T.Y.B.SC.(IT)
SEMESTER - VI (CBCS)

SOFTWARE QUALITY
ASSURANCE

SUBJECT CODE : 83/01

© UNIVERSITY OF MUMBAI

Prof. (Dr.) D. T. Shirke
Offg. Vice Chancellor
Universty of Mumbai, Mumbal.

Prin. Dr.Ajay Bhamare Prof. Prakash Mahanwar
Offg. ProVice-Chancdllor, Director
University of Mumbal. IDOL, University of Mumbai.
Programe Co-ordinator : Shri. Mandar Bhanushe

Head, Faculty of Science and Technology,
IDOL, University of Mumbai —400098.

Course Co-ordinator : Ms. Gouri Sawant
Assistant Professor, B.Sc. IT, IDOL,
University of Mumbai - 400098.

Editor ;. Dr.T.Parimalam
Associate Professor and Head in Computer Science,
NandhaArts and Science College,
Erode, 638052.

Course Writers . Vinay Vikas Shahapurkar
Assistant Professor,
Bunts Sangha's S.M. Shetty College of Science,
Commerce and Management Studies, Powai.

Avneet Kaur

Assistant Professor,

Bunts Sangha's S.M. Shetty College of Science,
Commerce and Management Studies, Powal.

Dr. Triveni Koul

Assistant Professor,

Yashwantrao Chavan College of Arts Commerce and Science,
Koper Khairane.

Sameera Salim | brahim
Assistant Professor,
SIES (Nerul) College of Arts, Science & Commerce.

Akshata Laddha

Assistant Professor,

Dilkap Research Institute of Engineering and
Management Studies, Neral.

October 2022, Print |

Published by
Director
Institute of Distance and Open Learning, University of Mumbal,Vidyanagari, Mumbai - 400 098.

DTPCOMPOSED AND PRINTED BY
Mumbai University Press,
Vidyanagari, Santacruz (E), Mumbai - 400098.

CONTENTS

Chapter No. Title Page No
Unit - |

1 Introductionto Quality 1
2. Software Quaity 37
Unit - 11

3. Fundamentalsof Software Testing 76
4, Challengesin Software Testing 115
Unit- 111

5. Unit Testing: Boundary Vaue Testing, Equivaence Testing 165
6. Decision Table Based Testing, Path Testing, DataFlow Testing 192
Unit-1V

7. Software Verification and Validation 213
8. V-Test Modd 237
Unit-V

0. Levelsof Testing 249
10. Special Tests 263

kkk

B. Sc. (Information Technology)

Semester — VI

Course Name: Software Quality Assurance

Course Code: 88701

Periods per week (1 Period is 50 minutes) 5

Credits

2

Hours Marks

Evaluation System Theory Examination 2%

75

Internal --

25

Unit

Details

Lectures

Introduction to Quality: Historical Perspective of Quality, What is
Quality? (Is it a fact or perception?), Definitions of Quality, Core
Components of Quality, Quality View, Financial Aspect of Quality,
Customers, Suppliers and Processes, Total Quality Management
(TQM), Quality Principles of Total Quality Management, Quality
Management Through Statistical Process Control, Quality Management
Through Cultural Changes, Continual (Continuous) Improvement
Cycle, Quality in Different Areas, Benchmarking and Metrics, Problem
Solving Techniques, Problem Solving Software Tools.

Software Quality: Introduction, Constraints of Software Product
Quality Assessment, Customer is a King, Quality and Productivity
Relationship, Requirements of a Product, Organisation Culture,
Characteristics of Software, Software Development Process, Types of
Products, Schemes of Criticality Definitions, Problematic Areas of
Software Development Life Cycle, Software Quality Management,
Why Software Has Defects? Processes Related to Software Quality,
Quality Management System Structure, Pillars of Quality Management
System, Important Aspects of Quality Management.

12

Fundamentals of testing: Introduction, Necessity of testing, What is
testing? Fundamental test process, The psychology of testing,
Historical Perspective of Testing, Definitions of Testing, Approaches
to Testing, Testing During Development Life Cycle, Requirement
Traceability Matrix, Essentials of Software Testing, Workbench,
Important Features of Testing Process, Misconceptions About Testing,
Principles of Software Testing, Salient Features of Good Testing, Test
Policy, Test Strategy or Test Approach, Test Planning, Testing Process
and Number of Defects Found in Testing, Test Team Efficiency,
Mutation Testing, Challenges in Testing, Test Team Approach, Process
Problems Faced by Testing, Cost Aspect of Testing, Establishing
Testing Policy, Methods, Structured Approach to Testing, Categories
of Defect, Defect, Error, or Mistake in Software, Developing Test
Strategy, Developing Testing Methodologies (Test Plan), Testing
Process, Attitude Towards Testing (Common People Issues), Test
Methodologies/Approaches, People Challenges in Software Testing,
Raising Management Awareness for Testing, Skills Required by Tester,

12

Testing throughout the software life cycle, Software development
models, Test levels, Test types, the targets of testing, Maintenance
testing

Unit Testing: Boundary Value Testing: Normal Boundary Value
Testing, Robust Boundary Value Testing, Worst-Case Boundary Value
Testing, Special Value Testing, Examples, Random Testing, Guidelines
for Boundary Value Testing, Equivalence Class Testing: Equivalence
Classes, Traditional Equivalence Class Testing, Improved Equivalence
Class Testing, Edge Testing, Guidelines and Observations. Decision
Table-Based Testing: Decision Tables, Decision Table Techniques,
Cause-and-Effect Graphing, Guidelines and Observations, Path
Testing: Program Graphs, DD-Paths, Test Coverage Metrics, Basis
Path Testing, Guidelines and Observations, Data Flow Testing:
Define/Use Testing, Slice-Based Testing, Program Slicing Tools.

12

Software Verification and Validation: Introduction, Verification,
Verification Workbench, Methods of Verification, Types of reviews on
the basis od Stage Phase, Entities involved in verification, Reviews in
testing lifecycle, Coverage in Verification, Concerns of Verification,
Validation, Validation Workbench, Levels of Validation, Coverage in
Validation, Acceptance Testing, Management of Verification and
Validation, Software development verification and validation activities.
V-test Model: Introduction, V-model for software, testing during
Proposal stage, Testing during requirement stage, Testing during test
planning phase, Testing during design phase, Testing during coding,
V'V Model, Critical Roles and Responsibilities.

12

Levels of Testing: Introduction, Proposal Testing, Requirement
Testing, Design Testing, Code Review, Unit Testing, Module Testing,
Integration Testing, Big-Bang Testing, Sandwich Testing, Critical Path
First, Sub System Testing, System Testing, Testing Stages.

Special Tests: Introduction, GUI testing, Compatibility Testing,
Security Testing, Performance Testing, Volume Testing, Stress
Testing, Recovery Testing, Installation Testing, Requirement Testing,
Regression Testing, Error Handling Testing, Manual Support Testing,
Intersystem Testing, Control Testing, Smoke Testing, Adhoc Testing,
Parallel Testing, Execution Testing, Operations Testing, Compliance
Testing, Usability Testing, Decision Table Testing, Documentation
Testing, Training testing, Rapid Testing, Control flow graph,
Generating tests on the basis of Combinatorial Designs, State Graph,
Risk Associated with New Technologies, Process maturity level of
Technology, Testing Adequacy of Control in New technology usage,
Object Oriented Application Testing, Testing of Internal Controls,
COTS Testing, Client Server Testing, Web Application Testing,
Mobile Application Testing, eBusiness eCommerce Testing, Agile
Development Testing, Data Warehousing Testing.

12

Books and References:

Sr. No. Title Author/s Publisher | Edition | Year
1. Software Testing and | William E. Lewis CRC Third 2016
Continuous Quality Press
Improvement
2 Software Testing: M. G. Limaye TMH 2017
Principles, Techniques
and Tools
3. Foundations of Software | Dorothy Graham, Erik | Cengage | 3"
Testing van Veenendaal, Learning
Isabel Evans, Rex
Black
4. | Software Testing: A Paul C. Jorgenson CRC 4t 2017
Craftsman’s Approach Press

UNIT -1

INTRODUCTION TO QUALITY

Unit Structure

1.0
11
1.2
13
14
1.5
1.6
1.7
1.8
1.9
1.10
111
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22

Objectives

Introduction

Historical Perspective of Quality

What is Quality? (Is it a fact or perception?)
Definitions of Quality

Core Components of Quality

Quality View

Financial Aspect of Quality

Definition of Quality

Customers, Suppliers and Processes

Total Quality Management (TQM)

Quality Principles of ‘Total Quality Management’
Quality Management Through Statistical Process Control
Quality Management Through Cultural Changes
Continual (Continuous) Improvement Cycle
Quality in Different Areas

Benchmarking and Metrics

Problem Solving Techniques

Problem Solving Software Tools

Quality Tips

Summary

Exercises

References

1.0

OBJECTIVES

Obijectives of Quality Assurance are as follows:

It helps monitor the software development method and the final
software developed.

It guarantees that the software project is implementing the standards
and procedures set by the management.

It helps in the notification of groups and individuals about its events
and consequences.

Software Quality e It guarantees that the problems, which are not solved within the
Assurance software, are addressed by the higher administration.

e It helps recognize and fix shortages in the product, process, or
standards.

1.1 INTRODUCTION

Evolution of mankind can be seen as a continuous effort to make things
better and convenient through improvements linked with inventions of
new products. Since time immemorial, humans have used various products
to enhance their lifestyle. Initially, mankind was completely dependent on
nature for satisfying their basic needs for food, shelter and clothing. With
evolution, human needs increased from the basic level to substantial
addition of derived needs to make life more comfortable. As civilisation
progressed, humans started converting natural resources into things which
could be used easily to satisfy their basic as well as derived needs.

Earlier, product quality was governed by the individual skill and it differed
from instance to instance depending upon the creator and the process used
to make it at that instance. Every product was considered as a separate
project and every instance of the manufacturing process led to products of
different quality attributes. Due to increase in demand for same or similar
products which were expected to satisfy same/similar demands and
mechanisation of the manufacturing processes, the concept of product
specialisation and mass production came into existence. Technological
developments made production faster and repetitive in nature.

Now, we are into the era of specialised mass production where producers
have specialised domain knowledge and manufacturing skill required for
particular product creation, and use this knowledge and skill to produce
the product in huge qualities. The market is changing considerably from
monopoly to fierce competition but still maintaining the individual
product identity in terms of attributes and characteristics. There are large
number of buyers as well as sellers in the market, providing and
demanding similar products, which satisfy similar demands. Products may
or may not be exactly the same but may be similar or satisfying similar
needs/demands of the users. They may differ from one another to some
extent on the basis of their cost, delivery schedule to acquire it, features,
functionalities present/absent, etc. These may be termed as attributes of
the quality of a product.

We will be using the word ‘product’ to represent ‘product’ as well as
‘service’, as both are intended to satisfy needs of users/customers. Service
may be considered as a virtual product without physical existence but
satisfying some needs of users.

1.2 HISTORICAL PERSPECTIVE OF QUALITY

Quality improvement is not a new pursuit for mankind. The field of
quality and quality improvement has its roots in agriculture. Early efforts

of quality improvement in agriculture may be attributed to statistical
research conducted in Britain, in early 20" century, to assist farmers in
understanding how to plan the crops and rotate the plan of cultivation to
maximise agricultural production while maintaining the soil quality at the
same time.

This work inspired Walter Shewhart at Bell Laboratories to develop
quality improvement programs through planned efforts. He adopted the
concepts developed initially for agriculture to implement quality
improvement programs for products and to reduce the cost to customer
without affecting profitability for the manufacturer. Changes brought in by
Walter Shewhart motivated Dr Edward Deming to implement quality
improvement programs as a way to improve product quality. He devoted
his life to teaching and improving quality methods and practices across the
world through ‘Total Quality Management’ methodology.

Dr. Deming demonstrated his ideas of ‘Total Quality Management’
through continual improvement in Japan. Dr Joseph Juran also
implemented quality improvement through measurement programs using
different quality tools for assessment and improvement. Japanese
producers fully embraced quality improvement methodologies and started
to integrate the concepts of ‘Total Quality Management’ in their
industries. The Dramatic improvement in quality of products in Japan after
1950 due to the revolutionary ideas of continual improvement through
process measurement are still considered legendary.

During the last few decades, the Japanese industry has successfully
utilised quality tools and ‘Total Quality Management’ methodologies as
part of their successful effort to become a leading nation in a
manufacturing and supplying a vast array of electronics, automotive and
other products to the entire world. Quality of the products is established
and continually improved in terms of features, consistent performance,
lesser costs, reasonable delivery schedule, etc. in order to enhance the
satisfaction of the customer. Japanese products started dictating the quality
parameters in world market to the extent that many nations adopted
quality improvement programs at national level to face the competition
from the Japanese industry. Quality of Japanese products stems from the
systematic organisation and understanding of processes used in all aspects
of product development, and introduction of tools and methodologies that
permit monitoring and understanding about what is happening in different
processes of manufacturing and management of interactions of those
processes. Japanese quality improvement programs created the sets of
interrelated processes which assure the same product quality in repetitive
manner and in large number to satisfy the demand of a huge market.
Defects are analysed and root causes of the defects are identified and
eliminated through continual process improvement. This has helped in
optimising the processes to produce better results in repetitive manner.

Introduction to Quality

Software Quality

1.3 WHAT IS QUALITY? (IS IT A FACT OR
PERCEPTION?)

What is quality, is an important question but does not have a simple
answer. Some people define it as a fact while others define it as a
perception of customer/user.

We often talk about quality of a product to shortlist or select the best
product among the equals when we wish to acquire one. We may not have
a complete idea about the meaning of quality or what we are looking for
while selecting a product, if somebody questions us about the reason for
choosing one product over the other. This is a major issue faced by the
people working in quality field even today as it is very difficult to decide
what contributes customer loyalty or first-time sale and subsequent repeat
sale. The term ‘quality’ means different things to different people at
different times, different places and for difficult products. For example, to
some users, a quality product may be one, which has no/less defects and
work exactly as expected and matches with his/her concept of cost and
delivery schedule along with services offered. Such a thought may be a
definition of quality — ‘Quality is fitness for use’.

However, some other definitions of quality are also widely discussed.
Quality defined as, ‘Conformance to specifications’ is a position that
people in the engineering industry often promote because they can do very
little to change the design of a product and have to make a product as per
the design which will best suite the user’s other expectations like less cost,
fast delivery and good service support. Others promote wider views,
which may include the attribute of a product which satisfies /exceeds the
expectations of the customer. Some believe that quality is a judgement or
perception of the customer/user about the attributes of a product, as all the
features may not be known or used during the entire life of a product.
Quality is the extent to which the customers/users believe that the product
meets or surpasses their needs and expectations. Others believe that
quality means delivering product that,

e Meet customer standards, either as defined by the customer or defined
by the normal usage or by some national or international bodies.
(Standard may or may not be as defined by the supplier of the
product. Typically for consumer goods, standard is defined by market
forces and likes and dislikes of users in general.)

e Meet and fulfill customer needs which include expressed needs as
well as implied requirements derived by business analysts and system
analysts. Expressed needs are available in the form of requirement
statement generated by users while implied needs definition may
require supplier to understand customer business and provide the
solution accordingly.

e One must try to meet customer expectations as maximum as possible.
If something is given more than the requirements of the customer, it
should be declared before transition, so that customer surprises can be

avoided. At the same time, if some aspect of the specified
requirements has not been included in the product, it should be
declared. This is essential so that the customer may understand the
deliverables accordingly. Expectations may be at the top of customer
needs may be useful in creating brand loyalty through customer
delight. (Trying to get customer delight after informing customer
about it.)

e Meet anticipated/unanticipated future needs and aspirations of
customers by understanding their businesses and future plans. One
may need to build a software and system considering some future
requirements. Every product including software has a life span and
due to technological inventions as well as new ways of doing things,
older systems become obsolete, either technicallyor economically.
How much of the future must be considered for the given product may
be a responsibility of the customer or the supplier or a joint
responsibility. Every product has some defined life span and may
have to extrapolate future needs accordingly.

Others may simply ignore these definitions of quality and say, ‘I’ll know
the quality of a product when | see it’. It seems that we all ‘know’ or
‘feel” somehow what the meaning of quality is, though it is very difficult
to put it in words. Something that fulfils/exceeds customer’s preconceived
ideas about the quality is likely to be called as a quality product.

We will try to examine tools and methods which can be used to improve
product quality through process approach, add value through
brainstorming by producers, consumers, customers and all stakeholders
about new features which may be included/old features which may be
excluded from the product, decrease costs, improve schedule and help
products to conform better with respect to the expressed and implied
requirements. Use of quality tools and methodologies can help people
engage in production related activities to improve quality of the products
delivered to final user and achieve customer satisfaction.

1.4 DEFINITIONS OF QUALITY

For achieving quality of a product, one must define it insome measurable
terms which can be used as a reference to find whether quality is really
met or not. There are many views and definitions of quality given by
stalwarts working in quality improvement and quality management arena.
These definitions describe different perceptions toward quality of
products. Some of these are,

1. Customer-Based Definition of Quality:

Quality product must have ‘Fitness for use’ and must meet customer
needs, expectations and help in achieving customer satisfaction and
possibly customer delight. Any product can be considered as a quality
product if it satisfies its purpose of existence through customer

Introduction to Quality

Software Quality
Assurance

satisfaction. This definition is mainly derived by an approach to quality
management through ‘Quality is fitness for use’.

2. Manufacturing-Based Definition of Quality:

This definition is mainly derived from engineering product manufacturing
where it is not expected that the customer knows all requirements of the
product, and many product level requirements are defined by architects
and designers on the basic of customer feedback/survey. Market research
may have to generate requirement statement on the basis of perception of
probable customers about what features and characteristics of a product
are expected by the market. A quality product must have a definition of
requirement specifications, design specifications, etc. and the product
must conform to these specifications. The development methodologies
used for the purpose must be capable of producing the right product in
first go and must result into a product having no/minimum defects. This
approach gives the definition of ‘Conformance to requirements’.

3. Product-Based Definitions of Quality:

The product must have something that other similar products do not have
which help the customer satisfy his/her needs in a better way. These
attributes must add value for the customer/user so that he/she can
appreciate the product in comparison to competing products. This makes
the product distinguishable from similar products in the market. Also, the
customers must feel proud of at owning it due to inherent attributes and
characteristics.

4. Value-Based Definition of Quality:

A product is the best combination of price and features or attributes
expected by or requirements by the customers. The customer must get
value for his investment by buying the product. The cost of a product has
direct relationship with the value that the customer finds in it. More value
for the customer helps in better appreciation of a product. Many times, it is
claimed that ‘People do not buy products, they buy benefits’.

5. Transcendent Quality:

To many users/customers, it is not clear what is meant by a ‘quality
product’, but as per their perception it is something good and they may
want to purchase it because of some quality present/absent in the product.
The customer will derive the value and may feel the pride of ownership.

Definitions 2, 3 and 4 are traditionally associated with the idea of a
product quality that,

e A product must have zero/minimum defects so that it does not
prohibit normal usage by the users. When users buy a product, they
expect minimum/no failures.

e It can be purchased at a reasonable price with relation to the value
users may derive from it. The customer may undertake cost benefit

analysis of the product and if benefits equal or exceed cost, it may be
bought.

Customer centric product development forces the industry to look inside
its own premises and thought process, making it compulsory to understand
the customer. This forces the producer to create products that prospective
customers may want to buy and not ones that designers think people want
to receive.

The most interesting definition of quality is ‘1 do not know what it is, but
if ’m delighted by acquiring it, I’llbuy it!” This means that those
products are better in quality which possess some characteristics that
attract customers to purchase them. Though the requirements of a product
may differ from customer to customer, place to place and time to time, in
general, the product must be,

e Less expensive with higher returns or higher values for the customer,
satisfying cost benefit analysis. Directly or indirectly, every owner
would be performing cost benefit analysis before arriving at a
decision to purchase something.

e Inherent of required features or attributes expected by the customer
which make it fit for use. If product is of no use to users, they will
never purchase it.

e Without any defect or with few defects so that its usage is uninhibited
and failure or repairs would be as less as possible. If the product is
very reliable, it may be liked by prospective buyers.

e With desirable cosmetic attributes.

Often, we are not aware that we want a certain product, but when we see
their attributes, we feel like buying it. It may include cosmetic
requirements like user interfaces, ease of use, etc.

Many of the above statements are based upon the users or customers
perception about quality of the product that they wish to buy. Some of
these characteristics are often attributes of products delivered by Japanese
manufacturers to consumer market. Mainly, the contributors to quality
would be that the failure rate are less, repairs are easier and fast, products
are consistent in performance and work better than other similar products
in the market and do not give any surprises to customers during use. The
reasons for such improvement in the quality are a continuous/continual
improvement in all aspects of product development through requirement
capturing, design, development, testing, deployment and maintenance.

There is one more angle to the definition of quality of a product. Any
improvement in the product quality must result into a better product, and it
must give benefits to the customer finally. The benefits may be in terms of
more or better features, less wait time, less cost, better service, etc. Thus,
quality improvement has direct relationship with fulfilling customer
requirements or giving more and more customer satisfaction.

Introduction to Quality

Software Quality Many people speak about not only achieving customer satisfaction but
Assurance exceeding customer expectations to achieve customer delight. There is a
signal of caution about exceeding customer expectations. Any feature
which surprises a customer may not be appreciated by him/her and may be
termed as a defect. Exceeding expectations without informing the
customer about what they can expect in addition to defined requirements

can be dangerous and may result in rejection of such products.

1.5 CORE COMPONENTS OF QUALITY

Quality of a product must be driven by customer requirements and
expectations from the product. Those expectations may be expressed as a
part of requirement specifications defined or may be implied one which is
generally accepted as requirements. It must have some important
characteristics that may help customer in getting more and more benefits
and satisfaction by using the product. Some postulates of quality are.

1.5.1 Quality Is Based on Customer Satisfaction By Acquiring A
Product:

Quality is something perceived by a customer while using a product. The
effort of a quality product, delivered and used by a customer, on his
satisfaction and delight is the most important factor in determining
whether the quality has been achieved or not. It talks about the ability of a
product or service to satisfy a customer by fulfilling his needs or purpose
for which it is acquired. It may come through the attributes of a product,
time required for a customer to acquire it, price a customer is expected to
pay for it and so many other factors associated with the product as well as
the organisation producing or distributing it. All these factors may or may
not be governed by the manufacturer alone but may be dependent on
quality of inputs. This point stresses a need that a producer must
understand the purpose or usage of a product and then devise a quality
plan for it accordingly, to satisfy the purpose of the product.

1.5.2 The Organisation Must Define Quality Parameters Before It
Can Be Achieved:

We have already discussed that quality is a perception of a customer about
satisfaction of needs or expectation. It is difficult for the manufacturer to
achieve the quality of product without knowing what customer is looking
for while purchasing it. If product quality is defined in some measurable
terms, it can help the manufacturer in deciding whether the product quality
has been achieved or not during its manufacturing and delivery. In order to
meet some criteria of improvement and ability to satisfy a customer, one
must follow a cycle of ‘Define’, ‘Measure’, ‘Monitor’, ‘Control’ and
‘Improve’. The cycle of improvements through measurements is described
below,

Define:

There must be some definition of what is required in the product, in terms
of attributes or characteristics of a product, and in how much quantity it is

required to derive customer satisfaction. Features, functionalities and
attributes of the product must be measured in quantitative terms, and it
must be a part of requirement specification as well as acceptance criteria
defined for it. The supplier as well as the customer must know what ‘Must
be’, what ‘Should be’ and what ‘Could be’ present in the product so
delivered and also what ‘Must not be’, ‘Should not be’ and ‘Could not be’
present in the product.

Measure:

The quantitative measures must be defined as an attribute of quality of a
product. Presence or absence of these attributes in required quantities acts
as an indicator of product quality achievement. Measurement also gives a
gap between what is expected by a customer and what is delivered to him
when the product is sold. This gap may be considered as a lack of quality
for that product. This may cause customer dissatisfaction or rejection by
the customer.

Monitor:

Ability of the product to satisfy customer expectations defines the quality
of a product. There must be some mechanism available with the
manufacturer to monitor the processes used in development, testing and
delivering a product to a customer and their outcome, i.e., attributes of
product produced using the processes, to ensure that customer satisfaction
is incorporated in the deliverables given to the customer. Derivations from
the specifications must be analysed and reasons of these derivations must
be sorted out to improve product and process used for producing it. An
organisation must have correction as well as corrective and preventive
action plans to remove the reasons of deviations/deficiencies in the
product as well as improve the processes used for making it.

Control:

Control gives the ability to provide desired results and avoid the undesired
things going to a customer. Controlling function in the organisation,
properly called as ‘quality control’ or ‘verification and validation’, may be
given a responsibility to control product quality at micro level while the
final responsibility of overall organisational control is entrusted with the
management, popularly called as ‘quality assurance’. Management must
put some mechanism in place for reviewing and controlling the progress
of product development and testing, initiating actions on
deviations/deficiencies observed in the product as well as the process.

Improve:

Continuous/continual improvements are necessary to maintain ongoing
customer satisfaction and overcome the possible competition, customer
complaints, etc. If some producer enjoys very high customer satisfaction
and huge demand for his product, competitors will try to enter the market.
They will try to improve their products further to beat the competition.

Introduction to Quality

Software Quality
Assurance

10

Improvement may be either of two different approaches viz. continuous
improvement and continual improvement as the case may be.

1.5.3 Management Must Lead The Organisation Through
Improvement Efforts:

Quality must be perceived by a customer to realise customer satisfaction.
Many factors must be controlled by a manufacturer in order to attain
customer satisfaction. Management is the single strongest force existing in
an organisation to make the changes as expected by a customer; it
naturally becomes the leader in achieving customer satisfaction, quality of
product and improvement of the processes used through various programs
of continuous/continual improvement. Quality management must be
driven by the management and participated by all employees.

Management should lead the endeavour of quality improvement program
in the organisation by defining vision, mission, policies, objectives,
strategies, goals and values for the organisation and show the existence of
the same in the organisation by self-examples. Entire organisation should
initiate the behavioural and leadership aspects of the management. Every
word and action by the management may be seen and adopted by the
employees. Quality improvement is also termed as a ‘cultural change
brought in by management’.

Organisation based policies, procedures, methods, standards, systems etc.
are defined and approved by the management. Adherence to these systems
must be monitored continuously and deviation/deficiencies must be
tracked. Actions resulting from the observed deviations/deficiencies shall
be viewed as the areas which need improvements. The improvements may
be required in enforcement or definition of policies and procedures,
methods, standards, etc. Management must have quality planning at
organisation level to support improvement actions.

1.5.4 Continuous Process (Continual) Improvement is Necessary:

There was an old belief that quality can be improved by more inspection,
testing and rework, scrap, sorting, etc. it was expected that a customer
must inspect the product and report the defects as and when they were
reported by the customer. This added to the cost of inspection,
segregation, failure, rework, etc. for the customer and reduced the profit
margins for the manufacturer or increased the price for the customer. At
the same time, customer’s right to receive a good product was withdrawn.

For improving the competitive cost advantage to producer as well as
customer, quality must be produced with an aim of first time right and
must be improved continuously/ continually. For the customer, total cost
product is inclusive of cost of purchase and maintenance. Total cost is
more important to him than the purchase tag. The first step for producing
quality is the definition of processes used for producing the product and
the cycle of continuous or continual improvement (Plan-Do-Check-Act or
Define-Measure-Monitor-Control-Improve) to refine and redefine
processes to achieve targeted improvements. It needs ‘Planning’ for

quality, ‘Doing’ as per the defined plans, ‘Checking’ the outcome at each
stage with expected results and taking ‘Actions’ on the variances
produced. Refer Table 1.1 for comparison between continuous and
continual improvement.

Tablea.a Comparison of continuous and continual improvement
Continuous improvement Continual improvement
Continuous improvement is dynamic in nature, The Continual improvement is dynamic as well as static
changes are done gt every stage and every time to change management. The changes are done, absorbed,
improve further baselined and sustained before taking next step of
improvements.

Continuously striving for excellence gives a continvous Periedic improvements followed by stabilisation pro-
improvement cess and sustenance represent continual improvement
t has a thrust on continuous refinement of the process- | Stabilisation of processes at each iteration of improve-
es to eliminate waste continuously ment where waste is removed in stages

t has high dependence on people having innovative Less dependence on people and mere dependence on
skills tending towards inventions Innovation processes

Environment is continuously changed Changes in environment are followed by stabilisation

Sometimes it creates a turbulence in an organisation, if It may be better suited than continuous improvement.
people are not able to digest continuous change It gives a chance to settle the change before next
change is introduced

1.6 QUALITY VIEW

Stakeholders are the people or entities interested in success / failure of a
project or product or organisation in general. Every product / project /
organisation has several stakeholders interested in its betterment. Quality
is viewed differently by different stakeholders of the product / project /
organisation as per their role in entire spectrum. Some quality models put
all stakeholders for the project and product in six major categories. These
stakeholders benefit directly or indirectly, if the project / product /
organization becomes successful, and suffer, if the organisation or project
fails.

Customer:

Customer is the main stakeholder for any product/project. The customer
will be paying for the product to satisfy his requirements. He/she must
benefit by acquiring a new product. Sometimes, the customer and user can
be different entities but here, we are defining both as same entity
considering customer as a user. Though sometimes late delivery penalty
clauses are included in contract, the customer is interested in the product
delivery with all features on defined scheduled time and may not be
interested in getting compensated for the failures or delayed deliveries.

Supplier:

Suppliers give inputs for making a project/product. As an organisation
becomes successful, more and more projects are executed, and suppliers
can make more business, profit and expansion. Suppliers can be external
or internal to the organisation. External suppliers may include people
supplying machines, hardware, software, etc. for money while internal
suppliers may include other functions such as system administrator,
training provider, etc, which are supporting projects/product development.

Introduction to Quality

11

Software Quality
Assurance

12

Employee:

People working in a project/an organisation may be termed as employees.
These people may be permanent temporary workers but may not be
contractual labours having no stake in product success. (Contractual
workers may come under supplier category.) As the projects organisations
become successful, people working on these projects in these
organisations get more recognition, satisfaction, pride, etc. They feel
proud to be part of a successful mission.

Management:

People managing the organization / project may be termed as management
in general. Management may be divided further into project management,
staff management, senior management, investors, etc. Management needs
more profit, recognition, turnover improvements, etc to make their vision
and mission successful. Successful projects give management many
benefits like expanding customer base, getting recognition, more profit,
more business, etc.

There are two more stakeholders in the success as well as failure of any
project / product / organisation. Many times, we do not feel their existence
at project level or even at organisation level. But they do exist at macro
level.

Society:

Society benefits as well as suffers due to successful projects
/organisations. It is more of a perception of an individual looking towards
the success of the organisation. Successful organisations / projects
generate more employment, and wealth for the people who are in the
category of customer, supplier, employee, management, etc. It also affects
the resource availability at local as well as global level like water, roads,
power supply, etc. It also affects economics of a society to a larger extent.
Major price rise has been seen in industry dominated areas as the paying
capacity of people in these areas is higher than other areaswhere there is
no such industry.

Government:

Government may be further categorised as local government, state
government, central government, etc. Government benefits as well as
suffers due to successful projects/organisations. Government may get
higher taxes, export benefits, foreign currency, etc, from successful
projects organisations, People living in those areas may get employment
and overall wealth of the nation improves. At the same time, there may be
pressure on resources like water, power, etc. There may be some problems
in terms of money availability and flow as success leads to more buying
power and inflation.

Quiality perspective of all these stakeholders defines their expectations
from organisation projects. We may feel that superficially these views

may differ from each other though finally they may be leading to the same
outcome, If these views match perfectly and there is no gap in the
stakeholder's expectations, then organisational performance and
effectiveness can he improved significantly as collective efforts from all
stakeholders, If the views differ significantly, this may lead to discord and
hamper improvement. Let us discuss two important views of quality which
mainly defines the expectations from a project and success of a project at
unit level viz. customer's view and developer's view of quality.

1.6.1 Customer's View of Quality:

Customer's view of quality of product interprets customer requirements
and expectation for getting a better product at defined schedule, cost and
with adequate service alone with required features and functionalities.
Customer is paying some cost to get a product because he finds value in
such acquisition.

Delivering Right Product:

The products received by customers must be useful to satisfy their needs
and expectations. It may or may not be the correct product from
manufacturer's perspective or what business analyst/system designer may
think. There is a possibility that development team including testers may
ask several queries about the requirements of the product to get them
clarified but the final decision about the requirements definition shall be
with customer. If customer confirms that the requirements are correct not
correct, then there is no possibility of further argument about the
validity/invalidity of requirements.

Satisfying Customer’s Needs:

The product may or may not be the best product, as per the manufacturer's
views or those which are available in the market, which can be made from
the given set of requirements and constraints. There are possibilities of
different alternatives for overcoming the constraints and implementing the
requirements, Basic constraint in product development and testing is that
product must be capable of satisfying customer needs. Needs are ‘must’
among requirements from customer's perspective. They may be part of
processes for doing requirement analysis and selection of approach for
designing on the basis of decision analysis and resolution, using some
techniques such as cost-benefit analysis, etc. which suites best in the given
situation. This must help organisation to achieve customer satisfaction
through product development and delivery.

Meeting Customer Expectations:

Customer expectations may be categorised into two parts viz. expressed
expectations and implied expectations. Expectations documented and
given formally by the customer are termed as ‘expressed requirements’
while ‘implied expectations’ are those, which may not forma part of
requirement specifications formally but something which is expected by
customer by default. It is a responsibility of a developing organisation to

Introduction to Quality

13

Software Quality
Assurance

14

convert, as many as possible, implied requirements into expressed
requirements by asking queries or eliciting requirements. One must target
for 100°a conversion of implied requirements into expressed requirements,
though difficult, as developer may refuse to accept the defect belonging to
implied requirements simply because it is not a part of requirement
statement and they may not be aware of such things.

Treating Every Customer with Integrity, Courtesy, and Respect:

Customer and the requirements assessed (both expressed as well as
implied) are very important for a developing organisation as customer will
be paying on the basis of value he finds in the product. Definition of the
requirements is a first step to satisfy the customer through ‘Conformance
to Requirements’. Requirements may be documented by anybody,
generally development team, but customer is the owner of the
requirements. Organisation shall believe and understand that the customer
understands what is required by him. How to achieve these requirements is
a responsibility of a developing organisation. He may be given
suggestions, sharing some past experiences and knowledge gained in
similar projects but manufacturer shall not define requirements or thrust or
push the requirements to customer. It is quite often quoted that the
customer does not know or understand his requirements. This opinion
cannot be bought by anybody.

Customer telephone calls and mails must be answered with courtesy and
in reasonable time. The information provided to the customer must be
accurate and he/she must be able to depend on this information. The
customer is not a hindrance to the project development but he is the
purpose of the business and producer must understand this.

1.6.2 Supplier's View of Quality:

Supplier is a development organisation in the context of software
application development, Supplier has some expectations or needs, which
must be satisfied by producing a product and selling it to customer.
Supplier expectations may range from profitability, name in market, repeat
orders, customer satisfaction, etc. These expectations may be fulfilled in
the following ways,

Doing the Right Things:

Supplier is intended to do right things for the fir time so that there is no
waste, scrap, rework, etc. Wastes like rework, scrap, and repairs are
produced by hidden factory for which there is no customer, Changes in
requirements are considered as problems during product development, if
supplier is expected to absorb the costs associated with it. Changes in
requirement cause rework of design, development, testing etc. This adds to
the cost of development but if the price remains same, it is a loss for
manufacturer. It also adds to fatigue and frustration of the people involved
in development as they find no value in reworking, sorting, scrapping, etc.
Following right processes to get the product required by the customer and
achieving customer satisfaction and profits as well as job satisfaction may

be the expectations of a supplier. Suppliers may require clear and correct
definition of deliverables, time schedules, attributes of product, etc.

Doing It the Right Way:

A producer may have his own methods, standards and processes to
achieve the desired outputs. Sometimes, customer may impose the
processes defined by him for building the product on the producer. Ability
of development process to produce the product as required by the
customer defines the capability of development process. These process
definitions may be an outcome of quality standards or models or business
models adopted by the supplier or customer. As organisation matures, the
processes towards excellence- by refining and redefining processes and
process capability- must improve continually/continuously. As the
processes reach optimisation, they must result into better quality products
and more satisfaction for the customer and also fulfill vendor
requirements.

Doing it Right the First Time:

Doing right things at the first time may avoid frustration, scrap, rework,
etc. and improve profitability, reduce cost and improve customer
satisfaction for the supplier. Doing right things at the first time improves
performance, productivity and efficiency of a manufacturing process. This
directly helps in improving profitability and gives advantage in a
competitive market. Supplier would always like to follow the capable
processes which can get the product right at the first attempt.

Doing It on Time:

All resources for developing a new product are scarce and time factor has
a cost associated with it. The value of money changes as time changes.
Thus, money received late is as good as less money received. If the
customer is expected to pay on each milestone, then the producer has to
deliver milestones on time to realise money on time. Delay in delivery
represents a problem with processes, starting from getting requirements,
estimation of efforts and schedule and goes up to delivery and
development.

Difference between the two views discussed above (Customer's view vs
Supplier's view) creates problem for manufacturer as Well as customer
when it comes to requirement gathering, acceptance testing, etc. It may
result into mismatch of expectation and service level, which would be
responsible for introducing defects in the product in terms of
functionalities, features, cost, delivery schedule, etc. Sometimes these
views are considered as two opposite sides of a coin or two poles of the
Earth which can never match. The difference between two views is treated
as a gap.

In many cases, the customer wants to dictate the terms as he is going to
pay for the product and the processes used for making it, while the
supplier wants customer to accept whatever is produced. Wherever the gap

Introduction to Quality

15

Software Quality
Assurance

16

is less, the ability of a product to satisfy customer needs is considered
better. At the same time, it helps a development organisation as well as a
customer to get their parts of benefits from steady processes. On the
contrary, larger gap causes more problems in development, distorted
relations between two parties and may result into loss for both. Quality
processes must reduce the gap between two views effectively.
Effectiveness of a quality process may be defined as the ability of the
processes and the product to satisfy both or all stakeholders in achieving
their expectations.

Figure 1.1 explains a gap between actual product, requirements for the
product and customer expectations from the product. It gives two types of
gaps, viz. user's gap and producer's gap.

User’s expectations

User’s gap/Requirement gap

w
Requirements specifications

Producer’s gap/Development gap

Product attributes

Fig.2.2 User’s gap and Producer’s gap

1.6.3 User's Gap/Requirement Gap:

User's gap is a gap between requirement specifications for the product and
user expectations from it. This gap focuses on the difference in the final
product attributes as defined by requirement dements with respect to the
intents of the user. Developers must convert user needs into the product
requirement specifications and create the product exactly as per these
specifications. This may need understanding and interpretation of
customer's business flow and requirements, and how the product is
intended to be used by the customer to satisfy his business requirements.

Closing User's Gap:

User's gap represents the failure seen by the customer in terms of
difference between user needs and product specifications. An organisation
must apply some processes and methods so that user's gap can be closed
effectively or reduced to as little as possible, Methods for closing these
gaps may depend on organisation's way of thinking, resource availability,
type of customer, customer's thought process, etc. Some of these methods
are mentioned below.

Customer Survey:

Customer surveys are essential when an organisation is producing a
product for a larger market where a mismatch between the product and

expectation can be a major problem to producer. It may also be essential
for projects undertaken for a single customer such as mission critical
projects where failure of the project has substantial impact on the
customer as well as producer. For a larger market, survey may be
conducted by marketing function or business analyst to understand user
requirements and collate them into specification documents for the
product. Survey teams decide present and future requirements for the
product and the features required by the potential customers.

For a single customer, a survey is conducted by business analyst and
system analyst to analyse the intended use of the product under
development and the possible environment of usage. Domain experts from
the development side may visit the customer organisation to understand
the specific requirements and work flow related to domain to incorporate
it into the product to be developed.

Joint Application Development (JAD):

Applications are developed jointly by customer and manufacturer where
there is close co-ordination between two teams. In joint application
development, users or customers may be overseeing the system
development and closely monitor requirements specifications,
architecture, designs, coding, testing and test results. The applications
produced by this method may follow top-down approach where user
interfaces and framework are developed first and approved by the users
and then logic is built behind it. Some people may call joint application
development as an agile methodology of development where developers
collaborate with customer during development.

User Involvement in Application Development:

This approach works on the similar lines of joint application development
(JAD). User may be involved in approving requirement specifications,
design specification, application user interfaces, etc. He/she may have to
answer the queries asked by developers and provide clarifications, if any.
An organisation may develop a prototype, model, etc, to understand user
requirements and get approval from the user team. If the organisation is
producing products for a larger market, few representative users may be
considered for collecting requirement specifications, test case designing
and acceptance testing of the application under development.

1.6.4 Producer’s Gap/Development Gap:

Producer's gap is a gap between product actually delivered and the
requirement and design specifications developed for the product. The
requirement specifications written by business analyst may not be
understood in the same way by the development team. There are
communication losses at each stage and business analyst and
developers/testers may not be located next to each other to provide
explanation for each and every requirement. More stages of
communication may lead to more gaps and more distortion of

Introduction to Quality

17

Software Quality
Assurance

18

requirements. The product so produced and requirement specifications
used may differ significantly creating producer's gap

Closing Producer's Gap:

Producer's gap represents a failure on part of development team to convert
requirements into product. Producer's gap can be seen as the defects found
in in-house testing. Producer's gap is due to process failure at producer's
place and there must he process improvement plans to close this gap

Process Definition:

Development and testing processes must be sufficiently mature to handle
the transfer of information from one person or one stage to another during
software development life cycle. There must be continuous " Do' and
Check" processes to build better products and get feedback about the
process performance. Such product development has lifecycle testing
activities associated with development.

Work Product Review:

As the stages of software development life cycle progresses, one may have
to keep a close watch on artifacts produced during each stage to find if any
inconsistency has been introduced with respect to earlier phase.
Generation of requirement traceability matrix is an important factor in this
approach.

1.7 FINANCIAL ASPECT OF QUALITY

Earlier, people were of the opinion that more price of a product represents
better quality as it involves more inspection, testing, sorting, etc, and
ensures that only good parts are supplied to the customer, Sales price was
defined as,

Sales price = Cost of manufacturing + Cost of Quality + Profit

If we consider the monopoly way of life, this approach may be considered
good since the price is decided by the manufacturer depending upon three
factors described above. Unfortunately, monopoly does not exist in real
world. If any product enjoys higher profitability, more number of
producers would enter into competition.

Number of sellers may exceed number of buyers. When the products
produced match in all aspects, the cost would decide the quantity of sale.
The competitor who reduces the price, may get more volume of sale if all
other things remain constant. Reducing the sales price reduces percentage
profit. For maintaining profit, the producer may try to reduce cost of
production without compromising on the quality aspect.

Thus, in a competitive environment, the equation changes to

Profit = Sales price - [Cost of manufacturing + Cost of Quality]

1.7.1 Cost of Manufacturing:

Cost of manufacturing is a cost required for developing the right product
by right method at the first time. The money involved in resources like
material, people, licenses, etc. forms a cost of manufacturing. The cost of
manufacturing remains constant over the lime span for the given project
and given technology and it has a direct relationship with the efforts. It can
be reduced through improvements in technology and productivity but it
may need longer time frame. The cost involved in requirement analysis,
designing, development and coding are the casts associated with
manufacturing.

1.7.2 Cost of Quality:

Cost of quality represents the part of cost of production incurred in
improving or maintaining quality of a product. Some people keep cost of
manufacturing and cost of quality as separate while others may include
them under cost of production. Cost of manufacturing may be supported
by cost of quality and there exists anointer relationship between the two
costs.

Cost of quality includes all the efforts and cost incurred in prevention of
defects, appraisal of product to find whether it is suitable to customer or
not and fixing of defects or failures at various levels as and when they are
reported and conducting any retesting, regression testing, etc.

Cost of Prevention:

An organisation may have defined processes, guidelines, standards of
development, testing, etc. It may define a program of imparting training to
all people involved in development and testing. This may represent a cost
of prevention. Creation and use of formats, templates, etc. acquiring
various process models and standards, etc, also represent a cost of
prevention. This is an investment by an organisation and it is supposed to
yield returns. This is also termed as ‘Green money’. Generally, it is
believed that 1 part of cost of prevention can reduce 10 parts of cost of
appraisal and 100parts of cost of failure.

Cost of Appraisal:

An organisation may perform various levels of reviews and testing to
appraise the equality of the product and the process followed for
developing the product. The cost incurred in first time reviews and testing
is called as the cost of appraisal. There is no return on investment but this
helps in identifying the process capabilities and process related problems,
if any. This is termed as ‘Blue money’ as it can be recovered from the
customer. Generally, it is believed that 1 part of cost of appraisal can
reduce 10parts of cost of failure.

Cost of Failure:

Cost of failure starts when there is any defect or violation detected at any
stage of development including post-delivery efforts spent on defect

Introduction to Quality

19

Software Quality
Assurance

20

fixing. Any extent of rework, retesting, sorting, scrapping, regression
testing, late payments, sales under concession, etc. represents cost of
failure. There may be some indirect costs such as loss of goodwill, not
getting customer references, not getting repeat orders, and customer
dissatisfaction associated with the failure to produce the right product. The
cost incurred due to some kind of failure is represented as cost of failure.
This is termed as ‘Red money*. This cost affects the profitability of the
project organisation badly.

On the basis of quality focus, organisations may be placed in 2 categories
viz, organisations which are less quality conscious (termed as ‘q’) and
organisations which are more quality conscious (termed as 'Q’). The
conscious (termed as 'g) and organisations which are more quality
conscious (termed as 'Q"). The distribution of cost of quality for these two
types may be represented as below. Please refer Fig. 1.2

Less quality consciousness (q) More quality consciousness (Q)
Faitureii
Failire.
Apprasal
Appraisal RS P e
. Prevention
Prevention
Fig.1.2 Cost of Quality

The bottommost rectangle represents cost of prevention. As the
organisation's quality consciousness increases, prevention cost increases
substantially due to introduction of various process requirements. The
organization may have defined processes, methods, work instructions,
standards, guidelines, templates, formats etc. Teams are supposed to use
them while building a product or testing it, and conduct audits which need
resources, time and money. Project teams may create project plan, test
plan, assess the risks and issues faced during development, decide on the
actions to reduce their probabilities/impacts, etc. More cost of prevention
may be justifiable for a project/product only if it reduces the cost of
failure.

Middle rectangle represents cost of appraisal. As quality consciousness
increases, cost of appraisal also increases. An organisation may prepare
various plans (such as quality plan and test plan) and then review these
plans, write the test cases, define test data, execute test cases, analyse
defects and initiate actions to prevent defect recurrence. There may be
checklists, guidelines, etc. used for verification and validation activities.
The cost incurred in appraisal must be justifiable and must reduce cost of
failure.

The topmost rectangle represents cost of failure, Cost of failure includes
the cost associated with any failure which may range from rework,
retesting, etc. including customer dissatisfaction or loss of revenue, etc.

As quality consciousness improves, failure cost must reduce representing
better quality of products offered and higher customer satisfaction. Thus,
the overall cost of quality must reduce as quality consciousness of the
organisation increases.

1.8 DEFINITION OF QUALITY

Let us try to redefine and understand the meaning of the term ‘Quality’
with a new perspective. Many definitions of the word ‘Quality’ are
available and are used at different forums by different people. Most of
these definitions show some aspect of quality. While no definition is
completely wrong, no definition is completely right also. Few of the
definitions prescribed for quality are,

Predictable Degree of Uniformity, Dependability at Low Cost and
Suited to Market:

This definition stresses on quality as an attribute of product which is
predictable and uniform in behaviour throughout product usage and
stresses on the ability of a product to give consistent results again and
again. One must be able to predict the product behaviour beforehand. It
talks about reduction in variability of a product in terms of features,
performance, etc. It also defines the dependability aspect of quality
product. One must expect reliable results from quality products every time
they are used. Quality product must be the cheapest one as it talks about
reducing failure cost of quality hike rework, scrap, sorting, etc. The most
important thing about product quality is that it must help the product to
suite the market needs or expectations. This necessitates that the
manufacturer should produce those products which can be sold in the
market.

Degree to Which a Set of Inherent Characteristics of the Product /
Service Fulfils the Requirements:

This definition of quality stresses the need that the product must conform
to defined and documented requirement statement as well as expectations
of users, Higher degree of fulfilments of these requirements makes a
product better in terms of quality. There must be something in the product,
defined as attributes of product’, which ensures customer satisfaction. The
attributes must be inborn in the product, indicating capable processes used
for developing such a product.

Ability of a Product or Service That Bears Upon Its Ability to Satisfy
Implied or Expressed Need:

This definition of quality of product is derived from the approach of
‘Fitness for use’, It talks about a product achieving defined requirements
as well as implied requirements, satisfying needs of customer for which it

Introduction to Quality

21

Software Quality
Assurance

22

is being used. Better ability of a product to fulfill requirements makes a
product better, from quality perspective.

1.9 CUSTOMERS, SUPPLIERS AND PROCESSES

For any organisation, there are some suppliers supplying the inputs
required and some customers who will be buying the outputs produced.
Suppliers and customers may be internal or external to the organisation. In
the larger canvas, an entire organisation can be viewed as the component
in a huge supply chain of the world where products are made by
converting some inputs which may act as inputs to the next stage. External
suppliers provide input to the organisation and external customer receive
the output of the organisation. In turn, suppliers may be customers for
some other organisations and customer may be acting as suppliers for
somebody else down the line.

Internal Customer:

Internal customers are the functions and projects serviced and supported
by some other functions projects. System administration may have
projects as their customer while purchasing may have system
administration as their customer. During value chain, each function must
understand its customers and suppliers. Each function must try to fulfill its
customer requirements. This is one of the important considerations behind
‘Total Quality Management’ where each and every individual in
supplychain must identify and support hi customer, If internal customers
are satisfied, this will automatically satisfy external customer as it sets the
tone and perspective for everybody.

External Customer:

External customers are the external people to the organisation who will be
paying for the services offered by the organisation. These are the people
who will be actually buying products from the organisation. As the
organisation concentrates on external customer for their satisfaction, it
must improve equality of its output.

1.10 TOTAL QUALITY MANAGEMENT (TQM)

‘Total quality management’ principle intends to view internal and
external customers as well as internal and external suppliers for each
process, project and for entire organisation as a whole. The process and
factions of an organisation can be broken down into component elements,
which act as suppliers/customers to each other during the work flow. Each
supplier eventually also becomes a customer at some other moment and
vice-versa. If one can take care of his/her customer (whether internal or
external) with an intention to satisfy him, it may result into customer
satisfaction and continual improvement for the organisation.

Supply chain relationship may be defined graphically as, shown in Fig. 1.3

Internal suppliers

L J

L — e

Organisational
processes

External suppliers External customers

L
Internal customers

Fig, 13 Supply chain relationship between suppliers and customers

‘Total quality management’ (TQM) is the application of quality principles
to all facets and business processes of an organisation. It talks about
applying quality methods to the entire organisation whether a given
function or part of the organisation faces external customer(s) or not. One
clear definition of quality involves satisfying one's customer irrespective
of whether he/she is outside or inside the organisation. This
implementation of customer satisfaction has different meanings for
different parts of an organisation.

Quality Management Approach:

Dr Edward Deming implemented quality management system driven by
‘Total Quality Management’ and ‘Continual Improvement’ in
Japanese environment. It resulted into repetitive, cost-effective processes
with an intention to satisfy customer requirements and achieve customer
satisfaction. Implementation was inclined toward assessment of quality
management system which was adoptive to the utility of tools for
understanding data produced by the process measurements, Dr Deming
proposed principles for quality management that are widely used by the
quality practitioners.

1.11 QUALITY PRINCIPLES OF 'TOTAL QUALITY
MANAGEMENT

‘Total quality management’ works on some basic principles of quality
management definition and implementation. These have evolved over a
span of experimentation and deployment of quality -culture in
organisations.

1.11.1 Develop Constancy of Purpose of Definition and Deployment of
Various Initiatives:

Management must create constancy of purpose for products and processes,
allocating resources adequately to provide for long term as well as short
term needs rather than concentrating on short term profitability: suppliers
and organisation must have an intent to become competitive in the world,
to stay in business and to provide jobs to people and welfare of the
society. The processes followed during entire lifecycle at product
development from requirement capturing till final delivery must be
consistent with each other and must be followed over a larger horizon,
Decisions taken by management at different instances must be consistent
and based upon same standards, rules and regulations. Different initiatives

Introduction to Quality

23

Software Quality
Assurance

24

by management must have relationships with each other and must be able
to satisfy the vision of the organisation.

1.11.2 Adapting to New Philosophy of Managing People/Stakeholders
by Building Confidence and Relationships:

Management must adapt to the new philosophies of doing work and
getting the work done from its people and suppliers. We are in a new
economic era where skills make an individual indispensable. The process
started in Japan and is perceived as a model throughout the world for
improving quality of working as well as products.

We can no longer live with commonly accepted levels of delays, mistakes,
defective materials, rejections and poor workmanship. Transformation of
management style to total quality management is necessary to take the
business and industry on the path of continued improvements.

1.11.3 Declare Freedom from Mass Inspection of Incoming/Produced
Output:

It was a common belief earlier that for improving quality of a product, one
needs to have rigorous inspection program followed by huge rework,
sorting, scrapping, etc. It was believed that one must check everything to
ensure that no defect goes to customer. But there is a need for change in
thinking of management and people as mass inspection results into huge
cost overrun and product produced is of inferior quality. There must be an
approach for elimination of mass inspection followed by cost of failure as
the way to achieve quality of products. Improving quality of products
requires setting up the right processes of development and measurement of
process capabilities and statistical evidence of built-in quality in all
departments and functions.

1.11.4 Stop Awarding of Lowest Price Tag Contracts to Suppliers:

Organisations must end the practice of comparing unit purchase price as a
criterion of awarding contracts. Vendor selection must be done on the
basis of total cost including price, rejections, etc. Organisations must
perform measurements of quality of supply along with price and do the
source selection on the basis of final cost paid by it in terms of
procurement, rework, maintenance, operations, etc. It must reduce the
number of suppliers by eliminating those suppliers that do not qualify with
statistical evidences of quality of their supply. This will automatically
reduce variation and improve consistency. Aim of vendor selection is to
minimise total cost, not merely initial cost of purchasing, by minimising
variations in the vendor supplied product. This may be achieved by
moving towards lesser/single supplier, on a long-term relationship of
loyalty and trust. Organisations must install statistical process control in
development even at vendor site and reduce the variation in place of
inspecting each and every piece.

1.11.5 Improve Every Process Used for Development and Testing of
Product:

Improve every process of planning, production and service to the customer
and other support processes constantly. Processes have interrelationships
with each other and one process improvement affects other processes
positively. Search continually for problems in these processes in terms of
variations in order to improve every activity in the organisation- to
improve quality and productivity and decrease the cost of production as
well as cost of quality continuously. Institutionalise innovations and
improvements of products and processes used to make them. It is
management’s job to work continually for optimising processes.

1.11.6 Institutionalise Training Across the Organisation for all People:

An organisation must institute modem methods of training which may
include on-the-job training, classroom training, self-study, etc. for all
people, including management, to make better use of their abilities. New
skills are required to keep up with the changes in materials, methods,
product and service design, infrastructure,

techniques and service Skill levels of people can be enhanced to make
them suitable for better performance by planning different training
programs, Training technical as well as nontechnical should focus on
improving present skills and acquiring new skills Customer requirements
may also change and people may need training to understand changes in
customer expectations, Suppliers may he included in training programs to
derive better output from them.

1.11.7 Institutionalise Leadership Throughout Organisationat Each
Level:

An organisation must adopt and institute leadership at all levels with the
aim of helping people to do their jobs in a better way. Responsibility of
managers and supervisors must be changed from controlling people to
mentoring, guiding, and supporting them. Also, their focus should shift
from number of work items to be produced to quality of output.
Improvement in quality will automatically improve productivity by
reducing " scrap, inspection, rework, etc. Management must ensure that
immediate actions are taken on reports of inherited defects, maintenance
requirements, poor tools, fuzzy operational definitions and all conditions
detrimental to quality of products and services offered to final users,

1.11.8 Drive Out Fear of Failure from Employees:

An organisation must encourage elective two-way communication and
other means to drive out fear of failure from the minds of all employees.
Employees can work effectively and more productively to achieve better
quality output when there is no fear of failure, People may not try new
things if they are punished for failure.

Introduction to Quality

25

Software Quality
Assurance

26

Management should not stop or discount feedback coming to them even if
it is negative. Giving positive as well as negative feedback should be
encouraged, and it must be used to perform SWOT analysis followed by
actions. Fear is something which creates stress in minds of people,
prohibiting them from working on new ways of doing Things, Fear can
cause disruption in decision-taking process which may result into
excessive defense and also, major defects in the product. People may not
be able to perform under stress.

1.11.9 Break Down Barriers Between Functions/Departments:

Physical as well as psychological breaking down of barriers between
departments and staff areas may create a force of cohesion, People start
performing as a lam and there is synergy of group activities. People in
different areas must work as a team to tackle problems that may be
encountered with products and customer satisfaction, Ultimate aim of the
organisation must be to satisfy customers. All people working together
and helping each other to solve the problems faced by customers can help
in achieving this ultimate aim.

1.11.10 Eliminate Exhortations By Numbers, Goals, Targets:

Eliminate use of slogans, posters and exhortations of the work force,
demanding ‘Zero Defects’ and new levels of productivity, without
providing methods and guidance about how to achieve it. Such
exhortations create adverse relationships between supervisors and
workers. Main cause of low quality and productivity is in the processes
used for production as the numbers to be achieved may be beyond the
capability of the processes followed by the workers. This may induce
undue frustration and stress and may lead to failures. The Organisation
shall have methods to demonstrate that the targets can be achieved with
smart work.

1.11.11 Eliminate Arbitrary Numerical Targets Which Are Not
supported By Processes:

Eliminate work standards that prescribe quotas for the work force and
numerical goals for managers to be achieved. Substitute the quotas with
mentoring and support to people, and helpful leadership in order to
achieve continual improvement in quality and productivity of the
processes, Numerical goals should not become the definition of
achievement/targets. There must be a methodology to define what
achievement is and what must be considered as a stretched target.

1.11.12 Permit Pride of Workmanship for Employees:

Remove the barriers that take away the pride of workmanship for workers
and management. People must feel proud of the work they are doing, and
know how they are contributing to organisational vision. This implies
complete abolition of the annual appraisal of performance and of
‘management by objective’. Responsibility of managers and supervisors

must be changed from sheer numbers to quality of output. Management
must understand managing by facts.

1.11.13 Encourage Education of New Skills and Techniques:

Institute a rigorous program of education and training for people working
in different areas and encourages If-improvement programs for everyone.
What an organisation needs is not just good people; it needs people who
can improve themselves with education to accept new challenges.
Advances in competitive position will have their roots in knowledge
gained by people during such trainings.

1.11.14 Top Management Commitment and Action to Improve
Continually:

Clearly define top management's, commitment to ever-improving quality
and productivity and their obligation to implement quality principles
throughout the organisation. It is not sufficient that the top management
commits for quality and productivity but employees must also see and
perceive their commitment. They must know what it is that they are
committed to i.e., what they must do in order to show their commitment.

1.12 QUALITY MANAGEMENT THROUGH
STATISTICAL PROCESS CONTROL

Dr Joseph Juran is a pioneer of statistical quality control with a definition
of improvement cycle through Define, Measure, Monitor, Control and
Improve (DMMCI). One must understand the interrelationships among
customers, suppliers and processes used in development, testing, etc, and
establish quality management based on metrics program. There are three
parts of the approach, namely,

1.12.1 Quality Planning At All Levels:

Quality is not an accident but is a result of deliberate effort to achieve
something which is defined in advance. An organisation must have a
definition of what they wish to achieve Quality improvement must be
planned at all levels of organisation and then only it can be achieved.
Quality planning happens at two levels viz.organisation level and
individual department function project level.

Quality Planning at Organisation Level:

Quality must he planned at organisation level first. It must be in the form
of policy definition and strategic quality plans on the basis of vision,
missions) and policies set by senior management. Planning process must
attempt to discover who the customers are at present and who will be the
customers in future, and what are and will be their needs and expectations
from the organisation. The needs of the present or future customers must
be expressed in numeric term so that the actions can be planned and
progress can be measured. The presence or absence of different attributes

Introduction to Quality

27

Software Quality
Assurance

28

to the extent required shall define the quality level of the product or
services.

Quiality Planning at Unit Level:

Quality planning at unit level must be done by the people responsible for
managing the unit. Operational quality plans must be in sync with
organisational policies and strategies. Project plan and quality plan at unit
level must be consistent with the strategic quality plans at organisation
level and must be derived from the organisation’s vision and mission(s).

1.12.2 Quality Control:

Quality control process attempts to examine the present product at various
levels with the defined standards so that an organisation may appraise the
outcome of the processes. Removing defects in the processes to improve
their capability can help to reach new levels of improved quality. (e.g.,
process improvement must be targeted towards lowering defects, reducing
cost, and improving customer satisfaction.) It must measure the deviations
with respect to the number of achievements planned in quality planning so
that the organization can initiate the actions to reduce the deviations to
minimum level.

1.12.3 Quality Improvement:

Improvement process attempts to continuously improve the quality of the
process used for producing products. Quality of the process is measured
on the basis of the attributes of the products produced. There isno end to
quality improvements and it needs to take newer challenges again and
again. Finding deviations in the attributes of products and processes with
respect to planned levels and permissible tolerances available shall guide
the organisation to find the weak areas where actions may be prioritised.

1.13 QUALITY MANAGEMENT THROUGH
CULTURAL CHANGES

Philip Crosby's approach to quality improvement is based on cultural
change in an organisation towards total quality management. Quality
management through cultural change defines quality improvements as a
cultural change driven by management. It involves,

e Identifying areas in which quality can be improved depending upon
process capability measurements and organisational priorities. An
organisation must setup cross functional working groups (quality
circles or quality improvement teams) and try to improve awareness
about the customer needs, quality and process measurements. The
organisation may not be able to improve in all areas at a time and
prioritisation maybe essential depending upon some techniques such
as Pareto analysis, Cost benefit analysis, etc. It must prioritise the
improvements depending upon the resources available and
efforts/investments required and the benefits derived from such
improvements.

e Instituting teams representing different functions and areas for quality
improvement can help in setting the change of culture. Improving
quality of the processes of development, testing, managing, etc, is a
team work led by management directives. A single person may not be
able to institutionalise improvements across the Organisation,
Improvements in processes automatically improve the product and
customer satisfaction.

e Setting measurable goals in each area of an organisation can help in
improving processes at all levels. Goals may at as stretched targets
with respect to what is currently achieved by the organisation. Goals
may be set with reference to customer expectations or something
which may give competitive advantage to the organisation in the
market.

e Giving recognition to achievers of quality goals will boost their
morale and set a positive competition among the teams leading to
organisational improvements. This can lead to dramatic improvements
in all areas. Management must demonstrate commitment to quality
improvement, and recognition of achievements is a step in this
direction.

e Repeating quality improvement cycle continuously by stretching
goals further for next phase of improvements is required to maintain
and improve the status further. The organisation must evaluate the
goals to be achieved in short term, long term, and the combination of
both to realise organisational vision.

1.14 CONTINUAL (CONTINUOUS) IMPROVEMENT
CYCLE

Plan, Do, Check, and Act (PDCA) Cycle:

Continual (Continuous) improvement cycle is based on systematic
sequence of Plan Do-Check-Act activities representing a never-ending
cycle of improvements. PDCA cycle was initially implemented in
agriculture. It was implemented later in the electronic industry. TQM has
made the PDCA cycle famous in all industries. PDCA improvement cycle
can be thought of as a wheel of improvement continually (continuously)
rolling up the problem-solving hill and achieving better and better results
for the organisation in each iteration. Stages of continual (Continuous)
improvement through PDCA cycle are,

Plan:

An organisation must plan for improvements on the basis of its vision and
mission definition. Planning includes answering all questions like who,
when, where, why, what, how, etc, about various activities and selling
expectations. Expected results must be defined in quantitative terms and
actions must be planned to achieve answers to these questions, Quality
planning at unit level must be in sync with quality planning at organisation

Introduction to Quality

29

Software Quality
Assurance

30

level. Baseline studies are important for planning. Baseline studies define
where one is standing and vision defines where one wishes to reach.

