.

The table below lists different areas representing different domains and

indicates some factors that might be considered related to quality in these

areas. Below table shows some common expectations from customers.

There are some common denominators in all these examples which may

be considered as the quality factors. Although the terms used to explain

each product in different domain areas vary to some extent, almost all

areas can be explained in terms of few basic quality parameters. These are

defined as the basic quality parameters by stalwarts of quality

management.

 Cost of the product and value which the customer finds in it

 Service offered to the customers, in terms of support by the

manufacturer

 Time required for the delivery of product

 Customer satisfaction derived from the attributes and functionalities

of a product

 Number of defects in the product or frequency of failures faced by

users

 32

Software Quality

Assurance

1.16 BENCHMARKING AND METRICS

Benchmarking is an important concept used in Quality Function

Deployment (QFD). It is the concept of creating qualitative quantitative

metrics or measurable variables, which can he used to assess product

quality on several scales against a benchmark. Typical variables of

benchmarking may include price of a product paid by customer, time

required to acquire it, customer satisfaction, defects or failures, attributes

and features of product, etc. Metrics are defined for collecting information

about the product capabilities, process variability and outcome of the

process in terms of attributes of products. Metric is a relative measurement

of some parameters of a product which are related to the product and

processes lived to make it. An organisation must develop consistent set of

metrics derived from its strategic business plan and performance of

benchmark partner.

1.17 PROBLEM SOLVING TECHNIQUES

Improving quality of products and services offered to customers requires

methods and techniques of solving problems associated with development

and processes used during their lifecycle. An organisation must use

metrics approach of process improvement because it needs to make

quantitative measurements. These measurements can be used for problem

solving using quantitative techniques.

Problem solving can be accomplished by both qualitative and quantitative

methods but problem definition becomes easier when we put them against

some measures or comparators.

 Qualitative problem solving refers to understanding a problem

solution using only qualitative indexes such as high, medium, low,

etc. depending on whether something is improving or deteriorating

from the present status and so forth. This is a typical scenario for low

maturity organisations where the problems are much broader and can

be classified in different bands very easily. For initial stages of

improvement, qualitative problem solving is sufficient to get faster

results. It saves time in defining and measuring data accurately and

basic maturity can be achieved.

 Quantitative problem solving requires specification of exact measures

in numerical terms such as the cost has increased 32.5% during the

last quarter or the time required to produce one product unit is

reduced by32 minutes. For highly matured organisations, quantitative

analysis is required for further improvements as basic improvements

are already done. It must follow the cycle of Define, Measure,

Monitor, Control and Improve. Measurement of processes and

products may need good measuring instruments with high level of

accuracy and repeatability.

Given quantitative data, one can use statistical techniques to characterise a

process. Quantitative methodologies make it possible to analyse and

 33

Introduction to Quality

visualise what is actually happening in a process. Process variations can be

understood in a better way and actions can be initiated to reduce the

variability.

1.18 PROBLEM SOLVING SOFTWARE TOOLS

While buying software for data management and statistical analysis, many

organisations find it to be a big Investment in terms of money, resources,

etc. One must answer the question ‘Why should one use software tools to

solve problems about quality?’ There are some advantages and

disadvantages associated with usage of such tools for problem solving,

Advantages of Using Software Tools for Analysis and Decision

Making:

 Accuracy and speed of the tools is much higher compared to

performing all transactions and calculations manually. Calculations

can form the basis for miking decision, and hence should be as

accurate as possible.

 Decision support offered by the tool is independent of personal skills

and there is least variation from instance to instance. Tools can

support in some fixed range depending upon its logic. Some tools can

learn things and use them as required.

 Tools can implement theoretical means of assessing metrics about

quality as defined by business law. There is no manual variation.

 Tools alleviate the hard work required to perform hand or calculator

driven computations and give more accurate and faster results.

 Tools can be integrated with other systems to provide a systematic

and highly integrated means of solving problems

Disadvantages of Using Computer Tools for Analysis and Decision

Making:

 These programs and tools need training before they can be used.

Training incurs cost as well as time. Some tools need specific

trainings to understand them and use them.

 All softwares / hardwares are prone for defects and these tools are not

exceptions to it. There can be some mistakes while building/using

them. Sometimes these mistakes can affect the decisions drastically.

 Decision has to be taken by human being and not by the tool. Tools

may define some options which may be used as guide. Some tools can

take decision in the limited range.

 Tools may mean more cost and time to learn and implement. Every

tool has a learning curve.

 34

Software Quality

Assurance

1.18.1 Tools:

Tools are an organisations analytical asset that assist in understanding a

problem through data and try to indicate possible solutions. Quality tops

are more specie tools which can be applied to solving problems faced by

projects and functional teams while improving quality in organisations.

Tools may be hardware/software and physical logical tools. We will learn

more about quality tools in Chapter 16 on ‘Qualitative and Quantitative

Analysis’.

1.18.2 Techniques:

Techniques indicate more about a process used in measurement, analysis

and decision-making during problem solving. Techniques are independent

of tools but they drive tool usage. Techniques do not need tools for

application while tools need techniques for then use. Same tool can be

used for different purposes, if the need tools for application while tools

need techniques for their use. Same tool can be used for different

purposes, if the techniques are differed. Table 1.3 gives a difference

between tools & techniques.

1.19 QUALITY TIPS

Try to define quality perspective for the organisation and set of products

and projects executed by it.

 Define customer expectations rather than going for system

requirement specifications.

 Assess the cost spent by an organisation under various heads of

quality, Testers have to play a significant role in reducing cost of

quality and improving profitability of the organisation.

 Understand and improve every aspect of an organisation through

approaches, techniques and tools to enhance customer satisfaction and

goodwill for the organisation. This can help the organisation to

prosper in the long term.

1.20 SUMMARY

In this chapter, we have seen various definitions of quality as understood

by different people and different stakeholders. It also covered the

definitions by quality stalwarts and different international standards. Then,

 35

Introduction to Quality

we studied the basic components to produce quality, and the views of

customers and producer on quality. As a tester, one must understand

different gaps like user gap, and producer gap, and how to close them to

achieve customer satisfaction.

We have described various cost components like manufacturing cost and

cost of quality. Cost of quality concepts with its three components viz.

preventive cost of quality, appraisal cost of quality and failure cost of

quality are described along with the importance of cost of prevention, and

how it affects cost of quality and improves profitability.

We have seen different approaches to continually (continuously)

improving quality. We have covered ‘TQM principles of quality

management’, and ‘DMMCI principles of continual improvement’ through

quality planning, quality control and quality improvement. We have also

discussed a theory of ‘Cultural change principles of quality management’.

Finally, we have introduced the concept of problem solving through usage

of tools and techniques. We have also briefly elucidated the concept of

benchmarking.

1.21 EXERCISES

1) Explain ‘quality’ in terms of the generic expectations from any

product.

2) Differentiate between continuous improvement and continual

improvement.

3) Define the stakeholders for successful projects at micro level and for

successful organisations at macro level.

4) Define ‘quality’ as viewed by different stakeholders of software

development and usage.

5) Explain customer’s view of quality.

6) Explain supplier’s view of quality.

7) Define "User's gap' and 'Producer's gap' and explain how these gaps

can be closed effectively.

8) Describe various definitions of quality as per international standards.

9) Describe definition of quality as per Dr Deming, Dr Juran and Philip

Crosby.

10) Describe ‘Total Quality Management’ principles of continual

improvement.

11) Describe cultural change requirement for quality improvement.

12) Differentiate between tools and techniques.

 36

Software Quality

Assurance

1.22 REFERENCES

 Software Testing andContinuous QualityImprovement by William E.

Lewis, CRC Press, 3
rd

Edition, 2016.

 Software Testing:Principles, Techniquesand Tools by M. G. Limaye,

Tata McGraw Hill, 2017.

 Foundations of SoftwareTesting by Dorothy Graham, Erikvan

Veenendaal,Isabel Evans, RexBlack, CengageLearning, 3rd Edition.

 Software Testing: ACraftsman‟s Approach, Paul C. Jorgenson, CRC

Press, 4
th

 Edition, 2017.

 https://www.altexsoft.com/whitepapers/quality-assurance-quality-

control-and-testing-the-basics-of-software-quality-management/

 https://www.softwaretestinghelp.com/software-quality-assurance

 37

2
SOFTWARE QUALITY

Unit Structure

2.0 Objectives

2.1 Introduction

2.2 Constraints of Software Product Quality Assessment

2.3 Customer is a King

2.4 Quality and Productivity Relationship

2.5 Requirements of a Product

2.6 Organization Culture

2.7 Characteristics of Software

2.8 Software Development Process

2.9 Types of Products

2.10 Schemes of Criticality Definitions

2.11 Problematic Areas of Software Development Life Cycle

2.12 Software Quality Management

2.13 Why Software Has Defects?

2.14 Processes Related to Software Quality

2.15 Quality Management System Structure

2.16 Pillars of Quality Management System

2.17 Important Aspects of Quality Management

2.18 Summary

2.19 Exercise

2.20 References

2.0 OBJECTIVES

 This chapter focuses on software quality parameters.

 It provides a basic understanding that quality expectation for different

products is different products is different and lays a foundation of

quality management approach.

2.1 INTRODUCTION

In the previous chapter, we have discussed various definitions of quality

and how they fit the perspective of different stakeholders. One of the

definitions i.e.,

‘Conformance to explicitly stated and agreed functional and non-

functional requirements’, may be termed as ‘quality’ for the software

product offered to customers/final users from their perspective. Customers

may or may not be the Final user’s and sometimes, developers have to

 38

Software Quality

Assurance

understand requirements of final users in addition to the customer. If the

customer is a distributor or retailer or facilitator who is paying for the

product directly, then the final user’s requirements may be interpreted by

the customer to make a right product.

It is not feasible to put all requirements in requirement specifications. A

large number of requirements remain undefined or implied as they may be

basic requirements for the domain and the customer perceives them as

basic things one must know. It gives importance to the documented and

approved software and system requirement specifications on which quality

of final deliverables can be decided. It shifts the responsibility of making a

software specification document and getting it approved from customer to

producer of a product. There are many constraints for achieving quality for

software application being developed using such software requirement

specifications.

2.2 CONSTRAINTS OF SOFTWARE PRODUCT

QUALITY ASSESSMENT

Generally, requirement specifications are made by business analysts and

system analysts. Testers may or may not have direct access to the

customer and may get information through requirement statements,

queries answered, etc. either from the customer or business

system/analyst, etc. There are few limitations of product quality

assessment in this scenario.

 Software is virtual in nature. Software products cannot be seen,

touched or heard. Our normal senses and measuring instruments are

not capable of measuring quality of software, which is possible in

most of the other engineering products.

 There is a huge communication gap between users of software and

developers/testers of the product. Generally, 5-8 agencies are involved

between the users and developers/testers. If an average

communication loss of 10% at each stage is considered, then huge

distortion is expected from user’s perspective of requirements and

actual product.

 Software is a product which is unique in nature. Similarities between

any two products are superficial ones. The finer requirements, designs

foundation, architecture, actual code, etc. may be completely different

for different products. Way of software design, coding, and reusability

may differ significantly from product to product though requirements

may look similar at a global level.

 All aspects of software cannot be tested fully as number of

permutations and combinations for testing all possibilities tend to

infinity. There are numerous possibilities and all of them may not be

tried in the entire life cycle of a software product in testing or even in

usage. Exhaustive testing is neither feasible nor justifiable with

respect to cost.

 39

Software Quality  A software program executes in the same way every time when it is

executing some instruction. An application with a problematic code

executes wrongly every time it is executed. It makes a very small

defect turn into a major one as the probability of defect occurrence is

100% when that part is executed.

Business analysts and system analysts must consider the following while

capturing the requirements of a customer.

2.3 CUSTOMER IS A KING

The customer is the most important person in any process of developing a

product and using it-software development is not an exception. All

software life cycle processes such as development, testing, maintenance,

etc. are governed by customer requirements, whether implied or

expressed.

An organization must be dedicated to exceed customer satisfaction with

the latter’s consent. Exceeding customer satisfaction must not be received

with surprise by the customer. He must be informed about anything that

has been provided extra and must be in a position to accept it or reject it.

Any surprise may be considered as defect.

A satisfied customer is an important achievement for an organization and

is considered as an investment which may pay back in short as well as

long term (in terms of references, goodwill, repeat order, etc.). Satisfied

customers may give references to others and come back with repeat

orders. Customer references are very important for developing new

accounts. Organizations should try to implement some of the following

measures to achieve customer satisfaction.

2.3.1 Factors Determining Success:

To be a successful organization, one must consider the following factors,

entities, and their interactions with each other.

Internal Customer and Internal Supplier:

‘Internal customer satisfaction’ philosophy is guided by the principles of

‘Total Quality Management’. When an organization is grouped into

various functions/departments, then one function/department acts as a

supplier or a customer of another function/department. If every function /

department identifies its customers and suppliers and tries to fulfill their

requirements, in turn, external requirements get satisfied.

External Customer and External Supplier:

External customers may be the final users, purchasers of software, etc.

Software requirement specifications are prepared and documented by

developing organizations to understand what customer/final user is

looking for when he wishes to acquire a particular product. Customers are

actually paying for getting their needs served and not for the

implementation of the requirements as defined in the specifications

 40

Software Quality

Assurance

document. External suppliers are the entities who are external to the

organization and who are supplying to the organization.

2.4 QUALITY AND PRODUCTIVITY RELATIONSHIP

Many people feel that better quality of a product can be achieved by more

inspection or testing, reworking, scrapping, sorting, etc. More Inspection

cycles mean finding more defects, fixing defects mean better quality (as it

will expose maximum possible defects to be fixed by developers), and

ultimately, the customer may get a better product. This directly means that

there would be more rework/scrap and it will lead to more cost/price or

less profit for such products as more effort and money is spend in

improving quality. In such cases, time and effort required would be much

higher.

In reality, quality improvements does not talk about product quality only

but a process quality used for making such a product. If the processes of

development and testing are good, a bad product will not be manufactured

in the first place. It will reduce inspection, testing, rework, and cost/price.

Thus quality must improve productivity by reducing wastage. It must

target for doing ‘first-time right’.

Improvement in Quality Directly Leads to Improved Productivity:

Improved quality does not mean more inspection, testing, sorting and

rejection but improving the processes related to product development. All

products are the outcome of processes, and good processes must be

capable of producing good product at the first instance. This approach

reduces frustration, rejection, rework, inspection, and improves quality

and customer satisfaction. As this hidden factory producing scrap and

wastage stops working, productivity and efficiency improves. Thus,

quality products must give more profitability to the supplier and is a

cheaper option for the customer.

The Hidden Factory Producing Scrap, Rework, Sorting, Repair, and

customer Complaint is Closed:

Customer does not intend to pay for scrap, rework, sorting, etc. to get a

good product. Engineering industry has faced this problem of

unwillingness of customer pay even for first-time inspection/testing as

they represent deficiencies in manufacturing processes. Problems in

products can be linked to faulty development processes. Either the defects

are not found in the product during process of development or testing, or

fixing of the defects found in these processes introduces some more

defects in the product offered.

Effective Way to improve Productivity is to Reduce Scrap and

Rework by Improving Processes:

Productivity improvement means improving number of good parts

produced per unit time and not the parts produced per unit time. It is not

hard work but smart and intelligent work which can help an organization

 41

Software Quality in improving product quality, productivity and customer satisfaction by

reducing rework, scrap, etc. It necessitates that an organization must

incorporate and improve quality in the processes which lead to better

product quality. As wastage reduce with improvements in quality in the

processes which lead to better product quality. As wastage of resources

reduce with improvement in quality, productivity and efficiency improves

as a direct result by improvements in processes.

Quality Improvements Lead to Cost Reduction:

Quality improves productivity, efficiency and reduces scrap, rework, etc.

Improvement in quality increases profit margins for producer by reducing

cost of development, cost of quality and reduces sales price for customer.

Thus quality implementation must reduce the cost and price without

sacrificing profitability.

Employee Involvement in Quality Improvement:

Employee is the most important part of quality improvement program and

crucial element for organizational performance improvement.

Management leadership and employee contribution can make an

organization quality conscious while lack of either of the two can create

major problems in terms of customer dissatisfaction, loss of profitability,

loss of goodwill, etc. Employee involvement in quality implementation is

essential as the employee’s facing problems in their work indicate the

process problems. Management must include employees in quality

improvement programs at all stages.

Proper Communication Between Management and Employee is

Essential:

Communication is a major problem in today’s environment. One of the

communication hurdles is that the chances of face-to-face communication

is by virtual appliances like emails, video conferencing, etc. Where it is

difficult to judge the person through body language. Either there is no

communication or there is excessive communication leading to a

problematic situation. There are huge losses in communication and

distortions leading to miscommunication and wrong interpretation. The

reasons for ‘producer’s gap’ and ‘user’s gap’ are mainly attributed to

communication problems. Different words and terms used during the

message, tone, type of message, speaking skills, listening skills, etc.

contribute to quality of communication.

Employees Participate and Contribute in Improvement Process:

In quality improvement program and implementation, employees perform

an important part of identification of problems related to processes and

giving suggestions for eliminating them. They are the people doing actual

work and know what is wrong and what can be improved in those

processes to eliminate problems. They must be closely associated with the

organization’s goal of achieving customer satisfaction, profitability, name

and fame in market, etc. Every employee needs to play a part in

 42

Software Quality

Assurance

implementation of ‘Total Quality Management’ in respective areas of

working. This can improve the processes by reducing any waste.

Employee Share Responsibility for Innovation and Quality

Improvement:

Management provides support, guidance, leadership, etc. and employees

contribute their part to convert organization into performing teams.

Everyday work can be improved significantly by establishing small teams

for improvement which contribute to innovations. An organization must

not wait for inventions to happen for getting better products but perform

small improvements in the processes every day to achieve big targets in

the long range. The theory of smart work in place of hard work helps

employees to identify any type of waste in the process of development and

eliminate it.

TABLE 2.1 Difference between invention and innovation:

Invention Innovation

 Inventions may be accidental

in nature. They are generally

unplanned.

 Invention may or may not be

acceptable to people doing the

work immediately. Inventions

are done by scientist and

implementation and

acceptance by people can be

cumbersome as general level

of acceptance is very low.

 Inventions may not be

directly applied to everyday

work. It may need heavy

customization to make it

suitable for normal usage.

 Breakthrough changes are

possible due to inventions.

 Invention may lead to major

changes in technology, way

of doing work, etc.

 Invention may lead to

scraping of old technologies,

old skills and sometimes, it

meets with heavy resistance.

 Innovation is a planned

activity leading to changes.

 Innovation is done by people

in a team, possibly cross-

functional teams, involved in

doing a work. There is higher

acceptability by people as they

are involved in it.

 Innovations can be applied to

every day work easily. The

existing methods and

processes are improved to

eliminate waste.

 Changes in small steps are

possible by innovation.

 Innovation generally leads to

administrative improvements,

whereas technological or

breakthrough improvements

are not possible.

 Innovation may lead to

rearrangement of things but

there may not be a

fundamental change. It

generally works on

elimination of waste

Table 2.1 Gives a difference between invention & innovation.

 43

Software Quality Many organisations have a separate 'Research and Development' function

responsible for doing inventions. These functions are dedicated to make

breakthrough changes by developing new technologies and techniques for

accomplishing work. They are supposed to derive major changes in the

approaches of development, implementation, testing, etc. 'Six sigma'

improvements also talk about breakthrough improvements where

processes may be redesigned/redefined. It may add new processes and

eliminate old processes, if they are found to be problematic. But, an

organisation should also create an environment which helps in innovation

or rearrangement of the tasks to make small improvements everyday.

Continuously identifying any type of waste in day-to-day activities and

removing all nonessential things can refine the processes.

2.5 REQUIREMENTS OF A PRODUCT

Everything done in software development, testing and maintenance is

driven by the requirements of a product to satisfy customer needs. There

are basic requirements for building software, which will help customers

conduct their businesses in a better way. Every product offered to a

customer is intended to satisfy some requirements or needs of the

customer. Requirements may be put in different categories. Some of these

are:

Stated/Implied Requirements:

Some requirements are specifically documented in software requirement

specifications while few others are implied ones. When we build software,

there are functional and non-functional requirements specified by a

customer and/or business/system analyst. It is also intended not to violate

some generally accepted requirements such as "No spelling mistakes in

user interfaces, *Captions on the control must be readable', etc. These

types of requirements may not be documented as a part of requirement

statement formally but generally considered as requirement, and are

expected in a product. As a part of development team/test team, one must

understand stated as well as intended or implied requirements from the

users. It may be a responsibility of a developing organisation to convert as

many implied requirements as possible into stated requirements. Though

impossible, the target may be 100%.

General/Specific Requirements:

Some requirements are generic in nature, which are generally accepted for

a type of product and for a group of users while some others are very

specific for the product under development. Addition of two numbers

should be correct is a generic requirement while the accuracy of 8 digits

after decimal and rounding may be a very specific requirement for the

application underdevelopment. Usability is a generic requirement in

software for the intended user while authentication and messaging to users

may be driven by specific requirements of an application. Many times, the

generic requirements are considered as implied ones and those may not be

mentioned in requirement specifications while specific requirements are

stated ones as those are present in requirement specifications.

 44

Software Quality

Assurance

Present/Future Requirements:

Present requirements are essential when an application is used in present

circumstances while future requirements are for future needs which may

be required after sometime span. For projects, present as well as future

requirements may be specifically defined by a customer or

business/system analyst. A product development organisation may have to

do further research to identity or extrapolate future needs of users. For

banking software, today's requirements may be 5000 saving accounts, and

the application may be running in client-server environment. But a future

need may be 50 lakhs saving accounts and the application may be running

as a web application. *How much future must be guided by the customer's

vision as this may influence product cost. Definition of future has direct

relationship with usable life of an application. Some people may use a

software for 3 years while some other may be planning to use it for 30

years. The future requirements may change as per the expected life span of

the software. On the basis of priority of implementation from user's

perspective, requirements may be categorised indifferent ways as follows:

'Must' and 'Must not' Requirements or Primary Requirements:

‘Must’ requirements are primary requirements for which the customer is

going to pay for while acquiring a product. These are essential

requirements and the value of the product is defined on the basis of the

accomplishment of ‘must’ requirements. Generally these requirements

have the highest priority in implementation. Not meeting these

requirements can cause customer dissatisfaction and rejection of a product.

These requirements may be denoted by priority ‘PI’ indicating the highest

priority. It also covers "Must not' requirements which must be absent in

the product.

'Should be' and 'Should not be' Requirements or Secondary

Requirements:

‘Should be’ requirements are the requirements which may be appreciated

by the customer it they are present/absent and may add some value to the

product. Customer may pay little bit extra for the satisfaction of these

requirements but price of the product is not governed by them. Generally,

these requirements are lower priority requirements than 'Must'

requirements. These requirements may give the customer delight, if

present and little disappointment, if absent. These requirements may be

denoted by priority ‘P2’. It also covers ‘Should not’ requirements.

'Could be' and 'Could not be' Requirements or Tertiary

Requirements:

‘Could be' requirements are requirements which may add a competitive

advantage to the product but may not add much value in terms of price

paid by a customer. If two products have everything same, then could be

requirements may help in better appreciation of a product by the users.

These are the lowest priority requirements. It also covers ‘Could not’

requirements. These requirements give a product identity in the market.

These requirements may be denoted by priority ‘P3’. While talking about

 45

Software Quality a product in view of a bigger market with large number of generic users, it

may be very difficult to categorise the requirements as mentioned above.

This is because "must' requirement for one customer may be *could be'

requirement for somebody else. In such cases, an organisation may have to

target the customer segment and define the priorities of the requirements

accordingly. Customer must have the final authority to define the category

of requirement.

2.6 ORGANISATION CULTURE

An organisation has a culture based on its philosophy for existence,

management perception and employee involvement in defining future.

Quality improvement programs are based on the ability of the organisation

to bring about a change in culture. Philip Crosby has prescribed quality

improvement for cultural change. Quality culture of an organisation is an

understanding of the organisations virtue about its people, customer,

suppliers and all stakeholders, *Q' organisations are more quality

conscious organisations, while *q' organisations are less quality conscious

organisations. The difference between 'Q' organisations and 'q'

organisation is enumerated as follows.

Table 2.2Difference between 'Q' organisation and 'q' organization:

Quality culture is 'Q' Quality culture is not 'q'

 These organisations believe in

listening to customers and

determining their

requirements.

 These organisations

concentrate on identifying cost

of quality and focusing on it to

reduce cost of failure which

would reduce overall cost and

price.

 Doing things right for the first

time and every time is the

motto of success.

 They concentrate on

continuous/continual process

improvement to eliminate

waste and get better output.

 These organisations believe in

taking ownership of processes

and defects at all levels.

 They demonstrate leadership

and commitment to quality and

customer satisfaction.

 These organisations assume

that they know customer and

requirements.

 These organisations overlook

cost of poor quality and

hidden factory effect. They

believe in more testing to

improve product quality.

 Doing things again and again

to make them right is their

way of working. Inspection,

rework, scrap, etc. are

essential.

 They work on the basis of

finding and fixing the

problem as and when it is

found. Onetime fix for each

problem after it occurs.

 These organisations try to

assign responsibility of

defects to someone else.

 They believe in assigning

responsibility for quality to

others.

 46

Software Quality

Assurance

2.6.1 Shift In Focus From 'q'to'Q':

As the organisation grows from ‘q’ to ‘Q’, there is a cultural change in

attitude of the management and employees towards quality and customer.

In initial stages, at the level of higher side of *q', a product is subjected to

heavy inspection, rework, sorting, scrapping, etc., to ensure that no defects

are present in final deliverable to the customer while the final stages of Q'

organisation concentrate on defect prevention through process

improvements. It targets for first-time right. Figure 2.1 shows an

improvement process where focus of quality changes gradually.

Quality Control Approach (Finding and Fixing Defects):

Quality control approach is the oldest approach in engineering when a

product was subjected to rigorous inspection for finding and fixing defects

to improve it. Organisations at the higher end of *q' believe in finding and

fixing defects to the extent possible as the way to improve quality of

product before delivering it to customer and achieving customer

satisfaction. Basically, works on correction attitude involving defect

fixing, scrap, rework, segregation, etc. It works on the philosophy that a

product is good unless a defect is found in it. There are huge testing teams,

large investment in appraisal cost and defect fixing costs followed by

retesting and regression testing.

Quality Assurance Approach (Creation of Process Framework):

Quality assurance is the next stage of improvement from quality control

where the focus shifts from testing and fixing the defects to first-time

right. An Organisation does investment in defining processes, policies,

methods for handling various functions so that it can incorporate a process

approach for doing various things, It becomes a learning organisation as it

shifts its approach from 'quality control' to 'quality assurance'. The

management approach shifts from corrections to corrective actions

through root cause analysis. There are some actions on the basis of metrics

program instituted by the organisation. It also starts working on preventive

actions to some extent to avoid potential defects, Defects are considered as

failures of processes and not of people, and actions are initiated to

optimise the processes.

 47

Software Quality Quality Management Approach:

There are three kinds of system in the universe, viz. completely closed

systems, completely open systems and systems with semi permeable

boundaries, completely closed systems represent that nothing can enter

inside the system and nothing can go out of the system. On the other hand,

open system represents a direct influence of universe on system and vice-

a-versa. Completely closed systems or completely open systems do not

exist in reality. Systems with semi permeable boundaries are the realities,

which allow the system to get impacted from external changes and also

have some effect on external environment. Anything coming from outside

may have an impact on the organisation but the level of impact may be

controlled by taking some actions. Similarly, anything going out can also

affect the universe but impact is controlled. Organisations try to assess the

impact of the changes on the system and try to adapt to the changes in the

environment to get the benefits. They are highly matured when they

implement Quality Management as a management approach. There are

virtually no defects in processes as they are optimised continuously, and

products are delivered to customers without any deficiency. The

organisation starts working on defect prevention mechanism and

continuous improvement plans. The organisation defines methods,

processes and techniques for future technologies and training programs for

process improvements. Management includes planning, organising,

staffing, directing, coordinating, and controlling to get the desired output.

It also involves mentoring, coaching, and guiding people to do better work

to achieve organisational objectives.

2.7 CHARACTERISTICS OF SOFTWARE

There are many products available in the market which are intended to

satisfy same or similar demands. There is a vast difference between

software products and other products due to their nature. Software cannot

be sensed by common methods of inspection or testing, as it is virtual in

nature. The product is in the form of executable which cannot be checked

by any natural method available to mankind like touch, smell, hearing,

taste, etc. It cannot be measured by some measuring instruments

commonly available like weighing balance, scales, etc. It needs testing in

real environment but nobody can do exhaustive testing by trying all

permutations and combinations. There are different kinds of software

products and their performance, capabilities, etc. vary considerably from

each other. There are no same products though there may be several

similar ones or satisfying similar needs. Every product is different in

characteristics, performance, etc. Software is always unique in nature.

Every condition defined by the software program gets executed in the

same way every time when it gets executed. But the number of conditions,

and algorithm combinations may be very large tending to infinity and

testing of all permutations/combinations is practically impossible.

 48

Software Quality

Assurance

2.8 SOFTWARE DEVELOPMENT PROCESS

Software development process defines how the software is being built.

Some people also refer to SDIC as system development life cycle with a

view that system is made of several components and software is one of

these components. There are various approaches to build software. Every

approach has some positive and some negative points. Let us talk about

few basic approaches of developing software from requirements. It is also

possible that different people may call the same or similar approach by

different

 Waterfall development approach/model

 Iterative development approach/model

 Incremental development approach model

 Spiral development approach/model

 Prototyping development approach/model

 Rapid application development approach/model

 Agile development approach/model.

2.8.1 Waterfall Development Approach/Model:

Waterfall model is the simplest software development model and is used

extensively in development process study. There are many offshoots of

waterfall model such as modified waterfall model, iterative waterfall

model, etc. Though it is highly desirable to use waterfall model, it may not

be always feasible to work with it. Still, waterfall model remains as a

primary focus for study purpose. It is also termed as classical view of

software development as it remains the basis or foundation of any

development activity. Most of the other models of development are based

upon the basic waterfall model as it represents a logical way of doing

things. Typical waterfall model is shown in Fig. 2.2.

 49

Software Quality Arrows in the waterfall model are unidirectional. It assumes that the

developers shall get all requirements from a customer in a single go. The

requirements are converted into high level as well as low level designs.

Designs are implemented through coding. Code is integrated and

executables are created. Executables are tested as per test plan. The final

output in the form of an executable is deployed at customer premises.

Future activities are handled through maintenance. If followed in reality,

waterfall model is the shortest route model which can give highest

efficiency, and productivity. Waterfall models are used extensively in

fixed price/fixed schedule projects where estimation is based on initial

requirements. As the requirement changes, estimation is also revised.

Limitations of Waterfall Cycle:

There is no feedback loopavailable in waterfall model. It is assumed that

requirements are stableand no problem is encountered during entire

development life cycle.Also, no rework is involved in waterfall model.

2.8.2 Iterative Development approach/Model:

Iterative development process is more practical than the water fall model.

It does not assume that the customer gives all requirements in one go and

there is complete stability of requirements. It assumes that changes may

come from any phase of development to any previous phase and there are

multiple permutations and combinations of changes. Changes may have a

cascading effect where one change may initiate a chain reaction of

changes. Figure 2.3 shows a feedback loop which is the fundamental

difference between waterfall model and iterative development model.

Limitations of Iterative Development:

Iterative development consists of many cycles of waterfall model. It gives

problems in fixed price projects for estimation. An-other problem faced by

 50

Software Quality

Assurance

iterative development is that the product architecture and design becomes

fragile due to many iterative changes.

2.8.3 Incremental Development approach/Model:

Incremental development models are used in developing huge systems.

These systems are made of several subsystems which in themselves are

individual systems. Thus, incremental systems may be considered as a

collection of several subsystems. An individual subsystem May be

developed by following waterfall methodology and iterative development.

These subsystems may be connected to each other externally, either

directly or indirectly. A directly interconnected system allows the

subsystems to talk with each other while indirectly interconnected system

has some interconnecting application between two subsystems. Direct

connectivity makes a system more robust but flexibility can be a major

issue. The incremental model gives flexibility to a customer. One system

may be created and the customer may start using it. The customer can

learn the lessons and use them while second part of the system is

developed. Once those are integrated, third part may be developed and so

on. The customer does not have to give all requirements at the start of

development phase.

The model in Fig. 2.4 shows a common communication system and

incremental subsystems where different subsystems communicate through

a common communication system.

Limitations of Incremental Development:

Incremental models with multivendor product integration are a major

challenge as parameter passing between different systems may be difficult.

Incremental models help in integration of big systems at the cost of loss of

flexibility. When a system is incremented with newsub systems, it changes

the architecture of that system. Increment in the system is followed by

heavy regression testing to find that when multiple systems come together,

can they work individually as well as collectively.

 51

Software Quality 2.8.4 Spiral Development Approach/Model:

Spiral development process assumes that customer requirements are

obtained in multiple iterations, and development also works in iterations.

Many big software systems are built by spiral models of ever-increasing

size. First some functionalities are added, then product is created and

released to customer. After getting the benefits of first iteration of

implementation, the customer may add another chunk of requirements to

the existing one. Further addition of requirements increase the size of the

software spirally. Sometimes, an individual part developed in stages

represents a complete system, and it may communicate with the next

developed system through some interlaces. In many ERP, initial

development concentrated around material management part which later

increased spirally to other parts such as purchasing, manufacturing, sales,

warehousing, cash control, etc. Many banking software’s also followed a

similar route. Figure 2.5 shows a spiral development model.

 Limitations of Spiral Development Spiral models represent

requirement elicitation as the software is being developed.

Sometimes, it may lead to refactoring and changes in approach where

initial structures become n on-usable. Spiral development also needs

huge regression testing cycles to find whether additions in the given

system have affected overall system working or not.

2.8.5 Prototype Development Approach/Model:

Prototype development approach represents top to bottom reverse

integration approach. Major problem of software development is

procuring and understanding the customer requirements for the product.

Prototyping is one of the solutions to help in this problem. In prototyping,

initially a prototype of the system is created- this is similar to cardboard

model of a building. It helps the customer to understand what they can

expect from the given set of requirements. It also helps the development

team to understand the possible application's look and feel. Once the

 52

Software Quality

Assurance

elicitation is done, the logic is built behind it to implement the elicited

requirements.

Limitations of Prototype Development:

Though, one may get a feel of the system by looking at the prototype, one

must understand that it is not the actual system but a model. The customer

may get the feeling that the system is already ready and may pressurise

development team to deliver it immediately. (Applications not having

much graphical user interfaces are difficult to model.)

2.8.6 Rapid Application Development Approach/Model:

Rapid application development is not a rapid way of developing software

as one may interpret from the name. It is one way to create usable

software at a fast speed, and still give an opportunity to the user to

understand the development and application being created. It is a

miniature form of spiral development. Development team may get very

less number of requirements (let us say 5/6). They create a design, code it,

test it and release it to customer. Once customer gets the delivery, he may

have a better understanding of his expectations and development process

by looking at the product delivered. He may add another chunk of

requirements and entire development cycle is followed. Thus, each

iteration will give better understanding about a product being developed

and may help in refining the requirements.

Limitations of Rapid Application Development:

Change in approach and refactoring are the major constraints in rapid

application development. It also involves huge cycles of retesting and

regression testing. Efforts of integration are huge.

2.8.7 Agile Development Approach/Model:

Agile development methodologies are becoming popular due to their

dynamic nature and easy adaptability to the situation. One of the surveys

indicated that in case of waterfall model, many functionalities are added in

requirement statement with a fear that changes in scope would not be

appreciated by the development team. Some surveys show that many of

the functionalities (about ¾th) developed using waterfall or iterative

model are never used by the users. Agile gives complete freedom to the

user to add requirements at any stage of development, and development

team has to accept these changes. Agile methodologies work on small

chunk of work in each iteration and release working software at the end of

iteration. The main thrust of Agile methodologies is complete adaptability

to user environment and continuous integration of a product. It also gives

importance to delivering working software rather than achieving

requirements defined in requirement specifications. Agile represents a

family of development methodologies and there are many methodologies

under its umbrella. Some of them are as listed below.

 Scrum

 53

Software Quality  Extreme Programming

 Feature Driven Development

 Test Driven Development

Agile works on the following principles,

 Individuals and interactions are more important than formal sign-offs

for requirements, designs, etc. It concentrates more on "Fitness for

use' and what the customer needs are.

 Working software is the outcome of each milestone rather than

concentrating on deliverables as defined in the project plans. Success

of software product is that it is working at each stage.

 Customer collaboration is required to get usable software rather than

signing various documents tor approvals. Requirement clarifications,

requirement elicitation, and prototyping need customer involvement.

 Responding to changes required by the customer at any moment.

There may be many changes suggested by the customer as he has

better knowledge about what his business needs are.

2.8.8 Maintenance Development Approach/Model:

Major cost of the software is in its maintenance phase. Every product

including software has many defects which may create problems to its

users in the long term. Every technology has a life span. New technologies

may offer better services and options, and may replace existing

technologies, every now and then, technological updations are required for

the software as well as system to perform better and in the most cost

effective way. New functionalities may be required due to changing

business needs. Maintenance activities of software may be put under 4

different groups namely,

 Bug fixing where the defects present in the given software are fixed.

This may involve retesting and regression testing. During bug fixing,

analysis of bug is an important consideration. There is always a

possibility that while fixing a bug, new bugs may have been added in

the product.

 Enhancement where new functionalities are added in the existing

software. These functionalities maybe required due to changes in the

way business is done. Some functionalities may be introduced due to

changes in user requirements.

 Porting where software is taken from older technologies to newer

technologies. In porting, one is expected to port the functionalities and

not the code. Whatever functionalities are available in the old

technologies; all those are expected to be present in the new

technology.

 54

Software Quality

Assurance

 Reengineering where there is some change in the logic or algorithm

used due to changes in business environment.

2.9 LIFE AFFECTING PRODUCTS

Similar to software development methodologies, software products have

some peculiarities defined as criticalities of software. Criticality of the

software defines; how much important it is to a user/customer. There are

various schemes of grouping the products on the basis of criticality to the

users. Few of them are listed below,

2.9.1 Life Affecting Products:

Products which directly/indirectly affect human life are considered as the

most critical products in the world from user’s perspective. Such products

generally come under the purview of regulatory and safety requirements,

in addition to normal customer requirements. The quality requirements are

more stringent, and testing is very critical for such products as failures

may result into loss of life or disablement of a user. This type of product

may be further grouped into 5 different categories.

 Any product failure resulting into death of a person. These will be the

most critical products as they can affect human life directly.

 Any product failure which may cause permanent disablement to a

patient. These are second-level criticality products.

 Any product failure which may cause temporary disablement to a

patient

 Any product failure which may cause minor injury and does not result

into anything as defined above

 Other products which do not affect health or safety directly

Such software needs huge testing to try each and every conceivable fault

in the product. It talks about very high level of confidence that application

will not fail under normal and abnormal situations.

2.9.2 Product Affecting Huge Sum of Money:

A product which has direct relationship with loss of huge sum of money is

second in the list of criticality of the product. Such products may need

large testing efforts and have many regulatory as well as statutory

requirements, Commerce and Business software may be put in this

category. Security, confidentiality, and accuracy are some of the important

quality factors for such products.

These products also need very high confidence level and huge testing will

represent the criticality. They need testing lesser than the products which

directly/indirectly affect human life.

 55

Software Quality 2.9.3 Products Which Can Be Tested Only By Simulators:

Products which cannot be tested in real-life scenario but need simulated

environment for testing are third in the ranking of criticality. In this case,

real life scenario is either impossible to create or may not be economically

viable. Products used in aeronautics, space research, etc. may be put in this

category.

Such products also need huge testing, although lesser than the earlier two

types.

2.9.4 Other Products:

All other products which cannot be categorised in any of the above

schemes may be put in this category.

Unfortunately, "criticality' is not very easy to define. Let us consider an

example of auto piloting software where we have three combinations of

criticality together. It does affect the life of passengers traveling, cost of an

aeroplane is huge and it cannot be tested in real environment. Thus, all the

three criticalities coming together make a product most critical.

2.10 SOME OTHER SCHEMES OF CRITICALITY

DEFINITIONS

There may be several other ways of classifying criticality of a product. It

has direct relationship with business dependability and the extent of loss to

the user organisation person in case of failure.

2.10.1 From User's Perspective:

This classification mainly discusses dependency of a business on a system.

The criticality may range from complete dependency to no/minimal

dependency on the system.

 Product's failure which disrupts the entire business can be very critical

from business point of view. There is no fall back arrangement

available or possible in case of failure of a product which is

completely dependent on the system.

 Product's failure which affects business partially as there may be

some fall back arrangements is a type of criticality. Business may be

affected temporarily, affecting profitability or service level but can be

restored with some efforts.

 Product's failure which does not affect business at all is one of the

options. If it fails, one may have another method to achieve the same

result. Rearrangement may not have significant distortion of business

process.

 56

Software Quality

Assurance

2.10.2 Another Way of Defining User's Perspective:

This classification considers the environment in which the product is

operating. It may range from very complex user environment to very easy

user environment.

 Products where user environment is very complex such as

aeronautics, space research, etc., may be considered as very critical.

Any failure of product can result into major problems as the

environment where these products are working is not an easy

environment. As the environment is very complex, system is already

under stress, and failure of a product may add to the situation.

 Products where user environment is comparatively less complex (such

as banks) may represent the second stage of complexity. Huge

calculations may be affected, if the system collapses but there maybe

workaround available. People may find it inconvenient, but still the

operations can be performed with some tolerable level of problems.

For example, banks were running for so many years without

computers and if centralised system fails, they may be able to

withstand the pressure to some extent.

 Products where user environment is very simple, and product failure

may not add to the consequences represents the lowest level of

complexity. If there is any failure, it can be restored quite fast or some

other arrangements can be used, and work can be continued.

2.10.3 Criticality from Developer's Perspective:

This classification defines the complexity of the system on the basis of

development capabilities required. It may range from very complex

systems to very simple systems.

 Form based software where user inputs are taken and stored in some

database. As and when required, those inputs are manipulated and

shown to a user on screen or in form of a report. There is not much

manipulation of data and no heavy calculations/algorithms are

involved.

 Algorithm based software, where huge calculations are involved and

decisions are taken or prompted by the system on the basis of

outcome of these calculations. Due to usage of different mathematical

models, the system becomes complex and designing, developing and

testing all combinations become problematic.

 Artificial intelligent systems which learn things and use them as per

circumstances are very complex systems. An important consideration

is that the 'learnings' acquired by the system must be stored and used

when required. This makes the system very complicated.

There may be a possibility of combination of criticalities to various

extends for different products at a time. A software used in aviation can

 57

Software Quality affect human life, and also huge money at a time. It may not be feasible to

test it in real-life scenario. It may involve some extent of artificial

intelligence where system is expected to learn and use those "learnings'.

Thus, the combination increases severity of failure further.

2.11 PROBLEMATIC AREAS OF SOFTWARE

DEVELOPMENT LIFECYCLE

Let us discuss some problematic areas of software development life cycle.

2.11.1 Problems with Requirement Phase:

Requirement gathering and elicitation is the most important phase in

software development life cycle, Many surveys indicate that the

requirement phase introduces maximum defects in the product. Problems

associated with requirement gathering are,

Requirements Are Not Easily Communicated Communication is a

major problem in requirement statement creation, software development

and implementation. Communication of requirements from customer to

development team is marked by problems of listening to customer,

understanding business domain, and usage of language including domain

specific terms and terminologies. The types of requirements are,

Technical Requirements:

Technical requirements talk about platform, language, database, operating

system, etc. required for the application to work, Many times, the

customer may not understand the benefits of selectinga specific

technology over the other options and problems of using these technically

specified configurations.

Selection of technology may be done as directed by the development team

or as a fashion. Development organisation is mainly responsible for

definition of technical requirements for software product under

development on the basis of product usage. (Technical requirements also

cover this type of system, whether a standalone or client server or web

application etc, tiers present in the system, processing options such as

online, batch processing, etc). It also talks about configuration of

machines, routers, printers, operating systems, databases, etc.

Economical Requirements:

Economies of software system is dependent on its technical and system

requirements. The technical as well as system requirements may be

governed by the money that the customer is ready to put in software

development, implementation and use. It is governed by cost-benefit

analysis.

These requirements are defined by development team along with the

customer. The customer must understand the benefits and problems

associated with different approaches, and select the approach on the basis

 58

Software Quality

Assurance

of some decision-analysis process. The consequences of any specific

selection may be a responsibility of the customer but development

organisations must share their knowledge and experience to help and

support the customer in making such a selection.

Legal Requirements:

There are many statutory and regulatory requirements for software product

usage. For any software application, there may be some rules and

regulations by government, regulatory bodies, etc. applicable to the

business. There may be some rules which keep on changing as per

decisions made by government, regulatory authorities, and statutory

authorities from time to time. There may be numerous business rules

which are defined by customers or users for doing business. Development

team must understand the rules and regulations applicable for a particular

product and business.

Operational Requirements:

Mostly operational requirements are defined by customers or users on the

basis of business needs. These may be functional as well as non-functional

requirements. They tell the development team, what the intended software

must do/must not do when used by the normal user. Operational

requirements are derived from the business requirements. This may

include non-functional requirements like security, performance, user

interface, etc.

System Requirements:

System requirements including physical/logical security requirements are

defined by a customer with the help of a development team. These include

requirements for hardware, machine configurations, types of backups,

restoration, physical access control, etc. These requirements are defined by

customer's management and it affects economies of the system. There may

be some specific security requirements such as strong password,

encryption, and privilege definitions, which are also declared by the

customer.

Requirements Change Very Frequently:

Requirements are very dynamic in nature. There are many complaints by

development teams that requirement change is very frequent. Many times,

development teams get confused because customer requirements change

continuously. ‘Customer does not know what he wants' is a very

common complaint made by development teams. As the product is being

built and shown to customer, lot of new ideas are suggested. Some ideas

may have significant effect on cost, schedule, and effort while some other

may change the architecture, basic approach, and design of software. The

time gap between requirement definition and actual product delivery also

plays a major role in changing requirements. Top-down approach, rapid

application development, and joint application development are some of

 59

Software Quality the techniques used to develop applications by accommodating changes

suggested by customers.

2.11.2 Generally A Unique Product Is Developed Each time:

No two things in the world are same, though they might appear to be

similar. In case of software no two applications are same. Even in case of

simple porting (desktop to client-server to web application), software

application changes significantly. The same implementation done by two

different developers may differ from each other. Even the same program

written by the same developer at two different instances may not match

exactly. Thus a software produced may be unique for that instance. One

more fact about software product maintenance is that designers find it

difficult to understand original design or approach and developers find it

difficult to read the code written earlier.

2.11.3 Intangible Nature of Product, Intellectual Approach:

Throughout Development:

Software products cannot be felt by normal senses. Its existence can be

felt only by disc space it occupies. There are multiple options or

approaches (for example, in architecture or design) possible for

implementation of the same set of requirements. Some may feel that one

approach is better than the other for different reasons. The capabilities of

individuals and organisations vary significantly in design and

development, and each may have a good justification why a certain

approach is selected with respect to other.

2.11.4 Inspection Can Be Exhaustive/Impossible:

While defining exhaustive inspection, one may tend to include infinite

permutations and combinations of testing. Testing of complete software

product is practically impossible. It may need huge money and longtime to

test all possibilities, and still one may not be sure that everything is

covered in testing. Testing uses a sampling theory to find the defects in the

product and processes used. Testing tries to find out the lacunae in

development methodology and processes used.

2.11.5 Effect of Bad Quality Is Not Known Immediately:

Any level of exhaustive testing is not capable of testing each and every

algorithm, branch, condition and combination thoroughly. There are some

areas which remain untested even after the application is used

overextended periods. Any problem in such areas may be discovered only

when the particular situation arises. The effect of this kind of problem and

situation during usage may not be known beforehand while deploying the

software in use.

2.11.6 Quality is Inbuilt in Product:

Quality of a software product cannot be improved by testing it again and

again and finding and fixing the defects. It needs to be built in the product

 60

Software Quality

Assurance

while development using good processes and methods. Any amount of

testing cannot certify that a product is defect-free. Good processes and

procedures can make good software. No software can be considered as

defect-free even if no defect is found in the test iteration defined for it. We

can only say that no defect has been discovered till that point of time using

those many test cases.

2.11.7 Quality Objectives Vary From Product To Production:

Customer to Customer:

Quality objectives define the expectations of customer/user and the

acceptance level of various parameters which must be present in a given

product for accepting/using it. Quality objectives are product dependent,

time dependent and are mainly driven by customers or final users. There

may be a possibility of trade-off between these factors. Some people

define them as test objectives as they define the priority of testing. Ina

small computer game for kids, cost may be more important than accuracy.

On the contrary, applications developed for aeronautics need to be more

accurate while cost factor may not be that important. Quality objectives

are defined on the basis of factors of quality which are 'must', 'should be',

and 'could be' for the application. Degree of importance changes from

product to product, customer to customer, and situation tosituation. Some

of the quality factors are listed below.

Compliance:

Every system is designed in accordance with organisational and user

policies, procedures and standards. If software meets these standards, it is

said to be complying with the specifications. In addition to customer

defined standards, there may be few standards for different domains like

aviation, medical, and automotive. Software must follow these standards

when it is used by particular type of people or for a particular domain.

Some regulations and laws may be imposed by the regulatory and

statutory bodies.

Generally, these requirements are categorised as legal requirements. These

requirements may be put in non-functional requirements.

Correctness:

Data entered, processed and results obtained must be accurate as per

requirements of customers and/or users. Definition of correctness may

change from customer to customer, application to application, and time to

time. Generally, accuracy refers to mathematical accuracy, but it is not a

rule. For a shopkeeper, accuracy of 0.01 may be sufficient as nothing

below 1 paisa is calculated while a scientist may need an accuracy of 256

digits after decimal point as rounding off errors can cause a major problem

in research work.

Ease of Use:

Efforts required to learn, operate, prepare input for and interpret output

from the system define ease of use for an application. The normal users

 61

Software Quality who are expected to use the software must be comfortable while using it.

Ease of use reduces training cost for the new users dramatically. If a

software application can be learned without any external help, such

software is considered as the best from this perspective. If there is a

requirement of training or hand holding before the software can be used,

people may find it inconvenient. Ease of use is a very important factor

when large number of users are expected (for example, emailing, software

and mobile phones), and providing them training is a difficult task.

Maintainability:

Efforts required to locate and fix errors in an operational system must be

as less as possible to improve its ability for maintenance. There may be

some possibilities of enhancements and re-engineering where good

maintainable software has least cost associated with such activities.

Software may need maintenance activity some time or the other to

improve its current level of working. Ability of software to facilitate

maintenance is termed as maintainability. Good documentation, well

commented code, and requirement traceability matrix improve

maintainability of a product.

Portability:

Efforts required in transferring software from one hardware configuration

and/or software system environment to another environment defines

portability of a system. It may be essential to install same software in

different environments and configurations as per business needs. If the

efforts required are less, then the system may be considered as highly

portable. On the other hand, if the system cannot be put in a different

environment, it may limit the market.

Coupling:

Coupling talks about the efforts required in interconnecting components

within an application and interconnection of system as a whole with all

other applications in a production environment. Software may have to

communicate with operating system, database, and other applications

when a common user is working with it. Good coupling ensures better use

of environment and good communication, while bad coupling creates

limitation on software usage.

Performance:

Amount of resources required to perform stated functions define the

performance of a system. For better and faster performance requirements,

more and more system resources and/or optimised design may be required.

Better performance improves customer satisfaction through better

experience for users. Performance attribute may cover performance, stress

and volume. Details about these will be discussed in the latter chapters of

this book.

 62

Software Quality

Assurance

Ease of Operations:

Effort required in integrating the system into operating environment may

define case of operations. Ease of operations also talks about the help

available to a user for doing any operation on the system (for example,

online help, user manuals, operations manual). 'Ease of' operations' is

different from "Ease of use' where the former considers user experience

while using the system, while the latter consider show fast the system

working knowledge can be acquired.

Reliability:

Reliability means that the system will perform its intended functions

correctly over an extended time. Consistent results are produced again and

again, and data losses are as less as possible in a reliable system.

Reliability testing may be a base of "Build Verification Testing (VT)'

where test manager tries to analyse whether system generates consistent

results again and again.

Authorisation:

The data is processed in accordance with the intents of the user

management. The authorisation may be required for highly secured

processes which deal with huge sum of money or which have classified

information. Applications dealing with classified information may need

authorisation as the sensitivity of information is very important.

File Integrity:

Integrity means that data will remain unaltered in the system and whatever

goes inside the system will be reproduced back in the same way.

Accepting data in correct format, storing it in the same way, processing it

in a way so that data does not get altered and reproducing it again and

again are covered under file integrity. Data communication within and

from one system to another may also be considered under the scope of file

integrity.

Audit Trail Audit trail talks about the capability of software to substantiate

the processing that has occurred. Retention of evidential information about

the activities done by users for further reference may be maintained.

Continuity of Processing:

Availability of necessary procedures, methods and backup information to

recover operations, system, data, etc. when integrity of the system is lost

due to problems in the system or the environment define continuity of

processing. Timeliness of recovery operations must be defined by the

customer and implemented by developing organisations.

Service Levels:

Service levels mean that the desired results must be available within the

time frame acceptable to the user, accuracy of the information must be

 63

Software Quality reliable, and processing completeness must be achieved. For some

applications in Business, service level definition may be a legal

requirement. Service level may have direct relationship with performance.

Access Control:

The application system resources will be protected against accidental or

intentional modification, destruction, misuse or disclosure by authorised as

well as unauthorised people. Access control generally talks about logical

access control as well as physical access control for information, asses.

etc.

