University of Mumbai

No. AAMS_UGS/ICC/2022-23/ 181

CIRCULAR:-

Attention of the Principals of the Affiliated Colleges and Directors of the Recognized Institutions in Faculty of Science & Technology is invited to the syllabus uploaded by Academic Authority Meetings & Services which was accepted by the Academic Council at its meeting held on 14th July, 2016 <u>vide</u> item No. 4.19 relating to the revised syllabus as per Choice Based Credit System for M.E. (Mechanical) Energy Systems and Management.

You are hereby informed that the recommendations made by the Board of Studies in Mechanical Engineering at its meeting held on 31st May, 2022 and subsequently passed in the Faculty and then by the Board of Deans at its meeting held on 5th July, 2022 vide item No. 6.58 (R) have been accepted by the Academic Council at its meeting held on 11th July, 2022 vide item No. 6.58 (R) and that in accordance therewith, the revised syllabus of M.E. (Energy System and Management) (Sem.- I to IV) (CBCS) (REV - 2022 Scheme), has been brought into force with effect from the academic year 2022-23. (The circular is available on the University's website www.mu.ac.in).

MUMBAI – 400 032 November, 2022 (Prof. Sunil Bhirud)
I/c Registrar

To

The Principals of the Affiliated Colleges and Directors of the Recognized Institutions in Faculty of Science & Technology.

A.C/6.58 (R)/11/07/2022

Copy forwarded with Compliments for information to:-

- 1) The Dean, Faculty of Science & Technology,
- 2) The Chairman, Board of Studies in Mechanical Engineering,
- 3) The Director, Board of Examinations and Evaluation,
- 4) The Director, Board of Students Development,
- 5) The Director, Department of Information & Communication Technology,
- 6) The Co-ordinator, MKCL.

Copy to :-

- 1. The Deputy Registrar, Academic Authorities Meetings and Services (AAMS),
- 2. The Deputy Registrar, College Affiliations & Development Department (CAD),
- 3. The Deputy Registrar, (Admissions, Enrolment, Eligibility and Migration Department (AEM),
- 4. The Deputy Registrar, Research Administration & Promotion Cell (RAPC),
- 5. The Deputy Registrar, Executive Authorities Section (EA),
- 6. The Deputy Registrar, PRO, Fort, (Publication Section),
- 7. The Deputy Registrar, (Special Cell),
- 8. The Deputy Registrar, Fort/ Vidyanagari Administration Department (FAD) (VAD), Record Section,
- 9. The Director, Institute of Distance and Open Learning (IDOL Admin), Vidyanagari,

They are requested to treat this as action taken report on the concerned resolution adopted by the Academic Council referred to in the above circular and that on separate Action Taken Report will be sent in this connection.

- 1. P.A to Hon'ble Vice-Chancellor,
- 2. P.A Pro-Vice-Chancellor,
- 3. P.A to Registrar,
- 4. All Deans of all Faculties,
- 5. P.A to Finance & Account Officers, (F.& A.O),
- 6. P.A to Director, Board of Examinations and Evaluation,
- 7. P.A to Director, Innovation, Incubation and Linkages,
- 8. P.A to Director, Board of Lifelong Learning and Extension (BLLE),
- 9. The Director, Dept. of Information and Communication Technology (DICT) (CCF & UCC), Vidyanagari,
- 10. The Director of Board of Student Development,
- 11. The Director, Department of Students Walfare (DSD),
- 12. All Deputy Registrar, Examination House,
- 13. The Deputy Registrars, Finance & Accounts Section,
- 14. The Assistant Registrar, Administrative sub-Campus Thane,
- 15. The Assistant Registrar, School of Engg. & Applied Sciences, Kalyan,
- 16. The Assistant Registrar, Ratnagiri sub-centre, Ratnagiri,
- 17. The Assistant Registrar, Constituent Colleges Unit,
- 18. BUCTU,
- 19. The Receptionist,
- 20. The Telephone Operator,
- 21. The Secretary MUASA

for information.

University of Mumbai

Revised Syllabus for
M.E.

(Energy System & Management)

Semester – (I to IV)

(Choice Based Credit System)

(With effect from the academic year 2022-23)

University of Mumbai

0:	Title of Course	M.E. (Energy Systems and Management)
O:	Eligibility	Ordinance 0.5134
R:	Passing Marks	45%
No. of years	s/Semesters:	4 semesters
Level:		P.G. / U.G./ Diploma / Certificate
Pattern:		Yearly / Semester
Status:		New / Revised
To be imple	mented from Academic Year :	With effect from Academic Year : 2022-23

Dr. Vivek Sunnapwar Chairmanof Board of Studies in Mechanical
Engineering

Dr. Suresh K. Ukarande
Associate Dean,
Faculty of Science and Technology

Faculty of Science and Technology Faculty of Science

Dr Anuradha Majumdar Dean,

Faculty of Science and Technology

Preamble

Education in engineering is growing in India and is expected to increase by a factor of several in the near future. The current situation presents a significant challenge in terms of ensuring quality to stakeholders while expanding. To face this challenge, the problem of quality must be addressed, debated, and progressed in a methodical manner. Accreditation is the primary form of quality assurance in higher education, and it signifies that the institution or programme of study is committed to meeting certain minimum stated requirements and is available to external assessment in order to get recognition. The main goal of this accrediting procedure is to assess the outcomes of the programme being evaluated. Program outcomes are a collection of skills and information that a student will possess upon completion of the programme. In keeping with this, the University of Mumbai's Faculty of Science and Technology has taken the lead in implementing the principle of outcome-based education into the curriculum building process.

We are pleased to report that the Postgraduate Program Educational Objectives were completed in a brainstorming session attended by more than 20 members from the University's associated institutes. They were either department heads or senior faculty from the Mechanical Engineering Department. The Program Educational Objectives finalized for the postgraduate program in Mechanical Engineering are listed below;

- 1. To prepare the Learner with a sound foundation in the mathematical, scientific andengineering fundamentals.
- 2. To prepare the Learner to use modern tools effectively in order to solve real life problems.
- 3. To prepare the Learner for a successful career in Indian and Multinational Organisations
- 4. To encourage and motivate the Learner in the art of self-learning.
- 5. To inculcate a professional and ethical attitude, good leadership qualities and commitment tosocial responsibilities in the Learner's thought process.

In addition to the aforementioned, linked Institutes may add 2 to 3 additional programme instructional objectives of their own. In addition to Program Educational Objectives, each course in a postgraduate program's curriculum includes objectives and expected outcomes from the perspective of the learner to support the idea of outcome-based education. We are convinced that even a tiny move in the correct manner will go a long way toward ensuring that the main stakeholders receive high-quality education.

Dr. S. K. Ukarande

Associate Dean

Faculty of Science and Technology

University of Mumbai

Dr Anuradha Muzumdar

Dean

Faculty of Science and Technology

University of Mumbai

Preface

To tackle the challenge of assuring engineering education excellence, the problem of quality must be addressed, debated, and progressed in a methodical manner. Accreditation is the primary way of ensuring the quality of higher education. The main goal of the certification procedure is to determine how good a company is. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this, Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome-based education in the process of curriculum development.

Faculty of Science and Technology, University of Mumbai, in one of its meetings collectively resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEOs), give freedom to Affiliated Institutes to add few (PEOs), course objectives course outcomes to be clearly defined for each course, so that all faculty members in linked institutes are aware of the depth of approach to the subject to be given, so improving the learning process of students It was also decided that while changing the curriculum, the most senior academics from institutions and industry specialists should be included.

We are happy to state that the Board of studies has adhered to the resolutions passed by Faculty of Technology and developed curriculum accordingly. In addition to outcome-based education, Choice Based Credit System is also introduced to ensure quality of engineering education.

Choice Based Credit and Grading System allows for a much-needed shift in education focus from teacher-centric to learner-centric, since the workload estimate is based on time spent learning rather than teaching. It also emphasises constant evaluation, which will improve educational quality. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes. Faculty of Technology has devised a transparent credit assignment policy, adopting a ten-point scale to grade learner's performance. REV-2022 scheme is implemented for Master of Engineering from the academic year 2022-2023.

We trust this revised version of syllabus come up to the expectations of all stakeholders. We wish to place on record our sincere thanks and appreciations to the various contributors from the academia and industry for their most learned inputs in framing this syllabus.

Board of Studies in Mechanical Engineering

Dr. Vivek K. Sunnapwar : Chairman Dr. S. M. Khot : Member Dr. V. M. Phalle : Member Dr. Siddappa Bhusnoor : Member Dr. S.S. Pawar : Member Dr. Sanjay U. Bokade : Member Dr. Dhanraj Tambuskar : Member Dr. V. B. Tungikar : Member Dr. K.P. Karunakaran : Member Dr. S. S. Thipse : Member Dr. Milind Deshmukh : Member

Semester I

Course	Course Name	Tea	_	Scheme (Hours)	Contact	(Credits A	ssigned	
Code	Course manie	Theo		Pract.	Tut.	Theory	Pract.	Tut.	Total
ESMC101	Energy Scenario, Policy and Environment	3	,			3			3
ESMC102	Energy Efficiency in Thermal Systems	3				3			3
ESMPE101	Program Elective 1	3				3			3
ESMPE102	Program Elective 2	3				3			3
ESMIE101	Institute Elective 1	3				3			3
ESML101	Program Lab- IEnergy System Modelling and Simulation Lab			2	-1		1		1
ESMSBL	Skill Based Lab-			4			2		2
101	IEnergy Audit Lab			-					2
	Total	15		06		15	03		18
						on Scheme)		
Course	G N			The	ory			Pract	
Code	Course Name	Intern	al Asse	ssment	End Sem.	Exam. Term Duration Work		/	Total
		Test-1	Test-2	2 Avg	Exam	(in Hrs)		Oral	
ESMC101	Energy Scenario, Policy and Environment	20	20	20	80	3	1		100
ESMC102	Energy Efficiency in Thermal Systems	20	20	20	80	3			100
ESMPE101 X	Program Elective 1	20	20	20	80	3			100
ESMPE102 X	Program Elective 2	20	20	20	80	3			100
ESMIE101	Institute Elective 1	20	20	20	80	3			100
ESML101	Program Lab- IEnergy System Modelling and Simulation Lab				ŀ		25	25	50
ESMSBL 101	Skill Based Lab- IEnergy Audit Lab						50	50	100
	Total			100	400		75	75	650

Semester I

Pi	rogram Elective 1	Program Elective 2			
Course Code	Course Name	Course Name Code			
ESMPE1011	Utilization of Solar Energy	ESMPE1021	Alternative Fuels		
ESMPE1012	Cogeneration and Waste	ESMPE1022	Energy Systems Modeling and		
ESWIF ETUIZ	Heat Recovery Systems		Analysis		
ESMPE1013	Conventional Power Plants	ESMPE1023	Bio Mass and Wind Energy		

Semester-I

Instit	ute Level Optional Courses (ILOC)
Course Code	Course Name
ESMIE1011	Product Life cycle Management
ESMIE1012	Reliability Engineering
ESMIE1013	Management Information System
ESMIE1014	Design of Experiments
ESMIE1015	Operation Research
ESMIE1016	Cyber Security and Laws
ESMIE1017	Disaster Management and Mitigation Measures
ESMIE1018	Energy Audit and Management

Course Code Course Name		Teac		cheme(C lours)	Contact		Credits As	ssigned			
Course cour	Course i (unit	The		Pract.	Tut.	Theory	Pract.	Tut.	Total		
ESMC201	Advances in Energy Management and Audit	3				3			3		
ESMC202	Energy Efficiency in Electrical Systems	3				3			3		
ESMPE201X	Program Elective 3	3				3			3		
ESMPE202X	Program Elective 4	3				3			3		
ESMIE201X	Institute Elective 2	3				3			3		
ESML201	Program Lab- IIMeasurement& Virtual Instrumentation Lab			2			1		1		
ESMSBL 201	Skill Based Lab- IIRenewable Energy Lab			4			2		2		
	Total	15	5	06	-	15	03		18		
			Examination Scheme								
				Theo	ory						
Course Code	Course Name	Intern	al Asse	sessment En		Exam.	Term	Pract /	Total		
		Test-	Test-2		Sem. Exam	Duration (in Hrs)	Work	Oral	Total		
ESMC201X	Advances in Energy Management and Audit	20	20	20	80	3			100		
ESMC202	Energy Efficiency in Electrical Systems	20	20	20	80	3			100		
ESMPE201	Program Elective 3	20	20	20	80	3			100		
ESMPE202	Program Elective 4	20	20	20	80	3			100		
ESMIE201	Institute Elective 2	20	20	20	80	3			100		
ESML201	Program Lab-II Measurement & Virtual Instrumentation Lab						25	25	50		
ESMSBL 201	Skill Based Lab-II Renewable Energy Lab						50	50	100		
	Total			100	400		75	75	650		

Note 1: Skill Based Lab- I and II are focused on the learning through experience. SBL shall facilitate the learner to acquire the fundamentals of practical engineering in his or her specialization in a project-oriented environment. The learning through skill-based labs can be useful in facilitating their research work and hence useful in early completion of their dissertation work.

Semester II

P	rogram Elective 1	Program Elective 2		
Course Code	Course Code Course Name		Course Name	
ESMPE2011	Renewable & Sustainable Energy Systems	ESMPE2021	Energy Measurement and Control Instruments	
ESMPE2012	Energy Storage Systems	ESMPE2022	Energy Systems & Environmental Impact	
ESMPE2013	Fuels Combustion and Emission Control	ESMPE2023	Materials And Devices for Energy Application	

Semester-II

Instit	ute Level Optional Courses (ILOC)
Course Code	Course Name
ESMIE2011	Project Management
ESMIE2012	Finance Management
ESMIE2013	Entrepreneurship Development and Management
ESMIE2014	Human Resource Management
ESMIE2015	Professional Ethics and CSR
ESMIE2016	Research Methodology
ESMIE2017	IPR and Patenting
ESMIE2018	Digital Business Management
ESMIE2019	Environmental Management

Semester III

Course Name		Teaching Scheme (Contact Hours)				Credits Assigned					
Code		Theory		Theory		Pract.	Tut.	Theory	Pract.	Tut.	Total
ESMMP301	Major Project: Dissertation -I			20			10		10		
	Total	00 20 00 00 10					10				
		Examination Scheme									
Course	Course Name	Theory									
Code	Course Manie	Internal Assessment End				Term Prac		/ Total			
		Test-1	Test-2	Avg	Sem. Exam	Duration (in Hrs)	,, or 11	0141			
ESMMP301	Major Project: Dissertation -I	-				-	100		100		
Total							100		100		

Online Credit Courses

Course	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned				
Code		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ESMOCC 301	Online Credit Course - I							3	
ESMOCC 301	Online Credit Course - II							3	
Total			-		00	00	00	06	

Note 2: It is mandatory to complete the Online Credit Courses (OCC)available on NPTEL / Swayam /MOOC or similar platform approved by UoM. These two courses shall be completed in any semester I or II or III, but not later end of the Semester III. University shall make a provision that credits earned with OCC- I and OCC-II shall be accounted in the third semester grade-sheet with actual names of courses. The learner shall be allowed to take up these courses from his or her institute or organisation/ industry where his / her major project is carried out. The students shall complete the courses and shall qualify the exam conducted by the respective authorities/ instructor from the platform. The fees for any such courses and the corresponding examination shall be borne by the learner.

Online Credit Course - I

The learner shall opt for the course in the domain of Research Methodology**or** Research& Publication Ethics orIPR. The opted course shall be of 3 credits of equivalent number of weeks.

Online Credit Course -II

The learner shall opt for the course recommended by Faculty Advisor/ Project Supervisor from the institute. The opted course shall be of 3 credits of equivalent number of weeks.

Semester IV

Course Course Name			Teaching Scheme (Contact Hours)				Credits Assigned				
Code		Theo	ry	Pract.	Tut.	Theory	Pract.	Tut.	Total		
ESMMP401	Major Project: Dissertation -II			32	1	!	16		16		
	Total	32 16 1					16				
					Exami	nation Scheme					
Course			Theory								
Code	Course Name	Internal Assessment			End Exam.		Term	Pract/	Total		
		Test-1	Test-2	Avg	Sem. Exam	Duration (in Hrs)	Work	Oral			
ESMMP401	Major Project: Dissertation -II						100	100	200		
	Total	100 100			200						

Total Credits: 68

Note 3: The Dissertation -II submission shall not be permitted till thelearner completes all the requirements ME course.

Note 4: The contact hours for the calculation of load of the teacher for Major Project are as follows: Major Project Dissertation I and II - 02 Hour / week / student

Guidelines for Dissertation-I

Students should do literature survey and identify the problem for Dissertation and finalize in consultation with Guide/Supervisor. Students should use multiple literatures and understand the problem. Students should attempt solution to the problem by analytical/simulation/experimental methods. The solution to be validated with proper justification and compile the report in standard format. Guidelines for Assessment of Dissertation-I.

