University of Mumbai

No. AAMS(UG)/ 125 of 2022-23

CIRCULAR:-

Attention of the Principals of the Affiliated Colleges and Directors of the Recognized Institutions in Faculty of Science & Technology is invited to this office circular No. UG/52 of 2021 dated 21st January, 2021, relating to the revised scheme (Rev-2019 'C' Scheme) for the B.E. in Chemical Engineering (Sem. III to VIII).

You are hereby informed that the recommendations made by the Ad-hoc Board of Studies in Chemical Engineering at its meeting held on 4th May, 2022 and subsequently passed in the Faculty and then by the Board of Deans at its meeting held on 5th July, 2022 <u>vide</u> item No. 6.37 (R) have been accepted by the Academic Council at its meeting held on 11th July, 2022 <u>vide</u> item No. 6.37 (R) and that in accordance therewith, the revised syllabus of **B.E.** (Chemical Engineering) (Sem.- VII & VIII) (CBCS) (REV- 2019 'C' Scheme), has been brought into force with effect from the academic year 2022-23. (The circular is available on the University's website www.mu.ac.in).

MUMBAI – 400 032

To

(Dr. Shailendra Deolankar)
I/c Registrar

October, 2022

The Principals of the Affiliated Colleges and Directors of the Recognized Institutions in Faculty of Science & Technology.

A.C/6.37 (R)/11/07/2022

No. AAMS(UG)/125 -A of 2022-23

Copy forwarded with Compliments for information to:-

- 1) The Dean, Faculty of Science & Technology,
- 2) The Chairman, Ad-hoc Board of Studies in Chemical Engineering,
- 3) The Director, Board of Examinations and Evaluation,
- 4) The Director, Board of Students Development,
- 5) The Director, Department of Information & Communication Technology,

6) The Co-ordinator, MKCL.

(Dr. Sharlendra Deolankar) I/c Registrar

Copy to :-

- 1. The Deputy Registrar, Academic Authorities Meetings and Services (AAMS),
- 2. The Deputy Registrar, College Affiliations & Development Department (CAD),
- 3. The Deputy Registrar, (Admissions, Enrolment, Eligibility and Migration Department (AEM),
- 4. The Deputy Registrar, Research Administration & Promotion Cell (RAPC),
- 5. The Deputy Registrar, Executive Authorities Section (EA),
- 6. The Deputy Registrar, PRO, Fort, (Publication Section),
- 7. The Deputy Registrar, (Special Cell),
- 8. The Deputy Registrar, Fort/ Vidyanagari Administration Department (FAD) (VAD), Record Section,
- 9. The Director, Institute of Distance and Open Learning (IDOL Admin), Vidyanagari,

They are requested to treat this as action taken report on the concerned resolution adopted by the Academic Council referred to in the above circular and that on separate Action Taken Report will be sent in this connection.

- 1. P.A to Hon'ble Vice-Chancellor,
- 2. P.A Pro-Vice-Chancellor,
- 3. P.A to Registrar,
- 4. All Deans of all Faculties,
- 5. P.A to Finance & Account Officers, (F.& A.O),
- 6. P.A to Director, Board of Examinations and Evaluation,
- 7. P.A to Director, Innovation, Incubation and Linkages,
- 8. P.A to Director, Board of Lifelong Learning and Extension (BLLE),
- 9. The Director, Dept. of Information and Communication Technology (DICT) (CCF & UCC), Vidyanagari,
- 10. The Director of Board of Student Development,
- 11. The Director, Department of Students Walfare (DSD),
- 12. All Deputy Registrar, Examination House,
- 13. The Deputy Registrars, Finance & Accounts Section,
- 14. The Assistant Registrar, Administrative sub-Campus Thane,
- 15. The Assistant Registrar, School of Engg. & Applied Sciences, Kalyan,
- 16. The Assistant Registrar, Ratnagiri sub-centre, Ratnagiri,
- 17. The Assistant Registrar, Constituent Colleges Unit,
- 18. BUCTU,
- 19. The Receptionist,
- 20. The Telephone Operator,
- 21. The Secretary MUASA

for information.

University of Mumbai

Revised Syllabus for

B.E. (Chemical Engineering)

(Sem. - VII to VIII)

(Choice Based Credit System)

(With effect from the academic year 2022-23)

University of Mumbai

Title of Course	B.E. (Chemical Engineering)
Eligibility	After Passing Third Year Engineering as per the Ordinance 0.6242
Passing Marks	40%
No. of years/Semesters:	4years / 8 semester
Level:	P.G. / U.G./ Diploma / Certificate
Pattern:	Yearly / Semester
Status:	New / Revised
To be implemented from Academic Year :	With effect from Academic Year: 2022-23

Porsote.

Dr. Parag R Gogate Chairman of Ad-hoc Board of Studies in Chemical Engineering Dr. Suresh K. Ukarande
Associate Dean,
Faculty of Science and
Technology

Dr Anuratha Majumdar Dean, Faculty of Science and Technology

Preamble

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this, Faculty of Science and Technology (in particular Engineering)of University of Mumbai has taken a lead in incorporating philosophy of outcome-based education in the process of curriculum development.

Faculty resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. Choice based Credit and Grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 13 weeks and remaining 2 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

There was a concern that the earlier revised curriculum is more focused on providing information and knowledge across various domains of the said program, which led to heavily loading of students in terms of direct contact hours. In this regard, faculty of science and technology resolved that to minimize the burden of contact hours, total credits of entire program will be of 170, wherein focus is not only on providing knowledge but also on building skills, attitude and self-learning. Therefore, in the present curriculum, skill-based laboratories and mini projects are made mandatory across all disciplines of engineering in second and third year of programs, which will definitely facilitate self-learning of students. The overall credits and approach of curriculum proposed in the present revision is in line with AICTE model curriculum.

The present curriculum will be implemented for final Year of Engineering from the academic year 2022-23

Dr. S. K. Ukarande Dr Anuradha Muzumdar
Associate Dean Dean
Faculty of Science and Technology Faculty of Science and Technology

University of Mumbai University of Mumbai

Incorporation and Implementation of Online Contents from NPTEL/ Swayam Platform

The curriculum revision is mainly focused on knowledge component, skill-based activities and project-based activities. Self-learning opportunities are provided to learners. In the revision process this time, in particular Revised syllabus of 'C' scheme, wherever possible additional resource links of platforms such as NPTEL, Swayam are appropriately provided. In an earlier revision of curriculum in the year 2012 and 2016 in Revised scheme 'A' and 'B' respectively, efforts were made to use online contents more appropriately as additional learning materials to enhance learning of students.

In the current revision based on the recommendation of AICTE model curriculum, overall credits are reduced to 171, to provide opportunity of self-learning to learner. Learners are now getting sufficient time for self-learning either through online courses or additional projects for enhancing their knowledge and skill sets.

The Principals/ HoD's/ Faculties of all the institute are required to motivate and encourage learners to use additional online resources available on platforms such as NPTEL/ Swayam. Learners can be advised to take up online courses, on successful completion they are required to submit certification for the same. This will definitely help learners to facilitate their enhanced learning based on their interest.

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai

Dr Anuradha Muzumdar
Dean
Faculty of Science and Technology
University of Mumbai

Preamble to the Revision of Syllabus in Chemical Engineering

Development in all fields including Chemical Engineering along with use of software for process plant and process engineering, there is demand on academician to upgrade the curriculum in Education. Choice based Credit and grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. The Curriculum must integrate knowledge of the basic and advanced sciences with problem solving and creativity abilities.

The Curriculum must be broad enough to cover all areas from design to operation of Process plants. It should be deep enough to enable the learners to carry out research and develop products to meet rapidly changing needs and demands. The major challenge in the current scenario is to ensure quality to the stakeholders. Accreditation is the principal means of quality assurance in higher education and reflects the fact that in achieving recognition, the institution or program of study is committed and open to external review to meet certain minimum specified standards. The major emphasis of this accreditation process is to measure the outcomes of the program that is being accredited. Program outcomes are essentially a range of skills and knowledge that a student will have at the time of graduation from the program.

With these objectives, online meeting was organized on 30th May 2020 which was attended by heads of the departments and subject faculty of affiliating Institutes. The program objectives and outcomes were thoroughly discussed in line with AICTE guidelines and the core structure of the syllabus was formulated keeping in mind choice-based credit and grading system curriculum along with more emphasis on learning outcomes. Thus, Skilled based laboratories and Mini projects are introduced in appropriate semesters. Views from experts and UG teachers were taken into consideration and final Academic and Exam scheme was prepared with the consent of all the members involved. Subject wise online meetings were held by various subject's convenors to finalize the detail syllabus in 2020.

The Program Educational Objectives finalized for the undergraduate program in Chemical Engineering are:

- 1. To prepare the student for mathematical, scientific and engineering fundamentals
- 2. To motivate the student to use modern tools for solving real life problems
- 3. To inculcate a professional and ethical attitude, good leadership qualities and commitment to social and environmental responsibilities.
- 4. To prepare the student in achieving excellence which will benefit individually and society at large.

Board of Studies in Chemical Engineering

Dr. Parag R Gogte- Chairman

Dr. Kalpana S. Deshmukh - Member

Dr. Sunil J.Kulkarni - Member

Dr. Ramesh S. Bhande - Member

Dr. ShyamalaP. Shingare - Member

Dr. Manisha V. Bagal- Member

Dr. Aparna N. Tamaskar- Member

University of Mumbai Program Structure for B.E. Chemical Engineering (Revised 2022-2023) Semester VII

	Course Name		eaching Sche ontact Hours		Credits Assigned			
Course code	Course Nume	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
CHC701	Instrumentation Process Dynamics and Control	3	-	-	3	•	-	3
CHC702	Chemical Engineering Equipment Design	3	-	-	3	-	-	3
CHDO703X	Department Optional Course 3	3	-	-	3	-	-	3
CHDO704X	Department Optional Course 4	3	-	-	3	-	-	3
IOC701X	Institute Optional Course 1	3	-	-	3	-	-	3
CHL701	Instrumentation Process Dynamics and Control Lab	-	3	-	-	1.5	-	1.5
CHL702	Chemical Engineering Equipment Design Lab	-	3	-	-	1.5	-	1.5
CHL703	Hazard and Risk Analysis Lab	-	2	-	-	1	-	1
CHP701	Major Project I	-	6#	-	-	3	-	3
	Total	15	14	-	15	7	-	22

		Examination Scheme								
	Course Name			The	ory					
Course code	Course Name	Interi	nal Asses	sment	End	Exam	Term	Pract/	Oral	Total
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)	Work	Oral	Orai	Total
CHC701	Instrumentation Process Dynamics and Control	20	20	20	80	3	-	-	-	100
CHC702	Chemical Engineering Equipment Design	20	20	20	80	3	-	-	-	100
CHDO703X	Department Optional Course 3	20	20	20	80	3	•	-	-	100
CHDO704X	Department Optional Course 4	20	20	20	80	3	-	-	-	100
IOC701X	Institute Optional Course 1	20	20	20	80	3	-	-	-	100
CHL701	Instrumentation Process Dynamics and Control Lab	-	-	-	-	3	25	25	-	50
CHL702	Chemical Engineering Equipment Design Lab	-	-	-	-	-	25	-	25	50
CHL703	Hazard and Risk Analysis Lab	-	-	-	-	-	25	-	25	50
CHP701	Major Project I	-	-	-	-	3	25	-	25	50
	Total	-	-	100	400	-	100	25	75	700

Department Optional Course 3 (Sem VII)

Engineering Stream (Elective Code)	Technology Stream (Elective Code)	Management Stream (Elective)
Corrosion Engineering (CHDO7031)	Fundamental of Colloids and Interface	Project Management for Chemical Process
	Science and Technology (CHDO7032)	Industries (CHDO7033)

Department Optional Course 4 (Sem VII)

Engineering Stream (Elective Code)	Fechnology Stream (Ele	Management Stream (Elective)	
	oleum Refining OO7042)	Technology	Operation Research (CHDO7043)

Institute Optional Course 1

Institute Optional Course 1 (SemVII)							
1.ProductLifecycleManagement(IOC701 1)	4.DesignofExperiments(IOC7014)	7.Disaster Management and MitigationMeasures(IOC7017)					
2.ReliabilityEngineering(IOC7012)	5.OperationResearch (IOC7015)	8.EnergyAuditandManagement (IOC7018)					
3.ManagementInformationSystem (IOC7013)	6.CyberSecurityandLaws (IOC7016)	9.DevelopmentEngineering (IOC7019)					

[#] Indicates work load of Learner (Not Faculty), Faculty load for Major Project. semester VII $-\frac{1}{2}$ hour per week per project group

Course Code	Course Name	Credits
CHC701	Instrumentation Process Dynamics and Control	03

Course Hours			Credits Assigned			
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
03	-	-	03	-	-	03

		Th	eory		T Work/Pi	Term Pactica	l/Oral	
Test-I	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR	OR	Total
20	20	20	80	03 Hrs				100

Prerequisites

- 1. Engineering Physics and Engineering Chemistry.
- 2. Engineering Mathematics: Linear Algebra, Differential equations and Laplace Transforms
- 3. Basic laws of Conservations.

Course Objectives

- 1. To understand basics of process control system and selection of variables for control system design
- 2. To explaindynamic behavior of processes based on standard process inputs
- 3. To analyze the characteristics of different measuring instruments
- 4. To apply the knowledge of closed loop response in selecting different types of control modes based on process requirements.
- 5. To analyze the stability of closed loop systems based on Bode stability criteria
- 6. To apply controller performance strategies in designing and tuning controllers.

Module	Course Contents	No. of
No		Hours
1	1.1 Introduction to Process Control, Typical Control Problems, A Blending	04
	Process Example.	
	1.2 Control Strategies, the Rationale for Dynamic Process Models, General	
	Modeling Principles.	
	1.3 Degrees of Freedom Analysis, Selection of Controlled, Manipulated and	
	Measured Variables.	
2	2.1 Transfer Functions of Typical Systems, First and Second Order Systems,	12
	Properties of Transfer Functions and Transfer Functions of Systems in	
	Series.	

	2.2 Time Delay Processes, Linearization of Non-linear Systems, Dynamic Behavior of Processes, Standard Process inputs, Response of First Order Processes, Response of Second Order Processes, Response of Integrating Processes	
	2.3 Development of Empirical Models from Process data, fitting First orderusing Step Tests	
3	 3.1 Introduction Standards and Calibration, Elements of MeasuringSystems, Classification of Instruments, PerformanceCharacteristics, Errors in Measurement. 3.2 Measuring Instruments:Flow Measurement, Temperature Measurement, LevelMeasurement, Pressure Measurement.Control Valve Types, Characteristics and Sizing. 	80
4	 4.1 Basic Control Modes, Features of PID and On-off Control, Response of Feedback Control Systems, 4.2 Closed-Loop Transfer Functions, Closed-Loop Response 	04
5	5.1 Stability of closed loop systems, Frequency Response, 5.2 Stability based on Bode criteria.Gain and Phase Margins	08
6	 6.1 Controller Design and Tuning (Zeigler-Nichols controller tuning) 6.2 Performance Criteria, Guidelines for common control loops 	03

Course Outcomes

On completion of the course the studentwill:

- 1. Develop model of different dynamic systems.
- 2. Compute system response for various changes in input to the system based on application of Laplace Transform
- 3. Analyze and select measuring instruments for measuring various process parameters
- 4. Design controller for controlling output of a specified system
- 5. Compute stability analysis of a feedback control system based on Frequency response (Bode diagram)
- 6. Design controller parameters based on Zeigler-Nichols controller tuning method.

Assessment

Internal Assessment (20 Marks):

Consisting **Two Compulsory Class Tests.** First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I).

End Semester Examination (80 marks):

- 1. Weightage of each module in end semester examination will be proportional to number of respective lectures.
- 2. Question paper will comprise of total six questions, each carrying 20 marks.
- 3. **Question 1** will be compulsory and should cover **maximum contents of the curriculum.**
- 4. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3).

5. Only Four questions need to be solved.

Recommended Books

- 1. Dale E. Seborg, Thomas F. Edga, Duncan A. Mellichamp Francis J. Doyle; Process Dynamics and ControlIII; Third Edition; John Wiley & Sons (Asia) Pvt Ltd., New Delhi 110002
- 2. Donald R. Coughanowr, Steven E. LeBlanc; Process Systems Analysis and Control; Third Edition; Mcgraw-Hill Chemical Engineering series.
- 3. George Stephanopoulos, Chemical process Control An Introduction to Theory and Practice;; 1st Edition; Prentice Hall;1984
- 4. Donald P. Eckman; Industrial Instrumentation, Wiley Edition

Reference Books

- 1. William L. Luyben; Process Modeling Simulation and Control for Chemical Engineers; 2nd Edition; Mc-Graw Hill Publishing Co.
- 2. Prabir Kumar Sarkar, Advanced Process Dynamics and Control, PHI Learning Eastern Economy Edition.
- 3. Peter Harriott; Process Control, Tata McGraw-Hill Edition
- 4. S. K. Singh; Industrial Instrumentation and Control; Second Edition; Tata McGraw-Hill publishing Company Limited, New Delhi.

Semester VII

Course Code	Course Name	Credits
CHC702	Chemical Engineering Equipment Design	03

	Course Hour	S	Credits Assigned					
Theory	Practical	Tutorial	Theory	Theory Tutorial Total				
03	-	-	03	-	-	03		

		The	Term Work/Practical/Oral		Total		
Int Test-I	Internal AssessmentTest-ITest-IIAverage		End Sem Exam	Duration of End Sem Exam	TW	PR	
20	20	20	80	03 Hrs			100

Prerequisites

- 1. Fundamentals of units
- 2. Elementary theory of engineering mechanics,
- 3. Engineering drawing.
- 4. Knowledge of heat transfer and mass transfer
- 5. Concepts of mechanical operations

Objectives

- 1. Familiarize with design preliminaries and equipment testing methods.
- 2. Design of pressure vessels.
- 3. Design of reaction vessels.
- 4. Design of heat exchangers.
- 5. Design of tall columns
- 6. Understand the concept of storage tank and supports.

Module	Course Contents	Contact
No		Hours
1	Introduction:	04
	Introduction to Chemical process equipment design. Nature of process	
	equipment, Basic consideration in process equipment design, Standards,	
	codes & their significance, equipment classification & selection, material	
	of construction for chemical process equipment, Design pressure, Design	
	temperature, design stress & design loads, factor of safety, Corrosion	
	Allowance & weld joint efficiency.	

	Equipment Inspection:	
	Methods of Inspection of EquipmentsRadiographyUltrasoundDye	
	PenetrationFatigue assessmenttestPressure test	
2	Pressure vessel:	10
	Type of pressure vessels, code & standard for pressure vessels (IS: 2825:1969).Pressure Vessel Subjected to InternalPressure. Complete design of cylindrical Pressure vessel as per IS: 2825: 1969. Study, selection & design of various Heads, material of construction of construction, openings/nozzles, Flanged joints. High Pressure Vessels:	
	Theories of failure, material of construction, constructional method of	
	highPressure vessels.Design of multi layered high pressure vessels (stress distributiondiagram).	
3	Reaction vessel:	08
	Introduction, material ofconstruction, Classification of reaction vessels, Heating system. Types of jackets& design of plain jacket.Types of agitators & their application. Components of agitation system.Power requirement of agitators & their applications, system which includes design of shaft based on equivalent bending moment and critical speed. Design of blades & Blade assembly.	
4	Heat exchangers :	08
	Material of construction, Design of shell and tube heat exchanger (U-tube and fixed tube sheet as per IS: 4503, TEMA standards)includes shell, tube, tube sheets, channel and channel cover, flanged joints. Evaporators Design of standard vertical evaporator with design of calendria and tube, flange evaporator drums andheads.	
5	Tall columns: (distillation column) Basic features of columns, stresses in column shell. Shell thickness determination at various heights. Study of Type of column internals (plate and packed column) and supports for trays.	04
6	Storage vessels and supports :	04
	Study of Various types of storage vessels and application. Atmospheric vessels, vessels for storing volatile & non-volatile liquids. Storage of gases, Losses in storage vessel. Various types of roofs used for storage vessels. (calculation of variation in thickness with height only) Introduction & classification of support. (Study)	

Course Outcome

On completion of the course the students should be able to:

- 1. Apply the concept of Chemical Engineering equipment design terminologies and equipment testing methods.
- 2. Design pressure and high pressure vessel.

- 3. Design reaction vessel and agitator.
- 4. Design heat exchanger and evaporator.
- 5. Design distillation column.
- 6. Illustrate and explain the concept of storage tank and types of supports

Internal Assessment (20 Marks):

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in TestI).

End Semester Examination (80 marks):

- Weightage of each module in end semester examination will be proportional to number of respective lecture
- Question paper will comprise of total six questions, each carrying 20marks
- Question 1 will be compulsory and should cover maximum contents of thecurriculum.
- Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 thenpart (b) will be from any module other than module3)
- Only Four questions need to be solved.

Recommended Books:

- 1. Process Equipment Design by M.V. Joshi Macmillan India.
- 2. Process Equipment Design- Vessel Design by E. Brownell and Edwin, H. Young. John Wiley, New York 1963.

Reference Books:

- 1. Chemical Engineering volume 6- Design by J.M Coulson, J.F. Richardson and P.K. Sinnot, Pregamovr press, International edition 1989.
- 2. Chemical Engineering Design, Fifth edition, Ray Sinnott and Cavin Towler, Elsevier, Butterworth-Heinemann publications
- 3. Introduction to Chemical Equipment Design- Mechanical aspects by B.C. Bhattacharya CBS Publications

Semester VII

Course Code	Course Name	Credits
CHDO7031	Corrosion Engineering	03
	(Department Optional)	

	Course Hour	'S	Credits Assigned				
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
03	-	-	03	-	-	03	

Theory					Term Work/Practical/Oral				
Int Test-I	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR	OR	Total	
20	20	20	80	03 Hrs				100	

Prerequisites

- 1. Knowledge of Physical Chemistry and Electrochemistry
- 2. .Knowledge of reaction kinetics
- 3. .Knowledge of material selection.

Objectives

- 1. To understand corrosion and its related mechanisms and Basic terminologies.
- 2. Understanding different forms of corrosion and its conditions
- 3. To understand design aspects for corrosion prevention
- 4. To Understand the Methodology, Methods and Materials to prevent the Corrosion.
- 5. To describe the Corrosion Protection techniques, Coatings, Anodic protection, Cathodic Protection and its related topics.
- 6. To describe and demonstrate the Corrosion monitoring and control methods.

Module	Course Contents	Contact
No		Hours
1.	Introduction	
	Definition of corrosion, Principle of corrosion, Classification of corrosion, Consequences of Corrosion, Functions and role of a corrosion engineer, Corrosion rate expression, What is over potential, Polarization (Activation and Concentration polarization)	6
2.	Environmental factors and corrosion : Corrosion in water and aqueous solutions, Corrosion in sulphur bearing solutions, Microbiologically induced corrosion, Corrosion in acidic and alkaline process streams.	5

3.	Corrosion Electrochemistry and Thermodynamics Electrochemical	
	Reaction (Anodic and Cathodic process), Faraday's law, Free Energy,	6
	standard electrode potential Nernst equation	
4.	Galvanic and concentration cell corrosion: Basic concepts,	
	Experimental measurements, and determination of rates of galvanic	5
	corrosion, Concentration cells.	
5.	Eight forms of corrosion: Galvanic or two metal corrosion, Crevice	
	corrosion, pitting, intergranular corrosion, selective leaching, erosion	8
	corrosion, stress corrosion, hydrogen damage	
6.	Corrosion Prevention: Design aspects to minimize the corrosion,	
	Material selection, Alteration of environment, Cathodic and anodic	6
	protection, coatings	

Course Outcome

On completion of the course the students will be able to:

- 1. Understand corrosion and its related mechanisms and Basic terminologies.
- 2. Classify different forms of corrosion and its conditions.
- 3. To describe the Corrosion Protection techniques, Coatings, Anodic protection, Cathodic Protection.
- 4. Apply the Methodology, Methods and Materials to prevent the Corrosion
- 5. The understanding the modern theory principles behind corrosion.
- 6. To describe and demonstrate the Corrosion monitoring and control methods.

Internal Assessment (20 Marks):

Consisting Two Compulsory Class Tests

Firsttestbasedon approximately 40% of contents and second testbased on remaining contents (Approximately 40% but excluding contents covered in TestI).

End Semester Examination (80 marks):

- 1. Weightage of each module in end semester examination will be proportional to number of respective lecture
- 2. Question paper will comprise of total six questions, each carrying 20marks
- 3. Question 1 will be compulsory and should cover maximum contents of the curriculum.
- 4. Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module
- 3 then part (b) will be from any module other than module3)
- 5. Only Four questions need to be solved.

