University of Mumbai

No. AAMS_UGS/ICC/2022-23/ 12 6

CIRCULAR :-

Attention of the Principals of the Affiliated Colleges and Directors of the recognized Institutions in Faculty of Science & Technology is invited to this office circular No.UG/146 of 2016-17 dated 9th November, 2016 relating to the revised syllabus of Master of Engineering (Chemical Engineering) (Sem.–I to IV) (CBCS).

They are hereby informed that the recommendations made by the Ad-hoc Board of Studies in Chemical Engineering at its meeting held on 04th May, 2022 and subsequently passed in the Faculty and then by the Board of Deans at its meeting held on 5th July, 2022 vide item No. 6.38 (R) have been accepted by the Academic Council at its meeting held on 11th July, 2022 vide item No. 6.38 (R) and that in accordance therewith, the revised syllabus of M.E.(Chemical Engineering) (Sem.– I to IV) (CBCS) (REV-2022 Scheme) has been brought into force with effect from the academic year 2022-23. (The circular is available on the University's website www.mu.ac.in).

MUMBAI – 400 032

October, 2022

(Dr. Shailendra Deolankar) I/c Registrar

To

The Principals of the Affiliated Colleges and Directors of the recognized Institutions in Faculty of Science & Technology.

A.C/6.38(R)/11/07/2022

No. AAMS_UGS/ICC/ 2022-23/ 12 6

20 October, 2022

Copy forwarded with Compliments for information to:-

- 1) The Dean, Faculty of Science & Technology,
- 2) The Chairman, Ad-hoc Board of Studies in Chemical Engineering,
- 3) The Director, Board of Examinations and Evaluation,
- 4) The Director, Board of Students Development,
- 5) The Director, Department of Information & Communication Technology,

6) The Co-ordinator, MKCL.

(Dr. Shailendra Deolankar) I/c Registrar

Desktop/Circular of Engineering/Priya

Copy to :-

- 1. The Deputy Registrar, Academic Authorities Meetings and Services (AAMS),
- 2. The Deputy Registrar, College Affiliations & Development Department (CAD),
- 3. The Deputy Registrar, (Admissions, Enrolment, Eligibility and Migration Department (AEM),
- 4. The Deputy Registrar, Research Administration & Promotion Cell (RAPC),
- 5. The Deputy Registrar, Executive Authorities Section (EA),
- 6. The Deputy Registrar, PRO, Fort, (Publication Section),
- 7. The Deputy Registrar, (Special Cell),
- 8. The Deputy Registrar, Fort/ Vidyanagari Administration Department (FAD) (VAD), Record Section,
- 9. The Director, Institute of Distance and Open Learning (IDOL Admin), Vidyanagari,

They are requested to treat this as action taken report on the concerned resolution adopted by the Academic Council referred to in the above circular and that on separate Action Taken Report will be sent in this connection.

- 1. P.A to Hon'ble Vice-Chancellor,
- 2. P.A Pro-Vice-Chancellor,
- 3. P.A to Registrar,
- 4. All Deans of all Faculties,
- 5. P.A to Finance & Account Officers, (F.& A.O),
- 6. P.A to Director, Board of Examinations and Evaluation,
- 7. P.A to Director, Innovation, Incubation and Linkages,
- 8. P.A to Director, Board of Lifelong Learning and Extension (BLLE),
- 9. The Director, Dept. of Information and Communication Technology (DICT) (CCF & UCC), Vidyanagari,
- 10. The Director of Board of Student Development,
- 11. The Director, Department of Students Walfare (DSD),
- 12. All Deputy Registrar, Examination House,
- 13. The Deputy Registrars, Finance & Accounts Section,
- 14. The Assistant Registrar, Administrative sub-Campus Thane,
- 15. The Assistant Registrar, School of Engg. & Applied Sciences, Kalyan,
- 16. The Assistant Registrar, Ratnagiri sub-centre, Ratnagiri,
- 17. The Assistant Registrar, Constituent Colleges Unit,
- 18. BUCTU,
- 19. The Receptionist,
- 20. The Telephone Operator,
- 21. The Secretary MUASA

for information.

University of Mumbai

Revised Syllabus for M.E

Chemical Engineering

(Sem. - I to IV)

(Choice Based Credit System)

(With effect from the academic year 2022-23)

University of Mumbai

O: Title of Course	M.E (Chemical Engineering)
O: Eligibility	Passing Bachler of Engineering as per the Ordinance 0.6264
R: Passing Marks	45%
No. of years/Semesters:	2 Years/ 4 Semesters
Level:	P.G. / U.G./ Diploma / Certificate
Pattern:	Yearly / Semester
Status:	New / Revised
To be implemented from Academic Y	With effect from Academic Year: 2022-23

Dr. Parag R Gogate

Chairman of Ad-hoc Board of Studies in Chemical Engineering

Dr. Suresh K. Ukarande
Associate Dean,
Faculty of Science and
Technology

Dr Anuradha Majumdar Dean, Faculty of Science and Technology

Allagumdes

Preamble

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Science and Technology (in particular Engineering) of University of Mumbai has taken a lead in incorporating philosophy of outcome-based education in the process of curriculum development.

Faculty resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. Choice based Credit and grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 13 weeks and remaining 2 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

There was a concern that the earlier revised curriculum more focused on providing information and knowledge across various domains of the said program, which led to heavily loading of students in terms of direct contact hours. In this regard, faculty of science and technology resolved that to minimize the burden of contact hours, total credits of entire program will be of 68, wherein focus is not only on providing knowledge but also on building skills, attitude and self-learning. Therefore, in the present curriculum skill-based laboratories are made mandatory across all disciplines of engineering in first and second semester of programs, which will definitely facilitate self-learning of students. The overall credits and approach of curriculum proposed in the present revision is in line with AICTE model curriculum.

The present curriculum will be implemented for Master of Engineering from the academic year 2022-23

Dr. S. K. Ukarande
Associate Dean
Faculty of Science and Technology
University of Mumbai

Dr Anuradha Muzumdar Dean Faculty of Science and Technology University of Mumbai

Incorporation and Implementation of Online Contents from NPTEL/ Swayam Platform

The curriculum revision is mainly focused on knowledge component, skill based activities and project based activities. Self-learning opportunities are provided to learners. In the revision process this time in particular Revised syllabus of 'C' scheme wherever possible additional resource links of platforms such as NPTEL, Swayam are appropriately provided. In an earlier revision of curriculum in the year 2012 and 2016 in Revised scheme 'A' and 'B' respectively, efforts were made to use online contents more appropriately as additional learning materials to enhance learning of students.

In the current revision based on the recommendation of AICTE model curriculum overall credits are reduced to 68, to provide opportunity of self-learning to learner. Learners are now getting sufficient time for self-learning either through online courses or additional projects for enhancing their knowledge and skill sets.

The Principals/ HoD's/ Faculties of all the institute are required to motivate and encourage learners to use additional online resources available on platforms such as NPTEL/ Swayam. Learners can be advised to take up online courses, on successful completion they are required to submit certification for the same. This will definitely help learners to facilitate their enhanced learning based on their interest.

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai Dr Anuradha Muzumdar Dean Faculty of Science and Technology University of Mumbai

Preamble to the Revision of Syllabus in Chemical Engineering

Development in all fields including Chemical Engineering along with use of soft wares for process plant and process engineering, there is demand on academician to upgrade the curriculum in Education. Choice based Credit and grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. The Curriculum must integrate knowledge of the basic and advanced sciences with problem solving and creativity abilities.

The Curriculum must be broad enough to cover all areas from design to operation of Process plants. It should be deep enough to enable the learners to carry out research and develop products to meet rapidly changing needs and demands. The major challenge in the current scenario is to ensure quality to the stakeholders. Accreditation is the principal means of quality assurance in higher education and reflects the fact that in achieving recognition, the institution or program of study is committed and open to external review to meet certain minimum specified standards. The major emphasis of this accreditation process is to measure the outcomes of the program that is being accredited. Program outcomes are essentially a range of skills and knowledge that a student will have at the time of post-graduation from the program.

With these objectives, online meeting was organized on 7th February 2022 which was attended by heads of the departments and subject faculty of affiliating Institutes. An online meeting was organized on 15th February 2022 with the faculty of MGMCET, Kamothe, Navi Mumbai, teaching the post graduate courses. The program objectives and outcomes were thoroughly discussed in line with AICTE guidelines and the core structure of the syllabus was formulated keeping in mind choice-based credit and grading system curriculum along with more emphasis on learning outcomes. Thus, Skilled based laboratories are introduced in appropriate semesters. Views from experts and PG teachers were taken into consideration and final Academic and Exam scheme was prepared with the consent of all the members involved.

The Program Educational Objectives finalized for the Postgraduate program in Chemical Engineering are:

- 1. To prepare the student for advancements in mathematical, scientific, engineering excellency and research.
- 2. To motivate the student to use modern tools for solving real life problems
- 3. To inculcate a professional and ethical attitude, good leadership qualities and commitment to social and environmental responsibilities.
- 4. To prepare the student in achieving excellence which will benefit individually and society at large.

Board of Studies in Chemical Engineering

Dr. Parag R Gogte- Chairman

Dr. Kalpana S. Deshmukh - Member

Dr. Sunil J. Kulkarni - Member

Dr. Ramesh S. Bhande – Member

Dr. Shyamala P. Shingare - Member

Dr. Manisha V. Bagal – Member

Dr. Aparna Tamaskar – Member

SEMESTER I

Course	C N	Teaching	TeachingScheme(ContactHours)			ctHours)	Credits Assigned			
Code	CourseName	Theor	·y	Pra	ict.	Tut.	Theory	Pract.	Tut.	Total
CHC101	Advanced Momentum Transfer	3			-		3			3
CHC102	Advanced Chemical Reaction Engineering	3					3			3
CHPE101X	ProgramElective 1	3			-		3			3
CHPE102X	ProgramElective 2	3			-		3			3
CHIE101X	InstituteElective1	3					3			3
CHL101	ProgramLab-I			2		-		1		1
CHSBL101	Skill Based Lab-I			45	\$			2		2
	Total	15		06	6	-	15	03		18
						Examination	onScheme			
Course				T	Theo	ry	T		Pract	
Code	CourseName	Interna	lAsses	smen	t	End	Exam.	Term	/Ora	Total
		Test-1	Test	t-2 A	Avg	Sem.Ex am	Duration (inHrs)	Work	l	
CHC101	Advanced Momentum Transfer	20	20	1	20	80	3			100
CHC102	Advanced Chemical Reaction Engineering	20	20	2	20	80	3			100
CHPE101X	ProgramElective 1	20	20		20	80	3			100
CHPE102X	ProgramElective 2	20	20	1	20	80	3			100
CHIE101X	InstituteElective1	20	20		20	80	3	-		100
CHL101	ProgramLab-I							25	25	50
CHSBL101	Skill Based Lab-I							50	50	100
	Total			1	100	400		75	75	650
Program Elect	ive 1 (Semester I)									
Advanced Hea (CHPE1011)	at Transfer	Advanced Thermodynamics (CHPE1012)					Process Intensification in Chemical Plants (CHPE1013)			
Program Elect	ive 2 (Semester I)									
Corrosion in Is Control (CHP)	ndustries and its E1021)	Industrial Solid Waste Management (CHPE1022)					Bio Process Engineering(CHPE1023)			
Institute Electi	ive 1 (Semester I)									
ProductLifecy (CHIE1011)	ReliabilityEngineering (CHIE1012)					Management Information System (CHIE1013)				
Design of Exp (CHIE1014)	Operation Research (CHIE1015)					Cyber Security and Laws (CHIE1016)				
Disaster Mana Measures (CHIE1017)	gement and Mitigation	Energy Au (CHIE101		ıd Maı	nage	ement				

SEMESTER II

Course	C N	Teaching	Scheme	Contac	ctHours)	(Credits As	signed		
Code	CourseName	Theor	y]	Pract.	Tut.	Theory	Pract.	Tut.	Total	
CHC201	Advanced Mass Transfer	3				3			3	
CHC202	Advanced Process Control And Dynamics	3				3			3	
CHPE201X	ProgramElective 3	3				3			3	
CHPE202X	ProgramElective 4	3				3			3	
CHIE201X	InstituteElective2	3				3			3	
CHL201	ProgramLab-II			2			1		1	
CHSBL201	SkillBasedLab-II			4 \$			2		2	
	Total	15		06	-	15	03		18	
		ExaminationScheme								
Course				Theor	·y			Pract		
Code	CourseName	Interna	lAssessn	nent	End	Exam.	Term	/Ora	Total	
		Test-1	Test-2	Avg	Sem. Exam	Duration (inHrs)	Work	l		
CHC201	Advanced Mass Transfer	20	20	20	80	3			100	
CHC202	Advanced Process Control And Dynamics	20	20	20	80	3			100	
CHPE201X	ProgramElective 3	20	20	20	80	3			100	
CHPE202X	ProgramElective 4	20	20	20	80	3			100	
CHIE201X	InstituteElective2	20 20		20	80	3			100	
CHL201	ProgramLab-II						25	25	50	
CHSBL201	SkillBasedLab-II				-		50	50	100	
	Total			100	400		75	75	650	

Program Elective 3 (Semester II)

Advanced Computer Aided Design (CHPE2011)	, ,	Advanced Downstream Processes (CHPE2013)
--	-----	--

Program Elective 4 (Semester II)

Industrial Safety and Hazard	Green Chemistry and	Industrial Pollution Control and
Control (CHPE2021)	Engineering (CHPE2022)	Prevention (CHPE2023)

Institute Elective 2 (Semester II)

Project Management (CHIE2011)	Finance Management (CHIE2012)	Entrepreneurship Development and Management (CHIE2013)
Human Resource Management (CHIE2014)	Professional Ethics and CSR (CHIE2015)	Digital Business Management (CHIE2016)
Environmental Management (CHIE2017)		

Note 1:Skill Based Lab- I and II are focused on the learning through experience. SBL shall facilitate the learnerto acquire the fundamentals of practical engineering in his or her specialization in a project-orientedenvironment. The learning through skill based labs can be useful in facilitating their research work andhenceusefulin earlycompletionoftheir dissertation work.

SEMESTER III

Course CourseName		S	eaching cheme(C Iours)	ontact		Credits Assigned				
		Theor	y 1	Pract.	Tut.	Theory	Pract.	Tut.	Total	
CHMP301	MajorProject: Dissertation-I			20			10		10	
	Total 00 20			00	00 10 10					
		ExaminationScheme								
Course	CourseName	Theory					_			
Code	Courservanie	Interna	InternalAssessment E			Exam.D	Term Work	Pract/ Oral	Total	
		Test-1	Test-2	Avg	Sem. Exam	uration(i nHrs)	V V 02 12			
CHMP301	MajorProject: Dissertation-I					100		100		
Total							100		100	

OnlineCreditCourses

Course Code	CourseName	Teaching Scheme(Contact Hours)			Credits A	ssigned		
		Theory Pract. Tut.			Theory	Pract.	Tut.	Total
CHOCC301	OnlineCreditCourse-I							3
CHOCC302	CHOCC302 OnlineCreditCourse-II							3
Total					00	00	00	06

Note 2: It is mandatory to complete the Online Credit Courses (OCC) available on NPTEL / Swayam /MOOC orsimilarplatformapprovedbyUoM. These two courses shall be completed in any semester Ior II or III, but not later end of the Semester III. University shall make a provision that credits earned with OCC- I and OCC- II shall be accounted in the third semester grade-

sheet with actual names of courses. The learner shall be allowed to take up the secourses from his orher institute or rogard the secourses of the secourse of the secourses of the secourse of the second of the seconanisation/industrywherehis/hermajorprojectis carried out. The students shall complete the courses and shall qualify the exam conducted by the respective authorities/ instructor from the The fees for platform. any such courses and the corresponding examination shall be borne by the learner.

OnlineCreditCourse -I

ThelearnershalloptforthecourseinthedomainofResearchMethodology**or**Research&PublicationEthics orIPR. Theopted courseshall be of3creditsof equivalentnumber of weeks.

OnlineCreditCourse-II

Thelearnershalloptforthecourserecommended by Faculty Advisor/Project Supervisor from the institute. The opted course shall be of 3 credits of equivalent number of weeks.

SEMESTER IV

Course Code	CourseName	Teaching Scheme(Contact Hours)			Credits Assigned						
		Theo	ry	Pract.	Tut.	Theory	Pract.	Tut.	Total		
CHMP401	Major Project :Dissertation-II			32		-	16		16		
	Total	32				16		16			
			Examination					ationScheme			
Course		Theory									
Code	CourseName	InternalAssessment			End	Exam.	Term	Pract/	Total		
		Test-1	Test-2	Avg	Sem. Exam	Duration (inHrs)	Work	Oral	_ = = 7444		
CHMP401	MajorProject: Dissertation-II				-		100	100	200		
Total							100	100	200		

Total Credits:68

Note 3: The Dissertation-II submissions hall not be permitted till the learner completes all the requirements ME course.

Note4: The contact hours for the calculation of load of the teacher for Major Project areas follows: Major Project Dissertation I and II-02 Hour/week/student

Semester I							
Course Code	Course Name	Credits					
CHC101	Advanced Momentum Transfer	03					

(Course Hour	S		Credits Assigned				
Theory	Practical	Tutorial	Theory Practical Tutorial Total					
03	-	-	03	-	-	03		

	Theory				Term Work/Practical/Oral			
Interest I	ernal Asses Test-II	sment Average	End Sem Exam	Sem End Sem		PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	•	100

- 1. Physics course involving fluids, Basic concepts of viscosity, stress and strain in fluids.
- 2. Basic fluid flow course involving equation of continuity, motion and related laminar flow problems.
- 3. Dimensional Analysis (Buckingham PI theorem), Types of flows, Fluid Statics.

Course Objectives

- 1. To understand the analogous mechanism of momentum Transport for steady and unsteady flow.
- 2. To perform momentum balance for a given system at macroscopic and microscopic scale
- 3. To solve the governing equations to obtain velocity profiles.
- 4. To model the momentum transport under turbulent conditions
- 5. To study the mechanism of fluidization and flow through Jet and nozzle.
- 6. To learn the flow dynamics of compressible fluids.

Module	Course	No.ofH
No.	Contents	ours
1	Shear stress in laminar flow: Newtonian and non-Newtonian fluids; Rheological models; theories of transport properties of gases and liquids; effect of pressure and temperature.	

	One dimensional momentum transport in laminar flow (shell balance): General method of shell balance approach to momentum transfer problems; momentum flux and velocity distribution for flow of Newtonian and non-Newtonian fluids in pipes, planes, slits and annulus; Fluid flow of two immiscible fluids.	
2	Turbulent flow: basics, Reynolds average Navier-Stokes equations, closure problem, and Boussinesque hypothesis, Prandtl mixing length theory, turbulence models, energy spectrum, turbulent boundary layer, and universal velocity profile.	05
3	Compressible fluids: Flow through variable area- conduits, Flow of gas through a nozzle or orifice (isothermal flow, non isothermal flow), Flow in a pipe (Energy balance for flow of ideal gas, isothermal flow of an ideal gas in a horizontal pipe, Flow with fixed upstream pressure and variable downstream pressure, Non- isothermal flow of an ideal gas in a horizontal pipe, Adiabatic flow of an ideal gas in a horizontal pipe).	Vo
4	Fluid flow in closed Conduits: Friction factors for fully developed laminar, turbulent and transition flow in circular conduits; Friction factors for flow in the entrance to a circular conduit; Friction factors for packed columns.	
5	Macroscopic momentum balances: The macroscopic mass, momentum and mechanical energy balances; Use of macroscopic balances for steady-state problems; Use of macroscopic balances for unsteady-state problems.	
6	Gas-liquid and solid-liquid fluidized beds: Characteristics of particles, Principle of fluidization and mapping of various regimes, Two phase theory of fluidization, Bubbles in fluidized bed, Entrainment and Elutriation, Fast fluidized bed, Mixing, segregation and gas dispersion, Heat and mass transfer in fluidized bed, Solid-liquid fluidized bed and three phase fluidized bed, Design of fluidized bed reactors.	10

On completion of the course the students will:

- 1. Describe origin and importance of Reynolds stresses and estimate values based on simple concepts. Concept of eddy motion scales of turbulence
- 2. Write Bernoulli's equation and solve simple problems related to flow in pipes, orifice venturi meters, weir, pitot tubes, etc.
- 3. Calculatefriction factor and pressure drop for fluid flow in closed conduits.
- 4. Calculate minimum fluidization velocity, terminal setting velocity, velocity void age relationships for fluidized beds. Settling velocities under hindered setting conditions.
- 5. Have knowledge of flow behaviour of compressible fluids.
- 6. Calculate momentum and mechanical energy balances

Assessment

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper:

- Minimum 80% syllabus should be covered in question papers of end semester examination..
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Question paper will comprise of total six question
- Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- Only Four question need to be solved.

