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FIRST ORDER PARTIAL DIFFERENTIAL
EQUATIONS

Unit structure
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1.2 First order partial differential equation and Cauchy problem

1.3 Semi linear and quasi linear equation in two independent variables
1.4 First order nonlinear equations in two independent variables

1.5 Complete Integral

1.6 Let us sum up

1.7 List of references

1.8 Bibliography

1.0 OBJECTIVES

After doing this unit, you will be able to:

identify partial differential equation of order one.
classify different types of partial differential equation
solve problems of semi linear and quasilinear problems
determine characteristic equations

solve Cauchy problem

find general solution

find complete integral.

1.1 INTRODUCTION

A partial differential equation for a function u(x,) of m independent
variables x,(a =1, 2, 3...... m) is a relationship between the function
and its partial derivatives uy_, Uy, x go We represent this relationship in

the form

F(xl, ...... » Xy Us Uy wen one Uy, 5 Uy g Uy, oo e ) =0 (1.1)



where only a finite number of derivatives occur on the left-hand side and
the function F is defined over Domain D3. The order of the partial
derivative is the order of the highest derivatives appearing in the
function F.

A genuine solution of the partial differential equation is a functionu =
u(x,)defined over a domain D ofx, space such that all partial derivative
of u appearing in the equation exist and are continuous in D,

(xa,u(xa),uxB (xa),uxﬁxy(xa), ...... ) € D; when x, € D and

F (xa,u(xa),uxB (xa),uxﬁxy(xa), ...... ) = 0 for all x, € D. We also say

that the function satisfies equation (1.1). we shall refer the genuine
solution simply as a solution.

While studying partial differential equations, we shall assume that all
functions are real valued with real arguments unless otherwise stated.

The simplest partial differential equations to study are those of the first
order for the determination of just one unknown function. Apart from the
fact that they form the basis of the study of higher order equations called
hyperbolic equations, they are the simplest kind of equations for which
method of solutions are available and for which the existence, uniqueness
and stability can be discussed in detail. In this chapter, we shall present
some basic result concerning first order partial differential equation.

1.2 FIRST ORDER PARTIAL DIFFERENTIAL
EQUATION AND CAUCHY PROBLEM

In this chapter while dealing with the partial differential equation in two
independent variables, we shall denote the independent variable by x
and y.

A first order partial differential equation in two unknowns in its most
general form is given by

F(x, v, u, ux,uy) =0 (1.2)
where F i1s a known function of its arguments.
1.2.1 Classification of partial differential Equation

Linear equation: when the function F is linear in uy, u,and u. then the
equation of the form

a(x, y)u, + b(x, y)uy, = c1(x, y)u + c2(x,y) (1.3)

is called linear equation. Where a, b, ¢4, ¢; will depend on x and y.



For example,
yx*u, + xy®u, = xyu + x*y?and xyu, + x*yu, = 3xyu + xy>.

Semi linear equation:When the function Fis linear in uy,uythen the
equation of the form

a(x,y)u, + b(x,y)uy, = c(x,y,u) (1.4)

is called semi-linear equation. Wherea and b depend on x and y whereas ¢
depends on x, y and u.

For example,
xy uy + x*y uy, = x*yu?® and 2x%y u, + 3x%y u,, = 5x*yu’

Quasilinear equation:When the function Fis linear in u,,u,then the
equation of the form

a(x,y,uu, + b(x,y, wu, = c(x,y,u) (1.5)
Is called quasi linear. Where a, b, ¢ depend on x, y and u.

For example,

xyuu, + xu uy, = yu®and (x* — ywu, + (y* — xu) uy, = u® —xy

Non-linear equation: When the function F is not linear in u,, u,then the
equation (1.2) is called non-linear equation.

For example,
uz + x*u; = uy and x*uj + y*ul = u®

The solution u = u(x,y) represents a surface in (x,y,u) space. This
surface is called integral surface of the partial differential equation.

While dealing with partial differential equations appearing in science and
engineering, we rarely to find out or discuss properties of a solution in its
most general form. Almost always we deal with those solution of
differential equations which satisfy certain conditions. In the case of first
order partial differential equations, the search for these specific solutions
can be formulated as a Cauchy problem.

1.2.2. The Cauchy problem

Consider an interval 1 on the real line and three arbitrary functions
xo(M), vo(m)and uy(n) of single variable n € I suchthat the derivatives
xo(nm)and y{(n) are piecewise continuous and (x5)? + (y4)? # 0.

A Cauchy problem for a first order equation (1.2) is to find the domain D
in (x,y) plane containing (xo(1),yo(n))for alln €1 and a solution
u = u(x,y) of the equation such that
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u(x0(m), yo(n)) = o () (1.6)
for all values of n € I .

Geometrically, x = x,(n),y = x¢(n) represents a curve y in (x,y) plane.
We call the curve datum curve. The Cauchy problem is to determine the
solution of F (x, YV, U, Uy, uy) = 0 in a neighbourhood of y such that u
takes prescribed values uy(n) on y.

The solution of Cauchy problem also involves such questions as the
conditions on the functions F,xy(n),yo(m)and uy(n) under which the
solution exists and its unique.

1.3 SEMILINEAR AND QUASILINEAR EQUATIONS IN
TWO INDEPENDENT VARIABLES

We start with a semi linear equation instead of linear equation as the
theory of the former does not require any special treatment as compared to
that of latter.

1.3.1 Semilinear Equation

Consider a single first order equation in two independent variables (x,y)
for a single unknown quantity:

a(x,y)u, + b(x,y)u, = c(x,y,z) (2.1)

We assume that a, b, c are continuously differential functions of their
arguments and a and b are not simultaneously zero. a,b € C1(D,) and
c € C1(D,), where D; and D, are domains in (x,y) plane and (x,y,u)
space respectively, such that whenever (x,y,u) € D,, (x,y) € D;.

At a given point (x,y) € Dy, a(x,y)u, + b(x,y)u, represents a
derivative of u(x,y) in the direction of vector (a(x,y),b(x,y)).
Therefore, if we consider a one parameter family of curves whose tangent
at each point is in the above direction i.e. the family of curves defined by
ordinary differential equation

dy _ b(xy)
dx  a(xy) (2.2)
.. . . du dy
the variation of u along these curves is given by T U T Uy =
auyx+buy,

, which with the help of (2.1) gives

du _ c(x,yu)
dx  a(xy) (2'3)
Consider a curve represented by a solution of equation (2.2). we can
choose a variable o such that the curve has a parametric representation
x =x(0),y=y(0o) and x(o) and y(o) satisfy a pair of ordinary
differential equations



dx d_y _
—=aly),==bxy) (24

The variation of u along the curve is given by

du _ c(x,y,u) (2.5)

do
The equations (2.2) or (2.4) are called characteristic = equations. The
solution of (2.2) can be written in the form

flxy, ) =0 (2.6)

Where C is a constant of integration. This equation represents one
parametric family of curves with C as a parameter. We call these curves
the characteristiccurves of the partial differential equation. In the domain
D;consider another curve x = x4,(17),y = yo(n) such that it is nowhere
tangential to characteristic curve.

Solving (2.4) with the condition x = x4(n),y = yo(n) at ¢ = 0, we get a
solution of the form

x =x(o,n),y =y(o,n) (2.7)

Because of the equivalence of (2.2) and (2.4), the equation (2.7) also
represents the one-parameter family of characteristic curves of equation
(2.1). in the parametric representation of (2.7), o varies along a
characteristic curve. 1 remains constant along characteristic curves. The
equation (2.3) or (2.5) 1is called compatibility condition along a
characteristic curve.

Suppose that u(x,y) is assigned an initial value u, at point
(xo,¥o)in(x, y) —plane. Since a(x,y),b(x,y) andc(x,y,u) are D?!
function of their arguments, the initial value problem for the ordinary
differential equations (2.4) and (2.5) with initial values xg, yo, u, has
unique solution. Therefore, through the point (xg,y,) there passes a
unique characteristic curve given by

X = X(XO, Yo, O'),y = y(xO' Yo, O-) (28)

and along this curve
u= U(XO, yO'uO'U) (29)

is uniquely determined by the equation (2.5). This shows that, if u is given
at any point, it is uniquely determined everywhere along the characteristic
curve denoted by C,. passing through the point, as long as it does not pass
through a singular point and as long as (x,y,u) remains in D,, where
c(x,y,u) is defined. This suggests the following method of solution of the
Cauchy problem.

We take an arbitrary point Py(xy(1), yo(n), 0)on the datum curve y. The
value of uat Py is uy(n) . solving the characteristic equations and the
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compatibility condition  with initial values x = xq(n),y = yo(n),u =
uy(n) at ¢ = 0, we get

x = x(xo(M),y0(m),0),y = y(xo(1n),¥0(1n),0) (2.10)
and
u = u(xo(m),yo(n),uo(n),0) (2.11)

Solving the pair of equations (2.10) for o and 1 in terms of x,y and
substituting in (2.11) we get a solution of the Cauchy Problem in
neighbourhood of the curve y.

Fig 1.1 Solution of a cauchy problem with the
help of characteristic Curves C..

the method fails if the curve y coincide with the characteristic curve.
From the compatibility condition (2.5) we also note that if y is a
characteristic curve, the variation of the Cauchy data uy(n) on y is
constrained by the relation (2.5) and so cannot be arbitrarily prescribed
on it.

Example 2.1: Solve the Cauchy problem of partial differential equation
2uy +3u, =1, (2.12)

with Cauchy data prescribed on the straight line y: x = fx — ay = 0,
where a and £ are constants. A parametric representation of Cauchy data

isx=an, y= pn,ulan,pn) = f(n)

Solution: Initial values: x, = an,y, = fn,0 =0a=2,b=3,c=1



Characteristic Equations

d—x=2,d—y=3=>dx=2da, dy = 3do

do do

=>x=20+cy,

Applying Initial Conditions, an =2 *0+c; =>¢; = an
=>x=20+an (2.13)
Andy = 30 + ¢y,
Applying Initial Conditions,fn =3 * 0+ ¢, => ¢, = fin
=>y =30+ 7 (2.14)

W s s du=do=>u=o+
oo C¢=>=l=>du=do=>u=0+c

Applying Initial Conditions,f(n) =0+ c3 => ¢35 = f(n)
=>u =0+ /()
Solving ¢ and 1 from (2.13) and (2.14)

3x — 2y px — ay

PN =Ga=25" T 28-3a

Substituting these values inu = o + f(n)

__ay—fBx 3x-2y
We get, u = Y + f (3a_2ﬁ) (2.15)

Provided we assume that

3 — 2B # 0 (2.16)

Equation (2.15) represents a genuine solution of the equation (2.12) if the
given function f(n) is continuously differential. Then u, and u, are C!
function in the entire (x,y) —plane and satisfy the equation (2.12).

When the constants a and f are such that3a — 2 = 0, the above method
of finding the solution breaks down. In this case the straight line y is itself

.. .. dx
a characteristic curve. Along a characteristic curve == 2. The

g
compatibility condition (2.5) shows that the function f(n) in the above
Cauchy problem cannot be arbitrarily prescribed but must satisfy the

relation
arm _ «a
o =2 (2.17)



This condition completely determines the function f(n)expect for a
constant of integration:

f) =3n (2.18)

It is simple to check that the characteristic Cauchy problem with the
Cauchy data

3

a
x=an  y=zan,  u=3

has a solution of the form

u=§+g6x—2w (2.19)

Where g (&) is an arbitrary C! function of & and satisfies g(0) = 0

This example verifies a general property namely, the solution of a
characteristic Cauchy problem when it exists, is non unique in that it
involves an arbitrary function.

Example 2.2: Solve the Cauchy problem of partial differential equation
U, + Uy = u, with initial conditions u(x,0) = 1.
Solution-a=1,b=1,c = u,

With initial conditions, xo =1,y =0,ug = 1,0 =0

Characteristic equation: Z—z =1=>dx=do

=>x=0+
Applying Initial Conditions,n =0+ ¢y =>c¢; =7
=>x=0+n=>n=x-y

dy
E=1=>y=a+c2,

Applying Initial Conditions, 0 =0+ ¢, =>c¢, =0
=>y=0

du du

Applying Initial Conditions, log1 =0+ c3 =>¢c3 =0
logu=0=>u=¢e?

=>u=-eY



Example 2.3:Find the characteristic equation of the following PDE

yuy —xu, =0

Solution: Characteristic equation

Wb X ay=xd
dx a y_ yoy = —xax

=> fydyzf—xdx

> Y x + tt
=>"==——+cons
2 2

=>x+y?=c¢

This represents equation of circle with centre as origin.

Example 2.4:Find the characteristic equation of the following PDE

2xyuy — (x* + y*u, =0

Solution: a = 2xy, b = —(x? + y?)

dy b __dy x*+y?
a

= = — — 2y _ 22
> I 2y > 2xydy x“dx —y“dx

dx
2xydy + y?dx = —x?dx

d(xy?) = —x%dx

Integrating both the sides,

1.

3
x
[d(xy?) = f —x%dx => xy? = g te

3

, X
=>xy +?—c=0

=>3xy?+x3—-C=0
EXERCISE 2.1

Find the characteristics of the equation (x% — y? + Du, +
2xyu, =0

Show that characteristic of u,, — u,, = 0 touches the branch of the
hyperbola xy = 1 in the first quadrant of the (x,y) —plane at the
point P(1,1). Verify that the point P divides the hyperbola into
two portions such that the Cauchy data prescribed on one portion
determines the value of u on the other portion.
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3. Find the solution of yu, — xu, = 0, given that u(x, 0) = x* for
—0o < x <00

4. Show that if uis prescribed on the interval 0 <y <1 of the
y —axis, the solution of (x*—y?+ Du, +2xyu, =0 is
completely determined in the first quadrant of the (x,y) —plane.

5. Find the solution of the partial differential equation
(x + D%uy + (y — 1)*uy, = (x + y)u satisfying the condition
u(x,0)=—-1-xfor-1<x <o

6. Find the solution of the Cauchy problems and the domain in which
they are determined in (x, y) —plane:
(i) yu, +xu, = 2uwithu(x, 0) = f(x)forx >0,
(i) yu, +xu, = 2uwithu(0,y) = g(y)fory > 0,
(iil) uy +uy = u® withu(x,0) =1 for — oo < x < 0

1.3.2 Quasilinear Equations
Now, we pass on to the general quasilinear equation of the first order
a(x, t,Wu, + b(x,y, Wu, = c(x,y,u) (2.20)

where the coefficients a and b depend on the dependent variable u also.
We assume that a,b,care C! functions in the domain D, of
(x,y,u) —space. We recall here the geometrical interpretation of a
solution u = u(x,y) as a surface in (x,y,u) —space, called integral
surface. The direction ratio of the normal to the surface are
(ux,uy, —1), so equation (2.20) can be written as (a, b, ¢). (ux, Uy, —1) =
0 (2.21)

where the left-hand side is the scalar product of two vectors, we can
interpret the equation as being equivalent to a condition that the integral
surface at each point has the property that the vector (a, b, ¢) is tangential
to the surface.

Monge  direction:At any point (x,y,u)inD,, the vector
(a(x,y,u),b(x,y,u),c(x,y,u)) defines a direction, called Monge
direction. Therefore, the coefficients in the equation (2.20) defines a
direction field i.e. the field of Monge directions in the domain of D, of

(x,y,z) —space.

Monge curve: A surface u = u(x,y) is an integral surface if and only if,
at each point of the surface the tangent plane contains the Monge direction
at that point.Thus, at a given point (x,y,u) the tangent plane of the
integral surface has one degree of freedom, i.e. it can rotate about Monge
direction. A space curve whose tangent at every point coincide with
Monge direction is called a Monge curve and it determined by the
equations,
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dx _ dy _ du
a(xyw) bloyu)  c(xyu)

(2.22)

This equation also known as Lagrange equation.

In terms of parameter o, such that do is the common value of the three
ratios in (2.22), we can write the characteristic equation and compatibility
condition respectively as

dx _ d_y _

2 = a(xy,u),—= = b(x,y,u) (2.23)
and

d

= =c(xy,u) (2.24)

As in §2.1, we consider a surface in D,given by x = xq(n1,15),y =
Yo(M1,12),

u = uy(n4,12), such that it nowhere touches the Monge curve. Solving
the system of equations (2.23) and (2.24), with the condition x =

Xo(M1,12), Y = Yo(1,m2),u = ug(n1,mz2)ato = 0, we get a
representation of the Monge curve in the form

x =x(0,11,12),y = y(0,11,1m2),u = u(0,11,12) (2.25)

The totality of Monge curves form a two-parameter family of curves with
parameter n,andn,. The projection of a Monge curve on (x,y) —plane is
called characteristic curve of (2.20). Note that the characteristic equations
(2.4) of the semilinear equation (2.1) are not coupled with the
compatibility condition (2.5) and hence can be integrated independently.
Thus, the one parameter family of characteristic curves of a semilinear
equation can be drawn once for all without any reference to the
compatibility condition. For the quasi-linear equation (2.20), the
characteristic equation and compatibility condition are coupled. Therefore,
to determine the characteristic in case of the quasi-linear equation, we
have to draw them by solving the three equations (2.23) and (2.24)
together. The totality of the characteristic curves in (x,y) —plane of
quasilinear equation forms a two-parameter family of curves. For a given
solution u is a known function of x and y, and the equation (2.23) for
characteristics can be solve without any reference to the compatibility
condition (2.24), as in the case of semilinear equations. In this case
through any point (x, y), there is only one characteristic curve and the set
of all characteristic curves from one characteristic curve and the set of all
characteristic curves form one- parameter family of curves in the

(x,y) —plane.
Example 2.5: consider the partial differential equation

uuy, +u, =0
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The Monge curve through the point (X, Yo, Up) is a straight line given by
the equations

X —xo =Ug(y — ¥o),u = ug

The characteristic curves through an arbitrary point (xg,y,) In
(x,y) —plane is the one parameter family of straight line passing through
the point and depending on the parameter u.

Consider a surface generated by a one parameter sub-family of Monge
curves. The tangent plane at the point of the surface contains the Monge
direction at that point. Therefore, every surface generated by a one
parameter sub family of Monge curve is an integral surface of (2.20). the
converse of this statement is also true. Let u = u(x,y) be an integral
surface S. Let x = xo(1),y = yo(n),

u=1uy(m) =ulxe(m),yo(n)) be a space curve lying on S and suppose the
function xy(n), yo(n) are so prescribed that the curve is not Monge curve.
Consider the solution of

a d
ﬁ = a(x, y, u(x, y)),ﬁ =b(x,y,u(x,y)) (2.26)

with x = x,(n),y = yo(n) at ¢ = 0 in the form x = x(0,7n),y = y(o,n).
In (2.26) u is known function of x, y from the equation of integral surface
S. Then along the one parameter family of curves

x =x(o,m,y = y(o,n),u=u(x(o,n),ylo,n) (2.27)
with 7 as parameter lying on S, we have

du dx dy
w - w T
In view of (2.26) and (2.28), we infer that the curves (2.27) are Monge
curves. These Monge curves generate the integral surface S as nvaries. We
have shown that starting from a non-Monge curve on an integral surface,
we can determine one parameter sub-family of Monge curve that generate
the surface. Thusany integral surface S is generated by a family of Monge

curve depending on a single parameter 1.

Uy = au, + bu, = c(x,y,u) (2.28)

Now we have also proved that through an arbitrary point of an integral
surface there passes a Monge curve which lies entirely on the integral
surface. This with the uniqueness theorem of the solution of an initial
value problem of the ordinary differential equation (2.23) and (2.24)
implies that if Monge curve is tangential to an integral surface at any
point, it lies entirely on the integral surface.

We can now present a method for the solution of a Cauchy problem for
the quasilinear equation (2.20). We first note that geometrically x =
xo(M),y = yo(m),u = uy(n) represents a curve I'in (x,y,u) —space. We
call this curve initial curve. The datum curve y, on which the Cauchy data
is prescribed, is the projection of I' on the (x,y) —plane. A geometrical
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representation of a Cauchy problem for a first order partial differential
equation is to find an integral surface of the equation passing through
initial curvel'. The result of the last two paragraphs shows that in the
order to solve a Cauchy problem we just have to find the surface generated
by the one parameter family of Monge curves, starting from the points

(xo (), Yo (), uo(m)), in the form

x =x(o,n),y =y(o,n),u=1u(o,n) (2.29)

This is a parametric representation of required integral surface. We shall
again have to exclude datum curve which are tangential to the
characteristic curves. We present here a precise formation in the following
theorem.

Theorem 2.1: Let x,(n),y,(n), anduy(n) be continuously differential
function of 1 in a closed interval say [0,1] and a, b, c be functions of
x,y,u having continuous first order partial derivatives with respect to their
arguments in some domain D, of (x,y,u) —space containing the initial
curve

F:x=x0),y =yomu=u(®);0=<n=<1 (2.30)
and satisfying the condition

LD (s (1), 70 01 110 (1)) — 222 b (g (), Y1), o (1)) 0.

2.31)

Then there exists a solution u = u(x, y) of the quasi-linear equation (2.20)
in the neighbourhood of the datum curve y:x = xo(n),y = yo,(n), and
satisfying the condition uo(n) = u(xo (1), ¥(1)),0<n <1 (2.32)

Proof: since a,b,c have continuous partial derivative with respect to
x,y,u; the ordinary differential equation (2.23) and (2.24) have a unique
continuously differential solution of the form (2.29) satisfying the initial
condition

x(0,17) = x0(1),¥(0,1m) = yo(1), u(0,n) = ue(n) (2.33)

As x0(n), ¥o(n), anduy(n) be continuously differential, the solution (2.29)
is continuously differential with respect to 7. In view of assumption (2.31)
the Jacobian

o, ¥) _ |%a Xn| _ _
o=y yn|—(ayn bx,) (2.34)

does not vanish at 0 = 0 for 0 < 7 < 1. Therefore, in the neighbourhood
of 0 = 0, we can uniquely solve for o and 77 in terms of x and y from the
first two relations in (2.29) and substitute in the third relation to get u as a
function of x and y

ie.u(x,y) =u(o(x,y),n(xy)) (2.35)
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At any point of the datum curve, u(x,(1),¥0(1)) = u(0,17) = uy(n),
which shows that the initial condition (2.33) is satisfied.