2.12 SOFTWARE QUALITY MANAGEMENT

Quality management approaches talk about managing quality of a product

or service using systematic ways and methods of development and

maintenance. It is much above achieving quality factors as defined in

software requirement specifications. Quality management involves

management of all inputs and processing to the processes defined so that

the output from the process is as per defined quality criteria. It talks about

three levels of handling problems, namely,

Correction:

Correction talks about the condition where defects found in the product or

service are immediately sorted and fixed. This is a natural phenomenon

which occurs when a tester defines any problem found during testing.

Many organisations stop at fixing the defect though it may be defined as

corrective action by them. Responsibility of finding and fixing defects

may be given to a line function. This is mainly a quality control approach.

Corrective Actions:

Every defect needs an analysis to find the root causes for introduction of a

defect in the system. Situation where the root cause analysis of the defects

is done and actions are initiated to remove the root causes so that the same

defect does not recur in future is termed as corrective action, Corrective

action identification and implementation is a responsibility of operations

management group. Generally, project leads are given the responsibilities

of initiating corrective actions. This is a quality assurance approach where

process-related problems are found and resolved to avoid recurrence of

similar problems again and again.

Preventive Actions:

On the basis of root causes of the problems, other potential weak areas are

identified. Preventive action means that there are potential weak areas

where defect has not been found till that point, but there exists a

probability of finding the defect. In this situation, similar scenarios are

checked and actions are initiated so that other potential defects can be

eliminated before they occur. Generally, identification and initiation of

preventive actions are a responsibility of senior management. Project

 64

Software Quality

Assurance

managers are responsible for initiating preventive actions for the projects.

This is a quality management approach where an organisation takes

preventive action so that there is no defect in the first place.

Quality management is a set of planned and systematic activities which

ensures that the software processes and products conform to requirements,

standards and processes defined by management, customer, and regulatory

authorities. The output of the process must match the expectations of the

users.

2.13 WHY SOFTWARE HAS DEFECTS?

One very important question about a product is, *Why there are defects in

the product at all?'. There is no single answer to this question. After taking

so much precaution of defining and implementing the processes, doing

verification and validation of each artifact during SDLC, yet nobody can

claim that the product is free of any defects. In case of software

development and usage, there are many factors responsible for its

success/failure. Few of them are,

 There are huge communication losses between different entities as

requirements get converted into the actual product. Understanding of

requirements is a major issue and majority of the defects can be

attributed to this.

 Development people are more confident about their technical

capabilities and do not consider that they can make mistakes.

Sometimes self-review and/or peer review does not yield any defects.

 Requirement changes are very dynamic. As the traceability matrix is

not available, impact analysis of changing requirements becomes

heuristic.

 Technologies are responsible for introducing few defects. There are

many defects introduced due to browsers, platforms, databases, etc.

People do not read and understand release notes, and consequences of

failure are attributed to technologies.

 Customer may not be aware of all requirements, and the ideas develop

as the product is used. Proto typing is used for clarifying requirements

to overcome this problem to some extent.

2.14 PROCESSES RELATED TO SOFTWARE QUALITY

Quality environment in an organisation is established by the management.

Quality management is a temple built by pillars of quality. Culture of an

organisation lays the foundation for quality temple. Every organisation has

different number of tiers of quality management system definition, Figure

2.6 shows a relationship between vision, mission(s), policy(ies), goal(s),

objective(s) strategy(ies) & values of organisation.

 65

Software Quality

2.14.1 Vision:

The vision of an organisation is established by the policy management.

Vision defines in brief about what the organisation wishes to achieve in

the given time horizon. 'To become a billion-dollar company within3

years' can be a vision for some organisations. Every organisation must

have a vision statement, clearly defining the ultimate aim it wishes to

achieve with respect to time span.

2.14.2 Mission:

In an organisation, there are several initiatives defined as missions which

will eventually help the organisation realise its vision. Success of all these

missions is essential for achieving the organisation's vision. The missions

are expected to support each other to achieve the overall vision put by

management. Missions may have different lifespans and completion dates.

2.14.3 Policy:

Policy statement talks about a way of doing business as defined by senior

management. This statement helps employees, suppliers and customers to

understand the thinking and intent of management. There may be several

policies in an organisation which define a way of achieving missions.

Examples of policies may be security policy, quality policy, and human

resource development policy.

2.14.4 Objectives:

Objectives define quantitatively what is meant by a successful mission. It

defines an expectation from each mission and can be used to measure the

success/failure of it. The objectives must be expressed in numerals along

 66

Software Quality

Assurance

with the time period defined for achieving them. Every mission must have

minimum one objective.

2.14.5 Strategy:

Strategy defines the way of achieving a particular mission. It talks about

the actions required to realize the mission and way of doing things. Policy

is converted into actions through strategy. Strategy must have a time frame

and objectives along with goals associated with it. There may be an action

owner to lead the strategy.

2.14.6 Goals:

Goals define the milestones to be achieved to make the mission successful.

For a mission to be declared as successful/ failure at the end of the defined

time frame in terms of whether the objectives are achieved or not, one

needs a milestone review to understand whether the progress is in proper

direction or not. Goals provide these milestone definitions.

2.14.7 Values:

Values can be defined as the principles, or way of doing a business as

perceived by the management. "Treating customer with courtesy' can be a

value for an organisation. The manner in which the organisation and

management think and behave, is governed by the values it believes in.

2.15 QUALITY MANAGEMENT SYSTEM STRUCTURE

Every organisation has a different quality management structure

depending upon its need and circumstances. Generic view of quality

management is defined below. Figure 2.7 shows a structure of quality

management system in general.

 67

Software Quality 2.15.1 1
st
Tier-Quality Policy:

Quality policy sets the wish, intent and direction by the management about

how activities will be conducted by the organisation. Since management is

the strongest driving force in an organisation, its intents are most

important. It is a basic framework on which the quality temple rests.

2.15.2 2nd Tier-Quality Objectives:

Quality objectives are the measurements established by the management

to define progress and achievements in a numerical way. An improvement

in quality must be demonstrated by improvement in achievements of

quality factors (test factors) in numerical terms as expected by the

management. The achievements of these objectives must be compared

with planned levels expected and results and deviations must be acted

upon.

2.15.3 3rd Tier-Quality Manual:

Quality manual, also termed as policy manual is established and published

by the management of the organisation. It sets a framework for other

process definitions, and is a foundation of quality planning at

organisational level.

2.16 PILLARS OF QUALITY MANAGEMENT SYSTEM

Top part of the quality temple is built upon the foundation of following

pillars.

2.16.1 Quality Processes/Quality Procedures/Work Instructions:

Quality processes, quality procedures, work instructions, methods, etc, are

defined at an organisation eye by the functional area experts, and at

project and function level by the experts in those areas separately.

Organisation level processes act as an umbrella, whereas project and

function level processes are in the purview of these top-level process

definitions. Organisation level set of processes may differ from the

process definition for different projects and functions. It is also defined as

quality planning at project level. Quality procedures must be in sync with

the tone established by quality manual at an organisation level.

2.16.2 Guidelines and Standards:

Guidelines and standards are used by an organisation's project team for

achieving quality goals for the products and services delivered to

customers. Many a times, guidelines defined by customers are termed as

standards for the project, as the project team takes the recommendations

by customers as mandatory. Difference between a guideline and a standard

is defined as, shown in Table 2.3.

 68

Software Quality

Assurance

Table 2.3 Difference Between Guidelines and Standards

Guidelines Standards

 Guidelines are suggested ways

of doing things. They are made

by experts in individual fields.

 Guidelines may be overruled

and there is no issue if

somebody does not follow it.

 Guidelines may or may not be

written. Generally, it is

recommended that one must

write the guidelines to capture

the tacit knowledge

 Standards are mandatory ways

of doing things. These are also

described by experts in

respective fields.

 Overruling of standards is a

punishable offence. It may lead

to nonconformance during

reviews and audits.

 Standards must be written to

avoid any misunderstanding or

loss of communication

Guidelines and standards may need revisions from time to time. Revision

must be done to maintain suitability over a time period.

2.16.3 Formats and Templates:

Common formats and templates are used for tracking a project, function,

and department information within an organisation. It creates same

understanding across the board where outputs can be compared for the

projects and functions. This also acts as a checklist to maintain

consistency across the projects in the organisation. Formats and templates,

if made compulsory, are considered as standards whereas if they are

indicative or suggestive, they are considered as guidelines. Generally,

templates are mandatory while formats are suggestive in nature.

2.17 IMPORTANT ASPECTS OF QUALITY

MANAGEMENT

Quality improvement is not an accident but a planned activity. An

organisation must plan for improvement under the leadership of

management and with employee participation.

2.17.1 Quality Planning at Organisation Level:

An organisation creates quality plan at the organisation level for achieving

quality objectives, goals, its vision and missions. Quality planning

includes establishing missions, policies and strategies at organization level

along with objectives and goals to achieve the vision, It must set a

framework for definition and implementation of good processes, practices,

recruiting people, infrastructures, hardware and software, There should be

an appraisal of quality achieved as against expected results at planned

intervals, and actions must be initiated in case of any deviation.

2.17.2 Quality Planning at Project Level:

Projects should plan for quality at project level. These are generally

strategic-level quality plans with details of responsibilities and actions,

 69

Software Quality Project plan must define all aspects of quality plan at project level, and

may have a relation with the organisation's quality planning. The quality

objectives of the project may be inherited from organisation level

objectives or may be defined separately for the project. Project level

objectives must be in syne with organisation level objectives.

2.17.3 Resource Management:

An organisation should use good inputs as required by quality planning so

that the output of the processes match with the organisation's business

plans. It includes people, machines, materials, and methods as the basic

resources. Good processes and good technology need good people to

perform the work and achieve planned results.

2.17.4 Work Environment:

Working environment is an important input for a good product and to

achieve the organisation vision and missions, A good environment can

help an organisation to build on its strength while a bad environment is a

roadblock to achieving objectives, and can create problems in its mission

of customer satisfaction. Many organisations employ special techniques of

'Working Climate Analysis' to understand its environment, and take

actions for correcting it.

Work environment has two components, viz. external environment and

internal environment. External environment is mainly a physical

environment while internal environment is built in the heart and brain of

individuals. Good team spirit and loyalty can be major factors contributing

to organisational success.

2.17.5 Customer-Related Processes:

Customer-related processes must be analysed for their capability in

servicing customers and achieving customer satisfaction. Requirement

analysis, designing, project processes, product delivery and other

processes related to the customer must be analysed for their capabilities,

and corrective/preventive actions must be initiated if those are found to be

inadequate. Only capable processes can yield results in a consistent way.

2.17.6 Quality Management System Document and Data Control:

Many organisations define quality management system on the basis of

some quality standards/models. There may be some specific customer

requirements for different standards and models which may help an

organization in defining its own quality management system and

following customer directives, Statistical process control and data

management are essential for continuous improvement of processes.

2.17.7 Verification and Validation:

Verification and validation are performed by an organisation at each level

of development and for each activity. Verification includes management

reviews and technical reviews (such as code review and project planre

 70

Software Quality

Assurance

view) whereas validation involves different kinds of testing (such as unit

testing and system testing, ensure that the work product meets the

predefined acceptance criteria.

Verification:

Verification defines the processes used to build the product correctly.

Verification is successful, if the processes and procedures are followed

correctly as defined by the process framework and also, they are capable

of giving results. Verification cannot directly ensure that the right product

has been built but checks if it has been built in the right way.

Validation:

Validation ensures that the right product has been built. It involves testing

a software product against requirement specifications, design

specifications, and customer needs. The method followed for development

may or may not be correct or capable, but the final output should be as per

customer requirements.

2.17.8 Software Project Management:

Project management is a specific skill required in leaders of projects (for

example, project manager). Project management involves planning,

organising, staffing, directing, coordinating and controlling the project to

satisfy customers by delivering the right product, on time, in the budgeted

cost. Nowadays project managers have to perform different tasks like

mentoring, guiding, and supporting rather than supervising people.

2.17.9 Software Configuration Management:

The work products are built and tested again and again. The defects found

during verification and validation are corrected, and the work product

undergoes further updations, integration and testing. Software

configuration management involves creating work products, maintaining

them, reviewing them by related stakeholders and updating them as and

when required. Base lined work products are released for further

development process.

2.17.10 Software Metrics and Measurement:

New methods of project management approach stress a need for

measuring the product attributes and process capabilities to achieve the

quality of final deliverables to customer. Metrics and measurement

programs are established by an organisation to capture metrics

data/process measurement to ensure that processes are followed correctly

and are capable of giving desired outputs. The lacunae found in the

processes as well as products can be taken as an input to initiate corrective

actions.

 71

Software Quality 2.17.11 Software Quality Audits:

Audits defined in dictionaries as an examination of accounts. Quality

audits of software products and processes must be performed to analyse

the quality of the products as well as processes used to make them. These

can help in analysis of the situation and taking corrective/preventive

actions at proper levels. Software quality audits are performed by qualified

auditors at predefined levels. Audits can be categorised, as per the

following:

The Auditing Agency Involved:

 Internal audits are conducted by the people internal to the

organisation. It is also called as first-party audits.

 Customer audits are conducted by the customer or customer

representatives. It also called as second-party audits.

 Certification audits are conducted by third-party certification bodies.

The Phase When the Audit is Conducted:

 Kick-off audits are conducted at the start of the activity, say at a

project start.

 Phase-end audits at the end of a phase.

 Pre-delivery audits are conducted before giving any deliverable to a

customer.

 Postmortem audits are conducted at the end of the activity, say a

project closure.

Subject of the Audit:

 Product audits are conducted to ensure that planned arrangements for

quality are achieved or not.

 Process audits are conducted to ensure that processes defined are

followed or not.

2.17.12 Subcontract Management:

Suppliers are the stakeholders for the organisation and projects. An

organisation must build a strong bond of relationship with its suppliers. It

must analyse the inputs from suppliers to make sure that the organization

gets proper inputs so that outputs can be managed as planned. There must

be a methodology supported by values which stresses on developing a

long-term relationship with the suppliers and avoids least purchase cost

bids to total cost-benefit analysis. Suppliers may be supported to do

statistical process control to reduce cost and delay in supply or service

problems.

 72

Software Quality

Assurance

2.17.13 Information Security Management:

Information is one of the biggest assets of the organisation. An

organisation must protect the information assets available in various

databases and all information that has been developed, captured, and used.

It must be able to use that information for its continuous/continual

improvement. Tacit knowledge is very important from security of

information. Information security is associated with three buzz words viz.

confidentiality, integrity and availability.

2.17.14 Management Review:

Management must periodically review the status of different projects and

functions to understand progress which in turn will help in achieving the

organisation's vision. Management must plan for corrective and preventive

actions if required as indicated by metrics. It must decide upon future

business plans for improvements. Management reviews must be

systematic and planned. Inputs, processes and outputs of management

reviews must be defined.

Aim at Customer Satisfaction:

Everything done by an organisation is for achieving customer satisfaction.

Management must devise a process of collecting customer feedback and

periodically measure and monitor customer satisfaction It must initiate

actions where the customer feedback is negative.

Have Measurable Objectives:

Measurable objectives are essential to track the progress made by the

organisation. Qualitative objective may or may not be sufficient to ensure

its achievement as the organisation achieves maturity, and the organisation

should try to put quantitative objectives, at least for critical processes.

Organisations must have a definition of goals along with objectives for

continuous measurements.

Understand Requirements Accurately:

Understanding and defining customer requirements is the most

challenging work for business analyst, system analyst and management. It

needs to ensure that a developer must understand the requirements

correctly and interpret the requirements into correct product. Requirement

losses in terms of misinterpretation must be reduced. Implied requirements

must be converted into defined requirements.

Implement P-D-C-A Cycle in Each Phase:

Plan-Do-Check-Act cycle of continual (continuous) improvement must be

followed to ensure improvement in product and process quality. An

organisation must plan for future, do the things as planned, check the

actual results with the planned ones and take actions on deviations.

 73

Software Quality Detect and Remove Defects as Early as Possible, Prevention is Better

Than Cure:

Software development, longer the defect remains in a system, more costly

and more difficult it is to remove it. It would be always advantageous to

detect the defect through review and testing process as early as possible.

All defects must lead to process improvements so that defect recurrence is

avoided.

Systematic Change Control and Version Control:

Any change in work product must go through the stages of draft, review,

approve and baseline. Version control and labelling is used effectively

during development process to identify work products. Many tools are

available for managing change, though it can also be done manually.

Configuration management is very important to give the right product to

the customer.

Follow Easy to Use Standards/Conventions for Naming, Commenting,

Coding and Documentation:

An organisation must define standards and guidelines which are very

useful for normal developers and testers. Common standards and

guidelines show the best way to do things. It spreads common

understanding across the tears and reduces the chances of

misinterpretation. People do not have to invent the wheel again and again

but can use the experience of others by referring to these guidelines and

standards. They must be very simple to understand and use.

Start with Compiling and Analysing Simple Metrics:

An organization must define simple metrics at the start which are useful

for planning improvements and tracking them. The main purpose of

metrics is to define improvement actions needed and measuring how much

has been achieved.

2.18 SUMMARY

This chapter is based upon the foundation of the earlier chapter where we

have seen quality perspectives. In this chapter, we have studied different

constraints faced while building and testing a software product. It tries to

link the relationship between quality improvement and productivity

improvement. We have seen the cultural difference between quality

conscious organisations ‘Q’ and less quality conscious organisations ‘q’.

This chapter elucidates various development models such as waterfall,

iterative, incremental, and prototyping. New development methodologies

like agile have also been introduced. We have also seen the criticality

definition of different systems from the perspective of different

stakeholders and how a tester must understand these system criticalities

before devising testing.

 74

Software Quality

Assurance

We have learnt different types of requirements and problems faced while

defining these requirements. We have listed all the quality factors (test

factors)applicable for a system and how it affects testing.

Finally, we had dealt with quality management system as a generic model

and seen that prevention is required rather than finding and fixing the

defects.

2.19 EXERCISES

1) What are the constraints of software requirement specifications?

2) Explain relationship between quality and productivity

3) Explain the concept of ‘q’ organisations and ‘Q’ organisations.

4) Explain different development models.

5) How products are classified depending upon their criticality?

6) What are different types of requirements?

7) What problems are posed by the requirement stage?

8) What are the characteristics of good requirements?

9) Explain difference between expressed and implied requirements.

10) Explain difference between present and future requirements.

11) Explain difference between generic and specific requirements.

12) List and explain quality objectives (test objectives) applicable to

software development and usage.

13) Explain generic quality management system structure for an

organisation.

2.20 REFERENCES

 Software Testing and Continuous Quality Improvement by William E.

Lewis, CRC Press, 3rd Edition, 2016.

 Software Testing: Principles, Techniques and Tools by M. G. Limaye,

Tata McGraw Hill, 2017.

 Foundations of Software Testing by Dorothy Graham, Erik van

Veenendaal, Isabel Evans, Rex Black, Cengage Learning, 3rd Edition.

 Software Testing: A Craftsman‟s Approach, Paul C. Jorgenson, CRC

Press, 4th Edition, 2017.

 75

Software Quality  https://www.geeksforgeeks.org/software-engineering-software-

quality-assurance

 https://www.simplilearn.com/software-quality-assurance-article

 https://www.javatpoint.com/software-quality-assurance

https://www.geeksforgeeks.org/software-engineering-software-quality-assurance
https://www.geeksforgeeks.org/software-engineering-software-quality-assurance
https://www.simplilearn.com/software-quality-assurance-article
https://www.javatpoint.com/software-quality-assurance

 76

UNIT - II

3
FUNDAMENTALS OF SOFTWARE

TESTING

Unit Structure

3.0 Objectives

3.1 Introduction

3.2 Necessity of testing

3.3 What is testing?

3.4 Fundamental Test process

3.5 Psychology of testing

3.6 Historical Perspective of Testing

 3.6.1 Debugging –Oriented Testing

 3.6.2 Demonstration-Oriented Testing

 3.6.3 Destruction-Oriented Testing

 3.6.4 Evaluation-Oriented Testing

 3.6.5 Prevention-Oriented Testing

3.7 Definition of Testing

 3.7.1 Why Testing is Necessary?

3.8 Approaches to Testing

 3.8.1 Big Bang Approach to Testing

 3.8.2 Total Quality Management Approach

 3.8.3 Total Quality Management as Big Bang Approach

 3.8.4 TQM in Cost Perspective

 3.8.5 Characteristics of Big Bang Approach

3.9 Popular Definitions of Testing

 3.9.1 Traditional Definition of Testing

 3.9.2 What is testing?

 3.9.3 Manager‟s View of Software Testing

 3.9.4 Tester‟s View of Software Testing

 3.9.5 Customer‟s View of Software Testing

 3.9.6 Objectives of Testing

 3.9.7 Basic Principles of Software Testing

 3.9.8 Successful Testers

 3.9.9 Successful Test case

3.10 Testing During Development Life Cycle

3.11 Requirement Traceability Matrix

 3.11.1 Advantages of Requirement Traceability Matrix

 77

Fundamentals of Software

Testing

 3.11.2 Problems with Requirement Traceability Matrix

 3.11.3 Horizontal Traceability

 3.11.4 Bi-directional Traceability

 3.11.5 Vertical Traceability

 3.11.6 Risk Traceability

3.12 Essentials of Software Testing

3.13 Workbench

 3.13.1 Tester‟s Workbench

3.14 Important Features of Testing Process

3.15 Misconceptions about Testing

3.16 Principles of Software Testing

3.17 Salient Features of Good Testing

3.18 Test Policy

3.19 Test Strategy or Test Approach

3.20 Test Planning

3.21 Testing Process and Number of Defects Found in Testing

3.22 Test Team Efficiency

3.23 Mutation Testing

3.23.1 Reasons for deviation of test team efficiency from 100% for

Test team as well as Mutation Analysis

3.24 Summary

3.25 Exercise

3.26 References

3.0 OBJECTIVES

After studying this chapter the learner would be able to:

 Understand the basic terminologies used in testing.

 Understand different approaches to testing.

 Understand different Principles of Software testing.

 Differentiate between “TQM” and “Big Bang” Approaches.

 Differentiate between different types of testing.

 Recognise features of good testing.

3.1 INTRODUCTION

Software testing is the process of examining the correctness of the

software product by considering all its attributes like reliability,

scalability, portability, re-usability and usability. It also evaluates the

execution of software components to find the bugs or defects. Software

 78

Software Quality

Assurance

development activities during a life cycle have corresponding verification

and validation activities at each stage of development.

Software verification involves comparing a work product with processes,

standards, and guidelines in simple words, to check that “are we building

the software correctly?”

Software validation activities are associated with checking the outcome

of developed product and the processes used with respect to standards and

expectations of a customer, in other words, to check “are we building the

correct system?” It is considered as a subset of software quality assurance

activities though there is a huge difference between quality assurance and

quality control. Cost of software verification as well as validation comes

under appraisal cost, when one is doing it for the first time. When repeat

verification/validation (such as retesting or regression testing) is done, it is

defined as cost of failure.

There are many stages of software testing as per software development life

cycle. It begins with feasibility testing at the start of the project, followed

by contract testing and requirements testing, then goes through design

testing and coding testing till final acceptance testing, which is performed

by customer/user.

The main aim of the most testing methods is to systematically and actively

locate the defects/errors in the program and repair them. Debugging is

usually the next stage of testing. Debugging begins with some indication

of the existence of an error.

3.2 NECESSITY OF TESTING

Software testing involves verification as well as validation activities such

as checking the compliance of the artifacts and activities with respect to

defined processes and standards, and executing the software program to

ensure that it performs correctly as desired by the customer and expressed

in requirement specification agreed between development team and

customer, Testing involves finding the difference between actual

behaviours with respect to the expected behaviours of an application.

Testing helps people (developers, testers, managers, the users) to

understand what the software does and how well it does. To ensure the

quality of the software before it goes live, Testing is a necessity.

3.3 WHAT IS TESTING?

Testing is a term used to evaluate or examine or to check the software

product that it is meeting the expected behaviour or not. In software

development, Testing is used at key checkpoints in overall process to

determine whether objectives are met or not. For example, in software

development, product objectives are sometimes tested by product user

representatives. When the design is complete, coding follows and the

finished code is then tested at the unit or module level by each

programmer; at the component level by the group of programmers

 79

Fundamentals of Software

Testing

involved; and at the system level when all components are combined

together. At early or late stages, a product or service may also be tested

for usability.

3.4 FUNDAMENTAL TEST PROCESS

Testing must be a planned process rather than a onetime activity. It

requires discipline to act upon it. The quality and effectiveness of testing

are primarily determined by the quality of test processes used. The

activities of testing can be divided into the following basic steps:

(i) Planning & Control

(ii) Analysis & Design

(iii) Implementation & Execution

(iv) Evaluating exit Criteria and Reporting

(v) Test Closure Activities

Let us discuss each of these steps in detail:

(i) Planning & Control:

Test Planning is the fundamental test process that involves defining the

objective and goal of the testing process. It is a continuous process and

performed in all life cycles. It helps to determine the scope and risks and

the objectives of the testing. It helps to decide the overall approach of

testing. It also helps in assigning different resources to different activities.

It involves scheduling test analysis and design tasks, test implementation,

execution and evaluation.

Control is the activity of comparing actual progress against the plan and

reporting the status, including the deviations from the plan. It involves

taking actions necessary to meet the mission and objectives of the project.

(ii) Analysis & Design:

It is the fundamental test process in which test cases and test conditions

are defined. In this process, major tasks that are performed are reviewing

the test basis i.e. information on which the test cases are based, such as

requirements, design specifications, product risk analysis, architecture etc.,

identifying the test conditions based on the analysis of test items, writing

test cases and identifying the necessary test data to support the test

conditions and test cases, designing the test environment.

(iii) Implementation & Execution:

Test implementation and execution is a fundamental test process in which

actual work is done. It involves actual running the specified test on a

computer system either manually or by using an automated test tool. Test

implementation involves major tasks like developing and prioritizing the

test cases, creating test suites from test cases that help in efficient test

 80

Software Quality

Assurance

execution, re-executing the test cases that failed earlier to confirm the fix

and also it also involves keeping the log of outcome of test execution. A

test log is the status of the test case i.e. Pass or fail.

(iv) Evaluating exit Criteria and Reporting:

Evaluating exit criteria is a process that defines when to stop testing. It

depends on various parameters like risk, functionality or coverage of code.

It can also depend on the business risk, cost and time. It actually varies

from project to project. Exit criteria starts when the maximum test cases

are executed with certain pass percentage, bug rate falls below certain

level and when the deadlines are met. Evaluating exit criteria must assess

if more test are needed or if the exit criteria specified should be changed.

It also involves writing a test summary report for stakeholders.

(v) Test Closure Activities:

It is the last process in the fundamental test process. In this the data is

collected from completed test processes and test wares. It ensures that

final deliverable has been delivered or not and also ensures that all

incident reports have been resolved. It involves the finalisation and

archiving the test wares such as scripts, test environments etc. for later

reuse. Test closure activity also includes handing over the test ware to the

maintenance organisation so that they give support to the software. It also

includes the evaluation of how the testing went and learn lessons for the

future releases and projects.

3.5 PSYCHOLOGY OF TESTING

In software testing, psychology plays an extremely important role. It is

one of the factors that stays behind the scene but has a great impact on the

end result. It can be categorised majorly into three sections:

(i) Mind-set of Developers and Testers:

SDLC is a combination of various activities which are performed by

different individuals using their expertise and knowledge. It is an

unknown fact that for successful development of software individuals

having different skill and mind set are required. For e.g. as we all know

testing and analysing the software is much more different than the

developing or programming so is the need for the right individuals with

right expertise and right mind set to develop the software with unique

features and superior quality. Moreover, the change in the development

and the testing techniques and methodologies has made this as a necessary

requirement.

(ii) Communication in a constructive manner:

In any process whether technical or non-technical requires constant

communication between team members to successfully achieve the goals.

Communicating in a polite and courteous manner can help build strong

relationship and avoid misunderstandings. This goes well with the tester,

 81

Fundamentals of Software

Testing

finding errors and reporting them can be an achievement for him but is

merely an inconvenience for programmers, designers, developers and

other stake holders of the project. So, it is important for the testers to

impart defects and failures as objectively and politely so as to avoid

upsetting and hurting other members related to the project.

(iii) Test Independence:

The importance of independent software testing is comparatively higher

than self-testing or group testing as it is more effective in finding and

detecting bugs and defects. This type of testing is done by individuals who

are not related to the project directly or are from different organisation and

are hired mainly for testing the quality as well as the effectiveness of the

developed product.

3.6 HISTORICAL PERSPECTIVE OF TESTING

The concept of independent testing did not prevail during the initial days

of software development. It was believed that whatever the developers

were doing was the best way of producing the product and the customer

was expected to use it as it is. If there were any problems reported by

customer/users, they would be fixed by the developers, and the application

would be given again to customer/users. The primary responsibility of

testing was with customers/users (and not with developers) during the

production phase.

Glenford Myer introduced software testing as a separate phase in software

development life cycle. According to him, software testers were expected

to test software with all the possible combinations. The main intention was

to create a software which would never fail in production. Testers were

expected to have an attitude to break the software so that it would be

eventually corrected and would never fail during use. This approach

separated debugging from testing, and an independent testing community

was created. Different phases of software testing evolution as a separate

discipline in software development activities were followed in a cycle.

3.6.1 Debugging-Oriented Testing:

During the initial phase, software testing was considered as a part of

software development. Developers were expected to perform debugging

on the application, which they were building. Tests were not documented,

and were mainly done in a heuristic way. Generally, testing was

completely „positive testing‟ to see whether the implementation was

working correctly or not.

3.6.2 Demonstration-Oriented Testing:

In this phase, there was an introduction of software testers independent of

development activity. Their main aim was to show to customer/users that

the software really works. Although, this phase was much advanced than

the initial phase of debugging, yet the approach was still positive testing

only. The approach was oriented towards demonstration that the software

 82

Software Quality

Assurance

could do something which was expected by the customer/users. Test cases

were generally derived from the requirement statements which were

oriented towards successful demonstration.

3.6.3 Destruction-Oriented Testing

This approach was the basis of Glenford Myer's theory of software resting.

As per this approach, it was not sufficient to only test the software

positively but users must also be protected from any conceivable failure of

application. The tester‟s responsibility changed from „proving that

software works under normal conditions‟ to „proving that software does

not fail at some abnormal instances‟. Often, the testers were too

imaginative in breaking the software, and defects for which there were no

feasibility of happening were reported as defects. This phase was quiet

frustrating to software developers -testers were considered as demons and

testing was considered as a hurdle to be passed before delivering the

application to the customer.

3.6.4 Evaluation-Oriented Testing:

Evaluation-oriented testing is executed nowadays at many places of

software development where the product as well as process of software

development is evaluated. It corresponds to the testing process definition

where software is evaluated against some fixed parameters derived from

quality factors (test factors). Quality factors/test factors are introduced in

this phase as a part of customer requirements. It is believed that there is no

possibility of software without any defect, but some level of defect may be

acceptable to the customer. This approach also refers to level of

confidence given to customer that application will work as expected by the

user. The confidence level is determined and application is evaluated

against it. Confidence-level expectations are linked with cost of testing.

3.6.5 Prevention-Oriented Testing:

Prevention-based testing is done in some highly matured organisations

while for many others, the concept still utopia. Testing is considered as a

prevention activity where process problems are used to improve it so that

defect-free products can be produced. Every defect found in testing is

considered as process lacunae, and efforts are initiated to improve the

processes of development. This reduces dependency on testing as a way to

improve the quality of software. This helps in reducing the cost by

producing right product at the first time.

3.7 DEFINITION OF TESTING

Testing is defined as 'execution of a work product with intent to find a

defect'. The primary role of software testing is not to demonstrate the

correctness of software product, but to expose hidden defects so that they

can be fixed. Testing is done to protect the common users from any failure

of system during usage.

 83

Fundamentals of Software

Testing

This approach is based on the assumption that any amount of testing

cannot show that software product is defect free. If there is no defect

found during testing, it can only show that the scenario and test cases used

for testing did not discover any defect. From user's point of view, it is not

sufficient to demonstrate that software is doing what it is supposed to do.

This is already done by system architects in system architecture design

and testing, and by developers in code reviews and unit testing. Testers are

involved mainly to ensure that the system is not doing what it is not

supposed to do. Their work includes assurance that the system will not be

exposed to any major risks of failure when a normal user is using it. Some

people call this approach as negative approach of testing. This negative

approach is built upon few assumptions and risks for the software being

developed and tested. These assumptions and risks must be documented in

the test plan while deciding test strategy or test approach.

3.7.1 Why Testing Is Necessary?:

One may challenge testing activities by asking this question- „If any level

of testing cannot declare that there is no defect in the product, then why it

is required at all?‟ In normal life, we find highly qualified and experienced

people involved in each stage of development from requirement gathering

till acceptance of software. Finding a defect in software is sometimes

considered as challenging the capabilities of these people involved in

development phases. Testing is necessary due to the following reasons.

 Understanding of customer requirements may differ from person to

person. One must challenge the understanding at each stage of

development, and there must be some analysis of customer

expectations. Approach-related problems may not be found when

there is no detail analysis by another person not involved emotionally

with development. Everything is considered as „OK‟ unless there is an

independent view of a system.

 Development people assume that whatever they have developed is as

per customer requirements and will always work. But it is imperative

to create real-life scenario and undertake actual execution of a product

at each level of software building (including system level) to assess

whether it really works or not.

 Different entities are involved in different phases of software

development.

Their work may not be matching exactly with each other or with the

requirement statements. Gaps between requirements, design and coding

may not be traceable unless testing is performed in relation to

requirements.

 Developers may have excellent skills of coding but integration issues

can be present when different units do not work together even though

they work independently. One must bring individual units together

and make the final product, as some defects may be possible when the

sources are developed by people sitting at different places.

 84

Software Quality

Assurance

 There is a possibility of blindfold and somebody has to work as the

devil's representative. Every person feels that what he/she has done is

perfect and there is no chance of improvement. Testers have to

challenge each assumption and decision taken during development.

3.8 APPROACHES TO TESTING

There are many approaches to software testing defined by the experts in

software quality and testing, the approaches may differ significantly as per

customer requirements, type of the system being developed as well as

management thinking about software development life cycle followed by

software, type of project, type of customer, and maturity of development

team. These approaches form the part of testing strategy. Few of them are

discussed below.

3.8.1 Big Bang Approach of Testing:

Characteristics of „Big bang‟ approach involve testing software system

after development work is completed. This is also termed „system testing‟

or final testing done before releasing software to the customer for

acceptance testing. This testing is the last part of software development as

per waterfall methodology. Big bang approach has main thrust on black

box testing of software to ensure that the requirements as defined and

documented in requirement specifications and design specifications are

met successfully. Testing done at the end of development cycle may show

the defects pertaining to any phase of development such as requirements,

design, and coding. Roughly saying, the phase-wise defect origination

follows the trend shown in Table 3.1.

Table 3.1 Phase-wise defect distribution

Development Phases Percentage of defects

Requirements 58

Design 35

Coding 5

Other 2

In case of big bang approach, software is tested before delivery using the

executable or final product. It may not be able to detect all defects as all

permutations and combinations cannot be tested in system testing due to

various constraints like time. In such type of testing, one may find a

cascading effect or camouflage effect, and all defects may not be detected.

It may discover the failures but cannot find the problems effectively.

Sometimes, defects found may not be fixed correctly as analysis and

defect fixing can be a problem.

3.8.2 Total Quality Management Approach:

If there is a process definition for testing software, and these processes are

optimised and capable, no (less) defects are produced and no (few)

undetected defects are left in the software when it is delivered to the

 85

Fundamentals of Software

Testing

customer. Defect removal costs are approximately 10 times more after

coding than before coding. This is a cost associated with fixing the

problems belonging to requirements, design, coding, etc. If the defect is

not detected earlier but found in acceptance testing or further down the

line during warranty, it may be much more costly. Defect removal cost

would be 100 times more during production (at user site) than before

coding. This may involve deploying people at customer site, loss of

goodwill, etc. which is a part of failure cost.

3.8.3 Total Quality Management (Tqm) As Against Big Bang

Approach:

Figure3.1 is a very famous cost triangle defined by TQM. If the

organisation has very good processes defined which are optimised and

capable, and can produce consistent results again and again, then it gives

advantage in productivity and effectiveness in development. It can reduce

cost of production significantly.

Fig.3.1 TQM Cost Triangle

Stage 0:

There may be a stage of maturity in an organisation where no

verification/validation is required to certify the product quality. The cost

involved is

„Zero‟ or the benefits derived by investment in process definition,

optimisation and deployment make quality free. There is a famous saying

„quality is free‟.

Theoretically, if the processes are optimised, there is no need of

verification/validation as the defects are not produced at all.

Stage 1:

Even if some defects are produced during any stage of development in

such quality environment, then an organisation may have very good

verification processes which may detect the defects at the earliest possible

stage and prevent defect percolation. There will be a small cost of

verification and fixing, but stage contamination can be saved which helps

in finding and fixing the defects very fast. This is an appraisal cost

 86

Software Quality

Assurance

represented by „10‟. This is the cast which reduces the profitability of the

organisation due to scrap, rework and reverification.

Stage 2:

If some defects escape the verification process, still there are capable

validation processes for filtering the defects before the product goes to a

customer.

Cost of validation and subsequent defect fixing is much higher than

verification. This cost is represented by „100‟. One may have to go to the

stage where defect was introduced in the product and correct all the stages

from that point onward till the defect-detection point. The cost is much

higher, but till that point of time the defect has not reached the customer, it

may not affect customers‟ feelings or goodwill.

Stage 3 At the bottom of the pyramid, there is the highest cost associated

with the defects found by customer during production or acceptance

testing. This is represented by „1000‟ showing that cost paid for paid for

fixing such defect is huge. There may be customer complaints, selling

under concession, sending people onsite for fixing defects in front of the

customer, loss of goodwill, etc. This may result into premature closure of

relationship and bad advertisement by the customer.

3.8.4 Tqm in Cost Perspective:

Total quality management (TQM) aims at reducing the cost of

development and cost of quality through continual improvement. Often, it

is termed „Quality is free‟. It means that the cost of quality must repay

much more than what has been invested. TQM defines the cost incurred in

development and quality into three parts as follows.

Green Money/Cost of Prevention:

Green money is considered as an investment by the organization in doing

quality work. It is a cost spent in definition of processes, training people,

developing foundation for quality, etc. It gives return on investment, and

includes all prevention-based costs. If an organisation has defined and

optimised processes, trained people, and fixed guidelines and standards for

doing work which are allowed, then the return on such investment can be

seen in terms of less inspection and testing, and higher satisfaction with

repeat orders. This improves profitability of an organisation.

Blue Money/Cost of Appraisal:

Blue money is a cost incurred by the organisation during development, in

the form of first-time review testing which gets returned in future. It does

not earn profit, but it is an essential part of development process to ensure

the process capability. All appraisal techniques used during SDLC such as

first-time verification or validation are considered as blue money. First-

time testing helps in certifying that nothing has gone wrong and work

product can go to the next stage. In initial phases, the cost of appraisal

increases, but as the organisational process maturity increases, this cost

 87

Fundamentals of Software

Testing

must go down as fewer samples are required to prove the correctness of

the process of making software.

Red Money/Cost of Failure:

Red money is a pure loss for the organisation. It involves money lost in

scrap, rework, sorting, etc. It also represents loss due to various wastes

produced during development life cycle, and directly reduces the profit for

the organisation and the customer may not pay for it. As the investment or

green money increases, failure cost must go down. All cost incurred in

reinspection, retesting, and regression testing represent cost of failure.

3.8.5 Characteristics of Big Bang Approach:

Big bang approach talks about testing as the last phase of development.

All the defects are found in the last past of rework can be huge.

 Testing is the last phase of development life cycle when everything id

finalised. Heavy costs and efforts of testing are seen at the end of

software development life cycle representing „Big bang‟ approach.

Most of the testing is concentrated in this phase only, as there are no

previous verification or validation activities spread during the

development phases.

 Big bang approach is characterized by huge rework, retesting, scrap,

sorting of software components, and programs after the complete

software is built. There may be special teams created to fix defects

found in final testing. Big bang works only on correction, and there

are no corrective and preventive actions and process improvements

arising from their defects. The processes remain immature and every

time, defect fixing becomes an invention of the wheel.

 Regression testing reveals many issues, as correction may not be

correct and may introduce some defects in the product. There are

many interdependencies between various entities while building

software product, and these may get affected adversely. When some

areas in the software units are touched for correction or fixing of

defect, dependent components may get affected in a negative way.

These may be termed „regression defects‟.

 All requirements and designs cannot be covered in testing. As the

schedule of delivery in fixed and development generally lags behind

the schedule, thus huge adhoc, exploratory, monkey, and random

testing are done in this part of testing. Testing is done in a hurry, and

many iterations of defect fixing and testing are done in the shortest

possible time. Some defects may flow to customer an „known defects‟

or sometimes they are not declared at all.

 The major part of software build never gets tested as coverage cannot

be guaranteed in random testing. Software is generally tested by

adhoc methods and intuition of testers. Generally, positive testing is

 88

Software Quality

Assurance

done to prove that software is correct which represents second level of

maturity.

Organisations following big bang approach are less matured and pay a

huge cost of failure because of several retesting and regression testing

along with defect-fixing cycles. Success is completely dependent on good

development, testing team and type of' customer. The following can be

observed.

 Verification activities during software development life cycle can find

out about two-third of the total number of defects found. The cost

involved in fixing such defects is much less than any other way of

finding the defects and fixing them. There is less stage contamination

as defects are prevented from progressing from one stage of

development to another.

 Validation in terms of unit testing can find out about three-fourth of

the remaining defects. Defects are found in the units and fixed at that

point itself so that they do not occur further down the line. It reduces

the chances of defects being found in system testing. Unit testing

validates an individual unit.

 Validation in terms of system testing can find out about 10% of the

total number of defects. System testing must be intended to validate

system-level requirements along with some aspect of design. Some

people term system testing as certification testing while some people

term acceptance testing as certification testing. If the exit criteria of

system testing (acceptance criteria by customer) are met, system may

be released to the customer.

Remaining defers (about 5-10%) go to the customer, unless the

organisation makes some deliberate efforts to prevent them from leaking

to production phase. Big bang approach may not be useful in preventing

defects from going to the customer, as it can find only 5% of the total

defects present in the product. In other terms, theoretically, to achieve the

effectiveness of life-cycle testing, one may need about 18cycles of system

testing. This can prove to be a costly affair.

3.9 POPULAR DEFINITIONS OF TESTING

Let us try to define „software testing‟ keeping the background of Big bang

approach in mind. All definitions of testing indicate that testing is a life-

cycle operation and not the activity at the end of development phase. No

definition of testing can really cover all aspects of testing. Hence, no

definition is complete but indicates a part of what software testing is.

3.9.1 Traditional Definition of Testing:

There can be many definitions of testing pertaining to different instances.

Few of them are as follows.

 89

Fundamentals of Software

Testing

 Testing is done to establish confidence that the program does what it

is supposed to do. It generally covers the functionalities and features

expected in the software under testing. It covers only positive testing.

 Testing is considered as any activity aimed at evaluating an attribute

or capability of a program or system with respect to user

requirements. To some extent, this definition may be considered as

correct, as number of defects found in testing is directly proportional

to number of defects remaining in the system.

 Testing is a process of demonstrating that errors are not present in the

product. This approach is used in acceptance testing where if the

application meets acceptance criteria, then it must be accepted by the

customer.

 Testing gives number of defects present which indirectly gives a

measurement of software quality. More number of defects indicate

bad software and bad processes of development.

 Testing is done to evaluate the program or system used for making

software. As we consider that defects are introduced due to incapable

processes, testing may be used to measure process capability to some

extent.

 Testing is used to confirm that a program performs its intended

functions correctly. Intended functionality may be defined from

requirement specifications.

If testing is defined as a process, then it is designed to,

 Prove that the program is error free or there is no defect present

 Establish that the software performs its functions correctly and is fit

for use

 Establish that all expectations of functionalities are available

Testing may not be any of these certification activities. If the goal of

testing is to prove that an application works correctly, then the tester

should subconsciously work towards this goal, choosing test data that

would prove that the system is working correctly. The reverse would be

true if the goal of testing is to locate defects so that eventually these would

be corrected. Test data should be selected with an eye towards providing

the test cases that are likely to cause product failure.

3.9.2 What Is Testing?:

Let us try to define what is meant by testing with this background. Testing

is completely guided by software requirements specifications and design

specifications, and supported by test strategy and test approach depending

on assumptions and risks of development, testing and usage. Testing

process may include the following.

 90

Software Quality

Assurance

 An activity of identification of the differences between expected

results and actual results produced, during execution of software

application. Difference between these two results, suggests that there

is a possibility of defect in the process and/or work product. One must

note that this may or may not be a defect.

 Process of executing a program with the intention of finding defects.

It is expected that these defects may be fixed by the development

team during correction, and the root causes of the defects are also

found and closed during corrective actions. This can improve

development process.

 Detecting specification-related errors and deviations of working

application with respect to the specifications. Requirement

mismatches and misinterpretation must be detected by testing.

 Establish confidence that a program does what it is supposed to do.

This defines the confidence level imparted by software testing to a

customer that the software will work under normal conditions. The

expectation of confidence level is a function of depth and width of

software testing.

 Any activity aimed at evaluating an attribute of a program or

software. Acceptance testing is an activity defining whether the

software has been accepted or not.

 Measurement of software quality in terms of coverage of testing (in

terms of requirements, functionality, features, and number of defects

found) can give information about confidence level imparted to a

customer.

 Process of evaluating processes used in software development. Every

failure/defect indicates a process failure. This can be used to improve

development processes.

 Verifying that the system satisfies its specified requirements as

defined, and is fit for normal use. Requirements may be elicited with

the help of the customer.

 Confirming that program performs its intended functions correctly.

 Testing is the process of operating a system or component under

specified conditions, observing and recording the results of such

processing, and evaluating some aspect of system or component on

the basis of testing.

 Software testing is the process of analysing a software item to detect

the difference between existing and required conditions, and to

evaluate the feature of the software item.

 91

Fundamentals of Software

Testing

We have previously discussed about different stakeholders and their

interests in software development and testing. Let us try to analyse the

expectations or views of different stakeholders about testing.

3.9.3 Manager's View of Software Testing:

The senior management from development organisation and customer

organisation have the following views about testing the software product

being developed.

 The product must be safe and reliable during use, and must work

under normal as well as ad verse conditions when it is actually used

by the intended users.

 The product must exactly meet the user's requirements. These may

include implied as well as defined requirements.

 The processes used for development and testing must be capable of

finding defects, and must impart the required confidence to the

customer.

3.9.4 Tester's View of Software Testing:

Testers have different definitions about software testing, as mentioned

below.

 The purpose of testing is to discover defects in the product and the

process related to development and testing. This may be used to

improve the product and processes used to make it.

 Testing is a process of trying to discover every conceivable fault or

weakness in a work product so that they will be corrected eventually.

Random testing sometimes becomes too imaginative, and

unconceivable defects may be found.

3.9.5 Customer’s View of Software Testing:

Customer is the person or entity who will be receiving using the product

and will be paying for it. Testers are considered as the representatives of

the customer in system development.

 Testing must be able to find all possible defects in the software, along

with related documentation so that these defects can be removed.

Customer must be given a product which does not have defects (or

has minimum defects).

 Testing must give a confidence that software users are protected from

any unreasonable failure of a product. Mean time between failures

must be very large so that failures will not occur, or will occur very

rarely.

 Testing must ensure that any legal or regulatory requirements are

compiled during development.

 92

Software Quality

Assurance

Testing is an activity which is expected to reduce the risk of software's

failure in production. All stakeholders have many expectations from

testing. Let us try to analyse the meaning of a successful tester.

3.9.6 Objectives of Testing:

To satisfy the definition of testing given earlier, testing must accomplish

the following things.

 Find a scenario where the product does not do what it is supposed to

do. This is deviation from requirement specifications.

 Find a scenario where the product does things it is not supposed to do.

This includes risk.

The first part refers to specifications which were not satisfied by the

product while the second part refers to unwanted side effects while using

the product.

3.9.7 Basic Principles of Testing:

The basic principles on which testing are based are given below.

 Define the expected output or result for each test case executed, to

understand if expected and actual output matches or not. Mismatches

may indicate possible defects. Defects may be in product or test cases

or test plan.

 Developers must not test their own programs. No defects would be

found in such kind of testing as approach-related defects will be

difficult to find. Development teams must not test their own products.

Blindfolds cannot be removed in self-testing.

 Inspect the results of each test completely and carefully. It would help

in root cause analysis and can be used to find weak processes. This

will help in building processes rightly and improving their capability.

 Include test cases for invalid or unexpected conditions which are

feasible during production. Testers need to protect the users from any

unreasonable failure so that one can ensure that the system works

properly.

 Test the program to see if it does what it is not supposed to do as well

as what it is supposed to do.

 Avoid disposable test cases unless the program itself is disposable.

Reusability of test case is important for regression. Test cases must be

used repetitively so that they remain applicable. Test data may be

changed in different iterations.

 Do not plan tests assuming that no errors will be found. There must be

targeted number of defects for testing. Testing process must be

capable of finding the targeted number of defects.

 93

Fundamentals of Software

Testing

 The probability of locating more errors in any one module is directly

proportional to the number of errors already found in that module.

3.9.8 Successful Testers:

The definition by testers about testing talks about finding defects as the

main intention of testing. Testers who find more and mare number of

defects are considered as successful. This gives some individuality to

testing process which talks about ability of a tester to find a defect. There

is a difference between executing a test case and finding the defect. This

needs an ability to look for detailing, problem areas, and selection of test

data accordingly.

 Testers must give confidence about the coverage of requirements and

functionalities as defined in test plan.

 Testers must ensure that user risks are identified before deploying the

software in production.

 Testers must conduct SWOT analysis of the software and processes

used to make it. This can help in strengthening the weaker areas and

the processes responsible for defects so that the same problems do not

recur.

3.9.9 Successful Test Case:

Testing is a big investment and justifies its existence, if it catches a defect

before going to the customer. Every defect caught before delivery means

the probability of finding a defect by a customer is reduced. If testing does

not catch any defect, it is a failure of testing and a waste for the

organisation as well as customer. Testing involved in software

development life cycle starts from requirements, goes through design,

coding, and testing till the application is formally accepted by

user/customer.

3.10 TESTING DURING DEVELOPMENT LIFE CYCLE

Let us discuss life cycle phase and testing associated with it. This

discussion is based on the consideration that development methodology

follows waterfall cycle/model.

Requirement Testing:

Requirement testing involves mock running of future application using the

requirement statements to ensure that requirements meet their acceptance

criteria. This type of testing is used to evaluate whether all requirements

are covered in requirement statement or not.

This type of testing is similar to building use cases from the requirement

statement. If the use case can be built without making any assumption

about the requirements, by referring to the requirements defined and

documented in requirement specification documents, they are considered

to be good. The gaps in the requirements may generate queries or

 94

Software Quality

Assurance

assumptions which may possibly lead to risks that the application way not

performs correctly. Gaps also indicate something as an implied

requirement where the customer may be contacted to get the insight into

business processes. It is a responsibility of business analyst to convert (as

many as possible), implied requirements to expressed requirements. Target

is 100%, though it is difficult to achieve.

Requirement testing differs from verification of requirements. Verification

talks about review of the statement containing requirements for using

some standards and guidelines, while resting talks about dummy execution

of requirements to find the consistency between them, i.e., achievement of

expected results must be possible by requirements without any

assumption. Verification of requirements may talk about the compliance

of an output with defined standards or guidelines.

The characteristics of requirements verification or review may include the

following.

 Completeness of requirement statement as per organisation standards

and formats. It must cover all standards like performance and user

interface expected by customer organisation.

 Clarity about what is expected by the users at each step of working

while using an application. It must include the expected output by the

customer. It may be in the form of error messaging, screen outputs,

priority outputs, etc.

 Measurability of expected results, possibly in numerals, so that these

results can be tested. Test case will have expected results which must

satisfy measurement criteria defined. „User friendliness‟ or „fairly

fast‟ can create confusion about requirements.

 Testability of the scenario defined in requirement statement is must.

Some requirements like application must work 24 x 7 for 10 years

may not be directly testable.

 Traceability of requirements further down the development life cycle

must be ensured. Requirement traceability starts at requirement phase

and gets populated as one goes down the life cycle.

Theoretically, each statement in requirement document must give atleast

one functional/non-functional test scenario which may result into test

cases. Requirements must be prioritised as „must‟, „should be‟ and „could

be‟ requirements. The customer is an entity to confirm requirement

priority.

Requirement validation must define end-to-end scenario completely so

that there is no gap. It must talk transactions involved and information

transfer from one system to another.

 95

Fundamentals of Software

Testing

Design Testing:

Design testing involves testing of high-level design (system architecture)

as well as low-level design (detail design). High-level design testing

covers mock running of future application with other prerequisites, as if it

is being executed by the targeted user in production environment. This

testing is similar to developing flow diagrams from the designs, where

flow of information is tracked from start to finish. When the flow is

complete, the design may be considered as good. Wherever the flow is not

defined, or not clear about where it will lead to, there are defects with

design which must be corrected. For low-level design, system

requirements and technical requirements are mapped with the entities

created in design to ensure adequacy of detail design.

Design verification talks about reviewing the design, generally by the

experts who may be termed as subject-matter experts. It involves usage of

standards, templates, and guidelines defined for creating these designs.

Design verification ensures that designs meet their exit criteria.

 Completeness of design, in terms of covering all possible outcomes of

processing and handling of various controls as defined by

requirements.

 Clarity of Row of data within an application and between different

applications which are supposed to work together in production

environment.

 Tenability of a design which talks about software structure and

structural testing.

 Traceability with requirements.

 Design toast covers all requirements.