- 1. Transport Phenomena, R. B. Bird, W. E. Stewart and E.N. Lightfoot, John Wiley, 1960
- 2. Transport Phenomena A Unified Approach, R.S. Brodkey and H.C. Hershey, McGraw Hill, 1988
- 3. Momentum, Heat and Mass transfer, C.O. Bennet and J.E. Myers, McGraw Hill, 1993

	Semester I	
Course Code	Course Name	Credits
CHC102	Advanced Chemical Reaction Engineering	03

(Course Hour	S	Credits Assigned				
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
03	-	-	03 03				

		Theory			Term V	Work/Prac	ctical/Oral	
Into	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	•	100

- 1. Rate equation of homogeneous and heterogeneous reactions
- 2. Basic knowledge of different method of analysis of kinetic data.
- 3. Design equations of batch, semibatch, recycle and flow reactors

Course Objectives

- 1. To acquire knowledge of non-ideal reactors
- 2. To study the residence time distribution (RTD) in PFR and CSTR
- 3. Tostudyrate equations for fluid solid reactions.
- 4. Tounderstand the concept of heterogeneous reactions.
- 5. To understand the concept of catalytic reactions.
- 6. Tostudy different catalytic reactors.

Module No.	Course Contents	No. ofHou rs
	RTD for Chemical Reactors General characteristics, Measurement of RTD	
1	characteristics, RTD in ideal Reactors, Zero Parameter Models, Segregation Model	06

	Analysis of Non- Ideal reactors Basic Data, one parameter Models, The tank in the series Models, The dispersion model, two parameter model, Testing the model and determining its parameters, Other models of the non ideal reactors using the CSTR's and	
2	PFR's using the RTD	06
3	Rate equation for Fluid- Solid reactions Rate of the absorption, desorption, surface reaction, synthesizing rate law, mechanism and rate limiting steps, design of the reactors for the gas solid reactions, heterogeneous data analysis for the reactor designs, catalysts deactivation, moving bed reactors	06
4	External diffusion effects on the Heterogeneous Reactions Binary diffusion, External resistance to Mass Transfer, The shrinking core model	06
5	Diffusion and Reaction in Porous Catalysts Diffusion and Reactions in spherical catalyst pellets, Internal effectiveness factor, Overall effectiveness factor, Estimation of diffusion and reaction limited regimes, mass transfer and reaction in packed bed, The determination of limiting situation from reaction data	08
6	Design of Heterogeneous Catalytic Reactors Isothermal and adiabatic fixed bed reactors, Non- Isothermal, Non- adiabatic fixed bed reactors, slurry reactors, trickle bed reactors	07

On completion of the course the students will:

- 1. apply knowledge of RTD in design of chemical reactors.
- 2. analyze and design different non ideal reactors.
- 3. able to predict which controlling mechanism offer resistance to overall reaction rate.
- 4. analyze the external diffusion effects on the heterogeneous reactions.
- 5. able to determine the different properties of catalyst
- 6. analyze and design heterogeneous catalytic reactors.

Assessment

Internal:

Assessmentconsistsoftwotestsoutofwhich; one should be compulsory class test and the other is either a class test as storius assignment on live problems or course project.

EndSemesterTheoryExamination:

Someguidelines for setting up the question paper:

- Minimum80% syllabus should be covered in question papers of ends emester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Questionpaperwillcompriseoftotalsix question
- Allquestioncarryequal marks

- Questionswillbemixedinnature(forexamplesupposedQ.2haspart(a)frommodule3thenpart(b)willb e fromanymoduleotherthanmodule 3)
- OnlyFourquestionneedtobesolved.

- 1. "Chemical Reaction Engineering" by Octave Levenspiel
- 2. "Chemical Engineering Kinetics" by J M Smith
- 3. "Elements of Chemical Reaction Engineering" by H. Scott Fogler

Semester I (Program Elective I)					
Course Code	Course Name	Credits			
CHPE1011	Advanced Heat Transfer	03			

(Course Hour	'S	Credits Assigned				
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
03	-	-	03 03				

		Theory			Term V	Work/Prac	ctical/Oral	
Into	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

- 1. Engineering Mathematics.
- 2. Fluid Flow.
- 3. Basic Course on Heat Transfer.
- 4. Transport Phenomena.

Course Objectives

- 1. To understand the fundamentals of heat transfer and its applications.
- 2. To analyze heat transfer in Newtonian and Non-Newtonian fluids.
- 3. To study heat transfer in industrial process equipment.
- 4. To familiarize with the design heat transfer equipment such as condensers, reboilers and evaporators.
- 5. To understand the mechanisms of heat transfer in packed, fluidized and moving bed reactors.
- 6. To study the design of furnaces and the fundamentals of electrical heating.

Module	Course Contents	No. of				
No.		Hours				
1	Overview of Heat Transfer and its Industrial Applications	04				
	Introduction and importance of the subject. Relevance of subject in industrial					
	environment. Modes of heat transfer. Dissipation of energy in industry.					
	Concept of flow patterns and its uses in industry.					
2	Heat Transfer in Newtonian and Non-Newtonian Fluids	09				
	Analogy between momentum and heat transfer. Comparative study of					

	Newtonian and Non- Newtonian fluid in relation to heat transfer. Newtonian and Non- Newtonian heat transfer in circular tubes, coils and other configurations. Non- Newtonian fluid heat transfer in PFR, CSTR and concept of vibrating / oscillating heat transfer.	
3	Heat Transfer in Industrial Process Equipment	06
	Detailed study of Air-Cooled Condensers. Regenerators and Heat Transfer in	
	Agitated Vessels.	
4	Design of Heat Transfer Equipment	08
	Design aspects of Condensers, Reboilers and Evaporators.	
5	Applications of Heat Transfer in Fluidization Engineering	05
	Mechanisms of heat transfer in packed, fluidized and moving bed reactors, heat	
	transfer in dilute phase transport.	
6	Heat Transfer in Furnaces and Electrical Heating	07
	Heat transfer in furnaces, design methods for furnaces, pipe still, thermo	
	siphoning and other industries. Electrical heating.	

On completion of the course the students will be able to:

- 1. outline the industrial applications of heat transfer.
- 2. compare heat transfer in Newtonian and Non-Newtonian fluids.
- 3. analyze heat transfer in industrial process equipment.
- 4. design heat transfer equipment such as condensers, reboilers and evaporators.
- 5. predict heat transfer coefficients in packed, fluidized and moving bed reactors.
- 6. apply the design methods for furnaces and explain electrical heating.

Assessment

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper:

- Minimum 80% syllabus should be covered in question papers of end semester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Question paper will comprise of total six questions.
- All questions carry equal marks.
- Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- Only Four questions need to be solved.

- 1. Fluid Dynamics and Heat Transfer, J.G. Knudsen and D.L. Katz, McGraw-Hill, 1958.
- 2. Process Heat Transfer, G.F. Hewitt, G.L. Shires and T.R. Bott, CRC Press, 1994.

- 3. Fluidization, M. Leva, McGraw-Hill, 1959.
- 4. Fluidization, J.F. Davidson, R. Clift, D. Harrison, Second Edition, Academic Press, 1985.
- 5. Fluidization Engineering, D. Kunii and O. Levenspiel, Second Edition, Butterworth-Heinemann, 1991.
- 6. Non- Newtonian Flow and Heat Transfer, A.H.P. Skelland, Wiley, 1967.
- 7. Non-Newtonian Flow and Applied Rheology: Engineering Applications, R.P. Chhabra and J.F. Richardson, Second Edition, Elsevier Science, 2008.
- 8. Heat Transfer to Non-Newtonian Fluids : Fundamentals and Analytical Expressions, A. Shenoy, Wiley-VCH, 2018.
- 9. Advanced Heat Transfer, G.F. Naterer, Third Edition, CRC Press, 2022.

Semester I (Program Elective I)					
Course Code	Course Name	Credits			
CHPE1012	AdvancedThermodynamics	03			

(Course Hour	S	Credits Assigned				
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
03	-	-	03	-	-	03	

		Theory			Term V	Work/Prac	ctical/Oral	
Interest I	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

- 1. Basic course in mathematics and thermodynamics
- 2. Physical Chemistry, kinetic theory of gases,
- 3. Ideal gas law, vapor pressure and Raoult's law.

Course Objectives

- 1. Tolearnadvancedtopicsofclassicalthermodynamics withemphasisonbasicconcepts,laws,and thermodynamicrelationships
- 2. To compute thermodynamic properties from volumetric data.
- 3. Toestimate fugacities in gas mixtures based on various cubical equation of states.
- 4. To analyze various thermodynamic properties in liquid mixtures.
- 5. Toestimate fugacities in liquid mixtures based on variousModelsandTheoriesofSolutions
- 6. Toanalyze phase equilibrium involving solids

Module No.	Course Contents	No.ofHo urs
1	ClassicalThermodynamicsofPhaseEquilibria: Gibbs- Duhemequation,chemicalpotential,fugacityandactivitycoefficient.PartialMolarProperties.	04
2	ThermodynamicProperties fromVolumetricData: Thermodynamicproperties withindependent variables P&T, fugacity of a componentina mixture at moderate pressures, thermodynamic properties withindependent variables Vand	

	T,fugacityofcomponentinamixtureaccordingtoVanderWaalsequation.	
	FugacitiesinGasmixtures:	00
3	Lewisfugacityrule, Equation of State, Virial equations of state, Extension to mixtures, fugacities from virial equation, calculation of virial coefficients from potential functions, third	08
	virialcoefficients, Virialcoefficients from corresponding states correlation, fugacities from generalized charts for pure components, fugacities from an empirical equation of state.)
	Thermodynamic Properties inLiquidmixtures:	
4	ExcessfunctionsandfundamentalrelationsofExcessfunction,activityandactivitycoeff icient, activity coefficients from excess functions in binary mixtures, application	
	of GibbsDuhum equation, testing of equilibrium data, Wohl's expansion for	
	excess Gibbs energy, equations of Van der Waal, Wilson and Renon	
	equations, Margules equations, Van	
	Laarequation, UNIQUAC and UNIFAC methods for estimation of activity coefficient.	
	Thermodynamiccriteriaofmiscibility. Azeotropes and their existence.	
	FugacitiesinLiquidMixtures- ModelsandTheoriesofSolutions:	
5	Theoryof Vanlaar, Scatchard – Hildelrandtheory,	06
	LattictheoryWilson'sempiricalextension oftheFlory–Huggin'sequation,twoliquidtheory,chemicaltheory	
	Mixture phase equilibrium involving solids: Solubility of solid in liquid and	
	supercritical fluid, Solid Liquid Equilibrium, Partitioning of solid between two	
6	liquid phases, distribution coefficient, Freezingpoint depression of solvent due to presence of solute, freezing point of liquid mixturesin presence of solid.	

On completion of the course the students will:

- 1. analyze various thermodynamic properties and their correlations.
- 2. compute thermodynamic properties of individual species in a mixture.
- 3. evaluate fugacities in gas mixtures based on various cubical equation of states.
- 4. estimate activity and activity coefficient in liquid mixtures.
- 5. evaluate fugacities in liquid mixtures using variousModelsandTheoriesofSolutions.
- 6. analyze phase equilibrium in the presence of solid.

Assessment

Internal:

Assessmentconsistsoftwotestsoutofwhich; one should be compulsory class test and the other is either a class test as signment on live problems or course project.

EndSemesterTheoryExamination:

Someguidelinesforsettingupthequestionpaper:

• Minimum80% syllabus should be covered in question papers of ends emester examination.

- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Questionpaperwillcompriseoftotalsixquestion
- Allquestioncarryequal marks
- Questionswillbemixedinnature(forexamplesupposedQ.2haspart(a)frommodule3thenpart(b)willb e fromanymodule otherthanmodule 3)
- OnlyFourquestionneedtobesolved.

- 1. J. M. Smith & H. C. Van Ness, "Introduction to Chemical Engineering Thermodynamics"
- 2. Stanley I. Sandler, "Chemical, Biochemical and Engineering Thermodynamics"
- 3. Savein Stolen, Tor Grande, Neil Allan, "Chemical Thermodynamics of Materials"
- 4. K.V.Narayanan," Chemical Engineering Thermodynamics"
- 5. Kenneth Denbigh, "Principles of Chemical Equilibrium"
- 6. Y. V. C. Rao, "Chemical Engineering thermodynamics"
- 7. B. F. Dodge, "Chemical Engineering Thermodynamics"
- 8. T. E. Daubert, "Chemical Engineering Thermodynamics" 9. Glasstone S., "Thermodynamics for Chemists"
- 10. B. G. Kyle, "Chemical and Process Thermodynamics

Semester I (Program Elective I)					
Course Code	Course Name	Credits			
CHPE1013	ProcessIntensificationInChemicalPlants	03			

(Course Hour	S	Credits Assigned				
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
03	-	-	03	-	-	03	

		Theory			Term	Work/Pra	ctical/Oral	
Interest-I	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

• BasicsofUnitChemicalEngineering

Course Objectives

- 1. TounderstandtheconceptofProcessIntensification.
- 2. To provide an understanding of basic operating principles of a variety of intensified process equipments
- 3. Toprovideknowledgeofapplicationofintensificationtechniquestoarangeof processes
- 4. To understand scale up issues in the chemical process.
- 5. To gain the scientific background, techniques and applications of intensification in the process industries
- 6. To Identify and solve process challenges using intensification technologies.

Module No.	Course Contents					
1	Philosophyandprinciplesofprocessintensification(PI): Introduction, philosophyandopportunities of PI, Types of PI equipments, Equipments and dmethods. Micro Process Technology in process intensification: Introduction to microprocess technology, Process Intensification by Microreactors, Hydrodynamics and transport in microchannel based microreactor	07				
2	Highgravityinchemicalprocessing: Historicaldevelopment, Fundamentals, mechanicaldesign, applications, scale-upandcommercialuse, future, Thespinning disc reactor. Process intensification in extraction: Introduction and Principles, Supercritical extraction for process intensification,	07				

3	Multifunctionalheatexchanger: Introduction, Compactheatexchangertechnology, Singlephaseflow, Heattransferandm asstransfer, applications.	06
4	Micro Microtechnology, effect of miniaturization, microfabrication, implementation.	05
5	Structuredcatalysisandreactors: Introduction, overview of structured reactors, Gasphase reactions, multiphase reactions.	05
6	Enhanced fields: Energy based intensifications, Sono-chemistry, Basics of cavitation, Cavitation Reactors, Flow over a rotating surface, Hydrodynamic cavitation applications, Cavitation reactor design, Nusselt-flow model and mass transfer, The Rotating Electrolytic Cell, Microwaves, Electrostatic fields, Sono-crystallization, Reactive separations, Supercritical fluids. Process intensification by membrane: Introduction to membrane and its principles, Membrane engineering in process intensification	09

On completion of the course the students will:

- 1. understand the necessity of Process Intensification
- 2. applyprocessintensificationinindustrialprocesses
- 3. implementmethodologiesforprocessintensification
- 4. understandscaleupissuesinthechemicalprocess
- 5. knowthescientificbackground,techniquesandapplicationsofintensificationintheprocessindustries
- 6. be able to identify and solve process challenges using intensification technologies

Assessment

Internal:

Assessmentconsistsoftwotestsoutofwhich; one should be compulsory class test and the other is either a class test are assignment on live problems or course project.

EndSemesterTheoryExamination:

Someguidelines for setting up the question paper:

- Minimum80% syllabus should be covered in question papers of ends emester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Questionpaperwillcompriseoftotalsixquestion
- Allquestioncarryequal marks
- Questionswillbemixedinnature(forexamplesupposedQ.2haspart(a)frommodule3thenpart(b) willbe fromanymoduleotherthanmodule 3)
- OnlyFourquestionneedtobesolved.

- 1. Reengineeringthechemicalprocessingplant, Andrejstankiewiez, Jacob A., Moulin, Marcel Dekker Inc. New York, Basel.
- $2. \quad Compact brazed plate heat exchanger. J.M., Navarro, A., Bailly, Elsvier, Paris. 1994.$

- 3. Compactheatexchanger fortheprocessindustry.R.K.,Shah,BegellHouse,1997.
- 4. Microreactors, EhrfeldW., HesselV., Lowe, H., Weinheim: Willey-VCH, 2000.
- 5. Conceptualdesignofchemicalprocesses.J.M.,Douglas,McGraw-Hill,NewYork
- 6. Reay D., Ramshaw C., Harvey A., Process Intensification, Butterworth Heinemann, 2008.

Semester I (Program Elective II)

Course Code	Course Name	Credits
CHPE1021	Corrosion in industry and its control	03

(Course Hour	'S	Credits Assigned				
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
03	-	-	03	-	-	03	

		Theory			Term Work/Practical/Oral			
Into Test-I	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

Prerequisites

- 1. MaterialscienceandEngineering
- 2. Advancedmaterials

Course Objectives

- $1. \quad To understand the knowledge\ of corrosion prevention methods for designing process in dustries.$
- 2. To study design aspect for corrosion prevention
- 3. To design cathodic and anodic protection systems
- 4. To study corrosion in engineering materials
- 5. To study corrosion inspection and monitoring
- 6. To study corrosion and Control methods in industrial environment.

Module	Course Contents	No.ofHo
No.		urs
1	Introduction: The economics aspects of corrosion. Case studies. Some examples of catastrophic corrosion failures.	04
2	Design aspectstominimizethecorrosion, Temporary corrosion prevention methods and use of inhibitor sinindustry.	05

3	Design of cathodic and anodic protection systems. Selection of the material for sacrificialanodes—	08
	anodesforimpressed current methods of protection. Corrosion in pipelines, internal and external protection of pipeline.	
5	Corrosion of Stainless Steel, Plastics and Elastomers Principal engineering materials forequipment, Corrosion control using the exotic materials. Fabrication of special alloys, Stainless Steel, less common metals, composite materials. Welding techniques and corrosion behavior of weld metals, Plastics and Corrosion of Plastics and Elastomers. Corrosion in spection, instrumentation and monitoring, Corrosion testing. Use of DSA in electrochemical industries, Electrochemical Machining, Chemical cleaning of equipment.	08
6	Corrosion and Control methods for water supply systems, cooling systems heavy watersystems, underground and marine environments, Biological corrosion. Corrosion nuclearreactorsandboilers. Corrosionofreinforcement's concrete structure. Corrosion controlin Industrial Environments.	07

On completion of the course the students will:

- 1. have knowledge of economics aspects of corrosion
- 2. have knowledge of design aspectstominimizethecorrosion
- 3. design of cathodic and anodic protection systems
- 4. acquire the knowledge of corrosion in different materials
- 5. apply the knowledge of Corrosioninspection, instrumentation and monitoring
- 6. acquire the knowledge of Corrosion and Control methods in IndustrialEnvironments

Assessment

Internal:

Assessmentconsistsoftwotestsoutofwhich; one should be compulsory class test and the other is either a class test tor assignment on live problems or course project.

EndSemesterTheoryExamination:

Someguidelinesforsettingupthequestionpaper:

- Minimum80% syllabus should be covered in question papers of end semester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in thesyllabus.
- Questionpaperwillcompriseoftotalsixquestion
- Allquestioncarryequalmarks
- Questionswillbemixedinnature(forexamplesupposedQ.2haspart(a)frommodule3thenpart(b)willbe fromanymodule otherthanmodule 3)
- OnlyFourquestionneedtobesolved.

- 1. M.G.Fontana, Corrosion Engineering, TataMcGraw-Hill(NewDelhi), 3rdEd.
- $2. \quad G.L. Shvartz and M.M. Kristal, Corrosion of Chemical Apparatus (1959) Chapman Hall Ltd. London \\$

Semester I (Program Elective II)						
Course Code	Course Name	Credits				
CHPE1022	Industrial Solid Waste Management	03				

	Course Hours	S	Credits Assigned			
Theory	Practical	Tutorial	Theory Practical Tutorial Total			
03	-	-	03	-	-	03

		Theory			Term Work/Practical/Oral			
Int Test-I	ternal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

- 1. Management and engineering for waste disposal.
- 2. Waste treatment cycles.
- 3. Basics of unit operations.

Course Objectives

- 1. To identify key sources, typical qualities generated, composition and properties of solid and hazardous wastes.
- 2. To identify waste disposal or transformation techniques (landfill).
- 3. To recognize the relevant, regulations that apply for facilities used for disposal and destruction of waste.
- 4. To identify and design solid and hazardous waste landfills including closure, post closure and rehab uses.
- 5. To estimate typical waste disposal costs.
- 6. To identify recycling and reuse option (composting, source separation and reuse of shredded tyres, recycled glass, fly ash).