From (2.24), i.e.u, = ¢, we have uyx, + uyy, =c¢ or au, +bu, =c¢

showing that the function u(x,y) given by (2.35) satisfies the equation
(2.20).

To prove the uniqueness of the solution we first note that if a Monge curve
is tangential to an integral surface at any point, it lies entirely on the
surface. Let us assume now that there are two integral surfaces S and S’
passing through the initial curve I', given by (2.30). Then for an arbitrary
given value of 7, the Monge curve (2.29) starting from the point
(xo (M), vo(m),uy(n)) lies entirely on both the surfaces S and S'.Hence S
and S’ are generated by same subfamily of Monge curves which implies
that the two integral surfaces are same.

Example 2.6: Consider the equation
uuy, +u, =0 (2.36)
with the Cauchy data u(x,0) = x,0 < x < 1.

prescribed only on a portion of the x —axis. The Cauchy data can be put in
the form of (2.30):

x=ny=0u=n1n0<n<1237)
Solving the characteristic equations and compatibility condition

dx dy_ldu_o
do Ydo “do

With the initial data we get
x=n(lc+1), y=0, u=n (2.38)

The characteristic curve passing through a point x = 7 on the x-axis is a
straight line x = n(y + 1). These characteristic for all admissible but
fixed value of ni.e.0 <n < 1 pass through the same point (0,—1) and
cover the wedged shaped portion D of the (x,y)-plane bounded by two
extreme characteristics x = 0 and x = y + 1.u = n in (2.38) shows that
u is constant in those characteristics, being equal to the abscissa of the
point where the characteristics intersects the x-axis. The solution is
determined in the wedged shaped region D as shown in the Fig. 1.2

14
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(14, 0) (12,0) (314,0)
o (1,0) ]

Fig 1.2

The solution is determined in the wedge shaped region D of the {x, ¥)-plane.

We note two very important aspects of quasi-linear equation from this
example.

(1) The domain D in the (x,y)- plane in which the solution is
determined depends on the data prescribed in the Cauchy problem.

Had we prescribed u(x,0) =constant= %, say, for 0 < x < 1, the

characteristic would have been a family of parallel straight lines
y — 2x = —2n and the domain D would have been a family of
parallel straight lines y — 2x = —2n and domain D would have
been the infinite strip bounded by extreme characteristics y —
2x = 0 and y — 2x = —2 as shown in the Fig. 1.3.

(11) Even though the coefficient in the equation (2.36) and the Cauchy
data (2.37) are regular, the solution develops a singularity at the
point (0, —1). Geometrically this is evident from the fact that the
characteristic which carry different values of u all intersect at
(0,—1). Analytically, this is clear from the explicit form of

solution obtained (2.38) after eliminating ¢ and 7:
X
u=— (2.39)

T oy+1

The appearance of the singularity in the solution of a Cauchy problem for
certain Cauchy data is properly associated with non-linear differential
equations.

15



/A

Fig 1.3 |The domain D when the Cauchy data is u(x, 0)=1/2 for 0 sxZ 1.

1.3.3 the characteristic Cauchy problem

We have just seen that if the datum curve y is such that Cauchy data
satisfies (2.31), then the unique solution of the Cauchy problem exists in a
neighbourhood of the curve. Now suppose that

8D gty (), 70 01 110 () — L2 (g (), 70 0, 10 () = O
(2.40)

Everywhere along the curve v, i.e.y is a characteristic curve for a possible
solution. Let us suppose further that a solution: u = u(x,y), of Cauchy
problem exists. Then from (2.40) and (2.20) it follows that

dug (TI)
dn

dyy

d dx
= g 400, yo(m) = 2w o o) + ey (o, o)

must be proportional to cy(xo(1), yo(n), uo(n)). Therefore the function
x0(M), yo(m), uo(n) satisfy the equations
dxg dyo

aGo (), Yo, u(m) bd(xo(n),yo(n),uo<n))
Ug

~ cCro(m), yo (), o (1))

and the initial curve I is necessarily a Monge curve.
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Consider now another curve I'" in (x,y,u)- space which is not a Monge
curve and which intersects I' at some point. Then we can obtain an integral
surface S’ passing through I''. As on point of T lies on S’ the entire original
initial curve ' will lie on S” and hence S’ is an integral surface passing
through I'. Consider now another curve I'", which is not a Monge curve
and which intersects I', but does not lie on S’. Then we get another integral
surface S" containing T and different from S’

Therefore, the solution of a characteristic initial value problem, if it exists,

is nonunique.
\
i | Y\\

L—

e \rl_""u-\‘

Fig1.4 Integral surface containing an initial curve I
which is’a Monge curve

1.3.4 General Solution

Until now we have discussed only those solution of a first order
differential equation which satisfy certain prescribed conditions (i.e.
solution of a Cauchy problem). In general, these particular solutions are
completely determined. For a single quasilinear equation of first order, it
is possible to get an explicit form of general solution which is define to be
a solution from which all particular solution can be obtained.

A relation of the form f(x,y,u) = C, where C is a constant is called a first
integral of first order ordinary differential equations (2.22)(or (2.23) and
(2.24)), if the function f(x,y,u) has a constant value along an integral
curve of (2.22) (i.e. along a Monge curve). It follows, therefore, that if
f(x,y,u) = C be a first integral of (2.22) and x = x(0),y = y(0),u =
u(o) be a solution of these equations, then f(x(o),y(o),u(o)) is
independence of o.

The general solution of the ordinary differential equation (2.22) consists
of any two independent first integrals

¢, y,u)y=C;, and Y(x,y,u)=2=C, (2.41)

17



which together also constitute another representation of the two-parameter
family of Monge curve of (2.20). The surface represented by a first
integral, say ¢(x,y,u) = C;, is generated by one parameter family of
Monge curves by varying a parameter C, and hence represents an integral
surface of (2.20). now it follows that each one of the two equations in
(2.41) represents a one parameter family of integral surface of (2.20).
Next,we prove a theorem which connect the two independent families of
integral surface two the quasilinear equations.

Theorem 2.2: if ¢(x,y,u) = C; and Y (x,y,u) = C, be two independent
first integral of the ordinary differential equation (2.22), and ¢Z + 2 # 0
the general solution of the partial differential equation (2.20) is given by

h(d(x,y, ), (x,y,u)) =0 (2.42)
where h is an arbitrary function.

Proof: since the first integral ¢(x,y,u) = C; represents an integral

surface, the equation (2.20) is satisfied by u, = —ﬁ, U, = — %y This

. Pu bu
gives

apy + bop, +cep, =0 (2.43)
Similarly

ayy + by, + cp, =0 (2.44)

If f(x,y,u) = 0 be the equation of an integral surface of (2.20), we also
have

afx+bfy+cfu =0 (2.45)

Since a? + b% + ¢? # 0, it follows from (2.43)—(2.45) that the Jacobian

%E 0. This implies that f = h(¢,) where h is an arbitrary

function of its arguments, showing that the equation of any integral
surface is given by (2.42).

The two-parameter family of Monge curve in (x,y,u) —space is
represented by the equation (2.41). The integral surface (2.42) is generated
by one parameter sub-family of the Monge curves, obtained by restricting
the values of C; and C, by the relation

h(Cy,Cy) =0 (2.46)

For a given Cauchy problem, it is simple to determine the one parameter
of subfamily of Monge curves which generate the integral surface passing
through the initial curve I’ represented by (2.30). The parameter C; and C,
for which the Monge curve intersect the curve I', satisfy

18



D (xo(m), yo(m), uo(m) = C;
and

Yo, yo(m),uo(m) = C;

Eliminating 1 from these two, we get a relation of the form (2.46) between
C; and C,. This determines the function h.the solution of the Cauchy
problem is obtained by solving u in terms of x and y from (2.42).

Example2.7: Find the general solution of differential equation

(¥ + 2ux)u, — (x + 2uy)uy, = %(x2 —y?) (2.47)

Solution: The characteristic equations and the compatibility conditions
_dx dy _ du

rby+2ux o —(x+2uy) a %(xZ_yZ)

To get one first integral we derive from these,

xdx +ydy  2du _- xdx +ydy

2u(x2 —y2)  x2—y2 2u 2du
=> xdx + ydy = 4udu
Integrating both the sides we get,
o(x,y,u) =x?+y2—4u?=(, (2.48)

For another independent first integral we derive a second combination

ydx + xdy 2du
= 52 => ydx + xdy = —du

y2 — x2 T X2 —
Y(x,y,u) =xy+2u=_=C, (2.49)
The general integral of the equation (2.47) is given by
h(x? + y? —4u?,xy + 2u) = 0 or f(xy + 2u) = x? + y? — 4u? (2.50)
where h or f are arbitrary functions of their arguments.

Consider a Cauchy problem in which u is prescribed to be zero on the
straight line x — y = 0. Parametrically, we can write it in the form

x=ny=nu=0

From (2.48) and (2.49) we get, 2n? = C;and n? = C, which gives
Cl = 262

Therefore, the solution of Cauchy problem is obtained, when we take
h(¢, 1) = ¢ — 2. This gives u = ~{,/x —y2 +1 -1} (2.51)
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We know that the solution of the Cauchy problem is determined uniquely
at all points in the (x, y)-plane.

Example 2.8: Find the general solution of the following quasi linear
equations.

2

y2u
) Uyt U = y?

dx d du dx d du
Sol ==Z="=> 2 =2 =2
a b c yeu xu  y?

X

Taking 1* two terms together

dx dy _xdx dy

Y’u  xu T y?u  xu
X
__xdx dy
y:oox
5 3 y3
xdx=y2dy=>?=?+c

=>¢p(x,yu)=x3—y3=C,
Taking 1 and 3™ term together,

dx du 3 B xz_uz )
ou F—>xdx—udu—>7—7+c

X

Y, y,u) =x2—ut=C,
The general solution is h(x3 — y3,x2 —u?) =0

b) x’p+y?q=u

. dx _dy _d dx _dy _d
Solution: = =2 =& > 2 ¥ _ 2
a b c x2 y2 u
; dx dy
Taking first two terms together, — = v
> d(x,y,u) ~_lo¢
= XY, U)=E———=
y Xy«

. dy _d
Taking last two terms together, y—jzl = 7” => —i =logu+c

1
=> YP(x,y,u) E;+ logu =C,
The general solution is h G — i,i + log u) =0
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¢) tanxu, +tanyu, =tanu

. dx d du
Solution: =2 =
tanx tan y tanu

dx _ dy

Solving,
tanx tany

=> cotxdx = coty dy
=> log sinx = logsiny + logc
=> logsinx =logsiny * C;

sin x

=> sinx = Siny Cl => ¢(x,y,u) = Siny — Cl
Solving dy _ _du
tany  tanu
siny
=> Y, yu) =—=
Py sinu 2
The general solution is h (Si_nx ’ an Y) _
siny sinu
d) u, + 3uy = 5u + tan (y _ 3X)
Solution =% — 4
1 3 Su+tan (y—3x)
dx = @y =>3dx=d
1 3 x=ay

=>3x=y+c=>¢x,yu)=y—-3x=(;

dy du
3 5Su+tan(y — 3x)
__dy du

3 5u+tanC,
y L
§=log(5u+tanCl)*§+c

Y(x,y,u) =5y — 3log(5u + tan(y — 3x)) = C,
The general solution is
h(y — 3x,5y — 3log(5u + tan(y — 3x)) = Oor
f(y —3x) = 5y — 3log(5u + tan(y — 3x)
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EXERCISE 2.2

1. Show that all the characteristic curves of the partial differential
equation (2x + wu, + (2y + w)u,, = u through the point (1, 1)
are given by the straight line x —y = 0.

2. Discuss the solution of the differential equation uu, + u, =0,
y > 0,—o0 < x < oo with Cauchy data
u(x,0) = a? — x*for|x| < «a
=0 for|x| > 0

3. Find the general solution of the equation
(2x — y)y*u, + 8(y — 2x)x%uy, = 2(4x* + y*)u
and deduce the solution of the Cauchy problem when u(x, 0) =
%on a portion of the x- axis.

4. Show that the result of elimination of an arbitrary function
h(¢,y ) of two arguments from the relation

h((p(x’yxu), l/}(X,y, U)) =0

1.4 FIRST ORDER NON-LINEAR EQUATIONSIN TWO
INDEPENDENT VARIABLES

The most general first order equation, i.e. an equation of the form
F(x,y,u,pq) =0 (3.1) where F is a given function of its arguments
and

P = ux; CI = uy (32)

In this section we shall consider a non-linear partial differential equation,
i.e. equation (3.1) where F is not linear in p and q. we assume here that the
function F possess continuous second order partial derivatives over a
domain D of (x,y,u,p,q)-space with F + F} # 0. Let the projection of
D5 on (x, y, u)-space be denoted by D,.

1.4.1 Monge strip and Charpit’s Equation

Let u = u(x, y) represent an integral surface S of (3.1) in (x, y, u)- space,
then (p, g, —1) are direction ratios of the normal to S.

The differential equation (3.1) states that at any point P(x,, Vo, Up) on S,
there is a relation between pyandq,. This relation f(xq, Yo, U, Po, o) = 0
between p,, &q, is not linear. Hence all the tangent to integral surface do
not pass through the fixed line but form a family of planes enveloping a
conical surface, called the Monge conewith P as its vertex. The differential
equation thus assigns a Monge cone at every point, i.e. a field of Monge
cones in the domain D, of (x,y,u)-space. The problem of solving the
differential equation (3.1) is to find the surface which fit in the field, i.e.
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surfaces which touch the Monge cone at each point along a generator.
Also note that Monge cone need not to be closed.

Example3.1: Consider the partial differential
p*—q*=1 (3.3)

At every point of the (x,y,u)-space the relation (3.3) can be expressed
parametrically as

po = coshd, gy =sinhl—o <A< o0 3.4)
The equation of tangent planes at (X, Yo, Ug) are

(x —xg)coshAd + (y —yo) sinhA — (u—uy) =0 (3.5)
The envelope of these planes is A- eliminant of (3.5) and

(x —xg) sinhA+ (y —yy) coshA =0 (3.6)

Which is obtained by differentiating (3.5) partially with respect to A.
Therefore, the Monge cone of (3.3) is

(x — xo)z -y- 3’0)2 - (u— uo)z =0 (3.7)

This is the right circular cone with semi vertical angle % and whose axis is
the straight line passing through (x,, ¥, Uy) and parallel to x-axis.

Since an integral surface is touched by a Monge curve along a generator,
we proceed to determine the equations to a generator of the Monge cone
of (3.1). At a given point (xg, Vo, Up), the relation between p, and q, can
be expressed parametrically in the form

Po = Po(X0, Y0, U0, A)s qo = qo (X0, Yo, Ug, A) (3.8)
which satisfy
F(xm Yo, Ug, Po (X0, Yo, Ug, ), o (X0, Yo, Uo, /1)) =0 (3.9)

For all values of the parameter A for which p, and g, in (3.8) are defined.

The equations of the tangent planes for A and A + 64 are

Po (X0, Yo, Ug, 1) (X — x0) + qo(x0, Yo, Uo, V(Y — ¥o) = u —1uy
(3.10)

and

Po (X0, Yo, Ug, A + ) (x — x0) + qo (X0, Yo, U, A + (Y — ¥o) = u — Uy

(3.11)
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The limiting position of the line of intersection of these planes as 64 — 0
is a generator of the Monge cone at (x,, ¥y, Ug). Expanding p, and g, in
(3.11) in powers of 64, using (3.10) and retaining only the first-degree
terms, we get

20 (x — x0) + 22 (y — o) = 0 (3.12)

(3.10) and (3.12) are the equations to the generators in the terms of the
parameter . We can eliminate the derivatives — and q°w1th the help of
(3.9) which gives

F, 24 F 2l =g (3.13)

From (3.10), (3.12) and (3.13) we get the following equations of the
generator of the Monge cone at (x,, Vo, Ug)

X=Xo _ Y—Yo _ U—Ug (3 14)

Fp Fq pFp+qFy

If we  replace X — Xo,Y — Yo, U — Ugby dx, dy, du, respectively,
corresponding finite infinitesimal moment, x —x, =dx,y —y, =
dy,u —uy = du, from (x,, yo, Ug) along the generator, then (3.14)tends to

E_r__= (3.15)

Fp Fq pFp+qFy

We note that, for quasilinear equation (2.20), equations (3.15) reduce to
(2.22) showing that the Monge cone degenerates into the Monge line
element.

Suppose we are given an integral surface S:u = u(x,y), where u(x,y)
has continuous second order partial derivatives with respect to x and y. At
the point of S we know u,p and q as function of x and y.Also at each
point of the surface S, there exist Monge cone which touches the surface
along a generator of the cone. The line of contact between the tangent
plane of S and the corresponding cones, that is the generators along with
the surface is touched, define a direction field on the surface, which is
called Monge direction on S (Fig. 3.1). Monge direction for a quasilinear
equation and Monge direction on an integral surface for a non-linear
equation has the common property that they are special direction
tangential to the integral surface. However, in the non-linear case, they
have no exitance of their own but are defined only when an integral
surface is prescribed.
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Fig 1.5 Monge directions on an integral
surface S.

The above direction field also defines a one parameter family of curves on
S, we call these curves Monge curves on S, and these curves generates S.
Denoting the ratios in (3.15) by do, we notice that the Monge curves on S
can be determined solving the ordinary differential equations

d
= = Fp (6,7, u(x, ), ux (6,), uy (%, 5)) (3.16)
and

d

% =F(xy, u(x,y), u,(x, y),uy(x, ) (3.17)

In the form of

X = x(O—JxOIYO)J Yy = Y(O':xo;)’o) (318)

and then determining u from

u = u(0,xq,¥0) = u(x(o, x9,¥0),¥(0, %9, ¥o)) (3.19)

Here (xq, yo, u(xg, ¥o))is a point on the surface S and the Monge curve on
S given by (3.18) and (3.19) passes through the point. Since

du dx dy

E = Uy % + uy E
It follows from (3.18) and (3.19) that along these curves u varies
according to

da
— = pF, + qF,(3.20)

Where u = u(x,y) has been substituted in the expression on the right-
hand side.
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Example 3.2: consider the function

u =xcos¢ + ysing¢, ¢ =constant. (3.21)
Which represents an integral surface of the equation
F=p?+q>—-1=0 (3.22)
Then (3.16) and (3.17) give

dx_2 =5

To p =2cos¢
d
d—z=2q=251n¢

Therefore, the Monge curves of (3.22) on integral surface (3.21) are given
by

X=xqg+20cos¢p, y=yy+20sin¢
and
u=xyc0s¢+yy,sin¢g + 20

Along the Monge curves on S the variation of p and q are known from
the expressions p = uy(x(a, x9, ¥0), (0, %9, ¥0)) and
q = uy(x(0,%0,¥0),y(0,%0,¥0)) respectively. Now we shall determine
the rates of change of p and q along a Monge curve on S. Since (3.1) is
identically satisfied by u = u(x,y), differentiating with respect to x we
get the identity

E + Fauy + Fyuyy + Fjuy,y =0o0n'S. (3.23)
Along Monge curve on S

du, dx dy
i = Uy o + uxy% = Uy By + Uy F

For sufficiently smooth solution, uy,, = Uy, so that from (3.23), we get

d
L= —(F +pF) (3.24)

Similarly, the variation of q along a Monge curve on S is

d
== —(F, +qF) (3.25)

Given an integral surface, we have shown that there exist a family of
Monge curves, which generate the surface and along which x,y,u,p, q
vary according to

Z—;‘ =F, (3.26)
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d
Y= F, (3.27)

do

du

= pE, + qF, (3.28)
d

ﬁ = —F, — pF, (3.29)
and

9 _ 3.30
do _fy - qu ( . )

We have discussed Monge curves exist only on a given integral surface.
We now reverse the process by disregarding the fact that the system of
ordinary differential equations (3.26) to (3.30) was derived with the help
of integral surface. we call the first two equations (3.26) and (3.27)
characteristic equations, the last three equations (3.28) - (3.30)
compatibility conditions and the system formed with all the five equations
(3.26)-(3.30), Charpit’s equations.

A set (x(0),y(0),u(a),p(0),q(0)) of five differential function is said to
be a strip, if when we consider the curve x = x(0),y = y(0),u = u(o),
the planes with the normals given by (p(o), q(0), —1) are tangential to it.

A solution x = x(0),y = y(0),u = u(o),p = p(o)and q = q(0) of
the Charpit’s equations satisfied the strip condition

du _ oy dy
2 = p(@) =+ q(0) X (331)

Note that not every set of five functions can be interpreted as a strip (Fig.
3.2). A strip requires that the plane with normal(p, g, —q) be tangent to
curve, i.e. they must satisfy the strip condition (3.31) and the normal
should vary continuously along the curve. For a solution of Charpit’s
equation (3.26)-(3.30), the strip condition is guaranteed by the first three
equations.

Along a solution of the Charpit’s equations, we have

A _ pdx  pdy pduyopdp o dg

= b - t+tE =+ F—+FE——+F— (3.32)
which becomes identically equal to zero when we use (3.26) - (3.30).
Therefore, Fremains constant along an integral curve of Charpits
Equations in (x, y,u,p, q) — space.If F = 0 is satisfied at an integral point
o = 0,F = 0 everywhere along the solution of Charpit’s equations.
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(b)

Fig 1.6 | Any set of five functions does not form a strip as iﬁ (a).
The planes must be tangent to the curve and their normal
should vary continuously (b).

The initial value for a solution of Charpit’s equations can be prescribed by
specifying x,y,u,p,q on the four-dimensional surface in
(x,y,u,p,q) —space. Therefore, the system of Charpit’s equations define
a four-parameter family of strips. From this four-parameter family we
choose a three parameter sub-family of strips by imposing the condition
that F = 0 at 0 = 0. Which implies F = 0Oalong these strips. We call this
three parameter sub-family of strips Monge strips and the projection on
(x,y)-plane of the corresponding space curves in (x,Yy,u)-space,
characteristic curve.