Recommended Books:

1. M.G.Fontana, Corrosion Engineering, Tata McGraw-Hill (New Delhi), 3rd Ed.

- **2.** H. H. Uhlig: Corrosion and Corrosion Control. An Introduction to Corrosion Science and Engineering. John Wiley and Sons
- 3. Jones, D.A., Principles and Prevention of Corrosion, Prentice-Hall (1996).
- **4.** Pierre R. Roberge, Corrosion engineering: principles and practice, McGraw-Hill (2008).

Reference Books:

- **1.** G.L.Shvartz and M.M.Kristal, Corrosion of Chemical Apparatus (1959) Chapman Hall Ltd. London.
- **2.** An introduction to Electrochemistry by Samuel Glasstone, Affiliated East West Press Private, Limited.
- **3.** Pierre R. Roberge, Handbook of corrosion engineering, McGraw-Hill (2012). 2nded.

......

Semester VII

Course Code	Course Name	Credits
CHDO7032	Fundamental of Colloids and Interface Science and	03
	Technology	
	(Department Optional Course)	
	•	

	Course Hour	'S	Credits Assigned				
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03	-	-	03	-	-	3	

Theory						Term Work/Practical/Oral		
Int Test-I	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/ OR	OR	Total
20	20	20	80	03 Hrs				100

Prerequisites

- 1. Knowledge of chemistry, physics, physical chemistry and mathematics.
- 2. Knowledge of fluid mechanics
- 3. Knowledge of thermodynamics

Course Objectives

The overall aim of this course is to develop a broad background in colloids and interfaces which will enable students to:

- 1. To studyconcepts and applications of surface tension, adhesion and capillarity of liquids.
- **2.** To study Intermolecular, nanoscale and interfacial forces in organic, polymeric, biological and aqueous systems.
- 3. To study Mesoscale phenomenon and its thermodynamics in application of soft matter.
- **4.** To study mechanism of Stability of nanoparticle dispersions.
- 5. To study nanofluids and its application and working.
- **6.** To study concepts of advanced and functional interfaces.

Module	Course Contents	Contact
No		Hours
	Surface Tension, Adhesion and capillarity:	
1	Effects of confinement and finite size; Concepts of surface and interfacial	
	energies and tensions; Apolar (van der Waals) and polar (acid-base)	
	components of interfacial tensions.	

	Young-Laplace equation of capillarity; examples of equilibrium surfaces,	04
	multiplicity, etc.	
	Stability of equilibrium solutions; Contact angle and Young's	
	equation;Determination of apolar (Van-der Waals) and acid-base	
	components of surface/interfacial tensions.	
	Free energies of adhesion; Kinetics of capillary and confined flows.	
2	Intermolecular, nanoscle and interfacial forces in organic,	
	polymeric, biological and aqueous systems	08
	Van der Waals, Electrostatic double layer, Acid-base interactions	
	includinghydrophobic attraction and hydration pressure.	
3	Mesoscale thermodynamics	
	Gibbs treatment of interfaces; concept of excess concentration; variation	08
	ofinterfacial tensions with surfactant concentration.	
	Mesoscale phenomena in soft matter and applications	
	Adhesion, wetting, nucleation, flotation, patterning of soft material by self-	
	organization and other techniques.	
4	Stability of nanoparticle dispersions:	08
	DLVO and DLVO like theories and kinetics of coagulation plus	
	generalprinciples of diffusion in a potential field/Brownian movement.	
5	Nanofluidics:	05
	Stability of thin (< 100 nm) films; self-organization in confined systems;	
	meso-patterning.	
6	Advanced and Functional Interfaces:	06
	Superhydrophobicity, functional coatings, structural colors, nanoadhesives;nanocomposites.	

Note: Video, Digital, NPTL content can be used for equipment section of each chapter /unit operation.

Course Outcomes

At the end of the course student will be able to:

- 1. Understand of basic nomenclature, concepts and tools of colloid and interface science and engineering; multi-phase nano-systems; mechanics and thermodynamics on small scales.
- **2.** Understand the differences between the surface and bulk dominated regimes and behavior and exploitation of nano-behavior.
- **3.** To understand and apply Mesoscale phenomenon and its thermodynamics in application of soft matter.
- **4.** To appreciate mechanism of Stability of nanoparticle dispersions.
- **5.** Be aware of nanofluids and its application and mechanism of working.
- **6.** Comprehend concepts of advanced and functional interfaces and its application in chemical industries.

Assessment

Internal

• Assessment consists of average of two tests which should be conducted at proper interval

End Semester Theory Examination

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions to be solved
- Question no.1 will be compulsory and based on entire syllabus where in subquestions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each module.

Reference Books:

- **1.**Principles of Colloid and Surface Chemistry, Paul C. Hiemenz, Marcel Dekker, any edition starting with the 2nd edition, 1986.
- **2.**Miller, C. A. and P.Neogi, "Interfacial Phenomena: Equilibrium and Dynamic Effects", 2nd Edn., Marcel Dekker, NY, 2007.
- **3.**Hiemenz, P. C., and R.Rajgopalan, "Principles of Colloid and Surface Chemistry", 3rd Edn., Marcel Dekker, NY, 1997.
- **4.** Adamson, A. W. and Gast, A., "Physical Chemistry of Surfaces", 6th edition, John Wiley and Sons, 1997.
- **5.** Stokes, R. J. and Evans, D.F., "Fundamentals of Interfacial Engineering", Wiley-VCH, N.Y., 1996.

Course Code	Course Name	Credits
CHDO7033	Project Management for Chemical Process Industries	3
	(Departmental Optional Course)	

C	ourse Hours	5		Cre	dits Assigne	d	
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
03	-	-	03	-	-	03	

	Theory Term							
·						x/Practical	/Oral	
Inte	ernal Assess	sment	End	Duration of End				Total
Test-I	Test-II	Average	Sem	Sem	TW	PR/OR	OR	
			Exam	Exam				
20	20	20	80	3 hrs	-	-	-	100

Prerequisites

- 1.Communication skills
- 2. Mathematical skills,
- 3. Analytical, logical and reasoning Skills
- 4.Economics

Course Objectives

- 1. To understand basic concepts project management and application of PM to process industries through class teaching and case studies
- 2.To understand project feasibility reports and
- 3.To learn about various clearances required to start an industry
- 4. To learn various project organizations
- 5.To learn basics of tendering and contracting
- 6.To learn various tools and techniques used in PM and understand role of entrepreneurship in the society for the economic growth.

Modul	Topics	Contact
e no.		Hours
1	Concepts of project management:	08
	Definition of project, project management, project types, project life	
	cycle, Definition of project management, Project deliverables and Stakeholder	
	management, Difference between project management and formal/product	
	management, Role-responsibilities and skills of project manager, project	
	overruns.	
	Case studies: Superclean paperboards, DEMCO manufacturing, Accorn,	
	Govardhan group	
2	Project management in process industries: Project strategy, Project	03
	specification, Project engineering, Detailed design, Procurement, Construction,	

	Commissioning and Closure	
3	Feasibility report, licensing and clearances	10
	Feasibility reports:Pre feasibility report,Techno economic feasibility	
	report,Detailed project report	
	Contents of feasibility report:Raw material survey, Market survey and	
	demand study, technical study, location survey, financial survey.	
	Types of cost estimates,	
	Project selection criteria	
	Estimation of project profitability: Payback period, Return on Investment	
	(ROI) ,Net Present Value (NPV) , Internal Rate of Return (IRR), Benefit Cost Ratio (BCR)	
	Industrial license and LOI,	
	Various laws & regulations governing industries, Need for clearances and	
	influences on	
	project, List of various clearances.	
	Case studies: Coal fired boilers project, Plant on river Yangtze, SIRIS pharma	
	Hyderabad	
4	Project organization and contracting	08
	Project scope, Types of WBS, Preparation of WBS, Development of	
	responsibility matrix, development of project communication plan.	
	The traditional management structure, Project	
	management organizational structure: pure project, matrix, task force,	
	Project team- responsibilities of various members.	
	Contracts types, selection criteria,3R of contracting, types of reimbursements	
	and tendering procedure	
	Case studies: Hindustan oil company-housing project, Comfortflex, Hamad	
	petroleum company	
5	Tools and techniques in project Management:	07
	Project scheduling and execution:	
	List of various tools and techniques used in project management,	
	Project execution plan (PEP), Bar charts/GANTT charts, LOB	
	Networking techniques PERT and CPM(critical	
	path, float,total float,AOA and AON diagrams),	
	Material Management- ABC and VED Analysis,	
	Economic Order Quantity (EOQ), CAT vs RAT,	
	Time and cost control tools and techniques.	
6	Entrepreneurship:	03
-	Definition, Concept of entrepreneur and entrepreneurship, Ccompetencies of	-
	entrepreneur, Classification and types of entrepreneurship, Creativity	
	techniques for entrepreneur, Startups- pre requisites, stages, ideas and funding	
	Case study: Any example of startup and entrepreneur	

Course Outcome

On completion of the course the students will be able to:

- 1. Understand and apply concepts and knowledge of project management to manage projects in process industries
- 2. Apply knowledge of engineering and project management to create feasibility reports.
- 3. Understand how to get various clearances required to start industry by following professional ethics.
- 4.Prepare project organization charts, work breakdown structure,responsibility matrix,project communication plan etc to facilitate better communication and management of projects
- 5. To apply their knowledge to prepare tenders and contracts which will satisfy needs of society and environment
- 6. To use tools of PM [Cost benefit analysis,Project execution plan (PEP), Bar charts/GANTT charts, LOB,Networking techniques (PERT/CPM etc], to analyze and solve complex problems and will be motivated to become entrepreneurs

Internal Assessment

Consisting Two Compulsory Class Tests

Firsttestbasedon approximately 40% of contents and second testbased on remaining contents (Approximately 40% but excluding contents covered in TestI).

End Semester Theory Examination:

Question paper will comprise of 6 questions, each carrying 20 marks.

Total 4 questions need to be solved.Question No.1 will be compulsory and based on entire syllabus wherein subquestions can be asked.Remaining questions will be randomly selected from all the modules.

References:

- 1. Project Management, Choudhary, S., Tata Mc Graw Hill (module 1 to 6)
- 2. Total Project Management, Joy, P. K., (module 1 and 3)
- 3. Project Management for process Industries, Gillian Lawson, IchemE(Module 1 and 2)
- 4.Project Management Case Studies, Harold Kerzner, Second edition, John Wiley and Sons (for case studies)
- 5. Project Management-The Managerial Process, Clifford Gray, 6th edition, McGraw Hill (module 1,3,4,5)
- 6. Plant Design and Economics for Chemical Engineers, Klaus D Timmerhaus, 5th edition, McGraw Hill (Module 3 and 5)
- 7. Theory and problems in financial management, Khan,M.Y.; Jain,P.K.; Second Edition,Tata McGraw Hill (Module 2 and 4)
- $8. Fundamentals \ of \ Financial \ Management, \ Vyuptakesh \ Sharan \ , \ Second \ Edition, \ Pearson publications (module 2 and 4)$
- 9. Dynamics of entrepreneurial development and management, Vasant Desai (module 6)
- 10.Project Management Workbook, ICMR India (Module 1,2,3,4,5,6)
- 11. Entrepreneurship and Startups-Prof Nishant Dubey and Prof Mishra, NITTTR, Bhopal

........

Course Code	Course Name	Credits
CHDO7041	Chemical Plant Safety and Hazards	03
	(Department Optional Course)	

Co	ourse Hours		Credits Assigned			
Theory	Practical	Tutorial	Theory Practical Tutorial Total			
03	-	-	03	-	-	03

Theory						Term Work/Practical/Oral		
Intern	nal Assessm	ent	End	Duration of				Total
Test-I	Test-II	Awaraga	Sem	End Sem	TW	PR	OR	
1est-1	1 est-11	Average	Exam	Exam				
20	20	20	80	03 Hrs			-	100

Prerequisites

- 1. Fundamentals of chemical processes.
- 2. Knowledge of heat transfer, mass transfer and chemical reaction engineering
- 3. Concepts of mechanical operations.
- 4. Knowledge of plant operation and maintenance.

Course Objectives

- 1. To give overview about occupational health, industrial hygiene, accidental prevention techniques to the students.
- 2. To give the knowledge about fire and explosion.
- 3. To train the students about Fire and Explosion prevention methods and Reliefs techniques.
- 4. To make the student aware about safety in process and plant.
- 5. To train the students about hazard identification and risk assessment.
- 6. To train the students about safety procedures and design and expert manpower to handle the complex industrial environment.

Module No	Course Contents	Contact Hours
1	Introduction: History and development of safety movement, Safety	
	programs, Need for safety, Engineering ethics, accident and loss	

	statistics, acceptable risk, The nature of accident process, Identifying the causative and initiating factors of Industrial accidents, Accident prevention and control techniques, Plant safety inspections, Major Industrial Disasters (Case Studies) Bhopal disaster (1984), Chernobyl Disaster, Fukushima Daiichi Disaster etc. Case studies. Industrial Hygiene: Definition of Industrial Hygiene, Phases of industrial hygiene, Industrial Hygiene: Control Methods, Substitution, Changing the process, isolation, wet method, local exhaust ventilation, personal hygiene, housekeeping and maintenance, waste disposal, special control measures, Government Regulations, Anticipation and identification, MSDS, Evaluation workers exposure to Volatile toxicants, dust, noise,	
2	toxic vapors, Industrial Hygiene : Control Fire and Explosions	5
	Fire: Fire triangle, Classification of fires, Flammability characteristics of liquids and gases, Limiting oxygen concentration, ignition energy, auto ignition, autoxidation, adiabatic compression. Ignition sources, spray	
	and mist. Common causes of industrial fires. Explosion: Detonation, Deflagration, Confined explosion, unconfined explosion, VCE, BLEVE, Problems on energy of chemical explosion.	
3	Concept to Prevent Fire and Explosion (Fire and Explosion prevention methods and Introduction to Reliefs) and Introduction to Reliefs Inerting: vacuum and pressure purging, combined purging, Controlling Static electricity: Bonding and grounding, dip pipes, Explosion-proof equipment instruments, ventilation. Sprinklers systems. Fire-fighting systems:Different types of portable fire extinguishers, their installation, periodic inspection and operation, Replacement of Halon with safer substitutes, Fire hydrant system, Fire monitors, sprinkler system and deluge system, Carbon-dioxide flooding system, Foam Pourer system Relief concept: Principle of pressure system, Pressure, Hazards of steam, Mechanism of Steam explosion, key components and safety features of pressure system, Failure of pressure system, Hazards of overpressure and over temperature in pressure system, location of reliefs and types of relief.	6
4	Chemical Reactivity and Safety In Plant Operation And Maintenance Commitment, Awareness and Identification of reactive chemical hazards, characterization of reactive chemical using calorimeter, controlling reactive hazards. Safe procedures for plant start-up and shut-down, Pipeline colour coding for identification of contents, Safety precautions for working on pipelines, Safety in preventive and emergency maintenance work.	6
5	Hazard Identification and Risk Assessment Hazard Identification: Hazard identification and risk control approaches and techniques, Reactive approach-Incident recall technique (after-the-	6

	event approach), Proactive approaches: Critical incident review technique (before-the-event approach), Deductive technique, Inductive technique Process hazards checklists, survey, Hazard and Operability Studies (HAZOP), Maximum Credible Accident Analysis (MCAA)/Quantitative Risk Assessment (QRA), Safety review. Risk assessment: Cause/consequence finding techniques What-if, Fishbone, Why-Why, Root Cause Analysis (RCA), Event tree analysis, Fault tree analysis, Maximum Credible Accident Analysis (MCAA)/Quantitative Risk Assessment (QRA) and LOPA.	
6	Safety Procedures and Design Process safety Hierarchy, managing safety, best practices, procedure for safety review and accident investigation, design for process safety, runway reactions, Job safety Analysis (JSA) and investigation of accidents, First aid, Financial costs-direct and indirect, social costs of accidents, Dust explosion, factors of pentagon, causes of dust explosions and controls, handling dusts and Miscellaneous designs for fire and explosions.	8

Course Outcome

On completion of the course the students will be able to:

- 1. give overview about occupational health, industrial hygiene, accidental prevention techniques to the students.
- 2. Apply the knowledge about fire and explosion.
- 3. Design and perform Fire and Explosion prevention methods and Reliefs techniques.
- 4. Implement the knowledge about safety in process and plant.
- 5. perform hazard identification and risk assessment.
- 6. prepare safety procedures and design and are expert to handle the complex industrial environment

Internal Assessment (20 Marks):

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I).

End Semester Examination (80 marks):

- 1. Weightage of each module in end semester examination will be proportional to number of respective lecture
- 2. Question paper will comprise of total six questions, each carrying 20 marks
- **3.** Question 1 will be compulsory and should cover maximum contents of the curriculum.
- **4.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module3)
- 5. Only Four questions need to be solved.

Recommended Books:

- 1. Crowl, D. A. and Louvar, J. P.; Chemical Process Safety: Fundamentals with Applications; Prentice Hall, Englewood
- 2. K. S. N. Raju, Chemical Process Industry Safety, McGraw Hill Education
- 3. Roy E. Sanders, Chemical Process Safety: Learning from Case Histories, Butterworth-Heinemann publisher
- 4. H.W. Heinrich, Dan Petersen, and Nestor Roos, McGraw-Hill Book Company, New York / New Delhi
- **5.**A.K.Gupta, Industrial Safety and Environment, McGraw-Hill Book Co. Ltd., New York, N.Y. USA
- 6. K.T. Kulkarni, Industrial Safety: Concepts and Practices, Pune VidyarthiGrihaPrakashan, 1786, SadashivPeth, Pune
- 7.Accident Prevention Manual for Industrial Operations (ISBN: 978-08-7-912024-5), National Safety Council USA
- 8. H.W. Heinrich, Dan Petersen, and Nestor Roos , Industrial Accident Prevention, McGraw-Hill Book Company, New York / New Delhi
- 9. K.U. Mistry, A Course in Industrial Safety, NKM Publishers, Ahmedabad

Course Code	Course Name	Credits
CHDO7042	Petroleum Refining Technology	03
	(Departmental Optional Course)	

(Course Hour	'S		Cred	dits Assigned	l
Theory	Practical	Tutorial	Theory Practical Tutorial Total			
03	-	-	03	-	-	03

	Theory						Term Work/Practical/Oral		
Int	ernal Asses	sment			Total				
Test-I	Test-II	Average	Sem Exam	End Sem Exam	TW	PR	OR		
20	20	20	80	03 Hrs				100	

Prerequisites

- 1. Knowledge about Formation & Origin of petroleum.
- 2. Composition & testing methods &basic treatment techniques.

Course Objectives

- 1. To understand Petroleum Refining processes & products, its evaluation & Treatment techniques.
- 2. To recognize the significance of petroleum refining is to convert crude oil into usefulproducts.
- 3. The main purpose of refining petroleum is to make the best use petroleum is a fuel.
- 4. To understand various cracking processes & its applications in ChemicalIndustries.
- 5. Describe the overall approach to petroleum refining and categorize refinery processes and Products.
- 6. Identify the economic and environmental drivers of petroleum refining;

Module	Course Contents	Contact
No		Hours
1	Introduction -Origin ,Formation & Composition of Petroleum::	04
	Importance, Origin theory, Reserves in India & world. Explorationof	
	Reserves, Types of crude, (Based on constituents, Sulphurcontents &	
	Degree API). Indian crude reserves & productionscenario, Indian Petroleum	
	Industry Scenario, Agencies engaged inupstream & downstream petroleum	
	industry (Government &Private). Properties, composition, UOP	
	Characterization factors.	
2	Crude Oil Assay:	08
	Correlationindex, ASTM Distillation, Thermal properties, Crude distillation	
	curves. Important products test & methods, Gasoline, Kerosene, Diesel.	
3	Crude Oil Processing & Refining:	08

	-	
	Dehydration & desalting of crude, Heatingof crude, Overall refinery flow	
	diagram, its processes & Products, Low boiling products – LPG production	
	by absorption and amine techniques ,Gasoline, Kerosene & their	
	Specifications, Arrangement of Tower, ADU & VDU, Blending	
	of gasoline, Corrosion problem	
4	Treatment ,Techniques & Product Specifications:	08
	Treatment Techniques	
	Fraction impurities- physical and chemical	
	Gasoline Treatment:	
	Cooper Chloride process, Unisol process, Dualayer process, Lead doctoring,	
	Merox sweetening and Sulfuric Acid treatment	
	Treatment of lubes-Solvent treatment:	
	Phenol extraction, Furfural extraction and Duo-sol	
	• Wax:	
	MEK Dewaxing and Propane Dewaxing	
5	Catalytic Cracking & Thermal Processes: Thermal and catalytic Cracking	08
	 Cracking: Reactions, Theory, properties: Visbreaking 	
	Catalytic Cracking: Houdri Fixed bed, Moving bed and Houdri Flow	
	FCC:Flexi cracking and Ortho Flow	
	Catalytic Reforming	
	Coking: Delayed coking, Fluid coking and Flexi coking	
	Hydro cracking- isomax	
	Alkylation: Sulfuric Acid and H.F.	
	Isomerization: ALC13 Process	
6.	Asphalt Technology & Environmental issues:	03
	Asphalt Technology:	
	• Sources: Chemical Structure, Action of heat on asphalt	
	and Types of Asphalt	
	Air Blowing of Bitumen	
	Speciality Products	
	1. Environmental Issues	
	1. Environmental losses	

Course Outcome

On completion of the course the students will be able to:

- 1 Recognize the significance crude petroleum and petroleum refinery.
- 2 Understand and express the overall objectives of fractionate crude petroleum into useful fractions.
- 3 Apply important physical properties of petroleum products
- 4 Analyze refinery processes to maximize desired petro products
- 5 Students will be able to understand upgradation process.
- 6 Identify the economic and environmental drivers of petroleum refining.

Internal Assessment (20 Marks):

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents of syllabus and second test based on remaining contents of syllabus (approximately 40% but excluding contents covered in TestI).

End Semester Examination (80 marks):

- Weightage of each module in end semester examination will be proportional to number of respective lecture
- Question paper will comprise of total six questions, each carrying 20marks
- Question 1 will be compulsory and should cover maximum contents of thecurriculum.
- Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 thenpart (b) will be from any module other than module3)
- Only Four questions need to besolved.

Reference Books:

- 1. W.L Nelson, Petroleum Refinery Engineering 4th ed, McGraw Hill.
- 2. Petroleum Chemistry and Refining Edited by James G. Speight, Taylor and Francis.
- 3. Chemical Process Industries, Austin, G.T Shrives.
- 4. Encyclopedia of chemical processing and design by john J. Mc Khetta; Marcel Deckker, Inc.

Recommended Text Books:

- 1. B.K Bhaskara Rao, Modern Petroleum Refining Process.
- 2. Petroleum Processing, Principles and Applications, R.J.Hengstebeck, Mc Graw Hill Book Co, 1959.
- 3. Fundamentals of Petroleum Chemicals Technology, P.Belov.

Semester VII	

Course Code	Course Name	Credits
--------------------	-------------	---------

CHDO7043	Operations Research	03
	(Departmental Optional Course)	

(Course Hour	'S		Cred	lits Assigned	l	
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
03	-	-	03	-	-	03	

	Theory						Term Work/Practical/Oral		
Internal Assessment End Duration of							Total		
Test-I	Test-II	Awaraga	Sem	End Sem	TW	PR	OR		
1 est-1	1 est-11	Average	Exam	Exam					
20	20	20	80	03 Hrs				100	

Prerequisites

• Linear Algebra, Computer Programming

Course Objectives:

- Formulate a real-world problem as a mathematical programming model
- to understand Linear Programming and its applications to the models.
- To understand and solve network transportation and assignment models.
- To understand Game theory and its applications.
- To study and solve the Queuing system problems
- Understand the concept of Network flow and inventory control.