Code Testing:

Code files, Tables, Stored procedures etc are written by developers as per

guidelines, standards, and detail design specifications. In reality,

developers do not implement requirements directly but they implement

detail design as delivered by the designer. Code testing (unit testing) is

done by using stubs/drivers as required. Code review is done to ensure that

code files written are,

 Readable and maintainable in future. There are adequate comments

available.

 Testable in unit testing.

 Traceable with requirements and designs. Anything extra as well as

anything missing can be considered as a defect.

 Testable in integration and system testing.

 96

Software Quality

Assurance

 Optimised to ensure better working of software. Reusability creates a

lighter system.

Test Scenario and Test Case Testing:

Test scenarios are written by testers to address testing needs of a software

application. Test cases are derived from test scenarios which are related to

requirements and designs. Test scenarios can be functional as well as

structural, depending upon the type of requirement and design they are

addressing.

 Test scenario should be clear and complete, representing end-to-end

relationship of what is going to happen and also, the possible

outcomes of such processing.

 Test scenarios should cover all requirements. Test scenarios may be

prioritised as per requirement priorities.

 Scenarios should be feasible so that they can be constructed during

testing.

 Test cases should cover all scenarios completely.

 Test scenarios and test cases must be prioritised so that in case of less

time availability, the major part of the system (where priority is

higher) is tested.

3.11 REQUIREMENT TRACEABILITY MATRIX

Some quality management models and standards prescribe complete

traceability of a software application from requirements through designs

and code files up to test scenario, test data, test cases and test results.

Requirement traceability matrix is one way of doing the complete

mapping for the software. One can expect a blueprint of an entire

application using requirement traceability matrix.

Typical requirement traceability matrix is as shown in Table 3.2.

3.11.1 Advantages of Requirement Traceability Matrix:

As discussed earlier, Requirement traceability matrix is a blueprint of

software under development. All the agencies concerned with software

can use it to understand the software in a better way. It may answer

questions about what is being developed and how it will be implemented.

 97

Fundamentals of Software

Testing

It helps in tracing if any software requirement is not implemented, or if

there is a gap between requirements and design further down the line. It

also helps to understand if any redundancy has been created in the

application.

 Entire software development can be tracked completely through

requirement traceability matrix.

 Any test-case failure can be tracked through requirements, designs,

coding, etc.

 Any changes in requirements can be affected through entire work

product upto test cases and vis-à-vis any test case failure can be traced

back to requirements.

 The application becomes maintainable as one has complete

relationship from requirement fill test results available.

3.11.2 Problems with Requirement Traceability Matrix:

Theoretically, all software‟s must have requirement traceability matrix,

but in reality, most of the software‟s do not have it. The reasons are

numerous; some of the prominent ones are listed below.

 Number of requirements is huge. It is very difficult to create

requirement traceability matrix manually. For using some tools, one

needs to invest money. Also, people may need to be trained for using

tools.

 There may be one-to-many, many-to-one and many-to-many

relationships between various elements traceability matrix, when we

are trying to connect columns and rows of traceability matrix and

maintaining these relationships need huge efforts.

 Requirements change frequently, and one needs to update the

requirement traceability matrix whenever there is a change. Similarly

designs, code and test cases may also change which will affect

traceability matrix.

 Developing teams may not understand the importance of requirement

traceability matrix, if development follows waterfall model, and

during maintenance, it may be too late to create it. Incremental and

iterative developments are the major challenges for maintaining

traceability.

 A customer may not find value in it and may not pay for it.

3.11.3 Horizontal Traceability:

When an application can be traced from requirement through design and

coding till test scenario and test cases upto test results, it is termed as

horizontal traceability. On failure of any test case, we must be able to find

which requirements have not been met. Any design which does not have

 98

Software Quality

Assurance

requirement. Introduces an extra feature which may be considered as

defect. Similarly, when any requirement is not traceable to design, that

requirement is not implemented at all. Same thing can happen in the

relationship between design and coding, coding and test scenario, and

also, test scenario and test case. When any entity can't be traced in forward

direction, horizontal traceability is lost.

3.11.4 Bidirectional Traceability:

One must be able to go from requirements, designs, coding, and testing to

reach the test result. Reverse must also be possible, where one may start

from the result and go to requirements. One must be able to go in any

direction from any point in traceability matrix. This is referred to as

„bidirectional traceability‟; CMMi model mandates bidirectional

traceability for all products.

3.11.5 Vertical Traceability:

Traceability explained above is called „horizontal traceability‟ as it goes in

horizontal direction, either forward or backward. Traceability may exist in

individual column as the requirements may have some interdependencies

between them, or these may be child and parent relationships. For

achieving a requirement, the other child requirement must be achieved.

One requirement may have several child requirements, while some child

requirements may have several parent requirements. If these requirements

are traced completely, it ensures vertical traceability. Similarly, design,

coding, and testing may have a vertical traceability where there may be

parent-child relationship and interdependence on different parts. Designs

may have parent-child relationships, and coding may have „called

functions‟ and „calling functions‟ traceability relationships.

3.11.6 Risk Traceability:

Some application development organisations also add references about the

risks of failure faced by the application in Failure Mode Effect Analysis

(FMEA). The risks are traced to requirements and mainly with design

which defines control mechanism to reduce probability or impact or

improves detection ability of a risk this helps the customer to identify

which accident-prone zones are in the application and where the user is

completely/ partially protected from failures. It also helps in identifying

various types of controls that are designed and used. Typical risk

traceability matrix is as shown in Table 3.3.

 99

Fundamentals of Software

Testing

3.12 ESSENTIALS OF SOFTWARE TESTING

Software testing is a disciplined approach. It executes software work

products and finds defects in it. The intention of software testing is to find

all possible failures, so that eventually these are eliminated and a good

product is given to the customer. It intends to find all possible defects

and/or identify risks which final user may face in real life while using, the

software. It works on the principle that no software is defect free, but less

risky software is better and more acceptable to users. The tester's job is to

find out defects so that they will be eventually fixed by developers before

the product goes to a customer. Completion of testing must yield number

of defects which can be analysed to find the weaker areas in the process of

software development. No amount of testing can show that a product is

defect free as nobody can test all permutations and combinations possible

in the given software. Software testing is also viewed as an exercise of

doing a SWOT analysis of software product where we can build the

software on the basis of strengths of the process of development and

testing, and overcome weakness in the processes to the maximum extent

possible.

Strengths:

Some areas of software are very strong, and no (very less) defects are

found during testing of such areas. The areas may be in terms of some

modules, screens, and algorithms, or processes like requirement definition,

designs, coding, and testing. This represents strong processes present in

these areas supporting development of a good product. We can always rely

on these processes and try to deploy them in other areas.

Weakness:

The areas of software where requirement compliance is on the verge of

failure may represent weak areas. It may not be a failure at that moment,

but it may be on the boundary condition of compliance, and if something

goes wrong in production environment, it will result into defect or failure

of software product. The processes in these areas represent some

problems. An organisation needs to analyse such processes and define the

root causes of problems leading to these possible failures. It may be

attributed to some aspects in the organisation such as training,

communication, etc.

Opportunity:

Some areas of the software which satisfy requirements as defined by the

customer, or implied requirements but with enough space available for

improving it further. This improvement can lead to customer delight (it

must not surprise the customer). These improvements represent ability of

the developing organisation to help the customer and give competitive

advantage. It decides the capability of the developing organisation to

provide expert advice and help to the customer for doing something better.

 100

Software Quality

Assurance

Threats:

Threats are the problems or defects with the software which result into

failures. They represent the problems associated with some processes in

the organisation such as requirement clarity, knowledge base and

expertise. An organisation must invest in making these processes stronger.

Threats clearly indicate the failure of an application, and eventually may

lead to customer dissatisfaction.

3.13 WORKBENCH

Workbench is a term derived from the engineering set-up of mass

production. Every workbench has a distinct identity as it takes part in the

entire development life cycle. It receives something as an input from

previous workbench, and gives output to the next workbench. This can be

viewed as a huge conveyor belt where people are working their part while

the belt is moving forward. The complete production and testing process is

defined as set of interrelated activities where input of one is obtained from

the output of previous activity, and output of that activity acts as an input

to the next. Each activity represents a workbench. A workbench comprises

some procedures defined for doing a work, and some procedures defined

to check the outcome of the work done. The work may be anything during

software development life cycle such as collecting the requirements,

making designs, coding, testing, etc. Organisational process database

refers to the methods, procedures, processes, standards, and guidelines to

be followed for doing work in the workbench as well as for checking

whether the processes are effective and capable of satisfying what

customer is looking for in the outcome. There are standards and tools

available for doing the work and checking the work in the work bench.

While checking/testing a work product in a workbench, if one finds

deviations between expected result and actual result, it may be considered

as defect, and the work product and the process used lot development

needs to be reworked.

3.13.1 Tester's Workbench:

Tester's workbench is made of testing process, standards, guidelines and

tools used for conducting tests and checking whether the test processes

applied are effective or not. For every workbench, there should be a

definition of entry criteria, process of doing/checking the work, and exit

criteria. For testers, there must be a definition of all things that enter the

tester‟s workbench. These may be defined in a test plan. Let us discuss

with an example of test-case execution as one activity represented by a

workbench.

Examples of Tester's Workbench:

Considering a typical system testing life cycle for a product/project, the

different work benches tor a tester may be defined as follows. Kindly note

that it is not an exhaustive list but a representative one. As one goes into

finer details, there may be many more workbenches in each of these

defined below.

 101

Fundamentals of Software

Testing

 Workbench for creating test strategy

 Workbench for creating a test plan

 Work bench for writing test scenario

 Workbench for writing test cases

 Workbench for test execution

 Workbench for defect management

 Workbench for retesting

 Workbench for regression testing

The following is a typical workbench described for system testing

execution.

Inputs to Tester's Workbench:

Inputs may be test scenario, test cases, and work products, documentation

associated with a work product, test environment, or test plan depending

upon the location of workbench in life cycle. The software work product is

delivered to the tester as described in delivery note supplied by

development team. Delivery note must contain any known issue which

tester needs to know before performing testing.

Do Process:

The software undergoes testing as per defined test case and test procedure.

This may be guided by organisational process database defining testing

process. 'Do process' must guide the normal tester while doing the process.

Check Process:

Evaluation of testing process to compare the achievements as defined in

test objectives is done by „check processes. Check process helps in finding

whether „do processes‟ have worked correctly or not.

Output:

Output must be available as required in form of test report and test log

from the test process. Output of the tester's workbench needs to have an

exit criteria definition.

Standards and Tools:

During testing, the tester may have to use several standard and tools.

Standards may include how to install the application, which steps are to be

followed while doing testing, how to capture defects, etc. There may be

several tools used in testing like defect management tools, configuration

management tools, regression testing tools, etc.

 102

Software Quality

Assurance

Remark:

If „check processes‟ find that „do processes‟ are no able to achieve the

objectives defined for them, it must follow route of rework. This is a

rework of „do process‟ and not of work product under testing. This ensures

that all incapable processes are captured so that these can be taken for

improvement.

There may be two more criteria in the work bench, viz. suspension criteria

for the work bench resumption criteria for the workbench guided by

organisational policies and standards. Suspension criteria define when the

testing process needs to be suspended or halted, whereas resumption

criteria defines when it can be restarted after such halt or suspension. If

there are some major problems in inputs or standards and tools required by

the workbench, „do/check processes may be suspended. When such

problems are resolved, the processes may be restarted.

Testing process may be defined as a process used to verify and validate

that the system structurally and functionally behaves correctly as defined

by expected result. Components of testing process may include the

following.

 Giving inputs (program code) to tester from previous work bench

 Performing work (execute testing) using tools and standards

 Following a process of doing and checking whether test process is

capable or not

 Produce output (test results and test log) which may act as an input to

the next work bench

Check process must work to ensure that results meet specifications and

standards, and also that the test process is followed correctly. If no

problem is found in the test process, one can release the output in terms

oftest results. If problems are found in test process, it may need rework.

Fig 3.2 shows a schematic diagram of a workbench.

 103

Fundamentals of Software

Testing

3.14 IMPORTANT FEATURES OF TESTING PROCESS

Testing is characterised by some special features, as given below.

Testing is a Destructive Process, but it is Constructive Destruction:

Testing involves a systematic destruction of a product with the intent to

find the defects so that these would be fixed before the product is given to

the customer. While executing tests, a tester goes about testing an

application using some valid/invalid inputs to find the response of

software to each of these conditions. The ability of the tester to break the

application can make him successful. For devising negative testing, one

needs to build the scenario with destructive mentality.

Testing Needs a Sadistic Approach with a Consideration That There

is a Defect:

A tester cannot certify that a work product is defect free. He needs to go

through the software work product and hunt for defects. If the defect is not

found, it directly means that there is some problem with testing process.

Defect-free product does not exist. Testers are expected to identify the

risks to the final users and test the product accordingly.

If the Test Does Not Detect a Defect Present in the System, it is an

Unsuccessful Test:

Success of testing lies in its ability to find defects or threats and weaker

areas of software work product and the processes supporting these areas.

Testers who cannot find defects are unsuccessful testers. Testing is

considered as an investment only when it reduces the probability that

software may fail at customer end.

A Test That Detects a Defect is a Valuable Investment for

Development As well As Customer, it helps in Improving a Product

The root cause analysis of defects can show where the application and

process can be and needs to be improved. It also helps in identifying the

weaker areas of the processes used for developing software. Weaker areas

are analysed to find the process lacunae and take actions on these areas

and strengthen them. Thus, defect finding helps in improving processes

which can result in increasing customer satisfaction. Testing with an

intention to find and fix the problems in processes can be considered as an

investment by customer/organisation.

Some organisations use final black box testing as an acceptance testing for

the application. If no defect is found in system testing, the software is

delivered to the customer. If the sole purpose of testing is to validate

specifications implemented then,

 Testing is an unnecessary/unproductive activity as it does not consider

invalid scenarios. No amount of testing can certify that there is no

defect in the product. There must be a probability of finding the defect

in testing.

 104

Software Quality

Assurance

 Testing is designed to compensate for ineffective software

development process, it cannot give results. The defect indicates a

process deficiency and it must be fixed by improving the processes.

Testing cannot improve the quality of product. Defect is a symptom of

something failing and one must try to fix the root cause and not only

the symptom.

 If development methodology designed and implemented by a team is

not correct, testing cannot compensate for it. Testing is not meant to

certify the work products but to find the defects.

 Testing is a separate discipline and may get affected by as well as

affects software development processes. Better processes of

development and testing can reduce the chances of failure of product

at customer place and subsequent customer complaints.

It is Risky to Develop Software and Not to Test it Before Delivery:

Not providing sufficient resources, time and support for testing activities

is a common scenario across the industry. There is a belief that less-tested

software means less defects, less rework, less scrap, and less-corrective

actions which means higher profits. But this may result into customer

dissatisfaction as the detects will get exposed at customer site. Reducing

the coverage of testing is another risk associated with software. Software

testing must give a desired level of confidence to users that system will

not fail. Less testing reduces this confidence level and increases a

probability of failure at customer site.

With High Pressure to Deliver Software as Quickly as Possible, Test

Process Must Provide Maximum Value in Shortest Timeframe:

This approach is adopted in test strategy designing where the efficiency

and effectiveness of testing is defined. Generally, test cases are

categorised into installation testing, smoke testing, and sanity testing

before going into further detailed testing. Test cases which represent

scenarios that may occur with higher probability can help in reducing

probabilities of failure in production environment. An organisation may

define such test cases with probability aspect such as high, medium, and

low or allocate the numbers indicating priority of execution. Probability of

occurrence of adefect may not have any relationship with severity as

severity talks about type of failures.

Testing is no longer an after-programming evaluation to certify that the

software works, but supposed to indicate the confidence level that product

will work at customer site. Testing can give the SWOT analysis of

development process. Thus, testing is adjunct to software development life

cycle.

Testing starts at the proposal level and ends only when software

application is finally accepted by user customer. Every stage of

development and every work product must go through stages of review

and formal approval to ensure that it can go to the next stage. But it is a

 105

Fundamentals of Software

Testing

key to ensure quality at each work product and each phase of software

development life cycle.

Highest Payback Comes from Detecting Defect Early in Software

Development Life Cycle and Preventing Defect Leakage/Defect

Migration from One Phase to Another:

Defects are the problems or something wrong happening in software as

well as the development process used for making software. Every defect

indicates failure of the process at some place or another. It is always

economical to fix the defects as and when they appear, and conduct an

analysis to find the root causes of the defects rather than waiting till it hits

the software product and user, again and again. It is always beneficial to

do a root cause analysis and fix the problem areas at the earliest possible

time. The investment in testing can be worthwhile only if it is capable of

finding defects as soon as it is introduced in the work product and also can

prevent any potential defect from getting introduced. Defect, if nor

corrected in the phase where it is introduced, leaks to the next stage and

creates a larger problem. This is termed „phase contamination‟. Defect

keeps on migrating from one phase to next phase, till it hits back the users

at some point of time.

Organisation's Aim Must Be Defect Prevention Rather That Finding

and Fixing a Defect:

The major misconception about testing is that it is considered as a fault-

finding mission. Instead, it must be viewed as a defect-prevention mission

to avoid critical problems in software development process by initiating

actions to prevent any recurrence of problems. Finding and fixing the

problem is not a good approach as the basic cause of defect is never

addressed. It needs analysis of root causes, and defect prevention

mechanism-that is installed and operational-to prevent recurrence as well

as removal of potential problems.

3.15 MISCONCEPTIONS ABOUT TESTING

At many places, software testing is termed „quality assurance (QA)‟

activity. In reality testing is a quality control (QC) activity. There are

many other misconceptions about software testing, as listed below.

Anyone Can Do Testing, and No Special Skills Are Required for

Testing:

Many organisations have an approach that anyone can be put in testing.

They give the task of testing to developers on the bench or people asking

for „light duty‟. Many people involved in testing do not have any

experience in testing or in the domain in which testing is done. Test

planning, test case writing, and test data definition using different

methodologies may not be possible with unskilled people. If the

organisation considers investment in special skills as a waste of time and

money, it may result in disaster for customer/user.

 106

Software Quality

Assurance

Testers Can Test Quality of Product at the End of Development

Process:

This is a typical approach where system testing or acceptance testing is

considered as qualification testing for software. Few test cases out of

infinite set of possibilities are used for certifying whether the software

application works or not. The customer may be dissatisfied as the

application does not perform well as per his expectations. Sometimes, the

defects remain hidden for an entire life cycle of software without anybody

knowing that there was a defect.

Defects Found in Testing Are Blamed on Developers:

Another common misconception regarding defects found in testing is

blaming developer for defects. Though two-third of defects are due to

wrong requirements, yet developers are mostly blamed for detects in

software development. Also, some surveys indicate that most of the

defects can be attributed to faulty development processes. Developers are

responsible for converting the design into code by using the standards or

guidelines available. Ensuring good inputs to developer's workbench is a

responsibility of the management.

Defects Found by Customer Are Blamed on Tester:

Testers perform testing by executing few list cases and try to cover some

part of software program to check whether the program performs as

intended or not. No one can say that testing can ensure 100% coverage. If

no defect is found during testing, it does not indicate that the software

program is defect free. There may be few defects left in the product which

can be found only in real life. One must do a root cause analysis of the

defects found, and try to learn from the experiences to ensure that a better

product is produced and similar defects do not recur next time. But no one

can blame testers for defects reported by customer.

3.16 PRINCIPLES OF SOFTWARE TESTING

Testing needs to be performed according to processes defined for it. It

needs skilled and trained people to break the application and demonstrate

the problems or defects in the software product. Some key points in

software testing are as follows.

Programmers/Team Must Avoid Testing Their Own Work Products:

Everybody is in love with the work product he/she has made. Also, the

approach of an individual remains the same and hence, approach-related

defects cannot be found in self-review or self-testing. A second opinion is

essential which can add value to a work product. Though self-review is a

good to for retrospection, yet it has many limitations.

 107

Fundamentals of Software

Testing

Thoroughly inspect Results of Each Test to Find Potential

Improvements:

Test results show possibilities of weaker areas in the work product and the

problems associated with the processes used for developing a work

product. The defects found in test log do not form an exclusive list of all

problems with the application, but indicate the areas where development

team and management must perform a root cause analysis. Corrective

actions are to be planned and executed to prevent any possible recurrence

of similar defect and make software better. Defects indicate process

failures.

Initiate Actions for Correction, Corrective Action and Preventive

Actions:

Defect identification, fixing and initiation of action to prevent further

problems are the natural ways of making better products and improve

processes. Corrections of the defect are done by the developers. But one

must ensure that corrective and preventive actions are initiated for making

better products again and again.

Establishing that a program does what it is supposed to do, is not even half

of the battle and rather easier one than establishing that program does not

do what it is not supposed to do. This is negative testing driven by risk

assessment for the final users. Roughly, testing may involve 5% positive

testing and 95% negative testing.

3.17 SALIENT FEATURES OF GOOD TESTING

Defects indicate the quality of software under testing, development and

test processes used for making it. Testing is a life-cycle activity where the

testers take part in testing right from proposal stage till the applicationis

finally accepted by the customer/user. Good software testing involves

testing of the following.

Capturing User Requirements:

The requirements defined by the users or customer as well as some

implied requirements (which are intended by the users but not put in

words) represent the foundation on which software is built. Intended

requirements are to be analysed and documented by testers so that they

can write the test scenario and test cases for these requirements. User

requirements involve technical, economical, legal, operational, and system

requirements. Generally, a user is able to specify only functional and nor

functional requirements which form a part of operational requirements and

legal requirements but definition of other requirements is a responsibility

of development organisation.

Capturing User Needs:

User needs may be different from user requirements specified in software

requirement specifications. User needs may include present and future

 108

Software Quality

Assurance

requirements and other requirements which may include process

requirements (including definition of deliverables) and implied

requirements. Elicitationofrequirements is to be done by the development

organisation to understand and interpret the requirements.

Design Objectives:

Design objectives state why a particular approach has been selected for

building software. The selection process indicates the reasons and criteria

framework used for development and testing. How an applications

functional requirements, user interface requirements, performance

requirements be defined in an approach document.

User Interfaces:

User interfaces are the ways in which the user interacts with the system.

This includes screens and other ways of communication with the system

as well as displays and reports generated by the system. User interfaces

should be simple, so that the user can understand what he is supposed to

do and what the system is doing. Users‟ ability to interact with the system,

receive error messages, and act according to instructions given is defined

in the user interfaces.

Internal Structures:

Internal structures are mainly guided by software designs and guidelines

or standards used for designing and development. Internal structures may

be defined by development organisation or sometimes defined by

customer. It may talk about reusability, nesting, etc. to analyse the

software product as per standards or guidelines. It may include

commenting standards to be used for better maintenance. Every approach

may have some advantages/disadvantages, and one needs to weigh the

benefits and costs associated with them to get a better solution.

Execution of Code:

Testing is execution of a work product to ensure that it works as intended

by customer or user, and is prevented from any probable misuse or risk of

failure. Execution can only prove that application, module, and program

work correctly as defined in requirement and interpreted in design.

Negative testing shows that application does not do anything which is

detrimental to the usage of a software product.

3.18 TEST POLICY

Test policy is generally defined by the senior management covering all

aspects of testing. It decides the framework of testing and its status in

overall mission of achieving customer satisfaction. For project

organisations, test policy may be defined by the client while for product

organisation, it is decided by senior management.

 109

Fundamentals of Software

Testing

3.19 TEST STRATEGY OR TEST APPROACH

Test strategy defines the action part of test policy. It defines the ways and

means to achieve the test policy. Generally, there is a single test policy at

organisation level for product organisations while test strategy may differ

from product to product, customer to customer and time to time. Some of

the examples of test strategy may be as follows.

 Definition of coverage like requirement coverage or functional

coverage or feature coverage defined for particular product, project

and customer.

 Level of testing, starting from requirements and going up to

acceptance phases of the product.

 How much testing would be done manually and what can be

automated?

 Number of developers to testers.

3.20 TEST PLANNING

Test planning is the first activity of test team. If one does not plan for

testing, then he/she is planning for failure. Test plans are intended to plan

for testing throughout software development life cycle. Test plans are

defined in the framework created by test strategy and established by test

policy. Test plans are made for execution which involves various stages of

software testing associated with software development life cycle. Test plan

should be realistic and talk about the limitations and constraints of testing.

It should talk about the risks and assumptions done during testing.

Plan Testing Efforts Adequately with an Assumption That Defects

Are There

All software products have defects. Test planning should know the

number of defects it is intending to find by executing the given test plan.

Test plan should cover the number of iterations required for software

testing to give adequate confidence required by customer (to show that

software will be usable). Defect found in testing is an investment in terms

of process improvement opportunity. Test plan is successful if intended

number of defects is found.

Defects Are Not Found, it is Failure of Testing Activity:

There are many defects in software. If no (less) defects are found in

testing, then it does not mean that there are no (less) defective in the

product. It may mean that the test cases are not complete or adequate, or

the test data is not effective in locating defects in the software product.

Testing is intended to find defects. If defects are not found, the testing

process may be considered as defective. Every defect found is an

investment as it reduces a probability of any defect which customer may

find. If more number of defects is found, it means the development

process is problematic.

 110

Software Quality

Assurance

Successful Tester is Not One Who Appreciates Development but One

Who Finds Defects in the Product:

Success of testing is in finding a defect and not certifying that application

or development process is good. Successful testers can find more defects

with higher probabilities of occurrences and higher severities of failure.

Tester should find defects, which have a probability of affecting common

users and thus contribute to a successful application.

Testing is Not a Formality to be completed at the End of Development

Cycle:

Testing is not a certifying process. It is a life-cycle activity and should not

be the last part of a development life cycle before giving the application to

customer/user. Acceptance testing and system testing are the integral parts

of software development where the certification of application is done by

the customer but complete test cycle is much more than black box testing.

Software testing includes the following.

 Verification or checking whether a right process is followed or not

during development life cycle.

 Validation or checking whether a right product is made or not as per

customer's need.

Some differences between verification and validation are shown in

Table 3.4.

 111

Fundamentals of Software

Testing

3.21 TESTING PROCESS AND NUMBER OF DEFECTS

FOUND IN TESTING

Testing is intended to find more number of defects. Generally, it is

believed that there are fixed number of defects in a product and as testing

finds more defects, chances of the customer finding the defect will reduce.

Actually, the scenario is reverse. As we find more and more defects in a

product, there is a probability of finding some more defects. This is based

on the principle that every application has defects and every test team has

some efficiency of finding defects. It is governed by the test team's defect-

finding ability. Let us say the organisational statistics shows that after

considerable testing and use of application by a user, number of defects

found is three per KLOC; test planning must intend to find three defects

per KLOC for the program under testing. The number of defects found

after considerable testing will always indicate possibilities of existing

number of defects. Fig 3.3 shows a relationship between number of

defects found and probability of finding more defects.

3.22 TEST TEAM EFFICIENCY

Test team efficiency is a very important aspect for development team and

management. If test team is very efficient in finding defects, less iterations

of testing are required. On the other hand, if development team is less

efficient in fixing defects, more iteration of resting and defect fixing may

be required.

The test team has some level of efficiency of finding defects. Suppose the

application has 100 defects and the test team has an efficiency of 90%,

then it will be able to find 90 defects. Thus, if the test team finds 180

defects (considering some efficiency), it means that there are 200 defects

in the software product.

Every test manager must be aware of the efficiency of a test team that

he/she is working with. Often, test managers and project managers try to

access the test team efficiency at some frequency. The process may be as

defined below.

 112

Software Quality

Assurance

Ideally, the test team efficiency must be 100% but in reality, it may not be

possible to have test teams with efficiency of 100%. It must be very close

to 100% in order to represent a good test team. As it deviates away from

100%, the test team becomes more and more unreliable. Test team

efficiency is dependent on organisation culture and may not be improved

easily unless organisation makes some deliberate efforts.

3.23 MUTATION TESTING

Mutation testing is used to check the capability of test program and test

cases to find defects. Test cases are designed and executed to find defects.

If test cases are not capable of finding defects, it is a loss for an

organisation (as it requires time to write and execute test cases). This is

also termed "test case efficiency'.

3.23.1 Reasons for Deviation of Test Team Efficiency From 100% for

Test Team As Well As Mutation Analysis:

Though desirable, it is very difficult to get a test team with 100%

efficiency of finding defects and test cases with 100% efficiency of

finding defects. Some of the reasons for deviation are listed below.

Camouflage Effect:

It may be possible that one defect may camouflage another defect, and the

tester may not be able to see that defect, or test case may not be able to

locate the hidden defect. It is called „camouflage effect‟ or „compensating

defects‟ as two defects compensate each other. Thus, defect introduced by

developer may not be seen by the tester while executing a test case.

 113

Fundamentals of Software

Testing

Cascading Effect:

It may be possible that due to existence of a certain defect, few more

defects are introduced or seen by the tester. Though there is no problem in

the modification, detects are seen due to cascading effect of one defect.

Thus, defects not introduced by developer may be seen by tester while

executing a test case.

Coverage Effect:

It is understood that moody can test 100%, and there may be few lines of

code or few combinations which are not tested at all dive to some reasons.

If defect is introduced in such a part which is not executed by given set of

test cases, then tester may not be able to find the defect.

Redundant Code:

There may be parts of code, which may not get executed under any

condition, as the conditions may be impossible to occur, or some other

conditions may take precedence over it. If developer introduces a defect in

such parts, testers will not be able to find the defect as that part of code

will never get executed.

3.24 SUMMARY

This chapter establishes the basics of software testing. It starts with a

historical perspective of testing and then explains how testing evolved

from mere debugging to defect prevention technique. It then discusses the

benefits of independent testing. „TQM‟ concept of testing, „Big Bang‟

approach of testing, and benefits of „TQM‟ testing are elucidated in detail.

3.25 EXERCISE

1) Explain the evolution of software testing from debugging to

prevention based testing.

2) Explain why independent testing is required.

3) Explain big bang approach of software testing,

4) Explain total quality management approach of software testing.

5) Explain concept of TQM cost perspective.

6) Explain testing as a process of software certification.

7) Explain the basic principles on which testing is based.

3.26 REFERENCES

1. Software Testing and Continuous Quality Improvement by William E.

Lewis CRC Press Third 2016.

 114

Software Quality

Assurance

2. Software Testing: Principles, Techniques and Tools M. G. Limaye

TMH 2017.

3. Foundations of Software Testing Dorothy Graham, Erik van

Veenendaal, Isabel Evans, and Rex Black Cengage Learning 3 rd.

4. Software Testing: A Craftsman‟s Approach Paul C. Jorgenson CRC

Press 4 th 2017.

5. https://www.techtarget.com/whatis/definition/software-testing

6. https://www.softwaretestinghelp.com/types-of-software-testing/

7. https://prepinsta.com/software-engineering/big-bang-approach/

 115

4
CHALLENGES IN SOFTWARE TESTING

Unit Structure

4.0 Objectives

4.1 Challenges in Testing

4.2 Test Team Approach

4.3 Process Problems Faced by Testing

4.4 Cost Aspect of Testing

4.5 Establishing Testing Policy

4.6 Methods

4.7 Structured Approach to Testing

4.8 Categories of Defect

4.9 Defect, Error or Mistake in Software

4.10 Developing Test Strategy

4.11 Developing Testing Methodologies (Test Plan)

4.12 Testing Process

4.13 Attitude towards Testing (Common People Issues)

4.14 Test Methodologies/Approaches

4.15 People Challenges in Software Testing

4.16 Raising Management Awareness for Testing

4.17 Skills Required by Tester

4.18 Software life cycle

4.19 Software development models

4.20 Test levels

4.21 Test Types

4.22 Targets of testing

4.23 Maintenance testing

4.24 Testing Tips

4.25 Summary

4.26 Exercises

4.27 References

 116

Software Quality

Assurance

4.0 OBJECTIVES

After studying this chapter the learner would be able to:

 Understand different challenges in testing

 Understand different approaches to testing.

 Understand different types of defects.

 Differentiate between “White Box testing”, “Black Box testing”

&“Grey Box testing”

4.1 CHALLENGES IN TESTING

Testing is a challenging job. Challenges in testing are different on

different fronts. On one front, it needs to tackle with problems associated

with development team. On second front, it has customers to tackle with.

Management may have problems with understanding testing approach and

may consider it as an obstacle to be crossed before delivering the product

to the customer. There may be problems related to testing process as well

as development process. Major challenges faced by test teams are as

follows.

 Requirements are not clear, complete, consistent, measurable and

testable. These may create some problems in defining test scenario

and test cases. Sometimes, a configuration management issue is faced

when the development team makes changes in requirements but test

team is not aware of these changes.

 Requirements may be wrongly documented and interpreted by

business analyst and system analyst. These knowledgeable people are

supposed to gather requirements of customers by understanding their

business workflow. But sometimes, they are prejudiced based on their

earlier experiences.

 Code logic may be difficult to capture. Often, testers are not able to

understand the code due to lack of technical knowledge. On the other

hand, sometimes, testers do not have access to code files.

 Error handling may be difficult to capture. There are many

combinations of errors, and various error messages and controls are

required such as detective controls, corrective controls, suggestive

controls, and preventive controls.

4.1.1 Other Challenges In Testing:

More bugs found in software introduce additional iterations of fixing

defects, retesting, and regression testing of a product. It means more

efforts, delayed shipment to customer and late payment receipt by

organisation. Often, testers are blamed for delays in delivery.

 117

Challenges in Software

Testing

 Badly written code introduces many defects. Code may not be

readable, maintainable, optimisable, and may create problems in

future. Defects may not be fixed correctly, and fixing of defects may

introduce more defects called „regression defects‟.

 Bad architecture of software cannot implement good requirement

statement. What developers do in reality is that they implement the

design and not the requirements. Bad architecture creates complex

code and adds many defects to the software product.

 Testing is considered as a negative activity. Often, testers need to

reject builds if problems are found in it which does not satisfy exit

criteria. It is a difficult situation as organisational fund flow may be

depending upon successful delivery of system, and it gets affected due

to such rejection.

 Testers find themselves in lose-lose situation in resting. If more

defects are found, application delivery is delayed and testers are

blamed for such delay. On the other hand, if testing is not done

properly, customer complaints are possible and again testers are held

responsible for it.

4.2 TEST TEAM APPROACH

Type of the organisation and type of the product being developed define a

test team. There may or may not be a separate team doing testing if

management does not recognise its importance, or the application under

development demands this scenario. There are four approaches of software

testing team.

4.2.1 Location of Test Teams In An Organisation:

Generally, test team is located in an organisation as per testing policy. It

may vary from organisation to organisation, project to project and

customer to customer. Following are some of the approaches used for

locating test team organisationally.

Independent Test Team:

Independent test team may not be reporting to development group at all,

and are independent of development activities. They may be reporting

independently to senior management or customer. Presence of test

manager is essential to lead the test team. Such test teams may be shown

as in figure 4.1.

 118

Software Quality

Assurance

Fig. 4.1 Organisational structure of test team independent of

development team

Advantages of Independent Test Team:

 The test team is not under delivery pressure. They can take sufficient

time to execute complete testing as per definitions of iterations,

coverage, etc

 Test team is not under pressure of 'not finding' a defect. They are

considered as the certifiers of a product and must be able to find every

conceivable fault in the product before delivery.

 Independent view about a product is obtained as thought process of

developers and testers may be completely different.

 Expert guidance and mentoring required by test team for doing

effective testing may be available in the form of a test manager.

Disadvantages of Independent Test Team:

 There is always „us‟ vs „them‟ mentally between development team

and test team. Team synergy can be lost as developers take pride in

what they develop while testers try to break the system.

 Testers may not get a good understanding of development process as

development team tries to hide the process lacunae from them. Testers

are treated as outsiders.

 Sometimes, management may be inclined excessively towards

development team or test team, and the other team may feel that they

have no value in an organisation.

Test Team Reporting to Development Manager:

If the test team is reporting to development manager, then they can be

involved from the start of project till the project is finally closed. Such test

team may be shown in Fig 4.2.

 119

Challenges in Software

Testing

Fig 4.2 Organisational Structure of test team reporting to

development manage

Advantages of Test Team Reporting to Development Manager:

 There is a better cooperation between development team and test team

as both are part of the same team.

 Test team can be involved in development and verification/validation

activities from the start of the project. It gives them good

understanding of requirements.

 Testers may get a good understanding of development process and

can help in process improvement.

Disadvantages of Test Team Reporting to Development Manager:

 Expert advice in the form of test manager may not be available to

testers. In case testers need some guidance or mentoring, they may

have to rely on an external person.

 Sometimes, development managers are more inclined towards

development team. Defects found by test team are considered as

hurdles in delivery process.

 Often, testers start perceiving the product from developer‟s angle and

their defect finding ability reduces.

Matrix Organisation:

In case of matrix organisation, an effort is made to achieve the advantages

of both approaches, and get rid of disadvantages of both approaches. Test

team may be reporting functionally to the development manager while

administratively it reports to the test manager.

4.2.2 Developers Becoming Testers:

Sometimes, those who work as developers in initial stages of development

life cycle take the role of testers when the latter stages of life cycle are

executed. This is a common practice while working with simple software

 120

Software Quality

Assurance

which does not need very structured testing. Developers becoming testers

can be suitable when the application is technologically heavy.

Advantages of This Approach:

 Developers do not need another knowledge transfer while working as

a tester. The knowledge transfer that they received at initial stages of

development can be used by them in both roles.

 Developers have better understanding of detail design and coding, and

can test the application easily.

 For automation, some amount of development skill is required in

writing the automation scripts. Developer can adapt themselves in

automation testing better as they have the ability to create code.

 It is less costly as there is no separate test team. It provides staff

balancing to some extent. Initially, the development team is large but

as SDLC comes to an end, the test team becomes larger than the

development team.

 Psychological acceptance of defects is not a major issue as developers

themselves find the defects.

Disadvantages of This Approach:

 Developers may not find value in performing testing. They may put

more time in developing/optimising code than executing serious

testing.

 There may be blindfolds while understanding requirements or

selection of approach and developer may not be willing to find more

defects. Understanding or approach related defects may not be found.

Platform or database related defects may not be uncovered as

developers may feel that as technological limitations. As per

developers technology is creating the problem.

 Developers may concentrate more on development activities, which is

their primary responsibility and may neglect testing activities.

 Development needs more of a creation skill while testing needs more

of a destruction skill. It is difficult to have a team having both skills at

a time.

4.2.3 Independent Testing Team:

An organisation may create a separate testing team with independent

responsibility of testing. The team would have people having sufficient

knowledge and ability to test the software.

Advantages of This Approach:

 Separate test team is supposed to concentrate more on test planning,

test strategies and approach creating test artifacts, etc.

 121

Challenges in Software

Testing

 There is independent view about the work products derived from

requirement statement.

 Special skills required for doing special tests may be available in such

independent teams.

 „Testers working for customer‟ can be seen in such environment.

Disadvantages of This Approach:

 Separate team means additional cost for an organisation.

 Test team needs ramping up and knowledge transfer, similar to a

development team.

 An organisation may have to check for rivalries between development

team and test team.

4.2.4 Domain Experts Doing Software Testing:

An organisation may employ domain experts for doing testing. Generally,

this approach is very successful in system testing and acceptance testing

where domain specific testing is required. Domain experts may use their

expertise on the subject matter for performing such type of testing.

Advantages of This Approach:

 Fitness for use' can be tested in this approach where actual user's

perspective may be obtained. Domain experts will be testing software

from user's perspective.

 Domain experts may provide facilitation to developers about defects

and customer expectations, and maybe able to interpret requirements

in the correct context.

 Domain experts understand the scenario faced by actual users and

hence, their testing is realistic.

Disadvantages of This Approach

 Domain experts may have prejudices about the domain which may

reflect in testing. Domain experts may have knowledge about a

domain but may not understand exactly what a particular customer is

looking for.

 It may be very difficult to get domain experts in diverse areas, if an

organisation has projects in diverse domains.

 It may mean huge cost for the organisation as these experts cost much

more than normal developers/testers.

Combination of all three approaches (3.21.2, 3.21.3, 3.21.4) can be

advantageous for the organisation. One has to do a cost-benefit analysis to

arrive at any decision about test team formation. Highly complex user

 122

Software Quality

Assurance

environment and complex algorithms may make „domain experts doing

testing‟ more effective. On the contrary, if an organisation has done many

projects in similar domain in past, „developers becoming tester‟ may be

recommended as developers may have sufficient knowledge about the

subject.

In addition to a test team, there are many other agencies involved in

software testing as per phases of software development.

Customer/User:

Customer or users generally do acceptance testing to declare formal

acceptance/rejection/changes in requirements for the product. Customer

perspective is most important in software acceptance. Organisations

creating prototype may rely on customer approval of prototype.

Developers:

Developers do unit testing before the units are integrated. Generally, units

require stubs and drivers for testing, and developers can create the same.

Sometimes, integration testing is also done by developers if it needs stubs

and drivers.

Tester:

Testers perform module, integration, and system testing as independent

testing. They may oversee acceptance testing. Tester's view of system

testing is very close to user's view while accepting software.

Information System Management:

Information system management may do testing related to security and

operability of system. They would provide the specialized skills needed

for this type of testing.

Senior Management/Auditors:

Senior management or auditors appointed by senior management such as

Software Quality Assurance (SQA) perform redelivery audit, smoke

testing, and sample testing to ensure that proper product is delivered to the

customer.

4.3 PROCESS PROBLEMS FACED BY TESTING

„Q‟ organisations consider that defects in the product are due to incorrect

processes, in general, it is believed that incorrect processes cause majority

(about 90%) of the working problems. Defects are introduced in software

due to incapable processes of development and testing. Software testing is

also a process, and prone to introduce defects in the system. If the process

of software testing is faulty, it gives problems in terms of defects not

found during testing but found by customer, or wrong defects found which

are either „not a defect‟, „duplicate‟, „cannot be reproduced‟ or „out of

 123

Challenges in Software

Testing

scope‟ type of defects. The basic constituents of processes are people,

material, machines and methods.

People:

Many people are involved in software development and testing, such as

customer/user specifying requirements; business analysts/system analysts

documenting requirements; test managers or test leads defining test plans

and test artifacts; and testers defining test scenarios, test cases, and test

data. There is a possibility that at few instances some personal attributes

and capabilities may create problems in development and testing. Proper

skill sets such as domain knowledge and knowledge about development

and testing process may not be available.

Material:

Testers need requirement documents, development standards and test

standards, guidelines, and other material which add to their knowledge

about a prospective system. These documents may not be available, or

may not be clear and complete. Similarly, other documents which act as a

framework for testing such as test plans, project plan, and organisational

process documents may be faulty. Test tools and defect tracking tools may

not be available. All of these may be responsible for introducing defects in

the product.

Machines:

Testers try to build real-life scenarios using various machines, simulators

and environmental factors. These may include computers, hardware,

software, and printers. The scenarios may or may not represent real-life

conditions. There may be problems induced due to wrong environmental

configurations, usage of wrong tool, etc.

Methods:

Methods for doing test planning, risk analysis, defining test scenarios, test

cases, and test data may not be proper. These methods undergo revisions

and updating as the organisation matures.

Economics of Testing:

As one progresses in testing, more and more defects are uncovered, and

probability of customer facing a problem reduces while the cost of testing

goes up. The cost of customer dissatisfaction is inversely proportional to

testing efforts. It means more investment in testing efforts reduces the cost

of customer unhappiness. On the other hand, the cost of testing increases

exponentially. If the first ten defects are found in one hour, for finding the

next ten defects, it may need two hours, and so on. If we plot both curves,

then at some point, the two curves intersect each other. This point shows

optimum testing point. Area before this point represents an area under

testing where defective product goes to customer and customer

dissatisfaction cost is higher than cost of testing, while area after this point

 124

Software Quality

Assurance

represents an area of over testing where cost of customer dissatisfaction is

less than cost of testing.

Cost of testing curve is guided by the following:

 Defect finding ability of testing team (test team efficiency)

 Defect fixing ability of development team (defect fixing efficiency)

 Defect introduction index of development team which talks about

regression defects getting introduced due to fixation of some defects

discovered during testing

Fig 4.3 Cost of Testing and Cost of Customer Dissatisfaction

 If test team efficiency and defect fixing efficiency are 100%, and

defect introduction index is zero, we need only two iterations of

testing. As it goes away from ideal numbers, number of iterations

increase exponentially.

Cost of customer dissatisfaction is guided by the following aspects:

 Cost of customer dissatisfaction mainly depends upon customer-

supplier relationship. If an organisation has done several projects

which were very successful, then the customer may not mind if some

defects are there in the current project. Customer dissatisfaction curve

tends to be parallel to „Y‟ axis. On the other hand, if the customer is

very finicky about defects and past performance of an organisation is

not good, it may tend to be parallel to 'X' axis.

 Cost of customer dissatisfaction also depends on the type of product

and its mission criticality to the customer. Customer may not like any

problem in high mission-critical software while he may accept certain

problems in other types of software.

4.4 COST ASPECT OF TESTING

As seen earlier, cost of quality includes cost of prevention, cost of

appraisal and cost of failure. Testing may take some portion of each of

these costs. It is believed that cost of quality is about 50% of the cost of

 125

Challenges in Software

Testing

product. Testing is a costly affair and an organisation must try to reduce

the cost of testing to the maximum extent possible.

There is a famous concept of efforts conversion into cost in case of

software development, as effort is the major component of total cost. This

may be done by standard costing method or marginal costing method as

per organisation's process definition. Efforts spent by the organisation in

developing and testing of application are converted at some predefined

rates to arrive at the total cost of a product. Sometimes, the cost of

resource varies as per the role played by a person. For example, a project

manager may get more rate than developer, or an architect may get more

billing than a tester.

It is a very rare scenario that a project will have 100 people working for all

10 months for the development project. Generally, development projects

never have the same number of resources throughout the life cycle.

Initially, it may need less number of people and as one passes through

different phases of development, number of resources required increases

exponentially. Once the peak activities are over, number of resources

required goes down.

The same cycle is followed by testing resource requirements. As the

testing phases progress, number of resources required increases

exponentially. Once the peak activities are over, number of test resources

goes down. Thus, for development project, costing is always dynamic.

In case of maintenance or production support type of work, number of

resources remains fairly constant over a long-time horizon. Fig 4.4

indicates resources required for a development project.

 126

Software Quality

Assurance

Fig 4.4 Number of resources for development project

Cost of development/manufacturing includes the cost spent in the

following.

 Capturing the requirements, conducting analysis, asking queries, and

elicitation of requirements

 Cost spent in designing the application including high-level designing

and low-level designing

 Cost spent in writing code, integrating and creating the final product

4.4.1 Assessment of Cost of Testing:

Cost of testing may be considered as the cost of the project activities on

and above normal phases of development. Various phases of development

are associated with phases of verification and validation. Cost of testing is

a function of two processes, viz. development process maturity and test

process maturity. It has also a very close relationship with the type of

application being produced, methodology of development and testing,

domain, technical parameters of development, and testing.

Type of Application and Cost of Testing:

Depth and breadth of testing has direct relationship with the size and

importance of an application to a user, and test efforts that the customer is

ready to pay for also varies accordingly. As far as size of an application is

concerned, testing follows „Rayleigh Putnam‟ curve. As the size of

application increases, the testing efforts increase exponentially. An

organisation must evaluate is own curve on the basis of historical data, or

may adapt to the existing baselines in initial phases when historical data is

not available.

Cost of testing = k f(x)

Where „K‟ is a constant and f(x) is a function of size of an application

while „x‟ indicates the size of the application.

An application may be defined as per its importance to the user. If user is

completely dependent upon the application, he may want more confidence

and thus, invest more in testing. On the other hand, if software does not

have business criticality, the customer may not be ready to pay that much

cost.

Development and Test Methodology:

Development and test methodologies also affect testing efforts and costs.

It is generally believed that waterfall development methodology can

produce robust software and testing efforts required are much lesser. Agile

methodologies may need huge testing because there is more stress on

regression testing, as each iteration of development is over. Iterative

 127

Challenges in Software

Testing

development has more testing costs as there is a change in requirements,

design, coding, etc.

Test methodologies have an impact on test efforts and costs. An

organisation conducting phase-wise testing has lesser cost than the

organisation facing testing at the last phase of development. Life cycle

testing is very cheap in comparison to testing at the last phase of

development. Usage of regression testing tools may increase the cost of

testing in initial phases while in the long term, overall cost of testing is

reduced due to automation.

Domain and Technological Aspects:

Application domain plays an important role, along with criticality of the

application, to the users. If the application is going to affect human life,

there may be many regulations coming into the picture. The customer will

be more cautious about testing and test results. There may be more legal

implications if sufficient and adequate testing is not done. Some other

types of software affecting huge sum of money are also regulated by the

rules, regulations and laws of the place where it is used.

It is believed that technology also plays an important role in deciding the

extent of testing. Object-oriented development faces different challenges

in testing compared to normal development without any object usage.

There may be more thrust on integration testing rather than unit testing.

Old development languages and databases sometimes make testing

difficult.

Maturity of Development and Testing Processes:

Development and testing process maturity is an important issue in

deciding the cost of testing. Theoretically, testing is not at all required if

development can achieve the defined output. If development process is

highly matured and can achieve the expected output, then testing may be

considered as wastage. Many engineering organisations have reached the

phase of zero defect and 'zero' inspection. But software application

development may not have achieved a level of maturity to produce defect-

free products. Some amount of testing is required to find all conceivable

faults so that development team can fix them.

Many organisations have a development phase followed by one complete

iteration of testing. It must find all defects so that these are eventually

fixed in rework phase. Second iteration of testing must achieve the

required level of confidence that application will not fail.

Testing involves all three components of cost of quality mentioned below.

4.4.2 Cost of Prevention in Testing:

Cost of prevention is the cost incurred in preventing defects from entering

into a system. In various phases of verification and validation, cost of

prevention is distributed. Some of these are discussed below.

 128

Software Quality

Assurance

Cost Spent in Creation of Verification and Validation Artifacts:

This part of cost is spent when the project team and test team create

various artifacts related to verification and validation at different phases of

software development. Cost of planning includes creating test plans and

quality plans so that quality can be appraised correctly. This phase may

also include the time and effort spent in creation of guidelines for testing,

reviews, creation of checklists, writing of test cases and test data along

with test scenarios. In case of test automation, cost of test-script creation

may be a part of prevention cost.

Cost Spent in Training:

Testers may need training on the domain under testing. They may also

need training on test process and various tools used for testing. This may

include organisation-level training as well as project-specific training.

Cost of prevention is calculated as follows:

 Cost spent in creating various plans related to software verification

and validation. An organisation must have a baseline definition of the

effort required to create plans.

 Cost spent in writing test scenarios, test cases, creating guidelines for

verification and validation, and creating checklists for doing

verification and validation activities. Organisation baselines must

define the time and effort required for this activity.

 Training requirements may be separately assessed depending upon the

competency of test teams, type of application, and level of tool usage

for testing. There may not be baseline data available in this case as it

may change from project to project.

4.4.3 Cost of Appraisal In Testing:

Cost of appraisal includes cost spent in actually doing verification and

validation activities. Generally, first-time verification/validation is

considered under cost of appraisal. Test artifacts also need reviews and

testing to confirm that they are correct. Checklists needed for the reviews

must also be reviewed before they are used.

Irrespective of whether time and efforts are spent by developers or testers,

all efforts spent on conducting reviews, walkthroughs, inspection, unit

testing, integration testing, and system testing are considered under cost of

appraisal.

Cost of appraisal is calculated as follows:

 Cost required for conducting first-time verification and validation

activities can be assessed from the size of an application and

organisation baseline data available.

 129

Challenges in Software

Testing

 Time and effort required to conduct the given number of test cases

may be derived from the productivity numbers, and number of test

cases required can be derived from the size of an application.

4.4.4 Cost of Failure In Testing:

Cost of failure in testing accounts for all retesting, regression testing, and

re-reviews conducted as the defects are found in earlier iterations. Any

cost spent on and above first-time verification and validation makes a cost

of failure for testing. The organisation must have a target to reduce the

cost of failure continuously, as this directly affects its profitability.

Cost of failure is calculated as follows:

 On the basis of historical data available in baseline studies, one may

plan number of iterations required to achieve predetermined exit

criteria.

 Number of test cases per iteration and number of iterations required

can give the efforts required to perform retesting and regression

testing.

4.5 ESTABLISHING TESTING POLICY

Good testing is a deliberate planned effort by the organisation. It does not

happen on its own, but detailed planning is required. Testing efforts need

to be driven by test policy, test strategy or approach, test planning, etc.

Test policy is an intent of test management about how an organisation

perceives testing and customer satisfaction. It should define test objectives

and test deliverables.

Test strategy or approach must define what steps are required for

performing an effective testing. How the test environment will be created,

what tools will be used for testing, defect capturing, defect reporting, and

number of test cycles required will be a part of test strategy. It must talk

about the depth and breadth of testing to ensure adequate confidence

levels for users.

Test objectives define what testing will be targeting to achieve. It is better

to have test objectives expressed in numbers in place of qualitative

definitions. Some of the test objectives may be about code coverage,

scenario coverage, and requirement coverage, whereas others may define

the targeted number of defects.

Testing must be planned and implemented as per plan. Test plan should

contain test objectives and methods applied for defining test scenario, test

cases and test data. It should also explain how the results will be declared

and how retesting will be done. It is a general expectation that automation

can solve all problems regarding testing process. One thing to be noted is

that- automation can increase the speed and repeatability of testing but test

planning cannot be done automatically. Rather, it needs involvement of

people doing testing.

 130

Software Quality

Assurance

4.6 METHODS

Generally, methods applied for testing efforts are defined at organisational

levels. They are generic in nature and hence, need customisation. They are

customised into a test plan, and any tailoring required to suite a specific

project may be done. Management directives establish methods applied for

testing. It includes what part will be rested nor tested, and how it will be

tested. Which tools will be used for testing, defect-tracking mechanism,

communication methods and if there is any decision of automation, how it

will be undertaken all this must be covered by these processes.

Management directives are defined in test strategy.