We shall show that if a Monge strip, say M has one element (i.e. the values
of x(0),y(0),u(o),p(0),q(0), for some a,say c = 0 common with an
integral surface S:u(x,y), then the strip belong entirely to the integral
surface. let us suppose that at the point P, the integral surface S and the
strip M has common values of (x,y,u,p, q). Since S is an integral surface,
we can find a unique Monge curve on S through P. This together with p
and q at points on this curve, gives a Monge strip M’ on S.Since both strip
M and M' satisfy Charpit’s equations (3.26) — (3.30) with the same initial
condition at P, it follows from the uniqueness theorem of solution of
ordinary differential equation that M and M’ are the same. As M’ belongs
entirely to the integral surface, the result follows.

EXERCISE 3.1

1. Show that the Monge cone of equation p = g? is an open cone which
is generated by a one parameter family of straight lines whose one end
is fixed but the other and moves on a parabola.

2. Consider the partial differential equation F = u(p? + ¢?) —1=0

28



(1) Show that the general solution of the Charpit equation is a four
parameter family of strips represented by

2 3 2 3
X = Xp +§u0(20)5c059,y =y, + §u0(20)551n9

cos @ sin @
u = 2uyo,p = Nex ,qzm

Where x,, vy, Uy and 6 are the parameters.

(i1) Find the three-parameter subfamily representing the totality of all
Monge strips.

(111)Show that all characteristic curves consist of all straight line in the
(x, ¥)-plane.

1.4.2 Solution of a Cauchy Problem

If there exits an integral surface passing through a space curve I':

x =x00),y =yo(M),z =2z,(n); (3.33)

The first order partial derivatives p = po(n) and q = q,(n), evaluated
from the equation of integral surface at the point of I, satisfy the equation

(31)7 Le. F(xo(n): YO(TI):UO(TI): Po(n)’ CIO(n)) =0 (334)

Moreover since uy (1) = u(x,(n),yo(m)), differentiating with respect to
71, we find the strip condition with respect to n:

uo (M) = po(Mxo(M) + qo(Myo’ (M) =0 (3.35)

is satisfied at every point of I'. Therefore, irrespective of choice of S, we
can now solve for py(n) and q,(n) from (3.34) and (3.35) to get an initial
strip

x =x01),y =yo(m,u=u,®,p =00, q = q0(n) (3.36)

We solve the Charpit’s equations (3.26)-(3.30) with initial values of
x,y,u,pand q at 0 = 0 given by (3.36) and get the Monge strips starting
from the various points of I'. Since py, qo satisfy the strip condition (3.35)
with respect to 1, these Monge strips smoothly join to form a surface. Due
to (3.34), F is identically zero along each Monge strip, hence the surface
thus generated is integral surface of (3.1) passing through I'. We note that
there can be more than one integral surface passing through I, since there
can more than one pair of function py(n), qo(n) satisfying the equations
(3.34) and (3.35). However, once a set of values p, and q, ae selected, we
expect to get a unique solution of Cauchy problem. In order that the
solution exists and unique, it will be necessary to impose some restriction
on the initial curve T
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Theorem 3.1: suppose the function F(x,y,u,p,q) € C*(D;) where Dy is a
domain in (X, y, u, p, q)-space. Further suppose that along a datum curve
x=x0m),y =yo(n) on I ={n:0 <n < 1} the initial value u = uy(n)
are assigned. Let the function x,(n), v, (1), uy(n) belong to C2(I); the
functions py (1), qo(n), satisfying two equations (3.34) and (3.35), belongs

to C1(I) and the set (xo(1), ¥o(1), uo(m), Po(1),qo(n)) € D3 for n €1
and satisfies

d d
dinOFq (X0, Y0, U0, Po» Qo) — dL;Fp (%0, Y0, U0, P, Qo) # O (3.37)

Then we can find a domain D in (x,y)-plane containing the datum curve
and a unique solution in D:

u=u(x,y) (3.38)

such that forn € |
u(xo (1), o) = uo(m) (3.39)

ux(xo(n),yo(n)) = Po(n)anduy(xo(n),yo(n)) = qo(n) (3.40)

Proof: since the function appearing on a right hand side of the Charpit’s
equation (3.26)-(3.30) belong to C1(D3) and
%0 (1), Yo (), uo (1), po (M), Go (M)

are C1(I), there exists a unique solution of the Charpit’s equation with

initial condition (x,y,u,p,q) = (xo(m),Yo(M), uo (M), po(M), q0(n)) at
o=20:

x=X(o,m,y=Y(o,n),u="U(o,n,p=Plo,n),q=0Q(cmn)
(3.41) whose partial derivative with respect to ¢ and 7 exists and
continuous.

From (3.26), (3.27) and (3.37) it follows that

a(x)y) _ __dx dy
2(n0) (ato=0) = d—no Fy (X0, Y0, Uo, Pos Qo) — d—no F, (%0, Y0, Ug, Pos Qo) #

0 (3.42)

Therefore, there exists a neighbourhood N(xy,vy,) of a point
(x0(M),¥o(m)) on the datum curve in (x,y)-plane (corresponding to
o = 0, such that in N(xg,y,) we can solve the first two equations of
(3.41) uniquely in the form

oc=o0(xy)n=n(y) (3.43)
Substituting (3.43) in the expressions of u, p and q in (3.41) we get
u= U(a(x, y),n(x, y)) = u(x,y) (3.44)
p=P(a(xy),n(xy) =plxy) (3.45)
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q=0Q(c(x,y),n(x,y)) =q(x,y) (3.46) which are continuously
differential differentiable function of x and y.we shall now show that
(3.44) is the solution the Cauchy problem. It is obvious that on the datum
curve g = 0, the function (3.44) takes the prescribed value uy(n). Further,
on the family of Monge strip (3.41), F(x,y,u,p,q) has a constant value
F(x9, Vo, Up, Po» 9o )Which is zero i.e.

F(x,y,u(x,y),p(x,¥),q(x,y)) = 0 for € N(x0,¥0)  (3.47)

Therefore, the function u(x,y) in (3.44) is a solution of the differential
equation (3.1) provided, we can show that

U (x,y) = p(x,y),u,(x,y) = q(x,y) (3.48)
Consider the function
W(o,n) = U, — PX, — QY, (3.49)

whose value, W(0,n), on the datum curve is zero. Differential (3.49) with
respect to

ow

—=U

oo na_PXna_QYna_PaXn_QaYn

d
= %(UU — PX; — QY5) + B Xs + QY5 — P Xy — QgYy
=0+ P X, + QyYs + X, (F + PE) + Y, (E, + QF,)
where we have used the Charpit’s equation in the result. Adding and

subtracting F, U, we get,
ow
55 = (EX, + EY, + KU, + E,P, + F,Q,) — E,(—PX, — QY, + Up)
=F -EW
Since F identically zero along each of the Monge strips (3.14), F, = 0.

The function Wnow satisfies the following linear homogeneous ordinary
differential equation

Z_‘i’ = —F,(o,))W (3.50) with solution

W =w(0,n) exp{— [, F,(a,1) do} (3.51)

Since W(0,n) = 0,W(o,n) = 0 for all values of (g,n) such that (x,y) €
N(xo,¥0)

Therefore,

U, = PX, + QY, (3.52)
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From the Charpit’s Equation, we also have
U, = PX; + QY (3.53)
From (3.44) we get,

Uy = Ugo, + Unnx = 0,(PXs; + QY5) + nx(PXn + QYn)
= P(X,0, + Xynx) + Q(Yy0, + Y1)

= pg_i+ QZ_Z =P.1+Q.0="P(o,n) =p(x,y) (3.54) where we have

used the expressions of x and y from the first two equations (3.41).
similarly, we can show that

u, =q(x,y) (3.55)

Therefore from (3.47) it follows that u(x,y) given by (3.44) is a solution
of the differential equation (3.1), in the domain N (x,, y,).

To prove the uniqueness of the solution, let us assume that S’ is another
integral surface represented by the solution u = u'(x,y) of the Cauchy’s
problem. The surface S'can be covered by the family of Monge strips after
solving (3.16) and (3.17) with u replaced by u'. These Monge strips
satisfy the same initial condition at their point of intersection with the
initial curve I, as the strips (3.14). from the uniqueness theorem for a
solution of the Charpit’s ordinary differential equations, it follows that this
family of Monge strips on the integral surface S’ must be the same as the
strips (3.41). Therefore, the integral surface S coincide with S’, i.e.u = u'

in N (xo, ¥o)
Example 3.1:Consider the equation
pt+q:=1 (3.56)

And straight line in (x, ¥)- plane.

X=Xxg=7nsinfcosa,y =y, =nsinfsina (3.57)
On which u prescribed by
u=uy=ncosp (3.58)

where a and [ are constants.

The Monge cone at (xg, Vo, Ug) is the envelope of the planes
(x —xp)cosA+ (y—yo)sind—(u—1uy) =0

The Monge cone is therefore represented by the equation

(x —x0)* + (¥ —¥0)* = (u—uy)?
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which gives a right circular cone with vertex at (x,, y,, Ug), axis parallel to
u-axis and semi vertical angle g.

Fig 1.7

o libh

Monge cone at
the origin

<

Case (a): When g < =4 the initial curve I" is in the interior
of the Monge cone.
Case (b): When g>=/4, I' is outside the Monge cone.

For the initial strip we have to solve the equations

pi+qi=1 (3.59)
and
PoSinf cosa + qysinffsina = cos B (3.60)

Ifp< g, the equations (3.59) and (3.60) do not possess a real solution for

po and qyshowing that the solution of Cauchy problem does not exist. This
can be explained from the fact that the space curve given by (3.57) and
(3.58) through which the integral surface should pass, lies in the interior of
the Monge cone at the origin. Naturally it is not possible for an integral
surface to touch the Monge cone along a generator of the cone and also to
pass through a line within it.

For m\4 < B < m/2, we get two sets of values of p, and q,

po = cot f cos a + sina (1 — cot? B)1/? (3.61)

qo = cot B sina F cosa (1 — cot? B)1/2 (3.62) which
is independent of 7.

The Charpit’s equations are

dx _
do ’

dy _

2q
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Z_z = 2(p? + q*) = 2(1) = 2, using (3.56)
2 — gand & =0
do do

Solving thesewith the initial values (3.57), (3.58), (3.61) and (3.62), we
get

X = 2pgo +nsinfcosa,y = 2qo0 +nsinfsina,u = 20 +n cosp,

P ="Poq =qo (3.63)

Eliminating ¢ and n from (3.63) we get the two solution of Cauchy
problem corresponding to the two sets of values of p, and q,.

u=cotf(xcosa+ysina)+.1—cot?f (xsina —ycosa)
(3.64)

They represent two planes which pass through the initial line I' and touch
the Monge cones along two generators.

1.4.3 Solution of a Characteristic Cauchy Problem

We have seen that when the condition (3.37) is satisfied, i.e. when the data
is such that datum curve y in (x,y)-plane is nowhere tangential to the
characteristic curve for a possible solution of the Cauchy problem exists
and unique. However, when F,x,(n) — F;y,(n) = 0 hold everywhere
along y and the initial manifold M: (xy(1), vo(m), uo(), Po(M), q0(M))
belongs to the integral surface S, then following the arguments of §3.1 for
the derivation of Charpit’s equation (3.26) — (3.30) we can show that the
strip M must be a Monge strip on S with the parameter o replaced by 7.
Hence in exception case, F;x, — F;yo = 0, a necessary condition for the
existence of a solution of the Cauchy problem is that the initial strip M is a
Monge strip. This condition is also sufficient. In fact, if this condition is
satisfied, there exist not only one but an infinite number of solutions of the
characteristic Cauchy problem.

If Fyxp— F;yo =0 and the initial strip is not a Monge strip, then it
follows from above that there exists no solution of the Cauchy problem
having continuous derivatives up to second order in the neighbourhood of
the datum curve.

EXERCISE 3.2

1. Solve the Cauchy problems:
(i) %(p2 + g¢*) = u with Cauchy data prescribed on the circle
x?+y2=1byu(cosf,sinf) =1,0<60 <2m

(i) p*+q*+(p—3)(q—%)—u =0, with Cauchy data

2
prescribed on x-axis by u(x,0) = 0
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(i11)  2pq —u = 0, with Cauchy data prescribed on y-axis by
2
u(0,y) ==
(iv)  2p*x + qy —u = 0, with Cauchy data u(x, 1) = —g

2. Consider two parameter family of functions u = ¢(x,y, a, b)
where ¢ is a known functions of its arguments and a, b are

ba  bxa ¢ya .
[¢b Db ¢yb] 15 2, show

that the result of elimination of a and b from the relation

¢(x,y,a,b) =u, ¢ (x,y,a,b) = uy,
¢y (x,y,a,b) = u, leads to a first non-linear equation

parameters. If the rank of the matrix

F(x, v, U, ux,uy) =0

3. Two first order partial differential equations are said to be
compatible, if they have a common solution. Show that the necessary and
sufficient condition for two equations F(x,y,u,p,q ) = 0 and
G(x,y,u,p,q) = 0 to be compatible is that
a(F,G) a(F,G) , 0(F,G) M
aGr) ' Powm " o 1 awa
a consequence of relations F = 0 and G = 0.

= 0 is satisfied either identically or as

1.5 COMPLETE INTEGRAL

In problem 2 in Exercise 3.2 we saw that the result of elimination of two
arbitrary constants a and b from a relation

u=¢(xyab) 4.1)
leads to a non-linear equation
F(x, Y, u, ux,uy) =0 (4.2)

We note that (4.1) satisfied (4.2) for all values of a and b.

We shall show that a solution of the form (4.1) and (4.2) is sufficiently
general in the sense of all other solution of this equation can be obtained
from it merely by simple operation of differentiation and elimination of
the constants.

Definition: A two parameter family of solution (4.1) of the equation (4.2)
is called complete integral of the equation if the rank the matrix

¢a ¢xa ¢ya
¢b ¢xb ¢yb

The condition that the above matrix has rank 2 assures that the
function ¢ depends on two independent parameters and elimination of
a and b from (4.1) and
Uy = ¢x(fof a,b),uy = ¢y(x:y’a:b) (43)
leads to equation (4.2).

Note 1: If a and b be combined into one parameter ¢ = c(a, b), then two
rows of the matrix become linearly dependent and its rank becomes one.

is 2 in an appropriate domain of the variables x, y, a, b.

35



2: If the rank is two, aand b can solved from (4.3) and these can be
substituted in (4.1).

1.5.1 Determination of complete integral

It is simple to determine a complete integral for a given partial differential
equation (4.2). the problem of Exercise 3.2 gives the condition for the
existence of a common solution of two equations F (x, YV, U, Uy, uy) =0
and G(x, v, u, ux,uy) = 0. Once these two equations have a common
solution, we first solve them simultaneously for u,andu,, in terms of x, y
and u.

u, = h(x,y,u)andu, = k(x,y,u)

and then the differential relation

h(x,y,uw)dx + k(x,y,u)dy = du (4.4)

will possess an integrating factor and can be integrated giving a relation
between x,y and u and an arbitrary constant b. Therefore, a complete
integral of (4.2) can be determined if we can determine a compatible
equation G (x,y,u,p,q ) = 0 containing an arbitrary constant a. But this is
simple since the result of problem 3.2 shows that any G satisfying the

equation:

FaG+FaG+(F+ F)aG (F, + F)aG (E, + F)aG—o

Pox " gy bip T qlyg o x puap y T4y aq
(4.5)

would be a compatible equation.

This is the first order linear homogeneous partial differential equation for
G in five independent variables x,y,u,p and q. For the equation (4.5), the

characteristic equations and compatibility conditions are
dx _dy _ du _ dp _ dq

Fp Fq PFp+afy —(Fx+pFy) —(Fy+qFy,)

(4.6)

Since the compatibility condition implies that G =constant on the
characteristic curve in (x, y, u, p, q)-space, it follows that if we can get any
first integral, say s(x,y,u,p,q) = a of the characteristic equations, then
G = s(x,y,u,p,q) —a =0 is the required equation containing an
arbitrary constant a and compatible with F (x, YV, U, Uy, uy) =0

The characteristic equations of (4.5) are nothing but the Charpit’s
equations (3.26) - (3.30) of the equation (4.2)

Example 4.2: Find the complete integral of the partial differential equation

x*p?+y2q?—4=0. 4.7
Solution:Charpit’s equation for the given PDE,
dx  dy du dp dq

2px? 2qy7 2(x%p? +y2q?)  —2xp? -2y

. d d L
We take the relation —— = —— which gives
2px? 2qy?

G = xp =constant= q, say. (4.8)
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Taking one of the value of p and q from (4.7) and (4.8) and substituting in
(4.4), we get

V4 —a?

du = Sdx + d
u=—dx y

Integrating this we get a complete integral

u=alogx++/4—a?logy+b

Containing two arbitrary constants a and b.

Example 4.3 Find the complete integral of the PDE u = px + qy + p* +

2

q-.

Solution: F(x,y,u,p,q) =0

F=px+qy+p*+q¢*—u=0
E=pE =qF=-1LF=x+2p,F,=y+2q

Charpit’s equation for the given PDE,

Taking %p ==

dp dq du dx dy

—p+p —q+q px+2p)+qiy+2q9) x+2p y+2q

dp=0,dq=0=>p=a,q=5»b

Complete integral u = ax + by + a? + b?.

EXERCISE 1.1

Show that the compete integral of

F(p,q) = 0, where F involves only p and q and F(p,Q(p)) =0 is
u=ax+ Q(a)y + b.

F=f(x,p)—g(y,q) =0 is obtained by solving p and g from
f(x,p) = a,g(y,q) = a and integrating du = pdx + qdy.
F=u—px—qy—f(p,q =0isu=ax+ by + f(a,b)

If independent variable x and y do not appear in the equation
F(u,p,ap) = 0, then show that the complete integral can be obtained
by solving p form F(u,p,ap) = 0,taking ¢ = ap and integrating
du = pdx + qdy.

Note: These all are standard results and can be used to find complete
integral of any PDE satisfying the given condition.

1.5.2 Solution of a Cauchy Problem
Once we know a complete integral, we can find solution of the Cauchy
problem.

We are required to construct an integral surface S of (4.2) passing through
an initial curve
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F:ix = x0(),y = yo(m),u=ug(n) (4.9)
At the point of intersection of I' and any member of (4.1) the parameter
7 satisfies

d)('xO (77)’ Yo (77); a, b) = uO(n) (4 1 0)
Differentiating both the sides with respect to 1

%4’(950(77):)’0(77); a,b) =uy'(n) (4.11)

Eliminating n from these two equations we get a relation between a and
b. which is required integral surface.

Example 4.4: Solve the Cauchy problem
2p*x +qy = u 4.12)
with Cauchy data u(x, 1) = — g

Solution: Cauchy data can be put in the form

x=xom =1,y =y =Lu=u() = _§’7
(4.13)

To derive a complete integral, the Charpit’s equations:

dx dy du dp dq

apx y  4pPx+qy —2p+p O
Which gives a compatible equation
g=a (4.14)
Containing an arbitrary constant. From (4.12) and (4.26), we get

u—ay

P= | (4.15)
The complete integral is given by
du = pdx + qdy
P u—ayd +ad >du—ady dx S
u= X a = = = u—a
2x Y Ju—ay V2x Y
x
= [=+b

5+

2
=> (u—ay—g—b) = 2bx (4.16)
Substituting (4.13) in (4.16),
(n +a+ b)? =2by 4.17)
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Which after differentiating with respect to n gives

2(n+a+b)=2b (4.18)

Eliminating n from (4.17) and (4.18), we get
b=-2a

Substituting this value of b in (4.16), we get the solution of Cauchy
problem

Xy
u = .
2(y-2)

EXERCISE 1.2

1. Use the method of complete integrals to solve the following Cauchy
problems:

. 1
) 2pg—u=0u(®l)=:n

i) p—q=5&2+y2)uln) = "2—2 for —eo <n <

iii) p?2+ q% =u,u(cosn,sinn) =1for0<n <2m

iv) u=px+qy+p+q-—2pq ulmn) =2nfor —co<n <o

2. Given any two complete integrals u = ¢(x,y,a,b),u = P(x,y,c,d)
of a first order partial differential equation, show that one complete
integral can be derived from the other.

3. Find the complete integral of 4(p + q)(u —xp —yq) = 1.

1.6 LET US SUM UP:

In this unit two main types of partial differential equations, semilinear and

quasi linear, out of fourare discussed. Cauchy problem and its
characteristics is discussed. General solution can be determined. We have
also discussed Monge curve and Charpit’s equation. Solution of
characteristic Cauchy problem and complete integral is discussed.
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2.1 OBJECTIVE

After doing this unit, you will be able to:

e Classify the 2" order PDE in two variables into hyperbola,
parabola and ellipse

Classify the 2" order PDE in more than two variables

Find the characteristics equations of all three types of PDE.

To solve the Cauchy’s problem.

To reduce the 2™ order PDE in its normal form.

To find the potential equations.

To study about harmonic function.

To derive Poisson’s integral formula.

To learn about Maximum - minimum properties
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2.1 INTRODUCTION

We have studies in previous chapter about first order partial differential
equation and its types, Cauchy equation and how to find the general
solution of this. Now we will learn about second order partial differential
equation in two variables and its classification also study the partial
differential equation more than two variable.

2.2 CLASSIFICATION OF SECOND ORDER PARTIAL
DIFFERENTIAL EQUATION IN TWO
INDEPENDENT VARIABLES.

Consider a general partial differential equation of second order for a
function of two independent variables x and y in the form:

Rr+Ss+Tt+ f(x,y,z,p,9) =0 (1.1)

Where R, S, T are continuous functions of x and y only possessing partial
derivatives defined in some domain D on xy —plane.

Andr = 2—:, s= %, = 2—;, Then (1.1) is said to be
(1) Hyperbolic at a point (x, y) in domain D if
S2—4RT >0
(i1) Parabolic at a point (x, y) in domain D if
S2—4RT =0
(111) Elliptic at a point (x,y) in domain D if
S2—4RT <0

Note that the type of (1.1) is determine solely by its principal part
(Rr + Ss + Tt, which involves the higher order derivative of z) and that
the type will generally change with the position in the xy —plane unless
R,S,T are constants.

