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Module - I 

1 
DISTRIBUTED DATABASE CONCEPTS 

Unit Structure 

1.0 Objectives  

1.1 Introduction  

1.2 Distributed Database Concept 

1.2.1 Definition of Distributed Databases and Distributed Database 
Management System (DDBMS) 

1.2.1.1 Features of Distributed Database Management System 

1.2.1.2 Advantages of Distributed Database Management 
System 

1.2.1.3 Disadvantages of Distributed Database Management 
System 

1.2.2 Reasons to boosting DDBMS  

1.2.3 Databases Types 

1.3 Distributed Transparent System 

1.3.1 Levels of Distributed Transparent System 

1.3.1.1   Fragmentation Transparency 

1.3.1.2   Location Transparency 

1.3.1.3   Replication Transparency 

1.4 Summary 

1.5 List of References and Bibliography and further Reading 

1.6 Model Questions 

1.0 OBJECTIVE:  

After going through this unit, you will be able to: 

 understand what Distributed database is. 

 define what is Distributed Database Management System  

 describe features of DDBMS its advantages and disadvantages 
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 Illustrate Distributed transparent system 

 Classify Distributed transparent System. 

1.1 INTRODUCTION:  

For appropriate working of any business/organisation, there’s a 
requirement for a well-organised database management system. In the past 
databases used to centralize in nature. But, with the growth of 
globalization, organisations lean towards expanded crosswise the world. 
Because of this reason they have to choose distributed data instead of 
centralized system. This was the reason concept of Distributed Databases 
came in picture. 

Distributed Database Management System is a software system that 
manages a distributed database which is partitioned and placed on 
different location. Its objective is to hide data distribution and appears as 
one logical database system to the clients. 

1.2 DISTRIBUTED DATABASE CONCEPT: 

Distributed Database is database which is not restricted to one system 
only. It is a group of several interconnected databases. These are spread 
physically across various locations that communicate through a computer 
network. Distributed Database Management System (DDBMS) manages 
the distributed database and offers mechanisms so as to make the 
databases clear to the users. In these systems, data is intentionally 
distributed among multiple places so that all computing resources of the 
organization can be optimally used. 

1.2.1. Definition of Distributed Databases and Distributed Database 
Management System (DDBMS) 

The concept that is most important to the DDBMS is location clearness, 
meaning the user should be unaware of the actual location of data. 

“A distributed database management system (DDBMS) can be defined as 
the software system that permits the management of the distributed 
database and makes the distribution transparent to the users.”:- M. 
Tamer Özsu 

A Distributed Database Management System allows end users or 
application programmers to view a pool of physically detached databases 
as one logical unit. In another word, we can say distributed database is, 
where different data stored among multiple locations but connected via 
network, and for user it represent as a single logical unit. 
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Distributed Database Management System 

 

1.2.1.1 Features ofDistributed Database Management System 

Some features of Distributed Database Management system are as 
follows: 

 DDBMS software maintain CRUD (create, retrieve, Update, Delete) 
functions.  

 It covers all application areas where huge volume of data are 
processed and retrieved simultaneously by n number of users. 

 It ensure that data modified at any location update universally. 

 It ensures confidentiality and data integrity, which is important 
feature in transaction management.  

 It can handle heterogeneous data platforms. 

 In it communications network connects the sites. 

 It is a grouping of data that is logically related and shared. 

1.2.1.2 Advantages ofDistributed Database Management System: 

Some of the advantages of DDBMS are as follows: 

 Reliable: 

Incase of centralizedDBMSif database fails entire system comes to a halt 
whereas in DDBMS when a component fails may be reduce performance 
but it will not stop fully. 
 
 Easy Expansion 

In centralized database system if system needs to be expanded, the 
implementation require extensive efforts and interruption in the existing 
functionality. However in DDBMS no disturbance in current functioning. 
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 Faster Response 

In centralized database all queries are passing through central data 
repository because of that response time is more although in DDBMS data 
is distributed in well-organized, so it runs faster response onqueries. 

 Local control 

In centralized database system,data is distributed in such a way that some 
portions of it are only available at some sites (servers). The owner of the 
data is the site where the portion of data is stored. 

1.2.1.3 Disadvantages ofDistributed Database Management System: 

 Complex and Expensive 

DDBMS provides data transparency and work on different sites so it may 
require complex and expensive software for proper working. 

 Overheads 

Simple and complex operation and queries may require large 
communication and calculation. Responsiveness is largely dependent upon 
appropriate data distribution. Improper data distribution often leads to 
slow response to user requests.  

 Integrity 

As data is on multiple sites it may create problem in updating data and 
maintaining data integrity. 

1.2.2. Reasons to Boosting DDBMS 

The following Reasons inspire moving towards DDBMS − 

 Distributed Nature of Structural Units – Now a days most 
organizations are partitioned into several units that are physically scattered 
over the world. Each unit needs its own set of local data. Thus, the total 
database of the organization converts into distributed. 

 Data sharing Need −The several organizational divisions often 
need to interact with each other and share data and resources. This 
demands common databases or simulated databases that should be used in 
a co-ordinated manner. 

 Provision for OLTP and OLAP–Online Analytical Processing 
(OLAP) and Online Transaction Processing (OLTP) works on diversified 
systems. Distributed database systems supports and both OLAP and 
OLTP.  

 Database Retrieval − One of the common methods used in 
DDBMS is imitation of data across different locations. Replication of data 
spontaneously helps in data recovery if database in any site is broken. 
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Users can access data from other sites while the damaged site is being 
rebuilt. Thus, database disaster may convert inconspicuous to users. 

 Usefulin Multiple Application Software − Most organizations 
use a variant of application software and each is having different database 
support. DDBMS provides anidentical functionality for using the same 
data among diversified platforms. 

1.2.3 Databases Types:  

1.2.3.1. Homogeneous Database:  

In a homogeneous database, all diverse sites collect data identically. At all 
the sites same operating system, database management system and the 
data structures used is being used. Therefore, they are easy to manage.  

Example: All Oracle. 

1.2.3.2 Heterogeneous Database:  

In a heterogeneous distributed database, different sites can use dissimilar 
schema and software that can lead to glitches in transactions and query 
processing. Also, a particular site might be completely uninformed of the 
other sites. Diverse computers may use a different operating system, 
different database application. They possibly will even use changed data 
models for the database. Therefore, conversions are compulsory for 
different sites to interconnect. 

Example: Company Merger 

1.3 DISTRIBUTED TRANSPARENT SYSTEM: 

One of the property of Distributed Database Management System is 
Distributed transparent system. Because of this feature internal details of 
the distribution is hidden from the users. DDBMS hides all the distributed 
complexities and allow users to feel that they are working on single and 
centralized database. 
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Different Layers of transparencies 

1.3.1 Levels of Distributed Transparent System: 

DDBMS is supporting transparency at three levels: 
 
1.3.1.1 Fragmentation Transparency 

In Fragmentation transparency, fragments are created to store the data in 
distributed wayand should stay transparent. In this all the data 
administration work necessarily control by the system, not by the user. In 
this job, when a user sets a query, the global query is distributed in many 
sites to get data from fragments and this data is place together at the end to 
produce the result.  
 
1.3.1.2 Location Transparency 

Location transparency confirms that the user can fire query on any relation 
or fragment of a relation like they are stored locally on user’s place. But 
the table or its fragments are kept at isolated site in the distributed 
database system, should be completely unaware to the user. The address 
and access mechanism of the remote site are completely hidden. 

In order to integrate location transparency, DDBMS must have access to 
restructured and perfect data dictionary and DDBMS directory which 
contains the details of locations of data. 

1.3.1.3 Replication Transparency 

Replication transparency certifies that duplication of databases are 
concealed from the users. It permits users to query upon a relation as if 
only a single copy of the table is in place. 

Replication transparency is connected with concurrency transparency and 
failure transparency. At any time a user updates a data element, the update 
is replicated in all the replicas of the table. Though, this process should not 
be identified to the user. This is known as concurrency transparency.  

In case of let-down of a site, the user can still progress with his queries 
using replicated copies without any information of failure then this is 
failure transparency. 

1.4 SUMMARY 

Distributed Database Management System (DDBMS) software which 
manages number of databases raised at different locations and connected 
with each other through a computer network. It offers mechanisms so that 
the delivery remains unaware to the users, who see the database as a single 
database. Its internal details hidden from users with transparency feature. 
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1.5 LIST OF REFERENCES AND BIBLIOGRAPHY 
AND FURTHER READING  

 
 Principles of Distributed Database Systems; 2nd Editied By M. Tamer 

Ozsu and Patrick Valduriez, Person Education Asia. 

 Distributed Database; Principles & Systems By Publications, Stefano 
Ceri and Giuseppo Pelagatti,, McGraw-Hill International Editions 
(1984) 

 https://cs.uwaterloo.ca/~tozsu/publications/distdb/distdb.pdf 

 https://www.tutorialspoint.com/distributed_dbms/index.htm 

 https://www.geeksforgeeks.org/distributed-database-system/ 

 https://phoenixnap.com/kb/distributed-database 

 https://www.csitweb.com/distributed-dbms-features-needs-and-
architecture/ 

1.6 MODEL QUESTIONS: 

1. Explain Distributed Database Management System? Where we can 
use it instead of DBMS? 

2. Write and explain problem areas of distributed data base system. 

3. Write advantages and disadvantages of DDBMS. 

4. What is Distributed Transparent System? Explain its types. 

5. Explain reasons for advancement of DDBMS. 

6. Write a short note on: 

 Fragmentation Transparency 

 Location Transparency 

 Replication Transparency 

 


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2  
DDBMS ARCHITECTURE 

Unit Structure 

2.0  Objective 

2.1 Introduction 

2.2  DBMS standardization 

2.3 DDBMS Architecture 

2.3.1   Factors for DDBMS Architecture 

2.3.1.1. Distribution 

2.3.1.2. Autonomy 

2.3.1.3. Heterogeneity 

2.4    Architectural models of Distributed DBMS 

2.4.1        Client-Server Architecture 

2.4.2        Peer- to-Peer Architecture 

2.4.2.1     Global, Local, External, and Internal Schemas 

2.4.3        Multi - DBMS Architectures 

2.5  Summary 

2.6 List of References and Bibliography and further Reading  

2.7  Model Questions 

2.0 OBJECTIVES  

After going through this Chapter, you will be able to: 

 understand Distributed database management system architecture 

 define what is Global, Local, External, and Internal Schemas 

 describe different architectural model for DDBM 

2.1  INTRODUCTION  

In any system architecture defines its structure. This means that the 
components of the system are identified, the purpose of each element is 
specified, and the interrelationships and interactions among these 
components are defined.  The specification of the architecture of a system 
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requires identification of the various units, with their connections and 
relationships, in terms of the data and control flow over the system. 

1.1 DBMS STANDARDIZATION 

Data standardization is the acute method of fetching data into a collective 
layout that allows for combined research, large-scale analytics, and 
sharing of refined tools and procedures  

2.3 DDBMS ARCHITECTURE 

Database systems comprise of complex data structures. Thus, to make the 
system efficient for retrieval of data and reduce the complexity of the 
users, developers use the method of Data Abstraction. 

2.3.1.Factors for DDBMS Architecture: 

DDBMS architectures are commonly developed dependent on three 
factors – 

2.3.1.1. Distribution–Itstates the physical dispersal of data crosswise the 
different sites. Autonomy refers to the distribution of control, the 
distribution aspect of the classification deals with data. The user sees the 
data as one logical group. There are a numeralways DBMS have been 
distributed. We abstract these alternatives into two classes:  

 client/server distribution 

 peer-to-peer distribution (or full distribution). 

2.3.1.2 Autonomy 

Autonomy, in this perspective, refers to the distribution of mechanism, not 
of data. It identifies the distribution of regulator of the database system 
and the degree to which each component DBMS can work independently. 
Autonomy is a function of a quantity of factors such as whether the 
module systems interchange information, whether they can independently 
accomplish transactions, and whether one is certified to modify them. 
Requirements of an autonomous structure have been stated as follows: 

 The local procedures of the individual DBMSs are not affected by 
their involvement in the distributed system. 

 The method in which the individual DBMSs develop queries and 
optimize them should not be affected by the accomplishment of global 
queries that access multiple databases. 

 System regularity or operation should not be negotiated when 
individual DBMS join or leave the distributed system. 

 

 



  

 

Advanced Database System 

10 

On the other hand, the proportions of autonomy can be stated as follows: 

Design autonomy: Individual DBMS are permitted to use the data models 
and transaction management systems that they desire. 

 Communication autonomy: To each of the discrete DBMS is free to 
make its own decision as to what type of information it wants to offer 
to the other DBMS or to the software that controls their global 
execution. 

 Execution autonomy: Each DBMS can implement the transactions 
that are submitted to it in any way that it wants to. 

2.3.1.3. Heterogeneity– It refers to the uniformity or variation of the data 
models, system tools and databases. Heterogeneity may happen in various 
forms in distributed systems, ranging from hardware heterogeneity and 
dissimilarities in networking protocols to distinctions in data managers. 
Representing data with different modelling tools creates heterogeneity 
because of the inherent expressive powers and limitations of individual 
data models. Heterogeneity in query languages not only involves the use 
of completely different data access paradigms in different data models 
(set-at-a-time access in relational systems versus record-at-a-time access 
in some object-oriented systems), but also covers differences in languages 
even when the individual systems use the same data model. Although SQL 
is now the standard relational query language, there are many different 
implementations and every vendor’s language has a slightly different 
flavour. 

 

DBMS Implementation Alternatives 
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1.2 ARCHITECTURAL MODELS OF DISTRIBUTED 
DBMS: 

2.4.1 Client-Server Architecture: 

Client-Server architecture is a two-level architecture where the 
functionality is distributed into servers and clients.The server functions 
mainly comprise data management, query handling, transaction 
managementand optimization. Client functions contain mainly user 
interface. Nevertheless, they have some functions resembling consistency 
checking and transaction management. 

The two different types of clients – server architecture are as follows: 

 Single Server Multiple Client 
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 Multiple Server Multiple Client: 

 

 

2.4.2 Peer- to-Peer Architecture for Distributed DBMS 

In this systems, each peer actions both as a client and a server for 
instructing database services. The peers share their source with other 
peers and co-ordinate their actions. 

This architecture in general has four levels of schemas − 

 
2.4.2.1 Global, Local, External, and Internal Schemas: 

 Global Conceptual Schema –Global Conceptual Schema represents 
the global logical view of data.It represents the logical explanation of 
entire database as if it is not circulated. This level encloses definitions 
of all units, relationships among entities and security and integrity 
facts of whole databases kept at all sites in a distributed system. 

 Local Conceptual Schema –Local Conceptual Schema Show logical 
data organization at individual location. 

 Local Internal Schema –Local Internal Schema represents physical 
record at each site. 
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 External Schema –External Schema Describes user’s vision of facts 
and figures. 

 

2.4.3    Multi - DBMS Architectures 

This is an integrated database system formed by a collection of two or 
more autonomous database systems. 

Multi-DBMS can be expressed through six levels of schemas − 

 Multi-database View Level − Describes multiple user views 
including of subsets of the integrated distributed database. 

 Multi-database Conceptual Level − Shows integrated multi-
database that comprises of global logical multi-database structure 
definitions. 

 Multi-database Internal Level − Illustrates the data distribution 
across different sites and multi-database to local data mapping. 

 Local database View Level − Give a picture of public view of local 
data. 

 Local database Conceptual Level − Describes local data 
organization at each site. 

 Local database Internal Level − Shows physical data organization at 
each site. 
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There are two design alternatives for multi-DBMS − 

 Model with multi-database conceptual level. 

 

 Model without multi-database conceptual level. 

 

2.5  SUMMARY 

There is different types of distributed databases. Distributed databases can 
be classified into homogeneous and heterogeneous databases having 



 

 

DDBMS Architecture 

15 

further divisions. Distributed architecture can be classified in various types 
namely client – server, peer – to – peer and multi – DBMS. 

2.5 LIST OF REFERENCES AND BIBLIOGRAPHY 
AND FURTHER READING  

 

 https://www.csitweb.com/distributed-dbms-features-needs-and-
architecture/ 

 https://www.ohdsi.org/data-standardization/ 

 https://phoenixnap.com/kb/distributed-database 

 Principles of Distributed Database Systems; 2nd Editied By M. Tamer 
Ozsu and Patrick Valduriez, Person Education Asia. 

2.7  MODEL QUESTIONS: 

1. What is Distributed Database Management System Architecture? 
Explain 

2. Explain different architectural model for DDBMS 

3. Explain Peer- to-Peer Architecture for Distributed DBMS. Write Short 
Notes on the following: 

 Global Schema 

 Local Schema 

 External Schema 

 Internal Schemas 

 


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3 
DISTRIBUTED DATABASE DESIGN 

Unit Structure 

3.0  Objectives  

3.1  Introduction  

3.2  Design problem of distributed systems 

3.3 Design, strategies (top-down, bottom-up) 

3.4 Fragmentation 

3.5 Allocation and replication of fragments 

3.6 Query Processing Overview 

3.7 Query Optimization 

3.5  Summary 

3.6 List of References and Bibliography and further Reading  

3.7  Model Questions 

3.0  OBJECTIVES 

After going through this Chapter, you will be able to: 

 understand Design of Distributed System 

 Know Top-down and Bottom-up Strategies of Database Design  

 describe Fragmentation and Allocation and replication of fragments 

 gain knowledge about Query processing  and Query Optimization 

3.1  INTRODUCTION 

The design of a distributed computer system contains making conclusions 
on the placement of data and programs through the sites of a computer 
network, as well as probably designing the network itself. In Distributed 
DBMS, the distribution of applications includes two things:  

 Distribution of the distributed DBMS software 

 Distribution of the application programs that run on it. 
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3.2  DESIGN PROBLEM OF DISTRIBUTED SYSTEMS 

The distributed information system is defined as “a number of 
interdependent computers linked by a network for sharing information 
among them”. A distributed information system comprises of multiple 
independent computers that transfer or exchange information via a 
computer network. 
 
 Heterogeneity: 

Heterogeneity is functional to the network, computer hardware, operating 
system and execution of different developers. A crucial component of the 
heterogeneous distributed structure client-server environment is 
middleware. Middleware is a set of facilities that permits application and 
end-user to interrelate with each other across a heterogeneous distributed 
system. 
 
 Openness: 

The openness of the distributed system is determined mainly by the point 
to which new resource-sharing facilities can be made offered to the users. 
Open systems are considered by the fact that their key interfaces are 
circulated. It is based on a uniform communication tool and published 
interface for access to pooled resources. It can be built from varied 
hardware and software. 
 
 Scalability: 

Scalability of the system should persist efficient even with a important 
increase in the number of operators and resources coupled. 
 
 Security: 

Security of information system has three mechanisms confidentially, 
integrity and availability. Encryption defends shared resources, preserves 
delicate information secrets when communicated. 
 
 Failure Handling: 

When some errorsarise in hardware and the software suite, it may produce 
incorrect results or they may stop before they have completed the 
predicted computation so corrective techniques should to implement to 
handle this case.Failure control is challenging in distributed systems 
because the let-down is incomplete i.e. some components fail while others 
come to an end. 
 
 Concurrency: 

There is a chance that several users will attempt to access a common 
resource at the similar time. Multiple users create requests for the same 
resources, i.e. read, write, and update. Each source must be safe in a 
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parallel environment. Any item that signifies a shared resource a 
distributed system must confirm that it operates properly in a concurrent 
setting. 
 
 Transparency: 

Transparency confirms that the distributed system should be observed as a 
single object by the users or the application programmers somewhat than 
the pool of autonomous systems, which is work together. The user should 
be uninformed of where the services are situated and the transmitting from 
a local machine to anisolated one should be transparent. 
 

3.3 DESIGN, STRATEGIES (TOP-DOWN, BOTTOM-UP) 
 
It has been recommended that the group of distributed systems can be 
scrutinized along three scopes 
1. Level of Sharing 
2. Behaviour of access forms 
3. Level of information on access pattern behaviour 
 
To follow all extents some proper method has to be there to grow 
distributed database design. There are two methods for developing any 
database, the top-down method and the bottom-up method. Although these 
approaches appear completely different, they share the mutual goal of 
employing a system by relating all of the communication between the 
processes. 
 
3.3.1 Top-down design Strategy 
 
The top-down design structure starts from the common and transfers to the 
specific. In other words, you start with a universal idea of what is required 
for the system and then work your method down to the more specific 
particulars of how the system will work together. This process contains the 
identification of diverse entity types and the definition of each entity’s 
characteristics. 
 
3.3.2 Bottom – up design Strategy 
 
The bottom-up approach begins with the specific details and moves up to 
the general. This is complete by first recognizing the data elements and 
then alliance them collected in data sets. In other words, this technique 
first identifies the aspects, and then groups them to form objects. 
 

3.4 FRAGMENTATION 
 
Data fragmentation is a procedure used to break up entities. The item 
might be a user’s database, a system database, or a table. It permits you to 
breakdown a single object into two or more sectors, or fragments. Each 
fragment can be put in storage at any site over a computer network. In 
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designing a scattered database, you must decide which portion of the 
database is to be put in storage where.  One method used to break up the 
database into logical entities called fragments. Facts about data 
fragmentation is kept in the distributed data catalog(DDC), from which it 
is retrieved by the TP to process user requests.  Fragmentation information 
is deposited in a distributed data catalogue which the dealing out computer 
uses to process a user's demand. 
 
3.4.1   Data Fragmentation Strategies:  
 
Data fragmentation strategies, are established at the table level and 
comprise of dividing a table into logical fragments. There are three forms 
of data fragmentation strategies: horizontal, vertical, and mixed. 
 
3.4.1.1 Horizontal fragmentation  
 
This kind of fragmentation refers partition of a relation into fragments of 
rows. Each fragment is kept at a different workstation or node, and each 
fragment comprises unique rows. Each horizontal fragment may have a 
changed number of rows, but each fragment must have the identical 
attributes. 
 

 

 
3.4.1.2 Vertical fragmentation  
 
This type of fragmentation refers to the partition of a relation into 
fragments that contain a collection of attributes. Each vertical fragment 
must have the same number of rows, but can have dissimilar attributes 
depending on the key. 
 

 

 
3.4.1.3 Mixed fragmentation  
This type of fragmentation is a two-step procedure. First, horizontal 
fragmentation is completed to obtain the essential rows, then vertical 
fragmentation is done to distribute the attributes between the rows. 
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3.5 ALLOCATION AND REPLICATION OF 
FRAGMENTS 

 
3.5.1 Data Allocation  
 
Data allocation is a procedure of deciding where to accumulate the data. It 
also comprises a decision as to which data is stored at what location. Data 
provision can be centralised, partitioned or replicated. 
 
3.5.1.1.    Centralised  
 
The entire database is stored at one place. No distribution happens. 
 
3.5.1.2     Partitioned  
 
The database is distributed into several fragments that are deposited at 
numerous sites. 
 
3.5.1.3     Replicated  
 
Copies of one or added database fragments are kept at several sites. 
 
3.5.2  Data Replication  
 
Data replication is the storage of data replicas at numerous sites on the 
network. Fragment copies can be stored at several site, thus increasing 
data availability and reply time. Replicated data is subject to a common 
consistency rule. This rule involves that all replicas of the data fragments 
must be same and to ensure data consistency among all of the imitations.  
 
Although data replication is favourable in terms of availability and 
response periods, the maintenance of the replications can turn into 
complex. For example, if data is simulated over multiple sites, the 
DDBMS needs to decide which copy to access. For a query process, the 
nearest copy is all that is necessary to satisfy a transaction. Though, if the 
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operation is an update, at that time all copies must be selected and 
restructured to satisfy the common consistency rule. 
 
A database can be moreover fully replicated, partially replicated or not 
replicated. 
 
3.5.2.1 Full replication  
 
Stores multiple copies of each database fragment at various sites. Fully 
replicated databases can be unlikely because of the amount of overhead 
forced on the system. 
 
3.5.2.2 Partial replication  
 
Stores multiple copies of some database fragments at multiple sites. Most 
DDBMS can hold this type of replication precise well. 
 
3.5.2.3 No replication  
 
Stores each database section at a single site. No repetition arises. 
 
Data replication is mainly useful if usage frequency of remote data is great 
and the database is fairly huge. Another advantage of data replication is 
the opportunity of restoring lost data at a specific site. 
 

3.6 QUERY PROCESSING OVERVIEW 
 
A Query processing in a distributed database management system needs 
the transmission of data among the computers in a network. A distribution 
approach for a query is the ordering of data diffusions and local data 
processing in a database system. Usually, a query in Distributed DBMS 
entails data from multiple sites, and this need for data from different sites 
is termed the transmission of data that causes communication costs. Query 
processing in DBMS is unlike from query processing in centralized 
DBMS due to this communication cost of data transmission over the 
network. The transmission cost is small when sites are joined through 
high-speed Networks and is pretty significant in other networks. 

In a distributed database system, handling a query comprises of 
optimization at both the world-wide and the local level. The query move 
in the database system at the client or supervisory site. Here, the user is 
legalised, the query is checked, translated, and enhanced at a global level. 
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The architecture can be signified as − 

 

Mapping Global Queries into Local Queries 

The procedure of mapping global queries to local ones can be recognised 
as follows − 

 The tables essential in a global query have fragments distributed 
crosswise multiple sites. The local databases have data only about 
limited data. The supervisory site uses the global data dictionary to 
collect information about the distribution and recreates the global 
vision from the fragments. 

 If there is no duplication, the global optimizer tracks local queries at 
the sites where the fragments are kept. If there is replication, the 
global optimizer selects the site based upon communication cost, 
workload, and server speed. 

 The global optimizer produces a distributed execution proposal so that 
least amount of data allocation occurs across the sites. The plan 
shapes the location of the fragments, order in which query steps 
wishes to be executed and the processes involved in transferring 
transitional results. 

 The local queries are optimized by the local database servers. Finally, 
the local query effects are merged together through blending operation 
in case of horizontal fragments and join process for vertical fragments. 

3.7  QUERY OPTIMIZATION 

Distributed query optimization needs evaluation of anenormous number 
of query trees each of which produce the necessary results of a query. 
This is primarily due to the occurrence of large volume of replicated and 
fragmented data. Hence, the goal is to find an optimal solution instead of 
the finest solution. 
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The main concerns for distributed query optimization are − 

 Optimal consumption of resources in the distributed system. 

 Query trading. 

 Decrease of solution space of the query. 

3.7.1 Optimal Utilization of Resources in the Distributed System 

A distributed system has a number of database servers in the various sites 
to perform the actionsbelong to a query. Following are the approaches for 
optimal resource utilization − 

 Operation Shipping − In operation shipping, the process is run at 
the location where the data is kept and not at the client site. The results 
are then transported to the client site. This is applicable for operations 
where the operands are presented at the same site. i.e. Select and Project 
operations. 

 Data Shipping − In data shipping, the facts fragments are 
transported to the database server, where the processes are executed. This 
is used in procedures where the operands are distributed at diverse sites. 
This is also suitable in systems where the communication overheads are 
low, and local processors are abundant slower than the client server. 

 Hybrid Shipping − This is a mixture of data and operation 
shipping. At this point, data fragments are transmitted to the high-speed 
processors, where the process runs. The results are then lead to the client 
site. 
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3.7.2  Query Trading 

In query trading system for distributed database systems, the 
controlling/client site for a dispersed query is called the buyer and the 
locations where the local queries execute are entitled sellers. The buyer 
expresses a number of options for choosing sellers and for restructuring 
the global results. The goal of the buyer is to reach the optimal cost. 

The algorithm jumps with the buyer allocating sub-queries to the vender 
sites. The best plan is created from local improved query plans proposed 
by the sellers joined with the communication cost for renovating the final 
result. Once the global optimum plan is framed, the query is performed. 

3.7.3  Reduction of Solution Space of the Query 

Optimal solution normally involves reduction of clarification space so that 
the cost of query and data relocation is reduced. This can be attained 
through a set of experimental rules, just as heuristics in centralized 
structures. 

Some of the rules are as follows:  

 Implement selection and projection tasks as early as promising. This 
eases the data flow over communication web. 

 Streamline operations on horizontal fragments by removing selection 
conditions which are not applicable to a particular site. 

 In case of join and union procedures comprising of fragments sited in 
multiple sites, transfer fragmented data to the site where utmost of the 
data is present and implement operation there. 

 Use semi-join process to qualify tuples that are to be combined. This 
decreases the amount of data relocation which in turn reduces 
communication cost. 

 Combine the common leaves and sub-trees in a dispersed query tree. 

3.5  SUMMARY 

The improvement in technology has opened the locks for unlimited 
volumes of data to transfer into the system. Distributed database 
technology is certainly one of the key growths in the field of database 
systems. Though, with the remarkable amount of data driving in from 
various sources and in many formats, it may become relatively a difficult 
task for a business to stock, process and manage this data. Choosing the 
services of a database expansion company that provides tradition database 
development solutions provider may support to meet the specific 
experiments of the business by keeping data well-organized, protected and 
easily accessible for approved users. 
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3.7  MODEL QUESTIONS 

1. Explain Design problem of distributed systems. 

2. What is Query Optimization? Explain Types. 

3. Explain Query Processing. Differentiate Global Queries into Local 
Queries. 

4. Explain Data Fragmentation Procedure. 

5. Explain Design Problem of Distributed System. 

6. Write a note on design strategies. 
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4.3.8 Three phases commit protocol 

4.4.1 Parallel Database System 

4.4.2 Definition of Parallel Database Systems 

4.4.3 Parallel query evaluation 

4.4.4 Query Parallelism 

4.4.5 I/O Parallelism (Data Partitioning) 

4.4.6 Intra-query Parallelism 

4.4.7 Inter –Query Parallelism 

4.4.8 Intra Operation Parallelism  

4.4.9 Inter Operation Parallelism 

4.4.10 LET US SUM UP 

4.4.11 List of References  

4.4.12Unit End Exercises 

4.1.0 OBJECTIVES  

In this chapter you will learn about: 

 What four properties of transactions does a DBMS guarantee? 

 Why does a DBMS interleave transactions? 

 What is the correctness criterion for interleaved execution? 

 What kinds of anomalies can interleaving transactions cause? 

 How does a DBMS use locks to ensure correct interleaving? 

 What is the impact of locking on performance? 

 What SQL commands allow programmers to select transaction 
characteristics and reduce locking overhead? 

 How does a DBMS guarantee transaction atomicity and recovery from 
system crashes? 

4.1.1 INTRODUCTION  

Often, a collection of several operations on the database appears to be a 
single unit from the point of view of the database user. For example, a 
transfer of funds from a checking account to a savings account is a single 
operation from the customer’s standpoint; within the database system, 
however, it consists of several operations. 
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Clearly, it is essential that all these operations occur, or that, in case of a 
failure, none occur. It would be unacceptable if the checking accounts 
were debited but the savings account not credited. Collections of 
operations that form a single logical unit of work are called transactions. 
A database system must ensure proper execution of transactions despite 
failures—either the entire transaction executes, or none of it does. 
Furthermore, it must manage concurrent execution of transactions in a 
way that avoids the introduction of inconsistency. In our funds-transfer 
example, a transaction computing the customer’s total balance might see 
the checking-account balance before it is debited by the funds-transfer 
transaction, but see the savings balance after it is credited. As a result, it 
would obtain an incorrect result. In this chapter, we cover the concept of 
the foundation for concurrent execution and recovery from system failure 
in a DBMS.  

4.1.2 TRANSACTION MANAGEMENT 

A transaction is defined as anyone of a user program in a DBMS and 
differs from an execution of a program outside the DBMS (e.g., a C 
program executing on Unix) in important ways. (Executing the same 
program several times generates several transactions.) For performance 
reasons interleave the actions of several transactions. However, to give 
users a simple way to understand the effect of running their programs, the 
interleaving is done carefully to ensure that the result of a concurrent 
execution of transactions is nonetheless equivalent (in its effect on the 
database) to some serial, or one-at-a-time, execution of the same set of 
transactions, How the DBMS handles concurrent executions is an 
important aspect of transaction management and the subject of 
concurrency control. A closely related issue is how the DBMS handles 
partial transactions, or transactions that are interrupted before they run to 
normal completion, The DBMS ensures that the changes made by such 
partial transactions are not seen by other transactions. How this is 
achieved is the subject of crash recovery.  

4.1.3 DEFINITION AND EXAMPLES 

A transaction is a unit of program execution that accesses and possibly 
updates various data items. Usually, a transaction is initiated by a user 
program written in a high-level data-manipulation language (typically 
SQL), or programming language (for example, C++, or Java), with 
embedded database accesses in JDBC or ODBC. A transaction is 
delimited by statements (or function calls) of the form begin transaction 
and end transaction. The transaction consists of all operations executed 
between the begin transaction and end transaction. 

The data items in our simplified model contain a single data value (a 
number in our examples). Each data item is identified by a name (typically 
a single letter in our examples, that is, A, B, C, etc.). We shall illustrate the 
transaction concept using a simple bank application consisting of several 
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accounts and a set of transactions that access and update those accounts. 
Transactions access data using two operations: 

• read(X), which transfers the data item X from the database to a variable, 
also called X, in a buffer in main memory belonging to the transaction that 
executed the read operation. 

• write(X), which transfers the value in the variable X in the main-memory 
buffer of the transaction that executed the write to the data item X in the 
database. 