Testing strategy may be discussed with users/customer to get their

views/buy-in about testing. It may be accomplished through meetings and

memorandums, User/customer must be made aware of cost of finding and

fixing defects. All stakeholders for the project must be made aware that

„zero defects‟ is an impossible condition and acceptance criteria for the

project must be defined well in advance (possibly at the time of contract).

Methods of using data or inputs provided by a customer must be analysed

for sufficiency and correctness.

4.7 STRUCTURED APPROACH TO TESTING

Testing that is concentrated to a single phase at the end of development

cycle, just before deployment, is costly. Testing is a life cycle activity and

must be a part of entire software development life cycle. If testing is done

only in the last phase before delivery to customer, the results obtained may

not be accurate and defect fixing may be very costly. Here, it cannot show

development process problems and similar defects can be found again and

again. Four components of wastes involved in this type of testing aregiven

below.

Waste in Wrong Development:

Wrong specifications used for development or testing will result into a

wrong product and wrong testing. Even if specifications are correct, it may

be wrongly interpreted in design, code, documentation, etc. The defects

not found during reviews or white box testing will be discovered only at

the customer's end. This may lead to high customer dissatisfaction, huge

rework, retesting, etc.

Waste in Testing to Detect Defects:

If testing is intended to find all defects in product, then cost of testing will

be very high. Effective reviews can reduce the cost of software testing and

development. If entire responsibility for software quality is left to black

box testing or final system testing, then the cost of testing and cost of

customer dissatisfaction may be very high.

 131

Challenges in Software

Testing

Wastage as Wrong Specifications, Designs, Codes and Documents

Must Be Replaced by Correct Specifications, Designs, Codes and

Documents:

The cost of fixing defects maybe very high in the last part of testing as

there are more number of phases between defect introduction phase and

defect detection phase, and defect may percolate through the development

phases. Correcting the specifications, designs, codes and documents, and

respective retesting/regression testing is a costly process. It can lead to

schedule variance, effort variance and customer dissatisfaction. One defect

fix can introduce another defect in the system.

Wastage as System Must Be Retested to Ensure That the Corrections

Are Correct:

For every fixing of defect, there is a possibility of some other part of

software getting affected in a negative manner. One needs to test software

again to ensure that fixing of software has been correct, and it has not

affected the other parts in a negative manner. Regression and retesting are

essential when defects are found and fixed.

4.8 CATEGORIES OF DEFECT

Software defects may be categorized under different criteria. The

categories of defects must be defined in the test plan. The definition may

differ from organisation to organisation, project to project and customer to

customer.

4.8.1 On Basis of Requirement/Design Specification:

 Variance from product specifications as documented in requirement

specifications or design specifications represents specification related

defects. These defects are responsible for Producer's „gap‟.

 Variance from user/customer expectations as business analyst/system

analyst is not able to identify customer needs correctly. These

variances may be in the form of implied requirements. These are

responsible for „Users gap‟.

4.8.2 Types of Defects:

 Wrongly implemented specifications are relate to the specifications as

understood by developers differing significantly from what the

customer wants. These may be termed „misinterpretation of

specifications‟.

 Missing specifications are the specifications that are present in

requirement statements but not available in the final product. The

requirements are missed, as there is no requirement tracing through

product development.

 Features not supported by specifications but present in the product

represent something extra. This is something added by developers

though these features are not supported by specifications.

 132

Software Quality

Assurance

4.8.3 Root Causes of Defects:

 Wrong requirements given by user/customer can be a basic cause of

defect. This is due to the inability of the customer to put the

requirements in words, or specifying requirements which are not

required.

 Business analyst/system analyst interprets customer needs wrongly

can be another major cause of defect. This is due to the inability of

business analyst/system analyst to elicit requirements.

 System design architect does not understand requirements correctly

and hence, the architecture is wrong. This may be due to

communication gap or inability of the architect in understanding the

requirements.

 Incorrect program specifications, guidelines, and standards are used

by respective people. If the organization processes are not capable,

then defects are introduced in the product so produced.

 Errors in coding represent lack of developer's skills in understanding

design and implementing it correctly.

 Data entry error caused by the users while using a product. This can

be possible when users are not protected adequately. This indicates

design problems.

 Errors in testing-false call/failure to detect an existing defect in the

product. The first part introduces defects in a correct product while

the second part allows defects to go to the customer.

 Mistake in error correction, where defect is introduced while

correcting some identified defect.

4.9 DEFECT, ERROR, OR MISTAKE IN SOFTWARE

The problems with software work product may be put under different

categories on the basis of who has found it and when it has been found (as

shown in Table 4.9)

Table 4.9 Comparison of mistake, error and defect

 133

Challenges in Software

Testing

4.10 DEVELOPING TEST STRATEGY

Test planning includes developing a strategy about how the test team will

perform testing. Some key components of testing strategy are as follows.

 Test factors required in particular phase of development

 Test phase corresponding to development phase

Process of developing test strategy goes through the following stages.

Select and Rank Test Factors for the Given Application:

The test team must identify critical success factors quality factors 'test

factors for the software product under testing. Software may have some

specific requirements from user's point of view. Test factors must be

analysed and prioritised or ranked. Some test factors may be related to

each other (either direct or inverse relationship). The trade-off decisions

may be taken after consulting with customer, if possible, when the

relationship is inversed.

Identify System Development Phases and Related Test Factors:

The critical success factors may have varying importance as per

development life cycle phases. One needs to consider the importance of

these factors as per the life cycle phase that one is going through. The test

approach will change accordingly.

Identify Associated Risks with Each Selected Test Factor in Case if it

is not Achieved:

Trade-offs may lead to few risks of development and testing the software.

Customer must be involved in doing trade-offs of test factors and the

possible risks of not selecting proper test factor. The risks with probability

and impact need to be used to arrive at the decision of trade-off.

Identify Phase in Which Risks of Not Meeting a Test Factor Need to

Be Addressed:

The risks may be tackled in different ways during development life cycle

phase‟s counter measures for the same. As the phase is over, one needs to

assess the actual impact of the risks and effectiveness of devised

countermeasures for the same.

4.11 DEVELOPING TESTING METHODOLOGIES

(TEST PLAN)

Developing test tactics is the job of project-level test manager/test lead.

Different projects may need different tactics as per type of product

customer. Designing and defining of test methodology may take the

following route.

 134

Software Quality

Assurance

4.11.1acquire and Study Test Strategy As Defined Earlier:

Test strategy is developed by a test team familiar with business risks

associated with software usage. Testing must address the critical success

factors for the project and the risk involved in not achieving it.

4.11.2 Determine the Type of Development Project Being Executed:

Development projects may be categorised differently by different

organisation, as shown below.

 Traditionally developed software by following known methods of

development such as waterfall development life cycle. An

organisation has a history available, and the lessons learned in

previous projects can be used to avoid contingencies in the given

project.

 Commercially off the Shelf (COTS) purchased software which may

be integrated in the given software. Requirements and designs of such

software may not be available, and integration in terms of parameters

passing can be a major constraint.

 Maintenance activities such as bug fixing, enhancement, porting, and

reengineering will have their own challenges, such as availability of

design documents, compatibilities of various technologies, and code

readability.

 Agile methodology of development has small iterations of

development and heavy regression testing.

 Iterative method of development has continuously changing

requirements and all other artifacts must be updated accordingly.

 Spiral development, where new things are added in system again and

again. Generally followed methodology in spiral development is

modular design, development and testing.

4.11.3 Determine the Type Of Software System Being Made:

Type of software system defines how data processing will be performed

by the software. It may involve the following.

 Determine the project scope (whether it is multivendor or multisite

development). Distributed development and integration of parts

developed by different vendors can be a challenging task.

 New developments including scope of development and scope of

testing, when the products are enhanced from existing levels.

 Changes to existing system such as bug fixing, enhancement,

reengineering, and porting.

 135

Challenges in Software

Testing

4.11.4 Identify tactical Risks Related to development:

Risks may be introduced in software due to its nature, type of customer,

type of developing organisation, development methodologies used, and

skills of teams. Risk may differ from project to project.

 Structural Risks (Refers to Methods Used to Build a Product): If

the projects are supposed to use existing libraries or designs which

may need complex algorithms to be written, the structure of the

software may pose the highest risk. Complex structures with

interfaces in relation to many other systems can make the architecture

fragile.

 Technical Risks (Refers to Technology Used to Build and Operate

the System): If the organisation is new to a particular technology, or

the technology itself is new to the world, then it can lead to this king

of risk. Unproven technology or inability to work with the latest

technology is the problems faced by developers as well as users.

 Size Risks (Refers to Size of All Aspects of Software): As the

software size increases. It becomes more complex. Maintaining

integrity of very big software itself is a challenge.

4.11.5 Determine When Testing Must Occur During Life Cycle:

 Testing phases starting from proposal, contract or requirement testing

till acceptance testing and their integration decide the test strategy for

the project.

 Previously collected information, if available, is to be used to decide

how much testing is to be done, at what time and in which phases. It

defines the cost of testing, cost of customer dissatisfaction and any

trade-offs.

 Build tactical test plan which will be used by the test team in

execution of testing related activities.

 To describe software being tested, test objectives, risks, business

functions to be tested, and any specific tests to be performed.

4.11.6 Steps to Develop Customised Test Strategy:

 Select and rank quality factors/test factors as expected by the

customer in the final product. Quality factors must be prioritised.

Generally, the scale used is 1-99, where „1‟ indicates higher priority

while '99' indicates lower priority. No two quality factors have the

same ratings.

 Identify the system development phase where these factors must be

controlled. As the defects may originate in different phases, quality

factors may change their priority during each phase of development

life cycle.

 136

Software Quality

Assurance

 Identify business risks associated with system under development. If

quality factors are not met, these may induce some risk in a product.

 Place risks in a matrix so that one may be able to analyse them. This

may be used to devise preventive, corrective and detective measures

to control risks. Table 4.10 shows how test strategy matrix can be

developed.

Table 4.10 Typical test strategy matrix

4.11.7 Type of Development Methodology Impact Test Plan Decisions:

Table 4.11 shows in general, which test tactics can be used depending

upon the type of development activity. This is an indicative list and may

differ from situation to situation, product to product and customer to

customer.

Table 4.11 Development model and testing

tactics

 137

Challenges in Software

Testing

4.12 TESTING PROCESS

Testing is a process made of many milestones. Testers need to achieve

them, one by one, to achieve the final goal of testing. Each milestone

forms a basis on which the next stage is built. The milestones may vary

from organisation to organisation and project to project. Following are few

milestones commonly used by many organisations.

Defining Test Policy:

Test policies are defined by senior management of the organisation or test

management, and may or may not form a part of the test plan. Test policy

at organisation level defines the intent of test management. Test policy is

dependent on the maturity of an organisation in development and test

process, customer type, type of software, development methodology, etc.

Test policy may be tailored at project level, depending upon the scope and

historical information available from similar projects.

Defining Test Strategy:

 Definition of test strategy includes how the test learn will be organised,

and how will it work to achieve test objectives, decision about coverage,

automation, etc. Test strategy provide, the actions to the intents defined by

test policy. Test strategy helps the test team to understand the approach of

testing.

Preparing Test Plan:

Test planning is done by test managers, test leads or senior testers, as the

case may be. Test policy sets a tone, whereas test strategy adds the actions

required to complete test policy. Test plan tries to answer six basic

questions- What, When, Where, Why, Which and How. Test plans are for

individual product/project and customer. They are derived from test

strategy and give details of execution of testing activity.

Establishing Testing Objectives to Be Achieved:

Test objectives measure the effectiveness and efficiency of a testing

process. They also define test achievements that they plan for. Test

objectives are also defined from the quality objectives for the project or

product, and the critical success factors for testing. Testing objectives

must be „SMART‟ (specific, measurable, agreed upon, realistic, and time

bound).

Designing Test Scenarios and Test Cases:

How the test scenarios and test cases will be defined should be explained

by the test strategy. A test scenario represents user scenario which acts as

a framework for defining test cases. It may have actors and transactions.

Similarly, there may be few scenarios arising from system requirements.

Theoretically, each transaction in a test scenario eventually becomes a test

case.

 138

Software Quality

Assurance

Writing/Reviewing Test Cases:

Writing and reviewing test cases along with test scenarios and updating

requirement traceability matrix accordingly are the tasks done by senior

testers or test leads for the project. The traceability matrix gets completed

by adding the test cases and finally, the test results. One more column in

the traceability matrix would be the results of execution of test cases, i.e.,

test results.

Defining Test Data:

Test data may be defined on the basis of different techniques available for

the purpose. It may include boundary value analysis, error guessing,

equivalence partitioning, and state transition. Test data must include valid

as well as invalid set of data. It must include some special values

generated from error guessing. Test data definitions may be important

from testing point of view as different iterations must have different test

data sets though it may be used by same test cases.

Creation of Test Bed:

Testing needs creation of environment for testing. It may be a real-life

environment or a simulated environment using some simulators. Test bed

defines some of the assumptions in a test plan which may induce certain

risks of testing. It must reflect real-life situations as closely as possible.

Simulators may need definition of few risks, as testing is not done in real

environment.

Executing Test Cases:

Execution of actual test cases with the test data defined for testing the

software involves applying test cases as well as test data and trying to get

the actual results. It sometimes involves updating test cases or test data, if

some mistakes are found in initially defined test cases or test data.

Test Result:

Logging results of testing in test log is the last part of the testing iteration.

There may be several iterations of testing planned and executed. The

defect database may be populated, if expected results are not matching

with the actual results. One needs to make sure that the expected results

are traceable requirements.

Test Result Analysis:

Testing is a process of SWOT analysis of software under development and

testing. Examining test results and analysis may lead to interpretation of

software in terms of capabilities and weakness. At the end of testing, the

test team must recommend the next step after testing is completed to the

project manager- whether the software is ready to go to the next stage or it

needs further rework and retesting.

 139

Challenges in Software

Testing

Performing Retesting/Regression Testing When Defects Are Resolved

by Development Team:

When defects are given to a development team, they perform analysis and

fix the defects. Retesting is done to find out whether the defects declared

as fixed and verified by the development team are really fixed or not.

Regression testing is done to confirm that the changed part has not

affected (in a negative way) any other parts of software, which were

working earlier.

Root Cause Analysis and Corrective/Preventive Actions:

Root cause analysis is required to initiate corrective actions. Development/

test team performs post-mortem reviews to understand the weakness of

development as well as test process, and initiates actions to improve them.

Process improvement is the last activity after the project is closed and

formally accepted by the customer. All defect prevention activities must

lead to process improvements.

4.13 ATTITUDE TOWARDS TESTING (COMMON

PEOPLE ISSUES)

Attitude of development team and senior management or project

management towards a test team is a very important aspect to build morale

of the test team. It may be initiated from test policy and may be percolated

down to test strategy definition and test planning. Some of the views about

test team are as follows.

 New members of development team are not accustomed to view

testing as a discovery process where defects are found in the product.

The defects found are taken as personal blames rather than

system/process lacunae. Sometimes, people try to defend themselves,

considering it as an attack on the individual.

 „We take pride on what we developed‟ or „we wish to prove that it is

right‟ or „it is not my fault‟ are very common responses. Developers

may not accept the defect in the first place. If they accept the presence

of a defect, then they try to put blame on somebody else. Root cause

analysis is very difficult in such situations as people may attach

personal ego to it.

 Conflict between developer and tester can create differences between

project teams and test teams. In reality, the sole aim of development

and testing must be a customer satisfaction, and defects must be

considered as something which prevents achievement of this

objective.

 140

Software Quality

Assurance

4.14 TEST METHODOLOGIES/APPROACHES

The two major disciplines in testing are given below:

Black Box Testing:

Black box testing is an attesting methodology where product is tested as

per software specifications or requirement statement defined by business

analysts/system analysts/customer. Black box testing mainly talks about

the requirement specification given by customer, or intended requirements

as perceived by testers. It deals with testing of an executable and is

independent of platform, database, etc. This testing is with the view as if a

user is testing the system.

White Box Testing:

White box testing is a testing methodology where software is tested for the

structures, White box testing covers verification of work products as per

structure, architecture, coding standards and guidelines of software. It

mainly deals with the structure and design of the software product. White

box testing requires that testers must have knowledge about development

processes and artifacts including various platforms, databases, etc.

There is one more methodology covering both testing methodologies at

the same time.

Grey Box Testing:

Grey box testing talks about a combination of both approaches, viz, black

box testing and white box testing at the same time. There may be various

shades of black box testing as well as white box testing in this type of

testing, depending upon the requirements of product. Though not a rule,

Grey box testing mainly concentrates on integration testing part along with

unit testing.

Broadly, all other testing techniques may be put in any of these three

categories, viz. black box testing, white box testing and grey box testing.

4.14.1 Black Box Testing (Domain Testing/Specification Testing):

Black box testing involves testing system/components considering inputs,

outputs and general functionalities as defined in requirement

specifications. It does not consider any internal processing by the system.

Blackbox testing is independent of platform, database, and system to make

sure that the system works as per requirements defined as well as implied

ones. Actual system (production environment) is simulated, if it is difficult

to create a real-life scenario in test laboratory. It does not make any

assumption about technicalities of development process, platform, tools,

etc. It represents user scenario and actual user interactions.

 141

Challenges in Software

Testing

Fig 4.14.1 Black box testing

Fig 4.14.1 shows a block box testing schematically. Black box functional

testing is generally conducted for integration testing, system testing, and

acceptance testing where the users/customers or the testers as

representatives of the customer execute a system as if it is used by users in

production environment.

Advantages of 'Black Box Testing':

Black box testing is used primarily to test the behaviour of an application

with respect to expressed or implied requirements of the customer.

 Black box testing is the only method to prove that software does what

it is supposed to do and it does not do something which can cause a

problem to user/customer.

 It is the only method to show that software is living and it really

works.

 Some types of testing can be done only by black box testing

methodologies, for example, performance and security.

Disadvantages of ‘Black Box Testing’:

Black box testing has many disadvantages so far as software development

methodology is concerned.

 Some logical errors in coding can be missed in black box testing as

black box testing efforts are driven by requirements and not by the

design. It uses boundary value analysis, equivalence partitioning, and

some internal structure problems can be missed.

 Some redundant testing is possible as requirements may execute the

same branch of code again and again. If an application calls common

functions again and again, then it will be tested so many times that in

leads to redundant testing.

Test Case Designing Methodologies:

Black box testing methodology defines how the user is going to interact

with the system without any assumption about how the system is built. As

 142

Software Quality

Assurance

there is no view of how software is built, defining test cases is very

difficult. Test cases may be defined using the user scenario called „test

scenario‟. Completeness of test scenario is essential for good testing.

Theoretically, each sentence in the test scenario may become a test case.

Scenario contains activities in terms of transactions and actors.

Test Data Definition:

Black box testing is mainly driven by the test data used during testing. It

may not be feasible to test all possible data which user may be using while

working with an application. Some special techniques are applied for

defining test data which can give adequate coverage, and also limits the

number of test cases and the risk of failure of an application during use.

Some of these techniques are mentioned below.

 Equivalence partitioning

 Boundary value analysis

 Cause and effect graph

 State transition testing

 Use case based testing

 Error guessing

4.14.2 White Box Testing:

White box testing is done on the basis of internal structures of software as

defined by requirements, designs, coding standards, and guidelines. It

starts with reviews of requirements, designs, and codes. White box testing

can ensure that relationship between the requirements, designs, and codes

can be interpreted. Whitebox testing is mainly a verification technique

where one can ensure that software is built correctly. Fig 4.14.2 shows a

white box testing schematically.

Fig 4.14.2 White box testing

 143

Challenges in Software

Testing

Advantages of ‘White Box Testing’:

White box testing is a primary method of verification

 Only white box testing can ensure that defined processes, procedures,

and methods of development have really been followed during

software testing. It can check whether the coding standards,

commenting and reuse have been followed or not.

 White box testing of verification can give early warnings, if

something is not done properly. It is the most cost-effective way of

finding defects as it helps in reducing stage contamination.

 Some characteristics of software work product can be verified only.

There is no chance of validating them. For example, code complexity,

commenting styles, and reuse.

Disadvantages of ‘White Box Testing’:

White box testing being a verification technique has few shortcomings.

 It does put ensure that user requirements are met correctly. There is

no execution of code, and one does not know whether it will really

work or not.

 It does not establish whether decisions, conditions, paths, and

statements covered during reviews are sufficient or not for the given

set of requirements.

 Sometimes, white box testing is dominated by the usage of checklists.

Some defects in checklist may reflect directly in the work product.

One must do a thorough analysis of all defects.

Test Case Designing:

Test case designing is based on how test artifacts are created and used

during testing. It defines how documents are written and interpreted by

each person involved in software development life cycle. Some of the

techniques used for white box testing are as follows.

 Statement coverage

 Decision coverage

 Condition coverage

 Path coverage

 Logic coverage

4.14.3 Grey Box Testing:

Grey box testing is done on the basis of internal structures of software as

defined by requirements, designs, coding standards, and guidelines as well

 144

Software Quality

Assurance

as the functional and non-functional requirement specifications. Grey box

testing combines verification techniques with validation techniques where

one can ensure software is built correctly, and also works. Figure 4.14.3

shows a Grey box testing schematically.

Fig 4.14.3 Grey Box Testing

Advantages of ‘Grey Box Testing’:

 Grey box testing tries to combine the advantages of white box testing

and Black box testing. It checks whether the work product works in a

correct manner, both functionally as well as structurally.

Disadvantages of ‘Grey Box Testing’:

 Generally, Grey box testing is conducted with some automation tools.

Knowledge of such tools along with their configuration is essential for

performing Grey box testing.

4.15 PEOPLE CHALLENGES IN SOFTWARE TESTING

Testing is a process and must be improved continuously. People need to

analyse and take actions on the shortcomings found in the process, so that

they can be improved continuously. Few expectations of software process

improvement needs from testers are given below.

 The tester is responsible for improving testing process to ensure better

products with less number of defects going to customer, thus

enhancing customer satisfaction. All defects must be found and the

confidence level must be built in the process that can give customer

satisfaction. Proper coverage as required by test plan must be

achieved.

 Testing needs trained and skilled people who can deliver products

with minimum defects to the stakeholders. Testers have to improve

their skills through continuous learning.

 The tester needs a positive team attitude for creative destruction of

software. Defect in the software is an opportunity to improve the

product and not to blame developers. Testers must be able to pinpoint

the lacunae in software development process as the defects are found.

 145

Challenges in Software

Testing

 Testing is creative work and a challenging task. Feasible test

scenarios and test cases, as well as effective ways of looking for

defects are essential to improve testing effectiveness.

 Programmers and testers work together to improve the quality of

software developed and delivered to customer, and the process used

for software development and testing. The ultimate aim is customer

satisfaction.

 Testers hunt for defects they pursue defects not people, including

developers. Every defect is considered as a process shortcoming.

Defect closure needs retesting and regression testing to find whether

the defect is really fixed or not, and to ensure that there is no negative

impact of a defect on existing functions.

 Testing needs patience, fairness, ambition, creditability, capability,

and diligence on part of testers. Every defect must be seen from the

business perspective.

4.16 RAISING MANAGEMENT AWARENESS FOR

TESTING

The management must be aware of the roles and responsibilities that

testers are performing to achieve customer satisfaction by finding defects.

If testers find defects, they can contribute in building good software by

reducing probability that customer may find defects.

4.16.1 Tester's Role:

While establishing a test function in an organisation, the management has

some objectives to be achieved. Test team needs to understand these

objectives and fulfil them.

 Calculate testing cost, effectiveness of testing and ensure that

management understands the same. By doing good testing, number of

customer complaints must reduce and cost of failure must go down.

 Demonstrate cost reduction and increase in effectiveness over a time

span (as rework and scrap reduce over a long horizon). This can be

shown by reduced customer complaints as well as less rework.

 Highlight needs and benefits of training-in test team as well as

development team-on testing activities and skills, so that testers can

perform better. Many developers need information about unit testing,

integration testing and their role in such testing.

 Collect and distribute information on testing to all team members as

well as development team/organization which can be used for

improvement.

 146

Software Quality

Assurance

 Get involved in test budgeting. Testing needs people, money, time,

training and other resources. The organization may have to develop

budget to procure all these aspects.

4.17 SKILLS REQUIRED BY TESTER

Testing needs a disciplined approach. A tester is the person entrusted by

an organisation to work as the devil‟s agent. He/she is a person working

for the client, finding the obvious defects in the processes and products.

The main purpose of testing is to demonstrate that defects are present, and

point towards the weaker areas in the software as well as processes used to

build it, so that actions can be initiated in that direction. It must build

confidence in management and customer that the application with which

they will be working is usable and does not have defects. One must try to

build maximum possible skills, and training is one of the effective

methods to build a good testing team.

4.17.1 General Skills:

Written and Verbal Presentation Skill:

Presenting test results or discussing about an application or defects

involves communication with many people. Testers are supposed to

present test results and tell development team, customer and management

about the present status of application and where further improvements

can be done. Testers must be good in presentation skills.

Effective Listening Skill:

Testers need to listen to the customers‟ voice as well as views of

developers. Listening to customer as well as developer- to understand the

needs and requirements correctly is required to ensure that the scenarios

and test cases can be written in a proper way. Tester's listening skills can

convert testing into effective testing. Listening skills can give them

complete information about the process, software application and also

what the customer and management are looking for.

Facilitation Skill:

Facilitation of development team as well as customer is done by testers, so

that defects are taken in the proper spirit. Testers must be able to tell the

exact nature of a defect, how it is happening and how it will affect the

users. Testers must contribute to improve development process and take

part in building better product.

Software Development, Operations and Maintenance:

Good knowledge of software development life cycle and software testing

life cycle help testers in designing test scenarios and test cases

accordingly. The defect age and cost of testing are important parameters to

be controlled by testers.

 147

Challenges in Software

Testing

Continuous Education:

Testers must undergo continuous education and training to build and

enforce quality practices in development processes. They need to undergo

training for test planning, test case definition, test data definition, methods

and processes applied for testing, and reporting defects.

4.17.2 Testing Skills:

Concepts of Testing:

A tester must have complete knowledge about testing as a discipline.

He/she must understand methods, processes, and concepts of testing.

He/she must be capable of doing test planning, designing test scenario,

writing test cases, and defining test strategy, and defining test data.

Levels of Testing:

Testing is a multitier activity where the application goes from one level to

another after successful completion of the previous level. Testers are

involved in each phase of software development right from proposal and

contract, followed by requirement till acceptance testing. Testers must

ensure that each phase is passed successfully.

Techniques for Validation and Verification:

Techniques of verification/validation must be understood and facilitated

by testers to the development team, customer and management. While

writing test cases, he/she needs to define test case pass/fail criteria to

validate the test case and product.

Selection and Use of Testing Tools:

Testing involves use of various tools including automation tools, defect

tracking tools, configuration management tools, and simulators. A tester

must understand and use the tools effectively.

Knowledge of Testing Standards:

Testing standards are defined by software quality management. There can

be some international standards or organisation/customer defined

standards. Testers need to understand these standards, and apply them

effectively so that a common understanding can be achieved.

Risk Assessment and Management:

Testing is risk-driven activity. Test cases and test data must be defined to

minimise risks to the final users in production environment. Testing

efforts must be managed to improve their effectiveness and efficiency.

Managing testing involves planning, organising, directing, coordinating,

and controlling testing process.

 148

Software Quality

Assurance

Developing Test Plan:

Test plan development is generally done by test managers or test leads

while implementation of these plans is done by testers. Individual testers

must plan for their part in overall test plan for the project.

Defining Acceptance Criteria:

Definition of acceptance criteria is an important milestone for testing.

Generally, acceptance criteria are defined by customer well before the

project starts. Testers need to define acceptance criteria for the phases and

iterations of testing. There are various forms of acceptance criteria which

will be discussed later. The phase-end acceptance criteria may be defined

by the testers in test plan.

Checking of Testing Processes:

Testers follow the processes as defined in the test plan. They need to audit

the testing processes to check the compliance and effectiveness, and also

initiate actions if deviations are observed. Testers must contribute in

testing process improvements.

Execution of Test Plan:

Testers are given the responsibility of executing a test plan. It includes

defining test scenario, test cases, and test data, and their execution. They

put test results in test log and defects in defect logging tool. Resolved

defects are taken for retesting. They must perform regression testing when

planned. Testers must do analysis of test results to define weaker and

stronger areas of software development and testing process. They must be

able to define test coverage such as code coverage, statement cover,

branch coverage, requirement coverage, and function coverage.

Continuous Improvement of Testing Process:

Testers must plan for continuous improvement of testing process. Testing

process must be subjected to improvements followed by phase of

consolidations. Actions must be planned for improving process, and the

results must be compared with expectations. If some deviations are

observed, new actions can be initiated.

4.18 SOFTWARE LIFE CYCLE

SDLC is a process that defines the various stages involved in the

development of software for delivering a high-quality product. SDLC

stages cover the complete life cycle of a software i.e. from inception to

retirement of the product.

Adhering to the SDLC process leads to the development of the software in

a systematic and disciplined manner.

 149

Challenges in Software

Testing

Purpose:

Purpose of SDLC is to deliver a high-quality product which is as per the

customer‟s requirement.

SDLC has defined its phases as, Requirement gathering, Designing,

Coding, Testing, and Maintenance. It is important to adhere to the phases

to provide the Product in a systematic manner.

For Example, A software has to be developed and a team is divided to

work on a feature of the product and is allowed to work as they want. One

of the developers decides to design first whereas the other decides to code

first and the other on the documentation part.

This will lead to project failure because of which it is necessary to have a

good knowledge and understanding among the team members to deliver

an expected product.

SDLC Cycle:

SDLC Cycle represents the process of developing software.

Below is the diagrammatic representation of the SDLC cycle:

SDLC Phases

Given below are the various phases:

 Requirement gathering and analysis

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2018/04/SDLC-Cycle.jpg
https://www.softwaretestinghelp.com/wp-content/qa/uploads/2018/04/SDLC-Cycle.jpg

 150

Software Quality

Assurance

 Design

 Implementation or coding

 Testing

 Deployment

 Maintenance

1) Requirement Gathering and Analysis:

During this phase, all the relevant information is collected from the

customer to develop a product as per their expectation. Any ambiguities

must be resolved in this phase only.

Business analyst and Project Manager set up a meeting with the customer

to gather all the information like what the customer wants to build, who

will be the end-user, what is the purpose of the product. Before building a

product a core understanding or knowledge of the product is very

important.

For Example, A customer wants to have an application which involves

money transactions. In this case, the requirement has to be clear like what

kind of transactions will be done, how it will be done, in which currency it

will be done, etc.

Once the requirement gathering is done, an analysis is done to check the

feasibility of the development of a product. In case of any ambiguity, a

call is set up for further discussion.

Once the requirement is clearly understood, the SRS (Software

Requirement Specification) document is created. This document should be

thoroughly understood by the developers and also should be reviewed by

the customer for future reference.

2) Design:

In this phase, the requirement gathered in the SRS document is used as an

input and software architecture that is used for implementing system

development is derived.

3) Implementation or Coding:

Implementation/Coding starts once the developer gets the Design

document. The Software design is translated into source code. All the

components of the software are implemented in this phase.

4) Testing:

Testing starts once the coding is complete and the modules are released for

testing. In this phase, the developed software is tested thoroughly and any

defects found are assigned to developers to get them fixed.

 151

Challenges in Software

Testing

Retesting, regression testing is done until the point at which the software

is as per the customer‟s expectation. Testers refer SRS document to make

sure that the software is as per the customer‟s standard.

5) Deployment:

Once the product is tested, it is deployed in the production environment or

first UAT (User Acceptance testing) is done depending on the customer

expectation.

In the case of UAT, a replica of the production environment is created and

the customer along with the developers does the testing. If the customer

finds the application as expected, then sign off is provided by the customer

to go live.

6) Maintenance:

After the deployment of a product on the production environment,

maintenance of the product i.e. if any issue comes up and needs to be fixed

or any enhancement is to be done is taken care by the developers.

4.19 SOFTWARE DEVELOPMENT MODELS

A software life cycle model is a descriptive representation of the software

development cycle. SDLC models might have a different approach but the

basic phases and activity remain the same for all the models.

1) Waterfall Model:

Waterfall model is the very first model that is used in SDLC. It is also

known as the linear sequential model.

In this model, the outcome of one phase is the input for the next phase.

Development of the next phase starts only when the previous phase is

complete.

 First, Requirement gathering and analysis is done. Once the

requirement is freeze then only the System Design can start. Herein,

the SRS document created is the output for the Requirement phase

and it acts as an input for the System Design.

 In System Design Software architecture and Design, documents

which act as an input for the next phase are created i.e.

Implementation and coding.

 In the Implementation phase, coding is done and the software

developed is the input for the next phase i.e. testing.

 In the testing phase, the developed code is tested thoroughly to detect

the defects in the software. Defects are logged into the defect tracking

tool and are retested once fixed. Bug logging, Retest, Regression

testing goes on until the time the software is in go-live state.

https://www.softwaretestinghelp.com/what-is-user-acceptance-testing-uat/
https://www.softwaretestinghelp.com/what-is-sdlc-waterfall-model/

 152

Software Quality

Assurance

 In the Deployment phase, the developed code is moved into

production after the sign off is given by the customer.

 Any issues in the production environment are resolved by the

developers which come under maintenance.

Advantages of the Waterfall Model:

 Waterfall model is the simple model which can be easily understood

and is the one in which all the phases are done step by step.

 Deliverables of each phase are well defined, and this leads to no

complexity and makes the project easily manageable.

Disadvantages of Waterfall model:

 Waterfall model is time-consuming & cannot be used in the short

duration projects as in this model a new phase cannot be started until

the ongoing phase is completed.

 Waterfall model cannot be used for the projects which have uncertain

requirement or wherein the requirement keeps on changing as this

model expects the requirement to be clear in the requirement

gathering and analysis phase itself and any change in the later stages

would lead to cost higher as the changes would be required in all the

phases.

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2018/04/Waterfall-Model-1.jpg
https://www.softwaretestinghelp.com/wp-content/qa/uploads/2018/04/Waterfall-Model-1.jpg

 153

Challenges in Software

Testing

2) V-Shaped Model:

V- Model is also known as Verification and Validation Model. In this

model Verification & Validation goes hand in hand i.e. development and

testing goes parallel. V model and waterfall model are the same except

that the test planning and testing start at an early stage in V-Model.

a) Verification Phase:

(i) Requirement Analysis:

In this phase, all the required information is gathered & analyzed.

Verification activities include reviewing the requirements.

(ii) System Design:

Once the requirement is clear, a system is designed i.e. architecture,

components of the product are created and documented in a design

document.

(iii) High-Level Design:

High-level design defines the architecture/design of modules. It defines

the functionality between the two modules.

(iv) Low-Level Design:

Low-level Design defines the architecture/design of individual

components.

(v) Coding:

Code development is done in this phase.

b) Validation Phase:

(i) Unit Testing:

Unit testing is performed using the unit test cases that are designed and is

done in the Low-level design phase. Unit testing is performed by the

https://www.softwaretestinghelp.com/what-is-stlc-v-model/
https://www.softwaretestinghelp.com/wp-content/qa/uploads/2018/04/V-Shaped-Model.jpg
https://www.softwaretestinghelp.com/wp-content/qa/uploads/2018/04/V-Shaped-Model.jpg
https://www.softwaretestinghelp.com/unit-testing/

 154

Software Quality

Assurance

developer itself. It is performed on individual components which lead to

early defect detection.

(ii) Integration Testing:

Integration testing is performed using integration test cases in High-level

Design phase. Integration testing is the testing that is done on integrated

modules. It is performed by testers.

(iii) System Testing:

System testing is performed in the System Design phase. In this phase, the

complete system is tested i.e. the entire system functionality is tested.

(iv) Acceptance Testing:

Acceptance testing is associated with the Requirement Analysis phase and

is done in the customer‟s environment.

Advantages of V – Model:

 It is a simple and easily understandable model.

 V –model approach is good for smaller projects wherein the

requirement is defined and it freezes in the early stage.

 It is a systematic and disciplined model which results in a high-quality

product.

Disadvantages of V-Model:

 V-shaped model is not good for ongoing projects.

 Requirement change at the later stage would cost too high.

4.20 TEST LEVELS

There are mainly four testing levels are:

i) Unit Testing

ii) Integration Testing

iii) System Testing

iv) Acceptance Testing

Unit Testing:

This type of testing is performed by developers before the setup is handed

over to the testing team to formally execute the test cases. Unit testing is

performed by the respective developers on the individual units of source

code assigned areas. The developers use test data that is different from the

test data of the quality assurance team.

https://www.softwaretestinghelp.com/what-is-integration-testing/
https://www.softwaretestinghelp.com/system-testing/

 155

Challenges in Software

Testing

The goal of unit testing is to isolate each part of the program and show

that individual parts are correct in terms of requirements and functionality.

Limitations of Unit Testing:

Testing cannot catch each and every bug in an application. It is impossible

to evaluate every execution path in every software application. The same

is the case with unit testing.

There is a limit to the number of scenarios and test data that a developer

can use to verify a source code. After having exhausted all the options,

there is no choice but to stop unit testing and merge the code segment with

other units.

Integration Testing:

Integration testing is defined as the testing of combined parts of an

application to determine if they function correctly. Integration testing can

be done in two ways: Bottom-up integration testing and Top-down

integration testing.

S. No. Integration Testing Method

1 Bottom-up integration:
This testing begins with unit testing, followed by tests of

progressively higher-level combinations of units called

modules or builds.

2 Top-down integration:
In this testing, the highest-level modules are tested first and

progressively, lower-level modules are tested thereafter.

In a comprehensive software development environment, bottom-up testing

is usually done first, followed by top-down testing. The process concludes

with multiple tests of the complete application, preferably in scenarios

designed to mimic actual situations.

System Testing:

System testing tests the system as a whole. Once all the components are

integrated, the application as a whole is tested rigorously to see that it

meets the specified Quality Standards. This type of testing is performed by

a specialized testing team.

System testing is important because of the following reasons:

 System testing is the first step in the Software Development Life

Cycle, where the application is tested as a whole.

 The application is tested thoroughly to verify that it meets the

functional and technical specifications.

 156

Software Quality

Assurance

 The application is tested in an environment that is very close to the

production environment where the application will be deployed.

 System testing enables us to test, verify, and validate both the

business requirements as well as the application architecture.

Regression Testing:

Whenever a change in a software application is made, it is quite possible

that other areas within the application have been affected by this change.

Regression testing is performed to verify that a fixed bug hasn't resulted in

another functionality or business rule violation. The intent of regression

testing is to ensure that a change, such as a bug fix should not result in

another fault being uncovered in the application.

Regression testing is important because of the following reasons:

 Minimize the gaps in testing when an application with changes made

has to be tested.

 Testing the new changes to verify that the changes made did not affect

any other area of the application.

 Mitigates risks when regression testing is performed on the

application.

 Test coverage is increased without compromising timelines.

 Increase speed to market the product.

Acceptance Testing:

This is arguably the most important type of testing, as it is conducted by

the Quality Assurance Team who will gauge whether the application

meets the intended specifications and satisfies the client‟s requirement.

The QA team will have a set of pre-written scenarios and test cases that

will be used to test the application.

More ideas will be shared about the application and more tests can be

performed on it to gauge its accuracy and the reasons why the project was

initiated. Acceptance tests are not only intended to point out simple

spelling mistakes, cosmetic errors, or interface gaps, but also to point out

any bugs in the application that will result in system crashes or major

errors in the application.

By performing acceptance tests on an application, the testing team will

reduce how the application will perform in production. There are also

legal and contractual requirements for acceptance of the system.

Alpha Testing:

This test is the first stage of testing and will be performed amongst the

teams (developer and QA teams). Unit testing, integration testing and

 157

Challenges in Software

Testing

system testing when combined together is known as alpha testing. During

this phase, the following aspects will be tested in the application −

 Spelling Mistakes

 Broken Links

 Cloudy Directions

 The Application will be tested on machines with the lowest

specification to test loading times and any latency problems.

Beta Testing:

This test is performed after alpha testing has been successfully performed.

In beta testing, a sample of the intended audience tests the application.

Beta testing is also known as pre-release testing. Beta test versions of

software are ideally distributed to a wide audience on the Web, partly to

give the program a "real-world" test and partly to provide a preview of the

next release. In this phase, the audience will be testing the following −

 Users will install, run the application and send their feedback to the

project team.

 Typographical errors, confusing application flow, and even crashes.

 Getting the feedback, the project team can fix the problems before

releasing the software to the actual users.

 The more issues you fix that solve real user problems, the higher the

quality of your application will be.

 Having a higher-quality application when you release it to the general

public will increase customer satisfaction.

4.21 TEST TYPES

A test type is a group of test activities aimed at testing specific

characteristics of a software system, or a part of a system, based on

specific test objectives. Such objectives may include:

Evaluating functional quality characteristics, such as completeness,

correctness, and appropriateness

Evaluating non-functional quality characteristics, such as reliability,

performance efficiency, security, compatibility, and usability

Evaluating whether the structure or architecture of the component or

system is correct, complete, and as specified

Evaluating the effects of changes, such as confirming that defects have

been fixed (confirmation testing) and looking for unintended changes in

behavior resulting from software or environment changes (regression

testing)

 158

Software Quality

Assurance

i) Functional Testing:

Functional testing of a system involves tests that evaluate functions that

the system should perform. Functional requirements may be described in

work products such as business requirements specifications, epics, user

stories, use cases, or functional specifications, or they may be

undocumented. The functions are “what” the system should do.

Functional tests should be performed at all test levels. Functional testing

considers the behavior of the software

ii) Non-functional Testing:

Non-functional testing of a system evaluates characteristics of systems and

software such as usability, performance efficiency or security. Non-

functional testing is the testing of “how well” the system behaves. Non-

functional testing can and often should be performed at all test levels, and

done as early as possible. The late discovery of non-functional defects can

be extremely dangerous to the success of a project.

 iii) Structural Testing:

Structural Testing derives tests based on the system‟s internal structure or

implementation. Internal structure may include code, architecture, work

flows, and/or data flows within the system.

iv) Change-related Testing:

When changes are made to a system, either to correct a defect or because

of new or changing functionality, testing should be done to confirm that

the changes have corrected the defect or implemented the functionality

correctly, and have not caused any unforeseen adverse consequences.

Confirmation Testing:

After a defect is fixed, the software may be tested with all test cases that

failed due to the defect, which should be re-executed on the new software

version.

Regression Testing:

It is possible that a change made in one part of the code, whether a fix or

another type of change, may accidentally affect the behavior of other parts

of the code, whether within the same component, in other components of

the same system, or even in other systems.

Changes may include changes to the environment, such as a new version

of an operating system or database management system. Such unintended

side-effects are called regressions.

Regression testing involves running tests to detect such unintended side

effects. Confirmation testing and regression testing are performed at all

test levels.

 159

Challenges in Software

Testing

Regression test suites are run many times and generally evolve slowly, so

regression testing is a strong candidate for automation. Automation of

these tests should start early in the project.

4.22 TARGETS OF TESTING

The main goal of software testing is to find bugs as early as possible and

fix bugs and make sure that the software is bug-free. The goals of

software testing may be classified into three major categories as follows:

1. Immediate Goals

2. Long-term Goals

3. Post-Implementation Goals

1. Immediate Goals:

These objectives are the direct outcomes of testing. These objectives

may be set at any time during the SDLC process. Some of these are

covered in detail below:

 Bug Discovery: This is the immediate goal of software testing to

find errors at any stage of software development. The number of

https://www.geeksforgeeks.org/software-testing-basics/

 160

Software Quality

Assurance

bugs is discovered in the early stage of testing. The primary purpose

of software testing is to detect flaws at any step of the development

process. The higher the number of issues detected at an early stage,

the higher the software testing success rate.

 Bug Prevention: This is the immediate action of bug discovery, that

occurs as a result of bug discovery. Everyone in the software

development team learns how to code from the behavior and

analysis of issues detected, ensuring that bugs are not duplicated in

subsequent phases or future projects.

2. Long-Term Goals:

These objectives have an impact on product quality in the long run after

one cycle of the SDLC is completed. Some of these are covered in detail

below:

 Quality: This goal enhances the quality of the software product.

Because software is also a product, the user‟s priority is its quality.

Superior quality is ensured by thorough testing. Correctness,

integrity, efficiency, and reliability are all aspects that influence

quality. To attain quality, you must achieve all of the above-

mentioned quality characteristics.

 Customer Satisfaction: This goal verifies the customer‟s

satisfaction with a developed software product. The primary purpose

of software testing, from the user‟s standpoint, is customer

satisfaction. Testing should be extensive and thorough if we want

the client and customer to be happy with the software product.

 Reliability: It is a matter of confidence that the software will not

fail. In short, reliability means gaining the confidence of the

customers by providing them with a quality product.

 Risk Management: Risk is the probability of occurrence of

uncertain events in the organization and the potential loss that could

result in negative consequences. Risk management must be done to

reduce the failure of the product and to manage risk in different

situations.

3. Post Implemented Goals:

After the product is released, these objectives become critical. Some of

these are covered in detail below:

 Reduce Maintenance Cost: Post-released errors are costlier to fix

and difficult to identify. Because effective software does not wear

out, the maintenance cost of any software product is not the same as

the physical cost. The failure of a software product due to faults is

the only expense of maintenance. Because they are difficult to

discover, post-release mistakes always cost more to rectify. As a

result, if testing is done thoroughly and effectively, the risk of

failure is lowered, and maintenance costs are reduced as a result.

 161

Challenges in Software

Testing

 Improved Software Testing Process: These goals improve the

testing process for future use or software projects. These goals are

known as post-implementation goals. A project‟s testing procedure

may not be completely successful, and there may be room for

improvement. As a result, the bug history and post-implementation

results can be evaluated to identify stumbling blocks in the current

testing process that can be avoided in future projects.

4.23 MAINTENANCE TESTING

Maintenance Testing is also known as post-release software testing. This

is a type of software testing that takes place when the software has been

released into production and any changes have been made to fix bugs or

add new features to the existing system.

Maintenance Testing provides feedback on how well the latest release is

working in real life, whether it solves the problems identified by pre-

release testing. This also helps developers find any new bugs that may

have been introduced by the corrective and emergency changes in

development, and it ensures that these don‟t break functionality with

other parts of a system. This testing is performed at no cost to clients

who contract for post-release updates or maintenance support from

software vendors.

This can be performed at any time after release: it doesn‟t have to wait

until another major version update or has been released.

Maintenance Testing is performed by the same team of testers who

perform Pre-release testing to already deployed software, and it usually

requires a similar level of skills from the tester as well.

This can also be used to test new releases of a software product that has

not yet been released to the existing system before any major changes are

made and without the need for an expensive re-testing phase.

Maintenance Testing often takes place on local servers or in an

operational environment in an effort to mimic production environments

more accurately and for long periods of time with high usage rates.

Maintenance Testers also often have to perform regression testing, which

means they may need to retest features and existing operational system

parts of the software that were already tested before a new release.

It is usually provided for free by vendors who offer post-release updates

or maintenance support contracts in order for their customers to identify

bugs quickly when system changes are made in the existing software.

Maintenance Testing is also often used by SMEs who want to release

their products more quickly than would be possible with traditional

testing.

Why Maintenance Testing is required in Software Testing?

Maintenance Testing is required for a few reasons.

https://www.softwaretestingo.com/software-testing/

 162

Software Quality

Assurance

 It‟s a good idea to do Maintenance Testing before major changes are

made to existing software and without the need for an expensive re-

testing phase.

 It ensures that changes made during post-release development are not

causing problems with other parts of the system, which can be hard

to detect before release without enough hours spent in regression

testing.

 In regression testing, testers retest features and parts of the software

that were already tested before a new release.

 Bug fixes won‟t work properly if they conflict with new features

introduced by the new release.

 This is done by the same team of testers who performed Pre-release

testing, and it usually requires a similar level of skills from the tester

as well for these reasons.

 It is usually provided for free by vendors who offer post-release

updates or maintenance support contracts in order for their customers

to identify bugs quickly when system changes are made.

I hope you found this post about Why Should You Do Maintenance

Testing interesting! If so, please sign up for my newsletter to receive

notifications of future posts.

Types of Maintenance Testing:

When the maintenance testers are validating the application, they need to

consider two things. Based on the test types

 Confirmation Testing: On this confirmation maintenance testing,

the Testers or QA have to mainly focus on the modified

functionalities. They have to verify every aspect of the application is

working as it should be.

 Regression Testing: Testing the existing functionality to ensure that

it is not broken or degraded by the new functionality.

Benefits of maintenance testing:

By doing regression maintenance testing it helps catch bugs before the

pre-release stage, ensuring major changes in development don‟t break

other parts of the system without regression maintenance testing, and it

ensures bug fixes work properly with new features.

Risks of not doing Maintenance testing:

When not testing changes before release they can break other parts of the

system, bug fixes won‟t work properly with new features introduced in

new releases, and will require more time to fix them if regression

maintenance testing was done.

https://en.wikipedia.org/wiki/Software

 163

Challenges in Software

Testing

in simple words, If it is not done, bugs will be missed and the fixes won‟t

work with new features.

4.24 TESTING TIPS

Customer pays for a product on the basis of the value he finds in acquiring

such product. Cost of development and cost of testing define the profit

available to an organization by selling such product project. Market forces

define the sales price of the product project. There is always a pressure on

development and testing to reduce the cost to improve profitability. The

following list may be considered as a generic guideline for reducing com

of testing or improving the value of a product.

Reduce Software Development Risk:

Development activities may introduce several risks starting from

requirement capturing, through design and development, coding and so on.

Software testing must be effective to locate the defects as early as possible

so that stage contamination can be reduced.

Perform Testing Effectively:

Testing must be able to capture defects as effectively and efficiently as

possible. It must give adequate confidence to users that application will

not meet any accidental failures. It must be able to find as many defects as

possible, so that they will be fixed eventually and probability of failure at

customer place is minimised.

Uncover Maximum Number of Defects:

Each defect uncovered must reduce a chance of customer complaint. If

testing can find 100% defects present in the given software, it will not be

possible for customer to see any failure during use. Though it is very

difficult, one must try to find all conceivable defects. Successful tester is

one who finds maximum number of defects.

Use Business Logic:

Testers must have a good knowledge about the domain under testing. This

is true for system testers where it is expected that they would be working

as normal users. They must use business logic to improve efficiency and

effectiveness of testing, and also testing must give enough confidence to

users that there will not be any accidental failures.

Testing Must Occur Throughout SDLC:

Defect found as early as possible can reduce cost of failure by preventing

stage contamination. Testing concentrating more on system testing may

not be very effective as software developed may be very fragile.

 164

Software Quality

Assurance

Testing Must Cover Functional/Structural Parts:

Often, people consider functional testing as a complete testing. One must

keep in mind that there are five types of requirements mentioned by

„TELOS‟ (Technical Economic Legal Operational System). Only

operational requirements may cover functional as well as non-functional

requirements. It must also cover the way software is built to give better

screen designs, optimum performance, and security.

4.25 SUMMARY

This chapter presents the definitions of a successful tester and the basic

principles of software testing. It offers a detailed exposition of the process

of creating test policy, test strategy, and test plan. It also gives an in depth

understanding of „Black Box Testing‟, „White Box Testing‟ and „Gray

Box Testing‟. The chapter concludes with skills required by a good tester

and challenges faced by a tester.

4.26 EXERCISES

1) Explain the concept of test team's defect finding efficiency.

2) Explain test case's defect finding efficiency.

3) What are the challenges faced by testers?

4) Explain the process of developing test strategy.

5) Explain the process of developing test methodology.

6) Which skills are expected in a good tester?

4.27 REFERENCES

 Software Testing and Continuous Quality Improvement by William E.

Lewis CRC Press Third 2016.

 Software Testing: Principles, Techniques and Tools M. G. Limaye

TMH 2017.

 Foundations of Software Testing Dorothy Graham, Erik van

Veenendaal, Isabel Evans, and Rex Black Cengage Learning 3 rd.

 Software Testing: A Craftsman‟s Approach Paul C. Jorgenson CRC

Press 4th 2017.

 https://www.softwaretestinghelp.com/writing-test-strategy-document-

template/

 https://www.softwaretestinghelp.com/10-qualities-that-can-make-you-

a-good-tester/

 165

UNIT - III

5
UNIT TESTING: BOUNDARY VALUE

TESTING, EQUIVALENCE CLASS

TESTING

Unit Structure

5.0 Objectives

5.1 How does software testing work?

5.1.1 Importance of Software Testing

5.1.2 What are the categories of test design techniques?

5.1.3 Types of Dynamic Testing

5.2 Black box testing

5.2.1 Generic steps of black box testing

5.2.2 Test procedure

5.2.3 Types of Black Box Testing

5.2.4 Techniques Used in Black Box Testing

5.3 Boundary value testing

5.4 Normal Boundary Value Testing

5.5 Robust Boundary Value Testing

5.6 Worst-Case Boundary Value Testing

5.7 Special Value Testing

5.8 Random Testing

5.9 Guidelines for Boundary Value Testing

5.10 Equivalence Class Testing

5.11 Traditional Equivalence Class testing

5.12 Improved Equivalence Class testing

5.13 Edge Testing

5.14 Guidelines for Equivalence Class Testing and Observation

5.15 Equivalence Partitioning Example

 Example 1: Grocery Store Example

 Example 2: Equivalence and Boundary Value

 Example 3: Equivalence and Boundary Value

 Examples 3: Input Box should accept the Number 1 to 10

5.16 Why Equivalence & Boundary Analysis Testing

5.17 Summary

5.18 Exercises

5.19 References

 166

Software Quality

Assurance

5.0 OBJECTIVES

This chapter will make the readers understand the following concepts:

 How software works

 Test cases

 Dynamic and Static Testing

 Boundary value Analysis

 Equivalence class portioning

 Examples of Boundary value Analysis

 and Equivalence class portioning

5.1 HOW DOES SOFTWARE TESTING WORK?

Software testing is the process of evaluating and verifying that a software

product or application does what it is supposed to do. The benefits of

testing include preventing bugs, reducing development costs and

improving performance. The process or method of finding error/s in a

software application or program so that the application functions

according to the end user's requirement is called software testing.