Module	Contents	Contact
No		Hours
1	Introduction to Operations Research: Introduction, Structure of the	10
	Mathematical Model, Historical Standpoint, Methodology, Different	
	Phases, Characteristics, Scope and Application of Operations Research in	
	Chemical Engineering, Limitations of Operations Research.	
	Linear Programming: Introduction, Requirement of LP, Basic	
	Assumptions, Formulation of LP, General Statement of LP, Solution	
	techniques of LP: Graphical method, Simplex Method Penalty Cost	
	Method or Big M-method, Duality, Primal - Dual construction, Dual-	
	Simplex Method, Sensitivity Analysis	
2	Transportation and Assignment: Formulation, solution, unbalanced	08
	Transportation problem. Finding basic feasible solutions – Northwest	
	corner rule, least cost method and Vogel's approximation method.	
	Optimality test: MODI method. Assignment Problem: Introduction,	
	Mathematical Formulation of the Problem, Hungarian Method Algorithm,	
	Processing of n Jobs Through Two Machines and m Machines, Travelling	

	Salesman Problem					
3	Queuing Theory: Basis of Queuing theory, elements of queuing theory, Kendall's Notation, Operating characteristics of a queuing system, Classification of Queuing models, Preliminary examples of M/M/1:∞/FCFA/ Sequencing: Basic assumptions, Johnson's algorithm, sequencing 'n' jobs on single machine using priority rules, sequencing using Johnson's rule-'n' jobs on 2 machines, 'n' jobs on 3 machines.	06				
4	Inventory Models: Inventory classification, Different cost associated to Inventory, Economic order quantity, Classic EOQ Model (demand rate uniform, replenishment rate infinite), ABC analysis.					
5	Decision Analysis and Game Theory: Decision Making under Certainty, Decision Making under Risk, Decision Under Uncertainty (ONLY NUMERICAL PROBLEMS) Game Theory: Competitive games, rectangular game, saddle point, minimax (maximin) method of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point – mixed strategy for 2 X 2 games. (ONLY NUMERICAL PROBLEMS)	07				
6	Network Models: Scope and Definition of Network Models, Minimal Spanning Tree Algorithm, Shortest Route Problem, Maximal Flow Model.	04				
	Total Hours	39hrs				

Course Outcomes:

Learner will be able to...

- Model and solve typical OR problems using the simplex method.
- Understand the relationship between a linear program and its dual and Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change.
- Solve specialized linear programming problems like the transportation and assignment problems.
- Identify and Solve Queuing System.
- Understand the concept of game and Decision theory and solve problems based on the same.
- Understand the applications of network models and an inventory model and compute important performance measures.

Assessment:

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

REFERENCES:

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons.
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill.
- 4. Operations Research, S. D. Sharma, KedarNath Ram Nath-Meerut.
- 5. Operations Research, KantiSwarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons.

CourseCode	CourseName	Credits
IOC7011	InstituteLevelOptionalSubjectI-ProductLifeCycle	03
	Management	

Course Hours			Credits Assigned			
Practical Tutorial Theory		Practical	Tutorial	Total		
-	-	03	-	-	03	

Theory					Work	Teri k/Practi	m cal/Oral	
Internal Assessment			End	Duration of				Total
Test-I Tes	Test-II Avera	Togt II Awarage	Sem	End Sem	TW	PR	OR	
		est-I Test-II Average Exa	Exam	Exam				
20	20	20	80	03 Hrs				100

Objectives:

- Tofamiliarize the students with the need, benefits and components of PLM
- ToacquaintstudentswithProductDataManagement&PLMstrategies
- Togiveinsightsintonewproductdevelopmentprogramandguidelinesfordesigningand developingaproduct
- TofamiliarizethestudentswithVirtualProductDevelopment

Outcomes:

Learnerwillbeableto...

- Gainknowledgeaboutphasesof PLM,PLMstrategiesandmethodologyfor PLMfeasibilitystudyand PDM implementation.
- Illustratevarious approaches and techniques for designing and developing products.
- Applyproductengineeringguidelines/thumbrulesindesigningproductsformoulding, machining, sheet metal workingetc.
- Acquire knowledge in applying virtual product development tools forcomponents,machiningand manufacturingplant

Module	DetailedContents							
01	Introduction to Product Lifecycle							
	Management(PLM):ProductLifecycleManag							
	ement(PLM), NeedforPLM, ProductLifecyclePhases, Opportunities							
	ofGlobalization,Pre-							
	PLMEnvironment,PLMParadigm,Importance&BenefitsofPLM,							
	WidespreadImpactofPLM,FocusandApplication,APLM Project, Starting the PLM Initiative, PLM Applications PLMStrategies: Industrialstrategies,Strategyelement							
	s,its							
	identification, selection and implementation, Developing PLMV isio							
	nandPLMStrategy,ChangemanagementforPLM.							

02	ProductDesign:ProductDesignandDevelopmentProcess,Enginee ringDesign,OrganizationandDecompositioninProductDesign,Typ ologiesofDesignProcessModels,Reference Model, Product Design in the Context of the ProductDevelopment Process, Relation with the Development ProcessPlanning Phase, Relation with the Post design Planning Phase,MethodologicalEvolutioninProductDesign,ConcurrentEngineering, Characteristic Features of Concurrent Engineering,Concurrent Engineering and Life Cycle Approach, New ProductDevelopment (NPD) and Strategies, Product Configuration andVariantManagement,TheDesignforXSystem,Objective Properties and Design for X Tools, Choice of Design for	09
03	XToolsand Their Usein theDesign Process. Product Data Management (PDM):Product and Product	05
	Data, PDMsystems and importance, Components of PDM, Reason for	05
	implementingaPDMsystem,financialjustificationofPDM,	
	barrierstoPDMimplementation.	
04	VirtualProductDevelopmentTools:Forcomponents,machines,an	05
	dmanufacturingplants,3DCADsystemsandrealistic rendering	
	techniques, Digital mock-up, Model	
	building,Modelanalysis,ModelingandsimulationsinProductDesign	
	,	
0.5	Examples/Casestudies.	05
05	IntegrationofEnvironmentalAspectsinProductDesign:	05
	Sustainable Development, Design for Environment, Need forLifeCycleEnvironmentalStrategies,UsefulLifeExtensionStrate	
	gies, End-of-LifeStrategies, Introduction of Environmental	
	Strategies into the Design Process, Life	
	CycleEnvironmentalStrategiesandConsiderationsforProduct	
0.6	Design.	0.5
06	LifeCycleAssessmentandLifeCycleCostAnalysis: Properties, and Framework of Life Cycle Assessment, Phases ofLCA in ISO	05
	Standards, Fields of Application and Limitations	
	ofLifeCycleAssessment,CostAnalysisandtheLifeCycleApproach,	
	GeneralFrameworkforLCCA,EvolutionofModels	
	forProductLifeCycleCostAnalysis.	

Assessment

Internal

• Assessmentconsistsoftwotests whichshouldbe conducted atproperintervals.

EndSemestertheoryexamination

- Questionpaperwillcomprise of 6 questions each carrying 20 questions.
- Total4 questionsneed tobe solved
- Questionno.1willbecompulsorybasedonentiresyllabuswhereinsubquestionscanbeas

ked.

- Remainingquestions will be randomly selected from all themodules
- Weightageofmarksshouldbeproportionaltonumberofhoursassignedtoeachmodule

References

- 1. JohnStark, "ProductLifecycleManagement:Paradigmfor21stCenturyProductRealis ation", Springer-Verlag, 2004.ISBN: 1852338105
- 2. FabioGiudice, Guido La Rosa, Antonino Risitano, "Product Design for the environment Alife cycle approach", Taylor & Francis 2006, ISBN:0849327229
- 3. SaaksvuoriAntti,ImmonenAnselmie,"ProductLifeCycleManagement",Springer, Dreamtech,ISBN: 3540257314
- 4. MichaelGrieve, "ProductLifecycleManagement:Drivingthenextgenerationofleanthinking", TataMcGrawHill, 2006,ISBN:0070636265

Semester VII

CourseCode	CourseName	Credits
IOC7012	Institute Level Optional Subject I-	03
	ReliabilityEngineering	

Course Hours			Credits Assigned			
Practical	Tutorial	Theory	Practical	Tutorial	Total	

-	-	03	-	-	03

	Theory						Term Work/Practical/Oral		
Int	Internal Assessment			Duration of				Total	
Test-I	Test-II	Average	Sem	End Sem	TW	PR	OR		
1 est-1	1681-1		Exam	Exam					
20	20	20	80	03 Hrs				100	

- Tofamiliarize the students with various aspects of probability theory
- Toacquaintthe studentswithreliabilityanditsconcepts
- To introduce the students tomethodsof estimating the systemreliability of simple and complex systems
- TounderstandthevariousaspectsofMaintainability,AvailabilityandFMEAprocedure

Outcomes:

- Understandandapplythe conceptof Probabilityto engineeringproblems
- Applyvarious reliabilityconcepts to calculatedifferent reliability parameters
- Estimatethesystem reliabilityofsimpleandcomplex systems
- Carryouta FailureMode EffectandCriticalityAnalysis

Module	DetailedContents	Contact Hours					
01	Probability theory: Probability: Standard definitions	08					
	andconcepts;Conditional Probability, Baye'sTheorem.						
	Probability Distributions: Central tendency and Dispersion; Binomial,						
	Normal, Poisson, Weibull, Exponential, relations between the mand						
	their significance.						
	MeasuresofDispersion: Mean Median, Mode, Range,						
	MeanDeviation, Standard Deviation, Variance, Skewness and Kurtosis.						
02	ReliabilityConcepts:Reliabilitydefinitions,ImportanceofReliability,	08					
	QualityAssurance andReliability,BathTubCurve.						
	Failure Data Analysis: Hazard rate, failure density, Failure						
	Rate, MeanTimeToFailure(MTTF), MTBF, ReliabilityFunctions.						
	ReliabilityHazardModels:ConstantFailureRate,Linearlyincreasing,						
	TimeDependentFailureRate,WeibullModel.Distributionfunctions and						
	reliabilityanalysis.						
03	SystemReliability: SystemConfigurations: Series, parallel,	05					
	mixedconfiguration,koutofnstructure,Complex systems.						

04	ReliabilityImprovement:RedundancyTechniques:Elementredundancy,Unitredundancy,Standbyredundancies.Markovanalysis. SystemReliabilityAnalysis—Enumerationmethod,Cutsetmethod,Success Pathmethod,Decompositionmethod.					
05	MaintainabilityandAvailability:Systemdowntime,DesignforMainta inability:Maintenancerequirements,Designmethods: FaultIsolationandself-diagnostics,Partsstandardizationand Interchangeability,ModularizationandAccessibility,RepairVsReplace ment. Availability—qualitative aspects.	05				
06	Failure Mode, Effects and Criticality Analysis: Failure modeeffects analysis, severity/criticality analysis, FMECA examples. Fault tree construction, basic symbols, development of functional reliability block diagram, Fault tree analysis and Eventtree Analysis	05				

Internal

• Assessmentconsists of two tests which should be conducted at proper intervals.

EndSemestertheoryexamination

- Questionpaperwillcomprise of 6 questions each carrying 20 questions.
- Total4 questionsneed tobe solved
- Questionno.1willbecompulsorybasedonentiresyllabuswhereinsubquestionscanbeas ked.
- Remainingquestions will be and omly selected from all the modules
- Weightageofmarksshouldbeproportionaltonumberofhoursassignedtoeachmodule

References

- 1. L.S.Srinath, "ReliabilityEngineering", Affiliated East-WastPress(P) Ltd., 1985.
- 2. Charles E. Ebeling, "Reliability and Maintain ability Engineering", Tata McGraw Hill.
- 3. B.S.Dhillion, C.Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T.Conor, "Practical Reliability Engg.", John Wiley & Sons, 1985.
- 5. K.C.Kapur, L.R.Lamberson, "Reliability in Engineering Design", John Wiley & Sons.
- 6. Murray R. Spiegel, "Probability and Statistics", Tata McGraw-Hill Publishing Co.Ltd.

Semester VII

CourseCode	CourseName	Credits
IOC7013	InstituteLevelOptionalSubjectI-	03
	ManagementInformation System	

Course Hours			Credits Assigned			
Practical	Tutorial	Theory	Practical	Tutorial	Total	
-	-	03	-	-	03	

	Theory						l/Oral	
Int Test-I	ernal Asses Test-II	Average	End Sem Exam	Duration of End Sem Exam	TW	PR	OR	Total
20	20	20	80	03 Hrs				100

- ThecourseisblendofManagementandTechnicalfield.
- Discuss the rolesplayedbyinformationtechnologyintoday's business anddefinevarioustechnologyarchitectureson which informationsystems are built
- Defineandanalyzetypicalfunctionalinformationsystems and identify how they meet the eneeds of the firm to deliver efficiency and competitive advantage
- Identifythebasicstepsinsystemsdevelopment

Outcomes Learnerwillbeableto...

- ExplainhowinformationsystemsTransformBusiness
- Identifytheimpactinformationsystemshaveonanorganization
- DescribeITinfrastructureanditscomponentsanditscurrenttrends
- Understandtheprincipaltoolsandtechnologiesforaccessinginformationfromdatabase sto improvebusiness performance and decision making
- Identifythetypesofsystemsusedforenterprise-wideknowledgemanagementandhow theyprovide value forbusinesses

Module	DetailedContents	Contact Hours
01	IntroductionToInformationSystems(IS):ComputerBasedInformat ionSystems,ImpactofITonorganizations,andImportanceofIStoSoc iety.OrganizationalStrategy, CompetitiveAdvantagesand IS.	4
02	Data and Knowledge Management: Database Approach, BigData, Datawarehouseand DataMarts, Knowledge Management. Business intelligence (BI): Managers and Decision Making, BIfor Data analysis and Presenting Results	7
03	EthicalissuesandPrivacy:InformationSecurity.ThreattoIS, and SecurityControls	7
04	SocialComputing(SC):Web2.0and3.0,SCinbusiness-shopping,Marketing,OperationalandAnalyticCRM, E-businessandE-commerce—B2BB2C.Mobilecommerce.	7
05	ComputerNetworksWiredandWirelesstechnology,Pervasive computing,Cloud computingmodel.	6

06	InformationSystemwithinOrganization:TransactionProcessing	8
	Systems, Functional Area Information System,	
	ERPandERPsupport ofBusiness Process.	
	AcquiringInformationSystemsandApplications:VariousSystemde	
	velopment life cyclemodels.	

InternalAssessment

• Assessmentconsistsoftwotests whichshouldbe conducted atproperintervals.

EndSemestertheoryexamination

- Questionpaperwillcomprise of 6 questions each carrying 20 questions.
- Total4 questionsneed tobe solved
- Questionno.1willbecompulsorybasedonentiresyllabuswhereinsubquestionscanbeas ked.
- Remainingquestions will berandomly selected from all the modules
- Weightageofmarksshouldbeproportionaltonumberofhoursassignedtoeachmodule

References

- 1. KellyRainer,BradPrince,Management InformationSystems,Wiley
- 2. K.C.LaudonandJ.P.Laudon,ManagementInformationSystems:ManagingtheDigit alFirm, 10thEd.,PrenticeHall, 2007.
- 3. D.Boddy, A.Boonstra, Managing Information Systems: Strategy and Organization, Prentice Hall, 2008

Semester VII

CourseCode	CourseName	Credits
IOC7014	InstituteLevelOptionalSubjectI-Design	03
	ofExperiments	

Course Hours			Credits Assigned			
Practical	Tutorial	Theory	Practical	Tutorial	Total	

-	-	03	-	-	03

Theory					Term Work/Practical/Oral			
Int	Internal Assessment		End	Duration of				Total
Test-I	Test-II	Average	Sem Exam	End Sem Exam	TW	PR	OR	
20	20	20	80	03 Hrs				100

- Tounderstandtheissues and principles of Design of Experiments (DOE)
- Tolisttheguidelinesfordesigningexperiments
- Tobecome familiar with methodologies that can be used in conjunction with experimenta ldesigns for robustness and optimization

Outcomes:

- Plandatacollection,toturndataintoinformationandtomakedecisionsthatleadtoappropriateaction
- Applythe methodstaught to reallifesituations
- Plan, analyze, and interpret the results of experiments

Module	DetailedContents	Contact Hours
01	Introduction	06
	1.1 Strategyof Experimentation	
	1.2 TypicalApplications ofExperimentalDesign	
	1.3 GuidelinesforDesigningExperiments	
	1.4 Response SurfaceMethodology	
02	FittingRegressionModels	08
	2.1 LinearRegressionModels	
	2.2 EstimationoftheParametersinLinearRegressionModels	
	2.3 HypothesisTestinginMultipleRegression	
	2.4 ConfidenceIntervalsinMultipleRegression	
	2.5 Predictionofnewresponseobservation	
	2.6 Regressionmodeldiagnostics	
	2.7 Testingforlackof fit	
03	Two-LevelFactorialDesignsandAnalysis	07
	3.1 The2 ² Design	
	3.2 The 2 ³ Design	
	3.3 TheGeneral2 ^k Design	
	3.4 ASingleReplicateof the2 ^k Design	
	3.5 TheAddition ofCenterPointsto the2 ^k Design,	
	3.6 Blockinginthe2 ^k Factorial Design	
	3.7 Split-PlotDesigns	

04	Two-LevelFractionalFactorialDesignsandAnalysis 4.1 TheOne-Half Fractionofthe2 ^k Design 4.2 TheOne-QuarterFractionofthe2 ^k Design 4.3 TheGeneral2 ^{k-p} FractionalFactorialDesign 4.4 Resolution IIIDesigns 4.5 ResolutionIVandVDesigns	07			
	4.6FractionalFactorialSplit-PlotDesigns				
05	ConductingTests	07			
	5.1 TestingLogistics				
	5.2 Statistical aspects of conducting tests				
	5.3 Characteristicsof goodandbaddatasets				
	5.4 Exampleexperiments				
	5.5 AttributeVsVariabledatasets				
06	TaguchiApproach	04			
	6.1 CrossedArrayDesignsandSignal-to-NoiseRatios				
	6.2 AnalysisMethods				
	6.3 Robustdesignexamples				

Internal

• Assessmentconsistsoftwotests whichshouldbe conducted atproperintervals.

EndSemestertheoryexamination

- Questionpaperwillcomprise of 6 questions each carrying 20 questions.
- Total4 questionsneed tobe solved
- Questionno.1willbecompulsorybasedonentiresyllabuswhereinsubquestionscanbeas ked.
- Remainingquestions will berandomly selected from all the modules
- Weightageofmarksshouldbeproportionaltonumberofhoursassignedtoeachmodule

References

- 1. Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook,ResponseSurfaceMethodology:ProcessandProductOptimizationusingDesigned Experiment,3rdedition,John Wiley& Sons, New York,2001
- 2. D.C.Montgomery, Designand Analysis of Experiments, 5thedition, John Wiley & Sons, New York, 2001
- 3. GeorgeEPBox,JStuartHunter,WilliamGHunter,StaticsforExperimenters:Design,I nnovation andDiscovery, 2ndEd.Wiley
- 4. WJDimond,PracticalExperimentDesignsforEngineersandScientists,JohnWileyan d SonsInc.ISBN: 0-471-39054-2
- 5. DesignandAnalysisofExperiments(SpringertextinStatistics),Springerby

A.M.Dean, and D. T. Voss

- 6. PhillipJRoss, "TaguchiTechnique forQualityEngineering,"McGrawHill
- 7. MadhavSPhadke, "QualityEngineeringusingRobustDesign," Prentice Hall

	SEM VII	
CourseCode	CourseName	Credits
IOC7015	InstituteLevelOptionalSubjectI- OperationsResearch	03
	operations research	

Course Hours			Credits Assigned			
Practical	Tutorial	Theory	Practical Tutorial Total			
-	-	03	-	-	03	

	Theory					Teri k/Practi		
Int Test-I	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR	OR	Total
20	20	20	80	03 Hrs				100

- Formulateareal-worldproblemasamathematicalprogrammingmodel.
- Understandthemathematicaltoolsthatareneededtosolveoptimizationproblems.
- Usemathematical softwareto solve theproposed models.

Outcomes:

- Understandthetheoreticalworkingsofthesimplexmethod, the relationship between ali near program and its dual, including strong duality and complementary slackness.
- Performsensitivityanalysistodeterminethedirectionandmagnitudeofchangeofamod el'soptimal solution as the data change.
- Solvespecializedlinearprogrammingproblemslikethetransportationandassignmentp roblems;solvenetworkmodelsliketheshortestpath,minimumspanningtree, and maximum flow problems.
- Understand the applications of integer programminganda queuing model and compute important performance measures

Module DetailedContents	Detailed Contents	Contact
Module	DetaneuContents	Hours

01	IntroductiontoOperationsResearch: Introduction,,StructureoftheMathematicalModel,LimitationsofO	14						
	perationsResearch							
	LinearProgramming:							
	Introduction,LinearProgrammingProblem, Requirements of LPP, Mathematical Formulation							
	ofLPP,Graphicalmethod,SimplexMethodPenaltyCostMethodorBigM-							
	method,TwoPhaseMethod,Revisedsimplexmethod, Duality ,Prim al–							
	Dualconstruction,SymmetricandAsymmetricDual,WeakDuality Theorem,Complimentary Slackness Theorem, Main Duality Theorem,DualSimplexMethod, SensitivityAnalysis Transportation Problem:Formulation, solution, unbalancedTransportationproblem.Findingbasicfeasiblesolutions							
	Northwestcornerrule,leastcostmethodandVogel'sapproximation method.Optimalitytest:thesteppingstonemethod and MODImethod. AssignmentProblem:Introduction,MathematicalFormulationoft he Problem, Hungarian							
	MethodAlgorithm,ProcessingofnJobsThroughTwoMachinesand mMachines,GraphicalMethodofTwoJobsmMachinesProblemRo utingProblem, TravellingSalesmanProblem							
	IntegerProgrammingProblem:							
	Introduction, TypesofIntegerProgrammingProblems, Gomory's cuttingplaneAlgorithm, BranchandBoundTechnique. Introduction to Decompositional gorithms.							
02	Queuingmodels:queuingsystemsandstructures,single serverandmulti-	05						
	servermodels,Poissoninput,exponentialservice,constantrate service,finiteandinfinite population							
03	Simulation: Introduction, Methodology of Simulation, Basic Concepts, Simulation Procedure, Application of Simulation Monte-Carlo Method: Introduction, Monte-Carlo Simulation, Applications of Simulation, Advantages of Simulation, Limitations of Simulation	05						
04	Dynamicprogramming . Characteristics of dynamic programming . Dynamic programming approach for Priority Management employ ments moothening, capital budgeting, Stage Coach/Shortest Path, car goloading and Reliability problems.	05						
05	Game Theory. Competitive games, rectangular game, saddlepoint, minimax (maximin) method of optimal strategies, valueof the game. Solution of games with saddle points, dominanceprinciple.Rectangulargameswithoutsaddlepoint—mixed	05						

	strategyfor2 X 2games.	
06	Inventor Madala Classica IFOOM adala FOOM adalwith	05
06	InventoryModels:ClassicalEOQModels,EOQModelwith	05
	PriceBreaks, EOQ with Shortage, Probabilistic EOQ Model,	

Internal

• Assessmentconsistsoftwotests which should be conducted at proper intervals.

EndSemestertheoryexamination

- Questionpaperwillcomprise of 6 questions each carrying 20 questions.
- Total4 questionsneed tobe solved
- Questionno.1willbecompulsorybasedonentiresyllabuswhereinsubquestionscanbeas ked.
- Remainingquestions will berandomly selected from all the modules
- Weightageofmarksshouldbeproportionaltonumberofhoursassignedtoeachmodule

References

- 1. Taha,H.A."OperationsResearch-AnIntroduction",PrenticeHall,(7thEdition), 2002.
- 2. Ravindran, A, Phillips, D. Tand Solberg, J. J. "Operations Research: Principles and Practice", John Willeyand Sons, 2nd Edition, 2009.
- 3. Hiller,F.S.andLiebermann,G.J."IntroductiontoOperationsResearch",TataMcGra w Hill, 2002.
- 4. OperationsResearch, S.D. Sharma, Kedar Nath Ram Nath-Meerut.
- 5. OperationsResearch,KantiSwarup,P.K.GuptaandManMohan,SultanChand&Son s.

