University of Mumbai

No. AAMS_UGS/ICC/2022-23/ 180

CIRCULAR:-

Attention of the Principals of the Affiliated Colleges and Directors of the Recognized Institutions in Faculty of Science & Technology is invited to the syllabus uploaded by Academic Authority Meetings & Services which was accepted by the Academic Council at its meeting held on 14th July, 2016 <u>vide</u> item No. 4.32 relating to the revised syllabus as per Choice Based Credit and Grading System for M.E. (Mechanical) Machine Design.

You are hereby informed that the recommendations made by the Board of Studies in Mechanical Engineering at its meeting held on 31st May, 2022 and subsequently passed in the Faculty and then by the Board of Deans at its meeting held on 5th July, 2022 <u>vide</u> item No. 6.54 (R) have been accepted by the Academic Council at its meeting held on 11th July, 2022 <u>vide</u> item No. 6.54 (R) and that in accordance therewith, the revised syllabus of M.E. (Machine Design) (Sem.- I to IV) (CBCS) (REV - 2022 Scheme), has been brought into force with effect from the academic year 2022-23. (The circular is available on the University's website <u>www.mu.ac.in</u>).

MUMBAI – 400 032

(Prof. Sunil Bhirud)
I/c Registrar

To

The Principals of the Affiliated Colleges and Directors of the Recognized Institutions in Faculty of Science & Technology.

A.C/6.54 (R)/11/07/2022

Copy forwarded with Compliments for information to:-

- 1) The Dean, Faculty of Science & Technology,
- 2) The Chairman, Board of Studies in Mechanical Engineering,
- 3) The Director, Board of Examinations and Evaluation,
- 4) The Director, Board of Students Development,
- 5) The Director, Department of Information & Communication Technology,
- 6) The Co-ordinator, MKCL.

Copy to :-

- 1. The Deputy Registrar, Academic Authorities Meetings and Services (AAMS),
- 2. The Deputy Registrar, College Affiliations & Development Department (CAD),
- 3. The Deputy Registrar, (Admissions, Enrolment, Eligibility and Migration Department (AEM),
- 4. The Deputy Registrar, Research Administration & Promotion Cell (RAPC),
- 5. The Deputy Registrar, Executive Authorities Section (EA),
- 6. The Deputy Registrar, PRO, Fort, (Publication Section),
- 7. The Deputy Registrar, (Special Cell),
- 8. The Deputy Registrar, Fort/ Vidyanagari Administration Department (FAD) (VAD), Record Section,
- 9. The Director, Institute of Distance and Open Learning (IDOL Admin), Vidyanagari,

They are requested to treat this as action taken report on the concerned resolution adopted by the Academic Council referred to in the above circular and that on separate Action Taken Report will be sent in this connection.

- 1. P.A to Hon'ble Vice-Chancellor,
- 2. P.A Pro-Vice-Chancellor,
- 3. P.A to Registrar,
- 4. All Deans of all Faculties,
- 5. P.A to Finance & Account Officers, (F.& A.O),
- 6. P.A to Director, Board of Examinations and Evaluation,
- 7. P.A to Director, Innovation, Incubation and Linkages,
- 8. P.A to Director, Board of Lifelong Learning and Extension (BLLE),
- 9. The Director, Dept. of Information and Communication Technology (DICT) (CCF & UCC), Vidyanagari,
- 10. The Director of Board of Student Development,
- 11. The Director, Department of Students Walfare (DSD),
- 12. All Deputy Registrar, Examination House,
- 13. The Deputy Registrars, Finance & Accounts Section,
- 14. The Assistant Registrar, Administrative sub-Campus Thane,
- 15. The Assistant Registrar, School of Engg. & Applied Sciences, Kalyan,
- 16. The Assistant Registrar, Ratnagiri sub-centre, Ratnagiri,
- 17. The Assistant Registrar, Constituent Colleges Unit,
- 18. BUCTU,
- 19. The Receptionist,
- 20. The Telephone Operator,
- 21. The Secretary MUASA

for information.

University of Mumbai

Revised Syllabus for M.E.

(Machine Design)

Semester - (Ito IV)

(Choice Based Credit System)

(With effect from the academic year 2022-23)

University of Mumbai

O: Title of Course	M.E. (Machine Design)
O: Eligibility	Ordinance 0.5134
R: Passing Marks	40%
No. of years/Semesters:	4 semesters
Level:	P.G. / U.G./ Diploma / Certificate
Pattern:	Yearly / Semester
Status:	New / Revised 2022
To be implemented from Academic Year :	With effect from Academic Year : 2022-23

Dr. Vivek Sunnapwar Chairman

of Board of Studies in Mechanical Engineering

Dr. Suresh K. Ukarande Associate Dean,

Faculty of Science and Technology

Dr Anuradha Majumdar Dean,

Faculty of Science and Technology

Preamble

Education in engineering is growing in India and is expected to increase by a factor of several in the near future. At present entire world is at disruptive stage in terms of technologies. In present situation identifying upcoming challenges and developing technocrats ready to face any challenges. To face this challenge, the problem of quality must be addressed, debated, and progressed in a methodical manner. Accreditation is the primary form of quality assurance in higher education, and it signifies that the institution or programme of study is committed to meeting certain minimum stated requirements and is available to external assessment in order to get recognition. The main goal of this accrediting procedure is to assess the outcomes of the programme being evaluated. Program outcomes are a collection of skills and information that a student will possess upon completion of the programme. In keeping with this, the University of Mumbai's Faculty of Science and Technology has taken the lead in implementing the principle of outcome-based education into the curriculum building process.

We are pleased to report that the Postgraduate Program Educational Objectives were completed in a brainstorming session attended by more than 20 members from the University's associated institutes. They were either department heads or senior faculty from the Mechanical Engineering Department. The Program Educational Objectives finalized for the postgraduate program in Mechanical Engineering are listed below;

- 1. To prepare the Learner with a sound foundation in the mathematical, scientific and engineering fundamentals.
- 2. To prepare the Learner to use modern tools effectively in order to solve real life problems.
- 3. To prepare the Learner for a successful career in Indian and Multinational Organisations.
- 4. To encourage and motivate the Learner in the art of self-learning.
- 5. To inculcate a professional and ethical attitude, good leadership qualities and commitment to social responsibilities in the Learner's thought process.

In addition to the aforementioned, linked Institutes may add 2 to 3 additional programme instructional objectives of their own. In addition to Program Educational Objectives, each course in a postgraduate program's curriculum includes objectives and expected outcomes from the perspective of the learner to support the idea of outcome-based education. We are convinced that even a tiny move in the correct manner will go a long way toward ensuring that the main stakeholders receive high-quality education and ready to face any challenges.

Dr. S. K. Ukarande
Associate Dean
Engulty of Spignes and To

Faculty of Science and Technology

University of Mumbai

Dr Anuradha Muzumdar

Dean

Faculty of Science and Technology

University of Mumbai

Preface

To tackle the challenge of assuring engineering education excellence, the problem of quality must be addressed, debated, and progressed in a methodical manner. Accreditation is the primary way of ensuring the quality of higher education. The main goal of the certification procedure is to determine how good a company is. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this, Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome-based education in the process of curriculum development.

Faculty of Science and Technology, University of Mumbai, in one of its meetings collectively resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEOs), give freedom to Affiliated Institutes to add few (PEOs), course objectives course outcomes to be clearly defined for each course, so that all faculty members in linked institutes are aware of the depth of approach to the subject to be given, so improving the learning process of students It was also decided that while changing the curriculum, the most senior academics from institutions and industry specialists should be included.

We are happy to state that the Board of studies has adhered to the resolutions passed by Faculty of Technology and developed curriculum accordingly. In addition to outcome-based education, Choice Based Credit System is also introduced to ensure quality of engineering education.

Choice Based Credit and Grading System allows for a much-needed shift in education focus from teacher-centric to learner-centric, since the workload estimate is based on time spent learning rather than teaching. It also emphasises constant evaluation, which will improve educational quality. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes. Faculty of Technology has devised a transparent credit assignment policy, adopting a ten-point scale to grade learner's performance. REV-2022 scheme is implemented for Master of Engineering from the academic year 2022-2023.

We trust this revised version of syllabus come up to the expectations of all stakeholders. We wish to place on record our sincere thanks and appreciations to the various contributors from the academia and industry for their most learned inputs in framing this syllabus.

Board of Studies in Mechanical Engineering

Dr. Vivek K. Sunnapwar : Chairman Dr. S. M. Khot : Member Dr. V. M. Phalle : Member Dr. Siddappa Bhusnoor : Member Dr. S.S. Pawar : Member : Member Dr. Sanjay U. Bokade Dr. Dhanraj Tambuskar : Member Dr. V. B. Tungikar : Member Dr. K.P. Karunakaran : Member Dr. S. S. Thipse : Member Dr. Milind Deshmukh : Member

Semester I

Course	Course Name	Teaching Scheme (Contact Hours)				Credits Assigned						
Code		Theory		Pract.	Tut.	Theory	Pract.	Tut.	Total			
MDC101	Mechanical Vibration	3		-		3			3			
MDC102	Advanced Stress Analysis	3				3			3			
MDPE101X	Program Elective 1	3		1		3	-	1	3			
MDPE102X	Program Elective 2	3		1		3	-	1	3			
MDIE101X	Institute Elective 1	3				3			3			
MDL101	Vibration Measurement and Analysis			2			1	-	1			
MDSBL101	CAD/CAM/CIM			4 ^{\$}			2		2			
	Total	15 06				15	03	-	18			
			Examination Scheme									
Course	Course Name	Theory			ory			Pract				
Code		Interna	l Asse	essment	End Sem.	Exam.	Term	/	Total			
0000		Test-1	Test-	2 Avg	Exam	Duration (in Hrs)	Work	Oral	10001			
MDC101	Mechanical Vibration	20	20	20	80	3		-	100			
MDC102	Advanced Stress Analysis	20	20	20	80	3	-	1	100			
MDPE101X	Program Elective 1	20	20	20	80	3		-	100			
MDPE102X	Program Elective 2	20	20	20	80	3	-	1	100			
MDIE101X	Institute Elective 1	20	20	20	80	3			100			
MDL101	Vibration Measurement and Analysis						25	25	50			
MDSBL101	CAD/CAM/CIM						50	50	100			
	Total			100	400		75	75	650			

Course Code Program Elective I	Course Code	Program Elective II
--------------------------------	----------------	---------------------

MDPE1011	Composite Materials	MDPE1021	Process Equipment Design
MDPE1012	Smart Material	MDPE1022	Tribology
MDPE1013	Machine Tool Design	MDPE1023	Rapid Prototyping and Tooling

Course Code	Institute Elective 1
MDIE1011	Product Lifecycle Management
MDIE1012	Reliability Engineering
MDIE1013	Management Information System
MDIE1014	Design of Experiments
MDIE1015	Operation Research
MDIE1016	Cyber Security and Laws
MDIE1017	Disaster Management and Mitigation Measures
MDIE1018	Energy Audit and Management

Semester II

Course	Course Name	Teach	_	cheme(Clours)	Contact	Credits Assigned					
Code		Theo	Theory		Tut.	Theory	Pract.	Tut.	Total		
MDC201	System Modeling& Analysis	3				3			3		
MDC202	Analysis and Synthesis of Mechanisms	3	3			3			3		
MDPE201X	Program Elective 3	3				3			3		
MDPE202X	Program Elective 4	3				3			3		
MDIE201X	Institute Elective 2	3				3			3		
MDL201	Finite Element Analysis			2			1		1		
MDSBL201	Measurement and Virtual Instrumentation			4\$			2		2		
	Total	15		06		15	03		18		
		Examination Scheme									
Course	Course Name	Theory				<u>, </u>		Pract			
Code		Internal Asse		essment		Exam.	Term	/	Total		
		Test-1	Test-	2 Avg	Sem. Exam	Duration (in Hrs)	Work	Oral			
MDC201	System Modeling& Analysis	20	20	20	80	3	1		100		
MDC202	Analysis and Synthesis of Mechanisms	20	20	20	80	3			100		
MDPE201X	Program Elective 3	20	20	20	80	3			100		
MDPE202X	Program Elective 4	20	20	20	80	3			100		
MDIE201X	Institute Elective 2	20	20	20	80	3			100		
MDL201	Finite Element Analysis						25	25	50		
MDSBL201	Measurement and Virtual Instrumentation						50	50	100		
	Total			100	400		75	75	650		

Course Code	Program Elective 3	Course Code	Program Elective 4
MDPE2011	Optimization	MDPE2021	Fracture Mechanics
MDPE2012	Product Design and Development	MDPE2022	Theory of Plates
MDPE2013	Creativity In Design	MDPE2023	Micro Electro Mechanical Systems

Course Code	Institute Elective 2
MDIE2011	Project Management
MDIE2012	Finance Management
MDIE2013	Entrepreneurship Development and
MDIE2014	Human Resource Management
MDIE2015	Professional Ethics and CSR
MDIE2016	Research Methodology
MDIE2017	IPR and Patenting
MDIE2018	Digital Business Management
MDIE2019	Environmental Management

Note 1: Skill Based Lab- I and II are focused on the learning through experience. SBL shall facilitate the learner to acquire the fundamentals of practical engineering in his or her specialization in a project-oriented environment. The learning through skill based labs can be useful in facilitating their research work and hence useful in early completion of their dissertation work.

Semester III

Course	Course Name	Teaching Scheme (Contact Hours)				Credits Assigned				
Code		Theor	ry I	Pract.	Tut.	Theory	Pract.	Tut.	Total	
MDMP301	Major Project: Dissertation -I			20			10	-1-	10	
Total		00		20	00	00	10	!	10	
		Examination Scheme								
Course	Course Name	Theory								
Code	Course Name	Interna	Internal Assessment End			Exam.	Term Work	Pract/ Oral	Total	
		Test-1	Test-2	Avg	Sem. Exam	Duration (in Hrs)	WOLK	Orai		
MDMP301	Major Project: Dissertation -I						100		100	
	Total	ıl					100		100	

Online Credit Courses

Course	Course Name	Teaching Scheme (Contact Hours)		Credits Assigned				
Code		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
MDOCC301	Online Credit Course - I							3
MDOCC301	Online Credit Course - II		1					3
Total			-		00	00	00	06

Note 2: It is mandatory to complete the Online Credit Courses (OCC) available on NPTEL / Swayam /MOOC or similar platform approved by UoM. These two courses shall be completed in any semester I or II or III, but not later end of the Semester III. University shall make a provision that credits earned with OCC- I and OCC-II shall be accounted in the third semester grade-sheet with actual names of courses. The learner shall be allowed to take up these courses from his or her institute or organisation/ industry where his / her major project is carried out. The students shall complete the courses and shall qualify the exam conducted by the respective authorities/ instructor from the platform. The fees for any such courses and the corresponding examination shall be borne by the learner.

Online Credit Course - I

The learner shall opt for the course in the domain of Research Methodology **or** Research & Publication Ethicsor IPR. The opted course shall be of 3 credits of equivalent number of weeks.

Online Credit Course –II

The learner shall opt for the course recommended by Faculty Advisor/ Project Supervisor from the institute. The opted course shall be of 3 credits of equivalent number of weeks.

Semester IV

Course	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned				
Code		Theo	ry P	ract.	Tut.	Theory	Pract.	Tut.	Total
MDMP401	Major Project: Dissertation -II			32	ļ		16		16
	Total 32 -		-		16		16		
		Examination Scheme							
Course			,	Theor	y				
Code	Course Name	Iı	nternal		End	Exam.	Term	Pract/	Total
Couc		Ass	sessmen	t	Sem.	Duration	Work	Oral	Ioui
		Test-1	Test-2	Avg	Exam	(in Hrs)			
MDMP401	Major Project: Dissertation -II						100	100	200
	Total					100	100	200	

Total Credits: 68

Note 3:The Dissertation -II submission shall not be permitted till thelearner completes all the requirements ME course.

Note 4: The contact hours for the calculation of load of the teacher for Major Project are as follows:

Major Project Dissertation I and II - 02 Hour / week / student

Guidelines for Dissertation-I

Students should do literature survey and identify the problem for Dissertation and finalize in consultation with Guide/Supervisor. Students should use multiple literatures and understand the problem. Students should attempt solution to the problem by analytical/simulation/experimental methods. The solution to be validated with proper justification and compile the report in standard format. Guidelines for Assessment of Dissertation-I.