Description:

Software testing is the process of verifying a system with the purpose of

identifying any errors, gaps or missing requirement versus the actual

requirement. Software testing is broadly categorised into two types -

functional testing and non-functional testing.

When to start test activities: Testing should be started as early as possible

to reduce the cost and time to rework and produce software that is bug-

free so that it can be delivered to the client. However, in Software

Development Life Cycle (SDLC), testing can be started from the

Requirements Gathering phase and continued till the software is out there

in productions. It also depends on the development model that is being

used. For example, in the Waterfall model, testing starts from the testing

phase which is quite below in the tree,; but in the V-model, testing is

performed parallel to the development phase.

5.1.1 Importance of Software Testing:

Few can argue against the need for quality control when developing

software. Late delivery or software defects can damage a brand‘s

reputation - leading to frustrated and lost customers. In extreme cases, a

bug or defect can degrade interconnected systems or cause serious

malfunctions.

 167

Unit Testing: Boundary

Value Testing, Equivalence

Testing

Consider Nissan having to recall over 1 million cars due to a software

defect in the airbag sensor detectors. Or a software bug that caused the

failure of a USD 1.2 billion military satellite launch. 2

The numbers speak

for themselves. Software failures in the US cost the economy USD 1.1

trillion in assets in 2016. What‘s more, they impacted 4.4 billion

customers. 3

Though testing itself costs money, companies can save millions per year in

development and support if they have a good testing technique and QA

processes in place. Early software testing uncovers problems before a

product goes to market. The sooner development teams receive test

feedback, the sooner they can address issues such as:

 Architectural flaws

 Poor design decisions

 Invalid or incorrect functionality

 Security vulnerabilities

 Scalability issues

When development leaves ample room for testing, it improves software

reliability and high-quality applications are delivered with few errors. A

system that meets or even exceeds customer expectations leads to

potentially more sales and greater market share.

5.1.2 What Are The Categories of Test Design Techniques?

A test design technique basically helps us to select a good set of tests from

the total number of all possible tests for a given system. There are many

different types of software testing technique, each with its own strengths

and weaknesses. Each individual technique is good at finding particular

types of defect and relatively poor at finding other types.

For example, a technique that explores the upper and lower limits of a

single input range is more likely to find boundary value defects than

defects associated with combinations of inputs. Similarly, testing

performed at different stages in the software development life cycle will

find different types of defects; component testing is more likely to find

coding logic defects than system design defects.

Each testing technique falls into one of a number of different categories.

Broadly speaking there are two main categories:

1. Static technique

2. Dynamic technique

 Specification-based (black-box, also known as behavioral techniques)

https://www.ibm.com/in-en/topics/software-testing#citation2
https://www.ibm.com/in-en/topics/software-testing#citation3

 168

Software Quality

Assurance

 Structure-based (white-box or structural techniques)

 Experience- based

Dynamic techniques are subdivided into three more categories:

specification-based (black-box, also known as behavioral techniques),

structure-based (white-box or structural techniques) and experience-

based. Specification-based techniques include both functional and

nonfunctional techniques (i.e. quality characteristics).

Dynamic Testing is a software testing method used to test the dynamic

behaviour of software code. The main purpose of dynamic testing is to test

software behaviour with dynamic variables or variables which are not

constant and finding weak areas in software runtime environment. The

code must be executed in order to test the dynamic behaviour.

We all know that Testing is verification and validation, and it takes 2 Vs

to make testing complete. Out of the 2 Vs, Verification is called a Static

testing and the other ―V‖, Validation is known as Dynamic testing.

Let’s understand How to do Dynamic Testing with an example:

Suppose we are testing a Login Page where we have two fields say

―Username‖ and ―Password‖ and the Username is restricted to

Alphanumeric.

When the user enters Username as ―Guru99‖, the system accepts the same.

whereas when the user enters as Guru99@123 then the application throws

an error message. This result shows that the code is acting

dynamically based on the user input.

Dynamic testing is when you are working with the actual system by

providing an input and comparing the actual behaviour of the application

to the expected behaviour. In other words, working with the system with

the intent of finding errors.

So based on the above statements we can say or conclude that dynamic

testing is a process of validating software applications as an end user

under different environments to build the right software.

5.1.3 Types of Dynamic Testing:

Dynamic Testing is classified into two categories:

 White Box Testing

 Black Box Testing

The below pictorial representation gives us an idea about types of

Dynamic Testing, Levels of Testing, etc.

 169

Unit Testing: Boundary

Value Testing, Equivalence

Testing

What is Static testing technique?

 Static testing is the testing of the software work products manually, or

with a set of tools, but they are not executed.

 It starts early in the Life cycle and so it is done during the verification

process.

 It does not need computer as the testing of program is done without

executing the program. For example: reviewing, walk through,

inspection, etc.

 Most static testing techniques can be used to ‗test‘ any form of

document including source code, design documents and models,

functional specifications and requirement specifications.

What is Dynamic testing technique?

 This testing technique needs computer for testing.

 It is done during Validation process.

 The software is tested by executing it on computer. Ex: Unit testing,

integration testing, and system testing.

5.2 BLACK BOX TESTING

Black box testing is a technique of software testing which examines the

functionality of software without peering into its internal structure or

coding. The primary source of black box testing is a specification of

requirements that is stated by the customer.

 170

Software Quality

Assurance

In this method, tester selects a function and gives input value to examine

its functionality, and checks whether the function is giving expected

output or not. If the function produces correct output, then it is passed in

testing, otherwise failed. The test team reports the result to the

development team and then tests the next function. After completing

testing of all functions if there are severe problems, then it is given back to

the development team for correction.

5.2.1 Generic Steps of Black Box Testing:

 The black box test is based on the specification of requirements, so it

is examined in the beginning.

 In the second step, the tester creates a positive test scenario and an

adverse test scenario by selecting valid and invalid input values to

check that the software is processing them correctly or incorrectly.

 In the third step, the tester develops various test cases such as decision

table, all pairs test, equivalent division, error estimation, cause-effect

graph, etc.

 The fourth phase includes the execution of all test cases.

 In the fifth step, the tester compares the expected output against the

actual output.

 In the sixth and final step, if there is any flaw in the software, then it

is cured and tested again.

5.2.2 Test Procedure:

The test procedure of black box testing is a kind of process in which the

tester has specific knowledge about the software's work, and it develops

test cases to check the accuracy of the software's functionality.

It does not require programming knowledge of the software. All test cases

are designed by considering the input and output of a particular function.

A tester knows about the definite output of a particular input, but not about

how the result is arising. There are various techniques used in black box

testing for testing like decision table technique, boundary value analysis

technique, state transition, All-pair testing, cause-effect graph technique,

equivalence partitioning technique, error guessing technique, use case

technique and user story technique.

 171

Unit Testing: Boundary

Value Testing, Equivalence

Testing

Test cases:

Test cases are created considering the specification of the requirements.

These test cases are generally created from working descriptions of the

software including requirements, design parameters, and other

specifications. For the testing, the test designer selects both positive test

scenario by taking valid input values and adverse test scenario by taking

invalid input values to determine the correct output. Test cases are mainly

designed for functional testing but can also be used for non-functional

testing. Test cases are designed by the testing team; there is not any

involvement of the development team of software.

5.2.3 Types Of Black Box Testing:

There are many types of Black Box Testing but the following are the

prominent ones:

Functional testing:

This black box testing type is related to the functional requirements of a

system; it is done by software testers.

Non-functional testing:

This type of black box testing is not related to testing of specific

functionality, but non-functional requirements such as performance,

scalability, usability.

Regression testing:

Regression Testing is done after code fixes, upgrades or any other system

maintenance to check the new code has not affected the existing code.

Tools used for Black Box Testing:

Tools used for Black box testing largely depend on the type of black box

testing you are doing.

 For Functional/ Regression Tests you can use – QTP, Selenium

 For Non-Functional Tests, you can use – LoadRunner, Jmeter

5.2.4 TECHNIQUES USED IN BLACK BOX TESTING

Decision

Table

Technique

Decision Table Technique is a systematic approach

where various input combinations and their respective

system behavior are captured in a tabular form. It is

appropriate for the functions that have a logical

relationship between two and more than two inputs.

Boundary

Value

Technique

Boundary Value Technique is used to test boundary

values, boundary values are those that contain the upper

and lower limit of a variable. It tests, while entering

https://www.guru99.com/regression-testing.html
https://www.guru99.com/quick-test-professional-qtp-tutorial.html
https://www.guru99.com/selenium-tutorial.html
https://www.guru99.com/loadrunner-v12-tutorials.html
https://www.guru99.com/jmeter-tutorials.html
https://www.javatpoint.com/decision-table-technique-in-black-box-testing
https://www.javatpoint.com/decision-table-technique-in-black-box-testing
https://www.javatpoint.com/decision-table-technique-in-black-box-testing
https://www.javatpoint.com/boundary-value-analysis-in-black-box-testing
https://www.javatpoint.com/boundary-value-analysis-in-black-box-testing
https://www.javatpoint.com/boundary-value-analysis-in-black-box-testing

 172

Software Quality

Assurance

boundary value whether the software is producing

correct output or not.

State

Transition

Technique

State Transition Technique is used to capture the

behavior of the software application when different

input values are given to the same function. This applies

to those types of applications that provide the specific

number of attempts to access the application.

All-pair

Testing

Technique

All-pair testing Technique is used to test all the possible

discrete combinations of values. This combinational

method is used for testing the application that uses

checkbox input, radio button input, list box, text box,

etc.

Cause-

Effect

Technique

Cause-Effect Technique underlines the relationship

between a given result and all the factors affecting the

result. It is based on a collection of requirements.

Equivalence

Partitioning

Technique

Equivalence partitioning is a technique of software

testing in which input data divided into partitions of

valid and invalid values, and it is mandatory that all

partitions must exhibit the same behavior.

Error

Guessing

Technique

Error guessing is a technique in which there is no

specific method for identifying the error. It is based on

the experience of the test analyst, where the tester uses

the experience to guess the problematic areas of the

software.

Use Case

Technique

Use case Technique used to identify the test cases from

the beginning to the end of the system as per the usage

of the system. By using this technique, the test team

creates a test scenario that can exercise the entire

software based on the functionality of each function

from start to end.

Practically, due to time and budget considerations, it is not possible to

perform exhausting testing for each set of test data, especially when there

is a large pool of input combinations.

 We need an easy way or special techniques that can select test cases

intelligently from the pool of test-case, such that all test scenarios are

covered.

 We use techniques such as – Equivalence Partitioning & Boundary

Value Analysis testing, Decision table-based testing, path testing,

Data flow testing techniques to achieve this.

https://www.javatpoint.com/state-transition-technique-in-black-box-testing
https://www.javatpoint.com/state-transition-technique-in-black-box-testing
https://www.javatpoint.com/state-transition-technique-in-black-box-testing
https://www.javatpoint.com/all-pairs-testing-technique-in-black-box-testing
https://www.javatpoint.com/all-pairs-testing-technique-in-black-box-testing
https://www.javatpoint.com/all-pairs-testing-technique-in-black-box-testing
https://www.javatpoint.com/cause-and-effect-graph-technique-in-black-box-testing
https://www.javatpoint.com/cause-and-effect-graph-technique-in-black-box-testing
https://www.javatpoint.com/cause-and-effect-graph-technique-in-black-box-testing
https://www.javatpoint.com/equivalence-partitioning-technique-in-black-box-testing
https://www.javatpoint.com/equivalence-partitioning-technique-in-black-box-testing
https://www.javatpoint.com/equivalence-partitioning-technique-in-black-box-testing
https://www.javatpoint.com/error-guessing-technique-in-black-box-testing
https://www.javatpoint.com/error-guessing-technique-in-black-box-testing
https://www.javatpoint.com/error-guessing-technique-in-black-box-testing
https://www.javatpoint.com/use-case-technique-in-black-box-testing
https://www.javatpoint.com/use-case-technique-in-black-box-testing

 173

Unit Testing: Boundary

Value Testing, Equivalence

Testing

5.3 BOUNDARY VALUE TESTING

Boundary value analysis is a software testing technique in which tests are

designed to include representatives of boundary values. The idea comes

from the Boundary (topology).

A greater number of errors occur at the boundaries of the input domain

rather than in the "center"

Boundary value analysis is a test case design method that complements

equivalence partitioning

It selects test cases at the edges of a class

It derives test cases from both the input domain and output domain

Boundary testing is the process of testing between extreme ends or

boundaries between partitions of the input values.

 So these extreme ends like Start- End, Lower- Upper, Maximum-

Minimum, Just Inside-Just Outside values are called boundary values

and the testing is called ―boundary testing‖.

Advantages of Boundary Value Testing:

The BVA technique of testing is quite easy to use and remember because

of the uniformity of identified tests and the automated nature of this

technique.

One can easily control the expenses made on the testing by controlling the

number of identified test cases. This can be done with respect to the

demand of the software that needs to be tested.

BVA is the best approach in cases where the functionality of a software is

based on numerous variables representing physical quantities.

The technique is best at revealing any potential UI or user input troubles in

the software.

The procedure and guidelines are crystal clear and easy when it comes to

determining the test cases through BVA.

The test cases generated through BVA are very small.

Disadvantages of Boundary Value Testing:

This technique sometimes fails to test all the potential input values. And so,

the results are unsure.

The dependencies with BVA are not tested between two inputs.

This technique doesn‘t fit well when it comes to Boolean Variables.

It only works well with independent variables that depict quantity.

 174

Software Quality

Assurance

Types of Boundary Value Testing:

 Normal Boundary Value Testing

 Robust Boundary Value Testing

 Worst-case Boundary Value Testing

 Robust Worst-case Boundary Value Testing

5.4 NORMAL BOUNDARY VALUE ANALYSIS

Normal Boundary value analysis is a black-box testing technique, closely

associated with equivalence class partitioning. In this technique, we

analyze the behavior of the application with test data residing at the

boundary values of the equivalence classes.

The basic idea in normal boundary value testing is to select input variable

values at their:

1. Minimum

2. Just above the minimum

3. A nominal value

4. Just below the maximum

5. Maximum

5.5 ROBUST BOUNDARY VALUE TESTING

In robustness testing, the software is tested by giving invalid values as

inputs. Robustness testing is usually done to test exception handling.

In robust boundary value testing, we make combinations in such a way

that some of the invalid values are also tested as input.

The type of testing done by causing the software or system to fail in order

to test the robustness is called robustness testing.

Robust Boundary value testing on 3 variables:

Suppose we have 3 variables X, Y and Z to test

 175

Unit Testing: Boundary

Value Testing, Equivalence

Testing

The range of X: 0 to 100

The range of Y: 20 to 60

The range of Z: 80 to 100

Testing points detected in Simple Robust Boundary Value Testing

Test Cases:

Total Test cases =(Number of variables * Number of testing points

without nominal)+ (1 for Nominal)

These testing points are min-, min, min+, max- and max and

max+19=(3*6)+1

We can generate 19 test cases from both variables X, Y, and Z.

 There are a total of 3 variables X, Y and Z

 There are 6 possible values like min-, min, min+, max-, max and

max+

 1 is for nominal

Logic:

When we make test cases, we will fix the nominal value of the two

variables and change the values of the third variable.

For example

 We will fix the nominal values of X and Y and make a combination

of these values with each value of the Z variable.

 Fix nominal values of X and Y are 50,40, and we will compare these

two values with 79, 80,81,90,99,100 and 101.

 We will fix the nominal values of X and Z and will make a

combination of these values with each value of the Y variable.

 Fix nominal values of X and Z are 50, 90, and we will make a

combination of these two values with 19, 20,21,40,59,60 and 61.

 We will fix the nominal values of Y and Z and will make a

combination of these values with each value of the X variable.

 Fix nominal values of Y and Z are 40, 90, and we will make a

combination of these two values with -1, 0,1,50,99,100 and 101.

 176

Software Quality

Assurance

Test cases generated in Robust simple Boundary Value Testing.

Test

Case#
X Y Z Comment

1 50 40 79 Fix Nominal of X and Y

2 50 40 80 Fix Nominal of X and Y

3 50 40 81 Fix Nominal of X and Y

4 50 40 90 Fix Nominal of X and Y

5 50 40 99 Fix Nominal of X and Y

6 50 40 100 Fix Nominal of X and Y

7 50 40 101 Fix Nominal of X and Y

8 50 19 90 Fix Nominal of X and Z

9 50 20 90 Fix Nominal of X and Z

10 50 21 90 Fix Nominal of X and Z

11 50 59 90 Fix Nominal of X and Z

12 50 60 90 Fix Nominal of X and Z

13 50 61 90 Fix Nominal of X and Z

14 -1 40 90 Fix Nominal of Y and Z

15 0 40 90 Fix Nominal of Y and Z

16 1 40 90 Fix Nominal of Y and Z

17 99 40 90 Fix Nominal of Y and Z

18 100 40 90 Fix Nominal of Y and Z

19 101 40 90 Fix Nominal of Y and Z

There are many benefits of robustness testing. Some of the benefits are

mentioned below;

1. Better project analysis:

Robustness testing means to increase the study of what has already been

analyzed about your product. The robustness testing extends the area of

testing of the previously tested software components. Robustness testing

also test invalid values to satisfy the testing level.

2. Better design:

The robustness testing result in more options and better software designs

and it is completed before the finalization of the design of the product.

3. Achieve consistency:

Robustness testing helps to increase the consistency, reliability, accuracy

and efficiency of the software.

5.6 WORST-CASE BOUNDARY VALUE TESTING

Boundary Value analysis uses the critical fault assumption and therefore

only tests for a single variable at a time assuming its extreme values.

By disregarding this assumption, we are able to test the outcome if more

than one variable were to assume its extreme value.

 177

Unit Testing: Boundary

Value Testing, Equivalence

Testing

In an electronic circuit this is called Worst Case Analysis.

In Worst-Case testing we use this idea to create test cases.

To generate test cases, we take the original 5-tuple set (min, min+, nom,

max-, max) and perform the Cartesian product of these values. The end

product is a much larger set of results than we have seen before.

The range of x1: 10 to 90

The range of x2: 20 to 70

Testing points detected in Worst Case Boundary Value Testing:

X1 X2

Min 10 20

Min+ 11 21

Nominal 50 45

Max- 89 69

Max 90 70

Test cases:

Total test cases = A*A

25 = 5*5

A= Number of testing points.

These testing points are min, min+, nominal, max- and max.

We can generate 25 test cases from both variables x1 and x2 by making a

combination of each value of one variable with each value of another

variable.

Test cases generated in Worst Case Boundary Value Testing:

Test

Case#
X1,X2

Test

Case #
X1,X2

Test

Case #
X1,X2

1 10,20 2 10,21 3 10,45

4 10,69 5 10,70 6 11,20

7 11,21 8 11,45 9 11,69

10 11,70 11 50,20 12 50,21

13 50,45 14 50,69 15 50,70

16 89,20 17 89,21 18 89,45

19 89,69 20 89,70 21 90,20

22 90,21 23 90,45 24 90,69

25 90,70

These 25 test cases are enough test cases to test the input values for these

variables.

 178

Software Quality

Assurance

5.7 SPECIAL VALUE TESTING

Special Value is defined and applied form of Functional Testing, which is a

type of testing that verifies whether each function of the software

application operates in conformance with the required specification.

Special value testing is probably the most extensively practiced form of

functional testing which is most intuitive and least uniform.

This technique is performed by experienced professionals who are experts

in this field and have profound knowledge about the test and data required

for it.

They continuously participate and apply tremendous efforts to deliver

appropriate test results to suit the client‘s requested demand.

Why Special Value Testing:

The testing executed by Special Value Testing technique is based on past

experiences, which validates that no bugs or defects are left undetected.

The testers are extremely knowledgeable about the industry and use this

information while performing Special Value Testing.

Another benefits of opting Special Value Testing technique is that it is ad-

hoc in nature

There are no guidelines used by the testers other that their ―Best

engineering judgment‖.

The most important aspect of this testing is that, it has had some very

valuable inputs and success in finding bugs and errors while testing a

software.

5.8 RANDOM TESTING

Random testing is a black-box software testing technique where programs

are tested by generating random, independent inputs.

Results of the output are compared against software specifications to verify

that the test output is pass or fail.

In case of absence of specifications, the exceptions of the language are used

which means if an exception arises during test execution, then it means

there is a fault in the program, it is also used as way to avoid biased testing.

Random testing is performed where the defects are NOT identified in

regular intervals.

Random input is used to test the system's reliability and performance.

Saves time and effort than actual test efforts.

 179

Unit Testing: Boundary

Value Testing, Equivalence

Testing

Monkey Testing:

Monkey testing is a software testing technique in which the testing is

performed on the system under test randomly.

In Monkey Testing the tester (sometimes developer too) is considered as the

'Monkey'.

If a monkey uses a computer, he will randomly perform any task on the

system out of his understanding.

Just like the tester will apply random test cases on the system under test to

find bugs/errors without predefining any test case.

In some cases, Monkey Testing is dedicated to unit testing

This testing is so random that the tester may not be able to reproduce the

error/defect.

The scenario may NOT be definable and may NOT be the correct business

case.

Monkey Testing needs testers with very good domain and technical

expertise.

The Advantage of Monkey Testing:

As the scenarios that are tested are adhoc, system might be under stress so

that we can also check for the server responses.

This testing is adopted to complete the testing, in particular if there is a

resource/time crunch.

The Disadvantage of Monkey Testing:

No bug can be reproduced: As tester performs tests randomly with random

data reproducing any bug or error may not be possible.

Less Accuracy: Tester cannot define exact test scenario and even cannot

guarantee the accuracy of test cases.

Requires very good technical expertise: It is not worth always to

compromise with accuracy, so to make test cases more accurate testers must

have good technical knowledge of the domain.

Fewer bugs and time consuming: This testing can go longer as there is no

predefined tests and can find less number of bugs which may cause

loopholes in the system.

5.9 GUIDELINES FOR BOUNDARY VALUE ANALYSIS

There are three guidelines for boundary value analysis:

1. One test case for exact boundary values of input domains.

 180

Software Quality

Assurance

2. One test case for just below boundary value of input domains .

3. One test case for just above boundary values of input domains .

Some examples of Boundary value analysis concept are:

One test case for exact boundary values of input domains each means 1

and 100

One test case for just below boundary value of input domains each means

0 and 99.

One test case for just above boundary values of input domains each means

2 and 101.

For Example: A system can accept the numbers from 1 to 10 numeric

values. All other numbers are invalid values. Under this technique,

boundary values 0, 1,2, 9,10,11 can be tested.

Another Example is in exam has a pass boundary at 40 percent, merit at 75

percent and distinction at 85 percent. The Valid Boundary values for this

scenario will be as follows:

49, 50 - for pass

74, 75 - for merit

84, 85 - for distinction

Boundary values are validated against both the valid boundaries and

invalid boundaries.

The Invalid Boundary Cases for the above example can be given as

follows:

0 - for lower limit boundary value

101 - for upper limit boundary value

Boundary value analysis is a black box testing and is also applies to white

box testing.

Internal data structures like arrays, stacks and queues need to be checked

for boundary or limit conditions; when there are linked lists used as

internal structures, the behavior of the list at the beginning and end have to

be tested thoroughly.

Boundary value analysis help identify the test cases that are most likely to

uncover defects.

5.10 EQUIVLANCE CLASS TESTING

Equivalence class testing is better known as Equivalence Class

Partitioning and Equivalence Partitioning. This is a renowned testing

approach among all other software testing techniques in the market that

 181

Unit Testing: Boundary

Value Testing, Equivalence

Testing

allows the testing team to develop and partition the input data for

analyzing and testing and based on that the software products are

partitioned and divided into number of equivalence classes for testing.

 The equivalence classes that are divided perform the same operation

and produce same characteristics or behavior of the inputs provided.

 The test cases are created on the basis on the different attributes of the

classes and each input from the each class is used for execution of test

cases, validating the software functions and moreover validating the

working principles of the software products for the inputs that are

given for the respective classes.

 It is also referred as the logical step in functional testing model

approach that enhances the quality of test classes and by removing

any redundancy or faults that can exist in the testing approach.

Types of Equivalence Class Testing:

Following four types of equivalence class testing are presented here:

1) Weak Normal Equivalence Class Testing.

2) Strong Normal Equivalence Class Testing.

3) Weak Robust Equivalence Class Testing.

4) Strong Robust Equivalence Class Testing.

1) Weak Normal Equivalence Class Testing:

The word ‗weak‘ means ‗single fault assumption‘. This type of testing is

accomplished by using one variable from each equivalence class in a test

case. We would, thus, end up with the weak equivalence class test cases as

shown in the following figure.

 182

Software Quality

Assurance

Each dot in above graph indicates a test data. From each class we have one

dot meaning that there is one representative element of each test case. In

fact, we will have, always, the same number of weak equivalence class

test cases as the classes in the partition.

2) Strong Normal Equivalence Class Testing:

This type of testing is based on the multiple fault assumption theory. So,

now we need test cases from each element of the Cartesian product of the

equivalence classes, as shown in the following figure.

Just like we have truth tables in digital logic, we have similarities between

these truth tables and our pattern of test cases. The Cartesian product

guarantees that we have a notion of ―completeness‖ in following two ways

a) We cover all equivalence classes.

b) We have one of each possible combination of inputs.

3) Weak Robust Equivalence Class Testing:

The name for this form of testing is counter intuitive and oxymoronic. The

word‘ weak‘ means single fault assumption theory and the word ‗Robust‘

refers to invalid values. The test cases resulting from this strategy are

shown in the following figure.

 183

Unit Testing: Boundary

Value Testing, Equivalence

Testing

Following two problems occur with robust equivalence testing:

a) Very often the specification does not define what the expected output

for an invalid test case should be. Thus, testers spend a lot of time

defining expected outputs for these cases.

b) Strongly typed languages like Pascal, Ada, eliminate the need for the

consideration of invalid inputs. Traditional equivalence testing is a

product of the time when languages such as FORTRAN, C and

COBOL were dominant. Thus this type of error was quite common.

4) Strong Robust Equivalence Class Testing:

This form of equivalence class testing is neither counter intuitive nor

oxymoronic, but is just redundant. As explained earlier also, ‗robust‘

means consideration of invalid values and the ‗strong‘ means multiple

fault assumption. We obtain the test cases from each element of the

Cartesian product of all the equivalence classes as shown in the following

figure.

 184

Software Quality

Assurance

We find here that we have 8 robust (invalid) test cases and 12 strong or

valid inputs. Each one is represented with a dot. So, totally we have 20 test

cases (represented as 20 dots) using this technique.

5.11 TRADITIONAL EQUIVALENCE CLASS TESTING

Programmer arrogance: – in the 1960s and 1970s, programmers often had

very detailed input data requirements. – if input data didn‘t comply, it was

the user‘s fault – the popular phrase—Garbage In, Garbage Out (GIGO)

Programs from this era soon developed defences – (many of these

programs are STILL legacy software) – as much as 75% of code verified

input formats and values

―Traditional‖ equivalence class testing focuses on detecting invalid input. –

(almost the same as our ―weak robust equivalence class testing‖)

5.12 IMPROVED EQUIVALENCE CLASS TESTING

There are two main properties that underpin the methods used in functional

testing.

These two properties lead to two different types of equivalence class testing,

weak and strong.

However if one decide to test for invalid i/p or o/p as well as valid i/p or o/p

we can produce another two different types of equivalence class testing,

normal and robust.

Robust equivalence class testing takes into consideration the testing of

invalid values, whereas normal does not.

 185

Unit Testing: Boundary

Value Testing, Equivalence

Testing

5.13 EDGE TESTING

A hybrid of BVT and Equivalence Class Testing forms the name ―Edge

Testing.‖

It is used when contiguous ranges of a particular variable constitute

equivalence classes of valid values.

When a programmer makes an error, which results in a defect in the s/w

source code.

If this defect is executed, system will produce wrong results, causing a

failure.

A defect can be called fault or bug.

Once the set of edge values are determined, edge testing can follow any of

the four forms of equivalence class testing

The number of test cases obviously increase as with the variations of BV

and ECT.

5.14 GUIDELINES FOR EQUIVALENCE CLASS

TESTING

The following guidelines are helpful for equivalence class testing:

By following a set of guidelines while implementing the process of

testing, the team of testers can ensure better outputs from the tests and

make sure all scenarios are being tested accurately. Therefore, listed below

are some tips/guidelines for equivalence class testing:

 Use robust forms if the error conditions in the software product are of

high priority.

 It can be used by the team in projects where the program function is

complex.

 To ensure the accuracy and precision of equivalence class testing,

define the input data in terms of intervals and sets of discrete values.

 Use of robust from is redundant of the implemented language is

strongly types and when invalid values cause runtime errors in the

system.

 The team needs to select one valid and one invalid input value each, if

the input conditions are broken or not stated accurately.

 Establishing proper equivalence relation might require several tries

and extra efforts of the team.

https://www.professionalqa.com/test-process
https://www.professionalqa.com/test-process

 186

Software Quality

Assurance

5.15 EQUIVALENCE PARTITIONING EXAMPLE

Example 1 Grocery Store Example:

Consider a software module that is intended to accept the name of a

grocery item and a list of the different sizes the item comes in, specified in

ounc-es. The specifications state that the item name is to be alphabetic

characters 2 to 15 characters in length. Each size may be a value in the

range of 1 to 48, whole numbers only. The sizes are to be entered in

ascending order (smaller sizes first). A maximum of five sizes may be

entered for each item. The item name is to be entered first, followed by a

comma, and then followed by a list of sizes. A comma will be used to

separate each size. Spaces (blanks) are to be ignored anywhere in the

input.

Derived Equivalence Classes:

 Item name is alphabetic (valid)

 Item name is not alphabetic (invalid)

 Item name is less than 2 characters in length (invalid)

 Item name is 2 to 15 characters in length (valid)

 Item name is greater than 15 characters in length (invalid)

 Size value is less than 1 (invalid)

 Size value is in the range 1 to 48 (valid)

 Size value is greater than 48 (invalid)

 Size value is a whole number (valid)

 Size value is a decimal (invalid)

 Size value is numeric (valid)

 Size value includes nonnumeric characters (invalid)

 Size values entered in ascending order (valid)

 Size values entered in no ascending order (invalid)

 No size values entered (invalid)

 One to five size values entered (valid)

 More than five sizes entered (invalid)

 Item name is first (valid)

 Item name is not first (invalid)

 A single comma separates each entry in list (valid)

 A comma does not separate two or more entries in the list (invalid)

 187

Unit Testing: Boundary

Value Testing, Equivalence

Testing

 The entry contains no blanks (???)

 The entry contains blanks (????)

Advantages:

1. The ECT requires less effort when performing one test case for one partition

2. Performing test on one test case for each partition consumes less time.

3. Redundancy is removed by eliminating data that yields similar output.

Disadvantages:

1. If there is any mistake in accurately defining any class or if the value

selected for finding errors does not properly represent a class, then the

errors will be difficult to find.

2. If any class has subclasses, then selecting a value from any one

subclass may not represent each subclass.

Example 2 : Equivalence and Boundary Value:

 Let‘s consider the behavior of Order Pizza Text Box Below

 Pizza values 1 to 10 is considered valid. A success message is shown.

 While value 11 to 99 are considered invalid for order and an error

message will appear, “Only 10 Pizza can be ordered”

Order Pizza:

Here is the test condition:

1. Any Number greater than 10 entered in the Order Pizza field(let say

11) is considered invalid.

2. Any Number less than 1 that is 0 or below, then it is considered

invalid.

3. Numbers 1 to 10 are considered valid

4. Any 3 Digit Number say -100 is invalid.

We cannot test all the possible values because if done, the number of test

cases will be more than 100. To address this problem, we use equivalence

partitioning hypothesis where we divide the possible values of tickets into

groups or sets as shown below where the system behavior can be

considered the same.

 188

Software Quality

Assurance

The divided sets are called Equivalence Partitions or Equivalence Classes.

Then we pick only one value from each partition for testing. The

hypothesis behind this technique is that if one condition/value in a

partition passes all others will also pass. Likewise, if one condition in a

partition fails, all other conditions in that partition will fail.

Boundary Value Analysis: in Boundary Value Analysis, you test

boundaries between equivalence partitions

In our earlier equivalence partitioning example, instead of checking one

value for each partition, you will check the values at the partitions like 0,

1, 10, 11 and so on. As you may observe, you test values at both valid

and invalid boundaries. Boundary Value Analysis is also called range

checking.

Equivalence partitioning and boundary value analysis (BVA) are closely

related and can be used together at all levels of testing.

Example 3: Equivalence and Boundary Value:

Following password field accepts minimum 6 characters and maximum 10

characters

That means results for values in partitions 0-5, 6-10, 11-14 should be

equivalent

 189

Unit Testing: Boundary

Value Testing, Equivalence

Testing

Enter Password:
Submit

Test

Scenario #

Test Scenario Description Expected Outcome

1 Enter 0 to 5 characters in

password field
System should not accept

2
Enter 6 to 10 characters in

password field

System should accept

3
Enter 11 to 14 character in

password field
System should not accept

Examples 3: Input Box should accept the Number 1 to 10:

Here we will see the Boundary Value Test Cases

Test Scenario Description Expected Outcome

Boundary Value = 0 System should NOT accept

Boundary Value = 1 System should accept

Boundary Value = 2 System should accept

Boundary Value = 9 System should accept

Boundary Value = 10 System should accept

Boundary Value = 11 System should NOT accept

5.16 WHY EQUIVALENCE & BOUNDARY ANALYSIS

TESTING

Boundary value analysis and equivalence class testing are two strategies

used for test case designing in black box testing, which makes it crucial

for us to differentiate them from one another and define their specific

relevance in software testing. The differences between these two are:

Equivalence Class Testing Boundary Value Analysis

1. Equivalence Class Testing is

a type of black box technique.

1. Next part of Equivalence Class

Partitioning/Testing.

2. It can be applied to any level

of testing, like unit, integration,

system, and more.

2. Boundary value analysis is

usually a part of stress & negative

testing.

3. A test case design

technique used to divide input

data into different equivalence

classes.

3. This test case design technique

used to test boundary value

between partitions.

https://www.professionalqa.com/stress-testing
https://www.professionalqa.com/negative-testing
https://www.professionalqa.com/negative-testing
https://www.professionalqa.com/test-case-design-techniques
https://www.professionalqa.com/test-case-design-techniques

 190

Software Quality

Assurance

4. Reduces the time of testing,

while using less and effective

test cases.

4. Reduces the overall time of test

execution, while making defect

detection faster & easy.

5. Tests only one from each

partition of the equivalence

classes.

5. Selects test cases from the edges

of the equivalence classes.

5.18 SUMMARY

 Boundary Analysis testing is used when practically it is impossible to

test a large pool of test cases individually

 Two techniques - Boundary value analysis and equivalence

partitioning testing techniques are used

 In Equivalence Partitioning, first, you divide a set of test condition

into a partition that can be considered.

 In Boundary Value Analysis you then test boundaries between

equivalence partitions

 Appropriate for calculation-intensive applications with variables that

represent physical quantities.

 If the range condition is given as an input, then one valid and two

invalid equivalence classes are defined.

 If a specific value is given as input, then one valid and two invalid

equivalence classes are defined.

 If a member of set is given as an input, then one valid and one

invalid equivalence class is defined.

 If Boolean no. is given as an input condition, then one valid and one

invalid equivalence class is defined.

 The whole success of equivalence class testing relies on the

identification of equivalence classes. The identification of these

classes relies on the ability of the testers who creates these classes and

the test cases based on them.

 In the case of complex applications, it is very difficult to identify all

set of equivalence classes and requires a great deal of expertise from

the tester‘s side.

 Incorrectly identified equivalence classes can lead to lesser test

coverage and the possibility of defect leakage.

https://www.professionalqa.com/defect-detection-percentage
https://www.professionalqa.com/defect-detection-percentage

 191

Unit Testing: Boundary

Value Testing, Equivalence

Testing

5.19 EXERCISES

1. Explain Boundary value Analysis?

2. What are important criteria‘s for Boundary value Analysis?

3. Explain Static and Dynamic Testing?

4. Explain different types of Equivalence classes?

5.20 REFERENCES

 The Art of Software Testing, 3rd Edition Author: Glenford J. Myers,

Corey Sandler, Tom Badgett.

 A Practitioner‘s Guide to Software Test Design Author: Lee

Copeland

 Foundations of Software Testing ISTQB Certification

 Software Testing: Principles and Practices pearsons

 192

6
DECISION TABLE BASED TESTING,

PATH TESTING, DATA FLOW TESTING

Unit Structure

6.0 Objectives

6.1 What is a Decision Table

6.1.1 Components of a Decision Table

6.2 What is State transition testing in software testing?

6.3 What is Use case testing in software testing?

6.4 Path Testing

6.4.1 Path Testing Process:

6.4.2 Cyclomatic Complexity

6.4.3 Independent Paths:

6.4.4 Design Test Cases:

6.5 Data Flow Testing

6.5.1 Types of data flow testing

6.5.2 Steps of Data Flow Testing

6.5.3 Types of Data Flow Testing

6.5.4 Data Flow Testing Coverage

6.5.5 Data Flow Testing Strategies

6.5.6 Data Flow Testing Applications

6.6 Conclusion

6.7 Exercise

6.8 References

6.0 OBJECTIVES

 Understand the data flow testing.

 Visualize the decision table

 Understand the need and appreciate the usage of the testing methods.

 Identify the complications in a transaction flow testing method and

anomalies in data flow testing.

 Interpret the data flow anomaly state graphs and control flow grpahs

and represent the state of the data objetcs.

 Understand the limitations of Static analysis in data flow testing.

 Compare and analyze various strategies of data flow testing.

 193

Decision Table Based

Testing, Path Testing, Data

Flow Testing

6.1WHAT IS A DECISION TABLE

 It is a table which shows different combination inputs with their

associated outputs, this is also known as cause effect table. In EP and

BVA we have seen that these techniques can be applied to only specific

conditions or inputs however if we have different inputs which result in

different actions being taken or in other words we have a business rule to

test where there are different combination of inputs which result in

different actions.

For testing such rules or logic decision table testing is used.

It is a black box test design technique.

6.1.1 Components of a Decision Table:

Decision table is divided into four parts:

1. Condition

2. Action

3. Stub

4. Entry

5. rules

Read a Decision Table by columns of rules : R1 says when all conditions

are T, then actions a1, a2, and a5 occur

The conditions in the decision table may take on any number of values.

The decision table allows the iteration of all the combinations of values of

the condition, thus it provides a “completeness check.”

The conditions in the decision table may be interpreted as the inputs, and

the actions may be thought of as outputs. OR conditions needs to be

thought as inputs needed set the conditions, and actions can be processing

Consider a program statement that, given the length of 3 sides, determines

whether the 3 sides can (i) form a triangle and (ii) what type of triangle

(equilateral, isosceles, or scalene).

 194

Software Quality

Assurance

The inputs are a, b, c sides (each between 1 and 200)

Then the inputs must satisfy certain conditions:

a < b + c

b < a + c

c < a + b

Decision table for triangle problem

There is the “invalid situation” --- not a triangle:

There are 3 test conditions in the Decision table

Note the “-” entries, which represents “don‟t care,” when it is determined

that the input sides <a, b, c> do not form a triangle

There is the “valid” triangle situation:

There are 3 types of valid; so there are 23 = 8 potential conditions

But there are 3 “impossible” situations

So there are only 8 – 3 = 5 conditions

So, for valid values of a, b, and c, we need to come up with 8 sets of <a, b,

c> to test the 8 “Rules”.

Decision Table Testing is a good way to deal with combination of

inputs, which produce different results

To understand this with an example let‟s consider the behavior of Flight

Button for different combinations of Fly From & Fly To

 195

Decision Table Based

Testing, Path Testing, Data

Flow Testing

 When both Fly From & Fly To are not set the Flight Icon is disabled.

In the decision table , we register values False for Fly From & Fly To

and the outcome would be ,which is Flights Button will be disabled

i.e. FALSE

 Next , when Fly From is set but Fly to is not set , Flight button is

disabled. Correspondingly you register True for Fly from in the

decision table and rest of the entries are false

 When , Fly from is not set but Fly to is set , Flight button is disabled

And you make entries in the decision table

 Lastly , only when Fly to and Fly from are set , Flights button is

enabled And you make corresponding entry in the decision table

 If you observe the outcomes for Rule 1 , 2 & 3 remain the same .So

you can select any of the them and rule 4 for your testing

 The significance of this technique becomes immediately clear as the

number of inputs increases. .Number of possible Combinations is

given by 2 ^ n , where n is number of Inputs.

 For n = 10 , which is very common is web based testing , having big

input forms , the number of combinations will be 1024. Obviously,

you cannot test all but you will choose a rich sub-set of the possible

combinations using decision based testing

Decision table is based on logical relationships just as the truth table .It is

a tool that helps us look at the “complete” combination of conditions

technique.

Advantages:

1. The decision- table-based testing works iteratively, which means that

if the leading table could not deliver the required result, then the

decision –table-based testing helps to develop a new decision table or

tables.

2. The decision table assures complete testing.

3. The decision table does not provide any particular order of

occurrences of conditions and actions.

Disadvantages:

1. The larger decision tables are required to be divided into smaller

tables to reduce redundancy and increase in complexity.

2. The decision tables are not kept proportional.

 196

Software Quality

Assurance

6.2 WHAT IS STATE TRANSITION TESTING IN

SOFTWARE TESTING?

 State transition testing is used where some aspect of the system can be

described in what is called a „finite state machine‟. This simply means

that the system can be in a (finite) number of different states, and the

transitions from one state to another are determined by the rules of the

„machine‟. This is the model on which the system and the tests are

based.

 Any system where you get a different output for the same input,

depending on what has happened before, is a finite state system.

 A finite state system is often shown as a state diagram (see Figure

4.2).

 One of the advantages of the state transition technique is that the

model can be as detailed or as abstract as you need it to be. Where a

part of the system is more important (that is, requires more testing) a

greater depth of detail can be modeled. Where the system is less

important (requires less testing), the model can use a single state to

signify what would otherwise be a series of different states.

A state transition model has four basic parts:

 The states that the software may occupy (open/closed or

funded/insufficient funds);

 The transitions from one state to another (not all transitions are

allowed);

 The events that cause a transition (closing a file or withdrawing

money);

 The actions that result from a transition (an error message or being

given your cash).

Hence we can see that in any given state, one event can cause only one

action, but that the same event – from a different state – may cause a

different action and a different end state.

For example, if you request to withdraw $100 from a bank ATM, you may

be given cash. Later you may make exactly the same request but it may

refuse to give you the money because of your insufficient balance. This

later refusal is because the state of your bank account has changed from

having sufficient funds to cover the withdrawal to having insufficient

funds. The transaction that caused your account to change its state was

probably the earlier withdrawal. A state diagram can represent a model

from the point of view of the system, the account or the customer.

Let us consider another example of a word processor. If a document is

open, you are able to close it. If no document is open, then „Close‟ is not

available. After you choose „Close‟ once, you cannot choose it again for

 197

Decision Table Based

Testing, Path Testing, Data

Flow Testing

the same document unless you open that document. A document thus has

two states: open and closed.

We will look first at test cases that execute valid state transitions.

Figure 4.2 below, shows an example of entering a Personal Identity

Number (PIN) to a bank account. The states are shown as circles, the

transitions as lines with arrows and the events as the text near the

transitions. (We have not shown the actions explicitly on this diagram, but

they would be a message to the customer saying things such as „Please

enter your PIN‟.)

The state diagram shows seven states but only four possible events (Card

inserted, Enter PIN, PIN OK and PIN not OK). We have not specified all

of the possible transitions here – there would also be a time-out from „wait

for PIN‟ and from the three tries which would go back to the start state

after the time had elapsed and would probably eject the card. There would

also be a transition from the „eat card‟ state back to the start state. We

have not specified all the possible events either – there would be a „cancel‟

option from „wait for PIN‟ and from the three tries, which would also go

back to the start state and eject the card.

In deriving test cases, we may start with a typical scenario:

 First test case here would be the normal situation, where the correct

PIN is entered the first time.

 A second test (to visit every state) would be to enter an incorrect PIN

each time, so that the system eats the card.

 A third test we can do where the PIN was incorrect the first time but

OK the second time, and another test where the PIN was correct on

the third try. These tests are probably less important than the first two.

 Note that a transition does not need to change to a different state

(although all of the transitions shown above do go to a different state).

So there could be a transition from „access account‟ which just goes

back to „access account‟ for an action such as „request balance‟.

http://istqbexamcertification.com/wp-content/uploads/2012/01/State-transition-example.jpg

 198

Software Quality

Assurance

Test conditions can be derived from the state graph in various ways. Each

state can be noted as a test condition, as can each transition. However this

state diagram, even though it is incomplete, still gives us information on

which to design some useful tests and to explain the state transition

technique.

6.3 WHAT IS USE CASE TESTING IN SOFTWARE

TESTING?

 Use case testing is a technique that helps us identify test cases that

exercise the whole system on a transaction by transaction basis from

start to finish. They are described by Ivar Jacobson in his book

Object-Oriented Software Engineering: A Use Case Driven Approach

[Jacobson, 1992].

 A use case is a description of a particular use of the system by an

actor (a user of the system). Each use case describes the interactions

the actor has with the system in order to achieve a specific task (or, at

least, produce something of value to the user).

 Actors are generally people but they may also be other systems.

 Use cases are a sequence of steps that describe the interactions

between the actor and the system. Use cases are defined in terms of

the actor, not the system, describing what the actor does and what the

actor sees rather than what inputs the system expects and what the

system‟s outputs.

 They often use the language and terms of the business rather than

technical terms, especially when the actor is a business user.

 They serve as the foundation for developing test cases mostly at the

system and acceptance testing levels.

 Use cases can uncover integration defects, that is, defects caused by

the incorrect interaction between different components. Used in this

way, the actor may be something that the system interfaces to such as

a communication link or sub-system.

 Use cases describe the process flows through a system based on its

most likely use. This makes the test cases derived from use cases

particularly good for finding defects in the real-world use of the

system (i.e. the defects that the users are most likely to come across

when first using the system).

 Each use case usually has a mainstream (or most likely) scenario and

sometimes additional alternative branches (covering, for example,

special cases or exceptional conditions).

 Each use case must specify any preconditions that need to be met for

the use case to work.

 199

Decision Table Based

Testing, Path Testing, Data

Flow Testing

 Use cases must also specify post conditions that are observable results

and a description of the final state of the system after the use case has

been executed successfully.

The ATM PIN example is shown below in Figure 4.3. We show successful

and unsuccessful scenarios. In this diagram we can see the interactions

between the A (actor – in this case it is a human being) and S (system).

From step 1 to step 5 that is success scenario it shows that the card and pin

both got validated and allows Actor to access the account. But in

extensions there can be three other cases that is 2a, 4a, 4b which is shown

in the diagram below.

For use case testing, we would have a test of the success scenario and one

testing for each extension. In this example, we may give extension 4b a

higher priority than 4a from a security point of view.

System requirements can also be specified as a set of use cases. This

approach can make it easier to involve the users in the requirements

gathering and definition process.

6.4 PATH TESTING

Basis Path Testing is a white-box testing technique based on the control

structure of a program or a module. Using this structure, a control flow

graph is prepared and the various possible paths present in the graph are

executed as a part of testing. Therefore, by definition,

Basis path testing is a technique of selecting the paths in the control

flow graph, that provide a basis set of execution paths through the

program or module.

Path Testing is a method that is used to design the test cases. In path

testing method, the control flow graph of a program is designed to find a

set of linearly independent paths of execution. In this method Cyclomatic

http://istqbexamcertification.com/wp-content/uploads/2011/12/Use-case-testing-example2.jpg
https://www.geeksforgeeks.org/software-engineering-white-box-testing/

 200

Software Quality

Assurance

Complexity is used to determine the number of linearly independent

paths and then test cases are generated for each path.

It give complete branch coverage but achieves that without covering all

possible paths of the control flow graph. McCabe‟s Cyclomatic

Complexity is used in path testing. It is a structural testing method that

uses the source code of a program to find every possible executable path.

Since this testing is based on the control structure of the program, it

requires complete knowledge of the program‟s structure. To design test

cases using this technique, four steps are followed:

1. Construct the Control Flow Graph

2. Compute the Cyclomatic Complexity of the Graph

3. Identify the Independent Paths

4. Design Test cases from Independent Paths

6.4.1 Path Testing Process:

Let‟s understand each step one by one.

1. Control Flow Graph:

A control flow graph (or simply, flow graph) is a directed graph which

represents the control structure of a program or module. A control flow

graph (V, E) has V number of nodes/vertices and E number of edges in

it. A control graph can also have :

 Junction Node: a node with more than one arrow entering it.

 Decision Node: a node with more then one arrow leaving it.

 Region: area bounded by edges and nodes (area outside the graph is

also counted as a region.).

 201

Decision Table Based

Testing, Path Testing, Data

Flow Testing

Below are the notations used while constructing a flow graph:

Sequential Statements:

If – Then – Else –

 202

Software Quality

Assurance

Do – While –

While – Do

 203

Decision Table Based

Testing, Path Testing, Data

Flow Testing

Switch – Case –

6.4.2 Cyclomatic Complexity:

The cyclomatic complexity V(G) is said to be measure of the logical

complexity of a program. It can be calculated using three different

formulae:

Formula based on edges and nodes:

V(G) = e - n + 2*P

Where,

e is number of edges,

 n is number of vertices,

 P is number of connected components.

For example, consider first graph given above,

where, e = 4, n = 4 and p = 1

where, e = 4, n = 4 and p = 1

So,

Cyclomatic complexity V(G)

= 4 - 4 + 2 * 1

= 2

Formula based on Decision Nodes:

V(G) = d + P

 204

Software Quality

Assurance

where,

d is number of decision nodes,

P is number of connected nodes.

For example, consider first graph given above,

where, d = 1 and p = 1

1. So,

2. Cyclomatic Complexity V(G)

3. = 1 + 1

4. = 2

5. Formula based on Regions:

V(G) = number of regions in the graph

For example, consider first graph given above,

1. Cyclomatic complexity V(G)

2. = 1 (for Region 1) + 1 (for Region 2)

3. = 2

Hence, using all the three above formulae, the cyclomatic complexity

obtained remains same. All these three formulae can be used to compute

and verify the cyclomatic complexity of the flow graph.

Note:

1. For one function [e.g. Main() or Factorial()], only one flow graph

is constructed. If in a program, there are multiple functions, then a

separate flow graph is constructed for each one of them. Also, in the

cyclomatic complexity formula, the value of „p‟ is set depending of

the number of graphs present in total.

2. If a decision node has exactly two arrows leaving it, then it is

counted as one decision node. However, if there are more than 2

arrows leaving a decision node, it is computed using this formula :

 d = k - 1

Here, k is number of arrows leaving the decision node.

6.4.3 Independent Paths:

An independent path in the control flow graph is the one which

introduces at least one new edge that has not been traversed before the

path is defined. The cyclomatic complexity gives the number of

independent paths present in a flow graph. This is because the

cyclomatic complexity is used as an upper-bound for the number of tests

 205

Decision Table Based

Testing, Path Testing, Data

Flow Testing

that should be executed in order to make sure that all the statements in

the program have been executed at least once.

Consider first graph given above here the independent paths would be 2

because number of independent paths is equal to the cyclomatic

complexity.

So, the independent paths in above first given graph:

 Path 1:

A -> B

 Path 2:

C -> D

Note:

Independent paths are not unique. In other words, if for a graph the

cyclomatic complexity comes out be N, then there is a possibility of

obtaining two different sets of paths which are independent in nature.

6.4.4 Design Test Cases:

Finally, after obtaining the independent paths, test cases can be designed

where each test case represents one or more independent paths.

Advantages:

Basis Path Testing can be applicable in the following cases:

1. More Coverage:

Basis path testing provides the best code coverage as it aims to achieve

maximum logic coverage instead of maximum path coverage. This

results in an overall thorough testing of the code.

2. Maintenance Testing:

When a software is modified, it is still necessary to test the changes

made in the software which as a result, requires path testing.

3. Unit Testing:

When a developer writes the code, he or she tests the structure of the

program or module themselves first. This is why basis path testing

requires enough knowledge about the structure of the code.

4. Integration Testing:

When one module calls other modules, there are high chances of

Interface errors. In order to avoid the case of such errors, path testing is

performed to test all the paths on the interfaces of the modules.

 206

Software Quality

Assurance

5. Testing Effort:

Since the basis path testing technique takes into account the complexity

of the software (i.e., program or module) while computing the

cyclomatic complexity, therefore it is intuitive to note that testing effort

in case of basis path testing is directly proportional to the complexity of

the software or program.

6.5 DATA FLOW TESTING

Data Flow Testing is a specific strategy of software testing that focuses on

data variables and their values. It makes use of the control flow graph.

When it comes to categorization Data flow testing will can be considered

as a type of white box testing and structural types of testing. It keeps a

check at the data receiving points by the variables and its usage points. It

is done to cover the path testing and branch testing gap.

The process is conducted to detect the bugs because of the incorrect usage

of data variables or data values. For e.g. Initialization of data variables in

programming code, etc.

Data flow testing is a white-box testing technique that examines the data

flow with respect to the variables used in the code. It examines the

initialization of variables and checks their values at each instance.

6.5.1 Types of data flow testing:

There are two types of data flow testing:

Static data flow testing:

The declaration, usage, and deletion of the variables are examined without

executing the code. A control flow graph is helpful in this.

Dynamic data flow testing:

The variables and data flow are examined with the execution of the code.

 207

Decision Table Based

Testing, Path Testing, Data

Flow Testing

What is Data flow Testing?

 The programmer can perform numerous tests on data values and

variables. This type of testing is referred to as data flow testing.

 It is performed at two abstract levels: static data flow testing and

dynamic data flow testing.