CourseCode	CourseName	Credits
IOC7016	Institute Level Optional Subject I- Cyber Security	03
	andLaws	

Course Hours			Credits Assigned			
Practical	Tutorial	Theory	Practical Tutorial Total			
-	-	03	-	-	03	

	Theory						Term Work/Practical/Oral		
Int Test-I	Internal Assessment Test-II Test-II Average		End Sem Exam	Duration of End Sem Exam	TW	PR	OR	Total	
20	20	20	80	03 Hrs				100	

- Tounderstandandidentifydifferenttypescybercrimeandcyber law
- TorecognizedIndianIT Act2008anditslatestamendments
- Tolearnvarioustypesof securitystandards compliances

Outcomes:

- Understandthe conceptofcybercrimeanditseffectonoutside world
- Interpret andapplyITlawinvariouslegalissues
- Distinguishdifferentaspectsofcyberlaw
- $\bullet \quad ApplyInformationSecurityStandards compliance durings of twa redesign and development$

Module	DetailedContents	Contact Hours							
01	Introduction to Cybercrime: Cybercrime definition and	4							
	originsoftheworld, Cybercrimeandinformationsecurity, Classificatio								
	nsof cybercrime, Cybercrimeand the								
	IndianITA2000,AglobalPerspectiveon cybercrimes.								
02	Cyberoffenses&Cybercrime:Howcriminalplantheattacks,SocialE	9							
	ngg,Cyberstalking,CybercaféandCybercrimes,Botnets,Attackvecto								
	r, Cloudcomputing, Proliferation of Mobile and Wireless Devices,								
	Trends in Mobility, Credit Card Frauds								
	inMobileandWirelessComputingEra,SecurityChallengesPosedbyM								
	obileDevices,RegistrySettingsforMobileDevices,AuthenticationSer								
	viceSecurity,AttacksonMobile/CellPhones,Mobile Devices:								
	Security Implications for								
	Organizations, Organizational Measures for Handling Mobi								
	le,Devices-Related								
	SecurityIssues,OrganizationalSecurity								
	Policies and Measures in Mobile Computing Era, Laptops								

03	ToolsandMethodsUsedin Cyberline	6
	Phishing, Password Cracking, Keyloggers and Spywares,	
	VirusandWorms,Steganography,DoSandDDoSAttacks,SQLInjecti	
	on,BufferOverFlow,AttacksonWirelessNetworks,Phishing,Identity	
	Theft (IDTheft)	
04	TheConceptofCyberspace	8
	E-Commerce , The Contract Aspects in Cyber Law ,The	
	SecurityAspect of Cyber Law ,The Intellectual Property Aspect in	
	CyberLaw	
	, The Evidence Aspect in Cyber Law ,The Criminal Aspect	
	inCyber Law, Global Trends in Cyber Law, Legal Framework	
	forElectronicDataInterchangeLawRelatingto ElectronicBanking,	
	TheNeed foranIndianCyberLaw	
05	IndianITAct.	6
	Cyber Crime and Criminal Justice: Penalties, Adjudication	
	andAppealsUndertheITAct,2000,ITAct.2008anditsAmendments	
06	InformationSecurityStandardcompliances	6
	SOX,GLBA,HIPAA, ISO,FISMA,NERC,PCI.	

Assessment Internal

• Assessmentconsists of two tests which should be conducted at proper intervals.

EndSemestertheoryexamination

- Questionpaperwillcomprise of 6 questions each carrying 20 questions.
- Total4 questionsneed tobe solved
- Questionno.1willbecompulsorybasedonentiresyllabuswhereinsubquestionscanbeas ked
- Remainingquestions will berandomly selected from all the modules
- Weightageofmarksshouldbeproportionaltonumberofhoursassignedtoeachmodule

References

- 1. NinaGodbole, SunitBelapure, CyberSecurity, WileyIndia, New Delhi
- 2. TheIndianCyberLawbySureshT.Vishwanathan;BharatLawHouseNewDelhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. CyberLaw&CyberCrimesByAdvocatePrashantMali;SnowWhitePublications, Mumbai
- 5. NinaGodbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, *Cyber Security & Global Information Assurance* InformationSciencePublishing.
 - 7. WilliamStallings, CryptographyandNetworkSecurity, PearsonPublication
 - $8. \ \ Websites form or einformation is available on: The Information Technology ACT, 200\\ 8-TIFR: https://www.tifrh.res.in$
 - 9. Websiteformoreinformation, A Compliance Primer for IT professional : https://www.sans.org/reading-room/whitepapers/compliance/compliance-

primer-professionals-33538

CourseCode	CourseName	Credits
IOC7017	InstituteLevelOptionalSubjectI-	03
	DisasterManagementandMitigationMeasures	

(Course Hour	'S	Credits Assigned			
Practical	Tutorial	Theory	Practical	Tutorial	Total	
-	02		-	-	03	

	Theory						Term Work/Practical/Oral		
Int	Internal Assessment			Duration of				Total	
Test-I	Toot II	Awayaga	Sem	End Sem	TW	PR	OR		
1681-1	Test-II	Average	Exam	Exam					
20	20	20	80	03 Hrs				100	

- Tounderstandphysics and various types of disaster occurring around the world
- To identifyextent and damagingcapacityofadisaster
- Tostudyandunderstandthemeansoflossesandmethodstoovercome/minimizeit.
- Tounderstandroleofindividualandvariousorganizationduringandafterdisaster
- Tounderstandapplication of GIS in the field of disaster management
- Tounderstandtheemergencygovernmentresponsestructuresbefore,duringandafterdi saster

Outcomes:

- Gettoknownaturalaswellasmanmadedisasterandtheirextentandpossibleeffectson the economy.
- Planofnationalimportancestructures based upon the previous history.
- Getacquaintedwithgovernmentpolicies, acts and various organizational structures associated with an emergency.
- Gettoknowthesimpledo'sanddon'tsinsuchextremeeventsandactaccordingly.

Module	DetailedContents	Contact Hours
	Introduction: Definition of Disaster, hazard, global and Indian scenario, generalperspective,importanceofstudyinhumanlife,Directandindirec teffectsofdisasters,longtermeffectsofdisasters. Introductiontoglobalwarmingandclimatechange.	03

02	NaturalDisasterandManmadedisasters:	09					
02	Natural Disaster: Meaning and nature of natural						
	disaster,Flood,Flashflood,drought,cloudburst,Earthquake,Landslide						
	s,Avalanches,Volcaniceruptions,Mudflow,Cyclone,Storm,Storm						
	Surge, climate change, global warming, sea level						
	rise,ozonedepletion						
	ManmadeDisasters:Chemical,Industrial,NuclearandFireHazards.Ro						
	leofgrowingpopulationandsubsequentindustrialization, urbanization						
	and changing lifestyle of humanbeingsin frequent occurrences of						
	manmadedisasters.						
03	DisasterManagement,PolicyandAdministration:	06					
	Disaster						
	management:meaning,concept,importance,objectiveofdisastermana						
	gementpolicy,disasterrisksin India,Paradigmshift						
	indisastermanagement.						
	Policy and administration: Importance and principles of						
	disastermanagement policies, command and co-ordination of in						
	disastermanagement,rescueoperations-						
	howtostartwithandhowtoproceed in due course of time, study of						
	flowchart showing theentireprocess.						
04	Institutional Framework for Disaster Management in	06					
	India:Importanceof						
	publicawareness, Preparation and execution of eme						
	rgencymanagementprogramme.ScopeandresponsibilitiesofNational						
	InstituteofDisasterManagement(NIDM)andNationaldisastermanage						
	mentauthority(NDMA)inIndia.Methodsandmeasurestoavoiddisaste						
	rs, Managementof casualties, setup of emergency facilities, importance						
	ofeffectivecommunicationamongstdifferentagenciesinsuchsituation						
	s. UseofInternetandsoftwaresforeffectivedisastermanagement.Applica						
	tionsof GIS,RemotesensingandGPSinthis regard.						
05	FinancingReliefMeasures:	09					
	Ways to raise finance for relief expenditure, role of	U)					
	governmentagencies and NGO's in this process, Legal aspects related to f						
	inanceraisingaswellasoverallmanagementofdisasters. Various						
	NGO's and the works they have carried out in the past						
	ontheoccurrenceofvarious disasters, Waystoapproachtheseteams. Inte						
	rnationalreliefaidagenciesandtheirroleinextreme						
	events.						

06	PreventiveandMitigationMeasures:	06				
	Pre-disaster, during disaster and post-disaster measures in					
	someevents in general structural mapping: Risk mapping,					
	assessmentand analysis, sea walls and embankments, Bio shield,					
	shelters, early warning and communication					
	NonStructuralMitigation:Communitybaseddisasterpreparedness,ris					
	ktransferandriskfinancing,capacitydevelopmentandtraining,awaren					
	essandeducation, contingency					
	plans.Do'sanddon'tsincaseofdisastersandeffectiveimplementationof					
	reliefaids.					

Internal

• Assessmentconsistsoftwotests whichshouldbe conducted atproperintervals.

EndSemestertheoryexamination

- Questionpaperwillcomprise of 6 questions each carrying 20 questions.
- Total4 questionsneed tobe solved
- Questionno.1willbecompulsorybasedonentiresyllabuswhereinsubquestionscanbeas ked.
- Remainingquestions will berandomly selected from all the modules
- Weightageofmarksshouldbeproportionaltonumberofhoursassignedtoeachmodule

References

- 1. 'DisasterManagement' by Harsh K. Gupta, Universities Press Publications.
- 2. 'DisasterManagement:AnAppraisalofInstitutionalMechanismsinIndia'by O.S.Dagur,publishedbyCentreforland warfarestudies,New Delhi,2011.
 - 3. 'IntroductiontoInternationalDisasterManagement'byDamonCopolla,Butterworth HeinemannElseveir Publications.
 - 4. 'DisasterManagementHandbook'byJackPinkowski,CRCPressTaylorandFrancis group.
 - 5. 'Disaster management & rehabilitation' by Rajdeep, Dasgupta, MittalPublications.New Delhi.
 - 6. 'NaturalHazardsandDisasterManagement,VulnerabilityandMitigation-RBSingh, Rawat Publications
 - 7. ConceptsandTechniquesofGIS-C.P.LoAlbert,K.W.Yonng-PrenticeHall(India)Publications.

(Learnersareexpected to referre ports published at national and International level and updated information available on authentic websites)

CourseCode	CourseName	Credits
IOC7018	Institute Level Optional Subject I- Energy Audit	03
	andManagement	

(Course Hour	'S	Credits Assigned			
Practical	Tutorial	Theory	Practical	Tutorial	Total	
-	03		-	-	03	

	Theory						Term Work/Practical/Oral		
Int	Internal Assessment			Duration of				Total	
Togt I	Togt II	Avanaga	Sem	End Sem	TW	PR	OR		
Test-I	Test-II	Average	Exam	Exam					
20	20	20	80	03 Hrs				100	

- Tounderstandtheimportanceenergysecurityforsustainabledevelopmentandthefunda mentals of energy conservation.
- Tointroduceperformanceevaluationcriteriaofvariouselectricalandthermalinstallatio nsto facilitate theenergymanagement
- Torelatethedatacollectedduringperformanceevaluationofsystemsforidentification of energy saving opportunities.

Outcomes:

- Toidentifyanddescribe presentstate of energysecurityandits importance.
- To identify and describe the basic principles and methodologies adopted in energyauditof an utility.
- Todescribetheenergyperformanceevaluation of some common electrical installations and identify the energy saving opportunities.
- Todescribetheenergyperformanceevaluation of some common thermal installations and identify the energy saving opportunities
- Toanalyzethedatacollectedduringperformanceevaluationand recommendenergysavingmeasures

Module	DetailedContents	Contact Hours			
01	EnergyScenario:	04			
	PresentEnergyScenario,EnergyPricing,EnergySectorReforms,Ener				
	gySecurity,EnergyConservationanditsImportance,EnergyConserva				
	tionAct-2001anditsFeatures.BasicsofEnergyandits variousforms,				
	MaterialandEnergy				
	balance				

02	EnergyAuditPrinciples:	08				
	Definition, Energy audit- need, Types of energy audit,					
	Energymanagement (audit) approach-understanding energy costs,					
	Benchmarking, Energyperformance, Matchingenergy uset or equirem					
	ent,Maximizingsystemefficiencies,Optimizingtheinputenergyrequi					
	rements, Fuelandenergy substitution. Elements of monitoring &					
	targeting; Energy auditInstruments; Data and information-analysis.					
	Financial analysistechniques: Simple payback period, NPV,					
	Returnoninvestment(ROI), Internal rate of return(IRR)					
	2.0002.10.11.1.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11					
03	EnergyManagementandEnergyConservationinElectrical	10				
	System:					
	Electricitybilling, Electrical loadmanagement and maximum demand					
	Control; Powerfactorim provement, Energy efficient equipments and					
	appliances, star ratings.					
	Energyefficiencymeasuresinlightingsystem,Lightingcontrol:Oc					
	cupancysensors, daylightintegration, and use of intelligent controllers.					
	Energyconservationopportunitiesin:waterpumps,industrialdrives,in					
	ductionmotors, motorretrofitting, softstarters, variable					
	speeddrives.					
04	Energy Management and Energy Conservation in	10				
	ThermalSystems:					
	Reviewofdifferentthermalloads; Energy conservation opportunities					
	in: Steam distribution system, Assessment of steamdistribution					
	losses, Steam leakages, Steam trapping, Condensateandflash steam					
	recoverysystem.					
	General fuel economy measures in Boilers and furnaces,					
	Wasteheat recovery, use of insulation- types and application.					
	HVACsystem: Coefficient of performance, Capacity, factors					
	affectingRefrigerationandAirConditioningsystemperformanceand					
	savingsopportunities.					
05	EnergyPerformanceAssessment:	04				
	On site Performance evaluation techniques, Case					
	studiesbasedon:Motorsandvariablespeeddrive,pumps,HVACsyste					
	mcalculations;LightingSystem:InstalledLoadEfficacyRatio					
	incarculations, Lightings ystem. Instance Load Efficacy Natio					
	(ILER)method, Financial Analysis.					
06		03				
06	(ILER)method, Financial Analysis. Energy conservation in Buildings: Energy Conservation Building Codes (ECBC): Green Building,	03				
06	(ILER)method,FinancialAnalysis. EnergyconservationinBuildings:	03				

Internal

• Assessmentconsistsoftwotests whichshouldbe conducted atproperintervals.

EndSemestertheory examination

- Questionpaperwillcomprise of 6 questions each carrying 20 questions.
- Total4 questionsneed tobe solved
- Questionno.1willbecompulsorybasedonentiresyllabuswhereinsubquestionscanbeas ked.
- Remainingquestions will be randomly selected from all themodules
- Weightageofmarksshouldbeproportionaltonumberofhoursassignedtoeachmodule

References

- 1. HandbookofElectrical InstallationPractice,GeofryStokes,BlackwellScience
- 2. Designingwithlight:LightingHandbook,ByAnilValia, LightingSystem
- 3. EnergyManagement Handbook, ByW.C. Turner, John Wileyand Sons
- 4. HandbookonEnergyAuditsandManagement,editedbyA.K.Tyagi,TataEnergyRese archInstitute(TERI).
- 5. EnergyManagementPrinciples,C.B.Smith,PergamonPress
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E.Richardson, Fairmont Press
- 7. HandbookofEnergyAudits,AlbertThumann,W.J.Younger,T.Niehus,CRCPress
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

CourseCode	CourseName	Credits
IOC7019	InstituteLevelOptionalSubjectI-	03
	DevelopmentEngineering	

(Course Hour	'S	Credits Assigned			
Practical	Tutorial	Theory	Practical Tutorial Total			
-	-	03	-	-	03	

	Theory						Term Work/Practical/Oral		
Int Test-I	ernal Asses Test-II	Average	End Sem Exam	Duration of End Sem Exam	TW	PR	OR	Total	
20	20	20	80	03 Hrs				100	

Pre-requisite:

• Interestinsocietaldevelopment.

CourseObjective:

- To understand the characteristics of rural Society and the Scope and Nature andConstraintsof rural Development.
- To study Implications of 73rd CAA on Planning, Development and Governance ofRuralAreas
- The objective of the course is an exploration of human values, which go intomaking a 'good' human being, a 'good' professional, a 'good' society and a 'goodlife'. The context is the work life and the personal life of modern Indian professionals.
- TounderstandtheNatureandTypeofHumanValuesrelevanttoPlanningInstitutions.

CourseOutcome:

- Studentswill be ableto applyknowledgeforRural Development.
- Studentswill beable toapplyknowledgeforManagementIssues.
- StudentswillbeabletoapplyknowledgeforInitiativesandStrategies
- Studentswillbeabletodevelopacumenforhighereducationandresearch.
- Studentswillmastertheart ofworkingingroupofdifferentnature.
- Studentswilldevelopconfidencetotakeupruralprojectactivitiesindependently.

Module	Contents	Contact Hours
1	Introduction to Rural Development Meaning, nature and scope ofdevelopment; Nature of rural society in India; Hierarchy of settlement s; Social, economicande cological constraints for rural development.	04

2	Roots of Rural Development in India Rural reconstruction and Sarvodaya programme before independence; Impact of voluntary effort and Sarvodaya Movement on rural development; Constitutional direction, directive principles; Panchayati Rajbeginning of planning and community development; National extensions ervices.	04
3	Post-IndependenceruralDevelopmentBalwantRaiMehtaCommittee - three tier system of rural local Government; Needandscopeforpeople'sparticipationandPanchayatiRaj;Ashok MehtaCommittee-linkagebetweenPanchayatiRaj,participationand rural development.	04
4	RuralDevelopmentInitiativesinFiveYearPlansFiveYear	06
5	PlansandRuralDevelopment;PlanningprocessatNational,State,RegionalandDistrictlevels;Planning,development,implementing and monitoring organizations and agencies; Urbanandruralinterface-integratedapproachandlocalplans;Developmentinitiativesandtheirc onvergence;Specialcomponent plan and sub-plan for the weaker section; Microecozones;Databaseforlocalplanning;Needfordecentralized planning;Sustainableruraldevelopment. Post 73rd Amendment Scenario 73rd Constitution	04
5	Amendment Act, including- XIschedule, devolution of powers, functions and finance; Panchayati R ajinstitutions-organizational linkages; Recent changes in rural local planning; Gram Sabha - revitalized Panchayati Raj; Institutionalization; resource mapping, resource mobilization including social mobilization; Information Techno logyandrural planning; Needfor further amendments.	U 4
6	ValuesandScienceandTechnologyMaterialdevelopmentand itsvalues;thechallengeofscienceandtechnology;Valuesinplanningpr ofession, research andeducation.	04
7	Types of Values Psychological values — integrated personality;mental health; Societal values — the modern search for a goodsociety; justice, democracy,rule oflaw,values in theIndianconstitution; Aesthetic values — perception and enjoyment ofbeauty;Moralandethicalvalues;natureofmoraljudgment;Spiritual values; different concepts; secular spirituality; Relativeandabsolutevalues;Humanvalues— humanismandhumanvalues;humanrights;humanvaluesasfreedom,c reativity,love andwisdom.	06
8	EthicsCanonsofethics;ethicsofvirtue;ethicsofduty;ethicsofresponsi bility;Workethics;Professionalethics;Ethicsin planningprofession,researchandeducation	04

Internal

• Assessmentconsistsoftwotests whichshouldbe conducted atproperintervals.

EndSemestertheoryexamination

- Questionpaperwillcomprise of questionseach carrying 20 questions.
- Total4 questionsneed tobe solved
- Questionno.1willbecompulsorybasedonentiresyllabuswhereinsubquestionscanbeas ked.
- Remainingquestions will berandomly selected from all the modules
- Weightageofmarksshouldbeproportionaltonumberofhoursassignedtoeachmodule

Recommendation

Studentscantakeanyoneortwoliveprojectsbeneficialtoruralpopulationorsocietyat large.

Reference

- 1. ITPI, Village Planning and Rural Development, ITPI, New Delhi
- 2. Thooyavan, K.R. Human Settlements: A 2005 MAPublication, Chennai
- 3. GoI, Constitution (73rdGoI, New Delhi Amendment) Act, GoI, New Delhi
- 4. PlanningCommission, Five YearPlans, PlanningCommission
- 5. PlanningCommission,ManualofIntegratedDistrictPlanning,2006,PlanningCommissionNew Delhi
- 6. PlanningGuideto Beginners
- 7. Weaver, R.C., The Urban Complex, Doubleday.
- 8. Farmer, W.P. et al, Ethics in Planning, American Planning Association, Washington.
- 9. How,E., Normative Ethicsin Planning,Journalof PlanningLiterature,Vol.5,No.2,pp. 123-150.
- 10. Watson, V., Conflicting Rationalities:-Implications for Planning Theory and Ethics, Planning Theory and Practice, Vol. 4, No. 4, pp. 395–407

Semester VII

Course Code	Course Name	Credits
CHL701	Instrumentation Process Dynamics and Control Lab	1.5

(Course Hour	'S	Credits Assigned			
Theory	Practical	Tutorial	Theory	Total		
-	3	-	-	1.5	-	1.5

	Theory						Term Work/Practical/Oral		
Test-I	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR/OR	OR	Total	
-	•	-	-	-	25	25		50	

Prerequisites

- 1. Basics of unit operations.
- 2. Engineering Physics, Engineering Chemistry and Engineering Mathematics (Linear Algebra, Differential equations and Laplace Transforms)
- 3. Basic laws of Conservations
- 4. Knowledge of safety and precautions to be taken in laboratories.

Lab Objectives

- 1. To understand dynamic behavior of process systems and equipments.
- 2. To analyze the characteristics of different types control valves.
- 3. To calibrate various measuring devices
- 4. To operate closed-loop control system
- 5. To understand the effect of controller parameters in the response of dynamic systems
- 6. To optimize the controller parameters in controller tuning process

List of Suggested Experiments

- Dynamic Response of First order system (Thermometer) to step input
- Dynamic Response of First order system (Liquid Level) to impulse input
- Dynamic Response of Non-Interacting system to step input
- Dynamic Response of Interacting system to step input
- Calibration of Measuring Devices.
- Dynamic Response of second order system (Manometer) to step input

- Inherent Characteristics of Control Valves
- Effective Characteristics of Control Valves
- Closed loop control system
- Open loop control system
- Tuning of control system
- Development of Empirical Model from Process Data
- Note: Virtual platforms can be used for better understanding of concepts (Virtual platform should be used for at least one Experiment).

Lab Outcome

On completion of the course the studentwill:

- 1. Analyze the dynamic behavior of a system for various inputs
- 2. Determine the characteristic parameters of a system
- 3. Analyze the characteristics of control valves
- 4. Develop Empirical Model from Process Data
- 5. Analyze various measuring devices
- 6. Tune the controller parameter

Term work

Term work should be evaluated based on performance in practical.

Practical journal: 20 marks Attendance: 05 marks Total: 25 marks

Practical Examination

- Duration for practical examination will be same as assigned to respective lab per week
- A student will become eligible for practical examination after completing 8 out of 10 experiments

Semester VII

Course Code	Course Name	Credits
CHL702	Chemical Engineering Equipment Design Lab	1.5

Course Hours			Credits Assigned			
Theory	Practical	Tutorial	Theory Practical Tutorial Total			
-	03	-	-	1.5	-	1.5

Theory					Term Work/Practical/Oral			
Int	ernal Asses	sment	End	Duration of				Total
Test-I	Test-II	Average	Sem Exam	End Sem Exam	TW	PR/OR	OR	
-	-	-	-	-	25	-	25	50

Prerequisites

- 1.Fundamentals of units
 - 2. Elementary theory of engineering mechanics,
 - 3. Engineering drawing.
 - 4. Knowledge of Heat and Mass transfer operations
 - 5. Concepts of Mechanical operations

Course Objectives

- 1. To understand the basic of design and Construction of Pressure Vessels.
- 2. To understand the basic of design and Construction of High-Pressure Vessels
- 3. To understand the basic of construction and design of Reaction vessel and Agitator
- 4. To understand the basic of design and Construction of Heat transfer equipment
- 5. To understand the basic of design and Construction of Mass Transfer equipments.
- 6. To understand the basic of construction of Storage Vessel and Supports to vessel

List of Experiments (minimum eight)

Experiment no.	Details of Experiment	Lab Hours
1	Pressure Vessel	3
2	High Pressure Vessel	3
3	Reaction Vessel	3
4	Agitators	3
5	Heat Exchangers	3
6	Evaporator	3
7	Distillation Column	3
8	Storage Vessel	3
9	Supports to vessels	3
10	Autocad / PID	3

Course Outcome

On completion of the laboratory course the students will be able to:

- 1. Design and pictorially represent Pressure vessel.
- 2. Design and pictorially represent High pressure vessel.
- 3. Design and pictorially represent Reaction vessel and Agitator
- 4. Design and draw internals of Heat exchanger and Evaporator.
- 5. Design and represent pictorially distillation column.
- 6. Sketch the internals of storage tank and types of supports

Assessment:

Term Work (25 marks)

Distribution of marks will be as follows:

• Laboratory work: 15 marks

Assignments: 05Attendance: 05Total Marks: 25

End Semester Practical/ Oral Examination/ (25 marks)

Oral Examination will be based on experiments performed in the laboratory

Recommended Books:

- 1. Process Equipment Design by M.V. Joshi Macmillan India.
- 2.Process Equipment Design- Vessel Design by E. Brownell and Edwin, H. Young. John Wiley, New York 1963.

