M.Sc.
SEMESTER -1 (CBCS)

ADVANCED DATABASE
SYSTEMS

SUBJECT CODE : PSCS103

© UNIVERSITY OF MUMBAI

Prof. Suhas Pednekar
Vice-Chancellor,
University of Mumbai,
Prof. Ravindra D. Kulkarni Prof. Prakash Mahanwar
Pro Vice-Chancellor, Director,
University of Mumbai, IDOL, University of Mumbai,

Programme Co-ordinator : Shri Mandar Bhanushe

Head, Faculty of Science and Technology,
IDOL, University of Mumbai, Mumbai

Course Co-ordinator : Mr. Sumedh Shejole
Asst. Professor, B.Sc. L.T.
IDOL, University of Mumbai, Mumbai

Course Writers : Ms. Sandhya Pandey
Assistant Professor,
The S.ILA. College of Higher Education,
Dombivli (E), Thane

: Ms. Priya Jadhav
N.G. Acharya and D. K. Marathe College,

October 2021, Print -1

Published by . Director
Institute of Distance and Open Learning,
University of Mumbai,
Vidyanagari, Mumbai - 400 098.

DTP Composedand : Mumbai University Press
Printed by Vidyanagari, Santacruz (E), Mumbai - 400098

CONTENTS

Unit No. Title Page No.

Module - I

1. Distributed Database Concepts 01

2. DDBMS Architecture 08

3. Distributed Database Design 16
Module - IT

4. Transaction Processing in Distributed Databases and
Parallel Databases 26
Module - III

5. Object Oriented, Temporal and Spatial Databases 87
Module - IV

6. Deductive, Active, Multimedia and XML Databases 139

X3
o
e
o

Syllabus Advanced Database System
Semester |

Unit I: Distributed Database Concepts

Definition of Distributed databases and Distributed Database M anagement
System (DDBMS), Distributed transparent system. DDBMS Architecture:
DBMS standardization, Global, Local, Externa, and Internal Schemas,
Architectural models for DDBMS. Distributed database design: Design
problem of distributed systems, Design, strategies (top-down, bottom-up),
Fragmentation, Allocation and replication of fragments. Query Processing
Overview, Query Optimization.

Unit I1: Transaction Processing in Distributed databases and Parallel
databases

Transaction Management: Definition and examples, formalization of a
transaction, ACID properties, classification of transaction. Concurrency
Control: definition, execution schedules, examples, locking based
algorithms, timestamp ordering algorithms, deadlock management. DBMS
reliability: Definitions and Basic Concepts, Local Recovery Management,
In-place update, out-of-place update, Distributed Reliability Protocols,
Two phase commit protocol, Three phases commit protocol. Paralel
Database System: Definition of Parallel Database Systems. Parallel query
evauation: Speed up and scale up, Query Paralelism: 1/0O Parallelism
(Data Partitioning) Intra-query Parallelism, Inter —Query Parallelism, Intra
Operation Parallelism, Inter Operation Parallelism.

Unit 111: Object Oriented, Temporal and Spatial Databases:

Object Oriented Database: Object Identity, Object structure, Type
Constructors, Encapsulation of Operations, Methods, Persistence, Type
and Class Hierarchies, Inheritance, Complex Objects, Object-oriented
DBMS , Languages and Design. ODMG Model, Object Definition
Languages (ODL), Object Query Languages (OQL). Tempora and Spatial
Database: Introduction to Temporal Database: Time ontology, structure,
and granularity, Temporal data models, Tempora relational algebras.
Introduction to Spatial Database: Definition, Types of spatial data,
Geographical Information Systems (GIS), Conceptual Data Models for
gpatial databases, Logical data models for spatial databases. rastor and
vector model. Physica data models for spatia databases. Clustering
methods (space filling curves), Storage methods (R-tree). Query
processing.

Unit 1V: Deductive, Active, Multimedia and XML Databases
Deductive Database: Introduction to recursive queries, Datalog Notation,
Clause Form and Horn Clauses, Interpretation of model: Least Model
semantics, The fixed point operator, safe Datalog program, recursive
guery with negation. Active Database: Languages for rule specification:
Events, Conditions, Actions. XML and Database: Structure of XML Data,
XML Document Schema, Querying and Transformation, Storage of XML
Data. Introduction to multimedia database systems.

Text book:

Distributed Database; Principles & Systems By Publications, Stefano
Ceri and Giuseppo Pelagatti,, McGraw-Hill International Editions
(1984)

Database Management Systems, 3rd edition, Raghu Ramakrishnan and
Johannes Gehrke, McGraw-Hill (2002).

Fundamentals of Database Systems, 6thEdition, EImasri and Navathe,
Addison. Wesley (2003).

Unifying temporal data models via a conceptual model, C.S. Jensen,
M.D. Soo, and R.T. Snodgrass: Information Systems, vol. 19, no. 7,
pp. 513-547, 1994.

Spatial Databases. A Tour by Shashi Shekhar and Sanjay Chawla,
Prentice Hall, 2003 (ISBN 013-017480-7)

Principles of Multimedia Database Systems, Subramanian V. S.
Elsevier Publishers, 2013.

References:

Principles of Distributed Database Systems; 2nd Editied By M. Tamer
Ozsu and Patrick Vaduriez, Person Education Asia.

Database System Concepts, 5" edition, Avi Silberschatz , Henry F.
Korth, S. Sudarshan: McGraw-Hill (2010)

Database Systems. Concepts, Design and Applications, 2nd edition,
Shio Kumar Singh, Pearson Publishing, (2011).

Multi-dimensional aggregation for temporal data. M. Bohlen, J.
Gamper, and C.S. Jensen. In Proc. of EDBT-2006, pp. 257-275,
(2006).

Moving objects databases (chapter 1 and 2), R.H. Giting and M.
Schneider: Morgan Kaufmann Publishers, Inc., (2005)

Advanced Database Systems, (chapter 5, 6, and 7), Zaniolo et al.:
Morgan Kaufmann Publishers, Inc., (1997).

o
o
o
o

Module - 1

1

DISTRIBUTED DATABASE CONCEPTS

Unit Structure

1.0 Objectives

1.1 Introduction

1.2 Distributed Database Concept

1.2.1 Definition of Distributed Databases and Distributed Database
Management System (DDBMS)

1.2.1.1 Features of Distributed Database Management System

1.2.1.2 Advantages of Distributed Database Management
System

1.2.1.3 Disadvantages of Distributed Database Management
System

1.2.2 Reasons to boosting DDBMS
1.2.3 Databases Types
1.3 Distributed Transparent System
1.3.1 Levels of Distributed Transparent System
1.3.1.1 Fragmentation Transparency
1.3.1.2 Location Transparency
1.3.1.3 Replication Transparency
1.4 Summary
1.5 List of References and Bibliography and further Reading
1.6 Model Questions

1.0 OBJECTIVE:

After going through this unit, you will be able to:
J understand what Distributed database is.
o define what is Distributed Database Management System

o describe features of DDBMS its advantages and disadvantages

Advanced Database System

o [llustrate Distributed transparent system

o Classify Distributed transparent System.

1.1 INTRODUCTION:

For appropriate working of any business/organisation, there’s a
requirement for a well-organised database management system. In the past
databases used to centralize in nature. But, with the growth of
globalization, organisations lean towards expanded crosswise the world.
Because of this reason they have to choose distributed data instead of
centralized system. This was the reason concept of Distributed Databases
came in picture.

Distributed Database Management System is a software system that
manages a distributed database which is partitioned and placed on
different location. Its objective is to hide data distribution and appears as
one logical database system to the clients.

1.2 DISTRIBUTED DATABASE CONCEPT:

Distributed Database is database which is not restricted to one system
only. It is a group of several interconnected databases. These are spread
physically across various locations that communicate through a computer
network. Distributed Database Management System (DDBMS) manages
the distributed database and offers mechanisms so as to make the
databases clear to the users. In these systems, data is intentionally
distributed among multiple places so that all computing resources of the
organization can be optimally used.

1.2.1. Definition of Distributed Databases and Distributed Database
Management System (DDBMS)

The concept that is most important to the DDBMS is location clearness,
meaning the user should be unaware of the actual location of data.

“A distributed database management system (DDBMS) can be defined as
the software system that permits the management of the distributed
database and makes the distribution transparent to the users.”:- M.
Tamer Ozsu

A Distributed Database Management System allows end users or
application programmers to view a pool of physically detached databases
as one logical unit. In another word, we can say distributed database is,
where different data stored among multiple locations but connected via
network, and for user it represent as a single logical unit.

_ Site Computer Site ‘ [;; -
DB 2 network 3 \ ;

Distributed Database Management System

1.2.1.1 Features ofDistributed Database Management System

Some features of Distributed Database Management system are as
follows:

o DDBMS software maintain CRUD (create, retrieve, Update, Delete)
functions.

o It covers all application areas where huge volume of data are
processed and retrieved simultaneously by n number of users.

o It ensure that data modified at any location update universally.

o It ensures confidentiality and data integrity, which is important
feature in transaction management.

e [t can handle heterogeneous data platforms.

e In it communications network connects the sites.

o It is a grouping of data that is logically related and shared.
1.2.1.2 Advantages ofDistributed Database Management System:

Some of the advantages of DDBMS are as follows:
o Reliable:

Incase of centralizedDBMSif database fails entire system comes to a halt
whereas in DDBMS when a component fails may be reduce performance
but it will not stop fully.

o Easy Expansion

In centralized database system if system needs to be expanded, the
implementation require extensive efforts and interruption in the existing
functionality. However in DDBMS no disturbance in current functioning.

Distributed Database Concepts

Advanced Database System

o Faster Response

In centralized database all queries are passing through central data
repository because of that response time is more although in DDBMS data
is distributed in well-organized, so it runs faster response onqueries.

° Local control

In centralized database system,data is distributed in such a way that some
portions of it are only available at some sites (servers). The owner of the
data is the site where the portion of data is stored.

1.2.1.3 Disadvantages ofDistributed Database Management System:

o Complex and Expensive

DDBMS provides data transparency and work on different sites so it may
require complex and expensive software for proper working.

° Overheads

Simple and complex operation and queries may require large
communication and calculation. Responsiveness is largely dependent upon
appropriate data distribution. Improper data distribution often leads to
slow response to user requests.

o Integrity

As data is on multiple sites it may create problem in updating data and
maintaining data integrity.

1.2.2. Reasons to Boosting DDBMS
The following Reasons inspire moving towards DDBMS —

. Distributed Nature of Structural Units — Now a days most
organizations are partitioned into several units that are physically scattered
over the world. Each unit needs its own set of local data. Thus, the total
database of the organization converts into distributed.

. Data sharing Need —The several organizational divisions often
need to interact with each other and share data and resources. This
demands common databases or simulated databases that should be used in
a co-ordinated manner.

. Provision for OLTP and OLAP-Online Analytical Processing
(OLAP) and Online Transaction Processing (OLTP) works on diversified
systems. Distributed database systems supports and both OLAP and
OLTP.

. Database Retrieval — One of the common methods used in
DDBMS is imitation of data across different locations. Replication of data
spontaneously helps in data recovery if database in any site is broken.

Users can access data from other sites while the damaged site is being p;iributed Database Concepts
rebuilt. Thus, database disaster may convert inconspicuous to users.

. Usefulin Multiple Application Software — Most organizations
use a variant of application software and each is having different database
support. DDBMS provides anidentical functionality for using the same
data among diversified platforms.

1.2.3 Databases Types:
1.2.3.1. Homogeneous Database:

In a homogeneous database, all diverse sites collect data identically. At all
the sites same operating system, database management system and the
data structures used is being used. Therefore, they are easy to manage.

Example: All Oracle.
1.2.3.2 Heterogeneous Database:

In a heterogeneous distributed database, different sites can use dissimilar
schema and software that can lead to glitches in transactions and query
processing. Also, a particular site might be completely uninformed of the
other sites. Diverse computers may use a different operating system,
different database application. They possibly will even use changed data
models for the database. Therefore, conversions are compulsory for
different sites to interconnect.

Example: Company Merger

1.3 DISTRIBUTED TRANSPARENT SYSTEM:

One of the property of Distributed Database Management System is
Distributed transparent system. Because of this feature internal details of
the distribution is hidden from the users. DDBMS hides all the distributed
complexities and allow users to feel that they are working on single and
centralized database.

Layers of Transparency

Advanced Database System

Different Layers of transparencies

1.3.1 Levels of Distributed Transparent System:

DDBMS is supporting transparency at three levels:

1.3.1.1 Fragmentation Transparency

In Fragmentation transparency, fragments are created to store the data in
distributed wayand should stay transparent. In this all the data
administration work necessarily control by the system, not by the user. In
this job, when a user sets a query, the global query is distributed in many
sites to get data from fragments and this data is place together at the end to
produce the result.

1.3.1.2 Location Transparency

Location transparency confirms that the user can fire query on any relation
or fragment of a relation like they are stored locally on user’s place. But
the table or its fragments are kept at isolated site in the distributed
database system, should be completely unaware to the user. The address
and access mechanism of the remote site are completely hidden.

In order to integrate location transparency, DDBMS must have access to
restructured and perfect data dictionary and DDBMS directory which
contains the details of locations of data.

1.3.1.3 Replication Transparency

Replication transparency certifies that duplication of databases are
concealed from the users. It permits users to query upon a relation as if
only a single copy of the table is in place.

Replication transparency is connected with concurrency transparency and
failure transparency. At any time a user updates a data element, the update
is replicated in all the replicas of the table. Though, this process should not
be identified to the user. This is known as concurrency transparency.

In case of let-down of a site, the user can still progress with his queries
using replicated copies without any information of failure then this is
failure transparency.

1.4 SUMMARY

Distributed Database Management System (DDBMS) software which
manages number of databases raised at different locations and connected
with each other through a computer network. It offers mechanisms so that
the delivery remains unaware to the users, who see the database as a single
database. Its internal details hidden from users with transparency feature.

1.5 LIST OF REFERENCES AND BIBLIOGRAPHY Distributed Database Concepts

AND FURTHER READING

Principles of Distributed Database Systems; 2nd Editied By M. Tamer
Ozsu and Patrick Valduriez, Person Education Asia.

Distributed Database; Principles & Systems By Publications, Stefano
Ceri and Giuseppo Pelagatti,, McGraw-Hill International Editions
(1984)

https://cs.uwaterloo.ca/~tozsu/publications/distdb/distdb.pdf

https://www.tutorialspoint.com/distributed _dbms/index.htm

https://www.geeksforgeeks.org/distributed-database-system/

https://phoenixnap.com/kb/distributed-database

https://www.csitweb.com/distributed-dbms-features-needs-and-
architecture/

1.6 MODEL QUESTIONS:

1.

Explain Distributed Database Management System? Where we can
use it instead of DBMS?

Write and explain problem areas of distributed data base system.
Write advantages and disadvantages of DDBMS.

What is Distributed Transparent System? Explain its types.
Explain reasons for advancement of DDBMS.

Write a short note on:

Fragmentation Transparency

Location Transparency

Replication Transparency

O o% % °
AX A XS XS X4

DDBMS ARCHITECTURE

Unit Structure

2.0 Objective

2.1 Introduction

2.2 DBMS standardization

2.3 DDBMS Architecture
2.3.1 Factors for DDBMS Architecture
2.3.1.1. Distribution
2.3.1.2. Autonomy
2.3.1.3. Heterogeneity

2.4 Architectural models of Distributed DBMS
24.1 Client-Server Architecture
242 Peer- to-Peer Architecture
2.4.2.1 Global, Local, External, and Internal Schemas
243 Multi - DBMS Architectures
2.5 Summary
2.6 List of References and Bibliography and further Reading
2.7 Model Questions

2.0 OBJECTIVES

After going through this Chapter, you will be able to:
¢ understand Distributed database management system architecture
e define what is Global, Local, External, and Internal Schemas

e describe different architectural model for DDBM

2.1 INTRODUCTION

In any system architecture defines its structure. This means that the
components of the system are identified, the purpose of each element is
specified, and the interrelationships and interactions among these
components are defined. The specification of the architecture of a system

requires identification of the various units, with their connections and
relationships, in terms of the data and control flow over the system.

1.1 DBMS STANDARDIZATION

Data standardization is the acute method of fetching data into a collective
layout that allows for combined research, large-scale analytics, and
sharing of refined tools and procedures

2.3 DDBMS ARCHITECTURE

Database systems comprise of complex data structures. Thus, to make the
system efficient for retrieval of data and reduce the complexity of the
users, developers use the method of Data Abstraction.

2.3.1.Factors for DDBMS Architecture:

DDBMS architectures are commonly developed dependent on three
factors —

2.3.1.1. Distribution—Itstates the physical dispersal of data crosswise the
different sites. Autonomy refers to the distribution of control, the
distribution aspect of the classification deals with data. The user sees the
data as one logical group. There are a numeralways DBMS have been
distributed. We abstract these alternatives into two classes:

e client/server distribution
e peer-to-peer distribution (or full distribution).
2.3.1.2 Autonomy

Autonomy, in this perspective, refers to the distribution of mechanism, not
of data. It identifies the distribution of regulator of the database system
and the degree to which each component DBMS can work independently.
Autonomy is a function of a quantity of factors such as whether the
module systems interchange information, whether they can independently
accomplish transactions, and whether one is certified to modify them.
Requirements of an autonomous structure have been stated as follows:

e The local procedures of the individual DBMSs are not affected by
their involvement in the distributed system.

e The method in which the individual DBMSs develop queries and
optimize them should not be affected by the accomplishment of global
queries that access multiple databases.

e System regularity or operation should not be negotiated when
individual DBMS join or leave the distributed system.

DDBMS Architecture

Advanced Database System On the other hand, the proportions of autonomy can be stated as follows:

Design autonomy: Individual DBMS are permitted to use the data models
and transaction management systems that they desire.

e Communication autonomy: To each of the discrete DBMS is free to
make its own decision as to what type of information it wants to offer
to the other DBMS or to the software that controls their global
execution.

e Execution autonomy: Each DBMS can implement the transactions
that are submitted to it in any way that it wants to.

2.3.1.3. Heterogeneity— It refers to the uniformity or variation of the data
models, system tools and databases. Heterogeneity may happen in various
forms in distributed systems, ranging from hardware heterogeneity and
dissimilarities in networking protocols to distinctions in data managers.
Representing data with different modelling tools creates heterogeneity
because of the inherent expressive powers and limitations of individual
data models. Heterogeneity in query languages not only involves the use
of completely different data access paradigms in different data models
(set-at-a-time access in relational systems versus record-at-a-time access
in some object-oriented systems), but also covers differences in languages
even when the individual systems use the same data model. Although SQL
is now the standard relational query language, there are many different
implementations and every vendor’s language has a slightly different
flavour.

Distribution

A Peer-to-Peer

K DDBSs

Multidatabase

/ Systems
Client/Server /

Systems ——>

Autonomy

>

Heterogeneity

DBMS Implementation Alternatives
10

1.2 ARCHITECTURAL MODELS OF DISTRIBUTED
DBMS:

2.4.1 Client-Server Architecture:

Client-Server architecture is a two-level architecture where the
functionality is distributed into servers and clients.The server functions
mainly comprise data management, query handling, transaction
managementand optimization. Client functions contain mainly user
interface. Nevertheless, they have some functions resembling consistency
checking and transaction management.

The two different types of clients — server architecture are as follows:

. Single Server Multiple Client

Single Server Multiple Client

DDBMS Architecture

11

Advanced Database System

12

e Multiple Server Multiple Client:

Multiple Server Multiple Client

Client1

2.4.2 Peer- to-Peer Architecture for Distributed DBMS

In this systems, each peer actions both as a client and a server for
instructing database services. The peers share their source with other
peers and co-ordinate their actions.

This architecture in general has four levels of schemas —

2.4.2.1 Global, Local, External, and Internal Schemas:

e Global Conceptual Schema —Global Conceptual Schema represents
the global logical view of data.It represents the logical explanation of
entire database as if it is not circulated. This level encloses definitions
of all units, relationships among entities and security and integrity
facts of whole databases kept at all sites in a distributed system.

e Local Conceptual Schema —Local Conceptual Schema Show logical
data organization at individual location.

e Local Internal Schema —Local Internal Schema represents physical
record at each site.

External Schema —External Schema Describes user’s vision of facts

and figures.

External
Schema 1

External
Schema 2

—=_ =

Global Conceptual Schema

External
Schema N

T T

Local Local Local
Conceptual Conceptual Conceptual
Schema 1 Schema 2 Schema M

Local Local Local
Internal Internal Internal
Schema 1 Schema 2 Schema N

2.4.3 Multi - DBMS Architectures

This is an integrated database system formed by a collection of two or
more autonomous database systems.

Multi-DBMS can be expressed through six levels of schemas —

Multi-database View Level — Describes multiple user views
including of subsets of the integrated distributed database.

Multi-database Conceptual Level — Shows integrated multi-
database that comprises of global logical multi-database structure
definitions.

Multi-database Internal Level — Illustrates the data distribution
across different sites and multi-database to local data mapping.

Local database View Level — Give a picture of public view of local
data.

Local database Conceptual Level — Describes local data
organization at each site.

Local database Internal Level — Shows physical data organization at
each site.

DDBMS Architecture

13

Advanced Database System

There are two design alternatives for multi-DBMS —

. Model with multi-database conceptual level.
Model with Multi-database Conceptual Level
Multi-database Multi-database
View 1 View N
: Multi-database
Multi-database Conceptual Schema || Internal Schema
Local Local
View 11 View M1
Local DB Local DB
Conceptual Conceptual
Schema 1 Schema M
Local DB Local DB
Internal Internal
Local Schema 1 Schema M Local
View 1P View MQ
. Model without multi-database conceptual level.
Multi-database Multi-database Multi-database
View 1 View 2 View N
Local Local
View 11 View M1
Local DB Local DB
Conceptual Conceptual
Schema 1 Schema M
Local DB Local DB
Internal Internal
Local Schema 1 Schema M Laocal
View 1P View MQ

2.5 SUMMARY

There is different types of distributed databases. Distributed databases can
be classified into homogeneous and heterogeneous databases having

14

further divisions. Distributed architecture can be classified in various types
namely client — server, peer — to — peer and multi — DBMS.

2.5 LIST OF REFERENCES AND BIBLIOGRAPHY

AND FURTHER READING

https://www.csitweb.com/distributed-dbms-features-needs-and-
architecture/

https://www.ohdsi.org/data-standardization/
https://phoenixnap.com/kb/distributed-database

Principles of Distributed Database Systems; 2nd Editied By M. Tamer
Ozsu and Patrick Valduriez, Person Education Asia.

2.7 MODEL QUESTIONS:

1.

What is Distributed Database Management System Architecture?
Explain

Explain different architectural model for DDBMS

Explain Peer- to-Peer Architecture for Distributed DBMS. Write Short
Notes on the following:

Global Schema
Local Schema
External Schema

Internal Schemas

DDBMS Architecture

15

16

DISTRIBUTED DATABASE DESIGN

Unit Structure

3.0
3.1
3.2

33
34
3.5
3.6
3.7

3.5
3.6
3.7

Objectives

Introduction

Design problem of distributed systems
Design, strategies (top-down, bottom-up)
Fragmentation

Allocation and replication of fragments
Query Processing Overview

Query Optimization

Summary

List of References and Bibliography and further Reading

Model Questions

3.0 OBJECTIVES

After going through this Chapter, you will be able to:

understand Design of Distributed System
Know Top-down and Bottom-up Strategies of Database Design
describe Fragmentation and Allocation and replication of fragments

gain knowledge about Query processing and Query Optimization

3.1 INTRODUCTION

The design of a distributed computer system contains making conclusions
on the placement of data and programs through the sites of a computer
network, as well as probably designing the network itself. In Distributed
DBMS, the distribution of applications includes two things:

Distribution of the distributed DBMS software

Distribution of the application programs that run on it.

3.2 DESIGN PROBLEM OF DISTRIBUTED SYSTEMS

The distributed information system is defined as “a number of
interdependent computers linked by a network for sharing information
among them”. A distributed information system comprises of multiple
independent computers that transfer or exchange information via a
computer network.

o Heterogeneity:

Heterogeneity is functional to the network, computer hardware, operating
system and execution of different developers. A crucial component of the
heterogeneous distributed structure client-server environment is
middleware. Middleware is a set of facilities that permits application and
end-user to interrelate with each other across a heterogeneous distributed
system.

o Openness:

The openness of the distributed system is determined mainly by the point
to which new resource-sharing facilities can be made offered to the users.
Open systems are considered by the fact that their key interfaces are
circulated. It is based on a uniform communication tool and published
interface for access to pooled resources. It can be built from varied
hardware and software.

o Scalability:

Scalability of the system should persist efficient even with a important
increase in the number of operators and resources coupled.

o Security:

Security of information system has three mechanisms confidentially,
integrity and availability. Encryption defends shared resources, preserves
delicate information secrets when communicated.

o Failure Handling:

When some errorsarise in hardware and the software suite, it may produce
incorrect results or they may stop before they have completed the
predicted computation so corrective techniques should to implement to
handle this case.Failure control is challenging in distributed systems
because the let-down is incomplete i.e. some components fail while others
come to an end.

o Concurrency:

There is a chance that several users will attempt to access a common
resource at the similar time. Multiple users create requests for the same
resources, i.e. read, write, and update. Each source must be safe in a

Distributed Database Design

17

Advanced Database System

18

parallel environment. Any item that signifies a shared resource a
distributed system must confirm that it operates properly in a concurrent
setting.

o Transparency:

Transparency confirms that the distributed system should be observed as a
single object by the users or the application programmers somewhat than
the pool of autonomous systems, which is work together. The user should
be uninformed of where the services are situated and the transmitting from
a local machine to anisolated one should be transparent.

3.3DESIGN, STRATEGIES (TOP-DOWN, BOTTOM-UP)

It has been recommended that the group of distributed systems can be
scrutinized along three scopes

1. Level of Sharing

2. Behaviour of access forms

3. Level of information on access pattern behaviour

To follow all extents some proper method has to be there to grow
distributed database design. There are two methods for developing any
database, the top-down method and the bottom-up method. Although these
approaches appear completely different, they share the mutual goal of
employing a system by relating all of the communication between the
processes.

3.3.1 Top-down design Strategy

The top-down design structure starts from the common and transfers to the
specific. In other words, you start with a universal idea of what is required
for the system and then work your method down to the more specific
particulars of how the system will work together. This process contains the
identification of diverse entity types and the definition of each entity’s
characteristics.

3.3.2 Bottom — up design Strategy

The bottom-up approach begins with the specific details and moves up to
the general. This is complete by first recognizing the data elements and
then alliance them collected in data sets. In other words, this technique
first identifies the aspects, and then groups them to form objects.

3.4 FRAGMENTATION

Data fragmentation is a procedure used to break up entities. The item
might be a user’s database, a system database, or a table. It permits you to
breakdown a single object into two or more sectors, or fragments. Each
fragment can be put in storage at any site over a computer network. In

designing a scattered database, you must decide which portion of the
database is to be put in storage where. One method used to break up the
database into logical entities called fragments. Facts about data
fragmentation is kept in the distributed data catalog(DDC), from which it
is retrieved by the TP to process user requests. Fragmentation information
is deposited in a distributed data catalogue which the dealing out computer
uses to process a user's demand.

3.4.1 Data Fragmentation Strategies:

Data fragmentation strategies, are established at the table level and
comprise of dividing a table into logical fragments. There are three forms
of data fragmentation strategies: horizontal, vertical, and mixed.

3.4.1.1 Horizontal fragmentation

This kind of fragmentation refers partition of a relation into fragments of
rows. Each fragment is kept at a different workstation or node, and each
fragment comprises unique rows. Each horizontal fragment may have a
changed number of rows, but each fragment must have the identical
attributes.

Horizontal
fragmentation

3.4.1.2 Vertical fragmentation

This type of fragmentation refers to the partition of a relation into
fragments that contain a collection of attributes. Each vertical fragment
must have the same number of rows, but can have dissimilar attributes
depending on the key.

Vertical
fragmentation

34.1.3 Mixed fragmentation

This type of fragmentation is a two-step procedure. First, horizontal
fragmentation is completed to obtain the essential rows, then vertical
fragmentation is done to distribute the attributes between the rows.

Distributed Database Design

19

Advanced Database System

20

—]

Mixed
fragmentation

3.5 ALLOCATION AND REPLICATION OF
FRAGMENTS

3.5.1 Data Allocation

Data allocation is a procedure of deciding where to accumulate the data. It
also comprises a decision as to which data is stored at what location. Data
provision can be centralised, partitioned or replicated.

3.5.1.1. Centralised
The entire database is stored at one place. No distribution happens.
3.5.1.2 Partitioned

The database is distributed into several fragments that are deposited at
numerous sites.

3.5.1.3 Replicated
Copies of one or added database fragments are kept at several sites.
3.5.2 Data Replication

Data replication is the storage of data replicas at numerous sites on the
network. Fragment copies can be stored at several site, thus increasing
data availability and reply time. Replicated data is subject to a common
consistency rule. This rule involves that all replicas of the data fragments
must be same and to ensure data consistency among all of the imitations.

Although data replication is favourable in terms of availability and
response periods, the maintenance of the replications can turn into
complex. For example, if data is simulated over multiple sites, the
DDBMS needs to decide which copy to access. For a query process, the
nearest copy is all that is necessary to satisfy a transaction. Though, if the

operation is an update, at that time all copies must be selected and
restructured to satisfy the common consistency rule.

A database can be moreover fully replicated, partially replicated or not
replicated.

3.5.2.1 Full replication

Stores multiple copies of each database fragment at various sites. Fully
replicated databases can be unlikely because of the amount of overhead
forced on the system.

3.5.2.2 Partial replication

Stores multiple copies of some database fragments at multiple sites. Most
DDBMS can hold this type of replication precise well.

3.5.2.3 No replication
Stores each database section at a single site. No repetition arises.
Data replication is mainly useful if usage frequency of remote data is great

and the database is fairly huge. Another advantage of data replication is
the opportunity of restoring lost data at a specific site.

3.6 QUERY PROCESSING OVERVIEW

A Query processing in a distributed database management system needs
the transmission of data among the computers in a network. A distribution
approach for a query is the ordering of data diffusions and local data
processing in a database system. Usually, a query in Distributed DBMS
entails data from multiple sites, and this need for data from different sites
is termed the transmission of data that causes communication costs. Query
processing in DBMS is unlike from query processing in centralized
DBMS due to this communication cost of data transmission over the
network. The transmission cost is small when sites are joined through
high-speed Networks and is pretty significant in other networks.

In a distributed database system, handling a query comprises of
optimization at both the world-wide and the local level. The query move
in the database system at the client or supervisory site. Here, the user is
legalised, the query is checked, translated, and enhanced at a global level.

Distributed Database Design

21

Advanced Database System The architecture can be signified as —

Distributed Query Optimization
at Global Level

Distributed Execution Manager
at Global Level

o o e T L L LE L T e

Local Execution ' Local Execution | Local Execution

Manager Manager Manager
Local Query ' Local Query Local Query
Optimization : Optimization : Optimization

Mapping Global Queries into Local Queries

The procedure of mapping global queries to local ones can be recognised
as follows —

e The tables essential in a global query have fragments distributed
crosswise multiple sites. The local databases have data only about
limited data. The supervisory site uses the global data dictionary to
collect information about the distribution and recreates the global
vision from the fragments.

e If there is no duplication, the global optimizer tracks local queries at
the sites where the fragments are kept. If there is replication, the
global optimizer selects the site based upon communication cost,
workload, and server speed.

o The global optimizer produces a distributed execution proposal so that
least amount of data allocation occurs across the sites. The plan
shapes the location of the fragments, order in which query steps
wishes to be executed and the processes involved in transferring
transitional results.

e The local queries are optimized by the local database servers. Finally,
the local query effects are merged together through blending operation
in case of horizontal fragments and join process for vertical fragments.

3.7 QUERY OPTIMIZATION

Distributed query optimization needs evaluation of anenormous number
of query trees each of which produce the necessary results of a query.
This is primarily due to the occurrence of large volume of replicated and
fragmented data. Hence, the goal is to find an optimal solution instead of
the finest solution.

22

Distributed Database Design

The main concerns for distributed query optimization are —

. Optimal consumption of resources in the distributed system.
. Query trading.
. Decrease of solution space of the query.

3.7.1 Optimal Utilization of Resources in the Distributed System

A distributed system has a number of database servers in the various sites
to perform the actionsbelong to a query. Following are the approaches for
optimal resource utilization —

o Operation Shipping — In operation shipping, the process is run at
the location where the data is kept and not at the client site. The results
are then transported to the client site. This is applicable for operations
where the operands are presented at the same site. i.e. Select and Project
operations.

o Data Shipping — In data shipping, the facts fragments are
transported to the database server, where the processes are executed. This
is used in procedures where the operands are distributed at diverse sites.
This is also suitable in systems where the communication overheads are
low, and local processors are abundant slower than the client server.

o Hybrid Shipping — This is a mixture of data and operation
shipping. At this point, data fragments are transmitted to the high-speed
processors, where the process runs. The results are then lead to the client

site.
Client Site Client Site Client Site
4 Operations t
Commands Results Commands Results
¥ Commands
Operations
Y LJ
Relations Relations Operation
-
Data i_‘_ﬁ‘
Operation Shipping Data Shipping Hybrid Shipping

23

Advanced Database System

24

3.7.2 Query Trading

In query trading system for distributed database systems, the
controlling/client site for a dispersed query is called the buyer and the
locations where the local queries execute are entitled sellers. The buyer
expresses a number of options for choosing sellers and for restructuring
the global results. The goal of the buyer is to reach the optimal cost.

The algorithm jumps with the buyer allocating sub-queries to the vender
sites. The best plan is created from local improved query plans proposed
by the sellers joined with the communication cost for renovating the final
result. Once the global optimum plan is framed, the query is performed.

3.7.3 Reduction of Solution Space of the Query

Optimal solution normally involves reduction of clarification space so that
the cost of query and data relocation is reduced. This can be attained
through a set of experimental rules, just as heuristics in centralized
structures.

Some of the rules are as follows:

e Implement selection and projection tasks as early as promising. This
eases the data flow over communication web.

o Streamline operations on horizontal fragments by removing selection
conditions which are not applicable to a particular site.

e In case of join and union procedures comprising of fragments sited in
multiple sites, transfer fragmented data to the site where utmost of the
data is present and implement operation there.

e Use semi-join process to qualify tuples that are to be combined. This
decreases the amount of data relocation which in turn reduces
communication cost.

e Combine the common leaves and sub-trees in a dispersed query tree.

3.5 SUMMARY

The improvement in technology has opened the locks for unlimited
volumes of data to transfer into the system. Distributed database
technology is certainly one of the key growths in the field of database
systems. Though, with the remarkable amount of data driving in from
various sources and in many formats, it may become relatively a difficult
task for a business to stock, process and manage this data. Choosing the
services of a database expansion company that provides tradition database
development solutions provider may support to meet the specific
experiments of the business by keeping data well-organized, protected and
easily accessible for approved users.

3.6

LIST OF REFERENCES AND BIBLIOGRAPHY
AND FURTHER READING

https://www.dlsweb.rmit.edu.au/Toolbox/knowmang/content/distribute
d sys/ddms_design.htm

http://www.myreadingroom.co.in/notes-and-studymaterial/65-
dbms/559-database-design-concepts.html

https://www.geeksforgeeks.org/design-issues-of-distributed-system/

3.7 MODEL QUESTIONS

. Explain Design problem of distributed systems.

What is Query Optimization? Explain Types.

Explain Query Processing. Differentiate Global Queries into Local
Queries.

Explain Data Fragmentation Procedure.
Explain Design Problem of Distributed System.

Write a note on design strategies.

Distributed Database Design

25

26

Module 11

TRANSACTION PROCESSING IN
DISTRIBUTED DATABASES AND
PARALLEL DATABASES

Unit Structure

4.1.0 Objectives

4.1.1 Introduction

4.1.2 Objectives

4.1.1 Introduction

4.1.2 Transaction Management

4.1.3 Definition and examples

4.1.4 Formalization of a transaction
4.1.5 ACID properties

4.1.6 Classification of transaction
4.2.1 Concurrency Control

4.2.2 Definition

4.2.3 Execution schedules

4.2.4 Locking based algorithms

4.2.5 Timestamp ordering algorithms
4.2.6 Deadlock management

4.3.1 DBMS reliability

4.3.2 Definitions and Basic Concepts
4.3.3 Local Recovery Management
4.3.4 In-place update

4.3.5 out-of-place update

4.3.6 Distributed Reliability Protocols

4.3.7 Two phase commit protocol

4.3.8 Three phases commit protocol

4.4.1 Parallel Database System

4.4.2 Definition of Parallel Database Systems

4.4.3 Parallel query evaluation

4.4.4 Query Parallelism

4.4.5 1/O Parallelism (Data Partitioning)

4.4.6 Intra-query Parallelism

4.4.7 Inter —Query Parallelism

4.4.8 Intra Operation Parallelism

4.4.9 Inter Operation Parallelism

4.4.10 LET US SUM UP

4.4.11 List of References

4.4.12Unit End Exercises

4.1.0 OBJECTIVES

In this chapter you will learn about:

>

vV V VYV V VY VY

What four properties of transactions does a DBMS guarantee?
Why does a DBMS interleave transactions?

What is the correctness criterion for interleaved execution?
What kinds of anomalies can interleaving transactions cause?
How does a DBMS use locks to ensure correct interleaving?
What is the impact of locking on performance?

What SQL commands allow programmers to select transaction
characteristics and reduce locking overhead?

How does a DBMS guarantee transaction atomicity and recovery from
system crashes?

4.1.1 INTRODUCTION

Often, a collection of several operations on the database appears to be a
single unit from the point of view of the database user. For example, a
transfer of funds from a checking account to a savings account is a single
operation from the customer’s standpoint; within the database system,
however, it consists of several operations.

Transaction Processing in
Distributed Databases and
Parallel Databases

27

Advanced Database System

28

Clearly, it is essential that all these operations occur, or that, in case of a
failure, none occur. It would be unacceptable if the checking accounts
were debited but the savings account not credited. Collections of
operations that form a single logical unit of work are called transactions.
A database system must ensure proper execution of transactions despite
failures—either the entire transaction executes, or none of it does.
Furthermore, it must manage concurrent execution of transactions in a
way that avoids the introduction of inconsistency. In our funds-transfer
example, a transaction computing the customer’s total balance might see
the checking-account balance before it is debited by the funds-transfer
transaction, but see the savings balance after it is credited. As a result, it
would obtain an incorrect result. In this chapter, we cover the concept of
the foundation for concurrent execution and recovery from system failure
in a DBMS.

4.1.2 TRANSACTION MANAGEMENT

A transaction is defined as anyone of a user program in a DBMS and
differs from an execution of a program outside the DBMS (e.g., a C
program executing on Unix) in important ways. (Executing the same
program several times generates several transactions.) For performance
reasons interleave the actions of several transactions. However, to give
users a simple way to understand the effect of running their programs, the
interleaving is done carefully to ensure that the result of a concurrent
execution of transactions is nonetheless equivalent (in its effect on the
database) to some serial, or one-at-a-time, execution of the same set of
transactions, How the DBMS handles concurrent executions is an
important aspect of transaction management and the subject of
concurrency control. A closely related issue is how the DBMS handles
partial transactions, or transactions that are interrupted before they run to
normal completion, The DBMS ensures that the changes made by such
partial transactions are not seen by other transactions. How this is
achieved is the subject of crash recovery.

4.1.3 DEFINITION AND EXAMPLES

A transaction is a unit of program execution that accesses and possibly
updates various data items. Usually, a transaction is initiated by a user
program written in a high-level data-manipulation language (typically
SQL), or programming language (for example, C++, or Java), with
embedded database accesses in JDBC or ODBC. A transaction is
delimited by statements (or function calls) of the form begin transaction
and end transaction. The transaction consists of all operations executed
between the begin transaction and end transaction.

The data items in our simplified model contain a single data value (a
number in our examples). Each data item is identified by a name (typically
a single letter in our examples, that is, 4, B, C, etc.). We shall illustrate the
transaction concept using a simple bank application consisting of several

accounts and a set of transactions that access and update those accounts.
Transactions access data using two operations:

* read(X), which transfers the data item X from the database to a variable,
also called X, in a buffer in main memory belonging to the transaction that
executed the read operation.