Dissertation-I should be assessed based on following points

- Quality of Literature survey and Novelty in the problem
- Clarity of Problem definition and Feasibility of problem solution
- Relevance to the specialization
- Clarity of objective and scope Dissertation-I should be assessed through a presentation by a panel of Internal examiners and external examiner appointed by the Head of the Department/Institute of respective Programme.

Guidelines for Assessment of Dissertation II

Dissertation II should be assessed based on following points:

- Quality of Literature survey and Novelty in the problem
- Clarity of Problem definition and Feasibility of problem solution
- Relevance to the specialization or current Research / Industrial trends
- Clarity of objective and scope
- Quality of work attempted or learner contribution
- Validation of results
- Quality of Written and Oral Presentation

Students should publish at least one paper based on the work in referred National/ International conference/Journal of repute.

Dissertation II should be assessed by internal and External Examiners appointed by the University of Mumbai.

Course Code	Course Name	Credits
MDC101	Mechanical Vibration	03

- 1. To study the Multi-degree of freedom system.
- 2. To study different vibration measurement and control methods, and required instruments.
- 3. To study the basic concepts of nonlinear vibrations.
- 4. To study various methods of vibration analysis for detecting machinery malfunction.

Outcomes: Learner will be able to.....

- 1. Develop a mathematical model for multi-degree of freedom system.
- 2. To identify and use vibration measuring instruments.
- 3. To apply various vibration control methods.
- 4. To detect machinery malfunction using vibration analysis.

Module	Detailed content	Hours
1	Multi-Degree of Freedom System	10
	Free Vibration Equation of motion, Influence Coefficients (Stiffness and	
	Flexibility), Generalized Coordinates, and Coordinate Coupling. Lagrangian	
	and Hamilton Equations, Matrix Method, Eigen value and Eigen Vector	
	Method	
2	Vibration Measurement	08
	Basic signal attributes, Vibration measuring sensors (Displacement, Velocity,	
	and Acceleration), Piezoelectric Accelerometers, Method for Calibrating	
	Accelerometer, Basic Process of Digital Frequency Analyzer, Digital	
	Analyzer operating principles, Measurement of phase, Phase fundamentals,	
	Comparing two waveforms using reference, Cross Channel phase analysis,	
	Electronic Filters, Time and orbital domain, Time and frequency domains, Evaluation of vibration severity, ISO standards: ISO 10816 and ISO 7919	
3	Modal Analysis	08
3	Introduction, Free vibration response using modal analysis, Forced vibration	VO
	response using modal analysis, Experimental modal analysis: Necessary	
	equipment, signal processing, Measurement of mode shapes, Introduction to	
	damage detection in structures using changes in modal frequency and mode	
	shapes	
4	Vibration Control	08
	Conventional Methods: By Mass/Inertia, Stiffness, Damping (Vibration	
	Isolation Principles). Dynamic vibration absorbers. Introduction to Semi-	
	Active and Active vibration Control	
5	Non-Linear Vibrations	08
	Basics of non-linear vibration, Systems with non-linear elastic properties, free	
	vibrations of system with non-linear elasticity and damping, phase-plane	
	techniques, Duffing's equation, Jump phenomenon, Limit cycle, Perturbation	
	method.	
6	Vibration Analysis for Machinery Malfunction	10
	Analysis of machinery vibration problems, Methodology of vibration analysis:	
	Condition/vibration monitoring data collection, Trending of data, Time wave	
	form analysis, Signature analysis, Absolute Phase analysis and cross channel	
	phase analysis, Orbit analysis. Root Cause Analysis.	
	Methodology of diagnosis of unbalance, misalignment and antifriction bearing	
	defects. Frequency calculation and their significance in signature analysis of	
	antifriction bearing, Mechanical Looseness, diagnosis of foundation problem	

- 1. S.S. Rao, Addison, "Mechanical Vibrations", Wesley Publishing Co., 1990.
- 2. Leonard Meirovitch, "Fundamentals of vibrations", McGraw Hill International Edition.
- 3. W.T. Thomson, "Theory of Vibrations with Applications", CBS Publishers, Delhi, 2003.
- 4. Asok Kumar Mallik, "Principles of Vibration Control", Affiliated East-West Press.
- 5. A. Devies, "Hand Book of Condition Monitoring: Techniques and Methodology", Springer
- 6. B.K.N. Rao, "Handbook of Condition Monitoring", Elsevier
- 7. Steve Goldman, "Vibration Spectrum Analysis: A Practical Approach", Industrial Press Inc.
- 8. Paresh Girdhar and Cornelius Scheffer, "Practical Machinery Vibration Analysis and Predictive Maintenance", Elsevier
- 9. R. Keith Mobley, "An Introduction to Predictive Maintenance", Butterworth-Heinemann
- 10. Robert B. McMillan "Rotating Machinery: Practical Solutions to Unbalance and Misalignment", Fairmont Press
- 11. Ron Barroon, "Engineering Condition Monitoring Practice, Methodology and Applications", Pearson Education
- 12. Kenneth G. McConnell and Paulo S. Varoto, "Vibration Testing: Theory and Practice", John Wiley and Sons, Inc.

Assessment:

Internal: Assessment consists of two tests out of which; one should be compulsory class test and

the other is either a class test or assignment on live problems or course project.

End Semester Examination: Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination.

Course Code	Course Name	Credits
MDC102	Advanced Stress Analysis	03

- 1. To study different types of stresses and strains induced in the mechanical components due to external loads in three dimensions.
- 2. To study the elastic behavior of different materials in three dimensions.
- 3. To study different types of electrical strain gauges.
- 4. To study different factors affecting failures of materials.

Outcomes: Learner should be able to

- 1. Demonstrate knowledge about various types of loading and stresses induced in three dimensions.
- 2. Develop the Stress Strain relationship for different types of materials.
- 3. Apply the knowledge of strain gauges for measuring strain in practical applications.
- 4. Apply the knowledge different factors of failure for better design of mechanical components.

Module	Detailed content	Hours
1	Analysis of stress in three dimensions:	(12)
	Stress at a point – components of stress; Principal stresses; Determination of	
	principal stresses; Stress invariants; Determination of maximum shear stresses;	
	Octahedral shear stress, Hydrostatic and Deviatoric Stress Tensors Mohr's	
	Circle for 2D and 3D stress problem.	
2	Analysis of strain:	(10)
	Strain at a point – Components of strain; Differential equations of equilibrium;	
	Conditions of compatibility, Hydrostatic and Deviatoric Strain Tensors,	
	Mohr's Circle for 2D and 3D strain problem.	
3	Stress Strain relationship:	(08)
	Generalized Hooke's law, Elastic behavior for different materials (Isotropic,	
	Orthotropic and Anisotropic).	(0.0)
4	Electrical Strain Gauges:	(08)
	Principle of operation and requirements, Types and their uses, Materials for	
	strain gauge. Calibration and temperature compensation, cross sensitivity,	
	Rosette analysis, Wheastone bridge and potentiometer circuits for static and	
	dynamic strain measurements, strain indicators. Load cell and its types.	
	Introduction to Recent Trends in Strain Measurement	(00)
5	Fatigue and Fracture:	(08)
	Introduction to fatigue and fracture mechanics of ductile and brittle fractures	
	mechanism of fatigue failure. Factors affecting fatigue. Methods of improving fatigue strength. Cumulative damage theories. Linear elastic fracture	
	mechanics. Finite life, infinite life, design of machine components, Fracture toughness, Crack growth studies	
6	Environmental considerations in design:	(06)
U	Corrosion, corrosion under stress, fretting corrosion and effects of other	(06)
	chemicals. Methods of improving corrosion resistance.	
	chemicals. Methods of improving corrosion resistance.	

- 1. Srinath, L.S., Raghava, M.R., Lingaiah, K., Garagesha, G., Pant B., and Ramachandra, K., "Experimental Stress Analysis", Tata McGraw-Hill, New Delhi, 1984.
- 2. M. Ameen, "Computational Elasticity", Narosa Publishing House.
- 3. Dally, J.W., and Riley, W.F., "Experimental Stress Analysis", McGraw-Hill Inc., New York, 1998.
- 4. Cook and Young, "Advanced Mechanics of Materials", Prentice Hall.
- 5. Richard G. Budynas, "Advanced Strength and Applied Stress Analysis", McGraw Hill.
- 6. Boresi, Schmidt, "Advanced Mechanics of Materials", Sidebottom, Willey.
- 7. Timoshenko and Goodier, "Theory of Elasticity", McGraw Hill.
- 8. Timoshenko, "Advanced Strength of Materials, Vol. 1, 2", CBS.
- 9. T.L. Anderson, "Fracture Mechanics Fundamentals and Applications" CRC Press.

Assessment:

Internal: Assessment consists of two tests out of which; one should be compulsory class test and

the other is either a class test or assignment on live problems or course project.

End Semester Examination: Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject Code	Subject Name	Credits
MDPE1011	Composite Materials	03

- 1. To study the behaviour of composite materials, both at micro and macro levels.
- 2. To study the procedure of designing a composite laminate and structure as a whole for the given application.
- 3. To study the applicability of composite materials for various industrial applications
- 4. To study the design procedure, damage detection, and damage repair methods for composite materials.

Outcomes: Learner should be able to...

- 1. Select the type of material for the fibres and matrix in a composite material for the given application.
- 2. Select the number of laminae and their stacking sequence in a composite material for the given loading condition.
- 3. Identify the type of damage occurred in a composite structure and select an appropriate method to possibly repair it.

Module	Detailed content	Hours
1	Introduction	08
	Classifications, Advantages, Applications, Terminology, Manufacturing	
	Methods	
2	Macro-mechanical analysis of a lamina	10
	Hooke's law for different types of materials, Plane stress assumption, Hooke's	
	law for a two-dimensional unidirectional lamina, Relationship of compliance	
	and stiffness matrix to engineering elastic constants of a lamina	
3	Micro-mechanical analysis of a lamina	08
	Assumptions, Volume fraction, Mass fraction, Density, Void content,	
	Prediction of mechanical properties of composites based on properties of their	
	constituents (fiber and matrix) including strength and coefficients of thermal	
	and moisture expansion	
4	Lamina strength analysis	08
	Introduction, Maximum stress failure theory, Maximum strain failure theory,	
	Tsai-Hill failure theory, Tsai-Wu failure theory, Strength ratio, Failure	
	envelopes, Progressive failure analysis for a laminate	
5	Analysis of laminates	10
	Classical laminated plate theory, Global stress-strain relation for laminates	
	based on the individual properties of their laminae and their lay-up, Stresses	
	and strains in individual laminae, Thermal and moisture effects in laminates	
6	Design, inspection, and repair	08
	Advantages and disadvantages of composites with respect to product lifecycle	
	management, General considerations and process involved in composite	
	structural design, Different types of damages in composites, Non-destructive	
	testing of composites, Types of composite repair and their benefits	

- 1. R.M. Jones, "Mechanics of Composite Materials", Taylor and Francis, Inc.
- 2. J.N. Reddy, "Mechanics of Laminated Composite Plates and Shells Theory and Analysis", CRC Press
- 3. A.K. Kaw, "Mechanics of Composite Materials", Taylor and Francis Group, LLC
- 4. D. Hull and T.W. Clyne, "An Introduction to Composite Materials", Cambridge University Press

5. L.P. Kollar, G.S. Springer, "Mechanics of Composite Structures", Cambridge University Press

Assessment:

Internal: Assessment consists of two tests out of which; one should be

compulsory class test and the other is either a class test or

assignment on live problems or course project.

End Semester Examination: Some guidelines for setting the question papers are as, six

questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester

examination.

Subject Code	Subject Name	Credits
MDPE1012	Smart Materials	03

- 1. To study the working principles of various smart materials.
- 2. To identify applicability of various smart materials as actuator and sensor.
- 3. To study advances in smart materials.

Outcomes: Learner should be able to...

- 1. Understand working of smart materials and their application as actuator and sensor.
- 2. Select an appropriate smart material for a given application.
- 3. Identify applicability of smart materials for new prospective smart structures.

Module	Detailed content	Hours
1	Introduction to Smart / Intelligent Materials:	08
	Overview of Smart / Intelligent Materials, Primitive Functions of Intelligent	
	Materials, Intelligence Inherent in Materials, Actuator Materials, Sensing	
	Technologies, Microsensors, Intelligent Systems	
	Hybrid Smart Materials, Passive Sensory Smart Structures, Reactive	
	Actuator based Smart Structures, Active Sensing and Reactive Smart	
	Structures, Smart Skins	
2	Introduction to High bandwidth - Low strain generating (HBLS)	10
	Smart Materials	
	Piezoelectric Materials	
	- Constitutive relationship, electromechanical coupling coefficients,	
	piezoelectric constants, piezoceramic materials, variation of coupling	
	coefficients in hard and soft piezoceramics, polycrystalline vs single crystal	
	piezoelectric materials, polyvinylidene fluoride, piezoelectric composites	
	Magnetostrictive Materials	
	- Constitutive relationship, magnetomechanical coupling coefficients, Joule	
	Effect, Villari Effect, Matteuci Effect, Wiedemann effect, Giant	
	magnetostriction inTerfenol-D, Terfenol-Dparticulate composites, Galfenol	
	and Metglas materials.	
3	Actuators based on HBLS Smart Materials	10
	Piezoelectric Actuators	10
	- Induced Strain actuation model, Unimorph and Bimorph Actuators,	
	Actuators embedded in composite laminate, Impedance matching in	
	Actuator design, Feedback Control, Pulse Drive, Resonance Drive.	
	Magnetostrictive Actuators	
	- Magnetostrictive Mini Actuators, Thermal instabilities, Discretely	
	distributed actuation, Magnetostrictive Composites.	
	MEMS based Actuators	
	- Piezoelectric Micropumps, Magnetostrictivemicromechanisms, Imaging	
	System Applications, Inchworm Devices, Inkjet Printers, Piezoelectric	
	Relays, Ultrasonic Motors, and Microscale Walking Machines.	
	Sensors based on HBLS Smart Materials	
	Piezoelectric Sensors, Magnetostrictive Sensors, Techniques of Self-	
	Sensing, MEMS Sensors	
4	Introduction to Low bandwidth - High strain generating (LBHS)	08
4	materials	Uð
	• Shape Memory Alloys(SMA)	
	• Electro-active Polymers (EAP)	

5	Actuators based on LBHS Smart Materials • Shape Memory Alloy based actuators for Shape Control • Electro-active Polymers for Work-Volume Generation	08
	Sensors based on LBHS Smart Materials • EAP based sensors • SMA based encoders	
6	Optical Fibre based Sensing Advances in Smart Materials	08
0	• Active Fibre Composites (AFC)	08
	 Energy Harvesting Actuators and Energy Scavenging Sensors Self-healing and Autophagous Smart Materials 	

- 1. M.V. Gandhi and B.S. Thompson, "Smart Materials and Structures", Chapman & Hall, London; New York, 1992 (ISBN: 0412370107)
- 2. Mel Scwartz, "Encyclopedia of Smart Materials Vol. I and II", John Wiley & Sons
- 3. H. Janocha, "Actuators Basics and Applications", Springer
- 4. B. Culshaw, "Smart Structures and Materials", Artech House, Boston, 1996 (ISBN:0890066817)
- 5. A.V. Srinivasan, "Smart Structures: Analysis and Design", Cambridge University Press, Cambridge; New York, 2001 (ISBN: 0521650267)
- 6. A.J. Moulson and J.M. Herbert, "Electroceramics: Materials, Properties, Applications", 2nd Edition, John Wiley & Sons, Chichester, West Sussex; New York, 2003 (ISBN:0471497479)
- 7. K. Uchino, "Piezoelectric Actuators and Ultrasonic Motors", Kluwer Academic Publishers, Boston, 1997 (ISBN: 0792398114)
- 8. G. Engdahl, "Handbook of Giant Magnetostrictive Materials", Academic Press, San Diego, Calif.; London, 2000 (ISBN: 012238640X)
- 9. K. Otsuka and C.M. Wayman, "Shape Memory Materials", Cambridge University Press, Cambridge; New York, 1998 (ISBN: 052144487X)
- 10. Eric Udd, "Fiber Optic Sensors: An Introduction for Engineers and Scientists", John Wiley & Sons, New York, 1991 (ISBN: 0471830070)
- 11. André Preumont, "Vibration Control of Active Structures: An Introduction", 2nd Edition, Kluwer Academic Publishers, Dordrecht; Boston, 2002 (ISBN: 1402004966)
- 12. T.T. Soong, "Passive Energy Dissipation Systems in Structural Engineering", Wiley, Chichester; New York, 1997 (ISBN: 0471968218)

Assessment:

Internal: Assessment consists of two tests out of which; one should be

compulsory class test and the other is either a class test or

assignment on live problems or course project.