Reference Books:

- 1. Chemical Engineering volume 6- Design by J.M Coulson, J.F. Richardson and P.K. Sinnot, Pregamovr press, International edition 1989.
- 2. Chemical Engineering Design, Fifth edition, Ray Sinnott and Cavin Towler, Elseveir, Butterworth-Heinemann publications
- 3. Introduction to Chemical Equipment Design- Mechanical aspects by B.C. Bhattacharya CBS Publications

Semester VII

Course Code	Course Name	Credits
CHL703	Hazard and Risk analysis Lab	01

(Course Hour	S		Credits Assigned					
Theory	Practical	Tutorial	Theory Practical Tutorial Total						
-	02	-	-	01	-	01			

Theory					Term Work/Practical/Oral			
Int	ernal Asses	sment	End	Duration of				Total
Test-I	Test-II	Average	Sem Exam	End Sem Exam	TW	PR/OR	OR	
-	-	-	-	-	25	-	25	50

Prerequisites

Knowledge of Physics, Chemistry, Mathematics, Process Calculations, Process Equipment Design, Process Engineering, Heat and Mass transfer, Thermodynamics, Chemical Reaction Engineering, Fluid flow and Process Safety.

Course Objectives

- 1.To give the knowledge about fire and explosion.
- 2.To train the students about Fire and Explosion prevention methods and Reliefs techniques.
- 3.To make the student aware about safety in process and plant.
- 4.To train the students about hazard identification and risk assessment.
- 5.To train the students about safety procedures and design and expert manpower to handle the complex industrial environment.
- 6.to use RAST and CHEF tools to analyze industrial accidents, hazards and risk.

List of Experiments (minimum eight)

Download RAST and CHEF tools from AIChE Website.It is available for FREE. This is readymadetemplate which can be used in MS Excel/Libre office Calc. Enable Macros before using it. Also download A Tutorial for the Risk Analysis Screening Tool (RAST) and CHEF.

A total of 5 case studies need to be solved by using RAST-CHEF.

Download 5 case studies available on AIChE website. Complete Hazard Identification and Risk Analysis (HIRA) study for following cases:

- 1. Chlorine Rail Car
- 2. CAI and Arnel-Confined Space Explosion
- 3. BP Texas City-Refinery explosion and fire
- 4. Phillips Petroleum Company-Explosion and Fire
- 5. T2 Industries-Runaway Reaction and Explosion

Case study data is not fully provided for below cases. Find the relevant data from internet and enter the values. As most of these case studies are reported **AFTER** accidents and you are going to do a riskanalysis **BEFORE** accident, anticipate **MORE** scenarios. The students will have to imagine moreaccident prone scenarios in following case studies and not only the reported ones.

- 6. A Massive Fire, BLEVEs, and \$5 Million Damages after a Mechanic Improperly Removes a Valve Actuator-102-106, Roy E. Sanders
- 7. An Eight-Inch Elbow Ruptures from Internal Corrosion and A Blast Results in Worldwide Feed stocks Disruptions and An Eight-Inch Line Ruptures in Mexico City and over 500 People Die-120-121,Roy E. Sanders
- 8. Flixborough, England, 23-25, Crowl, D. A.
- 9. Seveso, Italy, 26-27
- 10. A Well-Intended Change Yields a Storage Tank Collapse, 32-36, Roy E. Sanders
- 11. A Severe Pump Explosion Surprises Employees, 168-170

A total of 3 practical's need to be performed from below experiments

- 1. Flash point
- 2. Fire point
- 3. Fire Extinguishers
- 4. Flammability limits of gases
- 5. Industrial Safety Awareness (Lecture by Industry Person/Visit to Industry)
- 6. Safety Audit Format
- 7. Electrical Safety Awareness (Expert lecture by Electrical Background Person)

Course Outcome

At the end of the course students will be

- 1. able to apply the knowledge of mathematics, science, engineering fundamentals for identifying causative and initiating factors of accidents.
- 2. able to carry out Hazard and Risk analysis by using principles ofsciences and engineering.
- 3. able to develop fire and explosion index and chemical exposure index by analyzing and interpreting of available data.
- 4. able to use IT tools such as RAST-CHEF to understand and evaluate situations causing industrial fire, explosions and evaluate risk.
- 5. able to prepare scenario list- guidance and maximum allowable response time for particular chemical plant/equipment
- 6. Students should be able to prepare Risk Assessment Matrix and Risk summery for particular plant to avoid accidents, for betterment of environment, society and communicate it with higher authorities

Assessment:

Term Work (25 marks)

Distribution of marks will be as follows:

Laboratory Work and Journal: 20 marks

Attendance : 05 marks Total Marks : 25 Marks

End Semester Practical Examination/orals (25 marks)

Practical Oral Examination will be based on experiments performed in the laboratory.

Reference Books

- 1. Incidents that define process safety; Centre for Chemical Process Safety, AIChE, Wiley
- 2. More incidents that define process safety; Centre for Chemical Process Safety, AIChE, Wiley, 2020
- 3. Chemical Process Safety Learning from Case Histories; 3rd Edition; Roy E. Sanders; Elsevier Butterworth–Heinemann 2005
- 4. Chemical Process Safety: Fundamentals with Applications; Crowl, D. A. and Louvar, J.P.; Prentice Hall, Englewood
- 5. Chemical Process Industry Safety; K. S. N. Raju, McGraw Hill Education
- 6. Avoiding Greenhouse Gas Emissions The Essential Role of Chemicals 17 Case Studies; International Council of Chemical Associations.

Semester VII

Course Code	Course Name	Credits
CHP701	Major Project I	03

Course Hours			Credits Assigned				
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
	6#	-		3	-	03	

Theory					Term Work/Practical/Oral			
Inte	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR	OR	Total
-	-	-	-	-	25	-	25	50

[#] Workload of learner, not faculty for project I. faculty load: semester VII - ½ hour per week per project group

Prerequisites

- 1. Detail knowledge of applied chemistry.
- 2. Fundamentals of unit operations.
- 3. Mass and energy balance calculations
- 4. Knowledge of chemical engineering economics [Demand supply analysis, rate of interests, profitability methods, depreciation methods]
- 5. Report writing, feasibility studies.

Objectives

- 1. To be able to identify advanced topic in chemical engineering based on the technology, its application, and its future potential. (Problem identification)
- 2.To demonstrate a sound technical knowledge of the selected project topic which should be focused on solutions to industrial, societal, and environmental problems with the application of sustainable technology.
- 3. To carry out market study on the product and find demand supply gap for manufacturing projects.
- 4. To carry out thorough literature survey on the selected topic and identify research gaps for research projects.
- 5. To carry out profitability analysis for the selected product and technical/economic feasibility study.

6. To communicate the literature review, proposed work at various platforms for further suggestions, improvement.

Outcomes

After the completion of this project work., Students will be able to

- 1. Identify advanced topic in chemical engineering based on the technology, its application, and its future potential.
- 2. Demonstrate a sound technical knowledge of the selected project topic focused on solutions to industrial, societal, and environmental problems with the application of sustainable technology.
- 3. Carry out market study on the product and find demand supply gap for manufacturing projects.
- 4. Carry out thorough literature survey on the selected topic and identify research gaps for research projects.
- 5. Carry out profitability analysis for the selected product.
- 6. Communicate the literature review, proposed work at various platforms for further suggestions, improvement.

Guidelines:

- Project groups: Groups can be formed with minimum TWO and not more than FOUR students per group.
- Students should spend considerable time in applying all the concepts studied.
- Students are advised to take up industrial/ experimental/ simulation and/or optimization-based topics for their project.
- Students should report their guides with their work on weekly basis.
- For Project oral, external examiners, preferably from industrial background should be appointed.
- For term work marks, punctuality of the students, timely submission of the weekly progress report should be considered along with presentation before guide and departmental expert panel at the end of semester and record of the same should be maintained.

Exam Guidelines

Term Work – 25 Marks:

[• Presentation – 10 Marks • Report -15 Marks]

Oral – 25 Marks

University of Mumbai Program Structure for B.E. Chemical Engineering (Revised 2022-2023) Semester VIII

Semester VIII

G	Course Name	Т	Teaching Scheme (Contact Hours)			Credits Assigned			
Course code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
CHC801	Modelling Simulation and Optimization	3	-	-	3	-	-	3	
CHDO805X	Department Optional Course 5	3	-	-	3	-	-	3	
CHDO806X	Department Optional Course 6	3	-	-	3	-	-	3	
IO802X	Institute Optional Course 2	3	-	-	3	-	-	3	
CHL801	Modelling Simulation and Optimization Lab	-	3	-	-	1.5	-	1.5	
CHL802	Software application in Chemical Engineering Lab	-	3	-	-	1.5	-	1.5	
CHP801	Major Project II	-	12#	-	-	6	-	6	
	Total	12	18	-	12	9	-	21	

		Examination								
Course code			Theory			Pract		m . 1		
		Intern	al Assess	ment	End	Exam	Work	/Oral	Oral	Total
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)				
CHC801	Modelling Simulation and Optimization	20	20	20	80	3	-	-		100
CHDO805X	Department Optional Course 5	20	20	20	80	3	-	-	-	100
CHDO806X	Department Optional Course 6	20	20	20	80	3	-	-	-	100
IO802X	Institute Optional Course 2	20	20	20	80	3	-	-	-	100
CHL801	Modelling Simulation and Optimization Lab	-	-	-	-	3	25	25	-	50
CHL802	Software application in Chemical Engineering Lab	-	-	-	-	-	25	-	25	50
CHP801	Major Project II	-	-	-	-	-	50	-	100	150
	Total			80	320	-	100	25	125	650

Department Optional Course 5 (Sem VIII)

1 1	,	
Engineering Stream (Course Code)	Technology Stream (Course Code)	Management Stream (Course Code)
Energy System Design (CHDO8051)	Advanced Separation Technology (CHDO8052)	Financial Management (CHDO8053)

Department Optional Course 6 (Sem VIII)

Engineering Stream (Course Code)		Technology Stream (Course Code)	Management Stream (Course Code)
Fuel Cell Electrochemical Engineering	1.	Biotechnology (CHDO8062)	Chemical Waste Management
(CHDO8061)	2.	Nanotechnology (CHDO8063)	(CHDO8064)

Institute Optional Course 2(SemVIII)

1.ProjectManagement(ILO8021)	4.HumanResourceManagement(I LO8024)	7.IPRandPatenting (ILO8027)
2.FinanceManagement(ILO8022)	5.ProfessionalEthicsandCSR(ILO8 025)	8.DigitalBusinessManagement(ILO8028)
3.EntrepreneurshipDevelopmentandManagement(I LO8023)	6. Research Methodology(ILO8026)	9.EnvironmentalManagement(ILO8029)

[#] indicates work load of Learner (Not Faculty), Faculty load-for Major Project.semester VIII – 1 hour per week per project group

	Semester VIII	
Course Code	Course Name	Credits
CHC801	Modelling Simulation and Optimization	03

Course Hours			Credits Assigned			d
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
03	-	-	03	-	-	03

		Theory				Term		
				Work	/Practica	al/Oral		
Int	ernal Asses	sment	End	Duration of				Total
Test-I	Test-II	Average	Sem	End Sem	TW	PR	OR	
			Exam	Exam				
20	20	20	80	03 Hrs				100

Prerequisites

• Linear Algebra, Process Calculations, Computer Programming

Course Objectives

- 1. To make students understand writing and solving models of chemical engineering system.
- 2. To make students understand sequential and equation-oriented simulation of complete flow sheets.
- 3. To make students understand writing and solving systems of nonlinear equations for single and multiple units.
- 4. To make students understand simulation of complete flow sheets.
- 5. To make students understand optimization of single and multiple units.
- 6. To make students understand artificial neural network principles.

Detailed Syllabus

Module	Contents	Contact
No		Hrs
1	Modeling Aspects:	06
	Definition of process model, physical and mathematical modeling,	
	classification of models, model building, classification of mathematical	
	methods	
	Mathematical Models of Chemical Engineering Systems: Introduction,	
	uses of mathematical models, scope of coverage, principles of	
	formulation, fundamental laws, continuity equations, energy equations,	
	equation of motion, equation of state, equilibrium, kinetics.	

2	Examples of Mathematical Models of Chemical Engineering Systems: Introduction, series of isothermal, constant-hold up CSTR, CSTR with variable holds up, two heated tanks, gas-phase, pressurized CSTR, non-isothermal CSTR, single-component vaporizer, batch reactor, reactor with mass transfer, ideal binary distillation column, batch distillation with holdup. Degree of Freedom analysis Concept of design and rating problem incontext of selection variables after DOF analysis.	08
3	Artificial Neural Network–Based Models., Applications of ANNs in Chemical Engineering, Advantages of ANN-Based Models. Limitations of ANN-Based Models.	
4	Introduction to Simulation, Sequential and Equation oriented Simulation, Flowsheet topology analysis, Recycle, Partitioning and Tearing of flow sheets. Simulation Examples, Williams Otto Flowsheeting	08
5	Numerical Methods for solving sets of nonlinear equations, Newton's method with Armijo Line search, Successive substitution. Solution for models developed in module 2	08
6	Introduction to Optimization. Unconstrained single and multi-variable non-linear optimization. Numerical methods for single and multivariable optimization.	05

Course Outcomes:

- 1. The students will be able to write and solve models of chemical engineering system.
- 2. The students will be able to carry out sequential and equation oriented simulation of complete flow sheets.
- 3. The student will be able to optimize typical chemical processes.
- 4. The students will able to solve a process simulation.
- 5. The students will able to use basics of numerical methods
- 6. The students will able to understand artificial neural network principles.

Internal Assessment

• Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can beasked.
- Remaining questions will be randomly selected from all themodules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

Reference

1. William Y.Luyben, Process Modelling simulation and control for chemical Engineer,

- Second edition McGraw Hill
- 2. Thomas Edger, David M. Himmelbleau, Optimization of chemical processes, 2nd Ed., JohnWiley
- 3. Lorenz T. Beigler, Ignacio E. Grossman, Arthur W. Wesburg, Systematic Methods of Chemical Process Design, PrenticeHall
- 4. Ashok Kumar Verma , Process Modelling and Simulation in Chemical , Biochemical and Environmental Engineering, CRC Press Taylor and Francis Group

Semester VIII

Course Code	Course Name	Credits
CHDO8051	Energy System Design (Departmental Optional Course)	03

Co	ourse Hours		Credits Assigned			
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
03	-	-	03	-	-	03

Theory						Teri k/Practi		
Interi	nal Assessm	ent	End	Duration of				Total
Test-I	Test-II	Awanaga	Sem	End Sem	TW	PR	OR	
1 est-11	1 est-11	Test-II Average]	Exam	Exam				
20	20	20	80	03 Hrs.				100

Prerequisites

- 1. Knowledge of basics of energy.
- 2. Knowledge of basic concepts of heat transfer.
- 3. Knowledge of basic concepts of thermodynamics.
- 4. Knowledge of mass transfer operations like distillation.
- 5. Knowledge of mathematics.
- 6. Preliminary knowledge of economics.

Course Objectives

- 1. Students should know the sources of energy, present status of energy and importance of energy conservation.
- 2. Students should understand the importance, concepts and methodologies of energy management and audit to improve energy efficiency of industrial operations and conserve the energy.
- 3. Students should be aware about best energy efficient technologies and practices to be followed in process industries.
- 4. Students should learn to apply the energy conservation techniques like heat exchanger networking and heat integration in chemical process units.
- 5. Students should know importance and ways of waste heat recovery and cogeneration.
- 6. Students should understand various sources of renewable energy sources and their advantages over conventional energy sources.

Module	Content	Contact	l
No		Hours	l

1	Energy Scenario:	03
2	Classification of Energy sources: Commercial & non-commercial, Primary & Secondary, Renewable & non-renewable; Energy consumption patterns; Indian energy scenario; Sectoral energy consumption; Energy needs of growing economy; Energy intensity on purchasing power parity (PPP) basis; Energy pricing, Energy security; Energy strategy for the future; Energy conservation and its importance Energy Management & Audit:	06
4	Definition, Need and Types of Energy Audit; Energy audit methodology; Energy Management (Audit) Approach; Understanding Energy Costs; Benchmarking Energy Performance; Matching energy use to energy requirements; Maximizing system efficiencies; Optimizing the input energy requirements; Fuel and Energy substitution; Instrumentation used in energy audit; Safety considerations during energy audit; Post audit analysis; Minimum one Case study; ECO analysis based on simple payback period.	vv
3	Energy Efficient Technologies: Energy efficient techniques for lighting system, motors, belt and drives system, fans and pumps system, compressed air system; steam system, refrigeration system.	03
4	Energy Integration in Process Industries and Process Units: Temperature Pinch analysis – Temperature interval method & Composite curve method; Design of Heat Exchanger Network (HEN) using Pinch analysis; Design of HEN with minimum number of Heat Exchangers; Breaking Loop and Stream Splitting method for HEN Design; Concept of Threshold approach temperature difference and Optimum approach temperature difference. Heat Integration in Distillation column; Reboiler flashing, Heat pumping, Vapor recompression in distillation column.	12
5	Waste Heat Recovery (WHR) and Cogeneration: Waste heat sources; Quality and Classification of waste heat and its applications; Benefits of WHR; WHR Equipments: Recuperators, Radiation/Convective Hybrid Recuperator, Ceramic Recuperator, Regenerator, Heat wheel, Heat pipe, Waste heat boiler, Economizer, Heat pumps. Definition of Cogeneration and few Basic concepts; Types of Thermodynamic cycles as basis for Cogeneration: Brayton cycle, Rankine cycle, Topping cycle, Bottoming cycle, Combined cycle; Types of Cogeneration system: Steam turbine system, Gas turbine system, Diesel engine system, Distributed cogeneration system.	10
6	New and Renewable Energy Sources: Concept of new and renewable energy; Solar energy; Wind energy; Tidal energy; Geothermal energy; Energy from waste and Biomass.	05

Course Outcome

On completion of the course the students will be able to:

- 1. Understand the present energy status and major steps to be taken to conserve the energy.
- 2. Know the importance of energy management program, how to carry it and follow the same when they will actual start working in industries.
- 3. Be aware about best energy efficient practices and will follow the same in future wherever they work.
- 4. To carry out Heat exchanger networking and learn other heat integration techniques to conserve the energy.
- 5. Identify sources of waste heat in industry, know the techniques to recover and reuse the waste heat and have knowledge about cogeneration technique.
- 6. Understand various renewable energy sources, their applications and preference over non-renewable energy sources.

Assessment

- Internal Assessment consists of two tests which should be conducted at proper intervals.
- End Semester theory examination Question paper will comprise of 6 questions each carrying 20 marks; Total 4 questions need to be solved; Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked; Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

Text Books:

- 1. Seider W. D., and Seader J. D. and Lewin D. R., Process Design Principles, John Wiley and Sons Inc., 1988.
- 2. Douglas J. M., Conceptual Design of Chemical Process, McGraw Hill Book Co., 1988.
- 3. Biegler L. T., Grossman E. I. and Westerberg A. W., .Systematic Methods of Chemical Process Design., Prentice Hall International Ltd., 1997.
- 4. Wayne C. Turner, Steve Doty (Ed.), Energy Management Hand Book, John Wiley and Sons, 2000.

Reference Books:

- 1. Robin Smith, Chemical Process Design and Integration, Wiley India, 2005.
- 2. Serth, Robert W., Process Heat Transfer Principles and Applications, Elsevier Science & Technology Books, 2007.
- 3. P K Nag, Power Plant Engineering, The McGraw-Hill Publishing Company Limited.
- 4. H.M.Robert, J.H.Collins, Handbook of Energy Conservation-Volume 1, CBS Publishers & Distributors.
- 5. D. P. Kothari, K. C. Singal, Rakesh Ranjan, Renewable Energy Sources and Emerging Technologies, PHI Learning Pvt Ltd, Second Edition.
- 6. https://www.beeindia.gov.in

Semester VIII

Course Code	Course Name	Credits
CHDO8052	Advanced Separation Technology	03
	(Departmental Optional Course)	

	Course Hour	'S	Credits Assigned			
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
03	-	-	03	-	-	03

	Theory						Term Work/Practical/Oral		
Int	ernal Asses	sment	End Sem	Duration of End Sem	TW	PR	OR	Total	
Test-I	Test-II	Average	Exam	Exam	1 **	1 K	OK		
20	20	20	80	03 hours				100	

Prerequisites

- 1. Mass transfer operations
- 2. Conventional separation processes

Course Objectives

- 1 Learn about various adsorbents and to design adsorption column
- 2 Distinguish the application of supercritical extraction.
- 3 Familiarize with advanced distillation techniques
- 4 To have the knowledge of liquid chromatographic process.
- 5 Distinguish various membranes.
- **6** Development of specificmembrane processes.

Module	Course Contents	Contact
No		Hours
1	Adsorption Process: Adsorbent such as activated carbon, molecular sieves of various types, activated alumina. Their characteristics and applications. Regeneration & activation of adsorbents. Thermal & pressure swing process. Fixed bed, moving bed, Design of adsorption column for separationand purification. Industrial examples and related numerical.	08
2	Super critical extraction Working principle, advantages and disadvantages of supercritical solvents over conventional liquid solvents, advantages and disadvantages of supercritical extraction over liquid- liquid extraction. Commercial applications of supercritical extraction.	06

3	Advanced distillation techniques	04
	Molecular, reactive and extractive distillation techniques.	
4	Liquid Chromatographic Process: Basic concept of chromatography, phenomena and characterization. Typical chromatographic separation systems for preparative chromatography. Applications of chromatography in enzymes and other Industrial separations.	07
5	Membranes: Introduction to the membrane process, Characterization of membranes: Characterization of porous membranes, characterization of ionic membranes, characterization of non-ionic membranes. Transport process in membrane driving force. Characteristic flux behavior in pressure driven membrane preparation, membrane fouling, methods to reduce fouling. Types of modules: plate and frame, spiral wound, tubular, capillary, hollow fibre modules and liquid membranes.	08
6	Membrane processes: Introduction to reverse osmosis, nanofiltration, ultrafiltration, microfiltration, dialysis, membrane distillation. Numericals based on reverse osmosis and dialysis techniques	06

Course Outcomes

On completion of the course the students will be able to:

- 1 Identifythe various adsorbents and to design adsorption column.
- 2 Choose the separation by supercritical extraction.
- 3 Choose the appropriate separation techniques
- 4 Understand the application of chromatography.
- 5 Select, maintain and design various membrane processes.
- 6 Assess the various techniques of modern separation processes

Internal Assessment (20 Marks):

Consisting Two Compulsory Class Tests.

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in TestI).

End Semester Examination (80 marks):

- Weightage of each module in end semester examination will be proportional to number of respective lecture.
- Question paper will comprise of total six questions, each carrying 20marks.
- Question 1 will be compulsory and should cover maximum contents of thecurriculum.
- Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 thenpart (b) will be from any module other than module3).
- Only Four questions need to be solved.

Recommended Books:

- 1. Ruthven, D.M., Principles of Adsorption & Adsorption Processes, A Wiley- Interscience publication, (1984).
- 2. Coulson and Richardson's, Chemical Engineering, Vol.2,5th ed, Elsevier.
- 3. Treybal, R.E, Mass Transfer Operations, McGraw Hill.

- 4. Ruthven, D.M; Farooq, S; Knaebel, K.S, Pressure Swing Adsorption, VCH, (1994).
- 5. Snyder, L.R; Kirkland, J.J, Introduction to Modern Liquid Chromatography, 2 ed., A Wiley-Interscience publication (1979)
- 6. Scott R.P.W, Liquid Chromatography for the Analyst, Marcel Dekker, Inc, (1994).
- 7. Marcel Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers (1997).
- 8. E.J. Hoffman, Membrane Separations Technology, Gulf Professional Publishing. (2003)
- 9. Kaushik Nath, Membrane Separation Processes, Prentice Hall of India (2008).
- 10. C. J. King, Separation Processes. 2nd ed, 2013 McGraw Hill

Reference Books:

- 1. Membrane Handbook Editors W.S. Winston Ho, K.K. Sirkar, Van Nostrand Reinhold Publication.
- 2. J. D. Seader and E. J. Henely, Separation Process Principles.2nd ed,John Wiley & Sons

Semester-VIII

Course Code	Course Name	Credits
CHDO8053	Financial Management (Departmental Optional Course)	03

	Course Hour	'S	Credits Assigned					
Theory	Practical	Tutorial	Theory Practical Tutorial Total					
03	-	-	03	-	-	03		

	Theory					Teri /Practi		
Int	Internal Assessment		End	Duration of				Total
Test-I	Test-II	Awaraga	Sem	End Sem	TW	PR	OR	
1 est-1	1 est-11	t-II Average Exan	Exam	Exam				
20	20	20	80	03 Hrs				100

Prerequisites

The concepts of basic Mathematics as well as a few concepts of higher mathematics.