« write(X), which transfers the value in the variable X in the main-memory
buffer of the transaction that executed the write to the data item X in the
database.

It is important to know if a change to a data item appears only in main
memory or if it has been written to the database on disk. In a real database
system, the write operation does not necessarily result in the immediate
update of the data on the disk; the write operation may be temporarily
stored elsewhere and executed on the disk later. For now, however, we
shall assume that the write operation updates the database immediately.
Let 77 be a transaction that transfers $50 from account 4 to account B.
This transaction can be defined as:

T;: read(A);
A=A —50;
write(A);
read(B);
B:=B +50;
write(B).

4.1.4 FORMALIZATION OF A TRANSACTION

Characterization
» Data items that a given transaction
* reads: Read Set (RS)
* writes: Write Set (WS)
» they are not necessarily mutually exclusive
* Base Set (BS): BS=RS C WS

» Insertion and deletion are omitted, the discussion is restricted to static
databases

¢ O;j(x): some atomic operation O; of transaction T;
that operates on DB entity x

. C)j e {read, write}

« 0O8; =w O

= N, € {abort, commit}, the termination condition
for T;

= Transaction T; is a partial ordering over its
operations and the termination condition

1.e. all operations in T}

if>

Transaction Processing in
Distributed Databases and
Parallel Databases

29

Advanced Database System

30

» Partial order P = {X, <} where
— 2 is the domain
— = is an irreflexive and transitive relation
« Transition T, is a partial order {X,, <;} where
— 2, =08, u N;
— For any two operations O;;, O, € OS,, if O;=R(x) and
O;=W(x) for any data item x then either O;; <; O; or
O, =<; Oy , 1.e. "there must be an order between
conflicting operations’

— YOy € OS;, O <; N; , 1.e. all operations must precede
the termination”’

= The ordering relation <; is application dependent

- Example

R(x)
Read(x)
Read(y) \ W(x) — C
X=X+Yy
R
Write(x) ™
Commuit

— Z = {R(x), R(y). W(x), C}

— <= {(R(x), W(x)), (R(y), W(x)), (W(x), C), (R(x), C),

(R(y). ©)} where (O;, O;) means O; < O;
» Partial order: the ordering is not specified for
every pair of operations

2.1.5 ACID PROPERTIES

The concept of database transactions to recapitulate briefly, a transaction
is an execution of a user program, seen by the DBMS as a series of read
and write operations. A DBMS must ensure four important properties of
transactions to maintain data in the face of concurrent access and system
failures: Users should be able to regard the execution of each transaction
as atomic: Either all actions are carried out or none are. Users should not
have to worry about the effect of incomplete transactions (say, when a
system crash occurs).

Each transaction, run by itself with no concurrent execution of other
transactions, must preserve the consistency of the database The DBMS
assumes that consistency holds for each transaction. Ensuring this property
of a transaction is the responsibility of the user.

Users should be able to understand a transaction without considering the
effect of other concurrently executing transactions, even if the DBMS
interleaves the actions of several transactions for performance reasons.
This property is sometimes referred to & isolation. Transactions are
isolated, or protected, from the effects of concurrently scheduling other
transactions.

Once the DBMS informs the user that a transaction has been successfully
completed, its effects should persist even if the system crashes before all
its changes are reflected on disk. This property is called durability. The
acronym ACID is sometimes used to refer to these four properties of
transactions: atomicity, consistency, isolation and durability. We now
consider how each of these properties is ensured in a DBMS.

Atomicity: Suppose that, just before the execution of transaction 77, the
values of accounts 4 and B are $1000 and $2000, respectively. Now
suppose that, during the execution of transaction 77, a failure occurs that
prevents 7i from completing its execution successfully. Further, suppose
that the failure happened after the write (4) operation but before the write
(B) operation. In this case, the values of accounts 4 and B reflected in the
database are $950 and $2000. The system destroyed $50 as a result of this
failure. In particular, we note that the sum 4 + B is no longer preserved.
Thus, because of the failure, the state of the system no longer reflects a
real state of the world that the database is supposed to capture. We term
such a state an inconsistent state. We must ensure that such
inconsistencies are not visible in a database system. Note, however, that
the system must at some point be in an inconsistent state. Even if
transaction 77 is executed to completion, there exists a point at which the
value of account 4 is $950 and the value of account B is $2000, which is
clearly an inconsistent state. This state, however, is eventually replaced by
the consistent state where the value of account 4 is $950, and the value of
account B is $2050. Thus, if the transaction never started or was
guaranteed to complete, such an inconsistent state would not be visible
except during the execution of the transaction. That is the reason for the
atomicity requirement: If the atomicity property is present, all actions of
the transaction are reflected in the database, or none are.

The basic idea behind ensuring atomicity is this: The database system
keeps track (on disk) of the old values of any data on which a transaction
performs a write. This information is written to a file called the /og. If the
transaction does not complete its execution, the database system restores
the old values from the log to make it appear as though the transaction
never executed. Ensuring atomicity is the responsibility of the database
system; specifically, it is handled by a component of the database called
the recovery system,

Consistency: The consistency requirement here is that the sum of 4 and B
be unchanged by the execution of the transaction. Without the consistency
requirement, money could be created or destroyed by the transaction! It
can be verified easily that, if the database is consistent before an execution
of the transaction, the database remains consistent after the execution of
the transaction.

Ensuring consistency for an individual transaction is the responsibility of
the application programmer who codes the transaction. This task may be
facilitated by automatic testing of integrity constraints

Transaction Processing in
Distributed Databases and
Parallel Databases

31

Advanced Database System

32

Isolation: Even if the consistency and atomicity properties are ensured for
each transaction, if several transactions are executed concurrently, their
operations may interleave in some undesirable way, resulting in an
inconsistent state.

For example, as we saw earlier, the database is temporarily inconsistent
while the transaction to transfer funds from 4 to B is executing, with the
deducted total written to 4 and the increased total yet to be written to B. If
a second concurrently running transaction reads 4 and B at this
intermediate point and computes A+B, it will observe an inconsistent
value. Furthermore, if this second transaction then performs updates on A4
and B based on the inconsistent values that it read, the database may be
left in an inconsistent state even after both transactions have completed. A
way to avoid the problem of concurrently executing transactions is to
execute transactions serially—that is, one after the other. However,
concurrent execution of transactions provides significant performance
benefits. Other solutions have therefore been developed; they allow
multiple transactions to execute concurrently. The isolation property of a
transaction ensures that the concurrent execution of transactions results in
a system state that is equivalent to a state that could have been obtained
had these transactions executed one at a time in some order. Ensuring the
isolation property is the responsibility of a component of the database
system called the concurrency-control system

Durability: Once the execution of the transaction completes successfully,
and the user who initiated the transaction has been notified that the
transfer of funds has taken place, it must be the case that no system failure
can result in a loss of data corresponding to this transfer of funds. The
durability property guarantees that, once a transaction completes
successfully, all the updates that it carried out on the database persist, even
if there is a system failure after the transaction completes execution. We
assume for now that a failure of the computer system may result in loss of
data in main memory, but data written to disk are never lost.

1. The updates carried out by the transaction have been written to disk
before the transaction completes.

2. Information about the updates carried out by the transaction and written
to disk is sufficient to enable the database to reconstruct the updates
when the database system is restarted after the failure.

4.1.6 CLASSIFICATION OF TRANSACTION

A transaction is seen by the DBMS as a series, or list, of actions. The
actions that can be executed by a transaction include reads and writes of
database objects. To keep our notation simple, we assume that an object 0
is always read into a program variable that is also named O. It can
therefore denote the action of a transaction T reading an object 0 as
RT(O); similarly, we can denote writing as HTT(O). When the transaction
T is clear from the context, we omit the subscript. In addition to reading
and writing, each transaction must specify as its final action either commit

(i.e., complete successfully) or abort (i.e., terminate and undo all the
actions carried out thus far). Abort T denotes the action of T aborting, and
Commit T denotes T committing. We make two important assumptions:

1. Transactions interact with each other only via database read and write
operations; for example, they are not allowed to exchange messages.

2. A database is a filed collection of independent objects. When objects
are added to or deleted from a database or there are relationships between
databases objects that we want to exploit for performance, some additional
issues arise. If the first assumption is violated, the DBMS has no way to
detect or prevent inconsistencies cause by such external interactions
between transactions, and it is up to the writer of the application to ensure
that the program is well-behaved. A schedule is a list of actions (reading,
writing, aborting, or committing) from a set of transactions, and the order
in which two actions of a transaction T appear in a schedule must be the
same as the order in which they appear in T. Intuitively, a schedule
represents an actual or potential execution sequence. For example, the
schedule shows an execution order for actions of two transactions T1 and
T2. It moves forward in time as we go down from one row to the next. It
emphasize that a schedule describes the actions of transactions as seen by
the DBMS. In addition to these actions, a transaction may carry out other
actions, such as reading or writing from operating system files, evaluating
arithmetic expressions, and so on; however, we assume that these actions
do not affect other transactions; that is, the effect of a transaction on
another transaction can be understood solely in terms of the common
database objects that they read and write.

Ti r2
R{A)
W(A)
R(B)
W (B)
R(C)
W(C)

Figure 4.1.1 A Schedule involving Two Transactions

Note that the schedule in Figure 2.1.1 does not contain an abort or commit
action for either transaction. A schedule that contains either an abort or a
commit for each transaction whose actions are listed in it is called a
complete schedule. A complete schedule must contain all the actions of
every transaction that appears in it. If the actions of different transactions
are not interleaved that is, transactions are executed from start to finish,
one by one-we call the schedule a serial schedule.

CONCURRENT EXECUTION OF TRANSACTIONS

Now that we have introduced the concept of a schedule, we have a
convenient way to describe interleaved executions of transactions. The
DBMS interleaves the actions of different transactions to improve

Transaction Processing in
Distributed Databases and
Parallel Databases

33

Advanced Database System

34

performance, but not all interleaving should be allowed. In this section, we
consider what interleaving, or schedules, a DBMS should allow.

Motivation for Concurrent Execution

The schedule shown in Figure 2.1.1 represents an interleaved execution of
the two transactions. Ensuring transaction isolation while permitting such
concurrent execution is difficult and necessary for performance reasons.
First, while one transaction is waiting for a page to be read in from disk,
the CPU can process another transaction. This is because I/O activity can
be done in parallel with CPU activity in a computer. Overlapping I/O and
CPU activity reduces the amount of time disks and processors are idle and
increases system throughput (the average number of transactions
completed in a given time). Second, interleaved execution of a short
transaction with a long transaction usually allows the short transaction to
complete quickly. In serial execution, a short transaction could get stuck
behind a long transaction, leading to unpredictable delays in response
time, or average time taken to complete a transaction.

Serializability

A serializable schedule over a set S of committed transactions is a
schedule whose effect on any consistent database instance is guaranteed to
be identical to that of some complete serial schedule over S. That is, the
database instance that results from executing the given schedule is
identical to the database instance that results from executing the
transactions in some serial order.

As an example, the schedule shown in Figure 2.1.2 is serializable. Even
though the actions of T1 and T2 are interleaved, the result of this schedule
is equivalent to running T1 (in its entirety) and then running T2.
Intuitively, T1 's read and write of B is not influenced by T2's actions on
A, and the net effect is the same if these actions are 'swapped' to obtain the
serial schedule TI; T2

Ti T2
R{A)
W(A)
R{A)
WiA)
R(B)
Wi(B)
R(B)
W(B)
Commit
Commit

Fig: A Serializable Schedule

Executing transactions serially in different orders may produce different
results, but all are presumed to be acceptable: the DBMS makes no
guarantees about which of them will be the outcome of an interleaved
execution. To see this, note that the two example transactions from Figure

2.1.2 can be interleaved as shown in Figure 2.13. This schedule, also
serializable, is equivalent to the serial schedule T2; TL. If T1 and T2 are
submitted concurrently to a DBMS, either of these schedules (among
others) could be chosen. The preceding definition of a serializable
schedule does not cover the case of schedules containing aborted
transactions. We extend the definition of serializable schedules to cover
aborted transactions in Section 16.3.4.

il ra
fid)
Wi(A)
RiA)
R(B)
W(B)
W (A)
R(B)
W(B)
Commit
Commit

Fig:4.1.3 Another Serializable Schedule

Finally, we note that a DBMS might sometimes execute transactions in a
way that is not equivalent to any serial execution; that is, using a schedule
that is not serializable. This can happen for two reasons. First, the DBMS
might use a concurrency control method that ensures the executed
schedule, though not itself serializable, is equivalent to some serializable
schedule. Second, SQL gives application programmers the ability to
instruct the DBMS to choose non-serializable schedules.

Transaction Characteristics in SQL

In order to give programmers control over the locking overhead incurred
by their transactions, SQL allows them to specify three characteristics of a
transaction: access mode, diagnostics size, and isolation level. The
diagnostics size determines the number of error conditions that can be
recorded; we will not discuss this feature further. If the access mode is
READ ONLY, the transaction is not allowed to modify the database.
Thus, INSERT, DELETE, UPDATE, and CREATE commands cannot be
executed. If we have to execute one of these commands, the access mode
should be set to READ WRITE. for transactions with READ ONLY
access mode only shared locks need to be obtained, thereby increasing
concurrency.

The isolation level controls the extent to which a given transaction is
exposed to the actions of other transactions executing concurrently. By
choosing one of four possible isolation level settings, a user can obtain
greater concurrency at the cost of increasing the transaction's exposure to
other transactions' uncommitted changes. Isolation level choices are
READ UNCOMMITTED, READ COMMITTED, REPEATABLE
READ, and SERIALIZABLE. The effect of these levels is summarized in

Transaction Processing in
Distributed Databases and
Parallel Databases

35

Advanced Database System Figure 2.14. In this context, dirty read and unrepeatable read are defined

as usual
=Lovel TR
READ UNCOMMITTED !"-'tﬂ_'\-'hi‘ ."'.'fa_'lr'bc Ma:-.-'hl:
READ COMMITTED Mo Mavybe Maybe
REPEATABLE READ Mo Mo Maybe
SERIALIZABLE Mo Mo Mo

Fig: 4.1.4 Transaction Isolation Levels in SQL-92

The highest degree of isolation from the effects of other transactions is
achieved by setting the isolation level for a transaction T to
SERIALIZABLE. This isolation level ensures that T reads only the
changes made by committed transactions, that no value read or written by
T is changed by any other transaction until T is complete, and that if T
reads a set of values based on some search condition, this set is not
changed by other transactions until T is complete (i.e., T avoids the
phantom phenomenon). In terms of a lock-based implementation, a
SERIALIZABLE transaction obtains locks before reading or writing
objects, including locks on sets of objects that it requires to be unchanged
and holds them until the end, according to Strict 2PL. REPEATABLE
READ ensures that T reads only the changes made by committed
transactions and no value read or written by T is changed by any other
transaction until T is complete. However, T could experience the phantom
phenomenon; for example, while T examines all Sailors records with
rating=1, another transaction might add a new such Sailors record, which
is missed by T. A REPEATABLE READ transaction sets the same locks
as a SERIALIZABLE transaction, except that it does not do index locking;
that is, it locks only individual objects, not sets of objects. READ
COMMITTED ensures that T reads only the changes made by committed
transactions, and that no value written by T is changed by any other
transaction until T is complete. However, a value read by T may well be
modified by another transaction while T is still in progress, and T is
exposed to the phantom problem. A READ COMMITTED transaction
obtains exclusive locks before writing objects and holds these locks until
the end. It also obtains shared locks before reading objects, but these locks
are released immediately; their only effect is to guarantee that the
transaction that last modified the object is complete. (This guarantee relies
on the fact that every SQL transaction obtains exclusive locks before
writing objects and holds exclusive locks until the end.) A READ
UNCOMMITTED transaction T can read changes made to an object by an
ongoing transaction; obviously, the object can be changed further while T
is in progress, and T is also vulnerable to the phantom problem. A READ
UNCOMMITTED transaction does not obtain shared locks before reading
objects. This mode represents the greatest exposure to uncommitted
changes of other transactions; so much so that SQL prohibits such a
transaction from making any changes itself-a READ UNCOMMITTED
transaction is required to have an access mode of READ ONLY. Since
such a transaction obtains no locks for reading objects and it is not

36

allowed to write objects (and therefore never requests exclusive locks), it
never makes any lock requests. The SERIALIZABLE isolation level is
generally the safest and is recommended for most transactions. Some
transactions, however, can run with a lower isolation level, and the smaller
number of locks requested can contribute to improved system
performance. For example, a statistical query that finds the average sailor
age can be run at the READ COMMITTED level or even the READ
UNCOMMITTED level, because a few incorrect or missing values do not
significantly affect the result if the number of sailors is large. The isolation
level and access mode can be set using the SET TRANSACTION
command. For example, the following command declares the current
transaction to be SERIALIZABLE and READ ONLY: SET
TRANSACTION ISOLATION LEVEL SERIALIZABLE READ ONLY
When a transaction is started, the default is SERIALIZABLE and READ
WRITE.

Schedules Involving Aborted Transactions

Intuitively, all actions of aborted transactions are to be undone, and we can
therefore imagine that they were never carried out to begin with. Using
this intuition, we extend the definition of a serializable schedule as
follows: A serializable schedule over a set S of transactions is a schedule
whose effect on any consistent database instance is guaranteed to be
identical to that of some complete serial schedule over the set of
committed transactions in S. This definition of serializability relies on the
actions of aborted transactions being undone completely, which may be
impossible in some situations. For example, suppose that (1) an account
transfer program T1 deducts $100 from account A, then (2) an interest
deposit program T2 reads the current values of accounts A and B and adds
6% interest to each, then commits, and then (3) T1 is aborted. The
corresponding schedule is shown in Figure 2.1.5.

T T2
Ri4)
kA)
Rid)
WiA)
R(E)
W(E)
Commit
Abort

Fig:4.1.5 An Unrecoverable Schedule

Now, T2 has read a value for A that should never have been there. (Recall
that aborted transactions' effects are not supposed to be visible to other
transactions.) If T2 had not yet committed, we could deal with the
situation by cascading the abort of TI and also aborting T2; this process
recursively aborts any transaction that read data written by T2, and so on.
But T2 has already committed, and so we cannot undo its actions. We say
that such a schedule is unrecoverable. In a recoverable schedule,

Transaction Processing in
Distributed Databases and
Parallel Databases

37

Advanced Database System

38

transactions commit only after (and if!) all transactions whose changes
they read commit. If transactions read only the changes of committed
transactions, not only is the schedule recoverable, but also aborting a
transaction can be accomplished without cascading the abort to other
transactions. Such a schedule is said to avoid cascading aborts. There is
another potential problem in undoing the actions of a transaction. Suppose
that a transaction T2 overwrites the value of an object A that has been
modified by a transaction TI, while TI is still in progress, and TI
subsequently aborts. All of Tl's changes to database objects are undone by
restoring the value of any object that it modified to the value of the object
before TI's changes. When T1 is aborted and its changes are undone in this
manner, T2's changes are lost as well, even if T2 decides to commit. So,
for example, if A originally had the value 5, then WetS changed by T1 to
6, and by T2 to 7, if T1 now aborts, the value of A becomes 5 again. Even
if T2 commits, its change to A is inadvertently lost. A concurrency control
technique called Strict 2PL.

4.2.1 CONCURRENCY CONTROL

The DBMS interleaves the actions of different transactions to improve
performance, but not all interleaving should be allowed. In this section, we
consider what interleaving, or schedules, a DBMS should allow.

4.2.2 DEFINITION

The database system must control the interaction among the concurrent
transactions to prevent them from destroying the consistency of the
database. It does so through a variety of mechanisms called concurrency-
control schemes

4.2.3 EXECUTION SCHEDULES

Consider again the simplified banking system which has several account,
and a set of transactions that access and update those accounts. Let 71 and
T2 be two transactions that transfer funds from one account to another.
Transaction 7'1 transfers $50 from account 4 to account B. It is defined as:

Ty: read(A);
A=A-—-5D;
write(A):
read(B);

B: =B+ 50:
write(B).

Transaction 72 transfers 10 percent of the balance from account 4 t0 Tryngaction Processing in
account B. It is defined as: Distributed Databases and
Parallel Databases
T>: read(A);

temp = A*0.1;

A=A — temp;

write(A):

read(B);

B := B + temp;

write(B).

Suppose the current values of accounts 4 and B are $1000 and $2000,
respectively. Suppose also that the two transactions are executed one at a
time in the order 7'1 followed by 72. This execution sequence appears in
above Figure. In the figure, the sequence of instruction steps is in
chronological order from top to bottom, with instructions of 71 appearing
in the left column and instructions of 72 appearing in the right column.
The final values of accounts 4 and B, after the execution in Figure 2.2.1
takes place, are $855 and $2145, respectively. Thus, the total amount of
money in accounts 4 and B—that is, the sum 4 + B—is preserved after the
execution of both transactions.

Fi i &

read(A)

A=A-5h0

writelA4)

read(B)

B:=B+50

write(B)

commit
read(A)
temp = A + 0.1
A=A — temp
write{A)
read(B)
B :=B + temp
write(B)
commit

Fig: 4.2.1 Schedule 1-a serial schedule in which T1 is followed by T2

Similarly, if the transactions are executed one at a time in the order 72
followed by 71, then the corresponding execution sequence is that of
Figure 2.1.2. Again, as expected, the sum 4 + B is preserved, and the final
values of accounts 4 and B are $850 and $2150, respectively.

39

Advanced Database System

40

T Tz

reafd(A)
temp == A+ 0.1
A=A — temp
write(A)
read(B)
B =B+ temp
write(B)
commit

read(A)

A=A-F5D

write{A)

read(B)

B:=B+ 50

write(B)

commit

Fig: 4.1.2 Schedule 2-a serial schedule in which T2 is followed by T1

The execution sequences just described are called schedules. They
represent the chronological order in which instructions are executed in the
system. Clearly, a schedule for a set of transactions must consist of all
instructions of those transactions, and must preserve the order in which the
instructions appear in each individual transaction. For example, in
transaction 71, the instruction write(4) must appear before the instruction
read(B), in any valid schedule. Note that we include in our schedules the
commit operation to indicate that the transaction has entered the
committed state. In the following discussion, we shall refer to the first
execution sequence (71 followed by 72) as schedule 1, and to the second
execution sequence (72 followed by 71) as schedule 2. These schedules
are serial: Each serial schedule consists of a sequence of instructions from
various transactions, where the instructions belonging to one single
transaction appear together in that schedule. Recalling a well-known
formula from combinations, we note that, for a set of n transactions, there
exist n factorial (n!) different valid serial schedules.

When the database system executes several transactions concurrently, the
corresponding schedule no longer needs to be serial. If two transactions
are running concurrently, the operating system may execute one
transaction for a little while, then perform a context switch, execute the
second transaction for some time, and then switch back to the first
transaction for some time, and so on.

With multiple transactions, the CPU time is shared among all the
transactions. Several execution sequences are possible, since the various
instructions from both transactions may now be interleaved. In general, it
is not possible to predict exactly how many instructions of a transaction
will be executed before the CPU switches to another transaction.

Returning to our previous example, suppose that the two transactions are
executed concurrently. One possible schedule appears in Figure 2.2.3.

After this execution takes place, we arrive at the same state as the one in
which the transactions are executed serially in the order 71 followed by
T2. The sum 4 + B is indeed preserved. Not all concurrent executions
result in a correct state. To illustrate, consider the schedule of Figure 2.2.4.
After the execution of this schedule, we arrive at a state where the final
values of accounts 4 and B are $950 and $2100, respectively. This final
state is an inconsistent state, since we have gained $50 in the process of
the concurrent execution. Indeed, the sum 4 + B is not preserved by the
execution of the two transactions.

If control of concurrent execution is left entirely to the operating system,
many possible schedules, including ones that leave the database in an
inconsistent state, such as the one just described, are possible. It is the job
of the database system to ensure that any schedule that is executed will
leave the database in a consistent state. The concurrency-control
component of the database system carries out this task.

T Tz

read(A4)

A=A-—-501

write(4)
readiA)
temp = A 0.1
A=A — temp
write(A)

read(B}

BE:=B+50

write(B)

commit
read(B)
B :=B + temp
write(B)
commit

Fig: 4.2.3 Schedule 3-a concurrent schedule equivalent to schedule 1

We can ensure consistency of the database under concurrent execution by
making sure that any schedule that is executed has the same effect as a
schedule that could have occurred without any concurrent execution. That
is, the schedule should, in some sense, be equivalent to a serial schedule.
Such schedules are called serializable schedules.

Transaction Processing in
Distributed Databases and
Parallel Databases

41

Advanced Database System

42

T E]

read(A)

A=A-50
read(A)
temp = A+ 0.1
A=A — temp
write{A)
read(B)

write(A)

read(B}

B:=B+50

write(B)

commit
B:=B 4 temp
write(B)
commit

Fig: 4.2.4 Schedule 4-a concurrent schedule resulting in an
inconsistent state

4.2.4 LOCKING BASED ALGORITHMS

Lock-Based Protocols

One way to ensure isolation is to require that data items be accessed in a
mutually exclusive manner; that is, while one transaction is accessing a
data item, no other transaction can modify that data item. The most
common method used to implement this requirement is to allow a
transaction to access a data item only if it is currently holding a lock on
that item.

Locks

There are various modes in which a data item may be locked. In this
section, we restrict our attention to two modes:

1. Shared:- If a transaction 77 has obtained a shared-mode lock (denoted
by S) on item Q, then 7i can read, but cannot write, Q.

2. Exclusive:- If a transaction 77 has obtained an exclusive-mode lock
(denoted by X) on item Q, then 7i can both read and write Q.

S true false

X false false

Fig: 2.2.5 Lock-compatibility matix comp

We require that every transaction request a lock in an appropriate mode on
data item Q, depending on the types of operations that it will perform on

Q. The transaction makes the request to the concurrency-control manager.
The transaction can proceed with the operation only after the concurrency-
control manager grants the lock to the transaction. The use of these two
lock modes allows multiple transactions to read a data item but limits
write access to just one transaction at a time.

To state this more generally, given a set of lock modes, we can define a
compatibility function on them as follows: Let 4 and B represent arbitrary
lock modes. Suppose that a transaction 7i requests a lock of mode 4 on
item Q on which transaction 7j (7i = 7j) currently holds a lock of mode
B. If transaction 7i can be granted a lock on O immediately, in spite of the
presence of the mode B lock, then we say mode 4 is compatible with
mode B. Such a function can be represented conveniently by a matrix. The
compatibility relation between the two modes of locking discussed in this
section appears in the matrix comp of Figure 2.2.5. An element comp(4,
B) of the matrix has the value frue if and only if mode A is compatible
with mode B.

Note that shared mode is compatible with shared mode, but not with
exclusive mode. At any time, several shared-mode locks can be held
simultaneously (by different transactions) on a particular data item. A
subsequent exclusive-mode lock request has to wait until the currently
held shared-mode locks are released.

A transaction requests a shared lock on data item Q by executing the lock-
S(Q) instruction. Similarly, a transaction requests an exclusive lock
through the lock-X(Q) instruction. A transaction can unlock a data item Q
by the unlock(Q) instruction.

To access a data item, transaction 77 must first lock that item. If the data
item is already locked by another transaction in an incompatible mode, the
concurrency control manager will not grant the lock until all incompatible
locks held by other transactions have been released. Thus, 7i is made to
wait until all incompatible locks held by other transactions have been
released.

Transaction 7i may unlock a data item that it had locked at some earlier
point. Note that a transaction must hold a lock on a data item as long as it
accesses that item. Moreover, it is not necessarily desirable for a
transaction to unlock a data item immediately after its final access of that
data item, since serializability may not be ensured.

As an illustration, consider again the banking example. Let A and B be two
accounts that are accessed by transactions 71 and 72. Transaction 71
transfers $50 from account B to account 4 (Figure 2.2.6).

Transaction Processing in
Distributed Databases and
Parallel Databases

43

Advanced Database System

44

Ti: lock-X(BY;
read(B);
B:=0 —5;
write(B);
unlock(B);
lock-x(A);
read(A);
A=4+50;
write(A);
uniock(A).

Fig: 4.2.6 Transaction T1

Transaction 72 displays the total amount of money in accounts 4 and B—
that is, the sum 4 + B (Figure 2.2.7). Suppose that the values of accounts 4
and B are $100 and $200, respectively.

If these two transactions are executed serially, either in the order 71, 72 or
the order 72, T1, then transaction 72 will display the value $300. If,
however, these transactions are executed concurrently, then schedule 1, in
Figure 2.2.8, is possible. In this case, transaction 72 displays $250, which
is incorrect. The reason for this mistake is that the transaction 7'1 unlocked
data item B too early, as a result of which 72 saw an inconsistent state.
The schedule shows the actions executed by the transactions, as well as
the points at which the concurrency-control manager grants the locks. The
transaction making a lock request cannot execute its next action until the
concurrency control manager grants the lock. Hence, the lock must be
granted in the interval of time between the lock-request operation and the
following action of the transaction.

Exactly when within this interval the lock is granted is not important; we
can safely assume that the lock is granted just before the following action
of the transaction. We let you infer when locks are granted.

Ta: lock-s(A);
read(A):
unlock(A);
lock-s(B);
read(B};
unlock(B);
display(A + B).

Fig:4.2.7 Transaction T2

T Tz concurreny-control manager
lock-%(B)
grant-X(B, T}
read(RB)
B:=B—50
write()
unlock(B)
lock-s(A)
grant-s(A, Tz)
read(A4)
unlock(4}
lock-s(B)
grant-s(EB, Tz)
read(R)
unlock(B}
display(A + B)
lock-x(A)
grant-x(A, Ty)
read(.4)
A=A-50
write(4)
unlock(A4)

Suppose now that unlocking is delayed to the end of the transaction.
Transaction 73 corresponds to 71 with unlocking delayed (Figure 2.2.9).
Transaction 74 corresponds to 72 with unlocking delayed (Figure 2.2.10).
You should verify that the sequence of reads and writes in schedule 1,
which lead to an incorrect total of $250 being displayed, is no longer

Fig: 4.2.8 Schedule 1

possible with 73 and 74.

Tz: lock-X(B);

read(B);
B:=B — 50;
write(B);
lock-X(A);
read(A);
A=4A+50;
write{A);
unlock{B);
unlock(A).

Fig: 4.2.9 Transaction T3(transaction T1 with unlocking delayed)

T.}I

lock-5(A):;
read(A);
lock-s(B);
read(R);
display{A + B);
unlock(A);
unlock(B).

Fig: 4.2.10 Transaction T4(transaction T2 with unlocking delayed)

Transaction Processing in
Distributed Databases and
Parallel Databases

45

Advanced Database System

46

Other schedules are possible. 74 will not print out an inconsistent result in
any of them; Unfortunately, locking can lead to an undesirable situation.
Consider the partial schedule of Figure 2.2.11 for 73 and 74. Since 73 is
holding an exclusive emode lock on B and 74 is requesting a shared-mode
lock on B, T4 is waiting for 73 to unlock B. Similarly, since 74 is holding
a shared-mode lock on 4 and 73 is requesting an exclusive-mode lock on
A, T3 is waiting for 74 to unlock 4. Thus,we have arrived at a state where
neither of these transactions can ever proceed with its normal execution.
This situation is called deadlock. When deadlock occurs, the system must
roll back one of the two transactions. Once a transaction has beenrolled
back, the data items that were locked by that transaction are unlocked.
These data items are then available to the other transaction, which can
continue with its execution.

If we do not use locking, or if we unlock data items too soon after reading
or writing them, we may get inconsistent states. On the other hand, if we
do not unlock a data item before requesting a lock on another data item,
deadlocks may occur. There are ways to avoid deadlock in some
situations. However, in general, deadlocks are a necessary evil associated
with locking, if we want to avoid inconsistent states. Deadlocks are
definitely whereas inconsistent states may lead to real-world problems that
cannot be handled by the database system.

T I

lock-x(B)

read(B)

B:=B—50

write(B)
lock-s(4)
read(A)
lock-s(B)

lock-x(A)

Fig: 4.2.11 Schedule 2

Preferable to inconsistent states, since they can be handled by rolling back
transactions. We shall require that each transaction in the system follow a
set of rules, called a locking protocol, indicating when a transaction may
lock and unlock each of the data items. Locking protocols restrict the
number of possible schedules. The set of all such schedules is a proper
subset of all possible serializable schedules. We shall present several
locking protocols that allow only conflict-serializable schedules, and
thereby ensure isolation. Before doing so, we introduce some terminology.

Let {70, T1, . .., Tn} be a set of transactions participating in a schedule S.
We say that 7i precedes 7j in S, written 7i — 7j, if there exists a data item
O such that 77 has held lock mode 4 on Q, and 7j has held lock mode B on
O later, and comp(4,B) = false. If 7i —7j , then that precedence implies
that in any equivalent serial schedule, 7i must appear before 7j . Observe
that this graph is similar to the precedence graph to test for conflict
serializability.

Conflicts between instructions correspond to noncompatibility of lock
modes. We say that a schedule S is legal under a given locking protocol if
S is a possible schedule for a set of transactions that follows the rules of
the locking protocol. We say that a locking protocol ensures conflict
serializability if and only if all legal schedules are conflict serializable; in
other words, for all legal schedules the associated—relation is acyclic.

4.2.5 TIMESTAMP ORDERING ALGORITHMS

The locking protocols that we have described thus far determine the order
between every pair of conflicting transactions at execution time by the
first lock that both members of the pair request that involves incompatible
modes. Another method for determining the serializability order is to
select an ordering among transactions in advance. The most common
method for doing so is to use a timestamp-ordering scheme.

Timestamps

With each transaction 7i in the system, we associate a unique fixed
timestamp, denoted by TS(77). This timestamp is assigned by the database
system before the transaction 7i starts execution. If a transaction 7i has
been assigned timestamp TS(77), and a new transaction 7j enters the
system, then TS(7i) <TS(7j). There are two simple methods for
implementing this scheme:

1. Use the value of the system clock as the timestamp; that is, a
transaction’s timestamp is equal to the value of the clock when the
transaction enters the system.

2. Use a logical counter that is incremented after a new timestamp has
been assigned; that is, a transaction’s timestamp is equal to the value of
the counter when the transaction enters the system.

The timestamps of the transactions determine the serializability order.
Thus, if TS(7i) <TS(7j), then the system must ensure that the produced
schedule is equivalent to a serial schedule in which transaction 77 appears
before transaction 7j .

To implement this scheme, we associate with each data item Q two
timestamp values:

* W-timestamp(Q) denotes the largest timestamp of any transaction that
executed write(Q) successfully.

* R-timestamp(Q) denotes the largest timestamp of any transaction that
executed read(Q) successfully.

These timestamps are updated whenever a new read(Q) or write(Q)
instruction is executed.

Transaction Processing in
Distributed Databases and
Parallel Databases

47

Advanced Database System

48

The Timestamp-Ordering Protocol

The timestamp-ordering protocol ensures that any conflicting read and
write operations are executed in timestamp order. This protocol operates
as follows:

1. Suppose that transaction Ti issues read(Q).

a. If TS(7i) <W-timestamp(Q), then 7i needs to read a value of Q that
was already overwritten. Hence, the read operation is rejected, and 7i is
rolled back.

b. If TS(7i) > W-timestamp(Q), then the read operation is executed, and
R-timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(77).

2. Suppose that transaction Ti issues write(Q).

a. If TS(7i) <R-timestamp(Q), then the value of Q that 7i is producing
was needed previously, and the system assumed that that value would

never be produced. Hence, the system rejects the write operation and rolls
Ti back.

b. If TS(77) <W-timestamp(Q), then 77 is attempting to write an obsolete
value of Q. Hence, the system rejects this write operation and rolls 7i
back.

c. Otherwise, the system executes the write operation and sets W-
timestamp(Q) to TS(77).

If transactions Ti is rolled back by the concurrency-control scheme as
result of issuance of either a read or writes operation, the system assigns it
a new timestamp and restarts it.

To illustrate this protocol, we consider transactions 725 and 726.
Transaction 725 displays the contents of accounts 4 and B:

T>s: read(B);
read{A);
display(A + B).

Tsq: read(B);
B=8B -5
write(B);
read(A):
A=A+50;
write(A);
display(A + B).

In presenting schedules under the timestamp protocol, we shall assume
that a transaction is assigned a timestamp immediately before its first
instruction. Thus, in schedule 3 of Figure 2.2.12, TS(725)<TS(726), and
the schedule is possible under the timestamp protocol. We note that the

preceding execution can also be produced by the two-phase locking
protocol.

There are, however, schedules that are possible under the twophase
locking protocol, but are not possible under the timestamp protocol, and
vice versa.

The timestamp-ordering protocol ensures conflict serializability. This is
because conflicting operations are processed in timestamp order. The
protocol ensures freedom from deadlock, since no transaction everwaits.

However, there is a possibility of starvation of long transactions if a
sequence of conflicting short transactions causes repeated restarting of the
long transaction. If a transaction is suffering from repeated restarts,
conflicting transactions need to be temporarily blocked to enable the
transaction to finish.

TL"\ T2E|
read(B)
read(R)
B:=B—50
write(B)
read(A)
read(A)
display(A + B)
A=A+50
write(A)

display(A + B)

Fig:2.2.12 Schedule 3

The protocol can generate schedules that are not recoverable. However, it
can be extended to make the schedules recoverable, in one of several
ways:

» Recoverability and cascadelessness can be ensured by performing all
writes together at the end of the transaction. The writes must be atomic
in the following sense: While the writes are in progress, no transaction is
permitted to access any of the data items that have been written.

» Recoverability and cascadelessness can also be guaranteed by using a
limited form of locking, whereby reads of uncommitted items are
postponed until the transaction that updated the item commits.

» Recoverability alone can be ensured by tracking uncommitted writes,
and allowing a transaction 77 to commit only after the commit of any
transaction that wrote a value that 77 read. Commit dependencies, can be
used for this purpose.

Transaction Processing in
Distributed Databases and
Parallel Databases

49

Advanced Database System

50

Thomas’ Write Rule

We now present a modification to the timestamp-ordering protocol that
allows greater potential concurrency than does the protocol. Let us
consider schedule 4 of Figure 2.2.13, and apply the timestamp-ordering
protocol. Since 727 starts before 728, we shall assume that TS(727)
<TS(728). The read(Q) operation of 727 succeeds, as does the write(Q)
operation of 728. When 727 attempts its write(Q) operation, we find that
TS(727) <W-timestamp(Q), since W timestamp(Q) = TS(728). Thus, the
write(Q) by 727 is rejected and transaction 727 must be rolled back.

Although the rollback of 727 is required by the timestamp-ordering
protocol, it is unnecessary. Since 728 has already written Q, the value that
727 is attempting to write is one that will never need to be read. Any
transaction 77 with TS(7i) <TS(728) that attempts a read(Q)will be rolled
back, since TS(77)<W-timestamp(Q). Any transaction 7j with TS(7j)
>TS(728) must read the value of Q written by 728, rather than the value
that 727 is attempting to write.

This observation leads to modified version of the timestamp-ordering
protocol in which obsolete write operations can be ignored under certain
circumstances. The protocol rules for read operations remain unchanged..

I T
read(())
write(()
write(Q)

Fig: 2.2.13 Schedule 4

The modification to the timestamp-ordering protocol, called Thomas’
write rule, is this: Suppose that transaction 77 issues write (Q).

1. If TS(7i) <R-timestamp(Q), then the value of Q that 7i is producing
was previously needed, and it had been assumed that the value would

never be produced. Hence, the system rejects the write operation and
rolls 77 back.

2. If TS(Ti) <W-timestamp(Q), then Ti is attempting to write an obsolete
value of Q. Hence, this write operation can be ignored.

3. Otherwise, the system executes the write operation and sets W-
timestamp (Q) to TS(77).

The difference between these rules and those of Section lies in the second
rule. The timestamp-ordering protocol requires that 77 be rolled back if 7i
issues write (Q) and TS(77) <W-timestamp(Q). However, here, in those
cases where TS(7i) > R-timestamp(Q), we ignore the obsolete write. By
ignoring the write, Thomas’ write rule allows schedules that are not
conflict serializable but are nevertheless correct. Those non-conflict-

serializable schedules allowed satisfy the definition of view serializable
schedules (see example box).