Modu le No.	Course Contents	Contact Hours
	Introduction:	
	Introduction of solid waste. Classification of solid waste. Importance of solid waste	

1	disposal, engineering principles and management.	06
2	Sources, quantities generated and physicochemical properties of MSW and hazardous waste. Solid waste management pyramid, key technologies for SWM. (Collection, transformation, landfills, composting).	08
3	Types of landfills, basic geotechnical considerations, earthen liners for waste disposal. Clay mineralogy, factors controlling hydraulic conductivity, methods to measure K in the lab and field, compatibility of liner materials to chemicals in leachate.	06
4	Containment and liquid transport in soil liners for RCRA liners (Advection and diffusion). Geosynthesis for waste disposal. Overview, geomembrane leakage, transport and structural stability. Geosynthetic clay liners (GCLS).	06
5	Design of leachate, Collection system for landfills, Use of gravel and GDLs. Operational aspects of MSW landfills (daily cover, leachate disposal, GW monitoring)MSW toenergy (production of biogas).	07
6	System landfill gas collection and leachate recirculation system design. Landfill final cap design and water balance (demonstration of HELP Model) modelling. Review problems.	06

On completion of the course the students will:

- 1. understand engineering principles and management regarding solid waste disposal.
- 2. understand physicochemical properties of MSW and hazardous waste.
- 3. determine different factors related to waste disposal.
- 4. understand different waste disposal techniques.
- 5. manage economical and environmental regulations for municipal, commercial and industrial solid waste in India and all over the world.
- 6. apply the knowledge of environmental engineering to convert industrial solid waste into usable energy at minimum operating cost.

Assessment

Internal:

Assessment consists of two tests out of which; one should be a compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper:

• Minimum 80% syllabus should be covered in question papers of end semester examination.

- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Question paper will comprise of total six question
- All question carry equal marks
- Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- Only Four question need to be solved.

- 1. Integrated solid waste management by Tehobanoglous/Thusen/Vigil publisher McGraw Hill.
- **2.** Hazardous waste management, 2nd Edition MD LaGrega, PL Buckingham and J.C.Evans McGraw Hill publisher.

Semester I (Program Elective II)						
Course Code	Course Name	Credits				
CHPE1023	Bioprocess Engineering	03				

(Course Hour	S	Credits Assigned				
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
03	-	-	03 - 03				

		Theory			Term Work/Practical/Oral			
Interest I	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

- 1. Application of unit operations in microbes.
- 2. Alternateofchemicalreactionstobioreactionsfromcostandqualitypointofview
- 3. Alternateofsynthetic products by natural products

Course Objectives

- $1. \quad To establish the reaction kinetics\ model for all types of chemical reaction through bioroute.$
- 2. Toreplacethechemicalcatalystbybio-catalysttoreducethe costofproduction.
- 3. Tostudythecellstructure,typeofcells,self-fractionationofcentrifugation.
- 4. To study designaspectsofbio-reactorversuschemicalreactor.
- 5. To analyze Effectofaerationand agitation during the course of processes.
- 6. To understand Celldoctrineandbiophysics study.

Modul	Course	No.ofH
e No.	Content	ours
	S	
	Introduction:	
1	Definition of BPE and its importance to chemical engineers, industrial operation setc. What is bi	05
	oprocess engineer, bio-technology and bio-process engineering. Bioprocess	
	regulationconstraints. History of Pencillin. How biologists and engineers work to gether.	

Anengineer'sprospective,anoverviewofbiologicalbasics,biophysicsandcelldoctrine. The structure of all, pro-caryotic cells, Eucaryotic cells, self fractionation,example:analysisofparticlemotioninanycentrifugation.Importantcelltypes, bacteria yeast, moles, algae and protozoa, animal and plant cells, cell constructionand cellnutrients. Chemicalsoflife: Lipid, fatty acids and related lipids, fats soluble vitamins steroids and other liquids,sugars and poly sacchraides. D glucose and the mono saccharides. Disaccharides topoly saccharides, cellulose and starch, amino acids and proteins. Amino acids buildingblocksandpolypeptides. Kineticsofenzymecatalysed reaction: The enzyme substrate complex and enzyme action. Simple enzyme kinetics with oneand two substrate. Michaelis- Menten kinetics evaluation of parameters in Michaelis-Menten equation. Kinetics for reversible reaction, two substrate reactions and cofactoractivation. Determination of elementary step rate constant, other patterns of substrateconcentratedependence,modulationand regulationofenzymaticactivity,other influences on enzyme activities, effect of pH and temperature on enzyme and itskinetics. Enzyme deactivation Metabolicstoichiometryandenergetics: Thermodynamics principles, metabolic reaction coupling, ATP and NAD carboncatabolism, differentpathways. Respirationcyclesandchains. Biosynthesisofsmallm oleculeandmacromolecule, transportacrosscellmembrane. Kineticsofsubstrateutilization, productformationandbiomassproductionincell culture. Idealreactorsfor kineticsmeasurement, ieidealbatch CSTR, CSTRin series, FEDbackplugflow, kineticsofbalanced growth, transientgrowth kinetics, productformationk inetics. Structured kineticmodule, productformationkinetics		BasicconceptofBiology:	
Lipid, fatty acids and related lipids, fats soluble vitamins steroids and other liquids, sugars and poly sacchraides. D glucose and the mono saccharides. Disaccharides topoly saccharides, cellulose and starch, amino acids and proteins. Amino acids buildingblocksandpolypeptides. Kineticsofenzymecatalysed reaction: The enzyme substrate complex and enzyme action. Simple enzyme kinetics with oneand two substrate. Michaelis- Menten kinetics evaluation of parameters in Michaelis-Menten equation. Kinetics for reversible reaction, two substrate reactions and cofactoractivation. Determination of elementary step rate constant, other patterns of substrateconcentratedependence, modulationand regulationofenzymaticactivity, other influences on enzyme activities, effect of pH and temperature on enzyme and itskinetics. Enzyme deactivation Metabolicstoichiometryandenergetics: Thermodynamics principles, metabolic reaction coupling, ATP and NAD carboncatabolism, different pathways. Respiration cyclesandchains. Biosynthesis of smallm olecule and macromolecule, transportacross cell membrane. Kineticsof substrate utilization, product formation and biomass production in cell culture. Ideal reactors for kinetics measurement, ieideal batch CSTR, CSTR in series, FEDback plugflow, kinetics of balanced growth, transient growth kinetics, product formation kinetics kinetics and the mono saccharides.	2	Anengineer'sprospective, anoverview of biological basics, biophysics and cell doctrine. The structure of all, pro-caryotic cells, Eucaryotic cells, self fractionation, example: analysis of particle motion in any centrifugation. Important cell types, bacteria yeast, moles, algae and protozoa, animal and plant cells, cell construction and	06
Lipid, faity actus and related lipids, faits soluble vitalinis steroids and other liquids, sugars and poly saccharides. D glucose and the mono saccharides. Disaccharides topoly saccharides, cellulose and starch, amino acids and proteins. Amino acids buildingblocksandpolypeptides. Kineticsofenzymecatalysed reaction: The enzyme substrate complex and enzyme action. Simple enzyme kinetics with oneand two substrate. Michaelis- Menten kinetics evaluation of parameters in Michaelis-Menten equation. Kinetics for reversible reaction, two substrate reactions and cofactoractivation. Determination of elementary step rate constant, other patterns of substrateconcentratedependence, modulationand regulationofenzymaticactivity, other influences on enzyme activities, effect of pH and temperature on enzyme and itskinetics. Enzyme deactivation Metabolicstoichiometryandenergetics: Thermodynamics principles, metabolic reaction coupling, ATP and NAD carboncatabolism, different pathways. Respiration cyclesandchains. Biosynthesis of small molecule and macromolecule, transportacross cell membrane. Kinetics of substrate utilization, product formation and biomass production in cell culture. Ideal reactors for kinetics measurement, ieideal batch CSTR, CSTR in series, FEDback plugflow, kinetics of balanced growth, transient growth kinetics, product formation kinetics.			06
Kineticsofenzymecatalysed reaction: The enzyme substrate complex and enzyme action. Simple enzyme kinetics with oneand two substrate. Michaelis- Menten kinetics evaluation of parameters in Michaelis-Menten equation. Kinetics for reversible reaction, two substrate reactions and cofactoractivation. Determination of elementary step rate constant, other patterns of substrateconcentratedependence,modulationand regulationofenzymaticactivity,other influences on enzyme activities, effect of pH and temperature on enzyme and itskinetics. Enzyme deactivation Metabolicstoichiometryandenergetics: Thermodynamics principles, metabolic reaction coupling, ATP and NAD carboncatabolism, different pathways. Respiration cycles and chains. Biosynthesis of small molecule and macromolecule, transport across cellmembrane. Kinetics of substrate utilization, product formation and biomass production in cell culture. Ideal reactors for kinetics measurement, ieideal batch CSTR, CSTR in series, FED back plugflow, kinetics of balanced growth, transient growth kinetics, product formation k	3	liquids, sugars and poly sacchraides. D glucose and the mono saccharides. Disaccharides topoly saccharides, cellulose and starch, amino acids and proteins. Amino acids	VO
The enzyme substrate complex and enzyme action. Simple enzyme kinetics with oneand two substrate. Michaelis- Menten kinetics evaluation of parameters in Michaelis-Menten equation. Kinetics for reversible reaction, two substrate reactions and cofactoractivation. Determination of elementary step rate constant, other patterns of substrateconcentratedependence, modulationand regulationofenzymaticactivity, other influences on enzyme activities, effect of pH and temperature on enzyme and itskinetics. Enzyme deactivation Metabolicstoichiometryandenergetics: Thermodynamics principles, metabolic reaction coupling, ATP and NAD carboncatabolism, different pathways. Respiration cycles and chains. Biosynthesis of small molecule and macromolecule, transport across cell membrane. Kinetics of substrate utilization, product formation and biomass production in cell culture. Ideal reactors for kinetics measurement, ieideal batch CSTR, CSTR in series, FED back plugflow, kinetics of balanced growth, transient growth kinetics, product formation kinetics, product formati			
oneand two substrate. Michaelis- Menten kinetics evaluation of parameters in Michaelis-Menten equation. Kinetics for reversible reaction, two substrate reactions and cofactoractivation. Determination of elementary step rate constant, other patterns of substrateconcentratedependence, modulationand regulationofenzymaticactivity, other influences on enzyme activities, effect of pH and temperature on enzyme and itskinetics. Enzyme deactivation Metabolicstoichiometryandenergetics: Thermodynamics principles, metabolic reaction coupling, ATP and NAD carboncatabolism, different pathways. Respiration cycles and chains. Biosynthesis of smallm olecule and macromolecule, transport across cellmembrane. Kinetics of substrate utilization, product formation and biomass production in cell culture. Ideal reactors for kinetics measurement, ie ideal batch CSTR, CSTR in series, FED back plugflow, kinetics of balanced growth, transient growth kinetics, product formation k		· · · · · · · · · · · · · · · · · · ·	
and cofactoractivation. Determination of elementary step rate constant, other patterns of substrateconcentratedependence, modulationand regulationofenzymaticactivity, other influences on enzyme activities, effect of pH and temperature on enzyme and itskinetics. Enzyme deactivation Metabolicstoichiometryandenergetics: Thermodynamics principles, metabolic reaction coupling, ATP and NAD carboncatabolism, different pathways. Respiration cycles and chains. Biosynthesis of small molecule and macromolecule, transport across cellmembrane. Kinetics of substrateutilization, product formation and biomass production in cell culture. Ideal reactors for kinetics measurement, ieideal batch CSTR, CSTR in series, FED back plugflow, kinetics of balanced growth, transient growth kinetics, product formation kinetics.	4	, , , , , , , , , , , , , , , , , , ,	07
of substrateconcentratedependence, modulation and regulation of enzymatic activity, other influences on enzyme activities, effect of pH and temperature on enzyme and itskinetics. Enzyme deactivation Metabolicstoichiometry and energetics: Thermodynamics principles, metabolic reaction coupling, ATP and NAD carbon catabolism, different pathways. Respiration cycles and chains. Biosynthesis of small molecule and macromolecule, transport across cellmembrane. Kinetics of substrateutilization, product formation and biomass production in cell culture. Ideal reactors for kinetics measurement, ieideal batch CSTR, CSTR in series, FED back plugflow, kinetics of balanced growth, transient growth kinetics, product formation kinetics.		Michaelis-Menten equation. Kinetics for reversible reaction, two substrate reactions	
influences on enzyme activities, effect of pH and temperature on enzyme and itskinetics. Enzyme deactivation Metabolicstoichiometryandenergetics: Thermodynamics principles, metabolic reaction coupling, ATP and NAD carboncatabolism, differentpathways. Respiration cycles and chains. Biosynthesis of small molecule and macromolecule, transport across cellmembrane. Kinetics of substrate utilization, product formation and biomass production in cell culture. Ideal reactors for kinetics measurement, ieideal batch CSTR, CSTR in series, FED back plugflow, kinetics of balanced growth, transient growth kinetics, product formation kinetics.		* *	
itskinetics.Enzyme deactivation Metabolicstoichiometryandenergetics: Thermodynamics principles, metabolic reaction coupling, ATP and NAD carboncatabolism,differentpathways.Respirationcyclesandchains.Biosynthesisofsmallm oleculeandmacromolecule,transportacrosscellmembrane. Kineticsofsubstrateutilization,productformationandbiomassproductionincell culture.Idealreactorsfor kineticsmeasurement,ieidealbatchCSTR,CSTRin series, FEDbackplugflow,kineticsofbalancedgrowth,transientgrowthkinetics,productformationk			
Metabolicstoichiometryandenergetics: Thermodynamics principles, metabolic reaction coupling, ATP and NAD carboncatabolism,differentpathways.Respirationcyclesandchains.Biosynthesisofsmallm oleculeandmacromolecule,transportacrosscellmembrane. Kineticsofsubstrateutilization,productformationandbiomassproductionincell culture.Idealreactorsfor kineticsmeasurement,ieidealbatchCSTR,CSTRin series, FEDbackplugflow,kineticsofbalancedgrowth,transientgrowthkinetics,productformationk		*	
Thermodynamics principles, metabolic reaction coupling, ATP and NAD carboncatabolism, different pathways. Respiration cycles and chains. Biosynthesis of small molecule and macromolecule, transport across cell membrane. Kinetics of substrate utilization, product formation and biomass production in cell culture. Ideal reactors for kinetics measurement, ieideal batch CSTR, CSTR in series, FED back plugflow, kinetics of balanced growth, transient growth kinetics, product formation kinetics.			
carboncatabolism,differentpathways.Respirationcyclesandchains.Biosynthesisofsmallm oleculeandmacromolecule,transportacrosscellmembrane. Kineticsofsubstrateutilization,productformationandbiomassproductionincell culture.Idealreactorsfor kineticsmeasurement,ieidealbatchCSTR,CSTRin series, FEDbackplugflow,kineticsofbalancedgrowth,transientgrowthkinetics,productformationk			
culture.Idealreactorsfor kineticsmeasurement,ieidealbatchCSTR,CSTRin series, FEDbackplugflow,kineticsofbalancedgrowth,transientgrowthkinetics,productformationk	5	carboncatabolism,differentpathways.Respirationcyclesandchains.Biosynthesisofsmallm	08
FEDbackplugflow, kinetics of balanced growth, transient growth kinetics, product formation long			
	6		07

On completion of the course the students will:

- 1. have knowledge of bioprocess engineer, bio-technology and bio-processengineering
- 2. have knowledge of basic structure of cell and classification of microorganism
- 3. acquire the knowledge of basic chemicals of life.
- 4. explain the kinetics of enzyme catalysed reaction in free and immobilized states. They will also able to organise the production of microbial enzymes and operate variables affecting the production process.
- 5. acquire the knowledge of Thermodynamics principles, metabolic reaction coupling, ATP and NAD carboncatabolism,differentpathways
- 6. design and analyse bioreactor and design parameters.

Assessment

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test as sign menton live problems or course project.

EndSemesterTheoryExamination:

Someguidelinesforsettingupthequestionpaper:

- Minimum80% syllabus should be covered in question papers of end semester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in thesyllabus.
- Questionpaperwillcompriseoftotalsixquestion
- Allquestioncarryequalmarks
- Questionswillbemixedinnature(forexamplesupposedQ.2haspart(a)frommodule3the npart(b)willbe fromanymodule otherthanmodule 3)
- OnlyFourquestionneedtobesolved.

- 1. Biochemical Engineering Fundamentals by James E Bailey and David F Ollis. Edition 2^{nd} . Tata McGrawHill.
- 2. BioprocessEngineeringBasic conceptsbyMichael LShuler andFikretKargi.Edition2nd.PHILearningPrivate Limited.

Semester I (Institute Elective I)					
Course Code	Course Name	Credits			
CHIE1011	Product Lifecycle Management	03			

(Course Hour	'S	Credits Assigned				
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03	-	-	03	-	-	03	

Theory					Term Work/Practical/Oral			
Interest I	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

Course Objectives

- 1. Tofamiliarizethestudentswiththe need,benefitsandcomponentsofPLM
- 2. Toacquaintstudents withProductDataManagement&PLMstrategies
- 3. Togiveinsightsintonewproductdevelopmentprogramandguidelinesfordesigninganddevelopingaproduct
- 4. TofamiliarizethestudentswithVirtualProductDevelopment

Module No.	Course Contents							
	Introduction to Product Lifecycle Management (PLM):Product Lifecycle	10						
01	Management (PLM), Need for PLM, Product Lifecycle Phases, Opportunities of							
	Globalization, Pre-PLM							
	Environment, PLMP aradigm, Importance & Benefits of PLM, Widespread Impact of PLM, Foc							
	usandApplication,A PLMProject,Startingthe PLMInitiative,PLMApplications							
	PLMStrategies: Industrial strategies, Strategy elements, its identification, selection and imple							
	mentation, Developing PLMV ision and PLMS trategy, Changemanagement for PLM.							
	Product Design: Product Design and Development Process, Engineering Design,	09						
	Organization							
	andDecompositioninProductDesign,TypologiesofDesignProcessModels,ReferenceModel							
	Product Design in the Context of the Product Development Process, Relation with the							
02	DevelopmentProcess Planning Phase, Relation with the Post design Planning Phase,							
	Methodological Evolution							
	inProductDesign,ConcurrentEngineering,CharacteristicFeaturesofConcurrentEngineering							
	,ConcurrentEngineeringandLifeCycleApproach,NewProductDevelopment(NPD)andStrat							
	egies, Product Configuration and Variant Management, The Design for XSystem, Objective Pro							
	perties and Design for X Tools, Choice of Design for X Tools and Their Use in the							
	DesignProcess.							

03	ProductDataManagement(PDM): ProductandProductData,PDMsystemsandimportance, ComponentsofPDM,ReasonforimplementingaPDMsystem,financialjustificationofPDM,ba rrierstoPDM implementation.	05
	VirtualProductDevelopmentTools:Forcomponents,machines,andmanufacturingplants,3	05
04	DCADsystemsandrealisticrenderingtechniques,Digitalmock-	
	up, Model building, Model analysis, Modeling and simulations in Product Design, Examples/Casconding and Strategy of the Control of the Cont	
	estudies.	
	IntegrationofEnvironmentalAspectsinProductDesign:SustainableDevelopment,Design	05
05	forEnvironment,NeedforLifeCycleEnvironmentalStrategies,UsefulLifeExtensionStrategie	
	s,End-of-	
	LifeStrategies,IntroductionofEnvironmentalStrategiesintotheDesignProcess,LifeCycleEnv	
	ironmentalStrategiesandConsiderationsfor ProductDesign.	
	Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and Framework of	05
06	Life CycleAssessment, Phases of LCA in ISO Standards, Fields of Application and	
	Limitations of Life	
	CycleAssessment,CostAnalysisandtheLifeCycleApproach,GeneralFrameworkforLCCA,	
	EvolutionofModelsforProductLifeCycleCostAnalysis.	

On completion of the course the students will:

- 1. GainknowledgeaboutphasesofPLM,PLMstrategiesandmethodologyforPLMfeasibilitystudyandPD Mimplementation.
- 2. Illustrate variousapproachesandtechniquesfordesigninganddevelopingproducts.
- 3. Applyproductengineeringguidelines/thumbrulesindesigningproductsformoulding,machining,sheet metalworkingetc.
- 4. Acquireknowledgeinapplyingvirtualproductdevelopmenttoolsforcomponents,machiningandmanuf acturingplant.

Assessment

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper:

- Minimum 80% syllabus should be covered in question papers of end semester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Question paper will comprise of total six question
- All question carry equal marks
- Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- Only Four question need to be solved.