Course Objectives

- 1. Overview of Indian financial system, instruments and market.
- 2. Basic concepts of value of money, returns and risks, corporate finance, working capital and its management
- 3. Knowledge about sources of finance, capital structure, dividend policy
- 4. Overview of Indian financial system, instruments and market
- 5. Basic concepts of value of money, returns and risks, corporate finance, working capital and its management
- 6. Knowledge about sources of finance, capital structure, dividend policy

Module No	Course Contents	Contact Hours
1.	Overview of Indian Financial System:	05
	Characteristics, Components and Functions of Financial System.	
	Introduction to Financial Accounting	
	Scope and importance of Financial Accounting. classification of accounts,	
	Preparation of Journal, Ledger, Cash book & Trial balance	
	Financial Management:	
	Concept of business finance, Goals & objectives of financial management.	
2.	Concepts of Returns and Risks: Measurement of Historical Returns and	8
	Expected Returns of a Single Security and a Two-security Portfolio;	
	Measurement of Historical Risk and Expected Risk of a Single Security and a	
	Two-security Portfolio.	
	Time Value of Money: Future Value of a Lump Sum, Ordinary Annuity, and	
	Annuity Due; Present Value of a Lump Sum, Ordinary Annuity, and Annuity	

	Due; Continuous Compounding and Continuous Discounting.						
3.	Overview of Corporate Finance: Objectives of Corporate Finance;	08					
	Functions of Corporate Finance—Investment Decision, Financing Decision,						
	and Dividend Decision.						
	Financial Statement:						
	Overview of Financial Statements—Balance Sheet, Profit and Loss Account,						
	Financial Ratio Analysis: Purpose of Financial Ratio Analysis; Liquidity						
	Ratios; Efficiency or Activity Ratios; Profitability Ratios; Capital Structure						
	Ratios; Stock Market Ratios; Limitations of Ratio Analysis						
4.	Capital Budgeting: Meaning and Importance of Capital Budgeting; Inputs	09					
	for Capital Budgeting Decisions; Investment Appraisal Criterion—						
	Accounting Rate of Return, Payback Period, Discounted Payback Period, Net						
	Present Value(NPV), Profitability Index, Internal Rate of Return (IRR), and						
	Modified Internal Rate of Return (MIRR)						
	Working Capital Management: Concepts of Meaning Working Capital;						
	Importance of Working Capital Management; Factors Affecting an Entity's Working Capital Needs; Estimation of Working Capital Requirements;						
	Management of Inventories; Management of Receivables; and Management						
	of Cash and Marketable Securities.						
5.	Sources of Finance:	03					
	Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance;	00					
	Sources of Short Term Finance—Trade Credit, Bank Finance, Commercial						
	Paper; Project Finance. Bonds (Types, features & utility).						
6.	Capital Structure and Dividend Policy: Factors Affecting an Entity's	06					
	Capital Structure; Relation between Capital Structure and Corporate Value;						
	Concept of Optimal Capital Structure ;Meaning and Importance of Dividend						
	Policy; Factors Affecting an Entity's Dividend Decision; Overview of						
	Dividend Policy Theories and Approaches—Gordon's Approach, Walter's						
	Approach, and Modigliani-Miller Approach						

Course Outcome

On completion of the course the students will be able to:

- 1. understand and define basic terminology used in finance and accounts •
- 2. Prepare& appraise Financial Statements and evaluate a company in the light of different measurement systems.
- 3. Analyze the risk and return of alternative sources of financing.
- 4. Estimate cash flows from a project, including operating, net working capital, and capital spending.
- 5. Estimate the required return on projects of differing risk ,to estimate the cash flows from an investment project, calculate the appropriate discount rate, determine the value added from the project, and make a recommendation to accept or reject the project
- 6. Describe and illustrate the important elements in project finance

Internal Assessment (20 Marks):

Consisting Two Compulsory Class Tests. First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I).

End Semester Examination (80 marks):

- 1. Weightage of each module in end semester examination will be proportional to number of respective lectures.
- 2. Question paper will comprise of total six questions, each carrying 20marks.
- **3.Question 1** will be compulsory and should cover **maximum contents of the curriculum.**
- **4.Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 thenpart (b) will be from any module other than module3)
- 5. Only Four questions need to be solved.

Recommended Books:

A Textbook of Financial Cost And Management Accounting, Dr. P. PERIASAMY, HH Publication

Reference Books:

- 1. Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham and Joel F. Houston; Publisher: Cengage Publications, New Delhi.
- 2. Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins; Publishers: McGraw Hill Education, New Delhi.
- 3. Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.
- 4. Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & Company Limited, New Delhi

Semester VIII

Course Code	Course Name	Credits
CHDO8061	Fuel Cell Electrochemical Engineering	03
	(Departmental Optional Course)	

(Course Hour	'S	Credits Assigned			
Theory	Practical	Tutorial	Theory	Total		
03	-	-	03	-	-	03

Theory					Term Work/Practical/Oral			
Internal Assessment			End	Duration of				Total
Test-I	Test-II	Average	Sem Exam	End Sem Exam	TW	PR	OR	
20	20	20	80	03 Hrs				100

Prerequisites

• Basic knowledge of physics, electrochemistry, electrical properties, thermodynamics, reaction kinetics and transport phenomenon.

Course Objectives

- 1. To understand the basic elements of electrochemistry which are required for fuel cell.
- 2. Tostudy different types of fuel cells and their working
- 3.To analyze performance and operation of fuel cell.
- 4. Toapply thermodynamic principles to fuel cell and related processes.
- 5. To study Fuel Cell Reaction Kinetics
- 6. Tounderstand Fuel Cell Charge Transport processes.

Module	Course Contents	Contact					
No		Hours					
1	Introduction to Electrochemistry- redox reactions, Revision of concepts of	4					
	electrochemical cells, Spontaneity of Redox Reaction, Cell Emf Dependency						
	on Changes in Concentration, Nerst equation, Concentration Cells, corrosion,						
	electrodialysis, Quantitative Electrolysis and Faraday's Laws.						
	Introduction to Electrochemical Engineering- Scope and Applications, Basic						
	Elements of Electrochemistry- Electric charge, electric current, cathod,						
	anode, chemical kinetics.						
2	Fuel cell fundamentals- Scheme of a proton-conducting fuel cell, Types of	12					
	Fuel Cells; Design, Proton Exchange Membrane Fuel Cells (PEMFCs),						
	Phosphoric Acid Fuel Cell (PAFC), Solid Acid Fuel Cell (SAFC), High-						
	temperature Fuel Cells, Hydrogen-oxygen Fuel Cell, Comparison of Fuel						
	Cell Types, Efficiency of Leading Fuel Cell Types, Theoretical Maximum						
	Efficiency, Cogeneration, applications, Market and economics. Fuel cell-						

	Operation, Fuel cell performance, fuel cell and environment, Hydrogen production and storage. Safety issues and cost expectation and life cycle analysis of fuel cells.	
3	Fuel Cell Thermodynamics- Heat and work potential of a fuel, Relationship between Gibbs Free Energy and Electrical Work, Relationship between Gibbs Free Energy and Reaction Spontaneity, Relationship between Gibbs Free Energy and Voltage, Standard Electrode Potentials: Computing Reversible Voltages, fuel cell efficiency.	7
4	Fuel Cell Reaction Kinetics- introduction to electrode kinetics, activation energy and reaction rate, calculating net rate of a reaction, rate of reaction at equilibrium: exchange current density, potential of a reaction at equilibrium: Galvani potential, potential and rate: Butler–Volmer equation, exchange currents and electrocatalysis: how to improve kinetic performance, simplified activation kinetics: tafel equation.	6
5	Fuel Cell Charge Transport- charge transport and a voltage loss, characteristics of fuel cell charge transport resistance, physical meaning of conductivity, fuel cell electrolyte classes.	6
6.	Fuel Cell Mass Transport- transport in electrode versus flow structure, transport in electrode: diffusive transport, transport in flow structures: convective transport.	4

Course Outcome

On completion of the course the students will be able

- To apply the concepts of Electrical Potential, Electrical Field, Electrostatic Work, Voltage, Current, Electrochemical Potential, Activation Energy, Electrode & Electrochemical Equilibrium
- To formulate and calculate relevant transport phenomena such as migration and the characteristics of (diluted) electrolytes. Relate the conversion of matter to the transport of electrical charge.
- To apply the underlying concepts, methods and application of fuel cell technology.
- 4 To apply thermodynamic principles to fuel cell processes.
- 5 To carry out fuel cell kinetics.
- To understand fuel cell transport processes.

Internal Assessment (20 Marks):

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents of syllabus and second test based on remaining contents of syllabus (approximately 40% but excluding contents covered in Test I).

End Semester Examination (80 marks):

 Weightage of each module in end semester examination will be proportional to number of respective lecture

- Question paper will comprise of total six questions, each carrying 20 marks
- Question 1 will be compulsory and should cover maximum contents of the curriculum.
- Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module3)
- Only Four questions need to be solved.

Books

Sr. No	Abbrev iations	Name of the book and edition	Authors	publication						
	TEXT BOOKS									
1	T ₁	Electrochemistry and Electrochemical Engineering(Module 1-2)	Lenny Hart	Library Press						
2	T2	Fuel Cell Fundamentals(3-6)	Ryan O'hayre, Suk- Won Cha, Whitney G. Colella, Fritz B. Prinz	John Wiley & Sons, Inc						
3	Т3	Principles of fuel cells(Module 2)	Liu, H	Taylor & Francis, N.Y. (2006).						
		REFERE	NCE BOOKS							
1	R1	Fuel Cells and Hydrogen Production- A Volume in the Encyclopedia of Sustainability Science and Technology, Second Edition	Editor-in-Chief Robert A. Meyers. Timothy E. Lipman • Adam Z. Weber Editors	Springer						
2	R2	Handbook of Electrochemistry	Cynythia G Zoski	Elsevier 2007						

Semester VIII

Course Code	Course Name	Credits
CHDO8062	Biotechnology	03
	(Departmental Optional Course)	

(Course Hour	'S	Credits Assigned				
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
03	-	-	03	-	-	03	

	Theory					Teri k/Practi		
Int	Internal Assessment		End Sem	Duration of End Sem	TW	PR	OD	Total
Test-I	Test-II	Average	Exam	Exam	1 **	PK	OR	
20	20	20	80	03 Hrs				100

Prerequisites

- 1. Knowledge of biology, chemistry, and pharmaceutical sciences in chemical engineering.
- 2. As biotechnology transforms everything from medicine to agriculture.

Course Objectives

- 1. At the end of the course the students should understand the basic concept of biotechnology. They should be able to classify micro-organisms, understand cell structure and basic metabolism.
- 2. Students should be able to understand basic knowledge about biological polymers.
- 3. Students should be able to understand basic knowledge about enzyme technology.
- 4. Students should understand role of biotechnology in medical field and industrial genetics.
- 5. Students should know importance of biotechnology in agricultural, food and beverage industries, environment, energy and chemical industries.
- 6. Students should understand to how to recover biological products.

Module	Course Contents	Contact
No		Hours
1	Introduction:	03
	Traditional and modern applications of biotechnology. Classification of	
	micro-organisms. Structure of cells, types of cells. Basic metabolism of	
	cells.	
2	Biological polymers:	05
	Lipids, Proteins, Amino acids, Nucleic acids, Carbohydrates,	
	Macronutrients and micronutrients.	
	PRODUCTION OF BIOMASS: Production of baker's yeast, starter	
	cultures, algae, mushrooms & single cell proteins from different	

	substrates.	
3	Enzyme Technology: Nomenclature and classification of enzymes. Enzyme kinetics. Microbial growth kinetics. Michaels Menten Kinetics, Immobilized enzyme kinetics, Immobilization of enzymes. Industrial applications of enzymes.	08
4	Biotechnology in health care and genetics: Pharmaceuticals and biopharmaceuticals, antibiotics, vaccines and monoclonal antibodies, gene therapy. Industrial genetics, protoplast and cell fusion technologies, genetic engineering& protein engineering, Introduction to Bioinformatics. Potential lab biohazards of genetic engineering. Bioethics	08
5	Applications of biotechnology: Biotechnology in agriculture, food and beverage industries, chemical industries, environment and energy sectors.	08
6.	Product recovery operations: Dialysis, Reverse osmosis, ultrafiltration, microfiltration, chromatography, electrophoresis, Electrodialysis, crystallization and drying.	07

Course Outcome

On completion of the course the students will be able to:

- 1 The students will be able to demonstrate understanding of modern engineering techniques used in biotechnology
- 2 Students will have deep knowledge of biological polymers, enzymes, cell and metabolism.
- 3 The students will be able to utilize engineering skills and high end recent advances in biotechnology
- 4 The students will be able to examine effectively and demonstrate professional and ethical responsibilities
- 5 Students will be able to estimate how biotechnology used and helps in agricultural, food and beverage industry, chemical industries, pharmaceutical, environment and energy sectors.
- 6 Students will be able to improve how biological products are recovered.

Internal Assessment (20 Marks):

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents of syllabus and second test based on remaining contents of syllabus (approximately 40% but excluding contents covered in TestI).

End Semester Examination (80 marks):

- Weightage of each module in end semester examination will be proportional to number of respective lectures
- Question paper will comprise of total six questions, each carrying 20marks
- Question 1 will be compulsory and should cover maximum contents of thecurriculum.
- Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 thenpart (b) will be from any module other than module3)
- Total onlyFour questions need to besolved.

Reference Books:

- 1. Shuller M.L. and F. Kargi. 1992. Bioprocess Engineering, Prentice-Hall, Englewood Cliffs, NJ.
- 2. Bailey. J.E. and Ollis D.F. 1986, Biochemical Engineering Fundamentals, 2nd Edition, McGraw Hill, New York.

Recommended Text Books:

- 1. Kumar H.D., Modern Concepts of Biotechnology, Vikas Publishing House Pvt. Ltd.
- 2. Gupta P.K., Elements of Biotechnology, Rastogi Publications
- 3. Inamdar, Biochemical Engineering, Prentice Hall of India.
- 4. Biotechnology: Food Fermentations Ed. VK Joshi, Ashok Pandey Educational Publishers and Distributors, New Delhi 1999

Semester VIII

Course Code	Course Name	Credits
CHDO8063	Nanotechnology (Departmental Optional Course)	03

	Course Hour	'S		Cred	lits Assigned	l
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
03	-	-	03	-	-	03

		Theor	y		Work	Teri /Practi	m ical/Oral	
Int	ernal Asses	sment	End	Duration of				Total
Test-I	Test-II	Awaraga	Sem	End Sem	TW	PR	OR	
1 est-1	1 est-11	Average	Exam	Exam				
20	20	20	80	03 Hrs				100

Prerequisites

- 1. Engineering Physics and Engineering Chemistry.
- 2. Fluid flow operations, Heat Transfer Operations & Thermodynamics
- 3. Particle Size Measurement

Course Objectives

- 1.To understand the basic scientific concepts of nanoscience and nanotechnology.
- 2. Toanalyse the properties of various nano biomaterials.
- 3. To study properties of various carbon nanotubes.
- 4. To be able to characterize various Nanostructures.
- 5. To be able to estimate the properties values of nanomaterials.
- 6. To understand applications of nanotechnology in various fields.

Module No	Course Contents	Contact Hours
1	Fundamentals of Science behind Nanotechnology:	03
	1.1 Electron, Atom and Ions, Molecules, Metals, Biosystems, Molecular	
	Recognition,	
	1.2 Electrical Conduction and Ohms Law, Quantum Mechanics and	
	Quantum Ideas, Optics	
2	Fullerenes:	04
	2.1 Combustion Flame Synthesis, Crystal Formation, Sintering, Organic	
	Synthesis Method	
	2.2 Super Critical Oligomerization, Solar Process, and Electric Arc	
	Process.	
3	Carbon Nanotubes (CNT):	06
	3.1 Synthesis of CNT, Electric Arc Discharge Process,	

	3.2 Laser Ablation Process, CVD	
	3.3 Physical Properties of CNTs, Morphology of CNT.	
4	Nano structuring Methods: 4.1 Vacuum Synthesis, Gas Evaporation Tech, Condensed Phase Synthesis. 4.2 Sol Gel Processing, Polymer Thin Film, Atomic Lithography, Electro deposition, Plasma Compaction. Characterization of Nanostructures: 4.3 Transmission Electron Microscope, Scanning Electron Microscope, 4.4 Microwave Spectroscopy, Raman Microscopy, X ray Diffraction.	12
5	Calculations in Nanotechnology: 5.1 Particle Size Distribution, Particle Size & Measurement Methods. 5.2 Fluid Particle Dynamics, Particle Collection Mechanisms, Particle Collection Efficiency.	08
6	NanoBiology: 6.1 Interaction between Biomolecules & Nanoparticle Surface. 6.2 Interactions in the binding of Proteins with Nanoparticles. 6.3 Different Types of Inorganic materials used for the synthesis of Hybrid Nano-bio assemblies, Application.	06

Course Outcome

On completion of the course the students will be able to:

- 1. Understand the essential concepts used in nanotechnology.
- 2. Identify various types of nanomaterial.
- 3. Learn various fabrication methods in nanotechnology.
- 4. Implement characterize methods of nanostructures.
- 5. Estimate the particle size and its fluid interactions.
- 6. Determine Interaction of Biomolecules & Nanoparticles.

Internal Assessment (20 Marks):

Consisting Two Compulsory Class Tests

Firsttestbasedonapproximately40% of contents and second testbased on remaining contents (approximately40% but excluding contents covered in TestI).

End Semester Examination (80 marks):

- Weightage of each module in end semester examination will be proportional to number of respective lectures
- Question paper will comprise of total six questions, each carrying 20marks
- Question 1 will be compulsory and should cover maximum contents of thecurriculum.
- Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 thenpart (b) will be from any module other than module3)
- Only Four questions need to be solved.

Recommended Books:

- 1. Nano-The Essentials, Understanding Nanoscience and Nanotechnology, T. Pradeep
- 2. Nanotechnology: Basic Calculations for Engineers and Scientists Louis Theodore, A John Willy & Sons

Reference Books:

- 1. Nano-structuring Operations in Nanoscale Science and Engineering- Kal Ranganathan Sharma, McGraw-Hill Companies.
- 2. Nanotechnology: A Gentle Introduction to the Next Big Idea-By Mark Ratner, Daniel Ratner.
- 3. Introduction to Nanotechnology- Charles P. Poole, Jr. and Frank J. Owens, John Wiley & Sons, 2003.

Semester VIII

Course Code	Course Name	Credits
CHDO8064	Chemical Waste Management	03
	(Departmental Optional Course)	

(Course Hour	'S		Cred	lits Assigned	
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
03	-	-	03	-	-	03

	Theory						m cal/Oral	
Int	ernal Asses	sment	End	Duration of				Total
Test-I	Test-II	Avorogo	Sem	End Sem	TW	PR	OR	
1 651-1	1 681-11	Average	Exam	Exam				
20	20	20	80	03 Hrs				100

Prerequisites

• Knowledge of environmental chemistry and fundamentals of environmental engineering.

Course Objectives

- 1.To assess the activities involved for the proposed and determine the type, nature and estimated volumes of waste to be generated;
- 2. To identify major pollutant and any potential environmental impacts from the generation of waste at the site;
- 3. To recommend appropriate waste handling measures / routings in accordance with the current legislative and administrative requirements; and
- 4. To categorise waste material where practicable (inert material / waste fractions) for disposal considerations i.e. public filling areas / landfill.
- 5. To ensure the protection of the environment through effective waste management operation.
- 6. To strive increased self-sufficiency in the management of hazardous waste to minimise the hazardous waste.

Module	Course Contents	Contact
No		Hours
1	Introduction: Chemical waste management overview. Chemical waste	8
	classification, Types of industries and industrial pollution –	
	Characteristics of industrial wastes – Population equivalent – Bioassay	
	studies – effects of industrial effluents on streams, sewer, land, sewage	
	treatment plants and human health. Environmental legislations related to	
	prevention and control of industrial effluents and hazardous wastes.	
2	Pollution from major industries:	8
	Sources, Characteristics, waste treatment flow sheets for selected	

	industries such as Textiles, Pharmaceuticals, Sugar, Paper, distilleries,	
	Refineries, fertilizer, thermal power plants – Wastewater reclamation	
	concepts	
3	Supporting Industrial Activities and Wastes Generation:	6
	Water treatment and supply systems including soft water, RO water and	
	DM water units, Power systems and captive power units like DG sets and	
	turbines, Boilers and steam systems, Amenities and work environment,	
	Housekeeping, Effluent treatment plants.	
4	Waste Handling and Waste Minimization:	6
	Handling, labelling, packaging and disposal procedures for Hazardous	
	chemical waste management.	
	Source reduction, Waste segregation schemes, Waste recycling and	
	reuse, Pre-treatment of wastes; USEPA's waste management hierarchy	
	Multimedia and integrated approaches to waste management, Pollution	
	prevention programs.	
5	Waste Treatment and Disposal:	5
	Overview of waste treatment technologies, Domestic wastewater and	
	trade effluent treatment plants, Operation and control of wastewater	
	treatment plants and air pollution control systems, Disposal of treated	
	effluents.	
6.	Risk Management: Chemical emergency response overview, workers	6
	safety, contingency plan, Emergency procedures,	
	Hazardous Management: State-wise, Status of Hazardous Waste	
	Generation (e-waste) Status of Common Hazardous Waste	
	Treatment, Storage and Capacities, Disposal Facilities.	

Course Outcome

On completion of the course the students will be able to:

- 1 Evaluate the subject from the technical, legal and economical points by learning of chemical waste management.
- 2 Examine the technical points that are required to set up a waste management system.
- 3 Evaluate recovery, treatment and disposal alternatives according to properties of industrial wastes.
- 4 Talent to gain knowledge with handling and reduction of waste in a wide perspective
- 5 Evaluate recovery, treatment and disposal alternatives according to properties of industrial waste
- 6 Ability to identify hazardous waste and environmental problems, understand, and solve their effects on universal and social scales

Internal Assessment (20 Marks):

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents of syllabus and second test based on remaining contents of syllabus (approximately 40% but excluding contents covered in TestI).

End Semester Examination (80 marks):

- Weightage of each module in end semester examination will be proportional to number of respective lectures
- Question paper will comprise of total six questions, each carrying 20marks
- Question 1 will be compulsory and should cover maximum contents of thecurriculum.
- Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 thenpart (b) will be from any module other than module3)
- Only Four questions need to besolved.

Sr.	Abbrev	Name of the book and	Authors	publication							
No	iations	edition									
	TEXT BOOKS										
1	T_1	Handbook of Chemical and Biological waste management	Cavallini S., Cerutti F	CBRN Centres of Excellence,EU							
	REFERENCE BOOKS										
1	R ₁	Waste Water treatment, disposal and Reuse	Metcalf et al.	Tata McGraw-Hill publishing company Limited.							
2	R ₂	Pollution control in process industries	Mahajan S.P	Tata McGraw-Hill publishing company Limited.							
3	R ₃	Solid and Hazardous Waste Management	By (author) Daniel Dela Torre	Publisher Arcler Education Inc							

CourseCod	le		Credits				
IOC8021		InstituteLevelOptionalSubjectII-					
	ProjectManagement						
(Course Hour	' S		l			
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03	-	-	03	-	-	03	

	Theory						Term Work/Practical/Oral			
Test-I	ernal Asses Test-II	Average	End Sem Exam	Duration of End Sem Exam	TW	PR	OR	Total		
20	20	20	80	03 Hrs				100		

Objectives;

- To familiarize the students with the use of a structured methodology/approach foreach and every unique project undertaken, including utilizing project managementconcepts,tools and techniques.
- To appraise the students with the project management life cycle and make themknowledgeable about the various phases from project initiation through closure.

Outcomes:

Learnerwillbeableto...