Dissertation-I should be assessed based on following points

- Quality of Literature survey and Novelty in the problem
- Clarity of Problem definition and Feasibility of problem solution
- Relevance to the specialization
- Clarity of objective and scope Dissertation-I should be assessed through a presentation by a panel of Internal examiners and external examiner appointed by the Head of the Department/Institute of respective Programme.

Guidelines for Assessment of Dissertation II

Dissertation II should be assessed based on following points:

- Quality of Literature survey and Novelty in the problem
- Clarity of Problem definition and Feasibility of problem solution
- Relevance to the specialization or current Research / Industrial trends
- Clarity of objective and scope
- Quality of work attempted or learner contribution
- Validation of results
- Quality of Written and Oral Presentation

Students should publish at least one paper based on the work in referred National/International conference/Journal of repute.

Dissertation II should be assessed by internal and External Examiners appointed by the University of Mumbai.

Course Code	Course Name	Credits
ESMC101	Energy Scenario, Policy and Environment	03

	Teaching Scheme									
C	Contact Hours Credits Assigned									
Theory	Theory Practical Tutorial Theory Practical Tutorial Total									
03	03 03 03									

Evaluation Scheme								
Theory					Term Work/Practic al/Oral			Total
Inter	nal Asse	ssment	End	Duration				
Test1	Test2	Average	Sem Exam	of End Sem Exam	TW	PR	OR	
20	20	20	80	03 Hrs.				100

Objectives

- 1. To understand and compare global and Indian energy profile.
- 2. To compare global and Indian energy policies.
- 3. To analyze energy impact on environment.

- 1. Assess role of energy in global economic development.
- 2. Analyze energy consumption pattern in India and its effect on economic development.
- 3. Determine impact of international energy policy on national energy growth.
- 4. Understand relationship between energy, ecology and environment.

Module	Detailed Contents	Hrs.
I	Global Energy Scenario Role of energy in economic development and social transformation, Energy &GDP, GNP and its dynamics. Energy sources and overall energy demand and availability, Energy Consumption in various sectors and its changing pattern, Exponential increase in energy consumption and projected future demands. Non-Conventional and Conventional Energy Resources: Coal, Oil, Natural Gas, Nuclear Power and Hydroelectricity, Solar, wind and other renewable etc. Depletion of energy sources and impact on exponential rise in energy consumption on economies of countries and on international relations. Energy Security, Energy Consumption and its impact on environmental climatic change	08
II	Indian Energy Scenario Energy resources & Consumption, Commercial and noncommercial forms of energy, Fossil fuels, Renewable sources including Bio-fuels in India and their utilization pattern in the past, present and future projections of consumption pattern, Sector wise energy consumption. Impact of Energy on Economy, Development and Environment, Energy for Sustainable Development, Energy and Environmental policies, need for use of new and renewable energy sources, present status and future of nuclear and renewable energy, Energy Policy Issues related Fossil Fuels, Renewable Energy, Power sector reforms, restructuring of energy supply sector, energy strategy for future.	08
III	International Energy Policy	06

	International Energy Policies of G-8 Countries, G-20 Countries, OPEC Countries, EU Countries. International Energy Treaties (Rio, Montreal, Kyoto), Conference of Parties (COP), INDO-US Nuclear Deal. Future Energy Options, Sustainable Development, Energy Crisis, Role of International Energy Agency.	
IV	Indian Energy Policy Global energy issues, National & State level energy issues, National & State energy policy, Industrial energy policy, Energy security, Energy vision. Energy pricing & Impact of global variations. Energy productivity (National & Sector wise productivity). Energy Conservation Act-2001 & its features, Electricity Act-2003 & its features. Frame work of Central Electricity Authority (CEA), Central & States Electricity Regulatory Commissions (CERC & SERCs), Role of MoP (Ministry of Power) and BEE (Bureau of Energy Efficiency).	06
v	Industrial Energy and Environment Analysis Energy and the environment, Energy in manufacture, Hazardous waste management in Chemical/Petrochemical/Cement industries and Power Plants, Contamination of ground water, Treatment & disposal, Pollution from combustion and atmospheric pollution control methods.	05
VI	Energy, Ecology and Environment Energy Conservation, Energy Efficiency, Concept of environment and ecology, various natural cycles in environment and ecology, effect of human activities on environment and ecology. Environmental Impact Assessment, Methodologies for environmental pollution prevention. Rules, regulations, laws etc. regarding environmental protection, pollution prevention and control, waste disposal etc. Role of government, semi/quasi govt. and voluntary organizations.	05

Internal

Assessment consists of two tests out of which; one should be compulsory class test (on minimum Two Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carries equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. General Aspects of Energy Management and Energy Audit, Book 1, Bureau of Energy Efficiency India.
- 2. O'Callaghan Paul, Energy Management, McGraw Hill Book company, London, 1993.
- 3. A.P. Sincero, and G.A. Sincero, Environmental Engineering, Prentice Hall, New Jersey, 1996.
- 4. C.J., Barrow, Developing the Environment, Longman Scientific and Technical U.K., 1995.
- 5. R.Socolow, C. Andrews, F. Berkhout and V. Thomas, Industrial Ecology and Global change, Cambridge University Press, 1994.
- 6. Jose Goldemberg, A K N Reddy, Thomas Johnson, Energy for a sustainable world, Prienceton University
- 7. B V Desai, Energy policy, Weiley Eastern

- 8. J K Parikh, Modeling approach to long term demand and energy implication, IIASA Professional Paper
- 9. TEDDY Year Book Published by Tata Energy Research Institute (TERI),
- 10. S Rao, Energy Technology, Khanna Publishers
- 11. International Energy Outlook -EIA annual Publication
- 12. A.W. Culp, Principles of Energy Conversion, McGraw Hill International edition
- 13. Frank P Lees, Loss Prevention in Process Industries Volume 1, 2 & 3, Elsevier Butterworth Heinemann

	Semester I	
Course Code	Course Name	Credits
ESMC102	Energy Efficiency in Thermal Systems	03

Teaching Scheme							
C	Credits Assigned						
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03			03			03	

Evaluation Scheme								
Theory					Term Work/Practic al/Oral			Total
	nal Asse		End Sem	Duration of End	TW	PR	OR	
Test1	Test2	Average	Exam	Sem Exam				
20	20	20	80	03 Hrs.				100

Objectives

- 1. To understand conventional and nonconventional fuels & combustion technology.
- 2. To discover energy conservation (ENCON) opportunities in thermal systems.
- 3. To know alternatives for waste energy recovery from energy systems.

- 1. Define the reasons of incomplete combustion and attempt to reduce the subsequent impact.
- 2. Determine ENCON opportunities in thermal systems.
- 3. Measure and improve the quality of recovered waste energy.

Module	Detailed Contents	Hrs.
I	Fuel and Combustion Technology Introduction to Fuels, Properties of Fuel oil, Coal and Gas, Storage, handling and preparation of fuels, Principles of Combustion, Combustion of Oil, Coal, and Gas, Biomass. Calculation of theoretical air quantity, Excess air and CO ₂ in flu gas.	06
II	Steam Systems and ENCON opportunities Properties of steam, Steam distribution losses, Steam leakages, Steam Pipe Sizing and Design, Selection, Operation, Maintenance & Testing of Steam Traps, Condensate and flash steam recovery, Energy conservation (ENCON) opportunities in steam systems	08
Ш	Boilers and ENCON Opportunities IBR boiler specifications, Fire tube, water tube, packaged, stoker fired boiler, Combustion in boilers, Direct & Indirect Method to find boiler efficiency, Blow down types & performance calculations, Feed water treatment, ENCONopportunities, Case study, Fluidized bed combustion (FBC) boiler types and advantages	08

IV	Furnace and ENCON Opportunities Types of furnaces, Heat transfer, Losses in furnace, Direct & Indirect Method to find Efficiency of furnace, Excess air, Heat distribution, Temperature control, Draft control General fuel economy measures in furnaces, Case study	06
v	Insulation and Refractories Insulation-types and application, Economic thickness of insulation, Heat savings and application criteria, Refractory-types, selection and application of refractories, Heat loss.	05
VI	Cogeneration (CG) & Waste Heat Recovery (WHR) Definition, need & principle of CG, technical options of CG, CG cycles, Selection of CG systems, Performance evaluation of CG, Case study, Need of WHR, Waste sources and Quality, Benefits of WHR.	05

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (**on minimum Two Modules**) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carries equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. Energy efficiency in thermal utilities, Book 2, Bureau of Energy Efficiency India.
- 2. Energy performance assessment for equipment & utility systems, Book 4, Bureau of Energy Efficiency India.
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 6. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press

Program Elective 1

Semester I						
Course Code	Course Name	Credits				
ESMPE1011	Utilization of Solar Energy	03				

Teaching Scheme								
Co	Contact Hours				Credits Assigned			
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
03			03			03		

Evaluation Scheme								
Theory					Term Work/Practic			
				al/Oral			Total	
Inter	rnal Asse	ssment	End	Duration				
Test1	Test2	Average	Sem Exam	of End Sem Exam	TW	PR	OR	
20	20	20	80	03 Hrs.				100

Objectives

- 1. To understand Solar Geometry and basic idea of solar energy collection
- 2. To learn different utilities of solar energy
- 3. To summarize economics of solar energy collection systems

- 1. Estimate and quantify available solar radiation
- 2. Judiciously design the solar energy collection system
- 3. Understand basic economics of solar energy systems

Module	Detailed Contents	Hrs.
I	Description of Solar Radiation and its application for thermal utilities as well as PVutilities, availability, measurement and estimation; Isotropic and anisotropic models; empirical relations	08
II	Flat plate collector, concentrating collector, thermal energy storage: steady state anddynamic analysis, process economics	06
III	Solar water heating: active and passive, building heating and cooling, solar drying, solar desalination, Solar Ponds, Industrial Process heating	05
IV	Simulation in solar process design, limitations of simulation, design of active systems by f-chart, utilizability method	06
V	Solar photovoltaic systems, PV generators: characteristics and models, load characteristics and direct coupled systems, maximum power point trackers, applications, design procedure, applications of nano materials/technology in solarenergy	08
VI	Solar Economics: Application of economic methods to analyze the feasibility of solar systems to decide project/policy alternatives, Net energy analysisandcostrequirements for active and passive heating and cooling, electric power generation and for industrial process heating	06

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (**on minimum Two Modules**) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carries equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. S. P. Sukhatme and J K Nayak, **Solar Energy Principles of thermal collection and storage**, 3rd Ed Tata McGraw-Hill, New Delhi.
- 2. J. A. Duffie and W. A. Beckman, **Solar Engineering of Thermal Processes**, 2nd Ed, John Wiley, New York, 1991.
- 3. D. Y. Goswami, F. Kreith and J. F. Kreider, **Principles of Solar Engineering**, Taylor and Francis, Philadelphia, 2000.
- 4. M. S. Sodha, N. K. Bansal, P. K. Bansal, A. Kumar and M. A. S. Malik, **Solar Passive Building: science and design**, Pergamon Press, New York, 1986.
- 5. M. A. S. Malik, G. N. Tiwari, A. Kumar and M.S. Sodha, **Solar Distillation**, Pergamon Press, New York, 1982.
- 6. Soteris A. Kalogirou, **Solar Energy Engineering: Processes and Systems**, Academic Press, 2009

Program Elective 1

Semester I					
Course Code	Course Name	Credits			
ESMPE1012	Cogeneration and Waste Heat Recovery Systems	03			

Teaching Scheme							
C	Contact Hours				Credits Assigned		
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03			03			03	

Evaluation Scheme								
	Theory					Tern	1	
				Work/Practic				
		al/Oral			Total			
Inter	nal Asse	ssment	End	Duration				
			Sem	of End	TW	PR	OR	
Test1	Test2	Average	Exam	Sem	1 **	110	OK	
				Exam				
20	20	20	80	03 Hrs.				100

Objectives

- 1. To understand cogeneration and waste heat recovery techniques
- 2. Learn to check viability of cogeneration and waste heat recovery
- 3. To summarize economics of such systems

- 1. Estimate and quantify available waste heat
- 2. Tap opportunities of waste heat recovery
- 3. Understand economics of cogeneration and waste heat recovery systems

Module	Detailed Contents	Hrs.
I	Cogeneration: Introduction - Principles of Thermodynamics - Combined CyclesTopping -Bottoming - Organic Rankine Cycles - Advantages of CogenerationTechnology	06
П	Application & Techno Economics of Cogeneration: Cogeneration Application invarious process industries. Sizing of waste heat boilers - Performance calculations, Part load characteristics selection of Cogeneration Technologies – Financial Considerations - Operating and Investments - Costs of Cogeneration	08
III	Waste Heat Recovery: Introduction - Principles of Thermodynamics and SecondLaw - sources of Waste Heat recovery - Diesel engines and Power Plant etc. VapourAbsorption systems working on waste heat	07

IV	Waste Heat Recovery Systems: Recuperators - Regenerators - economizers - PlateHeat Exchangers - Waste Heat Boilers-Classification, Location, Service Conditions, Design Considerations, Unfired combined Cycle - supplementaryfiredcombinedcycle - fired combined cycle - fluidized bed heat exchangers - heat pipe exchangers - heat pumps - thermic fluid heaters	06
V	Applications & Techno Economics of Waste Heat Recovery Systems: Applications in industries, selection of waste heat recovery technologies – financialconsiderations, saving potentials of different waste heat sources – operationsandinvestment costs of waste heat recovery	05
VI	Introduction to tri-generation and quad-generation	04

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (on minimum Two Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carries equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. Charles H.Butler, Cogeneration, McGraw Hill Book Co., 1984.
- 2. Horlock JH, Cogeneration-Heat and Power: Thermodynamics and Economics, Oxford, 1987.
- 3. Institute of Fuel, London, Waste Heat Recovery, Chapman & Hall Publishers, London, 1963.
- 4. Sengupta Subrata, Lee SS EDS, **Waste Heat Utilization and Management**, Hemisphere, Washington, 1983.
- 5. De Nevers, Noel., Air Polllution Control Engineering, McGrawHill, New York, 1995.
- 6. I. Pilatowsky, R.J. Romero, C.A. Isaza, S.A. Gamboa, P.J. Sebastian, W. Rivera, **Cogeneration Fuel Cell-Sorption Air Conditioning Systems** (Green Energy and Technology), Springer
- 7. **BEE Reference Book No** 2 and 4, BEE India

Program Elective 1

	Semester I	
Course Code	Course Name	Credits
ESMPE1013	Conventional Power Plant	03

Teaching Scheme								
Co	Contact Hours				Credits Assigned			
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
03			03			03		

				Evaluation S	Scheme			
Theory					Term Work/Practic al/Oral			Total
Inter Test1	rnal Asse Test2	Average	End Duration Sem of End Exam Sem Exam		TW	PR	OR	
20	20	20	80	03 Hrs.				100

Objectives

- 1. To conduct detailed analysis of power plant cycles.
- 2. To understand the advancement in conventional energy systems.
- 3. To conduct economic analysis of energy systems.

- 1. Distinguish between energy & power and understand power plant cycles in detail.
- 2. Understand steam systems and steam power plant installation, operation, maintenance, and life cycle economics.
- 3. Understand power plant installation, operation, maintenance, and life cycle economics.
- 4. Learn the advantages and disadvantages of combined operation of power plants.