Thomas’ write rule makes use of view serializability by, in effect, deleting
obsolete write operations from the transactions that issue them. This
modification of transactions makes it possible to generate serializable
schedules that would not be possible under the other protocols presented
in this chapter. For example, schedule 4 of above Figure is not conflict
serializable and, thus, is not possible under the two-phase locking
protocol, the tree protocol, or the timestamp-ordering protocol. Under
Thomas’ write rule, the write (Q) operation of 727 would be ignored. The
result is a schedule that is view equivalent to the serial schedule <727,
128>.

4.2.6 DEADLOCK MANAGEMENT

Deadlocks tend to be rare and typically involve very few transactions. In
practice, therefore, database systems periodically check for deadlocks.
When a transaction Ti is suspended because a lock that it requests cannot
be granted, it must wait until all transactions Tj that currently hold
conflicting locks release them. The lock manager maintains a structure
called a waits-for graph to detect deadlock cycles. The nodes correspond
to active transactions, and there is an arc from Ti to 'Tj if (and only if)Ti is
waiting for 1) to release a lode The lock manager adds edges to this graph
when it queues lock requests and removes edges when it grants lock
requests. Consider the schedule shown in Figure 2.2.14. The last step,
shown below the line, creates a cycle in the waits-for graph. Figure 2.2.15
shows the waits-for graph before and after this step.

Ti 4 T3 T4
SA)
R(A)
X(B)
W(B)
8(B)
8(C)
R(C)
X(C)
X(B)
X(4)

Fig: 2.2.14 Schedule Illustrating Deadlock

Transaction Processing in
Distributed Databases and
Parallel Databases

51

Advanced Database System

52

."/i e .’/ H\". l.”;’ .rf ﬁ\‘ul

L T1} . h—; T2 | \ Tl |—= T2 |

. B J 7 N __/:‘ -’}__\ -_J/J
P N !

e . b i , SO
il X YN
T4 } T3) r4 | (T3 |
X A S A L W

(@) (b)

Fig: 2.2.15 Waits-for Graph Before and After Deadlock

Observe that the waits-for graph describes all active transactions, some of
which eventually abort. If there is an edge from Ti to T'j in the waits-for
graph, and both Ti and Tj eventually commit, there is an edge in the
opposite direction (from T'j to T1) in the precedence graph (which involves
only transactions). The waits-for graph is periodically checked for cycles,
which indicate deadlock. A deadlock is resolved by aborting a transaction
that is on a cycle and releasing its locks; this action allows Some of the
waiting transactions to proceed. The choice of which transaction to abort
can be made using several criteria: the one with the fewest locks, the one
that has done the least work, the one that is farthest from completion, and
so all. Further, a transaction might have been repeatedly restarted; if so, it
should eventually be favored during deadlock detection and allowed to
complete. A simple alternative to maintaining a waits-for graph is to
identify deadlocks through a timeout mechanism.

Deadlock Prevention

Empirical results indicate that deadlocks are relatively infrequent, and
detection based schemes work well in practice. However, if there is a high
level of contention for locks and therefore an increased likelihood of
deadlocks, prevention based schedules could perform better. We can
prevent deadlocks by giving each transaction a priority and ensuring that
lower-priority transactions are not allowed to wait for higher-priority
transactions (or vice versa). One way to assign priorities is to give each
transaction a timestamp when it starts up.

The lower the timestamp, the higher is the transaction's priority; that is,
the oldest transaction has the highest priority.

If a transaction Ti requests a lock and transaction Tj holds a conflicting
lock, the lock manager can use one of the following two policies:

IT Wait-die: If Ti has higher priority, it is allowed to wait; otherwise, it is
aborted.

IT Wound-wait: If Ti has higher priority, abort 7); otherwise, 1"11 waits

In the wait-die scheme, lower-priority transactions can never wait for
higher priority transactions. In the wound-wait scheme, higher-priority
transactions never wait for lower-priority transactions. In either ease, no
deadlock cycle develops A subtle point is that we must also ensure that no

transaction is perennially aborted because it never has a sufficiently high
priority. (Note that, in both schemes, the higher-priority transaction is
never aborted.) When a transaction is aborted and restarted, it should be
given the same timestamp it had originally. Reissuing timestamps in this
way ensures that each transaction will eventually become the oldest
transaction, and therefore the one with the highest priority, and will get all
the locks it requires. The wait-die scheme is non preemptive; only a
transaction requesting a lock can be aborted. As a transaction grows older
(and its priority increases), it tends to wait for more and more young
transactions. A younger transaction that conflicts with an older transaction
may be repeatedly aborted (a disadvantage with respect to wound-wait),
but on the other hand, a transaction that has all the locks it needs is never
aborted for deadlock reasons (an advantage with respect to wound-wait,
which is preemptive).

A variant of 2PL, called Conservative 2PL, can also prevent deadlocks.
Under Conservative 2PL, a transaction obtains all the locks it will ever
need when it begins, or blocks waiting for these locks to become available.
This scheme ensures that there will be no deadlocks, and, perhaps more
important, that a transaction that already holds some locks will not block
waiting for other locks. If lock contention is heavy, Conservative 2PL can
reduce the time that locks are held on average, because transactions that
hold locks are never blocked. The trade-off is that a transaction acquires
locks earlier, and if lock contention is low, locks are held longer under
Conservative 2PL. From a practical perspective, it is hard to know exactly
what locks are needed ahead of time, and this approach leads to setting
more locks than necessary. It also has higher overhead for setting locks
because a transaction has to release all locks and try to obtain them all
over if it fails to obtain even one lock that it needs.

The Two-Phase Locking Protocol

One protocol that ensures serializability is the two-phase locking protocol.
This protocol requires that each transaction issue lock and unlock requests
in two phases:

1. Growing phase. A transaction may obtain locks, but may not release
any lock.

2. Shrinking phase. A transaction may release locks, but may not obtain
any new locks.

Initially, a transaction is in the growing phase. The transaction acquires
locks as needed. Once the transaction releases a lock, it enters the
shrinking phase, and it can issue no more lock requests.

For example, transactions 73 and 74 are two phase. On the other hand,
transactions 71 and 72 are not two phase. Note that the unlock instructions
do not need to appear at the end of the transaction. For example, in the
case of transaction 73, we could move the unlock(B) instruction to just
after the lock-X(A4) instruction, and still retain the two-phase locking
property. We can show that the two-phase locking protocol ensures
conflict serializability. Consider any transaction. The point in the schedule
where the transaction has obtained its final lock (the end of its growing

Transaction Processing in
Distributed Databases and
Parallel Databases

53

Advanced Database System

54

phase) is called the lock point of the transaction. Now, transactions can be
ordered according to their lock point this ordering is, in fact, a
serializability ordering for the transactions. Two-phase locking does not
ensure freedom from deadlock. Observe that transactions 73 and 74 are
two phase, but, in schedule 2, they are deadlocked. Recall from Section
that, in addition to being serializable, schedules should be cascadeless.
Cascading rollback may occur under two-phase locking. As an illustration,
consider the partial schedule of Figure2.2.16. Each transaction observes
the two-phase locking protocol, but the failure of 75 after the read (A) step
of T7 leads to cascading rollback of 76 and 77.

Cascading rollbacks can be avoided by a modification of two-phase
locking called the strict two-phase locking protocol. This protocol requires
not only that locking be two phase, but also that all exclusive-mode locks
taken by a transaction be held until that transaction commits. This
requirement ensures that any data written by an uncommitted transaction
are locked in exclusive mode until the transaction commits, preventing
any other transaction from reading the data. Another variant of two-phase
locking is the rigorous two-phase locking protocol, which requires that all
locks be held until the transaction commits.

Ts Ta T7
lock-x{A)
read(A)
lock-s(B)
read(B)
write(A4)
unlock(A4)
lock-x(A)
read(A)
write(A)
unlock(A)
lock-5(A)
read(A)

Fig: 2.2.16 Partial Schedule under two-phase locking

We can easily verify that, with rigorous two-phase locking, transactions
can be serialized in the order in which they commit. Consider the
following two transactions, for which we have shown only some of the
significant read and write operations:

Ta: read(ay);
read(a,);

read(a,);
write(a;).

To: read(ay);
read(a.);
display(a; + az).

If we employ the two-phase locking protocol, then 78 must lock al in
exclusive mode. Therefore, any concurrent execution of both transactions
amounts to a serial execution. Notice, however, that 78 needs an exclusive
lock on al only at the end of its execution, when it writes al. Thus, if 78
could initially lock al in shared mode, and then could later change the
lock to exclusive mode, we could get more concurrency, since 78 and 79
could access al and a2 simultaneously. This observation leads us to a
refinement of the basic two-phase locking protocol, in which lock
conversions are allowed. We shall provide a mechanism for upgrading a
shared lock to an exclusive lock, and downgrading an exclusive lock to a
shared lock. We denote conversion from shared to exclusive modes by
upgrade, and from exclusive to shared by downgrade. Lock conversion
cannot be allowed arbitrarily. Rather, upgrading can take place in only the
growing phase, whereas downgrading can take place in only the shrinking
phase.

15 Ta
lock-5(ay)
lock-5{ay)
lock-S(a-)
lock-5(a-)
lock-5ias)
lock-Siay)
unlock(a,)
unlock{a.)
lock-s(a,)
upgrade(a;)

Fig: 2.2.17 Incomplete schedule with a lock conversion

Returning to our example, transactions 78 and 79 can run concurrently
under the refined two-phase locking protocol, as shown in the incomplete
schedule of Figure 2.2.17, where only some of the locking instructions are
shown. Note that a transaction attempting to upgrade a lock on an item Q
may be forced to wait. This enforced wait occurs if Q is currently locked
by another transaction in shared mode.

Just like the basic two-phase locking protocol, two-phase locking with
lock conversion generates only conflict-serializable schedules, and
transactions can be serialized by their lock points. Further, if exclusive
locks are held until the end of the transaction, the schedules are
cascadeless. For a set of transactions, there may be conflict-serializable
schedules that cannot be obtained through the two-phase locking protocol.
However, to obtain conflict-serializable schedules through non-two-phase
locking protocols, we need either to have additional information about the
transactions or to impose some structure or ordering on the set of data
items in the database. Strict two-phase locking and rigorous two-phase
locking (with lock conversions) are used extensively in commercial
database systems. A simple but widely used scheme automatically
generates the appropriate lock and unlock instructions for a transaction, on
the basis of read and write requests from the transaction:

Transaction Processing in
Distributed Databases and
Parallel Databases

55

Advanced Database System

56

* When a transaction 7i issues a read(Q) operation, the system issues a
lock- S(Q) instruction followed by the read(Q) instruction.

* When T7i issues a write(Q) operation, the system checks to see whether 7i
already holds a shared lock on Q. If it does, then the system issues an
upgrade(Q) instruction, followed by the write(Q) instruction.
Otherwise, the system issues a lock-X(Q) instruction, followed by the
write(Q) instruction.

 All locks obtained by a transaction are unlocked after that transaction
commits or aborts.

Implementation of Locking

A lock manager can be implemented as a process that receives messages
from transactions and sends messages in reply. The lock-manager process
replies to lock-request messages with lock-grant messages, or with
messages requesting rollback of the transaction (in case of deadlocks).
Unlock messages require only an acknowledgment in response, but may
result in a grant message to another waiting transaction.

The lock manager uses this data structure: For each data item that is
currently locked, it maintains a linked list of records, one for each request,
in the order in which the requests arrived. It uses a hash table, indexed on
the name of a data item, to find the linked list (if any) for a data item; this
table is called the lock table. Each record of the linked list for a data item
notes which transaction made the request, and what lock mode it
requested. The record also notes if the request has currently been granted.
Figure 2.2.18 shows an example of a lock table. The table contains locks
for five different data items, 14, 17, 123, 144, and 1912. The lock table uses
overflow chaining, so there is a linked list of data items for each entry in
the lock table.

There is also a list of transactions that have been granted locks, or are
waiting for locks, for each of the data items. Granted locks are the
rectangles filled in a darker shade, while waiting requests are the
rectangles filled in a lighter shade. We have omitted the lock mode to keep
the figure simple. It can be seen, for example, that T23 has been granted
locks on 1912 and 17, and is waiting for a lock on I4. Although the figure
does not show it, the lock table should also maintain an index on
transaction identifiers, so that it is possible to determine efficiently the set
of locks held by a given transaction.

The lock manager processes requests this way: When a lock request
message arrives, it adds a record to the end of the linked list for the data
item, if the linked list is present. Otherwise it creates a new linked list,
containing only the record for the request. It always grants a lock request
on a data item that is not currently locked. But if the transaction requests a
lock on an item on which a lock is currently held, the lock manager grants
the request only if it is compatible with the locks that are currently held,
and all earlier requests have been granted already. Otherwise the request
has to wait.

* When the lock manager receives an unlock message from a transaction,
it deletes the record for that data item in the linked list corresponding to
that transaction. It tests the record that follows, if any, as described in the
previous paragraph, to see if that request can now be granted. If it can, the
lock manager grants that request, and processes the record following it, if
any, similarly, and so on.

 If a transaction aborts, the lock manager deletes any waiting request
made by the transaction. Once the database system has taken appropriate
actions to undo the transaction, it releases all locks held by the aborted
transaction.

17

—]
[]
T23

] T1 23

144

|| ' pranted
S |:| waiting

Fig: 2.2.18 Lock table

This algorithm guarantees freedom from starvation for lock requests, since
a request can never be granted while a request received earlier is waiting
to be granted.

4.3.1 DBMS RELIABILITY

We have referred to “reliability” and “availability” of the database a
number of times so far without defining these terms precisely.
Specifically, we mentioned these terms in conjunction with data
replication, because the principle method of building a reliable system is
to provide redundancy in system components. However, the distribution of

Transaction Processing in
Distributed Databases and
Parallel Databases

57

Advanced Database System

58

the database or the replication of data items is not sufficient to make the
distributed DBMS reliable. A number of protocols need to be
implemented within the DBMS to exploit this distribution and replication
in order to make operations more reliable. A reliable distributed database
management system is one that can continue to process user requests even
when the underlying system is unreliable. In other words, even when
components of the distributed computing environment fail, a reliable
distributed DBMS should be able to continue executing user requests
without violating database consistency.

Too often, the terms reliability and availability are used loosely in
literature. Even among the researchers in the area of reliable computer
systems, the definitions of these terms sometimes vary. In this section, we
give precise definitions of a number of concepts that are fundamental to an
understanding and study of reliable systems.

4.3.2 DEFINITIONS AND BASIC CONCEPTS

Reliability refers to a system that consists of a set of components. The
system has a state, which changes as the system operates. The behavior of
the system in providing response to all the possible external stimuli is laid
out in an authoritative specification of its behavior. The specification
indicates the valid behavior of each system state. Any deviation of a
system from the behavior described in the specification is considered a
failure. For example, in a distributed transaction manager the specification
may state that only serializable schedules for the execution of concurrent
transactions should be generated. If the transaction manager generates a
non-serializable schedule, we say that it has failed.

Each failure obviously needs to be traced back to its cause. Failures in a
system can be attributed to deficiencies either in the components that
make it up, or in the design, that is, how these components are put
together. Each state that a reliable system goes through is valid in the
sense that the state fully meets its specification. However, in an unreliable
system, it is possible that the system may get to an internal state that may
not obey its specification. Further transitions from this state would
eventually cause a system failure. Such internal states are called erroneous
states; the part of the state that is incorrect is called an error in the system.
Any error in the internal states of the components of a system or in the
design of a system is called a fault in the system. Thus, a fault causes an
error that results in a system failure (Figure 12.1).

causes results in
Fault P Error » Failure

Fig: 2.3.1 Chain of Events Leading to System Failure

Reliability refers to the probability that the system under consideration 1.1 ction Processing in
does not experience any failures in a given time interval. It is typically Distributed Databases and
used to describe systems that cannot be repaired (as in space-based Parallel Databases
computers), or where the operation of the system is so critical that no

downtime for repair can be tolerated. Formally, the reliability of a system,

R(t), is defined as the following conditional probability:

R(t) = Pr{0 failures in time [0.¢] | no failures at r = 0}

If we assume that failures follow a Poisson distribution (which is usually the case
tor hardware), this formula reduces to

R(t) = Pr{0 failures in time [0,7]}
Under the same assumptions, it is possible to derive that

mir) L
Pr{k failures in time [0, ¢]} = $
where m(t) = [; z(x) dx. Here z(t) is known as the hazard function, which gives the
time-dependent failure rate of the specific hardware component under considera-
tion. The probability distribution for z(¢) may be different for different electronic
components.

The expected (mean) number of failures in time [0,] can then be computed as

E[k] =): b

and the variance as

; ml-"lnl)}t = m(t)

Varlk] = E[k?] — (E[k])? = m(t)
Given these values, R(1) can be written as
R[l‘) =a mfl)

Note that the reliability equation above 1s written for one component of the system.
For a system that consists of n non-redundant components (i.e.. they all have to
function properly for the system to work) whose failures are independent. the overall
system reliability can be written as

11\“}_n”]R(1.l

4.3.3 LOCAL RECOVERY MANAGEMENT

In this section we discuss the functions performed by the local recovery
manager (LRM) that exists at each site. These functions maintain the
atomicity and durability properties of local transactions. They relate to the
execution of the commands that are passed to the LRM, which are begin
transaction, read, write, commit, and abort. Later in this section we
introduce a new command into the LRM’s repertoire that initiates
recovery actions after a failure. Note that in this section we discuss the
execution of these commands in a centralized environment. The
complications introduced in distributed databases are addressed in the
upcoming sections.

59

Advanced Database System

60

Architectural Considerations

It is again time to use our architectural model and discuss the specific
interface between the LRM and the database buffer manager (BM). The
simple DP implementation that was given earlier will be enhanced with
the reliability protocols discussed in this section. Also remember that all
accesses to the database are via the database buffer manager. The detailed
discussion of the algorithms that the buffer manager implements is beyond
the scope of this book; we provide a summary later in this subsection.
Even without these details, we can still specify the interface and its
function, as depicted in Figure 2.3.2 In this discussion we assume that the
database is stored permanently on secondary storage, which in this context
is called the stable storage [Lampson and Sturgis, 1976]. The stability of
this storage medium is due to its robustness to failures. A stable storage
device would experience considerably less-frequent failures than would a
non-stable storage device. In today’s technology, stable storage is
typically implemented by means of duplexed magnetic disks which store
duplicate copies of data that are always kept mutually consistent (i.e., the
copies are identical). We call the version of the database that is kept on
stable storage the stable database. The unit of storage and access of the
stable database is typically a page. The database buffer manager keeps
some of the recently accessed data in main memory buffers. This is done
to enhance access performance. Typically, the buffer is divided into pages
that are of the same size as the stable database pages. The part of the
database that is in the database buffer is called the volatile database. It is
important to note that the LRM executes the operations on behalf of a
transaction only on the volatile database, which, at a later time, is written
back to the stable database.

Main memory
Secondary
storage Local Recovery
Manager
(__,._—_—-__,_\
R
Fetch,
Flush
sl Database
database biiFees
ERead Database Buffer ¢ Write i
: > Manager (Volatile
Write Read database)
by I

Fig: 2.3.2 Interface between the Local Recovery Manager and the Buffer
Manager

When the LRM wants to read a page of data4 on behalf of a transaction—
strictly speaking, on behalf of some operation of a transaction—it issues a
fetch command, indicating the page that it wants to read. The buffer
manager checks to see if that page is already in the buffer (due to a
previous fetch command from another transaction) and if so, makes it
available for that transaction; if not, it reads the page from the stable

database into an empty database buffer. If no empty buffers exist, it selects
one of the buffer pages to write back to stable storage and reads the
requested stable database page into that buffer. There are a number of
different algorithms by which the buffer manager may choose the buffer
page to be replaced; these are discussed in standard database textbooks.
The buffer manager also provides the interface by which the LRM can
actually force it to write back some of the buffer pages. This can be
accomplished by means of the flush command, which specifies the buffer
pages that the LRM wants to be written back. We should indicate that
different LRM implementations may or may not use this forced writing.
This issue is discussed further in subsequent sections. As its interface
suggests, the buffer manager acts as a conduit for all access to the database
via the buffers that it manages. It provides this function by fulfilling three
tasks:

1. Searching the buffer pool for a given page;

2. If it is not found in the buffer, allocating a free buffer page and loading
the buffer page with a data page that is brought in from secondary
storage;

3. If no free buffer pages are available, choosing a buffer page for
replacement.

Recovery Information

In this section we assume that only system failures occur. We defer the
discussion of techniques for recovering from media failures until later.
Since we are dealing with centralized database recovery, communication
failures are not applicable. When a system failure occurs, the volatile
database is lost. Therefore, the DBMS has to maintain some information
about its state at the time of the failure in order to be able to bring the
database to the state that it was in when the failure occurred. We call this
information the recovery information. The recovery information that the
system maintains is dependent on the method of executing updates. Two
possibilities are in-place updating and out-of-place updating. In-place
updating physically changes the value of the data item in the stable
database. As a result, the previous values are lost. Out-of-place updating,
on the other hand, does not change the value of the data item in the stable
database but maintains the new value separately. Of course, periodically,
these updated values have to be integrated into the stable database. We
should note that the reliability issues are somewhat simpler if in-place
updating is not used. However, most DBMS use it due to its improved
performance.

4.3.4 IN-PLACE UPDATE

Since in-place updates cause previous values of the affected data items to
be lost, it is necessary to keep enough information about the database state
changes to facilitate the recovery of the database to a consistent state
following a failure. This information is typically maintained in a database

Transaction Processing in
Distributed Databases and
Parallel Databases

61

Advanced Database System

62

log. Thus each update transaction not only changes the database but the
change is also recorded in the database log (Figure 2.3.3). The log
contains information necessary to recover the database state following a
failure.

Oid Undat New
stable database — o P a’t.e stable database
state rents state

Database Log

Fig: 2.3.2 Update Operation Execution

For the following discussion assume that the LRM and buffer manager
algorithms are such that the buffer pages are written back to the stable
database only when the buffer manager needs new buffer space. In other
words, the flush command is not used by the LRM and the decision to
write back the pages into the stable database is taken at the discretion of
the buffer manager. Now consider that a transaction T1 had completed
(i.e., committed) before the failure occurred. The durability property of
transactions would require that the effect os T1 be reflected in the
database. However, it is possible that the volatile database pages that have
been updated by T1 may not have been written back to the stable database
at the time of the failure. Therefore, upon recovery, it is important to be
able to redo the operations of T1. This requires some information to be
stored in the database log about the effects of T1. Given this information,
it is possible to recover the database from its “old” state to the “new” state
that reflects the effects of T1 (Figure 2.3.3).

Old New
stable database stable database
state state

Database Log

Fig: 2.3.3 REDO Action

Now consider another transaction, T2, that was still running when the
failure occurred. The atomicity property would dictate that the stable
database not contain any effects of T2. It is possible that the buffer
manager may have had to write into the stable database some of the
volatile database pages that have been updated by T2. Upon recovery from
failures it is necessary to undo the operations of T2. 5 Thus the recovery
information should include sufficient data to permit the undo by taking the

“new” database state that reflects partial effects of T2 and recovers the
“old” state that existed at the start of T2 (Figure 2.3.4). We should indicate
that the undo and redo actions are assumed to be idempotent. In other
words, their repeated application to a transaction would be equivalent to
performing them once. Furthermore, the undo/redo actions form the basis
of different methods of executing the commit commands. The contents of
the log may differ according to the implementation. However, the
following minimal information for each transaction is contained in almost
all database logs: a begin transaction record, the value of the data item
before the update (called the before image), the updated value of the data
item (called the after image), and a termination record indicating the
transaction termination condition (commit, abort). The granularity of the
before and after images may be different, as it is possible to log entire
pages or some smaller unit. As an alternative to this form of state logging,
operational logging, as in ARIES [Haderle et al., 1992], may be supported
where the operations that cause changes to the database are logged rather
than the before and after images.

New Old
stable database |stable database
siate state

Database Log

Fig: 2.3.4 UNDO Action

The log is also maintained in main memory buffers (called log buffers)
and written back to stable storage (called stable log) similar to the
database buffer pages (Figure 2.3.5). The log pages can be written to
stable storage in one of two ways. They can be written synchronously
(more commonly known as forcing a log) where the addition of each log
record requires that the log be moved from main memory to stable storage.
They can also be written asynchronously, where the log is moved to stable
storage either at periodic intervals or when the buffer fills up. When the
log is written synchronously, the execution of the transaction is suspended
until the write is complete. This adds some delay to the response-time
performance of the transaction. On the other hand, if a failure occurs
immediately after a forced write, it is relatively easy to recover to a
consistent database state.

Transaction Processing in
Distributed Databases and
Parallel Databases

63

Advanced Database System

64

Secondary -
storage Main memory
—
Local R Log
ocal Recovery B
ST[E' ble (Manager)
O
g .%%
— Fetch, 5
® Flush e
— \ NE S Database
Stabl Read (buffers
i i Database Buffer Read
database [€ }k Keswiger)4—1‘W - (Volatile
HE database)
—

Fig:4.3.5 Logging Interface

Whether the log is written synchronously or asynchronously, one very
important protocol has to be observed in maintaining logs. Consider a case
where the updates to the database are written into the stable storage before
the log is modified in stable storage to reflect the update. If a failure
occurs before the log is written, the database will remain in updated form,
but the log will not indicate the update that makes it impossible to recover
the database to a consistent and up-to-date state. Therefore, the stable log
is always updated prior to the updating of the stable database. This is
known as the write-ahead logging (WAL) protocol [Gray, 1979] and can
be precisely specified as follows:

1. Before a stable database is updated (perhaps due to actions of a yet
uncommitted transaction), the before images should be stored in the
stable log. This facilitates undo.

2. When a transaction commits, the after images have to be stored in the
stable log prior to the updating of the stable database. This facilitates
redo.

4.3.5 OUT-OF-PLACE UPDATE

As we mentioned above, the most common update technique is in-place
updating. Therefore, we provide only a brief overview of the other
updating techniques and their recovery information. Details can be found
in [Verhofstadt, 1978] and the other references given earlier. Typical
techniques for out-of-place updating are shadowing ([Astrahan et al.,
1976; Gray, 1979]) and differential files [Severence and Lohman, 1976].
Shadowing uses duplicate stable storage pages in executing updates. Thus
every time an update is made, the old stable storage page, called the
shadow page, is left intact and a new page with the updated data item
values is written into the stable database. The access path data structures
are updated to point to the new page, which contains the current data so
that subsequent accesses are to this page. The old stable storage page is
retained for recovery purposes (to perform undo).

Recovery based on shadow paging is implemented in System R’s recovery
manager [Gray et al., 1981]. This implementation uses shadowing together
with logging. In general, the method maintains each stable database file as

a read-only file. In addition, it maintains a corresponding read-write
differential file that stores the changes to that file. Given a logical database
file F, let us denote its read-only part as FR and its corresponding
differential file as DF. DF consists of two parts: an insertions part, which
stores the insertions to F, denoted DF+, and a corresponding deletions
part, denoted DF—. All updates are treated as the deletion of the old value
and the insertion of a new one. Thus each logical file F is considered to be
a view defined as F = (FRU DF+)—-DF—. Periodically, the differential file
needs to be merged with the read-only base file. Recovery schemes based
on this method simply use private differential files for each transaction,
which are then merged with the differential files of each file at commit
time. Thus recovery from failures can simply be achieved by discarding
the private differential files of non-committed transactions. There are
studies that indicate that the shadowing and differential files approaches
may be advantageous in certain environments. One study by Agrawal and
DeWitt [1985] investigates the performance of recovery mechanisms
based on logging, differential files, and shadow paging, integrated with
locking and optimistic (using timestamps) concurrency control algorithms.
The results indicate that shadowing, together with locking, can be a
feasible alternative to the more common log-based recovery integrated
with locking if there are only large (in terms of the base-set size)
transactions with sequential access patterns. Similarly, differential files
integrated with locking can be a feasible alternative if there are medium-
sized and large transactions.

4.3.6 DISTRIBUTED RELIABILITY PROTOCOLS

As with local reliability protocols, the distributed versions aim to maintain
the atomicity and durability of distributed transactions that execute over a
number of databases. The protocols address the distributed execution of
the begin transaction, read, write, abort, commit, and recover commands.
At the outset we should indicate that the execution of the begin
transaction, read, and write commands does not cause any significant
problems. Begin transaction is executed in exactly the same manner as in
the centralized case by the transaction manager at the originating site of
the transaction. At each site, the commands are executed in the manner
described in Section. Similarly, abort is executed by undoing its effects.
The implementation of distributed reliability protocols within the
architectural model we have adopted in this book raises a number of
interesting and difficult issues. For the time being, we adopt a common
abstraction: we assume that at the originating site of a transaction there is
a coordinator process and at each site where the transaction executes there
are participant processes. Thus, the distributed reliability protocols are
implemented between the coordinator and the participants.

Components of Distributed Reliability Protocols

The reliability techniques in distributed database systems consist of
commit, termination, and recovery protocols. Recall from the preceding
section that the commit and recovery protocols specify how the commit

Transaction Processing in
Distributed Databases and
Parallel Databases

65

Advanced Database System

66

and the recover commands are executed. Both of these commands need to
be executed differently in a distributed DBMS than in a centralized
DBMS. Termination protocols are unique to distributed systems. Assume
that during the execution of a distributed transaction, one of the sites
involved in the execution fails; we would like the other sites to terminate
the transaction somehow. The techniques for dealing with this situation
are called termination protocols. Termination and recovery protocols are
two opposite faces of the recovery problem: given a site failure,
termination protocols address how the operational sites deal with the
failure, whereas recovery protocols deal with the procedure that the
process (coordinator or participant) at the failed site has to go through to
recover its state once the site is restarted. In the case of network
partitioning, the termination protocols take the necessary measures to
terminate the active transactions that execute at different partitions, while
the recovery protocols address the establishment of mutual consistency of
replicated databases following reconnection of the partitions of the
network. The primary requirement of commit protocols is that they
maintain the atomicity of distributed transactions. This means that even
though the execution of the distributed transaction involves multiple sites,
some of which might fail while executing, the effects of the transaction on
the distributed database is all-or-nothing. This is called atomic
commitment. We would prefer the termination protocols to be non-
blocking. A protocol is non-blocking if it permits a transaction to
terminate at the operational sites without waiting for recovery of the failed
site. This would significantly improve the response-time performance of
transactions. We would also like the distributed recovery protocols to be
independent. Independent recovery protocols determine how to terminate
a transaction that was executing at the time of a failure without having to
consult any other site. Existence of such protocols would reduce the
number of messages that need to be exchanged during recovery. Note that
the existence of independent recovery protocols would imply the existence
of non-blocking termination protocols, but the reverse is not true.

4.3.7 TWO PHASE COMMIT PROTOCOL

Two-phase commit (2PC) is a very simple and elegant protocol that
ensures the atomic commitment of distributed transactions. It extends the
effects of local atomic commit actions to distributed transactions by
insisting that all sites involved in the execution of a distributed transaction
agree to commit the transaction before its effects are made permanent.
There are a number of reasons why such synchronization among sites is
necessary. First, depending on the type of concurrency control algorithm
that is used, some schedulers may not be ready to terminate a transaction.
For example, if a transaction has read a value of a data item that is updated
by another transaction that has not yet committed, the associated scheduler
may not want to commit the former. Of course, strict concurrency control
algorithms that avoid cascading aborts would not permit the updated value
of a data item to be read by any other transaction until the updating
transaction terminates. This is sometimes called the recoverability
condition.

Another possible reason why a participant may not agree to commit is due
to deadlocks that require a participant to abort the transaction. Note that, in
this case, the participant should be permitted to abort the transaction
without being told to do so. This capability is quite important and is called
unilateral abort. A brief description of the 2PC protocol that does not
consider failures is as follows. Initially, the coordinator writes a begin
commit record in its log, sends a “prepare” message to all participant sites,
and enters the WAIT state. When a participant receives a “prepare”
message, it checks if it could commit the transaction. If so, the participant
writes a ready record in the log, sends a “vote-commit” message to the
coordinator, and enters READY state; otherwise, the participant writes an
abort record and sends a “vote-abort” message to the coordinator. If the
decision of the site is to abort, it can forget about that transaction, since an
abort decision serves as a veto (i.e., unilateral abort). After the coordinator
has received a reply from every participant, it decides whether to commit
or to abort the transaction. If even one participant has registered a negative
vote, the coordinator has to abort the transaction globally. So it writes an
abort record, sends a “global-abort” message to all participant sites, and
enters the ABORT state; otherwise, it writes a commit record, sends a
“global-commit” message to all participants, and enters the COMMIT
state. The participants either commit or abort the transaction according to
the coordinator’s instructions and send back an acknowledgment, at which
point the coordinator terminates the transaction by writing an end of
transaction record in the log.

Note the manner in which the coordinator reaches a global termination
decision regarding a transaction. Two rules govern this decision, which,
together, are called the global commit rule:

1. If even one participant votes to abort the transaction, the coordinator has
to reach a global abort decision.

2. If all the participants vote to commit the transaction, the coordinator has
to reach a global commit decision. The operation of the 2PC protocol
between a coordinator and one participant in the absence of failures is
depicted in Figure 2.3.6, where the circles indicate the states and the
dashed lines indicate messages between the coordinator and the
participants. The labels on the dashed lines specify the nature of the
message.

Transaction Processing in
Distributed Databases and
Parallel Databases

67

Advanced Database System

68

Cioordinator Participant

prepart ———"

write
begin_commit = write abort
- in log

in log it

e
P i Viofe-commit — write ready
in log

YEs wiiteabort | | ir: _Ejibi"_“_bjﬂ_
i log
il -

write sbort
in log

write commit
im hog

write
end_of transaction

ini log

Fig:4.3.6 2PC Protocol Actions

A few important points about the 2PC protocol that can be observed from
Figure 2.3.6 are as follows. First, 2PC permits a participant to unilaterally
abort a transaction until it has decided to register an affirmative vote.
Second, once a participant votes to commit or abort a transaction, it cannot
change its vote. Third, while a participant is in the READY state, it can
move either to abort the transaction or to commit it, depending on the
nature of the message from the coordinator. Fourth, the global termination
decision is taken by the coordinator according to the global commit rule.
Finally, note that the coordinator and participant processes enter certain
states where they have to wait for messages from one another. To
guarantee that they can exit from these states and terminate, timers are
used. Each process sets its timer when it enters a state, and if the expected
message is not received before the timer runs out, the process times out
and invokes its timeout protocol (which will be discussed later). There are
a number of different communication paradigms that can be employed in
implementing a 2PC protocol. The one discussed above and depicted in
Figure 2.3.6 is called a centralized 2PC since the communication is only
between the coordinator and the participants; the participants do not
communicate among themselves. This communication structure, which is
the basis of our subsequent discussions in this chapter, is depicted more
clearly in Figure 2.3.7.

Coordinator Participants Coordinator Participants Coordinator

AN
p D7

vala-aborl!

1 prapare 1 vole-commit

A mAN
N

global-commit/
global-abort? |, commited/aboried |
1 1

Phasa 1 Phasa 2

Fig: 4.3.6 Centralized 2PC Communication Structure

Another alternative is linear 2PC (also called nested 2PC [Gray, 1979])
where participants can communicate with one another. There is an
ordering between the sites in the system for the purposes of
communication. Let us assume that the ordering among the sites that
participate in the execution of a transaction are 1, ..., N, where the
coordinator is the first one in the order. The 2PC protocol is implemented
by a forward communication from the coordinator (number 1) to N, during
which the first phase is completed, and by a backward communication
from N to the coordinator, during which the second phase is completed.
Thus linear 2PC operates in the following manner. The coordinator sends
the “prepare” message to participant 2. If participant 2 is not ready to
commit the transaction, it sends a “vote-abort” message (VA) to
participant 3 and the transaction is aborted at this point (unilateral abort by
2). If, on the other hand, participant 2 agrees to commit the transaction, it
sends a “votecommit” message (VC) to participant 3 and enters the
READY state. This process continues until a “vote-commit” vote reaches
participant N. This is the end of the first phase. If N decides to commit, it
sends back to N —1 “global-commit” (GC); otherwise, it sends a “global-
abort” message (GA). Accordingly, the participants enter the appropriate
state (COMMIT or ABORT) and propagate the message back to the
coordinator. Linear 2PC, whose communication structure is depicted in
Figure 2.3.7, incurs fewer messages but does not provide any parallelism.
Therefore, it suffers from low response-time performance.

Phase 1
Prapare VCAA VCIVA VICNA VC VA
I vl v | ¥ | vl ¥
1 2 3 4 5 N
0 | £ |t E:; £ S
GCIGA GCIGA GCIGA GCIGA GCIGA
Phase 2

Fig: 4.3.7 Linear 2PC Communication Structure,VC vote.commit, VA
vote.abort; GC global.commit; GA global.abort

Transaction Processing in
Distributed Databases and
Parallel Databases

69

Advanced Database System

70

Another popular communication structure for implementation of the 2PC
protocol involves communication among all the participants during the first
phase of the protocol so that they all independently reach their termination
decisions with respect to the specific transaction. This version, called
distributed 2PC, eliminates the need for the second phase of the protocol
since the participants can reach a decision on their own. It operates as
follows. The coordinator sends the prepare message to all participants. Each
participant then sends its decision to all the other participants (and to the
coordinator) by means of either a “vote-commit” or a “vote-abort” message.
Each participant waits for messages from all the other participants and makes
its termination decision according to the global commit rule. Obviously, there
is no need for the second phase of the protocol (someone sending the global
abort or global commit decision to the others), since each participant has
independently reached that decision at the end of the first phase. The
communication structure of distributed commit is depicted in Figure 2.3.8.
One point that needs to be addressed with respect to the last two versions of
2PC implementation is the following. A participant has to know the identity
of either the next participant in the linear ordering (in case of linear 2PC) or
of all the participants (in case of distributed 2PC). This problem can be solved
by attaching the list of participants to the prepare message that is sent by the
coordinator. Such an issue does not arise in the case of centralized 2PC since
the coordinator clearly knows who the participants are. The algorithm for the
centralized execution of the 2PC protocol by the coordinator is given in
Algorithm 12.1, and the algorithm for participants is given in Algorithm 12.2.

Algorithm 12.1: 2PC Coordinator Algonthm (2PC-C)
hegin
repeat
wait for an @vent ;
switch evens do
case Msg Arrival
Let the amived message be mag ;
switch misg do
case Comnit [commit command from scheduler}
write begin.commit record in the log ©
send “Prepared” message to all the involved
participants ;
L set timer
case Vire-abort {one participant has voted 1o abort;
unilateral abom }
write abort record in the log ;
send “Global-abon™ message (o the other involved
participants ;
L sct timer
case Vofe-conmil
update the list of participants who have answered ;
i all the participans have answered then {all most
have voted to commit |
wrile commit record in the log
send “Cilobal-commit™ to all the imvolved
participants ;
sct timer

case Aok
ppdate the list of participants who have acknowledged ;
if cell the participants have acknowledged then
| wnile end_of fransaction record in the log
else
L send global decision to the unanswening participants

case Tineout
| exccute the lermination protocol

umnitil foresver ;
endd

Coaordinator +
Coordinator Participants Participants

)=

“ ol
e

plobal-commit!

global-abort

vote-aborl! decision made

prepare . yola-commil |nr_1r:pn:=ludenug,-

I T |
Phasa 1

Fig: 4.3.8 Distributed 2PC Communication Structure

4.3.8 THREE PHASES COMMIT PROTOCOL

The three-phase commit protocol (3PC) [Skeen, 1981] is designed as a
non-blocking protocol. We will see in this section that it is indeed non-
blocking when failures are restricted to site failures. Let us first consider
the necessary and sufficient conditions for designing non-blocking atomic
commitment protocols. A commit protocol that is synchronous within one
state transition is non-blocking if and only if its state transition diagram
contains neither of the following:

1. No state that is “adjacent” to both a commit and an abort state.

2. No non-committable state that is “adjacent” to a commit state ([Skeen,
1981; Skeen and Stonebraker, 1983]). The term adjacent here means
that it is possible to go from one state to the other with a single state
transition

Consider the COMMIT state in the 2PC protocol. If any process is in this
state, we know that all the sites have voted to commit the transaction.
Such states are called committable. There are other states in the 2PC
protocol that are non-committable. The one we are interested in is the
READY state, which is non-committable since the existence of a process
in this state does not imply that all the processes have voted to commit the
transaction. It is obvious that the WAIT state in the coordinator and the
READY state in the participant 2PC protocol violate the non-blocking
conditions we have stated above. Therefore, one might be able to make the
following modification to the 2PC protocol to satisfy the conditions and
turn it into a non-blocking protocol. We can add another state between the
WAIT (and READY) and COMMIT states which serves as a buffer state
where the process is ready to commit (if that is the final decision) but has
not yet committed. The state transition diagrams for the coordinator and
the participant in this protocol are depicted in Figure 2.3.9. This is called

Transaction Processing in
Distributed Databases and
Parallel Databases

71

Advanced Database System

72

the three-phase commit protocol (3PC) because there are three state
transitions from the INITIAL state to a COMMIT state. The execution of
the protocol between the coordinator and one participant is depicted in
Figure. Note that this is identical to Figure except for the addition of the
PRECOMMIT state. Observe that 3PC is also a protocol where all the
states are synchronous within one state transition. Therefore, the foregoing
conditions for non-blocking 2PC apply to 3PC.