End Semester Examination: Some guidelines for setting the question papers are as, six

questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester

examination.

Subject Code	Subject	Credits
MDPE1013	MachineToolDesign	03

- 1. To study general principles of machine tool design.
- To study the procedure of designing machine tool drives.
 To study the acceptance test for various machine tools.

Outcomes: Learner will be able to.....

- 1. Understand the functioning of various machine tools.
- 2. Design a machine tool component for the given loading conditions.
- 3. Apply the acceptance tests on various machine tools.

Module	Detailedcontent	Hours
1	Introduction to Machine Tools, General Principles of Machine Tool Design: Typesandcapabilitiesofmachinetools, Constructionalandoperationalfeatures, Techno- EconomicalPrerequisitesforundertakingtheDesignofNewMachine Tool, General Requirements of Machine Tool Design, Engineering Design Process Applied to Machine Tools.	6
2	Machine Tool Drives Working and auxiliary motions in machine tools, Mechanical transmission and its elements, AimofSpeedandFeedRate Regulation, Stepped regulation of speed: Design of speed box, Design of Feed Box, Construction of speed charts, Development of gearing diagram, Determination of gear teeth, module, shaft sizes, centre distances, Other types of speed and feed drives viz Quadrantchange gear, Gear cone with sliding key, Norton Gear Box, Meander Drive, Gear boxes with clutcheddrivelikethe Ruppert Drive and Schopkedrive, SteplessDrives-Mechanical, Hydraulic, Electrical	20
3	Design of Machine Tool Structures and guide ways FunctionsofMachine Tool Structures and TheirRequirements, Designcriteria for Machine Tool Structures, Materials of Machine Tool Structures StaticandDynamicStiffness, Profiles of Machine Tool Structures, BasicDesign Procedure of Machine Tool Structures, Design of Beds, Columns, Bases and Tables, Functions and types of guide ways, Design of slide ways, Design calculations for slide ways, Guide ways operating underliquid friction conditions	10
4	Design of Power Screws: Design of Power Screws based on strength, stiffness and buckling, Power requirements	08
5	Design of Spindles and Spindle Supports: FunctionsofSpindleUnitandRequirements, Materials of Spindles, Effect of Machine Tool Compliance on Machining Accuracy, Design Calculations of Spindle	10
6	Acceptance Tests for Machine Tools: Significance, Performance and geometrical tests for lathe, milling, drilling and shaping machines	06

- 1. N.K.Mehta, "Machine Tool Designand Numerical Control" Second Edition, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1984.
- 2. S.K. BasuandD.K. Pal, "Design of Machine Tools", Fourth Edition, Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, 1990.
- 3. G.C.SenandA.Bhattacharya, "PrinciplesofMachineTools", SecondEdition, NewCentral Book Agency (P) Ltd., Kolkata, 1988.
- 4. F. Koenigsberger, "Design Principles of Metal Cutting and Machine Tools", Edition 1964, Pergamon Press Ltd., London.
- 5. H.C.Town, "The Design and Construction of Machine Tools", Central Machine Tool Research Institute, Bangalore, Machine Tool Design Handbook.
- 6. PSG College of Engg. & Technology, PSG Design Data Book.
- 7. N.K. Acherkan, "Machine Tool Design (Vol.I to Vol.IV)", Mir Publishers.

Assessment:

Internal:Assessmentconsistsoftwotestsoutofwhich;oneshouldbecompulsoryclasstestand other is either a class test or assignment on live problems or course project.

End Semester Examination: Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of ends emester examination.

CourseCode	Course	Credits
MDPE10211	ProcessEquipment Design	03

- 1. To study the fundamentals and codes required for designing process equipments.
- 2. To study the process of designing the process equipment using codes.
- 3. To study testing and inspection techniques related to process equipments.

Outcomes:Learner will be able to...

- 1. Show understanding of process equipment design parameters.
- 2. Designand develop pressurevessels for the given applications.
- 3. Apply testing and inspection techniques on the process equipments.

Module	Detailedcontent	Hours
1	General Requirements Basic considerations in process equipment design; general design procedure of process equipment design; Terminology used in pressure vessel design: Designpressures, Design temperatures, Designstresses, Design Loading such as wind load, temperature load, Dead load, Maximum allowable stress values, Minimum shell thickness, Welded joint efficiency and category, Corrosion allowance, Minimum design metal temperature (MDMT), Maximum allowable working pressure, Test pressure, Weight estimation of vessel, Development of pressure vessel construction code: Study of ASME section VIII Div.—I; Selection of material and its properties by using ASME section II for ferrous materials, Importance of codesandstandards andtheirapplications, Stress categories and stress limits.	08
2	DesignofPressureVessels Types of pressure vessels; Types of head or end closure; Complete design as per ASME code of cylindrical and spherical shells: Pressure vessel subjected to internal pressure; Pressure vessel subjected to External pressure: Design of various end closures, Design of flanged joints ,Design of opening such as nozzle ,manhole etc. ,Gasket selection ,Design of Tall tower; Determination of wind load and seismic load; Determination of period of vibration; Determination of deflection of tower and elastic instability.	10
3	Vessel Supports Introduction and types of vessel support; Design of saddle support; Design of lug supports; Design of leg supports; Design of skirt support; Designof support components: Baseplate, Skirtbearing plate, Anchorbolts	10
4	Designof Storage Tanks Introduction to API code; Types of storage tanks for storing volatile and non volatile fluid etc; Types of roofs used in storage vessels; Complete API design of storage tank; Calculation of shell thickness by one foot method and variable design point method; Shell attachment design; Wind girder design; Design of rectangular tank	10

5	HeatExchangers Introduction to TEMA code; Classification of TEMA heat exchangers; Nomenclature of heat exchanger components: Tube and tube bundle, Tube sheet, Tube pattern, Tube length, Baffle etc; Calculation of effective shell side and tube side design pressure; Study of various types of jacket such as half pipe, limphet coil. Agitator Types of impellars; General procedure of choice of impellar type and speeds; Design of agitator shaft: Calculation of shaft diameter, Bearing load calculation, Calculation of critical speed, Calculation of deflections.	10	
6	Testing and inspection techniques Brief introduction :Standardhydtostatic test; Standard pneumatic test; Post weld heat treatment; Radiographic examination; Process flow diagram; Process and instrumentation diagram	04	

- 1. Pressure vessel Design Manual: Dennis Moss
- 2. Browell and Young, "Process Equipment Design:, John Wiley
- 3. Pressure Vessel Design Handbook: Henry H Bednar
- 4. Pressure Vessel Handbook : Eugene F. Megyesy
- 5. Guidebook for the Design of ASME section VIII Pressure Vessels by James R. Farr and MaanH.Jawad
- 6. Standard Codes such as: ASME SEC-VIII, Div I & II; Section II part A, Part D; ASTM; API; TEMA.

Assessment:

Internal: Assessmentconsistsoftwotestsoutofwhich;oneshouldbecompulsoryclasstestand the other is either a class test or assignment on live problems or course project.

End Semester Examination: Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of endsemester examination.

Use ASME codes, API code and TEMA code is permissible in the end semester examination.

MDPE1022	Tribology	03
		00

- 1. To study the fundamental properties of lubricants and their applications.
- 2. To study various mechanisms of friction and wear in a material.
- 3. To study different types of bearings and their selection procedure.

Outcomes: Learner should be able to...

- 1. Select an appropriate lubricant for a given application.
- 2. Understand various friction and wear mechanisms so that he can think of remedial measures.
- 3. Select an appropriate type of bearing for a given application.

Module	Detailed content	Hours
1	Introduction	08
	Tribology, Industrial Importance, Friction and Wear, Lubricants, Types and	
	Properties of Lubricants, Viscosity and Viscometry, Bearings	
2	Friction	08
	Introduction, Laws of Friction, Friction Theories, Other Mechanisms:	
	- Hysteresis	
	- Ratchet Mechanism	
	- Stick-Slip	
	- Rolling Friction	
	Friction on Metals, Friction on Non-Metallic Materials	
	Wear	
	Mechanisms of Wear:	
	- Abrasive	
	- Adhesive	
	- Surface Fatigue	
	- Tribo-chemical	
	Quantitative Laws of Wear, Wear Resistance of Materials	
3	Rolling Element Bearings	08
	Introduction, Selection of Bearings, Stribeck's Equation, Static and Dynamic	
	Load Carrying Capacity, Rated Life, Equivalent Bearing Load, Probability of	
	Survival, Selection of Bearing from Design Data Book	
4	Hydrodynamic Bearings	12
	Introduction, Governing Equations, Hydrodynamic Journal Bearings,	
	Hydrodynamic Thrust Bearings	
	Hydrostatic Bearings	
	Introduction, Circular Step Thrust Bearing, Annular Thrust Pad Bearings,	
	Rectangular Thrust Bearings, Hydrostatic Journal Bearings	
5	Gas Lubricated Bearings	08
	Introduction, Governing Equations, Infinitely Long - Plane Slider Bearings,	
	Infinitely Long - Journal Bearings, Finite Journal Bearings, Other Gas Bearing	
	Types:	
	- Tilted-Pad Journal Bearings	
	- Spiral Groove Thrust and Journal Bearings	
	- Foil Bearings	
	- Externally Pressurized Bearings	
	Squeeze Film Lubrication, Instabilities in Gas-Lubricated Bearings	
6	Elastohydrodynamic Lubrication (EHL)	08
	Introduction, Line Contact: Rigid Cylinder, Line Contact: Elastic Cylinder,	
	Point Contacts, Thermal Correction Factor, Surface Roughness Correction	
	Factor, Lubricant Rheology, Different Regimes in EHL Contacts	
	Introduction to Nanotribology and Biotribology	

- 1. Gwidon W. Stachowiak and Andrew W. Batchelor, "Engineering Tribology", Elsevier Butterworth Heinemann
- 2. Prasanta Sahoo, "Engineering Tribology", PHI Learning Pvt. Ltd.
- 3. B.C. Majumdar, "Introduction to Tribology of Bearings", Wheeler Publishing
- 4. John Williams, "Engineering Tribology", Cambridge University Press
- 5. S.K. Basu, S.N. Sengupta and B.B. Ahuja, "Fundamentals of Tribology", PHI Learning Pvt. Ltd.

Assessment:

Internal: Assessment consists of two tests out of which; one should be

compulsory class test and the other is either a class test or

assignment on live problems or course project.

End Semester Examination: Some guidelines for setting the question papers are as, six

questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester

examination.

CourseCode	Course Name	Credits
MDPE1023	Rapid Prototyping and Tooling	03

- 1. To study the fundamentals of rapid prototyping and tooling technologies.
- 2. To study basic concepts of reverse engineering and their application in product development.
- 3. To study 3D ModelingSoftwares.

Outcomes: Learner should be able to...

- 1. Select proper rapid prototyping and reverse engineering techniques for specific technical applications.
- 2. Select an appropriate material and tools to develop a given product using rapid prototyping machine.
- 3. Develop a 3D model of a product using the software.

Module	Detailed content	Hours
1	Rapid Prototyping	(08)
	Historical Development	
	Applications: Design, Planning, Manufacturing and Tooling	
	Applications: Automotive, Jewelry, Coin and Bio-Medical	
	• Fundamentals of Rapid Prototyping, Design Process	
	Rapid Prototyping Process Chain	
	C. I. A. A. A. D. D. M. I. I.	(10)
2	Subsystems of RP Machine	(10)
	• Subsystems of RP machine	
	o Optical System	
	Mechanical Scanning System	
	o Computer Interfacing hardware, DAQs	
	 Signal Flow, 3D Model to RP Prototype 	
	• Introduction to 3D ModelingSoftwares (Auto-CAD, PROE, CATIA,	
	IDEAs etc.)	
	Slicing and Scan Path Generation Algorithms	
	Data Conversion and Transmission	
	• File Formats, IGES, STL	
	Preprocessing and Post-processing	
3	Liquid Based Rapid Prototyping Systems	(10)
	• Materials	
	• Stereolithography	
	Solid Ground Curing	
	Solid Object UV (Ultra-Violet) Printer	
	• Two Laser System	
	Micro-stereolithography	
4	Solid Based Rapid Prototyping Systems	(08)
	Materials	
	LOM (Laminated Object Manufacturing) System	
	• FDM (Fuse Deposition Modeling) System	
	Multi-Jet Modeling (MJM) System	
	Model Maker and Pattern Master	
	Shape Deposition Manufacturing Process	
5	Powder Based Rapid Prototyping Systems	(08)

	 Materials SLS (Selective Laser Sintering) (3DP) Three-Dimensional Printing (LENS) Laser Engineered Net Shaping 	
	• (MJS) Multiphase Jet Solidification	
	• (EBM) Electron Beam Melting	
6	Advances in RP Systems and Case Studies	(08)
	Advances in RP: Resolution & Accuracy issues, Integrated Hardening	
	Process, Two Photon Process for Micro/Nano Fabrication, Reverse Engineering	
	Process and Applications.	
	Case Study: Wind-Tunnel Testing with RP Models	
	Case Study: Investment Casting with RP	

- 1. Chua C.K., Leong K.F., and Lim C.S., "Rapid Prototyping Principles and Applications", World Publishing Co. Pte. Ltd.
- 2. James O. Hamblen, and Michael D. Furman, "Rapid Prototyping of Digital Systems", Kluwer Academic Publishers.
- 3. Kenneth G. Cooper, "Rapid Prototyping Technology Selection and Application", 2001, Marcel Dekker Inc, New York.
- 4. Ali Kamrani, EmadAbouel Nasr, "Rapid Prototyping Theory and Practice", 2006, Springer Inc.
- 5. BopayaBidanda, Paulo J. Bartolo, "Virtual Prototyping and Bio Manufacturing in Medical Applications", 2008, Springer Inc.
- 6. I. Gibson, D.W. Rosen, and B. Stucker, "Additive Manufacturing Technologies Rapid Prototyping to Direct Digital Manufacturing", 2010, Springer Inc.

Assessment:

Internal: Assessment consists of two tests out of which; one should be compulsory class test and

the other is either a class test or assignment on live problems or course project.

End Semester Examination: Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination.

Course Code	Course Name	Credits
MDIE 1011	Product Life Cycle Management	03

- 1. To familiarize the students with the need, benefits and components of PLM
- 2. To acquaint students with Product Data Management & PLM strategies
- 3. To give insights into new product development program and guidelines for designing and developing a product
- 4. To familiarize the students with Virtual Product Development

Outcomes: Learner will be able to...

- 1. Gain knowledge about phases of PLM, PLM strategies and methodology for PLM feasibility study and PDM implementation.
- 2. Illustrate various approaches and techniques for designing and developing products.
- 3. Apply product engineering guidelines / thumb rules in designing products for moulding, machining, sheet metal working etc.
- 4. Acquire knowledge in applying virtual product development tools for components, machining and manufacturing plant.

Module	Detailed Contents	Hrs.
1	Introduction to Product Lifecycle Management (PLM): Product Lifecycle Management (PLM), Need for PLM, Product Lifecycle Phases, Opportunities of Globalization, Pre-PLM Environment, PLM Paradigm, Importance & Benefits of PLM, Widespread Impact of PLM, Focus and Application, A PLM Project, Starting the PLM Initiative, PLM Applications. PLM Strategies: Industrial strategies, Strategy elements, its identification, selection and implementation, Developing PLM Vision and PLM Strategy, Change management for PLM.	10
2	Product Design: Product Design and Development Process, Engineering Design, Organization and Decomposition in Product Design, Typologies of Design Process Models, Reference Model, Product Design in the Context of the Product Development Process, Relation with the Development Process Planning Phase, Relation with the Post design Planning Phase, Methodological Evolution in Product Design, Concurrent Engineering, Characteristic Features of Concurrent Engineering, Concurrent Engineering and Life Cycle Approach, New Product Development (NPD) and Strategies, Product Configuration and Variant Management, The Design for X System, Objective Properties and Design for X Tools, Choice of Design for X Tools and Their Use in the Design Process.	09
3	Product Data Management (PDM): Product and Product Data, PDM systems and importance, Components of PDM, Reason for implementing a PDM system, financial justification of PDM, barriers to PDM implementation.	05
4	Virtual Product Development Tools: For components, machines, and manufacturing plants, 3D CAD systems and realistic rendering techniques, Digital mock-up, Model building, Model analysis, Modeling and simulations in Product Design, Examples/Case studies.	05

	Integration of Environmental Aspects in Product Design: Sustainable	
	Development, Design for Environment, Need for Life Cycle Environmental	
5	Strategies, Useful Life Extension Strategies, End-of-Life Strategies,	05
	Introduction of Environmental Strategies into the Design Process, Life Cycle	
	Environmental Strategies and Considerations for Product Design.	
	Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and	
	Framework of LCA, Phases of LCA in ISO Standards, Fields of Application	
6	and Limitations of Life Cycle Assessment, Cost Analysis and the Life Cycle	05
	Approach, General Framework for LCCA, Evolution of Models for Product	
	Life Cycle Cost Analysis.	