Remark: some authors use u in place of z. Then we will have

0%u 0%u . 0%u
r —_ — B S = _’ = ——
d0x? d0x0y dy?
Examples:
. . . . . 0%z 9%z.
1) Consider the one-dimensional wave equation-— = 35717 t=0

Sol. Comparing it with (1.1), here, R=1,S =0,T = —1
S§2 —4RT =0 — 4(1)(—1) = 4 > 0, so the given equation is hyperbolic.

i1) Consider the one dimensional diffusion equation
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. . . . 0% 92 .,
ii1) Consider the two-dimensional Laplace equatlona—xi + ﬁ =0ier+
t=0

Sol. Comparing it with (1.1), here, R=1,S=0,T =1
S§2 —4RT =0 — 4(1)(1) = —4 < 0,50 the given equation is elliptic.
Ex.2. classify the following partial differential equations.

. 9%u
1) 2_+4ax6y_3a_yz_2

So: R=2,§=4T=-3
S2—4RT =16—4+2x—-3 =16+ 24 = 40> 0 =>hyperbolic

1) _+4axay+4_=0

R=1S=4,T =4, S —4RT = 16— 4 % 1 * 4 = 0=> parabolic
iii) xyr — (x% — y?)s — xyt + py — qx = 2(x? — y?)
Sol.: R = xy,S = —(x? —y?),T = —xy
§? —4RT = {—(x* —y?)}> — 4 = xy * —xy,
={(x? - yz)}2 + 4x?y? = x* + y* — 2x%y? + 4x?%y?
= x* + y* + 2x%y? = (x? + y?)? > 0 =>hyperbolic
iv) x(xy — Dr — (x%y? = Ds+y(xy— Dt +xp+yq =0
Sol.: (x%2y? —1)2 —4x(xy — D) *y(xy — 1)
= (x?y? = 1)* — 4xy(xy — 1)?
= (xy — D?*(xy + 1)? — 4xy(xy — 1)?
= (xy — D*{(xy + D? — 4y}
= (xy — 1D?{x%y? + 1 + 2xy — 4xy}
= (xy — D*{x%y? + 1 — 2xy}

= (xy — 1)?*(xy — 1)? = (xy — 1)* > 0 => hyperbolic

2.3 CLASSIFICATION OF SECOND ORDER PARTIAL
DIFFERENTIAL EQUATION IN THREE
INDEPENDENT VARIABLES.

A linear partial differential equation of the second order in three
independent variables x4, x, and x, is given by,
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2
3 3 2°u
=1 Zj:l aij 6xi6xj

+ ;?’zlbi:—;+cu=0 (1.2)

Where aq; j(= a; i)' b; and c are constant or some functions of independent
variables x4, x,, xzand u is thedependent variable.

Since a;; = aj jA = [aif]3><3 is real and symmetric of order 3 X 3. The

eigen values of matrix A are roots of the characteristic equation of A4,
namely |A — AI] = 0.

With the help of matrix A, (1.2) is classified as follows

i) If the eigen values od A are non-zero and have same sign,
except precisely one of them then (1.2) is known as hyperbolic

type of equation.

i) If |[A] = 0,i.e. anyone of the eigen value of A is zero, then (1.2)
is known as parabolic type of equation.

iii) If all the eigen values of A are non-zero and of the same sign,
then (1.2)1is known as elliptic type of equation.

The matrix A can be remembered as
coeff. of uy, coeff. of uy, coeff. of uy,
A = |coeff. of w,, coeff.of u,, coeff.ofu,,
coeff. of uz, coeff. of uy,, coeff. of u,,

Ex.1.classify the PDE Uy, + Uy, = Uy,

Sol.:uyy +uyy —u,, =0

1 0 O
A=[0 1 0
0 0 -1

Characteristic equation of A,
B —tr(AA* + (A1 + Ay +A33)A— Al =0
B-2+(-1-14+DA+1=0
=>13-12-14+41=0
=>1PA1-1)-11-1)=0
A-1DA*-1=0
=>(A-1DA-1D)A+1)=0
=>1=11,-1

It is showing that all eigen values are non-zero and have the same sign
except one. Hence the given equation is hyperbolic type.
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Ex.2.uyy + uyy +uy, +uyy, +u,, =0

Sol.:The given equation can be rewritten as Uy, + 0.Uy,, + 0.1y, +
0.uyy +Uyy + Uy, + 0. Uy +uyy +u,, =0

The matrix A of the given equation is as follows

1 0 0
A=10 1 1
01 1

Determinant of A, |A| =0
=>given equation is parabolic type.
Ex.3. Classify uy, + 2uyy + U,y = 2Uyy, + 2u,,

Sol.:the given can be rewritten as

Uy + 2Uyy + Uy — Uy — Uyy — Uy —Uyy =0
1 -1 0
A=1-1 2 -1f,
0o -1 1

Al =12-1)+1(-1-0+0=1-1=0
=>given equation is parabolic type
Ex4.: classify the following equations.

1) Uy +Uyy U, =0
1) Uy + Uyy = Uy,
1i1) 3Uyy + Uy, + 4Uyy, + Bu,, + 4u,, =0

Sol.: Try yourself.

Ans.: 1) elliptic 1ii) parabolic iii) hyperbolic

2.4.1 THE CAUCHY’S PROBLEM

We start with the general quasilinear second order equation for a function
u(x,y) of two independent variables:

Uy x +2bUyy +Ccuy, =d(l)

where a, b, c,d depend on x,y,u, u,, Uy. The Cauchy problem consists in
finding a solution of (2.4.1) with given values of u and its normal
derivative on a curve C in the (x, y) plane.

Let the parametric representation of C be: x = x4(s),y = yo(s),s € I,
where I is aninterval on the real line. We are given two functions u,(s)
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and u,(s),s €I The Cauchy problem consists in finding a solution
u(x,y) of (2.4.1) which satisfies the following conditions:

a
u(x0(5), Yo(5)) = uo(s),s € fand 2% (x4(), ¥5(5)) = e (s), s € 1(2)
where ;—V denotes a normal derivative to C.

For discussion of the Cauchy problem here, we assume that a, b, c and d
are analyticfunctions, regular in some domain D. Our aim is to examine
whether there exists a unique analytic solution of (2.4.1), which takes
given values on C. To do so, we formally construct a solution using a
Taylor's series expansion about any point of C. The first step in such a
solution is to show that the partial derivatives of u of all orders are
uniquely determined at every point of C Let suffix 0 denote the values of

partial derivatives of u at point of Ci.e.u(xo(s),yo(s)) = uo(s), and so
on. Then u, (s) and u,, (s)satisfy the following linear equations:

x(’)uxo(s) + y(,)uyo(s) = uol(s)

and —youy, () + xouy, (s) = /2 + y§ *ui(s) (3)

where a prime (')denotes differentiation with respect to s. Except at
points where x, and ygvanish simultaneously u,, and u,, can be
determined uniquely.

Regarding second order derivatives, namely, Uy, (s) and uyy (s) and
Uy, (s) they can be determined as solutions of the linear equations:

AUy, (S) + 2bUyy (5) + cuyy, () = d
%0 ($)txxy () + Yo (S)Uyy, (5) = {uy, ()}
%0 ($)Uyy, (8) + Yo (S)tyy, (8) = {uy, (5)} (4

These equations determine Uy, (S), Uyy,(s) and u,, (s) uniquely
provided the determinant of the coefficient matrix is nonzero. This
requires that

ay? — 2bxyyl + cxi2 # 0
OrQ(—yo,x0) # 0 (5)

where Q is the characteristic quadratic form.Further we can show that the
derivatives of u of all orders can be uniquely determined at points of C
provided

In this way we can formally develop a unique Taylor's series expansion
solution in the neighbourhood of any point of C satisfying the given
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conditions on C. The difficulty is to show that such an expansion is
convergent in some region around C. The Cauchy-Kowalewski method
(see Garabedian, 1964) provides a majorant series ensuring convergence.

On the other hand, if Q(—yg, x5) = 0, then the partial derivatives of u on
the curve C cannot be determined uniquely. The exceptional curves C, on
which if u and its normal derivative are prescribed, no unique solution of
(1) can be found satisfying these conditions, are called characteristic
curves. These curves satisfy the homogencous equation

Q(—y0, %) = 0.

If the curve C:x = x4(s),y = yo(s) in the (x,y) plane is given by the
equation ¢ (x, y) =constant.

By eliminating s, then ¢ satisfied the PDE Q(gbx, d)y) =
0 ong(x,y) =constant (6)

Yo _$x_ _dy

Since —
Xo! by dx

From the result it follows that there are two distinct families of
characteristic curves satisfying equation (6), if the equation is hyperbolic.
There are precisely &(x,y) =constant and Y (x, y) =constant, ¢ and 1 are
referred as characteristic variable or coordinates.

For the hyperbolic equation in its normal form, namely,

Ugy + D(E,n,u, uf,un) =0 (7)

&(x,y) =constant and ¥(x,y) =constanare the characteristic curves. If,
for example in the Cauchy problem u andugare proscribed on a
characteristic carve. C: & =constant, then we cannot determine ug
uniquely on ¢ = constant from the given equation (since the coefficient of
Uggis zero in the linear second order equation (7)). Since u and ugare
prescribed on & =constant as uy(n) and u,(n), say, respectively, u and
ugcan be computed on ¢ =constant and the equation (7) will reduce to the
compatibility condition

ul(n) + D(fr n, Ug, Uq, uE)) =0

on ¢ =constant. Compatibility conditions to be satisfied on charactoristic
curves are typical, as tho equation gives no additional information in this
case (like the value of use in equation (7)), but merely insists on a relation
between already known quantities. If the compatibility condition is
satisfied there will be an infinity of solutions of the Cauchy problem
(choosing ugz arbitrarily in (7)), or else there will be no solution. The
above discussion holds for data prescribed on n = constant as well. For a
hyperbolic equation, we have two compatibility conditions, one each on
the characteristic curves ¢ =constant and 7 =constant. For a parabolic
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equation, we have one compatibility condition on the single family of
characteristic curves.

In the canonical elliptic form, ugs and u,,can always be determined
Whenever u and its normal derivative are prescribed on any curve in the
(x,y) —plane, since Q(cpx, qby) # 0 on any real curve ¢(x,y) = constant.
We can always find a unique solution for the. Cauchy problem in this
case.

In the case of m independent variables, those surfaces
¢ (x4, X2, e .. X)) = 0, on which, when the function and its normal
derivative are prescribed, no unique solution, exists satisfying the
prescribed conditions, are called characteristic surfaces. Following a
similar process, as in the case of two independent variables, it follows that
¢ satisfies the equation ,namely

Q1(P) = aapdx,Px;, =00n ¢ =0

The characteristic condition Q;(¢) = 0 is required to be satisfied on ¢p=0
but this does not require that ¢ satisfies the equation Q,(¢) =
Oidentically.

EXERCISE 2.1

1. Let u(x,y) satisfy the equation
Uyy — 2Uyy T Uyy +3Uy—u+1=0
in a region of the (x,y) plane. Classify the equation and find its
characteristics. Construct a solution, if it is exists, for each of the
Cauchy data:
(1) u=2,u, =0ontheliney =0
(11) u=2u,=0onthelinex+y =20

2.4.2 THE SOLUTION OFCAUCHY’S PROBLEM

Consider the second order partial differential equation
Rr+Ss+Tt+ f(x,y,z,p,q) = 0(1)

In which R,S, T are functions of x and y only. The Cauchy problems
consists of the problem of determining the solution of (1) such that on a
given space curve C it takes on prescribed value of z and z—fl, where n is

the distance measured along the normal to curve.

As an example of Cauchy’s problem for second order partial differential
equation, consider the following problem.

. . 9%z 9%z . .
To determine the solution of 9 =3y which of the following data
prescribed on the x-axis. z(x, 0) = f(x), z,(x,0) = g(x). Observe that y-
axis is the normal to the given curve(x-axis here).
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Characteristic equation and characteristic curves:
Corresponding to equation (1), consider the A —quadratic
RA>+SA+T=0 (2)

Where S2 — 4RT > 0, (2) has real roots. Then the ordinary differential
equations

LAy =0 ()

are called the characteristic equations.

The solution of (3) are known as characteristic curves or simply the
characteristics of the second order partial differential equation (1).

Now consider the following cases:

Case 1: if S2 — 4RT > 0 (i.e. if (1) is hyperbolic), then equation (2) has
two distinct real roots A; and 1, say so that we have two characteristic
equations

D oy =02 4 ny) =0
dx 1Y) = "dx 2\ Y) =

Solving these we get two distinct families of characteristic curves.

Case2. if S — 4RT = 0 (i.e.if (1) parabolic),then equation (2) has two
equal real roots each A, so that we have only one characteristic equation

dy _
=+ Ax,y) =0
Solving these we get only one family of characteristic curve.

Case 3. if S? — 4RT < 0 (i.e. if (1) is elliptic), then equation (2) has no
real roots i.e., two complex roots. Hence there are no real characteristics.
Thus, we get two distinct families of complex characteristic curves when
(1) is elliptic.

Ex.1. Find the characteristics of y?r — x%t = 0
Sol:R = y%,§ =0,T = —x?

S2 —4RT =0 — 4(y?)(—x?) = 4x?y? > 0, hence the given equation is
hyperbolic everywhere except on the co-ordinate axes x = 0 and y = 0.

The A —quadratic is RA2 + SA+T =0

ie,y?A2 —x2=0

2
=> 1% = % =>1=4 %are two  distinct roots.  Corresponding

characteristics equation are
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da x d
24 and = =
dx y dx

R IR

=>ydy = —xdx and ydy = xdx

Integrating, x? + y? = c;and x% + y? = c,, which are required family of
Characteristic Curves.

Ex.2. Find the characteristics of x%r + 2xys + y?t = 0
Sol: R = x%,§ = 2xy,T = y?

S§% — 4ART = 4x%y? — 4(x?*)(y?») =0, hence the given equation is
hyperbolic.

The A —quadratic is RA2 + SA+ T =0

=>x?1%2 + 2xyA+y? =0

=>(x/1+y)2=0=>/1=—z,—z

X X
LD _Yog=>T =B 5 ogy =logx +1 =>y= this i
T M = y_x_ ogy =108 x ogec =>y=cx 1S 1S

required family of Characteristic Curves. Here it represents a family of
straight lines passing through the lines.

Ex.3. Find the characteristics of 4r + 5s +t+p+q—2=0

Sol.: Try yourself. Ans.:y —x =cp,y —
X

-—=_C
y 2

Ex.4. Find the characteristics of (sin? x)r + (2cosx)s —t =0

Sol.: Try yourself. Ans: y+ cosecx —cotx =c;,y+ cosecx +
cotx =c,

2.5 METHOD OF REDUCTION TO NORMAL FORM

Consider the second order partial differential equation of the type

Rr+Ss+Tt+ f(x,y,z,p,q) =0, where R,S,T are continuous
function of x and y possessing continuous partial derivative of as high an
order as necessary. There is a certain method to solve different types of
PDE’s which we are going to discuss in detail as follows.
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2.5.1 working rule for reducing a hyperbolic equation to its normal
form

Step1. let the given equation Rr + Ss + Tt + f(x,y,2,p,q) = 0, (1)
be hyperbolic so that S? — 4RT > 0

Step 2.Write A —quadratic equation RAZ2+SA+T=0 (2
Let A, and A, be its two distinct roots.

Step 3. Then corresponding characteristic equations are

dy _ d_y _

E-I_/ll —_— 0 anddx‘l'/lz —_— O

Solving these, we get f;(x,y) = ¢, and f,(x,y) = ¢, (3)

Step4. We select u, v such that u = fi(x,y) and v = f,(x,y) (4)

StepS.Using relation (4), find p, q,7,s,t interms of u and v .

Step6. Substituting the value ofp, q,7, s, t obtained in step 4 in equation
(1) and simplifying we shell get the following canonical form of (1):

0%z ¢< 0z 62)
uv,z,—

oudv "ou’o
0%z 9%z
Ex.1. Write a canonical form of _— — 72 = 0
Sol: Re writing the given equationr — t = 0 ------ (1)

S2 —4RT = 0 — 4(1)(—1) = 4 > 0 =>hyperbolic
A2+0*x1—-1=0=>12=1=>1 =+1

Characteristic equatlon— +1=0=>dy+dx=0=>y+x=(
AndZ—1=0=>dy—dx=0=>y-x=0

Letu=y+x,v=y—x

o ou
Jacobianformofuandvzg_i g_i = _11 1 =14+1=2+*0
dx Jdy
=>u and v are independent function.
az 0z 8u+az av 0z 1+az 1 dz 0z
—_—% -] = — — —
p= 6x ou ox ov ox 6u ov Ju 0Jv

az_az 0z 0 0 0

>a_6u ov ax Ju 0Ov
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dz 0z Ou N dz Ov 0z N 0z

= =—%— 4 — % — = — 4 —

1 dy odu dy Jdv Jdy Jdu OJv
0z 0z 0z 0 0 0

_622_ 0 (62)_(6 6)(62 82)
"= dx2  dx\dx) \ou ov/\ou adv
B 0%z 0%z 0%z N 0%z

T 0u? Oudv Ovou 0Ov?

0%z ) 0%z N 0%z
du? Judv 0dv?

T =

0%z

t_azz_6<az>_<6+6>(62+62)_622 0%z
a9y oay\ay) \ou oav/\ou odv/

Using these values in eq. (1) the required canonical form is

0%z 0%z 0%z <622 0%z 622>_0

ouz 2 Juov + vz \ou? +2 oudv + dv?

0%z 0%z 0%z 0%z 0%z 0%z

ouz Zauav + vz ou? Zauav 92 =0

—> —42%2 _ 0 => 2% _ which is required equai
= 55, = 0 => 5—— = Owhich is required equation.
1 z

Ex.2.t—s+'p—q(1+;)+(;)=0 --------- (1)

Sol:S? — 4RT = (—1)? — 0 = 1 > 0 => this is hyperbolic.
0%22—2A14+1=0=>2=1correspondingcheq. y +x = ¢,

letu=y+x,v=x--(2)

ou ou
. _lox  ay| _ 1 1 _
Jacoblanformofuandv—ﬂ | = Iq 0|——1¢0
dx Jdy

v and u are independent functions.

0z 0z 8u+az v 0z 1+az 1
= = — % — F — % — = — % —
p Ox Ou 0x Ov 0x Ou ov
0z 0z 0z a d d
B iR R it il T T — ®)
dz 0z 0Ou 0z 0Ov 0z
q:—:—*—+—*—:—
dy odu dy Jdv Jdy OJdu
_ 9z _ 0z o _9
- 5_611_ 6y_0u (4)

du? +2 Juov + ov?



9%z 9 (0z ] 9\ [0z 9%z = 9%z
$= 0x0y _5(5) - (E-I_%) (%) _ﬁ-l_auav ________ (5)
9%z o (0z d ,0z, 0%z
t=5 =5 (a5) = 3 G g )
y y \dy uou’  du

Using the values p,q,s,t ineq. (1)

auz_auz_auav+£+%_£ v o) =0

0%z 0%z 0%z 0z 0z 0z 1 z
(1+3)+C)

v v

auav:%-l_% ou va-l_

9%z 0z 10z z C g . .
5on =2 oon T (;) which is required equation.

0%z 9z 0z 0z 10z (z)
v

2.5.2 working rule for reducing a parabolic equation to its normal
form

Stepl. let the given equation Rr+Ss+Tt+ f(x,y,2z,p,q) =0,
(D

be hyperbolic so that S2 — 4RT = 0
Step 2. Write A —quadratic equation RAZ2+SA+T =0()
Let A be its root.

Step 3. Then corresponding characteristic equation is

dy _

™ +1=0.

Solving this, we get f(x,y) = ¢ (3)

Step4. We select u, v such that u = f;(x,y) and v = f,(x,y) (4)

Where f,(x,y) is an arbitrary function of x and y and is independent of
f1(x,y). for this verify that Jacobian J of u and v given by (4) is non —
Zero.

ou Jdu
a(u,v ox 0 ou Jdv ov Jdu
o(x,y) dv  dv dx 9y 9x 9y
dx OJy

StepS.Using relation (4), find p, q,7, s, t in terms of u and v .

Step6. Substituting the value ofp, q,7, s, t obtained in step 4 in equation
(1) and simplifying we get the following canonical form of (1).

0%z 0z 62) 0%z

0z 0z
m=¢(u'“a% )

Orm=¢<uma%
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Ex.1.Reduce r + 2s + t = 0 to its canonical form.
Sol:r+2s+t=0—-———————— (1)
S§2 —4RT = 4 — 4 = 0, the given equation is parabolic.

122421 +1=0=>A+1)?*=0=>1=-1,—-1

dy
—1=0=>y—x=
Ir y—x=c
Letu=y—x,v =y v (2)
v ou
. _|ox oy 1
Jacoblanformofuandv—av ov =|O |=—1¢0uandvare
ox oy
independent.
0z 0z du 0z O0v 0z
P = = —x— 4 — x — = -
dx ou 0x ov ox  Ou
0z 0z d a
e VS " VS
0z 0z 6u+az 617 0z 1+az 1
— —_ % — —_— % — — X
1= ay du dy Ov ay ou v
0z 0z 0z a d d
=T wte T m e W
0%z 0 (0z ) 0z 0%z
= =m0 = () (-52) = g0
0%z 9 (0z o [0z 0z 0%z 0%z
- 0x0y - 5(5) - _E (E + 6_17) - _ﬁ - 6u6v““-(6)

0%z 0 (0z G| G| 0z . 0z 0%z 0%z 0%z
==——)=|— —_ —_ —_ ) = — (
ay2  ay (ay) (6u + av) (au + 017) u? +2 oudv + 2 (7)

Using the values 7, s, t in equation (1), we get the required equation,

0%z 2622 ) 0%z +622+2 0%z N 0%z B
ou? ou? Juov ou? oudv  ov?:
- 0%z — o
T vz

Ex.2.y%r — 2xys + x*t — (y;) p— %Zq =0

2 2
Sol:y?r — 2xys + x*t — (%)p — x?q =0 (1)
S2 — 4RT = 4x%y? — 4y?x% = 0 => this equation is parabolic.