Commit Prepara
Prapara Violae-aborl

Prepara
Vote-commit

Vole-abort

Global-abort
Glebal-abart

Vele-commil

Prepara-to-commil
Prepare-to-commil

Ready-to-commil

Ready-to-commit
Global-cammit

Fig: 4.3.9 State Transitions in 3PC Protocol

It is possible to design different 3PC algorithms depending on the
communication topology. The one given in Figure is centralized. It is also
straightforward to design a distributed 3PC protocol. A linear 3PC
protocol is somewhat more involved, so we leave it as an exercise.

4.4.1 PARALLEL DATABASE SYSTEM

A parallel computer, or multiprocessor, is a special kind of distributed
system made of a number of nodes (processors, memories and disks)
connected by a very fast network within one or more cabinets in the same
room. The main idea is to build a very powerful computer out of many
small computers, each with a very good cost/performance ratio, at a much
lower cost than equivalent mainframe computers. As discussed in Chapter
1, data distribution can be exploited to increase performance (through
parallelism) and availability (through replication). This principle can be
used to implement parallel database systems, i.e., database systems on
parallel computers [DeWitt and Gray, 1992; Valduriez, 1993]. Parallel
database systems can exploit the parallelism in data management in order
to deliver high-performance and high-availability database servers. Thus,
they can support very large databases with very high loads. Most of the

research on parallel database systems has been done in the context of the
relational model that provides a good basis for data-based parallelism. In
this chapter, we present the parallel database system approach as a
solution to high performance and high-availability data management. We
discuss the advantages and disadvantages of the various parallel system
architectures and we present the generic implementation techniques.

Implementation of parallel database systems naturally relies on distributed
database techniques. However, the critical issues are data placement,
parallel query processing, and load balancing because the number of nodes
may be much higher than in a distributed DBMS. Furthermore, a parallel
computer typically provides reliable, fast communication that can be
exploited to efficiently implement distributed transaction management and
replication. Therefore, although the basic principles are the same as in
distributed DBMS, the techniques for parallel database systems are fairly
different.

4.4.2 DEFINITION OF PARALLEL DATABASE
SYSTEMS

Parallel processing exploits multiprocessor computers to run application
programs by using several processors cooperatively, in order to improve
performance. Its prominent use has long been in scientific computing by
improving the response time of numerical applications [Kowalik, 1985;
Sharp, 1987]. The developments in both general-purpose parallel
computers using standard microprocessors and parallel programming
techniques [Osterhaug, 1989] have enabled parallel processing to break
into the data processing field. Parallel database systems combine database
management and parallel processing to increase performance and
availability. Note that performance was also the objective of database
machines in the 70s and 80s [Hsiao, 1983]. The problem faced by
conventional database management has long been known as “I/O
bottleneck” [Boral and DeWitt, 1983], induced by high disk access time
with respect to main memory access time (typically hundreds of thousands
times faster).

A parallel database system can be loosely defined as a DBMS
implemented on a parallel computer. This definition includes many
alternatives ranging from the straightforward porting of an existing
DBMS, which may require only rewriting the operating system interface
routines, to a sophisticated combination of parallel processing and
database system functions into a new hardware/software architecture. As
always, we have the traditional trade-off between portability (to several
platforms) and efficiency. The sophisticated approach is better able to
fully exploit the opportunities offered by a multiprocessor at the expense
of portability. Interestingly, this gives different advantages to computer
manufacturers and software vendors. It is therefore important to
characterize the main points in the space of alternative parallel system
architectures. In order to do so, we will make precise the parallel database
system solution and the necessary functions. This will be useful in

Transaction Processing in
Distributed Databases and
Parallel Databases

73

Advanced Database System

74

comparing the parallel database system architectures. The objectives of
parallel database systems are covered by those of distributed DBMS
(performance, availability, extensibility). Ideally, a parallel database
system should provide the following advantages.

1. High-performance. This can be obtained through several
complementary solutions: database-oriented operating system support,
parallel data management, query optimization, and load balancing. Having
the operating system constrained and “aware” of the specific database
requirements (e.g., buffer management) simplifies the implementation of
low-level database functions and therefore decreases their cost. For
instance, the cost of a message can be significantly reduced to a few
hundred instructions by specializing the communication protocol.
Parallelism can increase throughput, using inter-query parallelism, and
decrease transaction response times, using intra-query parallelism.
However, decreasing the response time of a complex query through large-
scale parallelism may well increase its total time (by additional
communication) and hurt throughput as a side-effect. Therefore, it is
crucial to optimize and parallelize queries in order to minimize the
overhead of parallelism, e.g., by constraining the degree of parallelism for
the query. Load balancing is the ability of the system to divide a given
workload equally among all processors. Depending on the parallel system
architecture, it can be achieved statically by appropriate physical database
design or dynamically at run-time.

2. High-availability. Because a parallel database system consists of many
redundant components, it can well increase data availability and fault-
tolerance. In a highly-parallel system with many nodes, the probability of
a node failure at any time can be relatively high. Replicating data at
several nodes is useful to support failover, a fault-tolerance technique that
enables automatic redirection of transactions from a failed node to another
node that stores a copy of the data. This provides un-interrupted service to
users. However, it is essential that a node failure does not crate load
imbalance, e.g., by doubling the load on the available copy. Solutions to
this problem require partitioning copies in such a way that they can also be
accessed in parallel.

3. Extensibility. In a parallel system, accommodating increasing database
sizes or increasing performance demands (e.g., throughput) should be
easier. Extensibility is the ability to expand the system smoothly by adding
processing and storage power to the system. Ideally, the parallel database
system should demonstrate two extensibility advantages [DeWitt and
Gray, 1992]: linear speedup and linear scale up see Figure 2.4.1. Linear
speedup refers to a linear increase in performance for a constant database
size while the number of nodes (i.e., processing and storage power) are
increased linearly. Linear scaleup refers to a sustained performance for a
linear increase in both database size and number of nodes. Furthermore,
extending the system should require minimal reorganization of the
existing database.

Y [
g Ideal 8 ideal
g g
E e
€ Tt
a a
Mb of Nodes Mb of Modes, DB size
(a) Linear speadup (b) Linear scalaup

Fig: 4.4.1 Extensibility Metrics
Functional Architecture

Assuming client/server architecture, the functions supported by a parallel
database system can be divided into three subsystems much like in a
typical DBMS. The differences, though, have to do with implementation
of these functions, which must now deal with parallelism, data partitioning
and replication, and distributed transactions. Depending on the
architecture, a processor node can support all (or a subset) of these
subsystems. Figure 2.4.2 shows the architecture using these subsystems
due to Bergsten et al. [1991].

1. Session Manager. It plays the role of a transaction monitor, providing
support for client interactions with the server. In particular, it performs the
connections and disconnections between the client processes and the two
other subsystems. Therefore, it initiates and closes user sessions (which
may contain multiple transactions). In case of OLTP sessions, the session
manager is able to trigger the execution of pre-loaded transaction code
within data manager modules.

2. Transaction Manager. It receives client transactions related to query
compilation and execution. It can access the database directory that holds
all meta-information about data and programs. The directory itself should
be managed as a database in the server. Depending on the transaction, it
activates the various compilation phases, triggers query execution, and
returns the results as well as error codes to the client application. Because
it supervises transaction execution and commit, it may trigger the recovery
procedure in case of transaction failure. To speed up query execution, it
may optimize and parallelize the query at compile-time.

3. Data Manager. It provides all the low-level functions needed to run
compiled queries in parallel, i.e., database operator execution, parallel
transaction support, cache management, etc. If the transaction manager is
able to compile dataflow control, then synchronization and
communication among data manager modules is possible. Otherwise,
transaction control and synchronization must be done by a transaction
manager module.

Transaction Processing in
Distributed Databases and
Parallel Databases

75

Advanced Database System

76

Application Servers

user user user
EaE
task, task,,

F Y F -~
__ w
connect

Y

Reguest Mgr Request Mgr Request Magr

task, task, task
Data Mgr Lata Mgr G35 Lata Mgr Lrata Mgr
task, task, task . lask

Fig: 4.4.2 General Architecture of a Parallel Database System
Parallel DBMS Architectures

As any system, a parallel database system represents a compromise in
design choices in order to provide the aforementioned advantages with a
good cost/performance. One guiding design decision is the way the main
hardware elements, i.e., processors, main memory, and disks, are
connected through some fast interconnection network. There are three
basic parallel computer architectures depending on how main memory or
disk is shared: shared-memory, shared-disk and shared-nothing. Hybrid
architectures such as NUMA or cluster try to combine the benefits of the
basic architectures. In the rest of this section, when describing parallel
architectures, we focus on the four main hardware elements: interconnect,
processors (P), main memory (M) and disks. For simplicity, we ignore
other elements such as processor cache and I/O bus.

Shared-Memory

In the shared-memory approach (see Figure 2.4.3), any processor has
access to any memory module or disk unit through a fast interconnect
(e.g., a high-speed bus or a cross-bar switch). All the processors are under
the control of a single operating system Current mainframe designs and
symmetric multiprocessors (SMP) follow this approach. Examples of
shared-memory parallel database systems include XPRS [Hong, 1992],
DBS3 [Bergsten et al., 1991], and Volcano [Graefe, 1990], as well as
portings of major commercial DBMSs on SMP. In a sense, the
implementation of DB2 on an IBM3090 with 6 processors [Cheng et al.,
1984] was the first example. All shared-memory parallel database

products today can exploit inter-query parallelism to provide high
transaction throughput and intra-query parallelism to reduce response time
of decision-support queries.

DO

Inten::-:tnnect

Shared memory

==

Fig: 4.4.3 Shared-Memory Architecture

Shared-memory has two strong advantages: simplicity and load balancing.
Since meta-information (directory) and control information (e.g., lock
tables) can be shared by all processors, writing database software is not
very different than for single processor computers. In particular, inter-
query parallelism comes for free. Intra-query parallelism requires some
parallelization but remains rather simple. Load balancing is easy to
achieve since it can be achieved at run-time using the shared-memory by
allocating each new task to the least busy processor. Shared-memory has
three problems: high cost, limited extensibility and low availability. High
cost is incurred by the interconnect that requires fairly complex hardware
because of the need to link each processor to each memory module or
disk. With faster processors (even with larger caches), conflicting accesses
to the shared-memory increase rapidly and degrade performance [Thakkar
and Sweiger, 1990]. Therefore, extensibility is limited to a few tens of
processors, typically up to 16 for the best cost/performance using 4-
processor boards. Finally, since the memory space is shared by all
processors, a memory fault may affect most processors thereby hurting
availability. The solution is to use duplex memory with a redundant
interconnect.

Shared-Disk

In the shared-disk approach (see Figure 2.4.4), any processor has access to
any disk unit through the interconnect but exclusive (non-shared) access to
its main memory. Each processor-memory node is under the control of its
own copy of the operating system. Then, each processor can access
database pages on the shared disk and cache them into its own memory.
Since different processors can access the same page in conflicting update
modes, global cache consistency is needed. This is typically achieved
using a distributed lock manager that can be implemented using the
techniques. The first parallel DBMS that used shared-disk is Oracle with
an efficient implementation of a distributed lock manager for cache
consistency. Other major DBMS vendors such as IBM, Microsoft and
Sybase provide shared-disk implementations

Transaction Processing in
Distributed Databases and
Parallel Databases

77

Advanced Database System

78

||:|-—r-.|1 e W
|

=
|

|- Y
Interconnect
=

Fig; 4.4.4 Shared-Disk Architecture

Shared-disk has a number of advantages: lower cost, high extensibility,
load balancing, availability, and easy migration from centralized systems.
The cost of the interconnect is significantly less than with shared-memory
since standard bus technology may be used. Given that each processor has
enough main memory, interference on the shared disk can be minimized.
Thus, extensibility can be better, typically up to a hundred processors.
Since memory faults can be isolated from other nodes, availability can be
higher. Finally, migrating from a centralized system to shared-disk is
relatively straightforward since the data on disk need not be reorganized.
Shared-disk suffers from higher complexity and potential performance
problems. It requires distributed database system protocols, such as
distributed locking and two-phase commit. As we have discussed in
previous chapters, these can be complex. Furthermore, maintaining cache
consistency can incur high communication overhead among the nodes.
Finally, access to the shared-disk is a potential bottleneck.

Shared-Nothing

In the shared-nothing approach (see Figure 2.4.5), each processor has
exclusive access to its main memory and disk unit(s). Similar to shared-
disk, each processor memory-disk node is under the control of its own
copy of the operating system. Then, each node can be viewed as a local
site (with its own database and software) in a distributed database system.
Therefore, most solutions designed for distributed databases such as
database fragmentation, distributed transaction management and
distributed query processing may be reused. Using a fast interconnect, it is
possible to accommodate large numbers of nodes. As opposed to SMP,
this architecture is often called Massively Parallel Processor (MPP). Many
research prototypes have adopted the shared-nothing architecture, e.g.,
BUBBA [Boral et al., 1990], EDS [Group, 1990], GAMMA [DeWitt et
al., 1986], GRACE [Fushimi et al., 1986], and PRISMA [Apers et al.,
1992], because it can scale. The first major parallel DBMS product was
Teradata’s Database Computer that could accommodate a thousand
processors in its early version. Other major DBMS vendors such as IBM,
Microsoft and Sybase provide shared-nothing implementations.

Interconnect
| |

-
= =

Fig: 4.4.5 Shared-Nothing Architecture

As demonstrated by the existing products, shared-nothing has three main
virtues: lower cost, high extensibility, and high availability. The cost
advantage is better than that of shared-disk that requires a special
interconnect for the disks. By implementing a distributed database design
that favors the smooth incremental growth of the system by the addition of
new nodes, extensibility can be better (in the thousands of nodes). With
careful partitioning of the data on multiple disks, almost linear speedup
and linear scale-up could be achieved for simple workloads. Finally, by
replicating data on multiple nodes, high availability can also be achieved.
Shared-nothing is much more complex to manage than either shared-
memory or shared-disk. Higher complexity is due to the necessary
implementation of distributed database functions assuming large numbers
of nodes. In addition, load balancing is more difficult to achieve because it
relies on the effectiveness of database partitioning for the query
workloads. Unlike shared-memory and shared-disk, load balancing is
decided based on data location and not the actual load of the system.
Furthermore, the addition of new nodes in the system presumably requires
reorganizing the database to deal with the load balancing issues.

Hybrid Architectures

Various possible combinations of the three basic architectures are possible
to obtain different trade-offs between cost, performance, extensibility,
availability, etc. Hybrid architectures try to obtain the advantages of
different architectures: typically the efficiency and simplicity of shared-
memory and the extensibility and cost of either shared disk or shared
nothing. In this section, we discuss two popular hybrid architectures:
NUMA and cluster.

NUMA. With shared-memory, each processor has uniform memory access
(UMA), with constant access time, since both the virtual memory and the
physical memory are shared. One major advantage is that the
programming model based on shared virtual memory is simple. With
either shared-disk or shared-nothing, both virtual and shared memory are
distributed, which yields scalability to large numbers of processors. The
objective of NUMA is to provide a shared-memory programming model
and all its benefits, in a scalable architecture with distributed memory. The
term NUMA reflects the fact that an access to the (virtually) shared
memory may have a different cost depending on whether the physical
memory is local or remote to the processor. The most successful class of
NUMA multiprocessors is Cache Coherent NUMA (CC-NUMA)
[Goodman and Woest, 1988; Lenoski et al., 1992]. With CC-NUMA, the
main memory is physically distributed among the nodes as with shared-

Transaction Processing in
Distributed Databases and
Parallel Databases

79

Advanced Database System

80

nothing or shared-disk. However, any processor has access to all other
processors’ memories (see Figure 2.4.6). Each node can itself be an SMP.
Similar to shared-disk, different processors can access the same data in a
conflicting update mode, so global cache consistency protocols are
needed. In order to make remote memory access efficient, the only viable
solution is to have cache consistency done in hardware through a special
consistent cache interconnect [Lenoski et al., 1992]. Because shared-
memory and cache consistency are supported by hardware, remote
memory access is very efficient, only several times (typically between 2
and 3 times) the cost of local access

) Consistent cache interconnect

BEERBE
=2 B

Fig: 4.4.6 Cache coherent NUMA (CC-NUMA)

Most SMP manufacturers are now offering NUMA systems that can scale
up to a hundred processors. The strong argument for NUMA is that it does
not require any rewriting of the application software. However some
rewriting is still necessary in the database engine (and the operating
system) to take full advantage of access locality [Bouganim et al., 1999]

Cluster

A cluster is a set of independent server nodes interconnected to share
resources and form a single system. The shared resources, called clustered
resources, can be hardware such as disk or software such as data
management services. The server nodes are made of off-the-shelf
components ranging from simple PC components to more powerful SMP.
Using many off-the-shelf components is essential to obtain the best
cost/performance ratio while exploiting continuing progress in hardware
components. In its cheapest form, the interconnect can be a local network.
However, there are now fast standard interconnects for clusters (e.g.,
Myrinet and Infiniband) that provide high bandwidth (Gigabits/sec) with
low latency for message traffic. Compared to a distributed system, a
cluster is geographically concentrated (at a single site) and made of
homogeneous nodes. Its architecture can be either shared nothing or
shared-disk. Shared-nothing clusters have been widely used because they
can provide the best cost/performance ratio and scale up to very large
configurations (thousands of nodes). However, because each disk is
directly connected to a computer via a bus, adding or replacing cluster
nodes requires disk and data reorganization. Shared-disk avoids such
reorganization but requires disks to be globally accessible by the cluster
nodes. There are two main technologies to share disks in a cluster:
network-attached storage (NAS) and storage-area network (SAN). A NAS
is a dedicated device to shared disks over a network (usually TCP/IP)
using a distributed file system protocol such as Network File System
(NFS). NAS is well suited for low throughput applications such as data

backup and archiving from PC’s hard disks. However, it is relatively slow
and not appropriate for database management as it quickly becomes a
bottleneck with many nodes. A storage area network (SAN) provides
similar functionality but with a lower level interface. For efficiency, it
uses a block-based protocol thus making it easier to manage cache
consistency (at the block level). In fact, disks in a SAN are attached to the
network instead to the bus as happens in Directly Attached Storage (DAS),
but otherwise they are handled as sharable local disks. Existing protocols
for SANs extend their local disk counterparts to run over a network (e.g.,
i-SCSI extends SCSI, and ATA-over-Ethernet extends ATA). As a result,
SAN provides high data throughput and can scale up to large numbers of
nodes. Its only limitation with respect to shared-nothing is its higher cost
of ownership.

A cluster architecture has important advantages. It combines the flexibility
and performance of shared-memory at each node with the extensibility and
availability of shared-nothing or shared-disk. Furthermore, using off-the-
shelf shared-memory nodes with a standard cluster interconnect makes it a
cost-effective alternative to proprietary high-end multiprocessors such as
NUMA or MPP. Finally, using SAN eases disk management and data
placement.

4.4.3 PARALLEL QUERY EVALUATION

The objective of parallel query processing is to transform queries into
execution plans that can be efficiently executed in parallel. This is
achieved by exploiting parallel data placement and the various forms of
parallelism offered by high-level queries. In this section, we first introduce
the various forms of query parallelism. Then we derive basic parallel
algorithms for data processing. Finally, we discuss parallel query
optimization.

4.4.4 QUERY PARALLELISM

Parallel query execution can exploit two forms of parallelism: inter- and
intra-query. Inter-query parallelism enables the parallel execution of
multiple queries generated by concurrent transactions, in order to increase
the transactional throughput. Within a query (intra-query parallelism),
inter-operator and intra-operator parallelism are used to decrease response
time. Inter-operator parallelism is obtained by executing in parallel several
operators of the query tree on several processors while with intra-operator
parallelism, the same operator is executed by many processors, each one
working on a subset of the data. Note that these two forms of parallelism
also exist in distributed query processing

4.4.5 1/0 PARALLELISM (DATA PARTITIONING)

A shared-nothing architecture because it is the most general case and its
implementation techniques also apply, sometimes in a simplified form, to
other architectures. Data placement in a parallel database system exhibits

Transaction Processing in
Distributed Databases and
Parallel Databases

81

Advanced Database System

82

similarities with data fragmentation in distributed databasee. An obvious
similarity is that fragmentation can be used to increase parallelism. In
what follows, we use the terms partitioning and partition instead of
horizontal fragmentation and horizontal fragment, respectively, to contrast
with the alternative strategy, which consists of clustering a relation at a
single node. The term declustering is sometimes used to mean partitioning
[Livny et al., 1987]. Vertical fragmentation can also be used to increase
parallelism and load balancing much as in distributed databases. Another
similarity is that since data are much larger than programs, execution
should occur, as much as possible, where the data reside. However, there
are two important differences with the distributed database approach.
First, there is no need to maximize local processing (at each node) since
users are not associated with particular nodes. Second, load balancing is
much more difficult to achieve in the presence of a large number of nodes.
The main problem is to avoid resource contention, which may result in the
entire system thrashing (e.g., one node ends up doing all the work while
the others remain idle). Since programs are executed where the data
reside, data placement is a critical performance issue. Data placement
must be done so as to maximize system performance, which can be
measured by combining the total amount of work done by the system and
the response time of individual queries. In Chapter 8, we have seen that
maximizing response time (through intra-query parallelism) results in
increased total work due to communication overhead. For the same reason,
inter-query parallelism results in increased total work. On the other hand,
clustering all the data necessary to a program minimizes communication
and thus the total work done by the system in executing that program. In
terms of data placement, we have the following trade-off: maximizing
response time or inter-query parallelism leads to partitioning, whereas
minimizing the total amount of work leads to clustering. As we have seen
in Chapter 3, this problem is addressed in distributed databases in a rather
static manner. The database administrator is in charge of periodically
examining fragment access frequencies, and when necessary, moving and
reorganizing fragments. An alternative solution to data placement is full
partitioning, whereby each relation is horizontally fragmented across all
the nodes in the system. There are three basic strategies for data
partitioning: round-robin, hash, and range partitioning (Figure 2.4.7).

[_,_’r L
(a) Round-Robin (b) Hashing
| a-j I hi-mi | .oy] Li-2 I
(c) Range

Fig: 4.4.7 Different Partitioning Schemes

1. Round-robin partitioning is the simplest strategy, it ensures uniform
data distribution. With n partitions, the ith tuple in insertion order is
assigned to partition (i mod n). This strategy enables the sequential
access to a relation to be done in parallel. However, the direct access to
individual tuples, based on a predicate, requires accessing the entire
relation.

2. Hash partitioning applies a hash function to some attribute that yields
the partition number. This strategy allows exact-match queries on the
selection attribute to be processed by exactly one node and all other
queries to be processed by all the nodes in parallel.

3. Range partitioning distributes tuples based on the value intervals
(ranges) of some attribute. In addition to supporting exact-match
queries (as in hashing), it is well-suited for range queries. For instance,
a query with a predicate “A between Al and A2” may be processed by
the only node(s) containing tuples whose A value is in range [A1,A2].

However, range partitioning can result in high variation in partition size.
Compared to clustering relations on a single (possibly very large) disk, full
partitioning yields better performance [Livny et al., 1987]. Although full
partitioning has obvious performance advantages, highly parallel
execution might cause a serious performance overhead for complex
queries involving joins. Furthermore, full partitioning is not appropriate
for small relations that span a few disk blocks. These drawbacks suggest
that a compromise between clustering and full partitioning (i.e., variable
partitioning), needs to be found. A solution is to do data placement by
variable partitioning [Copeland et al., 1988]. The degree of partitioning,
i.e., the number of nodes over which a relation is fragmented, is a function
of the size and access frequency of the relation. This strategy is much
more involved than either clustering or full partitioning because changes
in data distribution may result in reorganization. For example, a relation
initially placed across eight nodes may have its cardinality doubled by
subsequent insertions, in which case it should be placed across 16 nodes.
In a highly parallel system with variable partitioning, periodic
reorganizations for load balancing are essential and should be frequent
unless the workload is fairly static and experiences only a few updates.
Such reorganizations should remain transparent to compiled programs that
run on the database server. In particular, programs should not be
recompiled because of reorganization. Therefore, the compiled programs
should remain independent of data location, which may change rapidly.
Such independence can be achieved if the run-time system supports
associative access to distributed data. This is different from a distributed
DBMS, where associative access is achieved at compile time by the query
processor using the data directory.

4.4.6 INTRA-QUERY PARALLELISM

Parallel query execution can exploit two forms of parallelism: inter- and
intra-query. Within a query (intra-query parallelism), inter-operator and
intra-operator parallelism are used to decrease response time.

Transaction Processing in
Distributed Databases and
Parallel Databases

83

Advanced Database System

84

4.4.7 INTER -QUERY PARALLELISM

Inter-query parallelism enables the parallel execution of multiple queries
generated by concurrent transactions, in order to increase the transactional
throughput. Inter-operator parallelism is obtained by executing in parallel
several operators of the query tree on several processors while with intra-
operator parallelism, the same operator is executed by many processors,
each one working on a subset of the data. Note that these two forms of
parallelism also exist in distributed query processing.

4.4.8 INTRA OPERATION PARALLELISM

Intra-operator parallelism is based on the decomposition of one operator in
a set of independent sub-operators, called operator instances. This
decomposition is done using static and/or dynamic partitioning of
relations. Each operator instance will then process one relation partition,
also called a bucket. The operator decomposition frequently benefits from
the initial partitioning of the data (e.g., the data are partitioned on the join
attribute). To illustrate intra-operator parallelism, let us consider a simple
select-join query. The select operator can be directly decomposed into
several select operators, each on a different partition, and no redistribution
is required (Figure 2.4.8). Note that if the relation is partitioned on the
select attribute, partitioning properties can be used to eliminate some
select instances. For example, in an exact-match select, only one select
instance will be executed if the relation was partitioned by hashing (or
range) on the select attribute. It is more complex to decompose the join
operator. In order to have independent joins, each bucket of the first
relation R may be joined to the entire relation S. Such a join will be very
inefficient (unless S is very small) because it will imply a broadcast of S
on each participating processor. A more efficient way is to use partitioning
properties. For example, if R and S are partitioned by hashing on the join
attribute and if the join is an equijoin, then we can partition the join into
independent joins. This is the ideal case that cannot be always used,
because it depends on the initial partitioning of R and S. In the other cases,
one or two operands may be repartitioned [Valduriez and Gardarin, 1984].
Finally, we may notice that the partitioning function (hash, range, round
robin) is independent of the local algorithm (e.g., nested loop, hash, sort
merge) used to process the join operator (i.e., on each processor). For
instance, a hash join using a hash partitioning needs two hash functions.
The first one, hl, is used to partition the two base relations on the join
attribute. The second one, h2, which can be different for each processor, is
used to process the join on each processor.

Instance i _—
Operator of operator 1= degree of parallelism

Fig: 4.4.8 Intra-operator Parallism

4.4.9 INTER OPERATION PARALLELISM

Two forms of inter-operator parallelism can be exploited. With pipeline
parallelism, several operators with a producer-consumer link are executed
in parallel. For instance, the select operator in Figure 2.4.9 will be
executed in parallel with the join operator. The advantage of such
execution is that the intermediate result is not materialized, thus saving
memory and disk accesses. In the example of Figure 2.4.9, only S may fit
in memory. Independent parallelism is achieved when there is no
dependency between the operators that are executed in parallel. For
instance, the two select operators of Figure 2.4.9 can be executed in
parallel. This form of parallelism is very attractive because there is no
interference between the processors.

Fig:4.5.3 Inter-operator Parallelism

4.4.10 LET US SUM UP

Thus, we have studied basic concepts of database transaction, ACID
properties, concurrency control, timestamp ordering algorithm, deadlock
management. With this local recovery management, 2PC and 3PC
protocol. Also the major aspect parallel database system as well.

Transaction Processing in
Distributed Databases and
Parallel Databases

85

Advanced Database System

86

4.4.11 LIST OF REFERENCES

>

>

Principles of Distributed Database Systems; 2nd Editied By M. Tamer
Ozsu and Patrick Valduriez, Person Education Asia.

Database System Concepts, Sth edition, Avi Silberschatz , Henry F.
Korth , S. Sudarshan: McGraw-Hill (2010)

Distributed Database; Principles & Systems By Publications, Stefano
Ceri and Giuseppo Pelagatti,, McGraw-Hill International Editions
(1984)

Database Management Systems, 3rd edition, Raghu Ramakrishnan and
Johannes Gehrke, McGraw-Hill (2002).

Fundamentals of Database Systems, 6thEdition, Elmasri and Navathe,
Addison. Wesley (2003).

Unifying temporal data models via a conceptual model, C.S. Jensen,
M.D. Soo, and R.T. Snodgrass: Information Systems, vol. 19, no. 7,
pp. 513-547, 1994.

Spatial Databases: A Tour by Shashi Shekhar and Sanjay Chawla,
Prentice Hall, 2003 (ISBN 013-017480-7)

Principles of Multimedia Database Systems, Subramanian V. S.
Elsevier Publishers, 2013.

https://www.tutorialspoint.com/distributed_dbms/distributed dbms_da
tabases.htm

https://www.geeksforgeeks.org/distributed-database-system/

4.4.12 UNIT END EXERCISES

1) Explain with Example:
a. Intra-query parallelism
b. Intra-operation parallelism
c. Inter-operation parallelism
2) Explain ACID properties.
3) Explain two and three phase commit protocol.

4) Explain timestamp ordering algorithm.

O o% &% °
0’0 0’0 0’0 0’0

Module 111

S

OBJECT ORIENTED, TEMPORAL AND

SPATIAL DATABASES

Unit Structure

5.1.0 Objectives

5.1.1 Introduction

5.1.2 Object Oriented Database
5.1.3 Object Identity

5.1.4 Object structure

5.1.5 Type Constructors

5.1.6 Encapsulation of Operations
5.1.7 Methods and Persistence
5.1.8 Type and Class Hierarchies
5.1.9 Inheritance

5.1.10 Complex Objects

5.1.11 Object-oriented DBMS
5.1.12 Languages and Design
5.1.13 ODMG Model

5.1.14 Object Definition Languages (ODL)
5.1.15 Object Query Languages (OQL)

5.2.1 Introduction to Temporal Database:

5.2.2 Time ontology
5.2.3 Structure and granularity
5.2.4 Temporal data models

5.2.5 Temporal relational algebras

5.2.6 Introduction to Spatial Database

5.2.7 Definition

Advanced Database System

88

5.2.8 Types of spatial data

5.2.9 Geographical Information Systems (GIS)
5.2.10 Conceptual Data Models for spatial databases
5.2.11 Logical data models for spatial databases
5.2.12 Raster and vector model

5.2.13 Physical data models for spatial databases
5.2.14 Clustering methods (space filling curves),
5.2.15 Storage methods (R-tree)

5.2.16 Query processing

5.2.17 LET US SUM UP

5.2.18 List of References

5.2.19 Unit End Exercises

5.1.0 OBJECTIVES

In this chapter you will learn about:
» Basic of object, constructor, methods, inheritance etc.

» Object-oriented database-language and design ODMG model,
ODL,0QL

» Temporal Database-Time series, structure, granularity, data model etc.
» Spatial Database-conceptual, logical data model

» Geographical Information Systems (GIS)s

5.1.1 INTRODUCTION

This chapter introduces database concepts for some of the common
features that are needed by advanced applications and are being used
widely. We will temporal concepts that are used in temporal database
applications, and, briefly, some of the issues involving spatial database.

In this chapter, we discuss the features of object oriented data models and
show how some of these features have been incorporated in relational
database systems. Object-oriented databases are now referred to as object
databases (ODB) (previously called OODB), and the database systems
are referred to as object data management systems (ODMS) (formerly
referred to as ODBMS or OODBMS). Traditional data models and
systems, such as relational, network, and hierarchical, have been quite
successful in developing the database technologies required for many
traditional business database applications.

We introduce the concepts of temporal databases, which permit the Object Oriented, Temporal and
database system to store a history of changes, and allow users to query Spatial Databases

both current and past states of the database. Some temporal database

models also allow users to store future expected information, such as

planned schedules. It is important to note that many database applications

are temporal, but they are often implemented without having much

temporal support from the DBMS package—that is, the temporal concepts

are implemented in the application programs that access the database.

We discuss types of spatial data, different kinds of spatial analyses,
operations on spatial data, types of spatial queries, spatial data indexing,
spatial data mining, and applications of spatial databases.

5.1.2 OBJECT ORIENTED DATABASE

The features of object oriented data models and show how some of these
features have been incorporated in relational database systems. Object-
oriented databases are now referred to as object databases (ODB)
(previously called OODB), and the database systems are referred to as
object data management systems (ODMS) (formerly referred to as
ODBMS or OODBMS). Traditional data models and systems, such as
relational, network, and hierarchical, have been quite successful in
developing the database technologies required for many traditional
business database applications. However, they have certain shortcomings
when more complex database applications must be designed and
implemented—for example, databases for engineering design and
manufacturing (CAD/CAM and CIMI1), scientific experiments,
telecommunications, geographic information systems, and multimedia.
These newer applications have requirements and characteristics that differ
from those of traditional business applications, such as more complex
structures for stored objects; the need for new data types for storing
images, videos, or large textual items; longer-duration transactions; and
the need to define nonstandard application-specific operations. Object
databases were proposed to meet some of the needs of these more complex
applications. A key feature of object databases is the power they give the
designer to specify both the structure of complex objects and the
operations that can be applied to these objects. Another reason for the
creation of object-oriented databases is the vast increase in the use of
object-oriented programming languages for developing software
applications. Databases are fundamental components in many software
systems, and traditional databases are sometimes difficult to use with
software applications that are developed in an object-oriented
programming language such as C++ or Java. Object databases are
designed so they can be directly—or seamlessly—integrated with software
that is developed wusing object-oriented programming languages.
Relational DBMS (RDBMS) vendors have also recognized the need for
incorporating features that were proposed for object databases, and newer
versions of relational systems have incorporated many of these features.
This has led to database systems that are characterized as object-relational
or ORDBMSs. The latest version of the SQL standard (2008) for

89

Advanced Database System

90

RDBMS:s includes many of these features, which were originally known
as SQL/Object and they have now been merged into the main SQL
specification, known as SQL/Foundation. Although many experimental
prototypes and commercial object-oriented database systems have been
created, they have not found widespread use because of the popularity of
relational and object-relational systems. The experimental prototypes
included the Orion system developed at MCC, Open OODB at Texas
Instruments, the Iris system at Hewlett-Packard laboratories, the Ode
system at AT&T Bell Labs, and the ENCORE/ObServer project at Brown
University. Commercially available systems included GemStone Object
Server of GemStone Systems, ONTOS DB of Ontos, Objectivity/DB of
Objectivity Inc.,Versant Object Database and Fast Objects by Versant
Corporation (and Poet), ObjectStore of Object Design, and Ardent
Database of Ardent. These represent only a partial list of the experimental
prototypes and commercial object-oriented database systems that were
created. As commercial object DBMSs became available, the need for a
standard model and language was recognized. Because the formal
procedure for approval of standards normally takes a number of years, a
consortium of object DBMS vendors and users, called ODMG, proposed a
standard whose current specification is known as the ODMG 3.0 standard.
Object-oriented databases have adopted many of the concepts that were
developed originally for object-oriented programming languages. We
describe the key concepts utilized in many object database systems and
that were later incorporated into object-relational systems and the SQL
standard. These include object identity, object structure and type
constructors, encapsulation of operations and the definition of methods as
part of class declarations, mechanisms for storing objects in a database by
making them persistent, and type and class hierarchies and inheritance.
Then, in we see how these concepts have been incorporated into the latest
SQL standards, leading to object-relational databases. Object features
were originally introduced in SQL:1999, and then updated in the latest
version (SQL:2008) of the standard. We turn our attention to “pure” object
database standards by presenting features of the object database standard
ODMG 3.0 and the object definition language ODL. An overview of the
database design process for object databases. The object query language
(OQL), which is part of the ODMG 3.0 standard. We discuss
programming language bindings, which specify how to extend object
oriented programming languages to include the features of the object
database standard.

5.1.3 OBJECT IDENTITY

One goal of an ODMS (Object Data Management System) is to maintain a
direct correspondence between real-world and database objects so that
objects do not lose their integrity and identity and can easily be identified
and operated upon. Hence, an ODMS provides a unique identity to each
independent object stored in the database. This unique identity is typically
implemented via a unique, system-generated object identifier (OID). The
value of an OID is not visible to the external user, but is used internally by
the system to identify each object uniquely and to create and manage inter-

object references. The OID can be assigned to program variables of the Object Oriented, Temporal and
appropriate type when needed. Spatial Databases

The main property required of an OID is that it be immutable; that is, the
OID value of a particular object should not change. This preserves the
identity of the real-world object being represented. Hence, an ODMS must
have some mechanism for generating OIDs and preserving the
immutability property. It is also desirable that each OID be used only
once; that is, even if an object is removed from the database, its OID
should not be assigned to another object. These two properties imply that
the OID should not depend on any attribute values of the object, since the
value of an attribute may be changed or corrected. We can compare this
with the relational model, where each relation must have a primary key
attribute whose value identifies each tuple uniquely. In the relational
model, if the value of the primary key is changed, the tuple will have a
new identity, even though it may still represent the same real-world object.
Alternatively, a real-world object may have different names for key
attributes in different relations, making it difficult to ascertain that the
keys represent the same real-world object (for example, the object
identifier may be represented as Emp id in one relation and as Ssn in
another). It is inappropriate to base the OID on the physical address of the
object in storage, since the physical address can change after a physical
reorganization of the database.

However, some early ODMSs have used the physical address as the OID
to increase the efficiency of object retrieval. If the physical address of the
object changes, an indirect pointer can be placed at the former address,
which gives the new physical location of the object. It is more common to
use long integers as OIDs and then to use some form of hash table to map
the OID value to the current physical address of the object in storage.
Some early OO data models required that everything—from a simple
value to a complex object—was represented as an object; hence, every
basic value, such as an integer, string, or Boolean value, has an OID. This
allows two identical basic values to have different OIDs, which can be
useful in some cases. For example, the integer value 50 can sometimes be
used to mean a weight in kilograms and at other times to mean the age of a
person. Then, two basic objects with distinct OIDs could be created, but
both objects would represent the integer value 50. Although useful as a
theoretical model, this is not very practical, since it leads to the generation
of too many OIDs. Hence, most OO database systems allow for the
representation of both objects and literals (or values). Every object must
have an immutable OID, whereas a literal value has no OID and its value
just stands for itself. Thus, a literal value is typically stored within an
object and cannot be referenced from other objects. In many systems,
complex structured literal values can also be created without having a
corresponding OID if needed.