It is important to know if a change to a data item appears only in main 
memory or if it has been written to the database on disk. In a real database 
system, the write operation does not necessarily result in the immediate 
update of the data on the disk; the write operation may be temporarily 
stored elsewhere and executed on the disk later. For now, however, we 
shall assume that the write operation updates the database immediately. 
Let Ti be a transaction that transfers $50 from account A to account B. 
This transaction can be defined as: 

 

4.1.4 FORMALIZATION OF A TRANSACTION 

Characterization  

 Data items that a given transaction  

• reads: Read Set (RS)  

• writes: Write Set (WS)  

• they are not necessarily mutually exclusive  

• Base Set (BS): BS = RS Ç WS  

 Insertion and deletion are omitted, the discussion is restricted to static 
databases 
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2.1.5 ACID PROPERTIES 

The concept of database transactions to recapitulate briefly, a transaction 
is an execution of a user program, seen by the DBMS as a series of read 
and write operations. A DBMS must ensure four important properties of 
transactions to maintain data in the face of concurrent access and system 
failures: Users should be able to regard the execution of each transaction 
as atomic: Either all actions are carried out or none are. Users should not 
have to worry about the effect of incomplete transactions (say, when a 
system crash occurs). 

Each transaction, run by itself with no concurrent execution of other 
transactions, must preserve the consistency of the database The DBMS 
assumes that consistency holds for each transaction. Ensuring this property 
of a transaction is the responsibility of the user. 

Users should be able to understand a transaction without considering the 
effect of other concurrently executing transactions, even if the DBMS 
interleaves the actions of several transactions for performance reasons. 
This property is sometimes referred to & isolation. Transactions are 
isolated, or protected, from the effects of concurrently scheduling other 
transactions. 
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Once the DBMS informs the user that a transaction has been successfully 
completed, its effects should persist even if the system crashes before all 
its changes are reflected on disk. This property is called durability. The 
acronym ACID is sometimes used to refer to these four properties of 
transactions: atomicity, consistency, isolation and durability. We now 
consider how each of these properties is ensured in a DBMS. 

Atomicity: Suppose that, just before the execution of transaction Ti, the 
values of accounts A and B are $1000 and $2000, respectively. Now 
suppose that, during the execution of transaction Ti, a failure occurs that 
prevents Ti from completing its execution successfully. Further, suppose 
that the failure happened after the write (A) operation but before the write 
(B) operation. In this case, the values of accounts A and B reflected in the 
database are $950 and $2000. The system destroyed $50 as a result of this 
failure. In particular, we note that the sum A + B is no longer preserved. 
Thus, because of the failure, the state of the system no longer reflects a 
real state of the world that the database is supposed to capture. We term 
such a state an inconsistent state. We must ensure that such 
inconsistencies are not visible in a database system. Note, however, that 
the system must at some point be in an inconsistent state. Even if 
transaction Ti is executed to completion, there exists a point at which the 
value of account A is $950 and the value of account B is $2000, which is 
clearly an inconsistent state. This state, however, is eventually replaced by 
the consistent state where the value of account A is $950, and the value of 
account B is $2050. Thus, if the transaction never started or was 
guaranteed to complete, such an inconsistent state would not be visible 
except during the execution of the transaction. That is the reason for the 
atomicity requirement: If the atomicity property is present, all actions of 
the transaction are reflected in the database, or none are. 

The basic idea behind ensuring atomicity is this: The database system 
keeps track (on disk) of the old values of any data on which a transaction 
performs a write. This information is written to a file called the log. If the 
transaction does not complete its execution, the database system restores 
the old values from the log to make it appear as though the transaction 
never executed. Ensuring atomicity is the responsibility of the database 
system; specifically, it is handled by a component of the database called 
the recovery system, 

Consistency: The consistency requirement here is that the sum of A and B 
be unchanged by the execution of the transaction. Without the consistency 
requirement, money could be created or destroyed by the transaction! It 
can be verified easily that, if the database is consistent before an execution 
of the transaction, the database remains consistent after the execution of 
the transaction. 

Ensuring consistency for an individual transaction is the responsibility of 
the application programmer who codes the transaction. This task may be 
facilitated by automatic testing of integrity constraints  

 



  

 

Advanced Database System 

32 

Isolation: Even if the consistency and atomicity properties are ensured for 
each transaction, if several transactions are executed concurrently, their 
operations may interleave in some undesirable way, resulting in an 
inconsistent state. 

For example, as we saw earlier, the database is temporarily inconsistent 
while the transaction to transfer funds from A to B is executing, with the 
deducted total written to A and the increased total yet to be written to B. If 
a second concurrently running transaction reads A and B at this 
intermediate point and computes A+B, it will observe an inconsistent 
value. Furthermore, if this second transaction then performs updates on A 
and B based on the inconsistent values that it read, the database may be 
left in an inconsistent state even after both transactions have completed. A 
way to avoid the problem of concurrently executing transactions is to 
execute transactions serially—that is, one after the other. However, 
concurrent execution of transactions provides significant performance 
benefits. Other solutions have therefore been developed; they allow 
multiple transactions to execute concurrently. The isolation property of a 
transaction ensures that the concurrent execution of transactions results in 
a system state that is equivalent to a state that could have been obtained 
had these transactions executed one at a time in some order. Ensuring the 
isolation property is the responsibility of a component of the database 
system called the concurrency-control system 

Durability: Once the execution of the transaction completes successfully, 
and the user who initiated the transaction has been notified that the 
transfer of funds has taken place, it must be the case that no system failure 
can result in a loss of data corresponding to this transfer of funds. The 
durability property guarantees that, once a transaction completes 
successfully, all the updates that it carried out on the database persist, even 
if there is a system failure after the transaction completes execution. We 
assume for now that a failure of the computer system may result in loss of 
data in main memory, but data written to disk are never lost. 

1. The updates carried out by the transaction have been written to disk 
before the transaction completes. 

2. Information about the updates carried out by the transaction and written 
to disk is sufficient to enable the database to reconstruct the updates 
when the database system is restarted after the failure. 

4.1.6 CLASSIFICATION OF TRANSACTION 

A transaction is seen by the DBMS as a series, or list, of actions. The 
actions that can be executed by a transaction include reads and writes of 
database objects. To keep our notation simple, we assume that an object 0 
is always read into a program variable that is also named O. It can 
therefore denote the action of a transaction T reading an object 0 as 
RT(O); similarly, we can denote writing as HTT(O). When the transaction 
T is clear from the context, we omit the subscript. In addition to reading 
and writing, each transaction must specify as its final action either commit 
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(i.e., complete successfully) or abort (i.e., terminate and undo all the 
actions carried out thus far). Abort T denotes the action of T aborting, and 
Commit T denotes T committing. We make two important assumptions:  

1. Transactions interact with each other only via database read and write 
operations; for example, they are not allowed to exchange messages.  

2. A database is a filed collection of independent objects. When objects 
are added to or deleted from a database or there are relationships between 
databases objects that we want to exploit for performance, some additional 
issues arise. If the first assumption is violated, the DBMS has no way to 
detect or prevent inconsistencies cause by such external interactions 
between transactions, and it is up to the writer of the application to ensure 
that the program is well-behaved. A schedule is a list of actions (reading, 
writing, aborting, or committing) from a set of transactions, and the order 
in which two actions of a transaction T appear in a schedule must be the 
same as the order in which they appear in T. Intuitively, a schedule 
represents an actual or potential execution sequence. For example, the 
schedule shows an execution order for actions of two transactions T1 and 
T2. It moves forward in time as we go down from one row to the next. It 
emphasize that a schedule describes the actions of transactions as seen by 
the DBMS. In addition to these actions, a transaction may carry out other 
actions, such as reading or writing from operating system files, evaluating 
arithmetic expressions, and so on; however, we assume that these actions 
do not affect other transactions; that is, the effect of a transaction on 
another transaction can be understood solely in terms of the common 
database objects that they read and write. 

 

Figure 4.1.1 A Schedule involving Two Transactions 

Note that the schedule in Figure 2.1.1 does not contain an abort or commit 
action for either transaction. A schedule that contains either an abort or a 
commit for each transaction whose actions are listed in it is called a 
complete schedule. A complete schedule must contain all the actions of 
every transaction that appears in it. If the actions of different transactions 
are not interleaved that is, transactions are executed from start to finish, 
one by one-we call the schedule a serial schedule. 

CONCURRENT EXECUTION OF TRANSACTIONS 

Now that we have introduced the concept of a schedule, we have a 
convenient way to describe interleaved executions of transactions. The 
DBMS interleaves the actions of different transactions to improve 
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performance, but not all interleaving should be allowed. In this section, we 
consider what interleaving, or schedules, a DBMS should allow.  

Motivation for Concurrent Execution  

The schedule shown in Figure 2.1.1 represents an interleaved execution of 
the two transactions. Ensuring transaction isolation while permitting such 
concurrent execution is difficult and necessary for performance reasons. 
First, while one transaction is waiting for a page to be read in from disk, 
the CPU can process another transaction. This is because I/O activity can 
be done in parallel with CPU activity in a computer. Overlapping I/O and 
CPU activity reduces the amount of time disks and processors are idle and 
increases system throughput (the average number of transactions 
completed in a given time). Second, interleaved execution of a short 
transaction with a long transaction usually allows the short transaction to 
complete quickly. In serial execution, a short transaction could get stuck 
behind a long transaction, leading to unpredictable delays in response 
time, or average time taken to complete a transaction. 

Serializability 

A serializable schedule over a set S of committed transactions is a 
schedule whose effect on any consistent database instance is guaranteed to 
be identical to that of some complete serial schedule over S. That is, the 
database instance that results from executing the given schedule is 
identical to the database instance that results from executing the 
transactions in some serial order.  

As an example, the schedule shown in Figure 2.1.2 is serializable. Even 
though the actions of T1 and T2 are interleaved, the result of this schedule 
is equivalent to running T1 (in its entirety) and then running T2. 
Intuitively, T1 's read and write of B is not influenced by T2's actions on 
A, and the net effect is the same if these actions are 'swapped' to obtain the 
serial schedule Tl; T2 

 

Fig: A Serializable Schedule 

Executing transactions serially in different orders may produce different 
results, but all are presumed to be acceptable: the DBMS makes no 
guarantees about which of them will be the outcome of an interleaved 
execution. To see this, note that the two example transactions from Figure 
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2.1.2 can be interleaved as shown in Figure 2.13. This schedule, also 
serializable, is equivalent to the serial schedule T2; Tl. If T1 and T2 are 
submitted concurrently to a DBMS, either of these schedules (among 
others) could be chosen. The preceding definition of a serializable 
schedule does not cover the case of schedules containing aborted 
transactions. We extend the definition of serializable schedules to cover 
aborted transactions in Section 16.3.4. 

 

Fig:4.1.3 Another Serializable Schedule 

Finally, we note that a DBMS might sometimes execute transactions in a 
way that is not equivalent to any serial execution; that is, using a schedule 
that is not serializable. This can happen for two reasons. First, the DBMS 
might use a concurrency control method that ensures the executed 
schedule, though not itself serializable, is equivalent to some serializable 
schedule. Second, SQL gives application programmers the ability to 
instruct the DBMS to choose non-serializable schedules. 

Transaction Characteristics in SQL  

In order to give programmers control over the locking overhead incurred 
by their transactions, SQL allows them to specify three characteristics of a 
transaction: access mode, diagnostics size, and isolation level. The 
diagnostics size determines the number of error conditions that can be 
recorded; we will not discuss this feature further. If the access mode is 
READ ONLY, the transaction is not allowed to modify the database. 
Thus, INSERT, DELETE, UPDATE, and CREATE commands cannot be 
executed. If we have to execute one of these commands, the access mode 
should be set to READ WRITE. for transactions with READ ONLY 
access mode only shared locks need to be obtained, thereby increasing 
concurrency. 

The isolation level controls the extent to which a given transaction is 
exposed to the actions of other transactions executing concurrently. By 
choosing one of four possible isolation level settings, a user can obtain 
greater concurrency at the cost of increasing the transaction's exposure to 
other transactions' uncommitted changes. Isolation level choices are 
READ UNCOMMITTED, READ COMMITTED, REPEATABLE 
READ,  and SERIALIZABLE. The effect of these levels is summarized in 
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Figure 2.14. In this context, dirty read and unrepeatable read are defined 
as usual 

 

Fig: 4.1.4 Transaction Isolation Levels in SQL-92 

The highest degree of isolation from the effects of other transactions is 
achieved by setting the isolation level for a transaction T to 
SERIALIZABLE. This isolation level ensures that T reads only the 
changes made by committed transactions, that no value read or written by 
T is changed by any other transaction until T is complete, and that if T 
reads a set of values based on some search condition, this set is not 
changed by other transactions until T is complete (i.e., T avoids the 
phantom phenomenon). In terms of a lock-based implementation, a 
SERIALIZABLE transaction obtains locks before reading or writing 
objects, including locks on sets of objects that it requires to be unchanged 
and holds them until the end, according to Strict 2PL. REPEATABLE 
READ ensures that T reads only the changes made by committed 
transactions and no value read or written by T is changed by any other 
transaction until T is complete. However, T could experience the phantom 
phenomenon; for example, while T examines all Sailors records with 
rating=1, another transaction might add a new such Sailors record, which 
is missed by T. A REPEATABLE READ transaction sets the same locks 
as a SERIALIZABLE transaction, except that it does not do index locking; 
that is, it locks only individual objects, not sets of objects. READ 
COMMITTED ensures that T reads only the changes made by committed 
transactions, and that no value written by T is changed by any other 
transaction until T is complete. However, a value read by T may well be 
modified by another transaction while T is still in progress, and T is 
exposed to the phantom problem. A READ COMMITTED transaction 
obtains exclusive locks before writing objects and holds these locks until 
the end. It also obtains shared locks before reading objects, but these locks 
are released immediately; their only effect is to guarantee that the 
transaction that last modified the object is complete. (This guarantee relies 
on the fact that every SQL transaction obtains exclusive locks before 
writing objects and holds exclusive locks until the end.) A READ 
UNCOMMITTED transaction T can read changes made to an object by an 
ongoing transaction; obviously, the object can be changed further while T 
is in progress, and T is also vulnerable to the phantom problem. A READ 
UNCOMMITTED transaction does not obtain shared locks before reading 
objects. This mode represents the greatest exposure to uncommitted 
changes of other transactions; so much so that SQL prohibits such a 
transaction from making any changes itself-a READ UNCOMMITTED 
transaction is required to have an access mode of READ ONLY. Since 
such a transaction obtains no locks for reading objects and it is not 
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allowed to write objects (and therefore never requests exclusive locks), it 
never makes any lock requests. The SERIALIZABLE isolation level is 
generally the safest and is recommended for most transactions. Some 
transactions, however, can run with a lower isolation level, and the smaller 
number of locks requested can contribute to improved system 
performance. For example, a statistical query that finds the average sailor 
age can be run at the READ COMMITTED level or even the READ 
UNCOMMITTED level, because a few incorrect or missing values do not 
significantly affect the result if the number of sailors is large. The isolation 
level and access mode can be set using the SET TRANSACTION 
command. For example, the following command declares the current 
transaction to be SERIALIZABLE and READ ONLY: SET 
TRANSACTION ISOLATION LEVEL SERIALIZABLE READ ONLY 
When a transaction is started, the default is SERIALIZABLE and READ 
WRITE. 

Schedules Involving Aborted Transactions 

Intuitively, all actions of aborted transactions are to be undone, and we can 
therefore imagine that they were never carried out to begin with. Using 
this intuition, we extend the definition of a serializable schedule as 
follows: A serializable schedule over a set S of transactions is a schedule 
whose effect on any consistent database instance is guaranteed to be 
identical to that of some complete serial schedule over the set of 
committed transactions in S. This definition of serializability relies on the 
actions of aborted transactions being undone completely, which may be 
impossible in some situations. For example, suppose that (1) an account 
transfer program T1 deducts $100 from account A, then (2) an interest 
deposit program T2 reads the current values of accounts A and B and adds 
6% interest to each, then commits, and then (3) T1 is aborted. The 
corresponding schedule is shown in Figure 2.1.5. 

 

Fig:4.1.5 An Unrecoverable Schedule 

Now, T2 has read a value for A that should never have been there. (Recall 
that aborted transactions' effects are not supposed to be visible to other 
transactions.) If T2 had not yet committed, we could deal with the 
situation by cascading the abort of TI and also aborting T2; this process 
recursively aborts any transaction that read data written by T2, and so on. 
But T2 has already committed, and so we cannot undo its actions. We say 
that such a schedule is unrecoverable. In a recoverable schedule, 
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transactions commit only after (and if!) all transactions whose changes 
they read commit. If transactions read only the changes of committed 
transactions, not only is the schedule recoverable, but also aborting a 
transaction can be accomplished without cascading the abort to other 
transactions. Such a schedule is said to avoid cascading aborts. There is 
another potential problem in undoing the actions of a transaction. Suppose 
that a transaction T2 overwrites the value of an object A that has been 
modified by a transaction TI, while TI is still in progress, and Tl 
subsequently aborts. All of Tl's changes to database objects are undone by 
restoring the value of any object that it modified to the value of the object 
before Tl's changes. When Tl is aborted and its changes are undone in this 
manner, T2's changes are lost as well, even if T2 decides to commit. So, 
for example, if A originally had the value 5, then WetS changed by T1 to 
6, and by T2 to 7, if T1 now aborts, the value of A becomes 5 again. Even 
if T2 commits, its change to A is inadvertently lost. A concurrency control 
technique called Strict 2PL. 

4.2.1 CONCURRENCY CONTROL 

The DBMS interleaves the actions of different transactions to improve 
performance, but not all interleaving should be allowed. In this section, we 
consider what interleaving, or schedules, a DBMS should allow. 

4.2.2 DEFINITION 

The database system must control the interaction among the concurrent 
transactions to prevent them from destroying the consistency of the 
database. It does so through a variety of mechanisms called concurrency-
control schemes 

4.2.3 EXECUTION SCHEDULES 

Consider again the simplified banking system which has several account, 
and a set of transactions that access and update those accounts. Let T1 and 
T2 be two transactions that transfer funds from one account to another. 
Transaction T1 transfers $50 from account A to account B. It is defined as: 
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Transaction T2 transfers 10 percent of the balance from account A to 
account B. It is defined as: 

 

Suppose the current values of accounts A and B are $1000 and $2000, 
respectively. Suppose also that the two transactions are executed one at a 
time in the order T1 followed by T2. This execution sequence appears in 
above Figure. In the figure, the sequence of instruction steps is in 
chronological order from top to bottom, with instructions of T1 appearing 
in the left column and instructions of T2 appearing in the right column. 
The final values of accounts A and B, after the execution in Figure 2.2.1 
takes place, are $855 and $2145, respectively. Thus, the total amount of 
money in accounts A and B—that is, the sum A + B—is preserved after the 
execution of both transactions. 

 

Fig: 4.2.1 Schedule 1-a serial schedule in which T1 is followed by T2 

Similarly, if the transactions are executed one at a time in the order T2 
followed by T1, then the corresponding execution sequence is that of 
Figure 2.1.2. Again, as expected, the sum A + B is preserved, and the final 
values of accounts A and B are $850 and $2150, respectively. 
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Fig: 4.1.2 Schedule 2-a serial schedule in which T2 is followed by T1 

The execution sequences just described are called schedules. They 
represent the chronological order in which instructions are executed in the 
system. Clearly, a schedule for a set of transactions must consist of all 
instructions of those transactions, and must preserve the order in which the 
instructions appear in each individual transaction. For example, in 
transaction T1, the instruction write(A) must appear before the instruction 
read(B), in any valid schedule. Note that we include in our schedules the 
commit operation to indicate that the transaction has entered the 
committed state. In the following discussion, we shall refer to the first 
execution sequence (T1 followed by T2) as schedule 1, and to the second 
execution sequence (T2 followed by T1) as schedule 2. These schedules 
are serial: Each serial schedule consists of a sequence of instructions from 
various transactions, where the instructions belonging to one single 
transaction appear together in that schedule. Recalling a well-known 
formula from combinations, we note that, for a set of n transactions, there 
exist n factorial (n!) different valid serial schedules. 

When the database system executes several transactions concurrently, the 
corresponding schedule no longer needs to be serial. If two transactions 
are running concurrently, the operating system may execute one 
transaction for a little while, then perform a context switch, execute the 
second transaction for some time, and then switch back to the first 
transaction for some time, and so on.  

With multiple transactions, the CPU time is shared among all the 
transactions. Several execution sequences are possible, since the various 
instructions from both transactions may now be interleaved. In general, it 
is not possible to predict exactly how many instructions of a transaction 
will be executed before the CPU switches to another transaction. 

Returning to our previous example, suppose that the two transactions are 
executed concurrently. One possible schedule appears in Figure 2.2.3. 
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After this execution takes place, we arrive at the same state as the one in 
which the transactions are executed serially in the order T1 followed by 
T2. The sum A + B is indeed preserved. Not all concurrent executions 
result in a correct state. To illustrate, consider the schedule of Figure 2.2.4. 
After the execution of this schedule, we arrive at a state where the final 
values of accounts A and B are $950 and $2100, respectively. This final 
state is an inconsistent state, since we have gained $50 in the process of 
the concurrent execution. Indeed, the sum A + B is not preserved by the 
execution of the two transactions. 

If control of concurrent execution is left entirely to the operating system, 
many possible schedules, including ones that leave the database in an 
inconsistent state, such as the one just described, are possible. It is the job 
of the database system to ensure that any schedule that is executed will 
leave the database in a consistent state. The concurrency-control 
component of the database system carries out this task. 

 

Fig: 4.2.3 Schedule 3-a concurrent schedule equivalent to schedule 1 

We can ensure consistency of the database under concurrent execution by 
making sure that any schedule that is executed has the same effect as a 
schedule that could have occurred without any concurrent execution. That 
is, the schedule should, in some sense, be equivalent to a serial schedule. 
Such schedules are called serializable schedules. 
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Fig: 4.2.4 Schedule 4-a concurrent schedule resulting in an 
inconsistent state 

4.2.4 LOCKING BASED ALGORITHMS 

Lock-Based Protocols 

One way to ensure isolation is to require that data items be accessed in a 
mutually exclusive manner; that is, while one transaction is accessing a 
data item, no other transaction can modify that data item. The most 
common method used to implement this requirement is to allow a 
transaction to access a data item only if it is currently holding a lock on 
that item.  

Locks 

There are various modes in which a data item may be locked. In this 
section, we restrict our attention to two modes:  

1. Shared:- If a transaction Ti has obtained a shared-mode lock (denoted 
by S) on item Q, then Ti can read, but cannot write, Q. 

2. Exclusive:- If a transaction Ti has obtained an exclusive-mode lock 
(denoted by X) on item Q, then Ti can both read and write Q. 

 

Fig: 2.2.5 Lock-compatibility matix comp 

We require that every transaction request a lock in an appropriate mode on 
data item Q, depending on the types of operations that it will perform on 
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Q. The transaction makes the request to the concurrency-control manager. 
The transaction can proceed with the operation only after the concurrency-
control manager grants the lock to the transaction. The use of these two 
lock modes allows multiple transactions to read a data item but limits 
write access to just one transaction at a time. 

To state this more generally, given a set of lock modes, we can define a 
compatibility function on them as follows: Let A and B represent arbitrary 
lock modes. Suppose that a transaction Ti requests a lock of mode A on 
item Q on which transaction Tj (Ti _= Tj ) currently holds a lock of mode 
B. If transaction Ti can be granted a lock on Q immediately, in spite of the 
presence of the mode B lock, then we say mode A is compatible with 
mode B. Such a function can be represented conveniently by a matrix. The 
compatibility relation between the two modes of locking discussed in this 
section appears in the matrix comp of Figure 2.2.5. An element comp(A, 
B) of the matrix has the value true if and only if mode A is compatible 
with mode B. 

Note that shared mode is compatible with shared mode, but not with 
exclusive mode. At any time, several shared-mode locks can be held 
simultaneously (by different transactions) on a particular data item. A 
subsequent exclusive-mode lock request has to wait until the currently 
held shared-mode locks are released. 

A transaction requests a shared lock on data item Q by executing the lock- 
S(Q) instruction. Similarly, a transaction requests an exclusive lock 
through the lock-X(Q) instruction. A transaction can unlock a data item Q 
by the unlock(Q) instruction. 

To access a data item, transaction Ti must first lock that item. If the data 
item is already locked by another transaction in an incompatible mode, the 
concurrency control manager will not grant the lock until all incompatible 
locks held by other transactions have been released. Thus, Ti is made to 
wait until all incompatible locks held by other transactions have been 
released. 

Transaction Ti may unlock a data item that it had locked at some earlier 
point. Note that a transaction must hold a lock on a data item as long as it 
accesses that item. Moreover, it is not necessarily desirable for a 
transaction to unlock a data item immediately after its final access of that 
data item, since serializability may not be ensured. 

As an illustration, consider again the banking example. Let A and B be two 
accounts that are accessed by transactions T1 and T2. Transaction T1 
transfers $50 from account B to account A (Figure 2.2.6). 
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Fig: 4.2.6 Transaction T1 

Transaction T2 displays the total amount of money in accounts A and B—
that is, the sum A + B (Figure 2.2.7). Suppose that the values of accounts A 
and B are $100 and $200, respectively. 

If these two transactions are executed serially, either in the order T1, T2 or 
the order T2, T1, then transaction T2 will display the value $300. If, 
however, these transactions are executed concurrently, then schedule 1, in 
Figure 2.2.8, is possible. In this case, transaction T2 displays $250, which 
is incorrect. The reason for this mistake is that the transaction T1 unlocked 
data item B too early, as a result of which T2 saw an inconsistent state. 
The schedule shows the actions executed by the transactions, as well as 
the points at which the concurrency-control manager grants the locks. The 
transaction making a lock request cannot execute its next action until the 
concurrency control manager grants the lock. Hence, the lock must be 
granted in the interval of time between the lock-request operation and the 
following action of the transaction.  

Exactly when within this interval the lock is granted is not important; we 
can safely assume that the lock is granted just before the following action 
of the transaction. We let you infer when locks are granted. 

 

Fig:4.2.7 Transaction T2 
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Fig: 4.2.8 Schedule 1 

Suppose now that unlocking is delayed to the end of the transaction. 
Transaction T3 corresponds to T1 with unlocking delayed (Figure 2.2.9). 
Transaction T4 corresponds to T2 with unlocking delayed (Figure 2.2.10). 
You should verify that the sequence of reads and writes in schedule 1, 
which lead to an incorrect total of $250 being displayed, is no longer 
possible with T3 and T4. 

 

Fig: 4.2.9 Transaction T3(transaction T1 with unlocking delayed) 

 

Fig: 4.2.10 Transaction T4(transaction T2 with unlocking delayed) 
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Other schedules are possible. T4 will not print out an inconsistent result in 
any of them; Unfortunately, locking can lead to an undesirable situation. 
Consider the partial schedule of Figure 2.2.11 for T3 and T4. Since T3 is 
holding an exclusive emode lock on B and T4 is requesting a shared-mode 
lock on B, T4 is waiting for T3 to unlock B. Similarly, since T4 is holding 
a shared-mode lock on A and T3 is requesting an exclusive-mode lock on 
A, T3 is waiting for T4 to unlock A. Thus,we have arrived at a state where 
neither of these transactions can ever proceed with its normal execution. 
This situation is called deadlock. When deadlock occurs, the system must 
roll back one of the two transactions. Once a transaction has beenrolled 
back, the data items that were locked by that transaction are unlocked. 
These data items are then available to the other transaction, which can 
continue with its execution.  

If we do not use locking, or if we unlock data items too soon after reading 
or writing them, we may get inconsistent states. On the other hand, if we 
do not unlock a data item before requesting a lock on another data item, 
deadlocks may occur. There are ways to avoid deadlock in some 
situations. However, in general, deadlocks are a necessary evil associated 
with locking, if we want to avoid inconsistent states. Deadlocks are 
definitely whereas inconsistent states may lead to real-world problems that 
cannot be handled by the database system. 

 

Fig: 4.2.11 Schedule 2 

Preferable to inconsistent states, since they can be handled by rolling back 
transactions. We shall require that each transaction in the system follow a 
set of rules, called a locking protocol, indicating when a transaction may 
lock and unlock each of the data items. Locking protocols restrict the 
number of possible schedules. The set of all such schedules is a proper 
subset of all possible serializable schedules. We shall present several 
locking protocols that allow only conflict-serializable schedules, and 
thereby ensure isolation. Before doing so, we introduce some terminology. 

Let {T0, T1, . . . , Tn} be a set of transactions participating in a schedule S. 
We say that Ti precedes Tj in S, written Ti → Tj, if there exists a data item 
Q such that Ti has held lock mode A on Q, and Tj has held lock mode B on 
Q later, and comp(A,B) = false. If Ti →Tj , then that precedence implies 
that in any equivalent serial schedule, Ti must appear before Tj . Observe 
that this graph is similar to the precedence graph to test for conflict 
serializability. 
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Conflicts between instructions correspond to noncompatibility of lock 
modes. We say that a schedule S is legal under a given locking protocol if 
S is a possible schedule for a set of transactions that follows the rules of 
the locking protocol.We say that a locking protocol ensures conflict 
serializability if and only if all legal schedules are conflict serializable; in 
other words, for all legal schedules the associated→relation is acyclic. 

4.2.5 TIMESTAMP ORDERING ALGORITHMS 

The locking protocols that we have described thus far determine the order 
between every pair of conflicting transactions at execution time by the 
first lock that both members of the pair request that involves incompatible 
modes. Another method for determining the serializability order is to 
select an ordering among transactions in advance. The most common 
method for doing so is to use a timestamp-ordering scheme. 

Timestamps 

With each transaction Ti in the system, we associate a unique fixed 
timestamp, denoted by TS(Ti ). This timestamp is assigned by the database 
system before the transaction Ti starts execution. If a transaction Ti has 
been assigned timestamp TS(Ti ), and a new transaction Tj enters the 
system, then TS(Ti ) <TS(Tj ). There are two simple methods for 
implementing this scheme: 

1. Use the value of the system clock as the timestamp; that is, a 
transaction’s timestamp is equal to the value of the clock when the 
transaction enters the system. 

2. Use a logical counter that is incremented after a new timestamp has 
been assigned; that is, a transaction’s timestamp is equal to the value of 
the counter when the transaction enters the system. 

The timestamps of the transactions determine the serializability order. 
Thus, if TS(Ti ) <TS(Tj ), then the system must ensure that the produced 
schedule is equivalent to a serial schedule in which transaction Ti appears 
before transaction Tj . 

To implement this scheme, we associate with each data item Q two 
timestamp values: 

• W-timestamp(Q) denotes the largest timestamp of any transaction that 
executed write(Q) successfully. 

• R-timestamp(Q) denotes the largest timestamp of any transaction that 
executed read(Q) successfully. 

These timestamps are updated whenever a new read(Q) or write(Q) 
instruction is executed. 
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The Timestamp-Ordering Protocol 

The timestamp-ordering protocol ensures that any conflicting read and 
write operations are executed in timestamp order. This protocol operates 
as follows:  

1. Suppose that transaction Ti issues read(Q). 

a. If TS(Ti ) <W-timestamp(Q), then Ti needs to read a value of Q that 
was already overwritten. Hence, the read operation is rejected, and Ti is 
rolled back. 

b. If TS(Ti ) ≥ W-timestamp(Q), then the read operation is executed, and 
R-timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(Ti ). 

2. Suppose that transaction Ti issues write(Q). 

a. If TS(Ti ) <R-timestamp(Q), then the value of Q that Ti is producing 
was needed previously, and the system assumed that that value would 
never be produced. Hence, the system rejects the write operation and rolls 
Ti back. 

b. If TS(Ti ) <W-timestamp(Q), then Ti is attempting to write an obsolete 
value of Q. Hence, the system rejects this write operation and rolls Ti 
back. 

c. Otherwise, the system executes the write operation and sets W-
timestamp( Q) to TS(Ti ). 

If transactions Ti is rolled back by the concurrency-control scheme as 
result of issuance of either a read or writes operation, the system assigns it 
a new timestamp and restarts it. 

To illustrate this protocol, we consider transactions T25 and T26. 
Transaction T25 displays the contents of accounts A and B: 

 

 

In presenting schedules under the timestamp protocol, we shall assume 
that a transaction is assigned a timestamp immediately before its first 
instruction. Thus, in schedule 3 of Figure 2.2.12, TS(T25)<TS(T26), and 
the schedule is possible under the timestamp protocol. We note that the 
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preceding execution can also be produced by the two-phase locking 
protocol.  

There are, however, schedules that are possible under the twophase 
locking protocol, but are not possible under the timestamp protocol, and 
vice versa. 

The timestamp-ordering protocol ensures conflict serializability. This is 
because conflicting operations are processed in timestamp order. The 
protocol ensures freedom from deadlock, since no transaction everwaits.  

However, there is a possibility of starvation of long transactions if a 
sequence of conflicting short transactions causes repeated restarting of the 
long transaction. If a transaction is suffering from repeated restarts, 
conflicting transactions need to be temporarily blocked to enable the 
transaction to finish. 

 

Fig:2.2.12 Schedule 3 

The protocol can generate schedules that are not recoverable. However, it 
can be extended to make the schedules recoverable, in one of several 
ways: 

• Recoverability and cascadelessness can be ensured by performing all 
writes together at the end of the transaction. The writes must be atomic 
in the following sense: While the writes are in progress, no transaction is 
permitted to access any of the data items that have been written. 

• Recoverability and cascadelessness can also be guaranteed by using a 
limited form of locking, whereby reads of uncommitted items are 
postponed until the transaction that updated the item commits. 

• Recoverability alone can be ensured by tracking uncommitted writes, 
and allowing a transaction Ti to commit only after the commit of any 
transaction that wrote a value that Ti read. Commit dependencies, can be 
used for this purpose. 
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Thomas’ Write Rule 

We now present a modification to the timestamp-ordering protocol that 
allows greater potential concurrency than does the protocol. Let us 
consider schedule 4 of Figure 2.2.13, and apply the timestamp-ordering 
protocol. Since T27 starts before T28, we shall assume that TS(T27) 
<TS(T28). The read(Q) operation of T27 succeeds, as does the write(Q) 
operation of T28. When T27 attempts its write(Q) operation, we find that 
TS(T27) <W-timestamp(Q), since W timestamp( Q) = TS(T28). Thus, the 
write(Q) by T27 is rejected and transaction T27 must be rolled back.  