- Applyselectioncriteriaandselect anappropriate projectfromdifferent options.
- Writeworkbreak downstructureforaproject and develop aschedulebasedonit.
- Identifyopportunitiesandthreatstotheprojectanddecideanapproachtodealwiththem strategically.
- UseEarned valuetechniqueanddetermine&predictstatus of the project.
- Capturelessonslearnedduringprojectphasesanddocumentthemforfuturereference

Module	DetailedContents	Contact Hours
01	ProjectManagement Foundation: Definitionofaproject,ProjectVsOperations,Necessityofprojectmanagement, Tripleconstraints,Projectlifecycles(typical & atypical) Project phases and stage gate process. Roleof project manager. Negotiations and resolving conflicts. Projectmanagement in various organization structures. PM knowledgeareasas perProject ManagementInstitute(PMI).	5
02	InitiatingProjects: Howtogetaprojectstarted,Selectingprojectstrategically,Project selection models (Numeric /Scoring Models and Non-numeric models), Project portfolio process, Project sponsor andcreatingcharter;Projectproposal.Effectiveprojectteam, Stagesofteamdevelopment&growth(forming,storming,norming&performing),team dynamics.	6

03	ProjectPlanningandScheduling:	8
	WorkBreakdownstructure(WBS)andlinearresponsibilitychart,Interface	
	Co-ordinationandconcurrentengineering, Project cost estimation and	
	budgeting, Top down and bottoms up budgeting, Networking and	
	Scheduling techniques. PERT, CPM,	
	GANTTchart.IntroductiontoProjectManagementInformationSystem	
	(PMIS).	
04	PlanningProjects:	6
	Crashingprojecttime, Resource loading and leveling, Goldratt's critical chain, P	
	rojectStakeholdersandCommunicationplan.	
	Risk Management in projects: Risk management planning,	
	Riskidentification and risk register. Qualitative and quantitative	
	riskassessment,Probabilityandimpactmatrix.Riskresponse	
	strategiesforpositiveandnegativerisks	
05	5.1 ExecutingProjects:	8
	Planning monitoring and controlling cycle. Information	
	needsandreporting, engaging with all stakeholders of the projects.	
	Teammanagement, communication and project meetings.	
	5.2 MonitoringandControllingProjects:	
	Earned Value Management techniques for measuring value	
	ofworkcompleted;Usingmilestonesformeasurement;changerequestsand	
	scopecreep.Project audit.	
	5.3 ProjectContracting	
	Projectprocurementmanagement, contracting and outsourcing,	
06	6.1 ProjectLeadership andEthics:	6
	Introduction to project leadership, ethics in	
	projects.Multiculturaland virtual projects.	
	6.2 ClosingtheProject:	
	Customer acceptance; Reasons ofproject termination, Varioustypes	
	ofproject terminations (Extinction, Addition,	
	Integration, Starvation), Process of project termination, completing a	
	finalreport;doingalessonslearnedanalysis;acknowledgingsuccessesandfailu	
	res;Projectmanagementtemplatesandother	
	resources; Managing without authority; Areas of further study.	

Assessment

Internal

• Assessmentconsistsoftwotests whichshouldbeconducted atproperintervals.

${\bf End Seme ster theory examination}$

- Questionpaperwillcomprise of6questionseachcarrying20questions.
- Total4 questionsneed tobe solved
- Questionno.1 will be compulsory based on entire syllabus wherein subquestions can be asked.
- Remainingquestions will berandomlyselected fromall themodules
- Weightageofmarks should be proportional to number of hours assigned to each module

References

- 1. Jack Meredith & Samuel Mantel,ProjectManagement:A managerialapproach,WileyIndia, 7thEd.
- 2. AGuidetotheProjectManagementBodyofKnowledge(PMBOK®Guide),5thEd,Proje ct Management InstitutePA, USA
- 3. GidoClements, ProjectManagement, CengageLearning.
- 4. Gopalan, Project Management, Wiley India
- 5. Dennis Lock, Project Management, Gower Publishing England, 9th Ed.

CourseCode			Credits					
IOC8022		nstitu	03					
(Course Hours				Credits Assigned			
Theory	Theory Practical		Tutorial	Theory	Practical	Tutorial	Total	
03	-		-	03	-	-	03	

	Theory						Term Work/Practical/Oral			
Int	Internal Assessment			Duration of				Total		
Tog4 I	Tog4 II	A	Sem	End Sem	TW	PR	OR			
Test-I	1 est-11	Test-II Average	Average	Exam	Exam					
20	20	20	80	03 Hrs				100		

Objectives:

- OverviewofIndianfinancialsystem,instruments andmarket
- Basicconceptsofvalueofmoney,returnsandrisks,corporatefinance,workingcapitalan d its management
- Knowledgeaboutsourcesoffinance, capitalstructure, dividendpolicy

_

Outcomes:

Learnerwillbeableto...

- UnderstandIndianfinancesystem andcorporatefinance
- Takeinvestment, finance as well as dividend decisions

Module	DetailedContents	Contact Hours
01	OverviewofIndianFinancialSystem: Characteristics, Components	06
	and Functions of FinancialSystem.	
	FinancialInstruments: Meaning, Characteristics and Classification	
	of Basic Financial Instruments — Equity Shares, Preference	
	Shares, Bonds-Debentures, Certificates of Deposit, and	
	TreasuryBills.	
	Financial Markets: Meaning, Characteristics and	
	Classification of Financial Markets—Capital Market, Money	
	MarketandForeignCurrencyMarket	
	FinancialInstitutions: Meaning, Characteristics and Classification	
	of Financial Institutions — Commercial Banks, Investment-	
	MerchantBanks andStock Exchanges	

02	Concepts of Returns and Risks: Measurement of HistoricalReturns and Expected Returns of a Single Security and a Two-securityPortfolio;MeasurementofHistoricalRiskandExpectedRisk ofaSingleSecurityandaTwo-securityPortfolio. Time Value of Money: Future Value of a Lump Sum, OrdinaryAnnuity,andAnnuityDue;PresentValueofaLumpSum,Or dinary Annuity, and Annuity Due; Continuous CompoundingandContinuous Discounting.	06
03	OverviewofCorporateFinance:ObjectivesofCorporateFinance; Functions of Corporate Finance—Investment Decision,FinancingDecision, andDividend Decision. Financial Ratio Analysis: Overview of Financial Statements— BalanceSheet,ProfitandLossAccount,andCashFlowStatement;Pur poseofFinancialRatioAnalysis;LiquidityRatios;EfficiencyorActivi tyRatios;ProfitabilityRatios;CapitalStructureRatios;StockMarket Ratios;Limitationsof RatioAnalysis.	09
04	CapitalBudgeting: MeaningandImportanceofCapitalBudgeting; Inputs for Capital Budgeting Decisions; InvestmentAppraisalCriterion— AccountingRateofReturn,PaybackPeriod, Discounted Payback Period, Net Present Value(NPV),Profitability Index, Internal Rate of Return (IRR), and ModifiedInternalRate of Return (MIRR) WorkingCapitalManagement:ConceptsofMeaningWorking Capital; Importance of Working Capital Management;FactorsAffectinganEntity'sWorkingCapitalNeeds;E stimation of Working Capital Requirements; Management ofInventories;ManagementofReceivables;andManagementof CashandMarketableSecurities.	10
05	Sources of Finance: Long Term Sources—Equity, Debt, andHybrids; Mezzanine Finance; Sources of Short Term Finance— TradeCredit,BankFinance,CommercialPaper;ProjectFinance. CapitalStructure:FactorsAffectinganEntity'sCapitalStructure;O verviewofCapitalStructureTheoriesandApproaches— NetIncomeApproach,NetOperatingIncomeApproach;Traditional Approach,andModigliani-MillerApproach.Relation betweenCapital StructureandCorporate Value;ConceptofOptimalCapitalStructure	05
06	Dividend Policy: Meaning and Importance of Dividend Policy; Factors Affecting an Entity's Dividend Decision; Overview of Dividend Policy Theories and Approaches—Gordon's Approach, Walter's Approach, and Modigliani-Miller Approach	03

• Assessmentconsistsoftwotests whichshouldbe conducted atproperintervals.

EndSemestertheoryexamination

- Questionpaperwillcomprise of 6 questions each carrying 20 questions.
- Total4 questionsneed tobe solved
- Questionno.1willbecompulsorybasedonentire syllabuswhereinsubquestionscanbeasked.
- Remainingquestions will berandomly selected from all the modules
- Weightageofmarksshouldbeproportionalto numberofhoursassignedtoeachmodule

References

- 1. FundamentalsofFinancialManagement,13thEdition(2015)byEugeneF.BrighamandJ oelF.Houston;Publisher:Cengage Publications,NewDelhi.
- 2. AnalysisforFinancialManagement,10thEdition(2013)byRobertC.Higgins;Publisher s:McGraw HillEducation, New Delhi.
- 3. IndianFinancialSystem,9thEdition(2015)byM.Y.Khan;Publisher:McGrawHillEduc ation, New Delhi.
- 4. FinancialManagement,11thEdition(2015)byI.M.Pandey;Publisher:S.Chand(G/L)& CompanyLimited, New Delhi.

CourseCode		CourseName						
IOC8023		Institute Level Optional Subject II-						
	EntrepreneurshipDevelopmentand Management							
(Course Houi	rs	Credits Assigned					
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
03	-	-	03	-	-		03	

		Theor	y		Term Work/Practical/Oral			
Int Test-I	ernal Asses Test-II	sment Average	End Sem Exam	Duration of End Sem Exam	TW	PR	OR	Total
20	20	20	80	03 Hrs				100

Objectives:

- Toacquaintwithentrepreneurshipandmanagement of business
- Understand Indianenvironmentforentrepreneurship
- IdeaofEDP, MSME

Outcomes:

Learnerwillbeableto...

- Understandthe conceptofbusinessplanandownerships
- Interpretkeyregulationsandlegalaspectsofentrepreneurshipin India
- Understandgovernment policiesforentrepreneurs

Module	DetailedContents									
Module	2 0000000									
01	OverviewOfEntrepreneurship:Definitions,RolesandFunctions/Val	04								
	uesofEntrepreneurship, HistoryofEntrepreneurship Development,									
	Role of Entrepreneurship in									
	theNationalEconomy,FunctionsofanEntrepreneur,Entrepreneurshipa									
	ndForms of BusinessOwnership									
	RoleofMoneyandCapitalMarketsinEntrepreneurialDevelopment:Con									
	tributionofGovernmentAgenciesinSourcinginformation									
	forEntrepreneurship									
02	Business Plans And Importance Of Capital	09								
	ToEntrepreneurship: Preliminary and									
	Marketing Plans, Management and Personnel, Start-									
	upCostsandFinancingaswell as Projected Financial Statements,									
	Legal									
	Section, Insurance, Suppliers and Risks, Assumptions and Conclu									
	sion, Capital and its Importance to the	,								
	EntrepreneurEntrepreneurshipAndBusinessDevelopment:Startinga									
	NewBusiness,BuyinganExistingBusiness,NewProductDevelopment,B									
	usinessGrowthandtheEntrepreneurLawanditsRelevancetoBusinessOp									
	erations									

03	Women's Entrepreneurship Development,	05								
	Socialentrepreneurship-									
	roleandneed,EDPcell,roleofsustainability									
	andsustainabledevelopmentforSMEs, casestudies, exercises									
04	Indian Environmentfor Entrepreneurship: key	08								
	regulations and legal aspects, MSMEDAct 2006 and its implications, sche									
	mesandpoliciesoftheMinistryofMSME,roleandresponsibilitiesofvario									
	usgovernmentorganisations, departments, banks etc., Role of State									
	governments in terms									
	ofinfrastructuredevelopmentsandsupportetc., Public private partnershi									
	ps, National Skilldevelopment Mission, Credit Guarantee Fund, PMEGP,									
	discussions, group exercise setc									
05	Effective Management of Business: Issues and problems facedby	08								
	micro and small enterprises and effective management of									
	MandSenterprises(riskmanagement, creditavailability, technology inno									
	vation, supplychain management, linkage with large industries), exercise									
	s,e-Marketing									
06	Achieving Success In The Small Business: Stages of the	05								
	smallbusiness life cycle, four types of firm-level growth									
	strategies, Options—									
	harvestingorclosingsmallbusinessCriticalSuccessfactorsofsmallbusin									
	ess									

Assessment Internal

• Assessmentconsistsoftwotests whichshouldbe conducted atproperintervals.

EndSemestertheoryexamination

- Questionpaperwillcomprise of6questionseachcarrying20questions.
- Total4 questionsneed tobe solved
- Questionno.1willbecompulsorybasedonentiresyllabuswhereinsubquestionscanbeas ked.
- Remainingquestions will berandomly selected from all the modules
- Weightageofmarksshouldbeproportionaltonumberofhoursassignedtoeachmodule

References

- 1. Poornima Charantimath, Entrepreneurship development- Small BusinessEnterprise,Pearson
- 2. Education Robert D Hisrich, Michael P Peters, Dean A Shapherd, Entrepreneurship, latest edition, The McGraw Hill Company
- 3. DrTNChhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 4. DrCNPrasad,SmallandMediumEnterprisesinGlobalPerspective,NewcenturyPubli cations. New Delhi
- 5. Vasant Desai, Entrepreneurial development and management, HimalayaPublishingHouse
- 6. Maddhurima Lall, Shikah Sahai, Entrepreneurship, Excel Books
- 7. RashmiBansal,STAYhungrySTAYfoolish, CIIE, IIMAhmedabad

- $8. \quad Lawand Practice relating to Micro, Small and Mediumenter prises, Tax mann Publication Ltd.$
- 9. Kurakto, Entrepreneurship-Principles and Practices, Thomson Publication
- 10. Laghu UdyogSamachar
- 11. www.msme.gov.in
- 12. www.dcmesme.gov.in
- 13. www.msmetraining.gov.in

Course	eCode		CourseName				Credits
IOC	3024 I	nstituteLeve	stituteLevelOptionalSubjectII-				
	HumanResourceManagement						
	Course Hou	rs	Credits Assigned				
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03	-	-	03	-	-	03	

	Theory						Term Work/Practical/Oral		
Int Test-I	Internal Assessment Test-II Test-II Average		End Sem Exam	Duration of End Sem Exam	TW	PR	OR	Total	
20	20	20	80	03 Hrs				100	

Objectives:

- To introduce the students with basic concepts, techniques and practices of thehumanresourcemanagement.
- ToprovideopportunityoflearningHumanresourcemanagement(HRM)processes, related with the functions, and challenges in the emerging perspectiveoftoday'sorganizations.
- Tofamiliarize the students about the latest developments, trends & different aspects of HRM.
- Toacquaintthestudentwiththeimportanceofinter-personal&inter-groupbehavioral skills in an organizational setting required for future stable engineers,leaders and managers.

Outcomes:

Learnerwillbeableto...

- Understand the concepts, aspects, techniques and practices of the human resourcemanagement.
- UnderstandtheHumanresourcemanagement(HRM)processes,functions,changesand challengesin today's emergingorganizational perspective.
- Gainknowledge aboutthelatestdevelopmentsandtrendsinHRM.
- Apply the knowledge of behavioral skills learnt and integrate it with in interpersonal and intergroup environment emerging as future stable engineers andmanagers.

Module	DetailedContents	Contact Hours
		nours

01	IntroductiontoHR	5
	HumanResourceManagement-	
	Concept,ScopeandImportance,InterdisciplinaryApproachRelati	
	onshipwithotherSciences,CompetenciesofHRManager,HRMfun	
	ctions.	
	Humanresourcedevelopment(HRD):changingroleofHRM	
	HumanresourcePlanning,Technologicalchange,Restructuringandrig	
	htsizing,Empowerment,TQM,Managingethical issues.	
02	OrganizationalBehavior(OB)	7
	• IntroductiontoOBOrigin,NatureandScopeofOrganizationalBeha	
	vior,RelevancetoOrganizationalEffectivenessand	
	Contemporaryissues	
	Personality: Meaning and Determinants of Personality, Personality	
	development,PersonalityTypes,Assessmentof	
	PersonalityTraitsforIncreasingSelfAwareness	
	Perception: Attitude and Value, Effect of perception on Individual D	
	ecision-making, Attitude and Behavior.	
	Motivation: Theories of Motivation and their Applications for Behav	
	ioralChange(Maslow,Herzberg, McGregor);	
	Group Behavior and Group Dynamics: Work groups formaland informal groups and stages of groups development.	
	informal groups and stages of group development.	
	TeamEffectiveness:Highperformingteams, TeamRoles, crossfun	
	ctionaland self-directed team.	
	• Casestudy	
03	OrganizationalStructure&Design	6
	• Structure, size, technology, Environmento forganization; Organiza	
	tionalRoles&conflicts:Conceptofroles;roledynamics;roleconflic tsand stress.	
	• Leadership: Concepts and skills of leadership, Leadership	
	andmanagerialroles, Leadershipstylesandcontemporaryissuesinl	
	eadership.	
	Power and Politics: Sources and uses of power; Politics Tractionary detectors and uses of power; Politics	
0.4	atworkplace, Tactics and strategies.	
04	HumanresourcePlanning	5
	• Recruitment and Selection process, Job-	
	enrichment, Empowerment - Job-Satisfaction, employeemorale.	
	Performance Appraisal	
	Systems:Traditional&modernmethods,PerformanceCounseling,	
	CareerPlanning.	
	• Training&Development:IdentificationofTrainingNeeds,Trainin	
	gMethods	

05	EmergingTrendsin HR	6						
	• Organizationaldevelopment;BusinessProcessRe- engineering(BPR),BPRasatoolfororganizationaldevelopment ,							
	managing processes & transformation in							
	HR.OrganizationalChange,Culture,Environment							
	• CrossCulturalLeadershipandDecisionMaking:CrossCulturalCo mmunicationanddiversityatwork,Causesofdiversity,managingdi							
	versitywithspecialreferencetohandicapped,womenandageingpeo ple,intracompany							
	culturaldifferenceinemployeemotivation.							
06	HR&MIS							
	Need,purpose,objectiveandroleofinformationsysteminHR,Applicati							
	onsinHRDinvariousindustries(e.g.manufacturingR&D, Public							
	Transport, Hospitals, Hotels and service industries StrategicHRM							
	RoleofStrategicHRMinthemodernbusinessworld,ConceptofStrategy							
	,StrategicManagementProcess,ApproachestoStrategicDecisionMaki							
	ng;StrategicIntent-CorporateMission,Vision, Objectives andGoals							
	LaborLaws&IndustrialRelations							
	EvolutionofIR,IRissuesinorganizations,OverviewofLaborLawsinIn							
	dia;IndustrialDisputesAct,TradeUnionsAct,Shops							
	andEstablishmentsAct							

Assessment

Internal

Assessmentconsistsoftwotests whichshouldbeconducted atproperintervals.

EndSemestertheoryexamination

- Questionpaperwillcomprise of 6 questions each carrying 20 questions.
- Total4 questionsneed tobe solved
- Questionno.1willbecompulsorybasedonentiresyllabuswhereinsubquestionscanbeas ked.
- Remainingquestions will berandomly selected from all the modules
- Weightageofmarksshouldbeproportionaltonumberofhoursassignedtoeachmodule

References

- 1. StephenRobbins,OrganizationalBehavior,16th Ed,2013
- 2. VSPRao, Human Resource Management, 3rd Ed, 2010, Excel publishing
- 3. Aswathapa, Humanresourcemanagement: Text&cases, 6th edition, 2011
- 4. C.B.MamoriaandSVGankar,DynamicsofIndustrialRelationsinIndia,15thEd,2015, HimalayaPublishing, 15thedition, 2015
- 5. P.SubbaRao,EssentialsofHumanResourcemanagementandIndustrialrelations,5thEd , 2013, HimalayaPublishing
- 6. LaurieMullins,Management&OrganizationalBehavior,LatestEd,2016,PearsonPublications

CourseCo	de	CourseName							
IOC802	5 Institut	te Level	Optional	Subject	II- Pro	fessional	03		
	EthicsandCorporatSocial Responsibility(CSR)								
	Course Hour	S		d					
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total			
03	-	•	03	-	-	0.	3		

	Theory						Term Work/Practical/Oral		
Int	Internal Assessment			Duration of				Total	
Test-I	Test-II	Average	Sem Exam	End Sem Exam	TW	PR	OR		
20	20	20	80	03 Hrs				100	

Objectives:

- Tounderstandprofessionalethicsinbusiness
- Torecognizedcorporatesocialresponsibility

Outcomes:

Learnerwillbeableto...

- Understandrightsanddutiesofbusiness
- Distinguishdifferentaspects of corporate social responsibility
- Demonstrateprofessionalethics
- Understandlegalaspectsofcorporatesocialresponsibility

Module	DetailedContents	ContactH ours							
01	Professional Ethics and Business: The Nature of								
	BusinessEthics;EthicalIssuesinBusiness;MoralResponsibilitya								
	ndBlame;Utilitarianism:WeighingSocialCostsand Benefits;								
	RightsandDutiesof Business								
02	Professional Ethics in the Marketplace: Perfect	08							
	Competition; Monopoly Competition; Oligopolistic Competition;								
	Oligopoliesand PublicPolicy								
	ProfessionalEthicsandtheEnvironment:DimensionsofPollution								
	and Resource Depletion; Ethics of Pollution Control; Ethics of								
	Conserving Depletable Resources								
03	ProfessionalEthicsofConsumerProtection:MarketsandConsumer	06							
	Protection; Contract View of Business Firm's Dutiesto Consumers;								
	Due Care Theory; Advertising Ethics; ConsumerPrivacy								
	ProfessionalEthicsofJobDiscrimination: Nature of JobDiscriminati								
	on;Extent ofDiscrimination; ReservationofJobs.								
	,, ,, ,								

04	IntroductiontoCorporateSocialResponsibility:PotentialBusiness	05						
	Benefits—Triple bottom line, Human resources,							
	Riskmanagement, Supplierrelations; Criticisms and concerns—							
	Natureof business; Motives; Misdirection.							
	Trajectoryof CorporateSocial ResponsibilityinIndia							
05	CorporateSocialResponsibility: Articulation of Gandhian Trusteeshi	08						
	p							
	CorporateSocialResponsibilityandSmallandMediumEnterprises(S							
	MEs)inIndia,CorporateSocialResponsibilityandPublic-Private							
	Partnership (PPP)inIndia							
06	Corporate Social Responsibility in Globalizing India:	08						
	CorporateSocialResponsibilityVoluntaryGuidelines,2009issuedbyt							
	heMinistryofCorporateAffairs,Governmentof							
	India,LegalAspectsofCorporateSocialResponsibility—							
	CompaniesAct,2013.							

Assessment

Internal

• Assessmentconsistsoftwotests which should be conducted at proper intervals.

EndSemestertheoryexamination

- Questionpaperwillcomprise of 6 questions each carrying 20 questions.
- Total4 questionsneed tobe solved
- Questionno.1 will be compulsory based on entire syllabus where in subquestions can be as ked.
- Remainingquestions will berandomly selected from all the modules
- Weightageofmarksshouldbeproportionaltonumberofhoursassignedtoeachmodule

References

- 1. BusinessEthics:TextsandCasesfromtheIndianPerspective(2013)byAnandaDasGup ta; Publisher: Springer.
- 2. CorporateSocialResponsibility:ReadingsandCasesinaGlobalContext(2007)byAndr ew Crane,DirkMatten,LauraSpence; Publisher:Routledge.
- 3. BusinessEthics:ConceptsandCases,7thEdition(2011)byManuelG.Velasquez;Publis her: Pearson, NewDelhi.
- 4. CorporateSocialResponsibilityinIndia(2015)byBidyutChakrabarty,Routledge,New Delhi.

Course	eCode	CourseName					Credits
IOC8026		InstituteLevelOptionalSubjectII-					
	R	ResearchMet	hodology				
(Course Hour	·s	Credits Assigned				
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03	-	-	03	-	-		03

	Theory						Term Work/Practical/Oral		
Int	Internal Assessment			Duration of				Total	
Test-I	Test-II	Average	Sem Exam	End Sem Exam	TW	PR	OR		
20	20	20	80	03 Hrs				100	

Objectives:

- TounderstandResearch andResearchProcess
- Toacquaintstudentswithidentifyingproblemsforresearchanddevelopresearchstrateg ies
- To familiarize students with the techniques of data collection, analysis of data and interpretation

Outcomes:

Learnerwillbeableto...