Do:

An organisation must work in the direction set by the plan devised in
earlier phase for improvements. Plan is not everything but a roadmap. It
sets the direction but execution is also important, Actual execution of a
plan can determine whether the results as expected are achieved or not.
Plan sets the tone while execution makes the plan work. 'Do" process need
inputs like resources, hardware, software, training, etc. for execution of a
plan.

Check:

An organisation must compare actual outcome of ‘Do’ stage with reference
or expected results which are planned outcomes. It must be done
periodically to assess whether the progress is in proper direction or not,
und whether the plan is right or not, Expected and actual results must be in
numerical terms, and compared at some periodicity as defined in the plan.

Act:

If any deviations (positive or negative) are observed in actual outcome
with respect to planned results, the organisation may need to decide
actions to correct the situation. The actions my include changing the plan,
approach or expected outcome as the case may be. One may have to
initiate corrective and or preventive actions as per the outcome of ‘Check’.
When expected results and actuals match with given degree of variation,
one may understand that the plan is going in the right direction. Running
faster or slower than the plan will need action. Figure 1.4 shows
diagrammatically PDCA cycle of continual improvement.

Sl B
/ Plan] Do\l
/ |

|
k_ _—

Act Check

Fi Continval improvement
'9:2-4 cycle (PDCA cycle)

4-

S

1.15 QUALITY IN DIFFERENT AREAS

Let us try to understand quality attributes of various products in different
areas. Different domains need different quality factors. They may be
derived from the customers/users of the domains. Here are few examples
of some domains showing customer expectations in terms of quality for
various products. These are generic expectations of customers in certain
areas and may differ for some individual examples depending upon
specific requirements. Definition of quality expectations will vary from
instance to instance depending on the domain under consideration, type of
product, type of customer, other competitive products, and their features.
The table below lists different areas representing different domains and
indicates some factors that might be considered related to quality in these
areas. Below table shows some common expectations from customers.

Table1.2 Products and expected attributes

Product/Service

category Expected attributes

Airlines On time arrival and departure, comfortable journey, low cost
Industry service, reliability and safety.
Health Care Correct diagnosis and treatment, minimum wait time, lower
Industry cost, safety and security.
Food Service Good product, good taste, fast delivery, good ambience, clean environment
Industry
Consumer Products Properly made to suite individuals, defect free products,
Industry cost effective.
Military Services Rapid deployment, decreased wages and cost, security.
Automotive Defect free product, less fuel consumption, more power,
Industry safe journey.
Communications Clear communications, faster access, cheaper service.
Industry

There are some common denominators in all these examples which may
be considered as the quality factors. Although the terms used to explain
each product in different domain areas vary to some extent, almost all
areas can be explained in terms of few basic quality parameters. These are
defined as the basic quality parameters by stalwarts of quality
management.

e Cost of the product and value which the customer finds in it

e Service offered to the customers, in terms of support by the
manufacturer

e Time required for the delivery of product

e Customer satisfaction derived from the attributes and functionalities
of a product

e Number of defects in the product or frequency of failures faced by
users

Introduction to Quality

31

Software Quality
Assurance

32

1.16 BENCHMARKING AND METRICS

Benchmarking is an important concept used in Quality Function
Deployment (QFD). It is the concept of creating qualitative quantitative
metrics or measurable variables, which can he used to assess product
quality on several scales against a benchmark. Typical variables of
benchmarking may include price of a product paid by customer, time
required to acquire it, customer satisfaction, defects or failures, attributes
and features of product, etc. Metrics are defined for collecting information
about the product capabilities, process variability and outcome of the
process in terms of attributes of products. Metric is a relative measurement
of some parameters of a product which are related to the product and
processes lived to make it. An organisation must develop consistent set of
metrics derived from its strategic business plan and performance of
benchmark partner.

1.17 PROBLEM SOLVING TECHNIQUES

Improving quality of products and services offered to customers requires
methods and techniques of solving problems associated with development
and processes used during their lifecycle. An organisation must use
metrics approach of process improvement because it needs to make
quantitative measurements. These measurements can be used for problem
solving using quantitative techniques.

Problem solving can be accomplished by both qualitative and quantitative
methods but problem definition becomes easier when we put them against
some measures or comparators.

e Qualitative problem solving refers to understanding a problem
solution using only qualitative indexes such as high, medium, low,
etc. depending on whether something is improving or deteriorating
from the present status and so forth. This is a typical scenario for low
maturity organisations where the problems are much broader and can
be classified in different bands very easily. For initial stages of
improvement, qualitative problem solving is sufficient to get faster
results. It saves time in defining and measuring data accurately and
basic maturity can be achieved.

e Quantitative problem solving requires specification of exact measures
in numerical terms such as the cost has increased 32.5% during the
last quarter or the time required to produce one product unit is
reduced by32 minutes. For highly matured organisations, quantitative
analysis is required for further improvements as basic improvements
are already done. It must follow the cycle of Define, Measure,
Monitor, Control and Improve. Measurement of processes and
products may need good measuring instruments with high level of
accuracy and repeatability.

Given quantitative data, one can use statistical techniques to characterise a
process. Quantitative methodologies make it possible to analyse and

visualise what is actually happening in a process. Process variations can be
understood in a better way and actions can be initiated to reduce the
variability.

1.18 PROBLEM SOLVING SOFTWARE TOOLS

While buying software for data management and statistical analysis, many
organisations find it to be a big Investment in terms of money, resources,
etc. One must answer the question ‘Why should one use software tools to
solve problems about quality?” There are some advantages and
disadvantages associated with usage of such tools for problem solving,

Advantages of Using Software Tools for Analysis and Decision
Making:

e Accuracy and speed of the tools is much higher compared to
performing all transactions and calculations manually. Calculations
can form the basis for miking decision, and hence should be as
accurate as possible.

e Decision support offered by the tool is independent of personal skills
and there is least variation from instance to instance. Tools can
support in some fixed range depending upon its logic. Some tools can
learn things and use them as required.

e Tools can implement theoretical means of assessing metrics about
quality as defined by business law. There is no manual variation.

e Tools alleviate the hard work required to perform hand or calculator
driven computations and give more accurate and faster results.

e Tools can be integrated with other systems to provide a systematic
and highly integrated means of solving problems

Disadvantages of Using Computer Tools for Analysis and Decision
Making:

e These programs and tools need training before they can be used.
Training incurs cost as well as time. Some tools need specific
trainings to understand them and use them.

e All softwares / hardwares are prone for defects and these tools are not
exceptions to it. There can be some mistakes while building/using
them. Sometimes these mistakes can affect the decisions drastically.

e Decision has to be taken by human being and not by the tool. Tools
may define some options which may be used as guide. Some tools can
take decision in the limited range.

e Tools may mean more cost and time to learn and implement. Every
tool has a learning curve.

Introduction to Quality

33

Software Quality
Assurance

34

1.18.1 Tools:

Tools are an organisations analytical asset that assist in understanding a
problem through data and try to indicate possible solutions. Quality tops
are more specie tools which can be applied to solving problems faced by
projects and functional teams while improving quality in organisations.
Tools may be hardware/software and physical logical tools. We will learn
more about quality tools in Chapter 16 on ‘Qualitative and Quantitative
Analysis’.

1.18.2 Techniques:

Techniques indicate more about a process used in measurement, analysis
and decision-making during problem solving. Techniques are independent
of tools but they drive tool usage. Techniques do not need tools for
application while tools need techniques for then use. Same tool can be
used for different purposes, if the need tools for application while tools
need techniques for their use. Same tool can be used for different
purposes, if the techniques are differed. Table 1.3 gives a difference
between tools & techniques.

Tablea.3 Difference between tools and techniques

Tools Techniques

Usage of tool is quided by the technique. Tool isof no Technique is independent of any tool.
use unless technigue (to use it) is available,

Different techniques may use the same tool to Same technique may use different tools to achieve the
achieve different results same result.
Tool improvement needs technological change. Technique change can be effected through

procedural change.

| Contribution of tools in improvement is limited. Contribution of techniques in improvement is important.

1.19 QUALITY TIPS

Try to define quality perspective for the organisation and set of products
and projects executed by it.

e Define customer expectations rather than going for system
requirement specifications.

e Assess the cost spent by an organisation under various heads of
quality, Testers have to play a significant role in reducing cost of
quality and improving profitability of the organisation.

e Understand and improve every aspect of an organisation through
approaches, techniques and tools to enhance customer satisfaction and
goodwill for the organisation. This can help the organisation to
prosper in the long term.

1.20 SUMMARY

In this chapter, we have seen various definitions of quality as understood
by different people and different stakeholders. It also covered the
definitions by quality stalwarts and different international standards. Then,

we studied the basic components to produce quality, and the views of
customers and producer on quality. As a tester, one must understand
different gaps like user gap, and producer gap, and how to close them to
achieve customer satisfaction.

We have described various cost components like manufacturing cost and
cost of quality. Cost of quality concepts with its three components viz.
preventive cost of quality, appraisal cost of quality and failure cost of
quality are described along with the importance of cost of prevention, and
how it affects cost of quality and improves profitability.

We have seen different approaches to continually (continuously)
improving quality. We have covered ‘TQM principles of quality
management’, and ‘DMMCI principles of continual improvement’ through
quality planning, quality control and quality improvement. We have also
discussed a theory of ‘Cultural change principles of quality management’.

Finally, we have introduced the concept of problem solving through usage
of tools and techniques. We have also briefly elucidated the concept of
benchmarking.

1.21 EXERCISES

1) Explain ‘quality’ in terms of the generic expectations from any
product.

2) Differentiate between continuous improvement and continual
improvement.

3) Define the stakeholders for successful projects at micro level and for
successful organisations at macro level.

4) Define ‘quality’ as viewed by different stakeholders of software
development and usage.

5) Explain customer’s view of quality.
6) Explain supplier’s view of quality.

7) Define "User's gap' and 'Producer's gap' and explain how these gaps
can be closed effectively.

8) Describe various definitions of quality as per international standards.

9) Describe definition of quality as per Dr Deming, Dr Juran and Philip
Crosby.

10) Describe ‘Total Quality Management’ principles of continual
improvement.

11) Describe cultural change requirement for quality improvement.

12) Differentiate between tools and techniques.

Introduction to Quality

35

Software Quality
Assurance

36

1.22 REFERENCES

Software Testing andContinuous Qualitylmprovement by William E.
Lewis, CRC Press, 3"Edition, 2016.

Software Testing:Principles, Techniquesand Tools by M. G. Limaye,
Tata McGraw Hill, 2017.

Foundations of SoftwareTesting by Dorothy Graham, Erikvan
Veenendaal,Isabel Evans, RexBlack, Cengagelearning, 3rd Edition.

Software Testing: ACraftsman®s Approach, Paul C. Jorgenson, CRC
Press, 4™ Edition, 2017,

https://www.altexsoft.com/whitepapers/quality-assurance-quality-
control-and-testing-the-basics-of-software-quality-management/

https://www.softwaretestinghelp.com/software-quality-assurance

%k % ok %k %k

SOFTWARE QUALITY

Unit Structure

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
211
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20

Objectives

Introduction

Constraints of Software Product Quality Assessment
Customer is a King

Quality and Productivity Relationship
Requirements of a Product

Organization Culture

Characteristics of Software

Software Development Process

Types of Products

Schemes of Criticality Definitions
Problematic Areas of Software Development Life Cycle
Software Quality Management

Why Software Has Defects?

Processes Related to Software Quality
Quality Management System Structure
Pillars of Quality Management System
Important Aspects of Quality Management
Summary

Exercise

References

2.0

OBJECTIVES

This chapter focuses on software quality parameters.

It provides a basic understanding that quality expectation for different
products is different products is different and lays a foundation of
quality management approach.

2.1

INTRODUCTION

In the previous chapter, we have discussed various definitions of quality

and

how they fit the perspective of different stakeholders. One of the

definitions i.e.,

‘Conformance to explicitly stated and agreed functional and non-
functional requirements’, may be termed as ‘quality’ for the software

prod
may

uct offered to customers/final users from their perspective. Customers
or may not be the Final user’s and sometimes, developers have to

37

Software Quality
Assurance

38

understand requirements of final users in addition to the customer. If the
customer is a distributor or retailer or facilitator who is paying for the
product directly, then the final user’s requirements may be interpreted by
the customer to make a right product.

It is not feasible to put all requirements in requirement specifications. A
large number of requirements remain undefined or implied as they may be
basic requirements for the domain and the customer perceives them as
basic things one must know. It gives importance to the documented and
approved software and system requirement specifications on which quality
of final deliverables can be decided. It shifts the responsibility of making a
software specification document and getting it approved from customer to
producer of a product. There are many constraints for achieving quality for
software application being developed using such software requirement
specifications.

2.2 CONSTRAINTS OF SOFTWARE PRODUCT
QUALITY ASSESSMENT

Generally, requirement specifications are made by business analysts and
system analysts. Testers may or may not have direct access to the
customer and may get information through requirement statements,
queries answered, etc. either from the customer or business
system/analyst, etc. There are few limitations of product quality
assessment in this scenario.

e Software is virtual in nature. Software products cannot be seen,
touched or heard. Our normal senses and measuring instruments are
not capable of measuring quality of software, which is possible in
most of the other engineering products.

e There is a huge communication gap between users of software and
developers/testers of the product. Generally, 5-8 agencies are involved
between the users and developers/testers. If an average
communication loss of 10% at each stage is considered, then huge
distortion is expected from user’s perspective of requirements and
actual product.

e Software is a product which is unique in nature. Similarities between
any two products are superficial ones. The finer requirements, designs
foundation, architecture, actual code, etc. may be completely different
for different products. Way of software design, coding, and reusability
may differ significantly from product to product though requirements
may look similar at a global level.

e All aspects of software cannot be tested fully as number of
permutations and combinations for testing all possibilities tend to
infinity. There are numerous possibilities and all of them may not be
tried in the entire life cycle of a software product in testing or even in
usage. Exhaustive testing is neither feasible nor justifiable with
respect to cost.

e A software program executes in the same way every time when it is
executing some instruction. An application with a problematic code
executes wrongly every time it is executed. It makes a very small
defect turn into a major one as the probability of defect occurrence is
100% when that part is executed.

Business analysts and system analysts must consider the following while
capturing the requirements of a customer.

2.3 CUSTOMER IS A KING

The customer is the most important person in any process of developing a
product and using it-software development is not an exception. All
software life cycle processes such as development, testing, maintenance,
etc. are governed by customer requirements, whether implied or
expressed.

An organization must be dedicated to exceed customer satisfaction with
the latter’s consent. Exceeding customer satisfaction must not be received
with surprise by the customer. He must be informed about anything that
has been provided extra and must be in a position to accept it or reject it.
Any surprise may be considered as defect.

A satisfied customer is an important achievement for an organization and
is considered as an investment which may pay back in short as well as
long term (in terms of references, goodwill, repeat order, etc.). Satisfied
customers may give references to others and come back with repeat
orders. Customer references are very important for developing new
accounts. Organizations should try to implement some of the following
measures to achieve customer satisfaction.

2.3.1 Factors Determining Success:

To be a successful organization, one must consider the following factors,
entities, and their interactions with each other.

Internal Customer and Internal Supplier:

‘Internal customer satisfaction’ philosophy is guided by the principles of
‘Total Quality Management’. When an organization is grouped into
various functions/departments, then one function/department acts as a
supplier or a customer of another function/department. If every function /
department identifies its customers and suppliers and tries to fulfill their
requirements, in turn, external requirements get satisfied.

External Customer and External Supplier:

External customers may be the final users, purchasers of software, etc.
Software requirement specifications are prepared and documented by
developing organizations to understand what customer/final user is
looking for when he wishes to acquire a particular product. Customers are
actually paying for getting their needs served and not for the
implementation of the requirements as defined in the specifications

Software Quality

39

Software Quality
Assurance

40

document. External suppliers are the entities who are external to the
organization and who are supplying to the organization.

2.4 QUALITY AND PRODUCTIVITY RELATIONSHIP

Many people feel that better quality of a product can be achieved by more
inspection or testing, reworking, scrapping, sorting, etc. More Inspection
cycles mean finding more defects, fixing defects mean better quality (as it
will expose maximum possible defects to be fixed by developers), and
ultimately, the customer may get a better product. This directly means that
there would be more rework/scrap and it will lead to more cost/price or
less profit for such products as more effort and money is spend in
improving quality. In such cases, time and effort required would be much
higher.

In reality, quality improvements does not talk about product quality only
but a process quality used for making such a product. If the processes of
development and testing are good, a bad product will not be manufactured
in the first place. It will reduce inspection, testing, rework, and cost/price.
Thus quality must improve productivity by reducing wastage. It must
target for doing ‘first-time right’.

Improvement in Quality Directly Leads to Improved Productivity:

Improved quality does not mean more inspection, testing, sorting and
rejection but improving the processes related to product development. All
products are the outcome of processes, and good processes must be
capable of producing good product at the first instance. This approach
reduces frustration, rejection, rework, inspection, and improves quality
and customer satisfaction. As this hidden factory producing scrap and
wastage stops working, productivity and efficiency improves. Thus,
quality products must give more profitability to the supplier and is a
cheaper option for the customer.

The Hidden Factory Producing Scrap, Rework, Sorting, Repair, and
customer Complaint is Closed:

Customer does not intend to pay for scrap, rework, sorting, etc. to get a
good product. Engineering industry has faced this problem of
unwillingness of customer pay even for first-time inspection/testing as
they represent deficiencies in manufacturing processes. Problems in
products can be linked to faulty development processes. Either the defects
are not found in the product during process of development or testing, or
fixing of the defects found in these processes introduces some more
defects in the product offered.

Effective Way to improve Productivity is to Reduce Scrap and
Rework by Improving Processes:

Productivity improvement means improving number of good parts
produced per unit time and not the parts produced per unit time. It is not
hard work but smart and intelligent work which can help an organization

in improving product quality, productivity and customer satisfaction by
reducing rework, scrap, etc. It necessitates that an organization must
incorporate and improve quality in the processes which lead to better
product quality. As wastage reduce with improvements in quality in the
processes which lead to better product quality. As wastage of resources
reduce with improvement in quality, productivity and efficiency improves
as a direct result by improvements in processes.

Quality Improvements Lead to Cost Reduction:

Quality improves productivity, efficiency and reduces scrap, rework, etc.
Improvement in quality increases profit margins for producer by reducing
cost of development, cost of quality and reduces sales price for customer.
Thus quality implementation must reduce the cost and price without
sacrificing profitability.

Employee Involvement in Quality Improvement:

Employee is the most important part of quality improvement program and
crucial element for organizational performance improvement.
Management leadership and employee contribution can make an
organization quality conscious while lack of either of the two can create
major problems in terms of customer dissatisfaction, loss of profitability,
loss of goodwill, etc. Employee involvement in quality implementation is
essential as the employee’s facing problems in their work indicate the
process problems. Management must include employees in quality
improvement programs at all stages.

Proper Communication Between Management and Employee is
Essential:

Communication is a major problem in today’s environment. One of the
communication hurdles is that the chances of face-to-face communication
is by virtual appliances like emails, video conferencing, etc. Where it is
difficult to judge the person through body language. Either there is no
communication or there is excessive communication leading to a
problematic situation. There are huge losses in communication and
distortions leading to miscommunication and wrong interpretation. The
reasons for ‘producer’s gap’ and ‘user’s gap’ are mainly attributed to
communication problems. Different words and terms used during the
message, tone, type of message, speaking skills, listening skills, etc.
contribute to quality of communication.

Employees Participate and Contribute in Improvement Process:

In quality improvement program and implementation, employees perform
an important part of identification of problems related to processes and
giving suggestions for eliminating them. They are the people doing actual
work and know what is wrong and what can be improved in those
processes to eliminate problems. They must be closely associated with the
organization’s goal of achieving customer satisfaction, profitability, name
and fame in market, etc. Every employee needs to play a part in

Software Quality

41

Software Quality
Assurance

42

implementation of ‘Total Quality Management’ in respective areas of
working. This can improve the processes by reducing any waste.

Employee Share Responsibility for Innovation and Quality
Improvement:

Management provides support, guidance, leadership, etc. and employees
contribute their part to convert organization into performing teams.
Everyday work can be improved significantly by establishing small teams
for improvement which contribute to innovations. An organization must
not wait for inventions to happen for getting better products but perform
small improvements in the processes every day to achieve big targets in
the long range. The theory of smart work in place of hard work helps
employees to identify any type of waste in the process of development and
eliminate it.

TABLE 2.1 Difference between invention and innovation:

Invention

Innovation

Inventions may be accidental
in nature. They are generally
unplanned.

Invention may or may not be
acceptable to people doing the
work immediately. Inventions
are done by scientist and
implementation and
acceptance by people can be
cumbersome as general level
of acceptance is very low.

Inventions may not be
directly applied to everyday
work. It may need heavy
customization to make it
suitable for normal usage.

Breakthrough changes are
possible due to inventions.

Invention may lead to major
changes in technology, way
of doing work, etc.

Invention may lead to
scraping of old technologies,
old skills and sometimes, it
meets with heavy resistance.

Innovation is a planned
activity leading to changes.

Innovation is done by people
in a team, possibly cross-
functional teams, involved in
doing a work. There is higher
acceptability by people as they
are involved in it.

Innovations can be applied to
every day work easily. The
existing methods and
processes are improved to
eliminate waste.

Changes in small steps are
possible by innovation.

Innovation generally leads to
administrative improvements,
whereas technological or
breakthrough improvements
are not possible.

Innovation may lead to
rearrangement of things but
there may not Dbe a
fundamental change. It
generally works on
elimination of waste

Table 2.1 Gives a difference between invention & innovation.

Many organisations have a separate 'Research and Development' function
responsible for doing inventions. These functions are dedicated to make
breakthrough changes by developing new technologies and techniques for
accomplishing work. They are supposed to derive major changes in the
approaches of development, implementation, testing, etc. 'Six sigma’
improvements also talk about breakthrough improvements where
processes may be redesigned/redefined. It may add new processes and
eliminate old processes, if they are found to be problematic. But, an
organisation should also create an environment which helps in innovation
or rearrangement of the tasks to make small improvements everyday.
Continuously identifying any type of waste in day-to-day activities and
removing all nonessential things can refine the processes.

2.5 REQUIREMENTS OF A PRODUCT

Everything done in software development, testing and maintenance is
driven by the requirements of a product to satisfy customer needs. There
are basic requirements for building software, which will help customers
conduct their businesses in a better way. Every product offered to a
customer is intended to satisfy some requirements or needs of the
customer. Requirements may be put in different categories. Some of these
are:

Stated/Implied Requirements:

Some requirements are specifically documented in software requirement
specifications while few others are implied ones. When we build software,
there are functional and non-functional requirements specified by a
customer and/or business/system analyst. It is also intended not to violate
some generally accepted requirements such as "No spelling mistakes in
user interfaces, *Captions on the control must be readable’, etc. These
types of requirements may not be documented as a part of requirement
statement formally but generally considered as requirement, and are
expected in a product. As a part of development team/test team, one must
understand stated as well as intended or implied requirements from the
users. It may be a responsibility of a developing organisation to convert as
many implied requirements as possible into stated requirements. Though
impossible, the target may be 100%.

General/Specific Requirements:

Some requirements are generic in nature, which are generally accepted for
a type of product and for a group of users while some others are very
specific for the product under development. Addition of two numbers
should be correct is a generic requirement while the accuracy of 8 digits
after decimal and rounding may be a very specific requirement for the
application underdevelopment. Usability is a generic requirement in
software for the intended user while authentication and messaging to users
may be driven by specific requirements of an application. Many times, the
generic requirements are considered as implied ones and those may not be
mentioned in requirement specifications while specific requirements are
stated ones as those are present in requirement specifications.

Software Quality

43

Software Quality
Assurance

44

Present/Future Requirements:

Present requirements are essential when an application is used in present
circumstances while future requirements are for future needs which may
be required after sometime span. For projects, present as well as future
requirements may be specifically defined by a customer or
business/system analyst. A product development organisation may have to
do further research to identity or extrapolate future needs of users. For
banking software, today's requirements may be 5000 saving accounts, and
the application may be running in client-server environment. But a future
need may be 50 lakhs saving accounts and the application may be running
as a web application. *How much future must be guided by the customer's
vision as this may influence product cost. Definition of future has direct
relationship with usable life of an application. Some people may use a
software for 3 years while some other may be planning to use it for 30
years. The future requirements may change as per the expected life span of
the software. On the basis of priority of implementation from user's
perspective, requirements may be categorised indifferent ways as follows:

‘Must' and '"Must not' Requirements or Primary Requirements:

‘Must’ requirements are primary requirements for which the customer is
going to pay for while acquiring a product. These are essential
requirements and the value of the product is defined on the basis of the
accomplishment of ‘must’ requirements. Generally these requirements
have the highest priority in implementation. Not meeting these
requirements can cause customer dissatisfaction and rejection of a product.
These requirements may be denoted by priority ‘PI’ indicating the highest
priority. It also covers "Must not' requirements which must be absent in
the product.

‘Should be' and ‘Should not be' Requirements or Secondary
Requirements:

‘Should be’ requirements are the requirements which may be appreciated
by the customer it they are present/absent and may add some value to the
product. Customer may pay little bit extra for the satisfaction of these
requirements but price of the product is not governed by them. Generally,
these requirements are lower priority requirements than ‘Must'
requirements. These requirements may give the customer delight, if
present and little disappointment, if absent. These requirements may be
denoted by priority ‘P2’. It also covers ‘Should not’ requirements.

‘Could be' and 'Could not be' Requirements or Tertiary
Requirements:

‘Could be' requirements are requirements which may add a competitive
advantage to the product but may not add much value in terms of price
paid by a customer. If two products have everything same, then could be
requirements may help in better appreciation of a product by the users.
These are the lowest priority requirements. It also covers ‘Could not’
requirements. These requirements give a product identity in the market.
These requirements may be denoted by priority ‘P3’. While talking about

a product in view of a bigger market with large number of generic users, it
may be very difficult to categorise the requirements as mentioned above.
This is because "must’ requirement for one customer may be *could be'
requirement for somebody else. In such cases, an organisation may have to
target the customer segment and define the priorities of the requirements
accordingly. Customer must have the final authority to define the category
of requirement.

2.6 ORGANISATION CULTURE

An organisation has a culture based on its philosophy for existence,
management perception and employee involvement in defining future.
Quality improvement programs are based on the ability of the organisation
to bring about a change in culture. Philip Crosby has prescribed quality
improvement for cultural change. Quality culture of an organisation is an
understanding of the organisations virtue about its people, customer,
suppliers and all stakeholders, *Q' organisations are more quality
conscious organisations, while *q' organisations are less quality conscious
organisations. The difference between 'Q' organisations and 'gQ'
organisation is enumerated as follows.

Table 2.2Difference between 'Q" organisation and 'q" organization:

Quality culture is 'Q" Quality culture is not 'q"
e These organisations believe in | ¢ These organisations assume

listening to customers and

determining their
requirements.
These organisations

concentrate on identifying cost
of quality and focusing on it to
reduce cost of failure which
would reduce overall cost and
price.

Doing things right for the first
time and every time is the
motto of success.

They concentrate on
continuous/continual process
improvement to eliminate
waste and get better output.

These organisations believe in
taking ownership of processes
and defects at all levels.

They demonstrate leadership
and commitment to quality and
customer satisfaction.

that they know customer and
requirements.

These organisations overlook
cost of poor quality and
hidden factory effect. They
believe in more testing to
improve product quality.
Doing things again and again
to make them right is their
way of working. Inspection,
rework, scrap, etc. are
essential.

They work on the basis of
finding and fixing the
problem as and when it is
found. Onetime fix for each
problem after it occurs.

These organisations try to
assign responsibility of
defects to someone else.

They believe in assigning
responsibility for quality to
others.

Software Quality

45

Software Quality
Assurance

46

2.6.1 Shift In Focus From 'q'to'Q":

As the organisation grows from ‘q’ to ‘Q’, there is a cultural change in
attitude of the management and employees towards quality and customer.
In initial stages, at the level of higher side of *q', a product is subjected to
heavy inspection, rework, sorting, scrapping, etc., to ensure that no defects
are present in final deliverable to the customer while the final stages of Q'
organisation concentrate on defect prevention through process
improvements. It targets for first-time right. Figure 2.1 shows an
improvement process where focus of quality changes gradually.

Quality control

'

Quality assurance

:

Quality management

Shift in focus from Quality

Fig.2.2 control to Quality management

Quality Control Approach (Finding and Fixing Defects):

Quality control approach is the oldest approach in engineering when a
product was subjected to rigorous inspection for finding and fixing defects
to improve it. Organisations at the higher end of *q' believe in finding and
fixing defects to the extent possible as the way to improve quality of
product before delivering it to customer and achieving customer
satisfaction. Basically, works on correction attitude involving defect
fixing, scrap, rework, segregation, etc. It works on the philosophy that a
product is good unless a defect is found in it. There are huge testing teams,
large investment in appraisal cost and defect fixing costs followed by
retesting and regression testing.

Quality Assurance Approach (Creation of Process Framework):

Quiality assurance is the next stage of improvement from quality control
where the focus shifts from testing and fixing the defects to first-time
right. An Organisation does investment in defining processes, policies,
methods for handling various functions so that it can incorporate a process
approach for doing various things, It becomes a learning organisation as it
shifts its approach from ‘quality control' to 'quality assurance’. The
management approach shifts from corrections to corrective actions
through root cause analysis. There are some actions on the basis of metrics
program instituted by the organisation. It also starts working on preventive
actions to some extent to avoid potential defects, Defects are considered as
failures of processes and not of people, and actions are initiated to
optimise the processes.

Quality Management Approach:

There are three kinds of system in the universe, viz. completely closed
systems, completely open systems and systems with semi permeable
boundaries, completely closed systems represent that nothing can enter
inside the system and nothing can go out of the system. On the other hand,
open system represents a direct influence of universe on system and vice-
a-versa. Completely closed systems or completely open systems do not
exist in reality. Systems with semi permeable boundaries are the realities,
which allow the system to get impacted from external changes and also
have some effect on external environment. Anything coming from outside
may have an impact on the organisation but the level of impact may be
controlled by taking some actions. Similarly, anything going out can also
affect the universe but impact is controlled. Organisations try to assess the
impact of the changes on the system and try to adapt to the changes in the
environment to get the benefits. They are highly matured when they
implement Quality Management as a management approach. There are
virtually no defects in processes as they are optimised continuously, and
products are delivered to customers without any deficiency. The
organisation starts working on defect prevention mechanism and
continuous improvement plans. The organisation defines methods,
processes and techniques for future technologies and training programs for
process improvements. Management includes planning, organising,
staffing, directing, coordinating, and controlling to get the desired output.
It also involves mentoring, coaching, and guiding people to do better work
to achieve organisational objectives.

2.7 CHARACTERISTICS OF SOFTWARE

There are many products available in the market which are intended to
satisfy same or similar demands. There is a vast difference between
software products and other products due to their nature. Software cannot
be sensed by common methods of inspection or testing, as it is virtual in
nature. The product is in the form of executable which cannot be checked
by any natural method available to mankind like touch, smell, hearing,
taste, etc. It cannot be measured by some measuring instruments
commonly available like weighing balance, scales, etc. It needs testing in
real environment but nobody can do exhaustive testing by trying all
permutations and combinations. There are different kinds of software
products and their performance, capabilities, etc. vary considerably from
each other. There are no same products though there may be several
similar ones or satisfying similar needs. Every product is different in
characteristics, performance, etc. Software is always unique in nature.
Every condition defined by the software program gets executed in the
same way every time when it gets executed. But the number of conditions,
and algorithm combinations may be very large tending to infinity and
testing of all permutations/combinations is practically impossible.

Software Quality

47

Software Quality
Assurance

48

2.8 SOFTWARE DEVELOPMENT PROCESS

Software development process defines how the software is being built.
Some people also refer to SDIC as system development life cycle with a
view that system is made of several components and software is one of
these components. There are various approaches to build software. Every
approach has some positive and some negative points. Let us talk about
few basic approaches of developing software from requirements. It is also
possible that different people may call the same or similar approach by
different

o Waterfall development approach/model

o Iterative development approach/model

o Incremental development approach model

. Spiral development approach/model

. Prototyping development approach/model

o Rapid application development approach/model
o Agile development approach/model.

2.8.1 Waterfall Development Approach/Model:

Waterfall model is the simplest software development model and is used
extensively in development process study. There are many offshoots of
waterfall model such as modified waterfall model, iterative waterfall
model, etc. Though it is highly desirable to use waterfall model, it may not
be always feasible to work with it. Still, waterfall model remains as a
primary focus for study purpose. It is also termed as classical view of
software development as it remains the basis or foundation of any
development activity. Most of the other models of development are based
upon the basic waterfall model as it represents a logical way of doing
things. Typical waterfall model is shown in Fig. 2.2.

Customer
Requirements
Design
Coding
Testing
Deployment

Maintenance

Fig.2.2 Waterfall model

Arrows in the waterfall model are unidirectional. It assumes that the
developers shall get all requirements from a customer in a single go. The
requirements are converted into high level as well as low level designs.
Designs are implemented through coding. Code is integrated and
executables are created. Executables are tested as per test plan. The final
output in the form of an executable is deployed at customer premises.
Future activities are handled through maintenance. If followed in reality,
waterfall model is the shortest route model which can give highest
efficiency, and productivity. Waterfall models are used extensively in
fixed price/fixed schedule projects where estimation is based on initial
requirements. As the requirement changes, estimation is also revised.

Limitations of Waterfall Cycle:

There is no feedback loopavailable in waterfall model. It is assumed that
requirements are stableand no problem is encountered during entire
development life cycle.Also, no rework is involved in waterfall model.

2.8.2 Iterative Development approach/Model:

Iterative development process is more practical than the water fall model.
It does not assume that the customer gives all requirements in one go and
there is complete stability of requirements. It assumes that changes may
come from any phase of development to any previous phase and there are
multiple permutations and combinations of changes. Changes may have a
cascading effect where one change may initiate a chain reaction of
changes. Figure 2.3 shows a feedback loop which is the fundamental
difference between waterfall model and iterative development model.

<+——» Customer

- » Requirements

l«———» Design

<«——» Coding

< » Testing

+—— Deployment

«——» Maintenance

Fig. 2.3 Iterative development model

Limitations of Iterative Development:

Iterative development consists of many cycles of waterfall model. It gives
problems in fixed price projects for estimation. An-other problem faced by

Software Quality

49

Software Quality
Assurance

50

iterative development is that the product architecture and design becomes
fragile due to many iterative changes.

2.8.3 Incremental Development approach/Model:

Incremental development models are used in developing huge systems.
These systems are made of several subsystems which in themselves are
individual systems. Thus, incremental systems may be considered as a
collection of several subsystems. An individual subsystem May be
developed by following waterfall methodology and iterative development.
These subsystems may be connected to each other externally, either
directly or indirectly. A directly interconnected system allows the
subsystems to talk with each other while indirectly interconnected system
has some interconnecting application between two subsystems. Direct
connectivity makes a system more robust but flexibility can be a major
issue. The incremental model gives flexibility to a customer. One system
may be created and the customer may start using it. The customer can
learn the lessons and use them while second part of the system is
developed. Once those are integrated, third part may be developed and so
on. The customer does not have to give all requirements at the start of
development phase.

The model in Fig. 2.4 shows a common communication system and
incremental subsystems where different subsystems communicate through
a common communication system.

Subsystem | Subsystem Subsystem
1 2 3
Subsystem | common
p Y - slcommunicationlke——{ 2ubsystem

| system 5

1‘\
\\

Subsystem | Subsystem Subsystem
6 7 8
Fig. 2.4 Incremental model

Limitations of Incremental Development:

Incremental models with multivendor product integration are a major
challenge as parameter passing between different systems may be difficult.
Incremental models help in integration of big systems at the cost of loss of
flexibility. When a system is incremented with newsub systems, it changes
the architecture of that system. Increment in the system is followed by
heavy regression testing to find that when multiple systems come together,
can they work individually as well as collectively.

2.8.4 Spiral Development Approach/Model:

Spiral development process assumes that customer requirements are
obtained in multiple iterations, and development also works in iterations.
Many big software systems are built by spiral models of ever-increasing
size. First some functionalities are added, then product is created and
released to customer. After getting the benefits of first iteration of
implementation, the customer may add another chunk of requirements to
the existing one. Further addition of requirements increase the size of the
software spirally. Sometimes, an individual part developed in stages
represents a complete system, and it may communicate with the next
developed system through some interlaces. In many ERP, initial
development concentrated around material management part which later
increased spirally to other parts such as purchasing, manufacturing, sales,
warehousing, cash control, etc. Many banking software’s also followed a
similar route. Figure 2.5 shows a spiral development model.

Module 5]l B
Module 4 Module 1 —»J‘ Module 2 ‘
Module 3
Fig. 2.5 Spiral development model

e Limitations of Spiral Development Spiral models represent
requirement elicitation as the software is being developed.
Sometimes, it may lead to refactoring and changes in approach where
initial structures become n on-usable. Spiral development also needs
huge regression testing cycles to find whether additions in the given
system have affected overall system working or not.

2.8.5 Prototype Development Approach/Model:

Prototype development approach represents top to bottom reverse
integration approach. Major problem of software development is
procuring and understanding the customer requirements for the product.
Prototyping is one of the solutions to help in this problem. In prototyping,
initially a prototype of the system is created- this is similar to cardboard
model of a building. It helps the customer to understand what they can
expect from the given set of requirements. It also helps the development
team to understand the possible application's look and feel. Once the

Software Quality

o1

Software Quality
Assurance

52

elicitation is done, the logic is built behind it to implement the elicited
requirements.

Limitations of Prototype Development:

Though, one may get a feel of the system by looking at the prototype, one
must understand that it is not the actual system but a model. The customer
may get the feeling that the system is already ready and may pressurise
development team to deliver it immediately. (Applications not having
much graphical user interfaces are difficult to model.)

2.8.6 Rapid Application Development Approach/Model:

Rapid application development is not a rapid way of developing software
as one may interpret from the name. It is one way to create usable
software at a fast speed, and still give an opportunity to the user to
understand the development and application being created. It is a
miniature form of spiral development. Development team may get very
less number of requirements (let us say 5/6). They create a design, code it,
test it and release it to customer. Once customer gets the delivery, he may
have a better understanding of his expectations and development process
by looking at the product delivered. He may add another chunk of
requirements and entire development cycle is followed. Thus, each
iteration will give better understanding about a product being developed
and may help in refining the requirements.

Limitations of Rapid Application Development:

Change in approach and refactoring are the major constraints in rapid
application development. It also involves huge cycles of retesting and
regression testing. Efforts of integration are huge.

2.8.7 Agile Development Approach/Model:

Agile development methodologies are becoming popular due to their
dynamic nature and easy adaptability to the situation. One of the surveys
indicated that in case of waterfall model, many functionalities are added in
requirement statement with a fear that changes in scope would not be
appreciated by the development team. Some surveys show that many of
the functionalities (about %ith) developed using waterfall or iterative
model are never used by the users. Agile gives complete freedom to the
user to add requirements at any stage of development, and development
team has to accept these changes. Agile methodologies work on small
chunk of work in each iteration and release working software at the end of
iteration. The main thrust of Agile methodologies is complete adaptability
to user environment and continuous integration of a product. It also gives
importance to delivering working software rather than achieving
requirements defined in requirement specifications. Agile represents a
family of development methodologies and there are many methodologies
under its umbrella. Some of them are as listed below.

° Scrum

Extreme Programming
Feature Driven Development

Test Driven Development

Agile works on the following principles,

Individuals and interactions are more important than formal sign-offs
for requirements, designs, etc. It concentrates more on "Fitness for
use' and what the customer needs are.

Working software is the outcome of each milestone rather than
concentrating on deliverables as defined in the project plans. Success
of software product is that it is working at each stage.

Customer collaboration is required to get usable software rather than
signing various documents tor approvals. Requirement clarifications,
requirement elicitation, and prototyping need customer involvement.

Responding to changes required by the customer at any moment.
There may be many changes suggested by the customer as he has
better knowledge about what his business needs are.

2.8.8 Maintenance Development Approach/Model:

Major cost of the software is in its maintenance phase. Every product
including software has many defects which may create problems to its
users in the long term. Every technology has a life span. New technologies
may offer better services and options, and may replace existing
technologies, every now and then, technological updations are required for
the software as well as system to perform better and in the most cost
effective way. New functionalities may be required due to changing
business needs. Maintenance activities of software may be put under 4
different groups namely,

Bug fixing where the defects present in the given software are fixed.
This may involve retesting and regression testing. During bug fixing,
analysis of bug is an important consideration. There is always a
possibility that while fixing a bug, new bugs may have been added in
the product.

Enhancement where new functionalities are added in the existing
software. These functionalities maybe required due to changes in the
way business is done. Some functionalities may be introduced due to
changes in user requirements.

Porting where software is taken from older technologies to newer
technologies. In porting, one is expected to port the functionalities and
not the code. Whatever functionalities are available in the old
technologies; all those are expected to be present in the new
technology.

Software Quality

53

Software Quality
Assurance

54

e Reengineering where there is some change in the logic or algorithm
used due to changes in business environment.

2.9 LIFE AFFECTING PRODUCTS

Similar to software development methodologies, software products have
some peculiarities defined as criticalities of software. Criticality of the
software defines; how much important it is to a user/customer. There are
various schemes of grouping the products on the basis of criticality to the
users. Few of them are listed below,

2.9.1 Life Affecting Products:

Products which directly/indirectly affect human life are considered as the
most critical products in the world from user’s perspective. Such products
generally come under the purview of regulatory and safety requirements,
in addition to normal customer requirements. The quality requirements are
more stringent, and testing is very critical for such products as failures
may result into loss of life or disablement of a user. This type of product
may be further grouped into 5 different categories.

e Any product failure resulting into death of a person. These will be the
most critical products as they can affect human life directly.

e Any product failure which may cause permanent disablement to a
patient. These are second-level criticality products.

e Any product failure which may cause temporary disablement to a
patient

e Any product failure which may cause minor injury and does not result
into anything as defined above

e Other products which do not affect health or safety directly

Such software needs huge testing to try each and every conceivable fault
in the product. It talks about very high level of confidence that application
will not fail under normal and abnormal situations.

2.9.2 Product Affecting Huge Sum of Money:

A product which has direct relationship with loss of huge sum of money is
second in the list of criticality of the product. Such products may need
large testing efforts and have many regulatory as well as statutory
requirements, Commerce and Business software may be put in this
category. Security, confidentiality, and accuracy are some of the important
quality factors for such products.

These products also need very high confidence level and huge testing will
represent the criticality. They need testing lesser than the products which
directly/indirectly affect human life.

2.9.3 Products Which Can Be Tested Only By Simulators:

Products which cannot be tested in real-life scenario but need simulated
environment for testing are third in the ranking of criticality. In this case,
real life scenario is either impossible to create or may not be economically
viable. Products used in aeronautics, space research, etc. may be put in this
category.

Such products also need huge testing, although lesser than the earlier two
types.

2.9.4 Other Products:

All other products which cannot be categorised in any of the above
schemes may be put in this category.

Unfortunately, “criticality' is not very easy to define. Let us consider an
example of auto piloting software where we have three combinations of
criticality together. It does affect the life of passengers traveling, cost of an
aeroplane is huge and it cannot be tested in real environment. Thus, all the
three criticalities coming together make a product most critical.

210 SOME OTHER SCHEMES OF CRITICALITY
DEFINITIONS

There may be several other ways of classifying criticality of a product. It
has direct relationship with business dependability and the extent of loss to
the user organisation person in case of failure.

2.10.1 From User's Perspective:

This classification mainly discusses dependency of a business on a system.
The criticality may range from complete dependency to no/minimal
dependency on the system.

e Product's failure which disrupts the entire business can be very critical
from business point of view. There is no fall back arrangement
available or possible in case of failure of a product which is
completely dependent on the system.

e Product's failure which affects business partially as there may be
some fall back arrangements is a type of criticality. Business may be
affected temporarily, affecting profitability or service level but can be
restored with some efforts.

e Product's failure which does not affect business at all is one of the
options. If it fails, one may have another method to achieve the same
result. Rearrangement may not have significant distortion of business
process.

Software Quality

55

Software Quality
Assurance

56

2.10.2 Another Way of Defining User's Perspective:

This classification considers the environment in which the product is
operating. It may range from very complex user environment to very easy
user environment.

Products where user environment is very complex such as
aeronautics, space research, etc., may be considered as very critical.
Any failure of product can result into major problems as the
environment where these products are working is not an easy
environment. As the environment is very complex, system is already
under stress, and failure of a product may add to the situation.

Products where user environment is comparatively less complex (such
as banks) may represent the second stage of complexity. Huge
calculations may be affected, if the system collapses but there maybe
workaround available. People may find it inconvenient, but still the
operations can be performed with some tolerable level of problems.
For example, banks were running for so many years without
computers and if centralised system fails, they may be able to
withstand the pressure to some extent.

Products where user environment is very simple, and product failure
may not add to the consequences represents the lowest level of
complexity. If there is any failure, it can be restored quite fast or some
other arrangements can be used, and work can be continued.

2.10.3 Criticality from Developer's Perspective:

This classification defines the complexity of the system on the basis of
development capabilities required. It may range from very complex
systems to very simple systems.

Form based software where user inputs are taken and stored in some
database. As and when required, those inputs are manipulated and
shown to a user on screen or in form of a report. There is not much
manipulation of data and no heavy -calculations/algorithms are
involved.

Algorithm based software, where huge calculations are involved and
decisions are taken or prompted by the system on the basis of
outcome of these calculations. Due to usage of different mathematical
models, the system becomes complex and designing, developing and
testing all combinations become problematic.

Artificial intelligent systems which learn things and use them as per
circumstances are very complex systems. An important consideration
is that the 'learnings' acquired by the system must be stored and used
when required. This makes the system very complicated.

There may be a possibility of combination of criticalities to various
extends for different products at a time. A software used in aviation can

affect human life, and also huge money at a time. It may not be feasible to
test it in real-life scenario. It may involve some extent of artificial
intelligence where system is expected to learn and use those "learnings'.
Thus, the combination increases severity of failure further.

2.11 PROBLEMATIC AREAS OF SOFTWARE
DEVELOPMENT LIFECYCLE

Let us discuss some problematic areas of software development life cycle.
2.11.1 Problems with Requirement Phase:

Requirement gathering and elicitation is the most important phase in
software development life cycle, Many surveys indicate that the
requirement phase introduces maximum defects in the product. Problems
associated with requirement gathering are,

Requirements Are Not Easily Communicated Communication is a
major problem in requirement statement creation, software development
and implementation. Communication of requirements from customer to
development team is marked by problems of listening to customer,
understanding business domain, and usage of language including domain
specific terms and terminologies. The types of requirements are,

Technical Requirements:

Technical requirements talk about platform, language, database, operating
system, etc. required for the application to work, Many times, the
customer may not understand the benefits of selectinga specific
technology over the other options and problems of using these technically
specified configurations.

Selection of technology may be done as directed by the development team
or as a fashion. Development organisation is mainly responsible for
definition of technical requirements for software product under
development on the basis of product usage. (Technical requirements also
cover this type of system, whether a standalone or client server or web
application etc, tiers present in the system, processing options such as
online, batch processing, etc). It also talks about configuration of
machines, routers, printers, operating systems, databases, etc.

Economical Requirements:

Economies of software system is dependent on its technical and system
requirements. The technical as well as system requirements may be
governed by the money that the customer is ready to put in software
development, implementation and use. It is governed by cost-benefit
analysis.

These requirements are defined by development team along with the
customer. The customer must understand the benefits and problems
associated with different approaches, and select the approach on the basis

Software Quality

S7

Software Quality
Assurance

58

of some decision-analysis process. The consequences of any specific
selection may be a responsibility of the customer but development
organisations must share their knowledge and experience to help and
support the customer in making such a selection.

Legal Requirements:

There are many statutory and regulatory requirements for software product
usage. For any software application, there may be some rules and
regulations by government, regulatory bodies, etc. applicable to the
business. There may be some rules which keep on changing as per
decisions made by government, regulatory authorities, and statutory
authorities from time to time. There may be numerous business rules
which are defined by customers or users for doing business. Development
team must understand the rules and regulations applicable for a particular
product and business.

Operational Requirements:

Mostly operational requirements are defined by customers or users on the
basis of business needs. These may be functional as well as non-functional
requirements. They tell the development team, what the intended software
must do/must not do when used by the normal user. Operational
requirements are derived from the business requirements. This may
include non-functional requirements like security, performance, user
interface, etc.

System Requirements:

System requirements including physical/logical security requirements are
defined by a customer with the help of a development team. These include
requirements for hardware, machine configurations, types of backups,
restoration, physical access control, etc. These requirements are defined by
customer's management and it affects economies of the system. There may
be some specific security requirements such as strong password,
encryption, and privilege definitions, which are also declared by the
customer.

Requirements Change Very Frequently:

Requirements are very dynamic in nature. There are many complaints by
development teams that requirement change is very frequent. Many times,
development teams get confused because customer requirements change
continuously. ‘Customer does not know what he wants' is a very
common complaint made by development teams. As the product is being
built and shown to customer, lot of new ideas are suggested. Some ideas
may have significant effect on cost, schedule, and effort while some other
may change the architecture, basic approach, and design of software. The
time gap between requirement definition and actual product delivery also
plays a major role in changing requirements. Top-down approach, rapid
application development, and joint application development are some of

the techniques used to develop applications by accommodating changes
suggested by customers.

2.11.2 Generally A Unique Product Is Developed Each time:

No two things in the world are same, though they might appear to be
similar. In case of software no two applications are same. Even in case of
simple porting (desktop to client-server to web application), software
application changes significantly. The same implementation done by two
different developers may differ from each other. Even the same program
written by the same developer at two different instances may not match
exactly. Thus a software produced may be unique for that instance. One
more fact about software product maintenance is that designers find it
difficult to understand original design or approach and developers find it
difficult to read the code written earlier.

2.11.3 Intangible Nature of Product, Intellectual Approach:
Throughout Development:

Software products cannot be felt by normal senses. Its existence can be
felt only by disc space it occupies. There are multiple options or
approaches (for example, in architecture or design) possible for
implementation of the same set of requirements. Some may feel that one
approach is better than the other for different reasons. The capabilities of
individuals and organisations vary significantly in design and
development, and each may have a good justification why a certain
approach is selected with respect to other.

2.11.4 Inspection Can Be Exhaustive/Impossible:

While defining exhaustive inspection, one may tend to include infinite
permutations and combinations of testing. Testing of complete software
product is practically impossible. It may need huge money and longtime to
test all possibilities, and still one may not be sure that everything is
covered in testing. Testing uses a sampling theory to find the defects in the
product and processes used. Testing tries to find out the lacunae in
development methodology and processes used.

2.11.5 Effect of Bad Quality Is Not Known Immediately:

Any level of exhaustive testing is not capable of testing each and every
algorithm, branch, condition and combination thoroughly. There are some
areas which remain untested even after the application is used
overextended periods. Any problem in such areas may be discovered only
when the particular situation arises. The effect of this kind of problem and
situation during usage may not be known beforehand while deploying the
software in use.

2.11.6 Quality is Inbuilt in Product:

Quality of a software product cannot be improved by testing it again and
again and finding and fixing the defects. It needs to be built in the product

Software Quality

59

Software Quality
Assurance

60

while development using good processes and methods. Any amount of
testing cannot certify that a product is defect-free. Good processes and
procedures can make good software. No software can be considered as
defect-free even if no defect is found in the test iteration defined for it. We
can only say that no defect has been discovered till that point of time using
those many test cases.

2.11.7 Quality Objectives Vary From Product To Production:
Customer to Customer:

Quality objectives define the expectations of customer/user and the
acceptance level of various parameters which must be present in a given
product for accepting/using it. Quality objectives are product dependent,
time dependent and are mainly driven by customers or final users. There
may be a possibility of trade-off between these factors. Some people
define them as test objectives as they define the priority of testing. Ina
small computer game for kids, cost may be more important than accuracy.
On the contrary, applications developed for aeronautics need to be more
accurate while cost factor may not be that important. Quality objectives
are defined on the basis of factors of quality which are 'must’, 'should be',
and ‘could be' for the application. Degree of importance changes from
product to product, customer to customer, and situation tosituation. Some
of the quality factors are listed below.

Compliance:

Every system is designed in accordance with organisational and user
policies, procedures and standards. If software meets these standards, it is
said to be complying with the specifications. In addition to customer
defined standards, there may be few standards for different domains like
aviation, medical, and automotive. Software must follow these standards
when it is used by particular type of people or for a particular domain.
Some regulations and laws may be imposed by the regulatory and
statutory bodies.

Generally, these requirements are categorised as legal requirements. These
requirements may be put in non-functional requirements.

Correctness:

Data entered, processed and results obtained must be accurate as per
requirements of customers and/or users. Definition of correctness may
change from customer to customer, application to application, and time to
time. Generally, accuracy refers to mathematical accuracy, but it is not a
rule. For a shopkeeper, accuracy of 0.01 may be sufficient as nothing
below 1 paisa is calculated while a scientist may need an accuracy of 256
digits after decimal point as rounding off errors can cause a major problem
in research work.

Ease of Use:

Efforts required to learn, operate, prepare input for and interpret output
from the system define ease of use for an application. The normal users

who are expected to use the software must be comfortable while using it.
Ease of use reduces training cost for the new users dramatically. If a
software application can be learned without any external help, such
software is considered as the best from this perspective. If there is a
requirement of training or hand holding before the software can be used,
people may find it inconvenient. Ease of use is a very important factor
when large number of users are expected (for example, emailing, software
and mobile phones), and providing them training is a difficult task.

Maintainability:

Efforts required to locate and fix errors in an operational system must be
as less as possible to improve its ability for maintenance. There may be
some possibilities of enhancements and re-engineering where good
maintainable software has least cost associated with such activities.
Software may need maintenance activity some time or the other to
improve its current level of working. Ability of software to facilitate
maintenance is termed as maintainability. Good documentation, well
commented code, and requirement traceability matrix improve
maintainability of a product.

Portability:

Efforts required in transferring software from one hardware configuration
and/or software system environment to another environment defines
portability of a system. It may be essential to install same software in
different environments and configurations as per business needs. If the
efforts required are less, then the system may be considered as highly
portable. On the other hand, if the system cannot be put in a different
environment, it may limit the market.

Coupling:

Coupling talks about the efforts required in interconnecting components
within an application and interconnection of system as a whole with all
other applications in a production environment. Software may have to
communicate with operating system, database, and other applications
when a common user is working with it. Good coupling ensures better use
of environment and good communication, while bad coupling creates
limitation on software usage.

Performance:

Amount of resources required to perform stated functions define the
performance of a system. For better and faster performance requirements,
more and more system resources and/or optimised design may be required.
Better performance improves customer satisfaction through better
experience for users. Performance attribute may cover performance, stress
and volume. Details about these will be discussed in the latter chapters of
this book.

Software Quality

61

Software Quality
Assurance

62

Ease of Operations:

Effort required in integrating the system into operating environment may
define case of operations. Ease of operations also talks about the help
available to a user for doing any operation on the system (for example,
online help, user manuals, operations manual). 'Ease of' operations' is
different from "Ease of use' where the former considers user experience
while using the system, while the latter consider show fast the system
working knowledge can be acquired.

Reliability:

Reliability means that the system will perform its intended functions
correctly over an extended time. Consistent results are produced again and
again, and data losses are as less as possible in a reliable system.
Reliability testing may be a base of "Build Verification Testing (VT)'
where test manager tries to analyse whether system generates consistent
results again and again.

Authorisation:

The data is processed in accordance with the intents of the user
management. The authorisation may be required for highly secured
processes which deal with huge sum of money or which have classified
information. Applications dealing with classified information may need
authorisation as the sensitivity of information is very important.

File Integrity:

Integrity means that data will remain unaltered in the system and whatever
goes inside the system will be reproduced back in the same way.
Accepting data in correct format, storing it in the same way, processing it
in a way so that data does not get altered and reproducing it again and
again are covered under file integrity. Data communication within and
from one system to another may also be considered under the scope of file
integrity.

Audit Trail Audit trail talks about the capability of software to substantiate
the processing that has occurred. Retention of evidential information about
the activities done by users for further reference may be maintained.

Continuity of Processing:

Availability of necessary procedures, methods and backup information to
recover operations, system, data, etc. when integrity of the system is lost
due to problems in the system or the environment define continuity of
processing. Timeliness of recovery operations must be defined by the
customer and implemented by developing organisations.

Service Levels:

Service levels mean that the desired results must be available within the
time frame acceptable to the user, accuracy of the information must be

reliable, and processing completeness must be achieved. For some
applications in Business, service level definition may be a legal
requirement. Service level may have direct relationship with performance.

Access Control:

The application system resources will be protected against accidental or
intentional modification, destruction, misuse or disclosure by authorised as
well as unauthorised people. Access control generally talks about logical
access control as well as physical access control for information, asses.
etc.

2.12 SOFTWARE QUALITY MANAGEMENT

Quality management approaches talk about managing quality of a product
or service using systematic ways and methods of development and
maintenance. It is much above achieving quality factors as defined in
software requirement specifications. Quality management involves
management of all inputs and processing to the processes defined so that
the output from the process is as per defined quality criteria. It talks about
three levels of handling problems, namely,

Correction:

Correction talks about the condition where defects found in the product or
service are immediately sorted and fixed. This is a natural phenomenon
which occurs when a tester defines any problem found during testing.
Many organisations stop at fixing the defect though it may be defined as
corrective action by them. Responsibility of finding and fixing defects
may be given to a line function. This is mainly a quality control approach.

Corrective Actions:

Every defect needs an analysis to find the root causes for introduction of a
defect in the system. Situation where the root cause analysis of the defects
is done and actions are initiated to remove the root causes so that the same
defect does not recur in future is termed as corrective action, Corrective
action identification and implementation is a responsibility of operations
management group. Generally, project leads are given the responsibilities
of initiating corrective actions. This is a quality assurance approach where
process-related problems are found and resolved to avoid recurrence of
similar problems again and again.

Preventive Actions:

On the basis of root causes of the problems, other potential weak areas are
identified. Preventive action means that there are potential weak areas
where defect has not been found till that point, but there exists a
probability of finding the defect. In this situation, similar scenarios are
checked and actions are initiated so that other potential defects can be
eliminated before they occur. Generally, identification and initiation of
preventive actions are a responsibility of senior management. Project

Software Quality

63

Software Quality
Assurance

64

managers are responsible for initiating preventive actions for the projects.
This is a quality management approach where an organisation takes
preventive action so that there is no defect in the first place.

Quality management is a set of planned and systematic activities which
ensures that the software processes and products conform to requirements,
standards and processes defined by management, customer, and regulatory
authorities. The output of the process must match the expectations of the
users.

2.13 WHY SOFTWARE HAS DEFECTS?

One very important question about a product is, *Why there are defects in
the product at all?". There is no single answer to this question. After taking
so much precaution of defining and implementing the processes, doing
verification and validation of each artifact during SDLC, yet nobody can
claim that the product is free of any defects. In case of software
development and usage, there are many factors responsible for its
success/failure. Few of them are,

e There are huge communication losses between different entities as
requirements get converted into the actual product. Understanding of
requirements is a major issue and majority of the defects can be
attributed to this.

e Development people are more confident about their technical
capabilities and do not consider that they can make mistakes.
Sometimes self-review and/or peer review does not yield any defects.

e Requirement changes are very dynamic. As the traceability matrix is
not available, impact analysis of changing requirements becomes
heuristic.

e Technologies are responsible for introducing few defects. There are
many defects introduced due to browsers, platforms, databases, etc.
People do not read and understand release notes, and consequences of
failure are attributed to technologies.

e Customer may not be aware of all requirements, and the ideas develop
as the product is used. Proto typing is used for clarifying requirements
to overcome this problem to some extent.

2.14 PROCESSES RELATED TO SOFTWARE QUALITY

Quiality environment in an organisation is established by the management.
Quality management is a temple built by pillars of quality. Culture of an
organisation lays the foundation for quality temple. Every organisation has
different number of tiers of quality management system definition, Figure
2.6 shows a relationship between vision, mission(s), policy(ies), goal(s),
objective(s) strategy(ies) & values of organisation.

Mission1 Mission2 Mission3 \

v
Policy1, 2 Policy3, 4, 5 Policy6, 7

.'"' | l |

| Objectivel, 2, 3 Objectived, 5, 6 Objective?, 8, 9, 10 |

;T
\ ¥ /i'

Strategyl Strategy2, 3 Strategy4, 5, 6, 7 /
/
A l l /
Goall, 2, 3, 4 Goals, 6, 7 Goal8, 9, 10, 11 /
>4
\\ " o
—Valuos—

Relationship between Vision, Mission(s), Policy(ies),

Fig. 2.6 Objective(s), Strategy(ies), Goal(s) and Values

2.14.1 Vision:

The vision of an organisation is established by the policy management.
Vision defines in brief about what the organisation wishes to achieve in
the given time horizon. 'To become a billion-dollar company within3
years' can be a vision for some organisations. Every organisation must
have a vision statement, clearly defining the ultimate aim it wishes to
achieve with respect to time span.

2.14.2 Mission:

In an organisation, there are several initiatives defined as missions which
will eventually help the organisation realise its vision. Success of all these
missions is essential for achieving the organisation's vision. The missions
are expected to support each other to achieve the overall vision put by
management. Missions may have different lifespans and completion dates.

2.14.3 Policy:

Policy statement talks about a way of doing business as defined by senior
management. This statement helps employees, suppliers and customers to
understand the thinking and intent of management. There may be several
policies in an organisation which define a way of achieving missions.
Examples of policies may be security policy, quality policy, and human
resource development policy.

2.14.4 Objectives:

Objectives define quantitatively what is meant by a successful mission. It
defines an expectation from each mission and can be used to measure the
success/failure of it. The objectives must be expressed in numerals along

Software Quality

65

Software Quality
Assurance

66

with the time period defined for achieving them. Every mission must have
minimum one objective.

2.14.5 Strategy:

Strategy defines the way of achieving a particular mission. It talks about
the actions required to realize the mission and way of doing things. Policy
is converted into actions through strategy. Strategy must have a time frame
and objectives along with goals associated with it. There may be an action
owner to lead the strategy.

2.14.6 Goals:

Goals define the milestones to be achieved to make the mission successful.
For a mission to be declared as successful/ failure at the end of the defined
time frame in terms of whether the objectives are achieved or not, one
needs a milestone review to understand whether the progress is in proper
direction or not. Goals provide these milestone definitions.

2.14.7 Values:

Values can be defined as the principles, or way of doing a business as
perceived by the management. "Treating customer with courtesy' can be a
value for an organisation. The manner in which the organisation and
management think and behave, is governed by the values it believes in.

2.15 QUALITY MANAGEMENT SYSTEM STRUCTURE

Every organisation has a different quality management structure
depending upon its need and circumstances. Generic view of quality
management is defined below. Figure 2.7 shows a structure of quality
management system in general.

Quality
Policy

Pt Quality Objectives -

il Quality Manual

Guidelines/Standards
Formats/Templates

Quality Processes/Quality
Procedures/Work

Instructions

Fig.2.7 Quality Management System of a typical organisation

2.15.1 1°'Tier-Quality Policy:

Quality policy sets the wish, intent and direction by the management about
how activities will be conducted by the organisation. Since management is
the strongest driving force in an organisation, its intents are most
important. It is a basic framework on which the quality temple rests.