Although the rollback of T27 is required by the timestamp-ordering 
protocol, it is unnecessary. Since T28 has already written Q, the value that 
T27 is attempting to write is one that will never need to be read. Any 
transaction Ti with TS(Ti ) <TS(T28) that attempts a read(Q)will be rolled 
back, since TS(Ti)<W-timestamp(Q). Any transaction Tj with TS(Tj ) 
>TS(T28) must read the value of Q written by T28, rather than the value 
that T27 is attempting to write.  

This observation leads to modified version of the timestamp-ordering 
protocol in which obsolete write operations can be ignored under certain 
circumstances. The protocol rules for read operations remain unchanged.. 

 

Fig: 2.2.13 Schedule 4 

The modification to the timestamp-ordering protocol, called Thomas’ 
write rule, is this: Suppose that transaction Ti issues write (Q).  

1. If TS(Ti ) <R-timestamp(Q), then the value of Q that Ti is producing 
was previously needed, and it had been assumed that the value would 
never be produced. Hence, the system rejects the write operation and 
rolls Ti back. 

2. If TS(Ti ) <W-timestamp(Q), then Ti is attempting to write an obsolete 
value of Q. Hence, this write operation can be ignored. 

3. Otherwise, the system executes the write operation and sets W-
timestamp (Q) to TS(Ti ). 

The difference between these rules and those of Section lies in the second 
rule. The timestamp-ordering protocol requires that Ti be rolled back if Ti 
issues write (Q) and TS(Ti ) <W-timestamp(Q). However, here, in those 
cases where TS(Ti ) ≥ R-timestamp(Q), we ignore the obsolete write. By 
ignoring the write, Thomas’ write rule allows schedules that are not 
conflict serializable but are nevertheless correct. Those non-conflict-
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serializable schedules allowed satisfy the definition of view serializable 
schedules (see example box). 

Thomas’ write rule makes use of view serializability by, in effect, deleting 
obsolete write operations from the transactions that issue them. This 
modification of transactions makes it possible to generate serializable 
schedules that would not be possible under the other protocols presented 
in this chapter. For example, schedule 4 of above Figure is not conflict 
serializable and, thus, is not possible under the two-phase locking 
protocol, the tree protocol, or the timestamp-ordering protocol. Under 
Thomas’ write rule, the write (Q) operation of T27 would be ignored. The 
result is a schedule that is view equivalent to the serial schedule <T27, 
T28>. 

4.2.6 DEADLOCK MANAGEMENT 

Deadlocks tend to be rare and typically involve very few transactions. In 
practice, therefore, database systems periodically check for deadlocks. 
When a transaction Ti is suspended because a lock that it requests cannot 
be granted, it must wait until all transactions Tj that currently hold 
conflicting locks release them. The lock manager maintains a structure 
called a waits-for graph to detect deadlock cycles. The nodes correspond 
to active transactions, and there is an arc from Ti to 'Tj if (and only if)Ti is 
waiting for 1) to release a lode The lock manager adds edges to this graph 
when it queues lock requests and removes edges when it grants lock 
requests. Consider the schedule shown in Figure 2.2.14. The last step, 
shown below the line, creates a cycle in the waits-for graph. Figure 2.2.15 
shows the waits-for graph before and after this step. 

 

Fig: 2.2.14 Schedule Illustrating Deadlock 

 



  

 

Advanced Database System 

52 

 

Fig: 2.2.15 Waits-for Graph Before and After Deadlock 

Observe that the waits-for graph describes all active transactions, some of 
which eventually abort. If there is an edge from Ti to T'j in the waits-for 
graph, and both Ti and Tj eventually commit, there is an edge in the 
opposite direction (from T'j to Ti) in the precedence graph (which involves 
only transactions). The waits-for graph is periodically checked for cycles, 
which indicate deadlock. A deadlock is resolved by aborting a transaction 
that is on a cycle and releasing its locks; this action allows Some of the 
waiting transactions to proceed. The choice of which transaction to abort 
can be made using several criteria: the one with the fewest locks, the one 
that has done the least work, the one that is farthest from completion, and 
so all. Further, a transaction might have been repeatedly restarted; if so, it 
should eventually be favored during deadlock detection and allowed to 
complete. A simple alternative to maintaining a waits-for graph is to 
identify deadlocks through a timeout mechanism. 

Deadlock Prevention 

Empirical results indicate that deadlocks are relatively infrequent, and 
detection based schemes work well in practice. However, if there is a high 
level of contention for locks and therefore an increased likelihood of 
deadlocks, prevention based schedules could perform better. We can 
prevent deadlocks by giving each transaction a priority and ensuring that 
lower-priority transactions are not allowed to wait for higher-priority 
transactions (or vice versa). One way to assign priorities is to give each 
transaction a timestamp when it starts up. 

The lower the timestamp, the higher is the transaction's priority; that is, 
the oldest transaction has the highest priority. 

If a transaction Ti requests a lock and transaction Tj holds a conflicting 
lock, the lock manager can use one of the following two policies:  

II Wait-die: If Ti has higher priority, it is allowed to wait; otherwise, it is 
aborted. 

II Wound-wait: If Ti has higher priority, abort 7); otherwise, l"1i waits 

In the wait-die scheme, lower-priority transactions can never wait for 
higher priority transactions. In the wound-wait scheme, higher-priority 
transactions never wait for lower-priority transactions. In either ease, no 
deadlock cycle develops A subtle point is that we must also ensure that no 
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transaction is perennially aborted because it never has a sufficiently high 
priority. (Note that, in both schemes, the higher-priority transaction is 
never aborted.) When a transaction is aborted and restarted, it should be 
given the same timestamp it had originally. Reissuing timestamps in this 
way ensures that each transaction will eventually become the oldest 
transaction, and therefore the one with the highest priority, and will get all 
the locks it requires. The wait-die scheme is non preemptive; only a 
transaction requesting a lock can be aborted. As a transaction grows older 
(and its priority increases), it tends to wait for more and more young 
transactions. A younger transaction that conflicts with an older transaction 
may be repeatedly aborted (a disadvantage with respect to wound-wait), 
but on the other hand, a transaction that has all the locks it needs is never 
aborted for deadlock reasons (an advantage with respect to wound-wait, 
which is preemptive). 

A variant of 2PL, called Conservative 2PL, can also prevent deadlocks. 
Under Conservative 2PL, a transaction obtains all the locks it will ever 
need when it begins, or blocks waiting for these locks to become available. 
This scheme ensures that there will be no deadlocks, and, perhaps more 
important, that a transaction that already holds some locks will not block 
waiting for other locks. If lock contention is heavy, Conservative 2PL can 
reduce the time that locks are held on average, because transactions that 
hold locks are never blocked. The trade-off is that a transaction acquires 
locks earlier, and if lock contention is low, locks are held longer under 
Conservative 2PL. From a practical perspective, it is hard to know exactly 
what locks are needed ahead of time, and this approach leads to setting 
more locks than necessary. It also has higher overhead for setting locks 
because a transaction has to release all locks and try to obtain them all 
over if it fails to obtain even one lock that it needs.  

The Two-Phase Locking Protocol 

One protocol that ensures serializability is the two-phase locking protocol. 
This protocol requires that each transaction issue lock and unlock requests 
in two phases: 

1. Growing phase. A transaction may obtain locks, but may not release 
any lock. 

2. Shrinking phase. A transaction may release locks, but may not obtain 
any new locks. 

Initially, a transaction is in the growing phase. The transaction acquires 
locks as needed. Once the transaction releases a lock, it enters the 
shrinking phase, and it can issue no more lock requests. 

For example, transactions T3 and T4 are two phase. On the other hand, 
transactions T1 and T2 are not two phase. Note that the unlock instructions 
do not need to appear at the end of the transaction. For example, in the 
case of transaction T3, we could move the unlock(B) instruction to just 
after the lock-X(A) instruction, and still retain the two-phase locking 
property. We can show that the two-phase locking protocol ensures 
conflict serializability. Consider any transaction. The point in the schedule 
where the transaction has obtained its final lock (the end of its growing 
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phase) is called the lock point of the transaction. Now, transactions can be 
ordered according to their lock point this ordering is, in fact, a 
serializability ordering for the transactions. Two-phase locking does not 
ensure freedom from deadlock. Observe that transactions T3 and T4 are 
two phase, but, in schedule 2, they are deadlocked. Recall from Section 
that, in addition to being serializable, schedules should be cascadeless. 
Cascading rollback may occur under two-phase locking. As an illustration, 
consider the partial schedule of Figure2.2.16. Each transaction observes 
the two-phase locking protocol, but the failure of T5 after the read (A) step 
of T7 leads to cascading rollback of T6 and T7. 

Cascading rollbacks can be avoided by a modification of two-phase 
locking called the strict two-phase locking protocol. This protocol requires 
not only that locking be two phase, but also that all exclusive-mode locks 
taken by a transaction be held until that transaction commits. This 
requirement ensures that any data written by an uncommitted transaction 
are locked in exclusive mode until the transaction commits, preventing 
any other transaction from reading the data. Another variant of two-phase 
locking is the rigorous two-phase locking protocol, which requires that all 
locks be held until the transaction commits. 

 

Fig: 2.2.16 Partial Schedule under two-phase locking 

We can easily verify that, with rigorous two-phase locking, transactions 
can be serialized in the order in which they commit. Consider the 
following two transactions, for which we have shown only some of the 
significant read and write operations: 
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If we employ the two-phase locking protocol, then T8 must lock a1 in 
exclusive mode. Therefore, any concurrent execution of both transactions 
amounts to a serial execution. Notice, however, that T8 needs an exclusive 
lock on a1 only at the end of its execution, when it writes a1. Thus, if T8 
could initially lock a1 in shared mode, and then could later change the 
lock to exclusive mode, we could get more concurrency, since T8 and T9 
could access a1 and a2 simultaneously. This observation leads us to a 
refinement of the basic two-phase locking protocol, in which lock 
conversions are allowed. We shall provide a mechanism for upgrading a 
shared lock to an exclusive lock, and downgrading an exclusive lock to a 
shared lock. We denote conversion from shared to exclusive modes by 
upgrade, and from exclusive to shared by downgrade. Lock conversion 
cannot be allowed arbitrarily. Rather, upgrading can take place in only the 
growing phase, whereas downgrading can take place in only the shrinking 
phase. 

 

Fig: 2.2.17 Incomplete schedule with a lock conversion 

Returning to our example, transactions T8 and T9 can run concurrently 
under the refined two-phase locking protocol, as shown in the incomplete 
schedule of Figure 2.2.17, where only some of the locking instructions are 
shown. Note that a transaction attempting to upgrade a lock on an item Q 
may be forced to wait. This enforced wait occurs if Q is currently locked 
by another transaction in shared mode. 

Just like the basic two-phase locking protocol, two-phase locking with 
lock conversion generates only conflict-serializable schedules, and 
transactions can be serialized by their lock points. Further, if exclusive 
locks are held until the end of the transaction, the schedules are 
cascadeless. For a set of transactions, there may be conflict-serializable 
schedules that cannot be obtained through the two-phase locking protocol. 
However, to obtain conflict-serializable schedules through non-two-phase 
locking protocols, we need either to have additional information about the 
transactions or to impose some structure or ordering on the set of data 
items in the database. Strict two-phase locking and rigorous two-phase 
locking (with lock conversions) are used extensively in commercial 
database systems. A simple but widely used scheme automatically 
generates the appropriate lock and unlock instructions for a transaction, on 
the basis of read and write requests from the transaction: 
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• When a transaction Ti issues a read(Q) operation, the system issues a 
lock- S(Q) instruction followed by the read(Q) instruction. 

• When Ti issues a write(Q) operation, the system checks to see whether Ti 
already holds a shared lock on Q. If it does, then the system issues an 
upgrade( Q) instruction, followed by the write(Q) instruction. 
Otherwise, the system issues a lock-X(Q) instruction, followed by the 
write(Q) instruction. 

• All locks obtained by a transaction are unlocked after that transaction 
commits or aborts. 

Implementation of Locking 

A lock manager can be implemented as a process that receives messages 
from transactions and sends messages in reply. The lock-manager process 
replies to lock-request messages with lock-grant messages, or with 
messages requesting rollback of the transaction (in case of deadlocks). 
Unlock messages require only an acknowledgment in response, but may 
result in a grant message to another waiting transaction. 

The lock manager uses this data structure: For each data item that is 
currently locked, it maintains a linked list of records, one for each request, 
in the order in which the requests arrived. It uses a hash table, indexed on 
the name of a data item, to find the linked list (if any) for a data item; this 
table is called the lock table. Each record of the linked list for a data item 
notes which transaction made the request, and what lock mode it 
requested. The record also notes if the request has currently been granted. 
Figure 2.2.18 shows an example of a lock table. The table contains locks 
for five different data items, I4, I7, I23, I44, and I912. The lock table uses 
overflow chaining, so there is a linked list of data items for each entry in 
the lock table. 

There is also a list of transactions that have been granted locks, or are 
waiting for locks, for each of the data items. Granted locks are the 
rectangles filled in a darker shade, while waiting requests are the 
rectangles filled in a lighter shade. We have omitted the lock mode to keep 
the figure simple. It can be seen, for example, that T23 has been granted 
locks on I912 and I7, and is waiting for a lock on I4. Although the figure 
does not show it, the lock table should also maintain an index on 
transaction identifiers, so that it is possible to determine efficiently the set 
of locks held by a given transaction. 

The lock manager processes requests this way: When a lock request 
message arrives, it adds a record to the end of the linked list for the data 
item, if the linked list is present. Otherwise it creates a new linked list, 
containing only the record for the request. It always grants a lock request 
on a data item that is not currently locked. But if the transaction requests a 
lock on an item on which a lock is currently held, the lock manager grants 
the request only if it is compatible with the locks that are currently held, 
and all earlier requests have been granted already. Otherwise the request 
has to wait. 
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• When the lock manager receives an unlock message from a transaction, 
it deletes the record for that data item in the linked list corresponding to 
that transaction. It tests the record that follows, if any, as described in the 
previous paragraph, to see if that request can now be granted. If it can, the 
lock manager grants that request, and processes the record following it, if 
any, similarly, and so on. 

• If a transaction aborts, the lock manager deletes any waiting request 
made by the transaction. Once the database system has taken appropriate 
actions to undo the transaction, it releases all locks held by the aborted 
transaction. 

 

 

Fig: 2.2.18 Lock table 

This algorithm guarantees freedom from starvation for lock requests, since 
a request can never be granted while a request received earlier is waiting 
to be granted.  

4.3.1 DBMS RELIABILITY 

We have referred to “reliability” and “availability” of the database a 
number of times so far without defining these terms precisely. 
Specifically, we mentioned these terms in conjunction with data 
replication, because the principle method of building a reliable system is 
to provide redundancy in system components. However, the distribution of 
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the database or the replication of data items is not sufficient to make the 
distributed DBMS reliable. A number of protocols need to be 
implemented  within the DBMS to exploit this distribution and replication 
in order to make operations more reliable. A reliable distributed database 
management system is one that can continue to process user requests even 
when the underlying system is unreliable. In other words, even when 
components of the distributed computing environment fail, a reliable 
distributed DBMS should be able to continue executing user requests 
without violating database consistency. 

Too often, the terms reliability and availability are used loosely in 
literature. Even among the researchers in the area of reliable computer 
systems, the definitions of these terms sometimes vary. In this section, we 
give precise definitions of a number of concepts that are fundamental to an 
understanding and study of reliable systems.  

4.3.2 DEFINITIONS AND BASIC CONCEPTS 

Reliability refers to a system that consists of a set of components. The 
system has a state, which changes as the system operates. The behavior of 
the system in providing response to all the possible external stimuli is laid 
out in an authoritative specification of its behavior. The specification 
indicates the valid behavior of each system state. Any deviation of a 
system from the behavior described in the specification is considered a 
failure. For example, in a distributed transaction manager the specification 
may state that only serializable schedules for the execution of concurrent 
transactions should be generated. If the transaction manager generates a 
non-serializable schedule, we say that it has failed. 

Each failure obviously needs to be traced back to its cause. Failures in a 
system can be attributed to deficiencies either in the components that 
make it up, or in the design, that is, how these components are put 
together. Each state that a reliable system goes through is valid in the 
sense that the state fully meets its specification. However, in an unreliable 
system, it is possible that the system may get to an internal state that may 
not obey its specification. Further transitions from this state would 
eventually cause a system failure. Such internal states are called erroneous 
states; the part of the state that is incorrect is called an error in the system. 
Any error in the internal states of the components of a system or in the 
design of a system is called a fault in the system. Thus, a fault causes an 
error that results in a system failure (Figure 12.1). 

 

Fig: 2.3.1 Chain of Events Leading to System Failure 
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Reliability refers to the probability that the system under consideration 
does not experience any failures in a given time interval. It is typically 
used to describe systems that cannot be repaired (as in space-based 
computers), or where the operation of the system is so critical that no 
downtime for repair can be tolerated. Formally, the reliability of a system, 
R(t), is defined as the following conditional probability: 

 

 

4.3.3 LOCAL RECOVERY MANAGEMENT 

In this section we discuss the functions performed by the local recovery 
manager (LRM) that exists at each site. These functions maintain the 
atomicity and durability properties of local transactions. They relate to the 
execution of the commands that are passed to the LRM, which are begin 
transaction, read, write, commit, and abort. Later in this section we 
introduce a new command into the LRM’s repertoire that initiates 
recovery actions after a failure. Note that in this section we discuss the 
execution of these commands in a centralized environment. The 
complications introduced in distributed databases are addressed in the 
upcoming sections. 
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Architectural Considerations  

It is again time to use our architectural model and discuss the specific 
interface between the LRM and the database buffer manager (BM). The 
simple DP implementation that was given earlier will be enhanced with 
the reliability protocols discussed in this section. Also remember that all 
accesses to the database are via the database buffer manager. The detailed 
discussion of the algorithms that the buffer manager implements is beyond 
the scope of this book; we provide a summary later in this subsection. 
Even without these details, we can still specify the interface and its 
function, as depicted in Figure 2.3.2 In this discussion we assume that the 
database is stored permanently on secondary storage, which in this context 
is called the stable storage [Lampson and Sturgis, 1976]. The stability of 
this storage medium is due to its robustness to failures. A stable storage 
device would experience considerably less-frequent failures than would a 
non-stable storage device. In today’s technology, stable storage is 
typically implemented by means of duplexed magnetic disks which store 
duplicate copies of data that are always kept mutually consistent (i.e., the 
copies are identical). We call the version of the database that is kept on 
stable storage the stable database. The unit of storage and access of the 
stable database is typically a page. The database buffer manager keeps 
some of the recently accessed data in main memory buffers. This is done 
to enhance access performance. Typically, the buffer is divided into pages 
that are of the same size as the stable database pages. The part of the 
database that is in the database buffer is called the volatile database. It is 
important to note that the LRM executes the operations on behalf of a 
transaction only on the volatile database, which, at a later time, is written 
back to the stable database. 

 

Fig: 2.3.2 Interface between the Local Recovery Manager and the Buffer 
Manager 

When the LRM wants to read a page of data4 on behalf of a transaction—
strictly speaking, on behalf of some operation of a transaction—it issues a 
fetch command, indicating the page that it wants to read. The buffer 
manager checks to see if that page is already in the buffer (due to a 
previous fetch command from another transaction) and if so, makes it 
available for that transaction; if not, it reads the page from the stable 
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database into an empty database buffer. If no empty buffers exist, it selects 
one of the buffer pages to write back to stable storage and reads the 
requested stable database page into that buffer. There are a number of 
different algorithms by which the buffer manager may choose the buffer 
page to be replaced; these are discussed in standard database textbooks. 
The buffer manager also provides the interface by which the LRM can 
actually force it to write back some of the buffer pages. This can be 
accomplished by means of the flush command, which specifies the buffer 
pages that the LRM wants to be written back. We should indicate that 
different LRM implementations may or may not use this forced writing. 
This issue is discussed further in subsequent sections. As its interface 
suggests, the buffer manager acts as a conduit for all access to the database 
via the buffers that it manages. It provides this function by fulfilling three 
tasks:  

1. Searching the buffer pool for a given page;  

2. If it is not found in the buffer, allocating a free buffer page and loading 
the buffer page with a data page that is brought in from secondary 
storage;  

3. If no free buffer pages are available, choosing a buffer page for 
replacement. 

Recovery Information 

In this section we assume that only system failures occur. We defer the 
discussion of techniques for recovering from media failures until later. 
Since we are dealing with centralized database recovery, communication 
failures are not applicable. When a system failure occurs, the volatile 
database is lost. Therefore, the DBMS has to maintain some information 
about its state at the time of the failure in order to be able to bring the 
database to the state that it was in when the failure occurred. We call this 
information the recovery information. The recovery information that the 
system maintains is dependent on the method of executing updates. Two 
possibilities are in-place updating and out-of-place updating. In-place 
updating physically changes the value of the data item in the stable 
database. As a result, the previous values are lost. Out-of-place updating, 
on the other hand, does not change the value of the data item in the stable 
database but maintains the new value separately. Of course, periodically, 
these updated values have to be integrated into the stable database. We 
should note that the reliability issues are somewhat simpler if in-place 
updating is not used. However, most DBMS use it due to its improved 
performance. 

4.3.4 IN-PLACE UPDATE 

Since in-place updates cause previous values of the affected data items to 
be lost, it is necessary to keep enough information about the database state 
changes to facilitate the recovery of the database to a consistent state 
following a failure. This information is typically maintained in a database 



  

 

Advanced Database System 

62 

log. Thus each update transaction not only changes the database but the 
change is also recorded in the database log (Figure 2.3.3). The log 
contains information necessary to recover the database state following a 
failure. 

 

Fig: 2.3.2 Update Operation Execution 

For the following discussion assume that the LRM and buffer manager 
algorithms are such that the buffer pages are written back to the stable 
database only when the buffer manager needs new buffer space. In other 
words, the flush command is not used by the LRM and the decision to 
write back the pages into the stable database is taken at the discretion of 
the buffer manager. Now consider that a transaction T1 had completed 
(i.e., committed) before the failure occurred. The durability property of 
transactions would require that the effect os T1 be reflected in the 
database. However, it is possible that the volatile database pages that have 
been updated by T1 may not have been written back to the stable database 
at the time of the failure. Therefore, upon recovery, it is important to be 
able to redo the operations of T1. This requires some information to be 
stored in the database log about the effects of T1. Given this information, 
it is possible to recover the database from its “old” state to the “new” state 
that reflects the effects of T1 (Figure 2.3.3). 

 

Fig: 2.3.3 REDO Action 

Now consider another transaction, T2, that was still running when the 
failure occurred. The atomicity property would dictate that the stable 
database not contain any effects of T2. It is possible that the buffer 
manager may have had to write into the stable database some of the 
volatile database pages that have been updated by T2. Upon recovery from 
failures it is necessary to undo the operations of T2. 5 Thus the recovery 
information should include sufficient data to permit the undo by taking the 
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“new” database state that reflects partial effects of T2 and recovers the 
“old” state that existed at the start of T2 (Figure 2.3.4). We should indicate 
that the undo and redo actions are assumed to be idempotent. In other 
words, their repeated application to a transaction would be equivalent to 
performing them once. Furthermore, the undo/redo actions form the basis 
of different methods of executing the commit commands. The contents of 
the log may differ according to the implementation. However, the 
following minimal information for each transaction is contained in almost 
all database logs: a begin transaction record, the value of the data item 
before the update (called the before image), the updated value of the data 
item (called the after image), and a termination record indicating the 
transaction termination condition (commit, abort). The granularity of the 
before and after images may be different, as it is possible to log entire 
pages or some smaller unit. As an alternative to this form of state logging, 
operational logging, as in ARIES [Haderle et al., 1992], may be supported 
where the operations that cause changes to the database are logged rather 
than the before and after images. 

 

Fig: 2.3.4 UNDO Action 

The log is also maintained in main memory buffers (called log buffers) 
and written back to stable storage (called stable log) similar to the 
database buffer pages (Figure 2.3.5). The log pages can be written to 
stable storage in one of two ways. They can be written synchronously 
(more commonly known as forcing a log) where the addition of each log 
record requires that the log be moved from main memory to stable storage. 
They can also be written asynchronously, where the log is moved to stable 
storage either at periodic intervals or when the buffer fills up. When the 
log is written synchronously, the execution of the transaction is suspended 
until the write is complete. This adds some delay to the response-time 
performance of the transaction. On the other hand, if a failure occurs 
immediately after a forced write, it is relatively easy to recover to a 
consistent database state. 
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Fig:4.3.5 Logging Interface 

Whether the log is written synchronously or asynchronously, one very 
important protocol has to be observed in maintaining logs. Consider a case 
where the updates to the database are written into the stable storage before 
the log is modified in stable storage to reflect the update. If a failure 
occurs before the log is written, the database will remain in updated form, 
but the log will not indicate the update that makes it impossible to recover 
the database to a consistent and up-to-date state. Therefore, the stable log 
is always updated prior to the updating of the stable database. This is 
known as the write-ahead logging (WAL) protocol [Gray, 1979] and can 
be precisely specified as follows:  

1. Before a stable database is updated (perhaps due to actions of a yet 
uncommitted transaction), the before images should be stored in the 
stable log. This facilitates undo.  

2. When a transaction commits, the after images have to be stored in the 
stable log prior to the updating of the stable database. This facilitates 
redo. 

4.3.5 OUT-OF-PLACE UPDATE 

As we mentioned above, the most common update technique is in-place 
updating. Therefore, we provide only a brief overview of the other 
updating techniques and their recovery information. Details can be found 
in [Verhofstadt, 1978] and the other references given earlier. Typical 
techniques for out-of-place updating are shadowing ([Astrahan et al., 
1976; Gray, 1979]) and differential files [Severence and Lohman, 1976]. 
Shadowing uses duplicate stable storage pages in executing updates. Thus 
every time an update is made, the old stable storage page, called the 
shadow page, is left intact and a new page with the updated data item 
values is written into the stable database. The access path data structures 
are updated to point to the new page, which contains the current data so 
that subsequent accesses are to this page. The old stable storage page is 
retained for recovery purposes (to perform undo). 

Recovery based on shadow paging is implemented in System R’s recovery 
manager [Gray et al., 1981]. This implementation uses shadowing together 
with logging. In general, the method maintains each stable database file as 
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a read-only file. In addition, it maintains a corresponding read-write 
differential file that stores the changes to that file. Given a logical database 
file F, let us denote its read-only part as FR and its corresponding 
differential file as DF. DF consists of two parts: an insertions part, which 
stores the insertions to F, denoted DF+, and a corresponding deletions 
part, denoted DF−. All updates are treated as the deletion of the old value 
and the insertion of a new one. Thus each logical file F is considered to be 
a view defined as F = (FR∪ DF+)−DF−. Periodically, the differential file 
needs to be merged with the read-only base file. Recovery schemes based 
on this method simply use private differential files for each transaction, 
which are then merged with the differential files of each file at commit 
time. Thus recovery from failures can simply be achieved by discarding 
the private differential files of non-committed transactions. There are 
studies that indicate that the shadowing and differential files approaches 
may be advantageous in certain environments. One study by Agrawal and 
DeWitt [1985] investigates the performance of recovery mechanisms 
based on logging, differential files, and shadow paging, integrated with 
locking and optimistic (using timestamps) concurrency control algorithms. 
The results indicate that shadowing, together with locking, can be a 
feasible alternative to the more common log-based recovery integrated 
with locking if there are only large (in terms of the base-set size) 
transactions with sequential access patterns. Similarly, differential files 
integrated with locking can be a feasible alternative if there are medium-
sized and large transactions. 

4.3.6 DISTRIBUTED RELIABILITY PROTOCOLS 

As with local reliability protocols, the distributed versions aim to maintain 
the atomicity and durability of distributed transactions that execute over a 
number of databases. The protocols address the distributed execution of 
the begin transaction, read, write, abort, commit, and recover commands. 
At the outset we should indicate that the execution of the begin 
transaction, read, and write commands does not cause any significant 
problems. Begin transaction is executed in exactly the same manner as in 
the centralized case by the transaction manager at the originating site of 
the transaction. At each site, the commands are executed in the manner 
described in Section. Similarly, abort is executed by undoing its effects. 
The implementation of distributed reliability protocols within the 
architectural model we have adopted in this book raises a number of 
interesting and difficult issues. For the time being, we adopt a common 
abstraction: we assume that at the originating site of a transaction there is 
a coordinator process and at each site where the transaction executes there 
are participant processes. Thus, the distributed reliability protocols are 
implemented between the coordinator and the participants. 

Components of Distributed Reliability Protocols 

The reliability techniques in distributed database systems consist of 
commit, termination, and recovery protocols. Recall from the preceding 
section that the commit and recovery protocols specify how the commit 
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and the recover commands are executed. Both of these commands need to 
be executed differently in a distributed DBMS than in a centralized 
DBMS. Termination protocols are unique to distributed systems. Assume 
that during the execution of a distributed transaction, one of the sites 
involved in the execution fails; we would like the other sites to terminate 
the transaction somehow. The techniques for dealing with this situation 
are called termination protocols. Termination and recovery protocols are 
two opposite faces of the recovery problem: given a site failure, 
termination protocols address how the operational sites deal with the 
failure, whereas recovery protocols deal with the procedure that the 
process (coordinator or participant) at the failed site has to go through to 
recover its state once the site is restarted. In the case of network 
partitioning, the termination protocols take the necessary measures to 
terminate the active transactions that execute at different partitions, while 
the recovery protocols address the establishment of mutual consistency of 
replicated databases following reconnection of the partitions of the 
network. The primary requirement of commit protocols is that they 
maintain the atomicity of distributed transactions. This means that even 
though the execution of the distributed transaction involves multiple sites, 
some of which might fail while executing, the effects of the transaction on 
the distributed database is all-or-nothing. This is called atomic 
commitment. We would prefer the termination protocols to be non-
blocking. A protocol is non-blocking if it permits a transaction to 
terminate at the operational sites without waiting for recovery of the failed 
site. This would significantly improve the response-time performance of 
transactions. We would also like the distributed recovery protocols to be 
independent. Independent recovery protocols determine how to terminate 
a transaction that was executing at the time of a failure without having to 
consult any other site. Existence of such protocols would reduce the 
number of messages that need to be exchanged during recovery. Note that 
the existence of independent recovery protocols would imply the existence 
of non-blocking termination protocols, but the reverse is not true. 

4.3.7 TWO PHASE COMMIT PROTOCOL 

Two-phase commit (2PC) is a very simple and elegant protocol that 
ensures the atomic commitment of distributed transactions. It extends the 
effects of local atomic commit actions to distributed transactions by 
insisting that all sites involved in the execution of a distributed transaction 
agree to commit the transaction before its effects are made permanent. 
There are a number of reasons why such synchronization among sites is 
necessary. First, depending on the type of concurrency control algorithm 
that is used, some schedulers may not be ready to terminate a transaction. 
For example, if a transaction has read a value of a data item that is updated 
by another transaction that has not yet committed, the associated scheduler 
may not want to commit the former. Of course, strict concurrency control 
algorithms that avoid cascading aborts would not permit the updated value 
of a data item to be read by any other transaction until the updating 
transaction terminates. This is sometimes called the recoverability 
condition. 
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Another possible reason why a participant may not agree to commit is due 
to deadlocks that require a participant to abort the transaction. Note that, in 
this case, the participant should be permitted to abort the transaction 
without being told to do so. This capability is quite important and is called 
unilateral abort. A brief description of the 2PC protocol that does not 
consider failures is as follows. Initially, the coordinator writes a begin 
commit record in its log, sends a “prepare” message to all participant sites, 
and enters the WAIT state. When a participant receives a “prepare” 
message, it checks if it could commit the transaction. If so, the participant 
writes a ready record in the log, sends a “vote-commit” message to the 
coordinator, and enters READY state; otherwise, the participant writes an 
abort record and sends a “vote-abort” message to the coordinator. If the 
decision of the site is to abort, it can forget about that transaction, since an 
abort decision serves as a veto (i.e., unilateral abort). After the coordinator 
has received a reply from every participant, it decides whether to commit 
or to abort the transaction. If even one participant has registered a negative 
vote, the coordinator has to abort the transaction globally. So it writes an 
abort record, sends a “global-abort” message to all participant sites, and 
enters the ABORT state; otherwise, it writes a commit record, sends a 
“global-commit” message to all participants, and enters the COMMIT 
state. The participants either commit or abort the transaction according to 
the coordinator’s instructions and send back an acknowledgment, at which 
point the coordinator terminates the transaction by writing an end of 
transaction record in the log. 