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

References:

- 1. John Stark, "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, Antonino Risitano, "Product Design for the environment-A life cycle approach", Taylor & Francis 2006, ISBN: 0849327229
- 3. Saaksvuori Antti, ImmonenAnselmie, "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 1. Michael Grieve, "Product Lifecycle Management: Driving the next generation of lean thinking", Tata McGraw Hill, 2006, ISBN: 0070636265

Course Code	Course Name	Credits
MDIE1012	Reliability Engineering	03

- 1. To familiarize the students with various aspects of probability theory
- 2. To acquaint the students with reliability and its concepts
- 3. To introduce the students to methods of estimating the system reliability of simple and complex systems
- 4. To understand the various aspects of Maintainability, Availability and FMEA procedure

Outcomes: Learner will be able to...

- 1. Apply the concept of Probability to engineering problems
- 2. Apply various reliability concepts to calculate different reliability parameters
- 3. Estimate the system reliability of simple and complex systems
- 4. Carry out a Failure Mode Effect and Criticality Analysis

Module	Detailed Contents	Hrs.
1	Probability theory: Probability: Standard definitions and concepts; Conditional Probability, Baye's Theorem. Probability Distributions: Central tendency and Dispersion; Binomial, Normal, Poisson, Weibull, Exponential, relations between them and their significance. Measures of Dispersion: Mean, Median, Mode, Range, Mean Deviation, Standard Deviation, Variance, Skewness and Kurtosis.	08
2	Reliability Concepts: Reliability definitions, Importance of Reliability, Quality Assurance and Reliability, Bath Tub Curve. Failure Data Analysis: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MTBF, Reliability Functions. Reliability Hazard Models: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, Weibull Model. Distribution functions and reliability analysis.	08
3	System Reliability: System Configurations: Series, parallel, mixed configuration, k out of n structure, Complex systems.	05
4	Reliability Improvement: Redundancy Techniques: Element redundancy, Unit redundancy, Standby redundancies. Markov analysis. System Reliability Analysis - Enumeration method, Cut-set method, Success Path method, Decomposition method.	08
5	Maintainability and Availability: System downtime, Design for Maintainability: Maintenance requirements, Design methods: Fault Isolation and self-diagnostics, Parts standardization and Interchangeability, Modularization and Accessibility, Repair Vs Replacement. Availability – qualitative aspects.	05
6	Failure Mode, Effects and Criticality Analysis: Failure mode effects analysis, severity / criticality analysis, FMECA examples. Fault tree construction, basic symbols, development of functional reliability block diagram, Fau1t tree analysis and Event tree Analysis	05

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

References:

- 1. L.S. Srinath, "Reliability Engineering", Affiliated East-Wast Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill.
- 3. B.S. Dhillion, C. Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T. Conor, "Practical Reliability Engg.", John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, "Reliability in Engineering Design", John Wiley & Sons.
- 1. Murray R. Spiegel, "Probability and Statistics", Tata McGraw-Hill Publishing Co. Ltd.

MDIE 1013	Management Information System	03
Course Code	Course Name	Credits

- 1. The course is blend of Management and Technical field.
- 2. Discuss the roles played by information technology in today's business and define various technology architectures on which information systems are built
- 3. Define and analyze typical functional information systems and identify how they meet the needs of the firm to deliver efficiency and competitive advantage
- 4. Identify the basic steps in systems development

Outcomes: Learner will be able to...

- 1. Explain how information systems Transform Business
- 2. Identify the impact information systems have on an organization
- 3. Describe IT infrastructure and its components and its current trends
- 4. Understand the principal tools and technologies for accessing information from databases to improve business performance and decision making
- 5. Identify the types of systems used for enterprise-wide knowledge management and how they provide value for businesses

Module	Detailed Contents	Hrs.
1	Introduction To Information Systems (IS): Computer Based Information	
	Systems, Impact of IT on organizations, and Importance of IS to Society.	04
	Organizational Strategy, Competitive Advantages and IS.	
2	Data and Knowledge Management: Database Approach, Big Data, Data	
	warehouse and Data Marts, Knowledge Management.	07
2	Business intelligence (BI): Managers and Decision Making, BI for Data	07
	analysis and Presenting Results	
3	Ethical issues and Privacy: Information Security. Threat to IS, and Security	07
3	Controls	U/
	Social Computing (SC): Web 2.0 and 3.0, SC in business-shopping,	
4	Marketing, Operational and Analytic CRM, E-business and E-commerce –	07
	B2B B2C. Mobile commerce.	
5	Computer Networks Wired and Wireless technology, Pervasive computing,	06
3	Cloud computing model.	00
	Information System within Organization: Transaction Processing	
6	Systems, Functional Area Information System, ERP and ERP support of	
	Business Process.	08
	Acquiring Information Systems and Applications: Various System	ļ
	development life cycle models.	

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

References:

- 1. Kelly Rainer, Brad Prince, Management Information Systems, Wiley
- 2. K.C. Laudon and J.P. Laudon, Management Information Systems: Managing the Digital Firm, 10th Ed., Prentice Hall, 2007.
- 3. D. Boddy, A. Boonstra, Managing Information Systems: Strategy and Organization, Prentice Hall, 2008

Course Code	Course Name	Credits
MDIE 1014	Design of Experiments	03

- 1. To understand the issues and principles of Design of Experiments (DOE)
- 2. To list the guidelines for designing experiments
- 3. To become familiar with methodologies that can be used in conjunction with experimental designs for robustness and optimization

Outcomes: Learner will be able to...

- 1. Plan data collection, to turn data into information and to make decisions that lead to appropriate action
- 2. Apply the methods taught to real life situations
- 3. Plan, analyze, and interpret the results of experiments

Module	Detailed Contents	Hrs.
1	Introduction	
	1.1 Strategy of Experimentation	
	1.2 Typical Applications of Experimental Design	06
	1.3 Guidelines for Designing Experiments	
	1.4 Response Surface Methodology	
	Fitting Regression Models	
	2.1 Linear Regression Models	
	2.2 Estimation of the Parameters in Linear Regression Models	
2	2.3 Hypothesis Testing in Multiple Regression	08
2	2.4 Confidence Intervals in Multiple Regression	08
	2.5 Prediction of new response observation	
	2.6 Regression model diagnostics	
	2.7 Testing for lack of fit	
	Two-Level Factorial Designs and Analysis	
	$3.1 \text{ The } 2^2 \text{ Design}$	
	3.2 The 2 ³ Design	
3	3.3 The General 2 ^k Design	07
3	3.4 A Single Replicate of the 2 ^k Design	07
	3.5 The Addition of Center Points to the 2 ^k Design,	
	3.6 Blocking in the 2 ^k Factorial Design	
	3.7 Split-Plot Designs	
	Two-Level Fractional Factorial Designs and Analysis	
	4.1 The One-Half Fraction of the 2 ^k Design	
4	4.2 The One-Quarter Fraction of the 2 ^k Design	
	4.3 The General 2 ^{k-p} Fractional Factorial Design	07
	4.4 Resolution III Designs	
	4.5 Resolution IV and V Designs	
	4.6 Fractional Factorial Split-Plot Designs	

5	Conducting Tests	
	5.1 Testing Logistics	07
	5.2 Statistical aspects of conducting tests	
	5.3 Characteristics of good and bad data sets	
	5.4 Example experiments	
	5.5 Attribute Vs Variable data sets	
6	Taguchi Approach	04
	6.1 Crossed Array Designs and Signal-to-Noise Ratios	
	6.2 Analysis Methods	
	6.3 Robust design examples	

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

References:

- Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rdedition, John Wiley & Sons, New York, 2001
- 2. D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley
- 4. W J Dimond, Peactical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- 5. Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T. Voss

Course Code	Course Name	Credits
MDIE 1015	Operations Research	03

- 1. Formulate a real-world problem as a mathematical programming model.
- 2. Understand the mathematical tools that are needed to solve optimization problems.
- 3. Use mathematical software to solve the proposed models.

- 1. Understand the theoretical workings of the simplex method, the relationship between a linear program and its dual, including strong duality and complementary slackness.
- 2. Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change.
- 3. Solve specialized linear programming problems like the transportation and assignment problems, solve network models like the shortest path, minimum spanning tree, and maximum flow problems.
- 4. Understand the applications of integer programming and a queuing model and compute important performance measures

Module	Detailed Contents	Hrs.
	Introduction to Operations Research: Introduction, Structure of the	
	Mathematical Model, Limitations of Operations Research	
	Linear Programming: Introduction, Linear Programming Problem,	
	Requirements of LPP, Mathematical Formulation of LPP, Graphical method,	
	Simplex Method Penalty Cost Method or Big M-method, Two Phase	
	Method, Revised simplex method,	
	Duality, Primal – Dual construction, Symmetric and Asymmetric Dual, Weak	
	Duality Theorem, Complimentary Slackness Theorem, Main Duality	
	Theorem, Dual Simplex Method, Sensitivity Analysis	
1	Transportation Problem: Formulation, solution, unbalanced Transportation	14
1	problem. Finding basic feasible solutions – Northwest corner rule, least cost	14
	method and Vogel's approximation method. Optimality test: the stepping	
	stone method and MODI method.	
	Assignment Problem: Introduction, Mathematical Formulation of the	
	Problem, Hungarian Method Algorithm, Processing of n Jobs Through Two	
	Machines and m Machines, Graphical Method of Two Jobs m Machines	
	Problem Routing Problem, Travelling Salesman Problem	
	Integer Programming Problem: Introduction, Types of Integer Programming	
	Problems, Gomory's cutting plane Algorithm, Branch and Bound Technique.	
	Introduction to Decomposition algorithms.	
	Queuing models: queuing systems and structures, single server and multi-	
2	server models, Poisson input, exponential service, constant rate service,	05
	finite and infinite population.	

3	Simulation: Introduction, Methodology of Simulation, Basic Concepts, Simulation Procedure, Application of Simulation Monte-Carlo Method: Introduction, Monte-Carlo Simulation, Applications of Simulation, Advantages of Simulation, Limitations of Simulation	05
4	Dynamic programming. Characteristics of dynamic programming. Dynamic programming approach for Priority Management employment smoothening, capital budgeting, Stage Coach/Shortest Path, cargo loading and Reliability problems.	05
5	Game Theory. Competitive games, rectangular game, saddle point, minimax (maximin) method of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point – mixed strategy for 2 X 2 games.	05
6	Inventory Models: Classical EOQ Models, EOQ Model with Price Breaks, EOQ with Shortage, Probabilistic EOQ Model	05

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009.
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill, 2002.
- 4. Operations Research, S. D. Sharma, KedarNath Ram Nath-Meerut.
- 1. Operations Research, KantiSwarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons.

Course Code	Course Name	Credits
MDIE 1016	Cyber Security and Laws	03

- 1. To understand and identify different types cybercrime and cyber law
- 2. To recognized Indian IT Act 2008 and its latest amendments
- 3. To learn various types of security standards compliances

- 1. Understand the concept of cybercrime and its effect on outside world
- 2. Interpret and apply IT law in various legal issues
- 3. Distinguish different aspects of cyber law
- 4. Apply Information Security Standards compliance during software design and development

Module	Detailed Contents	Hrs.
	Introduction to Cybercrime: Cybercrime definition and origins of the	
1	world, Cybercrime and information security, Classifications of cybercrime,	04
	Cybercrime and the Indian ITA 2000, A global Perspective on cybercrimes.	
	Cyber offenses & Cybercrime: How criminal plan the attacks, Social Engg,	
	Cyber stalking, Cyber café and Cybercrimes, Botnets, Attack vector, Cloud	
	computing, Proliferation of Mobile and Wireless Devices, Trends in	
2	Mobility, Credit Card Frauds in Mobile and Wireless Computing Era,	
	Security Challenges Posed by Mobile Devices, Registry Settings for Mobile	09
	Devices, Authentication Service Security, Attacks on Mobile/Cell Phones,	09
	Mobile Devices: Security Implications for Organizations, Organizational	
	Measures for Handling Mobile, Devices-Related Security Issues,	
	Organizational Security Policies and Measures in Mobile Computing Era,	
	Laptops	
	Tools and Methods Used in Cyberline Phishing, Password Cracking, Key	
3	loggers and Spywares, Virus and Worms, Steganography, DoS and DDoS	06
3	Attacks, SQL Injection, Buffer Over Flow, Attacks on Wireless Networks,	00
	Phishing, Identity Theft (ID Theft)	
	The Concept of Cyberspace E-Commerce, The Contract Aspects in Cyber	
	Law ,The Security Aspect of Cyber Law,The Intellectual Property Aspect in	
4	Cyber Law, The Evidence Aspect in Cyber Law, The Criminal Aspect in	08
4	Cyber Law, Global Trends in Cyber Law, Legal Framework for Electronic	00
	Data Interchange Law Relating to Electronic Banking, The Need for an	
	Indian Cyber Law	
	Indian IT Act. Cyber Crime and Criminal Justice: Penalties,	
5	Adjudication and Appeals Under the IT Act, 2000, IT Act. 2008 and its	06
	Amendments	
6	Information Security Standard compliances	06
U	SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.	00

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Nina Godbole, SunitBelapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, Cyber Security &Global Information Assurance Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication
- 8. Websites for more information is available on : The Information Technology ACT, 2008- TIFR : https://www.tifrh.res.in
- 9. Website for more information, A Compliance Primer for IT professional:
- 4. https://www.sans.org/reading-room/whitepapers/compliance/compliance-primer-professionals 33538

Course Code	Course Name	Credits
MDIE 1017	Disaster Management and Mitigation Measures	03

- 1. To understand physics and various types of disaster occurring around the world
- 2. To identify extent and damaging capacity of a disaster
- 3. To study and understand the means of losses and methods to overcome /minimize it.
- 4. To understand role of individual and various organization during and after disaster
- 5. To understand application of GIS in the field of disaster management
- 6. To understand the emergency government response structures before, during and after disaster

- 1. Get to know natural as well as manmade disaster and their extent and possible effects on the economy.
- 2. Plan of national importance structures based upon the previous history.
- 3. Get acquainted with government policies, acts and various organizational structure associated with an emergency.
- 4. Get to know the simple do's and don'ts in such extreme events and act accordingly.

Module	Detailed Contents	Hrs.
1	Introduction: 1.1 Definition of Disaster, hazard, global and Indian scenario, general perspective, importance of study in human life, Direct and indirect effects of disasters, long term effects of disasters. Introduction to global warming and climate change.	03
2	Natural Disaster and Manmade disasters: 2.1 Natural Disaster: Meaning and nature of natural disaster, Flood, Flash flood, drought, cloud burst, Earthquake, Landslides, Avalanches, Volcanic eruptions, Mudflow, Cyclone, Storm, Storm Surge, climate change, global warming, sea level rise, ozone depletion 2.2 Manmade Disasters: Chemical, Industrial, Nuclear and Fire Hazards. Role of growing population and subsequent industrialization, urbanization and changing lifestyle of human beings in frequent occurrences of manmade disasters.	09
3	Disaster Management, Policy and Administration 3.1 Disaster management: meaning, concept, importance, objective of disaster management policy, disaster risks in India, Paradigm shift in disaster management. 3.2 Policy and administration: Importance and principles of disaster management policies, command and coordination of in disaster management, rescue operations-how to start with and how to proceed in due course of time, study of flowchart showing the entire process.	06

	Institutional Framework for Disaster Management in India:	
	4.1 Importance of public awareness, Preparation and execution of emergency	
	management program. Scope and responsibilities of National Institute of	
	Disaster Management (NIDM) and National disaster management authority	
4	(NDMA) in India. Methods and measures to avoid disasters, Management of	06
	casualties, set up of emergency facilities, importance of effective	
	communication amongst different agencies in such situations.	
	4.2 Use of Internet and softwares for effective disaster management.	
	Applications of GIS, Remote sensing and GPS in this regard.	
	Financing Relief Measures:	
	5.1 Ways to raise finance for relief expenditure, role of government agencies	
	and NGO's in this process, Legal aspects related to finance raising as well as	
5	overall management of disasters. Various NGO's and the works they have	09
	carried out in the past on the occurrence of various disasters, Ways to	
	approach these teams.	
	5.2 International relief aid agencies and their role in extreme events.	
	Preventive and Mitigation Measures:	
	6.1 Pre-disaster, during disaster and post-disaster measures in some events in	
	general	
	6.2 Structural mapping: Risk mapping, assessment and analysis, sea walls	
6	and embankments, Bio shield, shelters, early warning and communication	06
	6.3 Non Structural Mitigation: Community based disaster preparedness, risk	00
	transfer and risk financing, capacity development and training, awareness	
	and education, contingency plans.	
	6.4 Do's and don'ts in case of disasters and effective implementation of	
	relief aids.	