5.1.4 OBJECT STRUCTURE

The term object-oriented—abbreviated OO or O-O—has its origins in OO

programming languages, or OOPLs. Today OO concepts are applied in the
91

Advanced Database System

92

areas of databases, software engineering, knowledge bases, artificial
intelligence, and computer systems in general. OOPLs have their roots in
the SIMULA Ilanguage, which was proposed in the late 1960s. The
programming language Smalltalk, developed at Xerox PARCS in the
1970s, was one of the first languages to explicitly incorporate additional
OO concepts, such as message passing and inheritance. It is known as a
pure OO programming language, meaning that it was explicitly designed
to be object-oriented. This contrasts with hybrid OO programming
languages, which incorporate OO concepts into an already existing
language. An example of the latter is C++, which incorporates OO
concepts into the popular C programming language.

An object typically has two components: state (value) and behavior
(operations). It can have a complex data structure as well as specific
operations defined by the programmer. Objects in an OOPL exist only
during program execution; therefore, they are called transient objects. An
OO database can extend the existence of objects so that they are stored
permanently in a database, and hence the objects become persistent
objects that exist beyond program termination and can be retrieved later
and shared by other programs. In other words, OO databases store
persistent objects permanently in secondary storage, and allow the sharing
of these objects among multiple programs and applications. This requires
the incorporation of other well-known features of database management
systems, such as indexing mechanisms to efficiently locate the objects,
concurrency control to allow object sharing among concurrent programs,
and recovery from failures. An OO database system will typically
interface with one or more OO programming languages to provide
persistent and shared object capabilities.

The internal structure of an object in OOPLs includes the specification of
instance variables, which hold the values that define the internal state of
the object. An instance variable is similar to the concept of an attribute in
the relational model, except that instance variables may be encapsulated
within the object and thus are not necessarily visible to external users.
Instance variables may also be of arbitrarily complex data types. Object-
oriented systems allow definition of the operations or functions (behavior)
that can be applied to objects of a particular type. In fact, some OO models
insist that all operations a user can apply to an object must be predefined.

This forces a complete encapsulation of objects. This rigid approach has
been relaxed in most OO data models for two reasons. First, database
users often need to know the attribute names so they can specify selection
conditions on the attributes to retrieve specific objects. Second, complete
encapsulation implies that any simple retrieval requires a predefined
operation, thus making ad hoc queries difficult to specify on the fly.

To encourage encapsulation, an operation is defined in two parts. The first
part, called the signature or interface of the operation, specifies the
operation name and arguments (or parameters). The second part, called the
method or body, specifies the implementation of the operation, usually
written in some general-purpose programming language. Operations can

be invoked by passing a message to an object, which includes the Object Oriented, Temporal and
operation name and the parameters. The object then executes the method Spatial Databases

for that operation. This encapsulation permits modification of the internal

structure of an object, as well as the implementation of its operations,

without the need to disturb the external programs that invoke these

operations.

Hence, encapsulation provides a form of data and operation independence.
Another key concept in OO systems is that of type and class hierarchies
and inheritance. This permits specification of new types or classes that
inherit much of their structure and/or operations from previously defined
types or classes. This makes it easier to develop the data types of a system
incrementally, and to reuse existing type definitions when creating new
types of objects. One problem in early OO database systems involved
representing relationships among objects. The insistence on complete
encapsulation in early OO data models led to the argument that
relationships should not be explicitly represented, but should instead be
described by defining appropriate methods that locate related objects.
However, this approach does not work very well for complex databases
with many relationships because it is useful to identify these relationships
and make them visible to users. The ODMG object database standard has
recognized this need and it explicitly represents binary relationships via a
pair of inverse references.

Another OO concept is operator overloading, which refers to an
operation’s ability to be applied to different types of objects; in such a
situation, an operation name may refer to several distinct implementations,
depending on the type of object it is applied to. This feature is also called
operator polymorphism. For example, an operation to calculate the area of
a geometric object may differ in its method (implementation), depending
on whether the object is of type triangle, circle, or rectangle. This may
require the use of late binding of the operation name to the appropriate
method at runtime, when the type of object to which the operation is
applied becomes known. In the next several sections, we discuss in some
detail the main characteristics of object databases. The types for complex-
structured objects are specified via type constructors; encapsulation and
persistence; and presents inheritance concepts. Some additional OO
concepts, and gives a summary of all the OO concepts that we introduced.
In we show how some of these concepts have been incorporated into the
SQL:2008 standard for relational databases. Then we show how these
concepts are realized in the ODMG 3.0 object database standard.

5.1.5 TYPE CONSTRUCTORS

Another feature of an ODMS (and ODBs in general) is that objects and
literals may have a type structure of arbitrary complexity in order to
contain all of the necessary information that describes the object or literal.
In contrast, in traditional database systems, information about a complex
object is often scattered over many relations or records, leading to loss of
direct correspondence between a real-world object and its database

representation. In ODBs, a complex type may be constructed from other
93

Advanced Database System

94

types by nesting of type constructors. The three most basic constructors
are atom, struct (or tuple), and collection.

One type constructor has been called the atom constructor, although this
term is not used in the latest object standard. This includes the basic built-
in data types of the object model, which are similar to the basic types in
many programming languages: integers, strings, floating point numbers,
enumerated types, Booleans, and so on. They are called single-valued or
atomic types, since each value of the type is considered an atomic
(indivisible) single value.

A second type constructor is referred to as the struct (or tuple)
constructor. This can create standard structured types, such as the tuples
(record types) in the basic relational model. A structured type is made up
of several components, and is also sometimes referred to as a compound or
composite type. More accurately, the struct constructor is not considered
to be a type, but rather a type generator, because many different
structured types can be created. For example, two different structured
types that can be created are: struct Name<FirstName: string,
Middlelnitial: char, LastName: string>, and struct CollegeDegree<Major:
string, Degree: string, Year: date>. To create complex nested type
structures in the object model, the collection type constructors are needed,
which we discuss next. Notice that the type constructors atom and struct
are the only ones available in the original (basic) relational model.

Collection (or multivalued) type constructors include the set(T), list(T),
bag(T), array(T), and dictionary(K,T) type constructors. These allow
part of an object or literal value to include a collection of other objects or
values when needed. These constructors are also considered to be type
generators because many different types can be created. For example,
set(string), set(integer), and set(Employee) are three different types that
can be created from the ser type constructor. All the elements in a
particular collection value must be of the same type. For example, all
values in a collection of type set(string) must be string values. The atom
constructor is used to represent all basic atomic values, such as integers,
real numbers, character strings, Booleans, and any other basic data types
that the system supports directly. The tuple constructor can create
structured values and objects of the form <al:il, a2:i2, ..., an:in>, where
each @j is an attribute namel0 and each ij is a value or an OID. The other
commonly used constructors are collectively referred to as collection
types, but have individual differences among them. The set constructor
will create objects or literals that are a set of distinct elements {i1, i2, ...,
in}, all of the same type. The bag constructor (sometimes called a
multiset) is similar to a set except that the elements in a bag need not be
distinct. The list constructor will create an ordered list [il, i2, ..., in] of
OIDs or values of the same type. A list is similar to a bag except that the
elements in a list are ordered, and hence we can refer to the first, second,
or jth element. The array constructor creates a single-dimensional array
of elements of the same type. The main difference between array and list
is that a list can have an arbitrary number of elements whereas an array
typically has a maximum size.

Finally, the dictionary constructor creates a collection of two tuples (K,
V), where the value of a key K can be used to retrieve the corresponding
value V. The main characteristic of a collection type is that its objects or
values will be a collection of objects or values of the same type that may
be unordered (such as a set or a bag) or ordered (such as a list or an array).
The tuple type constructor is often called a structured type, since it
corresponds to the struct construct in the C and C++ programming
languages.

An object definition language (ODL) that incorporates the preceding
type constructors can be used to define the object types for a particular
database application. In this we will describe the standard ODL of
ODMG, but first we introduce the concepts gradually in this section using
a simpler notation. The type constructors can be used to define the data
structures for an OO database schema. Figure shows how we may declare
EMPLOYEE and DEPARTMENT types.

In Figure, the attributes that refer to other objects—such as Dept of
EMPLOYEE or Projects of DEPARTMENT—are basically OIDs that
serve as references to other objects to represent relationships among the
objects. For example, the attribute Dept of EMPLOYEE is of type
DEPARTMENT, and hence is used to refer to a specific DEPARTMENT
object (the DEPARTMENT object where the employee works). The value
of such an attribute would be an OID for a specific DEPARTMENT
object. A binary relationship can be represented in one direction, or it can
have an inverse reference. The latter representation makes it easy to
traverse the relationship in both directions. For example, in Figure the
attribute Employees of DEPARTMENT has as its value a set of references
(that 1s, a set of OIDs) to objects of type EMPLOYEE; these are the
employees who work for the DEPARTMENT. The inverse is the reference
attribute Dept of EMPLOYEE.

define type EMPLOYEE
tuple { Frnome: string;

Minit char;
Lnema: string;
Sen: string:

Hirth_date: DATE;
Addrass: string;

Sax: char:
Salary: float;
Supenvisar: EMPLOYEE;
Dept DEPARTMENT;
define type DATE

tuple { Year integer;
Manih: integer;
Dray: integer; |

define type DEFPARTMENT

tuple { Drnama: string;
Drumber: integer:
Mar: buple { Manager: EMPLOYEE;

Start_date: DATE; |

Locatiors: selistring);
Employess: seblEMPLOWEE)
Projects: setiPROJECT); &

FigureS.1.1 Specifying the object type EMPLOYEE, DATE and
DEPARTMENT using type constructors.

Object Oriented, Temporal and
Spatial Databases

95

Advanced Database System

96

5.1.6 ENCAPSULATION OF OPERATIONS

Encapsulation of Operations The concept of encapsulation is one of the
main characteristics of OO languages and systems. It is also related to the
concepts of abstract data types and information hiding in programming
languages. In traditional database models and systems this concept was
not applied, since it is customary to make the structure of database objects
visible to users and external programs. In these traditional models, a
number of generic database operations are applicable to objects of all
types. For example, in the relational model, the operations for selecting,
inserting, deleting, and modifying tuples are generic and may be applied to
any relation in the database. The relation and its attributes are visible to
users and to external programs that access the relation by using these
operations. The concepts of encapsulation is applied to database objects in
ODBs by defining the behavior of a type of object based on the
operations that can be externally applied to objects of that type. Some
operations may be used to create (insert) or destroy (delete) objects; other
operations may update the object state; and others may be used to retrieve
parts of the object state or to apply some calculations. Still other
operations may perform a combination of retrieval, calculation, and
update. In general, the implementation of an operation can be specified in
a general-purpose programming language that provides flexibility and
power in defining the operations. The external users of the object are only
made aware of the interface of the operations, which defines the name
and arguments (parameters) of each operation. The implementation is
hidden from the external users; it includes the definition of any hidden
internal data structures of the object and the implementation of the
operations that access these structures. The interface part of an operation is
sometimes called the signature, and the operation implementation is
sometimes called the method.

For database applications, the requirement that all objects be completely
encapsulated is too stringent. One way to relax this requirement is to
divide the structure of an object into visible and hidden attributes
(instance variables). Visible attributes can be seen by and are directly
accessible to the database users and programmers via the query language.
The hidden attributes of an object are completely encapsulated and can be
accessed only through predefined operations. Most ODMSs employ high-
level query languages for accessing visible attributes. In this we will
describe the OQL query language that is proposed as a standard query
language for ODBs.

The term class is often used to refer to a type definition, along with the
definitions of the operations for that type. Figure 3.1.2 shows how the type
definitions in Figure 3.1.1 can be extended with operations to define
classes. A number of operations are declared for each class, and the
signature (interface) of each operation is included in the class definition.

define class EMPLOYEE

type tuple { Frame: string;
Minit: char;
Lname: string;
San string;
Birth_date: DATE;
Addreas: string;
Sex char;
Salary float;
Supemvisor: EMPLOYEE;
Dapt: DEPARTMENT;)k
operations age integer;
cregte_amp: EMPLOWEE;
destroy_emp: boolean;
end EMPLOYEE;

define class DEPARTMENT

type tuple { DOname: string:
Dnumber: integer;
Maor tupde [Manager EMPLOYEE;
Start_date: DATE; &
Locations: set [string);
Employees: set [EMPLOYEE):
Projects setiPROJECT); 1:

operations no_of_emps integer:

create_dept DEPARTMENT;
destroy_dept: boolean;
assign_empie: EMPLOYEEL: boolean;
[* adds an empéoyee to the department *)
remawe_amp(a: EMPLOYEE): booleans
[* rermoves an employee from the department =)

end DEFARTMENT;

Figure 5.1.2 Adding operations to the definitions of EMPLOYEE and
DEPARTMENT

A method (implementation) for each operation must be defined elsewhere
using a programming language. Typical operations include the object
constructor operation (often called new), which is used to create a new
object, and the destructor operation, which is used to destroy (delete) an
object. A number of object modifier operations can also be declared to
modify the states (values) of various attributes of an object. Additional
operations can retrieve information about the object.

An operation is typically applied to an object by using the dot notation.
For example, if d is a reference to a DEPARTMENT object, we can
invoke an operation such as no of emps by writing d.no of emps.
Similarly, by writing d.destroy dept, the object referenced by d is
destroyed (deleted). The only exception is the constructor operation,
which returns a reference to a new DEPARTMENT object. Hence, it is
customary in some OO models to have a default name for the constructor
operation that is the name of the class itself, although this was not used in
Figure. The dot notation is also used to refer to attributes of an object—for
example, by writing d.Dnumber or d.Mgr Start date.

5.1.7 METHODS AND PERSISTENCE

Specifying Object Persistence via Naming and Reachability An ODBS
is often closely coupled with an object-oriented programming language
(OOPL). The OOPL is used to specify the method (operation)
implementations as well as other application code. Not all objects are
meant to be stored permanently in the database.

Object Oriented, Temporal and
Spatial Databases

97

Advanced Database System

98

Transient objects exist in the executing program and disappear once the
program terminates. Persistent objects are stored in the database and
persist after program termination. The typical mechanisms for making an
object persistent are naming and reachability.

The naming mechanism involves giving an object a unique persistent
name within a particular database. This persistent object name can be
given via a specific statement or operation in the program, as shown in
Figure. The named persistent objects are used as entry points to the
database through which users and applications can start their database
access. Obviously, it is not practical to give names to all objects in a large
database that includes thousands of objects, so most objects are made
persistent by using the second mechanism, called reachability. The
reachability mechanism works by making the object reachable from some
other persistent object. An object B is said to be reachable from an object
A if a sequence of references in the database lead from object 4 to
object B.

If we first create a named persistent object N, whose state is a set (or
possibly a bag) of objects of some class C, we can make objects of C
persistent by adding them to the set, thus making them reachable from N.
Hence, N is a named object that defines a persistent collection of objects
of class C. In the object model standard, N is called the extent of C.

For example, we can define a class DEPARTMENT SET (see Figure)
whose objects are of type set(DEPARTMENT). We can create an object
of type DEPARTMENT SET, and give it a persistent name ALL
DEPARTMENTS, as shown in Figure. Any DEPARTMENT object that is
added to the set of ALL DEPARTMENTS by using the add dept
operation becomes persistent by virtue of its being reachable from
ALL DEPARTMENTS. As we will see in Section, the ODMG ODL
standard gives the schema designer the option of naming an extent as part
of class definition. Notice the difference between traditional database
models and ODBs in this respect.

define class DEFPARTMENT_SET
type set (DEPARTMENT);
operations add_deptid: DEPARTMENT]: boolean;

{* add= a department to the DEPARTMENT_SET object *)
remave_deptid: DEFPARTMERNT): boolean;

{* removes o deparment from the DEPARTMENT_SET object *
create_depi_set: DEPARTMEMT_SET,
destroy_dapt_sat: boolean:

end DEFARTMENT_SET;

persistent name ALL_DEFARTMENTS: DEFARTMENT _SET;
{* ALL_DEPARTMENMTS iz a perssatent named obgect of type DEPARTMENT_SET %)

di= create_dept;
* create 3 new DEPARTMENT obect m tha vanazble d °)

b= AL1_DEPARTMENTS add_deptid);
* make d persistent by adding it fo the persistent zat All _DEPARTMENTS ®)

Figure 5.1.3 creating persistent objects by naming and reachability.

In traditional database models, such as the relational model, al/ objects are Object Oriented, Temporal and
assumed to be persistent. Hence, when a table such as EMPLOYEE is Spatial Databases
created in a relational database, it represents both the type declaration for

EMPLOYEE and a persistent set of all EMPLOYEE records (tuples). In

the OO approach, a class declaration of EMPLOYEE specifies only the

type and operations for a class of objects. The user must separately define

a persistent object of type set(EMPLOYEE) or bag(EMPLOYEE) whose

value is the collection of references (OIDs) to all persistent EMPLOYEE

objects, if this is desired, as shown in Figure. This allows transient and

persistent objects to follow the same type and class declarations of the

ODL and the OOPL. In general, it is possible to define several persistent

collections for the same class definition, if desired.

5.1.8 TYPE AND CLASS HIERARCHIES

Simplified Model for Inheritance Another main characteristic of ODBs
is that they allow type hierarchies and inheritance. We use a simple OO
model in this section a model in which attributes and operations are treated
uniformly—since both attributes and operations can be inherited. In this
section, we will discuss the inheritance model of the ODMG standard,
which differs from the model discussed here because it distinguishes
between two types of inheritance. Inheritance allows the definition of new
types based on other predefined types, leading to a type (or class)
hierarchy.

Type is defined by assigning it a type name, and then defining a number of
attributes (instance variables) and operations (methods) for the type. In the
simplified model we use in this section, the attributes and operations are
together called functions, since attributes resemble functions with zero
arguments. A function name can be used to refer to the value of an
attribute or to refer to the resulting value of an operation (method).We use
the term function to refer to both attributes and operations, since they are
treated similarly in a basic introduction to inheritance.

A type in its simplest form has a type name and a list of visible (public)
functions. When specifying a type in this section, we use the following
format, which does not specify arguments of functions, to simplify the
discussion: TYPE NAME: function, function,..., function For example, a
type that describes characteristics of a PERSON may be defined
asfollows: PERSON: Name, Address, Birth date, Age, Ssn In the
PERSON type, the Name, Address, Ssn, and Birth date functions can be
implemented as stored attributes, whereas the Age function can be
implemented as an operation that calculates the Age from the value of the
Birth_date attribute and the current date.

The concept of subtype is useful when the designer or user must create a
new type that is similar but not identical to an already defined type. The
subtype then inherits all the functions of the predefined type, which is
referred to as the supertype. For example, suppose that we want to define
two new types EMPLOYEE and STUDENT as follows:

929

Advanced Database System

100

EMPLOYEE: Name, Address, Birth date, Age, Ssn, Salary, Hire date,
Seniority STUDENT: Name, Address, Birth date, Age, Ssn, Major, Gpa
Since both STUDENT and EMPLOYEE include all the functions defined
for PERSON plus some additional functions of their own, we can declare
them to be subtypes of PERSON. Each will inherit the previously defined
functions of PERSON—namely, Name, Address, Birth date, Age, and
Ssn. For STUDENT, it is only necessary to define the new (local)
functions Major and Gpa, which are not inherited. Presumably, Major can
be defined as a stored attribute, whereas Gpa may be implemented as an
operation that calculates the student’s grade point average by accessing the
Grade values that are internally stored (hidden) within each STUDENT
object as hidden attributes.

For EMPLOYEE, the Salary and Hire date functions may be stored
attributes, whereas

Seniority may be an operation that calculates Seniority from the value of
Hire date.

Therefore, we can declare EMPLOYEE and STUDENT as follows:

EMPLOYEE subtype-of PERSON: Salary, Hire_date, Seniorty
STUDENT subtype-of PERSON; Major, Gpa

In general, a subtype includes all of the functions that are defined for its
super type plus some additional functions that are specific only to the sub
type. Hence, it is possible to generate a type hierarchy to show the
supertype/subtype relationships among all the types declared in the
system.

As another example, consider a type that describes objects in plane
geometry, which may be defined as follows: GEOMETRY_ OBJECT:
Shape, Area, Reference point For the GEOMETRY OBIJECT type, Shape
is implemented as an attribute (its domain can be an enumerated type with
values ‘triangle’, ‘rectangle’, ‘circle’, and so on), and Area is a method
that is applied to calculate the area. Reference point specifies the
coordinates of a point that determines the object location. Now suppose
that we want to define a number of subtypes for the
GEOMETRY_ OBIJECT type, as follows:

RECTANGLE subtype-of GEOMETRY OBJECT: Width, Height
TRIANGLE S subtype-of GEOMETRY OBIJECT: Sidel, Side2, Angle
CIRCLE subtype-of GEOMETRY OBJECT: Radius

Notice that the Area operation may be implemented by a different method
for each subtype, since the procedure for area calculation is different for
rectangles, triangles, and circles. Similarly, the attribute Reference point
may have a different meaning for each subtype; it might be the center
point for RECTANGLE and CIRCLE objects, and the vertex point
between the two given sides for a TRIANGLE object. Notice that type
definitions describe objects but do not generate objects on their own.

When an object is created, typically it belongs to one or more of these Object Oriented, Temporal and
types that have been declared. For example, a circle object is of type Spatial Databases
CIRCLE and GEOMETRY_ OBIJECT (by inheritance). Each object also

becomes a member of one or more persistent collections of objects (or

extents), which are used to grouptogether collections of objects that are

persistently stored in the database. Constraints on Extents

Corresponding to a Type Hierarchy in most ODBs, an extent is defined

to store the collection of persistent objects for each type or subtype.

In this case, the constraint is that every object in an extent that corresponds
to a subtype must also be a member of the extent that corresponds to its
supertype. Some OO database systems have a predefined system type
(called the ROOT class or the OBJECT class) whose extent contains all
the objects in the system. Classification then proceeds by assigning objects
into additional subtypes that are meaningful to the application, creating a
type hierarchy (or class hierarchy) for the system. All extents for
system- and user-defined classes are subsets of the extent corresponding to
the class OBJECT, directly or indirectly. In the ODMG model, the user
may or may not specify an extent for each class (type), depending on the
application.

An extent is a named persistent object whose value is a persistent
collection that holds a collection of objects of the same type that are
stored permanently in the database. The objects can be accessed and
shared by multiple programs. It is also possible to create a transient
collection, which exists temporarily during the execution of a program but
is not kept when the program terminates. For example, a transient
collection may be created in a program to hold the result of a query that
selects some objects from a persistent collection and copies those objects
into the transient collection. The program can then manipulate the objects
in the transient collection, and once the program terminates, the transient
collection ceases to exist.

In general, numerous collections—transient or persistent—may contain
objects of the same type. The inheritance model discussed in this section is
very simple. As we will see in the ODMG model distinguishes between
type inheritance—called interface inheritance and denoted by a colon
(:)—and the extent inheritance constraint— denoted by the keyword
EXTEND.

5.1.9 INHERITANCE

SQL has rules for dealing with type inheritance (specified via the
UNDER keyword). In general, both attributes and instance methods
(operations) are inherited. The phrase NOT FINAL must be included in a
UDT if subtypes are allowed to be created under that UDT (see Figure
11.4(a) and (b), where PERSON TYPE, STUDENT TYPE, and
EMPLOYEE TYPE are declared to be NOT FINAL). Associated with
type inheritance are the rules for overloading of function implementations
and for resolution of function names. These inheritance rules can be
summarized as follows:

101

Advanced Database System

102

m All attributes are inherited.

m The order of supertypes in the UNDER clause determines the
inheritance hierarchy.

m An instance of a subtype can be used in every context in which a
supertype instance is used.

m A subtype can redefine any function that is defined in its supertype,
with the restriction that the signature be the same.

m When a function is called, the best match is selected based on the types
of all arguments.

m For dynamic linking, the runtime types of parameters is considered.

Consider the following examples to illustrate type inheritance, which are
illustrated in Figure. Suppose that we want to create two subtypes of
PERSON TYPE: EMPLOYEE TYPE and STUDENT TYPE. In
addition, we also create a subtype MANAGER TYPE that inherits all the
attributes (and methods) of EMPLOYEE TYPE but has an additional
attribute DEPT _MANAGED. These subtypes are shown in Figure.

In general, we specify the local attributes and any additional specific
methods for the subtype, which inherits the attributes and operations of its
supertype. Another facility in SQL is table inheritance via the
supertable/subtable facility. This is also specified using the keyword
UNDER. Here, a new record that is inserted into a subtable, say the
MANAGER table, is also inserted into its supertables EMPLOYEE and
PERSON. Notice that when a record is inserted in MANAGER, we must
provide values for all its inherited attributes. INSERT, DELETE, and
UPDATE operations are appropriately propagated.

In the ODMG object model, two types of inheritance relationships exist:
behavior only inheritance and state plus behavior inheritance. Behavior
inheritance is also known as IS4 or interface inheritance, and is specified
by the colon (:) notation.30 Hence, in the ODMG object model, behavior
inheritance requires the supertype to be an interface, whereas the subtype
could be either a class or another interface.

The other inheritance relationship, called EXTENDS inheritance, is
specified by the keyword extends. It is used to inherit both state and
behavior strictly among classes, so both the supertype and the subtype
must be classes. Multiple inheritance via extends is not permitted.
However, multiple inheritance is allowed for behavior inheritance via the
colon (:) notation. Hence, an interface may inherit behavior from several
other interfaces. A class may also inherit behavior from several interfaces
via colon (:) notation, in addition to inheriting behavior and state from at
most one other class via extends.

5.1.10 COMPLEX OBJECTS

Unstructured complex object:

e These is provided by a DBMS and permits the storage and retrieval of
large objects that are needed by the database application.

e Typical examples of such objects are bitmap images and long text
strings (such as documents); they are also known as binary large
objects, or BLOBs for short.

e This has been the standard way by which Relational DBMSs have
dealt with supporting complex objects, leaving the operations on those
objects outside the RDBMS.

Structured complex object:

This differs from an unstructured complex object in that the object’s
structure is defined by repeated application of the type constructors
provided by the OODBMS. Hence, the object structure is defined and
known to the OODBMS. The OODBMS also defines methods or
operations on it.

5.1.11 OBJECT-ORIENTED DBMS

Object oriented databases or object databases incorporate the object data
model to define data structures on which database operations such as
CRUD can be performed. They store objects rather than data such as
integers and strings. The relationship between various data is implicit to
the object and manifests as object attributes and methods. Object database
management systems extend the object programming language with
transparently persistent data, concurrency control, data recovery,
associative queries, and other database capabilities. The Object-Oriented
Database System Manifesto by Malcolm Atkinson mandates that an object
oriented database system should satisfy two criteria: it should be a DBMS,
and it should be an object-oriented system Thus OODB implements OO
concepts such as object identity ,polymorphism, encapsulation and
inheritance to provide access to persistent objects using any OO-
programming language The tight integration between object orientation
and databases provides programmers a unified environment when dealing
with complex data such as 2D and 3D graphics. Object oriented databases
are designed to work well with object oriented programming languages
such as Python, Java, and Objective-C.

5.1.12 LANGUAGES AND DESIGN

Developed by ODMG, Object Query Language allows SQL-like queries to
be performed on a OODB. Like SQL, it is a declarative language. Based
loosely on SQL, OQL includes additional language constructs which allow
for object oriented design such as operation invocation and inheritance.
Query Structures look very similar in SQL and OQL but the results

Object Oriented, Temporal and
Spatial Databases

103

Advanced Database System

104

returned are different. Example: OQL query to obtain Voter names who
are from the state of Colorado

Select distinct v.name
From voters v

Where v.state = “Colorado”

Voter Id Name State
V1 George Love Colorado
V2 Winnie the Pooh | Florida
V3 John Lewis Hall Colorado
Result from SQL Result from OQL
table with rows collection of objects
Name String String
George Love George Love | [John Lewis Hall
John Lewis Hall

e More example of OQL with integration to OO Language:

e C(Create objects as in OO languages and then make them persistent
using the set() method on the database.

Person p1 = new Person(“Pikes Peak", 78);
db.set(pl);

e Retrieve by age (null default for string)
Person p = new Person (null, 35);

ObjectSet<Person> result = db.get(p);

Object-Oriented Model Relational Model

Class * Relation

Object Instance = * Tuple

Attribute - Column

Method Different Stored Procedure

5.1.13 ODMG MODEL

The ODMG object model is the data model upon which the object
definition language (ODL) and object query language (OQL) are based. It
is meant to provide a standard data model for object databases, just as
SQL describes a standard data model for relational databases. It also
provides a standard terminology in a field where the same terms were
sometimes used to describe different concepts. Many of the concepts in
the ODMG model have already been discussed in Section, and we assume
the reader has read this section. We will point out whenever the ODMG

terminology differs from that used in Section. Objects and Literals.
Objects and literals are the basic building blocks of the object model. The
main difference between the two is that an object has both an object
identifier and a state (or current value), whereas a literal has a value
(state) but no object identifier. In either case, the value can have a
complex structure. The object state can change over time by modifying the
object value. A literal is basically a constant value, possibly having a
complex structure, but it does not change. An object has five aspects:
identifier, name, lifetime, structure, and creation.

1.

The object identifier is a unique system-wide identifier (or
Object_id). Every object must have an object identifier.

Some objects may optionally be given a unique name within a
particular ODMS—this name can be used to locate the object, and the
system should return the object given that name. Obviously, not all
individual objects will have unique names. Typically, a few objects,
mainly those that hold collections of objects of a particular object
type—such as extents—will have a name. These names are used as
entry points to the database; that is, by locating these objects by their
unique name, the user can then locate other objects that are referenced
from these objects. Other important objects in the application may also
have unique names, and it is possible to give more than one name to
an object. All names within a particular ODMS must be unique.

The lifetime of an object specifies whether it is a persistent object
(that is, a database object) or transient object (that is, an object in an
executing program that disappears after the program terminates).
Lifetimes are independent of types—that is, some objects of a
particular type may be transient whereas others may be persistent.

The structure of an object specifies how the object is constructed by
using the type constructors. The structure specifies whether an object
is atomic or not. An atomic object refers to a single object that
follows a user-defined type, such as Employee or Department. If an
object is not atomic, then it will be composed of other objects. For
example, a collection object is not an atomic object, since its state will
be a collection of other objects. The term atomic object is different
from how we defined the atom constructor in Section, which referred
to all values of built-in data types. In the ODMG model, an atomic
object is any individual user-defined object. All values of the basic
built-in data types are considered to be /iterals.

Object creation refers to the manner in which an object can be
created. This is typically accomplished via an operation new for a
special Object Factory interface. We shall describe this in more detail
later in this section.

In the object model, a literal is a value that does not have an object
identifier. However, the value may have a simple or complex structure.
There are three types of literals: atomic, structured, and collection.

Object Oriented, Temporal and
Spatial Databases

105

Advanced Database System

106

Atomic literals correspond to the values of basic data types and are
predefined. The basic data types of the object model include long, short,
and unsigned integer numbers (these are specified by the keywords long,
short, unsigned long, and unsigned short in ODL), regular and double
precision floating point numbers (float, double), Boolean values
(boolean), single characters (char), character strings (string), and

enumeration types (enum), among others.

Structured literals correspond roughly to values that are constructed
using the tuple constructor described in Section. The built-in structured
literals include Date, Interval, Time, and Timestamp. Additional user-
defined structured literals can be defined as needed by eachapplication.
User-defined structures are created using the STRUCT keyword in ODL,

as in the C and C++ programming languages.

{a) miedzce Obgect [

baalkean
ohject
woid

{b) Class Date - Obgect |
BT

=gyl

ursigned short
uraigned short
unsigned short

boalean
boalean
—_— i
Class Tima : Objact [

ursigned short
ungigned shiort
unsigned short
undigned short

boclean
boalean

Time
Time
Imtarwal

chass Timastamp : Object |

unmigned short
unsigned short
ursigned short
unaignied short
ursigned short
unsigned short
unsigned short

Timestamp

Figure 5.1.4 Overview of the interface definitions for part of the
ODMG object mode.

same_as{in cbiect other_object);

Wieakday

Figure 11.5

Chverrieew af 1he
tions for pert of
modal. (=) The |
facs, nhented i
Some standard
structured liters

{ Sunday, Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday };
Manth

{ January, Febreany, March, April, May, Juna,
July, August, September, Ociober, Nowamber,

December];
yearil;
micathi};
dayl;

a_squaliin Date ather_date);
m=_greater{in Date other_date];

haourt);
mimase(];
second();
mifiEecond{

i5_squaliin Time a_tma};
r3_greater(in Time a_time);

add_interval(in Interval an_interval);

subtract_intersalin Interval an_intenal);

subtract_timeln Teme other_tmsa); |

year(l;
mionthil;
dayll;

heour(l;
minute();
second(;
milisecond{;

plueslin Interval an_mierval);

{ocontnues)

a) The basic object interface inherited by all objects b) Some standard
interfaces for structured literals

Temestamg
boolean
boolean

PO -

class Intarval -
umsignad short
unsigned short
unsignad short
unsigned short
unaigned short
Intereal
Intereal
Intarea]
Intereal
boolean
boolean

= g

minus(in Imtemval an_irtenal);
#8_equal{in Temeatamp a_timestamip);
ia_greater(in Timestamp a_tmestamg];

Ohbject |
dlayy);

hourt;
miinuted;
second();
mislizecond();

pluaim nterdal an_nterval);
minusin Imenal an_interdal);
produectiin long 2 value);
quolient{in long a_walua);
5_equal{in inferval an_intendal];
#5_greaterfin mterval an_mterval];

fc) interface Collection - Object |

exception
unsigned long
boolean
boolean

void

woid

iterator

PO
inferfacs fbarator |

eaception

boolean
void
Object
void
S
mterface sat ; Gollecbon |
Eat
boolean
Az
mnterface bag ; Cofeckon |
umsignad fong

ElementMotFound] Object element; 1;
cardinality[};

5_ampdy(;

containes_element(in Object elameant];
nsan_slamantiin Object element];
remove_sament{in Object element)

raises(ElamentMNotFound};
creata_ferator{in boolean stable);

NoloraSlemantai);

at_endd};

resell);

get_slemant) reEes(MoMoreElements):
next_postion(] rasesiNoMoreElements);
creata_union(in set other sat);

=_subsat_ofiin sat other_=af);

ooocurrences offin Object elemant];

Figure 5.1.4 Overview of the interface definitions for part of the ODMG

object mode.

a) The basic object interface inherited by all objects

b) Some standard interfaces for structured literals

c) Interfaces for collections and iterators

Object Oriented, Temporal and
Spatial Databases

107

Advanced Database System i G pa By e
ELECE S
mterface list ; CGollection |

excephion Invalid_index[unsigned_long index; |;

void remoyve _elament_at{in unsigned long index}
raz=ea{invalidindex) ;

Orbgact refriewa_elemant_atin unsigned long mdex)
raisesiinvalidindex);

void repiace_alement_at{m Object elament, n unsigned long index)
raisesiinvalidindex);

void inseri_slament_aftenin Object alemment, in unsigned long index)

re=ea(invalidindex);

void maeri_slamant_firetlin Object element};
void remaowa_first_element]) mizes(Element™NotFound];
Drbgact refriewse_first_edement(rez=esiBemant™NotFound);
list concat{in k=t other_Est];
woid appendi{in &=t other_Eat];
¥;
interface array : Callection [
excapiion invalid_index{unsigned_long indax; §;
excapiion invalid_Sae [unsigned_long sire;];
void remave_slement_atlin unsigned long mdiax)
raiesiirvalidindax) ;
Orbgact refriewa_elemant_atin unsigned long mdex)
raiesiirvalidindax) ;
void replace_alement_at(in unsigned long index, n Objact alement)
reEealirmealidinda) ;
void resme{in unsignad long new_siza)

ra=ea(lmealidSize);
I;
stnact association | Object key; Object valus; |;
mterface dictionary : Cofectaon {

excapiion DuplicateMamelstring key; |;

excapiion HeayMotFound[Obeect key; |;

void bind(in Object key, n Object value]
razes{DuplicateMame);

woid unbind{in Object kay} raises{KeyMotFound);

Crbjact loodkuplin Object key) raises(KeyMotFound);

boolean contains_key{in Object kay);

Collection literals specify a literal value that is a collection of objects or
values but the collection itself does not have an Object _id. The collections
in the object model can be defined by the type generators set<T>,
bag<T>, list<T>, and array<7>, where T is the type of objects or values
in the collection.

Another collection type is dictionary<K, V>, which is a collection of
associations <K, V>, where each K is a key (a unique search value)
associated with a value V; this can be used to create an index on a
collection of values V.

Figure gives a simplified view of the basic types and type generators of
the object model. The notation of ODMG uses three concepts: interface,
literal, and class. Following the ODMG terminology, we use the word
behavior to refer to operations and state to refer to properties (attributes
and relationships). An interface specifies only behavior of an object type
and is typically noninstantiable (that is, no objects are created
corresponding to an interface). Although an interface may have state
properties (attributes and relationships) as part of its specifications, these
108

cannot be inherited from the interface. Hence, an interface serves to define Object Oriented, Temporal and
operations that can be inherited by other interfaces, as well as by classes Spatial Databases
that define the user-defined objects for a particular application. A class
specifies both state (attributes) and behavior (operations) of an object type,
and is instantiable. Hence, database and application objects are typically
created based on the user-specified class declarations that form a database
schema. Finally, a literal declaration specifies state but no behavior. Thus,
a literal instance holds a simple or complex structured value but has
neither an object identifier nor encapsulated operations. Figure is a
simplified version of the object model. For the full specifications, see
Cattell etc all. (2000).We will describe some of the constructs shown in
Figure as we describe the object model. In the object model, all objects
inherit the basic interface operations of Object, shown in Figure (a); these
include operations such as copy (creates a new copy of the object), delete
(deletes the object), and same as (compares the object’s identity to
another object). In general, operations are applied to objects using the dot
notation. For example, given an object O, to compare it with another
object P, we write O.same _as(P) The result returned by this operation is
Boolean and would be true if the identity of P is the same as that of O, and
false otherwise. Similarly, to create a copy P of object O, we write =
O.copy() An alternative to the dot notation is the arrow notation: O-
>same_as(P) or O—>copy().

5.1.14 OBJECT DEFINITION LANGUAGES (ODL)

After our overview of the ODMG object model in the previous section, we
now show how these concepts can be utilized to create an object database
schema using the object definition language ODL.

The ODL is designed to support the semantic constructs of the ODMG
object model and is independent of any particular programming language.
Its main use is to create object specifications—that is, classes and
interfaces. Hence, ODL is not a full programming language. A user can
specify a database schema in ODL independently of any programming
language, and then use the specific language bindings to specify how ODL
constructs can be mapped to constructs in specific programming
languages, such as C++, Smalltalk, and Java. We will give an overview of
the C++ binding in Section. Figure (b) shows a possible object schema for
part of the UNIVERSITY database. We will describe the concepts of ODL
using this example, and the one in Figure. The graphical notation for
Figure (b) is shown in Figure (a) and can be considered as a variation of
EER diagrams with the added concept of interface inheritance but without
several EER concepts, such as categories (union types) and attributes of
relationships. Figure shows one possible set of ODL class definitions for
the UNIVERSITY database. In general, there may be several possible
mappings from an object schema diagram (or EER schema diagram) into
ODL classes. We will discuss these options further in Section. Figure
shows the straightforward way of mapping part of the UNIVERSITY
database from Chapter. Entity types are mapped into ODL classes, and
inheritance is done using extends. However, there is no direct way to map

109

Advanced Database System

110

categories (union types) or to do multiple inheritance. In Figure the classes
PERSON, FACULTY, STUDENT, and GRAD STUDENT have the
extents PERSONS, FACULTY, STUDENTS, and GRAD STUDENTS,
respectively. Both FACULTY and STUDENT extends PERSON and
GRAD STUDENT extends STUDENT. Hence, the collection of
STUDENTS (and the collection of FACULTY) will be constrained to be a
subset of the collection of PERSONSs at any time. Similarly, the collection
of GRAD STUDENTS will be a subset of STUDENTS. At the same time,
individual STUDENT and FACULTY objects will inherit the properties
(attributes and relationships) and operations of PERSON, and individual
GRAD_ STUDENT objects will inherit those of STUDENT.