The A —quadratic equation RA% + SA + T = 0 reduces to
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Y222 —2xyA+x2=0=>(YA—-x)>=0=> 1=

"<I><
<R

. .. . .. d x 2 x2
The corresponding characteristic equation is é + 5= 0=> y; t5=a

2
x x
Letu=2+=,v=2-2 (2)
2 2 2 2
du Jdu
Jacobian form of u and v = ox oy _ X = —Xy — Xy = —2Xy #
v ov| [x —yl— y y= y
dx OJy
0
__ 0z _ az 6u az av _ (az az)
T ax 6u 6x 617 6x - ou v
3)
_ 0z _ 0z " ou 0z " ov _ (62 62)
- dy T du dy dv 0y - Ju dv

(4)

_822_ 6(62)_ 0 (az+62)
7‘_axz_ax Ox _ax x du Ov

0z 62 0z\O0u 0 (0z 0z\0v
el R 20

ou ov/ox dv\ou 0Jv/ox
_oz 0z 5 (0% 9% 0%\
~ ou + ov tx (6u2 +2 oudv + 6172) using (2) (%)

= G-l =y (G-5) v

_ 0z 62+ {6 <62 az>6u+ 0 (62 62)61}}

“ou ov  Ylou\ou v dy dv\du OJv/ady
SO Y P AN iy
T ou ov ou? oudv  0v?
(6)

_ 2% _0(02\_0( (92 _92\\_ (0 (9z_0z)\ou
And S = oxay  ox (6y) T ox (y (au 617)) N y{a (au av) ox T

d (62 62) 617}
dv \du v/ dx

9%z 9%z
s =x (5= 55)
(7)
Using (3), (4),(5), (6) and (7) in (1) and simplifying, we get

02 9% . . . .
4x%y? (6—;) = 0 so that ﬁ = 0, which is the required canonical form.
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2.5.3 working rule for reducing elliptic equation to its normal form
Step 1.Rr + Ss+ Tt + f(x,y,2,p,q) = 0-——-—--- (1)

be elliptic so that S? — 4RT < 0

Step.2. write A —quadratic RA? + SA+t =0 - ()

Then A, and A, be two distinct roots.

. . . d
Step 3. Then the corresponding characteristic equations are d—i + A4 =

dy _
0 and E"‘Az—o

Solving these we get f;(x,y) +ifo(x,y) = ciandf; (x,y) —ifa(x,y) =

Step 4.We select u and v such that

u=f(y) +ifp(x,y) andv = f,(x,y) — ify(x,y) (4

Step S.Let a and 8 are new real independent variables such as u = o +
ifandv =a —if

Where a = f1(x,y),6 = f2(x,y)
Step 6.Find valuesp, g, 7, s, tinterms of @ and (.

Step 7.Substitution the values of p, q, r, s, t in equation (1) and
simplifying we shall get the following canonical form,

0%z 0%z 0z 0z
7 + o = (@ P25 37)

Ex.1. Reduce the PDE in canonical form r + x*t = 0

Sol:r + x%t = 0 -—----——- (1)

S§% — 4RT = 0 — 4x% = —4x? < 0 => which is elliptic equation.

RV +SA+t=0=>12+x2=0=>1=+ix
)

. . d .
Characteristic equatloné +ix=0=>y+ % =

dy ix =0=> ixz_
and———ix=0=>y-——=0c

2 2
Letu = y+ix7andv=y—ix7

x2

Choosea =y, B = Y
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Oa Ja

Jacobian of «a, f= aﬁ g% =|0 1| =—x#0=>a and [ are
dx 5
independent.
dz 0z 60( 0z 63 0z 0+az >az 0z
= —-—— = — X — — —_— —
P=ox da'ox 98 0x oa "t " ox “op
dz 0z 60{ 0z aﬁ 0z 1+az 0 => 0z 0z - d
1=y oy o oy oa "Top " "9 "9 oy
d
T a
0%z 6( ) ( ) ax az <62)
TT 2T 3 ax ox ‘38 9x\op
- X ox <6ﬁ>

- [aa(”) ) 7
57+ [ (a) 0+ 35 )

e byt

622_ 0 (62) 0 (62) 0%z

~9y2 0y\dy) 0a\da)  9a?
Using these values of r and t in equation (1)
e 0e >8+ 822+ 2622_0 >6+ 0%z 0%z
rex T TR P 5 \op T a2
=0
622 0’z 10z
ap? Tz T T ap
0%z 9%z 1 0z . . . . .
> a_ﬁz-l_ﬁ =~ which is required canonical form of given
equation.

Ex.2. find the canonical for ofr + y?t —y =0

Sol: r+y?t—y=0 (1)
§% — 4RT = 0 — 4y? = —4y? < 0 => given equation is elliptic.

RAP2+SA4+t=0=>22+y?=0=>1=+iy
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dy . dy . :
a+1y=0=>7+de=0=>logy+lx=cl

dy . .
andé—lyz 0=>logy—ix=rc,
Letu = logy + ix,v = logy —

Leta =logy,p =x

dz 0z aa 0z 6,[5’ 62 62 0z dz 0z
ox da ox 6,8 ax  oa aﬁ ap dx df
S ad 0
ox 9p
dz 0z Ba 0z 6,8 az 1 Bz 10z az 10z

1= 6y 60( 6y 6,8 6y 60( y 6,8 :§£ 6y yaa
0%z 0 (62) 0 (62) 0%z

“ox2 ox\ox) op\ap) ~ ap2
_azz_6(62)_6(162)_8<1>az+16(62)
“9y2 ay\dy) ody\yda) dy\y/da yody\da

10z 1 10z

L9 d (62)63]
dp \oa/ dy
‘- 10z 1[10%z] 10z 10°z
 y20a  ylyoda?| y20a  y?da?

Using these values in equation(1),

5 0%z )2 19z 1 9%z
T'+yt—y_0 >a—’82 —Faﬁ'ﬁw —y:O

0%z 0z 0%z N

i ety

dp? Oda Oda?

- 0%z N 0%z 0z o
9Bz " 9a? _oa ¢

2
Ex.3. If the reduced canonical form is ai_azv = 0 find its solution.

Sol.: Integrating w. r. t. u ,— = ¢(v), ¢ =arbitrary function.
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Integrating w.r. t. v, z = | ¢(v)dv + f(u),where f is arbitrary function.
z=g)+ f(u)

=>z = g(y —x) + f(y + x) it s the required general solution.

EXERCISE 2.2

Reduce the following equation into their normal forms.

Q.1.x%r — y%t + px — qy = x*?

Q2.r+2xs+x%*t=0

Q3.7 —4s+4t =0

Q4. xr +t=x?

2.6 POTENTIAL THEORY AND ELLIPTICAL
DIFFERENTIAL EQUATION:

Boundary data rather than initial data serve to fix properly the solution of
an elliptic differential equation. It is usually necessary to find an answer
"in the large," namely in the domain bounded by a closed boundary, and
this need for "global" constructions, rather than "local" treatment makes it
especially difficult to study nonlinear elliptic equations. We shall restrict
ourselves mainly to the linear potential equation or Laplace's equation in
$m$-space variables. The boundary value problems of potential theory are
suggested by physical phenomena from such varied field as electrostatics,
steady heat conduction and incompressible fluid flow.

Boundary Value Problems and Cauchy Problem

The general linear homogeneous second order partial differential equation
in m —space variables X1, X5, X3, «ov ev oo a . Xy 18

Lu = Agplx,xg T bouy, +cu=0, a,f =1.2,..... m (1)

where the coefficients a,p,b, and c are continuous functions of the
independent variables X1, X3, X3, <.t vev oo Xy a0daAgp = dg,. Equation (1)

is said to be elliptic in a domain D of m —dimensional space, when the
quadratic form

Q(A) = aaﬁ/lalﬁ (2)

can be expressed as the sum of squares with coefficients of the same sign,
or equivalently, Q(A) is either positive or negative definite in D. The
simplest case is that of the Laplace equation or potential equation:

Apu = Uy, =0 3)

l.e.u +u +u LTI u =0
1
1 X1X1 X2X2 X3X3 XmXm



We shall first state three boundary value problems associated with Laplace
equation and then consider the Cauchy problem. Let D be a domain in
(%1, X2, X3, cev ee wee .. X ) —Space bounded by a piecewise smooth boundary
dD.Let continuous boundary values be prescribed on dD, by means of a
function f.

1°* order BVP (Dirichlet problem):The first boundary value problem,
also called the Dirichlet problem, requires a solution u of the Laplace
equation (3) in the domain D, which is continuous in D + dD and
coincides with f on dDi.e.

u=fondD 4)

2"" order BVP (Neumann problem):It requires the determination of
solution u in the domain D, which is continuous with first order partial

.. ) . .. 9
derivatives in D + dD, such that the normal derivative ﬁof u on dDtakes
prescribed values f, i.e. harmonic function u(x, y)satisfies

u
5 = fonoD (5)
a . o o
where 5o 18 the directional derivative along outward normal and dD must

have a continuously normal.

3" order BVP (Robin Problem):It is a modification of the first two

. . . . 9
BVP where the solution u(x, y) is a linear combination of u and %, takes

prescribed value of dDi.e.
2+ au = fon aD (6)

where « is a constant.

Before we discuss the Cauchy problem, we shall examine, in general, the
requirements to be satisfied by' a reasonable mathematical problem. There
are two requirements:

1. Existence requirement:-There is at least one u satisfying the equation
and the given boundary/Cauchy data.

2. Uniqueness requirement:-There is utmost one such u.

If the mathematical problem is to be also physically realistic an extra
requirement has to be satisfied:

3. Stability requirement:-Small changes in the boundary or Cauchy data
result in small changes in the solution u.
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The first two requirements ensure the existence and uniqueness of the
solution of a mathematical problem, while all three requirements ensure,
further, stability or continuous dependence on given data for a physical
problem. If the three requirements are satisfied by a problem, it is said
towell posed.

The Cauchy-Kowalewski theorem shows that the solution of an analytic
Cauchy problem for an elliptic equation exists and is unique. However, a
Cauchy problem for Laplace's equation is not always well posed.

Hadamard gave an example of a Cauchy problem, which violates the
stability requirement. Consider the Laplace equation in two independent
variables x, y with the following initial conditions:

(@) u(x,0) =0,u,(x,0) =0

(b) u(x,0) = 0,u,(x,0) = ==
(7
A solution satisfying condition (a) is
u(x,y) =0 (®)

A solution satistying condition (b) is
u(x,y) = kiz sin kx sinh ky ©)

For sufficiently large k, the Cauchy or initial values (a) and (b) are
arbitrarily cluse, but the sulutions are not, since sinh ky behaves like
e*Yfor large k.

Having noted that a Cauchy problem could be illposed for an elliptic
equation, we shall concentrate our attention hereafter only on the three
boundary value problems mentioned earlier and show that they are really
wellposed.

2.7 HARMONIC FUNCTION

A function u(x) is called harmonic function in D, if u(x) € C°inD +
oD € C? and Ap,u = 0 in D.

In case of two or three variable, the general solution of potential equation
can easily be obtained.For m = 2,(x; = x,x; =y ),i.€. Uy + Uy, =0,
this is the real and imaginary part of any analytic function of the complex
variable x+iy. For m =3,(x; = x,x, =y,x3 = z),consider an
arbitrary function p(w, t) analytic in the complex variable w for fixed real
t. Then, for arbitrary values of t, both the real and imaginary parts of the
function:

u=p(z+ixcost+iysint,t ) (10)
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of the real variable x,y,z are solution of the equation Au = 0. Further
solutions may now be obtained by superposition.

u=f:p(z+ixcost+iysint,t)dt (11)

If u(x,y) is a solution of Laplace’s equation in the domain D of
(x,y)plane, the function.
v(x,y) = u(i l) r2=x%+y? (12)

) rz ) rz ) 9
Also satisfies the potential equation and is in the domain D' obtain from D
by inversion with respect to unit circle.

In general, m-dimension, if u(xq, x, ..... X;,) satisfies potential equation in
a bounded domain D then

vzu(%,:—ji—’g), X2+ X2+, + x2, =1r? (13)
also satisfies the potential equation and is regular in the region D'
obtained from D by inversion with respect to m-dimensional unit sphere.
Therefore, except for the r2~™, the harmonic character of the function is
invariant with respect to sphere. Besides, the harmonic property is retained

completely under rotations, translations and simple reflections across
planes.

2.8 POISSON’S FORMULA

Ex. Dirichlet problem for a circle in the x,y —plane.

Sol: let a circle C is given by |z| = R,z = x + iy

B

. R? . . .
Fig. w and — are inverse point with respect to C: |z| = R
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The problem is to find u(x, y) s.t. Apu = 0 => Uy, + Uy, =0,
where u = f(6)on C.
z=Re'? onC.

Let f(z) be analytical function in the region enclosed by C s.t. the real
partof f(z) on|z| = R is f(0)
Letzybe a complex number in that region. The inverse point of zyw.r.t. to

2
Cis I;: which lies outside C. According to Cauchy integral formula
0

f(20) = 5= [, L2 dz(1)

2mi Y€ z—2zg

f(2) dz

“wlpo

Equation (1) — equation (2)

)

dz

1
o [@ @

i) \z—z, _R?
o (-%)
_ 1 f[ 1 Zy
C2mi ) l(z—20) (27—

1 ([~ RY) - Z(z — z)
B 2ni_fcl (Z—ZO)(ZZ_O Rz) lf(z)dz

f — R? — Zyz + Zyzg 4
~ 2mi —Z(R2 + 202y) + Zyz% + ZoR? f(2)dz

RZ)] f(z)dz

= 1 —(R? — Zy2p) d
- 2mi 'I; [_{Z(Rz + Z0Zp) — Zgz? — ZoRz}l fle)dz

f(z,) = me [{Z(R2+ (RZ—Z_fO) ]f(Z)dZ """" (3)

20Z9)—ZoZ%—2oR?}

We know that z lies on C and z, lies inside C

Let z=Re®, z, =re!® => |z)| =r =>2z2 =1 =>7Zy2y = 1% ,r <
R

From eq.
ip) = L (27 (R?-12) 0\ p,i0;
(3)f(re ) - 21 f() [{Reie(RZ+r2)—z_0RZeZi9—rei¢R2} f(Re )Re lde
Taking real part
_ (R?-1?) r2m f(6)de p
u(x’ y) o f {R2+12-27R cos(6—¢)} \4)
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Where 12 = x% + y%,tan¢p = %
Eq. (4) is called Poisson’s integral formula in 2D.

Maximum principle:suppose that u(x,y) be harmonic in a bounded
domain D and continuous in D =D UAD then u(x,y) attains its
maximum on the boundary dD of D.

Minimum principle: suppose that u(x,y) be harmonic in a bounded
domain D and continuous in D =DuUAdD then u(x,y) attains its
minimum on the boundary dD of D.

29 LET US SUM UP:

In this unit we have learnt to identify different 2°® order PDE, to find the
characteristic curve and to solve Cauchy’s problem. We also discussed to
how to reduce the PDE’s in its normal form.
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GREEN FUNCTIONS 1

Unit Structure:

3.1 Objectives

3.2 Introduction

3.3 Singularity functions and the fundamental solution,

3.4 Green functions

3.5 Greens identities

3.6 Lets sum up

3.7 Unit End exercise

3.8 Reference

3.1 OBJECTIVES

After going through this chapter students will be able to:

Singularity functions.

The fundamental solution of Laplace equation.

Definition of Green functions using fundamental solution.
Green’s first identity.

Green’s second identity

3.2 INTRODUCTION

Singularity functions are used in the solution of differential equations in
which the known terms are non-smooth in the independent variable. In
particular, these functions are particularly useful in the study of bars,
shafts, and beams subjected to non-smooth loading, such as point loading

and distributed loading, that exhibits finite jumps.

The method of Green’s functions is an important technique for solving
boundary value and, initial and boundary value problems for partial
differential equations.We shall learn Green’s function method for finding
the solutions of partial differential equations. This is accomplished by
constructing Green’s theorem that is appropriate for the second order
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differential equations. These integral theorems will then be used to show
how BVP and IBVP can be solved in terms of appropriately defined
Green’s functions for these problems. More precisely, we shall study the
construction and use of Green’s functions for the Laplace, the Heat and
the Wave equations.

3.3 SINGULARITY FUNCTIONS AND THE
FUNDAMENTAL SOLUTION:

Singularity functions are discontinuous functions or their derivatives are
discontinuous. A singularity is a point at which a function does not
possess a derivative. In other words, a singularity function is
discontinuous at its singular points. Hence a function that is described by
polynomial in ¢ is thus a singularity function. The commonly used
singularity functions are:

Step Function, Ramp Function, and Impulse Function.

Step Function: One of the most common singularity functions is the
Heaviside* step function H(x), defined as

Hw = {73 0

Figure 1 The Heaviside step function H(x)

Note that the Heaviside function H(x) is undefined at x = 0, although it is
sometimes taken to be equal to%. Clearly, the Heaviside function H(x— a)

is analogous to the function plotted in Fig. 1,only shifted so as undergo the
step atx = a.
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Ramp Function:The integral of the Heaviside step function is the ramp
function written as< x >. With Eq. (1) taken into account, the ramp
function is given by

0,x<0

< x >= {x,x >0 )

Figure 2 The ramp function

It is easy to see that the ramp function can be raised to any positive power,
with

0,x<0

<x >"={
xMx >0

Forn>1 3)

While H(x) does not have a derivative in the usual sense of a smooth
function, such a derivative can be defined as what in mathematics is
termed a distribution from the limit of a sequence of continuous
approximations to the discontinuous step function,as shown in Fig.3 below

Y y

11/w ]

0| (a-w) a 0 (a-w) a X
@) (i1)

Figure 3 Ramp approximation to the step function and its derivative

The function depicted in Fig. 3(i) may be expressed as

Hw(x_a) = .

—[<x—a+w>-<x—a>]
w
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and it becomes H(x— a) in the limit as w — 0, that is,

d<x—a>

H(x —a) = Tx

Impulse Function (Dirac delta function):The derivative of H,, (x — a)
(depicted in Fig. 3(ii) is, in accordance with

—H,(x—a)=—[Hx—a+w) —H(x —a)]

dx W[

and in the limit as w — 0 it formally becomes (by the standard definition
of the derivative) the derivative of H(x— a), that is,

d
aH(x—a) =6(x—a)

This limit is known as the Dirac delta function and is usually denoted
ox— a).

We now turn to studying Laplace’s equation

Au=10

and its inhomogeneous version, Poisson’s equation,

—Au =f.

We say a function u satisfying Laplace’s equation is a harmonic function.
3.3.1 The Fundamental Solution of Laplace’s equation:

Consider Laplace’s equation inR™,

Au=0x €ER".

Clearly, there is a lot of functions u# which satisfy this equation. In
particular, any constant function is harmonic. In addition, any function of
the form u(x) = ayx; + azx, + .. +a,x, for constants a; is also a
solution. Of course, we can list a number of others. Here, however, we are
interested in finding a particular solution of Laplace’s equation which will
allow us to solve Poisson’s equation.

Given the symmetric nature of Laplace’s equation, we look for a radial
solution. That is, we look for a harmonic function u on R" such that u(x)
= v(|x|). In addition, to being a natural choice due to the symmetry of
Laplace’s equation, radial solutions are natural to look for because they
reduce a PDE to an ODE, which is generally easier to solve. Therefore, we
look for a radial solution.
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If u(x) = v(|x|), then

x.
Uy, = m v'(|x]) where |x| # 0
1 xl-z xiz
Uy, = mv’(lxl) P v'(|x]) +W v (|x]) where |x]|
#0
Therefore,

In R™ the solutions v(|x|) of the potential equation Au = 0, which depend
only on the distance r = |x| # 0 of a fixed point x from a fixed point a,
given by the equation

1v’(IXI) + v"(|x|)

|x|

Lettingr = |x| # 0, we see that u(x) = w(|x|), is a radial solution of
Laplace’s equation implies v satisfies

n—1

v'(r)+ v"(r)=0

Therefore,
n—1
v'(r) = v'(r)
T
vr) _ o1
v'(r)  r
= logv'(r) =(n— Dlogr+C
=v'(r) = o
Therefore,
cilogr + ¢, n=2
v(r) = €1
{m +c, n=3

From these calculations, we see that for any constants c;, ¢,, the function

ciloglx| + c, n=2
u(lx|) = { c1 (D
RSN +c, n=3
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for x ER™, |x| # 0 is a solution of Laplace’s equation in R™ — {0}. We
notice that the function u defined in (I) satisfies Au(x) = Ofor |x| # 0, but
at x = 0, Au(0) is undefined.

Therefore, these solution exhibits so called characteristic singularity at
r = 0. We defined as

—logla — x| n=2
2
Pp(x) = & 1

_ 2—n > 3
n(n—Z)anIa *l n

Where w,, is the surface area of the unit sphere in n-dimensions given by

a, = z(ﬂ)z/ (n)for singularity function Au =0.
T —
2

¢(x)has the property that S € C* and AS =0 for x # a, with the
singularity x = a.

For n = 3, ¢(x) correspond physically to the gravitational potential at the
point x of a unit mass concentrated at the point a. Every solution of a
potential equation Au =0 in D of the form

v(a,x) =¢(x) +¢x), a€D

Define the function¢ (x)as follows. Forx # 0, let

-1
—log|x| n=2
2
Pp(x) = & 1
- - 2—n >
n(n-2)a, %] n=3

As we will show in the following claim, ¢ (x)satisfies —A, ¢ (x)= 6,. For
this reason, we call ¢ (x)the fundamental solution of Laplace’s equation.

Theorem: For ¢(x) satisfies —A, ¢p(x) =6, in the sense of
distributions. That is, forall g € D, — fanb(x)Axg(x)dx = g(0).