- 1. John Stark, "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, Antonino Risitano, "Product Design for the environment-A life cycle

- approach", Taylor & Francis 2006, ISBN: 0849327229
- 3. Saaksvuori Antti, Immonen Anselmie, "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, "Product Lifecycle Management: Driving the next generation of lean thinking", Tata McGraw Hill, 2006, ISBN: 0070636265

Semester I (Institute Elective I)						
Course Code Course Name Credits						
CHIE1012	Reliability Engineering	03				

(Course Hour	S	Credits Assigned			
Theory	Practical	Tutorial	Theory Practical Tutorial Total			
03	-	-	03	-	-	03

	Theory					Work/Prac	ctical/Oral	
Inte Test-I	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

- $1. \quad To familiarize the students with various aspects of probability theory\\$
- 2. Toacquaintthestudentswith reliabilityanditsconcepts
- $3. \quad To introduce the students to methods of estimating the system reliability of simple and complex systems$
- $4. \quad To understand the various aspects of Maintain ability, Availability and FMEA procedure$

.Detailed Syllabus

Module No.	Course Contents	No.of Hours
	Probabilitytheory: Probability: Standarddefinitions and concepts; Conditional Probability, Bay	
01	e's Theorem. Probability Distributions: Central tendency and Dispersion; Binomial, Normal, Poisson, Weibul, Exponential, relations between the mand their significance.	08
	Measures of Dispersion: Mean Median, Mode, Range, Mean Deviation, Standard Deviation, Variance, Skewness and Kurtosis.	
	ReliabilityConcepts: Reliabilitydefinitions,ImportanceofReliability,QualityAssuranceandR	
02	eliability,BathTubCurve. FailureDataAnalysis: Hazardrate,failuredensity,FailureRate,MeanTimeToFailure(MTTF), MTBF,ReliabilityFunctions.	08
	ReliabilityHazardModels: ConstantFailureRate,Linearlyincreasing,TimeDependentFailure Rate, WeibullModel. Distributionfunctionsandreliabilityanalysis.	
03	SystemReliability: SystemConfigurations: Series, parallel, mixedconfiguration, koutofn structure, Complex systems.	05
04	ReliabilityImprovement: RedundancyTechniques:Elementredundancy,Unitredundancy,Sta ndbyredundancies.Markovanalysis.System Reliability Analysis – Enumeration method, Cut-set method, SuccessPath method, Decompositionmethod.	08

	Maintainabilityand Availability: System downtime, Design for Maintainability:							
05	Maintenancerequirements, Designmethods: Fault Isolation and self-							
	diagnostics,PartsstandardizationandInterchangeability,ModularizationandAccessibility,Re							
	pairVsReplacement.Availability-qualitativeaspects.							
	Failure Mode, Effects and Criticality Analysis: Failure mode effects analysis,							
06	severity/criticalityanalysis,FMECA examples.Faulttree construction, basic symbols,	05						
	development of functional reliability block diagram, Faulttree	02						
	analysisandEventtreeAnalysis							

On completion of the course the students will:

- 1. UnderstandandapplytheconceptofProbabilityto engineeringproblems
- 2. Applyvarious reliability concepts to calculate different reliability parameters
- 3. Estimatethesystemreliabilityofsimpleandcomplexsystems
- 4. CarryoutaFailureModeEffectandCriticalityAnalysis

Assessment

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper:

- Minimum 80% syllabus should be covered in question papers of end semester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Question paper will comprise of total six question
- All question carry equal marks
- Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- Only Four question need to be solved.

- $1. \ L.S. Srinath, "Reliability Engineering", Affiliated East-Wast Press (P) Ltd., 1985.$
- 2. Charles E. Ebeling, "Reliability and Maintain ability Engineering", Tata McGraw Hill.
- 3. B.S.Dhillion, C.Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T.Conor, "Practical Reliability Engg.", John Wiley & Sons, 1985.
- 5. K.C.Kapur, L.R.Lamberson, "Reliabilityin Engineering Design", John Wiley & Sons.
- 6. MurrayR.Spiegel, "ProbabilityandStatistics", TataMcGraw-HillPublishingCo. Ltd.

Semester I (Institute Elective I)				
Course Code	Course Name	Credits		
CHIE1013	Management Information System	03		

Course Hours			Credits Assigned			
Theory	Practical	Tutorial	Theory Practical Tutorial Total			
03	-	-	03	-	-	03

Theory					Term V	Work/Prac	ctical/Oral	
Interest I	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

- 1. The course is blend of Management and Technical field.
- $2. \ Discuss the roles played by information technology into day's business and define various technology architectures on which information systems are built$
- 3. Defineandanalyzetypicalfunctionalinformationsystems and identify how they meet the needs of the firm to deliver efficiency and competitive advantage
- 4. Identifythebasicstepsinsystemsdevelopment

.Detailed Syllabus

Module No.	Course Contents	No.of Hours
01	Introduction To Information Systems (IS): Computer Based Information Systems, Impact of IT on organizations, and Importance of IS to Society. Organizational Strategy, Competitive Advantages and IS.	4
02	DataandKnowledgeManagement:DatabaseApproach,BigData,DatawarehouseandDataMarts,KnowledgeManagement. Businessintelligence(BI):ManagersandDecisionMaking,BIforDataanalysisandPresentingResults	7
03	EthicalissuesandPrivacy:InformationSecurity.ThreattoIS,andSecurityControls	7
04	SocialComputing(SC):Web2.0and3.0,SCinbusiness-shopping,Marketing,Operationaland AnalyticCRM,E-businessandE-commerce—B2BB2C.Mobilecommerce.	7
05	ComputerNetworksWiredandWirelesstechnology,Pervasivecomputing,Cloudcomputingmo del.	6
06	InformationSystemwithinOrganization:TransactionProcessingSystems,FunctionalAreaInformationSystem, ERPandERPsupportofBusinessProcess. AcquiringInformationSystemsandApplications:VariousSystemdevelopmentlifecyclemodels.	8

Course Outcomes

On completion of the course the students will:

- $1. \, Explain how information systems Transform Business \,$
- 2. Identifytheimpactinformationsystems haveonanorganization
- 3. DescribeITinfrastructureand itscomponentsanditscurrenttrends
- 4. Understandtheprincipaltoolsandtechnologiesforaccessinginformationfromdatabasestoimprovebusiness performance and decision making
- Identifythetypesofsystemsusedforenterprise-wideknowledgemanagementandhow theyprovidevalueforbusinesses

Assessment

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper:

- Minimum 80% syllabus should be covered in question papers of end semester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Question paper will comprise of total six question
- All question carry equal marks
- Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- Only Four question need to be solved.

- 1. KellyRainer,BradPrince, ManagementInformationSystems,Wiley
- 2. K.C.LaudonandJ.P.Laudon, ManagementInformationSystems:ManagingtheDigitalFirm,10th Ed.,PrenticeHall, 2007.
- $3. \ D. Boddy, A. Boonstra, Managing Information Systems: Strategy and Organization, Prentice Hall, 2008 and Prentice Hall,$

Semester I (Institute Elective I)				
Course Code	Course Name	Credits		
CHIE1014	Design of Experiments	03		

(Course Hour	S	Credits Assigned			
Theory	Practical	Tutorial	Theory Practical Tutorial Total			
03	-	-	03	-	-	03

		Theory			Term V	Work/Prac	ctical/Oral	
Interest I	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

- $1. \ \ To understand the issues and principles of Design of Experiments (DOE)$
- 2. Tolisttheguidelinesfordesigningexperiments
- ${\it 3. }\ To be come familiar with methodologies that can be used in conjunction with experimental designs for robustness and optimization$

.Detailed Syllabus

Module No.	Course Contents	No.of Hours
01	Introduction 1.1 StrategyofExperimentation 1.2 TypicalApplicationsofExperimentalDesign 1.3 GuidelinesforDesigningExperiments 1.4 ResponseSurfaceMethodology	06
02	FittingRegressionModels 2.1 Linear RegressionModels 2.2 EstimationoftheParametersinLinearRegressionModels 2.3 HypothesisTestinginMultipleRegression 2.4 ConfidenceIntervalsinMultipleRegression 2.5 Predictionofnewresponseobservation 2.6 Regressionmodeldiagnostics 2.7 Testingforlackoffit	08

03	Two-LevelFactorial Designs and Analysis 3.1 The2 ² Design 3.2 The2 ³ Design 3.3 TheGeneral2 ^k Design 3.4 ASingleReplicate of the2 ^k Design 3.5 TheAdditionofCenterPointstothe2 ^k Design, 3.6 Blockinginthe2 ^k FactorialDesign 3.7 Split-PlotDesigns	07
04	Two-LevelFractionalFactorialDesigns andAnalysis 4.1 TheOne-HalfFractionofthe2 ^k Design 4.2 TheOne-QuarterFractionofthe2 ^k Design 4.3 TheGeneral2 ^{k-p} FractionalFactorialDesign 4.4 ResolutionIIIDesigns 4.5 ResolutionIVandVDesigns 4.6 FractionalFactorialSplit-PlotDesigns	07
05	ConductingTests 5.1 TestingLogistics 5.2 Statisticalaspectsof conductingtests 5.3 Characteristicsofgoodandbaddatasets 5.4 Exampleexperiments 5.5 AttributeVsVariabledatasets	07
06	Taguchi Approach 6.1 CrossedArrayDesignsandSignal-to-NoiseRatios 6.2 AnalysisMethods 6.3 Robustdesignexamples	04

On completion of the course the students will:

- 1. Plandatacollection,toturndataintoinformationandtomakedecisionsthatleadtoappropriateaction
- 2. Applythemethodstaughtto reallifesituations
- 3. Plan, analyze, and interpret the results of experiments

Assessment

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper:

- Minimum 80% syllabus should be covered in question papers of end semester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Question paper will comprise of total six question
- All question carry equal marks
- Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)

• Only Four question need to be solved.

- 1. RaymondH.Mayers, Douglas C.Montgomery, Christine M.Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley & Sons, New York, 2001
- 2. D.C.Montgomery, Designand Analysis of Experiments, 5thedition, John Wiley & Sons, New York, 2001
- 3. GeorgeEPBox,JStuartHunter,WilliamGHunter,StaticsforExperimenters:Design,InnovationandDiscovery,2nd Ed. Wiley
- $4. \ WJD imond, Peactical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2$
- 5. DesignandAnalysisofExperiments(SpringertextinStatistics),Springer byA.M.Dean,andD.T.Voss
- 6. PhillipJRoss, "TaguchiTechnique forQualityEngineering," McGraw Hill
- 7. MadhavSPhadke, "QualityEngineeringusingRobustDesign,"PrenticeHall

Semester I (Institute Elective I)						
Course Code	Course Name	Credits				
CHIE1015	Operation Research	03				

(Course Hour	'S	Credits Assigned			
Theory	Practical	Tutorial	Theory Practical Tutorial Total			
03	-	-	03	-	-	03

		Theory			Term Work/Practical/Oral			
Interest I	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	•	-	•	100

- 1. Formulateareal-worldproblemasa mathematicalprogramming model.
- $2. \quad Understand the mathematical to ols that are needed to solve optimization problems.\\$
- 3. Usemathematicalsoftwareto solvetheproposed models.

.Detailed Syllabus

Module	Course	No.of Hours
No.	Contents	
	Introduction to Operations Research: Introduction,, Structure of the Mathematical Model, Line and	1
	mitationsofOperationsResearch	•
	LinearProgramming :Introduction,LinearProgrammingProblem,RequirementsofLPP,M	ı
	athematicalFormulationofLPP,Graphical method,Simplex	1
	MethodPenaltyCostMethodorBigM-method, TwoPhaseMethod,Revisedsimplexmetho	•
	Duality ,Primal–	•
	Dualconstruction, Symmetricand Asymmetric Dual, Weak Duality Theorem, Complimentar	1
01	ySlackness Theorem, Main Duality Theorem, Dual Simplex Method, Sensitivity	14
	Analysis TransportationProblem : Formulation, solution, unbalanced Transportation problem:	
	em.Findingbasicfeasiblesolutions-	1
	Northwestcornerrule,leastcostmethodandVogel'sapproximationmethod.Optimalitytest:th	İ
	e steppingstonemethod andMODImethod.	
	AssignmentProblem:Introduction,MathematicalFormulationoftheProblem,HungarianMe	•
	thodAlgorithm, Processing of nJobs Through Two Machines and mMachines, Graphical Metho	1
	d of Two Jobs m Machines Problem Routing Problem, Travelling Salesman	•
	ProblemIntegerProgrammingProblem:	•
	Introduction, Typesof Integer Programming Problems, Gomory's cutting plane Algorithm, Bra	ı
	nchandBoundTechnique.Introductionto	i
	Decompositionalgorithms.	

02	Queuingmodels :queuingsystemsandstructures,singleserverandmulti- servermodels,Poissoninput,exponentialservice,constantrateservice,finiteandinfinitepopula tion	05
03	Simulation :Introduction,MethodologyofSimulation,BasicConcepts,SimulationProcedur e,ApplicationofSimulation Monte-CarloMethod: Introduction,Monte-CarloSimulation,ApplicationsofSimulation,AdvantagesofSimulation,LimitationsofSimulation	05
04	Dynamicprogramming . Characteristicsofdynamicprogramming. Dynamicprogramminga pproachforPriorityManagementemploymentsmoothening, capitalbudgeting, StageCoach/S hortestPath, cargoloadingandReliabilityproblems.	05
05	GameTheory . Competitivegames, rectangulargame, saddlepoint, minimax (maximin) metho dofoptimal strategies, value of the game. Solution of games with saddlepoints, dominance princi ple. Rectangular games without saddlepoint—mixed strategy for 2 X2 games.	05
06	InventoryModels:ClassicalEOQModels,EOQModelwithPriceBreaks,EOQwithShortage, ProbabilisticEOQModel,	05

On completion of the course the students will:

- 1. Understandthetheoreticalworkingsofthesimplexmethod, the relationship between a linear program and its dual, including strong duality and complementary slackness.
- 2. Performsensitivityanalysistodeterminethedirectionandmagnitudeofchangeofamodel'soptimalsolutiona sthe data change.
- 3. Solvespecializedlinearprogrammingproblemslikethetransportationandassignmentproblems, solvenetwo rk modelsliketheshortestpath, minimum spanning tree, and maximum flow problems.
- 4. Understandtheapplications of integer programming and aqueuing model and compute important performance measures

Assessment

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper:

- Minimum 80% syllabus should be covered in question papers of end semester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Question paper will comprise of total six question
- All question carry equal marks
- Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- Only Four question need to be solved.

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. Tand Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009.
- 3. Hiller, F.S. and Liebermann, G.J. "Introduction to Operations Research", Tata McGraw Hill, 2002.

- $4. \ Operations Research, S.D. Sharma, \ Kedar Nath Ram Nath-Meerut.$
- $5. \ \hat{Operations} Research, Kanti Swarup, P.K. Gupta and Man Mohan, Sultan Chand \& Sons.$

Semester I (Institute Elective I)						
Course Code	Course Name	Credits				
CHIE1016	Cyber Security and Laws	03				

	Course Hour	'S	Credits Assigned			
Theory	Practical	Tutorial	Theory Practical Tutorial Total			
03	-	-	03	-	-	03

		Theory			Term Work/Practical/Oral			
Into	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

- 1. To understand and identify different types cybercrime and cyber law
- 2. To recognized Indian IT Act 2008 and its latest amendments
- 3. To learn various types of security standards compliances

.Detailed Syllabus

Module No.	Course Contents	No.of Hours					
	IntroductiontoCybercrime: Cybercrimedefinitionandoriginsoftheworld,Cybercrimeandi						
01	nformation security, Classifications of cybercrime, Cybercrime and the	4					
	IndianITA2000, Aglobal Perspective on cybercrimes.						
	Cyber offenses & Cybercrime: How criminal plan the attacks, Social Engg, Cyber stalking, Cyber café and Cybercrimes, Botnets, Attack vector, Cloud computing,						
	Proliferation of Mobileand WirelessDevices, TrendsinMobility, CreditCard Fraudsin						
02	Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices,						
	RegistrySettings for Mobile Devices, Authentication Service Security, Attacks on						
	Mobile/Cell Phones, Mobile Devices: Security						
	ImplicationsforOrganizations,OrganizationalMeasuresforHandling						
	Mobile, Devices-						
	RelatedSecurityIssues,OrganizationalSecurityPoliciesandMeasuresinMobileComputing						
	Era, Laptops						
	ToolsandMethodsUsedinCyberline						
03	Phishing, Password Cracking, Keyloggers and Spywares, Virus and Worms,	6					
	Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Over Flow, Attacks on						
	Wireless Networks, Phishing, Identity Theft (ID Theft)						

04	TheConceptofCyberspace E-Commerce, The Contract Aspects in Cyber Law, The Security Aspect of Cyber Law, TheIntellectual Property Aspect in Cyber Law The Evidence Aspect in Cyber Law, The Criminal Aspect in Cyber Law, Global Trends inCyber Law, Legal Framework for Electronic Data InterchangeLaw Relating to ElectronicBanking, TheNeedfor anIndianCyberLaw	8
05	IndianITAct. CyberCrimeandCriminalJustice:Penalties,AdjudicationandAppealsUndertheITAct,2000,I T Act.2008anditsAmendments	6
06	InformationSecurityStandardcompliances SOX,GLBA,HIPAA,ISO,FISMA,NERC,PCI.	6

On completion of the course the students will:

- 1. Understandtheconceptofcybercrimeanditseffectonoutsideworld
- 2. Interpretand applyITlawin variouslegalissues
- 3. Distinguishdifferentaspectsofcyberlaw
- 4. ApplyInformationSecurity Standardscomplianceduringsoftwaredesignanddevelopment

Assessment

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper:

- Minimum 80% syllabus should be covered in question papers of end semester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Question paper will comprise of total six question
- All question carry equal marks
- Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- Only Four question need to be solved.

- 1. NinaGodbole, SunitBelapure, CyberSecurity, WileyIndia, NewDelhi
- 2. TheIndianCyberLawbySureshT.Vishwanathan; BharatLawHouseNewDelhi
- 3. TheInformationtechnology Act,2000;BareAct-ProfessionalBookPublishers,NewDelhi.
- 4. CyberLaw&CyberCrimes ByAdvocatePrashantMali;SnowWhitePublications,Mumbai
- 5. NinaGodbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, Cyber Security & Global Information Assurance Information Science Publishing.
- 7. WilliamStallings, CryptographyandNetworkSecurity, PearsonPublication
- 8. Websitesformoreinformationisavailableon: TheInformationTechnologyACT,2008-TIFR:https://www.tifrh.res.in
- 9. Websiteformoreinformation, A Compliance Primer for IT professional: https://www.sans.org/reading-

room/white papers/compliance/compliance-primer-professionals-33538

Semester I (Institute Elective I)					
Course Code	Course Name	Credits			
CHIE1017	CHIE1017 Disaster Management and Mitigation				
	Measures				

Course Hours			Credits Assigne			ied
Theory	Practical	Tutorial	Theory Practical Tutorial Total			
03	-	-	03	-	-	03

		Theory			Term V	Work/Prac	ctical/Oral	
Into	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

- 1. To understand physics and various types of disaster occurring around the world
- 2. To identify extent and damaging capacity of a disaster
- 3. To study and understand the means of losses and methods to overcome /minimize it.
- 4. To understand role of individual and various organization during and after disaster
- 5. To understand application of GIS in the field of disaster management
- 6. To understand the emergency government response structures before, during and after disaster

.Detailed Syllabus

Module No.	Course Contents	No.of Hours
01	Introduction: DefinitionofDisaster,hazard,globalandIndianscenario,generalperspective,importanceofstu dyinhumanlife,Directandindirecteffectsofdisasters,longtermeffectsofdisasters.Introductio ntoglobalwarmingandclimate change.	03
02	Natural Disasterand Manmadedisasters: Natural Disaster: Meaning and nature of natural disaster, Flood, Flash flood, drought, cloudburst, Earthquake, Landslides, Avalanches, Volcanic eruptions, Mudflow, Cyclone, Storm, Storm Surge, climatechange, globalwarming, sea levelrise, ozone depletion Manmade Disasters: Chemical, Industrial, Nuclearand Fire Hazards. Roleof growin gpopulation and subsequent industrialization, urbanization and changing lifestyle of human be ingsinfrequent occurrences of manmade disasters.	09

	DisasterManagement,PolicyandAdministration:	
	Disaster management: meaning, concept, importance, objective of disaster management	
03	policy,disasterrisksinIndia,Paradigmshiftindisastermanagement.Policy and	06
	administration: Importance and principles of disaster management policies,	
	commandand co-ordination of in disaster management, rescue operations-how to start	
	with and how toproceed induecourse of time, study of flow charts how ing the entire process.	
	InstitutionalFrameworkforDisasterManagementinIndia:	
	Importanceofpublicawareness, Preparationand execution of emergency management progra	
	mme. Scope and responsibilities of National Institute of Disaster Management	
04	(NIDM)and National disaster management authority (NDMA) in India. Methods and	06
	measures to avoiddisasters, Management of casualties, set up of emergency facilities,	
	importance of effectivecommunicationamongstdifferentagencies in such situations.	
	Use of Internet and softwares for effective disaster management. Applications of GIS,	
	RemotesensingandGPSinthisregard.	
	FinancingReliefMeasures:	
	Ways to raise finance for relief expenditure, role of government agencies and NGO's in	
05	thisprocess, Legal aspects related to finance raising as well as overall management of	09
	disasters. Various NGO's and the works they have carried out in the past on the	
	occurrence	
	various disasters, Waystoapproachthese teams. International reliefaidagencies and their rolei	
	n	
	extremeevents.	
06	PreventiveandMitigationMeasures: Pre-disaster, during disaster and post-disaster	06
	measures in some events in general structural mapping: Risk mapping, assessment and	
	analysis, sea walls and embankments, Bio shield, shelters, early warning and	
	communication Non Structural Mitigation: Community based disaster preparedness, risk	
	transfer and risk financing, capacity development and training, awareness and education,	
	contingency plans. Do's and don'ts in case of disasters and effective implementation of	
	relief aids.	
	Tottor woo.	