Module	Detailed Contents	Hrs.
I	Introduction Energy and Power, Principal types of power plants, Power plant cycles and their classification, Performance Evaluation of Power plant cycles.	06
II	Steam Power Plants Classification, Layout, Essential requirements of Power Station Design, Site Selection, Capacity, Plant arrangement, Useful life of SPP components, SPP pumps, Advantages and Disadvantages, Cost and Economics of SPP	08
Ш	Gas Turbine Power Plants General aspects, Advantages and Disadvantages of GTPP over SPP, Site selection, Classification of GTPP, GTPP fuels, Operation of GTPP, GTPP layout, Effect of operating variables on thermal efficiency, Combined GT and SPP	08
IV	Hydro-Electric Power Plants (HePP) Advantages and disadvantages, Site selection, Essential features/elements of HePP, Classification, Plant layout, Average life of HePP components,	06

	Electrical and Mechanical components, Comparison of HePP and SPP, Underground HePP, Advanced HePP, Safety measures and preventive maintenance, Cost of HePP and hydroelectric power	
v	Nuclear Power Plants General aspects, Nuclear power systems, Main components of NPP, Advantages of NPP, Site selection, Applications, Economics of NPP, Safety measures for NPP,Future of NPP, Nuclear Power Plants in India, Useful byproducts of Nuclear power generator and their uses	06
VI	Combined Operation of Plants General aspects, Advantages of COP, Load division and power stations, Coordination of different power plants, Cost comparison and cost analysis of SPP,GTPP, HePP and NPP	05

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (**on minimum Two Modules**) and the other is either a class test or assignment on live problems or course project or Visit to Non-conventional/conventional Power Plat.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carries equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. El-Walkil M M, Power Plant Engineering, McGraw Hill, New York, 1985
- 2. Power Plant Familiarization, Manual of Central Training Resources Unit of NTPC India, 1991
- 3. P K Nag, Power Plant Engineering, TMH, New Delhi, 1998
- 4. A K Raja, Amit Praksh Shrivastava, Manish Dwivedi, Power Plant Engineering, New Age International Publishers
- 5. M G Jog, Hydro-Electric and Pumped Storage Plants, New Age International Publishers

Program Elective 2

Semester I						
Course Code	Course Name	Credits				
ESMPE1021	Alternative Fuels	03				

Teaching Scheme							
C	ontact Hours	_		Cr	edits Assigne	ed	
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03			03			03	

				Evaluation	Scheme			
Theory					Term Work/Practic al/Oral			Total
Inter	Internal Assessment End Duration							
Test1	Test2	Average	Sem Exam	of End Sem Exam	TW	PR	OR	
20	20	20	80	03 Hrs.				100

Objectives

- 1. To understand socioeconomic and environment aspects of alternative fuels.
- 2. To get knowledge of production of alternative fuels.
- 3. To learn the need for fuel substitution and subsequent benefits.

- 1. To distinguish between types of alternative fuels.
- 2. To determine the quality of biofuels.
- 3. To analyze the impact of alternative fuels on environment.

Module	Detailed Contents	Hrs.
I	Fossil Fuels to Alternative Fuels Reserves of Fossil fuels in India and globe, Disadvantages of Fossil fuels, Need of Alternative fuels, Types, Advantages, Sources of Alternative fuels.	06
II	Advanced Liquid Biofuels Raw material for biofuel production, Biomass and Waste, First and next generationbiofuels, Conversion of lignocellulosic, algal biomass, and waste into biofuels andchemicals, Production of Biodiesel, Bio alcohol, Jatropha Fuel Applications.	08
III	Advanced Gaseous Biofuels Bio-CNG from sugarcane, Synthetic gas SynGas, generation of SynGasthroughplasma gasification of plastic waste, Applications.	06
IV	Hydrogen Technology Hydrogen as Alternative fuel, Hydrogen storage, hydrogen liquefaction, ortho andpara hydrogen, Non-fossil Natural gas and methane, Applications.	06
V	Fuel Cells Principle & operation of Fuel cells, Thermodynamics of fuel cells, types of fuelcells, comparison of fuel cell technologies, stack configurations and fuel cellsystems, Applications.	06
VI	Alternative Fuels and Environmental Impact Climate change, Benefits of alternative fuel to environment, Environmental impactassessment.	04

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (**on minimum Two Modules**) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carries equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. Sunggyu Lee, Alternative Fuels, Applied Energy Technology Series, CRC Press
- 2. Sunggyu Lee, James G. Speight, Sudarshan K. Loyalka, **Handbook of Alternative Fuel Technologies**, CRC Press
- 3. Vishwanathan B and M AuliceScibioh, Fuel Cells, Universities Press, Hyderabad, 2006
- $\hbox{4. Gupta R B,} \textbf{Hydrogenfuel:} \textbf{Production, transport and storage}, \ Boca \ Raton: CRC \ Press, \\ 2008$
- 5. **Fuel Cell System**, edited by Leo J.M.J. Blomen and michael N. Mugerwa, New York, Plenum Press, 1993.
- 6. Michael Frank Hordeski, **Alternative Fuels-The Future of Hydrogen**, The Fairmont Press, Inc., CRC Press
- 7. G.N. Tiwari, M.K. Ghosal, **Fundamentals of Renewable Energy Sources**, Alpha Science Intnl. Ltd., 2007
- 8. PrabirBasu; **Biomass gasification and pyrolysis: Practical design and theory**; Elsevier, 2010
- 9. Sergio Capareda, Introduction to Biomass Energy Conversions, CRC Press, 2013
- 10. H S Mukunda, Understanding Clean Energy and Fuels from Biomass, Wiley India
- 11. Sobh Nath Singh, Non-Conventional Energy Resources, Pearson Education
- 12. Nijaguna, B.T., **Biogas Technology**, New Age International publishers (P) Ltd.
- 13. Alternative Fuel, Edited by MaximinoManzanera, ISBN 978-953-307-372-9, Publisher InTech, Published August 09, 2011 under CC BY-NC-SA, Edited Volume, Open Access, http://www.intechopen.com/books/alternative-fuel

Program Elective 2

Semester I					
Course Code	Course Name	Credits			
ESMPE1022	Energy Systems Modeling andAnalysis	03			

Teaching Scheme							
C	Credits Assigned						
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03			03			03	

	Evaluation Scheme							
Theory				Term Work/Practic al/Oral			Total	
Test1	rnal Asse Test2	Average	End Sem Exam	Duration of End Sem Exam	TW PR		OR	
20	20	20	80	03 Hrs.				100

Objectives

- 1. To model and simulate the energy systems for performance improvement analysis.
- 2. To apply quantitative techniques for optimization of operating parameters in energy system.
- 3. To use economic techniques for energy model development.

- 1. Understand model development process and its application in energy systems.
- 2. Apply quantitative technique in energy systems planning, operation and maintenance.
- 3. Simulate the conventional and sustainable energy systems.

Module	Detailed Contents	Hrs.
I	Modeling overview Levels of analysis, steps in model development, examples of models, Need for Energy System Modeling.	04
II	Quantitative techniques Interpolation-polynomial, Lagrangian, Curve fitting, regression analysis, solution oftranscendental equations.	06
III	Systems Simulation Information flow diagram, solution of set of nonlinear algebraic equations, successive substitution, Newton Raphson. Examples of energy systems simulation. Numerical solution of Differential equations- Overview, Convergence, Accuracy. Transient analysis- application example	08
IV	Optimization Objectives/constraints, problem formulation. Unconstrained problems- Necessary & Sufficiency conditions. Constrained Optimization- Lagrange multipliers, constrained variations, Kuhn-Tucker conditions, Linear Programming - Simplex tableau, pivoting, sensitivity analysis. Dynamic Programming. Search Techniques Univariate / Multivariate	08
v	Case studies of optimization in Energy systems problems. Dealing with uncertainty probabilistic techniques. Trade-offs between capital & energy using Pinch Analysis	06
VI	Energy- Economy Models: Scenario Generation, Input Output Model	04

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (on minimum Two Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carries equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. Yogesh Jaluria, Design and Optimization of Thermal Systems, McGraw-Hill international editions, 1998
- 2. Stoecker W F, Design of Thermal Systems, Mcgraw Hill, 1981
- 3. S.S.Rao, Optimisation Theory and Applications, Wiley Eastern, 1990
- 4. S.S. Sastry, Introductory Methods of Numerical Analysis, Prentice Hall, 1988
- 5. P. Meier, Energy Systems Analysis for Developing Countries, Springer Verlag, 1984
- 6. R.de Neufville, Applied Systems Analysis, Mcgraw Hill, International Edition, 1990
- 7. Beveridge and Schechter, Optimisation Theory and Practice, Mcgraw Hill, 1970

Program Elective 2

Semester I					
Course Code	Course Name	Credits			
ESMPE1023	Biomass and Wind Energy	03			

Teaching Scheme							
Co	Credits Assigned						
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03			03			03	

Evaluation Scheme								
Theory				Term Work/Practic al/Oral			Total	
Inter Test1	Internal Assessment Test1 Test2 Average		End Sem Exam	Duration of End Sem Exam	TW	PR	OR	
20	20	20	80	03 Hrs.				100

- 1. Understand potential and scope of biomass energy.
- 2. Understand and design thermochemical and biochemical biomass energy conversion systems.
- 3. Understand and analyse wind resource and wind energy statistics.
- 4. Understand and apply wind turbine design methods.

Module	Detailed Contents	Hrs.
I	Biomass Resources Indian national program- thrust areas of MNRE; economics aspects; Biomass types and availability in India; properties- calorific value, proximate and ultimate analysis	04
II	Thermochemical Conversion of Biomass Methods of combustion in boilers, pyrolysis- for char, oil and gas; air gasification- types of gasifiers; thermal and engine applications of producer gas	06
III	Bio Chemical Conversion Biogas production by anaerobic digestion-fixed dome, floating dome plants; bio-methanation of liquid effluents; ethanol production from sugarcane juiceand corn; biogas and ethanol as fuels	07
IV	Wind Energy Wind and its Structure- Weibull and Rayleigh Statistics- Measurements and data presentation; wind turbine power curve	07
V	Aerodynamics Aerodynamics- Linear momentum Theory- Betz limit, torque and thrust; Basic Aerodynamics- Airfoil lift and drag force for HAWT- Blade element Theory	06
VI	VAWTs, wind turbine applications, economics of wind farms	04

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (on minimum Two Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carries equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- J. Twidell and T. Weir, Renewable Energy Resources, Taylor and Francis (special Indian edition) 2006
- 2. V.V. N. Kishore (Editor), Renewable Energy Engineering and Technology: Principles and Practice, TERI Publications
- 3. Handbook of downdraft gasifier-engine systems, T.B. Reed, SERI, USA
- 4. PrabirBasu, "Biomass gasification and pyrolysis", Academic Press, Elesevier, 2010
- 5. Hans P. Blaschek, T. Ezeji, J. Scheffran, Biofuels from agricultural wastes and byproducts, Wiley- Blackwell, 2010
- 6. L.L.Feris, Wind Energy Conversion Systems, Prentice Hall, 1990.
- 7. D.A. Spera, Wind Turbine Technology: Fundamental Concepts of Wind Turbine Engineering, ASMEPress.
- 8. Gilbert M. Masters, Renewable and efficient electric power systems, Prentice-Hall
- 9. S. C. Capareda: Introduction to Biomass Energy Conversions; CRC Press, 2013

Institute Level Optional Courses (ILOC)

Semester I					
Course Code	Course Name	Credits			
ESMIE1011	Product Life Cycle Management	03			

Teaching Scheme							
C	Credits Assigned						
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03			03			03	

	Evaluation Scheme							
		Theory			Tern	1		
					Work/Practic			
				al/Oral			Total	
Inter	nal Asse	ssment	End	Duration	n			
			Sem	of End TW PR		PR	OR	
Test1	Test2	Average	Exam	Sem	1 **		· OK	
				Exam				
20	20	20	80	03 Hrs.				100

Objectives:

- 1. To familiarize the students with the need, benefits and components of PLM
- 2. To acquaint students with Product Data Management & PLM strategies
- 3. To give insights into new product development program and guidelines for designing and developing a product
- 4. To familiarize the students with Virtual Product Development

- 1. Gain knowledge about phases of PLM, PLM strategies and methodology for PLM feasibility study and PDM implementation.
- 2. Illustrate various approaches and techniques for designing and developing products.
- 3. Apply product engineering guidelines / thumb rules in designing products for moulding, machining, sheet metal working etc.
- 4. Acquire knowledge in applying virtual product development tools for components, machining and manufacturing plant

Module	Detailed Contents	Hrs.
I	Introduction to Product Lifecycle Management (PLM): Product Lifecycle Management (PLM), Need for PLM, Product Lifecycle Phases, Opportunities of Globalization, Pre-PLM Environment, PLM Paradigm, Importance & Benefits of PLM, Widespread Impact of PLM, Focus and Application, A PLM Project, Starting the PLM Initiative, PLM Applications PLM Strategies: Industrial strategies, Strategy elements, its identification, selection and implementation, Developing PLM Vision and PLM Strategy, Change management for PLM	04
II	Product Design: Product Design and Development Process, Engineering Design, Organization and Decomposition in Product Design, Typologies of Design Process Models, Reference Model, Product Design in the Context of	06

	the Product Development Process, Relation with the Development Process Planning Phase, Relation with the Post design Planning Phase, Methodological Evolution in Product Design, Concurrent Engineering, Characteristic Features of Concurrent Engineering, Concurrent Engineering and Life Cycle Approach, New Product Development (NPD) and Strategies, Product Configuration and Variant Management, The Design for X System, Objective Properties and Design for X Tools, Choice of Design for X Tools and Their Use in the Design Process	
III	Product Data Management (PDM): Product and Product Data, PDM systems and importance, Components of PDM, Reason for implementing a PDM system, financial justification of PDM, barriers to PDM implementation	07
IV	Virtual Product Development Tools: For components, machines, and manufacturing plants, 3D CAD systems and realistic rendering techniques, Digital mock-up, Model building, Model analysis, Modeling and simulations in Product Design, Examples/Case studies	07
v	Integration of Environmental Aspects in Product Design: Sustainable Development, Design for Environment, Need for Life Cycle Environmental Strategies, Useful Life Extension Strategies, End-of-Life Strategies, Introduction of Environmental Strategies into the Design Process, Life Cycle Environmental Strategies and Considerations for Product Design	06
VI	Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and Framework of CA, Phases of LCA in ISO Standards, Fields of Application and Limitations of Lifecycle Assessment, Cost Analysis and the Life Cycle Approach, General Framework for LCCA, Evolution of Models for Product Life Cycle Cost Analysis	06

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (**on minimum Two Modules**) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carries equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

REFERENCES:

- 1. John Stark, "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, Antonino Risitano, "Product Design for the environment-A life cycle approach", Taylor & Francis 2006, ISBN: 0849327229
- 3. Saaksvuori Antti, ImmonenAnselmie, "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, "Product Lifecycle Management: Driving the next generation of lean thinking", Tata McGraw Hill, 2006, ISBN: 0070636265

Institute Level Optional Courses (ILOC)

Semester I						
Course Code	Course Name	Credits				
ESMIE1012	Reliability Engineering	03				

Teaching Scheme								
C	Contact Hours				Credits Assigned			
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
03			03			03		

				Evaluation	Scheme			
		Theory	,	Term Work/Practic al/Oral			Total	
Inter Test1	rnal Asse Test2	Average	End Sem Exam	Duration of End Sem Exam	TW	PR	OR	
20	20	20	80	03 Hrs.				100

Objectives:

- 1. Tofamiliarizethestudentswithvariousaspectsofprobability theory
- 2. Toacquaintthestudentswithreliabilityanditsconcepts
- 3. Tointroducethestudentstomethodsofestimatingthesystemreliabilityo fsimpleandcomplexsystems
- 4. Tounderstandthe various aspectsofMaintainability, Availability andFMEAprocedure

- 1. Applythe concept of Probability to engineering problems
- 2. Applyvarious reliability concepts to calculate different reliability parameters
- 3. Estimatethesystemreliability of simpleand complex systems
- 4. Carry outaFailureModeEffectandCriticalityAnalysis

Module	Detailed	Hrs				
	Contents					
	Probability theory: Probability: Standard definitions and concepts;					
	ConditionalProbability,Baye's Theorem.					
т	ProbabilityDistributions: CentraltendencyandDispersion;Binomial,Normal,Po	00				
I	isson, Weibull, Exponential, relations betweenthemandtheir significance.	08				
	MeasuresofDispersion: Mean, Median, Mode, Range, MeanDeviation, StandardD					
	eviation, Variance, Skewness and Kurtosis.					
	Reliability Concepts: Reliability definitions, Importance of Reliability, Quality Ass					
	uranceand Reliability,Bath Tub Curve.					
II	FailureDataAnalysis:Hazardrate,failuredensity,FailureRate,MeanTimeTo Failure(MTTF), MTBF, Reliability Functions. ReliabilityHazardModels:ConstantFailureRate,Linearlyincreasing,TimeDepe					
11						
	ndentFailureRate,WeibullModel.Distributionfunctionsandreliabilityanalysis.					
III	SystemReliability:SystemConfigurations:Series,parallel,mixedconfiguration,k	05				
111	outofnstructure,Complexsystems.	05				

IV	ReliabilityImprovement:RedundancyTechniques:Elementredundancy,Unitred undancy,Standbyredundancies. Markov analysis.SystemReliability Analysis—Enumerationmethod,Cut-setmethod,SuccessPathmethod,Decompositionmethod.	08
v	MaintainabilityandAvailability: Systemdowntime, DesignforMaintainability: Maintenance requirements, Design methods: Fault Isolation and self-diagnostics, PartsstandardizationandInterchangeability, ModularizationandAccessibility, RepairVsReplacement. Availability—qualitative aspects.	05
VI	FailureMode,EffectsandCriticalityAnalysis: Failuremodeeffectsanalysis,sev erity/criticality analysis, FMECA examples. Fault tree construction, basic symbols,developmentoffunctionalreliabilityblockdiagram,Fau1ttreeanalysisan dEventtreeAnalysis	05

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carries equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part(b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. L.S. Srinath, "Reliability Engineering", Affiliated East-Wast Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill.
- 3. B.S. Dhillion, C. Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T. Conor, "Practical Reliability Engg.", John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, "Reliability in Engineering Design", John Wiley & Sons.
- 6. Murray R. Spiegel, "Probability and Statistics", Tata McGraw-Hill Publishing Co. Ltd.