- Prepareapreliminaryresearchdesignforprojectsintheirsubjectmatterareas
- Accuratelycollect, analyze and reportdata
- Presentcomplex dataorsituationsclearly
- Reviewandanalyzeresearchfindings

Module	DetailedContents	Contact Hours
01	IntroductionandBasicResearchConcepts	09
	1.1 Research—	
	Definition; Concept of Construct, Postulate, Proposition, Thesis, Hypot	
	hesis,Law,Principle.Researchmethods vs Methodology	
	1.2 NeedofResearchinBusinessandSocialSciences	
	1.3 ObjectivesofResearch	
	1.4 Issues andProblemsinResearch	
	1.5 CharacteristicsofResearch:Systematic,Valid,Verifiable,Empiri	
	caland Critical	
02	TypesofResearch	07
	2.1. BasicResearch	
	2.2. AppliedResearch	
	2.3. DescriptiveResearch	
	2.4. Analytical Research	
	2.5. EmpiricalResearch	
	2.6Qualitative and Quantitative Approaches	

03	ResearchDesignandSampleDesign	07
	3.1 Research Design–Meaning, Types and Significance	
	3.2 Sample Design – Meaning and Significance Essentials of	
	agoodsamplingStagesinSampleDesignSamplingmethods/technique	
	sSamplingErrors	
04	Research Methodology	08
	4.1Meaning of Research Methodology	
	4.2.StagesinScientificResearchProcess:	
	a. IdentificationandSelectionofResearchProblem	
	b. FormulationofResearchProblem	
	c. Reviewof Literature	
	d. FormulationofHypothesis	
	e. FormulationofresearchDesign	
	f. SampleDesign	
	g. DataCollection	
	h. DataAnalysis	
	i. Hypothesistestingand InterpretationofData	
	j. PreparationofResearchReport	
05	FormulatingResearchProblem	04
	5.1 Considerations:Relevance,Interest,DataAvailability,Choiceofdata	
	,Analysisofdata,GeneralizationandInterpretationof	
	analysis	
06	Outcomeof Research	04
	6.1 Preparationofthe reportonconclusionreached	
	6.2 ValidityTesting&EthicalIssues	
	6.3 SuggestionsandRecommendation	

Assessment

Internal

• Assessmentconsistsoftwotestswhichshouldbe conducted atproperintervals.

EndSemestertheoryexamination

- Questionpaperwillcomprise of 6 questions each carrying 20 questions.
- Total4 questionsneed tobe solved
- Questionno.1 will be compulsory based on entire syllabus where in subquestions can be as ked.
- Remainingquestions will berandomly selected from all the modules
- Weightageofmarksshouldbeproportionaltonumberofhoursassignedtoeachmodule

- 1. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers Distributors.
- 2. Kothari, C.R., 1985, Research Methodology-Methods and Techniques, New Delhi, Wiley Eastern Limited.
- 3. Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide forBeginners,(2nded), Singapore, Pearson Education

Course	eCode		Co		Credits		
IOC	8027	InstituteL	evelOptiona	nting	03		
(Course Hour	`S	Credits Assigned				
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03	-	-	03	-	-	0.	3

Theory						Teri z/Practi		
Test-I	ernal Asses Test-II	Average	End Sem Exam	Duration of End Sem Exam	TW	PR	OR	Total
20	20	20	80	03 Hrs				100

Objectives:

- Tounderstandintellectualpropertyrightsprotectionsystem
- TopromotetheknowledgeofIntellectualPropertyLawsofIndiaaswellasInternationaltr eatyprocedures
- TogetacquaintancewithPatentsearchandpatentfilingprocedureandapplications

Outcomes:

Learnerwillbeableto...

- understand IntellectualPropertyassets
- assistindividuals andorganizations incapacitybuilding
- workfordevelopment,promotion,protection,compliance,andenforcementofIntellect ualPropertyandPatenting

Module	DetailedContents	Contact Hours					
01	Introduction to Intellectual Property Rights (IPR): Meaning	05					
	ofIPR, Different category of IPR instruments - Patents,						
	Trademarks, Copyrights, Industrial Designs, Plantvariety protection, Ge						
	ographicalindications, Transfer oftechnologyetc.						
	ImportanceofIPRinModernGlobalEconomicEnvironment:						
	Theories of IPR, Philosophical aspects of IPR laws, Need for						
	IPR,IPRas an instrument of development						
02	EnforcementofIntellectualPropertyRights:Introduction,Magnitud	07					
	e of problem, Factors that create and						
	sustaincounterfeiting/piracy, International						
	agreements,						
	Internationalorganizations(e.g.WIPO,WTO)activeinIP						
	RenforcementIndianScenarioofIPR:Introduction,HistoryofIPRinIn						
	dia,OverviewofIPlawsinIndia,IndianIPR,Administrative						
	Machinery, Majorinternational treaties signed by India, Procedure for sub						
	mittingpatentandEnforcementof IPRatnationalleveletc.						

03	EmergingIssuesinIPR:ChallengesforIPindigitaleconomy,e-									
	commerce,humangenome,biodiversityandtraditionalknowledge									
	etc.									
04	BasicsofPatents: Definition of Patents, Conditions of patenta bility,									
	Patentable and non-patentable inventions, Types ofpatent									
	applications (e.g. Patent of addition etc), Process Patent and Product									
	Patent, Precautions while patenting, Patent									
	specificationPatentclaims,Disclosuresandnon-									
	disclosures, Patentrights and									
	infringement,Methodofgettingapatent									
05	PatentRules: Indianpatentact, Europeanscenario, USscenario,									
	Australiascenario, Japanscenario, Chinesescenario, Multilateraltreatie									
	swhereIndiaisamember(TRIPSagreement,Paris									
	conventionetc.)									
06	ProcedureforFilingaPatent(NationalandInternational):Legislatio	07								
	nandSalientFeatures,PatentSearch,DraftingandFiling Patent									
	Applications, Processing of patent, Patent									
	Litigation, Patent Publicationetc, Timeframe and cost, Patent Licensing,									
	PatentInfringement									
	Patentdatabases: Importantwebsites, Searchinginternational									
	databases									

Assessment Internal

• Assessmentconsistsoftwotests whichshouldbe conducted atproperintervals.

EndSemestertheoryexamination

- Questionpaperwillcomprise of 6 questions each carrying 20 questions.
- Total4 questionsneed tobe solved
- Questionno.1willbecompulsorybasedonentiresyllabuswhereinsubquestionscanbeas ked.
- Remainingquestions willberandomlyselected from all themodules
- Weightageofmarksshouldbeproportionaltonumberofhoursassignedtoeachmodule

- 1. RajkumarS.Adukia,2007,AHandbookonLawsRelatingtoIntellectualPropertyRight sinIndia,TheInstituteofChartered AccountantsofIndia
- 2. KeaylaBK,Patentsystemandrelatedissuesataglance,PublishedbyNationalWorking Group on PatentLaws
- 3. TSengupta, 2011, Intellectual Property Lawin India, Kluwer Law International
- 4. TzenWongandGrahamDutfield,2010,IntellectualPropertyandHumanDevelopmen t:CurrentTrendsandFutureScenario,Cambridge UniversityPress
- 5. Cornish, William Rodolph & Llewelyn, David. 2010, Intellectual Property: Patents, Copyrights, Trade Marks and Allied Right, 7th Edition, Sweet & Maxwell
- 6. Lous Harns, 2012, Theenforcement ofIntellectual Property Rights:A CaseBook,3rdEdition, WIPO
- 7. PrabhuddhaGanguli,2012,IntellectualPropertyRights,1stEdition,TMH
- 8. RRadhaKrishnan&SBalasubramanian,2012,IntellectualPropertyRights,1stEdition

- Excel Books
- 9. MAshokKumarandmohdIqbalAli,2-11,IntellectualPropertyRights,2ndEdition,Serial Publications
- 10. KompalBansalandPraishitBansal,2012,FundamentalsofIPRforEngineers,1stEditi on, BS Publications
- 11. EntrepreneurshipDevelopmentandIPRUnit,BITSPilani,2007,AManualonIntellect ual PropertyRights,
- 12. MathewYMaa,2009,FundamentalsofPatentingandLicensingforScientistsandEngineers, World ScientificPublishingCompany
- 13. N S Rathore, S M Mathur, PritiMathur, AnshulRathi, IPR: Drafting,InterpretationofPatentSpecificationsandClaims,NewIndiaPublishingAgency
- 14. VivienIrish,2005,IntellectualPropertyRightsforEngineers, IET
- 15. HowardBRockman,2004,IntellectualPropertyLawforEngineersandscientists,Wile y-IEEEPress

CourseCode	CourseName	Credits
IOC8028	Institute Level Optional Subject II - Digital	03
	BusinessManagement	

(Course Hour	'S	Credits Assigned				
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
03	-	-	03	-	-	03	

		Theor	Work					
Internal Assessment			End	Duration of				Total
Test-I	Test-II	Average	Sem	End Sem	TW	PR	OR	
1651-1	1681-11	Test-II Average	Exam	Exam				
20	20	20	80	03 Hrs				100

Objectives:

- Tofamiliarizewithdigitalbusinessconcept
- ToacquaintwithE-commerce
- TogiveinsightsintoE-businessanditsstrategies

Outcomes:

Thelearnerwill beableto.....

- Identifydriversofdigitalbusiness
- Illustratevariousapproachesandtechniques for E-businessandmanagement
- PrepareE-businessplan

Module	Detailedcontent	Contact Hours
1	Introductionto Dicital Ducinass	09
1	Introductionto Digital Business-	U9
	Introduction, Backgroundandcurrentstatus, E-	
	marketplaces, structures, mechanisms, economics and impacts. Difference	
	betweenphysical economyand digitaleconomy.	
	Drivers of digital business - Big Data & Analytics, Mobile,	
	CloudComputing, Social media, BYOD, and Internet of Things	
	(digitallyintelligentmachines/services). Opportunities and Challenges in	
	DigitalBusiness,	

2	OverviewofE-Commerce	06
	E-Commerce- Meaning, Retailing ine-commerce-	
	productsandservices, consumer behavior, market research and	
	advertisement.B2B-E-commerce-selling and buying in private e-	
	markets, publicB2Bexchangesandsupportservices,e-	
	supplychains, Collaborative Commerce, Intra business EC and	
	Corporate portals.ther E-C models and applications, innovative EC	
	System-From E-government and learning to C2C, mobile commerce	
	and pervasivecomputing.ECStrategyandImplementation-	
	ECstrategyandglobalEC,EconomicsandJustificationof	
	EC,UsingAffiliatemarketingtopromoteyoure-commerce	
	business, Launchinga	
	successfulonlinebusinessandECproject,Legal,EthicsandSocietalimpact	
3	s of EC. Digital Business Support services: ERPase—	06
3	business backbone, knowledge Tope Apps, Information and referral	VV
	system Application Development: Building	
	Digital business	
	Applications and Infrastructure	
4	Managing E-Business-Managing Knowledge, Management skillsfor	06
	e-business, Managing Risks in e –business. Security Threats toe-	
	business-SecurityOverview,ElectroniccommerceThreats,	
	Encryption, Cryptography, Public Key and Private Key	
	Cryptography, Digital signatures, Digital Certificates, Security Protocols	
	over Public Networks: HTTP, SSL, Firewall as	
	SecurityControl,PublicKeyInfrastructure(PKI)forSecurity,Prominent	
	CryptographicApplications	
5	E-Business Strategy-E-business Strategic formulation-	04
	AnalysisofCompany'sInternalandexternalenvironment,Selectionof	
	strategy, E-business strategy into Action, challenges and E-	
	Transition(Processof DigitalTransformation)	0.0
6	Materializinge-business:FromIdeatoRealization-	08
	Businessplanpreparation.	
	CaseStudiesandpresentations	

${\bf Assessment Inter}$

nal

• Assessmentconsistsoftwotests whichshouldbe conducted atproperintervals.

${\bf End Semester theory examination}$

- Questionpaperwillcomprise of6questionseachcarrying20questions.
- Total4 questions needto be solved
- Questionno.1willbecompulsorybasedonentiresyllabuswhereinsubquestionscanbeask ed
- Remainingquestions will berandomly selected from all the modules
- Weightageofmarksshouldbeproportionaltonumberofhoursassignedtoeachmodule

- 1. A textbookonE-commerce,Er Arunrajan Mishra,DrWK Sarwade,NehaPublishers&Distributors, 2011
- 2. E-commercefromvisiontofulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3. DigitalBusinessandE-CommerceManagement,6thEd,DaveChaffey,Pearson,August2014
- 4. IntroductiontoE-business-ManagementandStrategy,ColinCombe,ELSVIER,2006
- 5. DigitalBusinessConceptsandStrategy,EloiseCoupey,2nd Edition,Pearson
- 6. TrendandChallengesinDigitalBusinessInnovation,VinocenzoMorabito,Springer
- 7. DigitalBusinessDiscourseErikaDarics,April2015,PalgraveMacmillan
- 8. E-Governance-ChallengesandOpportunitiesin:Proceedingsin2ndInternationalConferencetheoryand practiceofElectronicGovernance
- 9. PerspectivestheDigitalEnterprise— AframeworkforTransformation,TCSconsultingjournal Vol.5
- 10. MeasuringDigitalEconomy-Anewperspective-DOI:10.1787/9789264221796-enOECD Publishing

Course	eCode		CourseN	Credits		
IOC	3029 I	nstitute Leve	03			
	Environmental Management Tenvironmental Management Tenvironment Tenvir					
	Course Hour	`S				
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
03	-	-	03	-	-	03

	Theory						Term Work/Practical/Oral			
Int	Internal Assessment			Duration of				Total		
Test-I	Test-II	Average	Sem Exam	End Sem Exam	TW	PR	OR			
20	20	20	80	03 Hrs				100		

Objectives:

- UnderstandandidentifyenvironmentalissuesrelevanttoIndiaandglobalconc erns
- Learnconceptsof ecology
- Familiariseenvironmentrelatedlegislations

Outcomes:

Learnerwillbeableto...

- Understandthe conceptofenvironmentalmanagement
- Understandecosystemandinterdependence, food chainetc.
- Understandandinterpret environmentrelatedlegislations

Module	DetailedContents	Contact Hours
01	IntroductionandDefinitionofEnvironment:SignificanceofEnvironment	10
	Management for contemporary managers, Careeropportunities.	
	EnvironmentalissuesrelevanttoIndia,SustainableDevelopment,and	
	TheEnergyscenario.	
02	GlobalEnvironmentalconcerns:GlobalWarming,AcidRain,OzoneDepl	06
	etion, Hazardous Wastes, Endangered life-species,	
	Loss of Biodiversity, Industrial/Man-made	
	disasters, Atomic/Biomedicalhazards, etc.	
03	ConceptsofEcology:Ecosystemsandinterdependencebetween	05
	livingorganisms, habitats, limiting factors, carrying capacity, foodchain,	
	etc.	
04	ScopeofEnvironmentManagement,Role&functionsofGovernmentasap	10
	lanningandregulatingagency.	
	EnvironmentQualityManagementandCorporateEnvironmentalRespon	
	sibility	
05	TotalQualityEnvironmentalManagement,ISO-14000,EMS	05
	certification.	

06	General overview of major legislations like	03
	EnvironmentProtectionAct,Air(P&CP)Act,	
	Water(P&CP)Act,Wildlife	
	ProtectionAct,ForestAct,Factories Act,etc.	

AssessmentInternal

• Assessmentconsistsoftwotests which should be conducted at proper intervals.

EndSemestertheoryexamination

- Questionpaperwillcomprise of 6 questions each carrying 20 questions.
- Total4 questionsneed tobe solved
- Questionno.1 will be compulsory based on entire syllabus wherein subquestions can be asked.
- Remainingquestions will berandomly selected from all the modules
- Weightageofmarksshouldbeproportionaltonumberofhoursassignedtoeachm odule

- 1. EnvironmentalManagement:PrinciplesandPractice,CJBarrow,Routledge PublishersLondon, 1999
- 2. AHandbookofEnvironmentalManagementEditedbyJonC.LovettandDavid G.Ockwell,EdwardElgarPublishing
- 3. EnvironmentalManagement,TV Ramachandra and VijayKulkarni, TERIPress
- 4. IndianStandardEnvironmentalManagementSystems RequirementsWithGuidance ForUse, Bureau OfIndian Standards, February2005
- 5. EnvironmentalManagement:AnIndianPerspective,SNCharyandVinodVy asulu,MaclillanIndia,2000
- 6. IntroductiontoEnvironmentalManagement,MaryKTheodoreandLouiseT heodore,CRC Press
- 7. EnvironmentandEcology, MajidHussain, 3rd Ed. AccessPublishing. 2015

SEMESTER VIII

Course Code	Course Name	Credits
CHL801	Modelling simulation and Optimization Lab	1.5

	Course Hours				Credits Assigned						
Theory	Practic	al Tutor	ial T	heory	Practi	ical T	utorial	T	otal		
- 03					1.5		-	1	l . 5		
	Theory					Termy Oral	vork/Pr	actical/			
Inte	ernal Asses	sment	End	Duration	on of				Total		
Test-I	Test-II	Average	Sem Exam	End S Exa	TW	PR	PR/O R				
-	-	-	-	-		25		25	50		

Prerequisites

• Linear Algebra, Process Calculations, Computer Programming

Concept of Experiment:

Students should be able to simulate process models using computer program or mathematical and chemical engineering software such as COCOO/DWSIM/Unisim,/CW sim,/ChemCAD,/Hysys/ Aspen Plus / or any simulator.

Course Objectives

- 1. To study the types of various mathematical models of engineering processes;
- 2. To provide an overview of the possibilities of process simulation as a tool for computer systems analysis, which minimizes risks and costs in experimentation.
- 3. To familiarize students with the techniques of modeling of engineering processes and of the developed model optimization;
- 4. To introduce students to different commercial software to simulate the chemical processes from the design stage to the control and optimization;
- 5. To provide the background needed by the chemical engineers to carry out computer-aided analyses of large-scale chemical processes.
- 6. Demonstrate the ability to use a process simulation

Minimum TEN experiments must be performed.

Simulation of pipe and pump network flows
Simulation of linear and nonlinear systems
Simulation of mass transfer process - distillation
Simulation of mass transfer process- Absorption
Simulation of Heat Transfer Process like Shell and tube heat exchanger
Simulation of chemical reactor like batch, Semi batch, Continuous reactor
Simulation of Multicomponent flash calculation for ideal and nonideal system
Simulation of flowsheet calculation (Any chemical manufacturing process)

Optimization								
Experiments	based	on	computer	program	or	mathematical	and	chemical
engineering s	oftware							

Course outcomes

- 1. Students will learn different types of simulation techniques.
- 2. Students will apply simulation techniques to solve complex system issues and to select feasible, solutions
- 3.Student will able to calculate the different physicochemical and thermodynamic properties chemicals;
- 4.Students will able to understand and analyse simulation of various separation process
- 5. Students will able to apply optimization parameter in distillation process
- 6.Students will learn to simulate the models for the purpose of optimum control by using software.

Term work

Term work shall be evaluated based on performance in practical.

Practical Journal: 20 marks
Attendance: 05marks
Total: 25marks

Practical Examination

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

Semester VIII

Course Code	Course Name	Credits
CHL802	Skilled based lab: Software application in Chemical	1.5
	Engineering Lab	

(Course Hour	S	Credits Assigned			
Theory	Practical	Tutorial	Theory Practical Tutorial Total			
-	03	-	-	1.5	-	1.5

Theory Term Work/Practical/Oral								
Internal A Test-I	Assessment Test-II	Average	End Sem	Duration of End Sem		PR/OR	OR	Total
			Exam	Exam				
-	-	-	-	-	25	-	25	50

Prerequisites:

- 1. The students should have knowledge of design of unit operation & unit process
- 2. The students should have knowledge of Mathematics & to solve differential equations
- 3. They should be aware about basic principles of linear algebra & computer programing
- **4.** The students should have knowledge of Transport phenomenon
- 5. The students should be aware about selection of Thermodynamic packages

Course Objectives:-

- 1. To make students understand advantages of software application in chemical engineering.
- 2. To make students identify and use the software for optimization of the processes in chemical industries.
- 3. To make students understand writing and solving design problem of chemical engineering System.
- 4. To make students to design Mass & Heat transfer Equipment's by using various chemical engineering software.
- 5. To make students understand Material and energy balance through simulation of complete flow sheet of chemical plant.
- 6. To make students to optimize the process parameters by using chemical engineering software.

List of Experiments (minimum eight)

Experiment	Details of Experiment	Lab Hours
No.		
1	Simulation of Pipe Network (Pressure drop, Friction factor	2
1	Head Losses, Pump Power, NPSH)	3
	Simulation of Heat Transfer Equipment's (Heater and Cooler	
2	,Double Pipe or Shell and Tube Heat exchangers, Plate Type	3
	Heat Exchanger)	
3	Simulation of Chemical Reactors (Plug Flow or Continuous	3

	Stirred Tank Reactor, Bubble Column Reactor)	
4	Simulation of distillation Column (Separation of Butanol and	2
4	Water system)	3
5	Simulation of Pressure Swing Azeotropic Distillation	2
3	(Methanol and Acetone)	3
6	Simulation of Advanced Divded Distillation Column	2
O	(Benzene-Toluene-Xylene)	3
7	Simulation of Thermodynamic cycles (Rankin cycle or Vapor	2
/	Compression Cycle ,Vapor Absorption cycle)	3
8	Simulation of Extractive Distillation	2
o	(MethylCycloHexane/Toluene)	3
9	Simulation of Absorption and Desorption Column	3
10	Simulation of any hydrogenation process	3

Students should be able to simulate process models using computer program or chemical engineering software such as COCOO/DWSIM/Unisim,/ CWsim, /ChemCAD,/Hysys/ Aspen Plus /CFD or any simulator.

Course Outcomes:

- 1. Students will become aware of application of software in chemical engineering.
- 2. Students will be able to identify and use the software for optimization of the processes in chemical industries.
- 3. The students will be able to design unit operation and unit process by using chemical engineering software.
- 4. The student will be able to do the material and energy balance of chemical plant
- 5. The student will be able to optimize typical chemical processes.
- 6. The students will be able to solve the trouble shooting problem in chemical plants by using various chemical engineering software's.

Assessment:

Term Work (25 marks)

Distribution of marks will be as follows:

Laboratory work: 20 marks

Attendance: 05 marks

End Semester Orals (25 marks)

Orals on experiments done in the laboratory

Reference Book

- 1. William Y.Luyben, Process Modelling simulation and control for chemical Engineer, Second edition McGraw Hill.
- 2. Process Engineering and Design: Shuchen B. Thakore, Bharat I Bhatt, Second Ed., McGraw Hill Education(I) Private Limited, 2011.

Source http://www.chemsep.org/

https://pubs.acs.org/doi/10.1021/acs.iecr.6b04939

Semester VIII

Course Code	Course Name	Credits
CHP801	Major Project II	06

C	ourse Hours		Credits Assigned				
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
-	12#	-	-	06	-	06	

Theory						Term Work/Practical/Oral		
Inter Test-I	rnal Assessi Test-II	Ment Average	End Sem Exam	Duration of End Sem Exam	TW	PR	OR	Total
-	-	-	-	-	50	-	100	150

[#] indicates work load of Learner (Not Faculty), for Major Project; Faculty load: semester VIII - 1 hour per week per project group

Prerequisites

- 1. Detail knowledge of applied chemistry, unit operations, reaction engineering, heat transfer.
- 2. Basics of process engineering and economics.
- 3. Basics of mathematics, process equipment design.
- 4. Fundamentals of modeling and simulation and related software.

Objectives

- 1.To demonstrate a sound technical knowledge of the selected project topic which should be focused on solutions to industrial, societal and environmental problems with the application of sustainable technology.
- 2. To undertake problem formulation and solution.
- 3. To develop flowsheet and PID diagram for manufacturing projects as applicable.
- 4. To design engineering solutions to complex problems utilizing a systems approach.
- 5. To design and carry out experimental runs and validate the results.
- 6. To communicate the findings with engineers and the community at large in written and oral form.

Outcomes

After the completion of project work., Students will be able to

- 1. Demonstrate a sound technical knowledge of the selected project topic related to industrial, societal and environmental problems with the application of sustainable technology.
- 2. Carry out problem formulation and solution.
- 3. Develop flowsheet and PID diagram for manufacturing projects as applicable.
- 4. Design and perform experiments and analyze results for research project. In case of manufacturing project, develop complete flow sheet and PID diagram.
- 5. Apply knowledge of the chemical engineering subjects for interpretation and analysis of experimental results and formulate a model and use suitable software for comparing results and optimize the parameters as and when required.

6. Write research article, project report and present the findings before experts and society at large.

Guidelines:

- Project groups: Groups can be formed with minimum TWO and not more than FOUR students per group.
- Students should spend considerable time in applying all the concepts studied.
- Students are advised to take up industrial/ experimental/ simulation and/or optimization-based topics for their project.
- Students should report their guides with their work on weekly basis.
- For Project oral, external examiners, preferably from industrial background should be appointed.
- For term work marks punctuality of the students, timely submission of the weekly progress report should be considered along with presentation before guide and departmental expert panel and record of the same should be maintained.

Exam Guidelines

Term Work – 50 Marks:

- Presentation 20 Marks
- Project Report -30 Marks

Oral – 100 Marks