On completion of the course the students will:

- 1. Get to know natural as well as manmade disaster and their extent and possible effects on the economy.
- 2. Plan of national importance structures based upon the previous history.
- 3. Get acquainted with government policies, acts and various organizational structures associated with an emergency.
- 4. Get to know the simple do's and don'ts in such extreme events and act accordingly.

Assessment

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper:

- Minimum 80% syllabus should be covered in question papers of end semester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Question paper will comprise of total six question
- All question carry equal marks
- Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- Only Four question need to be solved.

- 1. DisasterManagement' by Harsh K. Gupta, Universities Press Publications.
- 2. 'DisasterManagement:AnAppraisalofInstitutionalMechanismsinIndia' by O.S. Dagur, published by Centre for landwarfare studies, NewDelhi, 2011.
- ${\tt 3. `Introduction to International Disaster Management' by Damon Copolla, Butterworth Heinemann Elseveir Publications.}$
- $4. \ `Disaster Management Handbook' by Jack Pinkowski, CRCP ress Taylor and Francis group.\\$
- 5. 'Disaster management & rehabilitation' by Rajdeep, Dasgupta, Mittal Publications, New Delhi.
- 6. 'NaturalHazards andDisasterManagement,VulnerabilityandMitigation—RBSingh,RawatPublications
- 7. Concepts and Techniques of GIS –C.P.Lo Albert, K.W. Yonng Prentice Hall (India) Publications.(LearnersareexpectedtoreferreportspublishedatnationalandInternationallevelandupdat edinformationavailableonauthenticwebsites)

Semester I (Institute Elective I)					
Course Code	Course Name	Credits			
CHIE1018	Energy Audit and Management	03			

Course Hours			Credits Assigne			ied
Theory	Practical	Tutorial	Theory Practical Tutorial Total			
03	-	-	03	-	-	03

		Theory			Term V	Work/Prac	ctical/Oral	
Into	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

- 1. Tounderstandtheimportance energysecurityforsustainabledevelopmentandthefundamentalsofenergyconservation.
- 2. Tointroduceperformanceevaluationcriteriaofvariouselectricalandthermalinstallations tofacilitatetheenergy management
- 3. Torelatethedatacollectedduringperformanceevaluationofsystemsforidentificationofenergysavingo pportunities.

.Detailed Syllabus

Module No.	Course Contents	No.of Hours
01	EnergyScenario: PresentEnergyScenario,EnergyPricing,EnergySectorReforms,EnergySecurity,EnergyConservationanditsImportance,EnergyConservationAct-2001anditsFeatures.BasicsofEnergyanditsvariousforms,MaterialandEnergybalance	04
02	EnergyAuditPrinciples: Definition,Energyaudit-need,Typesofenergyaudit,Energymanagement(audit)approach-understandingenergycosts,Benchmarking,Energyperformance,Matchingenergyusetorequir ement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel andenergysubstitution.Elementsofmonitoring&targetingEnergyauditInstruments;Dataandi nformation-analysis.Financial analysis techniques: Simple payback period, NPV, Return on investment (ROI), Internalrateofreturn(IRR)	08
03	EnergyManagementandEnergyConservationinElectricalSystem: Electricitybilling,ElectricalloadmanagementandmaximumdemandControl;Powerfactorimpr ovement,Energyefficientequipmentsand appliances, starratings. Energyefficiencymeasuresinlightingsystem,Lightingcontrol:Occupancysensors,daylight integration,anduse ofintelligentcontrollers.Energyconservationopportunities in:waterpumps,industrialdrives,inductionmotors,motorretrofitting,softstarters,variable speeddrives.	

	EnergyManagementandEnergyConservationinThermalSystems:	
	Review of different thermal loads; Energy conservation opportunities in: Steam	
04	distribution system, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flashsteam recovery system. General fuel economy measures in	10
	Boilers and furnaces, Waste heat recovery, use of insulation-	10
	typesandapplication.HVACsystem:Coefficientofperformance,Capacity,factorsaffectingRe	
	frigerationandAir Conditioningsystemperformanceandsavingsopportunities.	
	EnergyPerformanceAssessment:	
05	On sitePerformanceevaluation	04
	techniques, Casestudies based on: Motors and variables peed drive, pumps, HVAC system	
	calculations; Lighting System: Installed Load Efficacy Ratio (ÎLER)	
	method,FinancialAnalysis.	
	EnergyconservationinBuildings:	
06	EnergyConservationBuildingCodes(ECBC):GreenBuilding,LEEDrating,ApplicationofNon	03
00	-ConventionalandRenewableEnergySources	UJ

On completion of the course the students will:

- 1. Toidentifyanddescribepresentstateofenergysecurityanditsimportance.
- 2. Toidentifyanddescribethebasicprinciplesandmethodologiesadoptedinenergyauditofan utility.
- 3. Todescribetheenergyperformanceevaluationofsomecommonelectricalinstallations and identify the energy saving opportunities.
- 4. Todescribetheenergyperformanceevaluationofsomecommonthermalinstallationsandidentifytheener gysavingopportunities
- 5. Toanalyzethedatacollectedduringperformanceevaluationandrecommendenergysavingmeasures

Assessment

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper:

- Minimum 80% syllabus should be covered in question papers of end semester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Question paper will comprise of total six question
- All question carry equal marks
- Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- Only Four question need to be solved.

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designingwithlight:LightingHandbook,ByAnilValia, LightingSystem
- 3. EnergyManagementHandbook,ByW.C.Turner,JohnWileyand Sons

 ${\it 4.}\, Hand book on Energy Audits and$

Management, edited by A.K. Tyagi, Tata Energy Research Institute (TERI).

- 5. EnergyManagementPrinciples,C.B.Smith,PergamonPress
- 6. EnergyConservationGuidebook,DaleR.Patrick,S.Fardo,RayE.Richardson,Fairmont Press
- 7. HandbookofEnergyAudits, AlbertThumann, W.J. Younger, T. Niehus, CRCPress
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

Semester I				
Course Code	Course Name	Credits		
CHL101	Program Lab-I	01		

	Course Hour	'S		Cı	Credits Assigned		
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
-	02	-	-	01	-	01	

		Theory			Term V	Work/Prac	ctical/Oral	
Interest-I	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
-	-	-	-	-	25	25	-	50

Prerequisites

- 4. Basic knowledge of reaction kinetics
- 5. Basic knowledge of RTD studies in flow reactor.
- 6. Basic knowledge of Dimensional Analysis Types of flows, Fluid Statics.
- 7. Basic knowledge of involving equation of continuity, motion and related laminar flow

Course Objectives

- 1. To understand the concept of residence time distribution in reactor design
- 2. To study catalytic heterogeneous reaction
- 3. To study the design semibatch reactor
- 4. To Design of fluidized bed reactors
- 5. To studyanalogous mechanism of momentum Transport for steady and unsteady flow
- 6. To design of stirred tank and different types of mixing equipment

Detailed Syllabus

Program Lab-I should have six experiments based on the courses Advanced Momentum Transfer and Advanced Chemical Reaction Engineering.

Course Outcomes

On completion of the course the students will:

- 1. able to study the residence time distribution in flow reactors
- 2. analyze kinetic data obtain from semi batch reactor

- 3. able to study the heterogeneous reactions.
- 4. obtain Friction factors for fully developed laminar, turbulent and transition flow in circular conduits
- 5. calculate momentum and mechanical energy balances
- 6. calculate minimum fluidization velocity, terminal setting velocity, velocity void age relationships for fluidized beds. Settling velocities under hindered setting conditions.

Assessment

Laboratory

Weightage for Laboratory should be 40% in Final Assessment of Laboratory Term Work.

Term work

Term work shall be evaluated based on performance in practical.

Practical Journal: 20 marks Attendance: 05 marks **Total: 25 marks**

End Semester Examination

Practical/Oral examination is to be conducted by pair of internal and external examiners

Semester I						
Course Code	Course Name	Credits				
CHSBL101	Skill Based Lab-I	02				

Course Hours				Credits Assigned			
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
-	04	-	-	02	-	02	

		Theory			Term V	Work/Prac	ctical/Oral	
Interest-I	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
-	-	-	-	-	50	50	-	100

Prerequisites

- 1. Basic knowledge Sample Analytical equipment.
- 2. Practical knowledge of basic engineering subjects like reaction engineering ,fluid dynamics
- 3. Basic knowledge of basic engineering subjects like reaction engineering ,fluid dynamics
- 4. Basic knowledge of modeling and simulation

Course Objectives

- 1. To learn Operation of Analytical Instruments
- 2. To learn simulation and optimisation of advanced reaction engineering
- 3. To understand Linear and non linear regression
- 4. To learn Error analysis methods
- 5. To learn simulation and optimisation of advanced fluid dynamics
- 6. To learn the use of process software's used in chemical industries.

Detailed Syllabus

Skill Based Lab-I is focused on the learning through experience. SBL shall facilitate the learner to acquire the fundamentals of practical engineering in his or her specialization in a project-oriented environment. The learning through skill based labs can be useful in facilitating their research work and hence useful in early completion of their dissertation work.

Course Outcomes

On completion of the course the students will:

1. acquire the knowledge to select and use of advanced analytical instruments

- 2. perform simulation and optimisation of advanced reaction engineering
- 3. understand the Linear and non linear regression
- 4. perform simulation and optimisation of advanced fluid dynamics
- 5. learn error analysis methods.
- 6. learn the use of process software's used in chemical industries

i.

Assessment

Laboratory

Weightage for Laboratory should be 40% in Final Assessment of Laboratory Term Work.

Practical/Oral examination is to be conducted by pair of internal and external examiner.

SEMESTER II

Course	CarregaNama	Teaching	Scheme(Contac	tHours)	Credits Assigned			
Code	CourseName	Theor	ry 1	Pract.	Tut.	Theory	Pract.	Tut.	Total
CHC201	Advanced Mass Transfer	3				3			3
CHC202	Advanced Process Control And Dynamics	3				3			3
CHPE201X	ProgramElective 3	3				3			3
CHPE202X	ProgramElective 4	3				3			3
CHIE201X	InstituteElective2	3				3			3
CHL201	ProgramLab-II			2			1		1
CHSBL201	SkillBasedLab-II			4\$			2		2
	Total	15		06		15	03		18
Course			ExaminationScheme Theory						
Code	CourseName		lAssessn		End Sem.	Exam. Duration	Term Work	Pract /Ora l	Total
		Test-1	Test-2	Avg	Exam	(inHrs)			
CHC201	Advanced Mass Transfer	20	20	20	80	3			100
CHC202	Advanced Process Control And Dynamics	20	20	20	80	3			100
CHPE201X	ProgramElective 3	20	20	20	80	3			100
CHPE202X	ProgramElective 4	20	20	20	80	3			100
CHIE201X	InstituteElective2	20	20	20	80	3			100
CHI 201	ProgramLab-II						25	25	50
CHL201	1 1051amillao m								100
CHSBL201	SkillBasedLab-II						50	50	100

Program Elective 3 (Semester II)

_	Heterogeneous Catalysis and Reactor Design (CHPE2012)	Advanced Downstream Processes (CHPE2013)
---	--	--

Program Elective 4 (Semester II)

Industrial Safety and Hazard	Green Chemistry and	Industrial Pollution Control and
Control (CHPE2021)	Engineering (CHPE2022)	Prevention (CHPE2023)

Institute Elective 2 (Semester II)

Project Management (CHIE2011)	Finance Management (CHIE2012)	Entrepreneurship Development and Management (CHIE2013)
-------------------------------	-------------------------------	--

Human Resource Management (CHIE2014)	Professional Ethics and CSR (CHIE2015)	Digital Business Management (CHIE2016)
Environmental Management (CHIE2017)		

Semester II					
Course Code	Course Name	Credits			
CHC201	Advanced Mass Transfer	03			

Course Hours			Credits Assigned			
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
03	-	-	03	-	-	03

		Theory			Term V	Work/Prac	ctical/Oral	
Into	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	•	100

Prerequisites

- 1. Knowledgeofchemistry,physics,physicalchemistryand mathematics.
- 2. KnowledgeofDiffusion, Film and penetration theories.
- 3. KnowledgeofDistillation,AdvanceTopicsindistillation.
- 4. Knowledgeofmembraneseparationprocess.

Course Objectives

- 1. Togiveinsightofmasstransferbasicprincipleand masstransfer mechanisms
- 2. To study the need for reactive separation process
- 3. Tounderstand designof reactive distillation equipments
- 4. Tounderstand design of liquid-liquid extraction equipments
- 5. Tounderstand design of reactive absorption equipments
- 6. Togiveinsightofmembraneseparationprocess.

Detailed Syllabus

Module No.	Course Contents	No. ofHour
		S
1.	Characterization of Separation processes: Inherent Separation Factors: Equilibration Processes, Inherent Separation Factors: Rate-governed Processes. Simple equilibrium processes: Equilibrium Calculations, Checking Phase Conditions for a Mixture.	05
2.	Multistage separation processes: Increasing Product Purity, Reducing Consumption of Separating Agent, Co-current, Crosscurrent, and Countercurrent Flow.	04
	Reactive Distillation: Definition, introduction to reactive distillation process.	
3.	Thermodynamic and kinetic effects on the feasible products of RD: introduction, Azeotropes, azeotropes, kinetics azeotropes in reactive membrane separation, Equilibrium theory and nonlinear waves for reaction separation process. Reactive	09

	stripping in structured catalytic reactors: introduction, hydrodynamics, Reactive experiments, comparison of different internals.	
4.	Liquid-liquid extraction; stage wise calculations for multicomponent with multiple feed stream using reflux and mixed solvents. Liquid-liquid extraction with chemical reaction	
5.	Reactive Absorption: introduction, reactive absorption equipment, modeling concept, model parameters, case studies. Reactive Extraction: introductions, phase equilibria, reactive mass transfer, hydrodynamics.	
6.	Membrane Separation Techniques - Basic Equation for membrane separation for permeable semi permeable membrane, Membrane types & their selection criteria, Technology basedMembraneseparationlikeMicrofiltration,Ultrafiltration,ReverseOsmosis,Nanofilt ration.	

On completion of the course the students will:

- 1. understand the concept of separation factor and separating agent
- 2. be able to compare multi-stage operations. designdistillationcolumn
- 3. understand the need for reactive separation process
- 4. categorize reactive separation processes
- 5. be able to do sizing of equipment for liquid-liquid extraction, gas absorption
- 6. understandmembraneseparationprocessesprincipleandworking

Internal:

Assessmentconsistsoftwotestsoutofwhich; one should be compulsory class test and the other is either a class test as signment on live problems or course project.

EndSemesterTheoryExamination:

Someguidelinesforsettingupthequestionpaper:

- Minimum80% syllabus should be covered in question papers of ends emester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Questionpaperwillcompriseoftotalsixquestion
- Allquestioncarryequal marks
- Questionswillbemixedinnature(forexamplesupposedQ.2haspart(a)frommodule3thenpart(b)willb e fromanymodule otherthanmodule 3)
- OnlyFourquestionneedtobesolved.

- 1. King C. J., Separation Processes, Tata McGraw Hill Book Company, 2nd Ed., New Delhi, 1983.
- 2. ChemicalEngineeringHandbook7theditionbyR. H. Perry&GreenD.
- 3. MassTransferOperation3rdEditionbyR. E. Treybal
- 4. Principles of Mass Transfer and Separation Processes, B.K. Dutta
- 5. Chemical Engineering, Volume 2, J.M. Coulson, J.F. Richardson
- 6. Transport Processes and Unit Operations, C.J. Geankoplis
- 7. Transport Processes and Separation Process Principles, C.J. Geankoplis
- 8. Kulprathipanja, Reactive Separation Processes, Taylor and Francis, 2002.
- 9. Luyben W. L. and Cheng-Ching Yu, Reactive Distillation Design and Control, John Wiley and Sons, 2008.

Semester II						
Course Code	Course Name	Credits				
CHC202	AdvancedProcessControlandDynamics	03				

(Course Hour	'S	Credits Assigned			
Theory	Practical	Tutorial	Theory	Total		
03	-	-	03	-	-	03

		Theory			Term V	Work/Pra	ctical/Oral	
Interest-I	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

Prerequisites

- $1. \quad Mathematics course involving Laplace Transform and its application in solving mathematical equations.$
- 2. Basic course in Linear Open-Loop systems (Response of first and higher-order systems, interacting, non-interacting systemsandtransportationlag).
- 3. LinearClosed-

LoopSystems(Thecontrolsystem, finalcontrolelement, Blockdiagramdevelopment of achemica l-reactor control system, Transient response of control system, stability, Root-Locus), Frequency response.

Course Objectives

- 1. To acquire knowledge of designing complex control systems
- 2. To analyze controller design for processes with difficult dynamics
- 3. Tostudycontrollertuningusingapproximateprocessmodels.
- 4. Tofamiliarizethedesign of multi-loop and multivariable controlsystems.
- 5. To analyze dynamicsofdiscretetimesystems.
- 6. Tounderstandtheprinciplesofmodelpredictivecontroland designofdigitalcontrollers

Detailed Syllabus

Module	Course Contents	No.ofH
No.		ours
	Design of complex control structures: Process with significant disturbance,	0.5
1	cascadecontrol, feed forward control, feedback augmented feed forward control, ratio	05
	control,	
	processes with multiple outputs controlled by a single input (Override controllers, Auctionee	
	ringcontrol), Processwith single output controlled with multiple input (Split range control, multiple input for improved dynamics), antire set windup.	
	Controllerdesignforprocesses with difficult dynamics:	
	Characteristicsofdifficultprocessdynamics,nonminimumphasesystem, Timedelaysystem	
2	,timedelaycompensation,	06
	inverseresponsesystem,inverseresponsecompensation,openloopunstablesystems.	
	Controllerdesign for non linear systems: Nonlinear controller design	05
3	philosophies,	
	linearizationandclassicalapproach, adaptive control principles (Scheduled adaptive control, model reference adaptive control, selftuning adaptive control), variable transformations.	
	Multivariable Regulatory Control Systems: Nature of multivariable systems,	
4	multivariable regulatory Control Systems. Nature of inditivariable systems, multivariable process model, multivariable transfer functions and open loop dynamic	07
7	analysis, interactionanalysis and loop pairing, relative gain array, loop pairing using	07
	RGA, loop paring for	
	nonlinearsystems,looppairingfornonsquaresystems,controllerdesignprocedure,Decoup	
	ling, feasibility of steady stated ecoupler design, steady stated ecoupling by singular value	
	decomposition.	
	Sampled Data Systems: Sampling and conditioning of continuous signals, signal	
	conditioning, continuous signal reconstruction, mathematical description of discrete—	
5	time system, theoretical modeling of discrete times yetems.	08
	Discretetimesystemanalysis: Basicconceptsofz—transforms,invertingz—	
	transforms, Pulsetransferfunctions, characteristics of open-loop pulse	
	transferfunctions, blockdiagramanalysis of sampled datasystems, stability.	
	Design of digital controllers: The digital controller and its design, discrete PID	
	controller from the continuous domain, other digital controller based on continuous	
6	domain strategies, digitalControllers based on discrete domain strategies. Model	08
	Predictive Control: General principles of model predictive control, Model	
	algorithmic control, commercial model predictive	
	controlschemes, academic and other contributions, nonlinear model predictive control, clos	
	ing	
	remarks.	

On completion of the course the students will:

- 1. apply knowledge of process modeling to design complex control structures.
- 2. design Controllers for processes with difficult dynamics.
- 3. tune controllers for different controlling processes.
- 4. analyze and design multi-loop and multivariable control systems.
- 5. illustrate sampled Data Systems.

6. design digital controllers and analyze Model Predictive control system.

Assessment

Internal:

Assessmentconsistsoftwotestsoutofwhich; one should be compulsory class test and the other is either a class test as signment on live problems or course project.

EndSemesterTheoryExamination:

Someguidelines for setting up the question paper:

- Minimum80% syllabus should be covered in question papers of ends emester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Questionpaperwillcompriseoftotalsixquestion
- Allquestioncarryequal marks
- Questionswillbemixedinnature(forexamplesupposedQ.2haspart(a)frommodule3thenpart(b)willbe fromanymoduleotherthanmodule 3)
- Fourquestionneedtobesolved.

- 1. "ProcessDynamics,Modeling,andControl" byBabatunde A.Ogunnaike,W.HarmonRay.
- 2. "ChemicalProcessControl"byGeorgeStephanopoulos.
- 3. "ProcessControl" byThomasE.Marlin.

Semester II (Program Elective III)						
Course Code	Course Name	Credits				
CHPE2011	Advanced Computer Aided Design	03				

(Course Hour	S	Credits Assigned			
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
03	-	-	03	-	-	03

		Theory			Term V	Work/Prac	ctical/Oral	
Into	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

Prerequisites

- 1. Thermodynamics.
- 2. Unit Operations.
- 3. Process Equipment Design.
- 4. Computer Programming.
- 5. Modelling and Simulation.