Institute Level Optional Courses (ILOC)

Semester I						
Course Code	Course Name	Credits				
ESMIE1013	ManagementInformationSystem	03				

Teaching Scheme								
C	Contact Hours				Credits Assigned			
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
03			03			03		

Evaluation Scheme								
Theory					Term Work/Practic al/Oral			Total
Test1	rnal Asse Test2	Average	Sem of		TW	PR	OR	
20	20	20	80	03 Hrs.				100

Objectives:

- 1. The course is blend of Management and Technical field.
- 2. Discuss the roles played by information technology in today's business and define various technology architectures on which information systems are built
- 3. Define and analyze typical functional information systems and identify how they meet the needs of the firm to deliver efficiency and competitive advantage
- 4. Identify the basic steps in systems development

- 1. Explain how information systems Transform Business
- 2. Identify the impact information systems have on an organization
- 3. Describe IT infrastructure and its components and its current trends
- 4. Understand the principal tools and technologies for accessing information from databases to improve business performance and decision making
- 5. Identify the types of systems used for enterprise-wide knowledge management and how they provide value for businesses

Module	Detailed Contents	Hrs.
I	Introduction To Information Systems (IS): Computer Based Information Systems, Impact of IT on organizations, Importance of IS to Society. Organizational Strategy, Competitive Advantages and IS.	04
II	Data and Knowledge Management: Database Approach, Big Data, Data warehouse and Data Marts, Knowledge Management. Business intelligence (BI): Managers and Decision Making, BI for Data analysis and Presenting Results	06
III	Ethical issues and Privacy: Information Security. Threat to IS, and Security Controls	07
IV	Social Computing (SC): Web 2.0 and 3.0, SC in business-shopping, Marketing, Operational and Analytic CRM, E-business and E-commerce – B2B B2C. Mobile commerce.	07
V	Computer Networks Wired and Wireless technology, Pervasive computing, Cloud computing model.	06

VI

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (**on minimum Two Modules**) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six questions
- 2. All questionscarries equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

REFERENCES:

- 1. Kelly Rainer, Brad Prince, Management Information Systems, Wiley
- 2. K.C. Laudon and J.P. Laudon, Management Information Systems: Managing the Digital Firm, 10th Ed., Prentice Hall, 2007.
- 3. D. Boddy, A. Boonstra, Managing Information Systems: Strategy and Organization, Prentice Hall, 2008

Institute Level Optional Courses (ILOC)

Semester I				
Course Code	Course Name	Credits		
ESMIE1014	Design of Experiments	03		

Teaching Scheme							
Contact Hours			Credits Assigned				
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03			03			03	

Evaluation Scheme								
Theory					Term Work/Practic al/Oral			Total
Inter	Internal Assessment			Duration				
Test1	Test2	Average	Sem Exam	of End Sem Exam	TW	PR	OR	
20	20	20	80	03 Hrs.				100

Objectives:

- 1. To understand the issues and principles of Design of Experiments (DOE)
- 2. To list the guidelines for designing experiments
- 3. To become familiar with methodologies that can be used in conjunction with experimental designs for robustness and optimization

- 1. Plan data collection, to turn data into information and to make decisions that lead to appropriate action
- 2. Apply the methods taught to real life situations
- 3. Plan, analyze, and interpret the results of experiments

Module	Detailed Contents	Hrs.
I	Introduction 1.1 Strategy of Experimentation 1.2 Typical Applications of Experimental Design 1.3 Guidelines for Designing Experiments 1.4 Response Surface Methodology	04
II	Fitting Regression Models 2.1 Linear Regression Models 2.2 Estimation of the Parameters in Linear Regression Models 2.3 Hypothesis Testing in Multiple Regression 2.4 Confidence Intervals in Multiple Regression 2.5 Prediction of new response observation 2.6 Regression model diagnostics 2.7 Testing for lack of fit	06
III	Two-Level Factorial Designs and Analysis 3.1 The 2 ₂ Design 3.2 The 2 ₃ Design 3.3 The General2 _k Design 3.4 A Single Replicate of the 2 _k Design 3.5 The Addition of Center Points to the 2 _k Design,	07

	3.6 Blocking in the 2k Factorial Design	
	3.7 Split-Plot Designs	
	Two-Level Fractional Factorial Designs and Analysis	
	4.1 The One-Half Fraction of the 2k Design	
	4.2 The One-Quarter Fraction of the 2k Design	
IV	4.3 The General 2 _{k-p} Fractional Factorial Design	07
	4.4 Resolution III Designs	
	4.5 Resolution IV and V Designs	
	4.6 Fractional Factorial Split-Plot Designs	
	Conducting Tests	
	5.1 Testing Logistics	
\mathbf{v}	5.2 Statistical aspects of conducting tests	06
•	5.3 Characteristics of good and bad data sets	00
	5.4 Example experiments	
	5.5 Attribute Vs Variable data sets	
	Taguchi Approach	
VI	6.1 Crossed Array Designs and Signal-to-Noise Ratios	06
V1	6.2 Analysis Methods	00
	6.3 Robust design examples	

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (**on minimum Two Modules**) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carries equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

REFERENCES:

- 1. Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rdedition, John Wiley & Sons, New York, 2001
- 2. D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley
- $4.\ W$ J Dimond, Peactical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- 5. Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T.Voss

Semester I					
Course Code	Course Name	Credits			
ESMIE1015	Operations Research	03			

Teaching Scheme							
Contact Hours Credits Assigned					ed		
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
03			03 03				

Evaluation Scheme								
Theory					Term Work/Practic al/Oral			Total
Inter Test1	rnal Asse Test2	Average	End Sem Exam	Duration of End Sem Exam	TW	PR	OR	
20	20	20	80	03 Hrs.				100

Objectives:

- 1. Formulate a real-world problem as a mathematical programming model.
- 2. Understand the mathematical tools that are needed to solve optimization problems.
- 3. Use mathematical software to solve the proposed models.

- 1. Understand the theoretical workings of the simplex method, the relationship between a linear program and its dual, including strong duality and complementary slackness.
- 2. Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change.
- 3. Solve specialized linear programming problems like the transportation and assignment problems, solve network models like the shortest path, minimum spanning tree, and maximum flow problems.
- 4. Understand the applications of integer programming and a queuing model and compute important performance measures

Module	Detailed Contents	Hrs.
	Introduction to Operations Research: Introduction, , Structure of	
	the Mathematical Model, Limitations of Operations Research	
	Linear Programming : Introduction, Linear Programming Problem,	
	Requirements of LPP, Mathematical Formulation of LPP, Graphical method,	
	Simplex Method PenaltyCost Method or Big M-method, Two Phase	
	Method, Revised simplex method,	
	Duality , Primal – Dual construction, Symmetric and Asymmetric Dual,	
	Weak DualityTheorem, Complimentary Slackness Theorem, Main Duality	
I	Theorem, Dual SimplexMethod, Sensitivity Analysis	12
	Transportation Problem: Formulation, solution, unbalanced	
	Transportation problem. Finding basic feasible solutions – Northwest corner	
	rule, least cost method and Vogel'sapproximation method. Optimality test:	
	the stepping stone method and MODI method.	
	Assignment Problem: Introduction, Mathematical Formulation of the	
	Problem, Hungarian Method Algorithm, Processing of n Jobs Through Two	
	Machines and mMachines, Graphical Method of Two Jobs m Machines	
1	Problem Routing Problem, Travelling Salesman Problem	

	Integer Programming Problem: Introduction, Types of Integer ProgrammingProblems, Gomory's cutting plane Algorithm, Branch and Bound Technique.Introduction to Decomposition algorithms.	
II	Queuing models : queuing systems and structures, single server and multi-servermodels, Poisson input, exponential service, constant rate service, finite and infinitepopulation	04
III	Simulation : Introduction, Methodology of Simulation, Basic Concepts, SimulationProcedure, Application of Simulation Monte-Carlo Method: Introduction, Monte-CarloSimulation, Applications of Simulation, Advantages of Simulation, Limitations of Simulation	04
IV	Dynamic programming . Characteristics of dynamic programming. Dynamicprogramming approach for Priority Management employment smoothening, capitalbudgeting, Stage Coach/Shortest Path, cargo loading and Reliability problems.	04
V	Game Theory. Competitive games, rectangular game, saddle point, minimax(maximin) method of optimal strategies, value of the game. Solution of games withsaddle points, dominance principle. Rectangular games without saddle point – mixedstrategy for 2 X 2 games.	04
VI	Inventory Models: Classical EOQ Models, EOQ Model with Price Breaks, EOQ withShortage, Probabilistic EOQ Model,	04

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (**on minimum Two Modules**) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carries equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

REFERENCES:

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009.
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill, 2002.
- 4. Operations Research, S. D. Sharma, KedarNath Ram Nath-Meerut.
- 5. Operations Research, KantiSwarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons.

	Semester I	
Course Code	Course Name	Credits
ESMIE1016	Cyber Security and Laws	03

Teaching Scheme							
Contact Hours Credits Assigned					ed		
Theory	Practical	Tutorial	Theory Practical Tutorial Total			Total	
03	03 03 03						

Evaluation Scheme								
Theory				Term Work/Practic al/Oral		actic	Total	
Inter Test1	rnal Asse Test2	Average	End Sem Exam	Duration of End Sem Exam			OR	
20	20	20	80	03 Hrs.				100

Objectives:

- 1. To understand and identify different types cybercrime and cyber law
- 2. To recognized Indian IT Act 2008 and its latest amendments
- 3. To learn various types of security standards compliances

- 1. Understand the concept of cybercrime and its effect on outside world
- 2. Interpret and apply IT law in various legal issues
- 3. Distinguish different aspects of cyber law
- 4. Apply Information Security Standards compliance during software design and development

Module	Detailed Contents	Hrs.
I	Introduction to Cybercrime: Cybercrime definition and origins of the world, Cybercrime and information security, Classifications of cybercrime, Cybercrime and the Indian ITA 2000, A global Perspective on cybercrimes.	04
II	Cyber offenses & Cybercrime: How criminal plan the attacks, Social Engg, Cyberstalking, Cybercafé and Cybercrimes, Botnets, Attack vector, Cloud computing, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit Card FraudsinMobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks onMobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Devices-Related Security Issues, Organizational Security Policies and Measures in Mobile Computing Era, Laptops	08
Ш	Tools and Methods Used in Cyberline Phishing, Password Cracking, Key loggers and Spywares, Virus and Worms, Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Over Flow, Attacks on Wireless Networks, Phishing, Identity Theft (ID Theft)	06

IV	The Concept of Cyberspace E-Commerce, The Contract Aspects in Cyber Law, The Security Aspect of Cyber Law, The Intellectual Property Aspect in Cyber Law , The Evidence Aspect in Cyber Law, The Criminal Aspect in Cyber Law, GlobalTrends in Cyber Law, Legal Framework for Electronic Data Interchange Law Relatingto Electronic Banking, The Need for an Indian Cyber Law	06
V	Indian IT Act. Cyber Crime and Criminal Justice: Penalties, Adjudication and Appeals Under the ITAct, 2000, IT Act. 2008 and its Amendments	04
VI	Information Security Standard compliances SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.	04

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (**on minimum Two Modules**) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carries equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

REFERENCES:

- 1. Nina Godbole, SunitBelapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, Cyber Security & Global Information Assurance Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication
- 8. Websites for more information is available on : The Information Technology ACT, 2008- TIFR : https://www.tifrh.res.in
- 9. Website for more information , A Compliance Primer for IT professional : https://www.sans.org/reading-room/whitepapers/compliance-primer-professionals-33538

	Semester I					
Course Code	Course Name	Credits				
ESMIE1017	Disaster Management and Mitigation Measures	03				

Teaching Scheme							
C	Credits Assigned						
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03			03			03	

				Evaluation	Scheme			
Theory				Term Work/Practic al/Oral			Total	
Internal AssessmentTest1Test2Average		End Sem Exam	Duration of End Sem Exam	TW	PR	OR		
20	20	20	80	03 Hrs.				100

Objectives:

- 1. To understand physics and various types of disaster occurring around the world
- 2. To identify extent and damaging capacity of a disaster
- 3. To study and understand the means of losses and methods to overcome /minimize it.
- 4. To understand role of individual and various organization during and after disaster
- 5. To understand application of GIS in the field of disaster management
- 6. To understand the emergency government response structures before, during and after disaster

- 1. Get to know natural as well as manmade disaster and their extent and possible effects on the economy.
- 2. Plan of national importance structures based upon the previous history.
- 3. Get acquainted with government policies, acts and various organizational structure associated with an emergency.
- 4. Get to know the simple do's and don'ts in such extreme events and act accordingly.

Module	Detailed Contents	Hrs.
I	Introduction Definition of Disaster, hazard, global and Indian scenario, general perspective,importance of study in human life, Direct and indirect effects of disasters, long termeffects of disasters. Introduction to global warming and climate change.	04
II	Natural Disaster and Manmade disasters: 2.1 Natural Disaster: Meaning and nature of natural disaster, Flood, Flash flood, drought, cloud burst, Earthquake, Landslides, Avalanches, Volcanic eruptions, Mudflow, Cyclone, Storm, Storm Surge, climate change, global warming, sea level rise, ozone depletion 2.2 Manmade Disasters: Chemical, Industrial, Nuclear and Fire Hazards. Role of growing population and subsequent industrialization, urbanization and changing lifestyle of human beings in frequent occurrences of manmade disasters.	08

III	Disaster Management, Policy and Administration 3.1 Disaster management: meaning, concept, importance, objective of disaster management policy, disaster risks in India, Paradigm shift in disaster management. 3.2 Policy and administration: Importance and principles of disaster management policies, command and coordination of in disaster management, rescue operations-how to start with and how to proceed in due course of time, study of flowchart showing the entire process.	06
IV	Institutional Framework for Disaster Management in India: 4.1 Importance of public awareness, Preparation and execution of emergency management program. Scope and responsibilities of National Institute of Disaster Management(NIDM) and National disaster management authority (NDMA) in India. Methods and measures to avoid disasters, Management of casualties, set up of emergency facilities, importance of effective communication amongst different agencies in such situations. 4.2 Use of Internet and software's for effective disaster management. Applications of GIS,Remote sensing and GPS in this regard.	06
V	Financing Relief Measures: 5.1 Ways to raise finance for relief expenditure, role of government agencies and NGO's in this process, Legal aspects related to finance raising as well as overall management of disasters. Various NGO's and the works they have carried out in the past on the occurrence of various disasters, Ways to approach these teams. 5.2 International relief aid agencies and their role in extreme events.	07
VI	Preventive and Mitigation Measures: 6.1 Pre-disaster, during disaster and post-disaster measures in some events in general 6.2 Structural mapping: Risk mapping, assessment and analysis, sea walls and embankments, Bio shield, shelters, early warning and communication 6.3 Non Structural Mitigation: Community based disaster preparedness, risk transfer and risk financing, capacity development and training, awareness and education, contingency plans. 6.4 Do's and don'ts in case of disasters and effective implementation of relief aids.	05

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (**on minimum Two Modules**) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carries equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

REFERENCES:

- 1. 'Disaster Management' by Harsh K. Gupta, Universities Press Publications.
- 2. 'Disaster Management: An Appraisal of Institutional Mechanisms in India' by O.S.Dagur, published by Centre for land warfare studies, New Delhi, 2011.
- 3. 'Introduction to International Disaster Management' by Damon Copolla, Butterworth Heinemann Elsevier Publications.
- 4. 'Disaster Management Handbook' by Jack Pinkowski, CRC Press Taylor and Francis group.
- 5. 'Disaster management & rehabilitation' by RajdeepDasgupta, Mittal Publications, New Delhi.
- 6. 'Natural Hazards and Disaster Management, Vulnerability and Mitigation R B Singh, Rawat Publications
- 7. Concepts and Techniques of GIS –C.P.Lo Albert, K.W. Yonng Prentice Hall (India) Publications. (Learners are expected to refer reports published at national and International level and updated informationavailable on authentic web sites)

Semester I						
Course Code	Course Name	Credits				
ESMIE1018	Energy Audit and Management	03				

Teaching Scheme							
C	Credits Assigned						
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03			03			03	

				Evaluation S	Scheme			
Theory				Term Work/Practic al/Oral			Total	
Inter Test1	Internal AssessmentTest1Test2Average		End Sem Exam	Duration of End Sem Exam	TW	PR	OR	
20	20	20	80	03 Hrs.				100

Objectives:

- 1. To understand the importance energy security for sustainable development and the fundamentals of energy conservation.
- 2. To introduce performance evaluation criteria of various electrical and thermal installations to facilitate the energy management
- 3. To relate the data collected during performance evaluation of systems for identification of energy saving opportunities.