Proof: Let Fybe the distribution associated withthe fundamental
solution @. That is let Fy: D - R be define such that

(Fo.g) = [ $G0g@Idx
RTL
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for all g € D. Recall that the derivative of a distribution F is defined as the
distribution G such that

(G,g) = —(F,g')

for all g € D. Therefore, the distributional Laplacian of ¢ is defined as the
distribution F,g, such that

(Fap, 9) = (Fp,A9)
for all g € D. We will show that
(Fg,Ag) = —(80,9) = —g(0)
and, therefore,(Fpg, g) = —g(0).

which means —A, ¢(x) = §,yin the sense of distributions. By definition,
(Fordg) = | p)gGdx
Rn

Now, we would like to apply the divergence theorem, but ¢ has a
singularity at x = 0. We get around this, by breaking up the integral into
two pieces: one piece consisting of the ball of radius 6 about the origin,
B(0, 9) and the other piece consisting of the complement of this ball in R"
. Therefore, we have

(Fo Ag) = f $(0)g(0)dx
RTL

| pwngaax+ [ peoag@dr=1+;
B(0,5) R"—B(0,8)

We look first at term /. For n = 2, term [/ is bounded as follows

1
— fgloglxlAg(x)dx < C|AG|p» f log|x|dx
B(0,5) B(0,5)
2T

SCf f log|x|dx| < Clog|5]62.

% B0
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For n > 3, term [ is bounded as follows,

1
— - 2-n < oo 2—n
j n(n =2, |x|“ "Ag(x)dx| < C|AG|, j lx|“"dx
B(0,8) B(0,8)
5
na(n
Sna(n)f rdr = 2( )62
0

Therefore, as § —0F, |I| — 0.Next, we look at term J. Applying the
divergence theorem, we have

OIWIEL:
R"-B(0,8)
= Axp(x) g (x)dx
R"-B(0,6)
0
- [ 2w

d(R"-B(0,5))

d
N

d(R"=B(0,5))

0 0
—— [ BPasw+ [ swS asw
d(R"—B(0,5)) d(R"—B(0,5))

=L+
Using the fact thatA, @(x) = 0 for x € R™ — B(0, §)

We first look at term J;. Now, by assumption, g € D, and, therefore, g
vanishes at co. Consequently, we only need to calculate the integral over
0B(0, €) where the normal derivative v is the outer normal to R™ — B(0,
0). By a straightforward calculation, we see that

VxQ)(x) =

na(n)|x|™
The outer unit normal to R™ — B(0, d).onB(0, d)is given by

—X
v =—
| x|

Therefore, the normal derivative of @ on B(0, J) is given by

aqgfﬂx) - (na(;;clxlr) ' (I_TT) - W
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Therefore, J; can be written as

96() _ 1
- | Hrewasca=- JS)W*Q(’“W(’”

B(0,5)

—— | gwasw
B(0,8)

Now if g is a continuous function, then
B fB(o,s)g(x)dS(x) - —g(0)as § - 0.

Lastly, we look at term/, . Now using the fact that g vanishes as |x| —
+o0, we only need to integrate over 0B(0, o). Using the fact that g € D,
and, therefore, infinitely differentiable, we have

dg(x) dg(x)

0L as00 = |42 | pwadseo

B(0,5) L*9B(0,6) p(0,5)

<c j $(0)dS (x)
B(0,8)

Now first, forn =2,
fB(O,(S)Iqb(x)IdS(x) = CfB(O’5)|log|x||dS(x) < €6 |logl5].

Next, forn > 3,

f 1600 1dS ()

B(0,5)

1
=C j lemdS(x) < sn-2 f dS(x)
B(0,6) B(0,6)

= Snz na(n)é™ ! < C6.

Therefore, we conclude that term J, is bounded in absolute value by
Cé |log|6||forn = 2
Céforn > 3

Therefore, |J,| » 0as§ - 0F
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Combining these estimates, we see that

[ 6@ng@Idx = Jim, 1411+ 1 = =90,
Rn

Hence prove.

Theorem : Assume f € C2(R")and has compact support. Let
u@) = | o(x—-y)f(»dy
]Rn

where@ is the fundamental solution of Laplace’s equation. Then

a) u € C?(R™)
b) —Au = fin R™.

Proof: a) By a change of variables, we write

ux) = 6x—y)fdy=| 0)f(x—y)dy
]Rn ]Rn

Let ¢; = (0,....1,0,0...)

be the unit vector in R™ with a 1 in the i slot. Then

u(x + he) —u(x) _ fG+he —y) = fGx =)
] . dy

Now f € C%implies

[f(x+hei—y)—f(x—y)

ofr
” ]%a—m(x—y)ash—)O

uniformly on R™ . Therefore,

ou af
o (x) = - () %, (x —y)dy
Similarly,
0%u 0%f
Bxl-axj (x) N R™ Q)(Y) axiaxj (x B y)dy

This function is continuous because the right-hand side is continuous.

b) By the above calculations and theorem 1, we see that
Ayu(x) = | B(WASf(x —y)dy = —f(x)
Rn
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3.4 GREEN FUNCTIONS:

We are interested in solving the following problem. Let Qc R™ be an
open, bounded subset of R™ .

. —Au=f x € Q
Conmder{ u=g X € 30 (D

Suppose we can solve the problem,

{ —A,G(x,y) = 64 yE Q
G(x,y)=0 y € 0Q

for each x € Q. Then, formally, we can say that for # a solution of (I)

u(x) = j Sxu(y)dy
Q

. fﬂ A, GCx, y)u(y)dy
G
= LG(x,y)f(y)dy—Lﬂ%(ﬁg(ﬁds()’)

Now, we do know that the fundamental solution of Laplace’s equation
@(y) satisfies

_Ay ¢(y) = 5Oand_Ay ¢(x - y) = 0y

Recalling the definition of distributional derivative, we will start by
looking at

u(x) = fn¢<x — A u()dy

We would like to integrate this term by parts. However, we know that
¢(x — y) has a singularity at y = x.

We already find the fundamental solution of Laplace’s equation. i.e.

-1
—log|x| n=2
2
¢ =1 " 2
—n S 3
nn—-2)a, %] n=
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Applying the divergence theorem, we have

fnqb(x YA uG)dy

d
-- 90 =9 (yase)

ov
a(Q-B(x,8))

v e0- )ﬂdsu

a(Q-B(x,5))

Using theorem 1 we conclude that for anyu € C?((Q)

u(@) = [, o [0 - B2 - 22 Du)] ds () - [, ¢ x -
»Ayu(y)dy (1)

We would now like to use the representation above formula to solve (I)

We proceed as follows. For each x € Q, we introduce a corrector function
h*(y)which satisfies the following boundary-value problem,

{Ayhx(y) == 0 y € Q)

o) = ¢x—y)  y€dn ™

Now suppose we can find such a (smooth) function h* which satisfies
(IV). Then using the same analysis as above, we have

f W (y)A,u(y)dy
Q
oh*
= fAyhx(y)u(y)dy— f algy) u(y)ds(y)
Q aQ
+ [ 52 as)
[5)9)

Now using the fact that h*is a solution of (IV), we conclude that

fa|pGr =N EL - D y3)]ds() + - [, i G)A,u(y)dy = 0
V)

Now subtracting (V) from (III), we conclude that

f lafb(;v— )

oh*
u(x) = Sy )] u()ds)

- f [6(x — y) — R )]A,u()dy
Q
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Let G(x,y) = ¢(x —y) — h*(y)Then, u can be written as

0G (x,
w0 = [ 252 ] wastn - [ 16 mia,uay

aQ

Definition:We define this function G as the Green’s function for Q. That
is, the Green’s function for a domain Q cR" is the function defined as

Gx,y)=¢px—y)—-h*Q)x,y€ Q, x #*y

Where ¢ is the fundamental solution of Laplace’s equation and for each x
€ Q, h x is a solution of (V). We leave it as an exercise to verify that G(x,
y) satisfies (II) in the sense of distributions.

Polar form of Green’s function:
In this case we want to solve

Au=f, lim (u(r, 0) — u,(r,0)rlogr) =0
n—-oo

In general, solutions to Au = fbehave like u ~ A4 log r + B as r — . The
condition just ensures that B = (. Again we look for a Green’s function of
the form G = g(|x — y|) = g(r)so that in polar coordinates

1 /
;(rg’(r)) =0 ifr+0,
lim (g(r) —rlogrg’'(r)) =0
n—-oo
The general solution is

G =Cilogr +C,

Where C, =0, we get

0, G
1= f (;Cn (x,y)dx = .[Cl dx = 2nCy
B B

Where B is the unit disk, so thatC; = i Thus the Green’s function

: log|x— . : .
isG(x,y) = %, and the solution to given equation is

l —
w(x) = f oglx 27Tylf(y) dy?

R2
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It is sometimes useful to write G in polar coordinates. Using the law of
cosines for the distance |x — y|, one gets

1
G(r,6; 15,0y = Elog(r2 + & + 2rrycos (60 — 6,))

Example :Let R% be the upper half-plane in R? . If RZ = {(x,x;) €
R2: x, > 0} than find Green’s function.

Solution:We need to find a corrector functionh® for each x €R2, such
that

{Ayh"(y) =0 y €ERE,
() = p(x —y) y € 0R

Fix x €R} We knowA,¢(y —x) =0 for ally # x. Therefore, if we
choose z € (1, then A,¢p(y —z) =0 for all z € Q. Now, if we choose
z = z(x) appropriately z € (1 such that

¢y —z) = ¢(y —x)fory € 0Q, then h*(y) = ¢p(y — z(x)).
Recall that forn=2,

-1
p(y—2z) = p logly — z|

Consequently, forx = (x1,x,) € R% we see that for all y € dR% .

ly — x| = (y1,0) = (1, )| = |(y1,0) = (x1, —x2)| = |y — X|
Where X = (x;, —x,)is the reflection of x in the plane.

Therefore,h*(y) = ¢|y — %|we have found a corrector function for R%

Therefore, a Green’s function for the upper half-plane is given by

G(x,y) = ¢y —x) — p(y —%) = —[logly — x| - logly — I].

3.5 GREENS IDENTITIES:

Green’s identities provide the main energy estimates for the Laplace and
Poisson equations.

Green’s first identity:
First recall the Divergence Theorem:

Let D be a bounded solid region with a piecewise C! boundary surface
dD. Let n be the unit outward normal vector on dD. Let f be any C! vector
fieldon D = D U dD. Then
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MDV.fdvzj f.nds
oD

Where dV is the volume element in D and dS is the surface element on
dD.

By integrating the identity
V. (vv)u) =Vv.Vu+vAu

Over D and applying the divergence theorem, we gets

ﬂv— ds = fbffﬁvﬁudv+wmudv

ad = . . . . . .
Where % =n. Vu is the directional derivative in the outward normal

direction.
This is Green’s first identity.
Green’s second identity:

Switch u and v in Green’s first identity, then subtract it from the original
form of the identity. The result is

(uAv — vAu)dV = ua—v — v— dS
I I (5

This is Green’s second identity. It is valid for any pair of function uand v.

Special boundary conditions can be imposed on the functions to make the
right hand side of these identity zero, so that

[ v = ff

Definition: A boundary condition is called symmetric for the operator A
on D if sy (0 ( P _ vg—Z) dS = 0 for all pairs of functions u and v
that satisfy the boundary condtion.

Note: Dirichlet, Neumann, and Robin BCs are symmetric.
Example: Show that Green’s functions are symmetric.
Solution: To show that Green’s functions are symmetric, i.e.

Forall,ye Q,x #y,G(x,y) = G(y,x)
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Let v(z) = G(x.z) and w(z) = G(y,2)

Now we will show that v(y) = w(x) = G(x,y) = G(y, x).

By definition of Green’s function
G,y)=¢x—y)-h*OMx,ye Q x #y

Ayh*(y) = 0 y€EQ,

Whereh™ ( )satisﬁes{
Y ) =¢x-y)  yeon

Therefore, for z € 95}
v(2)=Gx.2) =Pp(z—x) —h*(2) =¢p(z—x) —p(z—x) =0
w(z)=G6Wy.z2)=¢(z—-y)—h (@) =¢(z-y)—p(z-y)=0
Further, A,v = 0 for z # x and A,w = 0 for z # y.
Now v is smooth, except near z = x, while w is smooth, except near z = y.
Define the regionVs = Q — [B(x, ) — B(y, §)]for § > 0.

Our functions are smooth. Therefore, integration by parts as follows,

)

Using the fact that Av = 0 = Aw onVj , we conclude that

ov

dS(z) +

ow
vAWdz—j v— w dS(2)

Avw dz =j
s 009

5 Vs

ow av
f v—dS(z) = —w dS(2)
Vs

99 ov, 09

Using the fact that v = 0 = w on 0 (), we conclude that

f ov aw] ds(2) .[ ow 0v ] ds(2)
—Ww—-—v— Z) = V———Ww z
05(x.5) L0V 09 aBy,sL 09 99

whered denotes the inward pointing unit vector field on 0B(x, §) U 0B(y,
§). Now we claim that as § — 0%, the left-hand side converges to w(x),
while the right-hand side converges to v(y).

. ow
For the terms on the left-hand side, we first look at | 9B(x.S) [v 5] dS(2)

Now w is smooth near x. Therefore,z—:is bounded near 0B(x, J).

v(z) =G(x.z) = p(z—x) — h*(2)
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Therefore, ondB(x, 6),v(2) ~ =

fa s [v —] ds(z)| <

sup
9B (x 5)|v| —»0as 6 -0

P ) f dS(z) = Cs™1
aB (x,06) 9B (x.S)

Now [0 s [M ] dS(2) = [)pees) [M( —x)——(z)]wdS(z)

First, using the fact that h* is smooth and w is smooth near x, we see that

faB(x,g) [% (Z)] w dS(z)

Therefore, faB(x 5) [% (Z)] wdS(z) > 0 asé - 0.

<C f dS(z) < 6™ 1
0B (x,5)

For the other term, we see that

a9 1 1
faB(x,d) [619 - x)] w(2) ds(z) = na(n) dB(x, 6)mw(z) as()

= —1 as
~ na(n)sn! -LB(x,(S)W(Z) 2

j w(z)dS(z) »w(x) as 6 » 0
0B (x,6)

Hence the left-hand side converges to w(x).
Similarly, the right-hand side converges to v(y).
Hence prove,

Proposition: A Green function has the following property. In the case n =
2we assumediam Q< 1. 0<G(x,y) <s(lx—y]), x,yeEQ,x #y.

Proof. Since G(x,y) = s(ly — x|) + 0(x,y)
andG(y, x) = 0 ify € 0Q and x € Q we have for y €0Q
B(x,y) = —s(ly —x)

From the definition of s(|y — x|)it follows that @(x, y)< 0 if x€ 0Q. Thus,
since A,® =0in Q, the maximum-minimum principle implies that
@(x,y)<0 forall y, x € Q. Consequently

Gx,y) <s(lx—yl), x,yeEQ,x*y
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It remains to show that
. 0<G(x,y), x,yEQ,x*y

Fix x € Q and let Bp(y) be a ball such that Bp(y) < Q for all 0 < p < py.
There is a sufficiently small py> 0 such that for each p, 0 < p < py,

G(x,y)>0forally EBp(y),x #y

see property (iii) of a Green function.

Since A, G(x,y) = 0in Q \ Bp(y)

G(x, y) > 0if x€0Bp(y)

G(x,y) =0if x€0Q

it follows from the maximum-minimum principle that
G(x,y) > 0o0onQ\ Bp(y).

Hence prove.

Example: consider a sphere with center at origin and radius ‘a’ apply the
divergence theorem to the sphere and show that V2 (%) = —4ns(r).

whered () is a Dirac delta function.

Solution: Applying divergence theorem to
()=}
gra r]  \r
1 1
Mee () ar=[[v().nas
T T
v S

Where 7 is an outward drawn normal. If u = u(r, 6, @), then

Ou __10u 1 . Ou
gradu = era+egg%+e®; sin@ 30’

Hence [,V (3) .6 ds = [[;5-(3) dS = [[,(5) dS =(3) x 4ma? =

T
—4r

By properties of V? G), Its integral over any sphere with center at the

origin is —4rt.
2 (1
Hence we say that V (;) = —4né(r).
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. . aG . .
Theorem: If G is continuous and > has discontinuity at ‘r’. than show that

] 0G
lim ﬂ— ds = 1.
-0 on

v

Proof: Let V be a sphere with radius € bounded by dV.
We already know that G satisfies V2G = §(x — y).

Integrating both sides over the sphere V, we get

ngZGdV=1

Which can be written asling I fv V3G dV =1
£

Applying divergence theorem we get,
G
lim f — dS =1
e-0 J) dn
v

Hence prove.

3.6 LETS SUM UP

In this chapter we have learnt the following:

¢ Singularity functions.

e The fundamental solution of Laplace equation.

e Definition of Green functions using fundamental solution.

e (Green’s first identity.

e Green’s second identity.

e The use of Green’s function to solve partial differential equations.

3.7 UNIT END EXERCISE

1. Find the fundamental solution of Laplace equation.

2. State and prove Green’s first identity.

3. Find the Green’s function for the first quadrant in XY -plane.
4. State and prove symmetric property of Green’s function.

5. Show that Green’s function is unique.

6. Find the Fundamental Solution of the Laplace Operator for n = 3.
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3. Find the Green’s function for the first quadrant of R?, namely the
domain

Q={(x,y) ER*|x >0,y >0}
8. Find the Green’s function for the upper half ballB*(0,7) in R3.

9. Show that the Fundamental Solution of the Laplace Operator is given
by

1
Elogr ifn=2
u(x) = 1 ,
n >3
—(Z—n)wnr ifn=

10.Use the method of images to find the Green’s function for Laplace’s
equation to infinite

strip a < x < b in the (x, y)-plane.
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GREEN’S FUNCTION II

Unit Structure:

4.1 Objectives

4.2 Introduction

4.3 Green’s function for m-dimensions sphere of radius R
4.4 Green’s functions Dirichlet problem in the plane,

4.5 Neumann’s function in the plane.

4.6 Lets sum up

4.7 Unit End exercise

4.8 Reference

4.1 OBJECTIVES:

After going through this chapter students will be able to:

e To provide an understanding of, and methods of solution for, the most
important types of partial differential equations that arise in

Mathematics.
e Use Green's functions to solve Laplace’s equation.

e Use Green’s functionto solve Laplace’s equation for m-dimensions

sphere of radius R.

e Use Green’s functions to solve Dirichlet problem in the plane.

e Use Green’s functions to solve Neumann’s problem in the plane.

4.2 INTRODUCTION:

In general the type of conditions that may be applied depends on the
applications that are involved. In practices two types of boundary
conditions are commonly considered. The first one is known as the
homogeneous Dirichlet boundary condition which states that u is zero on
S and second one is known as the homogeneous Neumann condition
which is stats that Vu is zero on S. When u satisfies these homogeneous
boundary condition. We obtained representation formula for problems on
R™. We now fix Q to bean bounded open domain in R™ with smooth
boundary dQ.We will try to build Green’s function using the ideas
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developed so far. Later, we will check directly that the derived
representation formula gives the solution. We will also use the reflection
idea about the boundary of the domain.

4.3 GREEN’S FUNCTION FOR N-DIMENSIONS
SPHERE OF RADIUS R:

Let Bn(0, 1) be the unit ball in R™ . We look for a formula for the solution
of Laplace’s equation in Bn(0, 1) with Dirichlet boundary conditions,

{Au =0 x € B,(0,1) 1
u=g x € 0B,(0,1) D

if u is a solution of (I), then u will have the form

(@) = — f g(y) (xS ()
98,(0,1)

Now we just need to calculate Z—ion 0Bn(0, 1) where G is a Green’s

function for Bn(0, 1). As shown above,

G(x,y) =0y —x)— o(x|(y —x7)
is a Green’s function for the unit ball in R™ where

X
X2

*

X

is the point dual to x. We consider the case when n > 3. The case n = 2 can
be handled similarly. For n > 3, we have

o(y) = na(n) e Vo) = na(n)lyl"
Therefore,VO(y — x) = mzn(;—;i)xw
While@(|x|(y — x*)) = na(n) o 1x)| = IxI” — 0y —x7)
Therefore,
Vv, 8(IxIy = xM) = |x|n1 zna(%g,}i)x e
—ylx|* —x
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—ylx|* —x

~na(m)ly —xI"
Now, the unit normal to Bn(0, 1) is given by

Uzlzy
Iyl

Therefore, the normal derivative of G(x, -) on 0Bn(0, 1) is given by

96 = 90(y —x)  99(|x|(y —x"))
op Y= dv ov
-y —x) ylx|* —x

~na@ly —x" Y T namly —x"

|x|? —1

" na(m)ly —x|"

Therefore, the solution formula for (I) is given by

oG
== [ g0)5 @)
8B,,(0,1)
1 |x|? g()
| B
8B, (0,1)

We can use this formula to derive the solution formula for Laplace’s
equation on the ball of radius » with Dirichlet boundary conditions,

{Au =0 x € B,(0,7) 1
u=g x € dB,(0,7) (D

Suppose u is a solution of (II), thenti(x) = u(rx)is a solution of (I) with
boundary data

G(x) = g(rx). Therefore, by our work above, we see the formula for # is
given by

ii(x) =

1—|x]? J)
na(n) f ly — x|™ dS(y)

9B, (0,1)

g(ry)
=1-|x|? ds
| x| ly—xI" »)

9B, (0,1)
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=1k [ 2P

= n
3B (0 |7 x|
9@ _
=7r"(1 — |x|? ————dS
M- | T mdsO)
0B, (0,1)
(r? —Irx|?) f 9»)
= — ————dS
u(rx) (T ly — x| )
Bnp(0,r)
which implies the solution formula for (II) is given by
GEED 162)
u(e) = j L ds0)

dB,(0,1)

This representation formula is called Poisson’s formula for the ball. The
function

(r* —1x1?)

na(n)rly — x|

K(x,y) =

is called Poisson’s kernel for the ball.
Example 1:Let R?} be the upper half-space in R",
R%? = {(xq, x5, ..., X,) € R?:x,, > 0}
Find Poisson’s formula and Poisson’s kernel be the upper half-space inR%} .
Solution:G is a Green’s function for R”. As shown above,
Gx,y) =0y —x) - 8(y —%)

Where X = (x4, X3, X3, «v oue Xp—1, — Xn) and @ is the fundamental solution
of Laplace’s equation in R™ . Our proposed solution has the form

oG
we == [ 905 Cndse) + [ FIGEIdy
OR? R”

d . .
Now, we calculate a—i on {y, = 0} to find an explicit formula for solutions

to
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Therefore, the normal derivative of G on {y, = 0} is given by

0G(x,y) _00(y—x) 030(y —%)
ov  dy, oyn

— Yn — Xn _ Yn — fn
na(m)|y —x[* na(m)|y — x|

—2xy,

" na(mly — x|

Therefore, if u is the solution of Laplace’s equation on the upper half-
space Q with Dirichlet boundary conditions, then we suspect that u will
have the form

_ _2%n gy)
na(n) J |y — x|
OR"

—dS(y)

This is called Poisson’s formula for the half-spaceR%} . The function

2x,

K> = @l — <

is called Poisson’s kernel for the half-space R%.