The classes DEPARTMENT, COURSE, SECTION, and
CURR_SECTION in Figure are straightforward mappings of the
corresponding entity types in Figure

Figure 11.9
(@) Interface A vaieinihes i
Graphical notati
Class STUDENT schemas. (B) A

schema for parl
datzhaze (GHA
_-— ? L

11 are not shown).

Relationships -— - 1IN

- = NN

Interfaca(is-a) Claza inhertance
Inheritance inhermtance uzing extends

using *:"

(b} Hazs faculty
Has_majors Oifers
PERSCON DEPARTMENT |4——
Works_in Majora_in Ofiorad By 1
Completed sections Bover |
STUDENT |=—— COURSE

Regstered_in

Advizes Has_sections

Students

Advisor
oy |

=+ GRAD STUDENT]|

[sECTION |-
O _coursa

On_committes_of Committes

L | CURR_SECTION
Regstered_students

Figure 3.1.5 An example of a database schema a) Graphical notation for
representing ODL schemas. b) A graphical object database schema for
part of the UNIVERSITY database (GRADE and DEGREE classes are not
shown 3.1.3(b)

class PERSON
{ oxent PERSONS
ey San)
| attibute gtruct Pname | string Fname,
gring Mnama,
giring Lname | Wame,
attribute atring Ban;
atfribuie date Birth_data;
attribue enum Gender[M, F] Gar,
attribute struct Address [shot Mo,
gring Street,
shot Apt_no,
siring Cay,
giring Siate,
ghot Zip | Address;
shon Agel: 1
class FACULTY extends PERSON
{ extent FACULTY }
| atfribuie gtring Rank;
attribute float Salary;
atnibuie string Cifice;
attribuie string Phona;
relationship DEPARTMENT Works_in inverse DEFARTMENT -Has faculty;
relationship set<GRAD_STUDENT= Advises inverse GRAD_STUDENT: :Advisar;
relationship set<GRAD STUDENT> On_commites_of inverse GRAD_STUDENT::Commitiee;
woid give_rase(n float rise);
woid promotalin sting new rank); |;
class GRADE
{ extent GRADES)
!
attribute enum GradeVahues{A.B,C.0.FL P} Grada;
relationship SECTION Section inverse SECTION :Students;
relgtionzhip STUDENT Student inverse STUDENT::Completad_sactians; |;
class STUDENT extends PERSON
| exent STUDENTS |
| attribute string Class;
attribute DEPARTMENT Minars_.in;
relationship DEPARTMENT Majors_in mverse DEPARTMENT: Has_majors;
relationship set<GRADE> Complated sections inverse GRADE::Student;

setICURR_SECTION> Regsterad in INVERSE CURR_SECTION: Registerad_studsnts;

change_maonin string dname) raizasidnama_not_valid);

apal;

registar(in shor secna) rasealzaction._nof_valid);

aszign_grada(in shart secna; IN GradeVaiue grade)
raizgalaaction_not_valid.grade_not_valid); I;

Figure 3.1.6 Possible ODL schema for the UNIVERSITY database in

figure 3.1.3(b)

Object Oriented, Temporal and
Spatial Databases

111

Advanced Database System

class DEGREE

[atirbute string College;
attribute stnng Degres;
attribaie string Year, J;

class GRAD STUDENT sxtends STUDENT

{ exient GRAD_STUDENTS)

[aftrbute set<DEGREE:= Diegreas;

refationship. FACULTY Adwsor imerse FACULTY -Advizes;
relationship set<FACULTY> Commities mverse FAGULTY ::On_committes._of;

woid as=aign_advizonfin string Lnamee; in string Fnams)
razseaifaculty_noi_valid);
woad assign_committea_member(in strng Lname; in string Fnams)
rasesifaculty_nod_walid);]
class DEPARTMEMNT
{ exent DEFARTMENTS
kEy DOname)
| attrbuie string Dname;
attrbate atring Drphone;
aftribaie string Deoffice;
attribute strng College;
atiribute FACLILTY Chair;

relationship set<FAGULTY> Hae_facully imverse FACULTY:: Warks_in;
refationship . s3etSTUDEMNT> Has_majors inverse STUDENT: Majors_n;
relationship setKCOURSE> Ofiers inverse COURSE-Offerad_by; |;

class COURSE

{ exient GOURSES
ey Cno)

| attribaie string Cramia;
attribute stning G,
attribaie string Diescaption;

relationship st SECTHOM> Has_sactions inverse SECTION:Of_course;
relationshio <DEPARTMEMNT> Offered_by inverse DEPARTMENT-:Odffers; |;

class SECTION
{ exient SECTHOMS)
{ atirbute short Sec._no;
atiribute string Yaar,
attribaite anum Cuarter{Fall, Winter, Spring, Summar}

(ir;
relgtonship settGRADE> Studants nyverse GRADE-Section;
relationship course OF_course inwerse COURSE: Has_sections; |
class GURR_SECTION edends SECTION
{ exten CURRENT_SECTIONS |
[relasbonship set<STUDENT:* Registered_students
irverse STUDENT -Registerad_in
woad reqeEter_studant{in string Senj
raEeafstudent_nof_wvalid, section_full);];

112

a3l
A ""d'._"'_:eemwﬂ D,E'_';l

/TN

| RECTANGLE || TRIANGLE || CIRCLE

(b} interface GeometyDbject

[attribue AT Shape{RECTANGLE, TRIANGLE, CIRCLE. ..]
Shape;

attnibute siruct Pomt [short x, ehort y] Reference_poant;
fioat penmetari;
fioat areall,
void translatedin short 5_translation; in short y_trenslation);
woid rotate(n float angle_of_rotafion); J;

class RECTANGLE : GeomstryObject

{ extent RECTANGLES |

[sttnbuta siruct Pomnt [ehort x, short y] Rederence_pomt;
atinbute short Langth;
attribute ghort Haight;
attribute fioat COrientation_zngle;];

class TRIAMGLE ;| GeometryCrbject

[exten TRIANGLES }

[sitrbule Biruct Pomt [short x, ghort yl Reference_pomi;
aftribude shart Side_1
attribute short Side_2;
attribuie fioat Side_sidal_angla;

G attnibute fioat Side{_onentation_angle; |

cizes CIRCLE : GeometryDibject

[extent CIRCLES)

[atirbute siruc Point [short x, short y] Reference_pomnt;
attribuls shart Radius; }

Figure 3.1.7 An illustration of interface inheritance via ““:”. (a) Graphical
schema representation

(b) Corresponding interface and class definitions in ODL.

However, the class GRADE requires some explanation. The GRADE class
corresponds to the M:N relationship between STUDENT and SECTION
in Figure. The reason it was made into a separate class (rather than as a
pair of inverse relationships) is because it includes the relationship
attribute Grade.

Hence, the M:N relationship is mapped to the class GRADE, and a pair of
I:N relationships, one between STUDENT and GRADE and the other
between SECTION and GRADE. These relationships are represented by
the following relationship properties: Completed sections of STUDENT;
Section and Student of GRADE; and Students of SECTION. Finally, the
class DEGREE is used to represent the composite, multivalued attribute
degrees of GRAD STUDENT. Because the previous example does not
include any interfaces, only classes, we now utilize a different example to
illustrate interfaces and interface (behavior) inheritance. Figure 3.1.3(a) is

Object Oriented, Temporal and
Spatial Databases

113

Advanced Database System

114

part of a database schema for storing geometric objects. An interface
GeometryObject is specified, with operations to calculate the perimeter
and area of a geometric object, plus operations to translate (move) and
rotate an object. Several classes (RECTANGLE, TRIANGLE,
CIRCLE,...) inherit the GeometryObject interface. Since GeometryObject
is an interface, it is nominstantiable—that is, no objects can be created
based on this interface directly. However, objects of type RECTANGLE,
TRIANGLE, CIRCLE, ... can be created, and these objects inherit all the
operations of the GeometryObject interface. Note that with interface
inheritance, only operations are inherited, not properties (attributes,
relationships). Hence, if a property is needed in the inheriting class, it
must be repeated in the class definition, as with the Reference point
attribute in Figure. Notice that the inherited operations can have different
implementations in each class. For example, the implementations of the
area and perimeter operations may be different for RECTANGLE,
TRIANGLE, and CIRCLE. Multiple inheritance of interfaces by a class is
allowed, as is multiple inheritance of interfaces by another interface.
However, with the extends (class) inheritance, multiple inheritance is not
permiitted. Hence, a class can inherit via extends from at most one class
(in addition to inheriting from zero or more interfaces).

5.1.15 OBJECT QUERY LANGUAGES (OQL)

The object query language OQL is the query language proposed for the
ODMG object model. It is designed to work closely with the programming
languages for rich an ODMG binding is defined, such as C++, Smalltalk,
and Java. Hence, an OQL query embedded into one of these programming
languages can return objects that match the type system of that language.
Additionally, the implementations of class operations in an ODMG
schema can have their code written in these programming languages. The
OQL syntax for queries is similar to the syntax of the relational standard
query language SQL, with additional features for ODMG concepts, such
as object identity, complex objects, operations, inheritance,
polymorphism, and relationships.

In Section we will discuss the syntax of simple OQL queries and the
concept of using named objects or extents as database entry points. Then,
in Section we will discuss the structure of query results and the use of path
expressions to traverse relationships among objects. Other OQL features
for handling object identity, inheritance, polymorphism, and other object-
oriented concepts are discussed in Section. The examples to illustrate
OQL queries are based on the UNIVERSITY database schema given in
Figure. The basic OQL syntax is a select ... from ... where ... structure, as
it is for SQL. For example, the query to retrieve the names of all
departments in the college of ‘Engineering’ can be written as follows:

Ql: select [D.Dnams
from [1in DEPARTMENTS
where [College — ‘Engineering’;

In general, an entry point to the database is needed for each query, which Object Oriented, Temporal and
can be any named persistent object. For many queries, the entry point is Spatial Databases

the name of the extent of a class. Recall that the extent name is considered

to be the name of a persistent object whose type is a collection (in most

cases, a set) of objects from the class. Looking at the extent names in

Figure, the named object DEPARTMENTS is of type

set<DEPARTMENT>; PERSONS is of type set<PERSON>; FACULTY

is of type set<FACULTY>; and so on.

The use of an extent name—DEPARTMENTS in Q0—as an entry point
refers to a persistent collection of objects. Whenever a collection is
referenced in an OQL query, we should define an iterator variable42—D
in Q0—that ranges over each object in the collection. In many cases, as in
QO, the query will select certain objects from the collection, based on the
conditions specified in the where clause. In QO, only persistent objects D
in the collection of DEPARTMENTS that satisfy the condition D.College
= ‘Engineering’ are selected for the query result. For each selected object
D, the value of D.Dname is retrieved in the query result. Hence, the #ype of
the result for QO is bag<string> because the type of each Dname value is
string (even though the actual result is a set because Dname is a key
attribute). In general, the result of a query would be of type bag for select
... from ... and of type set for select distinct ... from ... , as in SQL (adding
the keyword distinct eliminates duplicates). Using the example in QO,
there are three syntactic options for specifying iterator variables:

0 in DEPARTMENTS
DEPARTMENTS D
DEPARTMENTS AS D

We will use the first construct in our examples. The named objects used as
database entry points for OQL queries are not limited to the names of
extents. Any named persistent object, whether it refers to an atomic
(single) object or to a collection object, can be used as a database entry
point.

5.2.1 INTRODUCTION TO TEMPORAL DATABASE

Temporal databases, in the broadest sense, encompass all database
applications that require some aspect of time when organizing their
information. Hence, they provide a good example to illustrate the need for
developing a set of unifying concepts for application developers to use.
Temporal database applications have been developed since the early days
of database usage.

115

Advanced Database System

116

T1: CREATE TRIGGER Total =al1
AFTER UPDATE OF Salary ON EMPLOYEE
REFERENCING OLD ROW AS O, NEW ROW AS N
FOR EACH ROW
WHEN { M.Ono IS NOT MULL)
UPDATE DEPARTMENT
SET Total sal = Total sal + N.zalary — O.zalary
WHERE Dno = M_Dino;

T2: CREATE TRIGGER Total =al2
AFTER UPDATE OF Salary ON EMPLOYEE
REFERENCING OLD TABLE AS O, NEW TABLE AS N
FOR EACH STATEMENT
WHEN EXISTS (SELECT *FROM N WHERE N.Dno IS NOT NULL) OR
EXISTS | SELECT * FROM O WHERE O.Dna IS NOT NULL)
UPDATE DEPARTMENT AS D
SET D.Total_sal = D.Total sl
+ { SELECT SUM (N.Salary) FROM N WHERE D.Dno—N.Dno)
~ { SELECT SUM (O Salary) FROM O WHERE D.0no—0.Dno)
WHERE Dno IN { { SELECT Dna FROM N) UNION { SELECT Dno FROM O));

Figure 5.1.9 Trigger T1 illustrating the syntax for defining triggers in
SQL-99.

However, in creating these applications, it is mainly left to the application
designers and developers to discover, design, program, and implement the
temporal concepts they need. There are many examples of applications
where some aspect of time is needed to maintain the information in a
database. These include healthcare, where patient histories need to be
maintained; insurance, where claims and accident histories are required as
well as information about the times when insurance policies are in effect;
reservation systems in general (hotel, airline, car rental, train, and so on),
where information on the dates and times when reservations are in effect
are required; scientific databases, where data collected from experiments
includes the time when each data is measured; and so on. Even the two
examples used in this book may be easily expanded into temporal
applications. In the COMPANY database, we may wish to keep
SALARY, JOB, and PROJECT histories on each employee.

In the UNIVERSITY database, time is already included in the
SEMESTER and YEAR of each SECTION of a COURSE, the grade
history of a STUDENT, and the information on research grants. In fact, it
is realistic to conclude that the majority of database applications have
some temporal information. However, users often attempt to simplify or
ignore temporal aspects because of the complexity that they add to their
applications. In this section, we will introduce some of the concepts that
have been developed to deal with the complexity of temporal database
applications. An overview of how time is represented in databases, the
different types of temporal information, and some of the different
dimensions of time that may be needed. This section gives some additional
options for representing time that are possible in database models that
allow complex-structured objects, such as object databases. Section
introduces operations for querying temporal databases, and gives a brief
overview of the TSQL2 language, which extends SQL with temporal

concepts. Section focuses on time series data, which is a type of temporal Object Oriented, Temporal and
data that is very important in practice. Spatial Databases

5.2.2 TIME ONTOLOGY

For temporal databases, time is considered to be an ordered sequence of
points in some granularity that is determined by the application. For
example, suppose that some temporal application never requires time units
that are less than one second. Then, each time point represents one second
using this granularity. In reality, each second is (short) time duration, not a
point, since it may be further divided into milliseconds, microseconds, and
so on. Temporal database researchers have used the term chronon instead
of point to describe this minimal granularity for a particular application.
The main consequence of choosing a minimum granularity—say, one
second—is that events occurring within the same second will be
considered to be simultaneous events, even though in reality they may not
be.

Because there is no known beginning or ending of time, one needs a
reference point from which to measure specific time points. Various
calendars are used by various cultures (such as Gregorian (western),
Chinese, Islamic, Hindu, Jewish, Coptic, and so on) with different
reference points. A calendar organizes time into different time units for
convenience. Most calendars group 60 seconds into a minute, 60 minutes
into an hour, 24 hours into a day (based on the physical time of earth’s
rotation around its axis), and 7 days into a week. Further grouping of days
into months and months into years either follow solar or lunar natural
phenomena, and are generally irregular. In the Gregorian calendar, which
is used in most western countries, days are grouped into months that are
28, 29, 30, or 31 days, and 12 months are grouped into a year. Complex
formulas are used to map the different time units to one another.

In SQL2, the temporal data types (see Chapter 4) include DATE
(specifying Year, Month, and Day as YYYY-MM-DD), TIME (specifying
Hour, Minute, and Second as HH:MM:SS), TIMESTAMP (specifying a
Date/Time combination, with options for including subsecond divisions if
they are needed), INTERVAL (a relative time duration, such as 10 days or
250 minutes), and PERIOD (an anchored time duration with a fixed
starting point, such as the 10-day period from January 1, 2009, to January
10, 2009, inclusive). Event Information versus Duration (or State)
Information. A temporal database will store information concerning
when certain events occur, or when certain facts are considered to be true.
There are several different types of temporal information. Point events or
facts are typically associated in the database with a single time point in
some granularity. For example, a bank deposit event may be associated
with the timestamp when the deposit was made, or the total monthly sales
of a product (fact) may be associated with a particular month (say,
February 2010). Note that even though such events or facts may have
different granularities, each is still associated with a single time value in
the database. This type of information is often represented as time series

data as we will discuss. Duration events or facts, on the other hand, are
117

Advanced Database System

118

associated with a specific time period in the database. For example, an
employee may have worked in a company from August 15, 2003 until
November 20, 2008.

A time period is represented by its start and end time points [START-
TIME, ENDTIME]. For example, the above period is represented as
[2003-08-15, 2008-11-20]. Such a time period is often interpreted to mean
the set of all time points from starttime to end-time, inclusive, in the
specified granularity. Hence, assuming day granularity, the period [2003-
08-15, 2008-11-20] represents the set of all days from August 15, 2003,
until November 20, 2008, inclusive.13 Valid Time and Transaction
Time Dimensions. Given a particular event or fact that is associated with
a particular time point or time period in the database, the association may
be interpreted to mean different things. The most natural interpretation is
that the associated time is the time that the event occurred, or the period
during which the fact was considered to be true in the real world. If this
interpretation is used, the associated time is often referred to as the valid
time. A temporal database using this interpretation is called a valid time
database. However, a different interpretation can be used, where the
associated time refers to the time when the information was actually stored
in the database; that is, it is the value of the system time clock when the
information is valid in the system. In this case, the associated time is called
the transaction time. A temporal database using this interpretation is
called a transaction time database.

Other interpretations can also be intended, but these are considered to be
the most common ones, and they are referred to as time dimensions. In
some applications, only one of the dimensions is needed and in other cases
both time dimensions are required, in which case the temporal database is
called a bitemporal database. If other interpretations are intended for
time, the user can define the semantics and program the applications
appropriately, and it is called a user-defined time. The next section shows
how these concepts can be incorporated into relational databases, and
Section shows an approach to incorporate temporal concepts into object
databases.

5.2.3 STRUCTURE AND GRANULARITY

The time domain (or ontology) specifies the basic building blocks of time.
It is generally modeled as a set of time instants (or points) with an
imposed partial order, e.g., (N, <). Additional axioms impose more
structure on the time domain, yielding more refined time domains. Linear
time advances from past to future in a step-by-step fashion. This model of
time is mainly used in the database area. In contrast, Al applications often
used a branching time model, which has a tree-like structure, allowing for
possible futures. Time is linear from the past to now, where it divides into
several time lines; along any future path, additional branches may exist.
This yields a tree-like structure rooted at now. Now marks the current time
point and is constantly moving forward. The time domain can be bounded
in the past and/or in the future, i.e., a first and/or last time instant exists;
otherwise, it is called unbounded. The time domain can be dense, discrete,

or continuous. In a discrete time domain, time instants are non- Object Oriented, Temporal and
decomposable units of time with a positive duration, called chronons. A Spatial Databases
chronon is the smallest duration of time that can be represented. This time

model is isomorphic to the natural numbers. In contrast, in a dense time

domain, between any two instants of time, there exists another instant; this

model is isomorphic to the rational numbers. Finally, continuous time is

dense and does not allow “gaps” between consecutive time instants. Time

instants are durationless. The continuous time model is isomorphic to the

realnumbers. While humans perceive time as continuous, a discrete linear

time model is generally used in temporal databases for several practical

reasons, e.g., measures of time are generally reported in terms of

chronons, natural language references are compatible with chronons, and

any practical implementation needs a discrete encoding of time. A

limitation of a discrete time model is, for example, the inability to

represent continuous phenomena.

A time granularity is a partitioning of the time domain into a finite set of
segments, called granules, providing a particular discrete image of a
(possibly continuous) timeline. The main aim of granularities is to support
user friendly representations of time. For instance, birth dates are typically
measured at the granularity of days, business appointments at the
granularity of hours, and train schedules at the granularity of minutes.
Multiple granularities are needed in many real-world applications.

In any specific application, the granularity of time has some practical
magnitude. For instance, the time-point that a business event, like a
purchase, is associated with a date, so that a day is the proper granule for
most business transactions. People do not schedule themselves for
intervals of less than a minute, while database transactions may be
measured in milliseconds. Eventually we are limited by the precision that
our hardware can recognize; fractions of microseconds are the finest grain
here. We use G to denote the granularity; it is in effect an interval. The
finiteness of measurement granules leads to a confusion of event times and
intervals. If we limit our event measures to dates (G = 1 day), and we say
that an event occurred on such and-such a day, then implicit for most of us
is also that the event spanned some interval within that day. A point event
is then associated with an interval of one granule length. There will be a
smallest time granule G, perhaps intervals of seconds or days, which
follow each other without gaps, and are identified by the timepoint at their
beginning. True Intervals are sequences of event measuring interval

However, problems arise with this simplification. Inconsistencies occur
when an inclusive interval is defined by two event time measurements
with an implicit grain. First we have to round actual measurements to the
integer grain size used; then we add the granule size to the result:

TG =.I'Jr—.f* +

where ts denotes the value corresponding to the start of the interval and
t/the value when the interval is finished. Thus, if movie is shown daily
from the 12th to the 19th of a month, there will be 19-12+1 = 8§

119

Advanced Database System

120

performance days. While we are all used to performing such adjustments
when computing with intervals, a database system which deals with
temporal events must present consistent temporal semantics to the user to
avoid confusion. We cannot use an event directly to compute an interval
but always have to correct for the associated grain size. While in any one
application use of a fixed grain size is feasible, problems arise if we merge
information from distinct applications. A database system has to carry out
the computations to satisfy the application semantics. If those include the
use of finite events, then the grain size assumption made must be
explicitly stated. Many granularities may need to be simultaneously active.
In our formulation we will require two datatypes, infinitesimal time points
for events and intervals for histories, to deal with all temporal data.

5.2.4 TEMPORAL DATA MODELS

Most of the work in the research area of temporal databases has been done
in respect of the relational data model. In this section, as shown below in
table 2 and Table 3, some of the most important temporal data models are
compared

TABLE 2
Summary of data models in lemporal perspective

model | Ana | Ben- | Chifo | Gadia | Jensen
v fvi | odand | model | &
perdmeter | mod | mod | Croke | [12][1 | Snodzra
el el r 3] 55
1] 2] model Maodel
31141 [1#]20]
I'tme ST V1 VT V1 VT &
& & Il
I'l I'l
Imestam | Tupl | Tupl | Atnb | Attrib luple
p e e
Functional | VTC [VTC | Valid VIC Vol
dependenc
¥
Nommal 5 NS st NS 5
fiorm -
conventio
nal
Nornal NS 5 5 5 N5
form -
time
Cuery NS 5 5 5 5
langungee
support
Uptimizat M3 5 bt 5 N5
on
Temporal NS 5 5 5 5
operatar
support
[nstribut NS NS N5 NS N5
on
Temporal 5 5 5 5 5
keys

Attribc Antribute; N5:Not supporied; 5:Supported,
VTC:Validity to be checked.

TABLE 3

Summary of data models in temporal perspective Object Oriented, Temporal and

model | Lorentz | Snodgr Tans | Vian | Wy Spat1a1 Databases
v 055 el u sem
pardmrpeter model Miodel Mod | mod | Mo
121] [27] el el del
|29] [30] | [31
S |
lime Vi VT & VI V1 VI
I'T
I'mestam Attnib Tuple At | Tupl | An
P b c nb
Functiona VIC Vahd V1T V1 VT
| C C
dependen
cy
Normal 5 NS NS 5 5
form —
conventio
nal
Nornal b b 5] W& N5
form —
time
ey WA 5 5 NS NS
language
support
Uptimuzat it 5 5 NS M5
10d1
l'emiporal 5 5 5 5 5
operator
sUpport
[hstribut: b b b Nh MNa NS
on
F'emporal -1 4 5 -] A
keys

Attribe Attribute; NS Mot supponted, S:Supported;
VTC: Validity to be checked

Ariav’s model used tuple time stamping with time being represented by
discrete time points in bitemporal mode. The model is conceptually
simplistic but difficult to implement in efficiency and reliability terms.
Ben-Zvi’s time relational model (TRM) was a pioneering work in many
aspects. The most important idea of TRM is perhaps the non first normal
form (NFNF). Ben-Zvi’s concept of effective time and registration time,
which are now known as valid time (VT) and transaction time (TT),
respectively, added new dimensions to time varying information
computing. Ben-Zvi was the first to coin the term and notion of time-
invariant key for his non first normal tuples, called tuple version sets in his
terminology. Differentiation between an error and a change was
recognized and both of them were made queriable. Also the need for fast
access to current data was recognized. Clifford and Croker’s model
followed historical relational data model (HRDM) and tuples are
heterogeneous in their temporal dimension. Unfortunately, the historical
relational algebra is not a complete algebra w.r.t. HRDM. So, the cartesian
product of three-dimensional relation (e.g. join operation) is not clear and
hence results are not reliable. Gadia’s model has temporal element as an
appropriate datatype for time. This model assumes that key values donot
change with time. Another requirement is all attributes in a tuple have the
same time domain. This requirement is called homogeneity. The positive
aspect of Gadia’s model is that it minimizes redundancy. But when
concatenation of partial temporal elements along with tuple homogeneity

is implemented, the query results into incomplete or missing information.
121

Advanced Database System

122

Jensen & Snodgrass model proposed bitemporal conceptual data model
(BCDM), allowing to associate both valid and transaction times with data.
The domains of valid and transaction times are the finite sets DVT and
DTT, respectively. A valid time chronon cv is a time point belonging to
DVT and a transaction time chronon ct is a time point belonging to DTT.
A bitemporal chronon cb = (ct , cv) is an ordered pair consisting of a
transaction time chronon and a valid time chronon. The schema of a
bitemporal relation R, defined on the set U = {A1,A2,...,An} of non-
timestamp attributes, is of the form R = (A1,A2,...,An | T), that is, it
consists of n non-timestamp attributes A1,A2,...,An, with domain dom(Ai) for
each i € [1,n], and an implicit timestamp attribute T. The domain of T is (DTT
U {UC})x DVT , where UC is a special value that can be assumed by a
transaction time chronon to express the condition “until changed”. For
instance, to state that a tuple valid at time cv is current in the database, the
bitemporal chronon (UC, cv) must be assigned to the tuple timestamp. As
a general rule, they associate a set of bitemporal chronons in the two-
dimensional space with every tuple. Lorentzos’s model followed interval-
extended relational model (IXRM) and an interval relational algebra for
the management of interval relations. The fundamental properties of a
model are that it must be satisfactory and simple. Lorentzos model
satisfied both aspects. However, when a model is defined, efficiency
issues are of minor importance. IXRM operations require a great deal of
space and time, is a point of concern. Snodgrass’s Model uses temporal
query language (TQuel) which is based on the predicate calculus. One of
the key features of this model is when the algebra is used to implement the
TQuel, the a conversion will be necessary between tuple timestamping
(where each tuple is associated with a single interval) and attribute-value
time-stamping (where each attribute is associated with potentially multiple
intervals). This conversion is formalized in a transformation function (T).
Though this model seems to be more efficient but relatively less user
friendly. Tansel’s model used Attribute-value timestamping and used the
concepts of time by example (TBE) and query by example (QBE). This
model is quite user friendly. However, nested temporal relations are an
area of concern since structuring nested temporal relations hinges upon the
type of associations between the involved entities. Vianu proposed a
simple extension of the relational data model in order to describe
evolution of a database over time. A database sequence is defined as a
sequence of consecutive instances of the database, plus “update mappings”
from one instance (the “old” one) to the next one (the “new” instance).
Constraints on the evolution of attribute values of tuples (objects) over
time are expressed by means of dynamic functional dependencies (DFDs),
that make it possible to define dependencies between old and new values
of attributes on updates. Wijsen and his colleagues temporal data model
proposed three types of keys i.e. snapshot keys (SK), dynamic keys (DK)
and temporal keys (TK) corresponding to snapshot functional dependency,
dynamic dependency and temporal dependency, respectively. Let dom be
a set of atomic values, that is, the union of disjoint domains corresponding
to atomic types, att be a set of attribute names, and A be a special attribute
used to denote object identity. Moreover, let obj be an infinite set of object
identifiers (OIDs) and class be a set of class names. Given a finite set of

class names C, a type over C is a set {Al: t 1, A2: 1 2,..., An: T n}, where Object Oriented, Temporal and
Al, A2,... An are distinct attribute names and each ti with 1 <1 <n, is Spatial Databases
either an atomic type or a class name in C. A schema is a pair (C,p), where

C is a finite set of class names and p is a total function that maps each

class name in C into a type over C.

Some data models use FNF and others prefer NFNF. The choice may
depend on the consideration of time as discrete or interval based or
continuous. Also, the traditional Entity relationship model (ERM) can be
extended for temporal data models (TDM) by considering suitable
operators and constructs for their effective and efficient implementation.
The traditional ERM is capable of capturing the whole temporal aspects.
Many extensions [15][16] have been proposed to extend the ERM in order
to capture time varying information. For graphical representation, Unified
modeling language (UML) is normally used. However, UML constructs in
reference of temporal data models can be possibly used and drawn using
application softwares like Rational software architecture. The temporal
query language (TQuel) supports both valid time and transaction time. It
also supports user defined time. Tuples are optimally time-stamped with
either a single valid time stamp (if a relation models events) or a pair of
valid timestamps (if a relation models intervals), along with transaction
timestamps, denoting when the tuple was logically inserted into the
relation. A transaction timestamp of “until changed” indicates that the
tuple has not been deleted yet. A functional example of temporal database
is TimeDB. It uses the extension approach with respect to the data
structures. TimeDB uses a layered approach which means it was built as a
front end to a commercial DBMS that translates temporal statements into
standard SQL statements. This way, it is possible to support features such
as persistence, consistency, concurrency, recovery etc. without having to
implement from the scratch. It is a bitemporal DBMS. TimeDB
implements the query language ATSQL2. ATSQL?2 includes not only a
bitemporal query language but also a bi-temporal modification, data
definition and constraint specification language. TimeDB implements the
temporal algebra operations using standard SQL statements. TimeDB
supports a command oriented user interface

5.2.5 TEMPORAL RELATIONAL ALGEBRAS

In Temporal Datalog programs, we do not view predicates as representing
an infinite collection of finite relations, nor do we manipulate finite
relations at any given moment in time. Temporal relations are not first-
class citizens in Temporal Datalog. Moreover, without negation, the set
difference operation available in the relational algebra cannot be specified
in Temporal Datalog. To alleviate these limitations, we introduce a
temporal relational algebra as a query language for Temporal Datalog,
which is referred to as TRA. Examples of TRA expressions are given in
the next section

123

Advanced Database System

124

TRA is a “pointwise extension” of the relational algebra upon w defined as follows. The
signature of TRA includes all operators of the relational algebra, and the universe of TRA is the
set of temporal relations Uy sofor =+ P{I™)] where U7 is the domain of interpretations of TL. Let
% be a unary operator of the relational algebra, and YV be the corresponding operator of TRA.
For any given temporal relation v, the following holds: for all ¢ € w,

Vr{r)it) = Vir{t)).

Similarly for the binary operators. In other words, when restricted to
moments in time, a pointwise operator degenerates into the corresponding
operator of the relational algebra. Therefore we can explain what a
pointwise operator does to its operand by looking at the individual results
for each moment in time. This implies that TRA by design has the
relational algebra as a special case.

Expressions, Operations An expression of TRA consists of compositions
of algebraic operators and predicate symbols. Algebraic operators are
applied to temporal relations and yield temporal relations as a result which
can then be used as operands in other expressions. In addition to the
pointwise operators, the signature of TRA is extended with temporal and
aggregation operators summarized below. In the following, we assume
familiarity with the notions of a comparator value and comparator
formula; see [17] for details. Pointwise Operators Pointwise operators are
N, U, x ,—, X, and oF . At any given moment in time t, the outcome of a
pointwise operation depends only on the values of its operands at time t.
For instance, given the expression r N s, the resulting temporal relation is
the pointwise intersection of r and s. Temporal Operators Temporal
operators are first, next, prev and fby[-]. The temporal operators first and
next of TRA do not behave the same way as those of TL do. However, we
use the same symbols as it is always understood from the context which
ones are referred to. The 4 temporal operator first freezes a temporal
relation at its initial value; next and prev shift a given temporal relation in
the corresponding direction; ftby[-] does temporal splicing, i.e., cutting and
pasting of temporal relations. Aggregation Operators Let x > 1.
Aggregation operators are sumx, avgx , count, maxx and minx. These
pointwise operators are applied to temporal relations with arbitrary arities,
and produce unary temporal relations as a result. Denotational Semantics
Given a Temporal Datalog program db, an expression over db contains
only those predicate symbols appearing in db, and terms from the
Herbrand universe of db. We assume that all expressions are legal, i.e.,
arities of relations given in an expression match with respect to the
operations involved, and so do the types of attributes over which
aggregation operations are performed. The meaning of an expression of
TRA is a temporal relation, just like the meaning of a predicate symbol
defined in db. Let [[E]](db) denote the denotation (meaning) of E with
respect to a given temporal database db. In particular, we have that
[[E]](db) is an element of [®@ — P(U k)] for some k > 0. In general, given
an expression E of TRA, we have that [[E]] € DB — [n>0 [0 — P(U n)]
where DB is the set of Temporal Datalog programs, and U is the set of
ground terms of TL. Given db € DB, s € ®, x > 1, and TRA expressions
A and B, the following are the definitions of the denotations of each kind
of expressions of TRA.

L. [[p]](db) = (uM(db))(p) where p is a predicate symbol appearing in db.
2. [[AVB]](db) = [[A]](db) V[[B]](db) where V is any of N, U, x and —.

3. [[VA]]l(db) = V[[A]](db) where V is any of nX, oF , sumx, avgx,
maxx, minx and count.

4. [[first A]](db) = AL[[A]](db)(0).
5. [[next A]](db) = A.[[A]](db)(t + 1).
6. [[prev AJ](db) = At. [[A](db)(t—1),t>02,t=0

7. [[A fby[s] B]](db) = At. [[A]](db)(t), t < s [[B]](db)(t), t > s Item 1
provides the link to the temporal database: the denotation of a predicate
symbol is the temporal relation that the predicate represents with respect
to the minimum model of db. Items 4 through 7 formalizes what temporal
operators do to their operands. At time 0, the value of any expression of
the form prev A is the empty set, because we cannot go into the past
beyond time 0.

5.2.6 INTRODUCTION TO SPATIAL DATABASE

Spatial databases incorporate functionality that provides support for
databases that keep track of objects in a multidimensional space. For
example, cartographic databases that store maps include two-dimensional
spatial descriptions of their objects—from countries and states to rivers,
cities, roads, seas, and so on. The systems that manage geographic data
and related applications are known as Geographical Information
Systems (GIS), and they are used in areas such as environmental
applications, transportation systems, emergency response systems, and
battle management. Other databases, such as meteorological databases for
weather information, are three-dimensional, since temperatures and other
meteorological information are related to three-dimensional spatial points.
In general, a spatial database stores objects that have spatial
characteristics that describe them and that have spatial relationships
among them. The spatial relationships among the objects are important,
and they are often needed when querying the database. Although a spatial
database can in general refer to an n-dimensional space for any n, we will
limit our discussion to two dimensions as an illustration. A spatial
database is optimized to store and query data related to objects in space,
including points, lines and polygons. Satellite images are a prominent
example of spatial data. Queries posed on these spatial data, where
predicates for selection deal with spatial parameters, are called spatial
queries. For example, “What are the names of all bookstores within five
miles of the College of Computing building at Georgia Tech?” is a spatial
query. Whereas typical databases process numeric and character data,
additional functionality needs to be added for databases to process spatial
data types. A query such as “List all the customers located within twenty
miles of company headquarters” will require the processing of spatial data

Object Oriented, Temporal and
Spatial Databases

125

Advanced Database System

126

types typically outside the scope of standard relational algebra and may
involve consulting an external geographic database that maps the company
headquarters and each customer to a 2-D map based on their address.
Effectively, each customer will be associated to a <latitude, longitude>
position. A traditional B+-tree index based on customers’ zip codes or
other nonspatial attributes cannot be used to process this query since
traditional indexes are not capable of ordering multidimensional
coordinate data. Therefore, there is a special need for databases tailored
for handling spatial data and spatial queries.

5.2.7 DEFINITION

The common analytical operations involved in processing geographic or
spatial data. Measurement operations are used to measure some global
properties of single objects (such as the area, the relative size of an
object’s parts, compactness, or symmetry), and to measure the relative
position of different objects in terms of distance and direction. Spatial
analysis operations, which often use statistical techniques, are used to
uncover spatial relationships within and among mapped data layers. An
example would be to create a map—known as a prediction map—that
identifies the locations of likely customers for particular products based on
the historical sales and demographic information. Flow analysis
operations help in determining the shortest path between two points and
also the connectivity among nodes or regions in a graph. Location
analysis aims to find if the given set of points and lines lie within a given
polygon (location). The process involves generating a buffer around
existing geographic features and then identifying or selecting features
based on whether they fall inside or outside the boundary of the buffer.
Digital terrain analysis is used to build three-dimensional models, where
the topography of a geographical location can be represented with an x, y,
z data model known as Digital Terrain (or Elevation) Model (DTM/DEM).
The x and y dimensions of a DTM represent the horizontal plane, and z
represents spot heights for the respective x, y coordinates. Such models
can be used for analysis of environmental data or during the design of
engineering projects that require terrain information. Spatial search allows
a user to search for objects within a particular spatial region. For example,
thematic search allows us to search for objects related to a particular
theme or class, such as “Find all water bodies within 25 miles of Atlanta”
where the class is water.

There are also topological relationships among spatial objects. These are
often used in Boolean predicates to select objects based on their spatial
relationships. For example, if a city boundary is represented as a polygon
and freeways are represented as multilines, a condition such as “Find all
freeways that go through Arlington, Texas” would involve an intersects
operation, to determine which freeways (lines) intersect the city boundary

(polygon).

Table Common Types of Analysis for Spatial Data

Analys=s Type Type of Operations and Measurements

Measurermnents Distance, perimeter, shape, adfacency, and direciion

Spatiad analyssstatistics Fattern, autncorrelation, and indexes of smilarity and topology wsng
spatial and monspatial data

Flonw analysis Connectivity and shortest path

Location analysis Anabyis of points and lines within a polygon

Terrain analysis Slopefaspect, catchment area, drainage network

Search Thematic search, search by region

5.2.8 TYPES OF SPATIAL DATA

This section briefly describes the common data types and models for
storing spatial data. Spatial data comes in three basic forms. These forms
have become a de facto standard due to their wide use in commercial
systems.

m Map Data includes various geographic or spatial features of objects in a
map, such as an object’s shape and the location of the object within the
map. The three basic types of features are points, lines, and polygons (or
areas). Points are used to represent spatial characteristics of objects whose
locations correspond to a single 2-d coordinate (x, y, or longitude/latitude)
in the scale of a particular application. Depending on the scale, some
examples of point objects could be buildings, cellular towers, or stationary
vehicles. Moving locations that change over time. Lines represent objects
having length, such as roads or rivers, whose spatial characteristics can be
approximated by a sequence of connected lines. Polygons are used to
represent spatial characteristics of objects that have a boundary, such as
countries, states, lakes, or cities. Notice that some objects, such as
buildings or cities, can be represented as either points or polygons,
depending on the scale of detail.

m Attribute data is the descriptive data that GIS systems associate with
map features. For example, suppose that a map contains features that
represent counties within a US state (such as Texas or Oregon). Attributes
for each county feature (object) could include population, largest
city/town, area in square miles, and so on. Other attribute data could be
included for other features in the map, such as states, cities, congressional
districts, census tracts, and so on.

m Image data includes data such as satellite images and aerial
photographs, which are typically created by cameras. Objects of interest,
such as buildings and roads, can be identified and overlaid on these
images. Images can also be attributes of map features. One can add images
to other map features so that clicking on the feature would display the
image. Aerial and satellite images are typical examples of raster data.