2.15.2 2nd Tier-Quality Objectives:

Quality objectives are the measurements established by the management
to define progress and achievements in a numerical way. An improvement
in quality must be demonstrated by improvement in achievements of
quality factors (test factors) in numerical terms as expected by the
management. The achievements of these objectives must be compared
with planned levels expected and results and deviations must be acted
upon.

2.15.3 3rd Tier-Quality Manual:

Quality manual, also termed as policy manual is established and published
by the management of the organisation. It sets a framework for other
process definitions, and is a foundation of quality planning at
organisational level.

2.16 PILLARS OF QUALITY MANAGEMENT SYSTEM

Top part of the quality temple is built upon the foundation of following
pillars.

2.16.1 Quality Processes/Quality Procedures/Work Instructions:

Quality processes, quality procedures, work instructions, methods, etc, are
defined at an organisation eye by the functional area experts, and at
project and function level by the experts in those areas separately.
Organisation level processes act as an umbrella, whereas project and
function level processes are in the purview of these top-level process
definitions. Organisation level set of processes may differ from the
process definition for different projects and functions. It is also defined as
quality planning at project level. Quality procedures must be in sync with
the tone established by quality manual at an organisation level.

2.16.2 Guidelines and Standards:

Guidelines and standards are used by an organisation's project team for
achieving quality goals for the products and services delivered to
customers. Many a times, guidelines defined by customers are termed as
standards for the project, as the project team takes the recommendations
by customers as mandatory. Difference between a guideline and a standard
is defined as, shown in Table 2.3.

Software Quality

67

Software Quality
Assurance

68

Table 2.3 Difference Between Guidelines and Standards

Guidelines Standards
e Guidelines are suggested ways | ¢ Standards are mandatory ways
of doing things. They are made of doing things. These are also
by experts in individual fields. described by experts in
e Guidelines may be overruled respective fields.
and there is no issue if|e Overruling of standards is a
somebody does not follow it. punishable offence. It may lead
e Guidelines may or may not be to nonconformance during
written. Generally, it is reviews and audits.
recommended that one must | e Standards must be written to
write the guidelines to capture avoid any misunderstanding or
the tacit knowledge loss of communication

Guidelines and standards may need revisions from time to time. Revision
must be done to maintain suitability over a time period.

2.16.3 Formats and Templates:

Common formats and templates are used for tracking a project, function,
and department information within an organisation. It creates same
understanding across the board where outputs can be compared for the
projects and functions. This also acts as a checklist to maintain
consistency across the projects in the organisation. Formats and templates,
if made compulsory, are considered as standards whereas if they are
indicative or suggestive, they are considered as guidelines. Generally,
templates are mandatory while formats are suggestive in nature.

2.17 IMPORTANT ASPECTS OF QUALITY
MANAGEMENT

Quality improvement is not an accident but a planned activity. An
organisation must plan for improvement under the leadership of
management and with employee participation.

2.17.1 Quality Planning at Organisation Level:

An organisation creates quality plan at the organisation level for achieving
quality objectives, goals, its vision and missions. Quality planning
includes establishing missions, policies and strategies at organization level
along with objectives and goals to achieve the vision, It must set a
framework for definition and implementation of good processes, practices,
recruiting people, infrastructures, hardware and software, There should be
an appraisal of quality achieved as against expected results at planned
intervals, and actions must be initiated in case of any deviation.

2.17.2 Quality Planning at Project Level:

Projects should plan for quality at project level. These are generally
strategic-level quality plans with details of responsibilities and actions,

Project plan must define all aspects of quality plan at project level, and
may have a relation with the organisation's quality planning. The quality
objectives of the project may be inherited from organisation level
objectives or may be defined separately for the project. Project level
objectives must be in syne with organisation level objectives.

2.17.3 Resource Management:

An organisation should use good inputs as required by quality planning so
that the output of the processes match with the organisation's business
plans. It includes people, machines, materials, and methods as the basic
resources. Good processes and good technology need good people to
perform the work and achieve planned results.

2.17.4 Work Environment:

Working environment is an important input for a good product and to
achieve the organisation vision and missions, A good environment can
help an organisation to build on its strength while a bad environment is a
roadblock to achieving objectives, and can create problems in its mission
of customer satisfaction. Many organisations employ special techniques of
'Working Climate Analysis' to understand its environment, and take
actions for correcting it.

Work environment has two components, viz. external environment and
internal environment. External environment is mainly a physical
environment while internal environment is built in the heart and brain of
individuals. Good team spirit and loyalty can be major factors contributing
to organisational success.

2.17.5 Customer-Related Processes:

Customer-related processes must be analysed for their capability in
servicing customers and achieving customer satisfaction. Requirement
analysis, designing, project processes, product delivery and other
processes related to the customer must be analysed for their capabilities,
and corrective/preventive actions must be initiated if those are found to be
inadequate. Only capable processes can yield results in a consistent way.

2.17.6 Quality Management System Document and Data Control:

Many organisations define quality management system on the basis of
some quality standards/models. There may be some specific customer
requirements for different standards and models which may help an
organization in defining its own quality management system and
following customer directives, Statistical process control and data
management are essential for continuous improvement of processes.

2.17.7 Verification and Validation:

Verification and validation are performed by an organisation at each level
of development and for each activity. Verification includes management
reviews and technical reviews (such as code review and project planre

Software Quality

69

Software Quality
Assurance

70

view) whereas validation involves different kinds of testing (such as unit
testing and system testing, ensure that the work product meets the
predefined acceptance criteria.

Verification:

Verification defines the processes used to build the product correctly.
Verification is successful, if the processes and procedures are followed
correctly as defined by the process framework and also, they are capable
of giving results. Verification cannot directly ensure that the right product
has been built but checks if it has been built in the right way.

Validation:

Validation ensures that the right product has been built. It involves testing
a software product against requirement specifications, design
specifications, and customer needs. The method followed for development
may or may not be correct or capable, but the final output should be as per
customer requirements.

2.17.8 Software Project Management:

Project management is a specific skill required in leaders of projects (for
example, project manager). Project management involves planning,
organising, staffing, directing, coordinating and controlling the project to
satisfy customers by delivering the right product, on time, in the budgeted
cost. Nowadays project managers have to perform different tasks like
mentoring, guiding, and supporting rather than supervising people.

2.17.9 Software Configuration Management:

The work products are built and tested again and again. The defects found
during verification and validation are corrected, and the work product
undergoes further updations, integration and testing. Software
configuration management involves creating work products, maintaining
them, reviewing them by related stakeholders and updating them as and
when required. Base lined work products are released for further
development process.

2.17.10 Software Metrics and Measurement:

New methods of project management approach stress a need for
measuring the product attributes and process capabilities to achieve the
quality of final deliverables to customer. Metrics and measurement
programs are established by an organisation to capture metrics
data/process measurement to ensure that processes are followed correctly
and are capable of giving desired outputs. The lacunae found in the
processes as well as products can be taken as an input to initiate corrective
actions.

2.17.11 Software Quality Audits:

Audits defined in dictionaries as an examination of accounts. Quality
audits of software products and processes must be performed to analyse
the quality of the products as well as processes used to make them. These
can help in analysis of the situation and taking corrective/preventive
actions at proper levels. Software quality audits are performed by qualified
auditors at predefined levels. Audits can be categorised, as per the
following:

The Auditing Agency Involved:

e Internal audits are conducted by the people internal to the
organisation. It is also called as first-party audits.

e Customer audits are conducted by the customer or customer
representatives. It also called as second-party audits.

e Certification audits are conducted by third-party certification bodies.
The Phase When the Audit is Conducted:

e Kick-off audits are conducted at the start of the activity, say at a
project start.

e Phase-end audits at the end of a phase.

e Pre-delivery audits are conducted before giving any deliverable to a
customer.

e Postmortem audits are conducted at the end of the activity, say a
project closure.

Subject of the Audit:

e Product audits are conducted to ensure that planned arrangements for
quality are achieved or not.

e Process audits are conducted to ensure that processes defined are
followed or not.

2.17.12 Subcontract Management:

Suppliers are the stakeholders for the organisation and projects. An
organisation must build a strong bond of relationship with its suppliers. It
must analyse the inputs from suppliers to make sure that the organization
gets proper inputs so that outputs can be managed as planned. There must
be a methodology supported by values which stresses on developing a
long-term relationship with the suppliers and avoids least purchase cost
bids to total cost-benefit analysis. Suppliers may be supported to do
statistical process control to reduce cost and delay in supply or service
problems.

Software Quality

71

Software Quality
Assurance

72

2.17.13 Information Security Management:

Information is one of the biggest assets of the organisation. An
organisation must protect the information assets available in various
databases and all information that has been developed, captured, and used.
It must be able to use that information for its continuous/continual
improvement. Tacit knowledge is very important from security of
information. Information security is associated with three buzz words viz.
confidentiality, integrity and availability.

2.17.14 Management Review:

Management must periodically review the status of different projects and
functions to understand progress which in turn will help in achieving the
organisation's vision. Management must plan for corrective and preventive
actions if required as indicated by metrics. It must decide upon future
business plans for improvements. Management reviews must be
systematic and planned. Inputs, processes and outputs of management
reviews must be defined.

Aim at Customer Satisfaction:

Everything done by an organisation is for achieving customer satisfaction.
Management must devise a process of collecting customer feedback and
periodically measure and monitor customer satisfaction It must initiate
actions where the customer feedback is negative.

Have Measurable Objectives:

Measurable objectives are essential to track the progress made by the
organisation. Qualitative objective may or may not be sufficient to ensure
its achievement as the organisation achieves maturity, and the organisation
should try to put quantitative objectives, at least for critical processes.
Organisations must have a definition of goals along with objectives for
continuous measurements.

Understand Requirements Accurately:

Understanding and defining customer requirements is the most
challenging work for business analyst, system analyst and management. It
needs to ensure that a developer must understand the requirements
correctly and interpret the requirements into correct product. Requirement
losses in terms of misinterpretation must be reduced. Implied requirements
must be converted into defined requirements.

Implement P-D-C-A Cycle in Each Phase:

Plan-Do-Check-Act cycle of continual (continuous) improvement must be
followed to ensure improvement in product and process quality. An
organisation must plan for future, do the things as planned, check the
actual results with the planned ones and take actions on deviations.

Detect and Remove Defects as Early as Possible, Prevention is Better
Than Cure:

Software development, longer the defect remains in a system, more costly
and more difficult it is to remove it. It would be always advantageous to
detect the defect through review and testing process as early as possible.
All defects must lead to process improvements so that defect recurrence is
avoided.

Systematic Change Control and Version Control:

Any change in work product must go through the stages of draft, review,
approve and baseline. Version control and labelling is used effectively
during development process to identify work products. Many tools are
available for managing change, though it can also be done manually.
Configuration management is very important to give the right product to
the customer.

Follow Easy to Use Standards/Conventions for Naming, Commenting,
Coding and Documentation:

An organisation must define standards and guidelines which are very
useful for normal developers and testers. Common standards and
guidelines show the best way to do things. It spreads common
understanding across the tears and reduces the chances of
misinterpretation. People do not have to invent the wheel again and again
but can use the experience of others by referring to these guidelines and
standards. They must be very simple to understand and use.

Start with Compiling and Analysing Simple Metrics:

An organization must define simple metrics at the start which are useful
for planning improvements and tracking them. The main purpose of
metrics is to define improvement actions needed and measuring how much
has been achieved.

2.18 SUMMARY

This chapter is based upon the foundation of the earlier chapter where we
have seen quality perspectives. In this chapter, we have studied different
constraints faced while building and testing a software product. It tries to
link the relationship between quality improvement and productivity
improvement. We have seen the cultural difference between quality
conscious organisations ‘Q’ and less quality conscious organisations ‘q’.

This chapter elucidates various development models such as waterfall,
iterative, incremental, and prototyping. New development methodologies
like agile have also been introduced. We have also seen the criticality
definition of different systems from the perspective of different
stakeholders and how a tester must understand these system criticalities
before devising testing.

Software Quality

73

Software Quality
Assurance

74

We have learnt different types of requirements and problems faced while
defining these requirements. We have listed all the quality factors (test
factors)applicable for a system and how it affects testing.

Finally, we had dealt with quality management system as a generic model
and seen that prevention is required rather than finding and fixing the
defects.

2.19 EXERCISES

1) What are the constraints of software requirement specifications?
2) Explain relationship between quality and productivity

3) Explain the concept of ‘q” organisations and ‘Q’ organisations.
4) Explain different development models.

5) How products are classified depending upon their criticality?

6) What are different types of requirements?

7) What problems are posed by the requirement stage?

8) What are the characteristics of good requirements?

9) Explain difference between expressed and implied requirements.
10) Explain difference between present and future requirements.

11) Explain difference between generic and specific requirements.

12) List and explain quality objectives (test objectives) applicable to
software development and usage.

13) Explain generic quality management system structure for an
organisation.

2.20 REFERENCES

e Software Testing and Continuous Quality Improvement by William E.
Lewis, CRC Press, 3rd Edition, 2016.

e Software Testing: Principles, Techniques and Tools by M. G. Limaye,
Tata McGraw Hill, 2017.

e Foundations of Software Testing by Dorothy Graham, Erik van
Veenendaal, Isabel Evans, Rex Black, Cengage Learning, 3rd Edition.

e Software Testing: A Craftsman®s Approach, Paul C. Jorgenson, CRC
Press, 4th Edition, 2017.

https://www.geeksforgeeks.org/software-engineering-software- Software Quality
quality-assurance

https://www.simplilearn.com/software-quality-assurance-article

https://www.javatpoint.com/software-quality-assurance

% %k %k %k k

75

https://www.geeksforgeeks.org/software-engineering-software-quality-assurance
https://www.geeksforgeeks.org/software-engineering-software-quality-assurance
https://www.simplilearn.com/software-quality-assurance-article
https://www.javatpoint.com/software-quality-assurance

76

UNIT - 11

FUNDAMENTALS OF SOFTWARE
TESTING

Unit Structure

3.0
3.1
3.2
3.3
3.4
3.5
3.6

3.7

3.8

3.9

3.10
3.11

Objectives

Introduction

Necessity of testing

What is testing?

Fundamental Test process

Psychology of testing

Historical Perspective of Testing

3.6.1 Debugging —Oriented Testing

3.6.2 Demonstration-Oriented Testing
3.6.3 Destruction-Oriented Testing

3.6.4 Evaluation-Oriented Testing

3.6.5 Prevention-Oriented Testing
Definition of Testing

3.7.1 Why Testing is Necessary?
Approaches to Testing

3.8.1 Big Bang Approach to Testing

3.8.2 Total Quality Management Approach
3.8.3 Total Quality Management as Big Bang Approach
3.8.4 TQM in Cost Perspective

3.8.5 Characteristics of Big Bang Approach
Popular Definitions of Testing

3.9.1 Traditional Definition of Testing
3.9.2 What is testing?

3.9.3 Manager’s View of Software Testing
3.9.4 Tester’s View of Software Testing
3.9.5 Customer’s View of Software Testing
3.9.6 Objectives of Testing

3.9.7 Basic Principles of Software Testing
3.9.8 Successful Testers

3.9.9 Successful Test case

Testing During Development Life Cycle
Requirement Traceability Matrix

3.11.1 Advantages of Requirement Traceability Matrix

3

3.12
3.13

3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23

3.24
3.25
3.26

3.11.2 Problems with Requirement Traceability Matrix
3.11.3 Horizontal Traceability

3.11.4 Bi-directional Traceability

3.11.5 Vertical Traceability

3.11.6 Risk Traceability

Essentials of Software Testing

Workbench

3.13.1 Tester’s Workbench

Important Features of Testing Process

Misconceptions about Testing

Principles of Software Testing

Salient Features of Good Testing

Test Policy

Test Strategy or Test Approach

Test Planning

Testing Process and Number of Defects Found in Testing
Test Team Efficiency

Mutation Testing

3.23.1 Reasons for deviation of test team efficiency from 100% for
Test team as well as Mutation Analysis

Summary
Exercise
References

3.0

OBJECTIVES

Afte
[]

r studying this chapter the learner would be able to:
Understand the basic terminologies used in testing.
Understand different approaches to testing.

Understand different Principles of Software testing.
Differentiate between “TQM” and “Big Bang” Approaches.
Differentiate between different types of testing.

Recognise features of good testing.

3.1

INTRODUCTION

Software testing is the process of examining the correctness of the
software product by considering all its attributes like reliability,
scalability, portability, re-usability and usability. It also evaluates the
execution of software components to find the bugs or defects. Software

Fundamentals of Software
Testing

77

Software Quality
Assurance

78

development activities during a life cycle have corresponding verification
and validation activities at each stage of development.

Software verification involves comparing a work product with processes,
standards, and guidelines in simple words, to check that “are we building
the software correctly?”

Software validation activities are associated with checking the outcome
of developed product and the processes used with respect to standards and
expectations of a customer, in other words, to check “are we building the
correct system?” It is considered as a subset of software quality assurance
activities though there is a huge difference between quality assurance and
quality control. Cost of software verification as well as validation comes
under appraisal cost, when one is doing it for the first time. When repeat
verification/validation (such as retesting or regression testing) is done, it is
defined as cost of failure.

There are many stages of software testing as per software development life
cycle. It begins with feasibility testing at the start of the project, followed
by contract testing and requirements testing, then goes through design
testing and coding testing till final acceptance testing, which is performed
by customer/user.

The main aim of the most testing methods is to systematically and actively
locate the defects/errors in the program and repair them. Debugging is
usually the next stage of testing. Debugging begins with some indication
of the existence of an error.

3.2 NECESSITY OF TESTING

Software testing involves verification as well as validation activities such
as checking the compliance of the artifacts and activities with respect to
defined processes and standards, and executing the software program to
ensure that it performs correctly as desired by the customer and expressed
in requirement specification agreed between development team and
customer, Testing involves finding the difference between actual
behaviours with respect to the expected behaviours of an application.
Testing helps people (developers, testers, managers, the users) to
understand what the software does and how well it does. To ensure the
quality of the software before it goes live, Testing is a necessity.

3.3 WHAT IS TESTING?

Testing is a term used to evaluate or examine or to check the software
product that it is meeting the expected behaviour or not. In software
development, Testing is used at key checkpoints in overall process to
determine whether objectives are met or not. For example, in software
development, product objectives are sometimes tested by product user
representatives. When the design is complete, coding follows and the
finished code is then tested at the unit or module level by each
programmer; at the component level by the group of programmers

involved; and at the system level when all components are combined
together. At early or late stages, a product or service may also be tested
for usability.

3.4 FUNDAMENTAL TEST PROCESS

Testing must be a planned process rather than a onetime activity. It
requires discipline to act upon it. The quality and effectiveness of testing
are primarily determined by the quality of test processes used. The
activities of testing can be divided into the following basic steps:

(i) Planning & Control

(i1) Analysis & Design

(iii) Implementation & Execution

(iv) Evaluating exit Criteria and Reporting
(v) Test Closure Activities

Let us discuss each of these steps in detail:
(1) Planning & Control:

Test Planning is the fundamental test process that involves defining the
objective and goal of the testing process. It is a continuous process and
performed in all life cycles. It helps to determine the scope and risks and
the objectives of the testing. It helps to decide the overall approach of
testing. It also helps in assigning different resources to different activities.
It involves scheduling test analysis and design tasks, test implementation,
execution and evaluation.

Control is the activity of comparing actual progress against the plan and
reporting the status, including the deviations from the plan. It involves
taking actions necessary to meet the mission and objectives of the project.

(ii) Analysis & Design:

It is the fundamental test process in which test cases and test conditions
are defined. In this process, major tasks that are performed are reviewing
the test basis i.e. information on which the test cases are based, such as
requirements, design specifications, product risk analysis, architecture etc.,
identifying the test conditions based on the analysis of test items, writing
test cases and identifying the necessary test data to support the test
conditions and test cases, designing the test environment.

(iii) Implementation & Execution:

Test implementation and execution is a fundamental test process in which
actual work is done. It involves actual running the specified test on a
computer system either manually or by using an automated test tool. Test
implementation involves major tasks like developing and prioritizing the
test cases, creating test suites from test cases that help in efficient test

Fundamentals of Software
Testing

79

Software Quality
Assurance

80

execution, re-executing the test cases that failed earlier to confirm the fix
and also it also involves keeping the log of outcome of test execution. A
test log is the status of the test case i.e. Pass or fail.

(iv) Evaluating exit Criteria and Reporting:

Evaluating exit criteria is a process that defines when to stop testing. It
depends on various parameters like risk, functionality or coverage of code.
It can also depend on the business risk, cost and time. It actually varies
from project to project. Exit criteria starts when the maximum test cases
are executed with certain pass percentage, bug rate falls below certain
level and when the deadlines are met. Evaluating exit criteria must assess
if more test are needed or if the exit criteria specified should be changed.
It also involves writing a test summary report for stakeholders.

(v) Test Closure Activities:

It is the last process in the fundamental test process. In this the data is
collected from completed test processes and test wares. It ensures that
final deliverable has been delivered or not and also ensures that all
incident reports have been resolved. It involves the finalisation and
archiving the test wares such as scripts, test environments etc. for later
reuse. Test closure activity also includes handing over the test ware to the
maintenance organisation so that they give support to the software. It also
includes the evaluation of how the testing went and learn lessons for the
future releases and projects.

3.5 PSYCHOLOGY OF TESTING

In software testing, psychology plays an extremely important role. It is
one of the factors that stays behind the scene but has a great impact on the
end result. It can be categorised majorly into three sections:

(i) Mind-set of Developers and Testers:

SDLC is a combination of various activities which are performed by
different individuals using their expertise and knowledge. It is an
unknown fact that for successful development of software individuals
having different skill and mind set are required. For e.g. as we all know
testing and analysing the software is much more different than the
developing or programming so is the need for the right individuals with
right expertise and right mind set to develop the software with unique
features and superior quality. Moreover, the change in the development
and the testing techniques and methodologies has made this as a necessary
requirement.

(i) Communication in a constructive manner:

In any process whether technical or non-technical requires constant
communication between team members to successfully achieve the goals.
Communicating in a polite and courteous manner can help build strong
relationship and avoid misunderstandings. This goes well with the tester,

finding errors and reporting them can be an achievement for him but is
merely an inconvenience for programmers, designers, developers and
other stake holders of the project. So, it is important for the testers to
impart defects and failures as objectively and politely so as to avoid
upsetting and hurting other members related to the project.

(iii) Test Independence:

The importance of independent software testing is comparatively higher
than self-testing or group testing as it is more effective in finding and
detecting bugs and defects. This type of testing is done by individuals who
are not related to the project directly or are from different organisation and
are hired mainly for testing the quality as well as the effectiveness of the
developed product.

3.6 HISTORICAL PERSPECTIVE OF TESTING

The concept of independent testing did not prevail during the initial days
of software development. It was believed that whatever the developers
were doing was the best way of producing the product and the customer
was expected to use it as it is. If there were any problems reported by
customer/users, they would be fixed by the developers, and the application
would be given again to customer/users. The primary responsibility of
testing was with customers/users (and not with developers) during the
production phase.

Glenford Myer introduced software testing as a separate phase in software
development life cycle. According to him, software testers were expected
to test software with all the possible combinations. The main intention was
to create a software which would never fail in production. Testers were
expected to have an attitude to break the software so that it would be
eventually corrected and would never fail during use. This approach
separated debugging from testing, and an independent testing community
was created. Different phases of software testing evolution as a separate
discipline in software development activities were followed in a cycle.

3.6.1 Debugging-Oriented Testing:

During the initial phase, software testing was considered as a part of
software development. Developers were expected to perform debugging
on the application, which they were building. Tests were not documented,
and were mainly done in a heuristic way. Generally, testing was
completely ‘positive testing’ to see whether the implementation was
working correctly or not.

3.6.2 Demonstration-Oriented Testing:

In this phase, there was an introduction of software testers independent of
development activity. Their main aim was to show to customer/users that
the software really works. Although, this phase was much advanced than
the initial phase of debugging, yet the approach was still positive testing
only. The approach was oriented towards demonstration that the software

Fundamentals of Software
Testing

81

Software Quality
Assurance

82

could do something which was expected by the customer/users. Test cases
were generally derived from the requirement statements which were
oriented towards successful demonstration.

3.6.3 Destruction-Oriented Testing

This approach was the basis of Glenford Myer's theory of software resting.
As per this approach, it was not sufficient to only test the software
positively but users must also be protected from any conceivable failure of
application. The tester’s responsibility changed from ‘proving that
software works under normal conditions’ to ‘proving that software does
not fail at some abnormal instances’. Often, the testers were too
imaginative in breaking the software, and defects for which there were no
feasibility of happening were reported as defects. This phase was quiet
frustrating to software developers -testers were considered as demons and
testing was considered as a hurdle to be passed before delivering the
application to the customer.

3.6.4 Evaluation-Oriented Testing:

Evaluation-oriented testing is executed nowadays at many places of
software development where the product as well as process of software
development is evaluated. It corresponds to the testing process definition
where software is evaluated against some fixed parameters derived from
quality factors (test factors). Quality factors/test factors are introduced in
this phase as a part of customer requirements. It is believed that there is no
possibility of software without any defect, but some level of defect may be
acceptable to the customer. This approach also refers to level of
confidence given to customer that application will work as expected by the
user. The confidence level is determined and application is evaluated
against it. Confidence-level expectations are linked with cost of testing.

3.6.5 Prevention-Oriented Testing:

Prevention-based testing is done in some highly matured organisations
while for many others, the concept still utopia. Testing is considered as a
prevention activity where process problems are used to improve it so that
defect-free products can be produced. Every defect found in testing is
considered as process lacunae, and efforts are initiated to improve the
processes of development. This reduces dependency on testing as a way to
improve the quality of software. This helps in reducing the cost by
producing right product at the first time.

3.7 DEFINITION OF TESTING

Testing is defined as 'execution of a work product with intent to find a
defect’. The primary role of software testing is not to demonstrate the
correctness of software product, but to expose hidden defects so that they
can be fixed. Testing is done to protect the common users from any failure
of system during usage.

This approach is based on the assumption that any amount of testing
cannot show that software product is defect free. If there is no defect
found during testing, it can only show that the scenario and test cases used
for testing did not discover any defect. From user's point of view, it is not
sufficient to demonstrate that software is doing what it is supposed to do.
This is already done by system architects in system architecture design
and testing, and by developers in code reviews and unit testing. Testers are
involved mainly to ensure that the system is not doing what it is not
supposed to do. Their work includes assurance that the system will not be
exposed to any major risks of failure when a normal user is using it. Some
people call this approach as negative approach of testing. This negative
approach is built upon few assumptions and risks for the software being
developed and tested. These assumptions and risks must be documented in
the test plan while deciding test strategy or test approach.

3.7.1 Why Testing Is Necessary?:

One may challenge testing activities by asking this question- ‘If any level
of testing cannot declare that there is no defect in the product, then why it
is required at all?” In normal life, we find highly qualified and experienced
people involved in each stage of development from requirement gathering
till acceptance of software. Finding a defect in software is sometimes
considered as challenging the capabilities of these people involved in
development phases. Testing is necessary due to the following reasons.

e Understanding of customer requirements may differ from person to
person. One must challenge the understanding at each stage of
development, and there must be some analysis of customer
expectations. Approach-related problems may not be found when
there is no detail analysis by another person not involved emotionally
with development. Everything is considered as ‘OK’ unless there is an
independent view of a system.

e Development people assume that whatever they have developed is as
per customer requirements and will always work. But it is imperative
to create real-life scenario and undertake actual execution of a product
at each level of software building (including system level) to assess
whether it really works or not.

e Different entities are involved in different phases of software
development.

Their work may not be matching exactly with each other or with the
requirement statements. Gaps between requirements, design and coding
may not be traceable unless testing is performed in relation to
requirements.

e Developers may have excellent skills of coding but integration issues
can be present when different units do not work together even though
they work independently. One must bring individual units together
and make the final product, as some defects may be possible when the
sources are developed by people sitting at different places.

Fundamentals of Software
Testing

83

Software Quality
Assurance

84

e There is a possibility of blindfold and somebody has to work as the
devil's representative. Every person feels that what he/she has done is
perfect and there is no chance of improvement. Testers have to
challenge each assumption and decision taken during development.

3.8 APPROACHES TO TESTING

There are many approaches to software testing defined by the experts in
software quality and testing, the approaches may differ significantly as per
customer requirements, type of the system being developed as well as
management thinking about software development life cycle followed by
software, type of project, type of customer, and maturity of development
team. These approaches form the part of testing strategy. Few of them are
discussed below.

3.8.1 Big Bang Approach of Testing:

Characteristics of ‘Big bang’ approach involve testing software system
after development work is completed. This is also termed ‘system testing’
or final testing done before releasing software to the customer for
acceptance testing. This testing is the last part of software development as
per waterfall methodology. Big bang approach has main thrust on black
box testing of software to ensure that the requirements as defined and
documented in requirement specifications and design specifications are
met successfully. Testing done at the end of development cycle may show
the defects pertaining to any phase of development such as requirements,
design, and coding. Roughly saying, the phase-wise defect origination
follows the trend shown in Table 3.1.

Table 3.1 Phase-wise defect distribution

Development Phases Percentage of defects
Requirements 58
Design 35
Coding 5
Other 2

In case of big bang approach, software is tested before delivery using the
executable or final product. It may not be able to detect all defects as all
permutations and combinations cannot be tested in system testing due to
various constraints like time. In such type of testing, one may find a
cascading effect or camouflage effect, and all defects may not be detected.
It may discover the failures but cannot find the problems effectively.
Sometimes, defects found may not be fixed correctly as analysis and
defect fixing can be a problem.

3.8.2 Total Quality Management Approach:

If there is a process definition for testing software, and these processes are
optimised and capable, no (less) defects are produced and no (few)
undetected defects are left in the software when it is delivered to the

customer. Defect removal costs are approximately 10 times more after
coding than before coding. This is a cost associated with fixing the
problems belonging to requirements, design, coding, etc. If the defect is
not detected earlier but found in acceptance testing or further down the
line during warranty, it may be much more costly. Defect removal cost
would be 100 times more during production (at user site) than before
coding. This may involve deploying people at customer site, loss of
goodwill, etc. which is a part of failure cost.

3.8.3 Total Quality Management (Tgm) As Against Big Bang
Approach:

Figure3.1 is a very famous cost triangle defined by TQM. If the
organisation has very good processes defined which are optimised and
capable, and can produce consistent results again and again, then it gives
advantage in productivity and effectiveness in development. It can reduce
cost of production significantly.

Stage 0 Cost=0

Stage 1 Cost=10

Stage 2 Cost= 100
Stage 3/ \ Cost =1000

Fig.3.1 TQM Cost Triangle

Stage 0:

There may be a stage of maturity in an organisation where no
verification/validation is required to certify the product quality. The cost
involved is

‘Zero’ or the benefits derived by investment in process definition,
optimisation and deployment make quality free. There is a famous saying
‘quality is free’.

Theoretically, if the processes are optimised, there is no need of
verification/validation as the defects are not produced at all.

Stage 1:

Even if some defects are produced during any stage of development in
such quality environment, then an organisation may have very good
verification processes which may detect the defects at the earliest possible
stage and prevent defect percolation. There will be a small cost of
verification and fixing, but stage contamination can be saved which helps
in finding and fixing the defects very fast. This is an appraisal cost

Fundamentals of Software
Testing

85

Software Quality
Assurance

86

represented by 10°. This is the cast which reduces the profitability of the
organisation due to scrap, rework and reverification.

Stage 2:

If some defects escape the verification process, still there are capable
validation processes for filtering the defects before the product goes to a
customer.

Cost of validation and subsequent defect fixing is much higher than
verification. This cost is represented by ‘100’. One may have to go to the
stage where defect was introduced in the product and correct all the stages
from that point onward till the defect-detection point. The cost is much
higher, but till that point of time the defect has not reached the customer, it
may not affect customers’ feelings or goodwill.

Stage 3 At the bottom of the pyramid, there is the highest cost associated
with the defects found by customer during production or acceptance
testing. This is represented by ‘1000” showing that cost paid for paid for
fixing such defect is huge. There may be customer complaints, selling
under concession, sending people onsite for fixing defects in front of the
customer, loss of goodwill, etc. This may result into premature closure of
relationship and bad advertisement by the customer.

3.8.4 Tgm in Cost Perspective:

Total quality management (TQM) aims at reducing the cost of
development and cost of quality through continual improvement. Often, it
is termed ‘Quality is free’. It means that the cost of quality must repay
much more than what has been invested. TQM defines the cost incurred in
development and quality into three parts as follows.

Green Money/Cost of Prevention:

Green money is considered as an investment by the organization in doing
quality work. It is a cost spent in definition of processes, training people,
developing foundation for quality, etc. It gives return on investment, and
includes all prevention-based costs. If an organisation has defined and
optimised processes, trained people, and fixed guidelines and standards for
doing work which are allowed, then the return on such investment can be
seen in terms of less inspection and testing, and higher satisfaction with
repeat orders. This improves profitability of an organisation.

Blue Money/Cost of Appraisal:

Blue money is a cost incurred by the organisation during development, in
the form of first-time review testing which gets returned in future. It does
not earn profit, but it is an essential part of development process to ensure
the process capability. All appraisal techniques used during SDLC such as
first-time verification or validation are considered as blue money. First-
time testing helps in certifying that nothing has gone wrong and work
product can go to the next stage. In initial phases, the cost of appraisal
increases, but as the organisational process maturity increases, this cost

must go down as fewer samples are required to prove the correctness of
the process of making software.

Red Money/Cost of Failure:

Red money is a pure loss for the organisation. It involves money lost in
scrap, rework, sorting, etc. It also represents loss due to various wastes
produced during development life cycle, and directly reduces the profit for
the organisation and the customer may not pay for it. As the investment or
green money increases, failure cost must go down. All cost incurred in
reinspection, retesting, and regression testing represent cost of failure.

3.8.5 Characteristics of Big Bang Approach:

Big bang approach talks about testing as the last phase of development.
All the defects are found in the last past of rework can be huge.

e Testing is the last phase of development life cycle when everything id
finalised. Heavy costs and efforts of testing are seen at the end of
software development life cycle representing ‘Big bang’ approach.
Most of the testing is concentrated in this phase only, as there are no
previous verification or validation activities spread during the
development phases.

e Big bang approach is characterized by huge rework, retesting, scrap,
sorting of software components, and programs after the complete
software is built. There may be special teams created to fix defects
found in final testing. Big bang works only on correction, and there
are no corrective and preventive actions and process improvements
arising from their defects. The processes remain immature and every
time, defect fixing becomes an invention of the wheel.

e Regression testing reveals many issues, as correction may not be
correct and may introduce some defects in the product. There are
many interdependencies between various entities while building
software product, and these may get affected adversely. When some
areas in the software units are touched for correction or fixing of
defect, dependent components may get affected in a negative way.
These may be termed ‘regression defects’.

e All requirements and designs cannot be covered in testing. As the
schedule of delivery in fixed and development generally lags behind
the schedule, thus huge adhoc, exploratory, monkey, and random
testing are done in this part of testing. Testing is done in a hurry, and
many iterations of defect fixing and testing are done in the shortest
possible time. Some defects may flow to customer an ‘known defects’
or sometimes they are not declared at all.

e The major part of software build never gets tested as coverage cannot
be guaranteed in random testing. Software is generally tested by
adhoc methods and intuition of testers. Generally, positive testing is

Fundamentals of Software
Testing

87

Software Quality
Assurance

88

done to prove that software is correct which represents second level of
maturity.

Organisations following big bang approach are less matured and pay a
huge cost of failure because of several retesting and regression testing
along with defect-fixing cycles. Success is completely dependent on good
development, testing team and type of' customer. The following can be
observed.

e Verification activities during software development life cycle can find
out about two-third of the total number of defects found. The cost
involved in fixing such defects is much less than any other way of
finding the defects and fixing them. There is less stage contamination
as defects are prevented from progressing from one stage of
development to another.

e Validation in terms of unit testing can find out about three-fourth of
the remaining defects. Defects are found in the units and fixed at that
point itself so that they do not occur further down the line. It reduces
the chances of defects being found in system testing. Unit testing
validates an individual unit.

e Validation in terms of system testing can find out about 10% of the
total number of defects. System testing must be intended to validate
system-level requirements along with some aspect of design. Some
people term system testing as certification testing while some people
term acceptance testing as certification testing. If the exit criteria of
system testing (acceptance criteria by customer) are met, system may
be released to the customer.

Remaining defers (about 5-10%) go to the customer, unless the
organisation makes some deliberate efforts to prevent them from leaking
to production phase. Big bang approach may not be useful in preventing
defects from going to the customer, as it can find only 5% of the total
defects present in the product. In other terms, theoretically, to achieve the
effectiveness of life-cycle testing, one may need about 18cycles of system
testing. This can prove to be a costly affair.

3.9 POPULAR DEFINITIONS OF TESTING

Let us try to define ‘software testing” keeping the background of Big bang
approach in mind. All definitions of testing indicate that testing is a life-
cycle operation and not the activity at the end of development phase. No
definition of testing can really cover all aspects of testing. Hence, no
definition is complete but indicates a part of what software testing is.

3.9.1 Traditional Definition of Testing:

There can be many definitions of testing pertaining to different instances.
Few of them are as follows.

e Testing is done to establish confidence that the program does what it
is supposed to do. It generally covers the functionalities and features
expected in the software under testing. It covers only positive testing.

e Testing is considered as any activity aimed at evaluating an attribute
or capability of a program or system with respect to user
requirements. To some extent, this definition may be considered as
correct, as number of defects found in testing is directly proportional
to number of defects remaining in the system.

e Testing is a process of demonstrating that errors are not present in the
product. This approach is used in acceptance testing where if the
application meets acceptance criteria, then it must be accepted by the
customer.

e Testing gives number of defects present which indirectly gives a
measurement of software quality. More number of defects indicate
bad software and bad processes of development.

e Testing is done to evaluate the program or system used for making
software. As we consider that defects are introduced due to incapable
processes, testing may be used to measure process capability to some
extent.

e Testing is used to confirm that a program performs its intended
functions correctly. Intended functionality may be defined from
requirement specifications.

If testing is defined as a process, then it is designed to,
e Prove that the program is error free or there is no defect present

e Establish that the software performs its functions correctly and is fit
for use

e Establish that all expectations of functionalities are available

Testing may not be any of these certification activities. If the goal of
testing is to prove that an application works correctly, then the tester
should subconsciously work towards this goal, choosing test data that
would prove that the system is working correctly. The reverse would be
true if the goal of testing is to locate defects so that eventually these would
be corrected. Test data should be selected with an eye towards providing
the test cases that are likely to cause product failure.

3.9.2 What Is Testing?:

Let us try to define what is meant by testing with this background. Testing
is completely guided by software requirements specifications and design
specifications, and supported by test strategy and test approach depending
on assumptions and risks of development, testing and usage. Testing
process may include the following.

Fundamentals of Software
Testing

89

Software Quality
Assurance

90

An activity of identification of the differences between expected
results and actual results produced, during execution of software
application. Difference between these two results, suggests that there
is a possibility of defect in the process and/or work product. One must
note that this may or may not be a defect.

Process of executing a program with the intention of finding defects.
It is expected that these defects may be fixed by the development
team during correction, and the root causes of the defects are also
found and closed during corrective actions. This can improve
development process.

Detecting specification-related errors and deviations of working
application with respect to the specifications. Requirement
mismatches and misinterpretation must be detected by testing.

Establish confidence that a program does what it is supposed to do.
This defines the confidence level imparted by software testing to a
customer that the software will work under normal conditions. The
expectation of confidence level is a function of depth and width of
software testing.

Any activity aimed at evaluating an attribute of a program or
software. Acceptance testing is an activity defining whether the
software has been accepted or not.

Measurement of software quality in terms of coverage of testing (in
terms of requirements, functionality, features, and number of defects
found) can give information about confidence level imparted to a
customer.

Process of evaluating processes used in software development. Every
failure/defect indicates a process failure. This can be used to improve
development processes.

Verifying that the system satisfies its specified requirements as
defined, and is fit for normal use. Requirements may be elicited with
the help of the customer.

Confirming that program performs its intended functions correctly.

Testing is the process of operating a system or component under
specified conditions, observing and recording the results of such
processing, and evaluating some aspect of system or component on
the basis of testing.

Software testing is the process of analysing a software item to detect
the difference between existing and required conditions, and to
evaluate the feature of the software item.

We have previously discussed about different stakeholders and their
interests in software development and testing. Let us try to analyse the
expectations or views of different stakeholders about testing.

3.9.3 Manager's View of Software Testing:

The senior management from development organisation and customer
organisation have the following views about testing the software product
being developed.

e The product must be safe and reliable during use, and must work
under normal as well as ad verse conditions when it is actually used
by the intended users.

e The product must exactly meet the user's requirements. These may
include implied as well as defined requirements.

e The processes used for development and testing must be capable of
finding defects, and must impart the required confidence to the
customer.

3.9.4 Tester's View of Software Testing:

Testers have different definitions about software testing, as mentioned
below.

e The purpose of testing is to discover defects in the product and the
process related to development and testing. This may be used to
improve the product and processes used to make it.

e Testing is a process of trying to discover every conceivable fault or
weakness in a work product so that they will be corrected eventually.
Random testing sometimes becomes too imaginative, and
unconceivable defects may be found.

3.9.5 Customer’s View of Software Testing:

Customer is the person or entity who will be receiving using the product
and will be paying for it. Testers are considered as the representatives of
the customer in system development.

e Testing must be able to find all possible defects in the software, along
with related documentation so that these defects can be removed.
Customer must be given a product which does not have defects (or
has minimum defects).

e Testing must give a confidence that software users are protected from
any unreasonable failure of a product. Mean time between failures
must be very large so that failures will not occur, or will occur very
rarely.

e Testing must ensure that any legal or regulatory requirements are
compiled during development.

Fundamentals of Software
Testing

91

Software Quality
Assurance

92

Testing is an activity which is expected to reduce the risk of software's
failure in production. All stakeholders have many expectations from
testing. Let us try to analyse the meaning of a successful tester.

3.9.6 Objectives of Testing:

To satisfy the definition of testing given earlier, testing must accomplish
the following things.

e Find a scenario where the product does not do what it is supposed to
do. This is deviation from requirement specifications.

e Find a scenario where the product does things it is not supposed to do.
This includes risk.

The first part refers to specifications which were not satisfied by the
product while the second part refers to unwanted side effects while using
the product.

3.9.7 Basic Principles of Testing:
The basic principles on which testing are based are given below.

e Define the expected output or result for each test case executed, to
understand if expected and actual output matches or not. Mismatches
may indicate possible defects. Defects may be in product or test cases
or test plan.

e Developers must not test their own programs. No defects would be
found in such kind of testing as approach-related defects will be
difficult to find. Development teams must not test their own products.
Blindfolds cannot be removed in self-testing.

e Inspect the results of each test completely and carefully. It would help
in root cause analysis and can be used to find weak processes. This
will help in building processes rightly and improving their capability.

e Include test cases for invalid or unexpected conditions which are
feasible during production. Testers need to protect the users from any
unreasonable failure so that one can ensure that the system works

properly.

e Test the program to see if it does what it is not supposed to do as well
as what it is supposed to do.

e Avoid disposable test cases unless the program itself is disposable.
Reusability of test case is important for regression. Test cases must be
used repetitively so that they remain applicable. Test data may be
changed in different iterations.

e Do not plan tests assuming that no errors will be found. There must be
targeted number of defects for testing. Testing process must be
capable of finding the targeted number of defects.

e The probability of locating more errors in any one module is directly
proportional to the number of errors already found in that module.

3.9.8 Successful Testers:

The definition by testers about testing talks about finding defects as the
main intention of testing. Testers who find more and mare number of
defects are considered as successful. This gives some individuality to
testing process which talks about ability of a tester to find a defect. There
is a difference between executing a test case and finding the defect. This
needs an ability to look for detailing, problem areas, and selection of test
data accordingly.

e Testers must give confidence about the coverage of requirements and
functionalities as defined in test plan.

e Testers must ensure that user risks are identified before deploying the
software in production.

e Testers must conduct SWOT analysis of the software and processes
used to make it. This can help in strengthening the weaker areas and
the processes responsible for defects so that the same problems do not
recur.

3.9.9 Successful Test Case:

Testing is a big investment and justifies its existence, if it catches a defect
before going to the customer. Every defect caught before delivery means
the probability of finding a defect by a customer is reduced. If testing does
not catch any defect, it is a failure of testing and a waste for the
organisation as well as customer. Testing involved in software
development life cycle starts from requirements, goes through design,
coding, and testing till the application is formally accepted by
user/customer.

3.10 TESTING DURING DEVELOPMENT LIFE CYCLE

Let us discuss life cycle phase and testing associated with it. This
discussion is based on the consideration that development methodology
follows waterfall cycle/model.

Requirement Testing:

Requirement testing involves mock running of future application using the
requirement statements to ensure that requirements meet their acceptance
criteria. This type of testing is used to evaluate whether all requirements
are covered in requirement statement or not.

This type of testing is similar to building use cases from the requirement
statement. If the use case can be built without making any assumption
about the requirements, by referring to the requirements defined and
documented in requirement specification documents, they are considered
to be good. The gaps in the requirements may generate queries or

Fundamentals of Software
Testing

93

Software Quality
Assurance

94

assumptions which may possibly lead to risks that the application way not
performs correctly. Gaps also indicate something as an implied
requirement where the customer may be contacted to get the insight into
business processes. It is a responsibility of business analyst to convert (as
many as possible), implied requirements to expressed requirements. Target
is 100%, though it is difficult to achieve.

Requirement testing differs from verification of requirements. Verification
talks about review of the statement containing requirements for using
some standards and guidelines, while resting talks about dummy execution
of requirements to find the consistency between them, i.e., achievement of
expected results must be possible by requirements without any
assumption. Verification of requirements may talk about the compliance
of an output with defined standards or guidelines.

The characteristics of requirements verification or review may include the
following.

e Completeness of requirement statement as per organisation standards
and formats. It must cover all standards like performance and user
interface expected by customer organisation.

e Clarity about what is expected by the users at each step of working
while using an application. It must include the expected output by the
customer. It may be in the form of error messaging, screen outputs,
priority outputs, etc.

e Measurability of expected results, possibly in numerals, so that these
results can be tested. Test case will have expected results which must
satisfy measurement criteria defined. ‘User friendliness’ or ‘fairly
fast’ can create confusion about requirements.

e Testability of the scenario defined in requirement statement is must.
Some requirements like application must work 24 x 7 for 10 years
may not be directly testable.

e Traceability of requirements further down the development life cycle
must be ensured. Requirement traceability starts at requirement phase
and gets populated as one goes down the life cycle.

Theoretically, each statement in requirement document must give atleast
one functional/non-functional test scenario which may result into test
cases. Requirements must be prioritised as ‘must’, ‘should be’ and ‘could
be’ requirements. The customer is an entity to confirm requirement
priority.

Requirement validation must define end-to-end scenario completely so
that there is no gap. It must talk transactions involved and information
transfer from one system to another.

Design Testing:

Design testing involves testing of high-level design (system architecture)
as well as low-level design (detail design). High-level design testing
covers mock running of future application with other prerequisites, as if it
is being executed by the targeted user in production environment. This
testing is similar to developing flow diagrams from the designs, where
flow of information is tracked from start to finish. When the flow is
complete, the design may be considered as good. Wherever the flow is not
defined, or not clear about where it will lead to, there are defects with
design which must be corrected. For low-level design, system
requirements and technical requirements are mapped with the entities
created in design to ensure adequacy of detail design.

Design verification talks about reviewing the design, generally by the
experts who may be termed as subject-matter experts. It involves usage of
standards, templates, and guidelines defined for creating these designs.
Design verification ensures that designs meet their exit criteria.

e Completeness of design, in terms of covering all possible outcomes of
processing and handling of various controls as defined by
requirements.

e Clarity of Row of data within an application and between different
applications which are supposed to work together in production
environment.

e Tenability of a design which talks about software structure and
structural testing.

e Traceability with requirements.
e Design toast covers all requirements.
Code Testing:

Code files, Tables, Stored procedures etc are written by developers as per
guidelines, standards, and detail design specifications. In reality,
developers do not implement requirements directly but they implement
detail design as delivered by the designer. Code testing (unit testing) is
done by using stubs/drivers as required. Code review is done to ensure that
code files written are,

¢ Readable and maintainable in future. There are adequate comments
available.

e Testable in unit testing.

e Traceable with requirements and designs. Anything extra as well as
anything missing can be considered as a defect.

e Testable in integration and system testing.

Fundamentals of Software
Testing

95

Software Quality
Assurance

96

e Optimised to ensure better working of software. Reusability creates a
lighter system.

Test Scenario and Test Case Testing:

Test scenarios are written by testers to address testing needs of a software
application. Test cases are derived from test scenarios which are related to
requirements and designs. Test scenarios can be functional as well as
structural, depending upon the type of requirement and design they are
addressing.

e Test scenario should be clear and complete, representing end-to-end
relationship of what is going to happen and also, the possible
outcomes of such processing.

e Test scenarios should cover all requirements. Test scenarios may be
prioritised as per requirement priorities.

e Scenarios should be feasible so that they can be constructed during
testing.

e Test cases should cover all scenarios completely.

e Test scenarios and test cases must be prioritised so that in case of less
time availability, the major part of the system (where priority is
higher) is tested.

3.11 REQUIREMENT TRACEABILITY MATRIX

Some quality management models and standards prescribe complete
traceability of a software application from requirements through designs
and code files up to test scenario, test data, test cases and test results.
Requirement traceability matrix is one way of doing the complete
mapping for the software. One can expect a blueprint of an entire
application using requirement traceability matrix.

Typical requirement traceability matrix is as shown in Table 3.2.

Table 3.2 Requirement traceability matrix
Code files/
Require- High-level Low-level Stored Proce-

ments Design design dures/TBLs Test scenario Test cases Test results

3.11.1 Advantages of Requirement Traceability Matrix:

As discussed earlier, Requirement traceability matrix is a blueprint of
software under development. All the agencies concerned with software
can use it to understand the software in a better way. It may answer
questions about what is being developed and how it will be implemented.

It helps in tracing if any software requirement is not implemented, or if
there is a gap between requirements and design further down the line. It
also helps to understand if any redundancy has been created in the
application.

e Entire software development can be tracked completely through
requirement traceability matrix.

e Any test-case failure can be tracked through requirements, designs,
coding, etc.

e Any changes in requirements can be affected through entire work
product upto test cases and vis-a-vis any test case failure can be traced
back to requirements.

e The application becomes maintainable as one has complete
relationship from requirement fill test results available.

3.11.2 Problems with Requirement Traceability Matrix:

Theoretically, all software’s must have requirement traceability matrix,
but in reality, most of the software’s do not have it. The reasons are
numerous; some of the prominent ones are listed below.

e Number of requirements is huge. It is very difficult to create
requirement traceability matrix manually. For using some tools, one
needs to invest money. Also, people may need to be trained for using
tools.

e There may be one-to-many, many-to-one and many-to-many
relationships between various elements traceability matrix, when we
are trying to connect columns and rows of traceability matrix and
maintaining these relationships need huge efforts.

e Requirements change frequently, and one needs to update the
requirement traceability matrix whenever there is a change. Similarly
designs, code and test cases may also change which will affect
traceability matrix.

e Developing teams may not understand the importance of requirement
traceability matrix, if development follows waterfall model, and
during maintenance, it may be too late to create it. Incremental and
iterative developments are the major challenges for maintaining
traceability.

e A customer may not find value in it and may not pay for it.
3.11.3 Horizontal Traceability:

When an application can be traced from requirement through design and
coding till test scenario and test cases upto test results, it is termed as
horizontal traceability. On failure of any test case, we must be able to find
which requirements have not been met. Any design which does not have

Fundamentals of Software
Testing

97

Software Quality
Assurance

98

requirement. Introduces an extra feature which may be considered as
defect. Similarly, when any requirement is not traceable to design, that
requirement is not implemented at all. Same thing can happen in the
relationship between design and coding, coding and test scenario, and
also, test scenario and test case. When any entity can't be traced in forward
direction, horizontal traceability is lost.

3.11.4 Bidirectional Traceability:

One must be able to go from requirements, designs, coding, and testing to
reach the test result. Reverse must also be possible, where one may start
from the result and go to requirements. One must be able to go in any
direction from any point in traceability matrix. This is referred to as
‘bidirectional traceability’;, CMMi model mandates bidirectional
traceability for all products.

3.11.5 Vertical Traceability:

Traceability explained above is called ‘horizontal traceability’ as it goes in
horizontal direction, either forward or backward. Traceability may exist in
individual column as the requirements may have some interdependencies
between them, or these may be child and parent relationships. For
achieving a requirement, the other child requirement must be achieved.
One requirement may have several child requirements, while some child
requirements may have several parent requirements. If these requirements
are traced completely, it ensures vertical traceability. Similarly, design,
coding, and testing may have a vertical traceability where there may be
parent-child relationship and interdependence on different parts. Designs
may have parent-child relationships, and coding may have ‘called
functions’ and ‘calling functions’ traceability relationships.

3.11.6 Risk Traceability:

Some application development organisations also add references about the
risks of failure faced by the application in Failure Mode Effect Analysis
(FMEA). The risks are traced to requirements and mainly with design
which defines control mechanism to reduce probability or impact or
improves detection ability of a risk this helps the customer to identify
which accident-prone zones are in the application and where the user is
completely/ partially protected from failures. It also helps in identifying
various types of controls that are designed and used. Typical risk
traceability matrix is as shown in Table 3.3.

Table 3.3 Risk traceability matrix
High-level Code files/
Design/Con- Low-level de- Stored proce-
Risk trol sign/Control dures/TBLs Test scenario Test cases Test results

3.12 ESSENTIALS OF SOFTWARE TESTING

Software testing is a disciplined approach. It executes software work
products and finds defects in it. The intention of software testing is to find
all possible failures, so that eventually these are eliminated and a good
product is given to the customer. It intends to find all possible defects
and/or identify risks which final user may face in real life while using, the
software. It works on the principle that no software is defect free, but less
risky software is better and more acceptable to users. The tester's job is to
find out defects so that they will be eventually fixed by developers before
the product goes to a customer. Completion of testing must yield number
of defects which can be analysed to find the weaker areas in the process of
software development. No amount of testing can show that a product is
defect free as nobody can test all permutations and combinations possible
in the given software. Software testing is also viewed as an exercise of
doing a SWOT analysis of software product where we can build the
software on the basis of strengths of the process of development and
testing, and overcome weakness in the processes to the maximum extent
possible.

Strengths:

Some areas of software are very strong, and no (very less) defects are
found during testing of such areas. The areas may be in terms of some
modules, screens, and algorithms, or processes like requirement definition,
designs, coding, and testing. This represents strong processes present in
these areas supporting development of a good product. We can always rely
on these processes and try to deploy them in other areas.

Weakness:

The areas of software where requirement compliance is on the verge of
failure may represent weak areas. It may not be a failure at that moment,
but it may be on the boundary condition of compliance, and if something
goes wrong in production environment, it will result into defect or failure
of software product. The processes in these areas represent some
problems. An organisation needs to analyse such processes and define the
root causes of problems leading to these possible failures. It may be
attributed to some aspects in the organisation such as training,
communication, etc.

Opportunity:

Some areas of the software which satisfy requirements as defined by the
customer, or implied requirements but with enough space available for
improving it further. This improvement can lead to customer delight (it
must not surprise the customer). These improvements represent ability of
the developing organisation to help the customer and give competitive
advantage. It decides the capability of the developing organisation to
provide expert advice and help to the customer for doing something better.

Fundamentals of Software
Testing

99

Software Quality
Assurance

100

Threats:

Threats are the problems or defects with the software which result into
failures. They represent the problems associated with some processes in
the organisation such as requirement clarity, knowledge base and
expertise. An organisation must invest in making these processes stronger.
Threats clearly indicate the failure of an application, and eventually may
lead to customer dissatisfaction.

3.13 WORKBENCH

Workbench is a term derived from the engineering set-up of mass
production. Every workbench has a distinct identity as it takes part in the
entire development life cycle. It receives something as an input from
previous workbench, and gives output to the next workbench. This can be
viewed as a huge conveyor belt where people are working their part while
the belt is moving forward. The complete production and testing process is
defined as set of interrelated activities where input of one is obtained from
the output of previous activity, and output of that activity acts as an input
to the next. Each activity represents a workbench. A workbench comprises
some procedures defined for doing a work, and some procedures defined
to check the outcome of the work done. The work may be anything during
software development life cycle such as collecting the requirements,
making designs, coding, testing, etc. Organisational process database
refers to the methods, procedures, processes, standards, and guidelines to
be followed for doing work in the workbench as well as for checking
whether the processes are effective and capable of satisfying what
customer is looking for in the outcome. There are standards and tools
available for doing the work and checking the work in the work bench.
While checking/testing a work product in a workbench, if one finds
deviations between expected result and actual result, it may be considered
as defect, and the work product and the process used lot development
needs to be reworked.

3.13.1 Tester's Workbench:

Tester's workbench is made of testing process, standards, guidelines and
tools used for conducting tests and checking whether the test processes
applied are effective or not. For every workbench, there should be a
definition of entry criteria, process of doing/checking the work, and exit
criteria. For testers, there must be a definition of all things that enter the
tester’s workbench. These may be defined in a test plan. Let us discuss
with an example of test-case execution as one activity represented by a
workbench.

Examples of Tester's Workbench:

Considering a typical system testing life cycle for a product/project, the
different work benches tor a tester may be defined as follows. Kindly note
that it is not an exhaustive list but a representative one. As one goes into
finer details, there may be many more workbenches in each of these
defined below.

o Workbench for creating test strategy
o Workbench for creating a test plan

o Work bench for writing test scenario
o Workbench for writing test cases

o Workbench for test execution

o Workbench for defect management
J Workbench for retesting

o Workbench for regression testing

The following is a typical workbench described for system testing
execution.

Inputs to Tester's Workbench:

Inputs may be test scenario, test cases, and work products, documentation
associated with a work product, test environment, or test plan depending
upon the location of workbench in life cycle. The software work product is
delivered to the tester as described in delivery note supplied by
development team. Delivery note must contain any known issue which
tester needs to know before performing testing.

Do Process:

The software undergoes testing as per defined test case and test procedure.
This may be guided by organisational process database defining testing
process. ‘Do process' must guide the normal tester while doing the process.

Check Process:

Evaluation of testing process to compare the achievements as defined in
test objectives is done by ‘check processes. Check process helps in finding
whether ‘do processes’ have worked correctly or not.

Output:

Output must be available as required in form of test report and test log
from the test process. Output of the tester's workbench needs to have an
exit criteria definition.

Standards and Tools:

During testing, the tester may have to use several standard and tools.
Standards may include how to install the application, which steps are to be
followed while doing testing, how to capture defects, etc. There may be
several tools used in testing like defect management tools, configuration
management tools, regression testing tools, etc.

Fundamentals of Software
Testing

101

Software Quality
Assurance

102

Remark:

If ‘check processes’ find that ‘do processes’ are no able to achieve the
objectives defined for them, it must follow route of rework. This is a
rework of ‘do process’ and not of work product under testing. This ensures
that all incapable processes are captured so that these can be taken for
improvement.

There may be two more criteria in the work bench, viz. suspension criteria
for the work bench resumption criteria for the workbench guided by
organisational policies and standards. Suspension criteria define when the
testing process needs to be suspended or halted, whereas resumption
criteria defines when it can be restarted after such halt or suspension. If
there are some major problems in inputs or standards and tools required by
the workbench, ‘do/check processes may be suspended. When such
problems are resolved, the processes may be restarted.

Testing process may be defined as a process used to verify and validate
that the system structurally and functionally behaves correctly as defined
by expected result. Components of testing process may include the
following.

e Giving inputs (program code) to tester from previous work bench
e Performing work (execute testing) using tools and standards

e Following a process of doing and checking whether test process is
capable or not

e Produce output (test results and test log) which may act as an input to
the next work bench

Check process must work to ensure that results meet specifications and
standards, and also that the test process is followed correctly. If no
problem is found in the test process, one can release the output in terms
oftest results. If problems are found in test process, it may need rework.
Fig 3.2 shows a schematic diagram of a workbench.

Rewark

¥

Input Procedures
to do work

Procedure
to check
waork

Output
—»

&

-~

Fig. 3.2 Typical workbench

3.14 IMPORTANT FEATURES OF TESTING PROCESS

Testing is characterised by some special features, as given below.
Testing is a Destructive Process, but it is Constructive Destruction:

Testing involves a systematic destruction of a product with the intent to
find the defects so that these would be fixed before the product is given to
the customer. While executing tests, a tester goes about testing an
application using some valid/invalid inputs to find the response of
software to each of these conditions. The ability of the tester to break the
application can make him successful. For devising negative testing, one
needs to build the scenario with destructive mentality.

Testing Needs a Sadistic Approach with a Consideration That There
is a Defect:

A tester cannot certify that a work product is defect free. He needs to go
through the software work product and hunt for defects. If the defect is not
found, it directly means that there is some problem with testing process.
Defect-free product does not exist. Testers are expected to identify the
risks to the final users and test the product accordingly.

If the Test Does Not Detect a Defect Present in the System, it is an
Unsuccessful Test:

Success of testing lies in its ability to find defects or threats and weaker
areas of software work product and the processes supporting these areas.
Testers who cannot find defects are unsuccessful testers. Testing is
considered as an investment only when it reduces the probability that
software may fail at customer end.

A Test That Detects a Defect is a Valuable Investment for
Development As well As Customer, it helps in Improving a Product

The root cause analysis of defects can show where the application and
process can be and needs to be improved. It also helps in identifying the
weaker areas of the processes used for developing software. Weaker areas
are analysed to find the process lacunae and take actions on these areas
and strengthen them. Thus, defect finding helps in improving processes
which can result in increasing customer satisfaction. Testing with an
intention to find and fix the problems in processes can be considered as an
investment by customer/organisation.

Some organisations use final black box testing as an acceptance testing for
the application. If no defect is found in system testing, the software is
delivered to the customer. If the sole purpose of testing is to validate
specifications implemented then,

e Testing is an unnecessary/unproductive activity as it does not consider
invalid scenarios. No amount of testing can certify that there is no
defect in the product. There must be a probability of finding the defect
in testing.

Fundamentals of Software
Testing

103

Software Quality
Assurance

104

e Testing is designed to compensate for ineffective software
development process, it cannot give results. The defect indicates a
process deficiency and it must be fixed by improving the processes.
Testing cannot improve the quality of product. Defect is a symptom of
something failing and one must try to fix the root cause and not only
the symptom.

e If development methodology designed and implemented by a team is
not correct, testing cannot compensate for it. Testing is not meant to
certify the work products but to find the defects.

e Testing is a separate discipline and may get affected by as well as
affects software development processes. Better processes of
development and testing can reduce the chances of failure of product
at customer place and subsequent customer complaints.

It is Risky to Develop Software and Not to Test it Before Delivery:

Not providing sufficient resources, time and support for testing activities
IS @ common scenario across the industry. There is a belief that less-tested
software means less defects, less rework, less scrap, and less-corrective
actions which means higher profits. But this may result into customer
dissatisfaction as the detects will get exposed at customer site. Reducing
the coverage of testing is another risk associated with software. Software
testing must give a desired level of confidence to users that system will
not fail. Less testing reduces this confidence level and increases a
probability of failure at customer site.

With High Pressure to Deliver Software as Quickly as Possible, Test
Process Must Provide Maximum Value in Shortest Timeframe:

This approach is adopted in test strategy designing where the efficiency
and effectiveness of testing is defined. Generally, test cases are
categorised into installation testing, smoke testing, and sanity testing
before going into further detailed testing. Test cases which represent
scenarios that may occur with higher probability can help in reducing
probabilities of failure in production environment. An organisation may
define such test cases with probability aspect such as high, medium, and
low or allocate the numbers indicating priority of execution. Probability of
occurrence of adefect may not have any relationship with severity as
severity talks about type of failures.

Testing is no longer an after-programming evaluation to certify that the
software works, but supposed to indicate the confidence level that product
will work at customer site. Testing can give the SWOT analysis of
development process. Thus, testing is adjunct to software development life
cycle.