4.4 GREEN’S FUNCTIONS DIRICHLET PROBLEM IN
THE PLANE:

Consider the Dirichlet problem for the Poisson equation
Au=f x€D
u=g x € dD

where D is a bounded planar domain with a smooth boundary dD. The
fundamental solution of the Laplace equation plays an important role in
our discussion. Recall that this fundamental solution is defined by

B(x,y) = — logT = —1 og(x? +y?
x,y) =5— logr = —logx® +y?)

The fundamental solution is harmonic in the punctured plane, and it is a
radially symmetric function with a singularity at the origin. Fix a point
(a,b) € R?%. Note that if u(x, y) is harmonic, then u(x — a, y — b) is also
harmonic for every fixed pair (@, b). We use the notation

?(x,y;a,b) =0(x —a,y —b)
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We call @(x,y;a,b) the fundamental solution of the Laplace equation
with a pole at (a, b).

The function@(x, y; a, b) is harmonic for any point (x, y) in the plane such
that (x,y) # (a, b)For € >0, set.

B, = {(x, y) € D,\/(x —a)’+ (W —-b)’< s}, D. = D\B;

Let u € C%(D). We use the second Green identity in the domain D, where
the function v(x,y) = @(x, y; a, b)) is harmonic to obtain

f(Q)Au —ulAQ@)dxdy = j (@0,,u — ud,®)ds
De D
Therefore,
f((bAu)dxdy = f((z)anu —ud,®)ds + f((z)anu —ud,0)ds
D¢ aD 9B,

Let ¢ tend to zero, recalling that the outward normal derivative (with
respect to the domain D) on the boundary of B, is the inner radial
derivative pointing towards the pole (a,b).

We obtain|faB (Q)anu)d5| < Cel|llogel >0 ase—0

1
f(uan(Z))dS =5 f(u)dS - u(a,b) ase—>0
0B¢ 0B¢

Therefore

u(a,b) = f(@(x —a,y—b)o,u—ud,0(x —a,y— b))dS
aD

— f((z)(x —a,y — b))Au dxdy
D

is called Green’s representation formula for Dirichlet problem in the
plane.

The function@[f](a,b) = — fD (@(x —a,y— b))f(x, y)dxdy.is called
the Newtonian potential off.
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Example2 : Determine the Green’s function for Dirichlet problem for a
circle given by

V’u=0, r<a
u=f(6) on r=a.
Solution:Let P(r,0) and Q(r', 8") have position vectors r and r'.

Let P’ be the inverse of P with respect to the circle so that OP.OP' = a?

, 2
and P’ has coordinate | ¢ /r, 6 ).

Now we construct the Green’s Function G such that

+H

G = log e

Let H = log <r. P Q/a> so that it can be verified that VZu = 0.

G r.P'Q
~ 9% pQ
On the circle r = a,
G =1 P,Q—l =0
= O‘gPQ = og]__

However PQ? =12 +1'2 — 2rr'cos(0' — 0)

Po =L 1 v 2% cos(o' — 6
Q =g tr- 7‘rcos( —-0)

Replace value of PQ and P'Q in G = log % we get,

2 4 7
1 Z—Z(j—z + 7% —2rr'cos(8' — 9))
G==1
209 2 = 2rr'cos(6’ — 0)

2 ﬁ 22 _ a_z ! r_ 1
1 (a Tt ZTrcos(H 0))

==
2 %9 r2+1r'2 —2rr'cos(6’' — 6)
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But On the circle r = q,

(66) 3 —(a®-1?%)

or'),_, ala? —2arcos(8’ — 0) + 2]
_a?-r? 2m £(6")aer

Therefore’ u(r,H) T 2ma fO [a?2-2arcos(8'—0)+r2] *

The Eigen function method:

Consider the eigen value problem associated with the operator V2 in the
domain R. i.e.

A’Q+20 =0 inR
@ = 0in OR

Let A, be the eigen values and @,,, be the corresponding eigen
functions. Suppose we give furior series expression to G and § in terms of
the eigen functions @,,,,, in the following form:

G(x,y,¢m) = Z Z Amn (§, 1) Dmn (X, )
S(x—&y—n)= Z Z byn (§, M) D (x, ¥)

Pmn($,
Where b,y,,, = mﬂﬂ% §(x =&y —10)Bmn(x, y)dxdy = &m

19mnll?

10,2 = j j 02, dxdy
R

. VZ(Z)mn + Ann@mn =0
We obtain V2 Zm Zn Amn (S;: n)wmn (x,y) = Zm Zn brmn (f: n)Q)mn )

m nq)mn ’ Q)m‘fl ’
_Zzimnamn(fin)q)mn(xi)o = Z Z ”(ng 77”)2 (x Y)

From which we get

_Q)mn(‘f: TI)

amn (81 = 7 G
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Hence the required Green’s function for the Dirichlet problem in the form

ZmZTL Q)mn( ’ )Q)mn )
G(x,y,§m) = S Imn ),

Amnl|®mnll?

2 2
If eigen value A, = (%) + (%n) and corresponding eigen function

Omn = Sin (%) Sin (?) where m,n = 1,2, ... ...... ...

Therefore Green’s function for the Dirichlet problem in the form can be
written as,

© 0 m_ng‘ . nmn
G(x,y,&m) ——:Z Zsm ( a )Sm ( b )Sin (?)Sin (ﬂ)

e () ) b

Example 3:Using Green’s function method Solve PDE,

Viu = —m?sin(mx)sin(2ry)in0 <x <1, 0 <y <2

With the initial boundary condition u(x,0) =0; u(x,2) =0, 0 <x <
1

u(0,y)=0; u(1,y)=0, 0<y<2.
Solution: Here a = 1,b = 2 and f(x,y) = —m? sin(mx)s in (2my)

We have Green’s function for the Dirichlet problem in the form can be
written as,

—4 = < Si
G(x,y,&m) =E;1; (ﬂc)lz_l_(m

2\ < Sin (m—nse)Sm ﬂ) .
G(x,y,&n) = -2 Z“; (#32 N (”2_” 22 Sin (mirx) n (mzry)
By definition of Green’s function,
o[ LR e

X —m? sin(mx)s in (2my)
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u(x,y)

=8 i iﬁ(ﬁlsin(nf)sin(mnf) dg‘) (j;

m=1n=1
X sin(mx)sin(2my)

2

sin(2mn) sin (?) dn)

1 8
ulx,y) = > (W> sin(mx)sin(2my)

u(x,y) = %s in(rx)sin(2my)

Example 4: Let Q be the triangle on R? with vertices (-1, 0), (1, 0) and (0,
v3). Solve the following Dirichlet problem

—Au=2nQ
u=0on 0Q.

Solution: We first need to find equations of sides of triangle.

Equations of sides of triangle are y =0, y++V3x—+v3=0, y-—
V3x—+3=0.

Thus the solution has the following form
u(x,y)=cy(, y+V3x—+3)(, y—-V3x—+V3)

Now we need to determine constant ‘¢’ which fulfilled the boundary
condition.

A direct calculation is given by

—Au =43¢ =2

Therefore the solution is

u(x,y) 22%(' y+V3x—v3)(, y-V3ix—v3).
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4.5 NEUMANN’S FUNCTION IN THE PLANE:

We move on to present an integral representation for solutions of the
Neumann problem for the Poisson equation:

Au=f x€D
Jou=g x €0D

Where D is a bounded planar domain with a smooth boundary dD. The
fundamental solution of the Laplace equation plays an important role in
our discussion. Recall that this fundamental solution is defined by

B(x,y) = — logT = —1 og(x? +y?
x,y) =5— logr = —logx® +y?)

for any closed curve that is fully contained in D.

The fundamental solution is harmonic in the punctured plane, and it is a
radially symmetric function with a singularity at the origin. Fix a point
(a,b) € R2. Note that if u(x, y) is harmonic, then u(x — a, y — b) is also
harmonic for every fixed pair (a, b). We use the notation

?(x,y;a,b) =0(x —a,y —b)

We call @(x,y;a,b) the fundamental solution of the Laplace equation
with a pole at (a, b).

The function@(x, y; a, b) is harmonic for any point (x, y) in the plane such
that (x,y) # (a, b)For € >0, set.

By = {(x, y)ED,J(x—a)2+(y—b)?< s}, D, = D\B;

Let u € C%(D). We use the second Green identity in the domain D, where
the function v(x,y) = @(x, y; a, b)) is harmonic to obtain

f((Z)Au —ulAQ)dxdy = f (@o,u — ud,P)ds
Dg

D¢

Therefore,

f((bAu)dxdy = f((z)anu —ud,®)ds + f((z)anu —ud,0)dsS
aD

De 9B,

Let ¢ tend to zero, recalling that the outward normal derivative (with
respect to the domain D) on the boundary of B, is the inner radial
derivative pointing towards the pole (a,b).
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We obtain|f63 ((Z)anu)dSl < Cellogel| >0 ase—0

1
f(uan(Z))dS =5 f(u)dS - u(a,b) ase—>0
9Be 9Be

Therefore

u(a,b) = f(@(x —a,y—b)o,u—ud,0(x —a,y— b))dS
aD

- j(@(x —a,y — b))Au dxdy
D

Enables us to reproduce the value of an arbitrary smooth function u at any
point (a,b) in D provided that Au is given in D, and u and d,,uare given on
oD. For the Neumann problem, « is not known on 0D.

Let A(x, y; a, b) be a solution (depending on the parameter (a, b)) of the
following Neumann problem:

Ah(x,y;a,b) =0(x,y) € D
1
onh(x,y;a,b) = 0,0(x,y;a,b) + I (x,y) € oD

Where L is the length of OD. Substituting u = [ into the Green
representation formula we get

.Ian@(x,y; a,b)ds=-1
aD

Therefore, the above boundary condition a sufficient condition for the
solvability of the problems to | o Onttds = 0.

Definition: A Neumann function for a domain D and the Laplace operator
is the function

N(x,y;a,b) = 0(x,y;a,b) — h(x,y;a, b)(x,y),(a,b) €D,
(x,y) # (a,b)

whereh(x, y; a, b) is a solution of

Ah(x,y;a,b) =0(x,y) € D

1
0,h(x,y;a,b) = 0,0(x,y;a,b) + I (x,y) € 9D
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1.e. a Neumann function satisfies

AN(x,y;a,b) = —=6(x —a,y — b)(x,y) € D

0,N(x,y;a,b) = T (x,y) € 0D

Therefore

u(a,b) = fN(x,y; a,b) d,u(x,y)ds
aD

L

1
— .[N(x,y; a, b)Au(x,y)dxdy + - fuds
D aD

We obtain the following representation formula for solutions of the

Neumann problem.

Note:

1) The kernel N is not called the Green function of the problem,
since N does not satisfy the corresponding homogeneous
boundary condition. There is no kernel function that satisfies

AG(x,y;a,b) = —6(x—a,y —b)(x,y) €D
0.N(x,y;a,b) =0
€ aD
i1) The Neumann function is determined up to an additive

constant. In order to uniquely define N it is convenient to use

the normalization

fN(x,y;a,b)ds =0
aD

111) The third term in the representation formula (4.32) is

% faDu ds, the average of u on the boundary, which is not

given. But since the solution is determined up to an additive

constant, it is convenient to add the condition

fu(x, y)ds =0

aD

and then the problem is uniquely solved, and the corresponding integral

representation uniquely determines the solution.

ExampleS : Consider the Neumann boundary value problem for Laplace’s

equation in the upper half plane V?u = 0 in y > 0 with Z—Z = — 3—1; = f(x)

ony = 0.
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Solution: Draw boundary value condition and add image to make g—i =0

on the boundary condition:

W — -1} Y+~ 1

Figure 1

1
GOoy §m = ——1od(x — P+ —n?]

+—ilog[(x—€)2+( +n)?]
an yTn

906G _ 1 2(y—-n) 2(y+1)
Note that 3y ( e )

4m Z+(y-m?  (x=8)2+(y+n)?

And as required Neumann boundary value problem,

G —-aG 1 ( —27n N 2n )_
(x=O2+m? (x—82+m?/

%5_ 6y yZOZE

Then, since G(x,0,¢,7n) = —il og(x — )%+ (n)?]

(&) = j FOO1 ofi(x — )2 + ()?] dx
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Therefore we can write,
+00
uGoy) = | FD)1okx =27 + ()] dA

. o G . . .
We have not given condition on G and 5, at infinity. For instance we can

think of the boundary of the upper half plane as a semi-circle with
R — +oo0.

L
o R
F o,
.-‘;f “x\
."Ir -'-
— B S1 +
"'\-\._\_H\ “'w.._\_\_x = e ""'-\.._H- .H"\-_H_x o B o 2 B S ""-.\_H_x . '\"'-H.H -I|1-
Figure 2

Green’s theorem in the half-disc for u and G is

.[ (GVzu—uVZG)dV=j<G——u— d
v ] n

Example 6: Interior Neumann problem for Laplace’s equation in a disc,

2 _li( 6_u) 1% _ o ou _ _
Veu -5 ) t =55 Oinr < a, ™ f(@)onr =a.

Solution: Here we need,

NG = —8(x— 8y —1) +swith 2| =0.

r=a

Where 9 = ma? is the surface area of the disc. In order to deal with this

. o ( ok
term we solve the equation V2k(r) = %5 (r 5) = #

2

4mra’

= k(r) = + Cylogr + C,

And take the particular solution with C; = C; = 0. Then add in source at

inverse point and an arbitrary function h to fix the symmetry and
boundary condition of G.

929



-1
G(r,6,p,0) = Elog[r2 + p%? — 2rpcos(@

—@]_1l a’( , r?p? ) oo
)Eogp—2a+ — 2rpcos(6 — @)

a?
TZ

+ +h

41’

So

2a?
96 _ -1 2r—2pcos (6-0) 1( 2r—="—cos(6-0) ) r oh

Yoar Er2+p2—2rpcos 0-0) 4w 7,z_l_a_‘}_z’”a2 cos(6—0) 2ma? | or
p P
2
3G —1a—pc019—®)+%—pcos(9—®)+ 1, oh
orly—, 2m a? + p? — 2apcos(6 — 0) 2ma  Or
oG 1 1 oh
orl,., 2ma 2ma Or
oh e tion 06
And; e 0 implise Pl 0 on the boundary ,

then put h = % log(a/p)

So,
-1 2 2 -1 aZ 2
G(r,0,p,0) = —loglr® + p* — 2rpcos(6 — ®)] - log [F(“ +

2,2
p —
a2

r

r2

2rpcos(0 — (Z)))] +

onr = a.
4ma?

-1 2 4 2 2 1
GIr:a:E logla? + p? — 2apcos(8 — @) ]+E

—1 2 2 1
Glr=q = E<log[a + p? — 2ap cog6 — 0)] _§>

Then u(p, @) =@ + [ £(6) Gly=q adf

21

1
u(p,®) =u— %f <l0g[a2 + p% — 2ap cog0 — 0)] —E)f(e)de

Now recall the Neumann problem compatibility condition;

Of £(6)d6 = 0
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u

Indeed [, VudV = [, g—n ds

From divergence theorem,
2T
f f(@)de =0
0

So the term involving | 0271 f(6)d6in the solution u(p, @) vanishes, hence

21

ulp, @) =1u —%f logla® + p? — 2ap co(0 — B)]f(0)dO
0

2T

(r,0) =1u _2 logla? + r? — 2ar co(0 — ©)]f(®)dd
u 21

4.6 LETS SUM UP:

In this chapter we have learnt the following:

e Use Green's functions to solve Laplace’s equation.

e Use Green’s function to solve Laplace’s equation for m-
dimensions sphere of radius R.

e Use Green’s functions to solve Dirichlet problem in the plane.

e Use Green’s functions to solve Neumann’s problem in the plane.

4.7 UNIT END EXERCISE:

1. Prove that the Neumann function for the Poission equation is
symmetric.

2. Find the Green’s function for the Dirichlet problem on the rectangle
R:0 <x <a,0 <y < b described by the PDE (V2 +A)u=0 in R
and the initial boundary condition u = 0 on dR.

3. Use Green’s function technique to solve the Dirichlet problem for a
semi-infinite space.

4. Find the Green’s function for Boundary value problem V2u = F in the
quadrant

x>0y>0.
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5. Prove that Exterior Neumann problem for Laplace’s equation in a
disc,

2
u(r,0) =u —%j logla? + r? — 2ar co(0 — ©)]f(®)dd
0

6. Solve the Neumann problem in the quarter-plane {x >0, y >0}.

7. Use the Green’s function method to find the solution of the Neumann
boundary value problem :
Viu=0, 0<x<1, 0<y<l1
u(x,0) =ulx,1) =0, 0<x<1,
u(0,y) =u(1,y) =0, 0<y<l1

8. Solve the following Dirichlet problem,
—Au = 0inD(0,1)
u(p, 8) = Asin?6 + Bcos?Oonp = 1
Where x = (x4, x,) = (pcosb, psinf) and A and B are constants.

9. Find a bounded solution to the following Dirichlet problem outside a
unitball in R3:

—-Au=0 r<l1
| _ 2
Hr=1 = 5

Where r = |x|.

10. Let u be the solution of
—Au = 0inR%}
u =g ondRY}
Given by the Poisson formula for the half-space. Assume g is
bounded and g(x) = |x|for x € dR%, |x| < 1. Show that Du is not
bounded near x = 0.
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THE DIFFUSION EQUATION&
PARABOLIC DIFFERENTIAL
EQUATIONS

Unit Structure:
5.1 Objectives
5.2 Introduction

5.3 Existence and Uniqueness theorem for initial value problem in an
infinite domain

5.4 Existence and Uniqueness theorem for initial value problem in semi-
infinite domain

5.5 One dimensional Heat equation

5.6 Maximum and Minimum Principle for the Heat equation
5.7 One dimensional wave equation

5.8 Lets sum up

5.9 Unit End exercise

5.10 Reference

5.1 OBJECTIVES:

After going through this chapter students will be able to:

e Existence and Uniqueness theorem for initial value problem in an
infinite domain and semi-infinite domain.

e One dimensional Heat equation and also solve its initial value
problem.

e Maximum and Minimum principle for the heat equation.

¢ One dimensional wave equation and also solves its initial value
problem.

e Solve one dimensional PDE by method of separation of variables.

5.2 INTRODUCTION:

In this chapter we are going to look at one of the more common methods
for solving simple partial differential equations. The method we will be
taking a look at is that of Separation of Variables.
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We will do a partial derivation of the heat equation that can be solved to
give the temperature in a one dimensional rod of length L. In addition, we
give several possible boundary conditions that can be used in this
situation. We do a partial derivation of the wave equation which can be
used to find the one dimensional displacement of a vibrating string.

Model heat flow in a one-dimensional object (thin rod). Place rod along x-
axis, and let

u(x, t)be a temperature in rod at position x, time t.

Under ideal conditions (e.g. perfect insulation, no external heat sources,
uniform rod material), one can show the temperature must satisfy

u, = C*Vu (theone-dimensional heat
equation)

The constant C? is called the thermal diffusivity of the rod.

Now we will discuss existence and uniqueness theorem for IVP in infinite
and semi-infinite domain.

5.3 EXISTENCE AND UNIQUENESS THEOREM FOR
INITIAL VALUE PROBLEM IN AN INFINITE
DOMAIN:

We will start out by considering the temperature in a 1-D rod of length L.
What this means is that we are going to assume that the bar starts off at
x = 0 and ends when we reach = L. We are also going to so assume that
at any location, x the temperature will be constant at every point in the
cross section at that x.

We have learn the Green’s function, using Green’s function for the
problem of heat flow in an infinite rod, the position of the rod coincide
with X-axis and rod is homogeneous. Also heat is uniformly supply to it in
cross section area in time t > 0.u(x, t) is the temperature at the point x at
time t without loss of heat through boundary condition. Then the problem
can be described by PDE,

ur = alu —oo<x<o, t>0
Initial boundary conditionu (x,t) = f(x) —00 < x < 00,
Suppose the Fourier transform of u(x, t) is U(k, t).

ie. Flu(e, 0] = Uk, ) = 7=/, ulx, e dx

Taking the Fourier transform of u; = aA,u and summing that u, u, —
0, as |x| — oo we get

U, + ak?U = 0.
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Its solution is given by
Uk, t) = A(k)e ¥«

When A(k) is an arbitrary function to be determined from the initial
condition as follows.

U(k,0) = F[u(x, 0) u(x, 0)e tkx dx

]=é§l

1 [ —i kx
:E ff(x)e dx = F(k).

Hence, Uk, t) = F(k)e **at
Hence by convolution theorem,

u(x, t) = f(x) x F~1(e~k*at)

1 (x - §)?
Zﬁ_lof(f)exp<—T> d¢

o)

- fG&—fﬂﬂf@ME

—00

1s called the Green’s function for heat transfer in infinite domain of road.

Now we consider the case « = 1 and

ro={; 330
_a | (x = &)
u(x, t) = Zx/ﬁbf exp (_T> dé
o= (&)

u(x,t) = il e " d
) ﬁ 17
],
0 oo
a
=— f e dn +f e dn
V| _
/2\/f 0
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=3[1+er ()

Where erf is the error function.

5.4 EXISTENCE AND UNIQUENESS THEOREM FOR
INITIAL VALUE PROBLEM IN SEMI-INFINITE
DOMAIN:

Now using Green’s function for the problem of heat flowin semi-infinite
rod, the position of the rod coincide with X-axis and rod is homogeneous.
Also heat is uniformly supply to it in cross section area in time t > 0. A
boundary condition at the finite end x = 0 and other end condition co. The
initial condition on the temperature distribution u(x,t) can be described
by,

u(x,0) = uy(x) 0<x<o

There are various boundary conditions that can be prescribed at the end
x=0.

I* condition: The temperature is prescribed at x = 0 for all time u (0, t) =

f@®.