Note the manner in which the coordinator reaches a global termination 
decision regarding a transaction. Two rules govern this decision, which, 
together, are called the global commit rule:  

1. If even one participant votes to abort the transaction, the coordinator has 
to reach a global abort decision.  

2. If all the participants vote to commit the transaction, the coordinator has 
to reach a global commit decision. The operation of the 2PC protocol 
between a coordinator and one participant in the absence of failures is 
depicted in Figure 2.3.6, where the circles indicate the states and the 
dashed lines indicate messages between the coordinator and the 
participants. The labels on the dashed lines specify the nature of the 
message. 
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Fig:4.3.6 2PC Protocol Actions 

A few important points about the 2PC protocol that can be observed from 
Figure 2.3.6 are as follows. First, 2PC permits a participant to unilaterally 
abort a transaction until it has decided to register an affirmative vote. 
Second, once a participant votes to commit or abort a transaction, it cannot 
change its vote. Third, while a participant is in the READY state, it can 
move either to abort the transaction or to commit it, depending on the 
nature of the message from the coordinator. Fourth, the global termination 
decision is taken by the coordinator according to the global commit rule. 
Finally, note that the coordinator and participant processes enter certain 
states where they have to wait for messages from one another. To 
guarantee that they can exit from these states and terminate, timers are 
used. Each process sets its timer when it enters a state, and if the expected 
message is not received before the timer runs out, the process times out 
and invokes its timeout protocol (which will be discussed later). There are 
a number of different communication paradigms that can be employed in 
implementing a 2PC protocol. The one discussed above and depicted in 
Figure 2.3.6 is called a centralized 2PC since the communication is only 
between the coordinator and the participants; the participants do not 
communicate among themselves. This communication structure, which is 
the basis of our subsequent discussions in this chapter, is depicted more 
clearly in Figure 2.3.7. 
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Fig: 4.3.6 Centralized 2PC Communication Structure 

Another alternative is linear 2PC (also called nested 2PC [Gray, 1979]) 
where participants can communicate with one another. There is an 
ordering between the sites in the system for the purposes of 
communication. Let us assume that the ordering among the sites that 
participate in the execution of a transaction are 1, ..., N, where the 
coordinator is the first one in the order. The 2PC protocol is implemented 
by a forward communication from the coordinator (number 1) to N, during 
which the first phase is completed, and by a backward communication 
from N to the coordinator, during which the second phase is completed. 
Thus linear 2PC operates in the following manner. The coordinator sends 
the “prepare” message to participant 2. If participant 2 is not ready to 
commit the transaction, it sends a “vote-abort” message (VA) to 
participant 3 and the transaction is aborted at this point (unilateral abort by 
2). If, on the other hand, participant 2 agrees to commit the transaction, it 
sends a “votecommit” message (VC) to participant 3 and enters the 
READY state. This process continues until a “vote-commit” vote reaches 
participant N. This is the end of the first phase. If N decides to commit, it 
sends back to N −1 “global-commit” (GC); otherwise, it sends a “global-
abort” message (GA). Accordingly, the participants enter the appropriate 
state (COMMIT or ABORT) and propagate the message back to the 
coordinator. Linear 2PC, whose communication structure is depicted in 
Figure 2.3.7, incurs fewer messages but does not provide any parallelism. 
Therefore, it suffers from low response-time performance. 

 

Fig: 4.3.7 Linear 2PC Communication Structure,VC vote.commit; VA 
vote.abort; GC global.commit; GA global.abort 
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Another popular communication structure for implementation of the 2PC 
protocol involves communication among all the participants during the first 
phase of the protocol so that they all independently reach their termination 
decisions with respect to the specific transaction. This version, called 
distributed 2PC, eliminates the need for the second phase of the protocol 
since the participants can reach a decision on their own. It operates as 
follows. The coordinator sends the prepare message to all participants. Each 
participant then sends its decision to all the other participants (and to the 
coordinator) by means of either a “vote-commit” or a “vote-abort” message. 
Each participant waits for messages from all the other participants and makes 
its termination decision according to the global commit rule. Obviously, there 
is no need for the second phase of the protocol (someone sending the global 
abort or global commit decision to the others), since each participant has 
independently reached that decision at the end of the first phase. The 
communication structure of distributed commit is depicted in Figure 2.3.8. 
One point that needs to be addressed with respect to the last two versions of 
2PC implementation is the following. A participant has to know the identity 
of either the next participant in the linear ordering (in case of linear 2PC) or 
of all the participants (in case of distributed 2PC). This problem can be solved 
by attaching the list of participants to the prepare message that is sent by the 
coordinator. Such an issue does not arise in the case of centralized 2PC since 
the coordinator clearly knows who the participants are. The algorithm for the 
centralized execution of the 2PC protocol by the coordinator is given in 
Algorithm 12.1, and the algorithm for participants is given in Algorithm 12.2. 
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Fig: 4.3.8 Distributed 2PC Communication Structure 

4.3.8 THREE PHASES COMMIT PROTOCOL 

The three-phase commit protocol (3PC) [Skeen, 1981] is designed as a 
non-blocking protocol. We will see in this section that it is indeed non-
blocking when failures are restricted to site failures. Let us first consider 
the necessary and sufficient conditions for designing non-blocking atomic 
commitment protocols. A commit protocol that is synchronous within one 
state transition is non-blocking if and only if its state transition diagram 
contains neither of the following:  

1. No state that is “adjacent” to both a commit and an abort state.  

2. No non-committable state that is “adjacent” to a commit state ([Skeen, 
1981; Skeen and Stonebraker, 1983]). The term adjacent here means 
that it is possible to go from one state to the other with a single state 
transition 

Consider the COMMIT state in the 2PC protocol. If any process is in this 
state, we know that all the sites have voted to commit the transaction. 
Such states are called committable. There are other states in the 2PC 
protocol that are non-committable. The one we are interested in is the 
READY state, which is non-committable since the existence of a process 
in this state does not imply that all the processes have voted to commit the 
transaction. It is obvious that the WAIT state in the coordinator and the 
READY state in the participant 2PC protocol violate the non-blocking 
conditions we have stated above. Therefore, one might be able to make the 
following modification to the 2PC protocol to satisfy the conditions and 
turn it into a non-blocking protocol. We can add another state between the 
WAIT (and READY) and COMMIT states which serves as a buffer state 
where the process is ready to commit (if that is the final decision) but has 
not yet committed. The state transition diagrams for the coordinator and 
the participant in this protocol are depicted in Figure 2.3.9. This is called 
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the three-phase commit protocol (3PC) because there are three state 
transitions from the INITIAL state to a COMMIT state. The execution of 
the protocol between the coordinator and one participant is depicted in 
Figure. Note that this is identical to Figure except for the addition of the 
PRECOMMIT state. Observe that 3PC is also a protocol where all the 
states are synchronous within one state transition. Therefore, the foregoing 
conditions for non-blocking 2PC apply to 3PC. 

 

 

Fig: 4.3.9 State Transitions in 3PC Protocol 

It is possible to design different 3PC algorithms depending on the 
communication topology. The one given in Figure is centralized. It is also 
straightforward to design a distributed 3PC protocol. A linear 3PC 
protocol is somewhat more involved, so we leave it as an exercise. 

4.4.1 PARALLEL DATABASE SYSTEM 

A parallel computer, or multiprocessor, is a special kind of distributed 
system made of a number of nodes (processors, memories and disks) 
connected by a very fast network within one or more cabinets in the same 
room. The main idea is to build a very powerful computer out of many 
small computers, each with a very good cost/performance ratio, at a much 
lower cost than equivalent mainframe computers. As discussed in Chapter 
1, data distribution can be exploited to increase performance (through 
parallelism) and availability (through replication). This principle can be 
used to implement parallel database systems, i.e., database systems on 
parallel computers [DeWitt and Gray, 1992; Valduriez, 1993]. Parallel 
database systems can exploit the parallelism in data management in order 
to deliver high-performance and high-availability database servers. Thus, 
they can support very large databases with very high loads. Most of the 
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research on parallel database systems has been done in the context of the 
relational model that provides a good basis for data-based parallelism. In 
this chapter, we present the parallel database system approach as a 
solution to high performance and high-availability data management. We 
discuss the advantages and disadvantages of the various parallel system 
architectures and we present the generic implementation techniques. 

Implementation of parallel database systems naturally relies on distributed 
database techniques. However, the critical issues are data placement, 
parallel query processing, and load balancing because the number of nodes 
may be much higher than in a distributed DBMS. Furthermore, a parallel 
computer typically provides reliable, fast communication that can be 
exploited to efficiently implement distributed transaction management and 
replication. Therefore, although the basic principles are the same as in 
distributed DBMS, the techniques for parallel database systems are fairly 
different. 

4.4.2 DEFINITION OF PARALLEL DATABASE 
SYSTEMS 

Parallel processing exploits multiprocessor computers to run application 
programs by using several processors cooperatively, in order to improve 
performance. Its prominent use has long been in scientific computing by 
improving the response time of numerical applications [Kowalik, 1985; 
Sharp, 1987]. The developments in both general-purpose parallel 
computers using standard microprocessors and parallel programming 
techniques [Osterhaug, 1989] have enabled parallel processing to break 
into the data processing field. Parallel database systems combine database 
management and parallel processing to increase performance and 
availability. Note that performance was also the objective of database 
machines in the 70s and 80s [Hsiao, 1983]. The problem faced by 
conventional database management has long been known as “I/O 
bottleneck” [Boral and DeWitt, 1983], induced by high disk access time 
with respect to main memory access time (typically hundreds of thousands 
times faster). 

A parallel database system can be loosely defined as a DBMS 
implemented on a parallel computer. This definition includes many 
alternatives ranging from the straightforward porting of an existing 
DBMS, which may require only rewriting the operating system interface 
routines, to a sophisticated combination of parallel processing and 
database system functions into a new hardware/software architecture. As 
always, we have the traditional trade-off between portability (to several 
platforms) and efficiency. The sophisticated approach is better able to 
fully exploit the opportunities offered by a multiprocessor at the expense 
of portability. Interestingly, this gives different advantages to computer 
manufacturers and software vendors. It is therefore important to 
characterize the main points in the space of alternative parallel system 
architectures. In order to do so, we will make precise the parallel database 
system solution and the necessary functions. This will be useful in 
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comparing the parallel database system architectures. The objectives of 
parallel database systems are covered by those of distributed DBMS 
(performance, availability, extensibility). Ideally, a parallel database 
system should provide the following advantages. 

1. High-performance. This can be obtained through several 
complementary solutions: database-oriented operating system support, 
parallel data management, query optimization, and load balancing. Having 
the operating system constrained and “aware” of the specific database 
requirements (e.g., buffer management) simplifies the implementation of 
low-level database functions and therefore decreases their cost. For 
instance, the cost of a message can be significantly reduced to a few 
hundred instructions by specializing the communication protocol. 
Parallelism can increase throughput, using inter-query parallelism, and 
decrease transaction response times, using intra-query parallelism. 
However, decreasing the response time of a complex query through large-
scale parallelism may well increase its total time (by additional 
communication) and hurt throughput as a side-effect. Therefore, it is 
crucial to optimize and parallelize queries in order to minimize the 
overhead of parallelism, e.g., by constraining the degree of parallelism for 
the query. Load balancing is the ability of the system to divide a given 
workload equally among all processors. Depending on the parallel system 
architecture, it can be achieved statically by appropriate physical database 
design or dynamically at run-time.  

2. High-availability. Because a parallel database system consists of many 
redundant components, it can well increase data availability and fault-
tolerance. In a highly-parallel system with many nodes, the probability of 
a node failure at any time can be relatively high. Replicating data at 
several nodes is useful to support failover, a fault-tolerance technique that 
enables automatic redirection of transactions from a failed node to another 
node that stores a copy of the data. This provides un-interrupted service to 
users. However, it is essential that a node failure does not crate load 
imbalance, e.g., by doubling the load on the available copy. Solutions to 
this problem require partitioning copies in such a way that they can also be 
accessed in parallel. 

3. Extensibility. In a parallel system, accommodating increasing database 
sizes or increasing performance demands (e.g., throughput) should be 
easier. Extensibility is the ability to expand the system smoothly by adding 
processing and storage power to the system. Ideally, the parallel database 
system should demonstrate two extensibility advantages [DeWitt and 
Gray, 1992]: linear speedup and linear scale up see Figure 2.4.1. Linear 
speedup refers to a linear increase in performance for a constant database 
size while the number of nodes (i.e., processing and storage power) are 
increased linearly. Linear scaleup refers to a sustained performance for a 
linear increase in both database size and number of nodes. Furthermore, 
extending the system should require minimal reorganization of the 
existing database. 
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Fig: 4.4.1 Extensibility Metrics 

Functional Architecture  

Assuming client/server architecture, the functions supported by a parallel 
database system can be divided into three subsystems much like in a 
typical DBMS. The differences, though, have to do with implementation 
of these functions, which must now deal with parallelism, data partitioning 
and replication, and distributed transactions. Depending on the 
architecture, a processor node can support all (or a subset) of these 
subsystems. Figure 2.4.2 shows the architecture using these subsystems 
due to Bergsten et al. [1991]. 

1. Session Manager. It plays the role of a transaction monitor, providing 
support for client interactions with the server. In particular, it performs the 
connections and disconnections between the client processes and the two 
other subsystems. Therefore, it initiates and closes user sessions (which 
may contain multiple transactions). In case of OLTP sessions, the session 
manager is able to trigger the execution of pre-loaded transaction code 
within data manager modules.  

2. Transaction Manager. It receives client transactions related to query 
compilation and execution. It can access the database directory that holds 
all meta-information about data and programs. The directory itself should 
be managed as a database in the server. Depending on the transaction, it 
activates the various compilation phases, triggers query execution, and 
returns the results as well as error codes to the client application. Because 
it supervises transaction execution and commit, it may trigger the recovery 
procedure in case of transaction failure. To speed up query execution, it 
may optimize and parallelize the query at compile-time.  

3. Data Manager. It provides all the low-level functions needed to run 
compiled queries in parallel, i.e., database operator execution, parallel 
transaction support, cache management, etc. If the transaction manager is 
able to compile dataflow control, then synchronization and 
communication among data manager modules is possible. Otherwise, 
transaction control and synchronization must be done by a transaction 
manager module. 
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Fig: 4.4.2 General Architecture of a Parallel Database System 

Parallel DBMS Architectures  

As any system, a parallel database system represents a compromise in 
design choices in order to provide the aforementioned advantages with a 
good cost/performance. One guiding design decision is the way the main 
hardware elements, i.e., processors, main memory, and disks, are 
connected through some fast interconnection network. There are three 
basic parallel computer architectures depending on how main memory or 
disk is shared: shared-memory, shared-disk and shared-nothing. Hybrid 
architectures such as NUMA or cluster try to combine the benefits of the 
basic architectures. In the rest of this section, when describing parallel 
architectures, we focus on the four main hardware elements: interconnect, 
processors (P), main memory (M) and disks. For simplicity, we ignore 
other elements such as processor cache and I/O bus.  

Shared-Memory  

In the shared-memory approach (see Figure 2.4.3), any processor has 
access to any memory module or disk unit through a fast interconnect 
(e.g., a high-speed bus or a cross-bar switch). All the processors are under 
the control of a single operating system Current mainframe designs and 
symmetric multiprocessors (SMP) follow this approach. Examples of 
shared-memory parallel database systems include XPRS [Hong, 1992], 
DBS3 [Bergsten et al., 1991], and Volcano [Graefe, 1990], as well as 
portings of major commercial DBMSs on SMP. In a sense, the 
implementation of DB2 on an IBM3090 with 6 processors [Cheng et al., 
1984] was the first example. All shared-memory parallel database 
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products today can exploit inter-query parallelism to provide high 
transaction throughput and intra-query parallelism to reduce response time 
of decision-support queries. 

 

Fig: 4.4.3 Shared-Memory Architecture 

Shared-memory has two strong advantages: simplicity and load balancing. 
Since meta-information (directory) and control information (e.g., lock 
tables) can be shared by all processors, writing database software is not 
very different than for single processor computers. In particular, inter-
query parallelism comes for free. Intra-query parallelism requires some 
parallelization but remains rather simple. Load balancing is easy to 
achieve since it can be achieved at run-time using the shared-memory by 
allocating each new task to the least busy processor. Shared-memory has 
three problems: high cost, limited extensibility and low availability. High 
cost is incurred by the interconnect that requires fairly complex hardware 
because of the need to link each processor to each memory module or 
disk. With faster processors (even with larger caches), conflicting accesses 
to the shared-memory increase rapidly and degrade performance [Thakkar 
and Sweiger, 1990]. Therefore, extensibility is limited to a few tens of 
processors, typically up to 16 for the best cost/performance using 4-
processor boards. Finally, since the memory space is shared by all 
processors, a memory fault may affect most processors thereby hurting 
availability. The solution is to use duplex memory with a redundant 
interconnect. 

Shared-Disk  

In the shared-disk approach (see Figure 2.4.4), any processor has access to 
any disk unit through the interconnect but exclusive (non-shared) access to 
its main memory. Each processor-memory node is under the control of its 
own copy of the operating system. Then, each processor can access 
database pages on the shared disk and cache them into its own memory. 
Since different processors can access the same page in conflicting update 
modes, global cache consistency is needed. This is typically achieved 
using a distributed lock manager that can be implemented using the 
techniques. The first parallel DBMS that used shared-disk is Oracle with 
an efficient implementation of a distributed lock manager for cache 
consistency. Other major DBMS vendors such as IBM, Microsoft and 
Sybase provide shared-disk implementations 
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Fig; 4.4.4 Shared-Disk Architecture 

Shared-disk has a number of advantages: lower cost, high extensibility, 
load balancing, availability, and easy migration from centralized systems. 
The cost of the interconnect is significantly less than with shared-memory 
since standard bus technology may be used. Given that each processor has 
enough main memory, interference on the shared disk can be minimized. 
Thus, extensibility can be better, typically up to a hundred processors. 
Since memory faults can be isolated from other nodes, availability can be 
higher. Finally, migrating from a centralized system to shared-disk is 
relatively straightforward since the data on disk need not be reorganized. 
Shared-disk suffers from higher complexity and potential performance 
problems. It requires distributed database system protocols, such as 
distributed locking and two-phase commit. As we have discussed in 
previous chapters, these can be complex. Furthermore, maintaining cache 
consistency can incur high communication overhead among the nodes. 
Finally, access to the shared-disk is a potential bottleneck. 

Shared-Nothing  

In the shared-nothing approach (see Figure 2.4.5), each processor has 
exclusive access to its main memory and disk unit(s). Similar to shared-
disk, each processor memory-disk node is under the control of its own 
copy of the operating system. Then, each node can be viewed as a local 
site (with its own database and software) in a distributed database system. 
Therefore, most solutions designed for distributed databases such as 
database fragmentation, distributed transaction management and 
distributed query processing may be reused. Using a fast interconnect, it is 
possible to accommodate large numbers of nodes. As opposed to SMP, 
this architecture is often called Massively Parallel Processor (MPP). Many 
research prototypes have adopted the shared-nothing architecture, e.g., 
BUBBA [Boral et al., 1990], EDS [Group, 1990], GAMMA [DeWitt et 
al., 1986], GRACE [Fushimi et al., 1986], and PRISMA [Apers et al., 
1992], because it can scale. The first major parallel DBMS product was 
Teradata’s Database Computer that could accommodate a thousand 
processors in its early version. Other major DBMS vendors such as IBM, 
Microsoft and Sybase provide shared-nothing implementations. 
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Fig: 4.4.5 Shared-Nothing Architecture 

As demonstrated by the existing products, shared-nothing has three main 
virtues: lower cost, high extensibility, and high availability. The cost 
advantage is better than that of shared-disk that requires a special 
interconnect for the disks. By implementing a distributed database design 
that favors the smooth incremental growth of the system by the addition of 
new nodes, extensibility can be better (in the thousands of nodes). With 
careful partitioning of the data on multiple disks, almost linear speedup 
and linear scale-up could be achieved for simple workloads. Finally, by 
replicating data on multiple nodes, high availability can also be achieved. 
Shared-nothing is much more complex to manage than either shared-
memory or shared-disk. Higher complexity is due to the necessary 
implementation of distributed database functions assuming large numbers 
of nodes. In addition, load balancing is more difficult to achieve because it 
relies on the effectiveness of database partitioning for the query 
workloads. Unlike shared-memory and shared-disk, load balancing is 
decided based on data location and not the actual load of the system. 
Furthermore, the addition of new nodes in the system presumably requires 
reorganizing the database to deal with the load balancing issues. 

Hybrid Architectures  

Various possible combinations of the three basic architectures are possible 
to obtain different trade-offs between cost, performance, extensibility, 
availability, etc. Hybrid architectures try to obtain the advantages of 
different architectures: typically the efficiency and simplicity of shared-
memory and the extensibility and cost of either shared disk or shared 
nothing. In this section, we discuss two popular hybrid architectures: 
NUMA and cluster. 

NUMA. With shared-memory, each processor has uniform memory access 
(UMA), with constant access time, since both the virtual memory and the 
physical memory are shared. One major advantage is that the 
programming model based on shared virtual memory is simple. With 
either shared-disk or shared-nothing, both virtual and shared memory are 
distributed, which yields scalability to large numbers of processors. The 
objective of NUMA is to provide a shared-memory programming model 
and all its benefits, in a scalable architecture with distributed memory. The 
term NUMA reflects the fact that an access to the (virtually) shared 
memory may have a different cost depending on whether the physical 
memory is local or remote to the processor. The most successful class of 
NUMA multiprocessors is Cache Coherent NUMA (CC-NUMA) 
[Goodman and Woest, 1988; Lenoski et al., 1992]. With CC-NUMA, the 
main memory is physically distributed among the nodes as with shared-
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nothing or shared-disk. However, any processor has access to all other 
processors’ memories (see Figure 2.4.6). Each node can itself be an SMP. 
Similar to shared-disk, different processors can access the same data in a 
conflicting update mode, so global cache consistency protocols are 
needed. In order to make remote memory access efficient, the only viable 
solution is to have cache consistency done in hardware through a special 
consistent cache interconnect [Lenoski et al., 1992]. Because shared-
memory and cache consistency are supported by hardware, remote 
memory access is very efficient, only several times (typically between 2 
and 3 times) the cost of local access 

 

Fig: 4.4.6 Cache coherent NUMA (CC-NUMA) 

Most SMP manufacturers are now offering NUMA systems that can scale 
up to a hundred processors. The strong argument for NUMA is that it does 
not require any rewriting of the application software. However some 
rewriting is still necessary in the database engine (and the operating 
system) to take full advantage of access locality [Bouganim et al., 1999] 

Cluster 

A cluster is a set of independent server nodes interconnected to share 
resources and form a single system. The shared resources, called clustered 
resources, can be hardware such as disk or software such as data 
management services. The server nodes are made of off-the-shelf 
components ranging from simple PC components to more powerful SMP. 
Using many off-the-shelf components is essential to obtain the best 
cost/performance ratio while exploiting continuing progress in hardware 
components. In its cheapest form, the interconnect can be a local network. 
However, there are now fast standard interconnects for clusters (e.g., 
Myrinet and Infiniband) that provide high bandwidth (Gigabits/sec) with 
low latency for message traffic. Compared to a distributed system, a 
cluster is geographically concentrated (at a single site) and made of 
homogeneous nodes. Its architecture can be either shared nothing or 
shared-disk. Shared-nothing clusters have been widely used because they 
can provide the best cost/performance ratio and scale up to very large 
configurations (thousands of nodes). However, because each disk is 
directly connected to a computer via a bus, adding or replacing cluster 
nodes requires disk and data reorganization. Shared-disk avoids such 
reorganization but requires disks to be globally accessible by the cluster 
nodes. There are two main technologies to share disks in a cluster: 
network-attached storage (NAS) and storage-area network (SAN). A NAS 
is a dedicated device to shared disks over a network (usually TCP/IP) 
using a distributed file system protocol such as Network File System 
(NFS). NAS is well suited for low throughput applications such as data 
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backup and archiving from PC’s hard disks. However, it is relatively slow 
and not appropriate for database management as it quickly becomes a 
bottleneck with many nodes. A storage area network (SAN) provides 
similar functionality but with a lower level interface. For efficiency, it 
uses a block-based protocol thus making it easier to manage cache 
consistency (at the block level). In fact, disks in a SAN are attached to the 
network instead to the bus as happens in Directly Attached Storage (DAS), 
but otherwise they are handled as sharable local disks. Existing protocols 
for SANs extend their local disk counterparts to run over a network (e.g., 
i-SCSI extends SCSI, and ATA-over-Ethernet extends ATA). As a result, 
SAN provides high data throughput and can scale up to large numbers of 
nodes. Its only limitation with respect to shared-nothing is its higher cost 
of ownership. 

A cluster architecture has important advantages. It combines the flexibility 
and performance of shared-memory at each node with the extensibility and 
availability of shared-nothing or shared-disk. Furthermore, using off-the-
shelf shared-memory nodes with a standard cluster interconnect makes it a 
cost-effective alternative to proprietary high-end multiprocessors such as 
NUMA or MPP. Finally, using SAN eases disk management and data 
placement. 

4.4.3 PARALLEL QUERY EVALUATION 

The objective of parallel query processing is to transform queries into 
execution plans that can be efficiently executed in parallel. This is 
achieved by exploiting parallel data placement and the various forms of 
parallelism offered by high-level queries. In this section, we first introduce 
the various forms of query parallelism. Then we derive basic parallel 
algorithms for data processing. Finally, we discuss parallel query 
optimization. 

4.4.4 QUERY PARALLELISM 

Parallel query execution can exploit two forms of parallelism: inter- and 
intra-query. Inter-query parallelism enables the parallel execution of 
multiple queries generated by concurrent transactions, in order to increase 
the transactional throughput. Within a query (intra-query parallelism), 
inter-operator and intra-operator parallelism are used to decrease response 
time. Inter-operator parallelism is obtained by executing in parallel several 
operators of the query tree on several processors while with intra-operator 
parallelism, the same operator is executed by many processors, each one 
working on a subset of the data. Note that these two forms of parallelism 
also exist in distributed query processing 

4.4.5 I/O PARALLELISM (DATA PARTITIONING) 

A shared-nothing architecture because it is the most general case and its 
implementation techniques also apply, sometimes in a simplified form, to 
other architectures. Data placement in a parallel database system exhibits 
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similarities with data fragmentation in distributed databasee. An obvious 
similarity is that fragmentation can be used to increase parallelism. In 
what follows, we use the terms partitioning and partition instead of 
horizontal fragmentation and horizontal fragment, respectively, to contrast 
with the alternative strategy, which consists of clustering a relation at a 
single node. The term declustering is sometimes used to mean partitioning 
[Livny et al., 1987]. Vertical fragmentation can also be used to increase 
parallelism and load balancing much as in distributed databases. Another 
similarity is that since data are much larger than programs, execution 
should occur, as much as possible, where the data reside. However, there 
are two important differences with the distributed database approach. 
First, there is no need to maximize local processing (at each node) since 
users are not associated with particular nodes. Second, load balancing is 
much more difficult to achieve in the presence of a large number of nodes. 
The main problem is to avoid resource contention, which may result in the 
entire system thrashing (e.g., one node ends up doing all the work while 
the others remain idle). Since programs are executed where the data 
reside, data placement is a critical performance issue. Data placement 
must be done so as to maximize system performance, which can be 
measured by combining the total amount of work done by the system and 
the response time of individual queries. In Chapter 8, we have seen that 
maximizing response time (through intra-query parallelism) results in 
increased total work due to communication overhead. For the same reason, 
inter-query parallelism results in increased total work. On the other hand, 
clustering all the data necessary to a program minimizes communication 
and thus the total work done by the system in executing that program. In 
terms of data placement, we have the following trade-off: maximizing 
response time or inter-query parallelism leads to partitioning, whereas 
minimizing the total amount of work leads to clustering. As we have seen 
in Chapter 3, this problem is addressed in distributed databases in a rather 
static manner. The database administrator is in charge of periodically 
examining fragment access frequencies, and when necessary, moving and 
reorganizing fragments. An alternative solution to data placement is full 
partitioning, whereby each relation is horizontally fragmented across all 
the nodes in the system. There are three basic strategies for data 
partitioning: round-robin, hash, and range partitioning (Figure 2.4.7). 

 

Fig: 4.4.7 Different Partitioning Schemes 
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1. Round-robin partitioning is the simplest strategy, it ensures uniform 
data distribution. With n partitions, the ith tuple in insertion order is 
assigned to partition (i mod n). This strategy enables the sequential 
access to a relation to be done in parallel. However, the direct access to 
individual tuples, based on a predicate, requires accessing the entire 
relation.  

2. Hash partitioning applies a hash function to some attribute that yields 
the partition number. This strategy allows exact-match queries on the 
selection attribute to be processed by exactly one node and all other 
queries to be processed by all the nodes in parallel. 

3. Range partitioning distributes tuples based on the value intervals 
(ranges) of some attribute. In addition to supporting exact-match 
queries (as in hashing), it is well-suited for range queries. For instance, 
a query with a predicate “A between A1 and A2” may be processed by 
the only node(s) containing tuples whose A value is in range [A1,A2].  

However, range partitioning can result in high variation in partition size. 
Compared to clustering relations on a single (possibly very large) disk, full 
partitioning yields better performance [Livny et al., 1987]. Although full 
partitioning has obvious performance advantages, highly parallel 
execution might cause a serious performance overhead for complex 
queries involving joins. Furthermore, full partitioning is not appropriate 
for small relations that span a few disk blocks. These drawbacks suggest 
that a compromise between clustering and full partitioning (i.e., variable 
partitioning), needs to be found. A solution is to do data placement by 
variable partitioning [Copeland et al., 1988]. The degree of partitioning, 
i.e., the number of nodes over which a relation is fragmented, is a function 
of the size and access frequency of the relation. This strategy is much 
more involved than either clustering or full partitioning because changes 
in data distribution may result in reorganization. For example, a relation 
initially placed across eight nodes may have its cardinality doubled by 
subsequent insertions, in which case it should be placed across 16 nodes. 
In a highly parallel system with variable partitioning, periodic 
reorganizations for load balancing are essential and should be frequent 
unless the workload is fairly static and experiences only a few updates. 
Such reorganizations should remain transparent to compiled programs that 
run on the database server. In particular, programs should not be 
recompiled because of reorganization. Therefore, the compiled programs 
should remain independent of data location, which may change rapidly. 
Such independence can be achieved if the run-time system supports 
associative access to distributed data. This is different from a distributed 
DBMS, where associative access is achieved at compile time by the query 
processor using the data directory. 

4.4.6 INTRA-QUERY PARALLELISM 

Parallel query execution can exploit two forms of parallelism: inter- and 
intra-query. Within a query (intra-query parallelism), inter-operator and 
intra-operator parallelism are used to decrease response time. 
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4.4.7 INTER –QUERY PARALLELISM 

Inter-query parallelism enables the parallel execution of multiple queries 
generated by concurrent transactions, in order to increase the transactional 
throughput.  Inter-operator parallelism is obtained by executing in parallel 
several operators of the query tree on several processors while with intra-
operator parallelism, the same operator is executed by many processors, 
each one working on a subset of the data. Note that these two forms of 
parallelism also exist in distributed query processing. 

4.4.8 INTRA OPERATION PARALLELISM 

Intra-operator parallelism is based on the decomposition of one operator in 
a set of independent sub-operators, called operator instances. This 
decomposition is done using static and/or dynamic partitioning of 
relations. Each operator instance will then process one relation partition, 
also called a bucket. The operator decomposition frequently benefits from 
the initial partitioning of the data (e.g., the data are partitioned on the join 
attribute). To illustrate intra-operator parallelism, let us consider a simple 
select-join query. The select operator can be directly decomposed into 
several select operators, each on a different partition, and no redistribution 
is required (Figure 2.4.8). Note that if the relation is partitioned on the 
select attribute, partitioning properties can be used to eliminate some 
select instances. For example, in an exact-match select, only one select 
instance will be executed if the relation was partitioned by hashing (or 
range) on the select attribute. It is more complex to decompose the join 
operator. In order to have independent joins, each bucket of the first 
relation R may be joined to the entire relation S. Such a join will be very 
inefficient (unless S is very small) because it will imply a broadcast of S 
on each participating processor. A more efficient way is to use partitioning 
properties. For example, if R and S are partitioned by hashing on the join 
attribute and if the join is an equijoin, then we can partition the join into 
independent joins. This is the ideal case that cannot be always used, 
because it depends on the initial partitioning of R and S. In the other cases, 
one or two operands may be repartitioned [Valduriez and Gardarin, 1984]. 
Finally, we may notice that the partitioning function (hash, range, round 
robin) is independent of the local algorithm (e.g., nested loop, hash, sort 
merge) used to process the join operator (i.e., on each processor). For 
instance, a hash  join using a hash partitioning needs two hash functions. 
The first one, h1, is used to partition the two base relations on the join 
attribute. The second one, h2, which can be different for each processor, is 
used to process the join on each processor. 
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Fig: 4.4.8 Intra-operator Parallism 

4.4.9 INTER OPERATION PARALLELISM 

Two forms of inter-operator parallelism can be exploited. With pipeline 
parallelism, several operators with a producer-consumer link are executed 
in parallel. For instance, the select operator in Figure 2.4.9 will be 
executed in parallel with the join operator. The advantage of such 
execution is that the intermediate result is not materialized, thus saving 
memory and disk accesses. In the example of Figure 2.4.9, only S may fit 
in memory. Independent parallelism is achieved when there is no 
dependency between the operators that are executed in parallel. For 
instance, the two select operators of Figure 2.4.9 can be executed in 
parallel. This form of parallelism is very attractive because there is no 
interference between the processors. 

 

Fig:4.5.3 Inter-operator Parallelism 

4.4.10 LET US SUM UP 

Thus, we have studied basic concepts of database transaction, ACID 
properties, concurrency control, timestamp ordering algorithm, deadlock 
management. With this local recovery management, 2PC and 3PC 
protocol. Also the major aspect parallel database system as well. 
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4.4.12 UNIT END EXERCISES 

1)  Explain with Example: 

a. Intra-query parallelism 

b. Intra-operation parallelism 

c. Inter-operation parallelism 

2)  Explain ACID properties. 

3)  Explain two and three phase commit protocol. 