Models of spatial information are sometimes grouped into two broad
categories: field and object. A spatial application (such as remote sensing
or highway traffic control) is modeled using either a field- or an object-

Object Oriented, Temporal and
Spatial Databases

127

Advanced Database System

128

based model, depending on the requirements and the traditional choice of
model for the application. Field models are often used to model spatial
data that is continuous in nature, such as terrain elevation, temperature
data, and soil variation characteristics, whereas object models have
traditionally been used for applications such as transportation networks,
land parcels, buildings, and other objects that possess both spatial and
non-spatial attributes.

5.2.9GEOGRAPHICAL INFORMATION SYSTEMS (GIS)

Geographic Information Systems (GIS) contain spatial information about
cities, states, countries, streets, highways, lakes, rivers, and other
geographical features and support applications to combine such spatial
information with non-spatial data. Spatial data is stored in either raster or
vector formats. In addition, there is often a temporal dimension, as when
we measure rainfall at several locations over time. An important issue with
spatial datasets is how to integrate data from multiple sources, since each
source may record data using a different coordinate system to identify
locations. Now let us consider how spatial data in a GIS is analyzed.
Spatial information is almost naturally thought of as being overlaid on
maps. Typical queries include "What cities lie on 1-94 between Madison
and Chicago?" and "What is the shortest route from Madison to St.
Louis?" These kinds of queries can be addressed using the techniques. An
emerging application 1is in-vehicle navigation aids. With Global
Positioning System (CPS) technology, a car's location can be pinpointed,
and by accessing a databa.se of local maps, a driver can receive directions
from In his or her current location to a desired destination; this application
also involves mobile database access! In addition, many applications
involve interpolating measurements at certainlocations across an entire
region to obtain a model and combining overlapping models. For example,
if -ve have measured rainfall at certain locations, we can use the
Triangulated Irregular Network (TIN) approach to triangulate the region,
with the locations at which we have measurements being the vertices of
the triangles. Then, we use some form of interpolation to estimate the
rainfall at points within triangles. Interpolation, triangulation, overlays,
visualization of spatial data, and many other domain-specific operations
are supported in GIS products such ARC-In while spatial query processing
techniques are an important part of a GIS product, considerable additional
functionality must be incorporated as well. How best to extend 0 to 1
systems with this additional functionality is an important problem yet to
be resolved. Agreeing on standards for data representation formats and
coordinate system is another major challenge facing the field.

5.2.10 CONCEPTUAL DATA MODELS FOR SPATIAL
DATABASES

Conceptual data model: provide the organizing principles that translate the
external data models into functional descriptions of how data objects are
related to one another (e.g. non-spatial: E-R model; spatial: raster, vector,
object representation).

Conceptual Data Model

* Organizing principles that translate the external
data models into functional descriptions of how
phenomena are represented and related to one
another (raster, vector or object representation)

Raster Vector Object
Attributes
| Ny
Values Attributes

5.2.11 LOGICAL DATA MODELS FOR SPATIAL
DATABASES

Logical data model: provide the explicit forms that the conceptual models
can take and is the first step in computing (e.g. non-spatial: hierarchical,
network, relational; spatial: 2-d matrix, map file, location list, point
dictionary, arc/nodes).

Logical Model
(data structure)

* Provides the explicit forms the conceptual data
model can take.

Raster: Vector: Object:

* 2-D matrix * Carto spaghetti Object design
* vertical array * polygon file with relational
* map file * point dictionary tables

* quadtree * arc/node

Logical data modeling involves defining the logical structure for the data
in terms of the database's model. Logical modeling takes a conceptual
model and seeks to produce a logical schema for a database. For example,
the general definition of each relation in a DBMS is concerned with: (i)
what each attribute in the relation should represent the types of data
identified during conceptual modeling; (ii) which attributes are key values
and (iii) how different relations are joined within a DBMS and defined
during logical data modeling.

Object Oriented, Temporal and
Spatial Databases

129

Advanced Database System

130

Tirne Product
Drate Product ID
Crate Description Product Description
Marith Category
Month Cescription Category Description
Year Unit Price
ifeak, Created
ifeek Dascription
o
Sales

Stare 10 (FK)
Product ID (FK)
Drate (FK)

Store
Store 1D

Store Descriplion
Region

Region Mame
Created

5.2.12 RASTER AND VECTOR MODEL

Data structures are complex for GIS because they must include
information pertaining to entities with respect to: position, topological
relationships, and attribute information. It is the topologic and spatial
aspects of GIS that distinguish it from other types of data bases.

Introduction: There are presently three types of representations for
geographic data: raster vector, and objects.

raster - set of cells on a grid that represents an entity (entity -->
symbol/color --> cells).

vector - an entity is represented by nodes and their connecting arc or line
segment (entity --> points, lines or areas --> connectivity)

object - an entity is represented by an object which has as one of its
attributes spatial information.

Raster Data model

Definition: realization of the external model which sees the world as a
continuously varying surface (field) through the use of 2-D Cartesian
arrays forming sets of thematic layers. Space is discredited into a set of
connected two dimensional units called a tessellation.

Map overlays: separate set of Cartesian arrays or "overlays" for each
entity.

Logical data models: 2-D array, vertical array, and Map file

Each overlay is a 2-D matrix of points carrying the value of a single Object Oriented, Temporal and
attribute. Each point is represented by a vertical array in which each array Spatial Databases
position carries a value of the attribute associated with the overlay.

Map file - each mapping unit has the coordinates for cell in which it
occurs (greater structure, many to one relationship). Compact methods for
coding

Vertical array not conducive to compact data coding because it references
different entities in sequence and it lacks many to one relationship. The
third structure references a set of points for a region (or mapping unit) and
allows for compaction. Chain codes: a region is defined in terms of origin
and (0 - 3) for E, N, W, S (Map file) (binary data).

+ reduced storage.
+ area, perimeter, shape est.
- overlay difficult.

Run-length codes: row #, begin, end (Map file entity #, # pix (2-D
matrix).

+ reduce storage.

- overlay difficult.

Block codes: 2-D rle, regions stored using origin and radius.
+ reduced storage.

+ U & I of regions easy.

Quadtrees: recursive decomposition of a 2-D array into quads until the
next subdivision yields a region containing a single entity.

+ reduced storage.

+ variable resolution.

+ overlay of variable resolution data.
+ fast search.

Morton Sequencing

Morton Sequencing Overlay
Morton Homework

Vector data model

Definition: realization of the discrete model of real world using structures
for storing and relating points, lines and polygons in sets of thematic
layers.

131

Advanced Database System

132

a. Introduction
v/ represents an entity as exact as possible.
v coordinate space continuous (not quantized like raster).
v/ Structured as a set of thematic layers

b. Representation

v" Point entities: geographic entities that are positioned by a single x,y
coordinate. (historic site, wells, rare flora. The data record consists for
X,y - attribute.

v’ Line Entity: (rivers, roads, rail) all linear feature are made up of line
segments. a simple line 2 (X,y) coordinates.

v" An arc or chain or string is a set of n (x,y) coordinate pairs that
describe a continuous line. The shorter the line segments the closer the
chain will approximate a continuous curve. Data record n(x,y).

v" A line network gives information about connectivity between line
segments in the form of pointers or relations contained in the data
structure. Often build into nodes pointers to define connections and
angles indicating orientation of connections (fully defines topology).

Area Entity: data structures for storing regions. Data types, land cover,
soils, geology, land tenure, census tract, etc.

Cartographic spaghetti or "connect the dots". Early development in
automated cartography, a substitute for mechanical drawing. Numerical
storage, spatial structure evident only after plotting, not in file.

Location list

describe each entity by specifying coordinates around its perimeter.
shared lines between polygons.

polygon sliver problems.

no topology (neighbor and island problems).

N NN NN

error checking a problem.
c. Point dictionary

Unique points for entire file, no sharing of lines as in location lists
(eliminate sliver problem) but still has other problems. expensive searches
to construct polygons.

d. Dime Files (Dual Independent Mapping and Encoding)

Designed to represent points lines and areas that form a city though a
complete representation of network of streets and other linear features.
allowed for topologically based verification.

No systems of directories linking segments together (maintenance Object Oriented, Temporal and
problem). Spatial Databases

e. Arc/node

Same topological principles as the DIME system. DIME defined by line
segments, chains based on records of uncrossed boundary lines (curved
roads a problem for DIME). chains or boundaries serve the topological
function of connecting two end points called a node and separating two
zones. points between zones cartographically not topologically required
(generalization possible). solves problems discussed above (neighbor,
dead ends, weird polygons). can treat data input and structure
independently.

5.2.13 PHYSICAL DATA MODELS FOR SPATIAL
DATABASES

Physical data modeling involves mapping the conceptual and logical
models into a database implementation (Fig. 4.8). The result of physical
modeling is a physical schema, which is tailored to a specific DBMS.
Physical modeling fills in the blanks within the logical model required for
a concrete DBMS, specifying actual values (data types) of each attribute,
giving working names to the relations. Physical modeling results in a
working physical database definition.

DIM_TIME DIM_PRODIICT

DATE_ID: INTEGER PRODUCT _ID: INTEGER
DATE_DESC: VARCHAR(30) PROD_DESC: VARCHAR(SD)
MOMTH_ID: INTEGER CATEGORY_ID: INTEGER
MOMTH_DESC: VARCHAR(30) CATEGORY_DESC: VARCHAR(SO)E
YEAR: INTEGER UNIT_PRICE: FLOAT

WEEK_ID: INTEGER CREATED: DATE

WEEK_DESC: VARCHAR(30)

—

FACT _SALES
[srone_m: INTEGER

PRODUCT _ID: INTEGER
DATE_ID: INTEGER

ITEMS_SOLD: INTEGER
SALES_AMOUMT: FLOAT|

DIM_STORE
STORE_ID: IMTEGER

STORE_DESC: VARCHAR(S)
REGION_ID: INTEGER.
REGION_MAME: WARCHAR(SO),
CREATED: DATE I

5.2.14 CLUSTERING METHODS (SPACE FILLING
CURVES)

Spatial data tends to be highly correlated. For example, people with
similar characteristics, occupations, and backgrounds tend to cluster
together in the same neighborhoods. The three major spatial data mining

133

Advanced Database System

134

techniques are spatial classification, spatial association, and spatial
clustering.

m Spatial classification. The goal of classification is to estimate the value
of an attribute of a relation based on the value of the relation’s other
attributes. An example of the spatial classification problem is determining
the locations of nests in a wetland based on the value of other attributes
(for example, vegetation durability and water depth); it is also called the
location prediction problem. Similarly, where to expect hotspots in crime
activity is also a location prediction problem.

m Spatial association. Spatial association rules are defined in terms of
spatial predicates rather than items. A spatial association rule is of the
form

P,AP,A AR =QAQ,A.. AQ,,
where at least one of the Ps or Qs is a spatial predicate. For example, the
rule '

is_alx, country) * touches(x, Mediterranean} = is_a (x, wine-exporter)

(that is, a country that is adjacent to the Mediterranean Sea is typically a
wine exporter) is an example of an association rule, which will have a
certain support s and confidence c.

Spatial colocation rules attempt to generalize association rules to point to
collection data sets that are indexed by space. There are several crucial
differences between spatial and nonspatial associations including:

1. The notion of a transaction is absent in spatial situations, since data is
embedded in continuous space. Partitioning space into transactions would
lead to an overestimate or an underestimate of interest measures, for
example, support or confidence.

2. Size of item sets in spatial databases is small, that is, there are many
fewer items in the item set in a spatial situation than in a nonspatial
situation. In most instances, spatial items are a discrete version of
continuous variables. For example, in the United States income regions
may be defined as regions where the mean yearly income is within certain
ranges, such as, below $40,000, from $40,000 to $100,000, and above
$100,000.

m Spatial Clustering attempts to group database objects so that the most
similar objects are in the same cluster, and objects in different clusters are
as dissimilar as possible. One application of spatial clustering is to group
together seismic events in order to determine earthquake faults. An
example of a spatial clustering algorithm is density-based clustering,
which tries to find clusters based on the density of data points in a region.
These algorithms treat clusters as dense regions of objects in the data
space. Two variations of these algorithms are density-based spatial
clustering of applications with noise (DBSCAN) and density-based
clustering (DENCLUE). DBSCAN is a density-based clustering algorithm

because it finds a number of clusters starting from the estimated density
distribution of corresponding nodes.

5.2.15 STORAGE METHODS (R-TREE)

The R-tree is a height-balanced tree, which is an extension of the B+-tree
for k-dimensions, where k& > 1. For two dimensions (2-d), spatial objects
are approximated in the R-tree by their minimum bounding rectangle
(MBR), which is the smallest rectangle, with sides parallel to the
coordinate system (x and y) axis, that contains the object. R-trees are
characterized by the following properties, which are similar to the
properties for B-+-trees but are adapted to 2-d spatial objects. As in
Section, we use M to indicate the maximum number of entries that can fit
in an R-tree node.

1. The structure of each index entry (or index record) in a leaf node is (I,
object-identifier), where I is the MBR for the spatial object whose
identifier is object-identifier.

2. Every node except the root node must be at least half full. Thus, a leaf
node that is not the root should contain m entries (I, object-identifier)
where M/2 <= m <= M. Similarly, a non-leaf node that is not the root
should contain m entries (I, child-pointer) where M/2 <= m <= M, and I is
the MBR that contains the union of all the rectangles in the node pointed
at by child-pointer.

3. All leaf nodes are at the same level, and the root node should have at
least two pointers unless it is a leaf node.

4. All MBRs have their sides parallel to the axes of the global coordinate
system. Other spatial storage structures include quadtrees and their
variations. Quadtrees generally divide each space or subspace into
equally sized areas, and proceed with the subdivisions of each subspace to
identify the positions of various objects. Recently, many newer spatial
access structures have been proposed, and this area remains an active
research area.

5.2.16 QUERY PROCESSING

Spatial Query Processing in the Euclidean Space R-trees [G84, SRF§7,
BKSS90] are the most popular indexes for Euclidean query processing due
to their simplicity and efficiency. The R-tree can be viewed as a multi-
dimensional extension of the B-tree. Figure shows an exemplary R-tree for
a set of points {a,b,...,j} assuming a capacity of three entries per node.
Points that are close in space (e.g., a,b) are clustered in the same leaf node
(E3) represented as a minimum bounding rectangle (MBR). Nodes are
then recursively grouped together following the same principle until the
top level, which consists of a single root.

Object Oriented, Temporal and
Spatial Databases

135

Advanced Database System

136

mindist(EJ,)

10 LB,
. :{‘ ﬂ i Roor
E E [E,

i d sf Es] —pe % — .
6 . E E,F

I jﬂq q\‘ mmdf.l.'.f{.ﬁ:,] : .
ar ¥ E = mindist{E,) [1

- i alo] J[elal JelrT Jels] FT5T]
2 b 5 E; E; Eg L

19 mindist(E)

Il 1 1 1 1 1] l 1 | »

0 2 4 f] 10

Figure 2.1: An R-tree example

R-trees (like most spatial access methods) were motivated by the need to
efficiently process range queries, where the range usually corresponds to a
rectangular window or a circular area around a query point. The R-tree
answers the query q (shaded area) in Figure 2.1 as follows. The root is first
retrieved and the entries (e.g., El, E2) that intersect the range are
recursively searched because they may contain qualifying points. Non-
intersecting entries (e.g., E3) are skipped. Note that for non-point data
(e.g., lines, polygons), the R-tree provides just a filter step to prune non-
qualifying objects. The output of this phase has to pass through a
refinement step that examines the actual object representation to determine
the actual result. The concept of filter and refinement steps applies to all
spatial queries on non-point objects. A nearest neighbor (NN) query
retrieves the (k>1) data point(s) closest to a query point q. The R-tree NN
algorithm proposed in [HS99] keeps a heap with the entries of the nodes
visited so far. Initially, the heap contains the entries of the root sorted
according to their minimum distance (mindist) from q. The entry with the
minimum mindist in the heap (El in Figure 2.1) is expanded, i.e., it is
removed from the heap and its children (E3, E4, ES5) are added together
with their mindist. The next entry visited is E2 (its mindist is currently the
minimum in the heap), followed by E6, where the actual result (h) is found
and the algorithm terminates, because the mindist of all entries in the heap
is greater than the distance of h. The algorithm can be easily extended for
the retrieval of k nearest neighbors (kNN). Furthermore, it is optimal (it
visits only the nodes necessary for obtaining the nearest neighbors) and
incremental, i.e., it reports neighbors in ascending order of their distance
to the query point, and can be applied when the number k of nearest
neighbors to be retrieved is not known in advance. An intersection join
retrieves all intersecting object pairs (s,t) from two datasets S and T. If
both S and T are indexed by R-trees, the R-tree join algorithm [BKS93]
traverses synchronously the two trees, following entry pairs that overlap;
non-intersecting pairs cannot lead to solutions at the lower levels. Several
spatial join algorithms have been proposed for the case where only one of
the inputs is indexed by an R-tree or no input is indexed [RSVO02]. For
point datasets, where intersection joins are meaningless, the corresponding
problem is the e distance join, which finds all pairs of objects (s,t) s € S, t

€ T within (Euclidean) distance e from each other. R-tree join can be

applied in this case as well, the only difference being that a pair of Object Oriented, Temporal and
intermediate entries is followed if their distance is below (or equal to) e. Spatial Databases
The intersection join can be considered as a special case of the e-distance

join, where e=0. Finally, a closest-pairs query outputs the (k>1) pairs of

objects (s,t) s € S, t € T with the smallest (Euclidean) distance. The

algorithms for processing such queries [CMTV00] combine spatial joins

with nearest neighbor search. In particular, assuming that both datasets are

indexed by R-trees, the trees are traversed synchronously, following the

entry pairs with the minimum distance. Pruning is based on the mindist

metric, but this time defined between entry MBRs. As all these algorithms

apply only location-based metrics to prune the search space, they are

inapplicable for SNDB.

5.2.17 LET US SUM UP

Thus, we have studied basic concepts of object oriented database, object
identity, encapsulation, methods, persistence and inheritance. With this
ODMG as language design mode, ODL (object Definition language) and
OQL query language. Also the major aspect of spatial and temporal
database, in short GIS as well.

5.2.18 LIST OF REFERENCES

» Distributed Database; Principles & Systems By Publications, Stefano
Ceri and Giuseppo Pelagatti,, McGraw-Hill International Editions
(1984)

» Database Management Systems, 3rd edition, Raghu Ramakrishnan
and Johannes Gehrke, McGraw-Hill (2002).

» Fundamentals of Database Systems, 6thEdition, Elmasri and Navathe,
Addison. Wesley (2003).

» Unifying temporal data models via a conceptual model, C.S. Jensen,
M.D. Soo, and R.T. Snodgrass: Information Systems, vol. 19, no. 7,
pp. 513-547, 1994.

» Spatial Databases: A Tour by Shashi Shekhar and Sanjay Chawla,
Prentice Hall, 2003 (ISBN 013-017480-7)

» Principles of Multimedia Database Systems, Subramanian V. S.
Elsevier Publishers, 2013.

> https://www.geeksforgeeks.org/distributed-database-system/

» https://www.tutorialspoint.com/distributed dbms/distributed_dbms_d
atabases.htm

137

Advanced Database System

138

5.2.19 UNIT END EXERCISES

1) Explain features of object oriented database with an example.
2) Describe in detail temporal databases.

3) What is a Geographical Information system? Explain Different format
used to represent geographic data.

4) Write a short note on Spatial database
5) What is GIS? Explain its application.
6) Explain conceptual and logical data model for spatial databases.

7) Explain ODMG model.

O O 0, 0,
OF 00 00 00

Module - 1V

6

DEDUCTIVE, ACTIVE, MULTIMEDIA
AND XML DATABASES

Unit Structure

6.1.0 Objectives

6.1.1 Introduction

6.1.2 Deductive Database

6.1.3 Introduction to recursive queries
6.1.4 Datalog Notation

6.1.5 Clause Form and Horn Clauses
6.1.6 Interpretation of model

6.1.7 Least Model semantics

6.1.8 The fixed point operator

6.1.9 Safe Datalog program

6.1.10 Recursive query with negation
6.2 Active Database

6.2.1 Languages for rule specification
6.2.2 Events

6.2.3 Conditions

6.2.4 Actions

6.3 XML and Database

6.3.1 Structure of XML Data

6.3.2 XML Document Schema

6.3.3 Querying and Transformation
6.3.4 Storage of XML Data.

6.4 Introduction to multimedia database systems
6.4.1 Let Us Sum Up

6.4.2 List of References

6.4.3 Unit End Exercises

139

Advanced Database System

140

6.1.0 OBJECTIVES

In this chapter you will learn about:
» Introduction to deductive database.
Datalog notation, clause form and horn clauses etc.
Basics of active database and XML database-structure schema.

XML data storage, querying and transformation etc.

vV V V V

Introduction to multimedia database system.

6.1.1 INTRODUCTION

This chapter introduces database concepts for some of the common
features that are needed by advanced applications and are being used
widely. We will cover active rules that are used in active database
applications. We will also discuss deductive databases. 1t is important to
note that each of these topics is very broad, and we give only a brief
introduction to each.

We discuss deductive databases, an area that is at the intersection of
databases, logic, and artificial intelligence or knowledge bases. A
deductive database system includes capabilities to define (deductive)
rules, which can deduce or infer additional information from the facts that
are stored in a database. Because part of the theoretical foundation for
some deductive database systems is mathematical logic, such rules are
often referred to as logic databases. Other types of systems, referred to as
expert database systems or knowledge-based systems, also incorporate
reasoning and inferencing capabilities; such systems use techniques that
were developed in the field of artificial intelligence, including semantic
networks, frames, production systems, or rules for capturing domain-
specific knowledge.

Also Multimedia databases provide features that allow users to store and
query different types of multimedia information, which includes images
(such as pictures and drawings), video clips (such as movies, newsreels,
and home videos), audio clips (such as songs, phone messages, and
speeches), and documents (such as books and articles).

6.1.2 DEDUCTIVE DATABASE

In a deductive database system we typically specify rules through a
declarative language a language in which we specify what to achieve
rather than how to achieve it. An inference engine (or deduction
mechanism) within the system can deduce new facts from the database by
interpreting these rules. The model used for deductive databases is closely
related to the relational data model, and particularly to the domain
relational calculus formalism. It is also related to the field of logic
programming and the Prolog language. The deductive database work

based on logic has used Prolog as a starting point. A variation of Prolog Deductive, Active, Multimedia
called Datalog is used to define rules declaratively in conjunction with an and Xml Databases
existing set of relations, which are themselves treated as literals in the

language. Although the language structure of Datalog resembles that of

Prolog, its operational semantics that is, how a Datalog program is

executed is still different.

A deductive database uses two main types of specifications: facts and
rules. Facts are specified in a manner similar to the way relations are
specified, except that it is not necessary to include the attribute names.
Recall that a tuple in a relation describes some real-world fact whose
meaning is partly determined by the attribute names. In a deductive
database, the meaning of an attribute value in a tuple is determined solely
by its position within the tuple. Rules are somewhat similar to relational
views. They specify virtual relations that are not actually stored but that
can be formed from the facts by applying inference mechanisms based on
the rule specifications.

The main difference between rules and views is that rules may involve
recursion and hence may yield virtual relations that cannot be defined in
terms of basic relational views. The evaluation of Prolog programs is
based on a technique called backward chaining, which involves a top-
down evaluation of goals. In the deductive databases that use Datalog,
attention has been devoted to handling large volumes of data stored in a
relational database. Hence, evaluation techniques have been devised that
resemble those for a bottom-up evaluation. Prolog suffers from the
limitation that the order of specification of facts and rules is significant in
evaluation; moreover, the order of literals within a rule is significant. The
execution techniques for Datalog programs attempt to circumvent these
problems.

6.1.3 INTRODUCTION TO RECURSIVE QUERIES

As begin with a simple example that illustrates the its of SQL-92 queries
with the power of recursive definitions. Let Assembly be a relation with
three fields part, subpart, and qty. An example instance of Assembly is
shown in Figure 4.1.1. Each tuple in Assembly indicates How many
copies of a particular subpart are Contained in a given part. The first tuple
indicates, for example, that (1, trike contains three wheels} The Assembly
relation can be visualized as a tree, as shown in Figure. A. tuple is shown
as an edge going from the part to the subpart, with the g#y value as the
edge label

141

Advanced Database System

142

| part | subpart | gty UikE‘
trike | ‘wheel 3 3 =il “"-a_!
gike fralne Ill u.hee] ﬁame
arne | seat
franle | pedal 1 / \ / /\
wheel | spoke 2
‘wheel | tire | 1 | spoke seat pedal
tire run 1 J/’\i
tire tube 1
nm tube

Figure 6.1.1 An instance of assembly Figure 6.1.2 Assembly instance seen as a
Tree

A natural question to ask is, "What are the components of a trike?" Rather
surprisingly, this query is impossible to write in SQL-92. Of course, if we
look at a given instance of the Assembly relation, we can write a 'query'
that takes the union of the parts that are used in a trike. But such a query is
not interesting---we want a query that identifies all components of a trike
for any instance of Assembly, and such a query cannot be written in
relational algebra or in SQL-92. Intuitively, the problem is that we are
forced to join the Assembly relation with itself to recognize that trike
contains spoke and ftire, that is, to go one level down the Assembly tree.
For each additional level, we need an additional join; two joins are needed
to recognize that frike contains rim, which is a subpart of fire. Thus, the
number of joins needed to identify all subparts of #rike depends on the
height of the Assembly tree, that is, on the given instance of the Assembly
relation. No relational algebra query works for all instances; given any
query, we can construct an instance whose height is greater than the
number of joins in the query.

6.1.4 DATALOG NOTATION

In Datalog, as in other logic-based languages, a program is built from
basic objects called atomic formulas. It is customary to define the syntax
of logic-based languages by describing the syntax of atomic formulas and
identifying how they can be combined to form a program. In Datalog,
atomic formulas are literals of the form p(al, a2, ..., an), where p is the
predicate name and # is the number of arguments for predicate p. Different
predicate symbols can have different numbers of arguments, and the
number of arguments n of predicate p is sometimes called the arity or
degree of p. The arguments can be either constant values or variable
names. As mentioned earlier, we use the convention that constant values
either are numeric or start with a lowercase character, whereas variable
names always start with an uppercase character.

A number of built-in predicates are included in Datalog, which can also
be used to construct atomic formulas. The built-in predicates are of two
main types: the binary comparison predicates < (less), <= (less_or_equal),
> (greater), and >= (greater or equal) over ordered domains; and the

comparison predicates = (equal) and /= (not equal) over ordered or Deductive. Active. Multimedia

unordered domains. These can be used as binary predicates with the same
functional syntax as other predicates for example, by writing less(X, 3) or
they can be specified by using the customary infix notation X<3. Note that
because the domains of these predicates are potentially infinite, they
should be used with care in rule definitions. For example, the predicate
greater(X, 3), if used alone, generates an infinite set of values for X that
satisfy the predicate (all integer numbers greater than 3).

A literal is either an atomic formula as defined earlier called a positive
literal—or an atomic formula preceded by not. The latter is a negated
atomic formula, called a negative literal. Datalog programs can be
considered to be a subset of the predicate calculus formulas, which are
somewhat similar to the formulas of the domain relational calculus. In
Datalog, however, these formulas are first converted into what is known as
clausal form before they are expressed in Datalog, and only formulas
given in a restricted clausal form, called Horn clauses can be used in
Datalog.

6.1.5 CLAUSE FORM AND HORN CLAUSES

A formula in the relational calculus is a condition that includes predicates
called atoms (based on relation names). Additionally, a formula can have
quantifiers namely, the universal quantifier (for all) and the existential
quantifier (there exists). In clausal form, a formula must be transformed
into another formula with the following characteristics:

B All variables in the formula are universally quantified. Hence, it is not
necessary to include the universal quantifiers (for all) explicitly; the
quantifiers are removed, and all variables in the formula are implicitly
quantified by the universal quantifier.

B In clausal form, the formula is made up of a number of clauses, where
each clause is composed of a number of /iterals connected by OR
logical connectives only. Hence, each clause is a disjunction of literals.

B The clauses themselves are connected by AND logical connectives
only, to form a formula. Hence, the clausal form of a formula is a
conjunction of clauses.

It can be shown that any formula can be converted into clausal form. For
our purposes, we are mainly interested in the form of the individual
clauses, each of which is a disjunction of literals. Recall that literals can be
positive literals or negative literals. Consider a clause of the form:

NOT(P,) OR NOT(P,) OR ... ORNO[T(P,) ORQ, ORQ, OR...ORQ,, (1)

This clause has n negative literals and m positive literals. Such a clause
can be transformed into the following equivalent logical formula:

P, AND P, AND ... AND P, = Q, ORQ, OR... ORQ,, (2)

and Xml Databases

143

Advanced Database System

144

where =1is the implies symbol. The formulas (1) and (2) are equivalent,
meaning that their truth values are always the same. This is the case
because if all the Pi literals (i = 1, 2, ..., n) are true, the formula (2) is true
only if at least one of the Qi’s is true, which is the meaning of the
= (implies) symbol. For formula (1), if all the Pi literals (1= 1, 2, ..., n) are
true, their negations are all false; so in this case formula (1) is true only if
at least one of the Qi’s is true. In Datalog, rules are expressed as a
restricted form of clauses called Horn clauses, in which a clause can
contain at most one positive literal. Hence, a Horn clause is either of the
form

NOT (P,) ORNOT(P,) OR ... OR NOT(P,) OR Q (3)
or of the form
NOT (P,) OR NOT(P,) OR ... OR NOT(P,) (4)
The Horn clause in (3) can be transformed into the clause
P, AND P, AND ... AND P = Q (5)
which is written in Datalog as the following rule:
Q=P Py, P (6)
The Horn clause in (4) can be transformed into
P, AND P, AND ... AND P, = (7)

which is written in Datalog as follows:

Py, Py, iy P

"

(8)

A Datalog rule, as in (6), is hence a Horn clause, and its meaning, based
on formula (5), is that if the predicates P AND P2 AND ... AND Pn are
all true for a particular binding to their variable arguments, then Q is also
true and can hence be inferred. The Datalog expression (8) can be
considered as an integrity constraint, where all the predicates must be true
to satisfy the query. In general, a query in Datalog consists of two
components:

B A Datalog program, which is a finite set of rules
B A literal P(X1, X2, ..., Xn), where each Xi is a variable or a constant

A Prolog or Datalog system has an internal inference engine that can be
used to process and compute the results of such queries. Prolog inference
engines typically return one result to the query (that is, one set of values
for the variables in the query) at a time and must be prompted to return
additional results. On the contrary, Datalog returns results set-at-a-time.

6.1.6 INTERPRETATION OF MODEL

There are two main alternatives for interpreting the theoretical meaning of
rules: proof-theoretic and model-theoretic. In practical systems, the
inference mechanism within a system defines the exact interpretation,
which may not coincide with either of the two theoretical interpretations.
The inference mechanism is a computational procedure and hence

provides a computational interpretation of the meaning of rules. In this Deductive, Active, Multimedia
section, first we discuss the two theoretical interpretations. Then we and Xml Databases
briefly discuss inference mechanisms as a way of defining the meaning of

rules. In the proof-theoretic interpretation of rules, we consider the facts

and rules to be true statements, or axioms. Ground axioms contain no

variables. The facts are ground axioms that are given to be true. Rules are

called deductive axioms, since they can be used to deduce new facts. The

deductive axioms can be used to construct proofs that derive new facts

from existing facts. For example, Figure 4.1.3 shows how to prove the fact

SUPERIOR (james, ahmad) from the rules and facts given in Figure.

1. SUPERIORI(X, ¥) :— SUPERVISE(X, r). (rule 1} 1
2. SUPERIORI(X, ¥} :— SUPERVISE(X, Z), SUPERIOR(Z, ¥). (rule 2} f
3. SUPERVISE(jennifer, ahmad}). (ground axiom, given)

4. SUPERVISE(james, jennifer). (ground axiom, given)

5. SUPERIOR(jennifer, ahmad). (apply rule 1 on 3)

6. SUPERIOR(james, ahmad). {apply rule 2 on 4 and B)

Figure 6.1.3 Proving a new fact

The proof-theoretic interpretation gives us a procedural or computational
approach for computing an answer to the Datalog query. The process of
proving whether a certain fact (theorem) holds is known as theorem
proving.

The second type of interpretation is called the model-theoretic
interpretation. Here, given a finite or an infinite domain of constant values,
we assign to a predicate every possible combination of values as
arguments. We must then determine whether the predicate is true or false.
In general, it is sufficient to specify the combinations of arguments that
make the predicate true, and to state that all other combinations make the
predicate false. If this is done for every predicate, it is called an
interpretation of the set of predicates. For example, consider the
interpretation shown in Figure6.1.4 for the predicates SUPERVISE and
SUPERIOR. This interpretation assigns a truth value (true or false) to
every possible combination of argument values (from a finite domain) for
the two predicates.

An interpretation is called a model for a specific set of rules if those rules
are always true under that interpretation; that is, for any values assigned to
the variables in the rules, the head of the rules is true when we substitute
the truth values assigned to the predicates in the body of the rule by that
interpretation. Hence, whenever a particular substitution (binding) to the
variables in the rules is applied, if all the predicates in the body of a rule
are true under the interpretation, the predicate in the head of the rule must
also be true. The interpretation shown in Figure is a model for the two
rules shown, since it can never cause the rules to be violated. Notice that a
rule is violated if a particular binding of constants to the variables makes
all the predicates in the rule body true but makes the predicate in the rule
head false. For example, if SUPERVISE(q,) and SUPERIOR(5), c¢) are
both true under some interpretation, but SUPERIOR(q, c¢) is not true, the
interpretation cannot be a model for the recursive rule:

SUPERIOR(X, Y} :— SUPERVISE(X, Z), SUPERIOR(Z, Y)
145

Advanced Database System

146

In the model-theoretic approach, the meaning of the rules is established by
providing a model for these rules. A model is called a minimal model for
a set of rules if we cannot change any fact from true to false and still get a
model for these rules. For example, consider the interpretation in Figure,
and assume that the SUPERVISE predicate is defined by a set of known
facts, whereas the SUPERIOR predicate is defined as an interpretation
(model) for the rules. Suppose that we add the predicate
SUPERIOR(james, bob) to the true predicates. This remains a model for
the rules shown, but it is not a minimal model, since changing the truth
value of SUPERIOR (james,bob) from true to false still provides us with a
model for the rules. The model shown in Figure is the minimal model for
the set of facts that are defined by the SUPERVISE predicate. In general,
the minimal model that corresponds to a given set of facts in the model
theoretic interpretation should be the same as the facts generated by the
proof.

Rules
SUPERIORIX, ¥) :— SUPERVISE(X, ¥).
SUPERIOR(X, ¥) :— SUPERVISE(X, Z), SUPERIORI(Z, ¥).

Interpretation

Known Facts:

SUPERVISE(franklin, john) is true.

SUPERVISE(franklin, ramesh) is true.

SUPERVISE(franklin, joycel is true.

SUPERVISE(jennifer, alicia) is true.

SUPERVISE(jennifer, ahmad) is true.

SUPERVISE(james, frankhn) is true.

SUPERVISE(james, jennifer) is true.

SUPERWVISE(X, ¥) is false for all other possible (X, ¥) combinations

Dernved Facts:

SUPERIOR({franklin, john} is true.
SUPERIOR(franklin, ramesh) is true.
SUPERIOR(franklin, joyce) is true.
SUPERIOR(jennifer, alicia) is true.
SUPERIOR(jennifer, ahmad) is true.
SUPERIOR(james, franklin} is true.
SUPERIORI(james, jennifer) is true.
SUPERIOR(jJames, john) is true.
SUPERIOR(james, ramesh) is true.
SUPERIOR(james, joyce) is true.
SUPERIOR(james, alicia) is true.
SUPERIOR{james, ahmad) is true.
SUPERIOR(X, ¥} is false for all other possible (X, ¥} combinations

Figure 6.1.4 An interpretation that is a minimal model.

Theoretic interpretation for the same original set of ground and deductive
axioms. However, this is generally true only for rules with a simple
structure. Once we allow negation in the specification of rules, the
correspondence between interpretations does not hold. In fact, with
negation, numerous minimal models are possible for a given set of facts.

A third approach to interpreting the meaning of rules involves defining an
inference mechanism that is used by the system to deduce facts from the
rules. This inference mechanism would define a computational
interpretation to the meaning of the rules. The Prolog logic programming
language uses its inference mechanism to define the meaning of the rules

and facts in a Prolog program. Not all Prolog programs correspond to the Deductive, Active, Multimedia
proof-theoretic or model-theoretic interpretations; it depends on the type and Xml Databases

of rules in the program. However, for many simple Prolog programs, the

Prolog inference mechanism infers the facts that correspond either to the

proof-theoretic interpretation or to a minimal model under the model-

theoretic interpretation.

6.1.7 LEAST MODEL SEMANTICS

We want users to be able to understand a Datalog prograrn by
understanding each rule independent of other rules, with : If the body is
True, the head is also True. This intuitive reading of a rule suggests that,
given certain relation instances for the relation names that appear in the
body of a rule, the relation instance for the relation mentioned in the head
of the rule contain a certain set of tuples. If a relation Harne R. appears in
the heads of several rules, the relation instance for R satisfy the intuitive
reading of all these rules. However, we do not want tuples to be included
in the instance for R, unless they are necessary to satisfy one of the rules
defining R,. That is, we want to compute only tuples for R that are
supported by Salne rule for R. To these ideas precise, we need to introduce
the concepts of models and least models. A model is a collection of
relation instances, one instance for each relation in the program, that
satisfies the following condition. For every rule in the program, whenever
we replace each variable in the rule by a corresponding constant, the
following holds:

If every tuple in the body (obtained by our replacement of variables with
constants) is in the corresponding relation instance, Then the tuple
generated for the head (by the assignment of constants to variables that
appear in the head) is also in the corresponding relation instance.

Observe that the instances for the input relations are given, and the
definition of a model essentially restricts the instances for the output
relations. Consider the rule

Components (Part. Subpart) '- Assembly (Part. Part2., Qiv) .
Componentis (Part2. Subpart).

Suppose we replace the variable Part by the constant wheel Part2 by tire, Oty
by 1, and Subpart by i

1

Components (wheel. rim) "- Assembly(wheel tire_. 1),

Components (tire . rim).

Let A be an instance of Assembly and C be an instance of components. If
A contains the tuple (wheel,tire, 1) and C contains the tuple (tire, rim,),
then C tuple also contain the tuple (wheel, rim) for the pair of instances A.
and C to be a model. of course, the instances A and must satisfy the
inclusion requirement just illustrated for every assignment of constants to
the variables in the rule: If the tuples in the rule body are in A and C, the
tuple in the head to be in C.

147

Advanced Database System

148

As an example, the instances of Assembly shown in Figure and
Components had shown in Figure together form a model for the
component program. Given the instance of Assembly shown in Figure,
there is no justification for including the tuple (spoke, pedal) to the
Components instance. Indeed, if we add this tuple to the components
instance in Figure, We no longer have a model for our program, as the
following instance of the recursive rule demonstrates, since (wheel, pedal)
is not in the Components instance:

Components {wheel . padal) :- Assembly(wheel. spoke. 2).
Components(spoks. pedal).

However, by also adding the tuple (wheel, pedal) to the Components
instance, we obtain another model of the Components program.
Intuitively, this is unsatisfactory since there is no justification for adding
the tuple (spoke, pedal) in the first place, given the tuples in the Assembly
instance and the rules in the program.

We address this problem by using the concept of a least model. A least
model of a program is a model M such that for every other model M2 of
the same program, for each relation R in the program the instance for R is
contained in the instance of R. The Inodel formed by the instances of
Assembly and Components shown in Figures and is the least model for the
components program with the given Assembly instance.