- 1. To identify and describe present state of energy security and its importance.
- 2. To identify and describe the basic principles and methodologies adopted in energy audit of an utility.
- 3. To describe the energy performance evaluation of some common electrical installations and identify the energy saving opportunities.
- 4. To describe the energy performance evaluation of some common thermal installations and identify the energy saving opportunities
- 5. To analyze the data collected during performance evaluation and recommend energy saving measures

Module	Detailed Contents	Hrs.
I	Energy Scenario: Present Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy Security, Energy Conservation and its Importance, Energy Conservation Act-2001 and its Features. Basics of Energy and its various forms, Material and Energy balance	04
II	Energy Audit Principles: Definition, Energy audit- need, Types of energy audit, Energy management (audit)approach-understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution. Elements of monitoring&targeting Energy audit Instruments; Data and information-analysis. Financial analysis techniques: Simple payback period, NPV, Return on investment(ROI), Internal rate of return (IRR)	08

Ш	Energy Management and Energy Conservation in Electrical System: Electricity billing, Electrical load management and maximum demand Control; Power factor improvement, Energy efficient equipment and appliances, star ratings. Energy efficiency measures in lighting system, Lighting control: Occupancy sensors, daylight integration, and use of intelligent controllers. Energy conservation opportunities in: water pumps, industrial drives, induction motors, motor retrofitting, soft starters, variable speed drives.	06
IV	Energy Management and Energy Conservation in Thermal Systems: Review of different thermal loads; Energy conservation opportunities in: Steam distribution system, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system. General fuel economy measures in Boilers and furnaces, Waste heat recovery, use of insulation- types and application. HVAC system: Coefficient of performance, Capacity, factors affecting Refrigeration and Air Conditioning system performance and savings opportunities.	06
V	Energy Performance Assessment: On site Performance evaluation techniques, Case studies based on: Motors and variable speed drive, pumps, HVAC system calculations; Lighting System: Installed Load Efficacy Ratio (ILER) method, Financial Analysis.	07
VI	Energy conservation in Buildings: Energy Conservation Building Codes (ECBC): Green Building, LEED rating, Application of Non-Conventional and Renewable Energy Sources	05

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (**on minimum Two Modules**) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carries equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

REFERENCES:

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B.Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

	Semester I						
Course Code	Course Name	Credits					
ESML101	Energy System Modelling and Simulation Lab	01					

Teaching Scheme						
Co	Credits Assigned					
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
	02			01		01

				Evaluation S	Scheme			
Theory				Term Work/Practic al/Oral			Total	
Internal AssessmentTest1Test2Average		End Sem Exam	Duration of End Sem Exam	TW	PR	OR		
					25	25		50

Simulation study using mathematical simulation software (or any programming language)

- 1. Study of Different Modeling Techniques practiced in Power Plant Engineering
- 2. Simulation study using Mathematical Simulation Software (or any programming language) on any two conventional power plants
- 3. Simulation study of any two non-conventional power plant
- 4. Visit to Power Plant Control Room to Understand Automated Control System in Power Plant and prepare visit report.

Assessment:

End Semester Examination: Practical/Oral examination is to be conducted by pair of internal and external examiners

Semester I						
Course Code	Course Name	Credits				
ESMSBL101	Energy Audit Lab	02				

Teaching Scheme							
C	Credits Assigned						
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
	04			02		02	

				Evaluation	Scheme			
Theory					Term Work/Practic al/Oral			Total
Test1	rnal Asse Test2	Average	End Sem Exam	Duration of End Sem Exam	TW	PR	OR	
					50	50		100

The following experiments are performed and readings must be entered in the energy audit report format.

- 1. Finding energy saving potential from specific power consumption and EER of Air conditioner.
- 2. Illuminance calculation and lighting design for an interior.
- 3. Centrifugal Pump efficiency calculation and ENCON opportunities.
- 4. 3- Φ /1- Φ motor loading calculation and ENCON opportunities.
- 5. Fan/Blower efficiency calculation and ENCON opportunities.
- 6. Performance testing of Air compressor and ENCON opportunities.
- 7. Leakage testing of Air compressor and ENCON opportunities.
- 8. Study of an Electricity bill and ENCON opportunities.

Assessment:

End Semester Examination: Practical/Oral examination is to be conducted by pair of internal and external examiners

	Semester II						
Course Code	Course Name	Credits					
ESMC201	Advances in Energy Management & Audit	03					

Teaching Scheme							
C	Credits Assigned						
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03			03			03	

Evaluation Scheme								
		Theory		Term Work/Practic al/Oral			Total	
Inter Test1	rnal Asse Test2	Sem Control Sem Exam		Duration of End Sem Exam	TW	PR	OR	10001
20	20	20	80	03 Hrs.				100

Objectives

- 1. To collect and analyze the energy audit dataeffectively
- 2. To understand the mechanism of PATcycle.
- 3. To become certified energy manager and auditor.

- 1. Understand detailed energy auditing procedure and distinguish between energy auditing stages.
- 2. Monitor and setting target of energyconsumption.
- 3. Know the framework of PAT cycle and understand M&Vaudit
- 4. Carry out commercial energy audits.

Module	Detailed Contents	Hrs.
	Energy Management and Audit Methodology	
I	Energy Audit and Management, Energy audit Inquiry Generation, Walk in Audit, Preliminary Energy audit, Detailed Energy Audit, Targeted Energy Audit, Financial feasibility and Economic Approach, Energy Audit Report Format, Case study.	06
II	Categories of Energy Manager and Auditor	
	Energy Manager (EM), Energy Auditor (EA) certification in India, Duties and responsibilities of EM and EA, Accredited Energy Auditor (AEA), Empaneled AEA, BEE (The manner and intervals of time for conduct of energy audit) Regulations, 2008.	08
III	Energy Monitoring and Targeting (EMT) Definition of EMT, Elements of EMT system, Decision Making of EMT, Data information sources, Data analysis, Statistical representation of Energy consumption and Production, Least square method, Correlation & regression, CUSUM technique.	10
IV	Perform, Achieve & Trade (PAT) Cycle Brief description of PAT (Perform, Achieve & Trade) Cycle, Designated Consumer, Institutional framework for PAT, Role of each entity in PAT cycle, Activities and Responsibilities for PAT cycle, EScerts Issuance flow chart, Trading of EScerts.	08

V	Energy Audits in PAT cycle	
	Baseline Energy Audit, Definition of (Monitoring & Verification) M & V, Team	
	formation for M&V audit, Appointment and Role of Empanelled AEA, Documents	10
	required for M & V, Gate to Gate Diagram for various industries, Verification	
	process, Concept of Normalization in PAT, Need for Mandatory Energy Audit.	
VI	Energy Audit in Commercial Sectors	
	Need of energy auditing in commercial sectors, energy audit in corporate buildings,	
	educational institutes, Hospitals, Banks, Resorts, government buildings, Estimation	10
	of building load, steady state method, network method, numerical method,	
	correlations, Calculation of energy saving potential by ENCON opportunities.	

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (**on minimum Two Modules**) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in thesyllabus.

- 1. Question paper will comprise of total sixquestion
- 2. All question carries equalmarks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module3)
- 4. Only Four questions need to be solved.

- 1. BEE Reference books:no.1/2/3/4
- 2. http://beenet.gov.in
- 3. PAT booklet, BEEIndia
- 4. Handbooks of Energy Audits and Management, edited by A. K Tyagi, TERI,India.
- 5. Abstract, Methodology for Monitoring & Verification of Specific Energy Consumption performance of Designated Consumers © Bureau of Energy Efficiency, Government of India, March2015.
- 6. AmlanChakrabarti, Energy engineering and management, PHI Learning, New Delhi2012
- 7. ShaligramPokharel, Energy Analysis for Planning and Policy, CRC Press, 2014

	Semester II	
Course Code	Course Name	Credits
ESMC202	Energy Efficiency in Electrical Systems	03

Teaching Scheme							
Co	Credits Assigned						
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03			03			03	

				Evaluation	Scheme			
Theory					Term Work/Practic al/Oral			Total
Inter	nal Asse	ssment	End	Duration				
Test1	Test2	Average	Sem Exam	of End Sem Exam	TW	PR	OR	
20	20	20	80	03 Hrs.				100

Objectives

- 1. To learn electrical and power systems.
- 2. To understand working principle of electrically assisted systems.
- 3. To identify saving potential in electrically assisted systems.

- 1. Calculate losses in electrical and power systems and improve its energy efficiency.
- 2. Determine ENCON opportunities in electrical motor systems.
- 3. Determine ENCON opportunities in fluids handling systems.
- 4. Determine ENCON opportunities in lighting systems.

Module	Detailed Contents	Hrs.
I	Electrical and Power System Electric power supply, Transmission and Distribution Losses, Electricity Billing, Electrical Load Management, Power Factor Improvement, Transformers, Harmonics, Analysis of Electrical Power Systems, Maximum demand controllers. Automatic power factor controllers, Energy efficient transformers, Case study.	08
II	Electrical Motors Types, Characteristics & Efficiency of Motors, Selection, Factors Affecting Energy Efficiency, Rewinding, Motor Load Survey Methodology, Energy efficient motors, soft starters with energy saver, Variable speed drives, ENCON opportunities, Case study.	08
III	Fans, Blowers and Compressors Difference between Fans, Blowers and Compressors, types, Flow control methods in fan, Fan performance evaluation, Types of compressors, Compressor Performance Evaluation, Compressed Air Systems & their efficient operation, Compressor Capacity Assessment, ENCON opportunities, Case study.	12
IV	Refrigeration and HVAC system Types of refrigeration system, components, Chilling plant, Selection and performance assessment of refrigeration plants, Factors affecting energy efficiency of refrigeration plants, ENCON opportunities, Case study.	08

	Centrifugal Pumps & Cooling Towers					
	Pump types, System & pump characteristics, Pump Performance evaluation,					
V Energy efficient pumping system operation, ENCON opportunities by Flow c						
	methods in pumps, Use & types of cooling tower, Performance evaluation, Energy					
	efficient operation, Flow control methods, Case study.					
	Lighting Systems					
	Terms in Lighting System, Lamp Types & features, Recommended luminance					
VI	Levels, Lighting Design calculations for Interiors, Lighting System Energy	06				
	Efficiency Study Methodology, Energy Efficient Replacement Options, Electronic					
	ballast, Occupancy sensors, Energy efficient lighting controls, Case Study.					

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (**on minimum Two Modules**) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carries equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module3)
- 4. Only Four questions need to be solved.

- 1. Energy efficiency in electrical utilities, Book 3, Bureau of Energy Efficiency India.
- 2. Energy performance assessment for equipment & utility systems, Book 4, Bureau of Energy Efficiency India
- 3. Electrical energy conservation modules of AIP-NPC, Chennai
- 4. PCRA Publications on Compressed Air System
- 5. Technology Menu for Energy Efficiency(NPC)
- 6. ASHRAE Handbook
- 7. British Pump Manufacturers' Association Catalogue
- 8. Energy Management Supply & Conservation, Butterworth Heinemann, Dr. CliveBeggs.

Program Elective 1

Semester II					
Course Code	Course Name	Credits			
ESMPE2011	Renewable & Sustainable Energy Systems	03			

Teaching Scheme						
Contact Hours				Cr	edits Assigne	ed
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
03			03			03

Evaluation Scheme								
Theory					V	Term Vork/Pra VOral	nctic	Total
Inter Test1	rnal Asse Test2	Average	End Sem Exam	Duration of End Sem Exam	TW	PR	OR	
20	20	20	80	03 Hrs.				100

Objectives

- 1. To understand the concept of sustainable development.
- 2. To know the economics of renewable energy and financing options.
- 3. To determine role of renewable energy in upcoming projects.

- 1. Know sustainability initiatives for reducing energy impacts on environment.
- 2. Understand the role of renewable energy in climate change.
- 3. Determine the efficient solar and wind energy technology.
- 4. Know the current trends in sustainable and renewable energy.

Module	Detailed	Hrs.			
	Contents				
I	Sustainable Energy & Environment Sustainable Development, Energy technologies promoting sustainability, Environmental impacts, Economic and social considerations, Financing mechanisms, Carbon credits, clean development mechanisms, Climate change, COP21.	08			
II	Renewable Energy Potential of renewable energy sources, renewable electricity and key elements, Global climate change, CO2 reduction potential of renewable energy.				
III	Solar Energy Technology Solar thermal power plants (Concentrators, solar chimney etc.), Solar thermal conversion devices, Economics and social considerations, Design considerations of component selection, CSP (Concentrated Solar Power) advanced materials. Solar photovoltaic power plants, photovoltaic technology, Design of a photovoltaic system, economics and costing, Application as a distributed power supply strategy.	10			

IV	Wind Power Technology Wind energy potential measurement, wind mill component design, economics and demand side management, energy wheeling, and energy banking concepts.	06
V	Biogas Energy Aerobic and anaerobic bio-conversion processes, microbial reactions purification, properties of biogas. Storage and enrichment, Biogas energy economics.	06
VI	Current Trends in Renewable & Sustainable Energy Fuel cell-based power plants, tidal and wave energy plant design, OTEC power plants.Geothermal energy: hot springs and steam ejection site selection, Renewable energy Financing criteria, Net Metering, Solar cities, Role of energy in smart cities.	08

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (on minimum Two Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carries equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module3)
- 4. Only Four questions need to be solved.

- 1. General Aspects of Energy Management and Energy Audit, Book 1, Bureau of Energy Efficiency India.
- 2. G. N. Tiwari and M. K. Ghosal, Renewable Energy Resources: Basic Principles and Applications, Alpha Science International Ltd.,2005.
- 3. J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes, John Wiley & Sons, 3rd edition, 2006.
- 4. G. Boyle, Renewable Energy: Power for a Sustainable World, Oxford University Press, 2006.
- 5. T.C.Kandpal and H.P.Garg., Financial Evaluation of Renewable Energy Technologies, Macmillan India Ltd., 2003.
- 6. J. Twidell and T. Weir, Renewable Energy Resources, Taylor & Francis, 2007.
- 7. G. N. Tiwari, Solar Energy: Fundamentals, Design, Modelling and Applications, Narosa Publishing House, 2010.
- 8. Harry Campbell and Richard Broron, Benefit- Cost Analysis, Cambridge University Press, 2003.
- 9. Chan S. Park, Contemporary Engineering Economics, Prentice Hall Inc.,2002.
- 10. Gerald J. Thuesen and W.J. Fabrycky, Engineering Economy (ninth edition), Prentice Hall Inc.,2001.

Program Elective 1

Semester II				
Course Code	Course Name	Credits		
ESMPE2012	Energy Storage Systems	03		

Teaching Scheme						
Contact Hours			Credits Assigned			ed
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
03			03			03

Evaluation Scheme								
Theory					Term Work/Practic al/Oral		ectic	Total
Inter Test1	rnal Asse Test2	Average	End Sem Exam	Duration of End Sem	TW	PR	OR	
20	20	20	80	Exam 03 Hrs.				100

Objectives

- 1. To understand the working principle of energy storage systems.
- 2. To identify and select the efficient energy storage systems.
- 3. To find suitable application of storage system.

- 1. Distinguish between different modes of energy storage.
- 2. Know the working principle and selection of Energy Storage System.
- 3. Understand the concept of Sensible and Latent Heat Thermal Energy Storage.