4)  Explain timestamp ordering algorithm. 
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Module III  

5 
OBJECT ORIENTED, TEMPORAL AND 

SPATIAL DATABASES 

Unit Structure 

5.1.0 Objectives  
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5.1.2 Object Oriented Database  

5.1.3 Object Identity  

5.1.4 Object structure  

5.1.5 Type Constructors  
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5.1.10 Complex Objects  

5.1.11 Object-oriented DBMS  
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5.1.14 Object Definition Languages (ODL) 

5.1.15 Object Query Languages (OQL) 

5.2.1 Introduction to Temporal Database:  

5.2.2 Time ontology  

5.2.3 Structure and granularity 

5.2.4 Temporal data models  

5.2.5 Temporal relational algebras  

5.2.6 Introduction to Spatial Database  
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5.2.8 Types of spatial data  

5.2.9 Geographical Information Systems (GIS)  

5.2.10 Conceptual Data Models for spatial databases  

5.2.11 Logical data models for spatial databases  

5.2.12 Raster and vector model  

5.2.13 Physical data models for spatial databases  

5.2.14 Clustering methods (space filling curves),  

5.2.15 Storage methods (R-tree)  

5.2.16 Query processing  

5.2.17 LET US SUM UP 

5.2.18 List of References  

5.2.19 Unit End Exercises 

5.1.0 OBJECTIVES  

In this chapter you will learn about: 

 Basic of object, constructor, methods, inheritance etc. 

 Object-oriented database-language and design ODMG model, 
ODL,OQL  

 Temporal Database-Time series, structure, granularity, data model etc. 

 Spatial Database-conceptual, logical data model 

 Geographical Information Systems (GIS)s 

5.1.1 INTRODUCTION  

This chapter introduces database concepts for some of the common 
features that are needed by advanced applications and are being used 
widely. We will temporal concepts that are used in temporal database 
applications, and, briefly, some of the issues involving spatial database. 

In this chapter, we discuss the features of object oriented data models and 
show how some of these features have been incorporated in relational 
database systems. Object-oriented databases are now referred to as object 
databases (ODB) (previously called OODB), and the database systems 
are referred to as object data management systems (ODMS) (formerly 
referred to as ODBMS or OODBMS). Traditional data models and 
systems, such as relational, network, and hierarchical, have been quite 
successful in developing the database technologies required for many 
traditional business database applications. 
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We introduce the concepts of temporal databases, which permit the 
database system to store a history of changes, and allow users to query 
both current and past states of the database. Some temporal database 
models also allow users to store future expected information, such as 
planned schedules. It is important to note that many database applications 
are temporal, but they are often implemented without having much 
temporal support from the DBMS package—that is, the temporal concepts 
are implemented in the application programs that access the database. 

We discuss types of spatial data, different kinds of spatial analyses, 
operations on spatial data, types of spatial queries, spatial data indexing, 
spatial data mining, and applications of spatial databases. 

5.1.2 OBJECT ORIENTED DATABASE 

The features of object oriented data models and show how some of these 
features have been incorporated in relational database systems. Object-
oriented databases are now referred to as object databases (ODB) 
(previously called OODB), and the database systems are referred to as 
object data management systems (ODMS) (formerly referred to as 
ODBMS or OODBMS). Traditional data models and systems, such as 
relational, network, and hierarchical, have been quite successful in 
developing the database technologies required for many traditional 
business database applications. However, they have certain shortcomings 
when more complex database applications must be designed and 
implemented—for example, databases for engineering design and 
manufacturing (CAD/CAM and CIM1), scientific experiments, 
telecommunications, geographic information systems, and multimedia. 
These newer applications have requirements and characteristics that differ 
from those of traditional business applications, such as more complex 
structures for stored objects; the need for new data types for storing 
images, videos, or large textual items; longer-duration transactions; and 
the need to define nonstandard application-specific operations. Object 
databases were proposed to meet some of the needs of these more complex 
applications. A key feature of object databases is the power they give the 
designer to specify both the structure of complex objects and the 
operations that can be applied to these objects. Another reason for the 
creation of object-oriented databases is the vast increase in the use of 
object-oriented programming languages for developing software 
applications. Databases are fundamental components in many software 
systems, and traditional databases are sometimes difficult to use with 
software applications that are developed in an object-oriented 
programming language such as C++ or Java. Object databases are 
designed so they can be directly—or seamlessly—integrated with software 
that is developed using object-oriented programming languages. 
Relational DBMS (RDBMS) vendors have also recognized the need for 
incorporating features that were proposed for object databases, and newer 
versions of relational systems have incorporated many of these features. 
This has led to database systems that are characterized as object-relational 
or ORDBMSs. The latest version of the SQL standard (2008) for 
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RDBMSs includes many of these features, which were originally known 
as SQL/Object and they have now been merged into the main SQL 
specification, known as SQL/Foundation. Although many experimental 
prototypes and commercial object-oriented database systems have been 
created, they have not found widespread use because of the popularity of 
relational and object-relational systems. The experimental prototypes 
included the Orion system developed at MCC, Open OODB at Texas 
Instruments, the Iris system at Hewlett-Packard laboratories, the Ode 
system at AT&T Bell Labs, and the ENCORE/ObServer project at Brown 
University. Commercially available systems included GemStone Object 
Server of GemStone Systems, ONTOS DB of Ontos, Objectivity/DB of 
Objectivity Inc.,Versant Object Database and Fast Objects by Versant 
Corporation (and Poet), ObjectStore of Object Design, and Ardent 
Database of Ardent. These represent only a partial list of the experimental 
prototypes and commercial object-oriented database systems that were 
created. As commercial object DBMSs became available, the need for a 
standard model and language was recognized. Because the formal 
procedure for approval of standards normally takes a number of years, a 
consortium of object DBMS vendors and users, called ODMG, proposed a 
standard whose current specification is known as the ODMG 3.0 standard. 
Object-oriented databases have adopted many of the concepts that were 
developed originally for object-oriented programming languages. We 
describe the key concepts utilized in many object database systems and 
that were later incorporated into object-relational systems and the SQL 
standard. These include object identity, object structure and type 
constructors, encapsulation of operations and the definition of methods as 
part of class declarations, mechanisms for storing objects in a database by 
making them persistent, and type and class hierarchies and inheritance. 
Then, in we see how these concepts have been incorporated into the latest 
SQL standards, leading to object-relational databases. Object features 
were originally introduced in SQL:1999, and then updated in the latest 
version (SQL:2008) of the standard. We turn our attention to “pure” object 
database standards by presenting features of the object database standard 
ODMG 3.0 and the object definition language ODL. An overview of the 
database design process for object databases. The object query language 
(OQL), which is part of the ODMG 3.0 standard. We discuss 
programming language bindings, which specify how to extend object 
oriented programming languages to include the features of the object 
database standard. 

5.1.3 OBJECT IDENTITY 

One goal of an ODMS (Object Data Management System) is to maintain a 
direct correspondence between real-world and database objects so that 
objects do not lose their integrity and identity and can easily be identified 
and operated upon. Hence, an ODMS provides a unique identity to each 
independent object stored in the database. This unique identity is typically 
implemented via a unique, system-generated object identifier (OID). The 
value of an OID is not visible to the external user, but is used internally by 
the system to identify each object uniquely and to create and manage inter-
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object references. The OID can be assigned to program variables of the 
appropriate type when needed. 

The main property required of an OID is that it be immutable; that is, the 
OID value of a particular object should not change. This preserves the 
identity of the real-world object being represented. Hence, an ODMS must 
have some mechanism for generating OIDs and preserving the 
immutability property. It is also desirable that each OID be used only 
once; that is, even if an object is removed from the database, its OID 
should not be assigned to another object. These two properties imply that 
the OID should not depend on any attribute values of the object, since the 
value of an attribute may be changed or corrected. We can compare this 
with the relational model, where each relation must have a primary key 
attribute whose value identifies each tuple uniquely. In the relational 
model, if the value of the primary key is changed, the tuple will have a 
new identity, even though it may still represent the same real-world object. 
Alternatively, a real-world object may have different names for key 
attributes in different relations, making it difficult to ascertain that the 
keys represent the same real-world object (for example, the object 
identifier may be represented as Emp_id in one relation and as Ssn in 
another). It is inappropriate to base the OID on the physical address of the 
object in storage, since the physical address can change after a physical 
reorganization of the database.  

However, some early ODMSs have used the physical address as the OID 
to increase the efficiency of object retrieval. If the physical address of the 
object changes, an indirect pointer can be placed at the former address, 
which gives the new physical location of the object. It is more common to 
use long integers as OIDs and then to use some form of hash table to map 
the OID value to the current physical address of the object in storage. 
Some early OO data models required that everything—from a simple 
value to a complex object—was represented as an object; hence, every 
basic value, such as an integer, string, or Boolean value, has an OID. This 
allows two identical basic values to have different OIDs, which can be 
useful in some cases. For example, the integer value 50 can sometimes be 
used to mean a weight in kilograms and at other times to mean the age of a 
person. Then, two basic objects with distinct OIDs could be created, but 
both objects would represent the integer value 50. Although useful as a 
theoretical model, this is not very practical, since it leads to the generation 
of too many OIDs. Hence, most OO database systems allow for the 
representation of both objects and literals (or values). Every object must 
have an immutable OID, whereas a literal value has no OID and its value 
just stands for itself. Thus, a literal value is typically stored within an 
object and cannot be referenced from other objects. In many systems, 
complex structured literal values can also be created without having a 
corresponding OID if needed.  

5.1.4 OBJECT STRUCTURE 

The term object-oriented—abbreviated OO or O-O—has its origins in OO 
programming languages, or OOPLs. Today OO concepts are applied in the 
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areas of databases, software engineering, knowledge bases, artificial 
intelligence, and computer systems in general. OOPLs have their roots in 
the SIMULA language, which was proposed in the late 1960s. The 
programming language Smalltalk, developed at Xerox PARC8 in the 
1970s, was one of the first languages to explicitly incorporate additional 
OO concepts, such as message passing and inheritance. It is known as a 
pure OO programming language, meaning that it was explicitly designed 
to be object-oriented. This contrasts with hybrid OO programming 
languages, which incorporate OO concepts into an already existing 
language. An example of the latter is C++, which incorporates OO 
concepts into the popular C programming language. 

An object typically has two components: state (value) and behavior 
(operations). It can have a complex data structure as well as specific 
operations defined by the programmer. Objects in an OOPL exist only 
during program execution; therefore, they are called transient objects. An 
OO database can extend the existence of objects so that they are stored 
permanently in a database, and hence the objects become persistent 
objects that exist beyond program termination and can be retrieved later 
and shared by other programs. In other words, OO databases store 
persistent objects permanently in secondary storage, and allow the sharing 
of these objects among multiple programs and applications. This requires 
the incorporation of other well-known features of database management 
systems, such as indexing mechanisms to efficiently locate the objects, 
concurrency control to allow object sharing among concurrent programs, 
and recovery from failures. An OO database system will typically 
interface with one or more OO programming languages to provide 
persistent and shared object capabilities. 

The internal structure of an object in OOPLs includes the specification of 
instance variables, which hold the values that define the internal state of 
the object. An instance variable is similar to the concept of an attribute in 
the relational model, except that instance variables may be encapsulated 
within the object and thus are not necessarily visible to external users. 
Instance variables may also be of arbitrarily complex data types. Object-
oriented systems allow definition of the operations or functions (behavior) 
that can be applied to objects of a particular type. In fact, some OO models 
insist that all operations a user can apply to an object must be predefined.  

This forces a complete encapsulation of objects. This rigid approach has 
been relaxed in most OO data models for two reasons. First, database 
users often need to know the attribute names so they can specify selection 
conditions on the attributes to retrieve specific objects. Second, complete 
encapsulation implies that any simple retrieval requires a predefined 
operation, thus making ad hoc queries difficult to specify on the fly. 

To encourage encapsulation, an operation is defined in two parts. The first 
part, called the signature or interface of the operation, specifies the 
operation name and arguments (or parameters). The second part, called the 
method or body, specifies the implementation of the operation, usually 
written in some general-purpose programming language. Operations can 
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be invoked by passing a message to an object, which includes the 
operation name and the parameters. The object then executes the method 
for that operation. This encapsulation permits modification of the internal 
structure of an object, as well as the implementation of its operations, 
without the need to disturb the external programs that invoke these 
operations.  

Hence, encapsulation provides a form of data and operation independence. 
Another key concept in OO systems is that of type and class hierarchies 
and inheritance. This permits specification of new types or classes that 
inherit much of their structure and/or operations from previously defined 
types or classes. This makes it easier to develop the data types of a system 
incrementally, and to reuse existing type definitions when creating new 
types of objects. One problem in early OO database systems involved 
representing relationships among objects. The insistence on complete 
encapsulation in early OO data models led to the argument that 
relationships should not be explicitly represented, but should instead be 
described by defining appropriate methods that locate related objects. 
However, this approach does not work very well for complex databases 
with many relationships because it is useful to identify these relationships 
and make them visible to users. The ODMG object database standard has 
recognized this need and it explicitly represents binary relationships via a 
pair of inverse references. 

Another OO concept is operator overloading, which refers to an 
operation’s ability to be applied to different types of objects; in such a 
situation, an operation name may refer to several distinct implementations, 
depending on the type of object it is applied to. This feature is also called 
operator polymorphism. For example, an operation to calculate the area of 
a geometric object may differ in its method (implementation), depending 
on whether the object is of type triangle, circle, or rectangle. This may 
require the use of late binding of the operation name to the appropriate 
method at runtime, when the type of object to which the operation is 
applied becomes known. In the next several sections, we discuss in some 
detail the main characteristics of object databases. The types for complex-
structured objects are specified via type constructors; encapsulation and 
persistence; and presents inheritance concepts. Some additional OO 
concepts, and gives a summary of all the OO concepts that we introduced. 
In we show how some of these concepts have been incorporated into the 
SQL:2008 standard for relational databases. Then we show how these 
concepts are realized in the ODMG 3.0 object database standard. 

5.1.5 TYPE CONSTRUCTORS 

Another feature of an ODMS (and ODBs in general) is that objects and 
literals may have a type structure of arbitrary complexity in order to 
contain all of the necessary information that describes the object or literal. 
In contrast, in traditional database systems, information about a complex 
object is often scattered over many relations or records, leading to loss of 
direct correspondence between a real-world object and its database 
representation. In ODBs, a complex type may be constructed from other 
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types by nesting of type constructors. The three most basic constructors 
are atom, struct (or tuple), and collection. 

One type constructor has been called the atom constructor, although this 
term is not used in the latest object standard. This includes the basic built-
in data types of the object model, which are similar to the basic types in 
many programming languages: integers, strings, floating point numbers, 
enumerated types, Booleans, and so on. They are called single-valued or 
atomic types, since each value of the type is considered an atomic 
(indivisible) single value. 

A second type constructor is referred to as the struct (or tuple) 
constructor. This can create standard structured types, such as the tuples 
(record types) in the basic relational model. A structured type is made up 
of several components, and is also sometimes referred to as a compound or 
composite type. More accurately, the struct constructor is not considered 
to be a type, but rather a type generator, because many different 
structured types can be created. For example, two different structured 
types that can be created are: struct Name<FirstName: string, 
MiddleInitial: char, LastName: string>, and struct CollegeDegree<Major: 
string, Degree: string, Year: date>. To create complex nested type 
structures in the object model, the collection type constructors are needed, 
which we discuss next. Notice that the type constructors atom and struct 
are the only ones available in the original (basic) relational model. 

Collection (or multivalued) type constructors include the set(T), list(T), 
bag(T), array(T), and dictionary(K,T) type constructors. These allow 
part of an object or literal value to include a collection of other objects or 
values when needed. These constructors are also considered to be type 
generators because many different types can be created. For example, 
set(string), set(integer), and set(Employee) are three different types that 
can be created from the set type constructor. All the elements in a 
particular collection value must be of the same type. For example, all 
values in a collection of type set(string) must be string values. The atom 
constructor is used to represent all basic atomic values, such as integers, 
real numbers, character strings, Booleans, and any other basic data types 
that the system supports directly. The tuple constructor can create 
structured values and objects of the form <a1:i1, a2:i2, ..., an:in>, where 
each aj is an attribute name10 and each ij is a value or an OID. The other 
commonly used constructors are collectively referred to as collection 
types, but have individual differences among them. The set constructor 
will create objects or literals that are a set of distinct elements {i1, i2, ..., 
in}, all of the same type. The bag constructor (sometimes called a 
multiset) is similar to a set except that the elements in a bag need not be 
distinct. The list constructor will create an ordered list [i1, i2, ..., in] of 
OIDs or values of the same type. A list is similar to a bag except that the 
elements in a list are ordered, and hence we can refer to the first, second, 
or jth element. The array constructor creates a single-dimensional array 
of elements of the same type. The main difference between array and list 
is that a list can have an arbitrary number of elements whereas an array 
typically has a maximum size.  
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Finally, the dictionary constructor creates a collection of two tuples (K, 
V), where the value of a key K can be used to retrieve the corresponding 
value V. The main characteristic of a collection type is that its objects or 
values will be a collection of objects or values of the same type that may 
be unordered (such as a set or a bag) or ordered (such as a list or an array). 
The tuple type constructor is often called a structured type, since it 
corresponds to the struct construct in the C and C++ programming 
languages. 

An object definition language (ODL) that incorporates the preceding 
type constructors can be used to define the object types for a particular 
database application. In this we will describe the standard ODL of 
ODMG, but first we introduce the concepts gradually in this section using 
a simpler notation. The type constructors can be used to define the data 
structures for an OO database schema. Figure shows how we may declare 
EMPLOYEE and DEPARTMENT types.  

In Figure, the attributes that refer to other objects—such as Dept of 
EMPLOYEE or Projects of DEPARTMENT—are basically OIDs that 
serve as references to other objects to represent relationships among the 
objects. For example, the attribute Dept of EMPLOYEE is of type 
DEPARTMENT, and hence is used to refer to a specific DEPARTMENT 
object (the DEPARTMENT object where the employee works). The value 
of such an attribute would be an OID for a specific DEPARTMENT 
object. A binary relationship can be represented in one direction, or it can 
have an inverse reference. The latter representation makes it easy to 
traverse the relationship in both directions. For example, in Figure the 
attribute Employees of DEPARTMENT has as its value a set of references 
(that is, a set of OIDs) to objects of type EMPLOYEE; these are the 
employees who work for the DEPARTMENT. The inverse is the reference 
attribute Dept of EMPLOYEE. 

 

Figure5.1.1 Specifying the object type EMPLOYEE, DATE and 
DEPARTMENT using type constructors. 
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5.1.6 ENCAPSULATION OF OPERATIONS 

Encapsulation of Operations The concept of encapsulation is one of the 
main characteristics of OO languages and systems. It is also related to the 
concepts of abstract data types and information hiding in programming 
languages. In traditional database models and systems this concept was 
not applied, since it is customary to make the structure of database objects 
visible to users and external programs. In these traditional models, a 
number of generic database operations are applicable to objects of all 
types. For example, in the relational model, the operations for selecting, 
inserting, deleting, and modifying tuples are generic and may be applied to 
any relation in the database. The relation and its attributes are visible to 
users and to external programs that access the relation by using these 
operations. The concepts of encapsulation is applied to database objects in 
ODBs by defining the behavior of a type of object based on the 
operations that can be externally applied to objects of that type. Some 
operations may be used to create (insert) or destroy (delete) objects; other 
operations may update the object state; and others may be used to retrieve 
parts of the object state or to apply some calculations. Still other 
operations may perform a combination of retrieval, calculation, and 
update. In general, the implementation of an operation can be specified in 
a general-purpose programming language that provides flexibility and 
power in defining the operations. The external users of the object are only 
made aware of the interface of the operations, which defines the name 
and arguments (parameters) of each operation. The implementation is 
hidden from the external users; it includes the definition of any hidden 
internal data structures of the object and the implementation of the 
operations that access these structures. The interface part of an operation is 
sometimes called the signature, and the operation implementation is 
sometimes called the method. 

For database applications, the requirement that all objects be completely 
encapsulated is too stringent. One way to relax this requirement is to 
divide the structure of an object into visible and hidden attributes 
(instance variables). Visible attributes can be seen by and are directly 
accessible to the database users and programmers via the query language. 
The hidden attributes of an object are completely encapsulated and can be 
accessed only through predefined operations. Most ODMSs employ high-
level query languages for accessing visible attributes. In this we will 
describe the OQL query language that is proposed as a standard query 
language for ODBs. 

The term class is often used to refer to a type definition, along with the 
definitions of the operations for that type. Figure 3.1.2 shows how the type 
definitions in Figure 3.1.1 can be extended with operations to define 
classes. A number of operations are declared for each class, and the 
signature (interface) of each operation is included in the class definition. 
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Figure 5.1.2 Adding operations to the definitions of EMPLOYEE and 
DEPARTMENT 

A method (implementation) for each operation must be defined elsewhere 
using a programming language. Typical operations include the object 
constructor operation (often called new), which is used to create a new 
object, and the destructor operation, which is used to destroy (delete) an 
object. A number of object modifier operations can also be declared to 
modify the states (values) of various attributes of an object. Additional 
operations can retrieve information about the object. 

An operation is typically applied to an object by using the dot notation. 
For example, if d is a reference to a DEPARTMENT object, we can 
invoke an operation such as no_of_emps by writing d.no_of_emps. 
Similarly, by writing d.destroy_dept, the object referenced by d is 
destroyed (deleted). The only exception is the constructor operation, 
which returns a reference to a new DEPARTMENT object. Hence, it is 
customary in some OO models to have a default name for the constructor 
operation that is the name of the class itself, although this was not used in 
Figure. The dot notation is also used to refer to attributes of an object—for 
example, by writing d.Dnumber or d.Mgr_Start_date. 

5.1.7 METHODS AND PERSISTENCE 

Specifying Object Persistence via Naming and Reachability An ODBS 
is often closely coupled with an object-oriented programming language 
(OOPL). The OOPL is used to specify the method (operation) 
implementations as well as other application code. Not all objects are 
meant to be stored permanently in the database.  
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Transient objects exist in the executing program and disappear once the 
program terminates. Persistent objects are stored in the database and 
persist after program termination. The typical mechanisms for making an 
object persistent are naming and reachability. 

The naming mechanism involves giving an object a unique persistent 
name within a particular database. This persistent object name can be 
given via a specific statement or operation in the program, as shown in 
Figure. The named persistent objects are used as entry points to the 
database through which users and applications can start their database 
access. Obviously, it is not practical to give names to all objects in a large 
database that includes thousands of objects, so most objects are made 
persistent by using the second mechanism, called reachability. The 
reachability mechanism works by making the object reachable from some 
other persistent object. An object B is said to be reachable from an object 
A if a sequence of references in the database lead from object A to                 
object B. 

If we first create a named persistent object N, whose state is a set (or 
possibly a bag) of objects of some class C, we can make objects of C 
persistent by adding them to the set, thus making them reachable from N. 
Hence, N is a named object that defines a persistent collection of objects 
of class C. In the object model standard, N is called the extent of C. 

For example, we can define a class DEPARTMENT_SET (see Figure) 
whose objects are of type set(DEPARTMENT). We can create an object 
of type DEPARTMENT_SET, and give it a persistent name ALL_ 
DEPARTMENTS, as shown in Figure. Any DEPARTMENT object that is 
added to the set of ALL_DEPARTMENTS by using the add_dept 
operation becomes persistent by virtue of its being reachable from 
ALL_DEPARTMENTS. As we will see in Section, the ODMG ODL 
standard gives the schema designer the option of naming an extent as part 
of class definition. Notice the difference between traditional database 
models and ODBs in this respect.  

 

Figure 5.1.3 creating persistent objects by naming and reachability. 
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In traditional database models, such as the relational model, all objects are 
assumed to be persistent. Hence, when a table such as EMPLOYEE is 
created in a relational database, it represents both the type declaration for 
EMPLOYEE and a persistent set of all EMPLOYEE records (tuples). In 
the OO approach, a class declaration of EMPLOYEE specifies only the 
type and operations for a class of objects. The user must separately define 
a persistent object of type set(EMPLOYEE) or bag(EMPLOYEE) whose 
value is the collection of references (OIDs) to all persistent EMPLOYEE 
objects, if this is desired, as shown in Figure. This allows transient and 
persistent objects to follow the same type and class declarations of the 
ODL and the OOPL. In general, it is possible to define several persistent 
collections for the same class definition, if desired. 

5.1.8 TYPE AND CLASS HIERARCHIES 

Simplified Model for Inheritance Another main characteristic of ODBs 
is that they allow type hierarchies and inheritance. We use a simple OO 
model in this section a model in which attributes and operations are treated 
uniformly—since both attributes and operations can be inherited. In this 
section, we will discuss the inheritance model of the ODMG standard, 
which differs from the model discussed here because it distinguishes 
between two types of inheritance. Inheritance allows the definition of new 
types based on other predefined types, leading to a type (or class) 
hierarchy. 

Type is defined by assigning it a type name, and then defining a number of 
attributes (instance variables) and operations (methods) for the type. In the 
simplified model we use in this section, the attributes and operations are 
together called functions, since attributes resemble functions with zero 
arguments. A function name can be used to refer to the value of an 
attribute or to refer to the resulting value of an operation (method).We use 
the term function to refer to both attributes and operations, since they are 
treated similarly in a basic introduction to inheritance.  

A type in its simplest form has a type name and a list of visible (public) 
functions. When specifying a type in this section, we use the following 
format, which does not specify arguments of functions, to simplify the 
discussion: TYPE_NAME: function, function,..., function For example, a 
type that describes characteristics of a PERSON may be defined 
asfollows: PERSON: Name, Address, Birth_date, Age, Ssn In the 
PERSON type, the Name, Address, Ssn, and Birth_date functions can be 
implemented as stored attributes, whereas the Age function can be 
implemented as an operation that calculates the Age from the value of the 
Birth_date attribute and the current date. 

The concept of subtype is useful when the designer or user must create a 
new type that is similar but not identical to an already defined type. The 
subtype then inherits all the functions of the predefined type, which is 
referred to as the supertype. For example, suppose that we want to define 
two new types EMPLOYEE and STUDENT as follows: 
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EMPLOYEE: Name, Address, Birth_date, Age, Ssn, Salary, Hire_date, 
Seniority STUDENT: Name, Address, Birth_date, Age, Ssn, Major, Gpa 
Since both STUDENT and EMPLOYEE include all the functions defined 
for PERSON plus some additional functions of their own, we can declare 
them to be subtypes of PERSON. Each will inherit the previously defined 
functions of PERSON—namely, Name, Address, Birth_date, Age, and 
Ssn. For STUDENT, it is only necessary to define the new (local) 
functions Major and Gpa, which are not inherited. Presumably, Major can 
be defined as a stored attribute, whereas Gpa may be implemented as an 
operation that calculates the student’s grade point average by accessing the 
Grade values that are internally stored (hidden) within each STUDENT 
object as hidden attributes. 

For EMPLOYEE, the Salary and Hire_date functions may be stored 
attributes, whereas 

Seniority may be an operation that calculates Seniority from the value of 
Hire_date. 

 

In general, a subtype includes all of the functions that are defined for its 
super type plus some additional functions that are specific only to the sub 
type. Hence, it is possible to generate a type hierarchy to show the 
supertype/subtype relationships among all the types declared in the 
system. 

As another example, consider a type that describes objects in plane 
geometry, which may be defined as follows: GEOMETRY_OBJECT: 
Shape, Area, Reference_point For the GEOMETRY_OBJECT type, Shape 
is implemented as an attribute (its domain can be an enumerated type with 
values ‘triangle’, ‘rectangle’, ‘circle’, and so on), and Area is a method 
that is applied to calculate the area. Reference_point specifies the 
coordinates of a point that determines the object location. Now suppose 
that we want to define a number of subtypes for the 
GEOMETRY_OBJECT type, as follows: 

RECTANGLE subtype-of GEOMETRY_OBJECT: Width, Height 

TRIANGLE S subtype-of GEOMETRY_OBJECT: Side1, Side2, Angle 

CIRCLE subtype-of GEOMETRY_OBJECT: Radius 

Notice that the Area operation may be implemented by a different method 
for each subtype, since the procedure for area calculation is different for 
rectangles, triangles, and circles. Similarly, the attribute Reference_point 
may have a different meaning for each subtype; it might be the center 
point for RECTANGLE and CIRCLE objects, and the vertex point 
between the two given sides for a TRIANGLE object. Notice that type 
definitions describe objects but do not generate objects on their own. 
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When an object is created, typically it belongs to one or more of these 
types that have been declared. For example, a circle object is of type 
CIRCLE and GEOMETRY_OBJECT (by inheritance). Each object also 
becomes a member of one or more persistent collections of objects (or 
extents), which are used to grouptogether collections of objects that are 
persistently stored in the database. Constraints on Extents 
Corresponding to a Type Hierarchy in most ODBs, an extent is defined 
to store the collection of persistent objects for each type or subtype. 

In this case, the constraint is that every object in an extent that corresponds 
to a subtype must also be a member of the extent that corresponds to its 
supertype. Some OO database systems have a predefined system type 
(called the ROOT class or the OBJECT class) whose extent contains all 
the objects in the system. Classification then proceeds by assigning objects 
into additional subtypes that are meaningful to the application, creating a 
type hierarchy (or class hierarchy) for the system. All extents for 
system- and user-defined classes are subsets of the extent corresponding to 
the class OBJECT, directly or indirectly. In the ODMG model, the user 
may or may not specify an extent for each class (type), depending on the 
application. 

An extent is a named persistent object whose value is a persistent 
collection that holds a collection of objects of the same type that are 
stored permanently in the database. The objects can be accessed and 
shared by multiple programs. It is also possible to create a transient 
collection, which exists temporarily during the execution of a program but 
is not kept when the program terminates. For example, a transient 
collection may be created in a program to hold the result of a query that 
selects some objects from a persistent collection and copies those objects 
into the transient collection. The program can then manipulate the objects 
in the transient collection, and once the program terminates, the transient 
collection ceases to exist. 

In general, numerous collections—transient or persistent—may contain 
objects of the same type. The inheritance model discussed in this section is 
very simple. As we will see in the ODMG model distinguishes between 
type inheritance—called interface inheritance and denoted by a colon 
(:)—and the extent inheritance constraint— denoted by the keyword 
EXTEND. 

5.1.9 INHERITANCE 

SQL has rules for dealing with type inheritance (specified via the 
UNDER keyword). In general, both attributes and instance methods 
(operations) are inherited. The phrase NOT FINAL must be included in a 
UDT if subtypes are allowed to be created under that UDT (see Figure 
11.4(a) and (b), where PERSON_TYPE, STUDENT_TYPE, and 
EMPLOYEE_TYPE are declared to be NOT FINAL). Associated with 
type inheritance are the rules for overloading of function implementations 
and for resolution of function names. These inheritance rules can be 
summarized as follows: 
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■  All attributes are inherited. 

■ The order of supertypes in the UNDER clause determines the 
inheritance hierarchy. 

■ An instance of a subtype can be used in every context in which a 
supertype instance is used. 

■  A subtype can redefine any function that is defined in its supertype, 
with the restriction that the signature be the same. 

■ When a function is called, the best match is selected based on the types 
of all arguments. 

■ For dynamic linking, the runtime types of parameters is considered. 

Consider the following examples to illustrate type inheritance, which are 
illustrated in Figure. Suppose that we want to create two subtypes of 
PERSON_TYPE: EMPLOYEE_TYPE and STUDENT_TYPE. In 
addition, we also create a subtype MANAGER_TYPE that inherits all the 
attributes (and methods) of EMPLOYEE_TYPE but has an additional 
attribute DEPT_MANAGED. These subtypes are shown in Figure. 

In general, we specify the local attributes and any additional specific 
methods for the subtype, which inherits the attributes and operations of its 
supertype. Another facility in SQL is table inheritance via the 
supertable/subtable facility. This is also specified using the keyword 
UNDER. Here, a new record that is inserted into a subtable, say the 
MANAGER table, is also inserted into its supertables EMPLOYEE and 
PERSON. Notice that when a record is inserted in MANAGER, we must 
provide values for all its inherited attributes. INSERT, DELETE, and 
UPDATE operations are appropriately propagated. 

In the ODMG object model, two types of inheritance relationships exist: 
behavior only inheritance and state plus behavior inheritance. Behavior 
inheritance is also known as ISA or interface inheritance, and is specified 
by the colon (:) notation.30 Hence, in the ODMG object model, behavior 
inheritance requires the supertype to be an interface, whereas the subtype 
could be either a class or another interface.  

The other inheritance relationship, called EXTENDS inheritance, is 
specified by the keyword extends. It is used to inherit both state and 
behavior strictly among classes, so both the supertype and the subtype 
must be classes. Multiple inheritance via extends is not permitted. 
However, multiple inheritance is allowed for behavior inheritance via the 
colon (:) notation. Hence, an interface may inherit behavior from several 
other interfaces. A class may also inherit behavior from several interfaces 
via colon (:) notation, in addition to inheriting behavior and state from at 
most one other class via extends. 

 

 



 

 

Object Oriented, Temporal and 
Spatial Databases 

 

103 

5.1.10 COMPLEX OBJECTS 

Unstructured complex object:  

 These is provided by a DBMS and permits the storage and retrieval of 
large objects that are needed by the database application.  

 Typical examples of such objects are bitmap images and long text 
strings (such as documents); they are also known as binary large 
objects, or BLOBs for short.  

 This has been the standard way by which Relational DBMSs have 
dealt with supporting complex objects, leaving the operations on those 
objects outside the RDBMS.  

Structured complex object: 

This differs from an unstructured complex object in that the object’s 
structure is defined by repeated application of the type constructors 
provided by the OODBMS. Hence, the object structure is defined and 
known to the OODBMS. The OODBMS also defines methods or 
operations on it. 