Testing starts at the proposal level and ends only when software
application is finally accepted by user customer. Every stage of
development and every work product must go through stages of review
and formal approval to ensure that it can go to the next stage. But it is a

key to ensure quality at each work product and each phase of software
development life cycle.

Highest Payback Comes from Detecting Defect Early in Software
Development Life Cycle and Preventing Defect Leakage/Defect
Migration from One Phase to Another:

Defects are the problems or something wrong happening in software as
well as the development process used for making software. Every defect
indicates failure of the process at some place or another. It is always
economical to fix the defects as and when they appear, and conduct an
analysis to find the root causes of the defects rather than waiting till it hits
the software product and user, again and again. It is always beneficial to
do a root cause analysis and fix the problem areas at the earliest possible
time. The investment in testing can be worthwhile only if it is capable of
finding defects as soon as it is introduced in the work product and also can
prevent any potential defect from getting introduced. Defect, if nor
corrected in the phase where it is introduced, leaks to the next stage and
creates a larger problem. This is termed ‘phase contamination’. Defect
keeps on migrating from one phase to next phase, till it hits back the users
at some point of time.

Organisation's Aim Must Be Defect Prevention Rather That Finding
and Fixing a Defect:

The major misconception about testing is that it is considered as a fault-
finding mission. Instead, it must be viewed as a defect-prevention mission
to avoid critical problems in software development process by initiating
actions to prevent any recurrence of problems. Finding and fixing the
problem is not a good approach as the basic cause of defect is never
addressed. It needs analysis of root causes, and defect prevention
mechanism-that is installed and operational-to prevent recurrence as well
as removal of potential problems.

3.15 MISCONCEPTIONS ABOUT TESTING

At many places, software testing is termed ‘quality assurance (QA)’
activity. In reality testing is a quality control (QC) activity. There are
many other misconceptions about software testing, as listed below.

Anyone Can Do Testing, and No Special Skills Are Required for
Testing:

Many organisations have an approach that anyone can be put in testing.
They give the task of testing to developers on the bench or people asking
for ‘light duty’. Many people involved in testing do not have any
experience in testing or in the domain in which testing is done. Test
planning, test case writing, and test data definition using different
methodologies may not be possible with unskilled people. If the
organisation considers investment in special skills as a waste of time and
money, it may result in disaster for customer/user.

Fundamentals of Software
Testing

105

Software Quality
Assurance

106

Testers Can Test Quality of Product at the End of Development
Process:

This is a typical approach where system testing or acceptance testing is
considered as qualification testing for software. Few test cases out of
infinite set of possibilities are used for certifying whether the software
application works or not. The customer may be dissatisfied as the
application does not perform well as per his expectations. Sometimes, the
defects remain hidden for an entire life cycle of software without anybody
knowing that there was a defect.

Defects Found in Testing Are Blamed on Developers:

Another common misconception regarding defects found in testing is
blaming developer for defects. Though two-third of defects are due to
wrong requirements, yet developers are mostly blamed for detects in
software development. Also, some surveys indicate that most of the
defects can be attributed to faulty development processes. Developers are
responsible for converting the design into code by using the standards or
guidelines available. Ensuring good inputs to developer's workbench is a
responsibility of the management.

Defects Found by Customer Are Blamed on Tester:

Testers perform testing by executing few list cases and try to cover some
part of software program to check whether the program performs as
intended or not. No one can say that testing can ensure 100% coverage. If
no defect is found during testing, it does not indicate that the software
program is defect free. There may be few defects left in the product which
can be found only in real life. One must do a root cause analysis of the
defects found, and try to learn from the experiences to ensure that a better
product is produced and similar defects do not recur next time. But no one
can blame testers for defects reported by customer.

3.16 PRINCIPLES OF SOFTWARE TESTING

Testing needs to be performed according to processes defined for it. It
needs skilled and trained people to break the application and demonstrate
the problems or defects in the software product. Some key points in
software testing are as follows.

Programmers/Team Must Avoid Testing Their Own Work Products:

Everybody is in love with the work product he/she has made. Also, the
approach of an individual remains the same and hence, approach-related
defects cannot be found in self-review or self-testing. A second opinion is
essential which can add value to a work product. Though self-review is a
good to for retrospection, yet it has many limitations.

Thoroughly inspect Results of Each Test to Find Potential
Improvements:

Test results show possibilities of weaker areas in the work product and the
problems associated with the processes used for developing a work
product. The defects found in test log do not form an exclusive list of all
problems with the application, but indicate the areas where development
team and management must perform a root cause analysis. Corrective
actions are to be planned and executed to prevent any possible recurrence
of similar defect and make software better. Defects indicate process
failures.

Initiate Actions for Correction, Corrective Action and Preventive
Actions:

Defect identification, fixing and initiation of action to prevent further
problems are the natural ways of making better products and improve
processes. Corrections of the defect are done by the developers. But one
must ensure that corrective and preventive actions are initiated for making
better products again and again.

Establishing that a program does what it is supposed to do, is not even half
of the battle and rather easier one than establishing that program does not
do what it is not supposed to do. This is negative testing driven by risk
assessment for the final users. Roughly, testing may involve 5% positive
testing and 95% negative testing.

3.17 SALIENT FEATURES OF GOOD TESTING

Defects indicate the quality of software under testing, development and
test processes used for making it. Testing is a life-cycle activity where the
testers take part in testing right from proposal stage till the applicationis
finally accepted by the customer/user. Good software testing involves
testing of the following.

Capturing User Requirements:

The requirements defined by the users or customer as well as some
implied requirements (which are intended by the users but not put in
words) represent the foundation on which software is built. Intended
requirements are to be analysed and documented by testers so that they
can write the test scenario and test cases for these requirements. User
requirements involve technical, economical, legal, operational, and system
requirements. Generally, a user is able to specify only functional and nor
functional requirements which form a part of operational requirements and
legal requirements but definition of other requirements is a responsibility
of development organisation.

Capturing User Needs:

User needs may be different from user requirements specified in software
requirement specifications. User needs may include present and future

Fundamentals of Software
Testing

107

Software Quality
Assurance

108

requirements and other requirements which may include process
requirements (including definition of deliverables) and implied
requirements. Elicitationofrequirements is to be done by the development
organisation to understand and interpret the requirements.

Design Objectives:

Design objectives state why a particular approach has been selected for
building software. The selection process indicates the reasons and criteria
framework used for development and testing. How an applications
functional requirements, user interface requirements, performance
requirements be defined in an approach document.

User Interfaces:

User interfaces are the ways in which the user interacts with the system.
This includes screens and other ways of communication with the system
as well as displays and reports generated by the system. User interfaces
should be simple, so that the user can understand what he is supposed to
do and what the system is doing. Users’ ability to interact with the system,
receive error messages, and act according to instructions given is defined
in the user interfaces.

Internal Structures:

Internal structures are mainly guided by software designs and guidelines
or standards used for designing and development. Internal structures may
be defined by development organisation or sometimes defined by
customer. It may talk about reusability, nesting, etc. to analyse the
software product as per standards or guidelines. It may include
commenting standards to be used for better maintenance. Every approach
may have some advantages/disadvantages, and one needs to weigh the
benefits and costs associated with them to get a better solution.

Execution of Code:

Testing is execution of a work product to ensure that it works as intended
by customer or user, and is prevented from any probable misuse or risk of
failure. Execution can only prove that application, module, and program
work correctly as defined in requirement and interpreted in design.
Negative testing shows that application does not do anything which is
detrimental to the usage of a software product.

3.18 TEST POLICY

Test policy is generally defined by the senior management covering all
aspects of testing. It decides the framework of testing and its status in
overall mission of achieving customer satisfaction. For project
organisations, test policy may be defined by the client while for product
organisation, it is decided by senior management.

3.19 TEST STRATEGY OR TEST APPROACH

Test strategy defines the action part of test policy. It defines the ways and
means to achieve the test policy. Generally, there is a single test policy at
organisation level for product organisations while test strategy may differ
from product to product, customer to customer and time to time. Some of
the examples of test strategy may be as follows.

e Definition of coverage like requirement coverage or functional
coverage or feature coverage defined for particular product, project
and customer.

e Level of testing, starting from requirements and going up to
acceptance phases of the product.

e How much testing would be done manually and what can be
automated?

e Number of developers to testers.

3.20 TEST PLANNING

Test planning is the first activity of test team. If one does not plan for
testing, then he/she is planning for failure. Test plans are intended to plan
for testing throughout software development life cycle. Test plans are
defined in the framework created by test strategy and established by test
policy. Test plans are made for execution which involves various stages of
software testing associated with software development life cycle. Test plan
should be realistic and talk about the limitations and constraints of testing.
It should talk about the risks and assumptions done during testing.

Plan Testing Efforts Adequately with an Assumption That Defects
Are There

All software products have defects. Test planning should know the
number of defects it is intending to find by executing the given test plan.
Test plan should cover the number of iterations required for software
testing to give adequate confidence required by customer (to show that
software will be usable). Defect found in testing is an investment in terms
of process improvement opportunity. Test plan is successful if intended
number of defects is found.

Defects Are Not Found, it is Failure of Testing Activity:

There are many defects in software. If no (less) defects are found in
testing, then it does not mean that there are no (less) defective in the
product. It may mean that the test cases are not complete or adequate, or
the test data is not effective in locating defects in the software product.
Testing is intended to find defects. If defects are not found, the testing
process may be considered as defective. Every defect found is an
investment as it reduces a probability of any defect which customer may
find. If more number of defects is found, it means the development
process is problematic.

Fundamentals of Software
Testing

109

Software Quality
Assurance

110

Successful Tester is Not One Who Appreciates Development but One
Who Finds Defects in the Product:

Success of testing is in finding a defect and not certifying that application
or development process is good. Successful testers can find more defects
with higher probabilities of occurrences and higher severities of failure.
Tester should find defects, which have a probability of affecting common
users and thus contribute to a successful application.

Testing is Not a Formality to be completed at the End of Development
Cycle:

Testing is not a certifying process. It is a life-cycle activity and should not
be the last part of a development life cycle before giving the application to
customer/user. Acceptance testing and system testing are the integral parts
of software development where the certification of application is done by
the customer but complete test cycle is much more than black box testing.

Software testing includes the following.

e Verification or checking whether a right process is followed or not
during development life cycle.

e Validation or checking whether a right product is made or not as per
customer's need.

Some differences between verification and validation are shown in
Table 3.4.

Table 3.4

Difference between Verification and Validation

Verification

Validation

Verification is an activity where we check the work
products with reference to standards, guidelines, and
procedures.

Verification is prevention based. It tries to check the
process adherence.

Werification talks about a process, standard and
guidelines,

Werification is also termed ‘white box testing’ or "static
testing' as the work product undergoes a review.

Verification may be based on opinion of reviewer and
may change from person to person.

Verification can find about 60 of the defects,

Werification involves the following.
= reviews

» walkthroughs

+ inspection

= audits

Werification can give the following
* statement coverage

» decision coverage

+ path coverage

Some parts of software can underga verification enly, as
given below.

+ coding guidelines

* nesting

* commenting

» declaration of variables

Validation is an activity to iind whether the software
achieves whatever is defined by requirements.

Validation is detection based. It checks the product
attributes.

Validation talks about the product.

Validation is also termed "black box testing” or ‘dynarmic
testing' as work product is executed.

Validation is based on Facts and is generally indepen-
dent of a persan.

Validation can find about 30% of the defects,

Validation involves all kinds of testing.
= system testing

* yserinterface testing

* stress testing

Validation can give the following.
+ requirement coverage

+ feature coverage

= functionality coverage

Some characteristics of software can be proven by
validation anly, as given below.

= stress testing

+ performance testing

* volume testing

= security testing

3.21 TESTING PROCESS AND NUMBER OF DEFECTS
FOUND IN TESTING

Testing is intended to find more number of defects. Generally, it is
believed that there are fixed number of defects in a product and as testing
finds more defects, chances of the customer finding the defect will reduce.
Actually, the scenario is reverse. As we find more and more defects in a
product, there is a probability of finding some more defects. This is based
on the principle that every application has defects and every test team has
some efficiency of finding defects. It is governed by the test team's defect-
finding ability. Let us say the organisational statistics shows that after
considerable testing and use of application by a user, number of defects
found is three per KLOC; test planning must intend to find three defects
per KLOC for the program under testing. The number of defects found
after considerable testing will always indicate possibilities of existing
number of defects. Fig 3.3 shows a relationship between number of
defects found and probability of finding more defects.

Probability of
detecting maore
defects

Mumber of defects

Fig. 3.3 Defect trend

3.22 TEST TEAM EFFICIENCY

Test team efficiency is a very important aspect for development team and
management. If test team is very efficient in finding defects, less iterations
of testing are required. On the other hand, if development team is less
efficient in fixing defects, more iteration of resting and defect fixing may
be required.

The test team has some level of efficiency of finding defects. Suppose the
application has 100 defects and the test team has an efficiency of 90%,
then it will be able to find 90 defects. Thus, if the test team finds 180
defects (considering some efficiency), it means that there are 200 defects
in the software product.

Every test manager must be aware of the efficiency of a test team that
he/she is working with. Often, test managers and project managers try to
access the test team efficiency at some frequency. The process may be as
defined below.

Fundamentals of Software
Testing

111

Software Quality
Assurance

112

Ideally, the test team efficiency must be 100% but in reality, it may not be
possible to have test teams with efficiency of 100%. It must be very close
to 100% in order to represent a good test team. As it deviates away from
100%, the test team becomes more and more unreliable. Test team
efficiency is dependent on organisation culture and may not be improved
easily unless organisation makes some deliberate efforts.

The development team introduces some defects in a software product and gives it fo the test team, The test
team completes testing iterations as planned and gives the number of defects found, The development team
then analyses the defects found by the lest team to understand haw many defects have been found by the
test taam. The ratio gives {est taam efficiency.

Suppose,

Defects deliberately introduced by development
Total defects found by testing team
Defects found by testing team but not belonging to defects deliberately introduced by development

L'¢ sjdwexy pasjog

X
Y
F4

The ratic of (¥ — Z0X will give the test team efficiency.

3.23 MUTATION TESTING

Mutation testing is used to check the capability of test program and test
cases to find defects. Test cases are designed and executed to find defects.
If test cases are not capable of finding defects, it is a loss for an
organisation (as it requires time to write and execute test cases). This is
also termed "test case efficiency'.

A program is written, and set of test cases are designed and executed on the program, The test team may
find out few defects. The criginal program is changed and some defects are added deliberately. This is called
‘mutant of the first program’ and process is termed ‘mutation’. It is subjected 1o the same test case axecution
again. The test cases must be able to find the defects infroduced deliberately in the mutant.

Suppose,

Defects deliberately introduced by development =X
Defects found by lest cases in orginal program =Y
Defects found by tast cases in mutant =7

Z'¢ sjdwexy pasjog

The ratio of {Z - ¥}NX will give the test case efficiency. Thearetically, it must be 100%. But it may not be exactly
100% due to the following reasans.

3.23.1 Reasons for Deviation of Test Team Efficiency From 100% for
Test Team As Well As Mutation Analysis:

Though desirable, it is very difficult to get a test team with 100%
efficiency of finding defects and test cases with 100% efficiency of
finding defects. Some of the reasons for deviation are listed below.

Camouflage Effect:

It may be possible that one defect may camouflage another defect, and the
tester may not be able to see that defect, or test case may not be able to
locate the hidden defect. It is called ‘camouflage effect” or ‘compensating
defects’ as two defects compensate each other. Thus, defect introduced by
developer may not be seen by the tester while executing a test case.

Cascading Effect:

It may be possible that due to existence of a certain defect, few more
defects are introduced or seen by the tester. Though there is no problem in
the modification, detects are seen due to cascading effect of one defect.
Thus, defects not introduced by developer may be seen by tester while
executing a test case.

Coverage Effect:

It is understood that moody can test 100%, and there may be few lines of
code or few combinations which are not tested at all dive to some reasons.
If defect is introduced in such a part which is not executed by given set of
test cases, then tester may not be able to find the defect.

Redundant Code:

There may be parts of code, which may not get executed under any
condition, as the conditions may be impossible to occur, or some other
conditions may take precedence over it. If developer introduces a defect in
such parts, testers will not be able to find the defect as that part of code
will never get executed.

3.24 SUMMARY

This chapter establishes the basics of software testing. It starts with a
historical perspective of testing and then explains how testing evolved
from mere debugging to defect prevention technique. It then discusses the
benefits of independent testing. “TQM’ concept of testing, ‘Big Bang’
approach of testing, and benefits of “TQM’ testing are elucidated in detail.

3.25 EXERCISE

1) Explain the evolution of software testing from debugging to
prevention based testing.

2) Explain why independent testing is required.

3) Explain big bang approach of software testing,

4) Explain total quality management approach of software testing.
5) Explain concept of TQM cost perspective.

6) Explain testing as a process of software certification.

7) Explain the basic principles on which testing is based.

3.26 REFERENCES

1. Software Testing and Continuous Quality Improvement by William E.
Lewis CRC Press Third 2016.

Fundamentals of Software
Testing

113

Software Quality
Assurance

114

Software Testing: Principles, Techniques and Tools M. G. Limaye
TMH 2017.

Foundations of Software Testing Dorothy Graham, Erik van
Veenendaal, Isabel Evans, and Rex Black Cengage Learning 3 rd.

Software Testing: A Craftsman®s Approach Paul C. Jorgenson CRC
Press 4 th 2017.

https://www.techtarget.com/whatis/definition/software-testing
https://www.softwaretestinghelp.com/types-of-software-testing/

https://prepinsta.com/software-engineering/big-bang-approach/

% %k %k %k k

A

CHALLENGES IN SOFTWARE TESTING

Unit Structure

4.0 Objectives

4.1 Challenges in Testing

4.2 Test Team Approach

4.3 Process Problems Faced by Testing

4.4 Cost Aspect of Testing

4.5 Establishing Testing Policy

4.6 Methods

4.7 Structured Approach to Testing

4.8 Categories of Defect

4.9 Defect, Error or Mistake in Software

4.10 Developing Test Strategy

4.11 Developing Testing Methodologies (Test Plan)
4.12 Testing Process

4.13 Attitude towards Testing (Common People Issues)
4.14 Test Methodologies/Approaches

4.15 People Challenges in Software Testing

4.16 Raising Management Awareness for Testing
4.17 Skills Required by Tester

4.18 Software life cycle

4.19 Software development models

4.20 Test levels

4.21 Test Types

4.22 Targets of testing

4.23 Maintenance testing

4.24 Testing Tips

4.25 Summary

4.26 Exercises

4.27 References

115

Software Quality
Assurance

116

4.0 OBJECTIVES

After studying this chapter the learner would be able to:
e Understand different challenges in testing

e Understand different approaches to testing.

e Understand different types of defects.

e Differentiate between “White Box testing”, “Black Box testing”
&“Grey Box testing”

4.1 CHALLENGES IN TESTING

Testing is a challenging job. Challenges in testing are different on
different fronts. On one front, it needs to tackle with problems associated
with development team. On second front, it has customers to tackle with.
Management may have problems with understanding testing approach and
may consider it as an obstacle to be crossed before delivering the product
to the customer. There may be problems related to testing process as well
as development process. Major challenges faced by test teams are as
follows.

e Requirements are not clear, complete, consistent, measurable and
testable. These may create some problems in defining test scenario
and test cases. Sometimes, a configuration management issue is faced
when the development team makes changes in requirements but test
team is not aware of these changes.

e Requirements may be wrongly documented and interpreted by
business analyst and system analyst. These knowledgeable people are
supposed to gather requirements of customers by understanding their
business workflow. But sometimes, they are prejudiced based on their
earlier experiences.

e Code logic may be difficult to capture. Often, testers are not able to
understand the code due to lack of technical knowledge. On the other
hand, sometimes, testers do not have access to code files.

e Error handling may be difficult to capture. There are many
combinations of errors, and various error messages and controls are
required such as detective controls, corrective controls, suggestive
controls, and preventive controls.

4.1.1 Other Challenges In Testing:

More bugs found in software introduce additional iterations of fixing
defects, retesting, and regression testing of a product. It means more
efforts, delayed shipment to customer and late payment receipt by
organisation. Often, testers are blamed for delays in delivery.

e Badly written code introduces many defects. Code may not be
readable, maintainable, optimisable, and may create problems in
future. Defects may not be fixed correctly, and fixing of defects may
introduce more defects called ‘regression defects’.

e Bad architecture of software cannot implement good requirement
statement. What developers do in reality is that they implement the
design and not the requirements. Bad architecture creates complex
code and adds many defects to the software product.

e Testing is considered as a negative activity. Often, testers need to
reject builds if problems are found in it which does not satisfy exit
criteria. It is a difficult situation as organisational fund flow may be
depending upon successful delivery of system, and it gets affected due
to such rejection.

e Testers find themselves in lose-lose situation in resting. If more
defects are found, application delivery is delayed and testers are
blamed for such delay. On the other hand, if testing is not done
properly, customer complaints are possible and again testers are held
responsible for it.

4.2 TEST TEAM APPROACH

Type of the organisation and type of the product being developed define a
test team. There may or may not be a separate team doing testing if
management does not recognise its importance, or the application under
development demands this scenario. There are four approaches of software
testing team.

4.2.1 Location of Test Teams In An Organisation:

Generally, test team is located in an organisation as per testing policy. It
may vary from organisation to organisation, project to project and
customer to customer. Following are some of the approaches used for
locating test team organisationally.

Independent Test Team:

Independent test team may not be reporting to development group at all,
and are independent of development activities. They may be reporting
independently to senior management or customer. Presence of test
manager is essential to lead the test team. Such test teams may be shown
as in figure 4.1.

Challenges in Software
Testing

117

Software Quality
Assurance

118

Senior
management

A Y

Development

bear Test team

Fig. 4.1 Organisational structure of test team independent of
development team

Advantages of Independent Test Team:

The test team is not under delivery pressure. They can take sufficient
time to execute complete testing as per definitions of iterations,
coverage, etc

Test team is not under pressure of 'not finding' a defect. They are
considered as the certifiers of a product and must be able to find every
conceivable fault in the product before delivery.

Independent view about a product is obtained as thought process of
developers and testers may be completely different.

Expert guidance and mentoring required by test team for doing
effective testing may be available in the form of a test manager.

Disadvantages of Independent Test Team:

There is always ‘us’ vs ‘them’ mentally between development team
and test team. Team synergy can be lost as developers take pride in
what they develop while testers try to break the system.

Testers may not get a good understanding of development process as
development team tries to hide the process lacunae from them. Testers
are treated as outsiders.

Sometimes, management may be inclined excessively towards
development team or test team, and the other team may feel that they
have no value in an organisation.

Test Team Reporting to Development Manager:

If the test team is reporting to development manager, then they can be
involved from the start of project till the project is finally closed. Such test
team may be shown in Fig 4.2.

Development
manager

l l

Development

baam Test team

Fig 4.2 Organisational Structure of test team reporting to
development manage

Advantages of Test Team Reporting to Development Manager:

There is a better cooperation between development team and test team
as both are part of the same team.

Test team can be involved in development and verification/validation
activities from the start of the project. It gives them good
understanding of requirements.

Testers may get a good understanding of development process and
can help in process improvement.

Disadvantages of Test Team Reporting to Development Manager :

Expert advice in the form of test manager may not be available to
testers. In case testers need some guidance or mentoring, they may
have to rely on an external person.

Sometimes, development managers are more inclined towards
development team. Defects found by test team are considered as
hurdles in delivery process.

Often, testers start perceiving the product from developer’s angle and
their defect finding ability reduces.

Matrix Organisation:

In case of matrix organisation, an effort is made to achieve the advantages
of both approaches, and get rid of disadvantages of both approaches. Test
team may be reporting functionally to the development manager while
administratively it reports to the test manager.

4.2.2 Developers Becoming Testers:

Sometimes, those who work as developers in initial stages of development
life cycle take the role of testers when the latter stages of life cycle are
executed. This is a common practice while working with simple software

Challenges in Software
Testing

119

Software Quality
Assurance

120

which does not need very structured testing. Developers becoming testers
can be suitable when the application is technologically heavy.

Advantages of This Approach:

Developers do not need another knowledge transfer while working as
a tester. The knowledge transfer that they received at initial stages of
development can be used by them in both roles.

Developers have better understanding of detail design and coding, and
can test the application easily.

For automation, some amount of development skill is required in
writing the automation scripts. Developer can adapt themselves in
automation testing better as they have the ability to create code.

It is less costly as there is no separate test team. It provides staff
balancing to some extent. Initially, the development team is large but
as SDLC comes to an end, the test team becomes larger than the
development team.

Psychological acceptance of defects is not a major issue as developers
themselves find the defects.

Disadvantages of This Approach:

Developers may not find value in performing testing. They may put
more time in developing/optimising code than executing serious
testing.

There may be blindfolds while understanding requirements or
selection of approach and developer may not be willing to find more
defects. Understanding or approach related defects may not be found.
Platform or database related defects may not be uncovered as
developers may feel that as technological limitations. As per
developers technology is creating the problem.

Developers may concentrate more on development activities, which is
their primary responsibility and may neglect testing activities.

Development needs more of a creation skill while testing needs more
of a destruction skill. It is difficult to have a team having both skills at
a time.

4.2.3 Independent Testing Team:

An organisation may create a separate testing team with independent
responsibility of testing. The team would have people having sufficient
knowledge and ability to test the software.

Advantages of This Approach:

Separate test team is supposed to concentrate more on test planning,
test strategies and approach creating test artifacts, etc.

e There is independent view about the work products derived from
requirement statement.

e Special skills required for doing special tests may be available in such
independent teams.

e ‘Testers working for customer’ can be seen in such environment.
Disadvantages of This Approach:
e Separate team means additional cost for an organisation.

e Test team needs ramping up and knowledge transfer, similar to a
development team.

e An organisation may have to check for rivalries between development
team and test team.

4.2.4 Domain Experts Doing Software Testing:

An organisation may employ domain experts for doing testing. Generally,
this approach is very successful in system testing and acceptance testing
where domain specific testing is required. Domain experts may use their
expertise on the subject matter for performing such type of testing.

Advantages of This Approach:

e Fitness for use' can be tested in this approach where actual user's
perspective may be obtained. Domain experts will be testing software
from user's perspective.

e Domain experts may provide facilitation to developers about defects
and customer expectations, and maybe able to interpret requirements
in the correct context.

e Domain experts understand the scenario faced by actual users and
hence, their testing is realistic.

Disadvantages of This Approach

e Domain experts may have prejudices about the domain which may
reflect in testing. Domain experts may have knowledge about a
domain but may not understand exactly what a particular customer is
looking for.

e It may be very difficult to get domain experts in diverse areas, if an
organisation has projects in diverse domains.

e It may mean huge cost for the organisation as these experts cost much
more than normal developers/testers.

Combination of all three approaches (3.21.2, 3.21.3, 3.21.4) can be
advantageous for the organisation. One has to do a cost-benefit analysis to
arrive at any decision about test team formation. Highly complex user

Challenges in Software
Testing

121

Software Quality
Assurance

122

environment and complex algorithms may make ‘domain experts doing
testing’” more effective. On the contrary, if an organisation has done many
projects in similar domain in past, ‘developers becoming tester’ may be
recommended as developers may have sufficient knowledge about the
subject.

In addition to a test team, there are many other agencies involved in
software testing as per phases of software development.

Customer/User:

Customer or users generally do acceptance testing to declare formal
acceptance/rejection/changes in requirements for the product. Customer
perspective is most important in software acceptance. Organisations
creating prototype may rely on customer approval of prototype.

Developers:

Developers do unit testing before the units are integrated. Generally, units
require stubs and drivers for testing, and developers can create the same.
Sometimes, integration testing is also done by developers if it needs stubs
and drivers.

Tester:

Testers perform module, integration, and system testing as independent
testing. They may oversee acceptance testing. Tester's view of system
testing is very close to user's view while accepting software.

Information System Management:

Information system management may do testing related to security and
operability of system. They would provide the specialized skills needed
for this type of testing.

Senior Management/Auditors:

Senior management or auditors appointed by senior management such as
Software Quality Assurance (SQA) perform redelivery audit, smoke
testing, and sample testing to ensure that proper product is delivered to the
customer.

4.3 PROCESS PROBLEMS FACED BY TESTING

‘Q’ organisations consider that defects in the product are due to incorrect
processes, in general, it is believed that incorrect processes cause majority
(about 90%) of the working problems. Defects are introduced in software
due to incapable processes of development and testing. Software testing is
also a process, and prone to introduce defects in the system. If the process
of software testing is faulty, it gives problems in terms of defects not
found during testing but found by customer, or wrong defects found which
are either ‘not a defect’, ‘duplicate’, ‘cannot be reproduced’ or ‘out of

scope’ type of defects. The basic constituents of processes are people,
material, machines and methods.

People:

Many people are involved in software development and testing, such as
customer/user specifying requirements; business analysts/system analysts
documenting requirements; test managers or test leads defining test plans
and test artifacts; and testers defining test scenarios, test cases, and test
data. There is a possibility that at few instances some personal attributes
and capabilities may create problems in development and testing. Proper
skill sets such as domain knowledge and knowledge about development
and testing process may not be available.

Material:

Testers need requirement documents, development standards and test
standards, guidelines, and other material which add to their knowledge
about a prospective system. These documents may not be available, or
may not be clear and complete. Similarly, other documents which act as a
framework for testing such as test plans, project plan, and organisational
process documents may be faulty. Test tools and defect tracking tools may
not be available. All of these may be responsible for introducing defects in
the product.

Machines:

Testers try to build real-life scenarios using various machines, simulators
and environmental factors. These may include computers, hardware,
software, and printers. The scenarios may or may not represent real-life
conditions. There may be problems induced due to wrong environmental
configurations, usage of wrong tool, etc.

Methods:

Methods for doing test planning, risk analysis, defining test scenarios, test
cases, and test data may not be proper. These methods undergo revisions
and updating as the organisation matures.

Economics of Testing:

As one progresses in testing, more and more defects are uncovered, and
probability of customer facing a problem reduces while the cost of testing
goes up. The cost of customer dissatisfaction is inversely proportional to
testing efforts. It means more investment in testing efforts reduces the cost
of customer unhappiness. On the other hand, the cost of testing increases
exponentially. If the first ten defects are found in one hour, for finding the
next ten defects, it may need two hours, and so on. If we plot both curves,
then at some point, the two curves intersect each other. This point shows
optimum testing point. Area before this point represents an area under
testing where defective product goes to customer and customer
dissatisfaction cost is higher than cost of testing, while area after this point

Challenges in Software
Testing

123

Software Quality
Assurance

124

represents an area of over testing where cost of customer dissatisfaction is
less than cost of testing.

Cost of testing curve is guided by the following:

Defect finding ability of testing team (test team efficiency)
Defect fixing ability of development team (defect fixing efficiency)

Defect introduction index of development team which talks about
regression defects getting introduced due to fixation of some defects
discovered during testing

Cost of testing

Cost

Under testing Over testing

Customer dissatisfaction

Time for testing

Fig 4.3 Cost of Testing and Cost of Customer Dissatisfaction

If test team efficiency and defect fixing efficiency are 100%, and
defect introduction index is zero, we need only two iterations of
testing. As it goes away from ideal numbers, number of iterations
increase exponentially.

Cost of customer dissatisfaction is guided by the following aspects:

Cost of customer dissatisfaction mainly depends upon customer-
supplier relationship. If an organisation has done several projects
which were very successful, then the customer may not mind if some
defects are there in the current project. Customer dissatisfaction curve
tends to be parallel to ‘Y’ axis. On the other hand, if the customer is
very finicky about defects and past performance of an organisation is
not good, it may tend to be parallel to "X" axis.

Cost of customer dissatisfaction also depends on the type of product
and its mission criticality to the customer. Customer may not like any
problem in high mission-critical software while he may accept certain
problems in other types of software.

4.4 COST ASPECT OF TESTING

As seen earlier, cost of quality includes cost of prevention, cost of
appraisal and cost of failure. Testing may take some portion of each of
these costs. It is believed that cost of quality is about 50% of the cost of

product. Testing is a costly affair and an organisation must try to reduce
the cost of testing to the maximum extent possible.

There is a famous concept of efforts conversion into cost in case of
software development, as effort is the major component of total cost. This
may be done by standard costing method or marginal costing method as
per organisation's process definition. Efforts spent by the organisation in
developing and testing of application are converted at some predefined
rates to arrive at the total cost of a product. Sometimes, the cost of
resource varies as per the role played by a person. For example, a project
manager may get more rate than developer, or an architect may get more
billing than a tester.

Lel s suppose lhal the project duration is 10 monlhs with 22 days of warking per month, 8 hours working per
day and 100 people ars working on it. Also, if conversion rate is say Rs 500 per parson hour, then the cost of
development and testing taken together will be as follows.

Total efforts spent on project = 10 » 22 x B = 100 = 176,000 hrs
Total cost = 176,000 = 500 = Rs 83,000,000

An organisation may have some addiions to this cost in tarms of contingencies, overheads and profit
expected to arrive at sales price. If contingency is considered at 10%, avernead appartionment is considered
at 10% and expected profit is considerad at 209, then

£'¢ sdwexs poanjos

Sales price would be = 8,500,000 = 110% = 110% = 120% = Rs 127,776,000

It is a very rare scenario that a project will have 100 people working for all
10 months for the development project. Generally, development projects
never have the same number of resources throughout the life cycle.
Initially, it may need less number of people and as one passes through
different phases of development, number of resources required increases
exponentially. Once the peak activities are over, number of resources
required goes down.

The same cycle is followed by testing resource requirements. As the
testing phases progress, number of resources required increases
exponentially. Once the peak activities are over, number of test resources
goes down. Thus, for development project, costing is always dynamic.

In case of maintenance or production support type of work, number of
resources remains fairly constant over a long-time horizon. Fig 4.4
indicates resources required for a development project.

Number of resources for a development project

70
&0 . . - Development Tearn
o
S50 o e,
40 .
30 s
20 ~ " Test Team
10 - Sy
1] — = B . " 1 . - 4 + + = e —
1 2 3 4 s 2] 7 8 9 0 11 12 13 14
Week Numbers (Time)

Number of Resources

Challenges in Software
Testing

125

Software Quality
Assurance

126

Fig 4.4 Number of resources for development project

Cost of development/manufacturing includes the cost spent in the
following.

e Capturing the requirements, conducting analysis, asking queries, and
elicitation of requirements

e Cost spent in designing the application including high-level designing
and low-level designing

e Cost spent in writing code, integrating and creating the final product
4.4.1 Assessment of Cost of Testing:

Cost of testing may be considered as the cost of the project activities on
and above normal phases of development. Various phases of development
are associated with phases of verification and validation. Cost of testing is
a function of two processes, viz. development process maturity and test
process maturity. It has also a very close relationship with the type of
application being produced, methodology of development and testing,
domain, technical parameters of development, and testing.

Type of Application and Cost of Testing:

Depth and breadth of testing has direct relationship with the size and
importance of an application to a user, and test efforts that the customer is
ready to pay for also varies accordingly. As far as size of an application is
concerned, testing follows ‘Rayleigh Putnam’ curve. As the size of
application increases, the testing efforts increase exponentially. An
organisation must evaluate is own curve on the basis of historical data, or
may adapt to the existing baselines in initial phases when historical data is
not available.

Cost of testing = k f(x)

Where ‘K’ is a constant and f(x) is a function of size of an application
while ‘X’ indicates the size of the application.

An application may be defined as per its importance to the user. If user is
completely dependent upon the application, he may want more confidence
and thus, invest more in testing. On the other hand, if software does not
have business criticality, the customer may not be ready to pay that much
cost.

Development and Test Methodology:

Development and test methodologies also affect testing efforts and costs.
It is generally believed that waterfall development methodology can
produce robust software and testing efforts required are much lesser. Agile
methodologies may need huge testing because there is more stress on
regression testing, as each iteration of development is over. Iterative

development has more testing costs as there is a change in requirements,
design, coding, etc.

Test methodologies have an impact on test efforts and costs. An
organisation conducting phase-wise testing has lesser cost than the
organisation facing testing at the last phase of development. Life cycle
testing is very cheap in comparison to testing at the last phase of
development. Usage of regression testing tools may increase the cost of
testing in initial phases while in the long term, overall cost of testing is
reduced due to automation.

Domain and Technological Aspects:

Application domain plays an important role, along with criticality of the
application, to the users. If the application is going to affect human life,
there may be many regulations coming into the picture. The customer will
be more cautious about testing and test results. There may be more legal
implications if sufficient and adequate testing is not done. Some other
types of software affecting huge sum of money are also regulated by the
rules, regulations and laws of the place where it is used.

It is believed that technology also plays an important role in deciding the
extent of testing. Object-oriented development faces different challenges
in testing compared to normal development without any object usage.

There may be more thrust on integration testing rather than unit testing.
Old development languages and databases sometimes make testing
difficult.

Maturity of Development and Testing Processes:

Development and testing process maturity is an important issue in
deciding the cost of testing. Theoretically, testing is not at all required if
development can achieve the defined output. If development process is
highly matured and can achieve the expected output, then testing may be
considered as wastage. Many engineering organisations have reached the
phase of zero defect and 'zero' inspection. But software application
development may not have achieved a level of maturity to produce defect-
free products. Some amount of testing is required to find all conceivable
faults so that development team can fix them.

Many organisations have a development phase followed by one complete
iteration of testing. It must find all defects so that these are eventually
fixed in rework phase. Second iteration of testing must achieve the
required level of confidence that application will not fail.

Testing involves all three components of cost of quality mentioned below.
4.4.2 Cost of Prevention in Testing:

Cost of prevention is the cost incurred in preventing defects from entering
into a system. In various phases of verification and validation, cost of
prevention is distributed. Some of these are discussed below.

Challenges in Software
Testing

127

Software Quality
Assurance

128

Cost Spent in Creation of Verification and Validation Artifacts:

This part of cost is spent when the project team and test team create
various artifacts related to verification and validation at different phases of
software development. Cost of planning includes creating test plans and
quality plans so that quality can be appraised correctly. This phase may
also include the time and effort spent in creation of guidelines for testing,
reviews, creation of checklists, writing of test cases and test data along
with test scenarios. In case of test automation, cost of test-script creation
may be a part of prevention cost.

Cost Spent in Training:

Testers may need training on the domain under testing. They may also
need training on test process and various tools used for testing. This may
include organisation-level training as well as project-specific training.

Cost of prevention is calculated as follows:

e Cost spent in creating various plans related to software verification
and validation. An organisation must have a baseline definition of the
effort required to create plans.

e Cost spent in writing test scenarios, test cases, creating guidelines for
verification and validation, and creating checklists for doing
verification and validation activities. Organisation baselines must
define the time and effort required for this activity.

e Training requirements may be separately assessed depending upon the
competency of test teams, type of application, and level of tool usage
for testing. There may not be baseline data available in this case as it
may change from project to project.

4.4.3 Cost of Appraisal In Testing:

Cost of appraisal includes cost spent in actually doing verification and
validation activities. Generally, first-time verification/validation is
considered under cost of appraisal. Test artifacts also need reviews and
testing to confirm that they are correct. Checklists needed for the reviews
must also be reviewed before they are used.

Irrespective of whether time and efforts are spent by developers or testers,
all efforts spent on conducting reviews, walkthroughs, inspection, unit
testing, integration testing, and system testing are considered under cost of
appraisal.

Cost of appraisal is calculated as follows:

e Cost required for conducting first-time verification and validation
activities can be assessed from the size of an application and
organisation baseline data available.

e Time and effort required to conduct the given number of test cases
may be derived from the productivity numbers, and number of test
cases required can be derived from the size of an application.

4.4.4 Cost of Failure In Testing:

Cost of failure in testing accounts for all retesting, regression testing, and
re-reviews conducted as the defects are found in earlier iterations. Any
cost spent on and above first-time verification and validation makes a cost
of failure for testing. The organisation must have a target to reduce the
cost of failure continuously, as this directly affects its profitability.

Cost of failure is calculated as follows:

e On the basis of historical data available in baseline studies, one may
plan number of iterations required to achieve predetermined exit
criteria.

e Number of test cases per iteration and number of iterations required
can give the efforts required to perform retesting and regression
testing.

4.5 ESTABLISHING TESTING POLICY

Good testing is a deliberate planned effort by the organisation. It does not
happen on its own, but detailed planning is required. Testing efforts need
to be driven by test policy, test strategy or approach, test planning, etc.
Test policy is an intent of test management about how an organisation
perceives testing and customer satisfaction. It should define test objectives
and test deliverables.

Test strategy or approach must define what steps are required for
performing an effective testing. How the test environment will be created,
what tools will be used for testing, defect capturing, defect reporting, and
number of test cycles required will be a part of test strategy. It must talk
about the depth and breadth of testing to ensure adequate confidence
levels for users.

Test objectives define what testing will be targeting to achieve. It is better
to have test objectives expressed in numbers in place of qualitative
definitions. Some of the test objectives may be about code coverage,
scenario coverage, and requirement coverage, whereas others may define
the targeted number of defects.

Testing must be planned and implemented as per plan. Test plan should
contain test objectives and methods applied for defining test scenario, test
cases and test data. It should also explain how the results will be declared
and how retesting will be done. It is a general expectation that automation
can solve all problems regarding testing process. One thing to be noted is
that- automation can increase the speed and repeatability of testing but test
planning cannot be done automatically. Rather, it needs involvement of
people doing testing.

Challenges in Software
Testing

129

Software Quality
Assurance

130

4.6 METHODS

Generally, methods applied for testing efforts are defined at organisational
levels. They are generic in nature and hence, need customisation. They are
customised into a test plan, and any tailoring required to suite a specific
project may be done. Management directives establish methods applied for
testing. It includes what part will be rested nor tested, and how it will be
tested. Which tools will be used for testing, defect-tracking mechanism,
communication methods and if there is any decision of automation, how it
will be undertaken all this must be covered by these processes.
Management directives are defined in test strategy.

Testing strategy may be discussed with users/customer to get their
views/buy-in about testing. It may be accomplished through meetings and
memorandums, User/customer must be made aware of cost of finding and
fixing defects. All stakeholders for the project must be made aware that
‘zero defects’ is an impossible condition and acceptance criteria for the
project must be defined well in advance (possibly at the time of contract).
Methods of using data or inputs provided by a customer must be analysed
for sufficiency and correctness.

4.7 STRUCTURED APPROACH TO TESTING

Testing that is concentrated to a single phase at the end of development
cycle, just before deployment, is costly. Testing is a life cycle activity and
must be a part of entire software development life cycle. If testing is done
only in the last phase before delivery to customer, the results obtained may
not be accurate and defect fixing may be very costly. Here, it cannot show
development process problems and similar defects can be found again and
again. Four components of wastes involved in this type of testing aregiven
below.

Waste in Wrong Development:

Wrong specifications used for development or testing will result into a
wrong product and wrong testing. Even if specifications are correct, it may
be wrongly interpreted in design, code, documentation, etc. The defects
not found during reviews or white box testing will be discovered only at
the customer's end. This may lead to high customer dissatisfaction, huge
rework, retesting, etc.

Waste in Testing to Detect Defects:

If testing is intended to find all defects in product, then cost of testing will
be very high. Effective reviews can reduce the cost of software testing and
development. If entire responsibility for software quality is left to black
box testing or final system testing, then the cost of testing and cost of
customer dissatisfaction may be very high.

Wastage as Wrong Specifications, Designs, Codes and Documents
Must Be Replaced by Correct Specifications, Designs, Codes and
Documents:

The cost of fixing defects maybe very high in the last part of testing as
there are more number of phases between defect introduction phase and
defect detection phase, and defect may percolate through the development
phases. Correcting the specifications, designs, codes and documents, and
respective retesting/regression testing is a costly process. It can lead to
schedule variance, effort variance and customer dissatisfaction. One defect
fix can introduce another defect in the system.

Wastage as System Must Be Retested to Ensure That the Corrections
Are Correct:

For every fixing of defect, there is a possibility of some other part of
software getting affected in a negative manner. One needs to test software
again to ensure that fixing of software has been correct, and it has not
affected the other parts in a negative manner. Regression and retesting are
essential when defects are found and fixed.

4.8 CATEGORIES OF DEFECT

Software defects may be categorized under different criteria. The
categories of defects must be defined in the test plan. The definition may
differ from organisation to organisation, project to project and customer to
customer.

4.8.1 On Basis of Requirement/Design Specification:

e Variance from product specifications as documented in requirement
specifications or design specifications represents specification related
defects. These defects are responsible for Producer's ‘gap’.

e Variance from user/customer expectations as business analyst/system
analyst is not able to identify customer needs correctly. These
variances may be in the form of implied requirements. These are
responsible for ‘Users gap’.

4.8.2 Types of Defects:

e Wrongly implemented specifications are relate to the specifications as
understood by developers differing significantly from what the
customer wants. These may be termed ‘misinterpretation of
specifications’.

e Missing specifications are the specifications that are present in
requirement statements but not available in the final product. The
requirements are missed, as there is no requirement tracing through
product development.

e Features not supported by specifications but present in the product
represent something extra. This is something added by developers
though these features are not supported by specifications.

Challenges in Software
Testing

131

Software Quality
Assurance

132

4.8.3 Root Causes of Defects:

e Wrong requirements given by user/customer can be a basic cause of
defect. This is due to the inability of the customer to put the
requirements in words, or specifying requirements which are not

required.

e Business analyst/system analyst interprets customer needs wrongly
can be another major cause of defect. This is due to the inability of

business analyst/system analyst to elicit requirements.

e System design architect does not understand requirements correctly
and hence, the architecture is wrong. This may be due to
communication gap or inability of the architect in understanding the

requirements.

e Incorrect program specifications, guidelines, and standards are used
by respective people. If the organization processes are not capable,

then defects are introduced in the product so produced.

e Errors in coding represent lack of developer's skills in understanding

design and implementing it correctly.

e Data entry error caused by the users while using a product. This can
be possible when users are not protected adequately. This indicates

design problems.

e Errors in testing-false call/failure to detect an existing defect in the
product. The first part introduces defects in a correct product while

the second part allows defects to go to the customer.

e Mistake in error correction, where defect is introduced while

correcting some identified defect.

4.9 DEFECT, ERROR, OR MISTAKE IN SOFTWARE

The problems with software work product may be put under different
categories on the basis of who has found it and when it has been found (as

shown in Table 4.9)

Table 4.9 Comparison of mistake, error and defect

Mistake Error Defect
Anissue identified while reviewing An issue identified internally orin Anissue identified in black bax
own documents, or peer review may | unit testing may be termed errar’, testing or by custamer is termed
be termed 'mistake’ ‘defect’
Very low cost of finding mistakes Slightly mare cost of inding an error - Most costly and needs longer time
and can be fixed immediately. and needs same Lime for fixing. for fixing defects.
Mast of the time, problems and Sometimes, problems and Prablems and resclutions are
resalutions are not documented resolutions are documented, officially documented and used for
properly. but may not be used for process process improvements.

improvements.

4.10 DEVELOPING TEST STRATEGY Challengres ti_n Software
esting

Test planning includes developing a strategy about how the test team will
perform testing. Some key components of testing strategy are as follows.

e Test factors required in particular phase of development

e Test phase corresponding to development phase

Process of developing test strategy goes through the following stages.
Select and Rank Test Factors for the Given Application:

The test team must identify critical success factors quality factors 'test
factors for the software product under testing. Software may have some
specific requirements from user's point of view. Test factors must be
analysed and prioritised or ranked. Some test factors may be related to
each other (either direct or inverse relationship). The trade-off decisions
may be taken after consulting with customer, if possible, when the
relationship is inversed.

Identify System Development Phases and Related Test Factors:

The critical success factors may have varying importance as per
development life cycle phases. One needs to consider the importance of
these factors as per the life cycle phase that one is going through. The test
approach will change accordingly.

Identify Associated Risks with Each Selected Test Factor in Case if it
is not Achieved:

Trade-offs may lead to few risks of development and testing the software.
Customer must be involved in doing trade-offs of test factors and the
possible risks of not selecting proper test factor. The risks with probability
and impact need to be used to arrive at the decision of trade-off.

Identify Phase in Which Risks of Not Meeting a Test Factor Need to
Be Addressed:

The risks may be tackled in different ways during development life cycle
phase’s counter measures for the same. As the phase is over, one needs to
assess the actual impact of the risks and effectiveness of devised
countermeasures for the same.

411 DEVELOPING TESTING METHODOLOGIES
(TEST PLAN)

Developing test tactics is the job of project-level test manager/test lead.
Different projects may need different tactics as per type of product
customer. Designing and defining of test methodology may take the
following route.

133

Software Quality
Assurance

134

4.11.1acquire and Study Test Strategy As Defined Earlier:

Test strategy is developed by a test team familiar with business risks
associated with software usage. Testing must address the critical success
factors for the project and the risk involved in not achieving it.

4.11.2 Determine the Type of Development Project Being Executed:

Development projects may be categorised differently by different
organisation, as shown below.

Traditionally developed software by following known methods of
development such as waterfall development life cycle. An
organisation has a history available, and the lessons learned in
previous projects can be used to avoid contingencies in the given
project.

Commercially off the Shelf (COTS) purchased software which may
be integrated in the given software. Requirements and designs of such
software may not be available, and integration in terms of parameters
passing can be a major constraint.

Maintenance activities such as bug fixing, enhancement, porting, and
reengineering will have their own challenges, such as availability of
design documents, compatibilities of various technologies, and code
readability.

Agile methodology of development has small iterations of
development and heavy regression testing.

Iterative method of development has continuously changing
requirements and all other artifacts must be updated accordingly.

Spiral development, where new things are added in system again and
again. Generally followed methodology in spiral development is
modular design, development and testing.

4.11.3 Determine the Type Of Software System Being Made:

Type of software system defines how data processing will be performed
by the software. It may involve the following.

Determine the project scope (whether it is multivendor or multisite
development). Distributed development and integration of parts
developed by different vendors can be a challenging task.

New developments including scope of development and scope of
testing, when the products are enhanced from existing levels.

Changes to existing system such as bug fixing, enhancement,
reengineering, and porting.

4.11.4 Identify tactical Risks Related to development:

Risks may be introduced in software due to its nature, type of customer,
type of developing organisation, development methodologies used, and
skills of teams. Risk may differ from project to project.

Structural Risks (Refers to Methods Used to Build a Product): If
the projects are supposed to use existing libraries or designs which
may need complex algorithms to be written, the structure of the
software may pose the highest risk. Complex structures with
interfaces in relation to many other systems can make the architecture
fragile.

Technical Risks (Refers to Technology Used to Build and Operate
the System): If the organisation is new to a particular technology, or
the technology itself is new to the world, then it can lead to this king
of risk. Unproven technology or inability to work with the latest
technology is the problems faced by developers as well as users.

Size Risks (Refers to Size of All Aspects of Software): As the
software size increases. It becomes more complex. Maintaining
integrity of very big software itself is a challenge.

4.11.5 Determine When Testing Must Occur During Life Cycle:

Testing phases starting from proposal, contract or requirement testing
till acceptance testing and their integration decide the test strategy for
the project.

Previously collected information, if available, is to be used to decide
how much testing is to be done, at what time and in which phases. It
defines the cost of testing, cost of customer dissatisfaction and any
trade-offs.

Build tactical test plan which will be used by the test team in
execution of testing related activities.

To describe software being tested, test objectives, risks, business
functions to be tested, and any specific tests to be performed.

4.11.6 Steps to Develop Customised Test Strategy:

Select and rank quality factors/test factors as expected by the
customer in the final product. Quality factors must be prioritised.
Generally, the scale used is 1-99, where ‘1’ indicates higher priority
while '99" indicates lower priority. No two quality factors have the
same ratings.

Identify the system development phase where these factors must be
controlled. As the defects may originate in different phases, quality
factors may change their priority during each phase of development
life cycle.

Challenges in Software
Testing

135

Software Quality
Assurance

136

Identify business risks associated with system under development. If
quality factors are not met, these may induce some risk in a product.

Place risks in a matrix so that one may be able to analyse them. This
may be used to devise preventive, corrective and detective measures
to control risks. Table 4.10 shows how test strategy matrix can be

developed.
Table 4.10 Typical test strategy matrix
Quality Require- Deploy- Mainte-
factors Test phases ment Design Coding Testing ment nance
Compliance
Factors Accuracy Risks associated at different phases for different factors,
Reliability

4.11.7 Type of Development Methodology Impact Test Plan Decisions:

Table 4.11 shows in general, which test tactics can be used depending
upon the type of development activity. This is an indicative list and may
differ from situation to situation, product to product and customer to
customer.

Table 4.11 Development model and testing

tactics
Type Characteristics Test tactics
lraditional system development * Uses asystern development Test at end of each task/step/
such as waterfall model of develop- methodology as defined phase to ensure that exit criteria
Ment + LUser knows requirements is achieved
completely and these are defined Verify that specifications match
* Development determines user needs exactly

Iterative development/prototyping
develapment

Syster maintenance methodelogy

Purchasejcontracted software COTS

structure of application

Complete set of requirements
unknown to users and developers
Structure predefined by
development

Refactoring may be done, if
required

Meodify structure if it represents
a limiting factor for maintenance
activities

System unknown to testers
May cantain defects in hidden
farm

Functionality defined in user
manual

Daocumentation may vary fram
software to software

Test functions and structures as
pertestplan

Verify that case tools are used
properly where required by
testing

Test functionality first

Test other areas of product such
as integration, system etc

Test structure consistency as it
may affect entire application
Warks best with release methods
of maintenance

Requires heavy regression
testing as system is updated

Werify that functionality matches
neads of business

Test functionality as per business
nead

Test fitniess for use into
production enviranment

4.12 TESTING PROCESS

Testing is a process made of many milestones. Testers need to achieve
them, one by one, to achieve the final goal of testing. Each milestone
forms a basis on which the next stage is built. The milestones may vary
from organisation to organisation and project to project. Following are few
milestones commonly used by many organisations.

Defining Test Policy:

Test policies are defined by senior management of the organisation or test
management, and may or may not form a part of the test plan. Test policy
at organisation level defines the intent of test management. Test policy is
dependent on the maturity of an organisation in development and test
process, customer type, type of software, development methodology, etc.
Test policy may be tailored at project level, depending upon the scope and
historical information available from similar projects.

Defining Test Strategy:

Definition of test strategy includes how the test learn will be organised,
and how will it work to achieve test objectives, decision about coverage,
automation, etc. Test strategy provide, the actions to the intents defined by
test policy. Test strategy helps the test team to understand the approach of
testing.

Preparing Test Plan:

Test planning is done by test managers, test leads or senior testers, as the
case may be. Test policy sets a tone, whereas test strategy adds the actions
required to complete test policy. Test plan tries to answer six basic
questions- What, When, Where, Why, Which and How. Test plans are for
individual product/project and customer. They are derived from test
strategy and give details of execution of testing activity.

Establishing Testing Objectives to Be Achieved:

Test objectives measure the effectiveness and efficiency of a testing
process. They also define test achievements that they plan for. Test
objectives are also defined from the quality objectives for the project or
product, and the critical success factors for testing. Testing objectives
must be ‘SMART’ (specific, measurable, agreed upon, realistic, and time
bound).

Designing Test Scenarios and Test Cases:

How the test scenarios and test cases will be defined should be explained
by the test strategy. A test scenario represents user scenario which acts as
a framework for defining test cases. It may have actors and transactions.
Similarly, there may be few scenarios arising from system requirements.
Theoretically, each transaction in a test scenario eventually becomes a test
case.

Challenges in Software
Testing

137

Software Quality
Assurance

138

Writing/Reviewing Test Cases:

Writing and reviewing test cases along with test scenarios and updating
requirement traceability matrix accordingly are the tasks done by senior
testers or test leads for the project. The traceability matrix gets completed
by adding the test cases and finally, the test results. One more column in
the traceability matrix would be the results of execution of test cases, i.e.,
test results.

Defining Test Data:

Test data may be defined on the basis of different techniques available for
the purpose. It may include boundary value analysis, error guessing,
equivalence partitioning, and state transition. Test data must include valid
as well as invalid set of data. It must include some special values
generated from error guessing. Test data definitions may be important
from testing point of view as different iterations must have different test
data sets though it may be used by same test cases.

Creation of Test Bed:

Testing needs creation of environment for testing. It may be a real-life
environment or a simulated environment using some simulators. Test bed
defines some of the assumptions in a test plan which may induce certain
risks of testing. It must reflect real-life situations as closely as possible.
Simulators may need definition of few risks, as testing is not done in real
environment.

Executing Test Cases:

Execution of actual test cases with the test data defined for testing the
software involves applying test cases as well as test data and trying to get
the actual results. It sometimes involves updating test cases or test data, if
some mistakes are found in initially defined test cases or test data.

Test Result:

Logging results of testing in test log is the last part of the testing iteration.
There may be several iterations of testing planned and executed. The
defect database may be populated, if expected results are not matching
with the actual results. One needs to make sure that the expected results
are traceable requirements.

Test Result Analysis:

Testing is a process of SWOT analysis of software under development and
testing. Examining test results and analysis may lead to interpretation of
software in terms of capabilities and weakness. At the end of testing, the
test team must recommend the next step after testing is completed to the
project manager- whether the software is ready to go to the next stage or it
needs further rework and retesting.

Performing Retesting/Regression Testing When Defects Are Resolved
by Development Team:

When defects are given to a development team, they perform analysis and
fix the defects. Retesting is done to find out whether the defects declared
as fixed and verified by the development team are really fixed or not.
Regression testing is done to confirm that the changed part has not
affected (in a negative way) any other parts of software, which were
working earlier.

Root Cause Analysis and Corrective/Preventive Actions:

Root cause analysis is required to initiate corrective actions. Development/
test team performs post-mortem reviews to understand the weakness of
development as well as test process, and initiates actions to improve them.
Process improvement is the last activity after the project is closed and
formally accepted by the customer. All defect prevention activities must
lead to process improvements.

413 ATTITUDE TOWARDS TESTING (COMMON
PEOPLE ISSUES)

Attitude of development team and senior management or project
management towards a test team is a very important aspect to build morale
of the test team. It may be initiated from test policy and may be percolated
down to test strategy definition and test planning. Some of the views about
test team are as follows.

e New members of development team are not accustomed to view
testing as a discovery process where defects are found in the product.
The defects found are taken as personal blames rather than
system/process lacunae. Sometimes, people try to defend themselves,
considering it as an attack on the individual.

e ‘We take pride on what we developed’ or ‘we wish to prove that it is
right’ or ‘it is not my fault’ are very common responses. Developers
may not accept the defect in the first place. If they accept the presence
of a defect, then they try to put blame on somebody else. Root cause
analysis is very difficult in such situations as people may attach
personal ego to it.

e Conflict between developer and tester can create differences between
project teams and test teams. In reality, the sole aim of development
and testing must be a customer satisfaction, and defects must be
considered as something which prevents achievement of this
objective.

Challenges in Software
Testing

139

Software Quality
Assurance

140

414 TEST METHODOLOGIES/APPROACHES

The two major disciplines in testing are given below:

Black Box Testing:

Black box testing is an attesting methodology where product is tested as
per software specifications or requirement statement defined by business
analysts/system analysts/customer. Black box testing mainly talks about
the requirement specification given by customer, or intended requirements
as perceived by testers. It deals with testing of an executable and is
independent of platform, database, etc. This testing is with the view as if a
user is testing the system.

White Box Testing:

White box testing is a testing methodology where software is tested for the
structures, White box testing covers verification of work products as per
structure, architecture, coding standards and guidelines of software. It
mainly deals with the structure and design of the software product. White
box testing requires that testers must have knowledge about development
processes and artifacts including various platforms, databases, etc.

There is one more methodology covering both testing methodologies at
the same time.

Grey Box Testing:

Grey box testing talks about a combination of both approaches, viz, black
box testing and white box testing at the same time. There may be various
shades of black box testing as well as white box testing in this type of
testing, depending upon the requirements of product. Though not a rule,
Grey box testing mainly concentrates on integration testing part along with
unit testing.

Broadly, all other testing techniques may be put in any of these three
categories, viz. black box testing, white box testing and grey box testing.

4.14.1 Black Box Testing (Domain Testing/Specification Testing):

Black box testing involves testing system/components considering inputs,
outputs and general functionalities as defined in requirement
specifications. It does not consider any internal processing by the system.
Blackbox testing is independent of platform, database, and system to make
sure that the system works as per requirements defined as well as implied
ones. Actual system (production environment) is simulated, if it is difficult
to create a real-life scenario in test laboratory. It does not make any
assumption about technicalities of development process, platform, tools,
etc. It represents user scenario and actual user interactions.

Requirement specifications

Input Output

Events
Fig 4.14.1 Black box testing

Fig 4.14.1 shows a block box testing schematically. Black box functional
testing is generally conducted for integration testing, system testing, and
acceptance testing where the users/customers or the testers as
representatives of the customer execute a system as if it is used by users in
production environment.

Advantages of '‘Black Box Testing':

Black box testing is used primarily to test the behaviour of an application
with respect to expressed or implied requirements of the customer.

e Black box testing is the only method to prove that software does what
it is supposed to do and it does not do something which can cause a
problem to user/customer.

e It is the only method to show that software is living and it really
works.

e Some types of testing can be done only by black box testing
methodologies, for example, performance and security.

Disadvantages of ‘Black Box Testing’:

Black box testing has many disadvantages so far as software development
methodology is concerned.

e Some logical errors in coding can be missed in black box testing as
black box testing efforts are driven by requirements and not by the
design. It uses boundary value analysis, equivalence partitioning, and
some internal structure problems can be missed.

e Some redundant testing is possible as requirements may execute the
same branch of code again and again. If an application calls common
functions again and again, then it will be tested so many times that in
leads to redundant testing.

Test Case Designing Methodologies:

Black box testing methodology defines how the user is going to interact
with the system without any assumption about how the system is built. As

Challenges in Software
Testing

141

Software Quality
Assurance

142

there is no view of how software is built, defining test cases is very
difficult. Test cases may be defined using the user scenario called ‘test
scenario’. Completeness of test scenario is essential for good testing.
Theoretically, each sentence in the test scenario may become a test case.
Scenario contains activities in terms of transactions and actors.

Test Data Definition:

Black box testing is mainly driven by the test data used during testing. It
may not be feasible to test all possible data which user may be using while
working with an application. Some special techniques are applied for
defining test data which can give adequate coverage, and also limits the
number of test cases and the risk of failure of an application during use.
Some of these techniques are mentioned below.

. Equivalence partitioning
o Boundary value analysis
J Cause and effect graph
. State transition testing

. Use case based testing

o Error guessing

4.14.2 White Box Testing:

White box testing is done on the basis of internal structures of software as
defined by requirements, designs, coding standards, and guidelines. It
starts with reviews of requirements, designs, and codes. White box testing
can ensure that relationship between the requirements, designs, and codes
can be interpreted. Whitebox testing is mainly a verification technique
where one can ensure that software is built correctly. Fig 4.14.2 shows a
white box testing schematically.

Design specifications

|

Input Output
=

|

Events, standards

Fig 4.14.2 White box testing

Advantages of ‘White Box Testing’: Challenges in Software

] o) o Testing
White box testing is a primary method of verification

e Only white box testing can ensure that defined processes, procedures,
and methods of development have really been followed during
software testing. It can check whether the coding standards,
commenting and reuse have been followed or not.

e White box testing of verification can give early warnings, if
something is not done properly. It is the most cost-effective way of
finding defects as it helps in reducing stage contamination.

e Some characteristics of software work product can be verified only.
There is no chance of validating them. For example, code complexity,
commenting styles, and reuse.

Disadvantages of ‘White Box Testing’:
White box testing being a verification technique has few shortcomings.

e It does put ensure that user requirements are met correctly. There is
no execution of code, and one does not know whether it will really
work or not.

e It does not establish whether decisions, conditions, paths, and
statements covered during reviews are sufficient or not for the given
set of requirements.

e Sometimes, white box testing is dominated by the usage of checklists.
Some defects in checklist may reflect directly in the work product.
One must do a thorough analysis of all defects.