Module	Detailed Contents	Hrs.			
I	Potential energy: Pumped hydro storage; KE and Compressed gas system: Flywhee storage, compressed air energy storage; Electrical and magnetic energy storage Capacitors, electromagnets; Chemical Energy storage: Thermo-chemical, photo chemical, bio-chemical, electro-chemical, fossil fuels and synthetic fuels. Hydroge for energy storage. Solar Ponds for energy storage				
II	Electrochemical Energy Storage Systems Batteries: Primary, Secondary, Lithium, Solid-state and molten solvent batteries; Lead acid batteries; Nickel Cadmium Batteries; Advanced Batteries. Role of carbon Nano-tubes in electrodes.	08			
III	Magnetic and Electric Energy Storage Systems Superconducting Magnet Energy Storage (SMES) systems; Capacitor and Batteries: Comparison and application; Super capacitor: Electrochemical Double Layer Capacitor (EDLC), principle of working, structure, performance and application, role of activated Carbon and carbon Nano-tube(CNT).	09			
IV	Sensible Heat Storage SHS mediums; Stratified storage systems; Rock-bed storage systems; Thermal storage in buildings; Earth storage; Energy storage in aquifers; Heat storage in SHS systems; Aquifers storage.	08			

	Latent Heat Thermal Energy Storage	
V	Phase Change Materials (PCMs); Selection criteria of PCMs; Stefan problem; Solar thermal LHTES systems; Energy conservation through LHTES systems; LHTES systems in refrigeration and air-conditioning systems; Enthalpy formulation; Numerical heat transfer in melting and freezing process.	09
VI	Application of Energy Storage Food preservation; Waste heat recovery; Solar energy storage; Greenhouse heating;	06
	Power plant applications; Drying and heating for process industries.	

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (on minimum Two Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carryequal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module3)
- 4. Only Four questions need to be solved.

- 1. Thermal Energy Storage Systems& Applications, Ibrahim Dincer, Mark Rosen, John Wiley& Sons2002.
- 2. Electrochemical Technologies for energy storage & Conversions, Ru-shillu, Leizhang, Wiley Publications, 2012
- 3. Solar Thermal Energy Storage, H P Garg, S C Mulik, A K Bhargava, 1985.
- 4. Advances in Thermal Energy Storage Systems: Methods and Applications, Woodhead Publishing Series inenergy
- 5. Solar Collectors, Energy Storage and Materials (Solar Heat Technologies), Francis de Winter, The MIT Press,1991.

Program Elective 1

Semester II				
Course Code	Course Name	Credits		
ESMPE2013	Fuels Combustion and Emission Control	03		

Teaching Scheme							
C	Contact Hours Credits Assigned						
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03 03 03							

Evaluation Scheme								
Theory					Term Work/Practic al/Oral			Total
Inter Test1	rnal Asse Test2	Average	End Sem Exam	Duration of End Sem Exam	TW PR		OR	
20	20	20	80	03 Hrs.				100

Objectives

- 1. To give an idea about types of fuels, origin, reserves and their processing.
- 2. To define the combustion and conversion process of fuels.
- 3. To analyze the impact of incomplete combustion, emission on environment.

Outcomes: Learner will be able to...

- 1. Distinguish between conventional, non-conventional and nuclear fuels.
- 2. Understand the types and production process of fuels.
- 3. Determine the requirements for complete combustion process.
- 4. Analyze the effects of emission control

5.

Module	Detailed Contents	Hrs.
I	Introduction to Fuels Types of fuels, commercial and non-commercial fuels, Principle fuels for energy conversion: Fossil fuels, Nuclear fuels, RDF, Bio-fuels	05
Ш	Solid Fuels Different types of solid fuels, Family of coal, origin of coal, composition of coal, analysis and properties of coal, action of heat on coal, oxidation of coal, hydrogenation of coal, classification of Indian coal, Storage of coal, carbonization, gasification and liquefaction and pulverization of solid fuels.	09
III	Liquid Fuels Introduction to Petroleum, origin of petroleum, petroleum production, composition and classification, processing of petroleum, Important petroleum products, properties of petroleum products, liquid fuels from sources other than petroleum, storage and handling of liquid fuels, gasification of liquid fuels, petroleum refining in India.	09
IV	Gaseous Fuels Classification of gaseous fuels based on mode of occurrence and method of production, cleaning and purification of gaseous fuels. Hydrogen as energy carrier	08

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (**on minimum Two Modules**) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carries equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module3)
- 4. Only Four questions need to be solved

- 1. D P Mishra, Fundamentals of Combustion, PHI Publications.
- 2. S P Sharma, Fuels and combustion, Tata McGraw Hill Publications, 1984.
- 3. Samir Sarkar, Fuels and combustion, Universities Press (India) Pvt Ltd, Third Edition 2009.
- 4. Stephen Turns, an Introduction to Combustion: Concepts and Applications, McGraw Hill Publications.
- K KKuo, Principles of combustion 2nd Edition, John Wiley & Sons, New Jersey, 2005
- 6. Gupta R B, Boca Raton, Hydrogen fuel: Production, transport and storage, CRC Press, 2008
- 7. Combustion Engineering and Fuel Technology, Oxford & IBH Publishing Company A. K. Shaha.
- 8. S. Sarkar, Fuels and Combustion, Orient Longman, 2nd edition, 1990.
- 9. F. Peter, Fuels and Fuel Technology, A. Wheatan& Co. Ltd., 1st edition, 1965.

Program Elective 2

Semester II						
Course Code	Course Name	Credits				
ESMPE2021	Energy Measurement and Control	03				
	Instruments					

Teaching Scheme								
C	ontact Hours		Credits Assigned					
Theory	Theory Practical Tutorial			Practical	Tutorial	Total		
03		02						

	Evaluation Scheme								
Theory					Term Work/Practic al/Oral			Total	
Inter				Duration					
Test1	Test2 Average Sem of End Sem Sem Exam		TW	PR	OR				
20	20	20	80	03 Hrs.				100	

Objectives

- 1. To identify and select the correct instruments for related parameters
- 2. To learn the operation of automatic control systems.
- 3. To train about the handling and maintenance of energy measurement instruments

- 1. To understand the basic measurement concepts and principles.
- 2. To learn the methods of measuring the process parameters.
- 3. To understand techniques of measuring energy system parameters.
- 4. To learn selection of proper instrument for concerned measurement.

Module	Detailed Contents						
I	Measurement Concepts Introduction to measurements for scientific and engineering application need and goal. Broad category of methods for measuring field and derived quantities. Principles of measurement, parameter estimation, regression analysis, correlations, error estimation and data presentation, analysis of data						
II	Process Parameter Measurement Measurement of field quantities, measurement of force, pressure, temperature, flow rate, velocity, humidity, noise, vibration, measurement by probe and non-destructive techniques, Name, Make and Specification of Instruments.						
III	Measurement of derived quantities, torque, power, thermo physical properties, radiation and surface properties, Name, Make and Specification of Instruments.	09					
IV	Automatic Control Systems Control Room Equipment, PLCs and other logic devices, Analytical instrumentation,	10					

V	Instrument Selection and Commissioning General considerations, Control valve selection and sizing, Regulators and final control elements, Limits, Margins and their Relevance to Instrumentation and control, Control Centers, Fire and Safety Instruments	10
VI	Instruments in Energy Auditing Need of measurement, electrical, mechanical, thermal, chemical, fluid measurement, types of instruments, handling of instruments on site and off site, care of instruments, calibration.	04

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (**on minimum Two Modules**) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module3)
- 4. Only Four questions need to be solved

- 1. Bela G Liptak, Instrument Engineers' Handbook, Vol I, II, III, 4th Edition, CRCPress
- 2. Doebelin E.O: Measurement Systems-Application and Design, McGraw Hill Publication Co.
- 3. Bolton W, Mechatronics-Electronics Control Systems in Mechanical and ElectricalEngg.
- 4. Helfrick A.D. and Cooper W.D. Modern Electronic Instrumentation and Measurement Technique.
- 5. Johnson C.D., Process ControlInstrumentation
- 6. J.P.Holman: Experimental Methods For Engineers, McGraw Hill International Edition, SeventhEdition
- 7. Bureau of energy efficiency book No1.

Program Elective 2

Semester II						
Course Code	Course Name	Credits				
ESMPE2022	Energy Systems & Environmental Impact	03				

Teaching Scheme								
C	ontact Hours		Credits Assigned					
Theory	Theory Practical Tutorial			Practical	Tutorial	Total		
03			03 03					

Evaluation Scheme								
Theory					Term Work/Practic al/Oral			Total
Test1	Internal AssessmentTest1Test2Average		Sem of End		TW	PR	OR	
20	20	20	80	03 Hrs.				100

Objectives

- 1. To understand impact of energy systems on environment.
- 2. To know the pollution control techniques.
- 3. To recite energy and environment policies.

- 1. Determine the impact of pollutants on atmosphere.
- 2. Propose the pollution control systems in energy systems.
- 3. Understand International and Indian environment policies.
- 4. Calculate the effect of energy efficiency on global climate change.

Module	Detailed Contents	Hrs.
I	Effect of Energy Systems on Environment Environmental degradation due to energy production and utilization, Primary and Secondary pollution such as SOx, NOx, SPM in air, Depletion of ozone layer, global warming, Physiological and health problems due to energy plants. Methods of Environmental Impact Assessment.	08
II	Water, Air and Land Pollution Sources of Pollution in thermal power plant, Water, air, land pollution due to estimation for thermal power plant. Environmental pollution limits guidelines for thermal power plant pollution control, Water pollution in thermal power plant, physical and chemical methods of pollution control, Measurement and effects of land pollution, Pollution control systems. Hydrothermal plant environmental assessment, Nuclear power plants and environmental pollution, pollution control measures.	10
Ш	Pollution due to Automobile & Utilities Pollution due to automobile and utilities, Methods to Control emission from Vehicle, Boilers & Furnaces., International Standards for Quality of air and norms for exhaust gases. Software advantage & disadvantage in automobile pollution inspection.	08

	Energy Recovery from Industrial and Urban Waste	
IV	Industrial waste, Waste and effluent treatment plants, Industrial, domestic and solid	08
	waste as a source of energy, Water treatment plant in housing societies.	
	Environmental and Pollution Control Policies	
	United Nations Framework Convention on Climate Change (UNFCC), IPCC,	
\mathbf{V}	Conference of Parties (COP), COP 21 Accord, Clean Development Mechanism	08
	(CDM), Prototype Carbon Funds (PCF) Carbon Credits and it's trading, Benefits to	
	developing countries, Building a CDM project in India.	
	Energy Efficiency and Global Climate Change	
X7T	Global Environmental Issues, Acid rain, Loss of Biodiversity, Ozone layer	10
VI	depletion, Global Warming Potential (GWP), Global worming & Climate change	10
	Impact, India's Green House GasesEmission.	

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (on minimum Two Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module3)
- 4. Only Four questions need to be solved

- 1. Management of Energy Environment Systems W.K.Foell (John Wiley and Sons).
- 2. Energy Management and Control Systems M.C.Macedo Jr. (John Wiley and Sons)
- 3. Environmental Impact Analysis Handbook J.G. Rau, D.C. Wood (McGraw Hill)
 - 4. Energy & Environment J.M. Fowler, (McGraw Hill)
 - 5. Thermal Environmental Engineering, J.L. Threlkeld, Prentice Hall, 1970.
 - 6. BEE Reference book:no.1
- 7. Global Warming: J Houghton, Cambridge University Press, New York, 1997.
- 8. CDM Country Guide for INDIA: Institute for Global Environmental Strategies (Ed), Ministry of the Environment, Japan, 2005.
- 9. Global Environmental Issues: F Harris (Ed), John Wiley, hichester 2004.
- 10. http://beeindia.gov.in

	Semester II	
Course Code	Course Name	Credits
ESMPE2023	Materials And Devices for Energy	03
	Application	03

Teaching Scheme							
C		Cr	edits Assigne	ed			
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
03			03			03	

				Evaluation	Scheme			
		Theory			Term Work/Practic al/Oral Total			
Inter	nal Asse	ssment	End	Duration				
Test1	Test2	Average	Sem Exam	of End Sem Exam	TW	PR	OR	
20	20	20	80	03 Hrs.				100

Course Outcomes:

After successful completion of the course the student will be able to

- 1. Understand device fabrication technologies in the semiconductor industries.
- 2. Understand the various characterization techniques.
- 3. Understand the solar cell physics and various methods to improve the efficiency of solar cell.
- 4. Understand various applications such as fuel cell, battery and carbon nanotubes and its applications.

Module	Detailed	Hrs
No	Contents	
I	Device fabrication technologies Diffusion,oxidation, photolithography, sputtering, physical vapor deposition, chemical vapor deposition (CVD), plasma enhanced CVD (PECVD), hot wire CVD (HWCVD), etc.	12
II	Introduction to material characterization Scanning electron microscopy (SEM), Transmission electro microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, Atomic force microscopy (AFM), Spectral response of solar cells, quantum efficiency analysis, dark conductivity, I-V characterization	06
III	Basics of solar cells High efficiency solar cells, PERL Si solar cell, III-V high efficiency solar cells, GaAs solar cells, tandem and multi-junction solar cells, solar PV concentrator cells and systems, III-V, II-VI thin-film solar cells (GaAs, Cu(In,Ga)Se2, CdTe) Nano-, micro- and poly-crystalline Si for solar cells,.	06

TX7	Advanced Solar Cells	06
IV	Amorphous silicon thin-film (and/or flexible) technologies, multi-	
	junction (tandem) solar cells, stacked solar cells.	
	Conjugated polymers,	
	organic/plastic/flexible solar cells, polymer composites for solar cells,	
	device fabrication and characterization. Standalone systems, Micro	
	Grid	
V	Materials and devices for energy storage	09
	Batteries, Carbon Nano-Tubes (CNT), fabrication of CNTs, CNTs for	
	hydrogen storage, CNT-polymer composites, hydrogen storage in	
	metal hydrides; ultra- capacitors etc. Polymer membranes for fuel	
	cells, PEM	
	fuel cell, Acid/alkaline fuel cells.	

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (on minimum Two Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 5. Question paper will comprise of total six question
- 6. All question carry equal marks
- 7. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module3)
- 8. Only Four questions need to be solved

- 1. Solar cells: Operating principles, technology and system applications, by Martin A. Green, Prentice-Hall Inc, Englewood Cliffs, NJ, USA,1981.
- Seminconductors for solar cells, H. J. Moller, Artech House Inc, MA, USA, 1993. Solid State electronic devices, Ben G. Streetman, , Prentice-Hall of India Pvt. Ltd., New delhi1995.
- 3. Carbon nanotubes and related structures: New material for twenty-first century, P. J. F.Harris, Cambridge University Press, 1999.
- 4. Thin-film crystalline silicon solar cells: Physics and technology, R.Brendel, Wiley- VCH, Weinheim, 2003.
- 5. Clean electricity from photovoltaics, M. D. Archer, R. Hill, Imperial college press, 2001.

	Semester II	
Course Code	Course Name	Credits
ESMIE2011	Project Management	03

Teaching Scheme							
C			Cr	edits Assigne	ed		
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
03			03			03	

	Evaluation Scheme								
		Theory	•			Tern	1		
					V	Vork/Pra	actic		
						al/Ora	ıl	Total	
Inter	rnal Asse	ssment	End	Duration					
			Sem	of End	TW	PR	OR		
Test1	Test2	Average	Exam	Sem	1 **	110	OK		
				Exam					
20	20	20	80	03 Hrs.				100	

Objectives:

- 1. To familiarize the students with the use of a structured methodology/approach for each and every unique project undertaken, including utilizing project management concepts, tools and techniques.
- 2. To appraise the students with the project management life cycle and make them knowledgeable about the various phases from project initiation through closure.

- 1. Apply selection criteria and select an appropriate project from different options.
- 2. Write work break down structure for a project and develop a schedule based on it.
- 3. Identify opportunities and threats to the project and decide an approach to deal with them strategically.
- 4. Use Earned value technique and determine & predict status of the project.
- 5. Capture lessons learned during project phases and document them for future reference

Module	Detailed Contents	Hrs
I	Project Management Foundation: Definition of a project, Project Vs Operations, Necessity of project management, Triple constraints, Project life cycles (typical & atypical) Project phases and stage gate process. Role of project manager. Negotiations and resolving conflicts. Project management in various organization structures. PM knowledge areas as perProject Management Institute (PMI).	5
II	Initiating Projects: How to get a project started, Selecting project strategically, Project selection models (Numeric /Scoring Models and Non-numeric models), Project portfolio process, Project sponsor and creating charter; Project proposal. Effective project team, Stages of team development & growth (forming, storming, norming & performing), team dynamics.	6
Ш	Project Planning and Scheduling: Work Breakdown structure (WBS) and linear responsibility chart, Interface Co-ordination and concurrent engineering, Project cost estimation and budgeting, Top down and bottoms up budgeting, Networking and Scheduling techniques. PERT, CPM, GANTT chart. Introduction to Project Management Information System (PMIS).	8

	Planning Projects:	
	Crashing project time, Resource loading and leveling, Goldratt's critical chain, Project	
	Stakeholders and Communication plan.	6
IV	Risk Management in projects: Risk management planning, Risk identification and risk	6
	register. Qualitative and quantitative risk assessment, Probability and impact matrix.	
	Risk response strategies for positive and negative risks	
	5.1 ExecutingProjects:	
	Planning monitoring and controlling cycle. Information needs and reporting, engaging	
	with all stakeholders of the projects.	
	Team management, communication and project meetings.	
\mathbf{V}	5.2 Monitoring and ControllingProjects:	8
	Earned Value Management techniques for measuring value of work completed; Using	
	milestones for measurement; change requests and scope creep. Project audit.	
	5.3 ProjectContracting	
	Project procurement management, contracting and outsourcing,	
	6.1 Project Leadership and Ethics:	
	Introduction to project leadership, ethics in projects.	
	Multicultural and virtual projects.	6
	6.2 Closing the Project:	
VI	Customer acceptance; Reasons of project termination, Various types of project	
	terminations (Extinction, Addition, Integration, Starvation), Process of project	
	termination, completing a final report; doing a lessons learned analysis; acknowledging	
	successes and failures; Project management templates and other resources; Managing	
	without authority; Areas of further study.	