5.1.11 OBJECT-ORIENTED DBMS 

Object oriented databases or object databases incorporate the object data 
model to define data structures on which database operations such as 
CRUD can be performed. They store objects rather than data such as 
integers and strings. The relationship between various data is implicit to 
the object and manifests as object attributes and methods. Object database 
management systems extend the object programming language with 
transparently persistent data, concurrency control, data recovery, 
associative queries, and other database capabilities. The Object-Oriented 
Database System Manifesto by Malcolm Atkinson mandates that an object 
oriented database system should satisfy two criteria: it should be a DBMS, 
and it should be an object-oriented system  Thus OODB implements OO 
concepts such as object identity ,polymorphism, encapsulation and 
inheritance to provide access to persistent objects using any OO-
programming language The tight integration between object orientation 
and databases provides programmers a unified environment when dealing 
with complex data such as 2D and 3D graphics.  Object oriented databases 
are designed to work well with object oriented programming languages 
such as Python, Java, and Objective-C. 

5.1.12 LANGUAGES AND DESIGN 

Developed by ODMG, Object Query Language allows SQL-like queries to 
be performed on a OODB.  Like SQL, it is a declarative language. Based 
loosely on SQL, OQL includes additional language constructs which allow 
for object oriented design such as operation invocation and inheritance.  
Query Structures look very similar in SQL and OQL but the results 
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returned are different. Example: OQL query to obtain Voter names who 
are from the state of Colorado  

Select distinct v.name 

From voters v 

Where v.state = “Colorado” 

. 

 More example of OQL with integration to OO Language: 

 Create objects as in OO languages and then make them persistent 
using the set() method on the database.  

Person p1 = new Person(“Pikes Peak", 78); 

db.set(p1); 

 Retrieve by age (null default for string) 

Person p = new Person (null, 35); 

ObjectSet<Person> result = db.get(p); 

 

5.1.13 ODMG MODEL 

The ODMG object model is the data model upon which the object 
definition language (ODL) and object query language (OQL) are based. It 
is meant to provide a standard data model for object databases, just as 
SQL describes a standard data model for relational databases. It also 
provides a standard terminology in a field where the same terms were 
sometimes used to describe different concepts. Many of the concepts in 
the ODMG model have already been discussed in Section, and we assume 
the reader has read this section. We will point out whenever the ODMG 



 

 

Object Oriented, Temporal and 
Spatial Databases 

 

105 

terminology differs from that used in Section. Objects and Literals. 
Objects and literals are the basic building blocks of the object model. The 
main difference between the two is that an object has both an object 
identifier and a state (or current value), whereas a literal has a value 
(state) but no object identifier. In either case, the value can have a 
complex structure. The object state can change over time by modifying the 
object value. A literal is basically a constant value, possibly having a 
complex structure, but it does not change. An object has five aspects: 
identifier, name, lifetime, structure, and creation. 

1. The object identifier is a unique system-wide identifier (or 
Object_id). Every object must have an object identifier. 

2. Some objects may optionally be given a unique name within a 
particular ODMS—this name can be used to locate the object, and the 
system should return the object given that name. Obviously, not all 
individual objects will have unique names. Typically, a few objects, 
mainly those that hold collections of objects of a particular object 
type—such as extents—will have a name. These names are used as 
entry points to the database; that is, by locating these objects by their 
unique name, the user can then locate other objects that are referenced 
from these objects. Other important objects in the application may also 
have unique names, and it is possible to give more than one name to 
an object. All names within a particular ODMS must be unique. 

3. The lifetime of an object specifies whether it is a persistent object 
(that is, a database object) or transient object (that is, an object in an 
executing program that disappears after the program terminates). 
Lifetimes are independent of types—that is, some objects of a 
particular type may be transient whereas others may be persistent. 

4. The structure of an object specifies how the object is constructed by 
using the type constructors. The structure specifies whether an object 
is atomic or not. An atomic object refers to a single object that 
follows a user-defined type, such as Employee or Department. If an 
object is not atomic, then it will be composed of other objects. For 
example, a collection object is not an atomic object, since its state will 
be a collection of other objects. The term atomic object is different 
from how we defined the atom constructor in Section, which referred 
to all values of built-in data types. In the ODMG model, an atomic 
object is any individual user-defined object. All values of the basic 
built-in data types are considered to be literals. 

5. Object creation refers to the manner in which an object can be 
created. This is typically accomplished via an operation new for a 
special Object_Factory interface. We shall describe this in more detail 
later in this section. 

In the object model, a literal is a value that does not have an object 
identifier. However, the value may have a simple or complex structure. 
There are three types of literals: atomic, structured, and collection. 
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Atomic literals correspond to the values of basic data types and are 
predefined. The basic data types of the object model include long, short, 
and unsigned integer numbers (these are specified by the keywords long, 
short, unsigned long, and unsigned short in ODL), regular and double 
precision floating point numbers (float, double), Boolean values 
(boolean), single characters (char), character strings (string), and 
enumeration types (enum), among others. 

Structured literals correspond roughly to values that are constructed 
using the tuple constructor described in Section. The built-in structured 
literals include Date, Interval, Time, and Timestamp. Additional user-
defined structured literals can be defined as needed by eachapplication. 
User-defined structures are created using the STRUCT keyword in ODL, 
as in the C and C++ programming languages. 

 

Figure 5.1.4 Overview of the interface definitions for part of the 
ODMG object mode.  
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a) The basic object interface inherited by all objects b) Some standard 
interfaces for structured literals 

 

Figure 5.1.4 Overview of the interface definitions for part of the ODMG 
object mode. 

a) The basic object interface inherited by all objects  

b) Some standard interfaces for structured literals 

c) Interfaces for collections and iterators 
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Collection literals specify a literal value that is a collection of objects or 
values but the collection itself does not have an Object_id. The collections 
in the object model can be defined by the type generators set<T>, 
bag<T>, list<T>, and array<T>, where T is the type of objects or values 
in the collection.  

Another collection type is dictionary<K, V>, which is a collection of 
associations <K, V>, where each K is a key (a unique search value) 
associated with a value V; this can be used to create an index on a 
collection of values V.  

Figure gives a simplified view of the basic types and type generators of 
the object model. The notation of ODMG uses three concepts: interface, 
literal, and class. Following the ODMG terminology, we use the word 
behavior to refer to operations and state to refer to properties (attributes 
and relationships). An interface specifies only behavior of an object type 
and is typically noninstantiable (that is, no objects are created 
corresponding to an interface). Although an interface may have state 
properties (attributes and relationships) as part of its specifications, these 
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cannot be inherited from the interface. Hence, an interface serves to define 
operations that can be inherited by other interfaces, as well as by classes 
that define the user-defined objects for a particular application. A class 
specifies both state (attributes) and behavior (operations) of an object type, 
and is instantiable. Hence, database and application objects are typically 
created based on the user-specified class declarations that form a database 
schema. Finally, a literal declaration specifies state but no behavior. Thus, 
a literal instance holds a simple or complex structured value but has 
neither an object identifier nor encapsulated operations. Figure is a 
simplified version of the object model. For the full specifications, see 
Cattell etc all. (2000).We will describe some of the constructs shown in 
Figure as we describe the object model. In the object model, all objects 
inherit the basic interface operations of Object, shown in Figure (a); these 
include operations such as copy (creates a new copy of the object), delete 
(deletes the object), and same_as (compares the object’s identity to 
another object). In general, operations are applied to objects using the dot 
notation. For example, given an object O, to compare it with another 
object P, we write O.same_as(P) The result returned by this operation is 
Boolean and would be true if the identity of P is the same as that of O, and 
false otherwise. Similarly, to create a copy P of object O, we write = 
O.copy() An alternative to the dot notation is the arrow notation: O–
>same_as(P) or O–>copy(). 

5.1.14 OBJECT DEFINITION LANGUAGES (ODL) 

After our overview of the ODMG object model in the previous section, we 
now show how these concepts can be utilized to create an object database 
schema using the object definition language ODL.  

The ODL is designed to support the semantic constructs of the ODMG 
object model and is independent of any particular programming language. 
Its main use is to create object specifications—that is, classes and 
interfaces. Hence, ODL is not a full programming language. A user can 
specify a database schema in ODL independently of any programming 
language, and then use the specific language bindings to specify how ODL 
constructs can be mapped to constructs in specific programming 
languages, such as C++, Smalltalk, and Java. We will give an overview of 
the C++ binding in Section. Figure (b) shows a possible object schema for 
part of the UNIVERSITY database. We will describe the concepts of ODL 
using this example, and the one in Figure. The graphical notation for 
Figure (b) is shown in Figure (a) and can be considered as a variation of 
EER diagrams with the added concept of interface inheritance but without 
several EER concepts, such as categories (union types) and attributes of 
relationships. Figure shows one possible set of ODL class definitions for 
the UNIVERSITY database. In general, there may be several possible 
mappings from an object schema diagram (or EER schema diagram) into 
ODL classes. We will discuss these options further in Section. Figure 
shows the straightforward way of mapping part of the UNIVERSITY 
database from Chapter. Entity types are mapped into ODL classes, and 
inheritance is done using extends. However, there is no direct way to map 
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categories (union types) or to do multiple inheritance. In Figure the classes 
PERSON, FACULTY, STUDENT, and GRAD_STUDENT have the 
extents PERSONS, FACULTY, STUDENTS, and GRAD_STUDENTS, 
respectively. Both FACULTY and STUDENT extends PERSON and 
GRAD_STUDENT extends STUDENT. Hence, the collection of 
STUDENTS (and the collection of FACULTY) will be constrained to be a 
subset of the collection of PERSONs at any time. Similarly, the collection 
of GRAD_STUDENTs will be a subset of STUDENTs. At the same time, 
individual STUDENT and FACULTY objects will inherit the properties 
(attributes and relationships) and operations of PERSON, and individual 
GRAD_STUDENT objects will inherit those of STUDENT. 

The classes DEPARTMENT, COURSE, SECTION, and 
CURR_SECTION in Figure are straightforward mappings of the 
corresponding entity types in Figure 

 

Figure 3.1.5 An example of a database schema a) Graphical notation for 
representing ODL schemas. b) A graphical object database schema for 
part of the UNIVERSITY database (GRADE and DEGREE classes are not 
shown 3.1.3(b) 
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Figure 3.1.6 Possible ODL schema for the UNIVERSITY database in 
figure 3.1.3(b) 
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Figure 3.1.7 An illustration of interface inheritance via “:”. (a) Graphical 
schema representation 

(b) Corresponding interface and class definitions in ODL. 

However, the class GRADE requires some explanation. The GRADE class 
corresponds to the M:N relationship between STUDENT and SECTION 
in Figure. The reason it was made into a separate class (rather than as a 
pair of inverse relationships) is because it includes the relationship 
attribute Grade. 

Hence, the M:N relationship is mapped to the class GRADE, and a pair of 
1:N relationships, one between STUDENT and GRADE and the other 
between SECTION and  GRADE. These relationships are represented by 
the following relationship properties: Completed_sections of STUDENT; 
Section and Student of GRADE; and Students of SECTION. Finally, the 
class DEGREE is used to represent the composite, multivalued attribute 
degrees of GRAD_STUDENT. Because the previous example does not 
include any interfaces, only classes, we now utilize a different example to 
illustrate interfaces and interface (behavior) inheritance. Figure 3.1.3(a) is 
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part of a database schema for storing geometric objects. An interface 
GeometryObject is specified, with operations to calculate the perimeter 
and area of a geometric object, plus operations to translate (move) and 
rotate an object. Several classes (RECTANGLE, TRIANGLE, 
CIRCLE,...) inherit the GeometryObject interface. Since GeometryObject 
is an interface, it is noninstantiable—that is, no objects can be created 
based on this interface directly. However, objects of type RECTANGLE, 
TRIANGLE, CIRCLE, ... can be created, and these objects inherit all the 
operations of the GeometryObject interface. Note that with interface 
inheritance, only operations are inherited, not properties (attributes, 
relationships). Hence, if a property is needed in the inheriting class, it 
must be repeated in the class definition, as with the Reference_point 
attribute in Figure. Notice that the inherited operations can have different 
implementations in each class. For example, the implementations of the 
area and perimeter operations may be different for RECTANGLE, 
TRIANGLE, and CIRCLE. Multiple inheritance of interfaces by a class is 
allowed, as is multiple inheritance of interfaces by another interface. 
However, with the extends (class) inheritance, multiple inheritance is not 
permitted. Hence, a class can inherit via extends from at most one class 
(in addition to inheriting from zero or more interfaces). 

5.1.15 OBJECT QUERY LANGUAGES (OQL) 

The object query language OQL is the query language proposed for the 
ODMG object model. It is designed to work closely with the programming 
languages for rich an ODMG binding is defined, such as C++, Smalltalk, 
and Java. Hence, an OQL query embedded into one of these programming 
languages can return objects that match the type system of that language. 
Additionally, the implementations of class operations in an ODMG 
schema can have their code written in these programming languages. The 
OQL syntax for queries is similar to the syntax of the relational standard 
query language SQL, with additional features for ODMG concepts, such 
as object identity, complex objects, operations, inheritance, 
polymorphism,  and relationships. 

In Section we will discuss the syntax of simple OQL queries and the 
concept of using named objects or extents as database entry points. Then, 
in Section we will discuss the structure of query results and the use of path 
expressions to traverse relationships among objects. Other OQL features 
for handling object identity, inheritance, polymorphism, and other object-
oriented concepts are discussed in Section. The examples to illustrate 
OQL queries are based on the UNIVERSITY database schema given in 
Figure.  The basic OQL syntax is a select ... from ... where ... structure, as 
it is for SQL. For example, the query to retrieve the names of all 
departments in the college of ‘Engineering’ can be written as follows: 
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In general, an entry point to the database is needed for each query, which 
can be any named persistent object. For many queries, the entry point is 
the name of the extent of a class. Recall that the extent name is considered 
to be the name of a persistent object whose type is a collection (in most 
cases, a set) of objects from the class. Looking at the extent names in 
Figure, the named object DEPARTMENTS is of type 
set<DEPARTMENT>; PERSONS is of type set<PERSON>; FACULTY 
is of type set<FACULTY>; and so on. 

The use of an extent name—DEPARTMENTS in Q0—as an entry point 
refers to a persistent collection of objects. Whenever a collection is 
referenced in an OQL query, we should define an iterator variable42—D 
in Q0—that ranges over each object in the collection. In many cases, as in 
Q0, the query will select certain objects from the collection, based on the 
conditions specified in the where clause. In Q0, only persistent objects D 
in the collection of DEPARTMENTS that satisfy the condition D.College 
= ‘Engineering’ are selected for the query result. For each selected object 
D, the value of D.Dname is retrieved in the query result. Hence, the type of 
the result for Q0 is bag<string> because the type of each Dname value is 
string (even though the actual result is a set because Dname is a key 
attribute). In general, the result of a query would be of type bag for select 
... from ... and of type set for select distinct ... from ... , as in SQL (adding 
the keyword distinct eliminates duplicates). Using the example in Q0, 
there are three syntactic options for specifying iterator variables: 

 

We will use the first construct in our examples. The named objects used as 
database entry points for OQL queries are not limited to the names of 
extents. Any named persistent object, whether it refers to an atomic 
(single) object or to a collection object, can be used as a database entry 
point. 

5.2.1 INTRODUCTION TO TEMPORAL DATABASE 

Temporal databases, in the broadest sense, encompass all database 
applications that require some aspect of time when organizing their 
information. Hence, they provide a good example to illustrate the need for 
developing a set of unifying concepts for application developers to use. 
Temporal database applications have been developed since the early days 
of database usage. 
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Figure 5.1.9 Trigger T1 illustrating the syntax for defining triggers in 
SQL-99. 

However, in creating these applications, it is mainly left to the application 
designers and developers to discover, design, program, and implement the 
temporal concepts they need. There are many examples of applications 
where some aspect of time is needed to maintain the information in a 
database. These include healthcare, where patient histories need to be 
maintained; insurance, where claims and accident histories are required as 
well as information about the times when insurance policies are in effect; 
reservation systems in general (hotel, airline, car rental, train, and so on), 
where information on the dates and times when reservations are in effect 
are required; scientific databases, where data collected from experiments 
includes the time when each data is measured; and so on. Even the two 
examples used in this book may be easily expanded into temporal 
applications. In the COMPANY database, we may wish to keep 
SALARY, JOB, and PROJECT histories on each employee.  

In the UNIVERSITY database, time is already included in the 
SEMESTER and YEAR of each SECTION of a COURSE, the grade 
history of a STUDENT, and the information on research grants. In fact, it 
is realistic to conclude that the majority of database applications have 
some temporal information. However, users often attempt to simplify or 
ignore temporal aspects because of the complexity that they add to their 
applications. In this section, we will introduce some of the concepts that 
have been developed to deal with the complexity of temporal database 
applications. An overview of how time is represented in databases, the 
different types of temporal information, and some of the different 
dimensions of time that may be needed. This section gives some additional 
options for representing time that are possible in database models that 
allow complex-structured objects, such as object databases. Section 
introduces operations for querying temporal databases, and gives a brief 
overview of the TSQL2 language, which extends SQL with temporal 
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concepts. Section focuses on time series data, which is a type of temporal 
data that is very important in practice. 

5.2.2 TIME ONTOLOGY 

For temporal databases, time is considered to be an ordered sequence of 
points in some granularity that is determined by the application. For 
example, suppose that some temporal application never requires time units 
that are less than one second. Then, each time point represents one second 
using this granularity. In reality, each second is (short) time duration, not a 
point, since it may be further divided into milliseconds, microseconds, and 
so on. Temporal database researchers have used the term chronon instead 
of point to describe this minimal granularity for a particular application. 
The main consequence of choosing a minimum granularity—say, one 
second—is that events occurring within the same second will be 
considered to be simultaneous events, even though in reality they may not 
be. 

Because there is no known beginning or ending of time, one needs a 
reference point from which to measure specific time points. Various 
calendars are used by various cultures (such as Gregorian (western), 
Chinese, Islamic, Hindu, Jewish, Coptic, and so on) with different 
reference points. A calendar organizes time into different time units for 
convenience. Most calendars group 60 seconds into a minute, 60 minutes 
into an hour, 24 hours into a day (based on the physical time of earth’s 
rotation around its axis), and 7 days into a week. Further grouping of days 
into months and months into years either follow solar or lunar natural 
phenomena, and are generally irregular. In the Gregorian calendar, which 
is used in most western countries, days are grouped into months that are 
28, 29, 30, or 31 days, and 12 months are grouped into a year. Complex 
formulas are used to map the different time units to one another. 

In SQL2, the temporal data types (see Chapter 4) include DATE 
(specifying Year, Month, and Day as YYYY-MM-DD), TIME (specifying 
Hour, Minute, and Second as HH:MM:SS), TIMESTAMP (specifying a 
Date/Time combination, with options for including subsecond divisions if 
they are needed), INTERVAL (a relative time duration, such as 10 days or 
250 minutes), and PERIOD (an anchored time duration with a fixed 
starting point, such as the 10-day period from January 1, 2009, to January 
10, 2009, inclusive). Event Information versus Duration (or State) 
Information. A temporal database will store information concerning 
when certain events occur, or when certain facts are considered to be true. 
There are several different types of temporal information. Point events or 
facts are typically associated in the database with a single time point in 
some granularity. For example, a bank deposit event may be associated 
with the timestamp when the deposit was made, or the total monthly sales 
of a product (fact) may be associated with a particular month (say, 
February 2010). Note that even though such events or facts may have 
different granularities, each is still associated with a single time value in 
the database. This type of information is often represented as time series 
data as we will discuss. Duration events or facts, on the other hand, are 
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associated with a specific time period in the database. For example, an 
employee may have worked in a company from August 15, 2003 until 
November 20, 2008. 

A time period is represented by its start and end time points [START-
TIME, ENDTIME]. For example, the above period is represented as 
[2003-08-15, 2008-11-20]. Such a time period is often interpreted to mean 
the set of all time points from starttime to end-time, inclusive, in the 
specified granularity. Hence, assuming day granularity, the period [2003-
08-15, 2008-11-20] represents the set of all days from August 15, 2003, 
until November 20, 2008, inclusive.13 Valid Time and Transaction 
Time Dimensions. Given a particular event or fact that is associated with 
a particular time point or time period in the database, the association may 
be interpreted to mean different things. The most natural interpretation is 
that the associated time is the time that the event occurred, or the period 
during which the fact was considered to be true in the real world. If this 
interpretation is used, the associated time is often referred to as the valid 
time. A temporal database using this interpretation is called a valid time 
database. However, a different interpretation can be used, where the 
associated time refers to the time when the information was actually stored 
in the database; that is, it is the value of the system time clock when the 
information is valid in the system. In this case, the associated time is called 
the transaction time. A temporal database using this interpretation is 
called a transaction time database. 

Other interpretations can also be intended, but these are considered to be 
the most common ones, and they are referred to as time dimensions. In 
some applications, only one of the dimensions is needed and in other cases 
both time dimensions are required, in which case the temporal database is 
called a bitemporal database. If other interpretations are intended for 
time, the user can define the semantics and program the applications 
appropriately, and it is called a user-defined time. The next section shows 
how these concepts can be incorporated into relational databases, and 
Section shows an approach to incorporate temporal concepts into object 
databases. 

5.2.3 STRUCTURE AND GRANULARITY 

The time domain (or ontology) specifies the basic building blocks of time. 
It is generally modeled as a set of time instants (or points) with an 
imposed partial order, e.g., (N, <). Additional axioms impose more 
structure on the time domain, yielding more refined time domains. Linear 
time advances from past to future in a step-by-step fashion. This model of 
time is mainly used in the database area. In contrast, AI applications often 
used a branching time model, which has a tree-like structure, allowing for 
possible futures. Time is linear from the past to now, where it divides into 
several time lines; along any future path, additional branches may exist. 
This yields a tree-like structure rooted at now. Now marks the current time 
point and is constantly moving forward. The time domain can be bounded 
in the past and/or in the future, i.e., a first and/or last time instant exists; 
otherwise, it is called unbounded. The time domain can be dense, discrete, 
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or continuous. In a discrete time domain, time instants are non-
decomposable units of time with a positive duration, called chronons. A 
chronon is the smallest duration of time that can be represented. This time 
model is isomorphic to the natural numbers. In contrast, in a dense time 
domain, between any two instants of time, there exists another instant; this 
model is isomorphic to the rational numbers. Finally, continuous time is 
dense and does not allow “gaps” between consecutive time instants. Time 
instants are durationless. The continuous time model is isomorphic to the 
realnumbers. While humans perceive time as continuous, a discrete linear 
time model is generally used in temporal databases for several practical 
reasons, e.g., measures of time are generally reported in terms of 
chronons, natural language references are compatible with chronons, and 
any practical implementation needs a discrete encoding of time. A 
limitation of a discrete time model is, for example, the inability to 
represent continuous phenomena. 

A time granularity is a partitioning of the time domain into a finite set of 
segments, called granules, providing a particular discrete image of a 
(possibly continuous) timeline. The main aim of granularities is to support 
user friendly representations of time. For instance, birth dates are typically 
measured at the granularity of days, business appointments at the 
granularity of hours, and train schedules at the granularity of minutes. 
Multiple granularities are needed in many real-world applications. 

In any specific application, the granularity of time has some practical 
magnitude. For instance, the time-point that a business event, like a 
purchase, is associated with a date, so that a day is the proper granule for 
most business transactions. People do not schedule themselves for 
intervals of less than a minute, while database transactions may be 
measured in milliseconds. Eventually we are limited by the precision that 
our hardware can recognize; fractions of microseconds are the finest grain 
here. We use G to denote the granularity; it is in effect an interval. The 
finiteness of measurement granules leads to a confusion of event times and 
intervals. If we limit our event measures to dates (G = 1 day), and we say 
that an event occurred on such and-such a day, then implicit for most of us 
is also that the event spanned some interval within that day. A point event 
is then associated with an interval of one granule length. There will be a 
smallest time granule G, perhaps intervals of seconds or days, which 
follow each other without gaps, and are identified by the timepoint at their 
beginning. True Intervals are sequences of event measuring interval 

However, problems arise with this simplification. Inconsistencies occur 
when an inclusive interval is defined by two event time measurements 
with an implicit grain. First we have to round actual measurements to the 
integer grain size used; then we add the granule size to the result: 

 

where ts denotes the value corresponding to the start of the interval and 
t/the value when the interval is finished. Thus, if movie is shown daily 
from the 12th to the 19th of a month, there will be 19-12+1 = 8 
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performance days. While we are all used to performing such adjustments 
when computing with intervals, a database system which deals with 
temporal events must present consistent temporal semantics to the user to 
avoid confusion. We cannot use an event directly to compute an interval 
but always have to correct for the associated grain size. While in any one 
application use of a fixed grain size is feasible, problems arise if we merge 
information from distinct applications. A database system has to carry out 
the computations to satisfy the application semantics. If those include the 
use of finite events, then the grain size assumption made must be 
explicitly stated. Many granularities may need to be simultaneously active. 
In our formulation we will require two datatypes, infinitesimal time points 
for events and intervals for histories, to deal with all temporal data. 

5.2.4 TEMPORAL DATA MODELS 

Most of the work in the research area of temporal databases has been done 
in respect of the relational data model. In this section, as shown below in 
table 2 and Table 3, some of the most important temporal data models are 
compared 
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Ariav’s model used tuple time stamping with time being represented by 
discrete time points in bitemporal mode. The model is conceptually 
simplistic but difficult to implement in efficiency and reliability terms. 
Ben-Zvi’s time relational model (TRM) was a pioneering work in many 
aspects. The most important idea of TRM is perhaps the non first normal 
form (NFNF). Ben-Zvi’s concept of effective time and registration time, 
which are now known as valid time (VT) and transaction time (TT), 
respectively, added new dimensions to time varying information 
computing. Ben-Zvi was the first to coin the term and notion of time-
invariant key for his non first normal tuples, called tuple version sets in his 
terminology. Differentiation between an error and a change was 
recognized and both of them were made queriable. Also the need for fast 
access to current data was recognized. Clifford and Croker’s model 
followed historical relational data model (HRDM) and tuples are 
heterogeneous in their temporal dimension. Unfortunately, the historical 
relational algebra is not a complete algebra w.r.t. HRDM. So, the cartesian 
product of three-dimensional relation (e.g. join operation) is not clear and 
hence results are not reliable. Gadia’s model has temporal element as an 
appropriate datatype for time. This model assumes that key values donot 
change with time. Another requirement is all attributes in a tuple have the 
same time domain. This requirement is called homogeneity. The positive 
aspect of Gadia’s model is that it minimizes redundancy. But when 
concatenation of partial temporal elements along with tuple homogeneity 
is implemented, the query results into incomplete or missing information. 
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Jensen & Snodgrass model proposed bitemporal conceptual data model 
(BCDM), allowing to associate both valid and transaction times with data. 
The domains of valid and transaction times are the finite sets DVT and 
DTT, respectively. A valid time chronon cv is a time point belonging to 
DVT and a transaction time chronon ct is a time point belonging to DTT. 
A bitemporal chronon cb = (ct , cv) is an ordered pair consisting of a 
transaction time chronon and a valid time chronon. The schema of a 
bitemporal relation R, defined on the set U = {A1,A2,...,An} of non-
timestamp attributes, is of the form R = (A1,A2,...,An | T), that is, it 
consists of n non-timestamp attributes A1,A2,...,An, with domain dom(Ai) for 
each i ∈ [1,n], and an implicit timestamp attribute T. The domain of T is (DTT 

∪{UC})× DVT , where UC is a special value that can be assumed by a 
transaction time chronon to express the condition “until changed”. For 
instance, to state that a tuple valid at time cv is current in the database, the 
bitemporal chronon (UC, cv) must be assigned to the tuple timestamp. As 
a general rule, they associate a set of bitemporal chronons in the two-
dimensional space with every tuple. Lorentzos’s model followed interval-
extended relational model (IXRM) and an interval relational algebra for 
the management of interval relations. The fundamental properties of a 
model are that it must be satisfactory and simple. Lorentzos model 
satisfied both aspects. However, when a model is defined, efficiency 
issues are of minor importance. IXRM operations require a great deal of 
space and time, is a point of concern. Snodgrass’s Model uses temporal 
query language (TQuel) which is based on the predicate calculus. One of 
the key features of this model is when the algebra is used to implement the 
TQuel, the a conversion will be necessary between tuple timestamping 
(where each tuple is associated with a single interval) and attribute-value 
time-stamping (where each attribute is associated with potentially multiple 
intervals). This conversion is formalized in a transformation function (T). 
Though this model seems to be more efficient but relatively less user 
friendly. Tansel’s model used Attribute-value timestamping and used the 
concepts of time by example (TBE) and query by example (QBE). This 
model is quite user friendly. However, nested temporal relations are an 
area of concern since structuring nested temporal relations hinges upon the 
type of associations between the involved entities. Vianu proposed a 
simple extension of the relational data model in order to describe 
evolution of a database over time. A database sequence is defined as a 
sequence of consecutive instances of the database, plus “update mappings” 
from one instance (the “old” one) to the next one (the “new” instance). 
Constraints on the evolution of attribute values of tuples (objects) over 
time are expressed by means of dynamic functional dependencies (DFDs), 
that make it possible to define dependencies between old and new values 
of attributes on updates. Wijsen and his colleagues temporal data model 
proposed three types of keys i.e. snapshot keys (SK), dynamic keys (DK) 
and temporal keys (TK) corresponding to snapshot functional dependency, 
dynamic dependency and temporal dependency, respectively. Let dom be 
a set of atomic values, that is, the union of disjoint domains corresponding 
to atomic types, att be a set of attribute names, and λ be a special attribute 
used to denote object identity. Moreover, let obj be an infinite set of object 
identifiers (OIDs) and class be a set of class names. Given a finite set of 
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class names C, a type over C is a set {A1: τ 1, A2: τ 2,..., An: τ n}, where 
A1, A2,... An are distinct attribute names and each τi with 1 ≤ i ≤ n, is 
either an atomic type or a class name in C. A schema is a pair (C,ρ), where 
C is a finite set of class names and ρ is a total function that maps each 
class name in C into a type over C. 

Some data models use FNF and others prefer NFNF. The choice may 
depend on the consideration of time as discrete or interval based or 
continuous. Also, the traditional Entity relationship model (ERM) can be 
extended for temporal data models (TDM) by considering suitable 
operators and constructs for their effective and efficient implementation. 
The traditional ERM is capable of capturing the whole temporal aspects. 
Many extensions [15][16] have been proposed to extend the ERM in order 
to capture time varying information. For graphical representation, Unified 
modeling language (UML) is normally used. However, UML constructs in 
reference of temporal data models can be possibly used and drawn using 
application softwares like Rational software architecture. The temporal 
query language (TQuel) supports both valid time and transaction time. It 
also supports user defined time. Tuples are optimally time-stamped with 
either a single valid time stamp (if a relation models events) or a pair of 
valid timestamps (if a relation models intervals), along with transaction 
timestamps, denoting when the tuple was logically inserted into the 
relation. A transaction timestamp of “until changed” indicates that the 
tuple has not been deleted yet. A functional example of temporal database 
is TimeDB. It uses the extension approach with respect to the data 
structures. TimeDB uses a layered approach which means it was built as a 
front end to a commercial DBMS that translates temporal statements into 
standard SQL statements. This way, it is possible to support features such 
as persistence, consistency, concurrency, recovery etc. without having to 
implement from the scratch. It is a bitemporal DBMS. TimeDB 
implements the query language ATSQL2. ATSQL2 includes not only a 
bitemporal query language but also a bi-temporal modification, data 
definition and constraint specification language. TimeDB implements the 
temporal algebra operations using standard SQL statements. TimeDB 
supports a command oriented user interface 

5.2.5 TEMPORAL RELATIONAL ALGEBRAS 

In Temporal Datalog programs, we do not view predicates as representing 
an infinite collection of finite relations, nor do we manipulate finite 
relations at any given moment in time. Temporal relations are not first-
class citizens in Temporal Datalog. Moreover, without negation, the set 
difference operation available in the relational algebra cannot be specified 
in Temporal Datalog. To alleviate these limitations, we introduce a 
temporal relational algebra as a query language for Temporal Datalog, 
which is referred to as TRA. Examples of TRA expressions are given in 
the next section 
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Similarly for the binary operators. In other words, when restricted to 
moments in time, a pointwise operator degenerates into the corresponding 
operator of the relational algebra. Therefore we can explain what a 
pointwise operator does to its operand by looking at the individual results 
for each moment in time. This implies that TRA by design has the 
relational algebra as a special case. 