Test Case Designing:

Test case designing is based on how test artifacts are created and used
during testing. It defines how documents are written and interpreted by
each person involved in software development life cycle. Some of the
techniques used for white box testing are as follows.

e Statement coverage

e Decision coverage

e Condition coverage

e Path coverage

e Logic coverage
4.14.3 Grey Box Testing:

Grey box testing is done on the basis of internal structures of software as
defined by requirements, designs, coding standards, and guidelines as well

143

Software Quality
Assurance

144

as the functional and non-functional requirement specifications. Grey box
testing combines verification techniques with validation techniques where
one can ensure software is built correctly, and also works. Figure 4.14.3
shows a Grey box testing schematically.

Requirement and Design specifications

Input \ Cutput
EEmm—

Events, standards
Fig 4.14.3 Grey Box Testing
Advantages of ‘Grey Box Testing’:

e Grey box testing tries to combine the advantages of white box testing
and Black box testing. It checks whether the work product works in a
correct manner, both functionally as well as structurally.

Disadvantages of ‘Grey Box Testing’:

e Generally, Grey box testing is conducted with some automation tools.
Knowledge of such tools along with their configuration is essential for
performing Grey box testing.

4.15 PEOPLE CHALLENGES IN SOFTWARE TESTING

Testing is a process and must be improved continuously. People need to
analyse and take actions on the shortcomings found in the process, so that
they can be improved continuously. Few expectations of software process
improvement needs from testers are given below.

e The tester is responsible for improving testing process to ensure better
products with less number of defects going to customer, thus
enhancing customer satisfaction. All defects must be found and the
confidence level must be built in the process that can give customer
satisfaction. Proper coverage as required by test plan must be
achieved.

e Testing needs trained and skilled people who can deliver products
with minimum defects to the stakeholders. Testers have to improve
their skills through continuous learning.

e The tester needs a positive team attitude for creative destruction of
software. Defect in the software is an opportunity to improve the
product and not to blame developers. Testers must be able to pinpoint
the lacunae in software development process as the defects are found.

Testing is creative work and a challenging task. Feasible test
scenarios and test cases, as well as effective ways of looking for
defects are essential to improve testing effectiveness.

Programmers and testers work together to improve the quality of
software developed and delivered to customer, and the process used
for software development and testing. The ultimate aim is customer
satisfaction.

Testers hunt for defects they pursue defects not people, including
developers. Every defect is considered as a process shortcoming.
Defect closure needs retesting and regression testing to find whether
the defect is really fixed or not, and to ensure that there is no negative
impact of a defect on existing functions.

Testing needs patience, fairness, ambition, creditability, capability,
and diligence on part of testers. Every defect must be seen from the
business perspective.

416 RAISING MANAGEMENT AWARENESS FOR
TESTING

The management must be aware of the roles and responsibilities that
testers are performing to achieve customer satisfaction by finding defects.
If testers find defects, they can contribute in building good software by
reducing probability that customer may find defects.

4.16.1 Tester's Role:

While establishing a test function in an organisation, the management has
some objectives to be achieved. Test team needs to understand these
objectives and fulfil them.

Calculate testing cost, effectiveness of testing and ensure that
management understands the same. By doing good testing, number of
customer complaints must reduce and cost of failure must go down.

Demonstrate cost reduction and increase in effectiveness over a time
span (as rework and scrap reduce over a long horizon). This can be
shown by reduced customer complaints as well as less rework.

Highlight needs and benefits of training-in test team as well as
development team-on testing activities and skills, so that testers can
perform better. Many developers need information about unit testing,
integration testing and their role in such testing.

Collect and distribute information on testing to all team members as
well as development team/organization which can be used for
improvement.

Challenges in Software
Testing

145

Software Quality
Assurance

146

e Get involved in test budgeting. Testing needs people, money, time,
training and other resources. The organization may have to develop
budget to procure all these aspects.

4.17 SKILLS REQUIRED BY TESTER

Testing needs a disciplined approach. A tester is the person entrusted by
an organisation to work as the devil’s agent. He/she is a person working
for the client, finding the obvious defects in the processes and products.
The main purpose of testing is to demonstrate that defects are present, and
point towards the weaker areas in the software as well as processes used to
build it, so that actions can be initiated in that direction. It must build
confidence in management and customer that the application with which
they will be working is usable and does not have defects. One must try to
build maximum possible skills, and training is one of the effective
methods to build a good testing team.

4.17.1 General Skills:
Written and Verbal Presentation Skill:

Presenting test results or discussing about an application or defects
involves communication with many people. Testers are supposed to
present test results and tell development team, customer and management
about the present status of application and where further improvements
can be done. Testers must be good in presentation skills.

Effective Listening Skill:

Testers need to listen to the customers’ voice as well as views of
developers. Listening to customer as well as developer- to understand the
needs and requirements correctly is required to ensure that the scenarios
and test cases can be written in a proper way. Tester's listening skills can
convert testing into effective testing. Listening skills can give them
complete information about the process, software application and also
what the customer and management are looking for.

Facilitation Skill:

Facilitation of development team as well as customer is done by testers, so
that defects are taken in the proper spirit. Testers must be able to tell the
exact nature of a defect, how it is happening and how it will affect the
users. Testers must contribute to improve development process and take
part in building better product.

Software Development, Operations and Maintenance:

Good knowledge of software development life cycle and software testing
life cycle help testers in designing test scenarios and test cases
accordingly. The defect age and cost of testing are important parameters to
be controlled by testers.

Continuous Education: Challenges in Software

. . o] Testing
Testers must undergo continuous education and training to build and

enforce quality practices in development processes. They need to undergo
training for test planning, test case definition, test data definition, methods
and processes applied for testing, and reporting defects.

4.17.2 Testing Skills:
Concepts of Testing:

A tester must have complete knowledge about testing as a discipline.
He/she must understand methods, processes, and concepts of testing.
He/she must be capable of doing test planning, designing test scenario,
writing test cases, and defining test strategy, and defining test data.

Levels of Testing:

Testing is a multitier activity where the application goes from one level to
another after successful completion of the previous level. Testers are
involved in each phase of software development right from proposal and
contract, followed by requirement till acceptance testing. Testers must
ensure that each phase is passed successfully.

Techniques for Validation and Verification:

Techniques of verification/validation must be understood and facilitated
by testers to the development team, customer and management. While
writing test cases, he/she needs to define test case pass/fail criteria to
validate the test case and product.

Selection and Use of Testing Tools:

Testing involves use of various tools including automation tools, defect
tracking tools, configuration management tools, and simulators. A tester
must understand and use the tools effectively.

Knowledge of Testing Standards:

Testing standards are defined by software quality management. There can
be some international standards or organisation/customer defined
standards. Testers need to understand these standards, and apply them
effectively so that a common understanding can be achieved.

Risk Assessment and Management:

Testing is risk-driven activity. Test cases and test data must be defined to
minimise risks to the final users in production environment. Testing
efforts must be managed to improve their effectiveness and efficiency.
Managing testing involves planning, organising, directing, coordinating,
and controlling testing process.

147

Software Quality
Assurance

148

Developing Test Plan:

Test plan development is generally done by test managers or test leads
while implementation of these plans is done by testers. Individual testers
must plan for their part in overall test plan for the project.

Defining Acceptance Criteria:

Definition of acceptance criteria is an important milestone for testing.
Generally, acceptance criteria are defined by customer well before the
project starts. Testers need to define acceptance criteria for the phases and
iterations of testing. There are various forms of acceptance criteria which
will be discussed later. The phase-end acceptance criteria may be defined
by the testers in test plan.

Checking of Testing Processes:

Testers follow the processes as defined in the test plan. They need to audit
the testing processes to check the compliance and effectiveness, and also
initiate actions if deviations are observed. Testers must contribute in
testing process improvements.

Execution of Test Plan:

Testers are given the responsibility of executing a test plan. It includes
defining test scenario, test cases, and test data, and their execution. They
put test results in test log and defects in defect logging tool. Resolved
defects are taken for retesting. They must perform regression testing when
planned. Testers must do analysis of test results to define weaker and
stronger areas of software development and testing process. They must be
able to define test coverage such as code coverage, statement cover,
branch coverage, requirement coverage, and function coverage.

Continuous Improvement of Testing Process:

Testers must plan for continuous improvement of testing process. Testing
process must be subjected to improvements followed by phase of
consolidations. Actions must be planned for improving process, and the
results must be compared with expectations. If some deviations are
observed, new actions can be initiated.

4.18 SOFTWARE LIFE CYCLE

SDLC is a process that defines the various stages involved in the
development of software for delivering a high-quality product. SDLC
stages cover the complete life cycle of a software i.e. from inception to
retirement of the product.

Adhering to the SDLC process leads to the development of the software in
a systematic and disciplined manner.

Purpose:

Purpose of SDLC is to deliver a high-quality product which is as per the
customer’s requirement.

SDLC has defined its phases as, Requirement gathering, Designing,
Coding, Testing, and Maintenance. It is important to adhere to the phases
to provide the Product in a systematic manner.

For Example, A software has to be developed and a team is divided to
work on a feature of the product and is allowed to work as they want. One
of the developers decides to design first whereas the other decides to code
first and the other on the documentation part.

This will lead to project failure because of which it is necessary to have a
good knowledge and understanding among the team members to deliver
an expected product.

SDLC Cycle:
SDLC Cycle represents the process of developing software.

Below is the diagrammatic representation of the SDLC cycle:

~ Reguirement

Maintenance gathering &
Analysis

Deployment Design

Implementatio

I n & Coding

Testing

SDLC Phases
Given below are the various phases:

e Requirement gathering and analysis

Challenges in Software
Testing

149

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2018/04/SDLC-Cycle.jpg
https://www.softwaretestinghelp.com/wp-content/qa/uploads/2018/04/SDLC-Cycle.jpg

Software Quality
Assurance

150

e Design

e Implementation or coding

e Testing

e Deployment

« Maintenance

1) Requirement Gathering and Analysis:

During this phase, all the relevant information is collected from the
customer to develop a product as per their expectation. Any ambiguities
must be resolved in this phase only.

Business analyst and Project Manager set up a meeting with the customer
to gather all the information like what the customer wants to build, who
will be the end-user, what is the purpose of the product. Before building a
product a core understanding or knowledge of the product is very
important.

For Example, A customer wants to have an application which involves
money transactions. In this case, the requirement has to be clear like what
kind of transactions will be done, how it will be done, in which currency it
will be done, etc.

Once the requirement gathering is done, an analysis is done to check the
feasibility of the development of a product. In case of any ambiguity, a
call is set up for further discussion.

Once the requirement is clearly understood, the SRS (Software
Requirement Specification) document is created. This document should be
thoroughly understood by the developers and also should be reviewed by
the customer for future reference.

2) Design:

In this phase, the requirement gathered in the SRS document is used as an
input and software architecture that is used for implementing system
development is derived.

3) Implementation or Coding:

Implementation/Coding starts once the developer gets the Design
document. The Software design is translated into source code. All the
components of the software are implemented in this phase.

4) Testing:

Testing starts once the coding is complete and the modules are released for
testing. In this phase, the developed software is tested thoroughly and any
defects found are assigned to developers to get them fixed.

Retesting, regression testing is done until the point at which the software
is as per the customer’s expectation. Testers refer SRS document to make
sure that the software is as per the customer’s standard.

5) Deployment:

Once the product is tested, it is deployed in the production environment or
first UAT (User Acceptance testing) is done depending on the customer
expectation.

In the case of UAT, a replica of the production environment is created and
the customer along with the developers does the testing. If the customer
finds the application as expected, then sign off is provided by the customer
to go live.

6) Maintenance:

After the deployment of a product on the production environment,
maintenance of the product i.e. if any issue comes up and needs to be fixed
or any enhancement is to be done is taken care by the developers.

4.19 SOFTWARE DEVELOPMENT MODELS

A software life cycle model is a descriptive representation of the software
development cycle. SDLC models might have a different approach but the
basic phases and activity remain the same for all the models.

1) Waterfall Model:

Waterfall model is the very first model that is used in SDLC. It is also
known as the linear sequential model.

In this model, the outcome of one phase is the input for the next phase.
Development of the next phase starts only when the previous phase is
complete.

e First, Requirement gathering and analysis is done. Once the
requirement is freeze then only the System Design can start. Herein,
the SRS document created is the output for the Requirement phase
and it acts as an input for the System Design.

e In System Design Software architecture and Design, documents
which act as an input for the next phase are created i.e.
Implementation and coding.

e In the Implementation phase, coding is done and the software
developed is the input for the next phase i.e. testing.

e In the testing phase, the developed code is tested thoroughly to detect
the defects in the software. Defects are logged into the defect tracking
tool and are retested once fixed. Bug logging, Retest, Regression
testing goes on until the time the software is in go-live state.

Challenges in Software
Testing

151

https://www.softwaretestinghelp.com/what-is-user-acceptance-testing-uat/
https://www.softwaretestinghelp.com/what-is-sdlc-waterfall-model/

Software Quality e« In the Deployment phase, the developed code is moved into
Assurance production after the sign off is given by the customer.

e Any issues in the production environment are resolved by the
developers which come under maintenance.

Requirement Analysis

L

System Design

v

Implementation

Testing

Deployment

Maintenance

Advantages of the Waterfall Model:

o Waterfall model is the simple model which can be easily understood
and is the one in which all the phases are done step by step.

o Deliverables of each phase are well defined, and this leads to no
complexity and makes the project easily manageable.

Disadvantages of Waterfall model:

o Waterfall model is time-consuming & cannot be used in the short
duration projects as in this model a new phase cannot be started until
the ongoing phase is completed.

o Waterfall model cannot be used for the projects which have uncertain
requirement or wherein the requirement keeps on changing as this
model expects the requirement to be clear in the requirement
gathering and analysis phase itself and any change in the later stages
would lead to cost higher as the changes would be required in all the

phases.
152

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2018/04/Waterfall-Model-1.jpg
https://www.softwaretestinghelp.com/wp-content/qa/uploads/2018/04/Waterfall-Model-1.jpg

2) V-Shaped Model:

V- Model is also known as Verification and Validation Model. In this
model Verification & Validation goes hand in hand i.e. development and
testing goes parallel. V model and waterfall model are the same except
that the test planning and testing start at an early stage in VV-Model.

Verification Phase Validation Phase
Requirement Analysis Acceptance Testing
\ /
System Design System Testing
\ /
High Level Design Integration Testing
N /
Low Level Design Unit Testing
/
\ Coding

a) Verification Phase:
(i) Requirement Analysis:

In this phase, all the required information is gathered & analyzed.
Verification activities include reviewing the requirements.

(i) System Design:

Once the requirement is clear, a system is designed i.e. architecture,
components of the product are created and documented in a design
document.

(iii) High-Level Design:

High-level design defines the architecture/design of modules. It defines
the functionality between the two modules.

(iv) Low-Level Design:

Low-level Design defines the architecture/design of individual
components.

(v) Coding:

Code development is done in this phase.
b) Validation Phase:

(1) Unit Testing:

Unit testing is performed using the unit test cases that are designed and is
done in the Low-level design phase. Unit testing is performed by the

Challenges in Software
Testing

153

https://www.softwaretestinghelp.com/what-is-stlc-v-model/
https://www.softwaretestinghelp.com/wp-content/qa/uploads/2018/04/V-Shaped-Model.jpg
https://www.softwaretestinghelp.com/wp-content/qa/uploads/2018/04/V-Shaped-Model.jpg
https://www.softwaretestinghelp.com/unit-testing/

Software Quality
Assurance

154

developer itself. It is performed on individual components which lead to
early defect detection.

(i) Integration Testing:

Integration testing is performed using integration test cases in High-level
Design phase. Integration testing is the testing that is done on integrated
modules. It is performed by testers.

(iii) System Testing:

System testing is performed in the System Design phase. In this phase, the
complete system is tested i.e. the entire system functionality is tested.

(iv) Acceptance Testing:

Acceptance testing is associated with the Requirement Analysis phase and
is done in the customer’s environment.

Advantages of V — Model:
e ltisasimple and easily understandable model.

e V -—model approach is good for smaller projects wherein the
requirement is defined and it freezes in the early stage.

e ltisasystematic and disciplined model which results in a high-quality
product.

Disadvantages of V-Model:
e V-shaped model is not good for ongoing projects.

e Requirement change at the later stage would cost too high.

4.20 TEST LEVELS

There are mainly four testing levels are:
i) Unit Testing

i) Integration Testing

iii) System Testing

iv) Acceptance Testing

Unit Testing:

This type of testing is performed by developers before the setup is handed
over to the testing team to formally execute the test cases. Unit testing is
performed by the respective developers on the individual units of source
code assigned areas. The developers use test data that is different from the
test data of the quality assurance team.

https://www.softwaretestinghelp.com/what-is-integration-testing/
https://www.softwaretestinghelp.com/system-testing/

The goal of unit testing is to isolate each part of the program and show
that individual parts are correct in terms of requirements and functionality.

Limitations of Unit Testing:

Testing cannot catch each and every bug in an application. It is impossible
to evaluate every execution path in every software application. The same
is the case with unit testing.

There is a limit to the number of scenarios and test data that a developer
can use to verify a source code. After having exhausted all the options,
there is no choice but to stop unit testing and merge the code segment with
other units.

Integration Testing:

Integration testing is defined as the testing of combined parts of an
application to determine if they function correctly. Integration testing can
be done in two ways: Bottom-up integration testing and Top-down
integration testing.

S. No. Integration Testing Method

1 Bottom-up integration:
This testing begins with unit testing, followed by tests of
progressively higher-level combinations of units called
modules or builds.

2 Top-down integration:
In this testing, the highest-level modules are tested first and
progressively, lower-level modules are tested thereafter.

In a comprehensive software development environment, bottom-up testing
is usually done first, followed by top-down testing. The process concludes
with multiple tests of the complete application, preferably in scenarios
designed to mimic actual situations.

System Testing:

System testing tests the system as a whole. Once all the components are
integrated, the application as a whole is tested rigorously to see that it
meets the specified Quality Standards. This type of testing is performed by
a specialized testing team.

System testing is important because of the following reasons:

e System testing is the first step in the Software Development Life
Cycle, where the application is tested as a whole.

e« The application is tested thoroughly to verify that it meets the
functional and technical specifications.

Challenges in Software
Testing

155

Software Quality
Assurance

156

e The application is tested in an environment that is very close to the
production environment where the application will be deployed.

e System testing enables us to test, verify, and validate both the
business requirements as well as the application architecture.

Regression Testing:

Whenever a change in a software application is made, it is quite possible
that other areas within the application have been affected by this change.
Regression testing is performed to verify that a fixed bug hasn't resulted in
another functionality or business rule violation. The intent of regression
testing is to ensure that a change, such as a bug fix should not result in
another fault being uncovered in the application.

Regression testing is important because of the following reasons:

e Minimize the gaps in testing when an application with changes made
has to be tested.

e Testing the new changes to verify that the changes made did not affect
any other area of the application.

e Mitigates risks when regression testing is performed on the
application.

o Test coverage is increased without compromising timelines.
e Increase speed to market the product.
Acceptance Testing:

This is arguably the most important type of testing, as it is conducted by
the Quality Assurance Team who will gauge whether the application
meets the intended specifications and satisfies the client’s requirement.
The QA team will have a set of pre-written scenarios and test cases that
will be used to test the application.

More ideas will be shared about the application and more tests can be
performed on it to gauge its accuracy and the reasons why the project was
initiated. Acceptance tests are not only intended to point out simple
spelling mistakes, cosmetic errors, or interface gaps, but also to point out
any bugs in the application that will result in system crashes or major
errors in the application.

By performing acceptance tests on an application, the testing team will
reduce how the application will perform in production. There are also
legal and contractual requirements for acceptance of the system.

Alpha Testing:

This test is the first stage of testing and will be performed amongst the
teams (developer and QA teams). Unit testing, integration testing and

system testing when combined together is known as alpha testing. During
this phase, the following aspects will be tested in the application —

e Spelling Mistakes
« Broken Links
e Cloudy Directions

e The Application will be tested on machines with the lowest
specification to test loading times and any latency problems.

Beta Testing:

This test is performed after alpha testing has been successfully performed.
In beta testing, a sample of the intended audience tests the application.
Beta testing is also known as pre-release testing. Beta test versions of
software are ideally distributed to a wide audience on the Web, partly to
give the program a "real-world" test and partly to provide a preview of the
next release. In this phase, the audience will be testing the following —

e Users will install, run the application and send their feedback to the
project team.

e Typographical errors, confusing application flow, and even crashes.

o Getting the feedback, the project team can fix the problems before
releasing the software to the actual users.

e The more issues you fix that solve real user problems, the higher the
quality of your application will be.

e Having a higher-quality application when you release it to the general
public will increase customer satisfaction.

421 TEST TYPES

A test type is a group of test activities aimed at testing specific
characteristics of a software system, or a part of a system, based on
specific test objectives. Such objectives may include:

Evaluating functional quality characteristics, such as completeness,
correctness, and appropriateness

Evaluating non-functional quality characteristics, such as reliability,
performance efficiency, security, compatibility, and usability

Evaluating whether the structure or architecture of the component or
system is correct, complete, and as specified

Evaluating the effects of changes, such as confirming that defects have
been fixed (confirmation testing) and looking for unintended changes in
behavior resulting from software or environment changes (regression
testing)

Challenges in Software
Testing

157

Software Quality
Assurance

158

i) Functional Testing:

Functional testing of a system involves tests that evaluate functions that
the system should perform. Functional requirements may be described in
work products such as business requirements specifications, epics, user
stories, use cases, or functional specifications, or they may be
undocumented. The functions are “what” the system should do.

Functional tests should be performed at all test levels. Functional testing
considers the behavior of the software

i) Non-functional Testing:

Non-functional testing of a system evaluates characteristics of systems and
software such as usability, performance efficiency or security. Non-
functional testing is the testing of “how well” the system behaves. Non-
functional testing can and often should be performed at all test levels, and
done as early as possible. The late discovery of non-functional defects can
be extremely dangerous to the success of a project.

iii) Structural Testing:

Structural Testing derives tests based on the system’s internal structure or
implementation. Internal structure may include code, architecture, work
flows, and/or data flows within the system.

iv) Change-related Testing:

When changes are made to a system, either to correct a defect or because
of new or changing functionality, testing should be done to confirm that
the changes have corrected the defect or implemented the functionality
correctly, and have not caused any unforeseen adverse consequences.

Confirmation Testing:

After a defect is fixed, the software may be tested with all test cases that
failed due to the defect, which should be re-executed on the new software
version.

Regression Testing:

It is possible that a change made in one part of the code, whether a fix or
another type of change, may accidentally affect the behavior of other parts
of the code, whether within the same component, in other components of
the same system, or even in other systems.

Changes may include changes to the environment, such as a new version
of an operating system or database management system. Such unintended
side-effects are called regressions.

Regression testing involves running tests to detect such unintended side
effects. Confirmation testing and regression testing are performed at all
test levels.

Regression test suites are run many times and generally evolve slowly, so Challenges in Software
regression testing is a strong candidate for automation. Automation of Testing
these tests should start early in the project.

4.22 TARGETS OF TESTING

The main goal of software testing is to find bugs as early as possible and
fix bugs and make sure that the software is bug-free. The goals of
software testing may be classified into three major categories as follows:

1. Immediate Goals
2. Long-term Goals
3. Post-Implementation Goals

Immediate Goals

Bug Discovery

Short-Term Goals

Reliability

Quality

Customer satisfaction
Risk Management

Goals Of Software Testing :

PostImplementation Goals

Reduced maintenance cost
Improved testing process
Bug prevention

Fig : Software Testing Goals

1. Immediate Goals:

These objectives are the direct outcomes of testing. These objectives
may be set at any time during the SDLC process. Some of these are
covered in detail below:

e Bug Discovery: This is the immediate goal of software testing to
find errors at any stage of software development. The number of
159

https://www.geeksforgeeks.org/software-testing-basics/

Software Quality
Assurance

160

bugs is discovered in the early stage of testing. The primary purpose
of software testing is to detect flaws at any step of the development
process. The higher the number of issues detected at an early stage,
the higher the software testing success rate.

Bug Prevention: This is the immediate action of bug discovery, that
occurs as a result of bug discovery. Everyone in the software
development team learns how to code from the behavior and
analysis of issues detected, ensuring that bugs are not duplicated in
subsequent phases or future projects.

2. Long-Term Goals:

These objectives have an impact on product quality in the long run after
one cycle of the SDLC is completed. Some of these are covered in detail
below:

Quality: This goal enhances the quality of the software product.
Because software is also a product, the user’s priority is its quality.
Superior quality is ensured by thorough testing. Correctness,
integrity, efficiency, and reliability are all aspects that influence
quality. To attain quality, you must achieve all of the above-
mentioned quality characteristics.

Customer Satisfaction: This goal verifies the customer’s
satisfaction with a developed software product. The primary purpose
of software testing, from the user’s standpoint, is customer
satisfaction. Testing should be extensive and thorough if we want
the client and customer to be happy with the software product.

Reliability: It is a matter of confidence that the software will not
fail. In short, reliability means gaining the confidence of the
customers by providing them with a quality product.

Risk Management: Risk is the probability of occurrence of
uncertain events in the organization and the potential loss that could
result in negative consequences. Risk management must be done to
reduce the failure of the product and to manage risk in different
situations.

3. Post Implemented Goals:

After the product is released, these objectives become critical. Some of
these are covered in detail below:

Reduce Maintenance Cost: Post-released errors are costlier to fix
and difficult to identify. Because effective software does not wear
out, the maintenance cost of any software product is not the same as
the physical cost. The failure of a software product due to faults is
the only expense of maintenance. Because they are difficult to
discover, post-release mistakes always cost more to rectify. As a
result, if testing is done thoroughly and effectively, the risk of
failure is lowered, and maintenance costs are reduced as a result.

e« Improved Software Testing Process: These goals improve the
testing process for future use or software projects. These goals are
known as post-implementation goals. A project’s testing procedure
may not be completely successful, and there may be room for
improvement. As a result, the bug history and post-implementation
results can be evaluated to identify stumbling blocks in the current
testing process that can be avoided in future projects.

4.23 MAINTENANCE TESTING

Maintenance Testing is also known as post-release software testing. This
is a type of software testing that takes place when the software has been
released into production and any changes have been made to fix bugs or
add new features to the existing system.

Maintenance Testing provides feedback on how well the latest release is
working in real life, whether it solves the problems identified by pre-
release testing. This also helps developers find any new bugs that may
have been introduced by the corrective and emergency changes in
development, and it ensures that these don’t break functionality with
other parts of a system. This testing is performed at no cost to clients
who contract for post-release updates or maintenance support from
software vendors.

This can be performed at any time after release: it doesn’t have to wait
until another major version update or has been released.

Maintenance Testing is performed by the same team of testers who
perform Pre-release testing to already deployed software, and it usually
requires a similar level of skills from the tester as well.

This can also be used to test new releases of a software product that has
not yet been released to the existing system before any major changes are
made and without the need for an expensive re-testing phase.

Maintenance Testing often takes place on local servers or in an
operational environment in an effort to mimic production environments
more accurately and for long periods of time with high usage rates.
Maintenance Testers also often have to perform regression testing, which
means they may need to retest features and existing operational system
parts of the software that were already tested before a new release.

It is usually provided for free by vendors who offer post-release updates
or maintenance support contracts in order for their customers to identify
bugs quickly when system changes are made in the existing software.
Maintenance Testing is also often used by SMEs who want to release
their products more quickly than would be possible with traditional
testing.

Why Maintenance Testing is required in Software Testing?

Maintenance Testing is required for a few reasons.

Challenges in Software
Testing

161

https://www.softwaretestingo.com/software-testing/

Software Quality
Assurance

162

e It’s a good idea to do Maintenance Testing before major changes are
made to existing software and without the need for an expensive re-
testing phase.

e It ensures that changes made during post-release development are not
causing problems with other parts of the system, which can be hard
to detect before release without enough hours spent in regression
testing.

e In regression testing, testers retest features and parts of the software
that were already tested before a new release.

e Bug fixes won’t work properly if they conflict with new features
introduced by the new release.

e This is done by the same team of testers who performed Pre-release
testing, and it usually requires a similar level of skills from the tester
as well for these reasons.

e It is usually provided for free by vendors who offer post-release
updates or maintenance support contracts in order for their customers
to identify bugs quickly when system changes are made.

I hope you found this post about Why Should You Do Maintenance
Testing interesting! If so, please sign up for my newsletter to receive
notifications of future posts.

Types of Maintenance Testing:

When the maintenance testers are validating the application, they need to
consider two things. Based on the test types

e Confirmation Testing: On this confirmation maintenance testing,
the Testers or QA have to mainly focus on the modified
functionalities. They have to verify every aspect of the application is
working as it should be.

e Regression Testing: Testing the existing functionality to ensure that
it is not broken or degraded by the new functionality.

Benefits of maintenance testing:

By doing regression maintenance testing it helps catch bugs before the
pre-release stage, ensuring major changes in development don’t break
other parts of the system without regression maintenance testing, and it
ensures bug fixes work properly with new features.

Risks of not doing Maintenance testing:

When not testing changes before release they can break other parts of the
system, bug fixes won’t work properly with new features introduced in
new releases, and will require more time to fix them if regression
maintenance testing was done.

https://en.wikipedia.org/wiki/Software

in simple words, If it is not done, bugs will be missed and the fixes won’t
work with new features.

4.24 TESTING TIPS

Customer pays for a product on the basis of the value he finds in acquiring
such product. Cost of development and cost of testing define the profit
available to an organization by selling such product project. Market forces
define the sales price of the product project. There is always a pressure on
development and testing to reduce the cost to improve profitability. The
following list may be considered as a generic guideline for reducing com
of testing or improving the value of a product.

Reduce Software Development Risk:

Development activities may introduce several risks starting from
requirement capturing, through design and development, coding and so on.
Software testing must be effective to locate the defects as early as possible
so that stage contamination can be reduced.

Perform Testing Effectively:

Testing must be able to capture defects as effectively and efficiently as
possible. It must give adequate confidence to users that application will
not meet any accidental failures. It must be able to find as many defects as
possible, so that they will be fixed eventually and probability of failure at
customer place is minimised.

Uncover Maximum Number of Defects:

Each defect uncovered must reduce a chance of customer complaint. If
testing can find 100% defects present in the given software, it will not be
possible for customer to see any failure during use. Though it is very
difficult, one must try to find all conceivable defects. Successful tester is
one who finds maximum number of defects.

Use Business Logic:

Testers must have a good knowledge about the domain under testing. This
is true for system testers where it is expected that they would be working
as normal users. They must use business logic to improve efficiency and
effectiveness of testing, and also testing must give enough confidence to
users that there will not be any accidental failures.

Testing Must Occur Throughout SDLC:

Defect found as early as possible can reduce cost of failure by preventing
stage contamination. Testing concentrating more on system testing may
not be very effective as software developed may be very fragile.

Challenges in Software
Testing

163

Software Quality
Assurance

164

Testing Must Cover Functional/Structural Parts:

Often, people consider functional testing as a complete testing. One must
keep in mind that there are five types of requirements mentioned by
‘TELOS’ (Technical Economic Legal Operational System). Only
operational requirements may cover functional as well as non-functional
requirements. It must also cover the way software is built to give better
screen designs, optimum performance, and security.

4.25 SUMMARY

This chapter presents the definitions of a successful tester and the basic
principles of software testing. It offers a detailed exposition of the process
of creating test policy, test strategy, and test plan. It also gives an in depth
understanding of ‘Black Box Testing’, ‘White Box Testing’ and ‘Gray
Box Testing’. The chapter concludes with skills required by a good tester
and challenges faced by a tester.

4.26 EXERCISES

1) Explain the concept of test team's defect finding efficiency.
2) Explain test case's defect finding efficiency.

3) What are the challenges faced by testers?

4) Explain the process of developing test strategy.

5) Explain the process of developing test methodology.

6) Which skills are expected in a good tester?

4.27 REFERENCES

e Software Testing and Continuous Quality Improvement by William E.
Lewis CRC Press Third 2016.

e Software Testing: Principles, Techniques and Tools M. G. Limaye
TMH 2017.

e Foundations of Software Testing Dorothy Graham, Erik van
Veenendaal, Isabel Evans, and Rex Black Cengage Learning 3 rd.

e Software Testing: A Craftsman’s Approach Paul C. Jorgenson CRC
Press 4th 2017.

e https://www.softwaretestinghelp.com/writing-test-strategy-document-
template/

e https://www.softwaretestinghelp.com/10-qualities-that-can-make-you-
a-good-tester/

% % %k %k %

5.0
5.1

UNIT - 11

UNIT TESTING: BOUNDARY VALUE
TESTING, EQUIVALENCE CLASS

TESTING
Unit Structure
Obijectives
How does software testing work?

5.2

5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

5.16
5.17
5.18
5.19

5.1.1 Importance of Software Testing

5.1.2 What are the categories of test design techniques?
5.1.3 Types of Dynamic Testing

Black box testing

5.2.1 Generic steps of black box testing

5.2.2 Test procedure

5.2.3 Types of Black Box Testing

5.2.4 Techniques Used in Black Box Testing

Boundary value testing

Normal Boundary Value Testing

Robust Boundary Value Testing

Worst-Case Boundary Value Testing

Special Value Testing

Random Testing

Guidelines for Boundary Value Testing

Equivalence Class Testing

Traditional Equivalence Class testing

Improved Equivalence Class testing

Edge Testing

Guidelines for Equivalence Class Testing and Observation
Equivalence Partitioning Example

Example 1: Grocery Store Example

Example 2: Equivalence and Boundary Value

Example 3: Equivalence and Boundary Value
Examples 3: Input Box should accept the Number 1 to 10
Why Equivalence & Boundary Analysis Testing
Summary

Exercises

References

5

165

Software Quality
Assurance

166

5.0 OBJECTIVES

This chapter will make the readers understand the following concepts:
e How software works

e Test cases

e Dynamic and Static Testing

e Boundary value Analysis

e Equivalence class portioning

e Examples of Boundary value Analysis

e and Equivalence class portioning

5.1 HOW DOES SOFTWARE TESTING WORK?

Software testing is the process of evaluating and verifying that a software
product or application does what it is supposed to do. The benefits of
testing include preventing bugs, reducing development costs and
improving performance. The process or method of finding error/s in a
software application or program so that the application functions
according to the end user's requirement is called software testing.

Description:

Software testing is the process of verifying a system with the purpose of
identifying any errors, gaps or missing requirement versus the actual
requirement. Software testing is broadly categorised into two types -
functional testing and non-functional testing.

When to start test activities: Testing should be started as early as possible
to reduce the cost and time to rework and produce software that is bug-
free so that it can be delivered to the client. However, in Software
Development Life Cycle (SDLC), testing can be started from the
Requirements Gathering phase and continued till the software is out there
in productions. It also depends on the development model that is being
used. For example, in the Waterfall model, testing starts from the testing
phase which is quite below in the tree,; but in the V-model, testing is
performed parallel to the development phase.

5.1.1 Importance of Software Testing:

Few can argue against the need for quality control when developing
software. Late delivery or software defects can damage a brand’s
reputation - leading to frustrated and lost customers. In extreme cases, a
bug or defect can degrade interconnected systems or cause serious
malfunctions.

Consider Nissan having to recall over 1 million cars due to a software
defect in the airbag sensor detectors. Or a software bug that caused the
failure of a USD 1.2 billion military satellite launch. 2 The numbers speak
for themselves. Software failures in the US cost the economy USD 1.1
trillion in assets in 2016. What’s more, they impacted 4.4 billion
customers. 3

Though testing itself costs money, companies can save millions per year in
development and support if they have a good testing technique and QA
processes in place. Early software testing uncovers problems before a
product goes to market. The sooner development teams receive test
feedback, the sooner they can address issues such as:

e Architectural flaws

e Poor design decisions

e Invalid or incorrect functionality
e Security vulnerabilities

o Scalability issues

When development leaves ample room for testing, it improves software
reliability and high-quality applications are delivered with few errors. A
system that meets or even exceeds customer expectations leads to
potentially more sales and greater market share.

5.1.2 What Are The Categories of Test Design Techniques?

A test design technique basically helps us to select a good set of tests from
the total number of all possible tests for a given system. There are many
different types of software testing technique, each with its own strengths
and weaknesses. Each individual technique is good at finding particular
types of defect and relatively poor at finding other types.

For example, a technique that explores the upper and lower limits of a
single input range is more likely to find boundary value defects than
defects associated with combinations of inputs. Similarly, testing
performed at different stages in the software development life cycle will
find different types of defects; component testing is more likely to find
coding logic defects than system design defects.

Each testing technique falls into one of a number of different categories.
Broadly speaking there are two main categories:

1. Static technique
2. Dynamic technique

e Specification-based (black-box, also known as behavioral techniques)

Unit Testing: Boundary
Value Testing, Equivalence
Testing

167

https://www.ibm.com/in-en/topics/software-testing#citation2
https://www.ibm.com/in-en/topics/software-testing#citation3

Software Quality
Assurance

168

e Structure-based (white-box or structural techniques)
o Experience- based

Dynamic techniques are subdivided into three more categories:
specification-based (black-box, also known as behavioral techniques),
structure-based (white-box or structural techniques) and experience-
based. Specification-based techniques include both functional and
nonfunctional techniques (i.e. quality characteristics).

Dynamic Testing is a software testing method used to test the dynamic
behaviour of software code. The main purpose of dynamic testing is to test
software behaviour with dynamic variables or variables which are not
constant and finding weak areas in software runtime environment. The
code must be executed in order to test the dynamic behaviour.

We all know that Testing is verification and validation, and it takes 2 Vs
to make testing complete. Out of the 2 Vs, Verification is called a Static
testing and the other “V”, Validation is known as Dynamic testing.

Let’s understand How to do Dynamic Testing with an example:

Suppose we are testing a Login Page where we have two fields say
“Username” and ‘“Password” and the Username is restricted to
Alphanumeric.

When the user enters Username as “Guru99”, the system accepts the same.
whereas when the user enters as Guru99@123 then the application throws
an error message. This result shows that the code is acting
dynamically based on the user input.

Dynamic testing is when you are working with the actual system by
providing an input and comparing the actual behaviour of the application
to the expected behaviour. In other words, working with the system with
the intent of finding errors.

So based on the above statements we can say or conclude that dynamic
testing is a process of validating software applications as an end user
under different environments to build the right software.

5.1.3 Types of Dynamic Testing:

Dynamic Testing is classified into two categories:
e White Box Testing

e Black Box Testing

The below pictorial representation gives us an idea about types of
Dynamic Testing, Levels of Testing, etc.

Unit Testing: Boundary
Value Testing, Equivalence
Testing

Typesof
DynamicTesting

FunctionalTesting
Black Box Testing
Non Functional

Testing

White Box Testing i .IF_LOQ::?;;O“UOI

/

DynamicTesting

Performance
Testing

Recovery Testing

Security Testing

Compatibility
Testing

MNon Functional Testing Types

What is Static testing technique?

o Static testing is the testing of the software work products manually, or
with a set of tools, but they are not executed.

o It starts early in the Life cycle and so it is done during the verification
process.

e It does not need computer as the testing of program is done without
executing the program. For example: reviewing, walk through,
inspection, etc.

e Most static testing techniques can be used to ‘test’ any form of
document including source code, design documents and models,
functional specifications and requirement specifications.

What is Dynamic testing technique?
e This testing technique needs computer for testing.
e Itis done during Validation process.

e The software is tested by executing it on computer. Ex: Unit testing,
integration testing, and system testing.

5.2 BLACK BOX TESTING

Black box testing is a technique of software testing which examines the
functionality of software without peering into its internal structure or
coding. The primary source of black box testing is a specification of
requirements that is stated by the customer.

169

Software Quality
Assurance

170

In this method, tester selects a function and gives input value to examine
its functionality, and checks whether the function is giving expected
output or not. If the function produces correct output, then it is passed in
testing, otherwise failed. The test team reports the result to the
development team and then tests the next function. After completing
testing of all functions if there are severe problems, then it is given back to
the development team for correction.

BlackBox

Input Output

5.2.1 Generic Steps of Black Box Testing:

e The black box test is based on the specification of requirements, so it
is examined in the beginning.

e In the second step, the tester creates a positive test scenario and an
adverse test scenario by selecting valid and invalid input values to
check that the software is processing them correctly or incorrectly.

o Inthe third step, the tester develops various test cases such as decision
table, all pairs test, equivalent division, error estimation, cause-effect
graph, etc.

« The fourth phase includes the execution of all test cases.

e In the fifth step, the tester compares the expected output against the
actual output.

« In the sixth and final step, if there is any flaw in the software, then it
is cured and tested again.

5.2.2 Test Procedure:

The test procedure of black box testing is a kind of process in which the
tester has specific knowledge about the software's work, and it develops
test cases to check the accuracy of the software's functionality.

It does not require programming knowledge of the software. All test cases
are designed by considering the input and output of a particular function.
A tester knows about the definite output of a particular input, but not about
how the result is arising. There are various techniques used in black box
testing for testing like decision table technique, boundary value analysis
technique, state transition, All-pair testing, cause-effect graph technique,
equivalence partitioning technique, error guessing technique, use case
technique and user story technique.

Test cases:

Test cases are created considering the specification of the requirements.
These test cases are generally created from working descriptions of the
software including requirements, design parameters, and other
specifications. For the testing, the test designer selects both positive test
scenario by taking valid input values and adverse test scenario by taking
invalid input values to determine the correct output. Test cases are mainly
designed for functional testing but can also be used for non-functional
testing. Test cases are designed by the testing team; there is not any
involvement of the development team of software.

5.2.3 Types Of Black Box Testing:

There are many types of Black Box Testing but the following are the
prominent ones:

Functional testing:

This black box testing type is related to the functional requirements of a
system; it is done by software testers.

Non-functional testing:

This type of black box testing is not related to testing of specific
functionality, but non-functional requirements such as performance,
scalability, usability.

Regression testing:

Regression Testing is done after code fixes, upgrades or any other system
maintenance to check the new code has not affected the existing code.

Tools used for Black Box Testing:

Tools used for Black box testing largely depend on the type of black box
testing you are doing.

e For Functional/ Regression Tests you can use — QTP, Selenium

e For Non-Functional Tests, you can use — LoadRunner, Jmeter

5.2.4 TECHNIQUES USED IN BLACK BOX TESTING

Decision Decision Table Technique is a systematic approach

Table where various input combinations and their respective

Technique system behavior are captured in a tabular form. It is
appropriate for the functions that have a logical
relationship between two and more than two inputs.

Boundary Boundary Value Technique is used to test boundary
Value values, boundary values are those that contain the upper
Technique and lower limit of a variable. It tests, while entering

Unit Testing: Boundary
Value Testing, Equivalence
Testing

171

https://www.guru99.com/regression-testing.html
https://www.guru99.com/quick-test-professional-qtp-tutorial.html
https://www.guru99.com/selenium-tutorial.html
https://www.guru99.com/loadrunner-v12-tutorials.html
https://www.guru99.com/jmeter-tutorials.html
https://www.javatpoint.com/decision-table-technique-in-black-box-testing
https://www.javatpoint.com/decision-table-technique-in-black-box-testing
https://www.javatpoint.com/decision-table-technique-in-black-box-testing
https://www.javatpoint.com/boundary-value-analysis-in-black-box-testing
https://www.javatpoint.com/boundary-value-analysis-in-black-box-testing
https://www.javatpoint.com/boundary-value-analysis-in-black-box-testing

Software Quality
Assurance

172

boundary value whether the software is producing
correct output or not.

State State Transition Technique is used to capture the

Transition behavior of the software application when different

Technique input values are given to the same function. This applies
to those types of applications that provide the specific
number of attempts to access the application.

All-pair All-pair testing Technique is used to test all the possible
Testing discrete combinations of values. This combinational
Technique method is used for testing the application that uses

checkbox input, radio button input, list box, text box,

etc.
Cause- Cause-Effect Technique underlines the relationship
Effect between a given result and all the factors affecting the

Technique result. It is based on a collection of requirements.

Equivalence Equivalence partitioning is a technique of software

Partitioning testing in which input data divided into partitions of

Technique valid and invalid values, and it is mandatory that all
partitions must exhibit the same behavior.

Error Error guessing is a technique in which there is no

Guessing specific method for identifying the error. It is based on

Technique the experience of the test analyst, where the tester uses
the experience to guess the problematic areas of the
software.

Use Case Use case Technique used to identify the test cases from

Technique the beginning to the end of the system as per the usage
of the system. By using this technique, the test team
creates a test scenario that can exercise the entire
software based on the functionality of each function
from start to end.

Practically, due to time and budget considerations, it is not possible to
perform exhausting testing for each set of test data, especially when there
is a large pool of input combinations.

e« We need an easy way or special techniques that can select test cases
intelligently from the pool of test-case, such that all test scenarios are
covered.

e We use techniques such as — Equivalence Partitioning & Boundary
Value Analysis testing, Decision table-based testing, path testing,
Data flow testing techniques to achieve this.

https://www.javatpoint.com/state-transition-technique-in-black-box-testing
https://www.javatpoint.com/state-transition-technique-in-black-box-testing
https://www.javatpoint.com/state-transition-technique-in-black-box-testing
https://www.javatpoint.com/all-pairs-testing-technique-in-black-box-testing
https://www.javatpoint.com/all-pairs-testing-technique-in-black-box-testing
https://www.javatpoint.com/all-pairs-testing-technique-in-black-box-testing
https://www.javatpoint.com/cause-and-effect-graph-technique-in-black-box-testing
https://www.javatpoint.com/cause-and-effect-graph-technique-in-black-box-testing
https://www.javatpoint.com/cause-and-effect-graph-technique-in-black-box-testing
https://www.javatpoint.com/equivalence-partitioning-technique-in-black-box-testing
https://www.javatpoint.com/equivalence-partitioning-technique-in-black-box-testing
https://www.javatpoint.com/equivalence-partitioning-technique-in-black-box-testing
https://www.javatpoint.com/error-guessing-technique-in-black-box-testing
https://www.javatpoint.com/error-guessing-technique-in-black-box-testing
https://www.javatpoint.com/error-guessing-technique-in-black-box-testing
https://www.javatpoint.com/use-case-technique-in-black-box-testing
https://www.javatpoint.com/use-case-technique-in-black-box-testing

5.3 BOUNDARY VALUE TESTING

Boundary value analysis is a software testing technique in which tests are
designed to include representatives of boundary values. The idea comes
from the Boundary (topology).

A greater number of errors occur at the boundaries of the input domain
rather than in the "center"

Boundary value analysis is a test case design method that complements
equivalence partitioning

It selects test cases at the edges of a class
It derives test cases from both the input domain and output domain

Boundary testing is the process of testing between extreme ends or
boundaries between partitions of the input values.

e So these extreme ends like Start- End, Lower- Upper, Maximum-
Minimum, Just Inside-Just Outside values are called boundary values
and the testing is called “boundary testing”.

Advantagesof BoundaryValueTesting:

The BVA technique of testing is quite easy to use and remember because
of the uniformity of identified tests and the automated nature of this
technique.

One can easily control the expenses made on the testing by controlling the
number of identified test cases. This can be done with respect to the
demand ofthe software that needs to be tested.

BVA is the best approach in cases where the functionality of a software is
basedon numerous variables representing physical quantities.

The technique is best at revealing any potential Ul or user input troubles in
thesoftware.

The procedure and guidelines are crystal clear and easy when it comes to
determining the test cases through BVA.

The test cases generated through BVA are very small.
DisadvantagesofBoundaryValue Testing:

This technique sometimes fails to test all the potential input values.And so,
the results are unsure.

The dependencies with BVA are not tested between two inputs.
This technique doesn’t fit well when it comes to Boolean Variables.

It only works well with independent variables that depict quantity.

Unit Testing: Boundary
Value Testing, Equivalence
Testing

173

Software Quality
Assurance

174

Typesof Boundary ValueTesting:

o Normal Boundary Value Testing

e Robust Boundary Value Testing

e Worst-case Boundary Value Testing

e Robust Worst-case Boundary Value Testing

5.4 NORMAL BOUNDARY VALUE ANALYSIS

Normal Boundary value analysis is a black-box testing technique, closely
associated with equivalence class partitioning. In this technique, we
analyze the behavior of the application with test data residing at the
boundary values of the equivalence classes.

The basic idea in normal boundary value testing is to select input variable
values at their:

1. Minimum
2. Just above the minimum
3. A nominal value
4. Just below the maximum
5. Maximum
a b
@ ®—> X
M T 1
x(min) x(min-) X(nom) X(max+) x(max)

5.5 ROBUST BOUNDARY VALUE TESTING

In robustness testing, the software is tested by giving invalid values as
inputs. Robustness testing is usually done to test exception handling.

In robust boundary value testing, we make combinations in such a way
that some of the invalid values are also tested as input.

The type of testing done by causing the software or system to fail in order
to test the robustness is called robustness testing.

Robust Boundary value testing on 3 variables:

Suppose we have 3 variables X, Y and Z to test

The range of X: 0 to 100 Unit Testing: Boundary
Value Testing, Equivalence

The range of Y: 20 to 60 Testing

The range of Z: 80 to 100

Testing points detected in Simple Robust Boundary Value Testing

X Yy z
Min- -1 19 79
Min 0 20 80
Min+ 1 21 81
Nominal 50 40 90
Max- 99 59 99
Max 100 60 100
Max+ 101 61 101

Test Cases:

Total Test cases =(Number of variables * Number of testing points
without nominal)+ (1 for Nominal)

These testing points are min-, min, min+, max- and max and
max+19=(3*6)+1

We can generate 19 test cases from both variables X, Y, and Z.
e There are a total of 3 variables X, Y and Z

e There are 6 possible values like min-, min, min+, max-, max and
max+

e 1isfor nominal
Logic:

When we make test cases, we will fix the nominal value of the two
variables and change the values of the third variable.

For example

o We will fix the nominal values of X and Y and make a combination
of these values with each value of the Z variable.

e Fix nominal values of X and Y are 50,40, and we will compare these
two values with 79, 80,81,90,99,100 and 101.

¢ We will fix the nominal values of X and Z and will make a
combination of these values with each value of the Y variable.

e Fix nominal values of X and Z are 50, 90, and we will make a
combination of these two values with 19, 20,21,40,59,60 and 61.

¢ We will fix the nominal values of Y and Z and will make a
combination of these values with each value of the X variable.

e Fix nominal values of Y and Z are 40, 90, and we will make a
combination of these two values with -1, 0,1,50,99,100 and 101.

175

Software Quality

Assurance

176

Test cases generated in Robust simple Boundary Value Testing.

C;zs(;[# X Y Z Comment
1 50 40 79 Fix Nominal of X and Y
2 50 40 80 Fix Nominal of X and Y
3 50 40 81 Fix Nominal of X and Y
4 50 40 90 Fix Nominal of X and Y
5 50 40 99 Fix Nominal of X and Y
6 50 40 100 Fix Nominal of X and Y
7 50 40 101 Fix Nominal of X and Y
8 50 19 90 Fix Nominal of X and Z
9 50 20 90 Fix Nominal of X and Z
10 50 21 90 Fix Nominal of X and Z
11 50 59 90 Fix Nominal of X and Z
12 50 60 90 Fix Nominal of X and Z
13 50 61 90 Fix Nominal of X and Z
14 -1 40 90 Fix Nominal of Y and Z
15 0 40 90 Fix Nominal of Y and Z
16 1 40 90 Fix Nominal of Y and Z
17 99 40 90 Fix Nominal of Y and Z
18 100 40 90 Fix Nominal of Y and Z
19 101 40 90 Fix Nominal of Y and Z

There are many benefits of robustness testing. Some of the benefits are
mentioned below;

1. Better project analysis:

Robustness testing means to increase the study of what has already been
analyzed about your product. The robustness testing extends the area of
testing of the previously tested software components. Robustness testing
also test invalid values to satisfy the testing level.

2. Better design:

The robustness testing result in more options and better software designs
and it is completed before the finalization of the design of the product.

3. Achieve consistency:

Robustness testing helps to increase the consistency, reliability, accuracy
and efficiency of the software.

5.6 WORST-CASE BOUNDARY VALUE TESTING

Boundary Value analysis uses the critical fault assumption and therefore
only tests for a single variable at a time assuming itsextreme values.

By disregarding this assumption, we are able to test the outcome if more
than one variable were to assume its extreme value.

In an electronic circuit this is called Worst Case Analysis.
In Worst-Case testing we use this idea to create test cases.

To generate test cases, we take the original 5-tuple set (min, min+, nom,
max-, max) and perform the Cartesian product of these values. The end
product is a much larger set of results than we have seen before.

The range of x1: 10 to 90
The range of x2: 20 to 70

Testing points detected in Worst Case Boundary Value Testing:

Test cases:

Min
Min+
Nominal
Max-
Max

Total test cases = A*A

25=5%*5

A= Number of testing points.
These testing points are min, min+, nominal, max- and max.

We can generate 25 test cases from both variables x1 and x2 by making a
combination of each value of one variable with each value of another

variable.

Test cases generated in Worst Case Boundary Value Testing:

Test
Casett
1
4
7
10
13
16
19
22
25

These 25 test cases are enough test cases to test the input values for these

variables.

X1,X2

10,20
10,69
11,21
11,70
50,45
89,20
89,69
90,21
90,70

Test
Case #

2
5
8
11
14
17

20
23

X1
10
11
50
89
90

X1,X2

10,21
10,70
11,45
50,20
50,69
89,21
89,70
90,45

X2
20
21
45
69
70

Test

Case

3

6

9
12
15
18
21
24

#

X1,X2

10,45
11,20
11,69
50,21
50,70
89,45
90,20
90,69

Unit Testing: Boundary
Value Testing, Equivalence
Testing

177

Software Quality
Assurance

178

5.7 SPECIAL VALUE TESTING

Special Value is defined and applied form of Functional Testing, whichis a
type of testing that verifies whether each function of the software
application operates in conformance with the required specification.

Special value testing is probably the most extensively practiced form of
functional testing which is most intuitive and least uniform.

This technique is performed by experienced professionals who are experts
in this field and have profound knowledge about the test anddata required
for it.

They continuously participate and apply tremendous efforts to deliver
appropriate test results to suit the client’s requested demand.

Why SpecialValueTesting:

The testing executed by Special Value Testing technique is based on past
experiences, which validates that no bugs or defects are left undetected.

The testers are extremely knowledgeable about the industry and use this
information while performing Special VValue Testing.

Another benefits of opting Special Value Testing technique is that it is ad-
hoc in nature

There are no guidelines used by the testers other that their “Best
engineering judgment”.

The most important aspect of this testing is that, it has had some very
valuable inputs and success in finding bugs and errors while testing a
software.

5.8 RANDOM TESTING

Random testing is a black-box software testing technique where programs
are tested by generating random, independent inputs.

Results of the output are compared against software specifications toverify
that the test output is pass or fail.

In case of absence of specifications, the exceptions of the language are used
which means if an exception arises during test execution, then it means
there is a fault in the program, it is also used as way to avoid biased testing.

Random testing is performed where the defects are NOT identified in
regularintervals.

Random input is used to test the system's reliability and performance.

Saves time and effort than actual test efforts.

Monkey Testing:

Monkey testing is a software testing technique in which the testing is
performedon the system under test randomly.

In Monkey Testing the tester (sometimes developer too) is considered as the
‘Monkey'.

If a monkey uses a computer, he will randomly perform any task on the
systemout of his understanding.

Just like the tester will apply random test cases on the system under test to
findbugs/errors without predefining any test case.

In some cases, Monkey Testing is dedicated to unit testing

This testing is so random that the tester may not be able to reproduce the
error/defect.

The scenario may NOT be definable and may NOT be the correct business
case.

Monkey Testing needs testers with very good domain and technical
expertise.

The Advantage of Monkey Testing:

As the scenarios that are tested are adhoc, system might be understress so
that we can also check for the server responses.

This testing is adopted to complete the testing, in particular if there isa
resource/time crunch.

The Disadvantage of Monkey Testing:

No bug can be reproduced: As tester performs tests randomly withrandom
data reproducing any bug or error may not be possible.

Less Accuracy: Tester cannot define exact test scenario and even cannot
guarantee the accuracy of test cases.

Requires very good technical expertise: It is not worth always to
compromise with accuracy, so to make test cases more accuratetesters must
have good technical knowledge of the domain.

Fewer bugs and time consuming: This testing can go longer as there isno
predefined tests and can find less number of bugs which may cause
loopholes in the system.

5.9 GUIDELINES FOR BOUNDARY VALUE ANALYSIS

There are three guidelines for boundary value analysis:

1. One test case for exact boundary values of input domains.

Unit Testing: Boundary
Value Testing, Equivalence
Testing

179

Software Quality
Assurance

180

2. One test case for just below boundary value of input domains .
3. One test case for just above boundary values of input domains .
Some examples of Boundary value analysis concept are:

One test case for exact boundary values of input domains each means 1
and 100

One test case for just below boundary value of input domains each means
0 and 99.

One test case for just above boundary values of input domains each means
2 and 101.

For Example: A system can accept the numbers from 1 to 10 numeric
values. All other numbers are invalid values. Under this technique,
boundary values 0, 1,2, 9,10,11 can be tested.

Another Example is in exam has a pass boundary at 40 percent, merit at 75
percent and distinction at 85 percent. The Valid Boundary values for this
scenario will be as follows:

49, 50 - for pass
74, 75 - for merit
84, 85 - for distinction

Boundary values are validated against both the valid boundaries and
invalid boundaries.

The Invalid Boundary Cases for the above example can be given as
follows:

0 - for lower limit boundary value
101 - for upper limit boundary value

Boundary value analysis is a black box testing and is also applies to white
box testing.

Internal data structures like arrays, stacks and queues need to be checked
for boundary or limit conditions; when there are linked lists used as
internal structures, the behavior of the list at the beginning and end have to
be tested thoroughly.

Boundary value analysis help identify the test cases that are most likely to
uncover defects.

5.10 EQUIVLANCE CLASS TESTING

Equivalence class testing is better known as Equivalence Class
Partitioning and Equivalence Partitioning. This is a renowned testing
approach among all other software testing techniques in the market that

allows the testing team to develop and partition the input data for
analyzing and testing and based on that the software products are
partitioned and divided into number of equivalence classes for testing.

e The equivalence classes that are divided perform the same operation
and produce same characteristics or behavior of the inputs provided.

e The test cases are created on the basis on the different attributes of the
classes and each input from the each class is used for execution of test
cases, validating the software functions and moreover validating the
working principles of the software products for the inputs that are

given for the respective classes.

o It is also referred as the logical step in functional testing model
approach that enhances the quality of test classes and by removing

any redundancy or faults that can exist in the testing approach.

Types of Equivalence Class Testing:

Following four types of equivalence class testing are presented here:

1) Weak Normal Equivalence Class Testing.

2) Strong Normal Equivalence Class Testing.

3) Weak Robust Equivalence Class Testing.

4) Strong Robust Equivalence Class Testing.

1) Weak Normal Equivalence Class Testing:

The word ‘weak’ means ‘single fault assumption’. This type of testing is
accomplished by using one variable from each equivalence class in a test
case. We would, thus, end up with the weak equivalence class test cases as

shown in the following figure.

Weak Normal
Equivalence Class Test Cases
X2A Valid Values

(One from Each Class

| | |
1Y e e] b

| | |

| | |
i beslsdlecdaalo o

| | | |

| | | |

g | [I
eF-—-F—-—=4+-—=d4-=d4--

|
| ’X1
a b c d

Unit Testing: Boundary
Value Testing, Equivalence
Testing

181

Software Quality
Assurance

182

Each dot in above graph indicates a test data. From each class we have one
dot meaning that there is one representative element of each test case. In
fact, we will have, always, the same number of weak equivalence class
test cases as the classes in the partition.

2) Strong Normal Equivalence Class Testing:

This type of testing is based on the multiple fault assumption theory. So,
now we need test cases from each element of the Cartesian product of the
equivalence classes, as shown in the following figure.

Strong Normal
Equivalence Class Test Cases

X Valid Values - But with
All Possibilities

| I i
g '--r-.-TA-l--
| I I I
| I I I
P NP W Y (R, e
| I 1 &
| I I I
|l 1 ¢l I
ebF--F+--+-=-4-=-4--
| I I I
| I I I
| | 1 !
>X1

Just like we have truth tables in digital logic, we have similarities between
these truth tables and our pattern of test cases. The Cartesian product
guarantees that we have a notion of “completeness” in following two ways

a) We cover all equivalence classes.
b) We have one of each possible combination of inputs.
3) Weak Robust Equivalence Class Testing:

The name for this form of testing is counter intuitive and oxymoronic. The
word’ weak’ means single fault assumption theory and the word ‘Robust’
refers to invalid values. The test cases resulting from this strategy are
shown in the following figure.

Weak Robust
Equivalence Class Test Cases

24 Valid Values

I |
-1 it il |
I I
| |
i sl ol e s
I [1 &
¢ | | |
le¢ | [[
e b=kt ===
| | | 1@
[| I |
| I | | 'M
a b c d

Following two problems occur with robust equivalence testing:

a) Very often the specification does not define what the expected output
for an invalid test case should be. Thus, testers spend a lot of time
defining expected outputs for these cases.

b) Strongly typed languages like Pascal, Ada, eliminate the need for the
consideration of invalid inputs. Traditional equivalence testing is a
product of the time when languages such as FORTRAN, C and
COBOL were dominant. Thus this type of error was quite common.

4) Strong Robust Equivalence Class Testing:

This form of equivalence class testing is neither counter intuitive nor
oxymoronic, but is just redundant. As explained earlier also, ‘robust’
means consideration of invalid values and the ‘strong’ means multiple
fault assumption. We obtain the test cases from each element of the
Cartesian product of all the equivalence classes as shown in the following
figure.

Unit Testing: Boundary
Value Testing, Equivalence
Testing

183

Software Quality
Assurance

184

Strong Robust
Equivalence Class Test Cases
XZA Valid Inputs Invalid Inputs
L IR | L 3 ¢le
gI"'" " T~ "Tg~T1T~~117
¢ I I ele
| | | |
f -__L.__J._-J.-_J_-
| 1 &) @&
*, | | [
Y | | lg
eF--F--+4+-—=4-=-4--
| | | L L
o | o1 [
| | | | bX1

a b c d

We find here that we have 8 robust (invalid) test cases and 12 strong or
valid inputs. Each one is represented with a dot. So, totally we have 20 test
cases (represented as 20 dots) using this technique.

5.11 TRADITIONAL EQUIVALENCE CLASS TESTING

Programmer arrogance: — in the 1960s and 1970s, programmers often had
very detailed input data requirements. — if input data didn’t comply, it was
the user’s fault — the popular phrase—Garbage In, Garbage Out (GIGO)

Programs from this era soon developed defences — (many of these
programs are STILL legacy software) — as much as 75% of code verified
input formats and values

“Traditional” equivalence class testing focuses on detecting invalidinput. —
(almost the same as our “weak robust equivalence class testing”)

5.12 IMPROVED EQUIVALENCE CLASS TESTING

There are two main properties that underpin the methods used infunctional
testing.

These two properties lead to two different types of equivalence classtesting,
weak and strong.

However if one decide to test for invalid i/p or o/p as well as valid i/por o/p
we can produce another two different types of equivalence class testing,
normal and robust.

Robust equivalence class testing takes into consideration the testing of
invalid values, whereas normal does not.

5.13 EDGE TESTING

A hybrid of BVT and Equivalence Class Testing forms the name “Edge
Testing.”

It is used when contiguous ranges of a particular variable constitute
equivalence classes of valid values.

When a programmer makes an error, which results in a defect in the s/w
source code.

If this defect is executed, system will produce wrong results, causing a
failure.

A defect can be called fault or bug.

Once the set of edge values are determined, edge testing can follow any of
the four forms of equivalence class testing

The number of test cases obviously increase as with the variations of BV
andECT.