Course Objectives

- 1. To estimate the physical and thermodynamic properties of process fluids.
- 2. To study the design of chemical process equipment.
- 3. To familiarize with the basic structure and components of CAD software.
- 4. To understand the importance and applications of CAD in the field of Chemical Engineering.
- 5. To utilize computational software for the design and simulation of chemical process equipment.
- 6. To design chemical process flow sheets with the help of CAD software.

Detailed Syllabus

Module	Course Contents	No. of
No.		Hours
1	Physical and Thermodynamic Properties of Liquids and Gases	06
	Introduction, Estimation of Physical and Thermodynamic Properties of Liquids	
	and Gases, Diffusion Coefficients (Diffusivities), Compressibility Z-Factor of	
	Natural Gases.	

2	Sizing of Vertical and Horizontal Separators	06
	Introduction, Sizing of Vertical and Horizontal Separators, Sizing of Partly	
	Filled Vessels and Tanks.	
3	Design of Cyclone Separators and Gas Dryers	06
	Cyclone Separator Design, Methods for Gas Dehydration, Gas Dryer	
	(Dehydration) Design.	
4	Mass Transfer Equipment Design	06
	Determination of Plates in Fractionating Columns by the Smoker Equations for	
	Binary Mixtures, Multicomponent Distribution and Estimation of Minimum	
	Trays in Distillation Columns.	
5	Introduction to Computer Software Packages used for Chemical Process	04
	Design	
	Types and Characteristics of various Computer Software Packages used for	
	Chemical Process Equipment Design and Flow Sheet Synthesis such as Aspen	
	/ Aspen Plus / ChemCad / Hysis (UniSim) / DWSIM.	
6	Application of Computer Software Packages and Use of Computer	11
	Programs for Chemical Process Design	
	Case studies involving the application of Computer Software Packages such as	
	Aspen /Aspen Plus / ChemCad / Hysis (UniSim) / DWSIM and the use of	
	Computer Programs for Design of Chemical Process Equipment and Process	
	Flow Sheet Synthesis.	

On completion of the course the students will be able to:

- 1. compute the physical and thermodynamic properties of process fluids.
- 2. calculate the size of Vertical and Horizontal Separators.
- 3. design Cyclone Separators and Gas Dryers.
- 4. apply Chemical Engineering Principles in the Design of Mass Transfer Equipment.
- 5. identify and evaluate various Computer Software Packages for Chemical Process Design.
- 6. utilize Computer Software Packages and Computer Programs for Design and Simulation of Chemical Process Equipment and Flow Sheet Synthesis.

Assessment

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper:

- Minimum 80% syllabus should be covered in question papers of end semester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Question paper will comprise of total six questions.
- All questions carry equal marks.

- Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- Only Four questions need to be solved.

- 1. Coulson and Richardson's Chemical Engineering Vol.6 Design, R.K. Sinnott (Ed.) Butterworth- Heinemann, New Delhi, 2000.
- 2. Process Modeling, Simulation and Control for Chemical Engineers, W. Luyben, Second Edition, McGraw-Hill, 1990.
- 3. Process Modeling and Simulation, R.W. Gaikwad and Dr. Dhirendra, Third Edition, Bennet and Co., 2010.
- 4. Process Simulation and Control using Aspen, A.K. Jana, Prentice Hall of India.
- 5. Fortran Programs for Chemical Process Design, Analysis and Simulation, A. Kayode Coker, Gulf Publishing Co., 1995.
- 6. Introduction to Chemical Engineering Computing, B.A. Finlayson, Second Edition, John Wiley and Sons, 2012.
- 7. Chemical Process Design: Computer-Aided Case Studies, A.C. Dimian and C.S. Bildea, Wiley-VCH, 2008.

Semester II (Program Elective III)				
Course Code	Course Name	Credits		
CHPE2012	Heterogeneous Catalysis and Reactor Design	03		

(Course Hour	S	Credits Assigned			
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
03	-	-	03	-	-	03

		Theory			Term \	Work/Prac	ctical/Oral	
Into	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	•	-	•	100

Prerequisites

- 1. Rate equation of homogeneous and heterogeneous reactions
- 2. Basic knowledge of different method of analysis of kinetic data.
- 3. Design equations of batch, semibatch, recycle and flow reactors

Course Objectives

- 1. To acquire knowledge of heterogeneous reactions
- 2. To study the design equations of solid catalyst batch and flow reactors
- 3. TostudyControlling Resistances and the Rate Equation.
- 4. Tounderstand the design of solid catalysed reactor.
- 5. To understand the concept of modeling of different types of solid catalysed reactors.
- 6. Tounderstandtheconcept of deactivation of catalyst.

Detailed Syllabus

Modul e No.	Course Content s	No. ofHou rs
1	Heterogeneous Reactions-Introduction, Contacting Patterns for Two-Phase Systems, solid catalysed reactions, Representation of the action of a catalyst. The Spectrum of Kinetic Regimes, The rate equation for surface kinetics.	

2	Performance equations for reactors containing porous catalyst particles, (Batch reactor, Plug flow reactor and Continuous stirred tank reactor). Experimental methods for finding rates, Comparison of Experimental Reactors. Laboratory Reactors for Accurate Kinetic Data such as Berty Reactor, Carberry Reactor.	
3	Determining Controlling Resistances and the Rate Equation, Product distribution in multiple reactions, Numericals	05
4	Reactor Design: The Packed Bed Catalytic Reactor, Staged Adiabatic Packed Bed Reactors, Staged Mixed Flow Reactors, Staged Packed Beds with Recycle. Design of single adiabatic packed bed system, Design of a two adiabatic packed bed system.	
5	Reactors with Suspended Solid Catalyst, Fluidized Reactors of Various Types, background information about suspended solids reactors, The bubbling fluidized bed BFB, The K-L model for BFB, Application to Catalytic Reactions, First-Order Catalytic Reaction in a BFB, The circulating fluidized bed – CFB, The Fast Fluidized Bed	
6	Deactivating Catalysts – Mechanisms of catalyst deactivation, The rate and performance equations, Performance Equations in the Regime of Strong Diffusional Resistance, Interpreting kinetic data in the presence of pore diffusion resistance and deactivation, Deactivation in a packed bed reactor.	

On completion of the course the students will:

- 1. apply knowledge of reaction stoichiometry to reactor design.
- 2. apply design equations of batch and flow reactors to reactor design.
- 3. able to predict which controlling mechanism offer resistance to overall reaction rate.
- 4. analyze and design different types of catalytic reactors.
- 5. illustrate bubbling fluidized bed and circulating fluidized bed reactor.
- 6. apply knowledge of deactivation of catalyst.

Assessment

Internal:

Assessmentconsistsoftwotestsoutofwhich; one should be compulsory class test and the other is either a class test as signment on live problems or course project.

EndSemesterTheoryExamination:

Someguidelines for setting up the question paper:

- $\bullet \ Minimum 80\% \ syllabus should be covered \ in question papers of ends emester \ examination.$
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Questionpaperwillcompriseoftotalsix question

- Allquestioncarryequal marks
- Questionswillbemixedinnature(forexamplesupposedQ.2haspart(a)frommodule3thenpart(b)willb e fromanymoduleotherthanmodule 3)
- OnlyFourquestionneedtobesolved.

- 1. "Chemical Reaction Engineering" by Octave Levenspiel
- 2. "Chemical Engineering Kinetics" by J M Smith
- 3. "Elements of Chemical Reaction Engineering" by H. Scott Gogler

Semester II (Program Elective III)					
Course Code	Course Name	Credits			
CHPE2013	AdvancedDownstream Processes	03			

Course Hours			Credits Assigned				
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
03	-	-	03	-	-	03	

		Theory			Term V	Work/Prac	ctical/Oral	
Int Test-I	ernal Asses Test-II	sment Average	Sem	Duration of End Sem	TW	PR/OR	OR	Total
20	20	20	Exam 80	Exam 3 Hours	-	-	-	100

Prerequisites

- 1. Basic knowledge of Chemical Engineering unit operations.
- 2. Different separation processes involved in Chemical Engineering
- **3.** Physical Chemistry, kinetic theory of gases
- 4. Basic knowledge of Process calculations.

Course Objectives

- 1. Tounderstand the unit processes involved in downstream processing.
- 2. To acquire knowledge of various advanced downstream processes in Petrochemical industry
- 3. Tostudy advances in distillation process.
- **4.** To analyze energy conservation in different separation processes.
- **5.** Tounderstand separation synthesis algorithm
- **6.** Tostudy application of Ion Exchange techniques in different aspects.

Detailed Syllabus

Module	Course Contents	No.ofH
No.		ours
1	Introduction: Introduction to Downstream processes theory, applications in chemical separation for Gas-Liquid system, Gas-Solid system. Super critical fluids extraction in food, pharmaceutical, environmental and petroleum applications, water treatment, desalination, Bio separation, dialysis, industrial dialysis. Chromatographic separations specifically Simulated Moving Bed Chromatography for the separation of Racemic Mixtures.	0.5

	Downstream Processes in Petrochemical Industry : Cryogenic distillation for refinery, petrochemical off gases, natural gases, gas recovery-Olefin, Helium,	
2	Nitrogen, Desulfurization - coal, flue gases.	09
3	Advanced Distillation Processes: Azeotropic & extractive distillation - residue curve maps, homogeneous azeotropic distillation, pressure swing distillation, Column sequences, heterogeneous azeotropic distillation.	10
4	Energy conservation in separation processes: Energy balance, molecular sieves - zeolites, adsorption, catalytic properties, manufacturing processes, hydrogel process, application, New trends.	08
5	Non-Ideal Mixtures: Separations process synthesis for nonazeotropic mixtures, non ideal liquid mixtures, separation synthesis algorithm.	04
	Ion Exchange: manufacture of resins, physical & chemical properties, capacity, selectivity, application, regeneration, equipment, catalysis use	
6	served ray, approauton, regeneration, equipment, entaryons use	03

On completion of the course the students will:

- 1. have knowledge of downstream processes involved in various aspects in Chemical industry
- 2. analyze the application of downstream processes in Petrochemical Industry
- 3. analyze advanced distillation processes.
- 4. evaluate energy consumption in different separation processes
- 5. deal with separation process synthesis for non –ideal mixtures.
- 6. analyze Ion Exchange techniques in separation processes.

Assessment

Internal:

Assessmentconsistsoftwotestsoutofwhich; one should be compulsory class test and the other is either a class test as signment on live problems or course project.

EndSemesterTheoryExamination:

Someguidelinesforsettingupthequestionpaper:

- Minimum80% syllabus should be covered in question papers of ends emester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Questionpaperwillcompriseoftotalsixquestion
- Allquestioncarryequal marks
- Questionswillbemixedinnature(forexamplesupposedQ.2haspart(a)frommodule3thenpart(b)willb e fromanymodule otherthanmodule 3)
- OnlyFourquestionneedtobesolved.

- 1. Perry's "Chemical Engg. Handbook": McGraw Hill Pub.
- 2. Douglas J.M., "Conceptual Design of Chemical Processes", McGraw Hill
- 3. Liu Y.A., "Recent Developments in Chemical Process & Plant Design", John Wiley & Sons Inc.
- 4. Timmerhaus K.D., "Cryogenic Process Engg.", Plenum Press
- 5. Othmer Kirk "Encyclopedia of Separation Technology, Vol I & II", Wiley Inter science

Semester II (Program Elective IV)					
Course Code	Course Name	Credits			
CHPE2021	Industrial Safety and Hazard Control	03			

Course Hours			Credits Assigned				
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
03	-	-	03	-	-	03	

		Theory			Term V	Work/Pra	ctical/Oral	
Interest-I	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

Prerequisites

- 1. Knowledge of Unit Operations (Heat and Mass Transfer); Basic Chemical Kinetics.
- 2. General awareness about socio-Industrial culture

Course Objectives

- 1. To develop awareness about the control measures for Industrial safety and hazards
- 2. To study various aspects of safety during industrial operations
- 3. To understand potential hazards of chemical industries.
- **4.** To be acquainted with various rules and regulations related to safety hazards management.
- 5. To gain knowledge of various treatment and disposal of Hazardous Wastes
- **6.** To gain knowledge of various Safety Management

Detailed Syllabus

Module	Course Contents	No.of
No.		Hours
1	Introduction: Aspects of Industrial safety, Importance of safety at working places, List of legislations in Chemical industries. The hazardous Wastes (Management and handling) rules, 1989 (2000).	
2	Chemical Plant Safety: Chemical plant – Fire, Explosion, toxicity, process and corrosion hazards, Plant inspection – check list, Safety audit (IS-14489: 1998), Electrical equipment hazardous area classification, Area classification for instruments, Color codification for identification of pipe lines (IS2379), Indian Standard on safety and health, ILO conventions and recommendations on occupational safety and health.	N6

3	Safety Management: The safety management function, Line verses staff authority, Industrial and organized safety, Safety responsibility and accountability, The practice of safety management: The significance of risk acceptability, limitations on standard remedies, safety authority. The problems of holding management's concern: management view of cost, safety and efficiency.	06
4	Hazardous Waste Management: Fundamentals: working definitions, Historical routes, Regulatory initiatives, Classifications, generation, contaminated sites, future endeavors; Legal frame work: Environmental law, Federal hazardous waste Regulations under RCRA, International perspectives.	06
5	Process Fundamentals: A Little chemistry, Physical chemical properties, Energy and mass balance, Reactions and Reactors, Contaminants release, Transportation of contaminants in sub surface; Toxicity: Exposure and toxic effects.	
6	Treatment and Disposal of Hazardous Wastes: Physical- chemical processes, Biological processes, Stabilization and solidification of waste, Thermal methods-combustion regulations gases and vapors, liquid injection incinerators, solid waste incinerators, storage and feed system, Flue gas temperature reduction,, Air pollution control, Instrumentation, continuous emission monitor, Land disposal/land fill operations.	06

On completion of the course, the students will:

- 1. be well aware of various aspects of industrial safety i.e. safe mode of operating chemical plants, consequences of unsafe operations.
- **2.** have knowledge of potential hazards of various chemicals.
- **3.** be able to deal with hazardous waste management.
- **4.** have knowledge of various methods of disposing hazardous waste.
- 5. be accustomed with Safety Management
- **6.** have knowledge of treatment and disposal of Hazardous Wastes

Assessment

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper:

- Minimum 80% syllabus should be covered in question papers of end semester examination..
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Question paper will comprise of total six question
- Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- Only Four question need to be solved.

Reference

1. "Safety Legislations in Chemical Industries" by S. S. Manakar, Published by Mrs. Jyoti S Manakar, New Panvel

- 2. "Safety Management" by John V. Grimaldi, Rollin H. Simonds; 5th Edition, Published by All India traveler Book Seller, Krishan Nagar, Delhi- 110051.
- **3.** "Hazardous Waste Management" by Michael D. LaGrega, Phillips L. Bukingham, Jeffrey C. Evans and Environmental Resource Management, McGraw-Hill International Edition.

Semester II (Program Elective IV)					
Course Code	Course Name	Credits			
CHPE2022	Green Chemistry and Engineering	03			

Course Hours			Credits Assigned				
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
03	-	-	03	-	-	03	

		Theory			Term \	Work/Pra	ctical/Oral	
Inte Test-I	ernal Assess Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

Prerequisites

- 1. Engineering Chemistry, Chemical Technology
- 2. Students should know basic chemistry pertaining to chemical reactions, chemical formula etc.

Course Objectives

- 1. To understand the principles of Green Chemistry and Engineering.
- 2. To outline the engineering applications of Green Chemistry and Engineering..
- 3. To familiarize the process of Green Engineering.
- 4. To understand the development of environmentally friendly processes.
- 5. Tostudy the selection of suitable material for the manufacture of industrially important products with minimal formation of waste.
- 6. To understand methodology for the green process.

Detailed Syllabus

Module No.	Course Contets	No.ofHo urs
1	Principles of Green Chemistry and Engineering Concept of E Factors and Atom Economy, Principles of Green Chemistry, Waste Minimization, Reduction of Material Use and Energy Requirement, Reduction of Risk and Hazard.	06

2	Green Chemistry and Catalysis Solid Acids and Bases as Catalysts, Catalytic Reductions and Oxidations, Biocatalysis, Phase Transfer Catalysis	06
3	Novel Reaction Media for Green Chemistry and Catalysis Choice of Solvent, Alternative Reaction Media and Multiphasic systems, Supercritical Fluids including Supercritical Carbon Dioxide, Ionic Liquids.	08
4	Chemicals from Renewable Raw Materials Application of Green Chemistry and Engineering in Manufacture of Industrially ImportantChemicals such as Ethanol, Lactic Acid, 1,3-Propanediol, Ascorbic Acid, Biodiesel and Green Polymers.	09
5	Process Intensification for Green Processes Spinning Disc Reactors, Microreactors, Intensified Cross-corrugated Multifunctional Membrane, Applications of Ultrasound, Microwaves and Photochemistry for Environmentally Benign Processes, Electrochemistry and Sustainability, Fuel Cells.	08
6	Life-Cycle Assessment for More Sustainable Products and Processes Life-Cycle Assessment (LCA) Methodology, Applications of LCA.	02

On completion of the course the students will:

- 1. apply the principles of Green Chemistry and Engineering to Chemical and Biochemical Processes.
- 2. understand the phase transfer catalysis process.
- 3. determine alternative reactions for green chemistry & catalysis.
- 4. identify industrial based applications of Green Chemistry and Engineering.
- 5. design and develop processes which are environmentally friendly.
- 6. produce the desired product with minimal formation of waste.

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper:

- Minimum 80% syllabus should be covered in question papers of end semester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Question paper will comprise of total six question
- All question carry equal marks
- Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)

• Only Four question need to be solved.

- 1. Handbook of Green Chemistry and Technology, James Clark and Duncan Macquarrie, Blackwell Science Ltd., 2002.
- 2. Green Chemistry and Catalysis, Roger Sheldon, Isabel Arends and Ulf Hanefeld, Wiley-VCH Verlag GmbH and Co., 2007.

Semester II (Program Elective IV)					
Course Code	Course Name	Credits			
CHPE2023	Industrial Pollution Control and Prevention	03			

(Course Hour	S	Credits Assigned				
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
03	-	-	03	-	-	03	

		Theory			Term V	Work/Pra	ctical/Oral	
Into	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

Prerequisites

- 1. EnvironmentalEngineeringandatmosphericpollution.
- 2. Advancedmethodofwastetreatment.
- 3. StudyandminimizationofIndustrialpollutionanditscontrol

Course Objectives

- 1. To understand the process of industrial pollution.
- 2. Todesignthewaterandairpollutionequipment
- 3. Toestablishthewastetreatmentprocessesasaproductiveoperatingplant
- 4. To analyze effectwaterpollutiononhumanhealthandestablishthestandardnorms
- 5. To analyze effectwaterpollutiononhumanhealthandestablishthestandardnorms
- 6. To study and analyse pollution control and prevention in specific industries.

.Detailed Syllabus

Module No.	Course Contents	No.of Hours
1	Introduction: Introduction and concept of industrial pollution, what is industrial pollution, how many typesof pollution occur in industry explain by industrial examples, why it is important to preventpollution. Differentact forwaterandairpollutiontogetherwithnoiseandnuclearpollution	06
2	Measurementofindustrialpollution: Detailsofwaterandairpollutioncreatedbydifferentindustries, variousmethodformeasure ment of water and air pollution in a given industrial sample. Define COD, BOD, DO, TSS, TDS, MLVSS, VSSetc. Determination of industrial pollution norms with their practical aspects.	05
3	Watertreatment: Introduction, coagulation, softening, reactors mixing and flocculation, sedimentation, filtration, adsorption, waterplantwastemanagement, numerical problems based on industrial wastewater treatment.	06
4	Water qualitymanagement and water treatment: Water pollution and their sources in different industries, discharge norms of industrial wastewater, viz. towaterbodies. Zerodischargenormsfordifferent industries i.e. petroleum, fertilizer, sugar, polymeretc. Recycleof wastewater in industry and its application in prevention of pollution. Wastewatermicrobiology, characteristics of industrial wastewater, applications of unit oper ations in primary secondary and tertiary treatment. Advanced methods wastewater treatmen the sedon different unit operations. Design of different equipments used for physical chemical and biological treatment of industrial wastewater.	10
5	Airpollution: Fundamentalsofphysicalandchemicalairpollution,airpollutantsandtheirthresholdlimit,ef fectofairpollutioninenvironmentultimatelyonhumanhealth,removalofmercury, ammonia,urea,particulate matters,SO2oxideonnitrogenorganic vaporfromeffluentgases.	06
6	Pollution control in selective process industries, pollution control in chemical industries fromgaseous considerations, advanced processes which can made the treatment plan a productive plant. Pollution control and its prevention in pulp and paper industry. Pollution control and prevention in miscellaneous process industries. Detailed economics of prevention pollution from different industry	06

Course Outcomes

- On completion of the course the students will:

 1. understandthedifferenttypesofwastesgeneratedinanindustry,theireffectsonlivingandnon-livingthings.
- understand en vironmental regulator y legislations and standards and climate changes.2.
- understand about the quantification and analysis of wastewater and treatment.