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. 'Disaster Management' by Harsh K. Gupta, Universities Press Publications.
- 2. 'Disaster Management: An Appraisal of Institutional Mechanisms in India' by O. S. Dagur, published by Centre for land warfare studies, New Delhi, 2011.
- 3. 'Introduction to International Disaster Management' by Damon Copolla, Butterworth Heinemann Elsevier Publications.
- 4. 'Disaster Management Handbook' by Jack Pinkowski, CRC Press Taylor and Francis group.
- 5. 'Disaster management & rehabilitation' by Rajdeep Dasgupta, Mittal Publications, New Delhi.
- 6. 'Natural Hazards and Disaster Management, Vulnerability and Mitigation R B Singh, Rawat Publications
- 7. Concepts and Techniques of GIS C. P. Lo Albert, K. W. Yonng Prentice Hall (India) Publications. (Learners are expected to refer reports published at national and International level and updated information available on authentic web sites)

Course Code	Course Name	Credits
MDIE 1018	Energy Audit and Management	03

- 1. To understand the importance energy security for sustainable development and the fundamentals of energy conservation.
- 2. To introduce performance evaluation criteria of various electrical and thermal installations to facilitate the energy management
- 3. To relate the data collected during performance evaluation of systems for identification of energy saving opportunities.

- 1. To identify and describe present state of energy security and its importance.
- 2. To identify and describe the basic principles and methodologies adopted in energy audit of an utility.
- 1. To describe the energy performance evaluation of some common electrical installations and identify the energy saving opportunities.
- 2. To describe the energy performance evaluation of some common thermal installations and identify the energy saving opportunities
- 3. To analyze the data collected during performance evaluation and recommend energy saving measures

Module	Detailed Contents	Hrs.
1	Energy Scenario: Present Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy Security, Energy Conservation and its Importance, Energy Conservation Act-2001 and its Features. Basics of Energy and its various forms, Material and Energy balance.	04
2	Energy Audit Principles: Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach-understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution. Elements of monitoring& targeting; Energy audit Instruments; Data and information-analysis. Financial analysis techniques: Simple payback period, NPV, Return on investment (ROI), Internal rate of return (IRR)	08
3	Energy Management and Energy Conservation in Electrical System: Electricity billing, Electrical load management and maximum demand Control; Power factor improvement, Energy efficient equipments and appliances, star ratings. Energy efficiency measures in lighting system, Lighting control: Occupancy sensors, daylight integration, and use of intelligent controllers. Energy conservation opportunities in: water pumps, industrial drives, induction motors, motor retrofitting, soft starters, variable speed drives.	10
4	Energy Management and Energy Conservation in Thermal Systems: Review of different thermal loads; Energy conservation opportunities in: Steam distribution system, Assessment of steam distribution losses, Steam	10

	leakages, Steam trapping, Condensate and flash steam recovery system.	
	General fuel economy measures in Boilers and furnaces, Waste heat	
	recovery, use of insulation- types and application. HVAC system: Coefficient	
	of performance, Capacity, factors affecting Refrigeration and Air	
	Conditioning system performance and savings opportunities.	
	Energy Performance Assessment:	
. <i>E</i>	On site Performance evaluation techniques, Case studies based on: Motors	0.4
5	and variable speed drive, pumps, HVAC system calculations; Lighting	04
	System: Installed Load Efficacy Ratio (ILER) method, Financial Analysis.	
	Energy conservation in Buildings:	
6	Energy Conservation Building Codes (ECBC): Green Building, LEED	02
U	rating,	03
	Application of Non-Conventional and Renewable Energy Sources.	

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B.Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

MDL101	Vibration Measurement and Analysis	01
Subject Code	Subject Name	Credits

- 1. To study the mathematical simulation software for analysis of single and multi degree freedom problem.
- 2. To study the finite element analysis software for different analysis and active control vibration.
- 3. Perform experimentation and processing the data and demonstration of condition based maintenance tool

Outcomes: Learner will be able to.....

- 1. Apply and analyze different systems using mathematical simulation software.
- 2. Apply FEA software for different analysis techniques.
- 3. Demonstrate acquiring and processing of data.

Module	Detailed content	Hours			
1	Simulation study using mathematical simulation software (or any	(06)			
	programming language) on				
	a. Single DOF system				
	b. Multi DOF system				
2	Simulation study using finite element software on	(08)			
	a. Modal analysis				
	b. Transient analysis				
	c. Harmonic analysis				
	d. Active vibration control				
3	Experimentation	(12)			
	a. Acquiring time domain vibration data by using sensors (displacement /				
	velocity / acceleration)				
	b. Processing the time domain data acquired in experiment 3 (a) using FFT				
	tool to obtain vibration frequencies				
	c. Performing modal analysis of beam / plate type structures				
	d. Demonstration of condition based maintenance tool using vibration				
	techniques				

Assessment:

End Semester Examination: Practical/Oral examination is to be conducted by pair of internal and external examiners

Subject Code	Subject Name	Credits
MDSBL101	CAD/CAM/CIM	02

- 1. To study the basics of CAD.
- 2. To study the basics of CAD.
- 3. To study Geometric modelling and assembling of any mechanical system.

- 1. Apply knowledge of CAD for generation of curves.
- 2. Develop GM code or APT for any machining operations.
- 3. Demonstrate skill of modeling and assembling of any mechanical system.

Module	Detailed Content	Hrs
01	 a. Executing basic algorithms for generation of line, circle, and ellipse in any programming language b. Generating Hermite and Bezier curves using any programming language c. Executing geometric transformations, both in 2D and 3D, in any programming language 	12
02	 a. Demonstrating geometric modeling skills by generation of any Mechanical Structure Assembly model (minimum five parts (Excluding standard parts)) along with its Production drawing, assembly constraints, Interference check, Exploded view, GD&T, Bill of material, etc., using CAD Software. b. Reverse Engineering: disassembling any mechanical structure, having minimum five parts (Excluding standard parts), measure the actual dimensions of each component, create 3-D geometric models of components with respect to actual dimensions and create the assembly based on the same along with details drawing and assembly drawing. c. Introduction to Surface modeling: Creation of a surface geometric model, using surface commands in a CAD Software. 	12
03	 a. Developing and executing a G-M code part program for machining operations such as facing, turning, threading, taper turning, etc. and Fabrication of part on CNC Turning Trainer. b. Developing and executing a G-M code part program for machining operations such as side milling, slot milling, pocketing, drilling, etc., and Fabrication of part on CNC Milling Trainer. 	12
04	 Laboratory Project a. Geometric modeling and assembling of any mechanical system consisting of minimum 5 to 6 components using any CAD software. b. Tool-path generation by translation of part geometry from computer aided design (CAD) to computer aided manufacturing (CAM) systems, for manufacturing all the individual components 	12

Reference: -

- 1. CAD/ CAM, Theory & Practice, Ibrahim Zeid, R. Sivasubramanian, Tata McGraw Hill Publications
- 2. CAD/CAM Principles and Applications, P. N. Rao, Tata McGraw Hill Publications
- 3. CNC Technology and Programming, Krar, S., and Gill, A., McGraw Hill Publishers.
- 4. CNC Programming for Machining, Kaushik Kumar, ChikeshRanjan, J. Paulo Davim, Springer Publication.

Website Reference

- 1. https://www.autodesk.in/products/fusion-360/learn-support
- 2. https://knowledge.autodesk.com/support/inventor

Assessment:

Laboratory Project: Weightage for Laboratory Project should be 40% in Final Assessment of Laboratory Work.

End Semester Examination: Practical/Oral examination is to be conducted by pair of internal and external examiners.

Subject Code	Subject Name	Credits
MDC201	System Modeling and Analysis	03

- 1. To study the fundamental concepts of Control systems and mathematical modeling of the system.
- 2. To study the concept of time response and frequency response of the system.
- 3. To study stability analysis in time and frequency domains.
- 4. To study the advanced modeling and simulation techniques.

- 1. Mathematically model a given system and determine its response for various inputs.
- 2. Analyze the stability of the system
- 3. Apply the concepts of advanced modeling and simulation techniques.

Module	Detailed content	Hours
1	Introduction to System and Mathematical Modeling	(08)
	System, environment and variables, the state of a system, Physical Laws for	
	Modeling of System, Representation of System in terms of Block Diagram,	
	Reduction of Multiple Subsystems, Signal Flow Graph, Mason's Gain Formula.	
2	Modeling in the frequency domain	(10)
	Laplace Transform Review, The Transfer Function, Electrical Network Transfer	
	Functions, Translational Mechanical System, Rotational Mechanical System,	
	Transfer Functions for Systems with Gears, Electromechanical System, Fluid	
	Systems, Thermal Systems, Electric Circuit Analogs, Nonlinearities, Linearization.	
3	Modeling in the time domain	(06)
	The General State-Space Representation, Applying the State-Space Representation,	
	Converting a Transfer Function to State Space, Converting from State Space to a	
	Transfer Function, Linearization.	
4	Time response	(08)
	Poles, Zeros, and System Response, First-Order Systems, The General Second-	
	Order System, Underdamped Second-Order Systems, System Response with	
	Additional Poles, System Response With Zeros, Effects of Nonlinearities Upon,	
	Time Response, Laplace Transform Solution of State Equations, Time Domain	
	Solution of State Equations.	
5	Stability of System	(12)
	Linear & Nonlinear System, Stability in Linear and Nonlinear System, Routh-	
	Hurwitz Criterion, Routh-Hurwitz Criterion, Stability in State Space, Phase Plane	
	Method for Nonlinear System.	
	Root locus techniques	
	Introduction, Defining the Root Locus, Properties of the Root Locus, Sketching the	
	Root Locus.	
	Frequency response techniques Introduction Asymptotic Approximations, Rada Plata Introduction to the Nyavist.	
	Introduction, Asymptotic Approximations: Bode Plots, Introduction to the Nyquist	
	Criterion, Sketching the Nyquist Diagram, Stability via the Nyquist Diagram, Gain	
	Margin and Phase Margin via the Nyquist Diagram, Stability, Gain Margin, and	
6	Phase Margin via Bode Plots Advanced Modeling and Simulation Techniques	(08)
0	Advanced Modeling and Simulation Techniques Introduction to Lyapunov Stability and Modeling via Lyapunov, Nonlinear	(00)
	Modeling Techniques such as consideration of Structural Nonlinearity and Material	
	Nonlinearity	
	Moninearity	

- 1. Nicola Bellomoand Luigi Preziosi, "Modeling Mathematical Methods & Scientific Computations", 1995, CRC Press.
- 2. I.J. Nagarathand M. Gopal, "Systems Modeling& Analysis", Tata McGraw Hill, New Delhi.
- 3. Jan WillenPoldermanandJan C. Willems, "Introduction to Mathematical Systems Theory- A behavioral Approach", 1998, Springer.
- 4. J.L. Shearer, A.T. Murphy and H.H. Richardson, "Introduction to System Dynamics", 1971, Addison & Wesley.
- 5. Norman S. Nise, "Control Systems Engineering", Sixth Edition, 2011, John Wiley & Sons, Inc.
- 6. Ogata, "Modern Control Engineering", Prentice Hall.
- 7. Ogata, "System Dynamics", Pearson Education.
- 8. Hung V Vu & R.S. Esfandi, "Dynamics Systems Modeling and Analysis", ThecGraw-Hill Companies Inc.

Assessment:

Internal: Assessment consists of two tests out of which; one should be compulsory class test and

the other is either a class test or assignment on live problems or course project.

MDC202	Analysis and Synthesis of Mechanisms	03
Course Code	Course Name	Credits

- 1. To study basic concepts of analysis and synthesis of mechanisms.
- 2. To study the graphical and analytical techniques commonly used in the synthesis of mechanisms.
- 3. To study the geometric and algebraic methods related to linkage synthesis

Outcomes: Learner will be able to.....

- 1. Apply theoretical knowledge of kinematics in the analysis and synthesis of mechanisms
- 2. Develop analytical equations describing the relative position, velocity and acceleration of all moving links.
- 3. Apply geometric and algebraic methods in linkage synthesis.

Module	Detailed content	Hours
1	Basics of Mechanism:	06
	Rigid body, Kinematic pairs, Lower pairs connections, Higher pair connections,	
	Kinematic chain, Mechanism, Four bar mechanism, Slider crank mechanism,	
	Transmission, deviation and pressure angles, Equivalent mechanisms.	
2	Type Synthesis, Number Synthesis, Dimensional Synthesis	10
	Type synthesis, Number synthesis, Dimensional synthesis, Accuracy points, Spacing	
	of of accuracy points, Chebyshev polynomials.	
3	Four Bar Coupler Point Curve:	08
	Four bar linkage, coupler curve equation, double points and symmetry, Roberts-	
	Chebyshev theorem.	
4	The Euler Savary Equation and Cubic of Stationary Curvature:	08
	The Euler Savary equation and the Inflection circle, The cubic of stationary	
	curvature.	
5	Linkage Synthesis with Three Accuracy Points (Geometric Methods):	10
	Concept of poles, relative poles, pole triangle of four bar and slider crank	
	mechanism. Application in position generation, function generation problems.	
	Linkage Synthesis with Four Accuracy Points (Geometric Methods):	
	Concept of opposite pole quadrilateral, Center point curve, Circle point curve,	
	Application in position generation problems.	
6	Linkage Synthesis with Three Accuracy Points (Algebraic Method)	10
	Fredeinstain displacement equation of four bar linkage for three accuracy points,	
	Crank-follower linkage synthesis angular velocities and acceleration.	
	Linkage Synthesis with Three Accuracy Points: Complex Number Method.	

- 1. Rudolf Beyer, "The Kinematic Synthesis of Mechanisms", Chapman & Hall
- 2. Asok Kumar Malik, Amitabh Ghosh, "Kinematic Analysis and Synthesis of Mechanism"
- 3. Deh Chang Tao, "Applied Linkage Synthesis", Addison-Wesley Pub. Co.
- 4. Richard Scheunemann Hartenberg and Jacques Denavit, "Kinematic Synthesis of Linkages", McGraw-Hill
- 5. Delbert Tesar, "Graphical Procedures for Kinematic Synthesis of Mechanism", University of Florida

Internal: Assessment consists of two tests out of which; one should be compulsory class test and

the other is either a class test or assignment on live problems or course project.

Subject Code	Subject Name	Credits
MDPE2011	Optimization	03

- 4. To study the concept of integration of various parameters and the significance of optimizing them in allied Industries.
- 5. To study the use of practice oriented mathematical applications for optimization functions in an organization.
- 6. To study the various tools of optimization as applicable in particular scenarios in industry for better management of various resources.

- 1. Illustrate the need to optimally utilize the resources in various types of industries.
- 2. Apply and analyze mathematical optimization functions to various applications.
- **3.** Demonstrate cost effective strategies in various applications in industry.