5.14 GUIDELINES FOR EQUIVALENCE CLASS
TESTING

The following guidelines are helpful for equivalence class testing:

By following a set of guidelines while implementing the process of
testing, the team of testers can ensure better outputs from the tests and
make sure all scenarios are being tested accurately. Therefore, listed below
are some tips/guidelines for equivalence class testing:

e Use robust forms if the error conditions in the software product are of
high priority.

e It can be used by the team in projects where the program function is
complex.

e« To ensure the accuracy and precision of equivalence class testing,
define the input data in terms of intervals and sets of discrete values.

e Use of robust from is redundant of the implemented language is
strongly types and when invalid values cause runtime errors in the
system.

e The team needs to select one valid and one invalid input value each, if
the input conditions are broken or not stated accurately.

« Establishing proper equivalence relation might require several tries
and extra efforts of the team.

Unit Testing: Boundary
Value Testing, Equivalence
Testing

185

https://www.professionalqa.com/test-process
https://www.professionalqa.com/test-process

Software Quality
Assurance

186

5.15 EQUIVALENCE PARTITIONING EXAMPLE

Example 1 Grocery Store Example:

Consider a software module that is intended to accept the name of a
grocery item and a list of the different sizes the item comes in, specified in
ounc-es. The specifications state that the item name is to be alphabetic
characters 2 to 15 characters in length. Each size may be a value in the
range of 1 to 48, whole numbers only. The sizes are to be entered in
ascending order (smaller sizes first). A maximum of five sizes may be
entered for each item. The item name is to be entered first, followed by a
comma, and then followed by a list of sizes. A comma will be used to
separate each size. Spaces (blanks) are to be ignored anywhere in the
input.

Derived Equivalence Classes:

e Item name is alphabetic (valid)

e Item name is not alphabetic (invalid)

e Item name is less than 2 characters in length (invalid)
e Item name is 2 to 15 characters in length (valid)

e Item name is greater than 15 characters in length (invalid)
e Size value is less than 1 (invalid)

e Size value is in the range 1 to 48 (valid)

e Size value is greater than 48 (invalid)

e Size value is a whole number (valid)

e Size value is a decimal (invalid)

e Size value is numeric (valid)

e Size value includes nonnumeric characters (invalid)
e Size values entered in ascending order (valid)

e Size values entered in no ascending order (invalid)
e No size values entered (invalid)

e One to five size values entered (valid)

e More than five sizes entered (invalid)

e Item name is first (valid)

e Item name is not first (invalid)

e Asingle comma separates each entry in list (valid)

e A comma does not separate two or more entries in the list (invalid)

The entry contains no blanks (???)

The entry contains blanks (????)

Advantages:

1. The ECT requires less effort when performing one test case for one partition
2. Performing test on one test case for each partition consumes less time.

3. Redundancy is removed by eliminating data that yields similar output.

Disadvantages:

1.

If there is any mistake in accurately defining any class or if the value
selected for finding errors does not properly represent a class, then the
errors will be difficult to find.

If any class has subclasses, then selecting a value from any one
subclass may not represent each subclass.

Example 2 : Equivalence and Boundary Value:

Let’s consider the behavior of Order Pizza Text Box Below
Pizza values 1 to 10 is considered valid. A success message is shown.

While value 11 to 99 are considered invalid for order and an error
message will appear, “Only 10 Pizza can be ordered”

Order Pizza:

Here is the test condition:

1.

3.
4.

Any Number greater than 10 entered in the Order Pizza field(let say
11) is considered invalid.

Any Number less than 1 that is 0 or below, then it is considered
invalid.

Numbers 1 to 10 are considered valid

Any 3 Digit Number say -100 is invalid.

We cannot test all the possible values because if done, the number of test
cases will be more than 100. To address this problem, we use equivalence
partitioning hypothesis where we divide the possible values of tickets into
groups or sets as shown below where the system behavior can be
considered the same.

Unit Testing: Boundary
Value Testing, Equivalence
Testing

187

Software Quality
Assurance

188

Invalid | valid Invalid ' Invalid

o | 1 10‘ 11 99 100

Partition 1 Partition 2 Partition 3 Partition 4

We apply The EQUIVALENT PARTITION logic over-here to
speed-vp testing

The divided sets are called Equivalence Partitions or Equivalence Classes.
Then we pick only one value from each partition for testing. The
hypothesis behind this technique isthat if one condition/value in a
partition passes all others will also pass. Likewise, if one condition in a
partition fails, all other conditions in that partition will fail.

Invalid | < valid > ‘ Invalid Invalid
) | 1 | m‘ 11 99 | 100

Partition 1 Partition 2 Partition 3 Partition 4

-1 5 88 121
it any one vae from the sei passes the test then
the whole set of partition is considered pass or vValid

Boundary Value Analysis: in Boundary Value Analysis, you test
boundaries between equivalence partitions

Invalid ‘ Valid | Invalid | Invalid

e) @1)| (100

Partition 1 Partition 2 Partition 3 Partition 4

In BOUNDARY VALUE ANALYSIS 1o will check

the boundary vaves ike 0. 1,10, Il 44, 100

In our earlier equivalence partitioning example, instead of checking one
value for each partition, you will check the values at the partitions like 0,
1, 10, 11 and so on. As you may observe, you test values at both valid
and invalid boundaries. Boundary Value Analysis is also called range
checking.

Equivalence partitioning and boundary value analysis (BVA) are closely
related and can be used together at all levels of testing.

Example 3: Equivalence and Boundary Value:

Following password field accepts minimum 6 characters and maximum 10
characters

That means results for values in partitions 0-5, 6-10, 11-14 should be
equivalent

Submit
Enter Password: ﬂ

Scenario #

Test

Test Scenario Description

Expected Outcome

1 Enter 0 to 5 characters in
g System should not accept
password field
5 Enter 6 to 10 characters in | System should accept
password field
3 Enter 11 to 14 character in System should not accept

password field

Examples 3: Input Box should accept the Number 1 to 10:

Here we will see the Boundary Value Test Cases

Test Scenario Description
Boundary Value =0
Boundary Value = 1
Boundary Value = 2
Boundary Value =9
Boundary Value = 10
Boundary Value = 11

Expected Outcome
System should NOT accept
System should accept
System should accept
System should accept
System should accept
System should NOT accept

5.16 WHY EQUIVALENCE & BOUNDARY ANALYSIS

T

ESTING

Boundary value analysis and equivalence class testing are two strategies
used for test case designing in black box testing, which makes it crucial
for us to differentiate them from one another and define their specific

relevance in software testing. The differences between these two are:

Equivalence Class Testing

1. Equivalence Class Testing is
a type of black box technique.

2. It can be applied to any level
of testing, like unit, integration,
system, and more.

3. Atest case design
technique used to divide input
data into different equivalence
classes.

Boundary Value Analysis

1. Next part of Equivalence Class

Partitioning/Testing.

2. Boundary value analysis is
usually a part of stress & negative

testing.

3. This test case design technique
boundary value

used to test
between partitions.

Unit Testing: Boundary
Value Testing, Equivalence
Testing

189

https://www.professionalqa.com/stress-testing
https://www.professionalqa.com/negative-testing
https://www.professionalqa.com/negative-testing
https://www.professionalqa.com/test-case-design-techniques
https://www.professionalqa.com/test-case-design-techniques

Software Quality
Assurance

190

5. Tests only one from each
partition of the equivalence
classes.

4. Reduces the time of testing, = 4. Reduces the overall time of test
while using less and effective = execution, while making defect
test cases. detection faster & easy.

5. Selects test cases from the edges
of the equivalence classes.

5.18 SUMMARY

Boundary Analysis testing is used when practically it is impossible to
test a large pool of test cases individually

Two techniques - Boundary value analysis and equivalence
partitioning testing techniques are used

In Equivalence Partitioning, first, you divide a set of test condition
into a partition that can be considered.

In Boundary Value Analysis you then test boundaries between
equivalence partitions

Appropriate for calculation-intensive applications with variables that
represent physical quantities.

If the range condition is given as an input, then one valid and two
invalid equivalence classes are defined.

If a specific value is given as input, then one valid and two invalid
equivalence classes are defined.

If a member of set is given as an input, then one valid and one
invalid equivalence class is defined.

If Boolean no. is given as an input condition, then one valid and one
invalid equivalence class is defined.

The whole success of equivalence class testing relies on the
identification of equivalence classes. The identification of these
classes relies on the ability of the testers who creates these classes and
the test cases based on them.

In the case of complex applications, it is very difficult to identify all
set of equivalence classes and requires a great deal of expertise from
the tester’s side.

Incorrectly identified equivalence classes can lead to lesser test
coverage and the possibility of defect leakage.

https://www.professionalqa.com/defect-detection-percentage
https://www.professionalqa.com/defect-detection-percentage

5.19 EXERCISES Unit Testing: Boundary

Value Testing, Equivalence
1. Explain Boundary value Analysis? Testing

2. What are important criteria’s for Boundary value Analysis?
3. Explain Static and Dynamic Testing?

4. Explain different types of Equivalence classes?

5.20 REFERENCES

e The Art of Software Testing, 3rd Edition Author: Glenford J. Myers,
Corey Sandler, Tom Badgett.

e A Practitioner’s Guide to Software Test Design Author: Lee
Copeland

e Foundations of Software Testing ISTQB Certification

e Software Testing: Principles and Practices pearsons

%k %k %k %k %

191

192

0

DECISION TABLE BASED TESTING,

PATH TESTING, DATA FLOW TESTING

Unit Structure

6.0
6.1

6.2
6.3
6.4

6.5

6.6
6.7
6.8

Obijectives

What is a Decision Table

6.1.1 Components of a Decision Table
What is State transition testing in software testing?
What is Use case testing in software testing?
Path Testing

6.4.1 Path Testing Process:

6.4.2 Cyclomatic Complexity

6.4.3 Independent Paths:

6.4.4 Design Test Cases:

Data Flow Testing

6.5.1 Types of data flow testing

6.5.2 Steps of Data Flow Testing

6.5.3 Types of Data Flow Testing

6.5.4 Data Flow Testing Coverage

6.5.5 Data Flow Testing Strategies

6.5.6 Data Flow Testing Applications
Conclusion

Exercise

References

6.0 OBJECTIVES

Understand the data flow testing.
Visualize the decision table
Understand the need and appreciate the usage of the testing methods.

Identify the complications in a transaction flow testing method and
anomalies in data flow testing.

Interpret the data flow anomaly state graphs and control flow grpahs
and represent the state of the data objetcs.

Understand the limitations of Static analysis in data flow testing.

Compare and analyze various strategies of data flow testing.

6.1WHAT IS A DECISION TABLE

It is a table which shows different combination inputs with their
associated outputs, this is also known as cause effect table. In EP and
BVA we have seen that these techniques can be applied to only specific
conditions or inputs however if we have different inputs which result in
different actions being taken or in other words we have a business rule to
test where there are different combination of inputs which result in
different actions.

For testing such rules or logic decision table testing is used.
It is a black box test design technique.
6.1.1 Components of a Decision Table:

Decision table is divided into four parts:

1. Condition
2. Action
3. Stub
4. Entry
5. rules
R1: R2: R3:R41 R5: R6 | R7 iR8
. :]] :] :
c1 T: TIiTIiTiF.1F F IF
1 1] 1 1 1 1
c2 T, T|F | F | T, T |F |F values of conditions
c3 T FITIFITIF IT \F
1 1 1 1 1 1 1
1] 1] 1 1 1 1
1 1 1 1 1 1 1
al x I 1 1> 1 x| 1 1 x
1 1 1 1 1 1 1
a2 x | : ' ' : : R
[] x 1 1 1 1 x 1 1 actions taken
a3 , : : : : : :
a4 : X x i ;X x
a5 x | : ix H H H

Read a Decision Table by columns of rules : R1 says when all conditions
are T, then actions al, a2, and a5 occur

The conditions in the decision table may take on any number of values.

The decision table allows the iteration of all the combinations of values of
the condition, thus it provides a “completeness check.”

The conditions in the decision table may be interpreted as the inputs, and
the actions may be thought of as outputs. OR conditions needs to be
thought as inputs needed set the conditions, and actions can be processing

Consider a program statement that, given the length of 3 sides, determines
whether the 3 sides can (i) form a triangle and (ii) what type of triangle
(equilateral, isosceles, or scalene).

Decision Table Based
Testing, Path Testing, Data
Flow Testing

193

Software Quality
Assurance

194

The inputs are a, b, ¢ sides (each between 1 and 200)

Then the inputs must satisfy certain conditions:

a<b+c
b<a+c
c<a+b
Assume a, b and ¢ are Pick input <a, b, c> for each of the columns
all between 1 and 200 [| [[T R R R
\ [I T Y T Y
\ 1 a<b+c AT T T T T T\ TT
\ 2. b<a+c -IFIT T TITTTITITITIT
« 3. c<a+b 1R T T T, T T T
[[O TR T R I
4. a=b Vi DO L EEEE
5. a=c it LT FRT T FGF
6. b=¢c -1-1-1 TiFITitFA TY1FITIF
[I [T TR T IR I
P I T O O O
T T 1 T 1T 1T 1T 1T 1.1
1. Not triangle XIXixr vl
[[O R T R I
[[O R T R I
1. Scalene [I [R T T R T)
2. Isosceles : : : : : :x: :x:x:
3. Equilateral Cror X o
4. “impossible” U I XX 1 Xxi _
[I [T T R I T
[I [T TR T IR I

Decision table for triangle problem
There is the “invalid situation” --- not a triangle:
There are 3 test conditions in the Decision table

Note the “-” entries, which represents “don’t care,” when it is determined
that the input sides <a, b, ¢c> do not form a triangle

There is the “valid” triangle situation:

There are 3 types of valid; so there are 23 = 8 potential conditions
But there are 3 “impossible” situations

So there are only 8 — 3 = 5 conditions

So, for valid values of a, b, and c, we need to come up with 8 sets of <a, b,
c> to test the 8 “Rules”.

Decision Table Testing is a good way to deal with combination of
inputs, which produce different results

To understand this with an example let’s consider the behavior of Flight
Button for different combinations of Fly From & Fly To

When both Fly From & Fly To are not set the Flight Icon is disabled.
In the decision table , we register values False for Fly From & Fly To
and the outcome would be ,which is Flights Button will be disabled
i.e. FALSE

Next , when Fly From is set but Fly to is not set , Flight button is
disabled. Correspondingly you register True for Fly from in the
decision table and rest of the entries are false

When , Fly from is not set but Fly to is set , Flight button is disabled
And you make entries in the decision table

Lastly , only when Fly to and Fly from are set , Flights button is
enabled And you make corresponding entry in the decision table

If you observe the outcomes for Rule 1, 2 & 3 remain the same .So
you can select any of the them and rule 4 for your testing

The significance of this technique becomes immediately clear as the
number of inputs increases. .Number of possible Combinations is
given by 2~ n, where n is number of Inputs.

For n = 10, which is very common is web based testing , having big
input forms , the number of combinations will be 1024. Obviously,
you cannot test all but you will choose a rich sub-set of the possible
combinations using decision based testing

Decision table is based on logical relationships just as the truth table .It is
a tool that helps us look at the “complete” combination of conditions
technique.

Advantages:

1.

The decision- table-based testing works iteratively, which means that
if the leading table could not deliver the required result, then the
decision —table-based testing helps to develop a new decision table or
tables.

The decision table assures complete testing.

The decision table does not provide any particular order of
occurrences of conditions and actions.

Disadvantages:

1.

2.

The larger decision tables are required to be divided into smaller
tables to reduce redundancy and increase in complexity.

The decision tables are not kept proportional.

Decision Table Based
Testing, Path Testing, Data
Flow Testing

195

Software Quality
Assurance

196

6.2 WHAT IS STATE TRANSITION TESTING IN
SOFTWARE TESTING?

o State transition testing is used where some aspect of the system can be
described in what is called a ‘finite state machine’. This simply means
that the system can be in a (finite) number of different states, and the
transitions from one state to another are determined by the rules of the
‘machine’. This is the model on which the system and the tests are
based.

e Any system where you get a different output for the same input,
depending on what has happened before, is a finite state system.

e A finite state system is often shown as a state diagram (see Figure
4.2).

e One of the advantages of the state transition technique is that the
model can be as detailed or as abstract as you need it to be. Where a
part of the system is more important (that is, requires more testing) a
greater depth of detail can be modeled. Where the system is less
important (requires less testing), the model can use a single state to
signify what would otherwise be a series of different states.

A state transition model has four basic parts:

e The states that the software may occupy (open/closed or
funded/insufficient funds);

e The transitions from one state to another (not all transitions are
allowed);

e« The events that cause a transition (closing a file or withdrawing
money);

e The actions that result from a transition (an error message or being
given your cash).

Hence we can see that in any given state, one event can cause only one
action, but that the same event — from a different state — may cause a
different action and a different end state.

For example, if you request to withdraw $100 from a bank ATM, you may
be given cash. Later you may make exactly the same request but it may
refuse to give you the money because of your insufficient balance. This
later refusal is because the state of your bank account has changed from
having sufficient funds to cover the withdrawal to having insufficient
funds. The transaction that caused your account to change its state was
probably the earlier withdrawal. A state diagram can represent a model
from the point of view of the system, the account or the customer.

Let us consider another example of a word processor. If a document is
open, you are able to close it. If no document is open, then ‘Close’ is not
available. After you choose ‘Close’ once, you cannot choose it again for

the same document unless you open that document. A document thus has
two states: open and closed.

We will look first at test cases that execute valid state transitions.
Figure 4.2 below, shows an example of entering a Personal ldentity
Number (PIN) to a bank account. The states are shown as circles, the
transitions as lines with arrows and the events as the text near the
transitions. (We have not shown the actions explicitly on this diagram, but
they would be a message to the customer saying things such as ‘Please
enter your PIN’.)

The state diagram shows seven states but only four possible events (Card
inserted, Enter PIN, PIN OK and PIN not OK). We have not specified all
of the possible transitions here — there would also be a time-out from ‘wait
for PIN’ and from the three tries which would go back to the start state
after the time had elapsed and would probably eject the card. There would
also be a transition from the ‘eat card’ state back to the start state. We
have not specified all the possible events either — there would be a ‘cancel’
option from ‘wait for PIN’ and from the three tries, which would also go
back to the start state and eject the card.

card inserted

PIN not OK

enter PIN PIN not OK PIN not OK

access
to
account

FIGURE 4.2 State diagram for PIN entry

In deriving test cases, we may start with a typical scenario:

o First test case here would be the normal situation, where the correct
PIN is entered the first time.

e A second test (to visit every state) would be to enter an incorrect PIN
each time, so that the system eats the card.

e A third test we can do where the PIN was incorrect the first time but
OK the second time, and another test where the PIN was correct on
the third try. These tests are probably less important than the first two.

e Note that a transition does not need to change to a different state
(although all of the transitions shown above do go to a different state).
So there could be a transition from ‘access account’ which just goes
back to ‘access account’ for an action such as ‘request balance’.

Decision Table Based
Testing, Path Testing, Data
Flow Testing

197

http://istqbexamcertification.com/wp-content/uploads/2012/01/State-transition-example.jpg

Software Quality
Assurance

198

Test conditions can be derived from the state graph in various ways. Each
state can be noted as a test condition, as can each transition. However this
state diagram, even though it is incomplete, still gives us information on
which to design some useful tests and to explain the state transition
technique.

6.3 WHAT IS USE CASE TESTING IN SOFTWARE
TESTING?

e Use case testing is a technique that helps us identify test cases that
exercise the whole system on a transaction by transaction basis from
start to finish. They are described by Ivar Jacobson in his book
Object-Oriented Software Engineering: A Use Case Driven Approach
[Jacobson, 1992].

e A use case is a description of a particular use of the system by an
actor (a user of the system). Each use case describes the interactions
the actor has with the system in order to achieve a specific task (or, at
least, produce something of value to the user).

e Actors are generally people but they may also be other systems.

e Use cases are a sequence of steps that describe the interactions
between the actor and the system. Use cases are defined in terms of
the actor, not the system, describing what the actor does and what the
actor sees rather than what inputs the system expects and what the
system’s outputs.

e They often use the language and terms of the business rather than
technical terms, especially when the actor is a business user.

e They serve as the foundation for developing test cases mostly at the
system and acceptance testing levels.

o Use cases can uncover integration defects, that is, defects caused by
the incorrect interaction between different components. Used in this
way, the actor may be something that the system interfaces to such as
a communication link or sub-system.

e Use cases describe the process flows through a system based on its
most likely use. This makes the test cases derived from use cases
particularly good for finding defects in the real-world use of the
system (i.e. the defects that the users are most likely to come across
when first using the system).

e Each use case usually has a mainstream (or most likely) scenario and
sometimes additional alternative branches (covering, for example,
special cases or exceptional conditions).

e Each use case must specify any preconditions that need to be met for
the use case to work.

o Use cases must also specify post conditions that are observable results
and a description of the final state of the system after the use case has
been executed successfully.

The ATM PIN example is shown below in Figure 4.3. We show successful
and unsuccessful scenarios. In this diagram we can see the interactions
between the A (actor — in this case it is a human being) and S (system).
From step 1 to step 5 that is success scenario it shows that the card and pin
both got validated and allows Actor to access the account. But in
extensions there can be three other cases that is 2a, 4a, 4b which is shown
in the diagram below.

For use case testing, we would have a test of the success scenario and one
testing for each extension. In this example, we may give extension 4b a
higher priority than 4a from a security point of view.

System requirements can also be specified as a set of use cases. This
approach can make it easier to involve the users in the requirements
gathering and definition process.

Step | Description

1 A: Inserts card

Main Success Scenario 2 S: Validates card and asks for PIN

A: Actor :
S: System 3 A: Enters PIN
4 S: Validates PIN
5 S: Allows access to account
2a Card not valid
S: Display message and reject card
PIN not valid
Extensions 4a noLvay

S: Display message and ask for re-try (twice)

PIN invalid 3 times

4k S: Eat card and exit

6.4 PATH TESTING

Basis Path Testing is a white-box testing technique based on the control
structure of a program or a module. Using this structure, a control flow
graph is prepared and the various possible paths present in the graph are
executed as a part of testing. Therefore, by definition,

Basis path testing is a technique of selecting the paths in the control
flow graph, that provide a basis set of execution paths through the
program or module.

Path Testing is a method that is used to design the test cases. In path
testing method, the control flow graph of a program is designed to find a
set of linearly independent paths of execution. In this method Cyclomatic

Decision Table Based
Testing, Path Testing, Data
Flow Testing

199

http://istqbexamcertification.com/wp-content/uploads/2011/12/Use-case-testing-example2.jpg
https://www.geeksforgeeks.org/software-engineering-white-box-testing/

Software Quality
Assurance

200

Complexity is used to determine the number of linearly independent
paths and then test cases are generated for each path.

It give complete branch coverage but achieves that without covering all
possible paths of the control flow graph. McCabe’s Cyclomatic
Complexity is used in path testing. It is a structural testing method that
uses the source code of a program to find every possible executable path.

Since this testing is based on the control structure of the program, it
requires complete knowledge of the program’s structure. To design test
cases using this technique, four steps are followed:

1. Construct the Control Flow Graph

2. Compute the Cyclomatic Complexity of the Graph
3. Identify the Independent Paths

4. Design Test cases from Independent Paths

6.4.1 Path Testing Process:

Draw Control Flow Graph

Calculate Cyclomatic Complexity

Make Set of Paths

Create Test Cases

Let’s understand each step one by one.
1. Control Flow Graph:

A control flow graph (or simply, flow graph) is a directed graph which
represents the control structure of a program or module. A control flow
graph (V, E) has V number of nodes/vertices and E number of edges in
it. A control graph can also have :

e Junction Node: a node with more than one arrow entering it.
e Decision Node: a node with more then one arrow leaving it.

o Region: area bounded by edges and nodes (area outside the graph is
also counted as a region.).

Decision Table Based
Testing, Path Testing, Data
Flow Testing

noqe
qnucgiou

noqe
De&ci2ion

Region 1

Below are the notations used while constructing a flow graph:

Sequential Statements:

Sequence

If — Then - Else —

If - Then - Else

201

Software Quality
Assurance

202

Do — While —

Do - While

While — Do

While - Do

Switch — Case - Decision Table Based
Testing, Path Testing, Data
Switch - Case Flow Testing

6.4.2 Cyclomatic Complexity:

The cyclomatic complexity V(G) is said to be measure of the logical
complexity of a program. It can be calculated using three different
formulae:

Formula based on edges and nodes:
V(G)=e-n+2*P

Where,
e is number of edges,

n is number of vertices,

P is number of connected components.
For example, consider first graph given above,
where,e=4,n=4andp=1
where,e=4,n=4andp=1
So,
Cyclomatic complexity V(G)
=4-4+2*1
=2
Formula based on Decision Nodes:

V(G)=d+P

203

Software Quality
Assurance

204

where,
d is number of decision nodes,

P is number of connected nodes.

For example, consider first graph given above,
where,d=1andp=1

So,

Cyclomatic Complexity V(G)

=1+1

=2

o~ w N

Formula based on Regions:

V(G) = number of regions in the graph

For example, consider first graph given above,
1. Cyclomatic complexity V(G)

2. =1 (for Region 1) + 1 (for Region 2)

3. =2

Hence, using all the three above formulae, the cyclomatic complexity
obtained remains same. All these three formulae can be used to compute
and verify the cyclomatic complexity of the flow graph.

Note:

1. For one function [e.g. Main() or Factorial()], only one flow graph
is constructed. If in a program, there are multiple functions, then a
separate flow graph is constructed for each one of them. Also, in the
cyclomatic complexity formula, the value of ‘p’ is set depending of
the number of graphs present in total.

2. If a decision node has exactly two arrows leaving it, then it is
counted as one decision node. However, if there are more than 2
arrows leaving a decision node, it is computed using this formula :

d=k-1
Here, k is number of arrows leaving the decision node.
6.4.3 Independent Paths:

An independent path in the control flow graph is the one which
introduces at least one new edge that has not been traversed before the
path is defined. The cyclomatic complexity gives the number of
independent paths present in a flow graph. This is because the
cyclomatic complexity is used as an upper-bound for the number of tests

that should be executed in order to make sure that all the statements in
the program have been executed at least once.

Consider first graph given above here the independent paths would be 2
because number of independent paths is equal to the cyclomatic
complexity.

So, the independent paths in above first given graph:
e Path1:

A->B

e Path2:

C->D

Note:

Independent paths are not unique. In other words, if for a graph the
cyclomatic complexity comes out be N, then there is a possibility of
obtaining two different sets of paths which are independent in nature.

6.4.4 Design Test Cases:

Finally, after obtaining the independent paths, test cases can be designed
where each test case represents one or more independent paths.

Advantages:
Basis Path Testing can be applicable in the following cases:
1. More Coverage:

Basis path testing provides the best code coverage as it aims to achieve
maximum logic coverage instead of maximum path coverage. This
results in an overall thorough testing of the code.

2. Maintenance Testing:

When a software is modified, it is still necessary to test the changes
made in the software which as a result, requires path testing.

3. Unit Testing:

When a developer writes the code, he or she tests the structure of the
program or module themselves first. This is why basis path testing
requires enough knowledge about the structure of the code.

4. Integration Testing:

When one module calls other modules, there are high chances of
Interface errors. In order to avoid the case of such errors, path testing is
performed to test all the paths on the interfaces of the modules.

Decision Table Based
Testing, Path Testing, Data
Flow Testing

205

Software Quality
Assurance

206

5. Testing Effort:

Since the basis path testing technique takes into account the complexity
of the software (i.e., program or module) while computing the
cyclomatic complexity, therefore it is intuitive to note that testing effort
in case of basis path testing is directly proportional to the complexity of
the software or program.

6.5 DATA FLOW TESTING

Data Flow Testing is a specific strategy of software testing that focuses on
data variables and their values. It makes use of the control flow graph.
When it comes to categorization Data flow testing will can be considered
as a type of white box testing and structural types of testing. It keeps a
check at the data receiving points by the variables and its usage points. It
is done to cover the path testing and branch testing gap.
The process is conducted to detect the bugs because of the incorrect usage
of data variables or data values. For e.g. Initialization of data variables in
programming code, etc.

Data flow testing is a white-box testing technique that examines the data
flow with respect to the variables used in the code. It examines the
initialization of variables and checks their values at each instance.

Input o Data-flow o| | Def-use Pairs
Program P " Analysis - SetS
L
L) select a pair du
Test Data
Generation |
test|input t

true] i false

Test Suite T | |= [true] is du []

covered?

6.5.1 Types of data flow testing:
There are two types of data flow testing:
Static data flow testing:

The declaration, usage, and deletion of the variables are examined without
executing the code. A control flow graph is helpful in this.

Dynamic data flow testing:

The variables and data flow are examined with the execution of the code.

What is Data flow Testing?

e The programmer can perform numerous tests on data values and
variables. This type of testing is referred to as data flow testing.

e It is performed at two abstract levels: static data flow testing and
dynamic data flow testing.

e The static data flow testing process involves analyzing the source
code without executing it.

o Static data flow testing exposes possible defects known as data flow
anomaly.

o Dynamic data flow identifies program paths from source code.

Let us understand this with the help of an example.

1. read x;

2. If(x=0) (1, (2, 1), x), (1, (2, f), x)
3. a=x+1 (1, 3, x)

4., if (x<=0) { (1, (4, t), x), (1, (4,), x)
5. if (x<1) (1, (5, 1), x), (1, (5, f), x)
6. x=x+1; (go to 5) (1, 6, x)

else

7. a=x+1 (1,7, %)

8. print a; (6,(5, f)x), (6,(5,t)x)

(6, 6, x)
{3;’ 8." a]IJ {?J 8.’ a}'

There are 8 statements in this code. In this code we cannot cover all 8
statements in a single path as if 2 is valid then 4, 5, 6, 7 are not traversed,
and if 4 is valid then statement 2 and 3 will not be traversed.
Hence we will consider two paths so that we can cover all the statements.

x=1
Path-1,2,3,8
Output =2

If we consider x = 1, in step 1; X is assigned a value of 1 then we move to
step 2 (since, x>0 we will move to statement 3 (a= x+1) and at end, it will
go to statement 8 and print x =2.

For the second path, we assign x as 1
Setx=-1
Path=1,2,4,5,6,5,6,5,7,8
Output =2

Decision Table Based
Testing, Path Testing, Data
Flow Testing

207

Software Quality
Assurance

208

X is set as 1 then it goes to step 1 to assign x as 1 and then moves to step
2 which is false as x is smaller than 0 (x>0 and here x=-1). It will then
move to step 3 and then jump to step 4; as 4 is true (x<=0 and their X is
less than 0) it will jump on 5 (x<1) which is true and it will move to step
6 (x=x+1) and here x is increased by 1.

So,

x=-1+1

x=0

x become 0 and it goes to step 5(x<1),as it is true it will jump to step
6 (x=x+1)

X=x+1

x=0+1

x=1

X is now 1 and jump to step 5 (x<1) and now the condition is false and it
will jJump to step 7 (a=x+1) and set a=2 as x is 1. At the end the value of a
is 2. And on step 8 we get the output as 2.

6.5.2 Steps of Data Flow Testing:
o Creation of a data flow graph.
e Selecting the testing criteria.

o Classifying paths that satisfy the selection criteria in the data flow
graph.

o Develop path predicate expressions to derive test input.
The life cycle of data in programming code:
Definition:

It includes defining, creation and initialization of data variables and the
allocation of the memory to its data object.

Usage:

It refers to the user of the data variable in the code. Data can be used in
two types as a predicate (P) or in the computational form(C).

Deletion:

Deletion of the Memory allocated to the variables.

Decision Table Based
) Testing, Path Testing, Data
6.5.3Types of Data Flow Testing: Flow Testing
Static Data Flow Testing:

No actual execution of the code is carried out in Static Data Flow testing.
Generally, the definition, usage and kill pattern of the data variables is
scrutinized through a control flow graph.

Dynamic Data Flow Testing:

The code is executed to observe the transitional results. Dynamic data
flow testing includes:

Identification of definition and usage of data variables.

Identifying viable paths between definition and usage pairs of data
variables. Designing & crafting test cases for these paths.

Advantages of Data Flow Testing:

e Variables used but never defined,

e Variables defined but never used,

e Variables defined multiple times before actually used,
o DE allocating variables before using.

Data Flow Testing Limitations

o Testers require good knowledge of programming.

e Time-consuming

e Costly process.

6.5.4 Data Flow Testing Coverage:

e All definition coverage: Covers “sub-paths” from each definition to
some of their respective use.

e All definition-C use coverage: “sub-paths” from each definition to
all their respective C use.

o All definition-P use coverage: “sub-paths” from each definition to
all their respective P use.

e All use coverage: Coverage of “sub-paths” from each definition to
every respective use irrespective of types.

e All definition use coverage: Coverage of “simple sub-paths” from
each definition to every respective use.

209

Software Quality
Assurance

210

6.5.5 Data Flow Testing Strategies:

ADPU
 J
. AU -
ACU+P APU+C
[| '
Y Y Y
ACU AD APU

Following are the test selection criteria:

1.

All-defs: For every variable x and node i in a way that x has a global
declaration in node I, pick a comprehensive path including the def-
clear path from node i to Edge (j,k) having a p-use of x or Node |
having a global c-use of x

All c-uses: For every variable x and node i in a way that x has a
global declaration in node i, pick a comprehensive path including the
def-clear path from node i to all nodes j having a global c-use of x in

J.

All p-uses: For every variable x and node i in a way that x has a
global declaration in node i, pick a comprehensive path including the
def-clear path from node i to all edges (j,k) having p-use of x on edge

(.5).

All p-uses/Some c-uses: it is similar to all p-uses criterion except
when variable x has no global p-use, it reduces to some c-uses
criterion as given below

Some c-uses: For every variable x and node i in a way that x has a
global declaration in node i, pick a comprehensive path including the
def-clear path from node i to some nodes j having a global c-use of x
in node j.

All c-uses/Some p-uses: It is similar to all c-uses criterion except
when variable x has no global c-use, it reduces to some p-uses
criterion as given below:

Some p-uses: For every variable x and node i in a way that x has a
global declaration in node i, pick a comprehensive path including def-
clear paths from node i to some edges (j,k) having a p-use of x on
edge (j,k).

All uses: it is a combination of all p-uses criterion and all c-uses
criterion.

All du-paths: For every variable x and node i in a way that x has a
global declaration in node i, pick a comprehensive path including all
du-paths from node i

To all nodes j having a global c-use of x in j and

To all edges (j,k) having a p-use of x on (j k).

6.5 DATA FLOW TESTING APPLICATIONS

As per studies defects identified by executing 90% “data coverage” is
twice as compared to bugs detected by 90% branch coverage.
The process flow testing is found effective, even when it is not supported
by automation.

It requires extra record keeping; tracking the variables status. The
computers help easy tracking of these variables and hence reducing the
testing efforts considerably. Data flow testing tools can also be integrated
into compilers.

6.6 CONCLUSION

Data is a very important part of software engineering. The testing
performed on data and variables play an important role in software
engineering. Hence this is a very important part and should be
properly carried out to ensure the best working of your product.

In path testing method, the control flow graph of a program is
designed to find a set of linearly independent paths of execution.

McCabe’s Cyclomatic Complexity is used in path testing. It is a
structural testing method that uses the source code of a program to
find every possible executable path.

Decision table testing is a software testing technique used to test
system behavior for different input combinations. This is a systematic
approach where the different input combinations and their
corresponding system behavior (Output) are captured in a tabular
form.

Decision table helps to check all possible combinations of conditions
for testing and testers can also identify missed conditions easily. The
conditions are indicated as True(T) and False(F) values.

Decision Table Testing is Important because it helps to test different
combinations of conditions and provide better test coverage for
complex business logic.

Decision Table Based
Testing, Path Testing, Data
Flow Testing

211

Software Quality
Assurance

212

6.7 EXERCISE

1. Explain Decision table?

2. How to calculate Cyclomatic Complexity?
3. What are independent Paths?

4. What is static and Dynamic Testing?

6.8 REFERENCES

e The Art of Software Testing, 3rd Edition Author: Glenford J. Myers,
Corey Sandler, Tom Badgett.

e A Practitioner’s Guide to Software Test Design Author: Lee
Copeland

e Foundations of Software Testing ISTQB Certification
e Software Testing: Principles and Practices pearsons

e WWW.guru.com

e www.istbg.com

e www.tutorial.com

% %k %k %k ok

http://www.guru.com/
http://www.istbq.com/
http://www.tutorial.com/

UNIT - IV

SOFTWARE VERIFICATION

AND VALIDATION

Unit Structure

7.0 Objectives

7.1 Introduction

7.2 Verification

7.3 Verification Workbench

7.4 Methods of Verification

7.5 Types of reviews on the basis of Stage Phase
7.6 Entities involved in verification

7.7 Reviews in testing lifecycle

7.8 Coverage in Verification

7.9 Concerns of Verification

7.10 Validation

7.11 Validation Workbench

7.12 Levels of Validation

7.13 Coverage in Validation

7.14 Acceptance Testing

7.15 Management of Verification and Validation

7.16 Software development verification and validation activities

7.17 Letus Sum Up
7.18 Exercises
7.19 References

7.0 OBJECTIVES

After going through this chapter, you will be able to:
o Verification and its Workbench

e Methods of Verification

e Types of Review

o Validation and its Workbench

o Levels of Validation

213

Software Quality
Assurance

214

7.1 INTRODUCTION

Verification and validation (V & V) have become important, especially in
software, as the complexity of software in systems has increased, and
planning for V & V is necessary from the beginning of the development
life cycle. Over the past 20 to 30 years, software development has evolved
from small tasks involving a few people to enormously large tasks
involving many people. Because of this change, verification and validation
has similarly also undergone a change. Previously, verification and
validation was an informal process performed by the software engineer
himself. However, as the complexity of systems increased, it became
obvious that continuing this type of testing would result in unreliable
products. It became necessary to look at V & V as a separate activity in
the overall software development life cycle.

7.2 VERIFICATION

Verification is the process of evaluating work-products of a development
phase to determine whether they meet the specified requirements.

e Verification ensures that the product is built according to the
requirements and design specifications.

e Italso answers the question, Are we building the product rightly?

e Verification is also called “Static technique” or “Conformance to
Requirements” as it does not involve execution of any code, program
or work product.

7.2.1 Advantages of Verification:

e Verification helps in lowering down the count of the defect in the later
stages of development.

e Verifying the product at the starting phase of the development will
help in understanding the product in a better way.

e It reduces the chances of failures in the software application or
product.

e It helps in building the product as per the customer specifications and
needs.

e It helps to reduce the cost of finding and fixing defects. Sometimes
defects are fixed as and when they are found.

e Cost of fixing defects is less as there is no impact on other parts of the
software.

7.2.2 Disadvantages of Verification:

e It does not show whether the product is correct or not. It shows only
whether the process is correctly followed or not.

e If the processes are not good, then the outcome may not be good. Software Verification
]] and Validation

e It does not cover any kind of execution of work products.

e “Fit for Use” cannot be assessed in verification.

7.2.3 Prerequisites For Verification:

e Training Required by people for conducting verification

e Standards, guidelines and tools to be used during verification

o Verification Do and Check process definition.

7.3 WORKBENCH FOR VERIFICATION

Verification workbench is where verification activities are conducted
either physical or virtual. For every workbench following basic things are
required.

Process
rework
Outputs
> ificati Check
Inputs Verificatjon —
Process Process
—
Standards,
Tools,
Guidelines
— - >

Input:

It is the initial workbench stage. Each certain assignment should contain
its initial and outcome (input and output) requirements to know the
available parameters and expected results. Each workbench has its specific
inputs depending on the type of product under testing.

Verification Process:

It describes step by step activities to be conducted in a workbench. It must
also describe the activities done while verifying the product under review.

Check:

It is an examination of output parameters after the performance phase to
verify its accordance with the expected ones.

215

Software Quality
Assurance

216

Production output:

It is the final stage of a workbench in case the check confirmed the
properly conducted performance.

Reworking:

If the outcome parameters are not in compliance with the desired result, it
IS necessary to return to the verification process and conduct it from the
beginning.

7.4 METHODS OF VERIFICATION.

There are many methods available for verification of software product.
Some of them are

A. Self Review:
1. Self Review may not be referred to as an official review.

2. Everybody does a self check before giving a work product for further
verification.

3. One must capture the self review records and defect found in self
review to improve the process.

4. ltisaself learning and retrospection process.
Advantages of Self Review

1. Self Reviews are highly flexible with respect to time and defect
finding. It may be an online activity.

2. Self Review is an excellent tool for self learning.

3. There is no ego involved in self review can help in self education and
self improvement.

Disadvantages of Self Review:

1. Approach or understanding related defect may not be found in self
review

2. People involved in self review may not conduct a review in reality
due to time and focus issues.

B. Peer Review:

The very easiest method and informal way of reviewing the documents or
the programs/software for the purpose of finding out the faults during the
verification process is the peer-review method. In this method, we give the
document or software programs to others and ask them to review those
documents or software programs where we expect their views about the
quality of our product and also expect them to find the faults in the
program/document.

Online Peer Review:

In this review author and reviewer meet together and review the work
jointly. Any explanation required by the reviewer may be provided by the
author. The defects are found and corrected jointly by the peers.

Offline Peer Review:

In such kind of review the author informs the reviewer that the work
product is ready for the review. The reviewer reviews the work product as
per the time availability. The review report is sent to the author along with
the defects then the author may decide to accept or reject it.

Advantages of Peer Review:
1. Itisinformal and unplanned. It can happen at any time.
2. Thereis no or less ego or pride attached with the review.

3. As defects are discussed and decisions are taken informally defects
can be fixed fast.

Disadvantages of Peer Review:

1. The other person doing peer review may not be expert on the artifacts
under review so suggestions may not always be valid.

2. Peer may fix the defects without recording them. This may happen in
offline review.

3. Sometimes peer may change the defect without informing the author.
C. Walkthrough:

Walkthrough is more formal than peer review but less formal than
inspection. It can be called as semi formal review. In typical walkthrough
some members of the project team are involved in examining an artifact
under review. In a walkthrough, the author of the software document
presents the document to other persons which can range from 2 to 7.
Participants are not expected to prepare anything. The presenter is
responsible for preparing the meeting. The document(s) is/are distributed
to all participants. At the time of the meeting of the walk-through, the
author introduces the content in order to make them familiar with it and all
the participants are free to ask their doubts.

Advantages:

1. Walkthrough is useful for making joint decisions and each member
must be involved in making decisions.

2. Defects are recorded and suggestions can be received from the team
for improving the work product.

Software Verification
and Validation

217

Software Quality
Assurance

218

Disadvantages:

1.
2.
3.

Availability of people can be an issue when teams are large.
Time can be a constraint

Members in the team may not be expert in giving comments, so may
need some training and basic knowledge about the project.

D. Inspection (FORMAL REVIEW):

1.
2.
3.

It is the most formal review type
It is led by the trained moderators

During inspection the documents are prepared and checked
thoroughly by the reviewers before the meeting

It involves peers to examine the product

A separate preparation is carried out during which the product is
examined and the defects are found

The defects found are documented in a logging list or issue log

A formal follow-up is carried out by the moderator applying exit
criteria

Advantages of Inspection:

1.
2.

3.
4.
5.

Helps in the Early removal of major defects.

This inspection enables a numeric quality assessment of any technical
document.

Software inspection helps in process improvement.
It helps in staff training on the job.

Software inspection helps in gradual productivity improvement.

Disadvantages of Software Inspection:

1.
2.
3.

It is a time-consuming process.
Software inspection requires discipline.

Expert opinion may vary from realities as it may be derived from
judgements and experiences.

Phases of Inspection:

Planning:

The planning phase starts when the entry criteria for the inspection state
are met. The moderator planned the inspection. A moderator verifies that
the product entry criteria are met.

http://tryqa.com/what-is-defect-or-bugs-or-faults-in-software-testing/

Kick-off Inspection:

In the overview phase, a presentation is given to the inspector with some
background information needed to review the software product properly.
Here objective of the inspection is explained and process to be followed.

Preparation:

This is considered an individual activity. In this part of the process, the
inspector collects all the materials needed for inspection, reviews that
material, and notes any defects.

Meeting:

The moderator conducts the meeting. In the meeting, the defects are
collected and reviewed within a defined time frame.

Rework:

The author performs this part of the process in response to defect
disposition determined at the meeting.

Follow-up:

In follow-up, the moderator makes the corrections and then compiles the
inspection management and defects summary report. The findings can be
used be used to gather statistics about work product, project and progress.

Roles and Responsibilities:
Author:

The author is the person who wrote the document being inspected. He or
she is present at the inspection to answer questions to help others
understand the work, but not to “defend” his or her work.

Moderator:

The moderator runs the inspection and enforces the protocols of the
meeting. The moderator's job is mainly one of controlling interactions and
keeping the group focused on the purpose of the meeting—to discover
(but not fix) deficiencies. The moderator also ensures that the group does
not go off on tangents and sticks to a schedule.

Reader:

The reader calls attention to each part of the document in turn, and thus
paces the inspection.

Recorder:

Whenever any problem is uncovered in the document being inspected, the
recorder describes the defect in writing. After the inspection, the recorder
and moderators prepare the inspection report.

Software Verification
and Validation

219

Software Quality
Assurance

220

Inspectors:

Inspectors raise questions, suggest problems, and criticize the document.
Inspectors are not supposed to “attack™ the author or the document but
should be objective and constructive. Everyone except the author can act
as an inspector.

E. Audit:

Audit means an independent examination of a software product or
processes to assess compliance with specifications, standards, contractual
agreements, or other criteria. Software Development and testing process
audit is an examination of product to ensure that the product as well as the
process used to build them predefined criteria. The outcome of the audit
report comprising the following.

Major and Minor Non-Conformance:

Non conformance is the deviation between what is required and what
actually exists.

e Minor Non-Conformance: Minor Non-Conformance indicates that
there is some deviation at some place and at other places the process
is followed correctly.

e Major Non-Conformance: Major Non-Conformance indicates a big
issue where something required is missing completely.

Observations:

Observations are findings which may be converted into future non
conformances if proper care is nottaken. They may be termed as
conformance just on the verge of breakage.

Achievement or Good Practices:

These are good achievements by areas under audit which can be used by
others.

In software development and testing phases, various audit are
conducted, as mentioned below

A. Kick Off Audit:

This audit covers the areas that ensure whether all the processes required
at the start of the project are covered or not. It may start from proposal,
contract, risk analysis, scope definition, team size and Skill requirements,
authorities and responsibilities of various roles in the team. Kick-off audits
cover checking documentation and compliances required at the start of the
project.

B. Periodic Software Quality Assurance Audit:

Software quality assurance audit is famous by the name 'SQA audit' or
'SQA review'. It is conducted for a product under development and
processes used as defined by quality assurance process definition for these
work products. Auditor is expected to check whether different work
products meet the defined exit criteria or not, and the process used for
building these work products are correctly implemented or not.

C. Phase-End Audit:

Phase-end audit checks whether the phase defined in the development life
cycle achieves its expected outcome or not. It is also used as a gate to
decide whether the next phase can be started or not. These are also termed
‘gate reviews'.

D. Pre Delivery Audit:

Pre Delivery audit checks whether all the requisite processes of delivery
are followed or not, and whether the work product meets the expected
delivery criteria or not. Only those work products which are successful in
pre delivery audits can be given to a customer.

E. Product Audit:

Product audits can be Covered in SQA audit. It is done by executing
sample test cases to find whether the product meets its defined exit criteria
or not. Sometimes, this is also considered as ‘smoke testing'.

7.5 TYPES OF REVIEWS ON THE BASIS OF STAGE
PHASE

In-Process Review:

Reviews done while different phases of software development life cycle
are going on are defined as ‘In-process review'. They are intended to
check whether inputs to the phase are correct or not, and whether all the
applicable processes/procedures during a phase are followed correctly or
not.

Milestone Review:

Milestone Review is conducted on a periodic basis depending on the
completion of a Particular phase or a defined timeframe. Examples:
reviews may be a requirement review at the end of requirement phase,
weekly status review at the end of week. or review percentage completion
(say 5% project completion review).

Phase-End Review:

Phase-end review is conducted at the end of development such as
requirements phase, design phase, coding, and testing, it be when there are
distinct of development as defined in waterfall development model such as

Software Verification
and Validation

221

Software Quality
Assurance

222

requirements gathering, (high level and low level designs), coding, testing
at various levels. deployment, etc. Phase-end reviews are also termed
'gate reviews’.

Periodic Review:

Periodic review is done weekly, quarterly, monthly etc. Project Plan must
define various periods when review of project related activities will be
conducted.

Percent Completion:

Percent completion review is a combination of periodic and phase-end
review where the project activities or product development activities are
assessed on the basis of percent completion.

Process of In Process Review:

An organisation/project must have a definition of in-process It must have a
list of stakeholders attending various reviews, and the work products
under reviews. Commonly found steps of in-process reviews are given
below

e Work product, and metrics undergoing are created and submitted to
stakeholder.

e Inputs are received from stakeholders to initiate various actions.

e Risks identified by the project are reviewed and actions may be
initiated as required.

e Any issue related to any stakeholder is noted and follow-up actions
are initiated. Issues like software availability, hardware availability,
training required etc.

e Review report is generated at the end, which helps in the next review.
B. Post Implementation Review:

A Post-Implementation Review (PIR) is conducted after completing a
project. Its purpose is to evaluate whether project objectives were met, to
determine how effectively the project was run, to learn lessons for the
future, and to ensure that the organization gets the greatest possible benefit
from the project.

Process of Post Implementation review:

e The key to a successful PIR is recognizing that the time spent on the
project is just a small part of an ongoing timeline.

e For people and organizations that will be working on similar projects
in the future, it makes sense to learn as many lessons as possible, so
that mistakes are not repeated in future projects.

e And for organizations benefiting from the project, it makes sense to
ensure that all desired benefits have been realized, and to understand

what additional benefits can be achieved.

7.6 EXAMPLE OF ENTITIES

VERIFICATION

INVOLVED IN

Verification

Entities Involved

Definition

Requirement for
Business /
Functionality

Examine the
business needs
with the

development team
and the customer.

This is a crucial stage to ensure
that the requirements have been
acquired and/or accurately, as
well as to determine whether or
not they are realistic.

Design Review

Developer Team

The Developer team extensively
evaluates the design once it is
created to ensure that the
functional requirements can be
satisfied with the design
presented.

Code
Walkthrough

Individual
Developer

After the code has been written,
it is examined for any syntactic
mistakes. This is a more
informal task that is carried out
by the individual developer on
his or her own code.

Code Inspection

Developer Team

This is a more formal
configuration. Subject matter
experts and developers review
the code to ensure that it meets
the software's commercial and
functional objectives.

Test Plan
Review
(internal to QA

team)

Quality Analyst
Team

The QA team reviews a test
plan internally to ensure that it
is correct and thorough.

Test Plan

(External)

Project Manager,
Business Analyst,
and Developer

A formal review of the test plan
document to ensure that the QA
team's timeframe and other
factors are in sync with the
other teams and the overall
project.

Test
documentation

Quality Analyst
Team

A peer review is when members
of a team check each other's

Software Verification
and Validation

223

Software Quality
Assurance

224

review work to ensure that the
documentation is free of errors.

Test Business Analyst | A review of the test
documentation | and Development | documentation to ensure that
final review Team the test cases cover all of the

system'’s business circumstances
and functional features.

7.7 REVIEWS IN TESTING LIFECYCLE

7.7.1. Test Readiness Review:

This is a very common activity that is performed by every QA team to
determine whether they have everything they need to proceed into the test
execution phase. Also, this is a recurring activity before each cycle of
testing in projects that involve multiple cycles. In order to not run into
issues after the testing phase begins and realize that we entered the
execution phase prematurely, every QA project needs to conduct a review
to determine that it has all the inputs necessary for successful testing. A
checklist facilitates this activity perfectly. It lets you make a list of
‘things-needed’ ahead of time and to review each item sequentially.

Prerequisites Testing:

Software installation has some prerequisite testing such as operating
system, database, reporting services as the case may exist. If prerequisites
are not available installation may prompt or prerequisite will be installed
during installation.

Updation Testing:

There must be a check whether similar operating systems already exist in
the system or there is a need for a new version. Sometime it also prompts
for repair or new installation.

Un-Installation Testing:

It is done when there is a need to check whether uninstallation is clean.
When an application is uninstalled all the files installed must be removed
from the disk.

7.7.2. Test Completion Review:

e Test Completion is the last stage of the software testing life cycle. It
results in a report that a Test manager or a Test lead prepares that
showcases the completed data from the test execution.

e The key activities carried out are

o First is checking whether all reported defects reach a closure

o Second is creating a test summary report & communicating it to
stakeholders.

o Next comes finalizing and archiving the test environment, the test
data, the test infrastructure, and other test ware for later reuse.

o In addition to the above, analysing lessons learned from the finished
test activities to determine changes needed for future iterations,
releases, and projects happens.

7.8 COVERAGE IN VERIFICATION

7.8.1. Statement Coverage:

In this the testcase is executed in such a way that every statement of the
code is executed at least once.

7.8.2. Branch/Decision Coverage:

Test coverage criteria requires enough test cases such that each condition
in a decision takes on all possible outcomes at least once, and each point
of entry to a program or subroutine is invoked at least once. That is, every
branch (decision) taken each way, true and false. It helps in validating all
the branches in the code making sure that no branch leads to abnormal
behavior of the application.

7.8.3. Path Coverage:

In this the test case is executed in such a way that every path is executed at
least once.

All possible control paths taken, including all loop paths taken zero, once,
and multiple (ideally, maximum) items in path coverage technique, the test
cases are prepared based on the logical complexity measure of a
procedural design. In this type of testing every statement in the program is
guaranteed to be executed at least one time. Flow Graph, Cyclomatic
Complexity and Graph Metrics are used to arrive at the basis path.

Cyclomatic Complexity:

Cyclomatic Complexity for a flow graph is computed in one of three
ways:

1. The numbers of regions of the flow graph correspond to the
Cyclomatic complexity.

2. Cyclomatic complexity, V(G), for a flow graph G is defined as
V(G)=E-N+2

3. where E is the number of flow graph edges and N is the number of
flow graph nodes.

4. Cyclomatic complexity, V(G), for a graph flow G is also defined as
V(G)=P+1

Software Verification
and Validation

225

Software Quality
Assurance

226

5. Where P is the number of predicate nodes contained in the flow graph
G.

Example: Consider the following flow graph

Region, R=6

Number of Nodes = 13
Number of edges = 17
Number of Predicate Nodes =5
Cyclomatic Complexity, V(C):
V (C)=R=6;

Or

V(C) = Predicate Nodes + 1
=5+1 =6

Or

V(C)= E-N+2

=17-13+2

7.8.4 DD Path Coverage:

e A decision-to-decision path, or DD-path, is a path of execution
(usually through a flow graph representing a program) between two
decisions.

e A DD-path is a set of nodes in a program graph such that one of the
following holds

o It consists of a single node with in-degree = 0 (initial node)

o It consists of a single node with out-degree = 0 (terminal node)

o It consists of a single node with in-degree > 2 or out-degree > 2
o It consists of a single node with in-degree = 1 and out-degree = 1

o Itis a maximal chain of length > 1.

7.9 CONCERN OF VERIFICATION

There are few concerns associated with verification activities.
Use of right verification technique:

Every verification technigue has advantages and disadvantages. For test
cases, code file peer to peer review may be more advantageous from cost
perspective while for requirement statement inspection technique can be
used.

Integration of verification activities in SDLC:

As seen in V&V model every phase of SDLC has associated phases of
verification and validation. Selection of verification technique must be
such that it must find defects as early as possible. This can prevent stage
contamination.

Resources and skill available for verification:

Most important resources and skills of verification are people and time. If
reviewer is capable with sufficient knowledge and ability verification will
be very effective.

7.10 VALIDATION

Validation is the process of checking whether the software product is up to
the mark or in other words the product has high level requirements.

e ltisthe process of checking the validation of a product

e Italso answers the question, are we building the right product?
e ltis validation of actual and expected product.

e Validation is the Dynamic Testing.

7.10.1 Advantages of Validation:

e During verification if some defects are missed then during validation
process it can be caught as failures.

e If during verification some specification is misunderstood and
development has happened, then during the validation process while
executing that functionality the difference between the actual result
and expected result can be understood.

Software Verification
and Validation

227

http://tryqa.com/what-is-defect-or-bugs-or-faults-in-software-testing/

Software Quality
Assurance

228

Validation is done during testing like feature testing, integration
testing, system testing, load testing, compatibility testing, stress
testing, etc.

Validation helps in building the right product as per the customer’s
requirement and helps in satisfying their needs.

7.10.2 Disadvantages of Validation:

No amount of testing can prove that software does not have defects.
There can be many more defects not capture by the test cases,

stub and driver are used during validation testing and they need
additional efforts of development and testing before they can be used.

7.10.3 Prerequisites for validation

Prerequisites for validation may include the following.

Training required for conduction the validation. Training may include
domain knowledge and knowledge about testing and various test
tools.

Standard guidelines and tools to be used during validation.

Validation do and check process definition.

7.11 VALIDATION WORKBENCH

Process
—> rework AN
Inputs £
Validation il il Output
Process %
. N 4’
e
—
Standards,
Tools,
Guidelines

Workbench is a place where validation activities are conducted on the
work products and may be physical or virtual entities.

Inputs:

There must be some entry criteria definition when inputs are entering the
work bench. This definition should match with the output criteria of the
earlier work bench.

Outputs:

Similarly, there must be some exit criteria from the workbench which
should match with input criteria for the next workbench. Outputs may
include validated work products, defects, and test logs.

Validation:

Validation process must describe step-by-step activities to be conducted
in a workbench. It must also describe the activities done while validating
the work product under testing.

Check Process:

Check process must describe how the validation process has been
checked. Test plan must define the objectives to be achieved during
validation and check processes must verify that the objectives have been
really achieved.

Standards tools and guidelines:

These may be termed 'the tools' available for validation. There may be
testing guidelines or testing standards available.

7.12 LEVELS OF VALIDATION

1) Unit Testing:

e A Unit is a smallest testable portion of a system or application which
can be compiled, loaded, and executed. This kind of testing helps to
test each module separately.

e The aim is to test each part of the software by separating it. It checks
that components are fulfilling functionalities or not. This kind of
testing is performed by developers.

2) Integration testing

e Integration means combining. For Example, in this testing phase,
different software modules are combined and tested as a group to
make sure that integrated system is ready for system testing.

e Integrating testing checks the data flow from one module to other
modules. This kind of testing is performed by testers.

3) System testing:

e System testing is performed on a complete, integrated system. It
allows checking the system's compliance as per the requirements. It
tests the overall interaction of components. It involves load,
performance, reliability and security testing.

Software Verification
and Validation

229

Software Quality
Assurance

230

e System testing most often the final test to verify that the system meets
the specification. It evaluates both functional and non-functional
needs for the testing.

4) Acceptance testing

e Acceptance testing is a test conducted to find if the requirements of a
specification or contract are met as per its delivery.

e Acceptance testing is basically done by the user or customer.
However, other stockholders can be involved in this process.

5) Interface Testing

e Interface Testing is defined as a software testing type which verifies
whether the communication between two different software systems is
done correctly.

e An interface is actually software that consists of sets of commands,
messages, and other attributes that enable communication between a
device and a user.

7.13 COVERAGE IN VALIDATION

Different instances of validation may offer different coverage depending
on test plan and definition of coverage.

Following are some of the coverage.
1. Requirement Coverage:

e Requirements are defined in the requirement specification document.
Traceability matrix start with requirement and goes forward up to test
result.

e All requirements are not mandatory. They are put into different
classes must, should be and could be. Most higher priority
requirement is expressed as must, some lower priority is expressed as
could be and should be.

2. Functionality Coverage:

Sometimes requirements are expressed in terms of functionality. Test
cases representing higher priority must be tested to a larger extent than the
functionality with the lower priority.

3. Feature Coverage:

e [Features are groups of functionality doing same or similar things. It
means covering at least one of the functionality which represent a
feature provided even if there's multiple way of doing it.

e Feature with higher priority are indicated with must and lower one as
should be or could be.

7.14 ACCEPTANCE TESTING

Acceptance testing is generally done by the users and/or customers to
understand whether the software satisfies requirements or not, and to
ascertain whether it is fit for use. Users\customers execute test cases to
show if the acceptance criterion for the application has been met or not.
There are three levels of acceptance testing.

7.14.1 Alpha Testing:

Alpha testing represents the testing done by the customer in the
development environment of the development team. The testing is
done at a development Site with dummy data either created by or
shared by the customer.

In reality, alpha testing may be done by testers in front of the
customer to show software is working. It can be used as a tool for
training key users on the application.

Any major drawback found can be cleared during alpha testing.

7.14.2 Beta Testing:

Beta testing is used to assess the product by exposing it to the real
end-users, usually called beta testers in their environment. Feedback
is collected from the users and the defects are fixed.

Also, this helps in enhancing the product to give a rich user
experience.

7.14.3 Gamma Testing:

Gamma Testing is the final stage of the testing process conducted
before software release. It makes sure that the product is ready for
market release according to all the specified requirements.

Gamma testing focuses on software security and functionality. But it
does not include any in-house QA activities.

During gamma testing, the software does not undergo any
modifications unless the detected bug is of a high priority and
severity. Only a limited number of users perform gamma testing, and
testers do not participate. The feedback obtained from the customer is
used for new or enhanced products.

7.15 MANAGEMENT OF VERIFICATION AND
VALIDATION (V & V)

Verification and validation techniques are complementary to each other,
and not the replacement of each other.

The steps involved in verification/validation atv as follows.

Software Verification
and Validation

231

Software Quality
Assurance

232

7.15.1 Defining the Processes for Verification and Validation:

An organisation must define the processes applied for verification and
validation activities during the development life cycle phase of the project.
The processes involved may be as follows.

Software Quality Assurance Process:

These processes concentrate on developing the techniques/ procedures for
development and testing of the project. They may be more generic,
indicating an overall approach of handling verification and validation
activities, or may be very specific for the project/customer.

Software Quality Control Process:

These processes concentrate on developing the approach for verification
and validation activities during software development and testing. They
can be more specific for the project under development. Quality control
process forms a part of appraisal and failure cost.

Software Development Process:

These processes may concentrate over where zero defects introduce. They
may cover software quality control process along with other SDLC
processes.

Software life cycle definition:

It is essential to establish development and testing processes for the
software.

7.15.2 Prepare Plans For Execution of Process:

When a project proposal is made, it must contain a definition of what is
meant by a successful delivery, and must show how quality of deliverables
will be achieved. The plans involved are as follows.

e a software development plan and schedule which include
responsibilities and time schedule for verification/ validation activities
must be defined at the start of the project.

e software quality plan and software test plan must define the use of
different methodologies for ensuring quality of deliverables,
verification and validation activities associated with development

e Software acceptance testing plan must be defined where acceptance
criteria is finalised.

7.15.3 Initiate Implementation Plan:

e The plans made at the time of proposal/contract must be implemented
during the development life cycle of a project. There must be formal
records of requirements review, design review, code reviews, unit

testing, integration testing, interface testing, system testing, and
acceptance testing.

e The results must be recorded and corrective/preventive actions must
be initiated from the results of verification and validation.

7.15.4. Monitor Execution Plan:

The verification and validation activities must be monitored during
development life cycle execution. Project manager and test manager must
oversee that the activities defined in various plans are being executed and
the results are being logged in the test log.

7.15.5 Analyse Problems Discovered During Execution:

Execution of verification and validation processes may bring out many
problems in the product as well as Processes associated with development
and testing. Root cause analysis of problems and planning for actions are
essential parts of continuous improvement.

7.15.6 Report Progress:

The outcome of the validation and verification must be reported to the
management, customer and development team to make them aware about
project problems and progress.

7.15.7 Ensure Product Satisfies Requirement:

The ultimate aim of verification and validation activities undertaken
during project execution is to achieve customer satisfaction.