- 4. understandthedifferentunitoperationsandunitprocessesinvolvedinconversion of highlypollutedwaterto potable standards.
- 5. understandaboutanalysisandquantification of hazardous and nonhazardous solid wastewastes, treatment and disposal.
- 6. have the knowledge of pollution control processes in specific industries.

Assessment

Internal:

Assessmentconsistsoftwotestsoutofwhich; one should be compulsory class test and the other is either a class test as signment on live problems or course project.

EndSemesterTheoryExamination:

Someguidelinesforsettingupthequestionpaper:

- Minimum80% syllabus should be covered in question papers of end semester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in thesyllabus.
- Questionpaperwillcompriseoftotalsixquestion
- Allquestioncarryequalmarks
- Questionswillbemixedinnature(forexamplesupposedQ.2haspart(a)frommodule3 thenpart(b)willbe fromanymodule otherthanmodule 3)
- OnlyFourquestionneedtobesolved.

- 1. Airpollution"byRKBhatia,
- 2. "Pollutioncontrolinprocessindustry" by SP Mahajan.
- 3. "Introductiontoenvironmentalengineering" by David A Cornwelland Mackenzie L Davis

Semester II (Institute Elective II)					
Course Code	Course Name	Credits			
CHIE2011	Project Management	03			

(Course Hour	'S	Credits Assigned				
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
03	-	-	03	-	-	03	

		Theory			Term V	Work/Pra	ctical/Oral	
Into	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

- 1. Tofamiliarizethestudentswiththeuseofastructuredmethodology/approachforeachandeveryuniqu eproject undertaken,including utilizingprojectmanagementconcepts,toolsand techniques.
- $2. \quad To appraise the students with the project management life cycle and make them knowledge able about the evarious phases from project initiation through closure.\\$

.Detailed Syllabus

Module	Course Contents	No.of
No.		Hours
	ProjectManagementFoundation:	
	Definitionofaproject, Project Vs Operations, Necessity of project management, Triple constrai	
01	nts,Projectlifecycles(typical&	5
0.2	atypical)Projectphasesandstagegateprocess.Roleofprojectmanager.Negotiationsandresolvi	
	ngconflicts.Projectmanagementinvariousorganizationstructures.PMknowledgeareasasper	
	ProjectManagementInstitute(PMI).	
	InitiatingProjects:	
02	Howtogetaprojectstarted, Selecting projects trategically, Projects election models (Numeric/S coring Models and Non-	6
02	numericmodels), Project portfolioprocess, Project sponsor and creating charter; Project proposal. Effective project team,	U
	Stagesofteamdevelopment&growth(forming,storming,norming&performing),teamdynam	
	ics.	
_	ProjectPlanningandScheduling:	
	WorkBreakdownstructure(WBS)andlinearresponsibilitychart,Interface	
03	Co-ordination and concurrent engineering, Project cost estimation and budgeting, Top	8
	down andbottoms up budgeting, Networking and Scheduling techniques. PERT, CPM,	
	GANTT chart.IntroductiontoProjectManagementInformationSystem(PMIS).	

04	PlanningProjects: Crashingprojecttime,Resourceloadingandleveling,Goldratt'scriticalchain,ProjectStakehol dersandCommunicationplan.RiskManagementinprojects:Riskmanagementplanning,Riski dentificationandriskregister.Qualitativeandquantitativeriskassessment,Probabilityandimp actmatrix.Riskresponsestrategiesforpositiveandnegativerisks	6
05	5.1 ExecutingProjects: Planningmonitoringandcontrollingcycle.Informationneedsandreporting,engagingwithallst akeholdersofthe projects.Teammanagement,communicationandprojectmeetings. 5.2 MonitoringandControllingProjects: Earned Value Management techniques for measuring value of work completed; Using milestonesformeasurement;changerequestsand scope creep.Projectaudit. 5.3 ProjectContracting Projectprocurementmanagement,contractingandoutsourcing,	8
06	6.1 ProjectLeadershipandEthics: Introductiontoprojectleadership,ethicsinproject s.Multiculturalandvirtualprojects. 6.2 ClosingtheProject: Customeracceptance;Reasonsofprojecttermination,Varioustypesof projectterminations (Extinction, Addition, Integration, Starvation), Process of project termination, completing a final report; doing a lessons learned analysis; acknowledging successes and failures; Project management templates and other resources; Managing without authority; Areas of further study	6

On completion of the course the students will:

- 1. Apply selection criteria and select an appropriate project from different options.
- 2. Write workbreakdownstructureforaprojectanddevelopaschedulebasedonit.
- 3. Identifyopportunities and threats to the project and decide an approach to deal with them strategically.
- 4. UseEarnedvaluetechniqueanddetermine&predictstatusoftheproject.
- 5. Capturelessonslearnedduringprojectphases and document them for future reference

Assessment

Internal:

Assessmentconsistsoftwotestsoutofwhich; one should be compulsory class test and the other is either a class test assignment on live problems or course project.

EndSemesterTheoryExamination:

Someguidelinesforsettingupthequestionpaper:

- Minimum80% syllabus should be covered in question papers of end semester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Questionpaperwillcompriseoftotalsixquestion
- Allquestioncarryequalmarks
- Questionswillbemixedinnature(forexamplesupposedQ.2haspart(a)frommodule3 thenpart(b)willbe fromanymodule otherthanmodule 3)

• OnlyFourquestionneedtobesolved.

- $1. Jack Mere dith \& Samuel Mantel, Project Management: A manageria lapproach, Wiley India, 7^{th} Ed.$
- $2. \ AGuide to the Project Management Body of Knowledge (PMBOK^{\textcircled{R}}Guide), 5^{th}Ed, Project Management Institute PA, USA$
- 3. Gido Clements, Project Management, Cengage Learning.
- 4. Gopalan, Project Management, Wiley India
- 5. DennisLock, Project Management, Gower Publishing England, 9th Ed.

Semester II (Institute Elective II)					
Course Code	Course Name	Credits			
CHIE2012	Finance Management	03			

(Course Hour	'S	Credits Assigned				
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
03	-	-	03	-	-	03	

		Theory			Term V	Work/Pra	ctical/Oral	
Into	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

- $1. \ \ Overview of Indian financial system, in struments and \ market$
- $2. \ Basic concepts of value of money, returns and risks, corporate finance, working capital and its management$
- 3. Knowledgeaboutsourcesoffinance, capital structure, dividend policy

.Detailed Syllabus

Module No.	Course Contents	No.of Hours				
	Overview of Indian Financial System: Characteristics, Components and Functions of Financial System. Financial Instruments: Meaning Characteristics and Classification of Passic Financial Instru					
01	FinancialInstruments: Meaning, Characteristics and Classification of Basic Financial Instruments — Equity Shares, Preference Shares, Bonds-Debentures, Certificates of Deposit, and Treasury Bills.					
	Financial Markets: Meaning, Characteristics and Classification of Financial Markets — CapitalMarket,MoneyMarket andForeignCurrencyMarket					
	Financial Institutions: Meaning, Characteristics and Classification of Financial Institutions —CommercialBanks, Investment-MerchantBanksand StockExchanges					
	Concepts of Returns and Risks: Measurement of Historical Returns and Expected					
02	Returns of aSingle Security and a Two-security Portfolio; Measurement of Historical Risk and Expected Riskofa Single Securityanda Two-securityPortfolio. Time Value of Money: Future Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Present Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Continuous Compoundingand ContinuousDiscounting.	06				

03	Overviewof Corporate Finance: Objectives of Corporate Finance; Functions of CorporateFinance—InvestmentDecision, FinancingDecision, and DividendDecision. Financial Ratio Analysis: Overview of Financial Statements—Balance Sheet, Profit and LossAccount, and Cash Flow Statement; Purpose of Financial Ratio Analysis; Liquidity Ratios; Efficiency or Activity Ratios; Profitability Ratios; Capital Structure Ratios; Stock Market Ratios; LimitationsofRatioAnalysis.	09
04	Capital Budgeting: Meaning and Importance of Capital Budgeting; Inputs for Capital BudgetingDecisions; InvestmentAppraisalCriterion— AccountingRateofReturn, PaybackPeriod, Discounted Payback Period, Net Present Value(NPV), Profitability Index, Internal Rate of Return(IRR), and Modified Internal Rate of Return(MIRR) WorkingCapitalManagement: ConceptsofMeaningWorkingCapital; Importance of WorkingCapitalManagement; Factors Affecting an Entity's Working Capital Needs; Estimation of Working Capital Requirements; Management of Inventories; Management of Receivables; and Management of Cashand Marketable Securities.	10
05	SourcesofFinance:Long Term Sources—Equity, Debt, and Hybrids; MezzanineFinance;SourcesofShortTermFinance— TradeCredit,BankFinance,CommercialPaper;ProjectFinance. CapitalStructure:FactorsAffectinganEntity'sCapitalStructure;OverviewofCapitalStructureTheoriesandApproaches— NetIncomeApproach,NetOperatingIncomeApproach;Traditional Approach, and Modigliani-Miller Approach. Relation between Capital Structure andCorporateValue; Conceptof OptimalCapitalStructure	05
06	DividendPolicy: Meaning and Importance of DividendPolicy; Factors Affecting an Entity's Dividend Decision; Overview of Dividend Policy Theories and Approaches—Gordon's Approach, Walter's Approach, and Modigliani-Miller Approach	03

On completion of the course the students will:

- 1. UnderstandIndianfinancesystemandcorporatefinance
- 2. Takeinvestment, finance as well as dividend decisions

Assessment

Internal:

Assessmentconsistsoftwotestsoutofwhich; one should be compulsory class test and the other is either a class test assignment on live problems or course project.

EndSemesterTheoryExamination:

Someguidelinesforsettingupthequestionpaper:

- Minimum80% syllabus should be covered in question papers of end semester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in thesyllabus.
- Questionpaperwillcompriseoftotalsixquestion
- Allquestioncarryequalmarks

- Questionswillbemixedinnature(forexamplesupposedQ.2haspart(a)frommodule3 thenpart(b)willbe fromanymodule otherthanmodule 3)
- OnlyFourquestionneedtobesolved.

- 1. FundamentalsofFinancialManagement, 13thEdition(2015) by Eugene F. BrighamandJoel F. Houston; Publisher: Cengage Publications, New Delhi.
- 2. AnalysisforFinancialManagement,10thEdition(2013)byRobertC.Higgins;Publishers: McGrawHillEducation,NewDelhi.
- 3. IndianFinancialSystem,9thEdition(2015)byM.Y.Khan; Publisher:McGrawHillEducation,NewDelhi.
- 4. Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & CompanyLimited,NewDelhi

Semester II (Institute Elective II)					
Course Code	Course Name	Credits			
CHIE2013	Entrepreneurship Development and Management	03			

(Course Hour	S	Credits Assigned			
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
03	-	-	03	-	-	03

		Theory			Term V	Work/Prac	ctical/Oral	
Into Test-I	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

- 1. Toacquaintwithentrepreneurshipand managementofbusiness
- $2. \quad Understand In dian environment for entrepreneurs hip \\$
- 3. IdeaofEDP, MSME

.Detailed Syllabus

Module	Course Contents	No.of Hours						
No.		110015						
	Overview Of Entrepreneurship: Definitions, Roles and Functions/Values of							
	Entrepreneurship, History of Entrepreneurship Development, Role of Entrepreneurship in							
01	the National Economy, Functions of an Entrepreneur, Entrepreneurship and Forms of Business Ownership Role of Money and Capital Markets in Entrepreneurial							
	Development: Contribution of GovernmentAgenciesinSourcinginformationfor							
	Entrepreneurship							
	Business Plans And Importance Of Capital To Entrepreneurship: Preliminary and							
	MarketingPlans, Management and Personnel, Start-up Costs and Financing as well as							
	Projected FinancialStatements, Legal Section, Insurance, Suppliers and Risks,							
02	Assumptions and Conclusion, Capitaland itsImportance to the Entrepreneur	09						
	Entrepreneurship And Business Development: Starting a New Business, Buying an							
	Existing Business, New Product Development, Business Growth and the Entrepreneur Law and it							
	sRelevancetoBusinessOperations							
0.2	Women's Entrepreneurship Development, Social entrepreneurship-roleand	05						
03	need,EDPcell,roleofsustainabilityandsustainabledevelopmentforSMEs,casestudies,exercise	05						
	S							

04	Indian Environment for Entrepreneurship: key regulations and legal aspects, MSMED Act2006 and its implications, schemes and policies of the Ministry of MSME, role and responsibilities of various government organisations, departments, banks etc., Role of State governments in termsofinfrastructured evelopments and supportetc., Public private partnerships, National Skill development Mission, Credit Guarantee Fund, PMEGP, discussions, group exercises etc	08
05	EffectiveManagementofBusiness: Issuesandproblemsfacedbymicroandsmallenterprisesan deffectivemanagementofMandSenterprises(riskmanagement,creditavailability,technologyi nnovation,supplychainmanagement,linkagewithlargeindustries),exercises,e-Marketing	08
06	AchievingSuccessInTheSmallBusiness:Stagesofthesmallbusinesslifecycle,fourtypesoffir m-levelgrowthstrategies, Options—harvestingorclosingsmallbusinessCriticalSuccessfactorsofsmallbusiness	05

On completion of the course the students will:

- 1. Understandtheconceptofbusinessplanandownerships
- 2. InterpretkeyregulationsandlegalaspectsofentrepreneurshipinIndia
- 3. Understandgovernmentpoliciesforentrepreneurs

Assessment

Internal:

Assessmentconsistsoftwotestsoutofwhich; one should be compulsory class test and the other is either a class test as stored assignment on live problems or course project.

EndSemesterTheoryExamination:

Someguidelinesforsettingupthequestionpaper:

- Minimum80% syllabus should be covered in question papers of end semester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in thesyllabus.
- Questionpaperwillcompriseoftotalsixquestion
- Allquestioncarryequalmarks
- Questionswillbemixedinnature(forexamplesupposedQ.2haspart(a)frommodule3 thenpart(b)willbe fromanymodule otherthanmodule 3)
- OnlyFourquestionneedtobesolved.

- 1. PoornimaCharantimath,Entrepreneurshipdevelopment-SmallBusinessEnterprise,Pearson
- 2. EducationRobertDHisrich,MichaelPPeters,DeanAShapherd,Entrepreneurship,latestedition,TheM cGrawHillCompany
- 3. DrTNChhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 4. DrCNPrasad,SmallandMediumEnterprisesinGlobalPerspective, NewcenturyPublications,NewDelhi
- 5. VasantDesai,Entrepreneurialdevelopmentandmanagement,HimalayaPublishingHouse

- 6. Maddhurima Lall, Shikah Sahai, Entrepreneurship, Excel Books7. Rashmi Bansal, STAYhungry STAY foolish, CIIE, IIM Ahmedabad
- $8. \ Lawand Practice relating to Micro, Small and Mediumenter prises, Tax mann Publication Ltd.\\$
- 9. Kurakto, Entrepreneurship-PrinciplesandPractices, ThomsonPublication
- 10. LaghuUdyogSamachar
- 11. www.msme.gov.in
- 12. www.dcmesme.gov.in
- 13. www.msmetraining.gov.in

Semester II (Institute Elective II)					
Course Code	Course Name	Credits			
CHIE2014	Human Resource Management	03			

	Course Hour	S	Credits Assigned				
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
03	-	-	03	-	-	03	

		Theory			Term V	Work/Pra	ctical/Oral	
Int Test-I	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

- $1. \quad To introduce the students with basic concepts, techniques and practices of the human resource management.$
- 2. ToprovideopportunityoflearningHumanresourcemanagement(HRM)processes,related with the functions, and challenges in the emerging perspective of today's organizations.
- 3. Tofamiliarizethestudentsaboutthelatestdevelopments,trends&differentaspectsofHRM.
- 4. Toacquaintthestudentwiththeimportanceofinter-personal&inter-groupbehavioralskillsinanorganizationalsettingrequiredforfuturestable engineers,leadersandmanagers.

.Detailed Syllabus

Modul e No.	Course Contents	No.of Hours
	IntroductiontoHR	
	HumanResourceManagement-	
01	Concept, Scopeand Importance, Interdisciplinary Approach Relationship with other Sciences, Competencies of HRM anager, HRM functions.	5
	Humanresourcedevelopment(HRD):changingroleofHRM-HumanresourcePlanning,	
	Technologicalchange, Restructuring and rightsizing, Empowerment, TQM, Managing ethicaliss	
	ues.	

	OrganizationalBehavior(OB)	
	IntroductiontoOBOrigin,NatureandScopeofOrganizationalBehavior,RelevancetoOrganizati	
	onalEffectivenessandContemporaryissues	
	Personality: Meaning and Determinants of Personality, Personality development,	
	Personality Types, Assessment of Personality Traits for Increasing Self Awareness	
	Perception: Attitude and Value, Effect of perception on Individual Decision-making,	
02	Attitude and Hardes and Attitude and Attitude and Behavior.	7
	Motivation: Theories of Motivation and their Applications for Behavioral Change (Maslow, Herz	
	berg,McGregor); GroupBehaviorandGroupDynamics: Workgroups formal	
	andinformalgroups and stages of group development. Team Effectiveness: High performing	
	teams, Team Roles, cross functional andself-directed team.	
	Casestudy	
	OrganizationalStructure&Design	
	Structure, size, technology, Environment of organization; Organizational Roles & conflicts:	
03	Conceptofroles;role dynamics;role conflictsand stress.	6
	Leadership:Conceptsandskillsofleadership,Leadershipandmanagerialroles,Leadershipstyles	
	and contemporaryissuesinleadership.	
	PowerandPolitics:Sourcesandusesofpower;Politicsat workplace,Tacticsandstrategies.	
	HumanresourcePlanning	
	RecruitmentandSelectionprocess,Job-enrichment,Empowerment-Job-	_
04	Satisfaction, employeemorale.	5
	PerformanceAppraisalSystems:Traditional&modernmethods,PerformanceCounseling,Career	
	Planning. Training&Development:IdentificationofTrainingNeeds,TrainingMethods EmergingTrendsinHR	
	Organizationaldevelopment;BusinessProcessRe- engineering(BPR),BPRasatoolfororganizational development , managing processes &	
05	transformation in HR. Organizational Change, Culture, Environment Cross Cultural	6
	Leadership and Decision Making: Cross Cultural Communication and diversity atwork,	Ü
	Causes of diversity, managing diversity with special reference to handicapped, women	
	andageingpeople, intracompanyculturaldifference inemployeemotivation.	
	HR&MIS	
	Need,purpose,objectiveandroleofinformationsysteminHR,ApplicationsinHRDinvariousindus	
	tries (e.g. manufacturing R&D, Public Transport, Hospitals, Hotels and service	
	industriesStrategicHRM	
06	Role of Strategic HRM in the modern business world, Concept of Strategy, Strategic	10
	ManagementProcess, Approaches to Strategic Decision Making;Strategic Intent -	
	Corporate Mission, Vision, Objectives and Goals	
	LaborLaws&IndustrialRelations	
	Evolution of IR, IR issues in organizations, Overview of Labor Laws in India; Industrial	
	DisputesAct, Trade UnionsAct,Shops andEstablishmentsAct	

On completion of the course the students will:

- 1. Understandtheconcepts, aspects,techniquesandpracticesofthe humanresource management.
- 2. UnderstandtheHumanresourcemanagement(HRM)processes,functions,changesandchallengesintod ay'semergingorganizational perspective.
- 3. GainknowledgeaboutthelatestdevelopmentsandtrendsinHRM.
- 4. Applytheknowledgeofbehavioralskillslearntandintegrateitwithininterpersonalandintergroupenviron mentemergingasfuturestable engineersandmanagers.

Assessment

Internal:

Assessmentconsistsoftwotestsoutofwhich; one should be compulsory class test and the other is either a class test as signment on live problems or course project.

EndSemesterTheoryExamination:

Someguidelinesforsettingupthequestionpaper:

- Minimum 80% syllabus should be covered in question papers of end semester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in thesyllabus.
- Questionpaperwillcompriseoftotalsixquestion
- Allquestioncarryequalmarks
- Questionswillbemixedinnature(forexamplesupposedQ.2haspart(a)frommodule3 thenpart(b)willbe fromanymodule otherthanmodule 3)
- OnlyFourquestionneedtobesolved.