Module	Detailed content	Hours
1	Basic Concepts:	(12)
	Statement of the Optimization Problem, Basic Definitions, Optimality Criteria for	
	Unconstrained Optimization, Optimality Criteria for Constrained Optimization,	
	Engineering Application of Optimization, Overview of optimization technique,	
	Interdisciplinary nature, Introduction to related software.	
	Linear Programming Problem:	
	Formulation, Simplex method, Primal to Dual, Dual Simplex method, Sensitivity	
	Analysis.	
2	Integer L.P. Model:	(08)
	Graphical Representation, Concept of Cutting Plane, Gomory's cutting plane	
	method, Gomory's Method for All Integer programing and Mixed Integer	
	Programing and Branch and Bound Technique.	(0.0)
3	Classical Optimization Technique:	(08)
	Necessary and sufficient condition for Single and Multivariable optimization	
	problem. Multivoriable Optimization with Equality Constraints by Learengian method	
	Multivariable Optimization with Equality Constraints by Lagrangian method. Multivariable Optimization with Inequality Constraints by Kuhn tucker method.	
4	Unconstrained Optimization Technique:	(08)
4	Search method: Unrestricted Search with fixed and accelerated step size, Fibonacci	(00)
	Method and Golden Section Method.	
	Interpolation method: Quadratic and Cubic Interpolation.	
	Direct search method: Random search, Pattern search and Rosen Brock's hill	
	climbing method.	
5	Newtonian Method:	(08)
	Newton's method, Marquardt's method, Quasi Newton method.	()
	Discrete Event Simulation : Generation of Random Variable, Simulation	
	Processes, Monte-Carlo Technique.	
6	Response Surface Method: Response Surface, The Least-Squares Methods, Two-	(08)
	Level Factorial Design, Addition of Center Points, Central Composite	
	Design(CCD), Sequential Nature of RSM, Other Experimental Design.	

- 1. Ranjan Ganguli, "Engineering Optimization A Modern Approach" Universities Press.
- 2. Pablo Pedregal, "Introduction to Optimization", Springer
- 3. S.S. Rao, "Engineering Optimization Theory and Practice", New Age International Publisher.
- 4. L.C. Jhamb, "Quantitative Techniques Vol. 1 and 2", Everest Pub. House
- 5. Pierre D.A., "Optimization, Theory with Application", John Wiley & sons.
- 6. Mohan Joshi and Kannan Moudgalya, "Optimization Theory and Practice", Narosa Publishing House.
- 7. Kalyanmoy Deb, "Optimization for Engineering Design- Algorithms and Example", PHI Learning Private Limited.

Assessment:

Internal: Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

CourseCode	CourseName	Credits
MDPE2012	ProductDesignandDevelopment	03

- 1. Tostudythebasicconceptsof productdesign and development process.
- 2. Tostudythe applicability of productdesign and development in industrial applications
- 3. Tostudythekeyreasons fordesign or redesign.

- 1. Selectanappropriate product design and development process for a given application
- 2. Choosean appropriate ergonomyfor the product.
- 3. Selectanappropriatestandardizationmethod.
- 4. Developthemethods tominimize thecost.

Module	DetailedContents
01	 1.1 Introduction:Classification/SpecificationsofProducts. 1.2 Productlifecycle.Productmix. 1.3 Introductiontoproductdesign. 1.4 Modernproductdevelopmentprocess. 1.5 Innovativethinking. 1.6 Morphologyofdesign.
02	 2.1 ConceptualDesign:Generation,selection&embodimentofconcept. 2.2 Productarchitecture. 2.3 Industrialdesign:process,need. 2.4 RobustDesign:TaguchiDesigns&DOE. 2.5 DesignOptimization
03	 3.1 DesignforMfg&Assembly:MethodsofdesigningforMfg&Assy. 3.2 DesignsforMaintainability. 3.3 DesignsforEnvironment. 3.4 Productcosting. 3.5 Legalfactorsandsocialissues.Enggethicsandissuesofsocietyrelatedtodesignofproducts.
04	4.1 ValueEngineering/ValueAnalysis.:Definition.Methodology.4.2 Casestudies.4.3 Economicanalysis:Qualitative&Quantitative.
05	 5.1 Ergonomics/Aesthetics:Grosshumanautonomy. 5.2 Anthropometry. 5.3 Man-Machineinteraction. 5.4 Conceptsofsizeandtexture,colour.Comfortcriteria. 5.5 Psychological&Physiologicalconsiderations. 5.6 Creativity Techniques: Creative thinking, conceptualization, brain storming,primarydesign,drawing,simulation, detaildesign.
06	 6.1 ConcurrentEngg, 6.2 Rapidprototyping, 6.3 Toolsforproductdesign–Drafting/Modelingsoftware. 6.4 CAMInterface. 6.5 Patents&IPActs.Overview,Disclosurepreparation.

- 1. Karl T Ulrich, Steven D Eppinger, "Product Design& Development." Tata McGrawhillNewDelhi2003
- **2.** David G Ullman, "The Mechanical Design Process." McGrawhill Inc Singapore 1992 N J MRoozenberg , J Ekels , N F M Roozenberg "Product Design Fundamentals and Methods ." John Willey & Sons 1995
- **3.** Kevin Otto & Kristin Wood Product Design: "Techniques in Reverse Engineering and newProductDevelopment." 1/e 2004, PearsonEducation NewDelhi
- **4.** LDMiles "ValueEngineering."
- **5.** HollinsB&PughS"SuccessfulProductDesign."Butterworths London.
- 6. BaldwinEN&NeibelBW"DesigningforProduction."EdwinHomewood Illinois
- **7.** JonesJC"DesignMethods."Seeds ofHuman Futures.JohnWilleyNewYork.
- **8.** BrallaJ G"HandbookofProductDesignforManufacture,McGrawhillNewYork

Assessment:

Internal: Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

CourseCode	CourseName	Credits
MDPE2013	CreativityInDesign	03

- 1. Tohighlighttheimportanceofcreativityfornewproductdevelopment
- 2. Tostudyskillsneeded forenhancingcreativethinkingandencouraginginnovation.

- 1. Understandthe varioustechniques adopted forstimulatingcreativity
- 2. Applyinnovative processtothedesignand development of new products

Module	DetailedContents	Hrs.
01	INTRODUCTION: Needfordesigncreativity—creativethinkingforquality—essentialtheoryaboutdirectedcreativity	10
02	MECHANISMOFTHINKING: Definitions and theory of mechanisms of mindheuristics and models: attitudes, Approaches and Actions that support creative thinking	14
03	VISUALIZATION: Advancedstudyofvisualelementsandprinciples- line,plane,shape,form,pattern,texturegradation,color Symmetry.Spatialrelationshipsandcompositionsin2and3dimensionalspace- procedureforgenuinegraphicalcomputeranimation—Animationaerodynamics— virtualenvironmentsinscientificVisualization— Unifyingprincipleofdatamanagementforscientificvisualization-Visualization benchmarking	09
04	CREATIVITY: MethodsandtoolsforDirectedCreativity—BasicPrinciples— ToolsofDirectedCreativity—Toolsthatpreparethemindforcreativethought—stimulation of new ideas — Development and Actions: - Processes in creativityICEDIP—Inspiration,Clarification,Distillation,Perspiration,EvaluationandIncubation—Creativity andMotivation The Bridge between man creativity andtherewardsofinnovativeness—ApplyingDirectedCreativitytothechallengeof qualitymanagement	08
05	DESIGN: Process Design, Emotional Design – Three levels of Design – Viceral, BehavioralandReflective-Recyclingandavailability- Creativityandcustomerneedsanalysis— Innovativeproductandservicedesigns,futuredirectionsinthis applicationofcreativitythinkinginqualitymanagement	07
06	INNOVATION: Achieving Creativity – Introduction to TRIZ methodology of Inventive ProblemSolving - the essential factors – Innovator's solution – creating and sustainingsuccessful growth – Disruptive Innovation model – Segmentive Models – Newmarketdisruption-CommoditationandDE-commoditation— ManagingtheStrategyDevelopmentProcess—TheRoleofSeniorExecutiveinLeading NewGrowth—PassingtheBaton	04

- 1. RousingCreativity:ThinkNewNowFloydHurr,ISBN1560525479,CrispPubli cationsInc.1999
- 2. GeoffreyPetty,"how tobebetter atCreativity",TheIndustrialSociety1999
- 3. Donald A. Norman, "Emotional Design", Perseus Books Group New York, 2004
- 4. ClaytonM.ChristensenMichaelE.Raynor,"TheInnovator'sSolution",Harvar dBusinessSchoolPress Boston, USA, 2003
- 5. SemyonD. Savransky,"Engineering of Creativity –TRIZ",CRCPress New YorkUSA,"2000.

Assessment:

Internal: Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

MDPE2021	Fracture Mechanics	03

- 1. To develop detailed understanding of fracture mechanics, creep, and fatigue.
- 2. To study environmentally-assisted cracking.
- 3. To study numerical and experimental methods involved in fracture mechanics.

Outcomes: Learner should be able to...

- 1. Analyse elastic and elastic-plastic stress fields at the crack-tip in a solid material.
- 2. Estimate crack growth based on energy balance
- 3. Demonstrate standard fracture mechanics tests for finding J-Integral and Crack Opening Displacement.
- 4. Inspect a solid material for the presence of crack.

Module	Detailed content	Hours
1	Introduction	08
	A Crack in a Structure	
	• Fracture Toughness	
	Micro and Macro Phenomena of Fracture	
	- Microscopic Aspects: Surface Energy, Theoretical Strength, Microstructure	
	and Defects, Crack Formation	
	- Macroscopic Aspects: Crack Growth, Types of Fracture	
	 Mechanisms of Fracture and Crack Growth 	
	- Cleavage Fracture, Ductile Fracture, Fatigue Cracking, Environment	
	Assisted Cracking, Creep Fracture, Service Failure Analysis	
2	Linear Elastic Stress Fields in Cracked Bodies	10
	• Introduction	
	Crack Deformation Modes and Basic Concepts	
	Westergaard Method	
	Singular Stress and Displacement Fields	
	Stress Intensity Factor Solutions	
	Three-Dimensional Cracks	
	Linear Elastic-Plastic Stress Fields in Cracked Bodies	
	Approximate Determination of the Crack-Tip Plastic Zone	
	• Irwin's Model, Dugdale's Model	
3	Crack Growth Based on Energy Balance	10
	• Introduction	
	Energy Balance During Crack Growth	
	Griffith Theory	
	Graphical Representation of the Energy Balance Equation	
	• Equivalence between Strain Energy Release Rate and Stress Intensity Factor	
	• Compliance	
	Crack Stability	
4	Fracture Criteria	08
	Critical Stress Intensity Factor Fracture Criterion	
	J-Integral and Crack Opening Displacement Fracture Criteria	
	Strain Energy Density Failure Criterion: Mixed-Mode Crack Growth	
5	Dynamic Fracture	08
	• Introduction	
	• Mott's Model	
	Stress Field around a Rapidly Propagating Crack	
	• Strain Energy Release Rate	
	Crack Branching, Crack Arrest	
	• Experimental Determination of Crack Velocity and Dynamic Stress Intensity	
	Factor	

6	Introduction to Fatigue Fracture, Environment-Assisted Fracture, Creep Fracture and Crack Detection Methods such as Dye Penetration, Magnetic Particles, Eddy Current, Radiography, Ultrasonics, and Acoustic Emission	08

- 1. E.E. Gdoutos, "Fracture Mechanics An Introduction", Springer
- 2. D. Broek, "Elementary Engineering Fracture Mechanics", Kluwer Academic Publishers
- 3. R.W. Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials", Wiley India Pvt. Ltd.
- 4. T.L. Anderson, "Fracture Mechanics Fundamentals and Applications", CRC Taylor and Francis
- 5. Prashant Kumar, "Elements of Fracture Mechanics", Tata McGraw Hill Education Pvt. Ltd.

Assessment:

Internal: Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

Subject Code	Subject Name	Credits
MDPE2022	Theory of Plates	03

- 1. To study the classical plate theory
- 2. To study the analyses of rectangular and circular plates
- 3. To study approximate methods to solve problems related to the plates
- 4. To study advances in theory of plates

Outcomes: Learner should be able to...

- 1. Understand classical plate theory and apply to standard plate problems
- 2. Understand the behaviour of rectangular and circular plates under the given lading conditions
- 3. Make use of approximate methods to solve plate problems
- 4. Analyse complex problems related to orthotropic / layered plates

Module	Detailed content	Hours
1	Classical Plate Theory (CPT)	08
	The Elasticity Approach	
	Assumptions of Classical Plate theory	
	Moment Curvature Relations	
	Equilibrium Equations	
	Governing Biharmonic Equation	
	Boundary Conditions	
	Solution of a Problem	
	Strain Energy of the Plate	
2	Analysis of Rectangular Plates	10
	Recapitulation of Fourier Series	
	Navier's Method	
	Levy's Method	
3	Analysis of Circular Plates	08
	• Equations of the Theory of Elasticity	
	• Equations of CPT	
	Solution for Axisymmetric Problems	
4	Dynamics and Stability	08
	Dynamics of Rectangular Plates	
	Stability of Rectangular Plates	
5	Approximate Solutions	08
	Rayleigh-Ritz Method	
	Static Flexure	
	• Buckling	
	Free Vibration Analysis	
	Galerkin's Method	
6	Advanced Topics	10
	CPT of Orthotropic Plates	
	CPT of Layered Plates	
	CPT of Moderately Large Deformations	
	Mindlin's Plate Theory	

- 1. T.K. Varadan and K. Bhaskar, "Analysis of Plates Theory and Problems", Narosa Publishing House
- 2. Stephen P. Timoshenko and S. Woinowsky-Krieger, "Theory of Plates and Shells", Tata McGraw Hill
- 3. C.M. Wang, J.N. Reddy and K.H. Lee, "Shear Deformable Beams and Plates Relationships with Classical Solutions", Elsevier
- 4. N.G.R. Iyengar, "Structural Stability of Columns and Plates", Ellis Horwood Limited

Assessment:

Internal: Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

Subject Code	Subject Name	Credits
MDPE2023	Micro Electro MechanicalSystems	03

- 1. To introduce basic concepts of MEMS and its applications.
- 2. To introduce sensors and actuators in Micro-domain.
- 3. To study modelling and simulation techniques for various applications.
- 4. Apply knowledge of micro fabrication techniques and applications to the design and manufacturing of an MEMS device or a micro system.

- 1. Select appropriate sensors and actuators for a given MEMS application.
- 2. Select a micro-fabrication technique for a specific MEMS fabrication process.
- 3. Model and simulate a given MEMS system.

Module	Detailed content	Hours
1	Introduction to MEMS & Applications	04
	Introduction to Micro-Electro-Mechanical Systems,	
	Applications and Materials,	
	Advantages & Disadvantages of Micro-sensors, and micro-actuators.	
2	Sensors and Actuators in Micro-domain	08
	 Concept of Sensors &Actuators, 	
	• Sensing & Actuation Principles: Mechanical Sensing, Capacitive, Electrostatic, Electromagnetic, Piezo Resistive, Piezo Electric, Thin Films, Shape Memory Alloys	
	 CombDriveActuation&Sensing.Micro-mechanisms,Air-BagSensors, Chemical Sensors 	
	Sensors &Actuators for Automotive,Biomedical, Industrial applications	
	 Designofsensorandactuatorforfewapplicationssuchasautomobile accelerometer, bimetallic temperature sensor, etc. 	
3	Fabrication Methods	08
	Microfabrication Methods (VLSI Techniques)	
	Positive and Negative Photoresists,	
	Bulk Micromachining,	
	Surface Micromachining,	
	Etching (Isotropic and Anisotropic),	
	 Deposition techniquessuch as CVD (Chemical Vapor Deposition), Metallization Techniques. 	
	3D High Aspect Ratio Techniques	
	• LIGA,	
	• AMANDA,	
	Microstereolithography,	
	• IH-Process,	
	X-RayTechniques,	
	Ion-beamLithography etc.	

4	 Modelling and Simulation Techniques Scaling Laws, Governing Equations Modelling of Mechanical Structures via classical methods, Newtons Laws, Thermal Laws, Fluid Flow Analysis Micro-mechanismmodellingandanalysistechniques: Lumped Parameter Modelling and Distributed Parameter Modeling Modellingof Micro-channel asheatex changer, accelerometers, micro-hinges, 	10
	compound microstructures. • Linear & Nonlinear Model.	
	 Linear & Nonlinear Model. Numerical Methods usedfor MEMS analysis. 	
5	Characterization Techniques	12
	 Topography Methods (Optical, Electrical and Mechanical Methods) Microscopy, STM (Scanning Tunneling Microscopes), SEM (Scanning Electron Microscopes), SPM (Scanning Probe Microscopes), AFM (Atomic Force Microscopes), Mechanical Structure Analysis. Deformation & Vibration Measurement Techniques (Piezo resistive and piezo electric) Interferometry Techniques, SPI (Speckle Pattern Interferometry), ESPI (Electronic Speckle Pattern Interferometry), Laser Techniques, Laser Doppler Vibro-meters, Fluid, Thermal and Chemical Analysis. Packaging and reliability of MEMS devises, reliability models. MEMS failure mechanisms, measurement technique for MEMS operational, reliability and failure analysis testing. 	12
6	 Introduction to Advances of MEMS and Nanotechnology CNT (Carbon Nano Tubes) Applications, its properties, and Fabrication Method, Nano-mechanical Systems (NEMS), Nano-tribology, &nano-indentationtechniques, Domestic and Industrial Applications of nanotechnology MolecularModelling Techniques. Social and Ethical Implications of nanotechnology in Society 	10

1.