 The static data flow testing process involves analyzing the source

code without executing it.

 Static data flow testing exposes possible defects known as data flow

anomaly.

 Dynamic data flow identifies program paths from source code.

Let us understand this with the help of an example.

There are 8 statements in this code. In this code we cannot cover all 8

statements in a single path as if 2 is valid then 4, 5, 6, 7 are not traversed,

and if 4 is valid then statement 2 and 3 will not be traversed.

Hence we will consider two paths so that we can cover all the statements.

x= 1

Path – 1, 2, 3, 8

Output = 2

If we consider x = 1, in step 1; x is assigned a value of 1 then we move to

step 2 (since, x>0 we will move to statement 3 (a= x+1) and at end, it will

go to statement 8 and print x =2.

For the second path, we assign x as 1

Set x= -1

Path = 1, 2, 4, 5, 6, 5, 6, 5, 7, 8

Output = 2

 208

Software Quality

Assurance

X is set as 1 then it goes to step 1 to assign x as 1 and then moves to step

2 which is false as x is smaller than 0 (x>0 and here x=-1). It will then

move to step 3 and then jump to step 4; as 4 is true (x<=0 and their x is

less than 0) it will jump on 5 (x<1) which is true and it will move to step

6 (x=x+1) and here x is increased by 1.

So,

x=-1+1

x=0

x become 0 and it goes to step 5(x<1),as it is true it will jump to step

6 (x=x+1)

x=x+1

x= 0+1

x=1

x is now 1 and jump to step 5 (x<1) and now the condition is false and it

will jump to step 7 (a=x+1) and set a=2 as x is 1. At the end the value of a

is 2. And on step 8 we get the output as 2.

6.5.2 Steps of Data Flow Testing:

 Creation of a data flow graph.

 Selecting the testing criteria.

 Classifying paths that satisfy the selection criteria in the data flow

graph.

 Develop path predicate expressions to derive test input.

The life cycle of data in programming code:

Definition:

It includes defining, creation and initialization of data variables and the

allocation of the memory to its data object.

Usage:

It refers to the user of the data variable in the code. Data can be used in

two types as a predicate (P) or in the computational form(C).

Deletion:

Deletion of the Memory allocated to the variables.

 209

Decision Table Based

Testing, Path Testing, Data

Flow Testing

6.5.3Types of Data Flow Testing:

Static Data Flow Testing:

No actual execution of the code is carried out in Static Data Flow testing.

Generally, the definition, usage and kill pattern of the data variables is

scrutinized through a control flow graph.

Dynamic Data Flow Testing:

The code is executed to observe the transitional results. Dynamic data

flow testing includes:

Identification of definition and usage of data variables.

Identifying viable paths between definition and usage pairs of data

variables. Designing & crafting test cases for these paths.

Advantages of Data Flow Testing:

 Variables used but never defined,

 Variables defined but never used,

 Variables defined multiple times before actually used,

 DE allocating variables before using.

Data Flow Testing Limitations

 Testers require good knowledge of programming.

 Time-consuming

 Costly process.

6.5.4 Data Flow Testing Coverage:

 All definition coverage: Covers “sub-paths” from each definition to

some of their respective use.

 All definition-C use coverage: “sub-paths” from each definition to

all their respective C use.

 All definition-P use coverage: “sub-paths” from each definition to

all their respective P use.

 All use coverage: Coverage of “sub-paths” from each definition to

every respective use irrespective of types.

 All definition use coverage: Coverage of “simple sub-paths” from

each definition to every respective use.

 210

Software Quality

Assurance

6.5.5 Data Flow Testing Strategies:

Following are the test selection criteria:

1. All-defs: For every variable x and node i in a way that x has a global

declaration in node I, pick a comprehensive path including the def-

clear path from node i to Edge (j,k) having a p-use of x or Node j

having a global c-use of x

2. All c-uses: For every variable x and node i in a way that x has a

global declaration in node i, pick a comprehensive path including the

def-clear path from node i to all nodes j having a global c-use of x in

j.

3. All p-uses: For every variable x and node i in a way that x has a

global declaration in node i, pick a comprehensive path including the

def-clear path from node i to all edges (j,k) having p-use of x on edge

(j,k).

4. All p-uses/Some c-uses: it is similar to all p-uses criterion except

when variable x has no global p-use, it reduces to some c-uses

criterion as given below

5. Some c-uses: For every variable x and node i in a way that x has a

global declaration in node i, pick a comprehensive path including the

def-clear path from node i to some nodes j having a global c-use of x

in node j.

6. All c-uses/Some p-uses: It is similar to all c-uses criterion except

when variable x has no global c-use, it reduces to some p-uses

criterion as given below:

7. Some p-uses: For every variable x and node i in a way that x has a

global declaration in node i, pick a comprehensive path including def-

clear paths from node i to some edges (j,k) having a p-use of x on

edge (j,k).

 211

Decision Table Based

Testing, Path Testing, Data

Flow Testing

8. All uses: it is a combination of all p-uses criterion and all c-uses

criterion.

9. All du-paths: For every variable x and node i in a way that x has a

global declaration in node i, pick a comprehensive path including all

du-paths from node i

 To all nodes j having a global c-use of x in j and

 To all edges (j,k) having a p-use of x on (j,k).

6.5 DATA FLOW TESTING APPLICATIONS

As per studies defects identified by executing 90% “data coverage” is

twice as compared to bugs detected by 90% branch coverage.

The process flow testing is found effective, even when it is not supported

by automation.

It requires extra record keeping; tracking the variables status. The

computers help easy tracking of these variables and hence reducing the

testing efforts considerably. Data flow testing tools can also be integrated

into compilers.

6.6 CONCLUSION

 Data is a very important part of software engineering. The testing

performed on data and variables play an important role in software

engineering. Hence this is a very important part and should be

properly carried out to ensure the best working of your product.

 In path testing method, the control flow graph of a program is

designed to find a set of linearly independent paths of execution.

 McCabe‟s Cyclomatic Complexity is used in path testing. It is a

structural testing method that uses the source code of a program to

find every possible executable path.

 Decision table testing is a software testing technique used to test

system behavior for different input combinations. This is a systematic

approach where the different input combinations and their

corresponding system behavior (Output) are captured in a tabular

form.

 Decision table helps to check all possible combinations of conditions

for testing and testers can also identify missed conditions easily. The

conditions are indicated as True(T) and False(F) values.

 Decision Table Testing is Important because it helps to test different

combinations of conditions and provide better test coverage for

complex business logic.

 212

Software Quality

Assurance

6.7 EXERCISE

1. Explain Decision table?

2. How to calculate Cyclomatic Complexity?

3. What are independent Paths?

4. What is static and Dynamic Testing?

6.8 REFERENCES

 The Art of Software Testing, 3rd Edition Author: Glenford J. Myers,

Corey Sandler, Tom Badgett.

 A Practitioner‟s Guide to Software Test Design Author: Lee

Copeland

 Foundations of Software Testing ISTQB Certification

 Software Testing: Principles and Practices pearsons

 www.guru.com

 www.istbq.com

 www.tutorial.com

http://www.guru.com/
http://www.istbq.com/
http://www.tutorial.com/

 213

UNIT - IV

7
SOFTWARE VERIFICATION

AND VALIDATION

Unit Structure

7.0 Objectives

7.1 Introduction

7.2 Verification

7.3 Verification Workbench

7.4 Methods of Verification

7.5 Types of reviews on the basis of Stage Phase

7.6 Entities involved in verification

7.7 Reviews in testing lifecycle

7.8 Coverage in Verification

7.9 Concerns of Verification

7.10 Validation

7.11 Validation Workbench

7.12 Levels of Validation

7.13 Coverage in Validation

7.14 Acceptance Testing

7.15 Management of Verification and Validation

7.16 Software development verification and validation activities

7.17 Let us Sum Up

7.18 Exercises

7.19 References

7.0 OBJECTIVES

After going through this chapter, you will be able to:

 Verification and its Workbench

 Methods of Verification

 Types of Review

 Validation and its Workbench

 Levels of Validation

 214

Software Quality

Assurance

7.1 INTRODUCTION

Verification and validation (V & V) have become important, especially in

software, as the complexity of software in systems has increased, and

planning for V & V is necessary from the beginning of the development

life cycle. Over the past 20 to 30 years, software development has evolved

from small tasks involving a few people to enormously large tasks

involving many people. Because of this change, verification and validation

has similarly also undergone a change. Previously, verification and

validation was an informal process performed by the software engineer

himself. However, as the complexity of systems increased, it became

obvious that continuing this type of testing would result in unreliable

products. It became necessary to look at V & V as a separate activity in

the overall software development life cycle.

7.2 VERIFICATION

Verification is the process of evaluating work-products of a development

phase to determine whether they meet the specified requirements.

 Verification ensures that the product is built according to the

requirements and design specifications.

 It also answers the question, Are we building the product rightly?

 Verification is also called “Static technique” or “Conformance to

Requirements” as it does not involve execution of any code, program

or work product.

7.2.1 Advantages of Verification:

 Verification helps in lowering down the count of the defect in the later

stages of development.

 Verifying the product at the starting phase of the development will

help in understanding the product in a better way.

 It reduces the chances of failures in the software application or

product.

 It helps in building the product as per the customer specifications and

needs.

 It helps to reduce the cost of finding and fixing defects. Sometimes

defects are fixed as and when they are found.

 Cost of fixing defects is less as there is no impact on other parts of the

software.

7.2.2 Disadvantages of Verification:

 It does not show whether the product is correct or not. It shows only

whether the process is correctly followed or not.

 215

Software Verification

and Validation

 If the processes are not good, then the outcome may not be good.

 It does not cover any kind of execution of work products.

 “Fit for Use” cannot be assessed in verification.

7.2.3 Prerequisites For Verification:

 Training Required by people for conducting verification

 Standards, guidelines and tools to be used during verification

 Verification Do and Check process definition.

7.3 WORKBENCH FOR VERIFICATION

Verification workbench is where verification activities are conducted

either physical or virtual. For every workbench following basic things are

required.

Input:

It is the initial workbench stage. Each certain assignment should contain

its initial and outcome (input and output) requirements to know the

available parameters and expected results. Each workbench has its specific

inputs depending on the type of product under testing.

Verification Process:

It describes step by step activities to be conducted in a workbench. It must

also describe the activities done while verifying the product under review.

Check:

It is an examination of output parameters after the performance phase to

verify its accordance with the expected ones.

 216

Software Quality

Assurance

Production output:

It is the final stage of a workbench in case the check confirmed the

properly conducted performance.

Reworking:

If the outcome parameters are not in compliance with the desired result, it

is necessary to return to the verification process and conduct it from the

beginning.

7.4 METHODS OF VERIFICATION.

There are many methods available for verification of software product.

Some of them are

A. Self Review:

1. Self Review may not be referred to as an official review.

2. Everybody does a self check before giving a work product for further

verification.

3. One must capture the self review records and defect found in self

review to improve the process.

4. It is a self learning and retrospection process.

Advantages of Self Review

1. Self Reviews are highly flexible with respect to time and defect

finding. It may be an online activity.

2. Self Review is an excellent tool for self learning.

3. There is no ego involved in self review can help in self education and

self improvement.

Disadvantages of Self Review:

1. Approach or understanding related defect may not be found in self

review

2. People involved in self review may not conduct a review in reality

due to time and focus issues.

B. Peer Review:

The very easiest method and informal way of reviewing the documents or

the programs/software for the purpose of finding out the faults during the

verification process is the peer-review method. In this method, we give the

document or software programs to others and ask them to review those

documents or software programs where we expect their views about the

quality of our product and also expect them to find the faults in the

program/document.

 217

Software Verification

and Validation

Online Peer Review:

In this review author and reviewer meet together and review the work

jointly. Any explanation required by the reviewer may be provided by the

author. The defects are found and corrected jointly by the peers.

Offline Peer Review:

In such kind of review the author informs the reviewer that the work

product is ready for the review. The reviewer reviews the work product as

per the time availability. The review report is sent to the author along with

the defects then the author may decide to accept or reject it.

Advantages of Peer Review:

1. It is informal and unplanned. It can happen at any time.

2. There is no or less ego or pride attached with the review.

3. As defects are discussed and decisions are taken informally defects

can be fixed fast.

Disadvantages of Peer Review:

1. The other person doing peer review may not be expert on the artifacts

under review so suggestions may not always be valid.

2. Peer may fix the defects without recording them. This may happen in

offline review.

3. Sometimes peer may change the defect without informing the author.

C. Walkthrough:

Walkthrough is more formal than peer review but less formal than

inspection. It can be called as semi formal review. In typical walkthrough

some members of the project team are involved in examining an artifact

under review. In a walkthrough, the author of the software document

presents the document to other persons which can range from 2 to 7.

Participants are not expected to prepare anything. The presenter is

responsible for preparing the meeting. The document(s) is/are distributed

to all participants. At the time of the meeting of the walk-through, the

author introduces the content in order to make them familiar with it and all

the participants are free to ask their doubts.

Advantages:

1. Walkthrough is useful for making joint decisions and each member

must be involved in making decisions.

2. Defects are recorded and suggestions can be received from the team

for improving the work product.

 218

Software Quality

Assurance

Disadvantages:

1. Availability of people can be an issue when teams are large.

2. Time can be a constraint

3. Members in the team may not be expert in giving comments, so may

need some training and basic knowledge about the project.

D. Inspection (FORMAL REVIEW):

1. It is the most formal review type

2. It is led by the trained moderators

3. During inspection the documents are prepared and checked

thoroughly by the reviewers before the meeting

4. It involves peers to examine the product

5. A separate preparation is carried out during which the product is

examined and the defects are found

6. The defects found are documented in a logging list or issue log

7. A formal follow-up is carried out by the moderator applying exit

criteria

Advantages of Inspection:

1. Helps in the Early removal of major defects.

2. This inspection enables a numeric quality assessment of any technical

document.

3. Software inspection helps in process improvement.

4. It helps in staff training on the job.

5. Software inspection helps in gradual productivity improvement.

Disadvantages of Software Inspection:

1. It is a time-consuming process.

2. Software inspection requires discipline.

3. Expert opinion may vary from realities as it may be derived from

judgements and experiences.

Phases of Inspection:

Planning:

The planning phase starts when the entry criteria for the inspection state

are met. The moderator planned the inspection. A moderator verifies that

the product entry criteria are met.

http://tryqa.com/what-is-defect-or-bugs-or-faults-in-software-testing/

 219

Software Verification

and Validation

Kick-off Inspection:

In the overview phase, a presentation is given to the inspector with some

background information needed to review the software product properly.

Here objective of the inspection is explained and process to be followed.

Preparation:

This is considered an individual activity. In this part of the process, the

inspector collects all the materials needed for inspection, reviews that

material, and notes any defects.

Meeting:

The moderator conducts the meeting. In the meeting, the defects are

collected and reviewed within a defined time frame.

Rework:

The author performs this part of the process in response to defect

disposition determined at the meeting.

Follow-up:

In follow-up, the moderator makes the corrections and then compiles the

inspection management and defects summary report. The findings can be

used be used to gather statistics about work product, project and progress.

Roles and Responsibilities:

Author:

The author is the person who wrote the document being inspected. He or

she is present at the inspection to answer questions to help others

understand the work, but not to “defend” his or her work.

Moderator:

The moderator runs the inspection and enforces the protocols of the

meeting. The moderator's job is mainly one of controlling interactions and

keeping the group focused on the purpose of the meeting—to discover

(but not fix) deficiencies. The moderator also ensures that the group does

not go off on tangents and sticks to a schedule.

Reader:

The reader calls attention to each part of the document in turn, and thus

paces the inspection.

Recorder:

Whenever any problem is uncovered in the document being inspected, the

recorder describes the defect in writing. After the inspection, the recorder

and moderators prepare the inspection report.

 220

Software Quality

Assurance

Inspectors:

Inspectors raise questions, suggest problems, and criticize the document.

Inspectors are not supposed to “attack” the author or the document but

should be objective and constructive. Everyone except the author can act

as an inspector.

E. Audit:

Audit means an independent examination of a software product or

processes to assess compliance with specifications, standards, contractual

agreements, or other criteria. Software Development and testing process

audit is an examination of product to ensure that the product as well as the

process used to build them predefined criteria. The outcome of the audit

report comprising the following.

Major and Minor Non-Conformance:

Non conformance is the deviation between what is required and what

actually exists.

 Minor Non-Conformance: Minor Non-Conformance indicates that

there is some deviation at some place and at other places the process

is followed correctly.

 Major Non-Conformance: Major Non-Conformance indicates a big

issue where something required is missing completely.

Observations:

Observations are findings which may be converted into future non

conformances if proper care is nottaken. They may be termed as

conformance just on the verge of breakage.

Achievement or Good Practices:

These are good achievements by areas under audit which can be used by

others.

In software development and testing phases, various audit are

conducted, as mentioned below

A. Kick Off Audit:

This audit covers the areas that ensure whether all the processes required

at the start of the project are covered or not. It may start from proposal,

contract, risk analysis, scope definition, team size and Skill requirements,

authorities and responsibilities of various roles in the team. Kick-off audits

cover checking documentation and compliances required at the start of the

project.

 221

Software Verification

and Validation

B. Periodic Software Quality Assurance Audit:

Software quality assurance audit is famous by the name 'SQA audit' or

'SQA review'. It is conducted for a product under development and

processes used as defined by quality assurance process definition for these

work products. Auditor is expected to check whether different work

products meet the defined exit criteria or not, and the process used for

building these work products are correctly implemented or not.

C. Phase-End Audit:

Phase-end audit checks whether the phase defined in the development life

cycle achieves its expected outcome or not. It is also used as a gate to

decide whether the next phase can be started or not. These are also termed

'gate reviews'.

D. Pre Delivery Audit:

Pre Delivery audit checks whether all the requisite processes of delivery

are followed or not, and whether the work product meets the expected

delivery criteria or not. Only those work products which are successful in

pre delivery audits can be given to a customer.

E. Product Audit:

Product audits can be Covered in SQA audit. It is done by executing

sample test cases to find whether the product meets its defined exit criteria

or not. Sometimes, this is also considered as 'smoke testing'.

7.5 TYPES OF REVIEWS ON THE BASIS OF STAGE

PHASE

In-Process Review:

Reviews done while different phases of software development life cycle

are going on are defined as „In-process review'. They are intended to

check whether inputs to the phase are correct or not, and whether all the

applicable processes/procedures during a phase are followed correctly or

not.

Milestone Review:

Milestone Review is conducted on a periodic basis depending on the

completion of a Particular phase or a defined timeframe. Examples:

reviews may be a requirement review at the end of requirement phase,

weekly status review at the end of week. or review percentage completion

(say 5% project completion review).

Phase-End Review:

Phase-end review is conducted at the end of development such as

requirements phase, design phase, coding, and testing, it be when there are

distinct of development as defined in waterfall development model such as

 222

Software Quality

Assurance

requirements gathering, (high level and low level designs), coding, testing

at various levels. deployment, etc. Phase-end reviews are also termed

'gate reviews’.

Periodic Review:

Periodic review is done weekly, quarterly, monthly etc. Project Plan must

define various periods when review of project related activities will be

conducted.

Percent Completion:

Percent completion review is a combination of periodic and phase-end

review where the project activities or product development activities are

assessed on the basis of percent completion.

Process of In Process Review:

An organisation/project must have a definition of in-process It must have a

list of stakeholders attending various reviews, and the work products

under reviews. Commonly found steps of in-process reviews are given

below

 Work product, and metrics undergoing are created and submitted to

stakeholder.

 Inputs are received from stakeholders to initiate various actions.

 Risks identified by the project are reviewed and actions may be

initiated as required.

 Any issue related to any stakeholder is noted and follow-up actions

are initiated. Issues like software availability, hardware availability,

training required etc.

 Review report is generated at the end, which helps in the next review.

B. Post Implementation Review:

A Post-Implementation Review (PIR) is conducted after completing a

project. Its purpose is to evaluate whether project objectives were met, to

determine how effectively the project was run, to learn lessons for the

future, and to ensure that the organization gets the greatest possible benefit

from the project.

Process of Post Implementation review:

 The key to a successful PIR is recognizing that the time spent on the

project is just a small part of an ongoing timeline.

 For people and organizations that will be working on similar projects

in the future, it makes sense to learn as many lessons as possible, so

that mistakes are not repeated in future projects.

 223

Software Verification

and Validation

 And for organizations benefiting from the project, it makes sense to

ensure that all desired benefits have been realized, and to understand

what additional benefits can be achieved.

7.6 EXAMPLE OF ENTITIES INVOLVED IN

VERIFICATION

Verification Entities Involved Definition

Requirement for

Business /

Functionality

Examine the

business needs

with the

development team

and the customer.

This is a crucial stage to ensure

that the requirements have been

acquired and/or accurately, as

well as to determine whether or

not they are realistic.

Design Review Developer Team The Developer team extensively

evaluates the design once it is

created to ensure that the

functional requirements can be

satisfied with the design

presented.

Code

Walkthrough

Individual

Developer

After the code has been written,

it is examined for any syntactic

mistakes. This is a more

informal task that is carried out

by the individual developer on

his or her own code.

Code Inspection Developer Team This is a more formal

configuration. Subject matter

experts and developers review

the code to ensure that it meets

the software's commercial and

functional objectives.

Test Plan

Review

(internal to QA

team)

Quality Analyst

Team

The QA team reviews a test

plan internally to ensure that it

is correct and thorough.

Test Plan

(External)

Project Manager,

Business Analyst,

and Developer

A formal review of the test plan

document to ensure that the QA

team's timeframe and other

factors are in sync with the

other teams and the overall

project.

Test

documentation

Quality Analyst

Team

A peer review is when members

of a team check each other's

 224

Software Quality

Assurance

review work to ensure that the

documentation is free of errors.

Test

documentation

final review

Business Analyst

and Development

Team

A review of the test

documentation to ensure that

the test cases cover all of the

system's business circumstances

and functional features.

7.7 REVIEWS IN TESTING LIFECYCLE

7.7.1. Test Readiness Review:

This is a very common activity that is performed by every QA team to

determine whether they have everything they need to proceed into the test

execution phase. Also, this is a recurring activity before each cycle of

testing in projects that involve multiple cycles. In order to not run into

issues after the testing phase begins and realize that we entered the

execution phase prematurely, every QA project needs to conduct a review

to determine that it has all the inputs necessary for successful testing. A

checklist facilitates this activity perfectly. It lets you make a list of

„things-needed‟ ahead of time and to review each item sequentially.

Prerequisites Testing:

Software installation has some prerequisite testing such as operating

system, database, reporting services as the case may exist. If prerequisites

are not available installation may prompt or prerequisite will be installed

during installation.

Updation Testing:

There must be a check whether similar operating systems already exist in

the system or there is a need for a new version. Sometime it also prompts

for repair or new installation.

Un-Installation Testing:

It is done when there is a need to check whether uninstallation is clean.

When an application is uninstalled all the files installed must be removed

from the disk.

7.7.2. Test Completion Review:

● Test Completion is the last stage of the software testing life cycle. It

results in a report that a Test manager or a Test lead prepares that

showcases the completed data from the test execution.

● The key activities carried out are

○ First is checking whether all reported defects reach a closure

 225

Software Verification

and Validation

○ Second is creating a test summary report & communicating it to

stakeholders.

○ Next comes finalizing and archiving the test environment, the test

data, the test infrastructure, and other test ware for later reuse.

○ In addition to the above, analysing lessons learned from the finished

test activities to determine changes needed for future iterations,

releases, and projects happens.

7.8 COVERAGE IN VERIFICATION

7.8.1. Statement Coverage:

In this the testcase is executed in such a way that every statement of the

code is executed at least once.

7.8.2. Branch/Decision Coverage:

Test coverage criteria requires enough test cases such that each condition

in a decision takes on all possible outcomes at least once, and each point

of entry to a program or subroutine is invoked at least once. That is, every

branch (decision) taken each way, true and false. It helps in validating all

the branches in the code making sure that no branch leads to abnormal

behavior of the application.

7.8.3. Path Coverage:

In this the test case is executed in such a way that every path is executed at

least once.

All possible control paths taken, including all loop paths taken zero, once,

and multiple (ideally, maximum) items in path coverage technique, the test

cases are prepared based on the logical complexity measure of a

procedural design. In this type of testing every statement in the program is

guaranteed to be executed at least one time. Flow Graph, Cyclomatic

Complexity and Graph Metrics are used to arrive at the basis path.

Cyclomatic Complexity:

Cyclomatic Complexity for a flow graph is computed in one of three

ways:

1. The numbers of regions of the flow graph correspond to the

Cyclomatic complexity.

2. Cyclomatic complexity, V(G), for a flow graph G is defined as

V(G) = E – N + 2

3. where E is the number of flow graph edges and N is the number of

flow graph nodes.

4. Cyclomatic complexity, V(G), for a graph flow G is also defined as

V(G) = P + 1

 226

Software Quality

Assurance

5. Where P is the number of predicate nodes contained in the flow graph

G.

Example: Consider the following flow graph

Region, R= 6

Number of Nodes = 13

Number of edges = 17

Number of Predicate Nodes = 5

Cyclomatic Complexity, V(C):

V (C) = R = 6;

Or

V(C) = Predicate Nodes + 1

=5+1 =6

Or

V(C)= E-N+2

= 17-13+2

7.8.4 DD Path Coverage:

● A decision-to-decision path, or DD-path, is a path of execution

(usually through a flow graph representing a program) between two

decisions.

● A DD-path is a set of nodes in a program graph such that one of the

following holds

○ It consists of a single node with in-degree = 0 (initial node)

○ It consists of a single node with out-degree = 0 (terminal node)

 227

Software Verification

and Validation

○ It consists of a single node with in-degree ≥ 2 or out-degree ≥ 2

○ It consists of a single node with in-degree = 1 and out-degree = 1

○ It is a maximal chain of length ≥ 1.

7.9 CONCERN OF VERIFICATION

There are few concerns associated with verification activities.

Use of right verification technique:

Every verification technique has advantages and disadvantages. For test

cases, code file peer to peer review may be more advantageous from cost

perspective while for requirement statement inspection technique can be

used.

Integration of verification activities in SDLC:

As seen in V&V model every phase of SDLC has associated phases of

verification and validation. Selection of verification technique must be

such that it must find defects as early as possible. This can prevent stage

contamination.

Resources and skill available for verification:

Most important resources and skills of verification are people and time. If

reviewer is capable with sufficient knowledge and ability verification will

be very effective.

7.10 VALIDATION

Validation is the process of checking whether the software product is up to

the mark or in other words the product has high level requirements.

 It is the process of checking the validation of a product

 It also answers the question, are we building the right product?

 It is validation of actual and expected product.

 Validation is the Dynamic Testing.

7.10.1 Advantages of Validation:

 During verification if some defects are missed then during validation

process it can be caught as failures.

 If during verification some specification is misunderstood and

development has happened, then during the validation process while

executing that functionality the difference between the actual result

and expected result can be understood.

http://tryqa.com/what-is-defect-or-bugs-or-faults-in-software-testing/

 228

Software Quality

Assurance

 Validation is done during testing like feature testing, integration

testing, system testing, load testing, compatibility testing, stress

testing, etc.

 Validation helps in building the right product as per the customer‟s

requirement and helps in satisfying their needs.

7.10.2 Disadvantages of Validation:

 No amount of testing can prove that software does not have defects.

There can be many more defects not capture by the test cases,

 stub and driver are used during validation testing and they need

additional efforts of development and testing before they can be used.

7.10.3 Prerequisites for validation

Prerequisites for validation may include the following.

 Training required for conduction the validation. Training may include

domain knowledge and knowledge about testing and various test

tools.

 Standard guidelines and tools to be used during validation.

 Validation do and check process definition.

7.11 VALIDATION WORKBENCH

Workbench is a place where validation activities are conducted on the

work products and may be physical or virtual entities.

Inputs:

There must be some entry criteria definition when inputs are entering the

work bench. This definition should match with the output criteria of the

earlier work bench.

 229

Software Verification

and Validation

Outputs:

Similarly, there must be some exit criteria from the workbench which

should match with input criteria for the next workbench. Outputs may

include validated work products, defects, and test logs.

Validation:

Validation process must describe step-by-step activities to be conducted

in a workbench. It must also describe the activities done while validating

the work product under testing.

Check Process:

Check process must describe how the validation process has been

checked. Test plan must define the objectives to be achieved during

validation and check processes must verify that the objectives have been

really achieved.

Standards tools and guidelines:

These may be termed 'the tools' available for validation. There may be

testing guidelines or testing standards available.

7.12 LEVELS OF VALIDATION

1) Unit Testing:

 A Unit is a smallest testable portion of a system or application which

can be compiled, loaded, and executed. This kind of testing helps to

test each module separately.

 The aim is to test each part of the software by separating it. It checks

that components are fulfilling functionalities or not. This kind of

testing is performed by developers.

2) Integration testing

 Integration means combining. For Example, in this testing phase,

different software modules are combined and tested as a group to

make sure that integrated system is ready for system testing.

 Integrating testing checks the data flow from one module to other

modules. This kind of testing is performed by testers.

3) System testing:

 System testing is performed on a complete, integrated system. It

allows checking the system's compliance as per the requirements. It

tests the overall interaction of components. It involves load,

performance, reliability and security testing.

 230

Software Quality

Assurance

 System testing most often the final test to verify that the system meets

the specification. It evaluates both functional and non-functional

needs for the testing.

4) Acceptance testing

 Acceptance testing is a test conducted to find if the requirements of a

specification or contract are met as per its delivery.

 Acceptance testing is basically done by the user or customer.

However, other stockholders can be involved in this process.

5) Interface Testing

 Interface Testing is defined as a software testing type which verifies

whether the communication between two different software systems is

done correctly.

 An interface is actually software that consists of sets of commands,

messages, and other attributes that enable communication between a

device and a user.

7.13 COVERAGE IN VALIDATION

Different instances of validation may offer different coverage depending

on test plan and definition of coverage.

Following are some of the coverage.

1. Requirement Coverage:

 Requirements are defined in the requirement specification document.

Traceability matrix start with requirement and goes forward up to test

result.

 All requirements are not mandatory. They are put into different

classes must, should be and could be. Most higher priority

requirement is expressed as must, some lower priority is expressed as

could be and should be.

2. Functionality Coverage:

Sometimes requirements are expressed in terms of functionality. Test

cases representing higher priority must be tested to a larger extent than the

functionality with the lower priority.

3. Feature Coverage:

 Features are groups of functionality doing same or similar things. It

means covering at least one of the functionality which represent a

feature provided even if there's multiple way of doing it.

 Feature with higher priority are indicated with must and lower one as

should be or could be.

 231

Software Verification

and Validation

7.14 ACCEPTANCE TESTING

Acceptance testing is generally done by the users and/or customers to

understand whether the software satisfies requirements or not, and to

ascertain whether it is fit for use. Users\customers execute test cases to

show if the acceptance criterion for the application has been met or not.

There are three levels of acceptance testing.

7.14.1 Alpha Testing:

 Alpha testing represents the testing done by the customer in the

development environment of the development team. The testing is

done at a development Site with dummy data either created by or

shared by the customer.

 In reality, alpha testing may be done by testers in front of the

customer to show software is working. It can be used as a tool for

training key users on the application.

 Any major drawback found can be cleared during alpha testing.

7.14.2 Beta Testing:

 Beta testing is used to assess the product by exposing it to the real

end-users, usually called beta testers in their environment. Feedback

is collected from the users and the defects are fixed.

 Also, this helps in enhancing the product to give a rich user

experience.

7.14.3 Gamma Testing:

 Gamma Testing is the final stage of the testing process conducted

before software release. It makes sure that the product is ready for

market release according to all the specified requirements.

 Gamma testing focuses on software security and functionality. But it

does not include any in-house QA activities.

 During gamma testing, the software does not undergo any

modifications unless the detected bug is of a high priority and

severity. Only a limited number of users perform gamma testing, and

testers do not participate. The feedback obtained from the customer is

used for new or enhanced products.

7.15 MANAGEMENT OF VERIFICATION AND

VALIDATION (V & V)

Verification and validation techniques are complementary to each other,

and not the replacement of each other.

The steps involved in verification/validation atv as follows.

 232

Software Quality

Assurance

7.15.1 Defining the Processes for Verification and Validation:

An organisation must define the processes applied for verification and

validation activities during the development life cycle phase of the project.

The processes involved may be as follows.

Software Quality Assurance Process:

These processes concentrate on developing the techniques/ procedures for

development and testing of the project. They may be more generic,

indicating an overall approach of handling verification and validation

activities, or may be very specific for the project/customer.

Software Quality Control Process:

These processes concentrate on developing the approach for verification

and validation activities during software development and testing. They

can be more specific for the project under development. Quality control

process forms a part of appraisal and failure cost.

Software Development Process:

These processes may concentrate over where zero defects introduce. They

may cover software quality control process along with other SDLC

processes.

Software life cycle definition:

It is essential to establish development and testing processes for the

software.

7.15.2 Prepare Plans For Execution of Process:

When a project proposal is made, it must contain a definition of what is

meant by a successful delivery, and must show how quality of deliverables

will be achieved. The plans involved are as follows.

 a software development plan and schedule which include

responsibilities and time schedule for verification/ validation activities

must be defined at the start of the project.

 software quality plan and software test plan must define the use of

different methodologies for ensuring quality of deliverables,

verification and validation activities associated with development

 Software acceptance testing plan must be defined where acceptance

criteria is finalised.

7.15.3 Initiate Implementation Plan:

 The plans made at the time of proposal/contract must be implemented

during the development life cycle of a project. There must be formal

records of requirements review, design review, code reviews, unit

 233

Software Verification

and Validation

testing, integration testing, interface testing, system testing, and

acceptance testing.

 The results must be recorded and corrective/preventive actions must

be initiated from the results of verification and validation.

7.15.4. Monitor Execution Plan:

The verification and validation activities must be monitored during

development life cycle execution. Project manager and test manager must

oversee that the activities defined in various plans are being executed and

the results are being logged in the test log.

7.15.5 Analyse Problems Discovered During Execution:

Execution of verification and validation processes may bring out many

problems in the product as well as Processes associated with development

and testing. Root cause analysis of problems and planning for actions are

essential parts of continuous improvement.

7.15.6 Report Progress:

The outcome of the validation and verification must be reported to the

management, customer and development team to make them aware about

project problems and progress.

7.15.7 Ensure Product Satisfies Requirement:

The ultimate aim of verification and validation activities undertaken

during project execution is to achieve customer satisfaction.

7.16 SOFTWARE DEVELOPMENT VERIFICATION

AND VALIDATION ACTIVITIES

Verification and validation activities are spread over the life cycle of

software development. The activities include

Conceptualisation:

Conceptualìsation is the first phase of developing a product or project for a

customer, Conceptualisation means converting the thoughts or concepts

into reality. It can be through proof of concept or prototyping model.

During proposal, the supplier may give of solution, and the customer may

have to evaluate the feasibility of such an approach solution from product

perspective. The supplier must understand what is expected by the

customer, and whether it be provided or not by an organisation. Here

verification and validation determine feasibility study of the project based

on technical feasibility, economical feasibility and skill availability.

Requirement Analysis:

Requirement analysis phase starts from conceptualisation. Requirement

understanding is done through communication with customer. It can be

done- by various approaches joint application development and customer

 234

Software Quality

Assurance

survey. Requirement analysis verification and validation the feasibility of

requirements and gives inputs to design approach. It can help in finding

the gaps in proposals and requirements so that further clarifications can be

achieved.

Design Requirements:

Design Requirements are implemented through design. Verification and

validation of design understanding that design is complete in all respects

and matches with requirements. Requirement ensures that all requirements

are converted into design. It involves design through data flow diagram,

prototyping.

Coding:

It involves code review and testing of the units, as part of verification and

Validation, to make sure that requirements and design are correctly

implemented. Units must be traceable to requirements through design.

Integration:

Integration validation and verification show that the individually tested

units work correctly when brought together to form a module or sub

module. It involves testing of modules/sub modules to ensure proper

working with respect to requirements and designs. Integration with other

hardware/ software is defined in architectural design. Interface testing

must satisfy architectural design.

Testing:

Test artifacts such as test plan, test scenario, test bed, test cases, and test

data must be subjected to verification and validation activities. Test plan

must be complete, covering all aspects of testing expected by the

customer. Test cases must cover the application completely. Test cases for

acceptance testing must be validated by customer/user/business analyst.

Installation:

Application must be tested for installation, if installation is required by the

customer, the documentation giving instructions for installation must be

complete and sufficient to install the application, Verification and

validation must ensure that there is adequate support and help available to

common users for installation of an application.

Documentation:

There are many documents given along with a software product such as

installation guide and user manual. They must be complete, detailed and

informative, so that it can be referred to by a common user. The list of

documents must be mentioned in contract or statement of work so that

compliance can be checked.

 235

Software Verification

and Validation

7.17 LET US SUM UP

This chapter provides a clear exposition of verification and validation

activities. It covers methods of verification such as reviews, walkthrough

and inspection and various stages of verification such as requirement

verification, design verification, and test artifacts verification. Advantages

of different levels of reviews such as self review, peer review,

walkthrough, and inspection have been dealt in detail. It also presents

audits as an independent way. In-process reviews and post implementation

reviews have also been evaluated. The Second half of the chapter focuses

on validation techniques. The chapter concludes with a clear overview of

acceptance testing.

7.18 EXERCISES

1. Discuss the advantages and disadvantages of verification

2. Describe different types of verification on the basis of parties

involved in verification.

3. Explain self review

4. Describe the advantages and disadvantages of peer review.

5. Describe about walkthrough review

6. Explain formal review(Inspection).

7. Describe the process of inspection

8. Describe the auditing process.

9. What are the different audits planned during the development life

cycle?

10. Explain various types of in-process review

11. Explain the concept of post-mortem review. it is essential for a

learning organisation

 12. Explain test readiness review.

13. What are the concerns of verification?

14. Discuss the advantages of validation

15. How coverage is measured in case of verification?

16. How coverage is measured in case of validation?

17. Discuss the different levels of validation.

18. Explain different levels of acceptance testing.

 236

Software Quality

Assurance

7.19 REFERENCES

● [Andriole86] Andriole, Stephen J., editor, Software Validation,

Verification, Testing, and Documentation, Princeton, NJ: Petrocelli

Books, 1986.

● http://tryqa.com/what-is-verification-in-software-testing-or-what-is-

software-verification/

● https://www.tutorialspoint.com/software_testing_dictionary/audit.htm

● https://www.tutorialspoint.com/verification-and-validation-with-

example

● https://qatestlab.com/resources/knowledge-center/alpha-beta-

gamma/#:~:text=Gamma%20testing%20is%20the%20final,any%20in

-house%20QA%20activities.

● M.G., LIMAYE, ed. (2009) Software Testing: Principle, Technique

and Tools. Tata McGraw-Hill Publishing Ltd.

https://www.tutorialspoint.com/software_testing_dictionary/audit.htm
https://www.tutorialspoint.com/verification-and-validation-with-example
https://www.tutorialspoint.com/verification-and-validation-with-example
https://qatestlab.com/resources/knowledge-center/alpha-beta-gamma/#:~:text=Gamma%20testing%20is%20the%20final,any%20in-house%20QA%20activities
https://qatestlab.com/resources/knowledge-center/alpha-beta-gamma/#:~:text=Gamma%20testing%20is%20the%20final,any%20in-house%20QA%20activities
https://qatestlab.com/resources/knowledge-center/alpha-beta-gamma/#:~:text=Gamma%20testing%20is%20the%20final,any%20in-house%20QA%20activities

 237

8
V-TEST MODEL

Unit Structure

8.0 Objectives

8.1 Introduction

8.2 V-model for software

8.3 Testing during Proposal stage

8.4 Testing during requirement stage

8.5 Testing during test planning phase

8.6 Testing during design phase

8.7 Testing during coding

8.8 VV Model

8.9 Critical Roles and Responsibilities.

8.10 Let us Sum Up

8.11 Exercises

8.12 References

8.0 OBJECTIVES

After going through this chapter, you will be able to:

 V-Model (Validation Model)

 VV Model (Verification and Validation Model)

 Roles and Responsibilities of three critical entities in software

development.

8.1 INTRODUCTION

Testing is a lifecycle activity. It starts when the proposal of software

development is made to a prospect, and ends only when the application is

finally delivered and accepted by the customer/end user. For product

development, we may define each iteration of development as a separate

project, and several projects may come together to make a complete

product. For a customer, it starts from a problem statement or

conceptualization of a new product, and ends with satisfactory product

receipt, acceptance and usage. For every development activity, there is a

testing activity associated with it, so that the phase achieves its milestone

deliverable with minimum problem (theoretically, no problem). This is

also termed 'certification approach of testing' or 'gate approach of testing'.

 238

Software Quality

Assurance

8.2 V MODEL FOR SOFTWARE

Validation model describes the validation activities associated with

different phases of software development.

V-Model for Testing:

● Design phase is associated with interface testing which covers design

specification testing as well as structural testing.

● Program-level designs are associated with integration testing.

● At code level, unit testing is done to validate individual units.

8.2.1 Structured Approach to Testing:

Testing activities for software development life cycle phases must be

planned in advance, and conducted as per plan. Test policy and test

strategy/test approach for performing verification and validation activities,

responsibilities of stakeholders for supporting or doing these activities,

inputs and outputs from each phase of the process, and milestone

deliverables must be documented beforehand to avoid any problem in final

deliverable to customer. Sometime it is also referred to V&V Plan.

8.2.2 Activities during Each Phase of Software Development Lifecycle:

Activities of verification and validation are planned during different

phases of the software development lifecycle, from proposal level till

product is finally accepted by the customer. The software development

process plan must define the development and testing activities to be

conducted in each phase of development also, the people responsible for

conducting and supporting those activities as stakeholders. Plan of

development must decide about 5 (What, Where, When, Why, and who)

and H (How) with people, processes, tools, training, etc. The information

 239

V-Test Model

must be readily available, to the team doing these activities and the

stakeholders, about their roles and responsibilities for those activities.

Activities must be referred to during each phase of software development

and testing.

8.2.3. Analyse Structures Produced During Development Phases for

Adequacy and Testability:

Documents and work products produced during a life cycle phase must be

analysed beforehand to understand their coverage, relationship with

different entities, structure in overall development and traceability. An

organization must have definition of processes, guideline and standard

which can be used for making such documents and artifacts.

8.2.4 Generate Test Sets Based on Structures:

Functional test scenarios and test cases are generally developed based

upon the functional requirements of the software. Functional requirements

refer to the operational requirements of an application. Structural test

scenario and test cases are developed from the structures defined in the

design specifications. They must correspond to the structures of the work

product produced during development. Requirements/ designs are

verified and validated by preparing use case diagrams, data flow diagrams,

and prototypes with the question 'what happens when' to identify the

completeness of design and requirements. For validation testing scenarios,

one must use techniques like boundary value analysis, equivalence

partitioning, error guessing.

8.2.5 Additional Activities During Design And Coding:

Testing in low-level design and coding phases must confirm that first

phase output of capturing the requirements and developing architecture

matches with the inputs and outputs required by the low-level design

phase. High-level design and low-level design must ensure that

requirements are completely covered so that software developed covers all

requirements. Verification and validation of design must ensure that the

requirement verification and validation is proper and can be handled

through the structures created for the purpose. Similarly, verification and

validation of coding must ensure that all aspects of designs are covered by

the code developed

8.2.6 Determine That Structures Are Consistent With Previously

Generated Structures:

Software development is like a flow of events, starting from capturing the

requirements till acceptance testing is completed successfully. The outputs

of one phase must match with the input criteria of the next Phase. There

must be consistency between various life-cycle phases. Consistency

between various phases can improve the maintainability of an application.

 240

Software Quality

Assurance

8.2.7 Refine And Redefine Test Sets Generated Earlier:

Test artifacts such as test scenarios, test cases, and test data may be

generated in each phase of software development life cycle from

requirements, design, and coding, as the case may be. The test artifacts so

generated must be reviewed and updated continuously as per the change in

requirement, design etc.

8.3 TESTING DURING PROPOSAL STAGE

A proposal is created when the customer asks for information, quotation,

and proposal. etc. At proposal stage, system description may not be very

clear. People use different approaches such as the formal/informal, proof

of concept. The Success of all these approach lies in successful defining

the problem and proposed solution. Feasibility study is done by the

customer as well as the supplier in search of a possible solution/approach

to solve the problem faced by the customer. It may include technical

feasibility, economic feasibility, implementation feasibility, organisational

fit, process fit, and people fit.

8.4 TESTING DURING REQUIREMENT STAGE

Requirement gathering stage must cover all the requirements for the

system. Characteristics of good requirements are mentioned below.

Cohesive:

The requirement defines a single aspect of the desired business process or

system.

Complete:

The individual requirement is not missing necessary or relevant

information. Additionally, the entire set of requirements should cover all

relevant requirements.

Consistent:

The requirement does not contradict another requirement.

Modifiable:

Like requirements should be grouped together to allow similar

requirements to be modified together in order to maintain consistency.

Correct: The requirement meets the actual business or system need. An

incorrect requirement can still be implemented resulting in a business

process or system that does not meet the business needs.

Observable:

The requirement defines an aspect of the system that can be noticed or

observed by a user. This is often referred to as “Implementation Agnostic”

as the requirement should not specify aspects of system architecture,

https://www.modernanalyst.com/Careers/InterviewQuestions/tabid/128/ID/1255/How-do-you-define-the-term-Requirement.aspx

 241

V-Test Model

physical design or implementation decisions. These aspects of a system

should be defined separately as constraints.

Feasible:

The requirement can be implemented within the constraints of the project

including the agreed upon system architecture or other physical design or

implementation decisions.

Unambiguous:

The requirement is written objectively such that there is only a single

interpretation of the meaning of the requirement.

Verifiable:

It can be shown that the requirement has been met by the final solution via

inspection, demonstration, test, or analysis.

8.5 TESTING DURING TEST-PLANNING PHASE

A Test Plan refers to a detailed document that catalogs the test strategy,

objectives, schedule, estimations, deadlines, and the resources required for

completing that particular project. Think of it as a blueprint for running

the tests needed to ensure the software is working properly – controlled by

test managers. Testing artifacts must be reviewed for their consistency and

accuracy. Verification of testing artifacts may include the following.

Generate Test Plan to Support Development Activities:

Test plan must be consistent with the application development

methodology, schedule, and deliverables. It must describe respective

verification and validation activities to be conducted during each phase of

the software development life cycle. It must contain methods used for

defining test data, test cases, test scenario, and execution of testing

activities. It must include how many defects would be expected to be

found in a work product during testing.

Generate Test Cases Based on System Structure:

Functional test cases must be based on functional requirements, and

structural test cases must be defined on the basis of design and non-

functional requirements of the system. It must be used to define test data

using different techniques available such as boundary value analysis,

equivalence partitioning, error guessing, and state transition. Test cases

and test data must be derived from test scenarios.

Analyse Requirement/Design Coverage:

It is very difficult for any test team to create test suite to cover 100%

requirement and designs produced during software development life cycle.

Coverage less than 100% indicates a risk. In case of any shortfall in

coverage with respective objectives defined, the test team must analyse the

 242

Software Quality

Assurance

situation and perform risk-benefit analysis of lesser coverage with the help

of customer and take corrective measures if required. Practically, it may

not be possible, or it may not be required to cover all requirements.

8.6 TESTING DURING DESIGN PHASE

Design is the backbone of a software application. A successful design can

convert the requirements into good application.

Consistency with respect to Requirements:

Designs must be consistent with defined. The requirement coverage of

design must be analysed and measured. If there is no design for a given set

of requirements, it will never get implemented. On the other hand, if there

is a design component not referring to any requirements, it is considered

as a defect.

Analyse Design for Errors:

Designs generated must be reviewed and tested for completeness and

accuracy. A design is implemented by coding. Errors in the design will

directly reflect the errors in coding and application so developed.

Analyse Error Handling:

Error handling of all kinds and possibilities must be covered in designing

aspects. Organisation must have standards for error handling, error

messaging and user interactions so that design is very clear about handling

them during design.

Developers Verify Information Flow and Logical Structure:

Data flow diagrams or dummy execution of the system is done, and

outputs derived are measured against expected outputs.

Testers Inspect Design in Detail:

Testers use design for defining structural test scenarios, test cases, and

structural test data. Test scenario must be an end-to-end scenario

considering data flow in the system.

8.6.1 Aspect to be tested:

Missing Test Cases:

Test cases not defined for a particular scenario (either or design) be caught

in test-case review. Testers try to write the test scenario using the

requirement statement without referring to design. This helps in the

missing test cases.

Faulty Logic:

If the logic or algorithm described in design is not correct as per

requirement statement, then it must be found by testing. Defects so found

must be corrected by designers in design, and then by developers in code.

 243

V-Test Model

Module Interface Mismatch:

The data input/output from one module to another must be checked for

consistency with design. Parameter passing is a major area of defects in

software, where communication in two modules is affected. Interface test

cases must test the scenario where one system is communicating with

another system.

Data Structure Inconsistency:

Review of mismatch between data structures and definitions between

different modules and system must be done for verification of designs

Erroneous Input/Output:

If the system needs to be protected from erroneous operations such as

huge/invalid input/output, the design must describe how it will handle the

situation.

Inconsistency with respect to Requirements and High-Level Design:

Design and development must be consistent with requirements and high-

level design. As the system architecture is defined in high-level design

which must reflect system requirements, any deviation can lead to extra or

missing functionalities, or inappropriately implemented systems.

8.7 TESTING DURING CODING

Coding is the most crucial stage in software development where a product

is actually built. Many organisations are completely dependent on self-

review and peer review for verification of code. Also, unit testing is done

by the developers. It is crucial but important to establish/institutionalize

verification/validation of a code so that the product matches with

requirement specifications.

8.7.1 Aspects to Be Checked:

Coding Standards/Guidelines Implementation:

Many organisations have coding Standards/ guidelines defined. When the

code files are written, the developers must use these standards/guidelines.

While reviewing code, the peer must make sure that Standards and

guidelines are implemented correctly. It helps in optimization and better

readability/maintainability of code in future.

Coding Optimization:

Coding standards must also talk about optimization of code. It talks about

how nesting must be done, how declaration of variables and functions

must be done.

 244

Software Quality

Assurance

Code Interpreting Design:

Coding must interpret designs correctly. Coding files and what they are

supposed to implement must be defined in low-level design.

Unit Testing:

Unit testing must be done by the developers to ensure that written code is

working as expected. Sometimes, unit testing is done by peer of an author

(of a code) to maintain independence of testing with respect to

development. Unit test case logs must be prepared and available for peer

review, SQA review as well as customer audits.

8.8 VV MODEL

Quality checking involves verification as well as validation activities. 'VV

model' considers all the activities related to verification as well as

validation. It is also termed as 'Verification and Validation Model' or

'Quality model'.'VV model' talks about verification and validation

activities associated with software development during the entire life

cycle.

Requirements:

As requirements are obtained from customer like customer survey,

prototyping. The intention would be to find if there is any gap existing

between user requirements and requirement definition.

1. Requirement Verification:

a. Verification tests check to ensure the program is built according to the

stated requirements. The verification process includes activities such

as reviewing the code and doing walkthroughs and inspections.

b. Missing requirements or invalid requirements can be discovered

during this phase, which can minimize the risk of rework and the cost

associated with overruns. It’s far more effective to fix a small bug

upfront than in the future when hundreds of lines of code must be

identified and corrected

2. Requirement Validation:

a. It ensures that the requirements have achieved the business objectives,

meet the needs of any relevant stakeholders and are clearly

understood by developers. Validation is a critical step to finding

missing requirements and ensuring that requirements have a variety of

important characteristics.

b. Software validation addresses the following:

I. Correctly outlines the end user’s needs.

II. Has only one exact meaning.

 245

V-Test Model

III. Can be modified as necessary.

IV. Documents the attributes that customers truly need.

V. Easily linked to system requirements, such as designs, codes and tests.

Design:

Design may include high-level design or architectural design, and low-

level design or detail design. Designs are created by architects (high-level

designs)/designers (low-level designs) as the case may be.

a. Design Verification:

Verification of design may be a walkthrough of a design document by

design experts, team members and stakeholders of the project. Project

team along with the architect/designer may walkthrough the design to find

the completeness and give comments, if any. Traceability of design with

requirement must be established in the requirement traceability matrix.

b. Design Validation:

Validation of design can happen at two stages.

i. The first stage is at the time of creation of data flow diagram. If flow

of data is complete, design is complete. Any problem in flow of data

indicates gap in design. This is term as flow anomaly.

ii. The second stage of validation is at integration or interface testing.

Integration testing is an activity to bring the units together and test

them as a module. Interface testing is an activity of testing

connectivity and communication of application with the outside

world. For eg: the module connection with outside world like

database, browser, and operating system.

Coding:

Coding is an activity of writing individual units as defined in low level

design.

a. Code Verification:

As coding is done, it undergoes a code review (generally peer review).

Peer helps in identification of errors with respect to coding standards,

indenting standards, commenting standards and variable declaration

issues. The Checklist approach is used in code review.

b. Code Validation:

Validation of coding happens through unit testing where individual units

are separately The developer may have to write special programs (such as

stubs and drivers) so that units can be tested. The executable is created by

combining stubs, drivers and the units under testing.

 246

Software Quality

Assurance

8.9 CRITICAL ROLES AND RESPONSIBILITIES

In software verification and validation, three critical roles can be

identified.

Development:

Development team may have various roles under them. They may be

performing various activities as per the role and responsibilities at various

stages. Some of the activities related to development group may be as

follows

 Project Planning activities include requirement elicitation, project

planning scheduling. Project planning is the foundation of success.

 Resources may include identification and organization of adequate

number of people, machine, hardware, software and tools required by

the project. It may also include assessment of skills required by plans.

 Interacting with customers and stakeholders as per project

requirement.