6.1.8 THE FIXED POINT OPERATOR

A fixpoint of a function f'is a value v such that the function applied to the
value returns the same value, that is, f(v) = 'U. Consider a function applied
to a set of values that also returns a set of values. For example, we can
define double to 1)e a function that multiplies every element of the input
set by two and double+ to be double U identity. T'hus, double({1,2,5})
== {2,4,10}, and double+({1,2,5}) ::::::: {1,2,4.,5,10}.The set of all even
integers which happens to be an infinite set-is a fixpoint of the function
double-+. Another fixpoint of the function double+ is the set of all
integers. The first fixpoint (the set of all (even integers) is smaller than the
second fixpoint (the set of all integers) because it is contained in the latter.

The least fixpoint of a function is the fixpoint that is smaller than every
other fixpoint of that function. In general, it is not guaranteed that a
function has a load fixpoint. For example, there may be two fixpoints,
neither of which is smaller than the other. (Does double have a least
fixpoint? What is it?) No let us turn to functions over sets of tuples, in
particular, functions defined using relational algebra expressions. The
Components relation can be defined by an equation.

Componiends = myp gl Assembly tdoy Components) U 12 (dssernbly)

1'his equation has the foml
Cornponents = ffChruponents, Assembly)

where the function [iz defined using a relational aJgebra expression.
given mstance of the input relation Assemnbly. this can be simplified to

Components = fiColnponents)

The least fixpoint of f is an instance of Components that satisfies this
equation. Clearly the projection of the first two fields of the tuples in the
given instance of the input relation Assembly rnust be included in the
(instance that is the) least fixpoint of Components. In addition, any tuple
obtained by joining Components with Assembly and projecting the
appropriate fields must also be in Components.

A little thought shows that the instance of Components that is the least
fixpoint of f can be computed using repeated applications of the Datalog
rules shown in the previous section. Indeed, applying the two Datalog
rules is identical to evaluating the relational expression used in defining
components. If an application generates Components tuples that are not in
the current instance of the Components relation, the current instance
cannot be the fixpoint.

Therefore, we add the new tuples to Components <tnd evalu<te the
relational expression (equivalently, the two Datalog rules) again. This
process is repeated until every tuple generated is already in the current
instance of Components. Then applying the rules to the current set of
tuples does not produce any new tuples, we have reached a fixpoint. If
components is initialized to the empty set of tuples. We infer only tuples
that we necessary by the definition of a fixpoint, and the fixpoint
computed is the least fixpoint.

6.1.9 SAFE DATALOG PROGRAM

There are two main methods of defining the truth values of predicates in
actual Datalog programs. Fact-defined predicates (or relations) are
defined by listing all the combinations of values (the tuples) that make the
predicate true. These correspond to base relations whose contents are
stored in a database system. Figure shows the fact-defined predicates
EMPLOYEE, MALE, FEMALE, DEPARTMENT, SUPERVISE,
PROJECT, and WORKS ON, which correspond to part of the relational
database shown in Figure 4.1.5 Rule-defined predicates (or views) are
defined by being the head (LHS) of one or more Datalog rules; they
correspond to virtual relations whose contents can be inferred by the
inference engine.

Figure shows a number of rule-defined predicates. A program or a rule is
said to be safe if it generates a finite set of facts. The general theoretical
problem of determining whether a set of rules is safe is un-decidable.

For a

Active, Multimedia
{ml Databases

149

Advanced Database System However, one can determine the safety of restricted forms of rules. For
example, the rules shown in Figure are safe. One situation where we get
unsafe rules that can generate an infinite number of facts arises when one
of the variables in the rule can range over an infinite domain of values,
and that variable is not limited to ranging over a finite relation. For

example, consider the following rule:

BIG_SALARY(Y) — Y=60000

Here, we can get an infinite result if ¥ ranges over all possible integers. But suppose
that we change the rule as follows:

BIG_SALARY(Y) :— EMPLOYEE(X}, Salary(X, Y'), Y>60000

In the second rule, the result is not infinite, since the values that ¥ can be bound to
are now restricted to values that are the salary of some employee in the database—

150

presumably, a finite set of values. We can also rewrite the rule as follows:
BIG_SALARY(Y) :— Y>60000, EMPLOYEE(X), Salary(X, Y)

EMPLOYEE(john).
EMPLOYEE (franklin).
EMPLOYEE(alicia).
EMPLOYEE(jennifer).
EMPLOYEE(ramesh).
EMPLOYEE(joyce).
EMPLOYEE(ahmad).
EMPLOYEE(james).

SALARY (john, 30000).
SALARY (franklin, 40000).
SALARY (alicia, 25000).
SALARY (jennifer, 43000).
SALARY (ramesh, 38000).
SALARY (joyce, 25000).
SALARY (ahmad, 25000).
SALARY (james, 55000).

DEPARTMENT (john, research).
DEPARTMENT (franklin, research).
DEPARTMENT (alicia, administration).

DEPARTMENT (jennifer, administration).

DEPARTMENT (ramesh, research).
DEPARTMENT(joyce, research].

DEPARTMENT(ahmad, administration).

DEPARTMENT(james, headquarters).

SUPERVISE(franklin, john).
SUPERVISEifranklin, ramesh)
SUPERVISE(frankin , joyce).
SUPERVISE (jennifer, alicia).
SUPERVISE(jennifer, ahmad).
SUPERVISE(james, franklin).
SUPERVISE (james, jennifer).

MALE(john).
MALE{franklin).
MALE(ramesh).
MALE(ahmad).
MALE(james).

FEMALE(glicia).
FEMALE jennifer).
FEMALE({joyce).

PROJECT (productx).
PROJECT (producty).

PROJECT (productz).
PROIECT ([computenzation).
PROJECT (reorganization).
PROIECT (newbenefits).

WORKS_ON(john, producty, 32).
WORKS_ON(john, producty, 8).
WORKS_ON(ramesh, productz, 40).
WORKS_ON(joyce, productx, 20).
WORKS_ON(joyce, producty, 20).
WORKS_ON(frankliin, producty, 10).
WORKS_ONifranklin, productz, 10).
WORKS_ON(franklin, computerization, 10).
WORKS_ON(franklin, reorganization, 10},
WORKS_ONl{alicia, newbenefits, 30).
WORKS_ONialicia, computerization, 10).
WORKS_ON(ahmad, computerization, 35).
WORKS_OMN(ahmad, newbenefits, 5).
WORKS_OMN(jennifer, newbenefits, 20).
WORKS_OMN(jennifer, reorganization, 15).
WORKS_ONljames, reorganization, 10).

Figure 6.1.5 Fact predicates for part of the database

SUPERIORLX, Y) :- SUPERVISE(X. ¥).
SUPERIOR(x, v) :— SUPERVISE(x, Z), SUPERIOR(Z, ¥).

SUBORDINATE(X, ¥) :— SUPERIOR(Y, X).

SUPERVISOR(X) :— EMPLOYEE(X), SUPERVISELX, ¥).

OVER_40K_EMP(x) :— EMPLOYEE(X), SALARY (X, Y}, ¥ >= 40000.
UNDER_40K_SUPERVISOR(X) :— SUPERVISOR(X), NOTIOVER_40_K_EMP(X)).
MAIN_PRODUCTX_EMP(x) :— EMPLOYEE(x), WORKS_ON(X, productx, ¥), ¥ >=20.
PRESIDENT(X) :- EMPLOYEE(X), NOT(SUPERVISE(Y, X)).

Figure 6.1.6 Rule-defined predicates

In this case, the rule is still theoretically safe. However, in Prolog or any
other system that uses a top-down, depth-first inference mechanism, the
rule creates an infinite loop, since we first search for a value for ¥ and then
check whether it is a salary of an employee. The result is generation of an
infinite number of Y values, even though these, after a certain point,
cannot lead to a set of true RHS predicates. One definition of Datalog
considers both rules to be safe, since it does not depend on a particular
inference mechanism. Nonetheless, it is generally advisable to write such a
rule in the safest form, with the predicates that restrict possible bindings of
variables placed first. As another example of an unsafe rule, consider the
following rule:

HAS_SOMETHING(X, Y) :— EMPLOYEE(X)

REL_ONE(A, B, C).

REL_TWO(D, E, F).

REL_THREE(G, H, 1, J).

SELECT_OWE_A_EQ_CiX, ¥, Z) :- REL_ONEI(C, ¥, Z).
SELECT_ONE_B_LESS_5(X, ¥, Z) :— REL_ONE(X, ¥, 7}, ¥<5.

SELECT_ONE A EQ C AND B LESS_5(X, ¥, Z) :- REL_ONEI(C, ¥, Z}, ¥<5

SELECT_ONE A EQ C_OR B LESS &(X, ¥, Z) :-- REL_ONEI(C, ¥, Z).
SELECT_ONE_A EG C OR B |ESS 5(X, ¥, Z) - REL_ONE(X, ¥, Z}, ¥<Bb.

PROJECT_THREE_ON_G_H(W, X) .- REL_THREE(W. X, ¥, Z).

UNION_ONE_TWOLX, ¥, Z) .- REL_ONE(X, ¥, Z).
UNION_ONE_TWOLX, ¥, Z) :— REL_TWOL(X, ¥, Z).

INTERSECT _ONE_TWOHX, ¥, Z) :— REL ONE(X, ¥, Z), REL TWO(X, ¥, Z).
DIFFERENCE_TWO_ONE(X, ¥, Z) - REL_TWO(X, ¥, Z) NOT(REL_ONE(X, ¥, Z).

CART PROD _ONE THREE(T, U, V., W, X, ¥, Z] -
REL_ONE(T, U, V), REL_THREE{W, X, ¥, Z).

NATURAL_IOIN_ONE_THREE_C EQ GIU, V, W, X, ¥, Z} -
REL_ONE(U, v, W), REL_THREE(W, X, ¥, Z).

Figure 6.1.6 Predicates for illustrating relational operations

Deductive, Active, Multimedia
and Xml Databases

151

Advanced Database System Here, an infinite number of Y values can again be generated, since the
variable Y appears only in the head of the rule and hence is not limited to a
finite set of values. To define safe rules more formally, we use the concept
of a limited variable. A variable X is limited in a rule if (1) it appears in a
regular (not built-in) predicate in the body of the rule; (2) it appears in a
predicate of the form X=c or c=X or (c1<<=X and X<=c2) in the rule
body, where ¢, cl, and ¢2 are constant values; or (3) it appears in a
predicate of the form X=Y or Y=X in the rule body, where Y is a limited
variable. A rule is said to be safe if all its variables are limited.

6.1.10 RECURSIVE QUERY WITH NEGATION

Unfortunately, once set-difference is allowed in the body of a rule, there
may be no least , model or least fixpoint for a program. Consider the
following rules:

Big(Part):- Assembly (Part, Subpart, Qty), Qtyv= 2,
NOT Small (Part) .
Small(Part) :- Assembly (Part. Subpart. Qty) . NOT Big(Pnrt].|

These two rules can be thought of as an attempt to divide parts (those that
are mentioned in the first column of the Assembly table) into two classes,
Big and Small. The first rule defines Big to be the set of parts that use at
least three copies of some subpart and are not classified as small parts. The
second rule defines Small as the set of parts not classified as big parts.

If we apply these rules to the instance of Assembly shown in Figure 4.1.7,
trike is the only part that uses at least three copies of same subpart. Should
the tuple (#rike) be in Big or Small? If we apply the first rule and then the
second rule, this tuple is in Big. To apply the first rule, we consider the
tuples in Assembly, choose those with Qty > 2 (which is just (#rike)),
discard those in the current instance of Srnall (both Big and Small are
initially empty), and add the tuples that are left to Big. Therefore, an
application of the first rule adds (#rike) to Big. Proceeding similarly, we
can see that if the second rule is applied before the first, (trike) is added to
Small instead of Big. This program has two fixpoints, neither of which is
smaller than the other, as shown in Figure 4.1.7. (The first fixpoint has a
Big tuple that does not appear in the second fixpoint; therefore, it is not
smaller than the second fixpoint. The second fixpoint has a small tuple
that does not appear in the first fixpoint. Therefore it is not smaller than
the first fixpoint. The order in which we apply the rules determines which
fixpoint is computed; this situation is very unsatisfactory. We want users
to be able to understand their queries without thinking out exactly how the
evaluation proceeds. The root of the problerH is the use of NOT. When we
apply the first rule, same inferences are disallowed because of the
presence of tuples in small.

152

Big trike Big

frams: I trike I
iy S S ot e =

Smail wheel | Framse
g Small BRSNS

lire | I wheel
= E | -

| fire
Fixpoint 1 Fixpolnt 2

Figure 6.1.7 Two fix point for Big/Small program

Parts that satisfy the other conditions in the body of the rule are candidates
for addition to Big; we remove the parts in Small from this set of
candidates. Thus some inferences that are possible if Small is empty (as it
is before the second rule is applied) are disallowed if Small contains tuples
(generated by applying the second rule before the first rule). Here is the
difficulty: If NOT is used, the addition of tuples to a relation can disallow
the inference of other tuples. Without NOT, this situation can never arise;
the addition of tuples to a relation can never disallow the inference of
other tuples.

6.2 ACTIVE DATABASE

Overcome the strict separation between application programs and DBS.

» Usually only a small part of the real-world semantics can be modeled in
the DBS.

* Object-oriented DBS are not enough => add active (and deductive)
mechanisms to model more semantics (especially dynamic behavior) of

the applications in DBS.
®
w 3 complaints
about Tunesia
DEH‘L database

L J active neciz
- mechanis| =
reduce price il {ecempltaints = 100

al the resenations)
i f ™

-

= Example: Traveling

General Idea

Active Database System

A4

Deductive, Active, Multimedia
and Xml Databases

153

Advanced Database System

154

In addition to the capabilities of passive database systems

* monitor specified situations (events & conditions) in the database or its
environment

» invoke specified reactions whenever a situation occurs programs
containing, e.g., database operations

Definition: Active DBS

An active database system (ADBS) is a DBS that monitors situations of
interest and, when they occur, triggers an appropriate response in a timely
manner. The desired behavior is expressed in production rules (also called
event-condition-action rules), which are defined and stored in the DBS.
This has the benefits that the rules can be shared by many application
programs, and the DBS can optimize their implementation.

production nees

ECA
sChemsa ndes
database . 1‘-
ot _remdt |
absirac bBMS
manik | ! X
mme ’ f
—
D
]— _l

6.2.1 LANGUAGES FOR RULE SPECIFICATION

Rule Models and Languages

* Event Specification

* Condition Specification

* Action Specification

* Event-Condition-Action Binding
* Rule Ordering

* Rule Organization

Affects data model and transaction management

6.2.2 EVENTS

» An event is something that happens at a point in time.

> Possible alternatives:

e structure operation(insert,update,access)

e behavior invocation(the message display is sent to an object of
type widget)

e transaction(abort,commit,begin-transacttion)

e exception(an attempt to access some data without appropriate
authorization)

e clock(the first day of every month)
e external(the temperature reading goes above 30 degrees)

Production Rules (Event-Condition-Action Rules)

OM | event has oocumed e g Ingert iniD complasnts list
- situation

IF condition hoids #oomplaints = 0.1+(#resenvations)

s [eacton [

Event-Condition-Action Rules I

» Event Specification

e relational DBS: define rule MonitorNewEmps on insert to employee
if ... then ...

e OODBS: define rule CheckRaise on employee.salary-raise()
if ... then ...

e rule triggered by data retrieval: define rule MonitorSalAccess on
retrieve salary from employee

if ... then ...
» Knowledge Model: Semantics of ECA Rules

on nas Decumed primitive gvents:

begindend of datahase operalions
{deparding on daks madal)
Ot AFTER rrsert {complainis |
Ol BEFORE Jur Pemsan buy share_from

Begin‘end of DBMS operations

Ol BOT
ONEQT

IF condition holds

4] execUie BCtion

temporal events - ime specifi cations
jabsokute, relative, pericdicaliepeated)
O Z111-86, 18:16
OMET =10
O EVERY DAY 16:00

abeiract evenis (defins EEe)

expiicitly defined by wser [specified far one appication)
define program_stan
Db program_star
[t progeam_slan

Deductive, Active, Multimedia
and Xml Databases

155

Advanced Database System

156

» Knowledge Model: Semantics of ECA Rules — 2

ON - (event Jhas occumed composite events |-> algebra):

disjumction (DR k E1|E2
IF candition holds sequence {ondered): El, E2
DD execuls sction corguncion (AND) E1.E3

negation (MOT): HOT E «<fime_inberval=
Rislony operalor TIMES {n, E} =time_inl=reals
E xteriple:

{{E1, E2} | E3); {E4 | EE); NOT E&

» Knowledge Model: Semantics of ECA Rules — 3

ON ewvent has ocowred

IF mm
| predicate (WHERE) over datahase state or query

|
oo c—:eme

programs, inclhuding datatase operatons or
| notifications to the users

6.2.3 CONDITIONS

The condition indicates whether rule action should be executed.
In ECA-rules, the condition is generally optional

Once the triggering event has occurred, the condition may be
evaluated. If condition evaluates to be true, the rule action will be
executed.

If no condition is specified, the action will be executed once the event
occurs.

The condition part of a rule specifies a predicate or query over the data
in the database.

The condition is satisfied if the predicate is true or if the query returns
a nonempty answer.

Explicit events: condition may often be omitted (in which case it is
always satisfied).

Transition conditions: allow to express conditions over changes in the
database state. Example

define rule MonitorRaise

on update to employee . salary

if employee.salary > 1.1 * old employee.salary
then ...

6.2.4 ACTIONS

» The range of tasks that can be performed if the rule condition is
evaluated to be true.

» Itis usually a sequence of SQL statements.
» But actions may:

e Perform some behavior invocation within the database or an external
call

¢ Inform the user or system administrator of some situation
e Abort a transaction
e Take some alternative course of action using do-instead

The action part of a production rule specifies the operations to be
performed when the rule is triggered and its condition is satisfied.

define rule FavorNewEmps
on insert 10 emploves
then delete employee e where e.name = employee.name

6.3 XML AND DATABASE

To understand XML, it is important to understand its roots as a document
markup language. The term markup refers to anything in a document that
is not intended to be part of the printed output. For example, a writer
creating text that will eventually be typeset in a magazine may want to
make notes about how the typesetting should be done. It would be
important to type these notes in a way so that they could be distinguished
from the actual content, so that a note like “set this word in large size, bold
font” or “insert a line break here” does not end up printed in the magazine.
Such notes convey extra information about the text.

In electronic document processing, a markup language is a formal
description of what part of the document is content, what part is markup,
and what the markup means. Just as database systems evolved from
physical file processing to provide a separate logical view, markup
languages evolved from specifying instructions for how to print parts of
the document to specifying the function of the content. For instance, with
functional markup, text representing section headings (for this section, the
word “Motivation”) would be marked up as being a section heading,
instead of being marked up as text to be printed in large size, bold font.

Deductive, Active, Multimedia
and Xml Databases

157

Advanced Database System

158

From the viewpoint of typesetting, such functional markup allows the
document to be formatted differently in different situations. It also helps
different parts of a large document, or different pages in a large Web site,
to be formatted in a uniform manner. More importantly, functional markup
also helps record what each part of the text represents semantically, and
correspondingly helps automate extraction of key parts of documents. For
the family of markup languages that includes HTML, SGML, and XML,
the markup takes the form of tags enclosed in angle brackets, <>. Tags
are used in pairs, with <tag> and </tag> delimiting the beginning and the
end of the portion of the document to which the tag refers. For example,
the title of a document might be marked up as follows:

=title=Database Sysiem Concepts<Aitle=

Unlike HTML, XML does not prescribe the set of tags allowed, and the
set may be chosen as needed by each application. This feature is the key to
XML’s major role in data representation and exchange, whereas HTML is
used primarily for document formatting.

=University =

<departmeht -
<dept_name= Comp. Sci. </dept name=
=buiiding= Taylor </building=
=budget-- 100000 </budget-

= /department -

= department-
- dept_name- Biology </ dept_name-
=building - Watson =/building--
<budget= 90000 =/budgst=

=/departmeant =

< COUrse=
=course_id= C5-101 < course_id=
<title= Intro. to Computer Science =fitle=
<dept_name= Comp. Sci </depi_namea:
=Ccredits~ 4 =/credits--

< /COUrse:-

= COUrse =
<gourse_id= BIO-301 < /coursejid-
<fitle= Genetics «/itle-
=dept_name= Biclogy =/ /depi_name-
<credits= 4 </credits=

=/Course=

Figure 6.1.8 XML representation of (part of) university information.

< instructor=
<D= 10101 =/D=
=Mame: Srnivasan --/Mame:
=dept_name=- Comp. 5ci. </dept_name:
=Salany= 65000 </salary-
</nstructor=
<instructor=
<=D= 83821 =/lID=
=Mame:= Brandt </name:
=dept_name- Comp. Sci. </dept_name:-
<Salany= 92000 =/ salary-
=/structor=
<instructor=
<D= TETE6 =/ lID--
<flame: Crick </ Mmame=
<dept_name:= Biology -/dept_namea=
=5alany= 72000 = salary-
=/instructor=
=teaches=-
== 10101 <AlID=
<goursedd= C5-101 </coursejd=
=teaches=
<teachas-
<llD= 83821 =/MlD=
<CoUrse_id= C5-101 </ /course_id-
=/teachas-
<teaches -
<D= TETE6 =110~
<course_id= BIO-301 </course_id=-
=fteaches=
< funiversity =

Figure 6.1.9 Continuation of Figure

For example, in our running university application, department, course and
instructor information can be represented as part of an XML document as
in Figures 4.1.8 and 4.1.9. Observe the use of tags such as department,
course, instructor, and teaches. To keep the example short, we use a
simplified version of the wuniversity schema that ignores section
information for courses. We have also used the tag IID to denote the
identifier of the instructor, for reasons we shall sce later.

These tags provide context for each value and allow the semantics of the
value to be identified. For this example, the XML data representation does
not provide any significant benefit over the traditional relational data
representation; however, we use this example as our running example
because of its simplicity.

Deductive, Active, Multimedia
and Xml Databases

159

Advanced Database System

160

=purchase_order-
<identifier= P-101 =/identifier-
<purchaser=
=name= Cray £. Coyote —=/name:
~address- Mesa Flats, Route 66, Arizona 12345, USA —/address=-
=(purchaser
<supplier=
=Mame= Acme Supplies </Mame-
<address= 1 Broadway, New York, NY, USA =/address=
=fsupplier=
<ftemlist=
<item=
<idenfifier= AS1 -=/identifier-
= description= Atom powered rocket sled -/description-
= qQuantity= 2 = /guantity-
=price= 199.95 </price=
= item =
=jdentifier= SG2 =/fidentifier-=
=description:= Superb giue -/description-
= quantity= 1 -=/guantity=
= unit-of-measure= liter ~/unit-of-measure-
=price= 29.95 =/price=
=fiternlist =
<total cost- 42985 /total cost-
<payment_terms- Cash-on-delivery —/payment_terms=
=Shipping_mode= 1-second-delivery =/shippino_mode =
=/purchaseorder=

Figure 6.1.10 XML representation of a purchase order.

Figure 6.1.10, which shows how information about a purchase order can
be represented in XML, illustrates a more realistic use of XML. Purchase
orders are typically generated by one organization and sent to another.
Traditionally they were printed on paper by the purchaser and sent to the
supplier; the data would be manually re-entered into a computer system by
the supplier. This slow process can be greatly sped up by sending the
information electronically between the purchaser and supplier. The nested
representation allows all information in a purchase order to be represented
naturally in a single document. (Real purchase orders have considerably
more information than that depicted in this simplified example.) XML
provides a standard way of tagging the data; the two organizations must of
course agree on what tags appear in the purchase order, and what they
mean.

Compared to storage of data in a relational database, the XML
representation may be inefficient, since tag names are repeated throughout
the document. However, in spite of this disadvantage, an XML
representation has significant advantages when it is used to exchange data
between organizations, and for storing complex structured information in
files:

First, the presence of the tags makes the message self-documenting; that
is, a schema need not be consulted to understand the meaning of the text.
We can readily read the fragment above, for example.

Second, the format of the document is not rigid. For example, if some
sender adds additional information, such as a tag last accessed noting the

last dgte on Which an account was accessed, the r.ecip.ient of the XML fiata Deductive, Active, Multimedia
may simply ignore the tag. As another example, in Figure 4.1.10, the item and Xml Databases
with identifier SG2 has a tag called unit-of-measure specified, which the

first item does not.

The tag is required for items that are ordered by weight or volume, and
may be omitted for items that are simply ordered by number. The ability to
recognize and ignore unexpected tags allows the format of the data to
evolve over time, without invalidating existing applications.

Similarly, the ability to have multiple occurrences of the same tag makes it
easy to represent multi valued attributes.

Third, XML allows nested structures. The purchase order shown in Figure
6.1.10 illustrates the benefits of having a nested structure. Each purchase
order has a purchaser and a list of items as two of its nested structures.
Each item in turn has an item identifier, description and a price nested
within it, while the purchaser has a name and address nested within it.
Such information would have been split into multiple relations in a
relational schema. Item information would have been stored in one
relation, purchaser information in a second relation, purchase orders in a
third, and the relationship between purchase orders, purchasers, and items
would have been stored in a fourth relation.

The relational representation helps to avoid redundancy; for example, item
descriptions would be stored only once for each item identifier in a
normalized relational schema. In the XML purchase order, however, the
descriptions may be repeated in multiple purchase orders that order the
same item. However, gathering all information related to a purchase order
into a single nested structure, even at the cost of redundancy, is attractive
when information has to be exchanged with external parties.

Finally, since the XML format is widely accepted, a wide variety of tools
are available to assist in its processing, including programming language
APIs to create and to read XML data, browser software, and database
tools.

6.3.1 STRUCTURE OF XML DATA

The fundamental construct in an XML document is the element. An
element is simply a pair of matching start- and end-tags and all the text
that appears between them.

XML documents must have a single root element that encompasses all
other elements in the document. In the example in Figure,
the<university>element forms the root element. Further, elements in an
XML document must nest properly. For instance:

<cpurse> ... <title= ... </title> ... </course=
is properly nested, whereas:

<course= ., .. <title= ... </course= ... </title=

161

Advanced Database System

162

is not properly nested. While proper nesting is an intuitive property, we
may define it more formally. Text is said to appear in the context of an
element if it appears between the start tag and end-tag of that element.
Tags are properly nested if every start-tag has a unique matching end-tag
that is in the context of the same parent element.

Note that text may be mixed with the sub elements of an element, as in
Figure. As with several other features of XML, this freedom makes more
sense in a document-processing context than in a data-processing context,
and is not particularly useful for representing more-structured data such as
database content in XML.

The ability to nest elements within other elements provides an alternative
way to represent information. Figure shows a representation of part of the
university information from Figure 6.1.10, but with course elements
nested within department elements. The nested representation makes it
easy to find all courses offered by a department. Similarly, identifiers of
courses taught by an instructor are nested within the instructor elements. If
an instructor teaches more than one course, there would be multiple course
id elements within the corresponding instructor element.

< COUrse=
This course is being offered for the first timme in 2009.
<course_id= BIO-399 </course_id=>
=title= Computational Biology </ title=
=dept_name= Bioclogy =/dept_name=
=credits= 3 </credits=

</course=

Figure 6.1.11 Mixture of text with sub elements.

<university-1=
=department =
<dept_name= Comp. Sci. «/dept_name:
<building- Taylor </building=
<budget- 100000 ~/budget-
<Course>
<courseid= CS-101 </coursejd=
=litle= Intro. to Computer Science - /title=-
=credits= 4 </credits -
=/course=
< COUrse:
=course id= C5-347 </course_id=
<title= Databass System Concepts =/title=
<credits= 3 </credits=
</course=
=fdepartmeni-
<department=
<dept_name: Biology </dept_name-
<building> Watson </building>
=budget- 90000 </budget-
< COUrSe:
<course_id= BIO-301 </course_id=-
=title- Genetics </itle=
=Credits = 4 </credits =
</course=
={department =
<instructor=-
<liD> 10101 <=/AID=
<name: Srinivasan </name:
<dept.name= Comp. Sci. </dept.name=
<salary= 65000. </ salary~
=course id= CS5-101 </coursr_id=-
<finstructor=
=funiversity-1-

Figure 6.1.12 Nested XML representation of university information.

Details of instructors Brandt and Crick are omitted from Figure 4.1.12 for Deductive, Active, Multimedia
lack of space, but are similar in structure to that for Srinivasan. Although and Xml Databases
nested representations are natural in XML, they may lead to redundant

storage of data. For example, suppose details of courses taught by an

instructor are stored nested within the instructor element as shown in

Figure. If a course is taught by more than one instructor, course

information such as title, department, and credits would be stored

redundantly with every instructor associated with the course.

= Lniversity-2 -
<instructor=
<D= 10101 =/D=
=Mame= Sfnivasan </name=
=dept_name= Comp. Sci.</dept_ name=
<Salary= 85000 -/salary=
~teaches=
=< COUrse =
<Course_id= C5-101 =/course_id=
=title= Intro. to Computer Science </fitle=
=dept_.name- Comp. Sci. —=/dept_namea-
=gredits= 4 =/credits=
=fcourse=
=fteaches=
<finstructor=

<instructor=
=ID= 83621 <D=
=name= Brandt «/name=
<dept_name= Comp. Sci.</dept_name-
<Sdlany= 92000 = salary -
=teaches=
< COUrse =
<courseid= CS-101 =fcourse_jid=
<title= Intro. to Computer Science </fitle=
«dept name= Comp. Sci. =/dept_name=
<credits= 4 </credits=
< {COUrse =
=/teaches=
<finstructor-
= funiversity-2 =

Figure 6.1.13 Redundancy in nested XML representation.

Nested representations are widely used in XML data interchange
applications to avoid joins. For instance, a purchase order would store the
full address of sender and receiver redundantly on multiple purchase
orders, whereas a normalized representation may require a join of
purchase order records with a company address relation to get address
information.

In addition to elements, XML specifies the notion of an attribute. For
instance, the course identifier of a course can be represented as an
attribute, as shown in Figure. The attributes of an element appear as
name=value pairs before the closing “>” of a tag. Attributes are strings
and do not contain markup. Furthermore, attributes can appear only once
in a given tag, unlike sub elements, which may be repeated.

163

Advanced Database System

164

=Course course_id= “CS5-101"=
<title= Intro. to Computer Science=fitle=
<dept_name- Comp. Sci. = /dept_name-
«Credits= 4 </credits=-

</COUrse:

Figure 6.1.14 Use of attributes.

Note that in a document construction context, the distinction between
subelement and attribute is important an attribute is implicitly text that
does not appear in the printed or displayed document. However, in
database and data exchange applications of XML, this distinction is less
relevant, and the choice of representing data as an attribute or a
subelement is frequently arbitrary. In general, it is advisable to use
attributes only to represent identifiers, and to store all other data as
subelements.

One final syntactic note is that an element of the form < element
></element> that contains no subelements or text can be abbreviated as
<element/>; abbreviated elements may, however, contain attributes. Since
XML documents are designed to be exchanged between applications, a
namespace mechanism has been introduced to allow organizations to
specify globally unique names to be used as element tags in documents.
The idea of a namespace is to prepend each tag or attribute with a
universal resource identifier (for example, a Web address). Thus, for
example, if Yale University wanted to ensure that XML documents it
created would not duplicate tags used by any business partner’s XML
documents, it could prepend a unique identifier with a colon to each tag
name. The university may use a Web URL such as: http://www.yale.edu
as a unique identifier. Using long unique identifiers in every tag would be
rather inconvenient, so the namespace standard provides a way to define
an abbreviation for identifiers.

In Figure, the root element (university) has an attribute xmlns:yale, which
declares that yale is defined as an abbreviation for the URL given above.
The abbreviation can then be used in various element tags, as illustrated in
the figure. A document can have more than one namespace, declared as
part of the root element. Different elements can then be associated with
different namespaces. A default namespace can be defined by using the
attribute xmlns instead of xmlns:yale in the root element. Elements
without an explicit namespace prefix would then belong to the default
namespace.

Sometimes we need to store values containing tags without having the tags
interpreted as XML tags. So that we can do so, XML allows this construct:

<[COATA[<COUrse= - .-<fcourse=J=

< university xmins:yake="http./fwww.yale.edu"=

=yale:course-
<yale:coursejid=- CS-101 </yale:course_jd=
<yaletitle= Intro. to Computer Science-/yaletitle-
<yale:dept_name- Comp. Sci. =/vale:depi_name-
<yale:credits= 4 ~fyale:credits=-

<fyalecourse=

.-‘uniﬁérsity.-.=
Figure 6.1.15 Unique tag names can be assigned by using namespaces.

Because it is enclosed within CDATA, the text <course> is treated as
normal text data, not as a tag. The term CDATA stands for character data.

6.3.2 XML DOCUMENT SCHEMA

Databases have schemas, which are used to constrain what information
can be stored in the database and to constrain the data types of the stored
information. In contrast, by default, XML documents can be created
without any associated schema: an element may then have any subelement
or attribute. While such freedom may occasionally be acceptable given the
self-describing nature of the data format, it is not generally useful when
XML documents must be processed automatically as part of an
application, or even when large amounts of related data are to be
formatted in XML.

Here, we describe the first schema-definition language included as part of
the XML standard, the Document Type Definition, as well as its more
recently defined replacement, XML Schema. Another XML schema-
definition language called Relax NG is also in use, but we do not cover it
here; for more information on Relax NG see the references in the
bibliographical notes section.

6.3.3 QUERYING AND TRANSFORMATION

Given the increasing number of applications that use XML to exchange,
mediate, and store data, tools for effective management of XML data are
becoming increasingly important. In particular, tools for querying and
transformation of XML data are essential to extract information from large
bodies of XML data, and to convert data between different representations
(schemas) in XML. Just as the output of a relational query is a relation, the
output of an XML query can be an XML document. As a result, querying
and transformation can be combined into a single tool. In this section, we
describe the XPath and XQuery languages:

e XPath is a language for path expressions and is actually a building
block for XQuery.

Deductive, Active, Multimedia
and Xml Databases

165

Advanced Database System

166

e XQuery is the standard language for querying XML data. It is modeled
after SQL but is significantly different, since it has to deal with nested
XML data.

e XQuery also incorporates XPath expressions.

The XSLT language is another language designed for transforming XML.
However, it is used primarily in document-formatting applications, rather
in data management applications.

6.4 INTRODUCTION TO MULTIMEDIA DATABASE
SYSTEMS

Multimedia databases provide features that allow users to store and
query different types of multimedia information, which includes images
(such as photos or drawings), video clips (such as movies, newsreels, or
home videos), audio clips (such as songs, phone messages, or speeches),
and documents (such as books or articles). The main types of database
queries that are needed involve locating multimedia sources that contain
certain objects of interest. For example, one may want to locate all video
clips in a video database that include a certain person, say Michael
Jackson. One may also want to retrieve video clips based on certain
activities included in them, such as video clips where a soccer goal is
scored by a certain player or team. The above types of queries are referred
to as content-based retrieval, because the multimedia source is being
retrieved based on its containing certain objects or activities. Hence, a
multimedia database must use some model to organize and index the
multimedia sources based on their contents. Identifying the contents of
multimedia sources is a difficult and time-consuming task. There are two
main approaches. The first is based on automatic analysis of the
multimedia sources to identify certain mathematical characteristics of their
contents. This approach uses different techniques depending on the type of
multimedia source (image, video, audio, or text). The second approach
depends on manual identification of the objects and activities of interest
in each multimedia source and on using this information to index the
sources. This approach can be applied to all multimedia sources, but it
requires a manual preprocessing phase where a person has to scan each
multimedia source to identify and catalog the objects and activities it
contains so that they can be used to index the sources.

In the first part of this section, we will briefly discuss some of the
characteristics of each type of multimedia source—images, video, audio,
and text/documents. Then we will discuss approaches for automatic
analysis of images followed by the problem of object recognition in
images. We end this section with some remarks on analyzing audio
sources. An image is typically stored either in raw form as a set of pixel or
cell values, or in compressed form to save space. The image shape
descriptor describes the geometric shape of the raw image, which is
typically a rectangle of cells of a certain width and height. Hence, each
image can be represented by an m by n grid of cells. Each cell contains a
pixel value that describes the cell content. In black-and-white images,

pixels can be one bit. In gray scale or color images, a pixel is multiple bits.
Because images may require large amounts of space, they are often stored
in compressed form. Compression standards, such as GIF, JPEG, or
MPEG, use various mathematical transformations to reduce the number of
cells stored but still maintain the main image characteristics. Applicable
mathematical transforms include Discrete Fourier Transform (DFT),
Discrete Cosine Transform (DCT), and wavelet transforms. To identify
objects of interest in an image, the image is typically divided into
homogeneous segments using a homogeneity predicate. For example, in a
color image, adjacent cells that have similar pixel values are grouped into
a segment. The homogeneity predicate defines conditions for
automatically grouping those cells. Segmentation and compression can
hence identify the main characteristics of an image.

A typical image database query would be to find images in the database
that are similar to a given image. The given image could be an isolated
segment that contains, say, a pattern of interest, and the query is to locate
other images that contain that same pattern. There are two main techniques
for this type of search. The first approach uses a distance function to
compare the given image with the stored images and their segments. If the
distance value returned is small, the probability of a match is high. Indexes
can be created to group stored images that are close in the distance metric
so as to limit the search space. The second approach, called the
transformation approach, measures image similarity by having a small
number of transformations that can change one image’s cells to match the
other image. Transformations include rotations, translations, and scaling.
Although the transformation approach is more general, it is also more
time-consuming and difficult. A video source is typically represented as a
sequence of frames, where each frame is a still image. However, rather
than identifying the objects and activities in every individual frame, the
video is divided into video segments, where each segment comprises a
sequence of contiguous frames that includes the same objects/activities.
Each segment is identified by its starting and ending frames. The objects
and activities identified in each video segment can be used to index the
segments. An indexing technique called frame segment trees has been
proposed for video indexing. The index includes both objects, such as
persons, houses, and cars, as well as activities, such as a person delivering
a speech or two people falking. Videos are also often compressed using
standards such as MPEG. Audio sources include stored recorded
messages, such as speeches, class presentations, or even surveillance
recordings of phone messages or conversations by law enforcement. Here,
discrete transforms can be used to identify the main characteristics of a
certain person’s voice in order to have similarity-based indexing and
retrieval.

A text/document source is basically the full text of some article, book, or
magazine. These sources are typically indexed by identifying the
keywords that appear in the text and their relative frequencies. However,
filler words or common words called stopwords are eliminated from the
process. Because there can be many keywords when attempting to index a
collection of documents, techniques have been developed to reduce the

Deductive, Active, Multimedia
and Xml Databases

167

Advanced Database System

168

number of keywords to those that are most relevant to the collection. A
dimensionality reduction technique called singular value decompositions
(SVD), which is based on matrix transformations, can be used for this
purpose. An indexing technique called telescoping vector trees (TV-trees),
can then be used to group similar documents.

6.4.1 LET US SUM UP

Thus, we have studied basics of deductive database, datalog notation,
clause form and horn clauses, safe datalog program etc. Also the active
database with languages for rule specification and events, conditions,
actions. Here with this spatial databases-clustering methods, storage
methods are explained in this chapter.

6.4.2 LIST OF REFERENCES

» Distributed Database; Principles & Systems By Publications, Stefano
Ceri and Giuseppo Pelagatti,, McGraw-Hill International Editions
(1984)

» Database Management Systems, 4rd edition, Raghu Ramakrishnan and
Johannes Gehrke, McGraw-Hill (2002).

» Fundamentals of Database Systems, 6thEdition, Elmasri and Navathe,
Addison. Wesley (2004).

» Unifying temporal data models via a conceptual model, C.S. Jensen,
M.D. Soo, and R.T. Snodgrass: Information Systems, vol. 19, no. 7,
pp. 514-547, 1994.

» Spatial Databases: A Tour by Shashi Shekhar and Sanjay Chawla,
Prentice Hall, 2004 (ISBN 014-017480-7)

» Principles of Multimedia Database Systems, Subramanian V. S.
Elsevier Publishers, 2014.

6.4.3 UNIT END EXERCISES

1) Explain Active Database with an example.

2) Explain difference between structured, sem-structured and un-
structured data in XML database.

3) What are three main types of XML documents? What is the use of
XML DTD?

4) Explain deductive database in short.
5) Explain datalog notation.
6) Write a short note on Multimedia database system.

O o% % °
0’0 0’0 0’0 0’0

	Page 1