Expressions, Operations An expression of TRA consists of compositions 
of algebraic operators and predicate symbols. Algebraic operators are 
applied to temporal relations and yield temporal relations as a result which 
can then be used as operands in other expressions. In addition to the 
pointwise operators, the signature of TRA is extended with temporal and 
aggregation operators summarized below. In the following, we assume 
familiarity with the notions of a comparator value and comparator 
formula; see [17] for details. Pointwise Operators Pointwise operators are 
∩, ∪ , × ,−, πX, and σF . At any given moment in time t, the outcome of a 
pointwise operation depends only on the values of its operands at time t. 
For instance, given the expression r ∩ s, the resulting temporal relation is 
the pointwise intersection of r and s. Temporal Operators Temporal 
operators are first, next, prev and fby[·]. The temporal operators first and 
next of TRA do not behave the same way as those of TL do. However, we 
use the same symbols as it is always understood from the context which 
ones are referred to. The 4 temporal operator first freezes a temporal 
relation at its initial value; next and prev shift a given temporal relation in 
the corresponding direction; fby[·] does temporal splicing, i.e., cutting and 
pasting of temporal relations. Aggregation Operators Let x ≥ 1. 
Aggregation operators are sumx, avgx , count, maxx and minx. These 
pointwise operators are applied to temporal relations with arbitrary arities, 
and produce unary temporal relations as a result. Denotational Semantics 
Given a Temporal Datalog program db, an expression over db contains 
only those predicate symbols appearing in db, and terms from the 
Herbrand universe of db. We assume that all expressions are legal, i.e., 
arities of relations given in an expression match with respect to the 
operations involved, and so do the types of attributes over which 
aggregation operations are performed. The meaning of an expression of 
TRA is a temporal relation, just like the meaning of a predicate symbol 
defined in db. Let [[E]](db) denote the denotation (meaning) of E with 
respect to a given temporal database db. In particular, we have that 
[[E]](db) is an element of [ω → P(U k )] for some k ≥ 0. In general, given 
an expression E of TRA, we have that [[E]] ∈ DB → [ n≥0 [ω → P(U n )] 
where DB is the set of Temporal Datalog programs, and U is the set of 
ground terms of TL. Given db ∈ DB, s ∈ ω, x ≥ 1, and TRA expressions 
A and B, the following are the definitions of the denotations of each kind 
of expressions of TRA.  
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1. [[p]](db) = (uM(db))(p) where p is a predicate symbol appearing in db.  

2. [[A∇B]](db) = [[A]](db)∇[[B]](db) where ∇ is any of ∩, ∪, × and −.  

3. [[∇A]](db) = ∇[[A]](db) where ∇ is any of πX, σF , sumx, avgx, 
maxx, minx and count.  

4. [[first A]](db) = λt.[[A]](db)(0).  

5. [[next A]](db) = λt.[[A]](db)(t + 1).  

6. [[prev A]](db) = λt.  [[A]](db)(t − 1), t > 0 ∅, t = 0  

7. [[A fby[s] B]](db) = λt. [[A]](db)(t), t ≤ s [[B]](db)(t), t > s Item 1 
provides the link to the temporal database: the denotation of a predicate 
symbol is the temporal relation that the predicate represents with respect 
to the minimum model of db. Items 4 through 7 formalizes what temporal 
operators do to their operands. At time 0, the value of any expression of 
the form prev A is the empty set, because we cannot go into the past 
beyond time 0. 

5.2.6 INTRODUCTION TO SPATIAL DATABASE 

Spatial databases incorporate functionality that provides support for 
databases that keep track of objects in a multidimensional space. For 
example, cartographic databases that store maps include two-dimensional 
spatial descriptions of their objects—from countries and states to rivers, 
cities, roads, seas, and so on. The systems that manage geographic data 
and related applications are known as Geographical Information 
Systems (GIS), and they are used in areas such as environmental 
applications, transportation systems, emergency response systems, and 
battle management. Other databases, such as meteorological databases for 
weather information, are three-dimensional, since temperatures and other 
meteorological information are related to three-dimensional spatial points. 
In general, a spatial database stores objects that have spatial 
characteristics that describe them and that have spatial relationships 
among them. The spatial relationships among the objects are important, 
and they are often needed when querying the database. Although a spatial 
database can in general refer to an n-dimensional space for any n, we will 
limit our discussion to two dimensions as an illustration. A spatial 
database is optimized to store and query data related to objects in space, 
including points, lines and polygons. Satellite images are a prominent 
example of spatial data. Queries posed on these spatial data, where 
predicates for selection deal with spatial parameters, are called spatial 
queries. For example, “What are the names of all bookstores within five 
miles of the College of Computing building at Georgia Tech?” is a spatial 
query. Whereas typical databases process numeric and character data, 
additional functionality needs to be added for databases to process spatial 
data types. A query such as “List all the customers located within twenty 
miles of company headquarters” will require the processing of spatial data 
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types typically outside the scope of standard relational algebra and may 
involve consulting an external geographic database that maps the company 
headquarters and each customer to a 2-D map based on their address. 
Effectively, each customer will be associated to a <latitude, longitude> 
position. A traditional B+-tree index based on customers’ zip codes or 
other nonspatial attributes cannot be used to process this query since 
traditional indexes are not capable of ordering multidimensional 
coordinate data. Therefore, there is a special need for databases tailored 
for handling spatial data and spatial queries. 

5.2.7 DEFINITION 

The common analytical operations involved in processing geographic or 
spatial data. Measurement operations are used to measure some global 
properties of single objects (such as the area, the relative size of an 
object’s parts, compactness, or symmetry), and to measure the relative 
position of different objects in terms of distance and direction. Spatial 
analysis operations, which often use statistical techniques, are used to 
uncover spatial relationships within and among mapped data layers. An 
example would be to create a map—known as a prediction map—that 
identifies the locations of likely customers for particular products based on 
the historical sales and demographic information. Flow analysis 
operations help in determining the shortest path between two points and 
also the connectivity among nodes or regions in a graph. Location 
analysis aims to find if the given set of points and lines lie within a given 
polygon (location). The process involves generating a buffer around 
existing geographic features and then identifying or selecting features 
based on whether they fall inside or outside the boundary of the buffer. 
Digital terrain analysis is used to build three-dimensional models, where 
the topography of a geographical location can be represented with an x, y, 
z data model known as Digital Terrain (or Elevation) Model (DTM/DEM). 
The x and y dimensions of a DTM represent the horizontal plane, and z 
represents spot heights for the respective x, y coordinates. Such models 
can be used for analysis of environmental data or during the design of 
engineering projects that require terrain information. Spatial search allows 
a user to search for objects within a particular spatial region. For example, 
thematic search allows us to search for objects related to a particular 
theme or class, such as “Find all water bodies within 25 miles of Atlanta” 
where the class is water. 

There are also topological relationships among spatial objects. These are 
often used in Boolean predicates to select objects based on their spatial 
relationships. For example, if a city boundary is represented as a polygon 
and freeways are represented as multilines, a condition such as “Find all 
freeways that go through Arlington, Texas” would involve an intersects 
operation, to determine which freeways (lines) intersect the city boundary 
(polygon). 
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Table Common Types of Analysis for Spatial Data 

 

5.2.8 TYPES OF SPATIAL DATA 

This section briefly describes the common data types and models for 
storing spatial data. Spatial data comes in three basic forms. These forms 
have become a de facto standard due to their wide use in commercial 
systems.  

■ Map Data includes various geographic or spatial features of objects in a 
map, such as an object’s shape and the location of the object within the 
map. The three basic types of features are points, lines, and polygons (or 
areas). Points are used to represent spatial characteristics of objects whose 
locations correspond to a single 2-d coordinate (x, y, or longitude/latitude) 
in the scale of a particular application. Depending on the scale, some 
examples of point objects could be buildings, cellular towers, or stationary 
vehicles. Moving locations that change over time. Lines represent objects 
having length, such as roads or rivers, whose spatial characteristics can be 
approximated by a sequence of connected lines. Polygons are used to 
represent spatial characteristics of objects that have a boundary, such as 
countries, states, lakes, or cities. Notice that some objects, such as 
buildings or cities, can be represented as either points or polygons, 
depending on the scale of detail. 

■ Attribute data is the descriptive data that GIS systems associate with 
map features. For example, suppose that a map contains features that 
represent counties within a US state (such as Texas or Oregon). Attributes 
for each county feature (object) could include population, largest 
city/town, area in square miles, and so on. Other attribute data could be 
included for other features in the map, such as states, cities, congressional 
districts, census tracts, and so on. 

■ Image data includes data such as satellite images and aerial 
photographs, which are typically created by cameras. Objects of interest, 
such as buildings and roads, can be identified and overlaid on these 
images. Images can also be attributes of map features. One can add images 
to other map features so that clicking on the feature would display the 
image. Aerial and satellite images are typical examples of raster data. 

Models of spatial information are sometimes grouped into two broad 
categories: field and object. A spatial application (such as remote sensing 
or highway traffic control) is modeled using either a field- or an object-
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based model, depending on the requirements and the traditional choice of 
model for the application. Field models are often used to model spatial 
data that is continuous in nature, such as terrain elevation, temperature 
data, and soil variation characteristics, whereas object models have 
traditionally been used for applications such as transportation networks, 
land parcels, buildings, and other objects that possess both spatial and 
non-spatial attributes. 

5.2.9GEOGRAPHICAL INFORMATION SYSTEMS (GIS) 

Geographic Information Systems (GIS) contain spatial information about 
cities, states, countries, streets, highways, lakes, rivers, and other 
geographical features and support applications to combine such spatial 
information with non-spatial data. Spatial data is stored in either raster or 
vector formats. In addition, there is often a temporal dimension, as when 
we measure rainfall at several locations over time. An important issue with 
spatial datasets is  how to integrate data from multiple sources, since each 
source may record data using a different coordinate system to identify 
locations. Now let us consider how spatial data in a GIS is analyzed. 
Spatial information is almost naturally thought of as being overlaid on 
maps. Typical queries include "What cities lie on 1-94 between Madison 
and Chicago?" and "What is the shortest route from Madison to St. 
Louis?" These kinds of queries can be addressed using the techniques. An 
emerging application is in-vehicle navigation aids. With Global 
Positioning System (CPS) technology, a car's location can be pinpointed, 
and by accessing a databa.se of local maps, a driver can receive directions 
from In his or her current location to a desired destination; this application 
also involves mobile database access! In addition, many applications 
involve interpolating measurements at certainlocations across an entire 
region to obtain a model and combining overlapping models. For example, 
if -ve have measured rainfall at certain locations, we can use the 
Triangulated Irregular Network (TIN) approach to triangulate the region, 
with the locations at which we have measurements being the vertices of 
the triangles. Then, we use some form of interpolation to estimate the 
rainfall at points within triangles. Interpolation, triangulation, overlays, 
visualization of spatial data, and many other domain-specific operations 
are supported in GIS products such ARC-In while spatial query processing 
techniques are an important part of a GIS product, considerable additional 
functionality must be incorporated as well. How best to extend 0 to 1 
systems with this additional functionality is an important problem yet to 
be resolved. Agreeing on standards for data representation formats and 
coordinate system is another major challenge facing the field. 

5.2.10 CONCEPTUAL DATA MODELS FOR SPATIAL 
DATABASES 

Conceptual data model: provide the organizing principles that translate the 
external data models into functional descriptions of how data objects are 
related to one another (e.g. non-spatial: E-R model; spatial: raster, vector, 
object representation). 
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5.2.11 LOGICAL DATA MODELS FOR SPATIAL 
DATABASES 

Logical data model: provide the explicit forms that the conceptual models 
can take and is the first step in computing (e.g. non-spatial: hierarchical, 
network, relational; spatial: 2-d matrix, map file, location list, point 
dictionary, arc/nodes). 

 

Logical data modeling involves defining the logical structure for the data 
in terms of the database's model. Logical modeling takes a conceptual 
model and seeks to produce a logical schema for a database. For example, 
the general definition of each relation in a DBMS is concerned with: (i) 
what each attribute in the relation should represent the types of data 
identified during conceptual modeling; (ii) which attributes are key values 
and (iii) how different relations are joined within a DBMS and defined 
during logical data modeling. 
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5.2.12 RASTER AND VECTOR MODEL 

Data structures are complex for GIS because they must include 
information pertaining to entities with respect to: position, topological 
relationships, and attribute information. It is the topologic and spatial 
aspects of GIS that distinguish it from other types of data bases. 

Introduction: There are presently three types of representations for 
geographic data: raster vector, and objects. 

raster - set of cells on a grid that represents an entity (entity --> 
symbol/color --> cells). 

vector - an entity is represented by nodes and their connecting arc or line 
segment (entity --> points, lines or areas --> connectivity) 

object - an entity is represented by an object which has as one of its 
attributes spatial information. 

Raster Data model 

Definition: realization of the external model which sees the world as a 
continuously varying surface (field) through the use of 2-D Cartesian 
arrays forming sets of thematic layers. Space is discredited into a set of 
connected two dimensional units called a tessellation. 

Map overlays: separate set of Cartesian arrays or "overlays" for each 
entity. 

Logical data models: 2-D array, vertical array, and Map file 
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Each overlay is a 2-D matrix of points carrying the value of a single 
attribute. Each point is represented by a vertical array in which each array 
position carries a value of the attribute associated with the overlay. 

Map file - each mapping unit has the coordinates for cell in which it 
occurs (greater structure, many to one relationship). Compact methods for 
coding 

Vertical array not conducive to compact data coding because it references 
different entities in sequence and it lacks many to one relationship. The 
third structure references a set of points for a region (or mapping unit) and 
allows for compaction. Chain codes: a region is defined in terms of origin 
and (0 - 3) for E, N, W, S (Map file) (binary data). 

+ reduced storage. 

+ area, perimeter, shape est. 

- overlay difficult. 

Run-length codes: row #, begin, end (Map file entity #, # pix (2-D 
matrix). 

+ reduce storage. 

- overlay difficult. 

Block codes: 2-D rle, regions stored using origin and radius. 

+ reduced storage. 

+ U & I of regions easy. 

Quadtrees: recursive decomposition of a 2-D array into quads until the 
next subdivision yields a region containing a single entity. 

+ reduced storage. 

+ variable resolution. 

+ overlay of variable resolution data. 

+ fast search. 

Morton Sequencing 

Morton Sequencing Overlay 

Morton Homework 

Vector data model 

Definition: realization of the discrete model of real world using structures 
for storing and relating points, lines and polygons in sets of thematic 
layers. 



  

 

Advanced Database System 

132 

a. Introduction 

 represents an entity as exact as possible. 

 coordinate space continuous (not quantized like raster). 

 Structured as a set of thematic layers 

b. Representation 

 Point entities: geographic entities that are positioned by a single x,y 
coordinate. (historic site, wells, rare flora. The data record consists for 
x,y - attribute. 

 Line Entity: (rivers, roads, rail) all linear feature are made up of line 
segments. a simple line 2 (x,y) coordinates. 

 An arc or chain or string is a set of n (x,y) coordinate pairs that 
describe a continuous line. The shorter the line segments the closer the 
chain will approximate a continuous curve. Data record n(x,y). 

 A line network gives information about connectivity between line 
segments in the form of pointers or relations contained in the data 
structure. Often build into nodes pointers to define connections and 
angles indicating orientation of connections (fully defines topology). 

Area Entity: data structures for storing regions. Data types, land cover, 
soils, geology, land tenure, census tract, etc. 

Cartographic spaghetti or "connect the dots". Early development in 
automated cartography, a substitute for mechanical drawing. Numerical 
storage, spatial structure evident only after plotting, not in file. 

 Location list 

 describe each entity by specifying coordinates around its perimeter. 

 shared lines between polygons. 

 polygon sliver problems. 

 no topology (neighbor and island problems). 

 error checking a problem. 

c.  Point dictionary 

Unique points for entire file, no sharing of lines as in location lists 
(eliminate sliver problem) but still has other problems. expensive searches 
to construct polygons. 

d.  Dime Files (Dual Independent Mapping and Encoding) 

Designed to represent points lines and areas that form a city though a 
complete representation of network of streets and other linear features. 
allowed for topologically based verification. 
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No systems of directories linking segments together (maintenance 
problem). 

e. Arc/node 

Same topological principles as the DIME system. DIME defined by line 
segments, chains based on records of uncrossed boundary lines (curved 
roads a problem for DIME). chains or boundaries serve the topological 
function of connecting two end points called a node and separating two 
zones. points between zones cartographically not topologically required 
(generalization possible). solves problems discussed above (neighbor, 
dead ends, weird polygons). can treat data input and structure 
independently. 

5.2.13 PHYSICAL DATA MODELS FOR SPATIAL 
DATABASES 

Physical data modeling involves mapping the conceptual and logical 
models into a database implementation (Fig. 4.8). The result of physical 
modeling is a physical schema, which is tailored to a specific DBMS. 
Physical modeling fills in the blanks within the logical model required for 
a concrete DBMS, specifying actual values (data types) of each attribute, 
giving working names to the relations. Physical modeling results in a 
working physical database definition. 

 

5.2.14 CLUSTERING METHODS (SPACE FILLING 
CURVES) 

Spatial data tends to be highly correlated. For example, people with 
similar characteristics, occupations, and backgrounds tend to cluster 
together in the same neighborhoods. The three major spatial data mining 
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techniques are spatial classification, spatial association, and spatial 
clustering. 

■ Spatial classification. The goal of classification is to estimate the value 
of an attribute of a relation based on the value of the relation’s other 
attributes. An example of the spatial classification problem is determining 
the locations of nests in a wetland based on the value of other attributes 
(for example, vegetation durability and water depth); it is also called the 
location prediction problem. Similarly, where to expect hotspots in crime 
activity is also a location prediction problem. 

■ Spatial association. Spatial association rules are defined in terms of 
spatial predicates rather than items. A spatial association rule is of the 
form 

 

(that is, a country that is adjacent to the Mediterranean Sea is typically a 
wine exporter) is an example of an association rule, which will have a 
certain support s and confidence c. 

Spatial colocation rules attempt to generalize association rules to point to 
collection data sets that are indexed by space. There are several crucial 
differences between spatial and nonspatial associations including:  

1.  The notion of a transaction is absent in spatial situations, since data is 
embedded in continuous space. Partitioning space into transactions would 
lead to an overestimate or an underestimate of interest measures, for 
example, support or confidence. 

2. Size of item sets in spatial databases is small, that is, there are many 
fewer items in the item set in a spatial situation than in a nonspatial 
situation. In most instances, spatial items are a discrete version of 
continuous variables. For example, in the United States income regions 
may be defined as regions where the mean yearly income is within certain 
ranges, such as, below $40,000, from $40,000 to $100,000, and above 
$100,000. 

■ Spatial Clustering attempts to group database objects so that the most 
similar objects are in the same cluster, and objects in different clusters are 
as dissimilar as possible. One application of spatial clustering is to group 
together seismic events in order to determine earthquake faults. An 
example of a spatial clustering algorithm is density-based clustering, 
which tries to find clusters based on the density of data points in a region. 
These algorithms treat clusters as dense regions of objects in the data 
space. Two variations of these algorithms are density-based spatial 
clustering of applications with noise (DBSCAN) and density-based 
clustering (DENCLUE). DBSCAN is a density-based clustering algorithm 
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because it finds a number of clusters starting from the estimated density 
distribution of corresponding nodes. 

5.2.15 STORAGE METHODS (R-TREE) 

The R-tree is a height-balanced tree, which is an extension of the B+-tree 
for k-dimensions, where k > 1. For two dimensions (2-d), spatial objects 
are approximated in the R-tree by their minimum bounding rectangle 
(MBR), which is the smallest rectangle, with sides parallel to the 
coordinate system (x and y) axis, that contains the object. R-trees are 
characterized by the following properties, which are similar to the 
properties for B+-trees but are adapted to 2-d spatial objects. As in 
Section, we use M to indicate the maximum number of entries that can fit 
in an R-tree node. 

1. The structure of each index entry (or index record) in a leaf node is (I, 
object-identifier), where I is the MBR for the spatial object whose 
identifier is object-identifier. 

2. Every node except the root node must be at least half full. Thus, a leaf 
node that is not the root should contain m entries (I, object-identifier) 
where M/2 <= m <= M. Similarly, a non-leaf node that is not the root 
should contain m entries (I, child-pointer) where M/2 <= m <= M, and I is 
the MBR that contains the union of all the rectangles in the node pointed 
at by child-pointer.  

3. All leaf nodes are at the same level, and the root node should have at 
least two pointers unless it is a leaf node. 

4. All MBRs have their sides parallel to the axes of the global coordinate 
system. Other spatial storage structures include quadtrees and their 
variations. Quadtrees generally divide each space or subspace into 
equally sized areas, and proceed with the subdivisions of each subspace to 
identify the positions of various objects. Recently, many newer spatial 
access structures have been proposed, and this area remains an active 
research area. 

5.2.16 QUERY PROCESSING 

Spatial Query Processing in the Euclidean Space R-trees [G84, SRF87, 
BKSS90] are the most popular indexes for Euclidean query processing due 
to their simplicity and efficiency. The R-tree can be viewed as a multi-
dimensional extension of the B-tree. Figure shows an exemplary R-tree for 
a set of points {a,b,…,j} assuming a capacity of three entries per node. 
Points that are close in space (e.g., a,b) are clustered in the same leaf node 
(E3) represented as a minimum bounding rectangle (MBR). Nodes are 
then recursively grouped together following the same principle until the 
top level, which consists of a single root. 
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Figure 2.1: An R-tree example 

R-trees (like most spatial access methods) were motivated by the need to 
efficiently process range queries, where the range usually corresponds to a 
rectangular window or a circular area around a query point. The R-tree 
answers the query q (shaded area) in Figure 2.1 as follows. The root is first 
retrieved and the entries (e.g., E1, E2) that intersect the range are 
recursively searched because they may contain qualifying points. Non-
intersecting entries (e.g., E3) are skipped. Note that for non-point data 
(e.g., lines, polygons), the R-tree provides just a filter step to prune non-
qualifying objects. The output of this phase has to pass through a 
refinement step that examines the actual object representation to determine 
the actual result. The concept of filter and refinement steps applies to all 
spatial queries on non-point objects. A nearest neighbor (NN) query 
retrieves the (k≥1) data point(s) closest to a query point q. The R-tree NN 
algorithm proposed in [HS99] keeps a heap with the entries of the nodes 
visited so far. Initially, the heap contains the entries of the root sorted 
according to their minimum distance (mindist) from q. The entry with the 
minimum mindist in the heap (E1 in Figure 2.1) is expanded, i.e., it is 
removed from the heap and its children (E3, E4, E5) are added together 
with their mindist. The next entry visited is E2 (its mindist is currently the 
minimum in the heap), followed by E6, where the actual result (h) is found 
and the algorithm terminates, because the mindist of all entries in the heap 
is greater than the distance of h. The algorithm can be easily extended for 
the retrieval of k nearest neighbors (kNN). Furthermore, it is optimal (it 
visits only the nodes necessary for obtaining the nearest neighbors) and 
incremental, i.e., it reports neighbors in ascending order of their distance 
to the query point, and can be applied when the number k of nearest 
neighbors to be retrieved is not known in advance. An intersection join 
retrieves all intersecting object pairs (s,t) from two datasets S and T. If 
both S and T are indexed by R-trees, the R-tree join algorithm [BKS93] 
traverses synchronously the two trees, following entry pairs that overlap; 
non-intersecting pairs cannot lead to solutions at the lower levels. Several 
spatial join algorithms have been proposed for the case where only one of 
the inputs is indexed by an R-tree or no input is indexed [RSV02]. For 
point datasets, where intersection joins are meaningless, the corresponding 
problem is the e distance join, which finds all pairs of objects (s,t) s ∈ S, t 

∈ T within (Euclidean) distance e from each other. R-tree join can be 
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applied in this case as well, the only difference being that a pair of 
intermediate entries is followed if their distance is below (or equal to) e. 
The intersection join can be considered as a special case of the e-distance 
join, where e=0. Finally, a closest-pairs query outputs the (k≥1) pairs of 
objects (s,t) s ∈ S, t ∈ T with the smallest (Euclidean) distance. The 
algorithms for processing such queries [CMTV00] combine spatial joins 
with nearest neighbor search. In particular, assuming that both datasets are 
indexed by R-trees, the trees are traversed synchronously, following the 
entry pairs with the minimum distance. Pruning is based on the mindist 
metric, but this time defined between entry MBRs. As all these algorithms 
apply only location-based metrics to prune the search space, they are 
inapplicable for SNDB. 

5.2.17 LET US SUM UP 

Thus, we have studied basic concepts of object oriented database, object 
identity, encapsulation, methods, persistence and inheritance. With this 
ODMG as language design mode, ODL (object Definition language) and 
OQL query language. Also the major aspect of spatial and temporal 
database, in short GIS as well. 
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5.2.19 UNIT END EXERCISES 

1) Explain features of object oriented database with an example. 

2) Describe in detail temporal databases.  

3) What is a Geographical Information system? Explain Different format 
used to represent geographic data. 

4) Write a short note on Spatial database 

5) What is GIS? Explain its application. 

6) Explain conceptual and logical data model for spatial databases. 

7) Explain ODMG model. 

 


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Module - IV 

6 
DEDUCTIVE, ACTIVE, MULTIMEDIA 

AND XML DATABASES  
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6.1.0 OBJECTIVES  

In this chapter you will learn about: 

 Introduction to deductive database. 

 Datalog notation, clause form and horn clauses etc. 

 Basics of active database and XML database-structure schema. 

 XML data storage, querying and transformation etc. 

 Introduction to multimedia database system. 

6.1.1 INTRODUCTION  

This chapter introduces database concepts for some of the common 
features that are needed by advanced applications and are being used 
widely. We will cover active rules that are used in active database 
applications. We will also discuss deductive databases. It is important to 
note that each of these topics is very broad, and we give only a brief 
introduction to each.  

We discuss deductive databases, an area that is at the intersection of 
databases, logic, and artificial intelligence or knowledge bases. A 
deductive database system includes capabilities to define (deductive) 
rules, which can deduce or infer additional information from the facts that 
are stored in a database. Because part of the theoretical foundation for 
some deductive database systems is mathematical logic, such rules are 
often referred to as logic databases. Other types of systems, referred to as 
expert database systems or knowledge-based systems, also incorporate 
reasoning and inferencing capabilities; such systems use techniques that 
were developed in the field of artificial intelligence, including semantic 
networks, frames, production systems, or rules for capturing domain-
specific knowledge. 

Also Multimedia databases provide features that allow users to store and 
query different types of multimedia information, which includes images 
(such as pictures and drawings), video clips (such as movies, newsreels, 
and home videos), audio clips (such as songs, phone messages, and 
speeches), and documents (such as books and articles). 

6.1.2 DEDUCTIVE DATABASE 

In a deductive database system we typically specify rules through a 
declarative language a language in which we specify what to achieve 
rather than how to achieve it. An inference engine (or deduction 
mechanism) within the system can deduce new facts from the database by 
interpreting these rules. The model used for deductive databases is closely 
related to the relational data model, and particularly to the domain 
relational calculus formalism. It is also related to the field of logic 
programming and the Prolog language. The deductive database work 
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based on logic has used Prolog as a starting point. A variation of Prolog 
called Datalog is used to define rules declaratively in conjunction with an 
existing set of relations, which are themselves treated as literals in the 
language. Although the language structure of Datalog resembles that of 
Prolog, its operational semantics that is, how a Datalog program is 
executed is still different.  

A deductive database uses two main types of specifications: facts and 
rules. Facts are specified in a manner similar to the way relations are 
specified, except that it is not necessary to include the attribute names. 
Recall that a tuple in a relation describes some real-world fact whose 
meaning is partly determined by the attribute names. In a deductive 
database, the meaning of an attribute value in a tuple is determined solely 
by its position within the tuple. Rules are somewhat similar to relational 
views. They specify virtual relations that are not actually stored but that 
can be formed from the facts by applying inference mechanisms based on 
the rule specifications. 

The main difference between rules and views is that rules may involve 
recursion and hence may yield virtual relations that cannot be defined in 
terms of basic relational views. The evaluation of Prolog programs is 
based on a technique called backward chaining, which involves a top-
down evaluation of goals. In the deductive databases that use Datalog, 
attention has been devoted to handling large volumes of data stored in a 
relational database. Hence, evaluation techniques have been devised that 
resemble those for a bottom-up evaluation. Prolog suffers from the 
limitation that the order of specification of facts and rules is significant in 
evaluation; moreover, the order of literals within a rule is significant. The 
execution techniques for Datalog programs attempt to circumvent these 
problems. 

6.1.3 INTRODUCTION TO RECURSIVE QUERIES 

As begin with a simple example that illustrates the its of SQL-92 queries 
with the power of recursive definitions. Let Assembly be a relation with 
three fields part, subpart, and qty. An example instance of Assembly is 
shown in Figure 4.1.1. Each tuple in Assembly indicates How many 
copies of a particular subpart are Contained in a given part. The first tuple 
indicates, for example, that (1, trike contains three wheels} The Assembly 
relation can be visualized as a tree, as shown in Figure. A. tuple is shown 
as an edge going from the part to the subpart, with the qty value as the 
edge label 
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 Figure 6.1.1 An instance of assembly   Figure 6.1.2 Assembly instance seen as a  
Tree 

A natural question to ask is, "What are the components of a trike?" Rather 
surprisingly, this query is impossible to write in SQL-92. Of course, if we 
look at a given instance of the Assembly relation, we can write a 'query' 
that takes the union of the parts that are used in a trike. But such a query is 
not interesting---we want a query that identifies all components of a trike 
for any instance of Assembly, and such a query cannot be written in 
relational algebra or in SQL-92. Intuitively, the problem is that we are 
forced to join the Assembly relation with itself to recognize that trike 
contains spoke and tire, that is, to go one level down the Assembly tree. 
For each additional level, we need an additional join; two joins are needed 
to recognize that trike contains rim, which is a subpart of tire. Thus, the 
number of joins needed to identify all subparts of trike depends on the 
height of the Assembly tree, that is, on the given instance of the Assembly 
relation. No relational algebra query works for all instances; given any 
query, we can construct an instance whose height is greater than the 
number of joins in the query. 

6.1.4 DATALOG NOTATION 

In Datalog, as in other logic-based languages, a program is built from 
basic objects called atomic formulas. It is customary to define the syntax 
of logic-based languages by describing the syntax of atomic formulas and 
identifying how they can be combined to form a program. In Datalog, 
atomic formulas are literals of the form p(a1, a2, ..., an), where p is the 
predicate name and n is the number of arguments for predicate p. Different 
predicate symbols can have different numbers of arguments, and the 
number of arguments n of predicate p is sometimes called the arity or 
degree of p. The arguments can be either constant values or variable 
names. As mentioned earlier, we use the convention that constant values 
either are numeric or start with a lowercase character, whereas variable 
names always start with an uppercase character. 

A number of built-in predicates are included in Datalog, which can also 
be used to construct atomic formulas. The built-in predicates are of two 
main types: the binary comparison predicates < (less), <= (less_or_equal), 
> (greater), and >= (greater_or_equal) over ordered domains; and the 
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comparison predicates = (equal) and /= (not_equal) over ordered or 
unordered domains. These can be used as binary predicates with the same 
functional syntax as other predicates for example, by writing less(X, 3) or 
they can be specified by using the customary infix notation X<3. Note that 
because the domains of these predicates are potentially infinite, they 
should be used with care in rule definitions. For example, the predicate 
greater(X, 3), if used alone, generates an infinite set of values for X that 
satisfy the predicate (all integer numbers greater than 3). 

A literal is either an atomic formula as defined earlier called a positive 
literal—or an atomic formula preceded by not. The latter is a negated 
atomic formula, called a negative literal. Datalog programs can be 
considered to be a subset of the predicate calculus formulas, which are 
somewhat similar to the formulas of the domain relational calculus. In 
Datalog, however, these formulas are first converted into what is known as 
clausal form before they are expressed in Datalog, and only formulas 
given in a restricted clausal form, called Horn clauses can be used in 
Datalog. 

6.1.5 CLAUSE FORM AND HORN CLAUSES 

A formula in the relational calculus is a condition that includes predicates 
called atoms (based on relation names). Additionally, a formula can have 
quantifiers namely, the universal quantifier (for all) and the existential 
quantifier (there exists). In clausal form, a formula must be transformed 
into another formula with the following characteristics: 

 All variables in the formula are universally quantified. Hence, it is not 
necessary to include the universal quantifiers (for all) explicitly; the 
quantifiers are removed, and all variables in the formula are implicitly 
quantified by the universal quantifier. 

 In clausal form, the formula is made up of a number of clauses, where 
each clause is composed of a number of literals connected by OR 
logical connectives only. Hence, each clause is a disjunction of literals. 

 The clauses themselves are connected by AND logical connectives 
only, to form a formula. Hence, the clausal form of a formula is a 
conjunction of clauses. 

It can be shown that any formula can be converted into clausal form. For 
our purposes, we are mainly interested in the form of the individual 
clauses, each of which is a disjunction of literals. Recall that literals can be 
positive literals or negative literals. Consider a clause of the form: 

 

This clause has n negative literals and m positive literals. Such a clause 
can be transformed into the following equivalent logical formula: 
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where ⇒is the implies symbol. The formulas (1) and (2) are equivalent, 
meaning that their truth values are always the same. This is the case 
because if all the Pi literals (i = 1, 2, ..., n) are true, the formula (2) is true 
only if at least one of the Qi’s is true, which is the meaning of the 
⇒(implies) symbol. For formula (1), if all the Pi literals (i = 1, 2, ..., n) are 
true, their negations are all false; so in this case formula (1) is true only if 
at least one of the Qi’s is true. In Datalog, rules are expressed as a 
restricted form of clauses called Horn clauses, in which a clause can 
contain at most one positive literal. Hence, a Horn clause is either of the 
form 

 

 

A Datalog rule, as in (6), is hence a Horn clause, and its meaning, based 
on formula (5), is that if the predicates P1 AND P2 AND ... AND Pn are 
all true for a particular binding to their variable arguments, then Q is also 
true and can hence be inferred. The Datalog expression (8) can be 
considered as an integrity constraint, where all the predicates must be true 
to satisfy the query. In general, a query in Datalog consists of two 
components: 

 A Datalog program, which is a finite set of rules 

 A literal P(X1, X2, ..., Xn), where each Xi is a variable or a constant 

A Prolog or Datalog system has an internal inference engine that can be 
used to process and compute the results of such queries. Prolog inference 
engines typically return one result to the query (that is, one set of values 
for the variables in the query) at a time and must be prompted to return 
additional results. On the contrary, Datalog returns results set-at-a-time. 