 $\label{lem:condition} Julian W. Garden, Vijay K. Varadan and Osama O. Awadelkarim ``Microsensors MEMS and$

Smart devices", John Wiley and sons, Ltd.

2. NadimMulaf and Kirt Williams, "An Introduction to Microelectromechanical systems

Engineering", Artech House.

- 3. NicolaeLobontiu and EphrahimGarcia, "Mechanics of Microelectromechanical systems", Kluwer Academic Publication.
- 4. Stanley Wolf and Richard Tauber, "Silicon Processing for the VLSI era Volume -1

Technology", Lattice press.

- 5. Vijay K. Varadan, K.J. Vinoy and S. Gopalkrishnan, "Smart Material Systems and MEMS: Design and Development Methodologies", John Wiley and sons Ltd.
- 6. Bhushan, "Springer Handbook of Nanotechnology", Springer Inc.

Internal: Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

Course Code	Course Name	Credits
MDIE2011	Project Management	03

- 1. To familiarize the students with the use of a structured methodology/approach for each and every unique project undertaken, including utilizing project management concepts, tools and techniques.
- 2. To appraise the students with the project management life cycle and make them knowledgeable about the various phases from project initiation through closure.

- 1. Apply selection criteria and select an appropriate project from different options.
- 2. Write work break down structure for a project and develop a schedule based on it.
- 3. Identify opportunities and threats to the project and decide an approach to deal with them strategically.
- 4. Use Earned value technique and determine & predict status of the project.
- 5. Capture lessons learned during project phases and document them for future reference

Module	Detailed Contents	Hrs.
1	Project Management Foundation: Definition of a project, Project Vs Operations, Necessity of project management, Triple constraints, Project life cycles (typical & atypical) Project phases and stage gate process. Role of project manager. Negotiations and resolving conflicts. Project management in various organization structures. PM knowledge areas as per Project Management Institute (PMI).	05
2	Initiating Projects: How to get a project started, Selecting project strategically, Project selection models (Numeric /Scoring Models and Non-numeric models), Project portfolio process, Project sponsor and creating charter; Project proposal. Effective project team, Stages of team development & growth (forming, storming, norming & performing), team dynamics.	06
3	Project Planning and Scheduling: Work Breakdown structure (WBS) and linear responsibility chart, Interface Co-ordination and concurrent engineering, Project cost estimation and budgeting, Top down and bottoms up budgeting, Networking and Scheduling techniques. PERT, CPM, GANTT chart. Introduction to Project Management Information System (PMIS).	08
4	Planning Projects: Crashing project time, Resource loading and leveling, Goldratt's critical chain, Project Stakeholders and Communication plan. Risk Management in projects: Risk management planning, Risk identification and risk register. Qualitative and quantitative risk assessment, Probability and impact matrix. Risk response strategies for positive and negative risks	06

	Executing Projects:	
	Planning monitoring and controlling cycle. Information needs and reporting,	
	engaging with all stakeholders of the projects.	
	Team management, communication and project meetings.	
_	Monitoring and Controlling Projects:	08
5	Earned Value Management techniques for measuring value of work	08
	completed; Using milestones for measurement; change requests and scope	
	creep. Project audit.	
	Project Contracting	
	Project procurement management, contracting and outsourcing,	
	Project Leadership and Ethics:	
	Introduction to project leadership, ethics in projects. Multicultural and	
	virtual projects.	
	Closing the Project:	
6	Customer acceptance; Reasons of project termination, Various types of	06
6	project terminations (Extinction, Addition, Integration, Starvation), Process	06
	of project termination, completing a final report; doing a lessons learned	
	analysis; acknowledging successes and failures; Project management	
	templates and other resources; Managing without authority; Areas of further	
	study.	

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (on minimum Two Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. Jack Meredith & Samuel Mantel, Project Management: A managerial approach, Wiley India, 7thEd.
- 2. A Guide to the Project Management Body of Knowledge (PMBOK® Guide), 5th Ed, Project
 - Management Institute PA, USA
- 3. Gido Clements, Project Management, Cengage Learning.
- 4. Gopalan, Project Management, , Wiley India
- 5. Dennis Lock, Project Management, Gower Publishing England, 9th Ed.

Course Code	Course Name	Credits
MDIE2012	Finance Management	03

- 1. Overview of Indian financial system, instruments and market
- 2. Basic concepts of value of money, returns and risks, corporate finance, working capital and its management
- 3. Knowledge about sources of finance, capital structure, dividend policy

- 1. Understand Indian finance system and corporate finance
- 2. Take investment, finance as well as dividend decisions

Module	Detailed Contents	Hrs.
	Overview of Indian Financial System: Characteristics, Components and	
1	Functions of Financial System.	
	Financial Instruments: Meaning, Characteristics and Classification of Basic	
	Financial Instruments - Equity Shares, Preference Shares, Bonds-	
	Debentures, Certificates of Deposit, and Treasury Bills.	06
	Financial Markets: Meaning, Characteristics and Classification of Financial	
	Markets - Capital Market, Money Market and Foreign Currency Market	
	Financial Institutions: Meaning, Characteristics and Classification of	
	Financial Institutions - Commercial Banks, Investment-Merchant Banks and	
	Stock Exchanges	
	Concepts of Returns and Risks: Measurement of Historical Returns and	
	Expected Returns of a Single Security and a Two-security Portfolio;	
	Measurement of Historical Risk and Expected Risk of a Single Security and	
2	a Two-security Portfolio.	06
	Time Value of Money: Future Value of a Lump Sum, Ordinary Annuity, and	
	Annuity Due; Present Value of a Lump Sum, Ordinary Annuity, and Annuity	
	Due; Continuous Compounding and Continuous Discounting.	
	Overview of Corporate Finance: Objectives of Corporate Finance;	
	Functions of Corporate Finance - Investment Decision, Financing Decision,	
	and Dividend Decision.	
3	Financial Ratio Analysis: Overview of Financial Statements - Balance Sheet,	09
	Profit and Loss Account, and Cash Flow Statement; Purpose of Financial	0,
	Ratio Analysis; Liquidity Ratios; Efficiency or Activity Ratios; Profitability	
	Ratios; Capital Structure Ratios; Stock Market Ratios; Limitations of Ratio	
	Analysis.	
	Capital Budgeting: Meaning and Importance of Capital Budgeting; Inputs	
	for Capital Budgeting Decisions; Investment Appraisal Criterion -	
	Accounting Rate of Return, Payback Period, Discounted Payback Period,	
	Net Present Value(NPV), Profitability Index, Internal Rate of Return (IRR),	
4	and Modified Internal Rate of Return (MIRR)	10
	Working Capital Management: Concepts of Meaning Working Capital;	10
	Importance of Working Capital Management; Factors Affecting an Entity's	
	Working Capital Needs; Estimation of Working Capital Requirements;	
	Management of Inventories; Management of Receivables; and Management	
	of Cash and Marketable Securities.	

5	Sources of Finance: Long Term Sources - Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short Term Finance - Trade Credit, Bank Finance, Commercial Paper; Project Finance. Capital Structure: Factors Affecting an Entity's Capital Structure; Overview of Capital Structure Theories and Approaches - Net Income Approach, Net Operating Income Approach; Traditional Approach, and Modigliani-Miller Approach. Relation between Capital Structure and Corporate Value; Concept of Optimal Capital Structure	05
6	Dividend Policy: Meaning and Importance of Dividend Policy; Factors Affecting an Entity's Dividend Decision; Overview of Dividend Policy Theories and Approaches - Gordon's Approach, Walter's Approach, and Modigliani-Miller Approach	03

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (on minimum Two Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham and Joel F. Houston; Publisher: Cengage Publications, New Delhi.
- 2. Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins; Publishers: McGraw Hill Education, New Delhi.
- 3. Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.
- 4. Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & Company Limited, New Delhi.

Course Code	Course Name	Credits	
MDIE2013	Entrepreneurship Development and	03	
	Management	03	

- 1. To acquaint with entrepreneurship and management of business
- 2. Understand Indian environment for entrepreneurship
- 3. Idea of EDP, MSME

- 1. Understand the concept of business plan and ownerships
- 2. Interpret key regulations and legal aspects of entrepreneurship in India
- 3. Understand government policies for entrepreneurs

Module	Detailed Contents	Hrs.	
	Overview Of Entrepreneurship: Definitions, Roles and Functions/Values		
1	of Entrepreneurship, History of Entrepreneurship Development, Role of		
	Entrepreneurship in the National Economy, Functions of an Entrepreneur,	04	
	Entrepreneurship and Forms of Business Ownership Role of Money and		
	Capital Markets in Entrepreneurial Development: Contribution of		
	Government Agencies in Sourcing information for Entrepreneurship		
	Business Plans And Importance Of Capital To Entrepreneurship:		
	Preliminary and Marketing Plans, Management and Personnel, Start-up		
	Costs and Financing as well as Projected Financial Statements, Legal		
2	Section, Insurance, Suppliers and Risks, Assumptions and Conclusion,	09	
2	Capital and its Importance to the Entrepreneur	09	
	Entrepreneurship And Business Development: Starting a New Business,		
	Buying an Existing Business, New Product Development, Business Growth		
	and the Entrepreneur Law and its Relevance to Business Operations		
	Women's Entrepreneurship Development, Social entrepreneurship-role and		
3	need, EDP cell, role of sustainability and sustainable development for SMEs,	05	
	case studies, exercises		
	Indian Environment for Entrepreneurship: key regulations and legal		
	aspects, MSMED Act 2006 and its implications, schemes and policies of the		
	Ministry of MSME, role and responsibilities of various government		
4	organizations, departments, banks etc., Role of State governments in terms	08	
	of infrastructure developments and support etc., Public private partnerships,		
	National Skill development Mission, Credit Guarantee Fund, PMEGP,		
	discussions, group exercises etc		
	Effective Management of Business: Issues and problems faced by micro		
5	and small enterprises and effective management of M and S enterprises (risk	08	
	management, credit availability, technology innovation, supply chain	00	
	management, linkage with large industries), exercises, e-Marketing		
	Achieving Success In The Small Business: Stages of the small business life		
6	cycle, four types of firm-level growth strategies, Options – harvesting or	05	
	closing small business Critical Success factors of small business		

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (on minimum Two Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. PoornimaCharantimath, Entrepreneurship development- Small Business Enterprise, Pearson
- 2. Education Robert D Hisrich, Michael P Peters, Dean A Shapherd, Entrepreneurship, latest edition, The McGrawHill Company
- 3. Dr TN Chhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 4. Dr CN Prasad, Small and Medium Enterprises in Global Perspective, New century Publications, New Delhi
- 5. Vasant Desai, Entrepreneurial development and management, Himalaya Publishing House
- 6. MaddhurimaLall, ShikahSahai, Entrepreneurship, Excel Books
- 7. Rashmi Bansal, STAY hungry STAY foolish, CIIE, IIM Ahmedabad
- 8. Law and Practice relating to Micro, Small and Medium enterprises, Taxmann Publication Ltd.
- 9. Kurakto, Entrepreneurship- Principles and Practices, Thomson Publication
- 10. LaghuUdyogSamachar
- 11. www.msme.gov.in
- 12. www.dcmesme.gov.in
- 13. www.msmetraining.gov.in

Course Code	Course Name	Credits
MDIE2014	Human Resource Management	03

- 1. To introduce the students with basic concepts, techniques and practices of the human resource management.
- 2. To provide opportunity of learning Human resource management (HRM) processes, related with the functions, and challenges in the emerging perspective of today's organizations.
- 3. To familiarize the students about the latest developments, trends & different aspects of HRM
- 4. To acquaint the student with the importance of inter-personal & inter-group behavioral skills in an organizational setting required for future stable engineers, leaders and managers.

- 1. Understand the concepts, aspects, techniques and practices of the human resource management.
- 2. Understand the Human resource management (HRM) processes, functions, changes and challenges in today's emerging organizational perspective.
- 3. Gain knowledge about the latest developments and trends in HRM.
- 4. Apply the knowledge of behavioral skills learnt and integrate it with in inter personal and integroup environment emerging as future stable engineers and managers.

Module	Detailed Contents	Hrs.
1	Human Resource Management- Concept, Scope and Importance, Interdisciplinary Approach Relationship with other Sciences, Competencies of HR Manager, HRM functions. Human resource development (HRD): changing role of HRM - Human resource Planning, Technological change, Restructuring and rightsizing, Empowerment, TQM, Managing ethical issues.	05
2	Organizational Behavior (OB) Introduction to OB Origin, Nature and Scope of Organizational Behavior, Relevance to Organizational Effectiveness and Contemporary issues Personality: Meaning and Determinants of Personality, Personality development, Personality Types, Assessment of Personality Traits for Increasing Self Awareness Perception: Attitude and Value, Effect of perception on Individual Decision making, Attitude and Behavior. Motivation: Theories of Motivation and their Applications for Behavioral Change (Maslow, Herzberg, McGregor); Group Behavior and Group Dynamics: Work groups formal and informal groups and stages of group development. Team Effectiveness: High performing teams, Team Roles, cross functional and self-directed team. Case study	06

		1
	Organizational Structure & Design	
	Structure, size, technology, Environment of organization; Organizational	
	Roles & conflicts: Concept of roles; role dynamics; role conflicts and stress.	
3	Leadership: Concepts and skills of leadership, Leadership and managerial	07
	roles, Leadership styles and contemporary issues in leadership.	
	Power and Politics: Sources and uses of power; Politics at workplace,	
	Tactics and strategies.	
	Human resource Planning	
	Recruitment and Selection process, Job-enrichment, Empowerment - Job -	
	Satisfaction, employee morale.	
4	Performance Appraisal Systems: Traditional & modern methods,	05
	Performance Counseling, Career Planning.	
	Training & Development: Identification of Training Needs, Training	
	Methods	
	Emerging Trends in HR	
	Organizational development; Business Process Re-engineering (BPR), BPR	
	as a tool for organizational development, managing processes &	
	transformation in HR. Organizational Change, Culture, Environment	_
5	Cross Cultural Leadership and Decision Making: Cross Cultural	06
	Communication and diversity at work, Causes of diversity, managing	
	diversity with special reference to handicapped, women and ageing people,	
	intra company cultural difference in employee motivation.	
	HR & MIS	
ı	Need, purpose, objective and role of information system in HR, Applications	
	in HRD in various industries (e.g. manufacturing R&D, Public Transport,	
	Hospitals, Hotels and service industries	
	Strategic HRM	
6	Role of Strategic HRM in the modern business world, Concept of Strategy,	
	Strategic Management Process, Approaches to Strategic Decision Making;	10
	Strategic Intent - Corporate Mission, Vision, Objectives and Goals	
	Labor Laws & Industrial Relations	
	Evolution of IR, IR issues in organizations, Overview of Labor Laws in	
	India; Industrial Disputes Act, Trade Unions Act, Shops and Establishments	
	Act	
	net -	

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (on minimum Two Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. Stephen Robbins, Organizational Behavior, 16th Ed, 2013
- 2. V S P Rao, Human Resource Management, 3rd Ed, 2010, Excel publishing
- 3. Aswathapa, Human resource management: Text & cases, 6th edition, 2011
- 4. C. B. Mamoria and S V Gankar, Dynamics of Industrial Relations in India, 15th Ed, 2015, Himalaya Publishing, 15thedition, 2015
- 5. P. Subba Rao, Essentials of Human Resource management and Industrial relations, 5th Ed, 2013, Himalaya Publishing
- 6. Laurie Mullins, Management & Organizational Behavior, Latest Ed, 2016, Pearson Publications

Course Code	Course Name	Credits
MDIE2015	Professional Ethics and Corporate Social	03
WIDIE2013	Responsibility (CSR)	03

- 1. To understand professional ethics in business
- 2. To recognized corporate social responsibility

Outcomes: Learner will be able to...