7.16 SOFTWARE DEVELOPMENT VERIFICATION
AND VALIDATION ACTIVITIES

Verification and validation activities are spread over the life cycle of
software development. The activities include

Conceptualisation:

Conceptualisation is the first phase of developing a product or project for a
customer, Conceptualisation means converting the thoughts or concepts
into reality. It can be through proof of concept or prototyping model.
During proposal, the supplier may give of solution, and the customer may
have to evaluate the feasibility of such an approach solution from product
perspective. The supplier must understand what is expected by the
customer, and whether it be provided or not by an organisation. Here
verification and validation determine feasibility study of the project based
on technical feasibility, economical feasibility and skill availability.

Requirement Analysis:

Requirement analysis phase starts from conceptualisation. Requirement
understanding is done through communication with customer. It can be
done- by various approaches joint application development and customer

Software Verification
and Validation

233

Software Quality
Assurance

234

survey. Requirement analysis verification and validation the feasibility of
requirements and gives inputs to design approach. It can help in finding
the gaps in proposals and requirements so that further clarifications can be
achieved.

Design Requirements:

Design Requirements are implemented through design. Verification and
validation of design understanding that design is complete in all respects
and matches with requirements. Requirement ensures that all requirements
are converted into design. It involves design through data flow diagram,

prototyping.
Coding:

It involves code review and testing of the units, as part of verification and
Validation, to make sure that requirements and design are correctly
implemented. Units must be traceable to requirements through design.

Integration:

Integration validation and verification show that the individually tested
units work correctly when brought together to form a module or sub
module. It involves testing of modules/sub modules to ensure proper
working with respect to requirements and designs. Integration with other
hardware/ software is defined in architectural design. Interface testing
must satisfy architectural design.

Testing:

Test artifacts such as test plan, test scenario, test bed, test cases, and test
data must be subjected to verification and validation activities. Test plan
must be complete, covering all aspects of testing expected by the
customer. Test cases must cover the application completely. Test cases for
acceptance testing must be validated by customer/user/business analyst.

Installation:

Application must be tested for installation, if installation is required by the
customer, the documentation giving instructions for installation must be
complete and sufficient to install the application, Verification and
validation must ensure that there is adequate support and help available to
common users for installation of an application.

Documentation:

There are many documents given along with a software product such as
installation guide and user manual. They must be complete, detailed and
informative, so that it can be referred to by a common user. The list of
documents must be mentioned in contract or statement of work so that
compliance can be checked.

/.17 LET US SUM UP

This chapter provides a clear exposition of verification and validation
activities. It covers methods of verification such as reviews, walkthrough
and inspection and various stages of verification such as requirement
verification, design verification, and test artifacts verification. Advantages
of different levels of reviews such as self review, peer review,
walkthrough, and inspection have been dealt in detail. It also presents
audits as an independent way. In-process reviews and post implementation
reviews have also been evaluated. The Second half of the chapter focuses
on validation techniques. The chapter concludes with a clear overview of
acceptance testing.

7.18 EXERCISES

1. Discuss the advantages and disadvantages of verification

N

Describe different types of verification on the basis of parties
involved in verification.

Explain self review

Describe the advantages and disadvantages of peer review.
Describe about walkthrough review

Explain formal review(Inspection).

Describe the process of inspection

Describe the auditing process.

© o N o 0o &~ w

What are the different audits planned during the development life
cycle?

10. Explain various types of in-process review

11. Explain the concept of post-mortem review. it is essential for a
learning organisation

12. Explain test readiness review.

13. What are the concerns of verification?

14. Discuss the advantages of validation

15. How coverage is measured in case of verification?
16. How coverage is measured in case of validation?
17. Discuss the different levels of validation.

18. Explain different levels of acceptance testing.

Software Verification
and Validation

235

Software Quality
Assurance

236

7.19 REFERENCES

[Andriole86] Andriole, Stephen J., editor, Software Validation,
Verification, Testing, and Documentation, Princeton, NJ: Petrocelli
Books, 1986.

http://tryga.com/what-is-verification-in-software-testing-or-what-is-
software-verification/

https://www.tutorialspoint.com/software_testing_dictionary/audit.htm

https://www.tutorialspoint.com/verification-and-validation-with-
example

https://qatestlab.com/resources/knowledge-center/alpha-beta-
gamma/#:~:text=Gamma%?20testing%20is%20the%20final ,any%?20in
-house%20QA%20activities.

M.G., LIMAYE, ed. (2009) Software Testing: Principle, Technique
and Tools. Tata McGraw-Hill Publishing Ltd.

% %k %k %k %

https://www.tutorialspoint.com/software_testing_dictionary/audit.htm
https://www.tutorialspoint.com/verification-and-validation-with-example
https://www.tutorialspoint.com/verification-and-validation-with-example
https://qatestlab.com/resources/knowledge-center/alpha-beta-gamma/#:~:text=Gamma%20testing%20is%20the%20final,any%20in-house%20QA%20activities
https://qatestlab.com/resources/knowledge-center/alpha-beta-gamma/#:~:text=Gamma%20testing%20is%20the%20final,any%20in-house%20QA%20activities
https://qatestlab.com/resources/knowledge-center/alpha-beta-gamma/#:~:text=Gamma%20testing%20is%20the%20final,any%20in-house%20QA%20activities

V-TEST MODEL

Unit Structure

8.0 Objectives

8.1 Introduction

8.2 V-model for software

8.3 Testing during Proposal stage

8.4 Testing during requirement stage
8.5 Testing during test planning phase
8.6 Testing during design phase

8.7 Testing during coding

8.8 VV Model

8.9 Ciritical Roles and Responsibilities.
8.10 Letus Sum Up

8.11 Exercises

8.12 References

8.0 OBJECTIVES

After going through this chapter, you will be able to:
e V-Model (Validation Model)
e VV Model (Verification and Validation Model)

e Roles and Responsibilities of three critical entities in software
development.

8.1 INTRODUCTION

Testing is a lifecycle activity. It starts when the proposal of software
development is made to a prospect, and ends only when the application is
finally delivered and accepted by the customer/end user. For product
development, we may define each iteration of development as a separate
project, and several projects may come together to make a complete
product. For a customer, it starts from a problem statement or
conceptualization of a new product, and ends with satisfactory product
receipt, acceptance and usage. For every development activity, there is a
testing activity associated with it, so that the phase achieves its milestone
deliverable with minimum problem (theoretically, no problem). This is
also termed 'certification approach of testing' or 'gate approach of testing'.

237

Software Quality
Assurance

238

8.2V MODEL FOR SOFTWARE

Validation model describes the validation activities associated with
different phases of software development.

Requirement | . Acceptance
analysis Testing
System Interface
Design Il * Testing
Program Integration

Design |+ ® Testing

>~/

Coding

V-Model for Testing:

e Design phase is associated with interface testing which covers design
specification testing as well as structural testing.

e Program-level designs are associated with integration testing.
e At code level, unit testing is done to validate individual units.
8.2.1 Structured Approach to Testing:

Testing activities for software development life cycle phases must be
planned in advance, and conducted as per plan. Test policy and test
strategy/test approach for performing verification and validation activities,
responsibilities of stakeholders for supporting or doing these activities,
inputs and outputs from each phase of the process, and milestone
deliverables must be documented beforehand to avoid any problem in final
deliverable to customer. Sometime it is also referred to V&V Plan.

8.2.2 Activities during Each Phase of Software Development Lifecycle:

Activities of verification and validation are planned during different
phases of the software development lifecycle, from proposal level till
product is finally accepted by the customer. The software development
process plan must define the development and testing activities to be
conducted in each phase of development also, the people responsible for
conducting and supporting those activities as stakeholders. Plan of
development must decide about 5 (What, Where, When, Why, and who)
and H (How) with people, processes, tools, training, etc. The information

must be readily available, to the team doing these activities and the
stakeholders, about their roles and responsibilities for those activities.
Activities must be referred to during each phase of software development
and testing.

8.2.3. Analyse Structures Produced During Development Phases for
Adequacy and Testability:

Documents and work products produced during a life cycle phase must be
analysed beforehand to understand their coverage, relationship with
different entities, structure in overall development and traceability. An
organization must have definition of processes, guideline and standard
which can be used for making such documents and artifacts.

8.2.4 Generate Test Sets Based on Structures:

Functional test scenarios and test cases are generally developed based
upon the functional requirements of the software. Functional requirements
refer to the operational requirements of an application. Structural test
scenario and test cases are developed from the structures defined in the
design specifications. They must correspond to the structures of the work
product produced during development. Requirements/ designs are
verified and validated by preparing use case diagrams, data flow diagrams,
and prototypes with the question 'what happens when' to identify the
completeness of design and requirements. For validation testing scenarios,
one must use techniques like boundary value analysis, equivalence
partitioning, error guessing.

8.2.5 Additional Activities During Design And Coding:

Testing in low-level design and coding phases must confirm that first
phase output of capturing the requirements and developing architecture
matches with the inputs and outputs required by the low-level design
phase. High-level design and low-level design must ensure that
requirements are completely covered so that software developed covers all
requirements. Verification and validation of design must ensure that the
requirement verification and validation is proper and can be handled
through the structures created for the purpose. Similarly, verification and
validation of coding must ensure that all aspects of designs are covered by
the code developed

8.2.6 Determine That Structures Are Consistent With Previously
Generated Structures:

Software development is like a flow of events, starting from capturing the
requirements till acceptance testing is completed successfully. The outputs
of one phase must match with the input criteria of the next Phase. There
must be consistency between various life-cycle phases. Consistency
between various phases can improve the maintainability of an application.

V-Test Model

239

Software Quality
Assurance

240

8.2.7 Refine And Redefine Test Sets Generated Earlier:

Test artifacts such as test scenarios, test cases, and test data may be
generated in each phase of software development life cycle from
requirements, design, and coding, as the case may be. The test artifacts so
generated must be reviewed and updated continuously as per the change in
requirement, design etc.

8.3 TESTING DURING PROPOSAL STAGE

A proposal is created when the customer asks for information, quotation,
and proposal. etc. At proposal stage, system description may not be very
clear. People use different approaches such as the formal/informal, proof
of concept. The Success of all these approach lies in successful defining
the problem and proposed solution. Feasibility study is done by the
customer as well as the supplier in search of a possible solution/approach
to solve the problem faced by the customer. It may include technical
feasibility, economic feasibility, implementation feasibility, organisational
fit, process fit, and people fit.

8.4 TESTING DURING REQUIREMENT STAGE

Requirement gathering stage must cover all the requirements for the
system. Characteristics of good requirements are mentioned below.

Cohesive:

The requirement defines a single aspect of the desired business process or
system.

Complete:

The individual requirement is not missing necessary or relevant
information. Additionally, the entire set of requirements should cover all
relevant requirements.

Consistent:
The requirement does not contradict another requirement.
Modifiable:

Like requirements should be grouped together to allow similar
requirements to be modified together in order to maintain consistency.

Correct: The requirement meets the actual business or system need. An
incorrect requirement can still be implemented resulting in a business
process or system that does not meet the business needs.

Observable:

The requirement defines an aspect of the system that can be noticed or
observed by a user. This is often referred to as “Implementation Agnostic”
as the requirement should not specify aspects of system architecture,

https://www.modernanalyst.com/Careers/InterviewQuestions/tabid/128/ID/1255/How-do-you-define-the-term-Requirement.aspx

physical design or implementation decisions. These aspects of a system
should be defined separately as constraints.

Feasible:

The requirement can be implemented within the constraints of the project
including the agreed upon system architecture or other physical design or
implementation decisions.

Unambiguous:

The requirement is written objectively such that there is only a single
interpretation of the meaning of the requirement.

Verifiable:

It can be shown that the requirement has been met by the final solution via
inspection, demonstration, test, or analysis.

8.5 TESTING DURING TEST-PLANNING PHASE

A Test Plan refers to a detailed document that catalogs the test strategy,
objectives, schedule, estimations, deadlines, and the resources required for
completing that particular project. Think of it as a blueprint for running
the tests needed to ensure the software is working properly — controlled by
test managers. Testing artifacts must be reviewed for their consistency and
accuracy. Verification of testing artifacts may include the following.

Generate Test Plan to Support Development Activities:

Test plan must be consistent with the application development
methodology, schedule, and deliverables. It must describe respective
verification and validation activities to be conducted during each phase of
the software development life cycle. It must contain methods used for
defining test data, test cases, test scenario, and execution of testing
activities. It must include how many defects would be expected to be
found in a work product during testing.

Generate Test Cases Based on System Structure:

Functional test cases must be based on functional requirements, and
structural test cases must be defined on the basis of design and non-
functional requirements of the system. It must be used to define test data
using different techniques available such as boundary value analysis,
equivalence partitioning, error guessing, and state transition. Test cases
and test data must be derived from test scenarios.

Analyse Requirement/Design Coverage:

It is very difficult for any test team to create test suite to cover 100%
requirement and designs produced during software development life cycle.
Coverage less than 100% indicates a risk. In case of any shortfall in
coverage with respective objectives defined, the test team must analyse the

V-Test Model

241

Software Quality
Assurance

242

situation and perform risk-benefit analysis of lesser coverage with the help
of customer and take corrective measures if required. Practically, it may
not be possible, or it may not be required to cover all requirements.

8.6 TESTING DURING DESIGN PHASE

Design is the backbone of a software application. A successful design can
convert the requirements into good application.

Consistency with respect to Requirements:

Designs must be consistent with defined. The requirement coverage of
design must be analysed and measured. If there is no design for a given set
of requirements, it will never get implemented. On the other hand, if there
is a design component not referring to any requirements, it is considered
as a defect.

Analyse Design for Errors:

Designs generated must be reviewed and tested for completeness and
accuracy. A design is implemented by coding. Errors in the design will
directly reflect the errors in coding and application so developed.

Analyse Error Handling:

Error handling of all kinds and possibilities must be covered in designing
aspects. Organisation must have standards for error handling, error
messaging and user interactions so that design is very clear about handling
them during design.

Developers Verify Information Flow and Logical Structure:

Data flow diagrams or dummy execution of the system is done, and
outputs derived are measured against expected outputs.

Testers Inspect Design in Detail:

Testers use design for defining structural test scenarios, test cases, and
structural test data. Test scenario must be an end-to-end scenario
considering data flow in the system.

8.6.1 Aspect to be tested:
Missing Test Cases:

Test cases not defined for a particular scenario (either or design) be caught
in test-case review. Testers try to write the test scenario using the
requirement statement without referring to design. This helps in the
missing test cases.

Faulty Logic:

If the logic or algorithm described in design is not correct as per
requirement statement, then it must be found by testing. Defects so found
must be corrected by designers in design, and then by developers in code.

Module Interface Mismatch:

The data input/output from one module to another must be checked for
consistency with design. Parameter passing is a major area of defects in
software, where communication in two modules is affected. Interface test
cases must test the scenario where one system is communicating with
another system.

Data Structure Inconsistency:

Review of mismatch between data structures and definitions between
different modules and system must be done for verification of designs

Erroneous Input/Output:

If the system needs to be protected from erroneous operations such as
huge/invalid input/output, the design must describe how it will handle the
situation.

Inconsistency with respect to Requirements and High-Level Design:

Design and development must be consistent with requirements and high-
level design. As the system architecture is defined in high-level design
which must reflect system requirements, any deviation can lead to extra or
missing functionalities, or inappropriately implemented systems.

8.7 TESTING DURING CODING

Coding is the most crucial stage in software development where a product
is actually built. Many organisations are completely dependent on self-
review and peer review for verification of code. Also, unit testing is done
by the developers. It is crucial but important to establish/institutionalize
verification/validation of a code so that the product matches with
requirement specifications.

8.7.1 Aspects to Be Checked:
Coding Standards/Guidelines Implementation:

Many organisations have coding Standards/ guidelines defined. When the
code files are written, the developers must use these standards/guidelines.
While reviewing code, the peer must make sure that Standards and
guidelines are implemented correctly. It helps in optimization and better
readability/maintainability of code in future.

Coding Optimization:

Coding standards must also talk about optimization of code. It talks about
how nesting must be done, how declaration of variables and functions
must be done.

V-Test Model

243

Software Quality
Assurance

244

Code Interpreting Design:

Coding must interpret designs correctly. Coding files and what they are
supposed to implement must be defined in low-level design.

Unit Testing:

Unit testing must be done by the developers to ensure that written code is
working as expected. Sometimes, unit testing is done by peer of an author
(of a code) to maintain independence of testing with respect to
development. Unit test case logs must be prepared and available for peer
review, SQA review as well as customer audits.

8.8 VV MODEL

Quality checking involves verification as well as validation activities. 'VV
model' considers all the activities related to verification as well as
validation. It is also termed as 'Verification and Validation Model' or
'‘Quality model.'VV model' talks about verification and validation
activities associated with software development during the entire life
cycle.

Requirements:

As requirements are obtained from customer like customer survey,
prototyping. The intention would be to find if there is any gap existing
between user requirements and requirement definition.

1. Requirement Verification:

a. Verification tests check to ensure the program is built according to the
stated requirements. The verification process includes activities such
as reviewing the code and doing walkthroughs and inspections.

b. Missing requirements or invalid requirements can be discovered
during this phase, which can minimize the risk of rework and the cost
associated with overruns. It’s far more effective to fix a small bug
upfront than in the future when hundreds of lines of code must be
identified and corrected

2. Requirement Validation:

a. It ensures that the requirements have achieved the business objectives,
meet the needs of any relevant stakeholders and are clearly
understood by developers. Validation is a critical step to finding
missing requirements and ensuring that requirements have a variety of
important characteristics.

b. Software validation addresses the following:
I. Correctly outlines the end user’s needs.

[l. Has only one exact meaning.

[11. Can be modified as necessary.

IV. Documents the attributes that customers truly need.

V. Easily linked to system requirements, such as designs, codes and tests.
Design:

Design may include high-level design or architectural design, and low-
level design or detail design. Designs are created by architects (high-level
designs)/designers (low-level designs) as the case may be.

a. Design Verification:

Verification of design may be a walkthrough of a design document by
design experts, team members and stakeholders of the project. Project
team along with the architect/designer may walkthrough the design to find
the completeness and give comments, if any. Traceability of design with
requirement must be established in the requirement traceability matrix.

b. Design Validation:
Validation of design can happen at two stages.

I. The first stage is at the time of creation of data flow diagram. If flow
of data is complete, design is complete. Any problem in flow of data
indicates gap in design. This is term as flow anomaly.

ii. The second stage of validation is at integration or interface testing.
Integration testing is an activity to bring the units together and test
them as a module. Interface testing is an activity of testing
connectivity and communication of application with the outside
world. For eg: the module connection with outside world like
database, browser, and operating system.

Coding:

Coding is an activity of writing individual units as defined in low level
design.

a. Code Verification:

As coding is done, it undergoes a code review (generally peer review).
Peer helps in identification of errors with respect to coding standards,
indenting standards, commenting standards and variable declaration
issues. The Checklist approach is used in code review.

b. Code Validation:

Validation of coding happens through unit testing where individual units
are separately The developer may have to write special programs (such as
stubs and drivers) so that units can be tested. The executable is created by
combining stubs, drivers and the units under testing.

V-Test Model

245

Software Quality
Assurance

246

SRS USE SRS .
CASE
REVIEW SYSTEM
N \ TESTING
SAD DFD SAD /
REVIEW INTERFACE
AN hY TESTING
SDD SDD
REVIEW
N\ 7N INTEGRATIO
CODING CODE DFD N TESTING
REVIEW
AN /
UNIT MODULE
TESTlNi/ TESTING

8.9 CRITICAL ROLES AND RESPONSIBILITIES

In software verification and validation, three critical roles can be
identified.

Development:

Development team may have various roles under them. They may be
performing various activities as per the role and responsibilities at various
stages. Some of the activities related to development group may be as
follows

e Project Planning activities include requirement elicitation, project
planning scheduling. Project planning is the foundation of success.

e Resources may include identification and organization of adequate
number of people, machine, hardware, software and tools required by
the project. It may also include assessment of skills required by plans.

e Interacting with customers and stakeholders as per project
requirement.

e Defining policies and procedures for creating development work,
verification and validation activities so that quality is built properly,
delivering it to test team/customer as the case may be.

Testing:

Testing team may include test manager, test leads, and testers as per scope
of testing, size of project, and type of customer. Generally, it is expected
that a test team would have independence of working and they do not have
to report to the development team.

Roles and responsibilities of test team may include the following: V-Test Model

e Test planning including test strategy definition, and test case writing.
Test planning may include estimation of efforts and resources
required for testing.

e Resourcing may include identification and organisation of adequate
numbers of people, machines, hardware, software, and tools as
required by the project. It may also involve an assessment of skills
required by the project, skills already available with them and any
training needs.

o Defining policies and procedures for creating and executing tests as
per test strategy and test plan. Testers may have to take part in
verification and validation activities related to test artifacts.

e Doing acceptance testing related activities such as training and
mentoring to users from customer side before/during acceptance
testing activities.

Customer:

Customer may be the final user group, or people who are actually
sponsoring the project. Customers can be internal to an organisation or
external to the organisation. Roles and responsibilities of a customer may
include the following.

e Specifying requirements and signing off requirement statements and
designs as per contract. It may also include solving any queries or
issues raised by the development/test team.

e Participating in acceptance testing as per roles and responsibilities
defined in the acceptance test plan. A customer may be responsible
for alpha, beta and gamma testing, as the case may be.

8.10 LET US SUM UP

This chapter provides a clear exposition of V-MODEL and VV Model
(Verification and Validation). It covers activities of verification and
validation along with its role and responsibilities. The chapter concludes
with a clear overview of roles and responsibilities which is important for
the good product.

8.11 EXERCISES

What are the characteristics of good requirements?
Describe V & V activities during the proposal.

Describe V & V activities during requirement generation.

H w0 b P

Describe V & V activities for test artifacts.

247

Software Quality
Assurance

248

Describe V & V activities during designs.
Describe V & V activities during coding.
Explain VV Model

What are the role and responsibilities in software verification and
validation

8.12 REFERENCES

[Andriole86] Andriole, Stephen J., editor, Software Validation,
Verification, Testing, and Documentation, Princeton, NJ: Petrocelli
Books, 1986.

https://www.softwaretestinghelp.com/what-is-stlc-v-model/

M.G., LIMAYE, ed. (2009) Software Testing: Principle, Technique
and Tools. Tata McGraw-Hill Publishing Ltd.

% %k %k %k k

https://www.softwaretestinghelp.com/what-is-stlc-v-model/

UNIT -V

LEVELS OF TESTING

Unit Structure

9.0 Objectives

9.1 Introduction

9.2 Proposal Testing

9.3 Requirement Testing

9.4 Design Testing

9.5 Code Review

9.6 Unit Testing
9.6.1 Difference between debugging and unit testing

9.7 Module Testing

9.8 Integration Testing
9.8.1 Bottom-Up Testing
9.8.2 Top-Down Testing
9.8.3 Modified Top-Down Approach

9.9 Big-Bang Testing

9.10 Sandwich Testing

9.11 Critical Path First

9.12 Subsystem Testing

9.13 System Testing

9.14 Testing Stages

9.15 Letus Sum Up

9.16 Exercises

9.0 OBJECTIVES

After going through this chapter, you will be able to:

» describe various verification and validation activities associated with
various stages of SDLC starting from proposal.

« discuss various approaches of integration testing.

9.1 INTRODUCTION

Testing is a life-cycle activity which begins with a proposal for
software/system application and ends when product is finally delivered to
customer. Different agencies/stakeholders are involved in conducting
specialised testing required for the specific application. Definition of these
stakeholders/agencies depends on the type of testing involved and level of

249

Software Quality
Assurance

250

testing to be done in various stages of software development life cycle.
Table 9.1 shows in brief the level of testing performed by different
agencies. It is an indicative list which may differ from customer to
customer, product to product and organisation to organisation.

Table 9.1 Different agencies involved at different levels of testing

Testing Agencies involved

Proposal review | Customer, Business Analyst, System Analyst,
Project Manager

Proposal testing | Customer, Business Analyst, System Analyst,
Project Manager

Customer, Business Analyst, System Analyst,

Requirement

review Project Manager, Project Leader, Test Leader
Requirements Customer, Business Analyst, System Analyst,
testing Project Manager, Project Leader, Test Leader

Design review Customer, Business Analyst, System Analyst,
Architect, Project Manager, Project Leader, Test

Leader, Developer

Customer, Business Analyst, System Analyst,
Architect, Project Manager, Project Leader, Test
Leader, Developer

Design testing

Code review Project Leader, Project Team, Customer

Test artifact | Project Leader, Project Team, Customer, Tester,
review Test Leader

Unit testing Project Leader, Project Team, Customer

Module testing | Project Leader, Project Team, Tester, Customer
Integration Project Leader, Project Team, Tester, Customer
testing

System testing Project Manager, Test Leader, Tester, Customer
Acceptance Project Manager, Tester, User/Customer

testing

9.2 PROPOSAL TESTING

A proposal is made to the customer on the basis of Request for Proposal
(RFP) or Request for Information (RFI) or Request for Quotation (RFQ)
by the customer. Before making any proposal, the supplier must
understand the purpose of such request, and devise the proposed solution
accordingly. One must understand customer problem and the possible
solution. Any proposal prepared in response to such request is reviewed by
an organisation before sending it to the customer. It is reviewed by
different panels or groups in the organisation such as technical group and
commercial group. The intention is to ensure that the organisation must be
able to stand by its words, if the proposal gets converted into a contract.
The organisation must assess the impact of proposal on the organisation as
well as on the prospect/customer.

Technical Review:

Technical review mainly involves technical feasibility of the kind of
system or application proposed, the availability and requirement of skill
sets, the hardware/software and other requirements of system. The
proposal is also reviewed on the basis of time required for developing such
system, and efforts required to make the proposal successful. The
technical proposal is a description of overall approach, and not the final
accepted approach solution/method and may undergo many iterations of
changes as per discussions with customer. Requirement and estimations at
the stage of proposal are not very specific but rather, they are indicative. It
works on rough-cut methods, and estimations are ball-park figures that
prospect may expect.

Commercial Review:

A proposal undergoes financial feasibility and other types of feasibilities
involved with respect to the business. Commercial review may stress on
the gross margins of the project and fund flow in terms of money going
out and coming in the development organisation. Generally, total payment
is split into installations depending upon completion of some phases of
development activity. As different phases are completed, money is
realised at those instances.

Several iterations of proposals and scope changes may happen before all
the parties involved in Request for Quotation (RFQ) and proposal agree on
some terms and conditions for doing a project.

Validation of Proposal:

A proposal sometimes involves development of prototypes or proof of
concept to explain the proposed approach to customer problem. One must
define the approach of handling customer problem in the model or
prototype.

In case of product organisation, the product development group along with
marketing and sales functions decides about the new release of a product.

9.3 REQUIREMENT TESTING

Requirement creation involves gathering customer requirements and
arranging them in a form to verify and validate them. The requirements
may be categorised into different types such as technical, economical,
legal, operational, and system requirements. Similarly, requirements may
be specific, generic present, future, expressed, implied, etc. The customer
may be unaware of many of these requirements. The business analyst and
system analyst must study the customer’s line of business, problem and
solution that the customer is looking for before arriving at these
requirements. Assumed, implied or intended requirement is a gray area
and may be a reason for many defects in the final product. Requirement
testing makes sure that requirements defined in requirement specifications
meet the following criteria:

Levels of Testing

251

Software Quality
Assurance

252

Clarity:

All requirements must be very clear in their meaning and what is expected
from them. Requirements must state very clearly what the expected result
of each transaction is, and who are the actors taking part in the
transactions.

Complete:

Requirement statement must be complete and must talk about all business
aspects of the application under development. Any assumption must be
documented and approved by the customer.

Measurable:

Requirements must be measurable in numeric terms as far as possible.
Such definition helps to understand whether the requirement has been met
or not while testing the application. Qualitative terms like ‘good’,
‘sufficient’, and ‘high’ must be avoided as different people may attach
different meanings to these words.

Testable:

The requirement must help in creating use cases/scenario which can be
used for testing the application. Any requirement which cannot be tested
must be drilled down further, to understand what is to be achieved by
implementing these requirements.

Not Conflicting:

The requirements must not conflict with each other. There is a possibility
of trade-off between quality factors which needs to be agreed by the
customer. Conflicting requirements indicate problem in requirement
collection process.

Identifiable:

The requirements must be distinctively identifiable. They must have
numbers or some other way which can help in creating requirement
traceability matrix. Indexing requirements is very important.

Validation of Requirements:

In requirement testing, clear and complete use cases are developed using
requirement statement. Any assumption made indicates lacunae in
requirement statement and it should be updated by verifying the
assumptions made with the customer.

9.4 DESIGN TESTING

Once the requirement statement satisfies all characteristics defined above,
the system architect starts with system architecture design. The designs
made by system architects must be traceable to requirements. The design
must also possess the characteristics given below:

Clarity:

A design must define all functions, components, tables, stored procedures,
and reusable components very clearly. It must define any interdependence
between different components and inputs/outputs from each module. It
must cover the information to and from the application to other systems.

Complete:

A design must be complete in all respect. It must define the parameters to
be passed/received, formats of data handled, etc. Once the design is
finalised, programmers must do their work of implementing designs
mechanically and system must be working properly.

Traceable:

A design must be traceable to requirements. The second column of
requirement traceability matrix is a design column. The project manager
must check if there is any requirement which does not have corresponding
design or vice versa. It indicates a defect if traceability cannot be
established completely.

Implementable:

A design must be made in such a way that it can be implemented easily
with selected technology and system. It must guide the developers in
coding and compiling the code. The design must include interface
requirements where different components are communicating with each
other and with other systems.

Testable:
A good design must help testers in creating structural test cases.
Validation of Design:

Design testing includes creation of data flow diagrams, activity diagrams,
information flow diagram, and state transition diagram to show that
information can flow through the system completely. Flow of data and
information in the system must complete the loop. Another way of testing
design is creating prototypes from design.

9.5 CODE REVIEW

Code reviews include reviewing code files, database schema, classes,
object definitions, procedures, and methods. Code review is applied to
ensure that the design is implemented correctly by the developers, and
guidelines and standards available for the coding purpose are followed
correctly. Code must have following characteristics:

Clarity:

Code must be written correctly as per coding standards and syntax,
requirements for the given platform. It must follow the guidelines and

Levels of Testing

253

Software Quality
Assurance

254

standards defined by the organisation/project/customer, as the case may
be. It must declare variables, functions, and loops very clearly with proper
comments. Code commenting must include which design part has been
implemented, author, date, revision number, etc. so that it can be traced to
requirements and design.

Complete:

Code, class, procedure, and method must be complete in all respect. One
class doing multiple things, or multiple objects created for same purpose
indicates a problem in design.

Traceable:

Code must be traceable with design components. Code files having no
traceability to design can be considered as redundant code which will
never get executed even if design is correct.

Maintainable:

Code must be maintainable. Any developer with basic knowledge and
training about coding must be able to handle the code in future while
maintaining or bug fixing it.

9.6 UNIT TESTING

Unit is the smallest part of a software system which is testable. It may
include code files, classes and methods which can be tested individually
for correctness. Unit testing is a validation technique using black box
methodology. Black box testing mainly concentrates on system
requirements.

e Individual components and units are tested to ensure that they work
correctly as an individual as defined in design.

e Unit testing requires throwaway drivers and stubs as individual files
may not be testable or executable without them.

e Unit testing may be performed in debugger mode to find how the
variable values are changed during the execution. But, it may not be
termed ‘black box testing’ in such case as code is seen in debugging.

e QGray box testing is also considered as ‘unit testing technique’
sometimes as it examines the code in detail along with its functioning.
Gray box testing may need some tools which can check the code and
functionality at the same time.

e Unit test cases must be derived from use cases/design component used
at lowest levels of design.

9.6.1 Difference between Debugging and Testing: Levels of Testing

Many developers consider unit testing and debugging as the same thing. In
reality there is no connection between the two. Difference between them
can be illustrated as shown in Table 9.2

Table 9.2 Difference between debugging and unit testing

Debugging Unit testing
It involves code checking to locate | It checks the defect and not the
the causes of defect. causes of the defect.
Code may be updated during | It does not involve any code
debugging. correction.
Test cases are not defined. Test cases are defined based on

requirements and design.

Generally covers positive cases to | Covers positive as well as
see whether unit works correctly or | negative cases.
not.

9.7 MODULE TESTING

Many units come together to form a module. The module may work on its
own or may need stubs/drivers for its execution. If the module can work
independently, it is tested by tester. If it needs stubs and drivers,
developers must create the same and perform testing. Module testing
mainly concentrates on the system structure.

e Module testing is done on related unit-tested components to find
whether individually tested units can work together as a module or
not.

e Module test cases must be traceable to requirements/design.

9.8 INTEGRATION TESTING

Integration testing involves integration of wunits to make a
module/integration of modules to make a system/integration of system
with environmental variables if required to create a real-life application.

Integration testing may start at module level, where different units and
components come together to form a module, and go up to system level. If
module is self-executable, it may be tested by testers. If it needs stubs and
drivers, it is tested by developers.

Though integration testing also tests the functionality of software under
review, the main stress of integration testing is on the interfaces between
different modules/systems. Integration testing mainly focuses on
input/output protocols, and parameters passing between different units,
modules and/or system. Focus of integration is mainly on low-level
design, architecture, and construction of software. Integration testing is

255

Software Quality
Assurance

256

considered as ‘structural testing’. Figure 9.1 shows a system
schematically.

System
Module 1 Module 2 Module 3
Unit 1 | Unit 2 Unit 3

Fig. 9.1 Integration testing view

There are various approaches of integration testing depending upon how
the system is integrated. Different approaches have different benefits and
limitations.

9.8.1 Bottom-Up Testing:

Bottom-up testing approach focuses on testing the bottom part/individual
units and modules, and then goes upward by integrating tested and
working units and modules for system testing and intersystem testing.
Figure 9.2 shows bottom-up integration and testing.

Units at the lowest level are tested using stubs/drivers. Stubs and
drivers are designed for a special purpose. They must be tested before
using them for unit testing.

Once the units are tested and found to be working, they are combined
to form modules. Modules may need only drivers, as the low-level
units which are already tested and found to be working may act as
stubs.

If required, drivers and stubs are designed for testing as one goes
upward. Developers may write the stubs and drivers as the
input/output parameters must be known while designing.

Bottom-up approach is also termed °‘classical approach’ as it may
indicate a normal way of doing things. Theoretically, it is an excellent
approach but practically, it is very difficult to implement.

Each component which is lowest in the hierarchy is tested first and
then next level is taken. This gives very robust and defect-free
software. But, it is a time consuming approach.

System

| Module 1 | ‘ Module 2 ‘ ‘ Module 3 ‘

Unit 1 | Unit 2 ‘ | Unit 3 ‘

Fig. 9.2 Bottom-up integration approach

Bottom-up approach is suitable for the following:

e Object-oriented design where objects are designed and tested
individually before using them in a system. When the system calls the
same object, we know that they are working correctly (as they are
already tested and found to be working in unit testing).

e Low-level components are general-purpose utility routines which are
used across the application; bottom-up testing is the recommended
approach. This approach is used extensively in defining libraries.

Stubs/Drivers:

e Stubs/drivers are special-purpose arrangements, generally code,
required to test the units individually which can act as an input to the
unit/module and can take output from the unit/module.

Stub:

Stub is a piece of code emulating a called function. In absence of a called
function, stub may take care of that part for testing purpose.

Driver:

Driver is a piece of code emulating a calling function. In absence of actual
function calling the piece of code under testing, driver tries to work as a
calling function.

e Stubs are mainly created for integration testing like top-down
approach. Drivers are mainly created for integration testing like
bottom-up approach.

e Stubs/drivers must be very simple to develop and use. They must not
introduce any defect in the application. They should be eliminated
before delivering code to customer.

e Creating reusable stub/driver improves productivity, but it is a big
challenge.

Advantages of Bottom-Up Approach:

e Robust system, as each unit is tested individually.

Levels of Testing

257

Software Quality
Assurance

258

Disadvantages of Bottom-Up Approach:
e Slower process.

e Most important components at the top-level are tested at the end,
might result in product delivery pressure.

e Wastage of effort in designing stubs and drivers.
9.8.2 top-Down Testing:

Top-down testing begins with testing of top-level components of the
application, like user interfaces and then proceeds downward till it reaches
the final component of the system. Here, integration goes downward as the
tested components at the top are combined one by one in the process. Top-
down approach needs design and implementation of stubs. Agile models
like prototyping use this testing approach. Figure 9.3 shows top-down
integration approach.

System

&
-+

Module 1 Module 2 Module 3

Unit 1 Unit 2 Unit 3

Fig. 9.3 Top-down integration approach

Advantages of Top-Down Approach:

e This approach begins from top layer thereby determining feasibility of
application at an early stage.

e Major flaws can be detected by taking user inputs.

e Generally, this approach does not need drivers as top-layers can work
as drivers for bottom layers.

Disadvantages of Top-Down Approach:

e Sometimes individual units/module flaws remain hidden as they are
rarely tested alone.

e This approach can create a false belief among customer that software
is ready as prototype of software is delivered to customer even before
design phase.

e Wastage of effort in designing large number of stubs.

9.8.3 Modified Top-Down Approach:

Modified top-down approach combines the advantages of bottom-up and
top-down approaches and tries to remove the disadvantages of both. This
approach begins testing from both the ends to meet somewhere in
between. One part of testing starts from top to bottom as we are
integrating units downward, and the second part from bottom to top for
selected components declared as ‘critical units’. The main challenge is to
determine individual unit/module for bottom-up testing. Configuration
management is very important for such an approach. This approach makes
the system testing twice. This may require more resources and more time
than top-down approach but lesser than bottom-up approach. This
approach is more practical as all components are not equally important.
Figure 9.4 shows a modified top-down approach.

System

Module 1 Module 2 Module 3

- P

Unit 1 Unit 2 Unit 3

Fig. 9.4 Modified Top-down integration approach

Advantages of Modified Top-Down Approach:

e Important units are tested individually, and then combined to form the
modules, and finally modules are tested to make the system. This is
done during unit testing followed by integration testing.

e This approach is time saving as all components are not tested
individually. This approach believes not all components are critical
for a system.

e The systems tested using this approach are more efficient as compared
to top-down and bottom-up approach.

Disadvantages of Modified Top-Down Approach:
o Stubs and drivers are required.

o Identification of critical units is challenging.

9.9 BIG-BANG TESTING

The system is tested completely after development in big-bang approach.
Individual units/modules are not tested.

Levels of Testing

259

Software Quality
Assurance

260

Advantages of Big-Bang Approach:

Since testing is done at the end phase, therefore time required for
writing test cases and defining test data at unit level, integration level,
etc. may be saved.

This approach can be used as a validation of development process if
an organisation has optimized processes. If all testing phases are
successfully completed, then system testing may act as certification
testing before final product delivery.

No stub/driver is required in this approach. It is cost efficient
approach.

Fast approach.

Disadvantages of Big-Bang Approach:

Defects found during testing are difficult to trace and debug.

This approach executes the test cases without any understanding of
how the system is build.

Interface faults may not be distinguishable from other faults.

Based on just few test cases, testers certify the system.

9.10 SANDWICH TESTING

Sandwich testing conducts testing into two parts, and follows both parts
starting from both ends i.e. top-down approach and bottom-up approach
either simultaneously or one after another. It combines the advantages of
both these approaches. Figure 9.5 shows sandwich testing approach.

_/ -
—

System

Module 1 Module 2 Module 3

Unit 1 Unit 2 Unit 3

Fig. 9.5 Sandwich testing approach

Process of Sandwich Testing:

Bottom-up testing starts from middle layer and moves upward. Top-
down testing starts from middle layer and goes downward.

Big-bang approach is followed for the middle layer. From this layer,
bottom-up approach goes upwards and top-down approach goes
downward.

Advantages of Sandwich Testing:

e Suitable for large projects following spiral model.

e Both top-down and bottom-up testing begin simultaneously.
Disadvantages of Sandwich Testing:

e Higher testing costs as it requires more resources and big teams for
performing top-down and bottom-up testing simultaneously.

e Not suitable for smaller projects.

e Skilled testers with varying skill sets are required as different domains
representing different functional areas have to be handled.

9.11 CRITICAL PATH FIRST

In critical path first, critical path is determined which must be covered
first. Critical path represents the main function of a system. Development
team focuses on design, implementation and testing of critical path of a
system first. This is also called ‘skeleton development and testing’. In
order to define critical path correctly, it is important to understand the
system criticality from user’s perspective or from business perspective and
then decide on priority of testing. This approach is generally applicable
when entire system testing is impossible and systems are large enough.

9.12 SUBSYSTEM TESTING

Subsystem testing involves collection of units, sub modules, and modules
which have been integrated to form subsystems. It mainly concentrates on
detection of integration and interface errors

9.13SYSTEM TESTING

System testing is the final stage of testing just before system is delivered
to customer. It validates the fulfilment of functional/non-functional
requirements as specified in software requirement specification. It
involves following stages:

Functional Testing:

System software is expected to perform certain functions as mentioned in
requirement specification. This testing checks working of these intended
functionalities and corrects defects, if any.

User Interface Testing:

After functional testing, user interface is tested if the system has any user
interface. This testing may involve colors, navigations, spellings, and
fonts.

Once functional and user interface testing is completed, system undergoes
other types of testing like security, load, and compatibility.

Levels of Testing

261

Software Quality
Assurance

262

9.14 TESTING STAGES

First, unit testing is performed to identify and eliminate any defects at unit
level. Second, integration testing or module testing is done on integrated
units. After module testing, subsystem testing is executed. Then system
testing is performed after the system completes all levels of integration. In
some cases, interface testing is done instead of system testing to fix any
issues with inter system communication. Lastly, acceptance testing is done
to check whether acceptance criteria is fulfilled or not. Testing stages are
shown in Fig. 9.6.

Unit testing

NP

Module testing

\ Subsystem

testing

\\

System testing

S

Acceptance testing

Fig. 9.6 Software testing stages

9.15 SUMMARY

This chapter describes verification and validation activities related to
various stages of software development phases. It discusses merits and
demerits of various integration testing approaches.

9.16 EXCERCISES

Describe proposal review process.

Describe requirement verification and validation process.
Describe design verification and validation process.

Describe code review and unit testing process.

Describe difference between debugging and unit testing.
Differentiate between integration testing and interface testing.
Describe bottom-up approach for integration.

Describe top-down approach for integration.

© © N o g &~ w0 DN PE

Describe modified top-down approach for integration.

% % %k %k %

10

SPECIAL TESTS

Unit Structure
10.0 Objectives
10.1 Introduction
10.2 GUI Testing
10.3 Compatibility Testing
10.3.1 Multiplatform Testing
10.4 Security Testing
10.5 Performance Testing
10.6 Volume Testing
10.7 Stress Testing
10.8 Recovery Testing
10.8.1 System Recovery
10.8.2 Machine Recovery
10.9 Installation Testing
10.10 Requirement Testing
10.11 Regression Testing
10.12 Error Handling Testing
10.13 Manual Support Testing
10.14 Intersystem Testing
10.15 Control Testing
10.16 Smoke Testing
10.17 Adhoc Testing
10.18 Parallel Testing
10.19 Execution Testing
10.20 Operations Testing
10.21 Compliance Testing
10.22 Usability Testing
10.23 Decision Table Testing
10.24 Documentation Testing
10.25 Training Testing
10.26 Rapid Testing
10.27 Control Flow Graph
10.27.1 Program Dependence Graph
10.27.2 Category Partition Method
10.27.3 Test Generation from Predicate
10.27.4 Fault Model for Predicate Testing
10.27.5 Difference between Control flow and Data flow

263

Software Quality
Assurance

264

10.28 Generating Tests on the Basis of Combinatorial Designs
10.28.1 Combinatorial Test Design Process
10.28.2 Generating Fault Model from Combinatorial Designs
10.29 State Graph
10.29.1 Characteristics of Good State Graphs
10.29.2 Number of States
10.29.3 Matrix of Graphs
10.30 Risk Associated with New Technologies
10.31 Process Maturity Level of Technology
10.32 Testing Adequacy of Control in New Technology Usage
10.33 Object-Oriented Application Testing
10.34 Testing of Internal Controls
10.34.1 Testing of Transaction Processing Control
10.34.2 Testing Security Control
10.35 ‘COTS’ Testing
10.36 Client-Server Testing
10.37 Web Application Testing
10.38 Mobile Application Testing
10.39 eBusiness/eCommerce Testing
10.40 Agile Development Testing
10.41 Data Warehousing Testing
10.42 Letus Sum Up
10.43 Exercises

10.0 OBJECTIVES

After going through this chapter, you will be able to:

e Explain special techniques other than system testing which may be
required as per customer or application specification.

e Understand requirement statement clearly. Know and comprehend the
testing scope, application type, and customer’s line of business before
devising any test.

e Understand the support documentation and tools required for doing
testing.

e Understand the sequence of activities to be done while conducting
different tests.

10.1 INTRODUCTION

Testing includes not just functionality testing. Depending on application
and requirement specifications, some specialized tests may be conducted.
Special testing may need some special testing skills, tools and techniques.

Some systems are intended for specific purpose and they need to fulfill
special characteristics mentioned in requirement statement. Testing of
such systems is included in this type of testing. Examples include
eBusiness system, security system, antivirus applications, administrative
system, operating systems and databases. Such systems are created for
specific users and may or may not cater to all in general.

10.2 GRAPHICAL USER INTERFACE TESTING

User interacts with the system using user interface. Graphical user
interface is an important part of the application affecting usability.
Graphical user interface testing is also known as ‘GUI’ testing or ‘UI’
testing. Application system testing begins with functionality testing which
is followed by GUI testing. Graphical user interface includes the
following:

e Colors used for background, control and font should be chosen
carefully as they directly impact users.

e Words, fonts, and alignments used on screen also have a huge impact
on user readability and interaction with system. Font size and
alignments should be set properly. Spelling mistakes should not be
there.

e Scrolling pages up and down as well as navigation for different
hyperlinks and pages must be avoided as much as possible as it
increases frustration in users and reduces usability. Page layout should
be maintained.

e Error and alert messages must be meaningful and easily
understandable to users.

e Reports and print outs should take readability, font, screen size, paper
size on printer into consideration.

e Screen layout in terms of number of instructions to users, number of
controls and number of pages are defined in low-level design. Too
many pages and many controls on single page reduce application
usability.

e Appropriate control selection improves operability of application like
placing drop down control instead of free text. Logical placement of
controls and tab sequence maintenance improves usability and screen
appearance.

e Huge graphics impact the loading time of page. Pages must be kept
simple for easy loading/unloading in web application.

Advantages of GUI Testing:

e GUI impacts user’s emotion and psychological impact of using an
application. It is essential to have a good GUI to improve look and
feel of the application.

Special Tests

265

Software Quality
Assurance

266

e GUI represents the presentation of an application. Prototyping is used
extensively for verifying GUI requirements.

e Placing ‘Help’ option ensures the users quick access to help in case of
any problem resulting in enhanced user experience and improved
application reliability.

e Consistency of screen layouts, appropriate tab sequence, and designs
improves application usability.

Disadvantages of GUI Testing:

e Due to huge controls on a page and large number of pages, spelling
mistakes might go unnoticed by tester.

e Special applications targeted for specific end users, like blind people
or kids below 5 years of age may require software testers to be trained
to behave like target users.

e Functionality testing is prioritized over GUI testing resulting in
negligence of GUI defects.

e GUI testing is not given much importance and often assigned to junior
testers.

10.3 COMPATIBILITY TESTING

Application is generally made up of different components which work
together to achieve a goal. In software systems, these components may be
printer, hardware, operating system, databases etc. Market size is impacted
by the product and its operability with components. Product vendors
always aim to maximize the working of product on every possible
scenario of different components. Compatibility testing refers to testing
the software on multiple configurations to check the behavior of different
system components and their combinations. Different types of
compatibility testing are performed.

10.3.1 Multiplatform Testing:

Software testing on different platforms is done in Multiplatform testing.
Performance of software must not be impacted as the platform is changed.
Platform may be freeware, open source or licensed. Customers prefer to
use applications running on their existing platform. Product vendors will
always prefer to have maximum possible platform coverage so that they
can have customers from across the globe.

e In multiplatform testing, validation of software execution across
different platforms is done, also called parallel testing. Verification is
done by comparing the results of processing on different platforms.
The aim is to ensure that software achieves its functionalities on every
platform.

e The platform on which software development is done is referred as
‘base platform’ and it is expected to behave in similar manner on
range of platforms. This range of platforms must be clearly defined in
requirement statement and they should be already existing platforms
so that testing can be performed.

e When software is working on different platforms, some performance
variations are allowed and this range of performance variations
allowable must be mentioned in requirement statement.

Major Concerns in Multiplatform Testing:

e Platform vendors frequently release updates, patches and service
packs which results in updating the platform as well. Hence, the
platform used during compatibility tests may not be same as actual
application implementation platform.

e Range of compatible platforms should already be defined in
requirement statement. It is not possible or feasible to make the
application compatible with all the platforms in the world.

e It is important to do cost-benefit analysis to understand the target
market as it is not feasible to do exhaustive compatibility with all
platforms if target market does not need it.

e Certain assumptions have to be made as the list of required platforms
and configurations may not be complete.

e Platform configuration impacts the application performance to some
extent.

Multiplatform Testing Process:

e Define the base platform for testing and do result analysis on base
platform. Compatibility testing on different platforms is done and
results are compared with base platform results. Any deviation in
result is considered as defect.

e The expected platforms on which application compatibility is
expected should be defined and approved by the customer beforehand.

Table 10.1 gives an example of multiplatform testing coverage for three
platforms (say PA, PB, and PC) and a base/mother platform (say PM).

Table 10.1 Multiplatform testing coverage

Platform targeted | Distribution Testing coverage
PM - Base platform, system testing
PA 80% 100%
PB 15% 25%
PC 5% Smoke testing

Special Tests

267

Software Quality
Assurance

268

e Assess test laboratory configuration with respect to base platform and
target platform configuration mentioned in requirement statement. It
must include the service packs or hot fixes to be included/excluded in
testing and configuration of system which can impact the application.

e Usually, application interacts with the platform for performing
various service tasks such as display and printing. The customer or
designer must define the interfaces between application and platform.
Extent of testing and specific test cases to be performed can be
defined by list of interface items in the application that are being
affected by platform change.

e Test cases selection and execution depends upon initial calculation of
coverage offered or expected by customer, risk analysis, and cost-
benefit analysis.

Types of Compatibility:
Friend Compatibility:

There is no change of application behavior between mother platform and
new platform. The application utilizes all facilities and services available
on the platform efficiently.

Neutral Compatibility:

The application behavior on new platform is similar to its working on
parent platform. Only difference is that the application does not use the
facilities provided by new platform at all. Instead, it uses its own utilities
and services thus overburdening the system.

Enemy Compatibility:

The application does not perform as expected or does not perform at all on
new platform.

10.4 SECURITY TESTING

Security testing ensures the security and protection of an application
against unauthorized penetration. Every system has some vulnerable
points easily prone to attacks. It is essential to protect the application from
attacks which may put user’s privacy, data and system at risk.

e Make a list of all possible penetrators of the system. It may include
everyone who uses the system or accesses internet cloud through the
system.

e Make a list of all penetration points which are susceptible to attacks
easily.

e Make a penetration matrix with one dimension as perpetrators, and
another dimension as a point of penetration. Each quadrant will give
the possible point of failure of a system.

Define the probability of security breakage, and impact of such
breakage for each failure point represented by each quadrant. Each
quadrant has probability and impact associated with it. Product of
probability and impact represents the risk associated for the
application. Higher score or greater RPN/RIN represents more
problematic situation. Such cases must be handled on priority basis
during development. They also indicate the probable areas where
testing must be focused.

Execute tests on the basis of high-risk prioritization which is a
product of probability and impact or RPN/RIN.

Application Areas of Security Testing:

Systems containing critical data of employees, customer and project
may be prone to attacks. Such high confidential data of organisation
must be protected.

E-business and E-commerce systems involve financial transactions
thus demand high protection of user’s privacy.

Communication system may be prone to information loss during
transit. It may cause huge loss if perpetrators take/alter the
information while in transit.

Security checking involves designing test cases that subvert the programs
security checks and try to break the system defenses. Some of them are as
follows:

Users are not supposed to write or store their passwords anywhere.
The passwords must not be shared with anyone. Obtaining a password
using unofficial method to break a system is one way of security
testing.

People may be able to guess password using details like names of near
and dear ones, birth date, etc. Such information can be used to decode
the password.

Login and password copying and pasting must not be allowed by the
system. Small utilities can be used to break the password, if copy and
paste functionalities are allowed.

Idle terminals should get locked, after being left idle for some time.
Timeframe may be decided by organisation. If the terminal does not
get locked automatically, then an unauthorized person may start
accessing the system as valid user has already logged in the system.

Check permissions of different user groups and their privileges for
system usage. Admin privilege is restricted to few people only.

Direct backend changes in database should not be allowed. Otherwise,
records are added in database without going through validation and
verification procedure which may affect the application.

Special Tests

269

Software Quality
Assurance

270

e There is limit defined for number of users for the system. To test it,
create more users than allowed. Also, number of users with admin
privilege should be restricted.

e System deleting admin account or one admin account deleting another
admin account should not be allowed.

e Renaming admin group or deleting groups containing admin users or
any active users should not be allowed.

10.5 PERFORMANCE TESTING

Performance testing is intended to check whether the system meets its
performance requirements as mentioned in requirement statement.
Performance criteria must be measurable. Examples:

e Adding a new record in database must take maximum 5 milliseconds.

e Searching of a record in a database containing one million records
must not take more than 1 second.

e Sending information of say 1 MB size across the system with a
network of 512 KBPS must not exceed 1 minute.

Testers should try above possibilities and verify the performance of the
system. Generally, automated tools are used where strict performance
requirements need to be tested.

10.6 VOLUME (LOAD) TESTING

Volume testing measures the maximum load a system can undergo before
it collapses. As volume load increases, performance decreases. However,
the goal is to find whether system crashes or survives due to increased
volume rather than checking the performance.

Ways of Volume Testing:

e During design, set a limit on the number of users. This can prevent
excess users accessing the system, thus protecting the system from
any excessive load.

e Another way is to allow excess users to join but with a warning of
slow response from system due to load. Sometimes, users may accept
slow running system rather than a system which is unavailable.

e One approach is to create session timeout when user keeps system
idle for a stipulated time.

Volume testing may require automation for stringent requirements as load
is incremented by small factor and corresponding iterations are conducted
to find the point of system collapse.

Examples of Volume Testing Process:

e First, transaction is given normal priority. Users are incremented each
time and priority is also set to high till the system fails.

e User limit is set to 1000 concurrent users. As soon as 1001™ user tries
to enter the system, it may not be allowed with a warning message.
Another way is to allow but warn of slow performance.

10.7 STRESS TESTING

Stress testing defines the minimum resources the system will require for
efficient and optimal performance. System performance deteriorates due
to non-availability of resources. Stress testing also takes into consideration
‘safety factor’ to protect user from system failure due to resource
constraints. To conduct stress testing, simple transactions are created and
the system resources such as processor size, RAM, etc. are reduced to find
the minimum level of resources till the system works.

10.8 RECOVERY TESTING

Recovery testing intends to find out how the system as a whole or an
individual machine/server as a component of the entire system recovers
from a disaster. There are various ways of disaster recovery and system
requirement should specify the methods to be used during recovery.

10.8.1 System Recovery:

System is composed of several components such as machines, terminals,
routers, and servers. System failure means failure of any of these
components or failure of all or many of these components or
communication failure between these components. There are three
different ways of system recovery:

System returns to the point of integrity after encountering disaster:

When system encounters disaster, it is expected to return to the last action
that the system knows before disaster occurrence. This last point of
integrity differs from system to system and it is defined in requirement
specification as per user expectations. Example: In some systems,
‘refresh’ button is often used to bring the system to previous page before it
got lost. However, certain secured systems like IRCTC portal comes to the
initial point which is login page. This affects user’s experience as entire
information of a transaction is lost and needs to be entered again. This way
is low level disaster recovery.

Storing data in temporary location:

When system encounters disaster, the completed transactions till that point
are stored in temporary memory. As the system returns to its original state,
user is asked to confirm the commitment of stored transactions. User
views them and if it accepts, the system resumes from that point. If user

Special Tests

271

Software Quality
Assurance

272

rejects, transactions are permanently deleted and user begins from initial
point. In this method, memory space is required to store transactions and
space requirement increases with increase in users. This is an advanced
way of handling disaster.

Completing the transaction:

When system encounters disaster, the transactions till that point are
automatically committed. The system tries to complete the transaction till
the last point in every possible way. This is midway amongst the two
above ways to handle disaster.

10.8.2 Machine Recovery:

Machines such as application server and database server contain vital
information and data. It is essential to protect this data in case of disaster.
There are four ways to safeguard data:

Cold Recovery:

e Back up data at a defined frequency, such as once in a week on
external device like tape/CD. When disaster occurs, recovery is done
by loading this back up data on new machine and this machine
replaces original machine. However, last updated data is permanently
lost as backup is done at specified intervals only.

Warm Recovery:

e Backup is taken from one machine to another machine directly in this
recovery.

e Frequent and automatic backup is possible. Data is already on the
hard drive of both machines, if the backup is successful.

e In case of disaster, backup machine in introduced in the system
temporarily.

e Backup machine configuration may differ from original machine. Up
gradation of backup machine is required otherwise user faces problem
with inferior backup machine.

e Maintenance cost of two machines is involved.
e Data may be lost in case data is updated after last backup.
Hot Recovery:

e In this recovery scenario, both, original and backup machines are
present in the system.

e One machine is primary and another is backup machine. Both have
similar configuration and capabilities.

e In case of disaster, control is shifted from primary machine to backup
machine.

Backup frequency is defined as per backup plan.

Data may be lost in case data is updated after last backup.

Mirroring:

Similar to hot recovery, there are two machines with same
configuration.

Data is backed up online and backup frequency is mirroring data, i.e.,
every millisecond data is copied from one machine to another.

If primary machine fails, backup machine takes over without any
manual intervention.

Huge cost is involved but data availability is almost continuous.

10.9 INSTALLATION TESTING

Most of the applications need to be installed before using them.
Installation testing is intended to find out how the application can be
installed using installation guide or documentation provided.

Aim of Installation Testing:

To check if the installation process is documented correctly in the
user manual. Also, user must be able to easily interpret the
instructions in manual.

To give training to users, if installation demands the same. Users
should be able to install application independently after requisite
training.

To provide up gradation document, if installation requires switching
of systems or migrating from old machine to new one. Installation
must be able to detect current configuration and guide users through
up gradation accordingly.

Installation Process:

Installation may need certain prerequisites for installation to
complete. This should be detected during installation process and
informed to user.

Installation may be done using network, or from one machine to
several machines at a time. It can also be done through devices like
CD, pen drive, and floppies etc.

Sometimes, remote installation is also required.

According to requirements specification, installation process may be
auto-run or semi-automatic or manual. For auto-run, installation is
automated without any manual intervention. For semi-automatic,
installation halts for required user inputs. For manual installation,
users are trained to install the application.

Special Tests

273

Software Quality
Assurance

274

Uninstallation Testing:

Uninstallation testing is used when requirement specification mentions the
need of uninstallation. In this testing, all components and files of
application are cleaned such that no thread of that application is left. The
process is as follows: Image of hard disk will be captured before software
installation. It will note all the files existing before installation. Then,
tester installs application and again captures the hard disk image. These
two images are compared and they should match exactly to prove clean
uninstallation.

Upgradation Testing:

Software applications require upgradation to newer versions by installing
updates released from product manufacturer from time to time. It is
required that the application should already exist on the disk before
upgradation. During upgradation, installer must be able to identify the
older version of application already available on disk. If this existing
application is more updated than the available upgradation, then
upgradation should not be done. Upgradation is similar to installation
process. It may be automatic, semi-automatic or manual. It may be done
using CD, floppy disk, etc. User must be given adequate support in case of
any problem in upgradation process.

10.10 REQUIREMENT TESTING

Requirement testing ensures that the system meets user expectations.
Obijectives of requirement testing are:

e Ensure correct implementation of user requirements.

e Processing adheres to organization and customer policies and
standards.

Method of Requirement testing:

e Create requirement traceability matrix to determine whether all
requirements are implemented or not during software development.
Traceability includes requirements, designs, coding, test cases, and
test results. Test case failure indicates requirement not met.

e Use checklist to verify whether system meets organisational policies,
regulations and legal requirements.

e Create prototype or models to understand requirement characteristics.

10.11 REGRESSION TESTING

Regression testing intends to determine whether the changed components
have introduced any error in unchanged components of the system.
Regression testing can be done at:

e Unit level to ensure unit level changes do not affect other units of the
system and unit fulfils its intended purpose.

e Module level to ensure module behavior is not affected by changing
of individual units.

e System level to ensure system is performing correctly according to
requirements even after changes made in some system parts.

Regression testing is performed when there is high risk that changes made
in one part of software may affect unchanged components or system
adversely. It is done by rerunning previously conducted successful tests to
ensure that unchanged components function correctly after change is
incorporated. It also involves reviewing previously prepared documents to
ensure they contain correct information even after changes have been
made in the system.

Methodology Where Regression Testing is used:

e Maintenance activities like defect fix, enhancement, reengineering,
etc.

e lterative development methodologies.
e Agile development methodology.

There are many tools available for automated regression testing.
Automation is faster and cheaper alternative for regression testing as
regression testing requires huge efforts and time.

10.12 ERROR HANDLING TESTING

When using application, user may face error due to wrong options
selection or wrong data entered. Application is expected to guide users
through error messages. Error message indicates that something wrong has
occurred and how to resolve the issue and prevent errors. Error handling
testing is done to determine:

e System ability to prevent users from entering erroneous data. Users
should be alerted with error messages, in case of wrong entry or
processing detected by the system.

e Application must recognize all expected errors and error messages
should be displayed when any such error is encountered. Message
must guide user through identification and error correction.

e Procedures must detect and correct high-probability errors before
system processes such data.

Error messages may be of several categories:

e Preventive messages -System prohibits the user from entering wrong
data. Example: If user tries to enter date ‘13/05/1989’ in the system
which accepts date in ‘MM/DD/YYYY’ format, system detects and

Special Tests

275

Software Quality
Assurance

276

prevents the user from entering date by displaying message that 13 is
not a valid month.

e Auto-corrective message —System informs user about wrong entered
data and automatically corrects it. This saves user’s time and efforts
but it can be problematic if system does not know the correct version
of data.

e Suggestive message —System informs user about what is wrong and
provides suggestions to correct the data. It is up to user to accept or
reject suggestion. Automatic correction is avoided but user must know
the correct entry of data and either repeat the transaction from
beginning or accept the suggestion and correct wrong data.

e Detective message —System informs user about what is wrong but
does not guide about how to correct it. No suggestions or guidance is
provided. User solely has to do correction without any guidance or
information about error correction.

Error handling must happen throughout development cycle. Good error
handling assists user while working with system and improves user
experience. Error correction must not introduce any error in system. Types
of errors and strategy to handle them must be mentioned in requirement
statement. Error handling cost and time estimation to correct it must be
considered while developing system.

10.13 MANUAL SUPPORT TESTING

Manual support testing is intended to test the interfaces between user and
application. It determines whether:

e Manual support procedures are sufficiently documented, complete and
available to user. It can be in the form of online help or user manual
or trouble shooting manual.

e Manual support staff is adequately trained to handle various
conditions including entering data, processing, taking outputs as well
as handling errors. Users are able to work with system independently.

e Manual support and automated segments are interfaced properly
within the application.

e When users need assistance, provide input to manual support group
and enable its entry into system at correct time.

e Prepare output reports and inform users to take necessary actions
based on these reports.

10.14 INTERSYSTEM TESTING

Newly developed system may have to work with already existing systems
which may be automated or manual. Intersystem testing tests interfaces

between two or more systems to ensure they work correctly together and
support information transfer amongst them.

It determines whether:
e Parameters and data are correctly passed between systems.

e Documentation must be complete and accurate with expected inputs
and outputs from the system.

e System testing is conducted each time when there is change in
parameters, application, or other external systems.

e Manual verification of documentation is done to understand the
relationship between different systems.