 Defining policies and procedures for creating development work,

verification and validation activities so that quality is built properly,

delivering it to test team/customer as the case may be.

Testing:

Testing team may include test manager, test leads, and testers as per scope

of testing, size of project, and type of customer. Generally, it is expected

that a test team would have independence of working and they do not have

to report to the development team.

 247

V-Test Model

Roles and responsibilities of test team may include the following:

 Test planning including test strategy definition, and test case writing.

Test planning may include estimation of efforts and resources

required for testing.

 Resourcing may include identification and organisation of adequate

numbers of people, machines, hardware, software, and tools as

required by the project. It may also involve an assessment of skills

required by the project, skills already available with them and any

training needs.

 Defining policies and procedures for creating and executing tests as

per test strategy and test plan. Testers may have to take part in

verification and validation activities related to test artifacts.

 Doing acceptance testing related activities such as training and

mentoring to users from customer side before/during acceptance

testing activities.

Customer:

Customer may be the final user group, or people who are actually

sponsoring the project. Customers can be internal to an organisation or

external to the organisation. Roles and responsibilities of a customer may

include the following.

 Specifying requirements and signing off requirement statements and

designs as per contract. It may also include solving any queries or

issues raised by the development/test team.

 Participating in acceptance testing as per roles and responsibilities

defined in the acceptance test plan. A customer may be responsible

for alpha, beta and gamma testing, as the case may be.

8.10 LET US SUM UP

This chapter provides a clear exposition of V-MODEL and VV Model

(Verification and Validation). It covers activities of verification and

validation along with its role and responsibilities. The chapter concludes

with a clear overview of roles and responsibilities which is important for

the good product.

8.11 EXERCISES

1. What are the characteristics of good requirements?

2. Describe V & V activities during the proposal.

3. Describe V & V activities during requirement generation.

4. Describe V & V activities for test artifacts.

 248

Software Quality

Assurance

5. Describe V & V activities during designs.

6. Describe V & V activities during coding.

7. Explain VV Model

8. What are the role and responsibilities in software verification and

validation

8.12 REFERENCES

● [Andriole86] Andriole, Stephen J., editor, Software Validation,

Verification, Testing, and Documentation, Princeton, NJ: Petrocelli

Books, 1986.

● https://www.softwaretestinghelp.com/what-is-stlc-v-model/

● M.G., LIMAYE, ed. (2009) Software Testing: Principle, Technique

and Tools. Tata McGraw-Hill Publishing Ltd.

https://www.softwaretestinghelp.com/what-is-stlc-v-model/

 249

UNIT - V

9
LEVELS OF TESTING

Unit Structure

9.0 Objectives

9.1 Introduction

9.2 Proposal Testing

9.3 Requirement Testing

9.4 Design Testing

9.5 Code Review

9.6 Unit Testing

9.6.1 Difference between debugging and unit testing

9.7 Module Testing

9.8 Integration Testing

9.8.1 Bottom-Up Testing

9.8.2 Top-Down Testing

9.8.3 Modified Top-Down Approach

9.9 Big-Bang Testing

9.10 Sandwich Testing

9.11 Critical Path First

9.12 Subsystem Testing

9.13 System Testing

9.14 Testing Stages

9.15 Let us Sum Up

9.16 Exercises

9.0 OBJECTIVES

After going through this chapter, you will be able to:

• describe various verification and validation activities associated with

various stages of SDLC starting from proposal.

• discuss various approaches of integration testing.

9.1 INTRODUCTION

Testing is a life-cycle activity which begins with a proposal for

software/system application and ends when product is finally delivered to

customer. Different agencies/stakeholders are involved in conducting

specialised testing required for the specific application. Definition of these

stakeholders/agencies depends on the type of testing involved and level of

 250

Software Quality

Assurance

testing to be done in various stages of software development life cycle.

Table 9.1 shows in brief the level of testing performed by different

agencies. It is an indicative list which may differ from customer to

customer, product to product and organisation to organisation.

Table 9.1 Different agencies involved at different levels of testing

Testing Agencies involved

Proposal review Customer, Business Analyst, System Analyst,

Project Manager

Proposal testing Customer, Business Analyst, System Analyst,

Project Manager

Requirement

review

Customer, Business Analyst, System Analyst,

Project Manager, Project Leader, Test Leader

Requirements

testing

Customer, Business Analyst, System Analyst,

Project Manager, Project Leader, Test Leader

Design review Customer, Business Analyst, System Analyst,

Architect, Project Manager, Project Leader, Test

Leader, Developer

Design testing Customer, Business Analyst, System Analyst,

Architect, Project Manager, Project Leader, Test

Leader, Developer

Code review Project Leader, Project Team, Customer

Test artifact

review

Project Leader, Project Team, Customer, Tester,

Test Leader

Unit testing Project Leader, Project Team, Customer

Module testing Project Leader, Project Team, Tester, Customer

Integration

testing

Project Leader, Project Team, Tester, Customer

System testing Project Manager, Test Leader, Tester, Customer

Acceptance

testing

Project Manager, Tester, User/Customer

9.2 PROPOSAL TESTING

A proposal is made to the customer on the basis of Request for Proposal

(RFP) or Request for Information (RFI) or Request for Quotation (RFQ)

by the customer. Before making any proposal, the supplier must

understand the purpose of such request, and devise the proposed solution

accordingly. One must understand customer problem and the possible

solution. Any proposal prepared in response to such request is reviewed by

an organisation before sending it to the customer. It is reviewed by

different panels or groups in the organisation such as technical group and

commercial group. The intention is to ensure that the organisation must be

able to stand by its words, if the proposal gets converted into a contract.

The organisation must assess the impact of proposal on the organisation as

well as on the prospect/customer.

 251

Levels of Testing

Technical Review:

Technical review mainly involves technical feasibility of the kind of

system or application proposed, the availability and requirement of skill

sets, the hardware/software and other requirements of system. The

proposal is also reviewed on the basis of time required for developing such

system, and efforts required to make the proposal successful. The

technical proposal is a description of overall approach, and not the final

accepted approach solution/method and may undergo many iterations of

changes as per discussions with customer. Requirement and estimations at

the stage of proposal are not very specific but rather, they are indicative. It

works on rough-cut methods, and estimations are ball-park figures that

prospect may expect.

Commercial Review:

A proposal undergoes financial feasibility and other types of feasibilities

involved with respect to the business. Commercial review may stress on

the gross margins of the project and fund flow in terms of money going

out and coming in the development organisation. Generally, total payment

is split into installations depending upon completion of some phases of

development activity. As different phases are completed, money is

realised at those instances.

Several iterations of proposals and scope changes may happen before all

the parties involved in Request for Quotation (RFQ) and proposal agree on

some terms and conditions for doing a project.

Validation of Proposal:

A proposal sometimes involves development of prototypes or proof of

concept to explain the proposed approach to customer problem. One must

define the approach of handling customer problem in the model or

prototype.

In case of product organisation, the product development group along with

marketing and sales functions decides about the new release of a product.

9.3 REQUIREMENT TESTING

Requirement creation involves gathering customer requirements and

arranging them in a form to verify and validate them. The requirements

may be categorised into different types such as technical, economical,

legal, operational, and system requirements. Similarly, requirements may

be specific, generic present, future, expressed, implied, etc. The customer

may be unaware of many of these requirements. The business analyst and

system analyst must study the customer’s line of business, problem and

solution that the customer is looking for before arriving at these

requirements. Assumed, implied or intended requirement is a gray area

and may be a reason for many defects in the final product. Requirement

testing makes sure that requirements defined in requirement specifications

meet the following criteria:

 252

Software Quality

Assurance

Clarity:

All requirements must be very clear in their meaning and what is expected

from them. Requirements must state very clearly what the expected result

of each transaction is, and who are the actors taking part in the

transactions.

Complete:

Requirement statement must be complete and must talk about all business

aspects of the application under development. Any assumption must be

documented and approved by the customer.

Measurable:

Requirements must be measurable in numeric terms as far as possible.

Such definition helps to understand whether the requirement has been met

or not while testing the application. Qualitative terms like ‘good’,

‘sufficient’, and ‘high’ must be avoided as different people may attach

different meanings to these words.

Testable:

The requirement must help in creating use cases/scenario which can be

used for testing the application. Any requirement which cannot be tested

must be drilled down further, to understand what is to be achieved by

implementing these requirements.

Not Conflicting:

The requirements must not conflict with each other. There is a possibility

of trade-off between quality factors which needs to be agreed by the

customer. Conflicting requirements indicate problem in requirement

collection process.

Identifiable:

The requirements must be distinctively identifiable. They must have

numbers or some other way which can help in creating requirement

traceability matrix. Indexing requirements is very important.

Validation of Requirements:

In requirement testing, clear and complete use cases are developed using

requirement statement. Any assumption made indicates lacunae in

requirement statement and it should be updated by verifying the

assumptions made with the customer.

9.4 DESIGN TESTING

Once the requirement statement satisfies all characteristics defined above,

the system architect starts with system architecture design. The designs

made by system architects must be traceable to requirements. The design

must also possess the characteristics given below:

 253

Levels of Testing

Clarity:

A design must define all functions, components, tables, stored procedures,

and reusable components very clearly. It must define any interdependence

between different components and inputs/outputs from each module. It

must cover the information to and from the application to other systems.

Complete:

A design must be complete in all respect. It must define the parameters to

be passed/received, formats of data handled, etc. Once the design is

finalised, programmers must do their work of implementing designs

mechanically and system must be working properly.

Traceable:

A design must be traceable to requirements. The second column of

requirement traceability matrix is a design column. The project manager

must check if there is any requirement which does not have corresponding

design or vice versa. It indicates a defect if traceability cannot be

established completely.

Implementable:

A design must be made in such a way that it can be implemented easily

with selected technology and system. It must guide the developers in

coding and compiling the code. The design must include interface

requirements where different components are communicating with each

other and with other systems.

Testable:

A good design must help testers in creating structural test cases.

Validation of Design:

Design testing includes creation of data flow diagrams, activity diagrams,

information flow diagram, and state transition diagram to show that

information can flow through the system completely. Flow of data and

information in the system must complete the loop. Another way of testing

design is creating prototypes from design.

9.5 CODE REVIEW

Code reviews include reviewing code files, database schema, classes,

object definitions, procedures, and methods. Code review is applied to

ensure that the design is implemented correctly by the developers, and

guidelines and standards available for the coding purpose are followed

correctly. Code must have following characteristics:

Clarity:

Code must be written correctly as per coding standards and syntax,

requirements for the given platform. It must follow the guidelines and

 254

Software Quality

Assurance

standards defined by the organisation/project/customer, as the case may

be. It must declare variables, functions, and loops very clearly with proper

comments. Code commenting must include which design part has been

implemented, author, date, revision number, etc. so that it can be traced to

requirements and design.

Complete:

Code, class, procedure, and method must be complete in all respect. One

class doing multiple things, or multiple objects created for same purpose

indicates a problem in design.

Traceable:

Code must be traceable with design components. Code files having no

traceability to design can be considered as redundant code which will

never get executed even if design is correct.

Maintainable:

Code must be maintainable. Any developer with basic knowledge and

training about coding must be able to handle the code in future while

maintaining or bug fixing it.

9.6 UNIT TESTING

Unit is the smallest part of a software system which is testable. It may

include code files, classes and methods which can be tested individually

for correctness. Unit testing is a validation technique using black box

methodology. Black box testing mainly concentrates on system

requirements.

 Individual components and units are tested to ensure that they work

correctly as an individual as defined in design.

 Unit testing requires throwaway drivers and stubs as individual files

may not be testable or executable without them.

 Unit testing may be performed in debugger mode to find how the

variable values are changed during the execution. But, it may not be

termed ‘black box testing’ in such case as code is seen in debugging.

 Gray box testing is also considered as ‘unit testing technique’

sometimes as it examines the code in detail along with its functioning.

Gray box testing may need some tools which can check the code and

functionality at the same time.

 Unit test cases must be derived from use cases/design component used

at lowest levels of design.

 255

Levels of Testing

9.6.1 Difference between Debugging and Testing:

Many developers consider unit testing and debugging as the same thing. In

reality there is no connection between the two. Difference between them

can be illustrated as shown in Table 9.2

Table 9.2 Difference between debugging and unit testing

Debugging Unit testing

It involves code checking to locate

the causes of defect.

It checks the defect and not the

causes of the defect.

Code may be updated during

debugging.

It does not involve any code

correction.

Test cases are not defined. Test cases are defined based on

requirements and design.

Generally covers positive cases to

see whether unit works correctly or

not.

Covers positive as well as

negative cases.

9.7 MODULE TESTING

Many units come together to form a module. The module may work on its

own or may need stubs/drivers for its execution. If the module can work

independently, it is tested by tester. If it needs stubs and drivers,

developers must create the same and perform testing. Module testing

mainly concentrates on the system structure.

 Module testing is done on related unit-tested components to find

whether individually tested units can work together as a module or

not.

 Module test cases must be traceable to requirements/design.

9.8 INTEGRATION TESTING

Integration testing involves integration of units to make a

module/integration of modules to make a system/integration of system

with environmental variables if required to create a real-life application.

Integration testing may start at module level, where different units and

components come together to form a module, and go up to system level. If

module is self-executable, it may be tested by testers. If it needs stubs and

drivers, it is tested by developers.

Though integration testing also tests the functionality of software under

review, the main stress of integration testing is on the interfaces between

different modules/systems. Integration testing mainly focuses on

input/output protocols, and parameters passing between different units,

modules and/or system. Focus of integration is mainly on low-level

design, architecture, and construction of software. Integration testing is

 256

Software Quality

Assurance

considered as ‘structural testing’. Figure 9.1 shows a system

schematically.

There are various approaches of integration testing depending upon how

the system is integrated. Different approaches have different benefits and

limitations.

9.8.1 Bottom-Up Testing:

Bottom-up testing approach focuses on testing the bottom part/individual

units and modules, and then goes upward by integrating tested and

working units and modules for system testing and intersystem testing.

Figure 9.2 shows bottom-up integration and testing.

 Units at the lowest level are tested using stubs/drivers. Stubs and

drivers are designed for a special purpose. They must be tested before

using them for unit testing.

 Once the units are tested and found to be working, they are combined

to form modules. Modules may need only drivers, as the low-level

units which are already tested and found to be working may act as

stubs.

 If required, drivers and stubs are designed for testing as one goes

upward. Developers may write the stubs and drivers as the

input/output parameters must be known while designing.

 Bottom-up approach is also termed ‘classical approach’ as it may

indicate a normal way of doing things. Theoretically, it is an excellent

approach but practically, it is very difficult to implement.

 Each component which is lowest in the hierarchy is tested first and

then next level is taken. This gives very robust and defect-free

software. But, it is a time consuming approach.

 257

Levels of Testing

Bottom-up approach is suitable for the following:

 Object-oriented design where objects are designed and tested

individually before using them in a system. When the system calls the

same object, we know that they are working correctly (as they are

already tested and found to be working in unit testing).

 Low-level components are general-purpose utility routines which are

used across the application; bottom-up testing is the recommended

approach. This approach is used extensively in defining libraries.

Stubs/Drivers:

 Stubs/drivers are special-purpose arrangements, generally code,

required to test the units individually which can act as an input to the

unit/module and can take output from the unit/module.

Stub:

Stub is a piece of code emulating a called function. In absence of a called

function, stub may take care of that part for testing purpose.

Driver:

Driver is a piece of code emulating a calling function. In absence of actual

function calling the piece of code under testing, driver tries to work as a

calling function.

 Stubs are mainly created for integration testing like top-down

approach. Drivers are mainly created for integration testing like

bottom-up approach.

 Stubs/drivers must be very simple to develop and use. They must not

introduce any defect in the application. They should be eliminated

before delivering code to customer.

 Creating reusable stub/driver improves productivity, but it is a big

challenge.

Advantages of Bottom-Up Approach:

 Robust system, as each unit is tested individually.

 258

Software Quality

Assurance

Disadvantages of Bottom-Up Approach:

 Slower process.

 Most important components at the top-level are tested at the end,

might result in product delivery pressure.

 Wastage of effort in designing stubs and drivers.

9.8.2 top-Down Testing:

Top-down testing begins with testing of top-level components of the

application, like user interfaces and then proceeds downward till it reaches

the final component of the system. Here, integration goes downward as the

tested components at the top are combined one by one in the process. Top-

down approach needs design and implementation of stubs. Agile models

like prototyping use this testing approach. Figure 9.3 shows top-down

integration approach.

Advantages of Top-Down Approach:

 This approach begins from top layer thereby determining feasibility of

application at an early stage.

 Major flaws can be detected by taking user inputs.

 Generally, this approach does not need drivers as top-layers can work

as drivers for bottom layers.

Disadvantages of Top-Down Approach:

 Sometimes individual units/module flaws remain hidden as they are

rarely tested alone.

 This approach can create a false belief among customer that software

is ready as prototype of software is delivered to customer even before

design phase.

 Wastage of effort in designing large number of stubs.

 259

Levels of Testing

9.8.3 Modified Top-Down Approach:

Modified top-down approach combines the advantages of bottom-up and

top-down approaches and tries to remove the disadvantages of both. This

approach begins testing from both the ends to meet somewhere in

between. One part of testing starts from top to bottom as we are

integrating units downward, and the second part from bottom to top for

selected components declared as ‘critical units’. The main challenge is to

determine individual unit/module for bottom-up testing. Configuration

management is very important for such an approach. This approach makes

the system testing twice. This may require more resources and more time

than top-down approach but lesser than bottom-up approach. This

approach is more practical as all components are not equally important.

Figure 9.4 shows a modified top-down approach.

Advantages of Modified Top-Down Approach:

 Important units are tested individually, and then combined to form the

modules, and finally modules are tested to make the system. This is

done during unit testing followed by integration testing.

 This approach is time saving as all components are not tested

individually. This approach believes not all components are critical

for a system.

 The systems tested using this approach are more efficient as compared

to top-down and bottom-up approach.

Disadvantages of Modified Top-Down Approach:

 Stubs and drivers are required.

 Identification of critical units is challenging.

9.9 BIG-BANG TESTING

The system is tested completely after development in big-bang approach.

Individual units/modules are not tested.

 260

Software Quality

Assurance

Advantages of Big-Bang Approach:

 Since testing is done at the end phase, therefore time required for

writing test cases and defining test data at unit level, integration level,

etc. may be saved.

 This approach can be used as a validation of development process if

an organisation has optimized processes. If all testing phases are

successfully completed, then system testing may act as certification

testing before final product delivery.

 No stub/driver is required in this approach. It is cost efficient

approach.

 Fast approach.

Disadvantages of Big-Bang Approach:

 Defects found during testing are difficult to trace and debug.

 This approach executes the test cases without any understanding of

how the system is build.

 Interface faults may not be distinguishable from other faults.

 Based on just few test cases, testers certify the system.

9.10 SANDWICH TESTING

Sandwich testing conducts testing into two parts, and follows both parts

starting from both ends i.e. top-down approach and bottom-up approach

either simultaneously or one after another. It combines the advantages of

both these approaches. Figure 9.5 shows sandwich testing approach.

Process of Sandwich Testing:

 Bottom-up testing starts from middle layer and moves upward. Top-

down testing starts from middle layer and goes downward.

 Big-bang approach is followed for the middle layer. From this layer,

bottom-up approach goes upwards and top-down approach goes

downward.

 261

Levels of Testing

Advantages of Sandwich Testing:

 Suitable for large projects following spiral model.

 Both top-down and bottom-up testing begin simultaneously.

Disadvantages of Sandwich Testing:

 Higher testing costs as it requires more resources and big teams for

performing top-down and bottom-up testing simultaneously.

 Not suitable for smaller projects.

 Skilled testers with varying skill sets are required as different domains

representing different functional areas have to be handled.

9.11 CRITICAL PATH FIRST

In critical path first, critical path is determined which must be covered

first. Critical path represents the main function of a system. Development

team focuses on design, implementation and testing of critical path of a

system first. This is also called ‘skeleton development and testing’. In

order to define critical path correctly, it is important to understand the

system criticality from user’s perspective or from business perspective and

then decide on priority of testing. This approach is generally applicable

when entire system testing is impossible and systems are large enough.

9.12 SUBSYSTEM TESTING

Subsystem testing involves collection of units, sub modules, and modules

which have been integrated to form subsystems. It mainly concentrates on

detection of integration and interface errors

9.13 SYSTEM TESTING

System testing is the final stage of testing just before system is delivered

to customer. It validates the fulfilment of functional/non-functional

requirements as specified in software requirement specification. It

involves following stages:

Functional Testing:

System software is expected to perform certain functions as mentioned in

requirement specification. This testing checks working of these intended

functionalities and corrects defects, if any.

User Interface Testing:

After functional testing, user interface is tested if the system has any user

interface. This testing may involve colors, navigations, spellings, and

fonts.

Once functional and user interface testing is completed, system undergoes

other types of testing like security, load, and compatibility.

 262

Software Quality

Assurance

9.14 TESTING STAGES

First, unit testing is performed to identify and eliminate any defects at unit

level. Second, integration testing or module testing is done on integrated

units. After module testing, subsystem testing is executed. Then system

testing is performed after the system completes all levels of integration. In

some cases, interface testing is done instead of system testing to fix any

issues with inter system communication. Lastly, acceptance testing is done

to check whether acceptance criteria is fulfilled or not. Testing stages are

shown in Fig. 9.6.

Fig. 9.6 Software testing stages

9.15 SUMMARY

This chapter describes verification and validation activities related to

various stages of software development phases. It discusses merits and

demerits of various integration testing approaches.

9.16 EXCERCISES

1. Describe proposal review process.

2. Describe requirement verification and validation process.

3. Describe design verification and validation process.

4. Describe code review and unit testing process.

5. Describe difference between debugging and unit testing.

6. Differentiate between integration testing and interface testing.

7. Describe bottom-up approach for integration.

8. Describe top-down approach for integration.

9. Describe modified top-down approach for integration.

 263

10
SPECIAL TESTS

Unit Structure

10.0 Objectives

10.1 Introduction

10.2 GUI Testing

10.3 Compatibility Testing

10.3.1 Multiplatform Testing

10.4 Security Testing

10.5 Performance Testing

10.6 Volume Testing

10.7 Stress Testing

10.8 Recovery Testing

 10.8.1 System Recovery

 10.8.2 Machine Recovery

10.9 Installation Testing

10.10 Requirement Testing

10.11 Regression Testing

10.12 Error Handling Testing

10.13 Manual Support Testing

10.14 Intersystem Testing

10.15 Control Testing

10.16 Smoke Testing

10.17 Adhoc Testing

10.18 Parallel Testing

10.19 Execution Testing

10.20 Operations Testing

10.21 Compliance Testing

10.22 Usability Testing

10.23 Decision Table Testing

10.24 Documentation Testing

10.25 Training Testing

10.26 Rapid Testing

10.27 Control Flow Graph

10.27.1 Program Dependence Graph

 10.27.2 Category Partition Method

 10.27.3 Test Generation from Predicate

 10.27.4 Fault Model for Predicate Testing

 10.27.5 Difference between Control flow and Data flow

 264

Software Quality

Assurance

10.28 Generating Tests on the Basis of Combinatorial Designs

 10.28.1 Combinatorial Test Design Process

 10.28.2 Generating Fault Model from Combinatorial Designs

10.29 State Graph

 10.29.1 Characteristics of Good State Graphs

 10.29.2 Number of States

 10.29.3 Matrix of Graphs

10.30 Risk Associated with New Technologies

10.31 Process Maturity Level of Technology

10.32 Testing Adequacy of Control in New Technology Usage

10.33 Object-Oriented Application Testing

10.34 Testing of Internal Controls

 10.34.1 Testing of Transaction Processing Control

 10.34.2 Testing Security Control

10.35 „COTS‟ Testing

10.36 Client-Server Testing

10.37 Web Application Testing

10.38 Mobile Application Testing

10.39 eBusiness/eCommerce Testing

10.40 Agile Development Testing

10.41 Data Warehousing Testing

10.42 Let us Sum Up

10.43 Exercises

10.0 OBJECTIVES

After going through this chapter, you will be able to:

 Explain special techniques other than system testing which may be

required as per customer or application specification.

 Understand requirement statement clearly. Know and comprehend the

testing scope, application type, and customer‟s line of business before

devising any test.

 Understand the support documentation and tools required for doing

testing.

 Understand the sequence of activities to be done while conducting

different tests.

10.1 INTRODUCTION

Testing includes not just functionality testing. Depending on application

and requirement specifications, some specialized tests may be conducted.

Special testing may need some special testing skills, tools and techniques.

 265

Special Tests

Some systems are intended for specific purpose and they need to fulfill

special characteristics mentioned in requirement statement. Testing of

such systems is included in this type of testing. Examples include

eBusiness system, security system, antivirus applications, administrative

system, operating systems and databases. Such systems are created for

specific users and may or may not cater to all in general.

10.2 GRAPHICAL USER INTERFACE TESTING

User interacts with the system using user interface. Graphical user

interface is an important part of the application affecting usability.

Graphical user interface testing is also known as „GUI‟ testing or „UI‟

testing. Application system testing begins with functionality testing which

is followed by GUI testing. Graphical user interface includes the

following:

 Colors used for background, control and font should be chosen

carefully as they directly impact users.

 Words, fonts, and alignments used on screen also have a huge impact

on user readability and interaction with system. Font size and

alignments should be set properly. Spelling mistakes should not be

there.

 Scrolling pages up and down as well as navigation for different

hyperlinks and pages must be avoided as much as possible as it

increases frustration in users and reduces usability. Page layout should

be maintained.

 Error and alert messages must be meaningful and easily

understandable to users.

 Reports and print outs should take readability, font, screen size, paper

size on printer into consideration.

 Screen layout in terms of number of instructions to users, number of

controls and number of pages are defined in low-level design. Too

many pages and many controls on single page reduce application

usability.

 Appropriate control selection improves operability of application like

placing drop down control instead of free text. Logical placement of

controls and tab sequence maintenance improves usability and screen

appearance.

 Huge graphics impact the loading time of page. Pages must be kept

simple for easy loading/unloading in web application.

Advantages of GUI Testing:

 GUI impacts user‟s emotion and psychological impact of using an

application. It is essential to have a good GUI to improve look and

feel of the application.

 266

Software Quality

Assurance

 GUI represents the presentation of an application. Prototyping is used

extensively for verifying GUI requirements.

 Placing „Help‟ option ensures the users quick access to help in case of

any problem resulting in enhanced user experience and improved

application reliability.

 Consistency of screen layouts, appropriate tab sequence, and designs

improves application usability.

Disadvantages of GUI Testing:

 Due to huge controls on a page and large number of pages, spelling

mistakes might go unnoticed by tester.

 Special applications targeted for specific end users, like blind people

or kids below 5 years of age may require software testers to be trained

to behave like target users.

 Functionality testing is prioritized over GUI testing resulting in

negligence of GUI defects.

 GUI testing is not given much importance and often assigned to junior

testers.

10.3 COMPATIBILITY TESTING

Application is generally made up of different components which work

together to achieve a goal. In software systems, these components may be

printer, hardware, operating system, databases etc. Market size is impacted

by the product and its operability with components. Product vendors

always aim to maximize the working of product on every possible

scenario of different components. Compatibility testing refers to testing

the software on multiple configurations to check the behavior of different

system components and their combinations. Different types of

compatibility testing are performed.

10.3.1 Multiplatform Testing:

Software testing on different platforms is done in Multiplatform testing.

Performance of software must not be impacted as the platform is changed.

Platform may be freeware, open source or licensed. Customers prefer to

use applications running on their existing platform. Product vendors will

always prefer to have maximum possible platform coverage so that they

can have customers from across the globe.

 In multiplatform testing, validation of software execution across

different platforms is done, also called parallel testing. Verification is

done by comparing the results of processing on different platforms.

The aim is to ensure that software achieves its functionalities on every

platform.

 267

Special Tests

 The platform on which software development is done is referred as

„base platform‟ and it is expected to behave in similar manner on

range of platforms. This range of platforms must be clearly defined in

requirement statement and they should be already existing platforms

so that testing can be performed.

 When software is working on different platforms, some performance

variations are allowed and this range of performance variations

allowable must be mentioned in requirement statement.

Major Concerns in Multiplatform Testing:

 Platform vendors frequently release updates, patches and service

packs which results in updating the platform as well. Hence, the

platform used during compatibility tests may not be same as actual

application implementation platform.

 Range of compatible platforms should already be defined in

requirement statement. It is not possible or feasible to make the

application compatible with all the platforms in the world.

 It is important to do cost-benefit analysis to understand the target

market as it is not feasible to do exhaustive compatibility with all

platforms if target market does not need it.

 Certain assumptions have to be made as the list of required platforms

and configurations may not be complete.

 Platform configuration impacts the application performance to some

extent.

Multiplatform Testing Process:

 Define the base platform for testing and do result analysis on base

platform. Compatibility testing on different platforms is done and

results are compared with base platform results. Any deviation in

result is considered as defect.

 The expected platforms on which application compatibility is

expected should be defined and approved by the customer beforehand.

Table 10.1 gives an example of multiplatform testing coverage for three

platforms (say PA, PB, and PC) and a base/mother platform (say PM).

Table 10.1 Multiplatform testing coverage

Platform targeted Distribution Testing coverage

PM - Base platform, system testing

PA 80% 100%

PB 15% 25%

PC 5% Smoke testing

 268

Software Quality

Assurance

 Assess test laboratory configuration with respect to base platform and

target platform configuration mentioned in requirement statement. It

must include the service packs or hot fixes to be included/excluded in

testing and configuration of system which can impact the application.

 Usually, application interacts with the platform for performing

various service tasks such as display and printing. The customer or

designer must define the interfaces between application and platform.

Extent of testing and specific test cases to be performed can be

defined by list of interface items in the application that are being

affected by platform change.

 Test cases selection and execution depends upon initial calculation of

coverage offered or expected by customer, risk analysis, and cost-

benefit analysis.

Types of Compatibility:

Friend Compatibility:

There is no change of application behavior between mother platform and

new platform. The application utilizes all facilities and services available

on the platform efficiently.

Neutral Compatibility:

The application behavior on new platform is similar to its working on

parent platform. Only difference is that the application does not use the

facilities provided by new platform at all. Instead, it uses its own utilities

and services thus overburdening the system.

Enemy Compatibility:

The application does not perform as expected or does not perform at all on

new platform.

10.4 SECURITY TESTING

Security testing ensures the security and protection of an application

against unauthorized penetration. Every system has some vulnerable

points easily prone to attacks. It is essential to protect the application from

attacks which may put user‟s privacy, data and system at risk.

 Make a list of all possible penetrators of the system. It may include

everyone who uses the system or accesses internet cloud through the

system.

 Make a list of all penetration points which are susceptible to attacks

easily.

 Make a penetration matrix with one dimension as perpetrators, and

another dimension as a point of penetration. Each quadrant will give

the possible point of failure of a system.

 269

Special Tests

 Define the probability of security breakage, and impact of such

breakage for each failure point represented by each quadrant. Each

quadrant has probability and impact associated with it. Product of

probability and impact represents the risk associated for the

application. Higher score or greater RPN/RIN represents more

problematic situation. Such cases must be handled on priority basis

during development. They also indicate the probable areas where

testing must be focused.

 Execute tests on the basis of high-risk prioritization which is a

product of probability and impact or RPN/RIN.

Application Areas of Security Testing:

 Systems containing critical data of employees, customer and project

may be prone to attacks. Such high confidential data of organisation

must be protected.

 E-business and E-commerce systems involve financial transactions

thus demand high protection of user‟s privacy.

 Communication system may be prone to information loss during

transit. It may cause huge loss if perpetrators take/alter the

information while in transit.

Security checking involves designing test cases that subvert the programs

security checks and try to break the system defenses. Some of them are as

follows:

 Users are not supposed to write or store their passwords anywhere.

The passwords must not be shared with anyone. Obtaining a password

using unofficial method to break a system is one way of security

testing.

 People may be able to guess password using details like names of near

and dear ones, birth date, etc. Such information can be used to decode

the password.

 Login and password copying and pasting must not be allowed by the

system. Small utilities can be used to break the password, if copy and

paste functionalities are allowed.

 Idle terminals should get locked, after being left idle for some time.

Timeframe may be decided by organisation. If the terminal does not

get locked automatically, then an unauthorized person may start

accessing the system as valid user has already logged in the system.

 Check permissions of different user groups and their privileges for

system usage. Admin privilege is restricted to few people only.

 Direct backend changes in database should not be allowed. Otherwise,

records are added in database without going through validation and

verification procedure which may affect the application.

 270

Software Quality

Assurance

 There is limit defined for number of users for the system. To test it,

create more users than allowed. Also, number of users with admin

privilege should be restricted.

 System deleting admin account or one admin account deleting another

admin account should not be allowed.

 Renaming admin group or deleting groups containing admin users or

any active users should not be allowed.

10.5 PERFORMANCE TESTING

Performance testing is intended to check whether the system meets its

performance requirements as mentioned in requirement statement.

Performance criteria must be measurable. Examples:

 Adding a new record in database must take maximum 5 milliseconds.

 Searching of a record in a database containing one million records

must not take more than 1 second.

 Sending information of say 1 MB size across the system with a

network of 512 KBPS must not exceed 1 minute.

Testers should try above possibilities and verify the performance of the

system. Generally, automated tools are used where strict performance

requirements need to be tested.

10.6 VOLUME (LOAD) TESTING

Volume testing measures the maximum load a system can undergo before

it collapses. As volume load increases, performance decreases. However,

the goal is to find whether system crashes or survives due to increased

volume rather than checking the performance.

Ways of Volume Testing:

 During design, set a limit on the number of users. This can prevent

excess users accessing the system, thus protecting the system from

any excessive load.

 Another way is to allow excess users to join but with a warning of

slow response from system due to load. Sometimes, users may accept

slow running system rather than a system which is unavailable.

 One approach is to create session timeout when user keeps system

idle for a stipulated time.

Volume testing may require automation for stringent requirements as load

is incremented by small factor and corresponding iterations are conducted

to find the point of system collapse.

 271

Special Tests

Examples of Volume Testing Process:

 First, transaction is given normal priority. Users are incremented each

time and priority is also set to high till the system fails.

 User limit is set to 1000 concurrent users. As soon as 1001
th

 user tries

to enter the system, it may not be allowed with a warning message.

Another way is to allow but warn of slow performance.

10.7 STRESS TESTING

Stress testing defines the minimum resources the system will require for

efficient and optimal performance. System performance deteriorates due

to non-availability of resources. Stress testing also takes into consideration

„safety factor‟ to protect user from system failure due to resource

constraints. To conduct stress testing, simple transactions are created and

the system resources such as processor size, RAM, etc. are reduced to find

the minimum level of resources till the system works.

10.8 RECOVERY TESTING

Recovery testing intends to find out how the system as a whole or an

individual machine/server as a component of the entire system recovers

from a disaster. There are various ways of disaster recovery and system

requirement should specify the methods to be used during recovery.

10.8.1 System Recovery:

System is composed of several components such as machines, terminals,

routers, and servers. System failure means failure of any of these

components or failure of all or many of these components or

communication failure between these components. There are three

different ways of system recovery:

System returns to the point of integrity after encountering disaster:

When system encounters disaster, it is expected to return to the last action

that the system knows before disaster occurrence. This last point of

integrity differs from system to system and it is defined in requirement

specification as per user expectations. Example: In some systems,

„refresh‟ button is often used to bring the system to previous page before it

got lost. However, certain secured systems like IRCTC portal comes to the

initial point which is login page. This affects user‟s experience as entire

information of a transaction is lost and needs to be entered again. This way

is low level disaster recovery.

Storing data in temporary location:

When system encounters disaster, the completed transactions till that point

are stored in temporary memory. As the system returns to its original state,

user is asked to confirm the commitment of stored transactions. User

views them and if it accepts, the system resumes from that point. If user

 272

Software Quality

Assurance

rejects, transactions are permanently deleted and user begins from initial

point. In this method, memory space is required to store transactions and

space requirement increases with increase in users. This is an advanced

way of handling disaster.

Completing the transaction:

When system encounters disaster, the transactions till that point are

automatically committed. The system tries to complete the transaction till

the last point in every possible way. This is midway amongst the two

above ways to handle disaster.

10.8.2 Machine Recovery:

Machines such as application server and database server contain vital

information and data. It is essential to protect this data in case of disaster.

There are four ways to safeguard data:

Cold Recovery:

 Back up data at a defined frequency, such as once in a week on

external device like tape/CD. When disaster occurs, recovery is done

by loading this back up data on new machine and this machine

replaces original machine. However, last updated data is permanently

lost as backup is done at specified intervals only.

Warm Recovery:

 Backup is taken from one machine to another machine directly in this

recovery.

 Frequent and automatic backup is possible. Data is already on the

hard drive of both machines, if the backup is successful.

 In case of disaster, backup machine in introduced in the system

temporarily.

 Backup machine configuration may differ from original machine. Up

gradation of backup machine is required otherwise user faces problem

with inferior backup machine.

 Maintenance cost of two machines is involved.

 Data may be lost in case data is updated after last backup.

Hot Recovery:

 In this recovery scenario, both, original and backup machines are

present in the system.

 One machine is primary and another is backup machine. Both have

similar configuration and capabilities.

 In case of disaster, control is shifted from primary machine to backup

machine.

 273

Special Tests

 Backup frequency is defined as per backup plan.

 Data may be lost in case data is updated after last backup.

Mirroring:

 Similar to hot recovery, there are two machines with same

configuration.

 Data is backed up online and backup frequency is mirroring data, i.e.,

every millisecond data is copied from one machine to another.

 If primary machine fails, backup machine takes over without any

manual intervention.

 Huge cost is involved but data availability is almost continuous.

10.9 INSTALLATION TESTING

Most of the applications need to be installed before using them.

Installation testing is intended to find out how the application can be

installed using installation guide or documentation provided.

Aim of Installation Testing:

 To check if the installation process is documented correctly in the

user manual. Also, user must be able to easily interpret the

instructions in manual.

 To give training to users, if installation demands the same. Users

should be able to install application independently after requisite

training.

 To provide up gradation document, if installation requires switching

of systems or migrating from old machine to new one. Installation

must be able to detect current configuration and guide users through

up gradation accordingly.

Installation Process:

 Installation may need certain prerequisites for installation to

complete. This should be detected during installation process and

informed to user.

 Installation may be done using network, or from one machine to

several machines at a time. It can also be done through devices like

CD, pen drive, and floppies etc.

 Sometimes, remote installation is also required.

 According to requirements specification, installation process may be

auto-run or semi-automatic or manual. For auto-run, installation is

automated without any manual intervention. For semi-automatic,

installation halts for required user inputs. For manual installation,

users are trained to install the application.

 274

Software Quality

Assurance

Uninstallation Testing:

Uninstallation testing is used when requirement specification mentions the

need of uninstallation. In this testing, all components and files of

application are cleaned such that no thread of that application is left. The

process is as follows: Image of hard disk will be captured before software

installation. It will note all the files existing before installation. Then,

tester installs application and again captures the hard disk image. These

two images are compared and they should match exactly to prove clean

uninstallation.

Upgradation Testing:

Software applications require upgradation to newer versions by installing

updates released from product manufacturer from time to time. It is

required that the application should already exist on the disk before

upgradation. During upgradation, installer must be able to identify the

older version of application already available on disk. If this existing

application is more updated than the available upgradation, then

upgradation should not be done. Upgradation is similar to installation

process. It may be automatic, semi-automatic or manual. It may be done

using CD, floppy disk, etc. User must be given adequate support in case of

any problem in upgradation process.

10.10 REQUIREMENT TESTING

Requirement testing ensures that the system meets user expectations.

Objectives of requirement testing are:

 Ensure correct implementation of user requirements.

 Processing adheres to organization and customer policies and

standards.

Method of Requirement testing:

 Create requirement traceability matrix to determine whether all

requirements are implemented or not during software development.

Traceability includes requirements, designs, coding, test cases, and

test results. Test case failure indicates requirement not met.

 Use checklist to verify whether system meets organisational policies,

regulations and legal requirements.

 Create prototype or models to understand requirement characteristics.

10.11 REGRESSION TESTING

Regression testing intends to determine whether the changed components

have introduced any error in unchanged components of the system.

Regression testing can be done at:

 275

Special Tests

 Unit level to ensure unit level changes do not affect other units of the

system and unit fulfils its intended purpose.

 Module level to ensure module behavior is not affected by changing

of individual units.

 System level to ensure system is performing correctly according to

requirements even after changes made in some system parts.

Regression testing is performed when there is high risk that changes made

in one part of software may affect unchanged components or system

adversely. It is done by rerunning previously conducted successful tests to

ensure that unchanged components function correctly after change is

incorporated. It also involves reviewing previously prepared documents to

ensure they contain correct information even after changes have been

made in the system.

Methodology Where Regression Testing is used:

 Maintenance activities like defect fix, enhancement, reengineering,

etc.

 Iterative development methodologies.

 Agile development methodology.

There are many tools available for automated regression testing.

Automation is faster and cheaper alternative for regression testing as

regression testing requires huge efforts and time.

10.12 ERROR HANDLING TESTING

When using application, user may face error due to wrong options

selection or wrong data entered. Application is expected to guide users

through error messages. Error message indicates that something wrong has

occurred and how to resolve the issue and prevent errors. Error handling

testing is done to determine:

 System ability to prevent users from entering erroneous data. Users

should be alerted with error messages, in case of wrong entry or

processing detected by the system.

 Application must recognize all expected errors and error messages

should be displayed when any such error is encountered. Message

must guide user through identification and error correction.

 Procedures must detect and correct high-probability errors before

system processes such data.

Error messages may be of several categories:

 Preventive messages -System prohibits the user from entering wrong

data. Example: If user tries to enter date „13/05/1989‟ in the system

which accepts date in „MM/DD/YYYY‟ format, system detects and

 276

Software Quality

Assurance

prevents the user from entering date by displaying message that 13 is

not a valid month.

 Auto-corrective message –System informs user about wrong entered

data and automatically corrects it. This saves user‟s time and efforts

but it can be problematic if system does not know the correct version

of data.

 Suggestive message –System informs user about what is wrong and

provides suggestions to correct the data. It is up to user to accept or

reject suggestion. Automatic correction is avoided but user must know

the correct entry of data and either repeat the transaction from

beginning or accept the suggestion and correct wrong data.

 Detective message –System informs user about what is wrong but

does not guide about how to correct it. No suggestions or guidance is

provided. User solely has to do correction without any guidance or

information about error correction.

Error handling must happen throughout development cycle. Good error

handling assists user while working with system and improves user

experience. Error correction must not introduce any error in system. Types

of errors and strategy to handle them must be mentioned in requirement

statement. Error handling cost and time estimation to correct it must be

considered while developing system.

10.13 MANUAL SUPPORT TESTING

Manual support testing is intended to test the interfaces between user and

application. It determines whether:

 Manual support procedures are sufficiently documented, complete and

available to user. It can be in the form of online help or user manual

or trouble shooting manual.

 Manual support staff is adequately trained to handle various

conditions including entering data, processing, taking outputs as well

as handling errors. Users are able to work with system independently.

 Manual support and automated segments are interfaced properly

within the application.

 When users need assistance, provide input to manual support group

and enable its entry into system at correct time.

 Prepare output reports and inform users to take necessary actions

based on these reports.

10.14 INTERSYSTEM TESTING

Newly developed system may have to work with already existing systems

which may be automated or manual. Intersystem testing tests interfaces

 277

Special Tests

between two or more systems to ensure they work correctly together and

support information transfer amongst them.

It determines whether:

 Parameters and data are correctly passed between systems.

 Documentation must be complete and accurate with expected inputs

and outputs from the system.

 System testing is conducted each time when there is change in

parameters, application, or other external systems.

 Manual verification of documentation is done to understand the

relationship between different systems.

10.15 CONTROL TESTING

Control testing is done to check data validity, file integrity, audit trail,

backup and recovery, and documentation for the system under

development. It determines the following:

 Data processed is accurate, complete and usable. If mandatory fields

are placed, then control must stop at those fields until they are filled

by the user.

 Authorized transactions must enter system by validating user

permissions. Unauthorized persons should not be allowed to access

records or modify them.

 Audit trail is maintained to know transaction history made by users.

Transactions must be traceable from start to end.

 Process must support requirement statement and meet user needs.

 Ensure data integrity and transaction processing from start to end.

 Identify risks associated with users using the system and accordingly

grant access privileges.

 Create risk conditions to devise control mechanism. Expose the

system to these conditions during testing to validate control

mechanism.

 Evaluate effectiveness of controls as defined in requirement

statement. Controls must be effective, efficient and usable.

10.16 SMOKE TESTING

Smoke testing intends to check whether the application is working or not.

It basically aims to check if user can use the application. It is not any

approval testing method. Smoke testing is conducted without any user

inputs. Tester does installation, navigates through the application, and

checks output by invoking certain functionalities. If smoke testing fails,

 278

Software Quality

Assurance

the application is rejected. Success of smoke testing is basic criteria for

further system testing. Smoke testing is generally conducted by test

manager or senior tester. It is also termed as „smell test‟ as test manager

may have to make judgment about the system in short period of time.

10.17 ADHOC TESTING

Adhoc testing is performed without any formal test plan, test scenario, or

test data. It is also termed as „exploratory testing‟ or „monkey testing‟ or

„random testing‟. Testers use their previous testing experience and test the

system functionalities. Sometimes, hidden defects are revealed which were

not caught in earlier testing.

Advantages of adhoc testing:

 There is no particular sequence of testing. Test scenarios are adhoc

which may cause stress to system. This may reveal defects which

could not be identified while testing with a plan.

 Some test scenarios might be completely new which were never tried

in earlier testing phases.

 It may require less time as there is no need to write any test plan or

devise test cases. It is also called „playing with an application‟.

Disadvantages of adhoc testing:

 Since it is random testing without any plan or steps written, tester may

forget the steps by which the defect was identified and how the tester

reached that point making the entire effort and time completely

useless.

 Undefinable adhoc scenario intends to break the system which

actually does not represent any real-life business scenario. Sometimes,

the probability of occurrence of these events might be next to „0‟.

 Adhoc testing require testers with knowledge and experience.

10.18 PARALLEL TESTING

Parallel testing compares the results, analyses the similarities and

differences between newly designed system and existing system. It is done

extensively in acceptance phases, typically in beta testing or business pilot

where existing system, legacy system or manual operations are compared

with the new system being developed. Parallel testing is also termed

„comparison testing‟ where new system behavior is compared with

existing system whose behavior is considered correct. It is used

extensively in compatibility testing. Parallel testing is done to determine

whether,

 New version of application or new system performs correctly with

reference to existing system that is supposed to be working correct.

 279

Special Tests

 There is consistency or inconsistency between two systems.

Consistency in terms of user interaction, user capabilities, transaction

processing and controls designed for validation is also evaluated.

 Outputs of both systems are compared by providing same inputs to

both.

 Both systems are used in parallel for certain time period for thorough

comparison.

 Security, productivity, and effectiveness of new system must be

comparable with the old system. If there is any lacuna in new system

with respect to old system, new system may get rejected.

10.19 EXECUTION TESTING

Execution testing intends to ensure that system achieves desired level of

proficiency in production environment when normal users are using it in

normal circumstances. It may be considered as alpha testing if it is done in

development environment, or beta testing if it is done in user environment.

Data used in execution testing must be shared by customer. Execution

testing involves actual working on the system in production environment

to determine whether,

 System fulfils its design objectives as mentioned in requirement

statement and expected by users. It evaluates user‟s experience while

interacting with new system.

 System must be used at that point of time when results can be used to

modify system structure, if required. Alpha and beta testing anomalies

may be used to modify system, if required.

 Execution testing may be conducted by using hardware/software

monitors, by simulating the functioning of the system, and by creating

programs to evaluate system performance.

10.20 OPERATIONS TESTING

Operations testing are performed to check whether the operating

procedures are correct as documented in user manuals, and staff can

properly execute the application by referring the documentation.

Operations testing determine,

 Completeness of operator documentation, user manual, etc. Users

must be able to work with the system easily and correctly by referring

these documents.

 If user training is required and after training, users are able to use

system or not.

 Operations testing are done prior to placing the application in

production environment. Actual users must be capable of working

with system smoothly, and system must respond to users efficiently.

 280

Software Quality

Assurance

 Operators should perform testing without any assistance, as if it was

part of normal computer operations.

10.21 COMPLIANCE TESTING

Compliance testing intends to check whether the application/system is in

accordance with the prescribed standards, procedures and guidelines

applicable to them as per domain, technology, customer, etc. There are

many standards available for applications depending on the domain in

which the application will work. These standards may be mandatory or

recommended by customers, governing bodies, etc. There may be few

regulatory or statutory requirements enforced by different agencies.

Examples of standards applicable for software may include medical

standards such as „FDA (Food and Drug Administration) regulation‟ for

software in medical domain in United States, standards for war

equipments for software working in military operations and equipments,

and special standards for software working in aviation industry.

Compliance testing helps to determine whether,

 Development and maintenance methodologies are followed correctly

or not while developing/maintaining system belonging to different

domains. Domain related protocols must be followed.

 System documentation is complete and adheres to applicable

standards.

 Compliance depends upon management‟s desire to have standards

enforced as well as geographical and political environment where

application will be working. Customer requirements must include

definition of regulatory and statutory requirements.

Compliance testing is performed using following:

 Checklist prepared for evaluation or assessment of product

 Peer reviews to verify that the standards are met

 SQA reviews by quality professionals

 Internal audits

10.22 USABILITY TESTING

Usability testing intends to check „ease of use‟ of an application to user. It

provides user manual or help manual (including online help) to users. It

determines whether,

 Application is simple, easy to use and understand by testing look, feel

and support available can be used effectively or not.

 Application is easily executable through user interface. If training is

required, it must be provided to users.

 281

Special Tests

 Usability testing is done by,

 Direct observation of people using the system, noticing user

interaction and noting their experience. In case of any problem,

invoking help or referring user manuals to check if they are sufficient

to help users in solving the problem.

 Conducting usability surveys by checking the deployment or

implementation of system in production environment. Users must be

able to use system on their own without any assistance.

 Beta testing or business pilot of application is user environment.

 Usability testing checks the following:

 Whether system outputs such as printouts and reports are meaningful

or not.

 Is error diagnostic straight forward and easy to understand. Error

messages must be simple and guide users correctly.

 Is user interface aligned with user requirements and standards

imposed by regulatory bodies?

 Is the application easy to use for common users?

 Is there an exit option available at all points so that users can exit the

system at any moment?

 System must not annoy user due to function unavailability, slow

speed or bad user interface. System icons and pictures must be used

appropriately for ease of users.

 System taking control from user without indicating when it will be

returned can be a problem as user might not be aware of estimated

time it will take. System must indicate current operation going on and

estimated time taken for that operation.

 System must provide online help or user manual for self service. In

case of any problem, users must be able to invoke help.

 Whether system is consistent in its function and overall design.

10.23 DECISION TABLE TESTING

Decision table is a good way to capture system requirements that contain

logical conditions, and to document internal system design handling

various conditions faced by the system. They may be used to record

complex business rules that a system is expected to implement.

Specifications are analyzed, and conditions and actions of the system are

identified. The input conditions and actions are most often stated in such a

way that they can either be true or false (Boolean).

 282

Software Quality

Assurance

Decision table contains triggering conditions, often combinations of true

and false for all input conditions, and the resulting actions for each

combination of conditions. Each table column corresponds to certain

business rule that defines a unique combination of conditions, which result

in the execution of the actions associated with that rule. The coverage

standard commonly used with decision table testing is to have at least one

test per column, which typically involves covering all combinations of

triggering conditions. One may use equivalence partitioning and boundary

value analysis for testing such system.

Table 10.2 shows a sample decision table.

Table 10.2 Decision table

Purchased volume and discounts

No. of Books 1-50 51-500 501-5000 5001 and

more

Discount

offered

0% 2% 3% 5%

The strength of decision table testing is that it creates combinations of

conditions that might not otherwise have been exercised during testing. It

may be applied to all situations when the actions of the software

depending on several logical conditions are occurring at same time. Table

10.2 indicates single dimension of variable. In practical conditions,

multiple dimensions are possible.

10.24 DOCUMENTATION TESTING

Documentation testing involves review of all the documentation delivered

to the customer along with the application. When system is delivered to

customer, it is not only the executable or sources which are delivered but it

should contain all these support documentations required for future

maintenance of a system. System documentation may contain requirement

specifications, requirement changes, impact analysis, design artifacts,

design changes, impact analysis, code documentation, project plans, and

test plans. All these documents are needed to build the right system.

Sometimes, documentation also includes release notes, known issues and

limitations if any, installation guide, user guide, and troubleshooting

guide.

The purpose of documentation testing is to thoroughly go through all

written material that will be presented to user as a part of implementation.

Testing is done using different ways:

 Ask users to follow all documented procedures. These should be

written to provide step-by-step guidance on how to accomplish a

given task. If the users cannot successfully complete the procedures,

then documentation should be improved.

 283

Special Tests

 Have people with strong language skills to review all the

documentation for professionalism and readability.

 Try out all alternative ways mentioned in document to accomplish a

task. In many cases, the primary way works, but the alternatives do

not work as expected.

 Documentation should strictly be aligned with company policies and

these policies and standards must be reviewed and approved by

appropriate authorities in the organization.

 Ensure the accuracy of any manual forms, checklists, and templates.

10.25 TRAINING TESTING

Sometimes, the vendor is expected to provide training to end users who

will be using the system in future. Hence, training is also tested as a part

of system testing. This implies that the training must be ready at this point

in the life cycle rather than waiting for the end of project. Testing must be

performed in a controlled test environment to ensure that it is effective,

accurate, and bug-free.

In case of distance learning, ensure that correct technology serves the

purpose. There should be adequate equipment‟s for imparting training.

Training material must be deliverable. It should be tested thoroughly

before delivering it.