- 1. Understand rights and duties of business
- 2. Distinguish different aspects of corporate social responsibility
- 3. Demonstrate professional ethics
- 4. Understand legal aspects of corporate social responsibility

Module	Detailed Contents	Hrs.
	Professional Ethics and Business: The Nature of Business Ethics; Ethical	
1	Issues in Business; Moral Responsibility and Blame; Utilitarianism:	04
	Weighing Social Costs and Benefits; Rights and Duties of Business	
	Professional Ethics in the Marketplace: Perfect Competition; Monopoly	
	Competition; Oligopolistic Competition; Oligopolies and Public Policy	
2	Professional Ethics and the Environment: Dimensions of Pollution and	08
	Resource Depletion; Ethics of Pollution Control; Ethics of Conserving	
	Depletable Resources	
	Professional Ethics of Consumer Protection: Markets and Consumer	
	Protection; Contract View of Business Firm's Duties to Consumers; Due	
3	Care Theory; Advertising Ethics; Consumer Privacy	06
	Professional Ethics of Job Discrimination: Nature of Job Discrimination;	
	Extent of Discrimination; Reservation of Jobs.	
	Introduction to Corporate Social Responsibility: Potential Business	
4	Benefits - Triple bottom line, Human resources, Risk management, Supplier	05
4	relations; Criticisms and concerns - Nature of business; Motives;	
	Misdirection. Trajectory of Corporate Social Responsibility in India	
	Corporate Social Responsibility: Articulation of Gandhian Trusteeship	
5	Corporate Social Responsibility and Small and Medium Enterprises (SMEs)	08
3	in India, Corporate Social Responsibility and Public-Private Partnership	U8
	(PPP) in India	
	Corporate Social Responsibility in Globalizing India: Corporate Social	
6	Responsibility Voluntary Guidelines, 2009 issued by the Ministry of	08
O	Corporate Affairs, Government of India, Legal Aspects of Corporate Social	
	Responsibility - Companies Act, 2013.	

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (on minimum Two Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. Business Ethics: Texts and Cases from the Indian Perspective (2013) by Ananda Das Gupta;
 - Publisher: Springer.
- 2. Corporate Social Responsibility: Readings and Cases in a Global Context (2007) by Andrew Crane, Dirk Matten, Laura Spence; Publisher: Routledge.
- 3. Business Ethics: Concepts and Cases, 7th Edition (2011) by Manuel G. Velasquez; Publisher: Pearson, New Delhi.
- 4. Corporate Social Responsibility in India (2015) by Bidyut Chakrabarty, Routledge, New Delhi.

Course Code	Course Name	Credits
MDIE2016	Research Methodology	03

- 1. To understand Research and Research Process
- 2. To acquaint students with identifying problems for research and develop research strategies
- 3. To familiarize students with the techniques of data collection, analysis of data and interpretation

Outcomes: Learner will be able to...

- 1. Prepare a preliminary research design for projects in their subject matter areas
- 2. Accurately collect, analyze and report data
- 3. Present complex data or situations clearly
- 4. Review and analyze research findings

Module	Detailed Contents	Hrs.
1	Introduction and Basic Research Concepts Research - Definition; Concept of Construct, Postulate, Proposition, Thesis, Hypothesis, Law, Principle. Research methods vs Methodology, Need of Research in Business and Social Sciences, Objectives of Research, Issues and Problems in Research, Characteristics of Research: Systematic, Valid,	09
2	Verifiable, Empirical and Critical Types of Research Basic Research, Applied Research, Descriptive Research, Analytical Research, Empirical Research, Qualitative and Quantitative Approaches	07
3	Research Design and Sample Design Research Design - Meaning, Types and Significance, Sample Design - Meaning and Significance Essentials of a good sampling Stages in Sample Design Sampling methods/techniques Sampling Errors	07
4	Research Methodology Meaning of Research Methodology Stages in Scientific Research Process: a. Identification and Selection of Research Problem b. Formulation of Research Problem c. Review of Literature d. Formulation of Hypothesis e. Formulation of research Design f. Sample Design g. Data Collection h. Data Analysis i. Hypothesis testing and Interpretation of Data j. Preparation of Research Report	08
5	Formulating Research Problem Considerations: Relevance, Interest, Data Availability, Choice of data, Analysis of data, Generalization and Interpretation of analysis	04
6	Outcome of Research Preparation of the report on conclusion reached, Validity Testing & Ethical Issues, Suggestions and Recommendation	04

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (on minimum Two Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers Distributors.
- 2. Kothari, C.R.,1985, Research Methodology-Methods and Techniques, New Delhi, Wiley Eastern Limited.
- 3. Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2nded),
 - Singapore, Pearson Education

Course Code	Course Name	Credits
MDIE2017	IPR and Patenting	03

- 1. To understand intellectual property rights protection system
- 2. To promote the knowledge of Intellectual Property Laws of India as well as International treaty procedures
- 3. To get acquaintance with Patent search and patent filing procedure and applications

Outcomes: Learner will be able to...

- 1. Understand Intellectual Property assets
- 2. Assist individuals and organizations in capacity building
- 3. Work for development, promotion, protection, compliance, and enforcement of Intellectual Property and Patenting

Module	Detailed Contents	Hrs.
	Introduction to Intellectual Property Rights (IPR): Meaning of IPR,	
	Different Category of IPR instruments - Patents, Trademarks, Copyrights,	
1	Industrial Designs, Plant variety protection, Geographical indications,	05
1	Transfer of technology etc. Importance of IPR in Modern Global Economic	03
	Environment: Theories of IPR, Philosophical aspects of IPR laws, Need for	
	IPR, IPR as an instrument of development	
	Enforcement of Intellectual Property Rights: Introduction, Magnitude of	
	problem, Factors that create and sustain counterfeiting/piracy, International	
	agreements, International organizations (e.g. WIPO, WTO) active in IPR	
2	enforcement	07
_	Indian Scenario of IPR: Introduction, History of IPR in India, Overview of	0,
	IP laws in India, Indian IPR, Administrative Machinery, Major international	
	treaties signed by India, Procedure for submitting patent and Enforcement of	
	IPR at national level etc.	
3	Emerging Issues in IPR: Challenges for IP in digital economy, e-	05
	commerce, human genome, biodiversity and traditional knowledge etc.	
	Basics of Patents: Definition of Patents, Conditions of patentability,	
	Patentable and non-patentable inventions, Types of patent applications (e.g.	. –
4	Patent of addition etc), Process Patent and Product Patent, Precautions while	07
	patenting, Patent specification Patent claims, Disclosures and non-	
	disclosures, Patent rights and infringement, Method of getting a patent	
_	Patent Rules: Indian patent act, European scenario, US scenario, Australia	00
5	scenario, Japan scenario, Chinese scenario, Multilateral treaties where India	08
	is a member (TRIPS agreement, Paris convention etc.)	
	Procedure for Filing a Patent (National and International): Legislation	
6	and Salient Features, Patent Search, Drafting and Filing Patent Applications,	07
	Processing of patent, Patent Litigation, Patent Publication, Time frame and	07
	cost, Patent Licensing, Patent Infringement Patent databases: Important websites, Searching international databases	
	Patent databases: Important websites, Searching international databases	

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (on minimum Two Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. Rajkumar S. Adukia, 2007, A Handbook on Laws Relating to Intellectual Property Rights in India, The Institute of Chartered Accountants of India
- 2. Keayla B K, Patent system and related issues at a glance, Published by National Working Group on Patent Laws
- 3. T Sengupta, 2011, Intellectual Property Law in India, Kluwer Law International
- 4. Tzen Wong and Graham Dutfield, 2010, Intellectual Property and Human Development: Current Trends and Future Scenario, Cambridge University Press
- 5. Cornish, William Rodolph & Llewelyn, David. 2010, Intellectual Property: Patents, Copyrights, Trade Marks and Allied Right, 7th Edition, Sweet & Maxwell
- 6. LousHarns, 2012, The enforcement of Intellactual Property Rights: A Case Book, 3rd Edition, WIPO
- 7. Prabhuddha Ganguli, 2012, Intellectual Property Rights, 1st Edition, TMH
- 8. R Radha Krishnan & S Balasubramanian, 2012, Intellectual Property Rights, 1st Edition, Excel Books
- 9. M Ashok Kumar and mohd Iqbal Ali, 2-11, Intellectual Property Rights, 2nd Edition, Serial
 - **Publications**
- 10. Kompal Bansal and Praishit Bansal, 2012, Fundamentals of IPR for Engineers, 1st Edition, BS Publications
- 11. Entrepreneurship Development and IPR Unit, BITS Pilani, 2007, A Manual on Intellectual Property Rights,
- 12. Mathew Y Maa, 2009, Fundamentals of Patenting and Licensing for Scientists and Engineers, World Scientific Publishing Company
- 13. N S Rathore, S M Mathur, PritiMathur, AnshulRathi, IPR: Drafting, Interpretation of Patent Specifications and Claims, New India Publishing Agency
- 14. Vivien Irish, 2005, Intellectual Property Rights for Engineers, IET
- 15. Howard B Rockman, 2004, Intellectual Property Law for Engineers and scientists, Wiley-IEEE Press

Course Code	Course Name	Credits
MDIE2018	Digital Business Management	03

- 1. To familiarize with digital business concept
- 2. To acquaint with E-commerce
- 3. To give insights into E-business and its strategies

Outcomes: Learner will be able to...

- 1. Identify drivers of digital business
- 2. Illustrate various approaches and techniques for E-business and management
- 3. Prepare E-business plan

Module	Detailed Contents	Hrs.
	Introduction to Digital Business:	
	Introduction, Background and current status, E-market places, structures,	
	mechanisms, economics and impacts Difference between physical economy	
1	and digital economy,	09
1	Drivers of digital business- Big Data & Analytics, Mobile, Cloud	0)
	Computing,	
	Social media, BYOD, and Internet of Things(digitally intelligent	
	machines/services), Opportunities and Challenges in Digital Business,	
	Overview of E-Commerce:	
	E-Commerce- Meaning, Retailing in e-commerce-products and services,	
	consumer behavior, market research and advertisement B2B-E-commerce-	
	selling and buying in private e-markets, public B2B exchanges and support	
	services, e-supply chains, Collaborative Commerce, Intra business EC and	0.6
2	Corporate portals Other E-C models and applications, innovative EC	06
	System-From E-government and learning to C2C, mobile commerce and	
	pervasive computing EC Strategy and Implementation-EC strategy and global EC, Economics and Justification of EC, Using Affiliate marketing to	
	promote your e-commerce business, Launching a successful online business	
	and EC project, Legal, Ethics and Societal impacts of EC	
	Digital Business Support services: ERP as e - business backbone,	
	knowledge	
3	Tope Apps, Information and referral system	06
	Application Development: Building Digital business Applications and	
	Infrastructure	
	Managing E-Business - Managing Knowledge, Management skills for e-	
	business, Managing Risks in e - business Security Threats to e-business -	
4	Security Overview, Electronic Commerce Threats, Encryption,	
	Cryptography, Public Key and Private Key Cryptography, Digital Signatures,	06
	Digital Certificates, Security Protocols over Public Networks: HTTP, SSL,	
	Firewall as Security Control, Public Key Infrastructure (PKI) for Security,	
	Prominent Cryptographic Applications	

5	E-Business Strategy - E - business Strategic formulation - Analysis of Company's Internal and external environment, Selection of strategy, E-business strategy into Action, challenges and E-Transition (Process of Digital Transformation)	04
6	Materializing e - business: From Idea to Realization-Business plan preparation Case Studies and presentations	08

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (on minimum Two Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. A textbook on E-commerce, ErArunrajan Mishra, Dr W K Sarwade, Neha Publishers & Distributors, 2011
- 2. E-commerce from vision to fulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3. Digital Business and E-Commerce Management, 6th Ed, Dave Chaffey, Pearson, August 2014
- 4. Introduction to E-business-Management and Strategy, Colin Combe, ELSVIER, 2006
- 5. Digital Business Concepts and Strategy, Eloise Coupey, 2nd Edition, Pearson
- 6. Trend and Challenges in Digital Business Innovation, VinocenzoMorabito, Springer
- 7. Digital Business Discourse Erika Darics, April 2015, Palgrave Macmillan
- 8. E-Governance-Challenges and Opportunities in: Proceedings in 2nd International Conference theory and practice of Electronic Governance
- 9. Perspectives the Digital Enterprise –A framework for Transformation, TCS consulting journal Vol.5
- 10. Measuring Digital Economy-A new perspective -DOI:10.1787/9789264221796-enOECD Publishing

Course Code	Course Name	Credits
MDIE2019	Environmental Management	03

- 1. Understand and identify environmental issues relevant to India and global concerns
- 2. Learn concepts of ecology
- 3. Familiarize environment related legislations

Outcomes: Learner will be able to...

- 1. Understand the concept of environmental management
- 2. Understand ecosystem and interdependence, food chain etc.
- 3. Understand and interpret environment related legislations

Module	Detailed Contents	Hrs.
1	Introduction and Definition of Environment: Significance of Environment Management for contemporary managers, Career opportunities. Environmental issues relevant to India, Sustainable Development, The Energy scenario.	10
2	Global Environmental concerns: Global Warming, Acid Rain, Ozone Depletion, Hazardous Wastes, Endangered life-species, Loss of Biodiversity, Industrial/Manmade disasters, Atomic/Biomedical hazards, etc.	06
3	Concepts of Ecology: Ecosystems and interdependence between living organisms, habitats, limiting factors, carrying capacity, food chain, etc.	05
4	Scope of Environment Management, Role & functions of Government as a planning and regulating agency. Environment Quality Management and Corporate Environmental Responsibility	10
5	Total Quality Environmental Management, ISO-14000, EMS certification.	05
6	General overview of major legislations like Environment Protection Act, Air (P & CP) Act, Water (P & CP) Act, Wildlife Protection Act, Forest Act, Factories Act, etc.	03

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test (on minimum Two Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell, Edward Elgar Publishing
- 3. Environmental Management, TV Ramachandra and Vijay Kulkarni, TERI Press
- 4. Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau Of Indian Standards, February 2005
- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Maclillan India, 2000
- 6. Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC Press
- 7. Environment and Ecology, Majid Hussain, 3rd Ed. Access Publishing.2015

Subject Code	Subject Name	Credits
MDL201	Finite Element Analysis	01

- 1. To study the mathematical simulation software.
- 2. To study the finite element analysis software.
- 3. To apply Finite Element Analysis for real life mechanical component.

Outcomes: Learner will be able to.....

- 1. Apply and analyze different mechanical components using mathematical simulation software.
- 2. Apply and analyze different mechanical components using FEA software.
- 3. Analyse complex real life mechanical component.

Module	Detailed content	Hours
1	Finite element analysis (FEA) of minimum 05 mechanical components	(06)
	using mathematical simulation software (or any programming language)	
	which must include structural, thermal and coupled structural-thermal	
	analyses	
2	Finite element analysis of minimum 05 mechanical components using	(12)
	available FEA software which must include structural, thermal and	
	coupled structural-thermal analyses	
3	Laboratory Project:	(08)
	Finite Element Analysis of a real life mechanical component subjected	
	to both structural and thermal loading, using Mathematical Simulation	
	Software (or any programming language) and Finite Element Analysis	
	Software	

Assessment:

Laboratory Project: Weightage for Laboratory Project should be 40% in Final Assessment of Laboratory Work.

End Semester Examination: Practical/Oral examination is to be conducted by pair of internal and external examiners

Subject Code	Subject Name	Credits
MDSBL201	Measurement and Virtual Instrumentation	02

- 1. To study the different sensors and their calibration.
- 2. To study the different data acquisition systems available.
- 3. To study interfacing tool for different sensors and measurement of different parameters.

Outcomes: Learner will be able to.....

- 1. Apply knowledge for selecting the sensors for their application.
- 2. Develop interface and measurement of any parameter with suitable sensor.
- 3. Demonstrate the skill of Virtual Instrumentation.

Module	Detailed content	Hours
1	Study of sensor characteristics, selection, calibration and measurement of minimum 05 mechanical parameters such as flow, load, pressure, speed and temperature	(10)
2	Virtual Instrumentation a. Simulation of any system with Virtual Instrumentation (VI) environment using any suitable software. b. Interfacing of sensors used for measuring above mentioned parameters with VI software and measurement of these parameters on any laboratory model or actual working system. Data post processing and analysis.	(16)
3	Demonstration of interfacing of VI software with suitable generic hardware.	(10)
4	Lab Project required to complete which will demonstrate the understanding of Virtual Instrumentation (VI), interfacing of sensors and data analysis.	(14)

Assessment:

Laboratory Project: Weightage for Laboratory Project should be 40% in Final Assessment of Laboratory Work.

End Semester Examination: Practical/Oral examination is to be conducted by pair of internal and external examiners.