10.15 CONTROL TESTING

Control testing is done to check data validity, file integrity, audit trail,
backup and recovery, and documentation for the system under
development. It determines the following:

e Data processed is accurate, complete and usable. If mandatory fields
are placed, then control must stop at those fields until they are filled
by the user.

e Authorized transactions must enter system by validating user
permissions. Unauthorized persons should not be allowed to access
records or modify them.

e Audit trail is maintained to know transaction history made by users.
Transactions must be traceable from start to end.

e Process must support requirement statement and meet user needs.
e Ensure data integrity and transaction processing from start to end.

e Identify risks associated with users using the system and accordingly
grant access privileges.

e Create risk conditions to devise control mechanism. Expose the
system to these conditions during testing to validate control
mechanism.

e Evaluate effectiveness of controls as defined in requirement
statement. Controls must be effective, efficient and usable.

10.16 SMOKE TESTING

Smoke testing intends to check whether the application is working or not.
It basically aims to check if user can use the application. It is not any
approval testing method. Smoke testing is conducted without any user
inputs. Tester does installation, navigates through the application, and
checks output by invoking certain functionalities. If smoke testing fails,

Special Tests

277

Software Quality
Assurance

2178

the application is rejected. Success of smoke testing is basic criteria for
further system testing. Smoke testing is generally conducted by test
manager or senior tester. It is also termed as ‘smell test’ as test manager
may have to make judgment about the system in short period of time.

10.17 ADHOC TESTING

Adhoc testing is performed without any formal test plan, test scenario, or
test data. It is also termed as ‘exploratory testing’” or ‘monkey testing’ or
‘random testing’. Testers use their previous testing experience and test the
system functionalities. Sometimes, hidden defects are revealed which were
not caught in earlier testing.

Advantages of adhoc testing:

e There is no particular sequence of testing. Test scenarios are adhoc
which may cause stress to system. This may reveal defects which
could not be identified while testing with a plan.

e Some test scenarios might be completely new which were never tried
in earlier testing phases.

e It may require less time as there is no need to write any test plan or
devise test cases. It is also called ‘playing with an application’.

Disadvantages of adhoc testing:

e Since it is random testing without any plan or steps written, tester may
forget the steps by which the defect was identified and how the tester
reached that point making the entire effort and time completely
useless.

e Undefinable adhoc scenario intends to break the system which
actually does not represent any real-life business scenario. Sometimes,
the probability of occurrence of these events might be next to ‘0°.

e Adhoc testing require testers with knowledge and experience.

10.18 PARALLEL TESTING

Parallel testing compares the results, analyses the similarities and
differences between newly designed system and existing system. It is done
extensively in acceptance phases, typically in beta testing or business pilot
where existing system, legacy system or manual operations are compared
with the new system being developed. Parallel testing is also termed
‘comparison testing’ where new system behavior is compared with
existing system whose behavior is considered correct. It is used
extensively in compatibility testing. Parallel testing is done to determine
whether,

e New version of application or new system performs correctly with
reference to existing system that is supposed to be working correct.

e There is consistency or inconsistency between two systems.
Consistency in terms of user interaction, user capabilities, transaction
processing and controls designed for validation is also evaluated.

e Outputs of both systems are compared by providing same inputs to
both.

e Both systems are used in parallel for certain time period for thorough
comparison.

e Security, productivity, and effectiveness of new system must be
comparable with the old system. If there is any lacuna in new system
with respect to old system, new system may get rejected.

10.19 EXECUTION TESTING

Execution testing intends to ensure that system achieves desired level of
proficiency in production environment when normal users are using it in
normal circumstances. It may be considered as alpha testing if it is done in
development environment, or beta testing if it is done in user environment.
Data used in execution testing must be shared by customer. Execution
testing involves actual working on the system in production environment
to determine whether,

e System fulfils its design objectives as mentioned in requirement
statement and expected by users. It evaluates user’s experience while
interacting with new system.

e System must be used at that point of time when results can be used to
modify system structure, if required. Alpha and beta testing anomalies
may be used to modify system, if required.

e Execution testing may be conducted by using hardware/software
monitors, by simulating the functioning of the system, and by creating
programs to evaluate system performance.

10.20 OPERATIONS TESTING

Operations testing are performed to check whether the operating
procedures are correct as documented in user manuals, and staff can
properly execute the application by referring the documentation.
Operations testing determine,

e Completeness of operator documentation, user manual, etc. Users
must be able to work with the system easily and correctly by referring
these documents.

e If user training is required and after training, users are able to use
system or not.

e Operations testing are done prior to placing the application in
production environment. Actual users must be capable of working
with system smoothly, and system must respond to users efficiently.

Special Tests

279

Software Quality
Assurance

280

e Operators should perform testing without any assistance, as if it was
part of normal computer operations.

10.21 COMPLIANCE TESTING

Compliance testing intends to check whether the application/system is in
accordance with the prescribed standards, procedures and guidelines
applicable to them as per domain, technology, customer, etc. There are
many standards available for applications depending on the domain in
which the application will work. These standards may be mandatory or
recommended by customers, governing bodies, etc. There may be few
regulatory or statutory requirements enforced by different agencies.
Examples of standards applicable for software may include medical
standards such as ‘FDA (Food and Drug Administration) regulation’ for
software in medical domain in United States, standards for war
equipments for software working in military operations and equipments,
and special standards for software working in aviation industry.
Compliance testing helps to determine whether,

e Development and maintenance methodologies are followed correctly
or not while developing/maintaining system belonging to different
domains. Domain related protocols must be followed.

e System documentation is complete and adheres to applicable
standards.

e Compliance depends upon management’s desire to have standards
enforced as well as geographical and political environment where
application will be working. Customer requirements must include
definition of regulatory and statutory requirements.

Compliance testing is performed using following:

e Checklist prepared for evaluation or assessment of product
e Peer reviews to verify that the standards are met

e SQA reviews by quality professionals

e Internal audits

10.22 USABILITY TESTING

Usability testing intends to check ‘ease of use’ of an application to user. It
provides user manual or help manual (including online help) to users. It
determines whether,

e Application is simple, easy to use and understand by testing look, feel
and support available can be used effectively or not.

e Application is easily executable through user interface. If training is
required, it must be provided to users.

Usability testing is done by,

Direct observation of people using the system, noticing user
interaction and noting their experience. In case of any problem,
invoking help or referring user manuals to check if they are sufficient
to help users in solving the problem.

Conducting usability surveys by checking the deployment or
implementation of system in production environment. Users must be
able to use system on their own without any assistance.

Beta testing or business pilot of application is user environment.
Usability testing checks the following:

Whether system outputs such as printouts and reports are meaningful
or not.

Is error diagnostic straight forward and easy to understand. Error
messages must be simple and guide users correctly.

Is user interface aligned with user requirements and standards
imposed by regulatory bodies?

Is the application easy to use for common users?

Is there an exit option available at all points so that users can exit the
system at any moment?

System must not annoy user due to function unavailability, slow
speed or bad user interface. System icons and pictures must be used
appropriately for ease of users.

System taking control from user without indicating when it will be
returned can be a problem as user might not be aware of estimated
time it will take. System must indicate current operation going on and
estimated time taken for that operation.

System must provide online help or user manual for self service. In
case of any problem, users must be able to invoke help.

Whether system is consistent in its function and overall design.

10.23 DECISION TABLE TESTING

Decision table is a good way to capture system requirements that contain
logical conditions, and to document internal system design handling
various conditions faced by the system. They may be used to record
complex business rules that a system is expected to implement.
Specifications are analyzed, and conditions and actions of the system are
identified. The input conditions and actions are most often stated in such a
way that they can either be true or false (Boolean).

Special Tests

281

Software Quality
Assurance

282

Decision table contains triggering conditions, often combinations of true
and false for all input conditions, and the resulting actions for each
combination of conditions. Each table column corresponds to certain
business rule that defines a unique combination of conditions, which result
in the execution of the actions associated with that rule. The coverage
standard commonly used with decision table testing is to have at least one
test per column, which typically involves covering all combinations of
triggering conditions. One may use equivalence partitioning and boundary
value analysis for testing such system.

Table 10.2 shows a sample decision table.

Table 10.2 Decision table

Purchased volume and discounts
No. of Books 1-50 51-500 501-5000 5001 and
more
Discount 0% 2% 3% 5%
offered

The strength of decision table testing is that it creates combinations of
conditions that might not otherwise have been exercised during testing. It
may be applied to all situations when the actions of the software
depending on several logical conditions are occurring at same time. Table
10.2 indicates single dimension of variable. In practical conditions,
multiple dimensions are possible.

10.24 DOCUMENTATION TESTING

Documentation testing involves review of all the documentation delivered
to the customer along with the application. When system is delivered to
customer, it is not only the executable or sources which are delivered but it
should contain all these support documentations required for future
maintenance of a system. System documentation may contain requirement
specifications, requirement changes, impact analysis, design artifacts,
design changes, impact analysis, code documentation, project plans, and
test plans. All these documents are needed to build the right system.
Sometimes, documentation also includes release notes, known issues and
limitations if any, installation guide, user guide, and troubleshooting
guide.

The purpose of documentation testing is to thoroughly go through all
written material that will be presented to user as a part of implementation.
Testing is done using different ways:

e Ask users to follow all documented procedures. These should be
written to provide step-by-step guidance on how to accomplish a
given task. If the users cannot successfully complete the procedures,
then documentation should be improved.

e Have people with strong language skills to review all the
documentation for professionalism and readability.

e Try out all alternative ways mentioned in document to accomplish a
task. In many cases, the primary way works, but the alternatives do
not work as expected.

e Documentation should strictly be aligned with company policies and
these policies and standards must be reviewed and approved by
appropriate authorities in the organization.

e Ensure the accuracy of any manual forms, checklists, and templates.

10.25 TRAINING TESTING

Sometimes, the vendor is expected to provide training to end users who
will be using the system in future. Hence, training is also tested as a part
of system testing. This implies that the training must be ready at this point
in the life cycle rather than waiting for the end of project. Testing must be
performed in a controlled test environment to ensure that it is effective,
accurate, and bug-free.

In case of distance learning, ensure that correct technology serves the
purpose. There should be adequate equipment’s for imparting training.
Training material must be deliverable. It should be tested thoroughly
before delivering it.

10.26 RAPID TESTING

Rapid testing is used when there is less time to obtain full test coverage
using conventional methodologies. It can be used to complement
conventional structured testing. It finds the biggest bugs in the shortest
time, and provides the highest value for money. In an ideal world, rapid
testing would not be necessary, but in most development projects, there
are a number of critical times when it is essential to make an instantaneous
assessment of the products quality at that particular moment.

Areas where rapid testing is applied extensively are:

‘Proof of concept’ test early in the development cycle.

e Prior to, or following migration from development to the production
environment.

e Preparing development milestones to trigger funding or investment.
e Prior to public release or delivery to the customer.

Although most projects undergo continuous testing, it does not usually
produce the information required to deal with the situations listed above.
Usually, testing completes just prior to launch, and conventional testing
techniques often cannot be applied to incomplete or often changing
software.

Special Tests

283

Software Quality
Assurance

284

Structured testing is a vital part of any development project but it cannot
meet all the quality assurance objectives. Its primary objective is usually
affirmative testing, i.e., to verify that the software does all the things it is
supposed to do. However, software is now so complex that there are often
a seemingly infinite number of permutations of the data variables, and
variations in the time domain can add another layer of complexity.

In addition to affirmative testing, it is necessary to identify undesirable
behavior, so that it can be corrected. But structured testing is far less
useful as a technique for doing this. The number of permutations means
the time required for analysis, scripting and execution. This required time
may not be available and time can be reduced if the tester had idea about
the likely faults.

Rapid Testing process:

Rapid testing is based on exploratory testing techniques, which means that
the tester has a general test plan in mind but is not constrained by it. The
plan can be adapted dynamically in response to previous test results. A
skilled tester can quickly find defects which escaped a scripted test.
Exploratory testing is also called ‘expert testing’, as it requires a high level
of technical knowledge and experience. However, rapid testing does not
guarantee complete test coverage.

Rapid testing extends the exploratory concept by making judgment about
what faults to report and the level of details to be recorded. Once a fault
has been identified, the time taken to investigate and document it reduces
the time available to find other faults, so the tester may fail to find the
serious faults if they spend too much time reporting trivial issues. This is
called ‘quality threshold’ and it is fundamental to the effectiveness of
rapid testing. Many testers find it an alien concept but it is a necessary
one.

Initial quality threshold might be determined by consulting with customer,
but it may vary during the course of testing depending on the product
quality.

10.27 CONTROL FLOW GRAPH

Control flow graph is flow of control during program execution. If a
program does not have any decision, flow goes in single direction. If
decision is taken by a program, then different flow graphs are possible.
Each decision induces multiple paths in a program while it is getting
executed.

Dominators:

There exists a set of code in the program which will always be executed
when a path is selected. This is termed as ‘dominator’. These paths are
independent of any decision or branch.

Post-Dominator:

When end of application is reached from any point, there exists a set of
code that is always encountered, which is termed as ‘post-dominator’.
There may be several possible paths depending upon the number of
decisions.

10.27.1 Program Dependence Graph:

Program execution depends on two factors: data dependence and control
dependence.

e Data dependence flow depends on input data. Example: Loop
statements ‘if’, ‘while’ where data decides loop will be executed or
not.

e Control dependence flow is the flow of instructions due to control
points in a program. If the program has redundant code, control will
never go to it. Control may be defined by user requirements.

10.27.2 Category Partition Method:

Category partition method is used to generate the test cases from
requirements. Following steps are involved in generating test cases by
category partitioning method:

Analyze Requirements:

Requirements are categorized into functions, user interface, and
performance requirements. They are placed in different test cases to be
tested independently.

Identify Categories:

Inputs producing specific categories of output are analyzed. Decision
tables can be used to identify such categories.

Partition Categories:
Respective input-output pairs are placed into different partitions.
Identification of Constraint:

There may be some input output categories which cannot exist together.
They must be identified and excluded from testing.

Creating Test Cases accordingly:

Test cases are created keeping in mind the possible constraints defined in
user requirements.

Processing the Test Cases:

The test cases defined above are executed and results are captured.

Special Tests

285

Software Quality
Assurance

286

Evaluate the Output:

The output is verified by comparing it with expected output.

Generate Test Sets:

If obtained output and expected output match, then it is added in test set.
10.27.3 Test Generation from Predicate:

A condition which a code can achieve is called ‘predicate’. It indicates a
condition and its action. Condition is represented by predicate while action
represents expected result of code execution based on the condition.
Predicate testing tests such predicate to detect any fault created by
developer while coding a program.

10.27.4 Fault Model for Predicate Testing:

Predicate testing may target for three different classes of faults as defects:
incorrect Boolean operator used, incorrect relational operator used, and
incorrect arithmetic operator used.

10.27.5 Difference between Control Flow and Data Flow:

Table 10.3 Difference between control flow and data flow

Control flow

Data flow

Control flow is process oriented. It
defines the direction of control flow
as per system decision.

Data flow is information
oriented.

It does not manage data or pass
data from one component to

Data flow passes data from one
component to another.

another.

It functions as a task coordinator. | Data transformation occurs
Control flow requires task | simultaneously or sequentially.
completion.

It is synchronous in nature. It may or may not be
Unrelated tasks can be | synchronous in nature.
synchronized.

Tasks can be executed in parallel or | Generally, tasks are executed
one after another. one after another, if there is
serial dependency. Otherwise,
they are independent of each
other.

10.28 GENERATING TESTS ON THE BASIS OF
COMBINATORIAL DESIGNS

The environment in which an application will work consists of various
configurations of elements like hardware, browser, operating system, etc.
During testing, it may not be possible to test all configurations of above

elements. Certain factors are provided of the environment in which
application will work. Each factor may be tested using one test case,
which increases the total number of test cases which can go infinity. In
combinatorial designs, we try to reach some finite level of test cases which
can give adequate confidence that application will execute in all possible
combinations. The set of input and output are partitioned such that
selected value represents each partition.

10.28.1 Combinatorial Test Design Process:
Modeling the Input Space and Test Environment:

The model consists of set of factors and corresponding levels. Factors are
decided on the basis of interaction between application and environment in
which it is expected to work.

Generate Combinatorial Object:

This is an array of factors and levels selected for testing. Such an array
will have each row covering at least one test configuration from the list.

Generate Tests and Test Configurations:

From the combinatorial object, a tester may have to generate the test cases
and test configurations. Figure 10.1 shows schematically how the test
cases can be generated.

Model of input Generate test set

Generate
combinatorial

/ = \

Model of test Generate test
environment configurations

Fig. 10.1 Process of generating test and test configurations using
combinatorial designs

10.28.2 Generating Fault Model from Combinatorial Designs:

The aim of combinatorial designs is to generate test cases which have
maximum probability to uncover faults or defects. Simple fault are
triggered by individual input variable irrespective of other input variables.
Pairwise interaction faults are triggered when there are two variable
combinations which can yield a fault. Three-way interaction fault is when
three variables in combination create a fault but individually there is no
fault.

Special Tests

287

Software Quality
Assurance

288

10.29 STATE GRAPH

State graph and state table are useful models for describing software
behavior under various input conditions. State testing approach is based
upon the finite state machine model for the structures and specifications of
an application under testing. In a state graph, states are represented by
nodes. The system changes its state when an input is provided. This is
called ‘state transition’.

With multiple state graphs, drawing them and understanding becomes
difficult. To remove this complexity, state tables are used. State tables
may be defined as follows:

o Each row indicates a state of an application.
e Each column indicates the input provided to an application.

o Intersection of rows and columns indicate the next state of an
application.

10.29.1 Characteristics of Good State Graphs:

e Total number of possible states is equal to product of all possibilities
of factors that make a state.

e For every state and output, there is exactly one transition specified to
exactly one state.

e For every transition, there is one output, however small it may be.

e For every state, there is a sequence of inputs that will drive the system
back to the same state.

10.29.2 Number of States:

Number of states is an important parameter to determine the extent of
testing. Some factors affecting number of states are:

e All component factors of state
e All allowable values of the factor

Thus, number of states is a product of number of allowable values of all
the factors.

Impossible States:

States which appear to be impossible in reality due to some limitations
outside the application in real life scenario.

Equivalent States:

When transitions of two or multiple states result into the same final state,
they are called ‘equivalent states’. Equivalent states can be identified as,

e The rows corresponding to two states are identical with respect to
inputs/outputs/next state of an application.

e There are two sets of rows which have identical state graphs.
Unreachable (Redundant) State:

When the requirements are captured or designs are made, some states are
created which fall in a category where control will never reach. They
differ from impossible states in the sense that the flow will never reach to
them. Impossible states are not practical but unreachable states are
redundant.

Dead States:

Dead state is a state where there is no reversal possible. These states
cannot be exited even if the user wishes to come out of them. There is no
possibility to come back to the original state.

10.29.3 Matrix of Graphs:

Matrix of graph is a square array with equal number of rows and columns.
Each row and column represents one node.

e Matrix size corresponds to number of nodes.

e There is scope to show direct relation between every node to any
other node.

e Connection from node 1 to node 2 may or may not have reverse
connection.

A graph contains a set of nodes and relations between them. If ‘A’ and ‘B’
are two nodes and ‘R’ is the relation between them, it is represented as A-
R-B. Different types of relations which may exist are as follows:

Transitive Relationship:

Consider a relation between three nodes ‘A’, ‘B’, and ‘C’ such that A-R-B
and B-R-C indicate A-R-C, and then it is called ‘transitive relationship’.

Reflexive Relationship:
Reflexive relationships are self-loops.
Symmetric Relationship:

Consider a relationship between nodes ‘A’ and ‘B’ where A-R-B indicates
that there is B-R-A. This is considered as symmetric relationship or
undirected relationship.

Equivalence Relationship:

If a relationship between two nodes is reflexive, transitive and symmetric,
then it is called ‘equivalence relationship’.

Special Tests

289

Software Quality
Assurance

290

10.30 RISK ASSOCIATED WITH NEW
TECHNOLOGIES

Organizations adapt to new technologies due to several benefits of these
technologies. New technology may mean a technology which is
completely new to the world or not new to the world but new to the
organization. In any case, these new technologies introduce some risks
along with benefits. Risks may be faced by the development team as well
as end users. Following are the different risks:

1. Unproven technology:

New technologies are used by organization due to their advantages. But, it
may have some drawbacks or lacunae, which the organization might not
be aware of. Also, it may not be possible to use all advantages offered by
the new technology. Sometimes, the new technology is not assessed
properly for positive and negative factors before using it. Technology
needs some time to mature and as users use it, they provide feedback to
technology owners, and thus help in the maturing process.

2. Technology itself is defective or not mature enough to use:

The new technology may be defective as there may have been lot of
limitations and unknown aspects overlooked by the group releasing it.
Some aspects may have been compromised and people using the new
technology may not be aware of the areas where one should be careful. It
may introduce some defects in the product, and users may find it difficult
to use such products, or may face several problems while using such
applications. New technology needs sufficient validation along with
verification and fixing of the defects found during these processes.

3. Technology is inefficient as it is not matured:

The new technology may be inefficient, and may not have all the expected
services. It may hamper performance and usability of an application
adversely. There may be limitations which the development team might
not be aware of thus surprising the end user.

4. Technology is incompatible with other technologies already in use:

Introduction of new technologies may interfere with existing system’s
working or new systems cannot communicate with existing systems. This
may pose major problem as users do not wish to discard existing systems
so easily while adapting to new systems. Data transfer and communication
between different systems is a basic customer requirement and customer
can even reject new systems if there is no connectivity/communication
offered with existing applications and technologies.

5. New technology makes existing technology obsolete:

While new technology may have several benefits, customer may not like
to scrap existing systems to completely replace them with new systems.

6. Variation between technology delivered and documentation
provided:

Every technology comes with documentation like user manuals and
troubleshooting manuals. Users and developers refer this documentation to
understand the usage of new technology. If a gap exists between
documentation and actual technology working, then people may not be
able to use the technology by referring the documentation. Thus,
documentation not being in sync with technology may hamper usage of
new technology as people may not know how to use it.

7. Lack of developer’s/user’s competencies to use new technology:

New technology may require people to undergo training to understand and
develop capabilities to use it. Some skills may be acquired by classroom
training; some may be acquired by hands-on experience with mentor such
as on-the-job training while some may need special training. New
technology must be user friendly so that people with basic knowledge can
use them with little guidance or trial and error approach. If new
technologies are difficult at all fronts, users may dislike them and may be
reluctant to use them.

8. Lack of knowledge and skill for optimal technology usage:

Technology may not be usable by organization if it does not have people
with required skills and experience. There may be different options to
maximize the technology usage, but people might be unaware of these
options due to lack of knowledge or skill.

9. Technology is not incorporated into organization’s process
definition:

Developing a good product requires a mix of good people, good
technology and good process working together. If organizational database
does not have the definition of processes which can support new
technologies, then success depends upon the heroics of people and
chances. This may lead to major problems with these technologies, and
people may try to implement technology with their own methods which
may not be the best approach.

10. Technology leads to obsolescence of existing development/testing
tools:

Development tools/test tools available with an organization may not be
able to support new technologies, if there are compatibility issues. In such
cases, we may have to rely on manual efforts of development and testing
which may be incapable or insufficient for the purpose. New technology
may need new tools which mean further investment and training for
developing organization/users.

Special Tests

291

Software Quality
Assurance

292

11. Inadequate support for technology from vendor:

When an organization adapts new technology, it relies on the vendor
providing service support for such technology, at least for initial phases of
usage. Service support may include trouble shooting and trainings which
may not be available as and when required by organisation/users. Many
aspects depend upon people, both internal as well as external, to make the
project successful. Technology may become a problem if there is not
adequate or completely unavailable vendor support.

10.31 PROCESS MATURITY LEVEL OF
TECHNOLOGY

Organisations may have different process maturities, and usage of new
technologies may be affected by these maturities. Maturity levels may be
defined as follows:

Level 1: Adhoc Usage of New Technology:

This is an initial or base maturity level for given technology. In this
maturity level, organisation uses technologies based on available people
skills and expertise. Some organisations specialize in particular
technology, and each and every project is done in that technology
irrespective of whether it is latest one or not. People often select
technology as per their usage convenience and not as per project
requirement.

Level 2: Managed Usage of New Technology:

Technologies are selected based on evaluation done by users by referring
support materials provided by the vendor or some suggestions and
experience. An organisation works with new technology based on such
descriptions without having any hands-on knowledge on technology. This
is ‘static approach of technology selection’ or ‘evaluation based upon
documentation’ where everything goes according to documentation
without ever concerning the technology usefulness and its drawbacks.

Level 3: Defined Usage of New Technology:

An organisation selects a technology on the basis of documentation and
conducts experimentation to complete the project using that technology.
Sometimes, results are not sufficient but once technology is selected, it
cannot be changed. Lot of research is done to make selected technology
successful. The organisation may learn lessons from its success (or
failures) and the same can be used for other projects in similar technology.
Making mistakes and correcting them is acceptable in this approach.

Level 4: Quantitatively Managed Usage of New Technology:

At this level, the benefits and limitations of selected technology for a
project are completely measured. Customer/user is involved in making

decisions about the selection of technology on the basis of benefits and
shortcomings analysis.

Level 5: Optimized Use of Technology:

At this highest maturity level, organisation has a plan to overcome the
shortcomings faced by particular technology and enhance its benefits to
give better results. Customer does not suffer due to limitations of
technology. Drawbacks are resolved to optimize and enhance technology
usage.

10.32 TESTING ADEQUACY OF CONTROL IN NEW
TECHNOLOGY USAGE

Following controls are essential while testing new technologies:

1. Testing actual performance achieved as against stated performance
of the technology by manufacturer:

Vendor may claim certain performance parameters while releasing new
technology. These claims may include different advantages/services
available while using new technology. Tester must check the actual
performance standards, verify and validate all the claims made regarding
the technology. If any gap is found between the claims made and actual
performance, then it is termed as defect or shortcoming. In Level 3
maturity, such limitations limit the benefits offered by the technology and
a claim may be lodged with technology vendors, if feasible. At Level 5
maturity, these limitations are overcome by some alternative approach
while claim may be lodged with vendor. Testers must ensure the
following:

e Documentation provided with technology must be correct as it
represents actual technology execution. Any defects in documentation
can cause usability issue.

e Training courses regarding new technology must be effective and
complete. This can be validated by users.

¢ New technology must be compatible with existing technology so that
customer may retain old applications along with new one.
Compatibility issues, if any, must be addressed.

e Claimed performance must match with actual performance.

e Promised vendor support must be actually offered when user needs it.
Service levels must be defined and achieved in contract.

¢ New technology is tested using new test processes and tools. It may
add to customer delight if existing tools can be used as it is or with
some modifications to do testing of new technology.

Special Tests

293

Software Quality
Assurance

294

2. Test the adequacy of current process definition available to control
technology:

An organisation needs process definition to support new technology
implementation and usage. If support is unavailable, then testers may have
to raise issues and get the process definition. It can be a risky situation and
customer must be involved in decision making or customer must be
informed about the possible lacunae of process definition. If the processes
are available, their usage must be tested. Testers must ensure that,

e Development standards and usage are available for the selected
technology.

e Procedures for development, maintenance, troubleshooting and usage
are available.

e Assured quality control with verification and validation is available.

If there are inadequate controls, following actions may be initiated by
testing group:

e ldentify risks associated with technologies not supported by process
framework and report them to stakeholders. It may be shared with
user groups.

e ldentify potential weak areas and create mitigation action plan, if risk
turns into reality.

e If problems are discovered during testing, they must be resolved and
retesting should be done.

3. Assess adequacy of staff skills to effectively use technology:

People must be adequately trained and skilled to use the technologies
effectively and efficiently. Organisation must take actions to improve the
skills or procure people with desired skills. Testers must ensure that,

e Technological process maturity level of an organisation is assessed
and known to organisation leadership. Actions must be initiated to
achieve optimizing level.

e Training is provided to developers and testers for using new
technology efficiently and effectively. Effectiveness of training must
be evaluated.

e Performance evaluation of technologies on the basis of limitations and
benefits must be conducted. Users must be informed about possible
shortcomings of the given technology.

10.33 OBJECT-ORIENTED APPLICATION TESTING

Object-oriented development has made a dramatic change in development
methodologies. One object may be used at several instances giving a

benefit of optimisation, reusability and flexibility. It improves productivity
with good maintainability of an application. There are many effective
approaches to test object-oriented software. A test process that
complements object-oriented design and programming can significantly
increase reuse, quality and productivity of development and testing
process.

Object-oriented applications may also face simple programming
mistakes, anticipated interaction and incorrect or missing behaviour of
application or individual object at different instances. Reuse in no
way guarantees that a sufficient number of paths and object states
have been exercised to reveal all application faults. Reuse is limited to
the extent that supplier classes are trustworthy and can be used at
several places during application development.

Simple and sequential test process beginning from unit test, then
integrating all units and performing integration testing and then
system testing may not be relevant to object-oriented development.
Owing to iterative and incremental nature of object-oriented
development, tests need not be limited to boundary and scope. They
can be designed and exercised at many points in development process.
Thus “design a little, code a little” becomes “design a little, code a
little and test a little”.

Adequate testing requires sophisticated understanding of the system
under testing. One must be able to develop abstract views of the
dynamics of control flow, data flow and state space in a formal model
used for development. One must have complete understanding of
system requirements and be able to define the expected results for any
input and state selected as a test case.

There are many interactions among components that cannot be easily
foreseen in unit testing until all system components are integrated and
exercised through testing. Even if we eliminate all individual sources
of error, integration errors may arise in object-oriented development.
Compared to conventional systems, object-oriented systems have
more components which must be integrated and tested for correctness
individually and as a group. Since there are certain system elements
that are not present until code is loaded and exercised, there is no way
that all faults could be identified and eliminated by class or class-
cluster testing alone, even if every method was subjected to a formal
proof of correctness and unit testing. Static methods cannot reveal
interaction errors within different objects with the expected
performance issues in real-time systems.

Testing activities can begin and proceed in parallel with concept
definition, object oriented architecture, and object oriented designs
and programming through integration and system testing. When
testing is correctly interleaved with development, it adds considerable
value to the entire development process as defects are detected as
soon as they occur.

Special Tests

295

Software Quality
Assurance

296

The cost of finding and correcting errors increases with increase in
time between fault injection and detection. The lowest cost is possible
when one prevents errors from entering the system. If a fault goes
unnoticed, it can easily take hours or days of debugging to diagnose,
locate and correct it. Failures in operational systems can cause severe
secondary problems including customer complaints, rejection of
application, etc. Proper testing is feasible as compared to ‘find and
fix” defect randomly.

Effective testing also provides information about likely sources of
defects. Object-oriented features like polymorphism, inheritance and
encapsulation produce more error opportunities as compared to
conventional languages. Testing strategy must assist testers to fetch
for these new kinds of errors and set some criteria when fetching must
complete.

Each sub class is a new and different context for an inherited super-
class feature. Different test cases are needed for each context.
Inherited features must be exercised in the context of sub classes.
Inherited methods should be retested even if they were not changed in
individual instance. Sometimes, methods work perfectly in superclass,
but their action and interaction may be affected in sub classes which
must be tested.

Even if many server objects of a given class work correctly at top
level, there is a probability of a client class using it incorrectly. Thus,
all uses of a server object need to be exercised at client classes also.

10.34 TESTING OF INTERNAL CONTROLS

Introduction of software system is associated with risks and failures too.
Testers must do risk assessment as follows:

Inherent and residual risk acceptable to user/customer using the
software. Inherent risks are born risks of particular approach while
residual risks are the risks left after adequate controls are provided.

Estimating probability of occurrence of particular event in terms of
percentage. Also, if user gets idea about risk approaching, then how
much reaction time the user gets before risk materializes.

Quialitative and guantitative measurements of probability, impact and
detection ability of different risks associated with application usage
can give a risk rating expressed as RPN or RIN. Risks must be
prevented or corrected, as the case may be.

Correlation of events where occurrence of one risk may increase or
decrease the probability or impact of some other risk must be known.
Such risks together can create more problems than individual
occurrence or may eliminate the problem.

10.34.1 Testing of Transaction Processing Control:

An application may process the data received from different inputs and
provide outputs in different forms. Application controls must be designed
to ensure data accuracy in all phases of data receipt, processing and
output. The control placement may include the following:

Transaction Origination:

The points where the data originates must be controlled. Sometimes, data
originates in one system and it is transferred to given system for
processing through different methods. Data may originate in manual
operations also. Generally, these controls may not be applicable to the
given system, if data preparation happens outside the system either
manually or automatically but data entry must be controlled in such cases.

Transaction Entry in System:

The point where the data enters into the system for further processing must
be controlled by the application as it is the most vulnerable point. There
must be verification and validation of data entries at entry point and user
must be supported adequately through help option and proper error
messages should be displayed for common users.

Transaction Communications within/outside the System:

When the data is communicated from one place to another either in same
system or between different systems, adequate precaution must be taken
so that neither the data gets lost nor modified. Data transfer amount must
be measured and matched before leaving the system and when it comes
back into database.

Transaction Processing by the System:

When the system processes data, it must have adequate control to check
completeness of processing. All the data entered into system must be
processed, and outcome must contain results from all processed data. User
must be notified if any part of data is not processed completely or
partially.

Storage and Retrieval of Data from the Database:

Data may be stored on different media and databases and also physically
or logically at different locations. Data entering in the system and outputs
generated from the system must match with each other. Stored data should
not be altered or deleted.

Transaction Output:

Processed output may be transferred from one system to another or may be
delivered to users in different ways including printing, displaying or
sending data from one location to another or from one system to another.
Transaction output must show the processing results correctly and data
input and output must be matched in data transfer process.

Special Tests

297

Software Quality
Assurance

298

10.34.2 Testing Security Control:

Security controls are designed to protect the system from internal or
external attacks from possible penetrators. Security testing is a thought
process where one needs to understand the thinking of an intruder and try
to device control mechanisms accordingly. Following analysis should be
done:

Points where Security is more likely to be Penetrated (Points of
Penetration):

These are the areas where the system is exposed to outside world and there
are possibilities of outside attacks. At these points, attacker’s entry
probability is high. These are also called ‘threat points’. Few threat points
may be,

e Data preparation stage which can be a manual operation or it may
occur in some other system.

e Computer operations where the system processes or transfers data
from one place to another. It may include server rooms, processors,
etc.

e Non-IT areas where people working with system do not understand
system security concept. They may be ignorant of security practices
and may cause failure unknowingly.

e Software development, maintenance and enhancement phases where
data is used for building, maintaining or testing of an application.

e Online data preparation facilities where data is not validated
adequately before entering the system.

o Digital media storage facilities which may be subject to electro-
magnetic fields, temperatures, humidity, etc. Storage facilities may
not be secured enough and storage media may get damaged due to
wrong handling.

e Online operations where data is manually entered in system without
any verification and validation or data is transferred from one system
to another without any control.

Points where System is Least Protected (Vulnerable points):

It is not possible to protect the system completely. Certain points will be
left where the system is least protected which are called ‘vulnerable’ or
‘weak’ system points.

Attributes of Effective Security Control:

A tester may test the following attributes to find the effectiveness of
security control:

e Simplicity of Control and Usage: Controls must be simple to
understand and use for the users.

o Failure Safe Controls: Controls must be safe and free from failure.

e Open Design for Controls: Control design must be flexible enough
to accept technology and process changes to modify controls
accordingly.

e Separation of Privileges of Users: System must enforce separation
of user privileges to avoid any unauthorised entries bypassing the
controls.

e Psychological Acceptability of Controls by Users: An organisation
must plan for adequate training for users. Security and controls and
their purpose must be well explained to people so that they can
psychologically accept the controls and do not bypass them.

e Layered Defense in System: Entire system must not collapse. If any
system part fails, there must be alternative defense mechanism to
detect and prevent complete system failure. If unauthorised
transaction entry occurs, it must be detected and proper actions must
be initiated.

e Compromised Recording: Transactions made by users must be
recorded and audited. This assists in early problem detection in
transactions and processing. However, it may hamper user’s privacy
and should be incorporated if requirements specify the same. Audit
trail is an example of compromised recording in a system.

10.35 ‘COTS’ TESTING

‘COTS’ stands for ‘Commercially Of The Shelf’ software. These are
readily available software in the market which user can directly buy and
use. They can be integrated in a new development or used as a tool for
development or testing activities.

Why Software Organisations Use Cots?

The most common question that arises is why would a software
development organisation buy and use software from outside? There are
several reasons given below:

Line of Business:

An organisation’s line of business might differ from the software that it
requires.

Example: Organisation developing software for banking domain is not in
a line of business to develop automation software required for testing. In
such cases, organisation might purchase and directly use this testing
software from market without investing resources and time for creating it.

Special Tests

299

Software Quality
Assurance

300

Cost-Benefit Analysis:

Sometimes, it is very costly to develop software in-house due to various
constraints like lack of knowledge, skills, resources, budget, etc. Buying
the software becomes more convenient and cost effective than creating it.
Usually, ‘COTS’ products are much cheaper than the projects as cost is
distributed over number of users.

Expertise/Domain Knowledge:

An organisation might know usage of software with no knowledge of its
creation. Sometimes, it is sufficient to have understanding of using
software without going into details of its development. Organisation might
purchase them simply from market and use it.

Delivery Schedules:

‘COTS’ are available immediately in market by paying for them. This
saves the time and efforts of development. This aspect is beneficial when
efforts and schedule do not justify use and benefits. Cost of purchasing
software may be less compared to developing it.

Features of Cots Testing:

Testers must remember following features while testing a ‘COTS’
product:

e ‘COTS’ are aligned with general requirements and market trends. It
might not exactly match organisation’s needs and expectations.
Analysis and percentage fit of ‘COTS’ to the organisation business
should be done to decide its success ratio.

e Some ‘COTS’ require changing business processes to suite the
‘COTS’ implementation in organisation. This is another way of
Business Process Reengineering (BPR) for an organisation where
internationally proven practices can be implemented by using
‘COTS’. ‘COTS’ may have some of their best processes accepted at
national/international level and organisation may get benefitted by
using such processes along with the product.

e Sometimes, ‘COTS’ may need configuration of software or system to
suite business needs. Generally, when ‘COTS’ are implemented,
many business rules must be defined to customize the software to the
organisation.

Challenges in ‘Cots’ Testing:

Some of the challenges faced by testers while testing ‘COTS’ are as
follows:

e Requirement statement and designs may not be available to testers as
product manufacturer never shares them with any customer. While
buying an operating system, we cannot expect that the organisation
will give requirement statement for such product. Generally, in

normal testing process, test scenarios and test cases refer to
requirements and design, but in case of ‘COTS’, business
requirements are referred which may differ from product
requirements.

Verification and validation records prepared during SDLC are very
important for system testing and acceptance testing. SDLC acceptance
reduces the risk of buying a wrong product. But in case of ‘COTS’,
these records might be unavailable to testers before performing
acceptance testing. Tester must do software testing by understanding
organisation’s perspective to find out whether ‘COTS’ should be
accepted or rejected. Code reviews, requirement reviews, design
reviews, unit testing, and integration testing records are not available
to testers.

There are two methods of conducting acceptance testing before buying
‘COTS’.

Evaluation of Software Product:

Evaluation of ‘COTS’ is done by referring information available
about it through various sources like white papers, user manuals, peer
experiences, expert’s judgement, available demos and internet
searching.

It is a static measurement of software to understand its features and
suitability for business as there is no hands-on or self-experience of
using such product. Decision of buying ‘COTS’ depends on the
available documents and information.

Assessment of Software Product:

Assessment includes executing test cases on the product. Many
product manufacturers give evaluation versions with limited time
period validity so that users can get hands-on and decide about
purchase. Expectation is the buyer must conduct testing and decide to
buy or not.

It is a dynamic measurement to gauge the product suitability. There
must be test plan, test scenario, and test cases for product testing.
Understanding of product requirements and attributes is essential.

Assessment may need basic understanding of particular type of
software and assessment skill to operated and assess new software.

‘Cots’ Test Process:

Assure Completeness of Need Specification:

Testers must be completely aware of the organisational requirements
before testing ‘COTS’. Requirements may be from various areas as
expressed in ‘TELOS’ (Technical, Economic, Legal, Operational and
System).

Special Tests

301

Software Quality
Assurance

302

e Expected output formats and reports essential for organisation must
be defined beforehand. Some ‘COTS’ can be configured to get
desired output formats while some may not deliver such reports and
formats. They may need some external customization.

e Information needed for management’s decision making must be
defined beforehand. Percentage fit may be decided based on such
definitions which may be used while deciding to buy software or not.

e There may be some statutory/regulatory requirements applicable to
the organisation and COTS must help in achieving them. If COTS
does not satisfy these requirements, organisation may have to devise a
method to enhance COTS with external programming or else reject it.

Define Critical Success Factor of Buying:

Testers must understand organisation’s motive to purchase COTS. Critical
success factors are those which define whether COTS has fulfilled its
intended use or not. Some of them may be:

o FEase of use
e Scalability

o Cost effectiveness

o Portability
e Reliability
e Security

Determine Compatibility with Environmental Variables:

An organisation must have definition of working environment where
‘COTS’ will be implemented. Environment may include hardware,
software, and people around it. ‘COTS’ must fit in the existing
environment as there may be several systems already existing in the
specified environment. Organisation may not change its environment for
implementing any COTS unless there is no way out for it. COTS
compatibility may include the following aspects:

e Hardware Compatibility: Environment comprises of machines,
servers, printers and communication devices that exist and used by the
organisation before introduction of COTS. It is expected that COTS
must work without any problem in this environment.

e Operating System Compatibility: Operating systems, browsers and
databases used before COTS implementation should be usable after
its implementation. Data transfer from one system to another is
usually avoided due to data compatibility issues. Usage of same
database improves data processing.

Software Compatibility: There may be existing software in system
where COTS will be implemented. COTS should not affect their
existence or working. Other software may provide input or accept
output from COTS software. COTS must be able to integrate with
them and communicate effectively.

Data Compatibility: Data transfer may happen from one system to
another during COTS implementation. COTS should not hamper or
interfere with data, format and transfer process. Data format, style,
and frequency mismatch can cause severe system problems.

Communication Compatibility: Protocols used in communication
must be compatible to prevent any communication loss. If there is no
compatibility of communication protocols, adopters will be required
to convert protocols to facilitate communication.

Assure that COTS can be integrated with Business:

Manual systems may be partially or completely replaced by COTS
software in an organisation. This may affect employees count and
they may need to upgrade skills to use COTS.

Existing processes, methods, forms, formats and templates used by
existing manual system may be replaced in COTS implementation.
These changes may affect users, auditors, etc. which should be taken
into consideration while deciding to implement COTS in an
organisation.

There may be increase or decrease in number of steps and sub
processes due to COTS and users must be comfortable with such
changes. Increase in processes may be resisted by users if they find it
unnecessary.

Demonstrating COTS in Operation:

COTS is also subjected to alpha and beta acceptance testing similar to
other projects. Vendor site demonstration of COTS represents alpha
testing and actual usage site demonstration represents beta testing.

Demonstration at Vendor site: These may be done using sample
data provided by vendor. Objective is to provide basic awareness to
user about the software. It is used to provide training to users about
new product.

Demonstration at Customer site: These may be done using
customer supplied data or real time data. Users are involved in
demonstrations and experts may guide them to use new product.
Users may get hands-on experience under expert supervision. This
also exposes users to software and gives basic training to use it. Users
understand advantages and limitations of software, if any, during such
demonstrations.

Special Tests

303

Software Quality
Assurance

304

Evaluate People Fit:

Testers need to analyse whether people would be able to work with the
system effectively or not. There should be understanding whether software
can be used as it is or may require some configuration, modification or
external changes to make it usable. Sometimes, additional training and
support may be required by users.

10.36 CLIENT-SERVER TESTING

Client-server is an initial improvement from stand-alone applications
where there are several clients communicating with the server. There are
many advantages of client-server over stand-alone application. Client-
server architecture gives an opportunity to many users to work with
software simultaneously. Client server system may be viewed as-requests
coming from many clients and server is serving these requests.

Features of Client-Server Application:

o Client-server system comprises of clients connected to server across
a network.

e Client and server are connected by real connection.

e Multiple clients use the system at a time and they can communicate
with the server. Sometimes, clients may communicate with each other
via server.

e Server is aware of client configuration beforehand.
Testing Approach of Client-Server System:

Client-server testing involves component and integration testing followed
by various specialized testing as per scope of testing involved.

Component Testing:

One needs to define the approach and test plan for testing client and server
individually. One may have to devise simulators to replace corresponding
components to test the target component. For server testing, client
simulator may be needed and client testing may require server simulator.
We may have to test network by using client and server simulators at a
time.

Integration Testing:

After successful testing of clients, servers and network individually, they
are brought together to form the system and system test cases are
executed. Client server communication testing is done in integration
testing. There are regular testing methods like functionality testing and
user interface testing to ensure that system meets the requirement
specifications and design specifications correctly. In addition to these,
several special testing techniques are as follows:

Performance Testing:

System performance is tested when many clients communicate with server
at the same time. Similarly, volume testing and stress testing may also be
used. Since number of clients is already known to system, we can test the
system under maximum load as well as normal load. Various user
interactions may be used for stress testing.

Concurrency Testing:

It may be possible that multiple users may access same record at a time.
Concurrency testing is required to understand the system behaviour under
such circumstances.

Disaster Recovery/Business Continuity Testing:

When the client and server are communicating with each other, there
exists a probability of communication break due to various reasons or
failure of either client or server or link connecting them. This testing is
used to understand system behaviour in cases of disaster. It may involve
testing the scenario of such failures at different system points and actions
initiated by the system in each case. Requirement specification must
describe the possible expectations in case of any failure.

Testing for Extended Periods:

In client-server applications, generally, server is never shut down unless
there is some agreed (Service Level Agreement) SLA where server may
be shut down for maintenance. It may be expected that server is running
24 * 7 for extended period. Testing is conducted over an extended period
to understand if service level of network and server deteriorates over a
time due to some reasons like memory leakage.

Compatibility Testing:

Client and server are subjected to different networks when used by users
in production. Servers may be in different hardware, software or operating
system environment than the recommended one. Clients may significantly
differ from the expected environmental variables. Testing must ensure that
performance is maintained on the range of hardware and software
configurations and users must be adequately protected in case of
configuration mismatch. Similarly, any limiting factors must be informed
to prospective user.

Other testing such as security testing and compliance testing may be done,
if needed, as per scope of testing and type of system.

10.37 WEB APPLICATION TESTING

Web application is further improvement in client-server applications
where the clients can communicate with servers through virtual
connectivity. It has many advantages over client-server application as
multiple server networks can be accessed at a time from the same client. It

Special Tests

305

Software Quality
Assurance

306

improves communication between people at different locations
significantly.

Features of Web Application:

e Number of clients connecting to a server is very large. Sometimes,
number may tend to infinity. Client configurations cannot be
controlled by definition.

o Different clients may have different configurations and server may be
unable to communicate directly with clients. To resolve this, a
universal client ‘browser’ is required in such circumstances.

e Communication protocols may differ from system to system.
Sometimes, adopters are required to convert these communication
protocols and make them compatible.

e Client and server are connected through World Wide Web cloud and
there is no direct physical connectivity. As they are connected
virtually, communication needs address where it is expected to reach,
from client to server as well as from server to client.

e One client may be able to connect to several servers at a time. This
helps in faster communication between different domains.

e Generally, there is no installation needed at client other than browser.
Nearly all work is done by the server.

Testing Approach of Web Application:

Web application involves component testing, integration testing,
functionality testing and GUI testing followed by various specialised
testing.

Component Testing:

One must define the approach and test plan for testing web application
individually at client side and at server side. One may have to design
simulators to replace corresponding components. During server testing,
client simulator will be needed and vice versa. Network testing is also
required.

Integration Testing:

Successfully tested servers and clients are brought together to form the
web system and system test cases are executed. Communication between
client and server is tested in integration testing.

There are other testing ways like functionality testing and user interface
testing to ensure that system meets the requirement specifications and
design specifications correctly. In addition to them, several other testing is
involved as follows:

Performance Testing:

System performance is tested as huge numbers of clients communicate
with server simultaneously. Similarly, volume testing and stress testing is
done to test these applications. System requirements specifications should
define maximum and normal load conditions so that they can be tested.
Simulators are used extensively for such testing.

Concurrency Testing:

It may be possible that multiple users access same record simultaneously.
Concurrency testing is needed to understand system behaviour under such
circumstances. Probability of concurrency increases with increase in
number of users.

Disaster Recovery/Business Continuity Testing:

When the machine is communicating with the web server, there exists a
possibility of communication break due to several reasons like
connectivity failure, client failure and server failure. Testing for disaster
recovery and business continuity involves testing the scenario of such
failures and actions taken by the system in each case. Requirement
specification must describe the expected system behaviour in case of such
failures. MTTR (Mean Time to Repair) and MTBF (Mean Time between
Failures) are very important tests for web applications.

Testing for Extended Periods:

In case of web applications, generally, the server is never shut down. It is
expected to run 24 * 7 over extended time period and there must be a
provision of alternate server (hot recovery/mirroring) if requirements
specify the same. Testing is conducted over an extended period to
understand if service level of server deteriorates over a time due to some
reasons like memory leakage.

Security Testing:

As the communication occurs through virtual network, security is
important. Applications may use communication protocols, coding and
decoding mechanisms, and schemes to maintain system security. System
must be tested for possible weak areas called ‘vulnerabilities’ and possible
intruders trying to attack the system called ‘penetrators’.

Compatibility Testing:

Web applications may be placed in different environments when users use
them in production. Servers may be exposed to different hardware,
software or operating system environment than the expected one. Client
browsers may differ significantly from the expected environmental
variables. Testing must ensure that performance is maintained on the
range of hardware and software configurations and users must be
adequately protected in case of configuration mismatch. Similarly, any
limiting factors must be informed to the prospective user.

Special Tests

307

Software Quality
Assurance

308

10.38 MOBILE APPLICATION TESTING (PDA
DEVICES)

Today’s generation uses pocket devices extensively for communication
and computing due to mobility offered by them. There is tremendous
increase in memory levels and technologies adopted by such appliances.
With the advent of Bluetooth and Wi Fi, many PDA’s are replacing
desktop computers due to ease of usage. New technologies have converted
normal communication device into internet-driven palm tops.

Testing Limitations of PDA’s:

Scenarios and test cases designed for web applications may not be
applicable to mobile applications. Mobile applications exhibit different
behaviour and usage pattern. There are few limitations on PDA due to
following factors:

e Hardware and software used on PDAs differ significantly due to lack
of standardization, and varied manufacturer’s preferences. Usability
testing on PDAs should take into consideration variations in
hardware, software and configurations.

e Memory available in PDAs is limited as compared to desktops.

o PDAs have limited usability even after invention of touchpad and
joystick. Normal desktops usage is more convenient owing to
keyboard, mouse along with touch screen.

e Data input has many limitations as single key may mean different
inputs depending upon the number of times it is pressed. There is
limitation for providing help and maintaining operability of PDA due
to its small size.

o Battery life may be limited in PDAs thus limiting its lighting
availability.

o Bandwidth available with Bluetooth and Wi Fi in PDASs is much less
as compared to bandwidth availability by other means like optical
cables.

Interface Design of PDAS:

e The smaller size and resolution of the PDA screen presents usability
challenges to testers. Reading from the screen and scrolling up and
down is inconvenient.

e Instructions and other text must be used sparingly and carefully as
they occupy screen and require scrolling. Instructions cause content to
be pushed below the fold which can be missed by users.

e Links must be concise and contain only necessary keywords.
Generally, specific options must be presented before general options
to improve usability.

10.39 E-BUSINESS/E-COMMERCE TESTING

With changing business scenarios and technology advancements, e-
Business/e-Commerce applications have become popular. There is a small
difference between e-Business and e-Commerce application. While e-
Commerce concerns mainly with money transactions, e-Business concerns
with all business aspects including money, advertising, and sales.

Distinct Parts of e-business:

Information Access by the common user is very important from
business point of view. All the products available with enterprise must
be accessible to users who wish to buy them with product
information. Quick links may be provided to reach the area of interest
easily and quickly. Grouping items into some categories and carting
also eases access.

Self-Services must be available for users where they can select item,
quantity and make online payment accordingly.

Shopping Services including advertisement, carting and billing are
completely online and users should be able to execute transactions
smoothly just like they do it in a real shop.

Interpersonal Communication Services can be used to inform users
about the billing amount or inform shopkeeper about stocks
availability and demand trends. It can be used to give more
information about the products available for sale.

E-Business represents a virtual enterprise where all the actions are
done by users through internet which replaces physical shopping and
transactions.

Testing Approach for e-business/e-commerce:

Software applications should be user friendly so that people can
perform transaction easily and safely. Usability, performance and
reliability are critical success factors for such applications. Users may
reject applications due to poor performance and business is directly
impacted. Consistency in delivering results is important.

Regulatory and statutory requirements should be strictly followed as
their violation is a legal offence.

Security and privacy is critical in e-Business and e-Commerce
applications and these may be enforced as statutory requirements.
Personal information and transaction information of users must not be
disclosed to any third-party attack. Anonymity should be maintained.

Non-functional requirements such as system performance, user
interfaces, and online help are essential in addition to functional
requirements. Application’s look and feel, working speed, and

Special Tests

309

Software Quality
Assurance

310

disaster recovery ability are important aspects from user’s
perspective.

E-commerce Quality Challenges:

Stringent quality standards are associated with e-Business sites. Usage
experience for users must be positive. Otherwise, people would
hesitate to use site impacting business as there is no physical store in
existence.

If the visitor experience is negative due to application’s slow response
time, crash, and privacy violations then consumer confidence
deteriorates and consumers would not perform transaction thus
impacting business.

E-business/E-commerce Development:

Development of e-Business/e-Commerce applications may not follow
waterfall or iterative model. Agile methodologies and spiral development
models are used extensively. It is characterized by the following:

Rapid and easy assembly of application modules is essential as the
system size increases as defined by spiral methodology. Initially,
some parts of an application are delivered and used, and as per user
response and expectations, latter parts are then delivered at multiple
instances.

Testing of component functionality and performance at each
increment is required to ensure correct integration. Huge regression
testing cycles may be required.

Since there may not be real time testing, simulation is done by
designing models to simulate real world scenario and then testing is
performed.

Usually, such applications are deployed in a distributed environment,
24 * 7 * 365 for an extended period, and there is no downtime
allowable. MTTR and MTBF are important parameters for assuring
service to users.

Monitoring performance and transactions over an extended period is
essential to understand if there is any deterioration of service level
over a time span.

Analysing system effectiveness and gathering business intelligence
may be essential to maximize sale and profit.

Incorporating Legal Standards:

Statutory and legal requirements are one of the most important aspects of
e-Business and e-Commerce applications. These requirements must be
thoroughly understood and implemented in an application. Any violation
of these requirements is punishable under law. Also, they keep changing

from time to time as per policy and strategy decisions of government and
categories of industry that they belong to.

e All critical business functions with respect to common users are
identified and evaluated on the basis of their criticality.

e Mechanisms must be in place to ensure connectivity and handling
connection loss. Disaster recovery procedures and business continuity
procedures must be developed.

e Systems are tested to assess security of online transactions. User
information must be protected and privacy practices must be applied
stringently.

e Privacy audits must be conducted to confirm correct working of
strategies to protect customer privacy and confidentiality.

e Vulnerabilities are analysed to prevent hacker attacks and virus
attacks. Users may not visit site if there are possible vulnerabilities
and threats.

e Disaster avoidance measures are developed such as redundant
systems, alternative routing, precise change controls, encryption,
capacity planning, load and stress testing, and access control.

10.40 AGILE DEVELOPMENT TESTING

‘Agile development’ is popular in software development models. Agile
development is based on twelve agility principles mentioned in agile
manifesto. Agile models prioritize clients and focus more on procedures,
quality delivery and flexibility in embracing dynamic requirements rather
than being static to strictly follow guidelines and documentation.

Agility Testing:

There are various agile process models such as scrum, extreme
programming, feature-driven development, test-driven development etc.
Test plans are made to suit the model adopted and purpose. Also, the
underlying agile principle of delivering working software at faster speed
should be considered.

Critical Points for Agile Testing:
e Competencies/Maturity of Agile Development and Test Team:

When working with agile principle, it is important to have teams,
customer and management who psychologically accept agile approach. It
involves dynamic ability to accept change quickly, deliver good working
product as soon as possible, and communicate effectively and efficiently
with team members as well as stakeholders. Agile implementation prefers
generalist approach as compared to specialist approach. It needs people

Special Tests

311

Software Quality
Assurance

312

with high maturity and technical competence to adapt to changing
customer needs.

e Development and Test Process Variability:

Every process has an inborn variability. One may have to attack the
generic reasons of variations while there may be some controls to identify
special causes of variations.

e Change Management and Communication:

Change is inevitable in agile. There must be strong communication
amongst development team, test team, customer, and other stakeholders to
adapt to changing scenario. Requirement change at any point in
development process must be welcomed and everyone must come together
to give best service to customer.

e Test Process Flexibility:

Different test plans are made to test software. However, as the process
begins, many changes may be required. Test plans should be flexible
enough to adapt to these changes.

e Focus on Business Objective:

There is always a pressure to deliver software faster in agile development.
Time pressure may come from stakeholders or development. It is
important to focus on business objectives while defining test processes,
adapting to change, and handling pressure. Cost-benefit analysis may be
done to deal with defect fix and software release. It is impossible to find
all defects but aim should be to maximize user protection from any
accidental failure. Testing should achieve both extremes.

o Stakeholder Maturity/Involvement:

Agile process demands maturity from stakeholders and all the people
involved since there is time pressure, adapting to dynamic requirements,
and faster delivery pressure.

10.41 DATA WAREHOUSING TESTING

A data warehouse is a repository of an organisation’s electronically stored
data. Data warehouses are designed to facilitate reporting and analysis.
The classic definition of data warehouse focuses on data storage.
However, the means to retrieve and analyse data, to extract, transform and
load data, and to manage the data dictionary are also considered essential
components of a data warehouse system. The advantage of using data
warehouse is that a data analyst can perform complex queries and analysis
(data mining) on the information within data warehouse without slowing
down the operational systems.

Data Warehouse Definition: Special Tests
Data in data warehouse is subjected to few definitions:
Subject-oriented:

Subject-oriented data warehouses are designed to help the user in
analysing data. The data is organised so that all the data elements relating
to the same real world event or object are linked together.

Integrated:

Database integration is closely related to subject orientation. Data
warehouses must place data from different sources into a consistent
format. The database contains data from most or all of an organisation’s
operational applications and is made consistent.

Time-variant:

The changes done to data in database are tracked and recorded to produce
reports on data varying with time. In order to discover trends in business,
analysts need large amounts of data. Time-variant is data warchouse’s
track of changes made in data over time.

Non-volatile:

Data in the database is never over written or deleted once committed-the
data is static and read-only but retained for future reporting. Once data
enters warehouse, it should not change as the purpose of data warehouse is
to be able to analyse what has occurred.

Benefits of Data Warehousing:

e Provides a common data model for all data of interest regardless of its
source. This enables easy reporting and analysis as compared to
retrieving information from multiple data models.

e Prior to loading data into data warehouse, inconsistencies are
identified and resolved. This greatly simplifies reporting and analysis.

e Information in the data warehouse is under the control of data
warehouse users so that even if the source system data is purged over
time, information in the warehouse can be stored safely for extended
time period.

e Data warehouses are separate from operational systems, hence; data
retrieval does not slow down operational systems.

o Data warehouses facilitate decision support system applications such
as trend reports, exception reports and reports that show actual
performance versus goals.

313

Software Quality
Assurance

314

Testing Process for Data Warehouse:

Testing for a data warehouse includes requirements testing, unit testing,
integration testing followed by acceptance testing.

Requirements Testing

The main aim for performing requirements testing is to check stated
requirements for completeness. In a data warehouse, requirements are
related to reporting. Hence, it is crucial to verify whether these reporting
requirements can be catered using the available data. Successful
requirements are structured closely to business rules and address
functionality and performance expected by users.

Unit Testing:
Unit testing involves the following:

e Whether the application is accessing and selecting correct data from
correct source as expected by users.

e All data transformations should be aligned with business rules and
data warehouse should be populated with correct data.

e Testing the rejected records that do not fulfill transformation rules.
Integration Testing:

After unit testing completes, integration testing is performed to test initial
and incremental loading of data warehouse. Integration testing involves
the following:

Verify Report Data with Source:

Although the data present in a data warehouse will be stored at an
aggregate level yet it must be compared to source systems. Test team must
verify the granular data stored in data warehouse against the available
source data.

Field Level Data Verification:

Test team must understand the linkages for the fields displayed in the
report and must trace back and compare that with the source systems.

Creating Queries:

Create queries to fetch and verify the data from source and target.
Sometimes, it is not possible to do the complex transformations done in
ETL. In such a case, the data can be transferred to some file and
calculations can be performed.

Data Completeness:

Basic test of data completeness is to verify that all expected data loads into
the data warehouse. This includes validating that all records, all fields and
the full contents of each field are loaded. This may cover:

Comparing record counts between source data, data loaded to the
warehouse and rejected records.

Comparing unique values of key fields between source data and data
loaded to the warehouse.

Utilizing a data profiling tool that shows the range and value
distributions of fields in a data set.

Populating the full contents of each field to validate that no truncation
occurs at any step in the process.

Testing the boundaries of each field to find any database limitations.

Data Transformation:

Validating that data is transformed correctly from database is based on
business rules. This can be the complex part of testing.

Create a spreadsheet of scenarios of input data and expected results
and validate these with the business customer.

Create test data that includes all scenarios.

Utilize data profiling results to compare range and distribution of
values in each field between source and target data.

Validate correct processing.

Validate that data types in the warehouse are as specified in the design
and/or data model.

Set up data scenarios that test referential integrity between tables.

Validate parent-to-child relationships in the data.

Data Quality:

Data quality rules are defined during data warehouse design. It may
include:

Reject the record if a certain decimal field has non-numeric data.
Substitute null if a certain decimal field has non-numeric data.

Duplicate records.

Special Tests

315

Software Quality
Assurance

316

Performance and Scalability:

As data volume in a data warehouse grows, load times can be expected to
increase and performance of queries can degrade. The aim of performance
testing is to point out any potential weaknesses in the design such as
reading a file multiple times or creating unnecessary intermediate files.

e Load the database with peak expected production volumes to ensure
that this volume of data can be loaded within the specific time period.
The time period may be defined in SLA.

e Compare these loading times to loads performed with a smaller
amount of data to anticipate scalability issues.

e Monitor the timing of the reject process and consider how large
volumes of rejected data will be handled.

e Perform simple and multiple join queries to validate query
performance on large database volumes.

10.42 LET US SUM UP

In this chapter, we have seen impact of new techniques of software
development on testing. This chapter also covers what is meant by new
technology and its associated risks. It also deals with organisational
process maturity with respect to evolving technologies. The testing
approaches of new technology covered following methodologies and
business applications:

e Object-oriented development

e Internal controls

e Commercially Of The Shelf (COTS) software
e Client server testing

e Web application

e PDAs/Mobile applications

e E-Commerce and e-Business

e Data warehouse systems

10.43 EXERCISES

Describe the risk associated with new technology usage.
Explain technology process maturity.

Explain the test process for new technology.

A w bpoPe

Explain the process of testing object-oriented development.

© o N o O

11.
12.
13.
14.
15.
16.
17.

Explain the process of testing of internal controls. Special Tests
Explain how transaction processing controls can be tested?
Explain the process of testing security controls.

What are the attributes of a good control?

Why software organisations buy ‘COTS’ software?

Explain COTS testing process.

What are the challenges in COTS testing?

Differentiate between evaluation and assessment of COTS.
Describe a process of client-server testing.

Describe the testing process for web application.

Describe the mobile applications (PDA) testing process.

Describe the critical quality issues of e-Commerce and e-Business.

Describe the process of testing data warehouse systems.

% %k %k %k k

317