10.26 RAPID TESTING

Rapid testing is used when there is less time to obtain full test coverage

using conventional methodologies. It can be used to complement

conventional structured testing. It finds the biggest bugs in the shortest

time, and provides the highest value for money. In an ideal world, rapid

testing would not be necessary, but in most development projects, there

are a number of critical times when it is essential to make an instantaneous

assessment of the products quality at that particular moment.

Areas where rapid testing is applied extensively are:

 „Proof of concept‟ test early in the development cycle.

 Prior to, or following migration from development to the production

environment.

 Preparing development milestones to trigger funding or investment.

 Prior to public release or delivery to the customer.

Although most projects undergo continuous testing, it does not usually

produce the information required to deal with the situations listed above.

Usually, testing completes just prior to launch, and conventional testing

techniques often cannot be applied to incomplete or often changing

software.

 284

Software Quality

Assurance

Structured testing is a vital part of any development project but it cannot

meet all the quality assurance objectives. Its primary objective is usually

affirmative testing, i.e., to verify that the software does all the things it is

supposed to do. However, software is now so complex that there are often

a seemingly infinite number of permutations of the data variables, and

variations in the time domain can add another layer of complexity.

In addition to affirmative testing, it is necessary to identify undesirable

behavior, so that it can be corrected. But structured testing is far less

useful as a technique for doing this. The number of permutations means

the time required for analysis, scripting and execution. This required time

may not be available and time can be reduced if the tester had idea about

the likely faults.

Rapid Testing process:

Rapid testing is based on exploratory testing techniques, which means that

the tester has a general test plan in mind but is not constrained by it. The

plan can be adapted dynamically in response to previous test results. A

skilled tester can quickly find defects which escaped a scripted test.

Exploratory testing is also called „expert testing‟, as it requires a high level

of technical knowledge and experience. However, rapid testing does not

guarantee complete test coverage.

Rapid testing extends the exploratory concept by making judgment about

what faults to report and the level of details to be recorded. Once a fault

has been identified, the time taken to investigate and document it reduces

the time available to find other faults, so the tester may fail to find the

serious faults if they spend too much time reporting trivial issues. This is

called „quality threshold‟ and it is fundamental to the effectiveness of

rapid testing. Many testers find it an alien concept but it is a necessary

one.

Initial quality threshold might be determined by consulting with customer,

but it may vary during the course of testing depending on the product

quality.

10.27 CONTROL FLOW GRAPH

Control flow graph is flow of control during program execution. If a

program does not have any decision, flow goes in single direction. If

decision is taken by a program, then different flow graphs are possible.

Each decision induces multiple paths in a program while it is getting

executed.

Dominators:

There exists a set of code in the program which will always be executed

when a path is selected. This is termed as „dominator‟. These paths are

independent of any decision or branch.

 285

Special Tests

Post-Dominator:

When end of application is reached from any point, there exists a set of

code that is always encountered, which is termed as „post-dominator‟.

There may be several possible paths depending upon the number of

decisions.

10.27.1 Program Dependence Graph:

Program execution depends on two factors: data dependence and control

dependence.

 Data dependence flow depends on input data. Example: Loop

statements „if‟, „while‟ where data decides loop will be executed or

not.

 Control dependence flow is the flow of instructions due to control

points in a program. If the program has redundant code, control will

never go to it. Control may be defined by user requirements.

10.27.2 Category Partition Method:

Category partition method is used to generate the test cases from

requirements. Following steps are involved in generating test cases by

category partitioning method:

Analyze Requirements:

Requirements are categorized into functions, user interface, and

performance requirements. They are placed in different test cases to be

tested independently.

Identify Categories:

Inputs producing specific categories of output are analyzed. Decision

tables can be used to identify such categories.

Partition Categories:

Respective input-output pairs are placed into different partitions.

Identification of Constraint:

There may be some input output categories which cannot exist together.

They must be identified and excluded from testing.

Creating Test Cases accordingly:

Test cases are created keeping in mind the possible constraints defined in

user requirements.

Processing the Test Cases:

The test cases defined above are executed and results are captured.

 286

Software Quality

Assurance

Evaluate the Output:

The output is verified by comparing it with expected output.

Generate Test Sets:

If obtained output and expected output match, then it is added in test set.

10.27.3 Test Generation from Predicate:

A condition which a code can achieve is called „predicate‟. It indicates a

condition and its action. Condition is represented by predicate while action

represents expected result of code execution based on the condition.

Predicate testing tests such predicate to detect any fault created by

developer while coding a program.

10.27.4 Fault Model for Predicate Testing:

Predicate testing may target for three different classes of faults as defects:

incorrect Boolean operator used, incorrect relational operator used, and

incorrect arithmetic operator used.

10.27.5 Difference between Control Flow and Data Flow:

Table 10.3 Difference between control flow and data flow

Control flow Data flow

Control flow is process oriented. It

defines the direction of control flow

as per system decision.

Data flow is information

oriented.

It does not manage data or pass

data from one component to

another.

Data flow passes data from one

component to another.

It functions as a task coordinator.

Control flow requires task

completion.

Data transformation occurs

simultaneously or sequentially.

It is synchronous in nature.

Unrelated tasks can be

synchronized.

It may or may not be

synchronous in nature.

Tasks can be executed in parallel or

one after another.

Generally, tasks are executed

one after another, if there is

serial dependency. Otherwise,

they are independent of each

other.

10.28 GENERATING TESTS ON THE BASIS OF

COMBINATORIAL DESIGNS

The environment in which an application will work consists of various

configurations of elements like hardware, browser, operating system, etc.

During testing, it may not be possible to test all configurations of above

 287

Special Tests

elements. Certain factors are provided of the environment in which

application will work. Each factor may be tested using one test case,

which increases the total number of test cases which can go infinity. In

combinatorial designs, we try to reach some finite level of test cases which

can give adequate confidence that application will execute in all possible

combinations. The set of input and output are partitioned such that

selected value represents each partition.

10.28.1 Combinatorial Test Design Process:

Modeling the Input Space and Test Environment:

The model consists of set of factors and corresponding levels. Factors are

decided on the basis of interaction between application and environment in

which it is expected to work.

Generate Combinatorial Object:

This is an array of factors and levels selected for testing. Such an array

will have each row covering at least one test configuration from the list.

Generate Tests and Test Configurations:

From the combinatorial object, a tester may have to generate the test cases

and test configurations. Figure 10.1 shows schematically how the test

cases can be generated.

Fig. 10.1 Process of generating test and test configurations using

combinatorial designs

10.28.2 Generating Fault Model from Combinatorial Designs:

The aim of combinatorial designs is to generate test cases which have

maximum probability to uncover faults or defects. Simple fault are

triggered by individual input variable irrespective of other input variables.

Pairwise interaction faults are triggered when there are two variable

combinations which can yield a fault. Three-way interaction fault is when

three variables in combination create a fault but individually there is no

fault.

 288

Software Quality

Assurance

10.29 STATE GRAPH

State graph and state table are useful models for describing software

behavior under various input conditions. State testing approach is based

upon the finite state machine model for the structures and specifications of

an application under testing. In a state graph, states are represented by

nodes. The system changes its state when an input is provided. This is

called „state transition‟.

With multiple state graphs, drawing them and understanding becomes

difficult. To remove this complexity, state tables are used. State tables

may be defined as follows:

 Each row indicates a state of an application.

 Each column indicates the input provided to an application.

 Intersection of rows and columns indicate the next state of an

application.

10.29.1 Characteristics of Good State Graphs:

 Total number of possible states is equal to product of all possibilities

of factors that make a state.

 For every state and output, there is exactly one transition specified to

exactly one state.

 For every transition, there is one output, however small it may be.

 For every state, there is a sequence of inputs that will drive the system

back to the same state.

10.29.2 Number of States:

Number of states is an important parameter to determine the extent of

testing. Some factors affecting number of states are:

 All component factors of state

 All allowable values of the factor

Thus, number of states is a product of number of allowable values of all

the factors.

Impossible States:

States which appear to be impossible in reality due to some limitations

outside the application in real life scenario.

Equivalent States:

When transitions of two or multiple states result into the same final state,

they are called „equivalent states‟. Equivalent states can be identified as,

 289

Special Tests

 The rows corresponding to two states are identical with respect to

inputs/outputs/next state of an application.

 There are two sets of rows which have identical state graphs.

Unreachable (Redundant) State:

When the requirements are captured or designs are made, some states are

created which fall in a category where control will never reach. They

differ from impossible states in the sense that the flow will never reach to

them. Impossible states are not practical but unreachable states are

redundant.

Dead States:

Dead state is a state where there is no reversal possible. These states

cannot be exited even if the user wishes to come out of them. There is no

possibility to come back to the original state.

10.29.3 Matrix of Graphs:

Matrix of graph is a square array with equal number of rows and columns.

Each row and column represents one node.

 Matrix size corresponds to number of nodes.

 There is scope to show direct relation between every node to any

other node.

 Connection from node 1 to node 2 may or may not have reverse

connection.

A graph contains a set of nodes and relations between them. If „A‟ and „B‟

are two nodes and „R‟ is the relation between them, it is represented as A-

R-B. Different types of relations which may exist are as follows:

Transitive Relationship:

Consider a relation between three nodes „A‟, „B‟, and „C‟ such that A-R-B

and B-R-C indicate A-R-C, and then it is called „transitive relationship‟.

Reflexive Relationship:

Reflexive relationships are self-loops.

Symmetric Relationship:

Consider a relationship between nodes „A‟ and „B‟ where A-R-B indicates

that there is B-R-A. This is considered as symmetric relationship or

undirected relationship.

Equivalence Relationship:

If a relationship between two nodes is reflexive, transitive and symmetric,

then it is called „equivalence relationship‟.

 290

Software Quality

Assurance

10.30 RISK ASSOCIATED WITH NEW

TECHNOLOGIES

Organizations adapt to new technologies due to several benefits of these

technologies. New technology may mean a technology which is

completely new to the world or not new to the world but new to the

organization. In any case, these new technologies introduce some risks

along with benefits. Risks may be faced by the development team as well

as end users. Following are the different risks:

1. Unproven technology:

New technologies are used by organization due to their advantages. But, it

may have some drawbacks or lacunae, which the organization might not

be aware of. Also, it may not be possible to use all advantages offered by

the new technology. Sometimes, the new technology is not assessed

properly for positive and negative factors before using it. Technology

needs some time to mature and as users use it, they provide feedback to

technology owners, and thus help in the maturing process.

2. Technology itself is defective or not mature enough to use:

The new technology may be defective as there may have been lot of

limitations and unknown aspects overlooked by the group releasing it.

Some aspects may have been compromised and people using the new

technology may not be aware of the areas where one should be careful. It

may introduce some defects in the product, and users may find it difficult

to use such products, or may face several problems while using such

applications. New technology needs sufficient validation along with

verification and fixing of the defects found during these processes.

3. Technology is inefficient as it is not matured:

The new technology may be inefficient, and may not have all the expected

services. It may hamper performance and usability of an application

adversely. There may be limitations which the development team might

not be aware of thus surprising the end user.

4. Technology is incompatible with other technologies already in use:

Introduction of new technologies may interfere with existing system‟s

working or new systems cannot communicate with existing systems. This

may pose major problem as users do not wish to discard existing systems

so easily while adapting to new systems. Data transfer and communication

between different systems is a basic customer requirement and customer

can even reject new systems if there is no connectivity/communication

offered with existing applications and technologies.

5. New technology makes existing technology obsolete:

While new technology may have several benefits, customer may not like

to scrap existing systems to completely replace them with new systems.

 291

Special Tests

6. Variation between technology delivered and documentation

provided:

Every technology comes with documentation like user manuals and

troubleshooting manuals. Users and developers refer this documentation to

understand the usage of new technology. If a gap exists between

documentation and actual technology working, then people may not be

able to use the technology by referring the documentation. Thus,

documentation not being in sync with technology may hamper usage of

new technology as people may not know how to use it.

7. Lack of developer’s/user’s competencies to use new technology:

New technology may require people to undergo training to understand and

develop capabilities to use it. Some skills may be acquired by classroom

training; some may be acquired by hands-on experience with mentor such

as on-the-job training while some may need special training. New

technology must be user friendly so that people with basic knowledge can

use them with little guidance or trial and error approach. If new

technologies are difficult at all fronts, users may dislike them and may be

reluctant to use them.

8. Lack of knowledge and skill for optimal technology usage:

Technology may not be usable by organization if it does not have people

with required skills and experience. There may be different options to

maximize the technology usage, but people might be unaware of these

options due to lack of knowledge or skill.

9. Technology is not incorporated into organization’s process

definition:

Developing a good product requires a mix of good people, good

technology and good process working together. If organizational database

does not have the definition of processes which can support new

technologies, then success depends upon the heroics of people and

chances. This may lead to major problems with these technologies, and

people may try to implement technology with their own methods which

may not be the best approach.

10. Technology leads to obsolescence of existing development/testing

tools:

Development tools/test tools available with an organization may not be

able to support new technologies, if there are compatibility issues. In such

cases, we may have to rely on manual efforts of development and testing

which may be incapable or insufficient for the purpose. New technology

may need new tools which mean further investment and training for

developing organization/users.

 292

Software Quality

Assurance

11. Inadequate support for technology from vendor:

When an organization adapts new technology, it relies on the vendor

providing service support for such technology, at least for initial phases of

usage. Service support may include trouble shooting and trainings which

may not be available as and when required by organisation/users. Many

aspects depend upon people, both internal as well as external, to make the

project successful. Technology may become a problem if there is not

adequate or completely unavailable vendor support.

10.31 PROCESS MATURITY LEVEL OF

TECHNOLOGY

Organisations may have different process maturities, and usage of new

technologies may be affected by these maturities. Maturity levels may be

defined as follows:

Level 1: Adhoc Usage of New Technology:

This is an initial or base maturity level for given technology. In this

maturity level, organisation uses technologies based on available people

skills and expertise. Some organisations specialize in particular

technology, and each and every project is done in that technology

irrespective of whether it is latest one or not. People often select

technology as per their usage convenience and not as per project

requirement.

Level 2: Managed Usage of New Technology:

Technologies are selected based on evaluation done by users by referring

support materials provided by the vendor or some suggestions and

experience. An organisation works with new technology based on such

descriptions without having any hands-on knowledge on technology. This

is „static approach of technology selection‟ or „evaluation based upon

documentation‟ where everything goes according to documentation

without ever concerning the technology usefulness and its drawbacks.

Level 3: Defined Usage of New Technology:

An organisation selects a technology on the basis of documentation and

conducts experimentation to complete the project using that technology.

Sometimes, results are not sufficient but once technology is selected, it

cannot be changed. Lot of research is done to make selected technology

successful. The organisation may learn lessons from its success (or

failures) and the same can be used for other projects in similar technology.

Making mistakes and correcting them is acceptable in this approach.

Level 4: Quantitatively Managed Usage of New Technology:

At this level, the benefits and limitations of selected technology for a

project are completely measured. Customer/user is involved in making

 293

Special Tests

decisions about the selection of technology on the basis of benefits and

shortcomings analysis.

Level 5: Optimized Use of Technology:

At this highest maturity level, organisation has a plan to overcome the

shortcomings faced by particular technology and enhance its benefits to

give better results. Customer does not suffer due to limitations of

technology. Drawbacks are resolved to optimize and enhance technology

usage.

10.32 TESTING ADEQUACY OF CONTROL IN NEW

TECHNOLOGY USAGE

Following controls are essential while testing new technologies:

1. Testing actual performance achieved as against stated performance

of the technology by manufacturer:

Vendor may claim certain performance parameters while releasing new

technology. These claims may include different advantages/services

available while using new technology. Tester must check the actual

performance standards, verify and validate all the claims made regarding

the technology. If any gap is found between the claims made and actual

performance, then it is termed as defect or shortcoming. In Level 3

maturity, such limitations limit the benefits offered by the technology and

a claim may be lodged with technology vendors, if feasible. At Level 5

maturity, these limitations are overcome by some alternative approach

while claim may be lodged with vendor. Testers must ensure the

following:

 Documentation provided with technology must be correct as it

represents actual technology execution. Any defects in documentation

can cause usability issue.

 Training courses regarding new technology must be effective and

complete. This can be validated by users.

 New technology must be compatible with existing technology so that

customer may retain old applications along with new one.

Compatibility issues, if any, must be addressed.

 Claimed performance must match with actual performance.

 Promised vendor support must be actually offered when user needs it.

Service levels must be defined and achieved in contract.

 New technology is tested using new test processes and tools. It may

add to customer delight if existing tools can be used as it is or with

some modifications to do testing of new technology.

 294

Software Quality

Assurance

2. Test the adequacy of current process definition available to control

technology:

An organisation needs process definition to support new technology

implementation and usage. If support is unavailable, then testers may have

to raise issues and get the process definition. It can be a risky situation and

customer must be involved in decision making or customer must be

informed about the possible lacunae of process definition. If the processes

are available, their usage must be tested. Testers must ensure that,

 Development standards and usage are available for the selected

technology.

 Procedures for development, maintenance, troubleshooting and usage

are available.

 Assured quality control with verification and validation is available.

If there are inadequate controls, following actions may be initiated by

testing group:

 Identify risks associated with technologies not supported by process

framework and report them to stakeholders. It may be shared with

user groups.

 Identify potential weak areas and create mitigation action plan, if risk

turns into reality.

 If problems are discovered during testing, they must be resolved and

retesting should be done.

3. Assess adequacy of staff skills to effectively use technology:

People must be adequately trained and skilled to use the technologies

effectively and efficiently. Organisation must take actions to improve the

skills or procure people with desired skills. Testers must ensure that,

 Technological process maturity level of an organisation is assessed

and known to organisation leadership. Actions must be initiated to

achieve optimizing level.

 Training is provided to developers and testers for using new

technology efficiently and effectively. Effectiveness of training must

be evaluated.

 Performance evaluation of technologies on the basis of limitations and

benefits must be conducted. Users must be informed about possible

shortcomings of the given technology.

10.33 OBJECT-ORIENTED APPLICATION TESTING

Object-oriented development has made a dramatic change in development

methodologies. One object may be used at several instances giving a

 295

Special Tests

benefit of optimisation, reusability and flexibility. It improves productivity

with good maintainability of an application. There are many effective

approaches to test object-oriented software. A test process that

complements object-oriented design and programming can significantly

increase reuse, quality and productivity of development and testing

process.

 Object-oriented applications may also face simple programming

mistakes, anticipated interaction and incorrect or missing behaviour of

application or individual object at different instances. Reuse in no

way guarantees that a sufficient number of paths and object states

have been exercised to reveal all application faults. Reuse is limited to

the extent that supplier classes are trustworthy and can be used at

several places during application development.

 Simple and sequential test process beginning from unit test, then

integrating all units and performing integration testing and then

system testing may not be relevant to object-oriented development.

Owing to iterative and incremental nature of object-oriented

development, tests need not be limited to boundary and scope. They

can be designed and exercised at many points in development process.

Thus “design a little, code a little” becomes “design a little, code a

little and test a little”.

 Adequate testing requires sophisticated understanding of the system

under testing. One must be able to develop abstract views of the

dynamics of control flow, data flow and state space in a formal model

used for development. One must have complete understanding of

system requirements and be able to define the expected results for any

input and state selected as a test case.

 There are many interactions among components that cannot be easily

foreseen in unit testing until all system components are integrated and

exercised through testing. Even if we eliminate all individual sources

of error, integration errors may arise in object-oriented development.

Compared to conventional systems, object-oriented systems have

more components which must be integrated and tested for correctness

individually and as a group. Since there are certain system elements

that are not present until code is loaded and exercised, there is no way

that all faults could be identified and eliminated by class or class-

cluster testing alone, even if every method was subjected to a formal

proof of correctness and unit testing. Static methods cannot reveal

interaction errors within different objects with the expected

performance issues in real-time systems.

 Testing activities can begin and proceed in parallel with concept

definition, object oriented architecture, and object oriented designs

and programming through integration and system testing. When

testing is correctly interleaved with development, it adds considerable

value to the entire development process as defects are detected as

soon as they occur.

 296

Software Quality

Assurance

 The cost of finding and correcting errors increases with increase in

time between fault injection and detection. The lowest cost is possible

when one prevents errors from entering the system. If a fault goes

unnoticed, it can easily take hours or days of debugging to diagnose,

locate and correct it. Failures in operational systems can cause severe

secondary problems including customer complaints, rejection of

application, etc. Proper testing is feasible as compared to „find and

fix‟ defect randomly.

 Effective testing also provides information about likely sources of

defects. Object-oriented features like polymorphism, inheritance and

encapsulation produce more error opportunities as compared to

conventional languages. Testing strategy must assist testers to fetch

for these new kinds of errors and set some criteria when fetching must

complete.

 Each sub class is a new and different context for an inherited super-

class feature. Different test cases are needed for each context.

Inherited features must be exercised in the context of sub classes.

Inherited methods should be retested even if they were not changed in

individual instance. Sometimes, methods work perfectly in superclass,

but their action and interaction may be affected in sub classes which

must be tested.

 Even if many server objects of a given class work correctly at top

level, there is a probability of a client class using it incorrectly. Thus,

all uses of a server object need to be exercised at client classes also.

10.34 TESTING OF INTERNAL CONTROLS

Introduction of software system is associated with risks and failures too.

Testers must do risk assessment as follows:

 Inherent and residual risk acceptable to user/customer using the

software. Inherent risks are born risks of particular approach while

residual risks are the risks left after adequate controls are provided.

 Estimating probability of occurrence of particular event in terms of

percentage. Also, if user gets idea about risk approaching, then how

much reaction time the user gets before risk materializes.

 Qualitative and quantitative measurements of probability, impact and

detection ability of different risks associated with application usage

can give a risk rating expressed as RPN or RIN. Risks must be

prevented or corrected, as the case may be.

 Correlation of events where occurrence of one risk may increase or

decrease the probability or impact of some other risk must be known.

Such risks together can create more problems than individual

occurrence or may eliminate the problem.

 297

Special Tests

10.34.1 Testing of Transaction Processing Control:

An application may process the data received from different inputs and

provide outputs in different forms. Application controls must be designed

to ensure data accuracy in all phases of data receipt, processing and

output. The control placement may include the following:

Transaction Origination:

The points where the data originates must be controlled. Sometimes, data

originates in one system and it is transferred to given system for

processing through different methods. Data may originate in manual

operations also. Generally, these controls may not be applicable to the

given system, if data preparation happens outside the system either

manually or automatically but data entry must be controlled in such cases.

Transaction Entry in System:

The point where the data enters into the system for further processing must

be controlled by the application as it is the most vulnerable point. There

must be verification and validation of data entries at entry point and user

must be supported adequately through help option and proper error

messages should be displayed for common users.

Transaction Communications within/outside the System:

When the data is communicated from one place to another either in same

system or between different systems, adequate precaution must be taken

so that neither the data gets lost nor modified. Data transfer amount must

be measured and matched before leaving the system and when it comes

back into database.

Transaction Processing by the System:

When the system processes data, it must have adequate control to check

completeness of processing. All the data entered into system must be

processed, and outcome must contain results from all processed data. User

must be notified if any part of data is not processed completely or

partially.

Storage and Retrieval of Data from the Database:

Data may be stored on different media and databases and also physically

or logically at different locations. Data entering in the system and outputs

generated from the system must match with each other. Stored data should

not be altered or deleted.

Transaction Output:

Processed output may be transferred from one system to another or may be

delivered to users in different ways including printing, displaying or

sending data from one location to another or from one system to another.

Transaction output must show the processing results correctly and data

input and output must be matched in data transfer process.

 298

Software Quality

Assurance

10.34.2 Testing Security Control:

Security controls are designed to protect the system from internal or

external attacks from possible penetrators. Security testing is a thought

process where one needs to understand the thinking of an intruder and try

to device control mechanisms accordingly. Following analysis should be

done:

Points where Security is more likely to be Penetrated (Points of

Penetration):

These are the areas where the system is exposed to outside world and there

are possibilities of outside attacks. At these points, attacker‟s entry

probability is high. These are also called „threat points‟. Few threat points

may be,

 Data preparation stage which can be a manual operation or it may

occur in some other system.

 Computer operations where the system processes or transfers data

from one place to another. It may include server rooms, processors,

etc.

 Non-IT areas where people working with system do not understand

system security concept. They may be ignorant of security practices

and may cause failure unknowingly.

 Software development, maintenance and enhancement phases where

data is used for building, maintaining or testing of an application.

 Online data preparation facilities where data is not validated

adequately before entering the system.

 Digital media storage facilities which may be subject to electro-

magnetic fields, temperatures, humidity, etc. Storage facilities may

not be secured enough and storage media may get damaged due to

wrong handling.

 Online operations where data is manually entered in system without

any verification and validation or data is transferred from one system

to another without any control.

Points where System is Least Protected (Vulnerable points):

It is not possible to protect the system completely. Certain points will be

left where the system is least protected which are called „vulnerable‟ or

„weak‟ system points.

Attributes of Effective Security Control:

A tester may test the following attributes to find the effectiveness of

security control:

 299

Special Tests

 Simplicity of Control and Usage: Controls must be simple to

understand and use for the users.

 Failure Safe Controls: Controls must be safe and free from failure.

 Open Design for Controls: Control design must be flexible enough

to accept technology and process changes to modify controls

accordingly.

 Separation of Privileges of Users: System must enforce separation

of user privileges to avoid any unauthorised entries bypassing the

controls.

 Psychological Acceptability of Controls by Users: An organisation

must plan for adequate training for users. Security and controls and

their purpose must be well explained to people so that they can

psychologically accept the controls and do not bypass them.

 Layered Defense in System: Entire system must not collapse. If any

system part fails, there must be alternative defense mechanism to

detect and prevent complete system failure. If unauthorised

transaction entry occurs, it must be detected and proper actions must

be initiated.

 Compromised Recording: Transactions made by users must be

recorded and audited. This assists in early problem detection in

transactions and processing. However, it may hamper user‟s privacy

and should be incorporated if requirements specify the same. Audit

trail is an example of compromised recording in a system.

10.35 ‘COTS’ TESTING

 „COTS‟ stands for „Commercially Of The Shelf‟ software. These are

readily available software in the market which user can directly buy and

use. They can be integrated in a new development or used as a tool for

development or testing activities.

Why Software Organisations Use Cots?

The most common question that arises is why would a software

development organisation buy and use software from outside? There are

several reasons given below:

Line of Business:

An organisation‟s line of business might differ from the software that it

requires.

Example: Organisation developing software for banking domain is not in

a line of business to develop automation software required for testing. In

such cases, organisation might purchase and directly use this testing

software from market without investing resources and time for creating it.

 300

Software Quality

Assurance

Cost-Benefit Analysis:

Sometimes, it is very costly to develop software in-house due to various

constraints like lack of knowledge, skills, resources, budget, etc. Buying

the software becomes more convenient and cost effective than creating it.

Usually, „COTS‟ products are much cheaper than the projects as cost is

distributed over number of users.

Expertise/Domain Knowledge:

An organisation might know usage of software with no knowledge of its

creation. Sometimes, it is sufficient to have understanding of using

software without going into details of its development. Organisation might

purchase them simply from market and use it.

Delivery Schedules:

„COTS‟ are available immediately in market by paying for them. This

saves the time and efforts of development. This aspect is beneficial when

efforts and schedule do not justify use and benefits. Cost of purchasing

software may be less compared to developing it.

Features of Cots Testing:

Testers must remember following features while testing a „COTS‟

product:

 „COTS‟ are aligned with general requirements and market trends. It

might not exactly match organisation‟s needs and expectations.

Analysis and percentage fit of „COTS‟ to the organisation business

should be done to decide its success ratio.

 Some „COTS‟ require changing business processes to suite the

„COTS‟ implementation in organisation. This is another way of

Business Process Reengineering (BPR) for an organisation where

internationally proven practices can be implemented by using

„COTS‟. „COTS‟ may have some of their best processes accepted at

national/international level and organisation may get benefitted by

using such processes along with the product.

 Sometimes, „COTS‟ may need configuration of software or system to

suite business needs. Generally, when „COTS‟ are implemented,

many business rules must be defined to customize the software to the

organisation.

Challenges in ‘Cots’ Testing:

Some of the challenges faced by testers while testing „COTS‟ are as

follows:

 Requirement statement and designs may not be available to testers as

product manufacturer never shares them with any customer. While

buying an operating system, we cannot expect that the organisation

will give requirement statement for such product. Generally, in

 301

Special Tests

normal testing process, test scenarios and test cases refer to

requirements and design, but in case of „COTS‟, business

requirements are referred which may differ from product

requirements.

 Verification and validation records prepared during SDLC are very

important for system testing and acceptance testing. SDLC acceptance

reduces the risk of buying a wrong product. But in case of „COTS‟,

these records might be unavailable to testers before performing

acceptance testing. Tester must do software testing by understanding

organisation‟s perspective to find out whether „COTS‟ should be

accepted or rejected. Code reviews, requirement reviews, design

reviews, unit testing, and integration testing records are not available

to testers.

There are two methods of conducting acceptance testing before buying

„COTS‟.

Evaluation of Software Product:

 Evaluation of „COTS‟ is done by referring information available

about it through various sources like white papers, user manuals, peer

experiences, expert‟s judgement, available demos and internet

searching.

 It is a static measurement of software to understand its features and

suitability for business as there is no hands-on or self-experience of

using such product. Decision of buying „COTS‟ depends on the

available documents and information.

Assessment of Software Product:

 Assessment includes executing test cases on the product. Many

product manufacturers give evaluation versions with limited time

period validity so that users can get hands-on and decide about

purchase. Expectation is the buyer must conduct testing and decide to

buy or not.

 It is a dynamic measurement to gauge the product suitability. There

must be test plan, test scenario, and test cases for product testing.

Understanding of product requirements and attributes is essential.

 Assessment may need basic understanding of particular type of

software and assessment skill to operated and assess new software.

‘Cots’ Test Process:

Assure Completeness of Need Specification:

Testers must be completely aware of the organisational requirements

before testing „COTS‟. Requirements may be from various areas as

expressed in „TELOS‟ (Technical, Economic, Legal, Operational and

System).

 302

Software Quality

Assurance

 Expected output formats and reports essential for organisation must

be defined beforehand. Some „COTS‟ can be configured to get

desired output formats while some may not deliver such reports and

formats. They may need some external customization.

 Information needed for management‟s decision making must be

defined beforehand. Percentage fit may be decided based on such

definitions which may be used while deciding to buy software or not.

 There may be some statutory/regulatory requirements applicable to

the organisation and COTS must help in achieving them. If COTS

does not satisfy these requirements, organisation may have to devise a

method to enhance COTS with external programming or else reject it.

Define Critical Success Factor of Buying:

Testers must understand organisation‟s motive to purchase COTS. Critical

success factors are those which define whether COTS has fulfilled its

intended use or not. Some of them may be:

 Ease of use

 Scalability

 Cost effectiveness

 Portability

 Reliability

 Security

Determine Compatibility with Environmental Variables:

An organisation must have definition of working environment where

„COTS‟ will be implemented. Environment may include hardware,

software, and people around it. „COTS‟ must fit in the existing

environment as there may be several systems already existing in the

specified environment. Organisation may not change its environment for

implementing any COTS unless there is no way out for it. COTS

compatibility may include the following aspects:

 Hardware Compatibility: Environment comprises of machines,

servers, printers and communication devices that exist and used by the

organisation before introduction of COTS. It is expected that COTS

must work without any problem in this environment.

 Operating System Compatibility: Operating systems, browsers and

databases used before COTS implementation should be usable after

its implementation. Data transfer from one system to another is

usually avoided due to data compatibility issues. Usage of same

database improves data processing.

 303

Special Tests

 Software Compatibility: There may be existing software in system

where COTS will be implemented. COTS should not affect their

existence or working. Other software may provide input or accept

output from COTS software. COTS must be able to integrate with

them and communicate effectively.

 Data Compatibility: Data transfer may happen from one system to

another during COTS implementation. COTS should not hamper or

interfere with data, format and transfer process. Data format, style,

and frequency mismatch can cause severe system problems.

 Communication Compatibility: Protocols used in communication

must be compatible to prevent any communication loss. If there is no

compatibility of communication protocols, adopters will be required

to convert protocols to facilitate communication.

Assure that COTS can be integrated with Business:

 Manual systems may be partially or completely replaced by COTS

software in an organisation. This may affect employees count and

they may need to upgrade skills to use COTS.

 Existing processes, methods, forms, formats and templates used by

existing manual system may be replaced in COTS implementation.

These changes may affect users, auditors, etc. which should be taken

into consideration while deciding to implement COTS in an

organisation.

 There may be increase or decrease in number of steps and sub

processes due to COTS and users must be comfortable with such

changes. Increase in processes may be resisted by users if they find it

unnecessary.

Demonstrating COTS in Operation:

COTS is also subjected to alpha and beta acceptance testing similar to

other projects. Vendor site demonstration of COTS represents alpha

testing and actual usage site demonstration represents beta testing.

 Demonstration at Vendor site: These may be done using sample

data provided by vendor. Objective is to provide basic awareness to

user about the software. It is used to provide training to users about

new product.

 Demonstration at Customer site: These may be done using

customer supplied data or real time data. Users are involved in

demonstrations and experts may guide them to use new product.

Users may get hands-on experience under expert supervision. This

also exposes users to software and gives basic training to use it. Users

understand advantages and limitations of software, if any, during such

demonstrations.

 304

Software Quality

Assurance

Evaluate People Fit:

Testers need to analyse whether people would be able to work with the

system effectively or not. There should be understanding whether software

can be used as it is or may require some configuration, modification or

external changes to make it usable. Sometimes, additional training and

support may be required by users.

10.36 CLIENT-SERVER TESTING

Client-server is an initial improvement from stand-alone applications

where there are several clients communicating with the server. There are

many advantages of client-server over stand-alone application. Client-

server architecture gives an opportunity to many users to work with

software simultaneously. Client server system may be viewed as-requests

coming from many clients and server is serving these requests.

Features of Client-Server Application:

 Client-server system comprises of clients connected to server across

a network.

 Client and server are connected by real connection.

 Multiple clients use the system at a time and they can communicate

with the server. Sometimes, clients may communicate with each other

via server.

 Server is aware of client configuration beforehand.

Testing Approach of Client-Server System:

Client-server testing involves component and integration testing followed

by various specialized testing as per scope of testing involved.

Component Testing:

One needs to define the approach and test plan for testing client and server

individually. One may have to devise simulators to replace corresponding

components to test the target component. For server testing, client

simulator may be needed and client testing may require server simulator.

We may have to test network by using client and server simulators at a

time.

Integration Testing:

After successful testing of clients, servers and network individually, they

are brought together to form the system and system test cases are

executed. Client server communication testing is done in integration

testing. There are regular testing methods like functionality testing and

user interface testing to ensure that system meets the requirement

specifications and design specifications correctly. In addition to these,

several special testing techniques are as follows:

 305

Special Tests

Performance Testing:

System performance is tested when many clients communicate with server

at the same time. Similarly, volume testing and stress testing may also be

used. Since number of clients is already known to system, we can test the

system under maximum load as well as normal load. Various user

interactions may be used for stress testing.

Concurrency Testing:

It may be possible that multiple users may access same record at a time.

Concurrency testing is required to understand the system behaviour under

such circumstances.

Disaster Recovery/Business Continuity Testing:

When the client and server are communicating with each other, there

exists a probability of communication break due to various reasons or

failure of either client or server or link connecting them. This testing is

used to understand system behaviour in cases of disaster. It may involve

testing the scenario of such failures at different system points and actions

initiated by the system in each case. Requirement specification must

describe the possible expectations in case of any failure.

Testing for Extended Periods:

In client-server applications, generally, server is never shut down unless

there is some agreed (Service Level Agreement) SLA where server may

be shut down for maintenance. It may be expected that server is running

24 * 7 for extended period. Testing is conducted over an extended period

to understand if service level of network and server deteriorates over a

time due to some reasons like memory leakage.

Compatibility Testing:

Client and server are subjected to different networks when used by users

in production. Servers may be in different hardware, software or operating

system environment than the recommended one. Clients may significantly

differ from the expected environmental variables. Testing must ensure that

performance is maintained on the range of hardware and software

configurations and users must be adequately protected in case of

configuration mismatch. Similarly, any limiting factors must be informed

to prospective user.

Other testing such as security testing and compliance testing may be done,

if needed, as per scope of testing and type of system.

10.37 WEB APPLICATION TESTING

Web application is further improvement in client-server applications

where the clients can communicate with servers through virtual

connectivity. It has many advantages over client-server application as

multiple server networks can be accessed at a time from the same client. It

 306

Software Quality

Assurance

improves communication between people at different locations

significantly.

Features of Web Application:

 Number of clients connecting to a server is very large. Sometimes,

number may tend to infinity. Client configurations cannot be

controlled by definition.

 Different clients may have different configurations and server may be

unable to communicate directly with clients. To resolve this, a

universal client „browser‟ is required in such circumstances.

 Communication protocols may differ from system to system.

Sometimes, adopters are required to convert these communication

protocols and make them compatible.

 Client and server are connected through World Wide Web cloud and

there is no direct physical connectivity. As they are connected

virtually, communication needs address where it is expected to reach,

from client to server as well as from server to client.

 One client may be able to connect to several servers at a time. This

helps in faster communication between different domains.

 Generally, there is no installation needed at client other than browser.

Nearly all work is done by the server.

Testing Approach of Web Application:

Web application involves component testing, integration testing,

functionality testing and GUI testing followed by various specialised

testing.

Component Testing:

One must define the approach and test plan for testing web application

individually at client side and at server side. One may have to design

simulators to replace corresponding components. During server testing,

client simulator will be needed and vice versa. Network testing is also

required.

Integration Testing:

Successfully tested servers and clients are brought together to form the

web system and system test cases are executed. Communication between

client and server is tested in integration testing.

There are other testing ways like functionality testing and user interface

testing to ensure that system meets the requirement specifications and

design specifications correctly. In addition to them, several other testing is

involved as follows:

 307

Special Tests

Performance Testing:

System performance is tested as huge numbers of clients communicate

with server simultaneously. Similarly, volume testing and stress testing is

done to test these applications. System requirements specifications should

define maximum and normal load conditions so that they can be tested.

Simulators are used extensively for such testing.

Concurrency Testing:

It may be possible that multiple users access same record simultaneously.

Concurrency testing is needed to understand system behaviour under such

circumstances. Probability of concurrency increases with increase in

number of users.

Disaster Recovery/Business Continuity Testing:

When the machine is communicating with the web server, there exists a

possibility of communication break due to several reasons like

connectivity failure, client failure and server failure. Testing for disaster

recovery and business continuity involves testing the scenario of such

failures and actions taken by the system in each case. Requirement

specification must describe the expected system behaviour in case of such

failures. MTTR (Mean Time to Repair) and MTBF (Mean Time between

Failures) are very important tests for web applications.

Testing for Extended Periods:

In case of web applications, generally, the server is never shut down. It is

expected to run 24 * 7 over extended time period and there must be a

provision of alternate server (hot recovery/mirroring) if requirements

specify the same. Testing is conducted over an extended period to

understand if service level of server deteriorates over a time due to some

reasons like memory leakage.

Security Testing:

As the communication occurs through virtual network, security is

important. Applications may use communication protocols, coding and

decoding mechanisms, and schemes to maintain system security. System

must be tested for possible weak areas called „vulnerabilities‟ and possible

intruders trying to attack the system called „penetrators‟.

Compatibility Testing:

Web applications may be placed in different environments when users use

them in production. Servers may be exposed to different hardware,

software or operating system environment than the expected one. Client

browsers may differ significantly from the expected environmental

variables. Testing must ensure that performance is maintained on the

range of hardware and software configurations and users must be

adequately protected in case of configuration mismatch. Similarly, any

limiting factors must be informed to the prospective user.

 308

Software Quality

Assurance

10.38 MOBILE APPLICATION TESTING (PDA

DEVICES)

Today‟s generation uses pocket devices extensively for communication

and computing due to mobility offered by them. There is tremendous

increase in memory levels and technologies adopted by such appliances.

With the advent of Bluetooth and Wi Fi, many PDA‟s are replacing

desktop computers due to ease of usage. New technologies have converted

normal communication device into internet-driven palm tops.

Testing Limitations of PDA’s:

Scenarios and test cases designed for web applications may not be

applicable to mobile applications. Mobile applications exhibit different

behaviour and usage pattern. There are few limitations on PDA due to

following factors:

 Hardware and software used on PDAs differ significantly due to lack

of standardization, and varied manufacturer‟s preferences. Usability

testing on PDAs should take into consideration variations in

hardware, software and configurations.

 Memory available in PDAs is limited as compared to desktops.

 PDAs have limited usability even after invention of touchpad and

joystick. Normal desktops usage is more convenient owing to

keyboard, mouse along with touch screen.

 Data input has many limitations as single key may mean different

inputs depending upon the number of times it is pressed. There is

limitation for providing help and maintaining operability of PDA due

to its small size.

 Battery life may be limited in PDAs thus limiting its lighting

availability.

 Bandwidth available with Bluetooth and Wi Fi in PDAs is much less

as compared to bandwidth availability by other means like optical

cables.

Interface Design of PDAs:

 The smaller size and resolution of the PDA screen presents usability

challenges to testers. Reading from the screen and scrolling up and

down is inconvenient.

 Instructions and other text must be used sparingly and carefully as

they occupy screen and require scrolling. Instructions cause content to

be pushed below the fold which can be missed by users.

 Links must be concise and contain only necessary keywords.

Generally, specific options must be presented before general options

to improve usability.

 309

Special Tests

10.39 E-BUSINESS/E-COMMERCE TESTING

With changing business scenarios and technology advancements, e-

Business/e-Commerce applications have become popular. There is a small

difference between e-Business and e-Commerce application. While e-

Commerce concerns mainly with money transactions, e-Business concerns

with all business aspects including money, advertising, and sales.

Distinct Parts of e-business:

 Information Access by the common user is very important from

business point of view. All the products available with enterprise must

be accessible to users who wish to buy them with product

information. Quick links may be provided to reach the area of interest

easily and quickly. Grouping items into some categories and carting

also eases access.

 Self-Services must be available for users where they can select item,

quantity and make online payment accordingly.

 Shopping Services including advertisement, carting and billing are

completely online and users should be able to execute transactions

smoothly just like they do it in a real shop.

 Interpersonal Communication Services can be used to inform users

about the billing amount or inform shopkeeper about stocks

availability and demand trends. It can be used to give more

information about the products available for sale.

 E-Business represents a virtual enterprise where all the actions are

done by users through internet which replaces physical shopping and

transactions.

Testing Approach for e-business/e-commerce:

 Software applications should be user friendly so that people can

perform transaction easily and safely. Usability, performance and

reliability are critical success factors for such applications. Users may

reject applications due to poor performance and business is directly

impacted. Consistency in delivering results is important.

 Regulatory and statutory requirements should be strictly followed as

their violation is a legal offence.

 Security and privacy is critical in e-Business and e-Commerce

applications and these may be enforced as statutory requirements.

Personal information and transaction information of users must not be

disclosed to any third-party attack. Anonymity should be maintained.

 Non-functional requirements such as system performance, user

interfaces, and online help are essential in addition to functional

requirements. Application‟s look and feel, working speed, and

 310

Software Quality

Assurance

disaster recovery ability are important aspects from user‟s

perspective.

E-commerce Quality Challenges:

 Stringent quality standards are associated with e-Business sites. Usage

experience for users must be positive. Otherwise, people would

hesitate to use site impacting business as there is no physical store in

existence.

 If the visitor experience is negative due to application‟s slow response

time, crash, and privacy violations then consumer confidence

deteriorates and consumers would not perform transaction thus

impacting business.

E-business/E-commerce Development:

Development of e-Business/e-Commerce applications may not follow

waterfall or iterative model. Agile methodologies and spiral development

models are used extensively. It is characterized by the following:

 Rapid and easy assembly of application modules is essential as the

system size increases as defined by spiral methodology. Initially,

some parts of an application are delivered and used, and as per user

response and expectations, latter parts are then delivered at multiple

instances.

 Testing of component functionality and performance at each

increment is required to ensure correct integration. Huge regression

testing cycles may be required.

 Since there may not be real time testing, simulation is done by

designing models to simulate real world scenario and then testing is

performed.

 Usually, such applications are deployed in a distributed environment,

24 * 7 * 365 for an extended period, and there is no downtime

allowable. MTTR and MTBF are important parameters for assuring

service to users.

 Monitoring performance and transactions over an extended period is

essential to understand if there is any deterioration of service level

over a time span.

 Analysing system effectiveness and gathering business intelligence

may be essential to maximize sale and profit.

Incorporating Legal Standards:

Statutory and legal requirements are one of the most important aspects of

e-Business and e-Commerce applications. These requirements must be

thoroughly understood and implemented in an application. Any violation

of these requirements is punishable under law. Also, they keep changing

 311

Special Tests

from time to time as per policy and strategy decisions of government and

categories of industry that they belong to.

 All critical business functions with respect to common users are

identified and evaluated on the basis of their criticality.

 Mechanisms must be in place to ensure connectivity and handling

connection loss. Disaster recovery procedures and business continuity

procedures must be developed.

 Systems are tested to assess security of online transactions. User

information must be protected and privacy practices must be applied

stringently.

 Privacy audits must be conducted to confirm correct working of

strategies to protect customer privacy and confidentiality.

 Vulnerabilities are analysed to prevent hacker attacks and virus

attacks. Users may not visit site if there are possible vulnerabilities

and threats.

 Disaster avoidance measures are developed such as redundant

systems, alternative routing, precise change controls, encryption,

capacity planning, load and stress testing, and access control.

10.40 AGILE DEVELOPMENT TESTING

 „Agile development‟ is popular in software development models. Agile

development is based on twelve agility principles mentioned in agile

manifesto. Agile models prioritize clients and focus more on procedures,

quality delivery and flexibility in embracing dynamic requirements rather

than being static to strictly follow guidelines and documentation.

Agility Testing:

There are various agile process models such as scrum, extreme

programming, feature-driven development, test-driven development etc.

Test plans are made to suit the model adopted and purpose. Also, the

underlying agile principle of delivering working software at faster speed

should be considered.

Critical Points for Agile Testing:

 Competencies/Maturity of Agile Development and Test Team:

When working with agile principle, it is important to have teams,

customer and management who psychologically accept agile approach. It

involves dynamic ability to accept change quickly, deliver good working

product as soon as possible, and communicate effectively and efficiently

with team members as well as stakeholders. Agile implementation prefers

generalist approach as compared to specialist approach. It needs people

 312

Software Quality

Assurance

with high maturity and technical competence to adapt to changing

customer needs.

 Development and Test Process Variability:

Every process has an inborn variability. One may have to attack the

generic reasons of variations while there may be some controls to identify

special causes of variations.

 Change Management and Communication:

Change is inevitable in agile. There must be strong communication

amongst development team, test team, customer, and other stakeholders to

adapt to changing scenario. Requirement change at any point in

development process must be welcomed and everyone must come together

to give best service to customer.

 Test Process Flexibility:

Different test plans are made to test software. However, as the process

begins, many changes may be required. Test plans should be flexible

enough to adapt to these changes.

 Focus on Business Objective:

There is always a pressure to deliver software faster in agile development.

Time pressure may come from stakeholders or development. It is

important to focus on business objectives while defining test processes,

adapting to change, and handling pressure. Cost-benefit analysis may be

done to deal with defect fix and software release. It is impossible to find

all defects but aim should be to maximize user protection from any

accidental failure. Testing should achieve both extremes.

 Stakeholder Maturity/Involvement:

Agile process demands maturity from stakeholders and all the people

involved since there is time pressure, adapting to dynamic requirements,

and faster delivery pressure.

10.41 DATA WAREHOUSING TESTING

A data warehouse is a repository of an organisation‟s electronically stored

data. Data warehouses are designed to facilitate reporting and analysis.

The classic definition of data warehouse focuses on data storage.

However, the means to retrieve and analyse data, to extract, transform and

load data, and to manage the data dictionary are also considered essential

components of a data warehouse system. The advantage of using data

warehouse is that a data analyst can perform complex queries and analysis

(data mining) on the information within data warehouse without slowing

down the operational systems.

 313

Special Tests

Data Warehouse Definition:

Data in data warehouse is subjected to few definitions:

Subject-oriented:

Subject-oriented data warehouses are designed to help the user in

analysing data. The data is organised so that all the data elements relating

to the same real world event or object are linked together.

Integrated:

Database integration is closely related to subject orientation. Data

warehouses must place data from different sources into a consistent

format. The database contains data from most or all of an organisation‟s

operational applications and is made consistent.

Time-variant:

The changes done to data in database are tracked and recorded to produce

reports on data varying with time. In order to discover trends in business,

analysts need large amounts of data. Time-variant is data warehouse‟s

track of changes made in data over time.

Non-volatile:

Data in the database is never over written or deleted once committed-the

data is static and read-only but retained for future reporting. Once data

enters warehouse, it should not change as the purpose of data warehouse is

to be able to analyse what has occurred.

Benefits of Data Warehousing:

 Provides a common data model for all data of interest regardless of its

source. This enables easy reporting and analysis as compared to

retrieving information from multiple data models.

 Prior to loading data into data warehouse, inconsistencies are

identified and resolved. This greatly simplifies reporting and analysis.

 Information in the data warehouse is under the control of data

warehouse users so that even if the source system data is purged over

time, information in the warehouse can be stored safely for extended

time period.

 Data warehouses are separate from operational systems, hence; data

retrieval does not slow down operational systems.

 Data warehouses facilitate decision support system applications such

as trend reports, exception reports and reports that show actual

performance versus goals.

 314

Software Quality

Assurance

Testing Process for Data Warehouse:

Testing for a data warehouse includes requirements testing, unit testing,

integration testing followed by acceptance testing.

Requirements Testing

The main aim for performing requirements testing is to check stated

requirements for completeness. In a data warehouse, requirements are

related to reporting. Hence, it is crucial to verify whether these reporting

requirements can be catered using the available data. Successful

requirements are structured closely to business rules and address

functionality and performance expected by users.

Unit Testing:

Unit testing involves the following:

 Whether the application is accessing and selecting correct data from

correct source as expected by users.

 All data transformations should be aligned with business rules and

data warehouse should be populated with correct data.

 Testing the rejected records that do not fulfill transformation rules.

Integration Testing:

After unit testing completes, integration testing is performed to test initial

and incremental loading of data warehouse. Integration testing involves

the following:

Verify Report Data with Source:

Although the data present in a data warehouse will be stored at an

aggregate level yet it must be compared to source systems. Test team must

verify the granular data stored in data warehouse against the available

source data.

Field Level Data Verification:

Test team must understand the linkages for the fields displayed in the

report and must trace back and compare that with the source systems.

Creating Queries:

Create queries to fetch and verify the data from source and target.

Sometimes, it is not possible to do the complex transformations done in

ETL. In such a case, the data can be transferred to some file and

calculations can be performed.

 315

Special Tests

Data Completeness:

Basic test of data completeness is to verify that all expected data loads into

the data warehouse. This includes validating that all records, all fields and

the full contents of each field are loaded. This may cover:

 Comparing record counts between source data, data loaded to the

warehouse and rejected records.

 Comparing unique values of key fields between source data and data

loaded to the warehouse.

 Utilizing a data profiling tool that shows the range and value

distributions of fields in a data set.

 Populating the full contents of each field to validate that no truncation

occurs at any step in the process.

 Testing the boundaries of each field to find any database limitations.

Data Transformation:

Validating that data is transformed correctly from database is based on

business rules. This can be the complex part of testing.

 Create a spreadsheet of scenarios of input data and expected results

and validate these with the business customer.

 Create test data that includes all scenarios.

 Utilize data profiling results to compare range and distribution of

values in each field between source and target data.

 Validate correct processing.

 Validate that data types in the warehouse are as specified in the design

and/or data model.

 Set up data scenarios that test referential integrity between tables.

 Validate parent-to-child relationships in the data.

Data Quality:

Data quality rules are defined during data warehouse design. It may

include:

 Reject the record if a certain decimal field has non-numeric data.

 Substitute null if a certain decimal field has non-numeric data.

 Duplicate records.

 316

Software Quality

Assurance

Performance and Scalability:

As data volume in a data warehouse grows, load times can be expected to

increase and performance of queries can degrade. The aim of performance

testing is to point out any potential weaknesses in the design such as

reading a file multiple times or creating unnecessary intermediate files.

 Load the database with peak expected production volumes to ensure

that this volume of data can be loaded within the specific time period.

The time period may be defined in SLA.

 Compare these loading times to loads performed with a smaller

amount of data to anticipate scalability issues.

 Monitor the timing of the reject process and consider how large

volumes of rejected data will be handled.

 Perform simple and multiple join queries to validate query

performance on large database volumes.

10.42 LET US SUM UP

In this chapter, we have seen impact of new techniques of software

development on testing. This chapter also covers what is meant by new

technology and its associated risks. It also deals with organisational

process maturity with respect to evolving technologies. The testing

approaches of new technology covered following methodologies and

business applications:

 Object-oriented development

 Internal controls

 Commercially Of The Shelf (COTS) software

 Client server testing

 Web application

 PDAs/Mobile applications

 E-Commerce and e-Business

 Data warehouse systems

10.43 EXERCISES

1. Describe the risk associated with new technology usage.

2. Explain technology process maturity.

3. Explain the test process for new technology.

4. Explain the process of testing object-oriented development.

 317

Special Tests

5. Explain the process of testing of internal controls.

6. Explain how transaction processing controls can be tested?

7. Explain the process of testing security controls.

8. What are the attributes of a good control?

9. Why software organisations buy „COTS‟ software?

10. Explain COTS testing process.

11. What are the challenges in COTS testing?

12. Differentiate between evaluation and assessment of COTS.

13. Describe a process of client-server testing.

14. Describe the testing process for web application.

15. Describe the mobile applications (PDA) testing process.

16. Describe the critical quality issues of e-Commerce and e-Business.

17. Describe the process of testing data warehouse systems.