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (on minimum Two Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module3)
- 4. Only Four questions need to be solved.

- 1. Jack Meredith & Samuel Mantel, Project Management: A managerial approach, Wiley India,7thEd.
- 2. A Guide to the Project Management Body of Knowledge (PMBOK® Guide), 5th Ed, Project Management Institute PA, USA
- 3. Gido Clements, Project Management, CengageLearning.
- 4. Gopalan, Project Management, , WileyIndia
- 5. Dennis Lock, Project Management, Gower Publishing England, 9 thEd.

Semester II						
Course Code	Course Name	Credits				
ESMIE2012	Finance Management	03				

Teaching Scheme							
C	Credits Assigned						
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03 03 03					03		

Evaluation Scheme								
	Theory					Tern	1	
•				Work/Practic				
				al/Ora	ıl	Total		
Inter	nal Asse	ssment	End	Duration				
			Sem	of End	TW	PR	OR	
Test1	Test2	Average	Exam	Sem	1 **	110	OK	
				Exam				
20	20	20	80	03 Hrs.				100

Objectives:

- 1. Overview of Indian financial system, instruments and market
- 2. Basic concepts of value of money, returns and risks, corporate finance, working capital and its management
- 3. Knowledge about sources of finance, capital structure, dividend policy

- 1. Understand Indian finance system and corporate finance
- 2. Take investment, finance as well as dividend decisions

Module	Detailed Contents	Hrs
	Overview of Indian Financial System: Characteristics, Components and Functions of	
	Financial System.	
	Financial Instruments: Meaning, Characteristics and Classification of Basic Financial	
	Instruments — Equity Shares, Preference Shares, Bonds-Debentures, Certificates of	
	Deposit, and Treasury Bills.	06
I	Financial Markets: Meaning, Characteristics and Classification of Financial Markets	
	— Capital Market, Money Market and Foreign Currency Market	
	Financial Institutions: Meaning, Characteristics and Classification of Financial	
	Institutions — Commercial Banks, Investment-Merchant Banks and Stock Exchanges	
	Concepts of Returns and Risks: Measurement of Historical Returns and Expected	
	Returns of a Single Security and a Two-security Portfolio; Measurement of Historical	
TT	Risk and Expected Risk of a Single Security and a Two-security Portfolio.	06
II	Time Value of Money: Future Value of a Lump Sum, Ordinary Annuity, and Annuity	06
	Due; Present Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Continuous	
	Compounding and Continuous Discounting.	

Ш	Overview of Corporate Finance: Objectives of Corporate Finance; Functions of Corporate Finance—Investment Decision, Financing Decision, and Dividend Decision. Financial Ratio Analysis: Overview of Financial Statements—Balance Sheet, Profit and Loss Account, and Cash Flow Statement; Purpose of Financial Ratio Analysis; Liquidity Ratios; Efficiency or Activity Ratios; Profitability Ratios; Capital Structure Ratios; Stock Market Ratios; Limitations of Ratio Analysis.	09
IV	Capital Budgeting: Meaning and Importance of Capital Budgeting; Inputs for Capital Budgeting Decisions; Investment Appraisal Criterion—Accounting Rate of Return, Payback Period, Discounted Payback Period, Net Present Value(NPV), Profitability Index, Internal Rate of Return (IRR), and Modified Internal Rate of Return (MIRR) Working Capital Management: Concepts of Meaning Working Capital; Importance of Working Capital Management; Factors Affecting an Entity's Working Capital Needs; Estimation of Working Capital Requirements; Management of Inventories; Management of Receivables; and Management of Cash and Marketable Securities.	10
V	Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short-Term Finance—Trade Credit, Bank Finance, Commercial Paper; Project Finance. Capital Structure: Factors Affecting an Entity's Capital Structure; Overview of Capital Structure Theories and Approaches— Net Income Approach, Net Operating Income Approach; Traditional Approach, and Modigliani-Miller Approach. Relation between Capital Structure and Corporate Value; Concept of Optimal Capital Structure	05
VI	Dividend Policy: Meaning and Importance of Dividend Policy; Factors Affecting an Entity's Dividend Decision; Overview of Dividend Policy Theories and Approaches—Gordon's Approach, Walter's Approach, and Modigliani-Miller Approach	03

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (on minimum Two Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module3)
- 4. Only Four questions need to be solved.

- 1. Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham and JoelF. Houston; Publisher: Cengage Publications, New Delhi.
- 2. Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins; Publishers: McGraw Hill Education, New Delhi.
- 3. Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.
- 4. Financial Management, 11thEdition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & Company Limited, New Delhi.

Semester II						
Course Code	Course Name	Credits				
ESMIE2013	Entrepreneurship Development and	03				
	Management	03				

Teaching Scheme							
C	Credits Assigned						
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
03			03 03				

Evaluation Scheme								
Theory				Term Work/Practic al/Oral			Total	
Inte	rnal Asse	ssment	End	Duration				
Test1	Test2	Average	Sem Exam	of End Sem	TW	PR	OR	
				Exam				
20	20	20	80	03 Hrs.				100

Objectives:

- 1. To acquaint with entrepreneurship and management of business
- 2. Understand Indian environment forentrepreneurship
- 3. Idea of EDP, MSME

- 1. Understand the concept of business plan andownerships
- 2. Interpret key regulations and legal aspects of entrepreneurship inIndia
- 3. Understand government policies forentrepreneurs

Module	Detailed Contents	Hrs						
	Overview Of Entrepreneurship: Definitions, Roles and Functions/Values of							
	Entrepreneurship, History of Entrepreneurship Development, Role of Entrepreneurship							
	in the National Economy, Functions of an Entrepreneur, Entrepreneurship and Forms of	04						
I	Business Ownership	04						
_	Role of Money and Capital Markets in Entrepreneurial Development: Contribution of							
	Government Agencies in Sourcing information for Entrepreneurship							
	Business Plans And Importance Of Capital To Entrepreneurship: Preliminary and							
	Marketing Plans, Management and Personnel, Start-up Costs and Financing as well as							
	Projected Financial Statements, Legal Section, Insurance, Suppliers and Risks,							
II	Assumptions and Conclusion, Capital and its Importance to the Entrepreneur	09						
	Entrepreneurship And Business Development: Starting a New Business, Buying an							
	Existing Business, New Product Development, Business Growth and the Entrepreneur							
	Law and its Relevance to Business Operations							
	Women's Entrepreneurship Development, Social entrepreneurship-role and need, EDP							
III	cell, role of sustainability and sustainable development for SMEs, case studies,	05						
	exercises							

IV	Indian Environment for Entrepreneurship: key regulations and legal aspects, MSMED Act 2006 and its implications, schemes and policies of the Ministry of MSME, role and responsibilities of various government organisations, departments, banks etc., Role of State governments in terms of infrastructure developments and support etc., Public private partnerships, National Skill development Mission, Credit Guarantee Fund, PMEGP, discussions, group exercises etc	08
v	Effective Management of Business: Issues and problems faced by micro and small enterprises and effective management of M and S enterprises (risk management, credit availability, technology innovation, supply chain management, linkage with large industries), exercises, e-Marketing	08
VI	Achieving Success In The Small Business: Stages of the small business life cycle, four types of firm-level growth strategies, Options – harvesting or closing small business Critical Success factors of small business	05

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (**on minimum Two Modules**) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module3)
- 4. Only Four questions need to be solved.

- 1. Poornima Charantimath, Entrepreneurship development- Small Business Enterprise, Pearson
- 2. Education Robert D Hisrich, Michael P Peters, Dean A Shapherd, Entrepreneurship, latest edition, The McGraw Hill Company
- 3. Dr T N Chhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 4. Dr CN Prasad, Small and Medium Enterprises in Global Perspective, New century Publications, New Delhi
- 5. Vasant Desai, Entrepreneurial development and management, Himalaya Publishing House
- 6. MaddhurimaLall, ShikahSahai, Entrepreneurship, Excel Books
- 7. Rashmi Bansal, STAY hungry STAY foolish, CIIE, IIM Ahmedabad
- 8. Law and Practice relating to Micro, Small and Medium enterprises, Tax mann Publication Ltd.
- 9. Kurakto, Entrepreneurship- Principles and Practices, Thomson Publication
- 10. Laghu Udyog Samachar
- 11. www.msme.gov.in
- 12. www.dcmesme.gov.in
- 13. www.msmetraining.gov.in

Semester II						
Course Code	Course Name	Credits				
ESMIE2014	Human Resource Management	03				

Teaching Scheme							
C	Credits Assigned						
Theory	Practical	Tutorial	Theory	Practical	Total		
03			03			03	

				Evaluation	Scheme			
Theory					Term Work/Practic al/Oral			Total
Inter	rnal Asse	ssment	End Sem	Duration of End	TW	PR	OR	
Test1	Test2	Average	Exam	Sem Exam	1 **	rk	OK	
20	20	20	80	03 Hrs.				100

Objectives:

- 1. To introduce the students with basic concepts, techniques and practices of the human resource management.
- 2. To provide opportunity of learning Human resource management (HRM) processes, related with the functions, and challenges in the emerging perspective of today's organizations.
- 3. To familiarize the students about the latest developments, trends & different aspects of HRM.
- 4. To acquaint the student with the importance of inter-personal & inter-group behavioral skills in an organizational setting required for future stable engineers, leaders and managers.

- 1. Understand the concepts, aspects, techniques and practices of the human resource management.
- 2. Understand the Human resource management (HRM) processes, functions, changes and challenges in today's emerging organizational perspective.
- 3. Gain knowledge about the latest developments and trends in HRM.
- 4. Apply the knowledge of behavioral skills learnt and integrate it with in inter personal and intergroup environment emerging as future stable engineers and managers.

Module	Detailed Contents	Hrs				
	Introduction to HR					
I	 Human Resource Management- Concept, Scope and Importance, Interdisciplinary Approach Relationship with other Sciences, Competencies of HR Manager, HRMfunctions. Human resource development (HRD): changing role of HRM – Human resource Planning, Technological change, Restructuring and rightsizing, Empowerment, TQM, Managing ethicalissues. 	5				
	Organizational Behavior (OB)					
II	 Introduction to OB Origin, Nature and Scope of OrganizationalBehavior, Relevance to Organizational Effectiveness and Contemporaryissues Personality: Meaning and Determinants of Personality, Personality development, Personality Types, Assessment of Personality Traits for Increasing Self Awareness Perception: Attitude and Value, Effect of perception on Individual Decisionmaking, Attitude and Behavior. Motivation: Theories of Motivation and their Applications for Behavioral 	7				
	 Change (Maslow, Herzberg, McGregor); Group Behavior and Group Dynamics: Work groups formal and informal groups and stages of group development. Team Effectiveness: High performing teams, Team Roles, cross functional and self-directed team. Case study 					
	Organizational Structure & Design					
Ш	 Structure, size, technology, Environment of organization; Organizational Roles & conflicts: Concept of roles; role dynamics; role conflicts and stress. Leadership: Concepts and skills of leadership, Leadership and managerial roles, Leadership styles and contemporary issues in leadership. Power and Politics: Sources and uses of power; Politics at work place, Tactics and strategies. 	6				
	Human resource Planning					
IV	 Recruitment and Selection process, Job-enrichment, Empowerment - Job-Satisfaction, employee morale. Performance Appraisal Systems: Traditional & modern methods, Performance Counseling, Career Planning. Training & Development: Identification of Training Needs, Training Methods 	5				
	Emerging Trends in HR					
V	 Organizational development; Business Process Re-engineering (BPR), BPR asa tool for organizational development, managing processes & transformation in HR. Organizational Change, Culture, Environment Cross Cultural Leadership and Decision Making: Cross Cultural Communication and diversity at work, causes of diversity, managing diversity with special reference to handicapped, women and ageing people, intra company cultural difference in employee motivation. 	6				
VI	Need, purpose, objective and role of information system in HR, Applications in HRD in various industries (e.g. manufacturing R&D, Public Transport, Hospitals, Hotels and service industries Strategic HRM Role of Strategic HRM in the modern business world, Concept of Strategy, Strategic Management Process, Approaches to Strategic Decision Making; Strategic Intent – Corporate Mission, Vision, Objectives and Goals Labor Laws & Industrial Relations Evolution of IR, IR issues in organizations, Overview of Labor Laws in India; Industrial Disputes Act, Trade Unions Act, Shops and Establishments Act	10				

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (**on minimum Two Modules**) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module3)
- 4. Only Four questions need to be solved.

- 1. Stephen Robbins, Organizational Behavior, 16th Ed,2013
- 2. V S P Rao, Human Resource Management, 3rd Ed, 2010, Excel publishing
- 3. Aswathapa, Human resource management: Text & cases, 6th edition,2011
- 4. C. B. Mamoria and S V Gankar, Dynamics of Industrial Relations in India, 15th Ed, 2015, Himalaya Publishing, 15thedition,2015
- 5. P. Subba Rao, Essentials of Human Resource management and Industrial relations, 5th Ed, 2013, Himalaya Publishing
- 6. Laurie Mullins, Management & Organizational Behavior, Latest Ed, 2016, Pearson Publications

Semester II					
Course Code	Course Name	Credits			
ESMIE2015	MIE2015 ional Ethics and Corporate Social				
	Responsibility (CSR)	03			

Teaching Scheme							
Contact Hours Credits Assigned					ed		
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03			03			03	

	Evaluation Scheme							
	Theory				Term			
				Work/Practic al/Oral			Total	
Inter	rnal Asse	essment	End	Duration	ration			
Test1	Test2	Average	Sem Exam	of End Sem Exam	TW	PR	OR	
20	20	20	80	03 Hrs.				100

Objectives:

- 1. To understand professional ethics in business
- 2. To recognized corporate social responsibility

Outcomes: Learner will be able to...

- 1. Understand rights and duties of business
- 2. Distinguish different aspects of corporate social responsibility
- 3. Demonstrate professional ethics
- 4. Understand legal aspects of corporate social responsibility

Module	Detailed Contents	Hrs		
	Professional Ethics and Business: The Nature of Business Ethics; Ethical Issues in			
	Business; Moral Responsibility and Blame; Utilitarianism: Weighing Social Costs and	04		
I	Benefits; Rights and Duties of Business			
	Professional Ethics in the Marketplace: Perfect Competition; Monopoly Competition;			
TT	Oligopolistic Competition; Oligopolies and Public Policy	00		
II	Professional Ethics and the Environment: Dimensions of Pollution and Resource	08		
	Depletion; Ethics of Pollution Control; Ethics of Conserving Depletable Resources			
	Professional Ethics of Consumer Protection: Markets and Consumer Protection;			
	Contract View of Business Firm's Duties to Consumers; Due Care Theory; Advertising			
III	Ethics; Consumer Privacy	06		
	Professional Ethics of Job Discrimination: Nature of Job Discrimination; Extent of			
	Discrimination; Reservation of Jobs.			
	Introduction to Corporate Social Responsibility: Potential Business Benefits—Triple			
	bottom line, Human resources, Risk management, Supplier relations; Criticisms and			
IV	concerns—Nature of business; Motives; Misdirection.			
	Trajectory of Corporate Social Responsibility in India			

	Corporate Social Responsibility: Articulation of Gandhian Trusteeship								
\mathbf{V}	Corporate Social Responsibility and Small and Medium Enterprises (SMEs) in India,								
	Corporate Social Responsibility and Public-Private Partnership (PPP) in India								
	Corporate Social Responsibility in Globalizing India: Corporate Social								
X7T	Responsibility Voluntary Guidelines, 2009 issued by the Ministry of Corporate Affairs,								
VI	Government of India, Legal Aspects of Corporate Social Responsibility—Companies								
	Act, 2013.								

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (**on minimum Two Modules**) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module3)
- 4. Only Four questions need to be solved.