6.1.6 INTERPRETATION OF MODEL 

There are two main alternatives for interpreting the theoretical meaning of 
rules: proof-theoretic and model-theoretic. In practical systems, the 
inference mechanism within a system defines the exact interpretation, 
which may not coincide with either of the two theoretical interpretations. 
The inference mechanism is a computational procedure and hence 
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provides a computational interpretation of the meaning of rules. In this 
section, first we discuss the two theoretical interpretations. Then we 
briefly discuss inference mechanisms as a way of defining the meaning of 
rules. In the proof-theoretic interpretation of rules, we consider the facts 
and rules to be true statements, or axioms. Ground axioms contain no 
variables. The facts are ground axioms that are given to be true. Rules are 
called deductive axioms, since they can be used to deduce new facts. The 
deductive axioms can be used to construct proofs that derive new facts 
from existing facts. For example, Figure 4.1.3 shows how to prove the fact 
SUPERIOR(james, ahmad) from the rules and facts given in Figure. 

 

Figure 6.1.3 Proving a new fact 

The proof-theoretic interpretation gives us a procedural or computational 
approach for computing an answer to the Datalog query. The process of 
proving whether a certain fact (theorem) holds is known as theorem 
proving. 

The second type of interpretation is called the model-theoretic 
interpretation. Here, given a finite or an infinite domain of constant values, 
we assign to a predicate every possible combination of values as 
arguments. We must then determine whether the predicate is true or false. 
In general, it is sufficient to specify the combinations of arguments that 
make the predicate true, and to state that all other combinations make the 
predicate false. If this is done for every predicate, it is called an 
interpretation of the set of predicates. For example, consider the 
interpretation shown in Figure6.1.4 for the predicates SUPERVISE and 
SUPERIOR. This interpretation assigns a truth value (true or false) to 
every possible combination of argument values (from a finite domain) for 
the two predicates. 

An interpretation is called a model for a specific set of rules if those rules 
are always true under that interpretation; that is, for any values assigned to 
the variables in the rules, the head of the rules is true when we substitute 
the truth values assigned to the predicates in the body of the rule by that 
interpretation. Hence, whenever a particular substitution (binding) to the 
variables in the rules is applied, if all the predicates in the body of a rule 
are true under the interpretation, the predicate in the head of the rule must 
also be true. The interpretation shown in Figure is a model for the two 
rules shown, since it can never cause the rules to be violated. Notice that a 
rule is violated if a particular binding of constants to the variables makes 
all the predicates in the rule body true but makes the predicate in the rule 
head false. For example, if SUPERVISE(a, b) and SUPERIOR(b, c) are 
both true under some interpretation, but SUPERIOR(a, c) is not true, the 
interpretation cannot be a model for the recursive rule: 
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In the model-theoretic approach, the meaning of the rules is established by 
providing a model for these rules. A model is called a minimal model for 
a set of rules if we cannot change any fact from true to false and still get a 
model for these rules. For example, consider the interpretation in Figure, 
and assume that the SUPERVISE predicate is defined by a set of known 
facts, whereas the SUPERIOR predicate is defined as an interpretation 
(model) for the rules. Suppose that we add the predicate 
SUPERIOR(james, bob) to the true predicates. This remains a model for 
the rules shown, but it is not a minimal model, since changing the truth 
value of SUPERIOR(james,bob) from true to false still provides us with a 
model for the rules. The model shown in Figure is the minimal model for 
the set of facts that are defined by the SUPERVISE predicate. In general, 
the minimal model that corresponds to a given set of facts in the model 
theoretic interpretation should be the same as the facts generated by the 
proof. 

 

Figure 6.1.4 An interpretation that is a minimal model. 

Theoretic interpretation for the same original set of ground and deductive 
axioms. However, this is generally true only for rules with a simple 
structure. Once we allow negation in the specification of rules, the 
correspondence between interpretations does not hold. In fact, with 
negation, numerous minimal models are possible for a given set of facts. 

A third approach to interpreting the meaning of rules involves defining an 
inference mechanism that is used by the system to deduce facts from the 
rules. This inference mechanism would define a computational 
interpretation to the meaning of the rules. The Prolog logic programming 
language uses its inference mechanism to define the meaning of the rules 
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and facts in a Prolog program. Not all Prolog programs correspond to the 
proof-theoretic or model-theoretic interpretations; it depends on the type 
of rules in the program. However, for many simple Prolog programs, the 
Prolog inference mechanism infers the facts that correspond either to the 
proof-theoretic interpretation or to a minimal model under the model-
theoretic interpretation. 

6.1.7 LEAST MODEL SEMANTICS 

We want users to be able to understand a Datalog prograrn by 
understanding each rule independent of other rules, with : If the body is 
True, the head is also True. This intuitive reading of a rule suggests that, 
given certain relation instances for the relation names that appear in the 
body of a rule, the relation instance for the relation mentioned in the head 
of the rule contain a certain set of tuples. If a relation Harne R. appears in 
the heads of several rules, the relation instance for R satisfy the intuitive 
reading of all these rules. However, we do not want tuples to be included 
in the instance for R, unless they are necessary to satisfy one of the rules 
defining R,. That is, we want to compute only tuples for R that are 
supported by Salne rule for R. To these ideas precise, we need to introduce 
the concepts of models and least models. A model is a collection of 
relation instances, one instance for each relation in the program, that 
satisfies the following condition. For every rule in the program, whenever 
we replace each variable in the rule by a corresponding constant, the 
following holds: 

If every tuple in the body (obtained by our replacement of variables with 
constants) is in the corresponding relation instance, Then the tuple 
generated for the head (by the assignment of constants to variables that 
appear in the head) is also in the corresponding relation instance. 

Observe that the instances for the input relations are given, and the 
definition of a model essentially restricts the instances for the output 
relations. Consider the rule 

 

Let A be an instance of Assembly and C be an instance of components. If 
A contains the tuple (wheel,tire, 1) and C contains the tuple (tire, rim,), 
then C tuple also contain the tuple (wheel, rim) for the pair of instances A. 
and C  to be a model. of course, the instances A and must satisfy the 
inclusion requirement just illustrated for every assignment of constants to 
the variables in the rule: If the tuples in the rule body are in A and C, the 
tuple in the head to be in C. 
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As an example, the instances of Assembly shown in Figure and 
Components had shown in Figure together form a model for the 
component program. Given the instance of Assembly shown in Figure, 
there is no justification for including the tuple (spoke, pedal) to the 
Components instance. Indeed, if we add this tuple to the components 
instance in Figure, We no longer have a model for our program, as the 
following instance of the recursive rule demonstrates, since (wheel, pedal) 
is not in the Components instance: 

 

However, by also adding the tuple (wheel, pedal) to the Components 
instance, we obtain another model of the Components program. 
Intuitively, this is unsatisfactory since there is no justification for adding 
the tuple (spoke, pedal) in the first place, given the tuples in the Assembly 
instance and the rules in the program. 

We address this problem by using the concept of a least model. A least 
model of a program is a model M such that for every other model M2 of 
the same program, for each relation R in the program the instance for R is 
contained in the instance of R. The 1nodel formed by the instances of 
Assembly and Components shown in Figures and is the least model for the 
components program with the given Assembly instance. 

6.1.8 THE FIXED POINT OPERATOR 

A fixpoint of a function f is a value v such that the function applied to the 
value returns the same value, that is, f(v) = 'U. Consider a function applied 
to a set of values that also returns a set of values. For example, we can 
define double to l)e a function that multiplies every element of the input 
set by two and double+ to be double U identity. T'hus, double( {1,2,5} ) 
== {2,4,lO}, and double+( {1,2,5} ) ::::::: {1,2,4.,5,lO}.The set of all even 
integers which happens to be an infinite set-is a fixpoint of the function 
double-+. Another fixpoint of the function double+ is the set of all 
integers. The first fixpoint (the set of all (even integers) is smaller than the 
second fixpoint (the set of all integers) because it is contained in the latter. 

The least fixpoint of a function is the fixpoint that is smaller than every 
other fixpoint of that function. In general, it is not guaranteed that a 
function has a load fixpoint. For example, there may be two fixpoints, 
neither of which is smaller than the other. (Does double have a least 
fixpoint? What is it?) No let us turn to functions over sets of tuples, in 
particular, functions defined using relational algebra expressions. The 
Components relation can be defined by an equation. 
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The least fixpoint of f is an instance of Components that satisfies this 
equation. Clearly the projection of the first two fields of the tuples in the 
given instance of the input relation Assembly rnust be included in the 
(instance that is the) least fixpoint of Components. In addition, any tuple 
obtained by joining Components with Assembly and projecting the 
appropriate fields must also be in Components. 

A little thought shows that the instance of Components that is the least 
fixpoint of f can be computed using repeated applications of the Datalog 
rules shown in the previous section. Indeed, applying the two Datalog 
rules is identical to evaluating the relational expression used in defining 
components. If an application generates Components tuples that are not in 
the current instance of the Components relation, the current instance 
cannot be the fixpoint.  

Therefore, we add the new tuples to Components <tnd evalu<te the 
relational expression (equivalently, the two Datalog rules) again. This 
process is repeated until every tuple generated is already in the current 
instance of Components. Then applying the rules to the current set of 
tuples does not produce any new tuples, we have reached a fixpoint. If 
components is initialized to the empty set of tuples. We infer only tuples 
that we necessary by the definition of a fixpoint, and the fixpoint 
computed is the least fixpoint. 

6.1.9 SAFE DATALOG PROGRAM 

There are two main methods of defining the truth values of predicates in 
actual Datalog programs. Fact-defined predicates (or relations) are 
defined by listing all the combinations of values (the tuples) that make the 
predicate true. These correspond to base relations whose contents are 
stored in a database system. Figure shows the fact-defined predicates 
EMPLOYEE, MALE, FEMALE, DEPARTMENT, SUPERVISE, 
PROJECT, and WORKS_ON, which correspond to part of the relational 
database shown in Figure 4.1.5 Rule-defined predicates (or views) are 
defined by being the head (LHS) of one or more Datalog rules; they 
correspond to virtual relations whose contents can be inferred by the 
inference engine. 

Figure shows a number of rule-defined predicates. A program or a rule is 
said to be safe if it generates a finite set of facts. The general theoretical 
problem of determining whether a set of rules is safe is un-decidable. 
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However, one can determine the safety of restricted forms of rules. For 
example, the rules shown in Figure are safe. One situation where we get 
unsafe rules that can generate an infinite number of facts arises when one 
of the variables in the rule can range over an infinite domain of values, 
and that variable is not limited to ranging over a finite relation. For 
example, consider the following rule: 

 

 

Figure 6.1.5 Fact predicates for part of the database 
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Figure 6.1.6 Rule-defined predicates 

In this case, the rule is still theoretically safe. However, in Prolog or any 
other system that uses a top-down, depth-first inference mechanism, the 
rule creates an infinite loop, since we first search for a value for Y and then 
check whether it is a salary of an employee. The result is generation of an 
infinite number of Y values, even though these, after a certain point, 
cannot lead to a set of true RHS predicates. One definition of Datalog 
considers both rules to be safe, since it does not depend on a particular 
inference mechanism. Nonetheless, it is generally advisable to write such a 
rule in the safest form, with the predicates that restrict possible bindings of 
variables placed first. As another example of an unsafe rule, consider the 
following rule: 

 

 

Figure 6.1.6 Predicates for illustrating relational operations 
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Here, an infinite number of Y values can again be generated, since the 
variable Y appears only in the head of the rule and hence is not limited to a 
finite set of values. To define safe rules more formally, we use the concept 
of a limited variable. A variable X is limited in a rule if (1) it appears in a 
regular (not built-in) predicate in the body of the rule; (2) it appears in a 
predicate of the form X=c or c=X or (c1<<=X and X<=c2) in the rule 
body, where c, c1, and c2 are constant values; or (3) it appears in a 
predicate of the form X=Y or Y=X in the rule body, where Y is a limited 
variable. A rule is said to be safe if all its variables are limited. 

6.1.10 RECURSIVE QUERY WITH NEGATION 

Unfortunately, once set-difference is allowed in the body of a rule, there 
may be no least , model or least fixpoint for a program. Consider the 
following rules: 

 

These two rules can be thought of as an attempt to divide parts (those that 
are mentioned in the first column of the Assembly table) into two classes, 
Big and Small. The first rule defines Big to be the set of parts that use at 
least three copies of some subpart and are not classified as small parts. The 
second rule defines Small as the set of parts not classified as big parts. 

If we apply these rules to the instance of Assembly shown in Figure 4.1.7, 
trike is the only part that uses at least three copies of same subpart. Should 
the tuple (trike) be in Big or Small? If we apply the first rule and then the 
second rule, this tuple is in Big. To apply the first rule, we consider the 
tuples in Assembly, choose those with Qty > 2 (which is just (trike)), 
discard those in the current instance of Srnal1 (both Big and Small are 
initially empty), and add the tuples that are left to Big. Therefore, an 
application of the first rule adds (trike) to Big. Proceeding similarly, we 
can see that if the second rule is applied before the first, (trike) is added to 
Small instead of Big. This program has two fixpoints, neither of which is 
smaller than the other, as shown in Figure 4.1.7. (The first fixpoint has a 
Big tuple that does not appear in the second fixpoint; therefore, it is not 
smaller than the second fixpoint. The second fixpoint has a small tuple 
that does not appear in the first fixpoint. Therefore it is not smaller than 
the first fixpoint. The order in which we apply the rules determines which 
fixpoint is computed; this situation is very unsatisfactory. We want users 
to be able to understand their queries without thinking out exactly how the 
evaluation proceeds. The root of the problerH is the use of NOT. When we 
apply the first rule, same inferences are disallowed because of the 
presence of tuples in small.  



 

 

Deductive, Active, Multimedia 
and Xml Databases  

 

153 

 

Figure 6.1.7 Two fix point for Big/Small program 

Parts that satisfy the other conditions in the body of the rule are candidates 
for addition to Big; we remove the parts in Small from this set of 
candidates. Thus some inferences that are possible if Small is empty (as it 
is before the second rule is applied) are disallowed if Small contains tuples 
(generated by applying the second rule before the first rule). Here is the 
difficulty: If NOT is used, the addition of tuples to a relation can disallow 
the inference of other tuples. Without NOT, this situation can never arise; 
the addition of tuples to a relation can never disallow the inference of 
other tuples. 

6.2 ACTIVE DATABASE 

Overcome the strict separation between application programs and DBS.  

•  Usually only a small part of the real-world semantics can be modeled in 
the DBS.  

• Object-oriented DBS are not enough => add active (and deductive) 
mechanisms to model more semantics (especially dynamic behavior) of 
the applications in DBS. 

 

General Idea 
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In addition to the capabilities of passive database systems 

•    monitor specified situations (events & conditions) in the database or its 
environment 

• invoke specified reactions whenever a situation occurs programs 
containing, e.g., database operations 

Definition: Active DBS 

An active database system (ADBS) is a DBS that monitors situations of 
interest and, when they occur, triggers an appropriate response in a timely 
manner. The desired behavior is expressed in production rules (also called 
event-condition-action rules), which are defined and stored in the DBS. 
This has the benefits that the rules can be shared by many application 
programs, and the DBS can optimize their implementation. 

 

6.2.1 LANGUAGES FOR RULE SPECIFICATION 

Rule Models and Languages 

• Event Specification 

• Condition Specification 

• Action Specification 

• Event-Condition-Action Binding 

• Rule Ordering 

• Rule Organization 

Affects data model and transaction management 

6.2.2 EVENTS 

 An event is something that happens at a point in time. 

 Possible alternatives: 
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 structure operation(insert,update,access) 

 behavior invocation(the message display is sent to an object of 
type widget) 

 transaction(abort,commit,begin-transacttion) 

 exception(an attempt to access some data without appropriate 
authorization) 

 clock(the first day of every month) 

 external(the temperature reading goes above 30 degrees) 

Production Rules (Event-Condition-Action Rules) 

 

 Event Specification 

 relational DBS: define rule MonitorNewEmps on insert to employee 

if ... then ... 

 OODBS: define rule CheckRaise on employee.salary-raise() 

if ... then ... 

 rule triggered by data retrieval: define rule MonitorSalAccess on 
retrieve salary from employee 

if ... then ... 

 Knowledge Model: Semantics of ECA Rules 
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 Knowledge Model: Semantics of ECA Rules – 2 

 

 Knowledge Model: Semantics of ECA Rules – 3 

 

6.2.3 CONDITIONS 

 The condition indicates whether rule action should be executed. 

 In ECA-rules, the condition is generally optional 

 Once the triggering event has occurred, the condition may be 
evaluated. If condition evaluates to be true, the rule action will be 
executed. 

 If no condition is specified, the action will be executed once the event 
occurs. 

 The condition part of a rule specifies a predicate or query over the data 
in the database. 

 The condition is satisfied if the predicate is true or if the query returns 
a nonempty answer. 

 Explicit events: condition may often be omitted (in which case it is 
always satisfied). 

 Transition conditions: allow to express conditions over changes in the 
database state. Example  
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6.2.4 ACTIONS 

 The range of tasks that can be performed if the rule condition is 
evaluated to be true. 

 It is usually a sequence of SQL statements. 

 But actions may: 

 Perform some behavior invocation within the database or an external 
call 

 Inform the user or system administrator of some situation 

 Abort a transaction 

 Take some alternative course of action using do-instead 

The action part of a production rule specifies the operations to be 
performed when the rule is triggered and its condition is satisfied. 

 

6.3 XML AND DATABASE 

To understand XML, it is important to understand its roots as a document 
markup language. The term markup refers to anything in a document that 
is not intended to be part of the printed output. For example, a writer 
creating text that will eventually be typeset in a magazine may want to 
make notes about how the typesetting should be done. It would be 
important to type these notes in a way so that they could be distinguished 
from the actual content, so that a note like “set this word in large size, bold 
font” or “insert a line break here” does not end up printed in the magazine. 
Such notes convey extra information about the text. 

In electronic document processing, a markup language is a formal 
description of what part of the document is content, what part is markup, 
and what the markup means. Just as database systems evolved from 
physical file processing to provide a separate logical view, markup 
languages evolved from specifying instructions for how to print parts of 
the document to specifying the function of the content. For instance, with 
functional markup, text representing section headings (for this section, the 
word “Motivation”) would be marked up as being a section heading, 
instead of being marked up as text to be printed in large size, bold font. 
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From the viewpoint of typesetting, such functional markup allows the 
document to be formatted differently in different situations. It also helps 
different parts of a large document, or different pages in a large Web site, 
to be formatted in a uniform manner. More importantly, functional markup 
also helps record what each part of the text represents semantically, and 
correspondingly helps automate extraction of key parts of documents. For 
the family of markup languages that includes HTML, SGML, and XML, 
the markup takes the form of tags enclosed in angle brackets, <>. Tags 
are used in pairs, with <tag> and </tag> delimiting the beginning and the 
end of the portion of the document to which the tag refers. For example, 
the title of a document might be marked up as follows: 

 

Unlike HTML, XML does not prescribe the set of tags allowed, and the 
set may be chosen as needed by each application. This feature is the key to 
XML’s major role in data representation and exchange, whereas HTML is 
used primarily for document formatting. 

 

Figure 6.1.8 XML representation of (part of) university information. 
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Figure 6.1.9 Continuation of Figure 

For example, in our running university application, department, course and 
instructor information can be represented as part of an XML document as 
in Figures 4.1.8 and 4.1.9. Observe the use of tags such as department, 
course, instructor, and teaches. To keep the example short, we use a 
simplified version of the university schema that ignores section 
information for courses. We have also used the tag IID to denote the 
identifier of the instructor, for reasons we shall see later.  

These tags provide context for each value and allow the semantics of the 
value to be identified. For this example, the XML data representation does 
not provide any significant benefit over the traditional relational data 
representation; however, we use this example as our running example 
because of its simplicity. 
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Figure 6.1.10 XML representation of a purchase order. 

Figure 6.1.10, which shows how information about a purchase order can 
be represented in XML, illustrates a more realistic use of XML. Purchase 
orders are typically generated by one organization and sent to another. 
Traditionally they were printed on paper by the purchaser and sent to the 
supplier; the data would be manually re-entered into a computer system by 
the supplier. This slow process can be greatly sped up by sending the 
information electronically between the purchaser and supplier. The nested 
representation allows all information in a purchase order to be represented 
naturally in a single document. (Real purchase orders have considerably 
more information than that depicted in this simplified example.) XML 
provides a standard way of tagging the data; the two organizations must of 
course agree on what tags appear in the purchase order, and what they 
mean. 

Compared to storage of data in a relational database, the XML 
representation may be inefficient, since tag names are repeated throughout 
the document. However, in spite of this disadvantage, an XML 
representation has significant advantages when it is used to exchange data 
between organizations, and for storing complex structured information in 
files: 

First, the presence of the tags makes the message self-documenting; that 
is, a schema need not be consulted to understand the meaning of the text. 
We can readily read the fragment above, for example. 

Second, the format of the document is not rigid. For example, if some 
sender adds additional information, such as a tag last accessed noting the 
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last date on which an account was accessed, the recipient of the XML data 
may simply ignore the tag. As another example, in Figure 4.1.10, the item 
with identifier SG2 has a tag called unit-of-measure specified, which the 
first item does not.  

The tag is required for items that are ordered by weight or volume, and 
may be omitted for items that are simply ordered by number. The ability to 
recognize and ignore unexpected tags allows the format of the data to 
evolve over time, without invalidating existing applications. 

Similarly, the ability to have multiple occurrences of the same tag makes it 
easy to represent multi valued attributes. 

Third, XML allows nested structures. The purchase order shown in Figure 
6.1.10 illustrates the benefits of having a nested structure. Each purchase 
order has a purchaser and a list of items as two of its nested structures. 
Each item in turn has an item identifier, description and a price nested 
within it, while the purchaser has a name and address nested within it. 
Such information would have been split into multiple relations in a 
relational schema. Item information would have been stored in one 
relation, purchaser information in a second relation, purchase orders in a 
third, and the relationship between purchase orders, purchasers, and items 
would have been stored in a fourth relation. 

The relational representation helps to avoid redundancy; for example, item 
descriptions would be stored only once for each item identifier in a 
normalized relational schema. In the XML purchase order, however, the 
descriptions may be repeated in multiple purchase orders that order the 
same item. However, gathering all information related to a purchase order 
into a single nested structure, even at the cost of redundancy, is attractive 
when information has to be exchanged with external parties. 

Finally, since the XML format is widely accepted, a wide variety of tools 
are available to assist in its processing, including programming language 
APIs to create and to read XML data, browser software, and database 
tools. 

6.3.1 STRUCTURE OF XML DATA 

The fundamental construct in an XML document is the element. An 
element is simply a pair of matching start- and end-tags and all the text 
that appears between them. 

XML documents must have a single root element that encompasses all 
other elements in the document. In the example in Figure, 
the<university>element forms the root element. Further, elements in an 
XML document must nest properly. For instance: 
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is not properly nested. While proper nesting is an intuitive property, we 
may define it more formally. Text is said to appear in the context of an 
element if it appears between the start tag and end-tag of that element. 
Tags are properly nested if every start-tag has a unique matching end-tag 
that is in the context of the same parent element. 

Note that text may be mixed with the sub elements of an element, as in 
Figure. As with several other features of XML, this freedom makes more 
sense in a document-processing context than in a data-processing context, 
and is not particularly useful for representing more-structured data such as 
database content in XML. 

The ability to nest elements within other elements provides an alternative 
way to represent information. Figure shows a representation of part of the 
university information from Figure 6.1.10, but with course elements 
nested within department elements. The nested representation makes it 
easy to find all courses offered by a department. Similarly, identifiers of 
courses taught by an instructor are nested within the instructor elements. If 
an instructor teaches more than one course, there would be multiple course 
id elements within the corresponding instructor element. 

 

Figure 6.1.11 Mixture of text with sub elements. 

 

Figure 6.1.12 Nested XML representation of university information. 
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Details of instructors Brandt and Crick are omitted from Figure 4.1.12 for 
lack of space, but are similar in structure to that for Srinivasan. Although 
nested representations are natural in XML, they may lead to redundant 
storage of data. For example, suppose details of courses taught by an 
instructor are stored nested within the instructor element as shown in 
Figure. If a course is taught by more than one instructor, course 
information such as title, department, and credits would be stored 
redundantly with every instructor associated with the course. 

 

Figure 6.1.13 Redundancy in nested XML representation. 

Nested representations are widely used in XML data interchange 
applications to avoid joins. For instance, a purchase order would store the 
full address of sender and receiver redundantly on multiple purchase 
orders, whereas a normalized representation may require a join of 
purchase order records with a company address relation to get address 
information. 

In addition to elements, XML specifies the notion of an attribute. For 
instance, the course identifier of a course can be represented as an 
attribute, as shown in Figure. The attributes of an element appear as 
name=value pairs before the closing “>” of a tag. Attributes are strings 
and do not contain markup. Furthermore, attributes can appear only once 
in a given tag, unlike sub elements, which may be repeated. 
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Figure 6.1.14 Use of attributes. 

Note that in a document construction context, the distinction between 
subelement and attribute is important an attribute is implicitly text that 
does not appear in the printed or displayed document. However, in 
database and data exchange applications of XML, this distinction is less 
relevant, and the choice of representing data as an attribute or a 
subelement is frequently arbitrary. In general, it is advisable to use 
attributes only to represent identifiers, and to store all other data as 
subelements. 

One final syntactic note is that an element of the form < element 
></element> that contains no subelements or text can be abbreviated as 
<element/>; abbreviated elements may, however, contain attributes. Since 
XML documents are designed to be exchanged between applications, a 
namespace mechanism has been introduced to allow organizations to 
specify globally unique names to be used as element tags in documents. 
The idea of a namespace is to prepend each tag or attribute with a 
universal resource identifier (for example, a Web address). Thus, for 
example, if Yale University wanted to ensure that XML documents it 
created would not duplicate tags used by any business partner’s XML 
documents, it could prepend a unique identifier with a colon to each tag 
name. The university may use a Web URL such as: http://www.yale.edu 
as a unique identifier. Using long unique identifiers in every tag would be 
rather inconvenient, so the namespace standard provides a way to define 
an abbreviation for identifiers. 

In Figure, the root element (university) has an attribute xmlns:yale, which 
declares that yale is defined as an abbreviation for the URL given above. 
The abbreviation can then be used in various element tags, as illustrated in 
the figure. A document can have more than one namespace, declared as 
part of the root element. Different elements can then be associated with 
different namespaces. A default namespace can be defined by using the 
attribute xmlns instead of xmlns:yale in the root element. Elements 
without an explicit namespace prefix would then belong to the default 
namespace. 

Sometimes we need to store values containing tags without having the tags 
interpreted as XML tags. So that we can do so, XML allows this construct: 
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Figure 6.1.15 Unique tag names can be assigned by using namespaces. 

Because it is enclosed within CDATA, the text <course> is treated as 
normal text data, not as a tag. The term CDATA stands for character data. 

6.3.2 XML DOCUMENT SCHEMA 

Databases have schemas, which are used to constrain what information 
can be stored in the database and to constrain the data types of the stored 
information. In contrast, by default, XML documents can be created 
without any associated schema: an element may then have any subelement 
or attribute. While such freedom may occasionally be acceptable given the 
self-describing nature of the data format, it is not generally useful when 
XML documents must be processed automatically as part of an 
application, or even when large amounts of related data are to be 
formatted in XML. 

Here, we describe the first schema-definition language included as part of 
the XML standard, the Document Type Definition, as well as its more 
recently defined replacement, XML Schema. Another XML schema-
definition language called Relax NG is also in use, but we do not cover it 
here; for more information on Relax NG see the references in the 
bibliographical notes section. 

6.3.3 QUERYING AND TRANSFORMATION 

Given the increasing number of applications that use XML to exchange, 
mediate, and store data, tools for effective management of XML data are 
becoming increasingly important. In particular, tools for querying and 
transformation of XML data are essential to extract information from large 
bodies of XML data, and to convert data between different representations 
(schemas) in XML. Just as the output of a relational query is a relation, the 
output of an XML query can be an XML document. As a result, querying 
and transformation can be combined into a single tool. In this section, we 
describe the XPath and XQuery languages: 

 XPath is a language for path expressions and is actually a building 
block for XQuery. 
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 XQuery is the standard language for querying XML data. It is modeled 
after SQL but is significantly different, since it has to deal with nested 
XML data. 

 XQuery also incorporates XPath expressions. 

The XSLT language is another language designed for transforming XML. 
However, it is used primarily in document-formatting applications, rather 
in data management applications.  

6.4 INTRODUCTION TO MULTIMEDIA DATABASE 
SYSTEMS 

Multimedia databases provide features that allow users to store and 
query different types of multimedia information, which includes images 
(such as photos or drawings), video clips (such as movies, newsreels, or 
home videos), audio clips (such as songs, phone messages, or speeches), 
and documents (such as books or articles). The main types of database 
queries that are needed involve locating multimedia sources that contain 
certain objects of interest. For example, one may want to locate all video 
clips in a video database that include a certain person, say Michael 
Jackson. One may also want to retrieve video clips based on certain 
activities included in them, such as video clips where a soccer goal is 
scored by a certain player or team. The above types of queries are referred 
to as content-based retrieval, because the multimedia source is being 
retrieved based on its containing certain objects or activities. Hence, a 
multimedia database must use some model to organize and index the 
multimedia sources based on their contents. Identifying the contents of 
multimedia sources is a difficult and time-consuming task. There are two 
main approaches. The first is based on automatic analysis of the 
multimedia sources to identify certain mathematical characteristics of their 
contents. This approach uses different techniques depending on the type of 
multimedia source (image, video, audio, or text). The second approach 
depends on manual identification of the objects and activities of interest 
in each multimedia source and on using this information to index the 
sources. This approach can be applied to all multimedia sources, but it 
requires a manual preprocessing phase where a person has to scan each 
multimedia source to identify and catalog the objects and activities it 
contains so that they can be used to index the sources.  

In the first part of this section, we will briefly discuss some of the 
characteristics of each type of multimedia source—images, video, audio, 
and text/documents. Then we will discuss approaches for automatic 
analysis of images followed by the problem of object recognition in 
images. We end this section with some remarks on analyzing audio 
sources. An image is typically stored either in raw form as a set of pixel or 
cell values, or in compressed form to save space. The image shape 
descriptor describes the geometric shape of the raw image, which is 
typically a rectangle of cells of a certain width and height. Hence, each 
image can be represented by an m by n grid of cells. Each cell contains a 
pixel value that describes the cell content. In black-and-white images, 
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pixels can be one bit. In gray scale or color images, a pixel is multiple bits. 
Because images may require large amounts of space, they are often stored 
in compressed form. Compression standards, such as GIF, JPEG, or 
MPEG, use various mathematical transformations to reduce the number of 
cells stored but still maintain the main image characteristics. Applicable 
mathematical transforms include Discrete Fourier Transform (DFT), 
Discrete Cosine Transform (DCT), and wavelet transforms. To identify 
objects of interest in an image, the image is typically divided into 
homogeneous segments using a homogeneity predicate. For example, in a 
color image, adjacent cells that have similar pixel values are grouped into 
a segment. The homogeneity predicate defines conditions for 
automatically grouping those cells. Segmentation and compression can 
hence identify the main characteristics of an image.  

A typical image database query would be to find images in the database 
that are similar to a given image. The given image could be an isolated 
segment that contains, say, a pattern of interest, and the query is to locate 
other images that contain that same pattern. There are two main techniques 
for this type of search. The first approach uses a distance function to 
compare the given image with the stored images and their segments. If the 
distance value returned is small, the probability of a match is high. Indexes 
can be created to group stored images that are close in the distance metric 
so as to limit the search space. The second approach, called the 
transformation approach, measures image similarity by having a small 
number of transformations that can change one image’s cells to match the 
other image. Transformations include rotations, translations, and scaling. 
Although the transformation approach is more general, it is also more 
time-consuming and difficult. A video source is typically represented as a 
sequence of frames, where each frame is a still image. However, rather 
than identifying the objects and activities in every individual frame, the 
video is divided into video segments, where each segment comprises a 
sequence of contiguous frames that includes the same objects/activities. 
Each segment is identified by its starting and ending frames. The objects 
and activities identified in each video segment can be used to index the 
segments. An indexing technique called frame segment trees has been 
proposed for video indexing. The index includes both objects, such as 
persons, houses, and cars, as well as activities, such as a person delivering 
a speech or two people talking. Videos are also often compressed using 
standards such as MPEG. Audio sources include stored recorded 
messages, such as speeches, class presentations, or even surveillance 
recordings of phone messages or conversations by law enforcement. Here, 
discrete transforms can be used to identify the main characteristics of a 
certain person’s voice in order to have similarity-based indexing and 
retrieval. 

A text/document source is basically the full text of some article, book, or 
magazine. These sources are typically indexed by identifying the 
keywords that appear in the text and their relative frequencies. However, 
filler words or common words called stopwords are eliminated from the 
process. Because there can be many keywords when attempting to index a 
collection of documents, techniques have been developed to reduce the 
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number of keywords to those that are most relevant to the collection. A 
dimensionality reduction technique called singular value decompositions 
(SVD), which is based on matrix transformations, can be used for this 
purpose. An indexing technique called telescoping vector trees (TV-trees), 
can then be used to group similar documents. 

6.4.1 LET US SUM UP 

Thus, we have studied basics of deductive database, datalog notation, 
clause form and horn clauses, safe datalog program etc. Also the active 
database with languages for rule specification and events, conditions, 
actions. Here with this spatial databases-clustering methods, storage 
methods are explained in this chapter. 
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6.4.3 UNIT END EXERCISES 

1) Explain Active Database with an example. 

2) Explain difference between structured, sem-structured and un-
structured data in XML database. 

3) What are three main types of XML documents? What is the use of 
XML DTD? 

4) Explain deductive database in short. 

5) Explain datalog notation. 

6) Write a short note on Multimedia database system. 

 
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