- 1. StephenRobbins, Organizational Behavior, 16thEd, 2013
- 2. VSP Rao, Human Resource Management, 3rd Ed, 2010, Excelptiblishing
- 3. Aswathapa, Humanresourcemanagement: Text &cases, 6thedition, 2011
- 4. C.B.MamoriaandSVGankar,DynamicsofIndustrialRelationsinIndia,15thEd,2015,HimalayaPublish ing,15thedition, 2015
- $5.\,P. SubbaRao, Essentials of Human Resource management and Industrial relations, 5^{th}Ed, 2013, Himalaya~Publishing$
- 6. LaurieMullins, Management & Organizational Behavior, Latest Ed, 2016, Pears on Publications

Semester II (Institute Elective II)							
Course Code	Course Name	Credits					
CHIE2015	Professional Ethics and Corporat Social Responsibility	03					
	(CSR)						

	Course Hour	S	Credits Assigned					
Theory	Practical	Tutorial	Theory	Theory Practical Tutorial Total				
03	-	-	03	-	-	03		

		Theory			Term V	Work/Prac	ctical/Oral	
Inte Test-I	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

- $1. \ To understand professional ethics in business$
- 2. Torecognized corporates ocial responsibility

.Detailed Syllabus

Module	Course Contents	No.of
No.		Hours
	Professional Ethics and Business: The Nature of Business Ethics; Ethical Issues in	
01	Business; Moral Responsibility and Blame; Utilitarianism: Weighing Social Costs and Benefits	04
	;RightsandDutiesofBusiness	
	ProfessionalEthicsintheMarketplace:PerfectCompetition;MonopolyCompetition;Oligo	
02	polisticCompetition;OligopoliesandPublicPolicy	08
	ProfessionalEthicsandtheEnvironment: Dimensions of Pollution and Resource Depletion;	
	EthicsofPollutionControl;EthicsofConservingDepletable Resources	
	Professional Ethics of Consumer Protection: Markets and Consumer Protection;	
	ContractView of Business Firm's Duties to Consumers; Due Care Theory; Advertising	
03	Ethics; ConsumerPrivacy	06
	ProfessionalEthicsofJobDiscrimination: NatureofJobDiscrimination;ExtentofDiscrimi	
	nation;ReservationofJobs.	
	Introduction to Corporate Social Responsibility: Potential Business Benefits—Triple	
04	bottomline, Human resources, Risk management, Supplier relations; Criticisms and	05
	concerns—	
	Natureofbusiness; Motives; Misdirection. Trajectory of Corporate Social Responsibility in In	
	dia	
	CorporateSocialResponsibility: ArticulationofGandhianTrusteeship	
05	Corporate Social Responsibility and Small and Medium Enterprises (SMEs) in India, Corporate and Co	08
1	SocialResponsibilityand Public-Private Partnership (PPP) inIndia	

08

CorporateSocialResponsibilityinGlobalizingIndia:CorporateSocialResponsibilityVolu ntary Guidelines, 2009 is sued by the Ministry of Corporate Affairs, Government of India, Legal AffaspectsofCorporateSocialResponsibility—CompaniesAct,2013.

Course Outcomes

On completion of the course the students will:

- 1. Understandrightsanddutiesofbusiness
- 2. Distinguishdifferentaspectsofcorporatesocial responsibility
- 3. Demonstrateprofessionalethics
- 4. Understandlegalaspectsofcorporatesocialresponsibility

Assessment

Internal:

Assessmentconsists of two tests out of which; one should be compulsory class test and the other is either a class te stor assignmentonlive problemsor courseproject.

EndSemesterTheoryExamination:

Someguidelinesforsettingupthequestionpaper:

- Minimum80% syllabus should be covered in question papers of end semester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the yllabus.
- Questionpaperwillcompriseoftotalsixquestion
- Allquestioncarryequalmarks
- Questionswillbemixedinnature(forexamplesupposedQ.2haspart(a)frommodule3 thenpart(b) will be from any module other than module 3)
- OnlyFourquestionneedtobesolved.

- 1. BusinessEthics:TextsandCasesfromtheIndianPerspective(2013)byAnandaDasGupta;Publisher:Spring
- 2. CorporateSocialResponsibility:ReadingsandCasesinaGlobalContext(2007)byAndrewCrane,DirkMatte n,Laura Spence;Publisher:Routledge.
- 3. BusinessEthics:ConceptsandCases,7thEdition(2011)byManuelG.Velasquez;Publisher:Pearson,NewD elhi.
- 4. CorporateSocialResponsibilityinIndia(2015)byBidyutChakrabarty,Routledge,NewDelhi.

Semester II (Institute Elective II)						
Course Code	Course Name	Credits				
CHIE2016	Digital Business Management	03				

(Course Hour	S	Credits Assigned				
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
03	-	-	03 - 03				

		Theory			Term V	Work/Prac	ctical/Oral	
Interest I	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total
20	20	20	80	3 Hours	-	-	-	100

- 1. Tofamiliarizewithdigitalbusinessconcept
- 2. ToacquaintwithE-commerce
- $3. \quad To give in sight sinto E-business and its strategies\\$

.Detailed Syllabus

Modul	Detailedconten	Contac
e	t	tHour
		S
	IntroductiontoDigitalBusiness-	
	Introduction,Backgroundandcurrentstatus,E-	
1	marketplaces, structures, mechanisms, economics and impacts.	09
	Differencebetweenphysicaleconomyand digitaleconomy.	
	Drivers of digital business- Big Data & Analytics, Mobile, Cloud Computing,	
	Social media, BYOD, and Internet of Things (digitally intelligent machines/services).	
	Opportunities and Challenges in Digital Business,	
	OverviewofE-Commerce	
	E-Commerce-Meaning, Retailing in e-commerce-	
	productsandservices, consumer behavior, marketresearch and advertisement. B2B-E-	
	commerce-sellingandbuyinginprivatee-	
2	markets,publicB2Bexchangesandsupportservices,e-supplychains,Collaborative	06
	Commerce, Intra business EC and Corporate portals. ther E-C models	
	andapplications, innovative ECS ystem-From E-	
	governmentandlearningtoC2C,mobilecommerceandpervasivecomputing.ECStrategy	
	and Implementation-ECstrategyand global EC, Economics and Justification of EC,	
	Using Affiliate marketing to promote your e-	
	commercebusiness, Launching asuccessful on line business and EC project, Legal, Ethicsa	
	nd SocietalimpactsofEC.	
	nd boeletannipactionEC.	

	DigitalBusinessSupportservices: ERPase-	
3	businessbackbone,knowledgeTopeApps,Informationandreferral system	06
	ApplicationDevelopment:BuildingDigitalbusinessApplicationsandInfrastructure	
	Managing E-Business-Managing Knowledge, Management skills for e-business,	
	ManagingRisksine-business.SecurityThreatstoe-business-	
4	SecurityOverview,Electroniccommerce Threats, Encryption, Cryptography, Public	06
	Key and Private Key Cryptography, Digitalsignatures, Digital Certificates, Security	
	Protocolsover	
	PublicNetworks:HTTP,SSL,FirewallasSecurityControl,PublicKeyInfrastructure(PKI	
)forSecurity,Prominent	
	CryptographicApplications	
	E-BusinessStrategy-E-businessStrategicformulation-	
5	AnalysisofCompany'sInternalandexternalenvironment,Selectionofstrategy,E-	04
	businessstrategyintoAction,challengesandE-	•
	Transition(ProcessofDigitalTransformation)	
6	Materializinge-business:FromIdeato Realization-Businessplanpreparation.	ΛO
	CaseStudiesandpresentations	08

On completion of the course the students will:

- 1. Identifydriversofdigitalbusiness
- 2. IllustratevariousapproachesandtechniquesforE-businessandmanagement
- 3. PrepareE-businessplan

Assessment

Internal:

Assessmentconsistsoftwotestsoutofwhich; one should be compulsory class test and the other is either a class test as stored assignment on live problems or course project.

EndSemesterTheoryExamination:

Someguidelines for setting up the question paper:

- Minimum80% syllabus should be covered in question papers of end semester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Questionpaperwillcompriseoftotalsixquestion
- Allquestioncarryequalmarks
- Questionswillbemixedinnature(forexamplesupposedQ.2haspart(a)frommodule3 thenpart(b)willbe fromanymodule otherthanmodule 3)
- OnlyFourquestionneedtobesolved.

Reference Books:

1. A textbook on E-commerce, Er Arunrajan Mishra, Dr W K Sarwade, Neha Publishers & Distributors, 2011

- 2. E-commerce from vision to fulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3. Digital Business and E-Commerce Management, 6th Ed, Dave Chaffey, Pearson, August 2014
- 4. Introduction to E-business-Management and Strategy, Colin Combe, ELSVIER, 2006
- 5. Digital Business Concepts and Strategy, Eloise Coupey, 2nd Edition, Pearson
- 6. Trend and Challenges in Digital Business Innovation, Vinocenzo Morabito, Springer
- 7. Digital Business Discourse Erika Darics, April 2015, Palgrave Macmillan
- 8. E-Governance-Challenges and Opportunities in : Proceedings in 2nd International Conference theory and practice of Electronic Governance
- Perspectives the Digital Enterprise –A framework for Transformation, TCS consulting journal Vol.5
- 10. Measuring Digital Economy-A new perspective -DOI:10.1787/9789264221796-enOECD Publishing

Semester II (Institute Elective II)							
Course Code	Course Name	Credits					
CHIE2017	Environmental Management	03					

	Course Hour	S	Credits Assigned					
Theory	Practical	Tutorial	Theory Practical Tutorial Total					
03	-	-	03	-	-	03		

	Theory					Work/Pra	ctical/Oral	
Int Test-I	Test-II Average Sem End Se		Duration of End Sem Exam	TW	PR/OR	OR	Total	
20	20	20	80	3 Hours	-	-	-	100

- $1. \quad Understand and identify environmental is sues relevant to India and global concerns$
- 2. Learnconceptsofecology
- 3. Familiariseenvironmentrelatedlegislations

.Detailed Syllabus

Module	Detailedcontent	Contac tHours
01	IntroductionandDefinitionofEnvironment:SignificanceofEnvironmentManagementforcon temporarymanagers, Careeropportunities. EnvironmentalissuesrelevanttoIndia,SustainableDevelopment,andTheEnergyscenario.	10
02	GlobalEnvironmentalconcerns:GlobalWarming,AcidRain,OzoneDepletion,HazardousWastes, Endangered life-species, Loss of Biodiversity, Industrial/Man-made disasters,Atomic/Biomedicalhazards,etc.	06
03	ConceptsofEcology:Ecosystemsandinterdependencebetweenlivingorganisms,habitats,limitingfactors,carryingcapacity,foodchain,etc.	05
04	Scope of Environment Management, Role & functions of Government as a planning and regulating agency. Environment Quality Management and Corporate Environmental Responsibility	10
05	TotalQualityEnvironmental Management,ISO-14000,EMScertification.	05
06	GeneraloverviewofmajorlegislationslikeEnvironmentProtectionAct,Air(P&CP)Act,Water (P &CP)Act, WildlifeProtectionAct,ForestAct,FactoriesAct,etc.	03

Course Outcomes

On completion of the course the students will:

- 1. Understandtheconceptofenvironmentalmanagement
- 2. Understandecosystemandinterdependence, foodchainetc.

3. Understandandinterpretenvironmentrelatedlegislations

Assessment

Internal:

Assessmentconsistsoftwotestsoutofwhich; one should be compulsory class test and the other is either a class test as stored assignment on live problems or course project.

EndSemesterTheoryExamination:

Someguidelinesforsettingupthequestionpaper:

- Minimum 80% syllabus should be covered in question papers of end semester examination.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in thesyllabus.
- Questionpaperwillcompriseoftotalsixquestion
- Allquestioncarryequalmarks
- Questionswillbemixedinnature(forexamplesupposedQ.2haspart(a)frommodule3 thenpart(b)willbe fromanymodule otherthanmodule 3)
- OnlyFourquestionneedtobesolved.

- 1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell, Edward Elgar Publishing
- 3. Environmental Management, T V Ramachandra and Vijay Kulkarni, TERI Press
- 4. Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau Of Indian Standards, February 2005
- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Maclillan India, 2000
- 6. Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC Press
- 7. Environment and Ecology, MajidHussain, 3rd Ed. Access Publishing.2015

	Semester II	
Course Code	Course Name	Credits
CHL201	Program Lab-II	01

	Course Hour	'S		Credits Assigned					
Theory	Practical	Tutorial	Theory Practical Tutorial Total						
-	02	-	-	01	-	01			

		Theory			Term V	Work/Pra	ctical/Oral	
Interest-I				TW PR/OR OR		OR	Total	
-	-	-	-	-	25	25	-	50

Prerequisites

- 1. Basic knowledge of all mass transfer operations
- 2. Practical knowledge of distillation, absorption, adsorption, extraction, leaching, humidification, drying and crystallization
- 3. Basic knowledge of process modeling, dynamics and control
- 4. Practical knowledge of process dynamics and feedback control system

Course Objectives

- 1. To understand basic Equation for membrane separation for membrane
- 2. To study Experiment on reactive distillation
- 3. To understand multistage cross current operation in liquid liquid extraction experimentally
- **4.** Toanalyze cascade, feed forward and ratio control systems
- **5.** Toacquire knowledge of tuning PID control system
- **6.** Toanalyze multi variable control systems

Detailed Syllabus

Program Lab-II should have six experiments based on the courses Advanced Mass Transfer and Advanced Process Controland Dynamics

Course Outcomes

On completion of the course the students will:

- 1. validate basic Equation for membrane separation for membrane
- 2. understand reactive distillation operation

- **3.** be able to perform multistage cross current operation in liquid liquid extraction and compare with single stage operation
- 4. obtain quick control response based on application of advanced control strategies.
- 5. tune the control parameters for fine system response.
- **6.** achieve pairing of input and output variables in MIMO systems.

Assessment

Laboratory

Weightage for Laboratory should be 40% in Final Assessment of Laboratory Term Work.

Term work

Term work shall be evaluated based on performance in practical.

Practical Journal: 20 marks Attendance: 05 marks **Total: 25 marks**

End Semester Examination

Practical/Oral examination is to be conducted by pair of internal and external examiners

	Semester II	
Course Code	Course Name	Credits
CHSBL201	Skill Based Lab-II	02

	Course Hour	'S		Credits Assigned					
Theory	Practical	Tutorial	Theory Practical Tutorial Total						
-	04	-	-	02	-	02			

	Theory					Work/Pra	ctical/Oral	
Interest-I	8			TW	PR/OR	OR	Total	
-	-	-	-	-	50	50	-	100

Prerequisites

- 1. Basic knowledge Sample Analytical equipment.
- 2. Practical knowledge of major wastewater analytical test categories.
- **3.** Basic knowledge of process modeling, dynamics and control.
- **4.** Practical knowledge of waste water treatment.

Course Objectives

- 1. To learn Operation of Analytical Instruments
- 2. To study Multi component distillation separation and other unit operations using process simulators
- 3. To understand Linear and non linear regression
- 4. To learn Error analysis methods
- 5. To understand Waste Water Analysis
- 6. To study Development of HEN, Column series

Detailed Syllabus

Skill Based Lab-II is focused on the learning through experience. SBL shall facilitate the learner to acquire the fundamentals of practical engineering in his or her specialization in a project-oriented environment. The learning through skill based labs can be useful in facilitating their research work and hence useful in early completion of their dissertation work.

Course Outcomes

On completion of the course the students will:

- 1. select the required instruments for sample analysis
- 2. apply the knowledge of chromatography to Separates the constituents from a complex mixture
- **3.** understand the effects of different constituents in a process outcome and analyse the performance of various on-line and/or off-line instruments and equipment by simulation
- **4.** perform experimental analysis for different offline test TDS, dissolve oxygen etc.
- **5.** learn basic concepts of waste management
- **6.** carryout and determine treatment efficiency of various water treatment processes

Assessment

Laboratory

Weightage for Laboratory should be 40% in Final Assessment of Laboratory Term Work.

Practical/Oral examination is to be conducted by pair of internal and external examiner.

SEMESTER III

Course Code	CourseName	S	Teaching Scheme(Contact Hours)				Credits Assigned			
		Theor	y	Pract.	Tut.	Theory	Pract.	Tut.	Total	
CHMP301	MajorProject: Dissertation-I			20			10		10	
	Total			20	00	00	10		10	
		ExaminationScheme								
Course	CourseName	Theory								
Code	Courservanie	InternalAssessment			End Exam.D		Term Work	Pract/ Oral	Total	
		Test-1	Test-2	Avg	Sem. Exam	uration(i nHrs)	VV 0111	0141		
CHMP301	MajorProject: Dissertation-I						100		100	
Total							100		100	

			Semester	r III					
Course Code	CourseName	Teaching Scheme(Contact Hours)				Credits Assigned			
		Theor	ry	Pract.	Tut.	Theory	Pract.	Tut.	Total
CHMP301	MajorProject: Dissertation-I			20			10		10
	Total			20	00	00	10		10
		ExaminationScheme							
Course	CourseName	Theory							
Code	Courservanie	Interna	InternalAssessment En			Exam.D	Term Work	Pract/ Oral	Total
		Test-1	Test-2	Avg	Sem. Exam	uration(i nHrs)	WUIK	Orai	
CHMP301	MajorProject: Dissertation-I					-	100		100
	Total						100		100

- **1.** To investigate the research problems.
- 2. To acquire critique knowledge from research studies.
- **3.** To identify and formulate the Dissertation Topic with novelty.
- **4.** To compare the related research works in the similar field.
- **5.** To write the literature review scientifically.
- **6.** To develop methodology for the Dissertation topic.

Guidelines for Dissertation-I

Students should do literature survey and identify the problem for Dissertation and finalize in consultationwithGuide/Supervisor.Studentsshouldusemultipleliteraturesandunderstandtheproblem.Studentsshould attemptsolutiontotheproblembyanalytical/simulation/experimentalmethods.The solution to be validated with proper justification and compile the report instandard format.

Course Outcomes

On completion of the course the students will:

- 1. acquire knowledge of various research problems.
- 2. do critical analysis of upcoming research problems.
- **3.** formulate the Dissertation topic with novelty.
- **4.** do critical analysis of research works in the similar field.
- **5.** have a skill of writing literature review scientifically.

6. finalize the methodology for the Dissertation topic

GuidelinesforAssessmentofDissertation-I.

Dissertation-I should be assessed based on following points

- QualityofLiteraturesurveyandNoveltyintheproblem
- $\bullet \quad Clarity of Problem definition and Feasibility of problems olution$
- Relevancetothespecialization
- Clarity of objective and scope Dissertation-I should be assessed through a presentation by a panel ofInternalexaminersandexternalexaminerappointed by the Head of the Department/Institute of respective Programme.

SEMESTER IV

Course Code	CourseName	Teaching Scheme(Contact Hours)			Credits Assigned				
		Theory		Pract.	Tut.	Theory	Pract.	Tut.	Total
CHMP401	Major Project :Dissertation-II			32		-	16		16
Total				32			16		16
Course Code	CourseName	ExaminationScheme							
		Theory						i	
		InternalAssess		ment	End	Exam.	Term Work	Pract/	Total
		Test-1	Test-2	Avg	Sem. Exam	Duration (inHrs)	WOFK	Oral	
CHMP401	MajorProject: Dissertation-II					1	100	100	200
Total							100	100	200

Semester IV

Course Code	CourseName	Teaching Scheme(Contact Hours)				Credits Assigned			
		Theory		Pract.	Tut.	Theory	Pract.	Tut.	Total
CHMP401	Major Project :Dissertation-II			32			16		16
Total				32			16		16
Course Code	CourseName	ExaminationScheme							
		Theory							
		Interna	alAssess			Exam.	Term	Pract/	Total
		Test-1	Test-2	Avg	Sem. Exam	Duration (inHrs)	Work	Oral	
CHMP401	MajorProject: Dissertation-II						100	100	200
Total							100	100	200

Course Objectives

- 1. To implement the methods/techniques identified for research project.
- 2. To demonstrate the ability to independently perform primary research activities.
- 3. To analyze and interpret the results obtained.
- 4. To develp the ability to compare the results obtained with literature.
- 5. To demonstrate the original contribution to knowledge.
- 6. To create a research report.

Guidelines for Dissertation-II

Students should implement the methods/techniques identified in dissertation I. Students should perform primary research activities (experiments, numerical modelling, etc.) on a significant open-ended problem. They should analyze, interpret and compare the result obtained from work and explain thorough and advanced knowledge of research topic in written form by writing a dissertation.

Course Outcomes

On completion of the course the students will:

- 1. implement the suitable methods/techniques
- 2. demonstrate the ability to independently perform primary research activities.
- 3. analyze and interpret the results obtained.
- 4. compare the results obtained with literature.
- 5. demonstrate the original contribution to knowledge.
- 6. elucidate in-depth and advanced knowledge of research topic in written form by writing a dissertation.

GuidelinesforAssessmentofDissertationII

DissertationIIshouldbeassessedbasedonfollowingpoints:

- QualityofLiteraturesurveyand Noveltyin theproblem
- $\bullet \quad Clarity of Problem definition and Feasibility of problem solution \\$
- Relevancetothespecializationorcurrent Research/ Industrialtrends
- Clarityofobjectiveandscope

- Qualityofworkattemptedorlearnercontribution
- Validationofresults
- QualityofWrittenandOralPresentation

Students should publish at least one paper based on the work in referred National/International conference/Journal of repute.

Dissertation II should be assessed by internal and External Examiners appointed by the University of Mumbai.