- 1. Business Ethics: Texts and Cases from the Indian Perspective (2013) by Ananda Das Gupta; Publisher: Springer.
- Corporate Social Responsibility: Readings and Cases in a Global Context (2007) by Andrew Crane, Dirk Matten, Laura Spence; Publisher: Routledge.
- 3. Business Ethics: Concepts and Cases, 7th Edition (2011) by Manuel G. Velasquez; Publisher: Pearson, New Delhi.
- 4. Corporate Social Responsibility in India (2015) by Bidyut Chakrabarty, Routledge, New Delhi.

Semester II						
Course Code	Course Name	Credits				
ESMIE2016	Research Methodology	03				

Teaching Scheme							
Co	Contact Hours Credits Assigned					ed	
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03			03			03	

Evaluation Scheme								
Theory				Term Work/Practic al/Oral			Total	
Test1	rnal Asse Test2	Average	End Sem Exam	Duration of End Sem Exam	TW PR		OR	
20	20	20	80	03 Hrs.				100

Objectives:

- 1. To understand Research and Research Process
- 2. To acquaint students with identifying problems for research and develop research strategies
- 3. To familiarize students with the techniques of data collection, analysis of data and interpretation

Outcomes: Learner will be able to...

- 1. Prepare a preliminary research design for projects in their subject matter areas
- 2. Accurately collect, analyze and report data
- 3. Present complex data or situations clearly
- 4. Review and analyze research findings

Module	Detailed Contents	Hrs
	Introduction and Basic Research Concepts	
	1.1 Research – Definition; Concept of Construct, Postulate, Proposition, Thesis,	
	Hypothesis, Law, Principle. Research methods vs Methodology	
	1.2 Need of Research in Business and Social Sciences	09
I	1.3 Objectives of Research	
	1.4 Issues and Problems in Research	
	1.5 Characteristics of Research: Systematic, Valid, Verifiable, Empirical and Critical	
	Types of Research	
	2.1. Basic Research	
	2.2. Applied Research	
II	2.3. Descriptive Research	07
	2.4. Analytical Research	
	2.5. Empirical Research	
	2.6 Qualitative and Quantitative Approaches	
	Research Design and Sample Design	
	3.1 Research Design – Meaning, Types and Significance	07
III	3.2 Sample Design – Meaning and Significance Essentials of a good sampling Stages in	07
	Sample Design Sampling methods/techniques Sampling Errors	

	Research Methodology		
	4.1 Meaning of Research Methodology		
	4.2 . Stages in Scientific Research Process:		
	a. Identification and Selection of Research Problem		
	b. Formulation of Research Problem		
	c. Review of Literature		
IV	d. Formulation of Hypothesis	08	
1 1	e. Formulation of research Design		
	f. Sample Design		
	g. Data Collection		
	h. Data Analysis		
	i. Hypothesis testing and Interpretation of Data		
	j. Preparation of Research Report		
	Formulating Research Problem		
${f V}$	5.1 Considerations: Relevance, Interest, Data Availability, Choice of data, Analysis of	04	
	data, Generalization and Interpretation of analysis		
	Outcome of Research		
VI	6.1 Preparation of the report on conclusion reached	04	
V 1	6.2 Validity Testing & Ethical Issues	דט	
	6.3 Suggestions and Recommendation		

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (**on minimum Two Modules**) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module3)
- 4. Only Four questions need to be solved.

- 1. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers Distributors.
- 2. Kothari, C.R.,1985, Research Methodology-Methods and Techniques, New Delhi, Wiley Eastern Limited.
- 3. Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2nded), Singapore, Pearson Education

Semester II						
Course Code	Course Name	Credits				
ESMIE2017	IPR and Patenting	03				

Teaching Scheme							
Contact Hours Credits Assigned					ed		
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03 03 03						03	

Evaluation Scheme								
		Theory	•		Term			
•					Work/Practic			
					al/Ora	ıl	Total	
Inter	nal Asse	ssment	End	Duration				
			Sem	of End	TW	PR	OR	
Test1	Test2	Average	Exam	Sem	1 **		OK	
				Exam				
20	20	20	80	03 Hrs.				100

Objectives:

- 1. To understand intellectual property rights protection system
- 2. To promote the knowledge of Intellectual Property Laws of India as well as International treaty procedures
- 3. To get acquaintance with Patent search and patent filing procedure and applications

Outcomes: Learner will be able to...

- 1. understand Intellectual Property assets
- 2. assist individuals and organizations in capacity building
- 3. work for development, promotion, protection, compliance, and enforcement of Intellectual Property and Patenting

4.

Module	Detailed Contents	Hr
	Introduction to Intellectual Property Rights (IPR): Meaning of IPR, Different	
	category of IPR instruments - Patents, Trademarks, Copyrights, Industrial Designs,	
	Plant variety protection, Geographical indications, Transfer of technology etc.	05
I	Importance of IPR in Modern Global Economic Environment: Theories of IPR,	
	Philosophical aspects of IPR laws, Need for IPR, IPR as an instrument of development	
	Enforcement of Intellectual Property Rights: Introduction, Magnitude of problem,	
	Factors that create and sustain counterfeiting/piracy, International agreements,	
TT	International organizations (e.g. WIPO, WTO) active in IPR enforcement	07
II	Indian Scenario of IPR: Introduction, History of IPR in India, Overview of IP laws in	07
	India, Indian IPR, Administrative Machinery, Major international treaties signed by	
	India, Procedure for submitting patent and Enforcement of IPR at national level etc.	
	Emerging Issues in IPR: Challenges for IP in digital economy, e-commerce, human	05
III	genome, biodiversity and traditional knowledge etc.	03

IV	Basics of Patents: Definition of Patents, Conditions of patentability, Patentable and non-patentable inventions, Types of patent applications (e.g. Patent of addition etc), Process Patent and Product Patent, Precautions while patenting, Patent specification Patent claims, Disclosures and non-disclosures, Patent rights and infringement, Method of getting a patent	07
V	Patent Rules: Indian patent act, European scenario, US scenario, Australia scenario, Japan scenario, Chinese scenario, Multilateral treaties where India is a member (TRIPS agreement, Paris convention etc.)	08
VI	Procedure for Filing a Patent (National and International): Legislation and Salient Features, Patent Search, Drafting and Filing Patent Applications, Processing of patent, Patent Litigation, Patent Publication, Time frame and cost, Patent Licensing, Patent Infringement Patent databases: Important websites, Searching international databases	

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (**on minimum Two Modules**) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module3)
- 4. Only Four questions need to be solved.

- 1. Rajkumar S. Adukia, 2007, A Handbook on Laws Relating to Intellectual Property Rights in India, The Institute of Chartered Accountants of India
- 2. Keayla B K, Patent system and related issues at a glance, Published by National Working Group on Patent Laws
- 3. T Sengupta, 2011, Intellectual Property Law in India, Kluwer LawInternational
- 4. Tzen Wong and Graham Dutfield, 2010, Intellectual Property and Human Development: Current Trends and Future Scenario, Cambridge University Press
- Cornish, William Rodolph & Llewelyn, David. 2010, Intellectual Property: Patents, Copyrights, Trade Marks and Allied Right, 7th Edition, Sweet & Maxwell
- LousHarns, 2012, The enforcement of Intellactual Property Rights: A Case Book, 3rd Edition, WIPO
- 7. PrabhuddhaGanguli, 2012, Intellectual Property Rights, 1st Edition, TMH
- 8. R Radha Krishnan& S Balasubramanian, 2012, Intellectual Property Rights, 1st Edition, Excel Books
- 9. M Ashok Kumar and mohd Iqbal Ali, 2-11, Intellectual Property Rights, 2nd Edition, Serial Publications

- 10. Kompal Bansal and Praishit Bansal, 2012, Fundamentals of IPR for Engineers, 1st Edition, BS Publications
- 11. Entrepreneurship Development and IPR Unit, BITS Pilani, 2007, A Manual on Intellectual Property Rights,
- 12. Mathew Y Maa, 2009, Fundamentals of Patenting and Licensing for Scientists and Engineers, World Scientific PublishingCompany
- 13. N S Rathore, S M Mathur, PritiMathur, AnshulRathi, IPR:
 Drafting,Interpretation of Patent Specifications and Claims, New India
 Publishing Agency
- 14. Vivien Irish, 2005, Intellectual Property Rights for Engineers, IET
- 15. Howard B Rockman, 2004, Intellectual Property Law for Engineers and scientists, Wiley-IEEPress

Semester II							
Course Code	Course Name	Credits					
ESMIE2018	Digital Business Management	03					

Teaching Scheme							
C	Credits Assigned						
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03			03			03	

Evaluation Scheme								
		Theory	•		Term			
•					Work/Practic			
					al/Ora	ıl	Total	
Inter	nal Asse	ssment	End	Duration				
			Sem	of End	TW	PR	OR	
Test1	Test2	Average	Exam	Sem	1 **		OK	
				Exam				
20	20	20	80	03 Hrs.				100

Objectives:

- 1. To familiarize with digital business concept
- 2. To acquaint with E-commerce
- 3. To give insights into E-business and its strategies

Outcomes: The learner will be able to

- 1. Identify drivers of digital business
- 2. Illustrate various approaches and techniques for E-business and management
- 3. Prepare E-business plan

Module	Detailed content	Hours
	Introduction to Digital Business- Introduction, Background and current status, E-market places, structures,	
т	mechanisms, economics and impacts Difference between physical economy and digital economy, Drivers of digital business. Dis Date & Applities, Mahile, Claud Computing	
Ι	Drivers of digital business - Big Data & Analytics, Mobile, Cloud Computing, Social media, BYOD, and Internet of Things(digitally intelligent machines/services)	09
	Opportunities and Challenges in Digital Business,	
II	Overview of E-Commerce E-Commerce- Meaning, Retailing in e-commerce-products and services, consumer behavior, market research and advertisement B2B-E-commerce-selling and buying in private e-markets, public B2B exchanges and support services, e-supply chains, Collaborative Commerce, Intra business EC and Corporate portals Other E-C models and applications, innovative EC System-From E-government and learning to C2C, mobile commerce and pervasive computing EC Strategy and Implementation-EC strategy and global EC, Economics and Justification of EC, Using Affiliate marketing to promote your e-commerce business, Launching a successful online business and EC project, Legal, Ethics and Societal impacts of EC	06

	Digital Business Support services: ERP as e –business backbone, knowledge						
	Tope Apps, Information and referral system						
III	Application Development: Building Digital business Applications and	06					
	Infrastructure						
	Managing E-Business-Managing Knowledge, Management skills for e-business,						
	Managing Risks in e –business						
	Security Threats to e-business -Security Overview, Electronic Commerce Threats,						
IV	Encryption, Cryptography, Public Key and Private Key Cryptography, Digital						
	Signatures, Digital Certificates, Security Protocols over Public Networks: HTTP,	06					
	SSL, Firewall as Security Control, Public Key Infrastructure (PKI) for Security,	00					
	Prominent Cryptographic Applications						
	E-Business Strategy-E-business Strategic formulation- Analysis of Company's						
\mathbf{v}	Internal and external environment, Selection of strategy,						
•	E-business strategy into Action, challenges and E-Transition	04					
	(Process of Digital Transformation)						
VI	Materializing e-business: From Idea to Realization-Business plan preparation Case Studies and presentations	08					

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (**on minimum Two Modules**) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in thesyllabus.

- 1. Question paper will comprise of total sixquestion
- 2. All question carry equalmarks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module3)
- 4. Only Four questions need to be solved.

- 1. A textbook on E-commerce, ErArunrajan Mishra, Dr W K Sarwade, Neha Publishers & Distributors, 2011
- 2. E-commerce from vision to fulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3. Digital Business and E-Commerce Management, 6th Ed, Dave Chaffey, Pearson, August2014
- 4. Introduction to E-business-Management and Strategy, Colin Combe, ELSVIER, 2006
- 5. Digital Business Concepts and Strategy, Eloise Coupey, 2nd Edition, Pearson
- 6. Trend and Challenges in Digital Business Innovation, VinocenzoMorabito, Springer
- 7. Digital Business Discourse Erika Darics, April 2015, PalgraveMacmillan
- 8. E-Governance-Challenges and Opportunities in : Proceedings in 2nd International Conference theory and practice of ElectronicGovernance
- 9. Perspectives the Digital Enterprise –A framework for Transformation, TCS consulting journalVol.5
- 10. Measuring Digital Economy-A new perspective -DOI:10.1787/9789264221796-enOECDPublishing

Semester II						
Course Code	Course Name	Credits				
ESMIE2019	Environmental Management	03				

Teaching Scheme								
C	Contact Hours				Credits Assigned			
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
03			03			03		

Evaluation Scheme								
		Theory	•		Term			
•					Work/Practic			
					al/Ora	ıl	Total	
Inter	nal Asse	ssment	End	Duration				
			Sem	of End	TW	PR	OR	
Test1	Test2	Average	Exam	Sem	1 **		OK	
				Exam				
20	20	20	80	03 Hrs.				100

Objectives:

- 1. Understand and identify environmental issues relevant to India and global concerns
- 2. Learn concepts of ecology
- 3. Familiarize environment related legislations

Outcomes: Learner will be able to...

- 1. Understand the concept of environmental management
- 2. Understand ecosystem and interdependence, food chain etc.
- 3. Understand and interpret environment related legislations

Module	Detailed Contents	Hrs
	Introduction and Definition of Environment: Significance of Environment	
I	Management for contemporary managers, Career opportunities. Environmental issues relevant to India, Sustainable Development, The Energy scenario.	10
II	Global Environmental concerns: Global Warming, Acid Rain, Ozone Depletion, Hazardous Wastes, Endangered life-species, Loss of Biodiversity, Industrial/Manmade disasters, Atomic/Biomedical hazards, etc.	06
III	Concepts of Ecology: Ecosystems and interdependence between living organisms, habitats, limiting factors, carrying capacity, food chain, etc.	05
IV	Scope of Environment Management, Role & functions of Government as a planning and regulating agency. Environment Quality Management and Corporate Environmental Responsibility	10
V	Total Quality Environmental Management, ISO-14000, EMS certification.	05
VI	General overview of major legislations like Environment Protection Act, Air (P & CP) Act, Water (P & CP) Act, Wildlife Protection Act, Forest Act, Factories Act, etc.	03

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (**on minimum Two Modules**) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module3)
- 4. Only Four questions need to be solved.

- 1. Environmental Management: Principles and Practice, C J Barrow, Routl edge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell, Edward Elgar Publishing
- 3. Environmental Management V Ramachandra and Vijay Kulkarni, TERI Press
- 4. Indian Standard Environmental Management Systems Requirements with Guidance for Use, Bureau of Indian Standards, February 2005
- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Maclillan India, 2000
- 6. Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC Press
 - Environment and Ecology, Majid Hussain, 3rd Ed. AccessPublishing.2015

Semester II						
Course Code	Course Name	Credits				
ESML201	Measurement & Virtual Instrumentation Lab	01				

Teaching Scheme								
C	Credits Assigned							
Theory	Practical Tutorial		Theory	Y Practical Tutorial		Total		
	02			01		01		

				Evaluation	Scheme			
Theory				Term Work/Practic al/Oral			Total	
Internal AssessmentTest1Test2Average		End Sem Exam	Duration of End Sem Exam	TW	PR	OR		
					25	25		50

Topic

I. Study of sensor characteristics, selection, calibration and measurement of minimum 05 mechanical parameters such as flow, load, pressure, speed and temperature

II. Virtual Instrumentation (VI)

- a. Simulation of any system with Virtual Instrumentation environment using any suitable software
- b. Interfacing of sensors used for measuring above mentioned parameters in I with VI software and measurement of these parameters on any laboratory model or actual working system

III. Demonstration of interfacing of VI software with suitable generic hardware

Assessment:

End Semester Examination: Practical/Oral examination is to be conducted by pair of internal and external examiners

Semester II						
Course Code	Course Name	Credits				
ESMSBL201	Renewable Energy Lab	02				

Teaching Scheme								
C	Credits Assigned							
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
	04			02		02		

				Evaluation	Scheme			
Theory				Term Work/Practic al/Oral			Total	
Internal Assessment Test1 Test2 Average		End Sem Exam	Duration of End Sem Exam	TW	PR	OR		
					50	50		100

The laboratory will focus on the following,

- 1. Measurement of solar radiation and sunshine hours
- 2. Measurement of albedo, UV & IR radiation
- 3. Measurement of emissivity, reflectivity, transmittivity
- 4. Performance testing of solar flat plate water heater (forced flow & thermosyphon systems)
- 5. Performance testing solar air heater & dryer & desalination unit
- 6. Performance testing of solar thermal concentrators
- 7. Characteristics of photovoltaic devices & testing of solar PV operated pump
- 8. Testing of Gasifier or Wind machines or Fuel cell

Assessment:

End Semester Examination: Practical/Oral examination is to be conducted by pair of internal and external examiners