11" condition: The flux of heat across x = 0 is prescribed for all time. i.e.
U, (0,8) = g(o).

I condition: The flux of heat across x = 0 is propositional to the
difference between the temperature at x = 0 and the surrounding medium.
1.e.

u,(0,t) + au(0,t) =C
We define a function U(x, t) called the derived singularity function
U(x,t) = %k(x, t) = -2k, (x,t). t>0, x>0
The properties of U(x,t) are given by
fooo U(x, t)dt = landlim,,_y+ foc Ulx,t)dt=1,c>0

Using these propertieswe get the relation,

[o)0) 2 o0
f U(x, t)dt = erfc (2xVc) = — f e " dy
0 \/Ex/

2ve
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Where the complementary error function, erfc (§) is defined by

erfc (§) =1 —erf($).

Theorem : If f(t) €C for 0<t<oo and f(0) =0 than u(x,t) =
fot U(x,t —y)f(y)dy satisfies the heat equation in 0 < x < o0, 0 <t <
oo and

Case I) lim,_y+ u(x,t) = f(t) 0<x<c

Case IT) lim, o+ u(x,t) =0 0<x< o

Both the case is uniformly continuous. Where ¢ is a constant.
Proof:U(x, t) satisfies the heat equations for t > 0.

We shall first prove case II:

Let €> 0 such that we can determine a §,

If(O] <t 0<t<é.

Hence for0 <t < 6,

t

u(x,t) = f UGt - y)f()dy

0
t %)

< f UG OIf (e — O)dE < € j U(x, £)dé =€

0 0

For a specific value of §, its holds for all x. Hence proved.
To prove case I:

Let €> 0 such that we can determine a 1 which is independent to t on
0<t<cand 0<x<n,

lulx,t) — f(£)] <€
For any €> 0, let §; be such that [f(§)] < S

Whenever || < §; due to uniform continuity of f(t)in 0 <t <,

We can choose §;, so that we also have
lft—8) —f(O)] < §Whenever €] <6, 0<t<c.

Now divide 0 <t < ¢ into two sub-interval 0 <t < §;and §; <t <c,
we have

|lu(x,t) — f(t)| <€forall x > 0.

Iné; <t<cg
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t [e%9)

u@ﬂ—f®=fU@i—WKw®—fU@wﬂﬂw
0 0

t [«

= f U(x, &) f(t — &)dé — f Ulx,y)f(©)dy
0 0

t [e%)

= [ V@i - - f@ldy - £ [ UGy
o t

[oe)

~ulx t) = (O] < ;f U(x,y)dy + 3M f U(x,y)dy
61

0

Where M = Supo<<c|f (DI.
We know that lim,_, 4+ fOC U(x,t)dt =1, ¢ > 0 and f;f U(x,y)dy < %

But for sufficiently small x,we have the result
lu(x,t) — f(t)| <efor0 < x <nand0 <t <c

Hence the solution is given by

t

uma=fuam—wﬂww.

0

This result gives solution of I* condition that the problem of finding the
temperature of semi-infinite rod whose initial temperature t =0 1is
everywhere zero and whose temperature at finite end x = 0 is prescribed
by all the t as f(t).

For I™condition : The temperature of semi-infinite rod arises when initial
temperature t = 0 is everywhere zero and whose temperature at finite end
x = 0 is prescribed by all the t as g(t) and g(0) = 0.

Here u(x,t) = —2 fOtK(x, t —y)g(y)dy is the solution for 0 < x < oo,
0 <t<c where ¢ is a constant. Here K(x,t) is satisfies the heat
equation.

We have lim,_ g+ u(x, 07) =0for0 <x < o

Also w,(x,8) = =2 [1 K (x,t = )g(O)dy = [ U(x, ¢t — y)g(»)dy

U, (x,t) » g(t)asx » 01,0 < t < c.
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1" condition: The flux of heat across x = 0 is propositional to the
difference between the temperature at x = 0 and the surrounding medium.
1e.

u,(0,t) + au(0,t) =C

Here u(x,t) is the solution of the diffusion equation satisfying the
condition

u(x,0) =0, x=>0; u,(0,t)+ au(0,t) = @(t), t>0.
Where «a is positive constant and @(t) is continuous.
Therefore, u, — au = fot @) U(x,t —1)dt
Till that we have consider initial temperature distribution is Zero.

Now we have to consider the case of non-zero initial distribution and zero
boundary condition at x = 0. i.e.

u(x,0) =up(x) 0<x<o
luo (20| < Me?™

And one of the following boundary conditions:
vt condition: u(0,t) = 0 0<t< oo
V™" condition: u,(0,t) =0 0<t<oo,
VI™ condition: u,(0,t) — au(0,t) =0 0 <t < oo.
In IV" condition we extend uy(x) as an odd function, we get
Uug(x) = —uy(—x)forx < 0.

Then the solution of the initial value problem in —co0 < x < o0 is given by

o)

M&O=]K@—%ﬂ%@My

—00

_ f [K(x —y,8) — K(x + v, )] uo(y)dy

Since K(0 — y,t) — K(0 + y,t) = 0 the boundary condition u(0%,t) = 0
is automatically satisfies.

In V! condition we extend Uy (x) as an even function of x for x < 0,

uy(x) = uy(—x)forx < 0.
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Then the solution is given by

o)

Mm®=jW@—%ﬂ—K@+%ﬂde@
0

Since K, (0 — y,t) — K, (0 + y,t) = 0 the boundary condition u(0%,t) =
0 is automatically satisfies.

In VI™ condition we extend uy(x) as
Ug(—x) = up(x) + 2a e** fox e~ %y, (&)déforx > 0.
In order to satisfies boundary condition

u,(0,t) —au(0,t) =0 0<t < oo,

Than the solution is given by

Mmﬂ=fW@—%ﬂ—K@+%Ode®
+2ajK(x+y,t)e“yje‘“fu0(€) dy dé¢
0 0

A linear combination of solution of one of the problem condition I, II, and
II with uy(x) = 0 and one of the conditions IV, V, VI lead us to the
general mixed initial boundary value problems for the heat equation for
semi-infinite rod.

5.5 ONE DIMENSIONAL HEAT EQUATION:

We now begin to study finite difference method for time-dependent PDE
where variations in space are related to variation in time.

The diffusion equation is of the form
ur =kA,u
Taking k = 1 by suitable change in x or t.This is called as heat equation.
The one-dimensional diffusion equation for u(x, t) is
U = KUy
Where k is diffusion constant.
Now solving heat equationby separation of variable method
Let u(x,t) =Xx)T() #0 (*)
ie.u =XT
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Differentiate the separated solution (*) once with respect to ¢ and twice
with respect to x and substitute these derivatives into the PDE. We then
obtain

XT' =kX"T

Now, usingthe separation of variables step.

X/l 3 TI B 5
X kT
Where « is positive constant.
Now we get following ODE’s
i) X"+a’X=0 0<x<lL
ii) T'+a?kT =0 t>0

Solution of (1) is X = A cosax + B sin ax
Solution of (i) is T = ce~*kt
Therefore the general solution is
u = (A cos ax + B sin ax)(ce”* kt)
If the boundary conditionsu(0,t) = 0 t=0
u(l,t) =0 t=>0
With initial condition u(x,0) = f(x) 0<x<lL
Then X(0) =0 = A =0.
X() =0= Bsinal =0asB # 0
sinal =0
Thus a = nl—n forn=1,2,3,.....
Substituting these a in solution we get

X, (x) = B, sin (2)

Ty(£) = Cpe (") e

Hence the non-trivial solution of the heat equation which satisfies the two
boundary condition.

un (x, ) = Xp (X) T ()
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w,(x,t) = ae”" /)" ktsm( )forn =1,23,.

Where a,, = B,,C,, is an arbitrary constant.

By the principle of superposition implies that any linear combination

(x,t) = n(x, 1)
u(x,t nZlu X, t
= Z e~ () Kt i (mltx)

Which satisfies the initial condition if

u(x,0) = f(x) = L ay sin (7).

This hold true if f(x) can be represented by a Fourier Sine series with
coefficient

n= %folf(x) sin (?) dx.

Hence,

o l
u(x, t) = Z [%f f(7) sin (#) drle-" /)7 ke sin (mlTx)

is the general solution of the heat conduction equation of the function f
with respect to the eigenfunctions of the problem, and a,,n=1,2 ... ar

called Fourier coefficientsof the series.

Example 1: Solve the heat problem

Up = Uyy 0<x<m, t>0
u(0,t) =u(m,t) =0 t=>0
x 0<x<T7/,
u(x,0)=f(x)={n_x Tfp<x<m

Solution: The formal solution of heat equation is

u(x, t) = i %ff(x) sm( )dx e~ (") Kt gin (mlrx)
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l T
A, =%ff(x) sin(?) dx =%ff(x) sinnx dx

/2 T
2 . 2 .
A, =—f x sinnx dx +E f(n—x) sinnx dx
0

/2

A, = isin (E)

mn2 2
Thus the formal solution is
u(x, t) = i [i sin (n—ﬂ)] e~ M*t gin(nx)
’ nn2 2
n=1
But
: (ﬂ) _ { 0 n=2m
S T (=™ n=2m-1
Where m = 1,2,3, .....
Therefore we can write solution as
< 4 [ (=1 2m — D
2 up(x, t) = ;2 l((Zm)— o sin <( 5 ) )l e~ @M=Dt gin((2m
n=1 n=1
- 1Dx)
Example 2: Solve the heat problem
U = Uy 0<x<2 t>0
u(0,t) =u(2,t) =0 t>0
u(x,0) =50 0<x<?2.

Solution: Comparing with heat equation we get,

c=V3 andL =2
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20 = 1  mnx
f(x) =50 = T —Sin (T)
n=0
Since,
_cnmw V3 nm
T T T

We obtained the solution

200 1 _3n?mn?%t/ . (nux
u(x,t) = ?Zfzoze /a sin (T)

5.6 MAXIMUM AND MINIMUM PRINCIPLE FOR THE
HEAT EQUATION:

We shall prove the maximum and minimum properties of the heat
equation. These properties can be used to prove uniqueness and
continuous dependence on data of the solutions of these equations. To
begin with, we shall first prove the maximum principle for the
inhomogeneous heat equation (F' [1=0).

Theorem: (The maximum principle) : Let R:0 < x < L,0<t<T be a
closed region and let u(x, t) be a solution of

Uy — a’uy, = F(x,t), (x,t) ER )

Which is continuous in the region R. if F < 0 in R, then u(x, t) attains its
maximum valus on t = 0,x = 0 or x = L and not in the interior of the
region or at t = T. If F > 0 in R, then u(x, t) attains its minimum values
ont = 0,x = 0 or x = L and not in the interior of the region orat t = T.

Proof: We shall show that if a maximum or minimum occurs at an interior
point 0 < xy < land 0 < ty < T, then we will arrive at contradiction. Let
us consider the following cases:

Case-I: first, consider the case with F < 0. Since u(x, t) is continuous in a
closed and bounded region in R, u(x, t) must attain its maximum in R. Let
(x0, to) be the interior maximum point. Then we must have

Uex (X0, t0) <0, U(xg,t9) = 0 (1)
Slnce ux(xo, to) =0= ut(xo, to), w¢E haVe ut(xo, to) = 0if tO <T.

If ty =T, the point (xg,ty) = (%0, T) is on the boundary of R, then we
claim that

us (xg, tg) = 0.
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As u may be increasing at (x,, ty). Substituting II in I , we find that the
left side the equation I is non-negative while the right side is strictly
negative. This leads to a contradiction and hence, the maximum must be
assumed on the initial line or on the boundary.

Case —II : Consider the case with F > 0. Let there be an interior minimum
point (x,, ty) in R such that

Uyx (X0, t0) =0, Us (X, tp) <0 (1II)

Note that the inequalities III is same as II with the signs reversed. Again
arguing as before, this leads to a contradiction, hence the minimum must
be assumed on the line or on the boundary.

Note : when F = Oi.e. for homogeneous equation, the inequalities II at a
maximum or III at a minimum do not leads to a contradiction when they
are inserted into I as u,, andu; may both vanish at (x,, ty).

Below, we present a proof of the maximum principle for the homogeneous
heat equation.

Theorem : (The maximum principle): Let R:0 < x < L,0<t<T be a
closed region and let u(x, t) be a solution of

Uy = A% Uyy, (x,t) ER (IV)

Which is continuous in the closed region R. The maximum and minimum
values of u(x, t)are assumed on the initial line # = (or at the points on the
boundary x = Qor x = L.

Proof. Let us introduce the auxiliary function
v(x,t) = u(x, t)+€ x2 V)

Where €> 0 is a constant and wusatisfies IV. Note that v(x, t)is continuous
in R and

hence it has a maximum at some point (x;, t;) in the region R.

Assume that (x,t;) is an interior point with 0 < x; < Land0 < t; < T.
Then we

find that
ve(xq,t) 20, Uy (x1,81) <0 (VD
Since u satisfies IV, we have

Ve — AV = Up — @PUy, — 2a% €= —2a2 €< 0 (VID)
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Substituting VI into IV and using VII now leads to
0 < v —a’vy, <0,

which is a contradiction since the left side is non-negative and the right
side is strictly

negative. Therefore, v(x, t)assumes its maximum on the initial line or on
the boundary

sincevsatisfies I with £ <0.
LetM = max{u(x,t)}ont = 0,x =0 and x = L.

i.e. Mis the maximum value of u on the initial line and boundary lines.
Then

v(x,t) = ulx, t)+€ x> <M+€L? for0<x <L 0<t<T (VI
Since v has its maximum on ¢ =0, x = 0, or x = L, we obtain

u(x,t) = v(x, t)—€ x? <v(x,t) < M+€ L? (IX)
Since [ is arbitrary, letting [] — 0, we conclude that

u(x,t) < Mfor all (x,t) €ER, X)
Hence proof.

As a consequence of the maximum principle, we can show that the heat
flow problem has

a unique solution and depend continuously on the given initial and
boundary data.

Theorem : ( uniqueness) Let u,(x,t) and u,(x,t) be the solution of the
following problem

U = a’uy, 0<x<IL,t>0,
u(0,t) = g(t), u(L,t) = h(t), (XI)
u(x,0) = f(0),

Where f(t), g(t) and h(t) are given function. thenu, (x, t) = u,(x, t), for
al0<x<Landt > 0.

Proof: Let u, (x, t) and u,(x, t) be the solution of the given XI problem.
Set w(x,t) = uy(x,t) — u,(x,t). Then w satisfies

u = a’w,, 0<x<L, t>0,

w(0,t) =, w(L,t) =, (XI)

w(x,0) =0,
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By the maximum principal we have,

w(x, t) <0,= uy(x,t) <uy(x,t)forall0 <x <Landt > 0.
Similarly we have w = u, — uy, for that we get

= U(x,t) u(x,tHforall0 < x < Landt >0

Therefore we have

= u;(x,t) = uy(x,t)forall0 < x < Landt >0

Hence it has unique solution.

5.7 ONE DIMENSIONAL WAVE EQUATION:

We write the wave equation as
Uy = C?Vufor—oo < x < oo.

This is the simplest second order equation.

Uy — C2Vu = (%—c:—x) (%+ c%) = 0.

This means that starting from a function u(x,t) you compute u, + Cu,
call the result for v(x,t) than you compute v; — Cv, and you get zero
function.

The general solution is
u(x, t) = f(x + Ct) + g(x — Ct). (X1D)
Where f and g are two arbitrary function of a single variable.
Initial value problem is to solve the wave equation

Uy = C*Vufor—oo < x < oo,
With the initial conditions u(x, 0) = @(x), u:(x,0) = @(x)

Where @ and ¢ are arbitrary functions of x. There is one and only one
solution of this problem.

Proof: Let if @(x) = sinx and @(x) = 0 then u(x,t) = sinx cosCt.

The solution of above IVP is easily found from the general solution
formula (XII) replacingt = 0, we get

o) = f(x) +g(x) (XIII)

Then using the chain rule we differentiate (XII) with respect to t and put
t =0, toget

p(x) =Cf'(x) —Cg'(x) (XIV)
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Lets regards XIII and XIV as two equations for the two unknown
functions fand g. To solve them change the name of variable as same
neutral xto s.

Now we differentiate XIII and divide XIV by C to get
! ! 1 ! !
=f'tgand-o=f"—g
Adding and subtracting the last pair of equations, we get

J= %(@’ + %)andg' = %(q)’ - %)

Integrating we get,
S
1
f)=506) +55 [0+
0

And

1 1
g(s) = 5 ?(s) ~3

Where A and B are constant because of XIII we have A + B = 0. This
tells us what f and g are in general formula XII. Substituting s = x + Ct
into f and s = x — Ct into g we get

x+Ct x—Ct
u(xt)-—@(x+Ct)+% Q+= Q)(x—Ct)—% 7
0 0
This simplifies to
x+Ct
u(x, t) = %[@(x + Ct) + 0(x — Ct)] + % p(s)ds
x—Ct

This is called D’Alembert’s the solution for initial value problem of one
dimension wave equation.

Example 3: Consider the Cauchy problem

Upr = Upy —o<x<o, t>0
With boundary condition:
0 —o<x< -1
u(x,0) = f(x) = x1+_1x _Olssxx§<10
0 1<x <o
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0 —o<x<—1
u(x,0) = gx) =141 —1<x<1
0 1<x<o

a) Evaluate u(1, 1/2).
b) Discuss the smoothness of the solution u.

Solution: a) Using D’ Alembert formula of one dimension wave equation
we get

x+Ct

u(x,t) = %[(Z)(x + Ct) + 0(x — Ct)] + % p(s)ds
x—Ct
3 1 3o
u(l,%) =M+ % f g(s)ds

1/2

Since §> 1, it follows that f(%) = 0. On other hand 0 S% <1,
1

therefore f (%) =

WZ )

17 1
jg(s)ds= jlds=[1—§]=§_
1, v,

Hence

1
(11)_0+5+1<1>_1+1_1
WWh2) T2 T2\%)Ta i

b) The solution is not classical, since u & C!. Yet uis a generalized
solution of the problem. Note that although g is not continuous,
nevertheless the solution wuis a continuous function. The
singularities of the solution propagate along characteristics that
intersect the initial line t = 0 at the singularities of the initial
conditions. Theseare exactly the characteristics x +t = —1,0, 1.
Therefore, the solution is smooth in a neighborhood of the point

(1, %) which does not intersect thesecharacteristics.

Method of Separation of Variables for one-dimensional Wave
equation:

PDE u; — c?u,, =0 0<x<1IL, t>0

Boundary condition: u(0,t) = 0 t>0
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To obtained separation of variables solution we assume
XT" = c?TX"

X Trr

1.C.—/ ===

X 2T
Case-I: When k > 0, taking k = a? we get
X'—a’X =0
T" — c?a?T =0

The solution in the form

X =ce* +ce”

T = c;3e% + cpe e
Therefore, u(x, t) = (¢, + c,e %) (c;e*t + c e %)
Now using boundary condition’s

u(0,t) = (¢, + ¢3)(cze* + c,e™c%)

This implies that ¢; + ¢, = 0, also
u(L,t) = 0= ce + e = 0.
This gives notrivial solution if and only if

1 1

eo:L e—aL

| =0
=e? =1 oral =0

This impliesthat ¢ =0, sincd cannot be zereyhich is against the
case-I assumption.

Hence solution is not acceptable.
Case-II: Wherk = 0, we get

X"=0 and T" =0.

Their solutions are formed to be

X =Ax + B, T=Ct+D.

Therefore requiredolsition of the PDRE

u(x,t) = (Ax + B)(Ct + D)
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Using boundary conditions we get,
u(0,t) =0=B(Ct+D) = B =0.
u(L,t)=0=AL(Ct+D) = A =0.
Hence only trivial solution is possible.
Case-III: When k < 0, taking k = —a?, we get
X"+ a?X =0; T" 4+ c?a?T = 0.
Their general solution is given by
u(x, t) = (cq cos ax + ¢, sin ax)(c5 cos cat + ¢, sin cat)
Using the boundary condition :u(0,t) = 0 we get ¢; = 0.
u(L,t) = Owe getsinal =0 = a, = %, n=123, .. ...

Hence the possible solution

5 nmct . (nmct
u,(x,t) = sin (T) (An cos( L ) + B, sm( L ))

Using superposition principle, we get

o)

)= 360 2 (s () 5 (5

n=1

The initial condition gives

u(x,0) = f(x) = i A, sin (nLLx)

Which is half-range of Fourier sine series, where
L
2 . mmx
A, = Zf f(x) sin (T) dx
0
Also we get

u(x,0) = g(x) = i By sin (nLﬂ) (?)
n=1

Which is also half-range of Fourier sine series, where

L
2 . mnx
B, = — g(x) sin (_L ) dx
0
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Hence the required solution is obtained.

Example 4: Solve the one-dimensional wave equation u;; = 16u,,for0 <
x<2 t>0.

The boundary conditions: u(0,t) = u(2,t) = 0.
The initial conditions: i) u(x,0) = 6 sinmx — 3 sin4mx. 1ii) u.(x,0) = 0.

Solution: The general solution of 1-dimensional wave equation is given
by

u(x, t) = (cq cos ax + ¢, sin ax)(c5 cos cat + ¢, sin cat)
Using boundary condition :u(0,t) = 0 for all t gives
c1(cz coscat + ¢, sincat) =0
Which implies thatc; = 0.
u(2,t) = Ofor all t gives
¢, sinax (c3 coscat + ¢, sincat) =0
For non-trivial solution sin2a = 0 = a = nz—n for some integer n.

nmwx
u,(x,t) = sin (T) (4,, cos(2nmt) + B,, sin(2nmt))

Now insert the initial condition u;(x,0) = 0 forall 0 < x < 2.

nmx
u; = sin(——) (—2nmA,, sin(2nnt) + 2nnB, cos(2nmnt))
2

nmx
u;(x,0) = sin (T

) (2nmB,) = 0= B = 0.
Finally using the initial condition u(x, 0) = 6 sin tx — 3 sin 4mx

We get u(x, t) = X, sin (%)
Hence we get,

u(x, t) = 6 sinmx cos 4wt — 3 sin 4mx cos 167t.

5.8 LETS SUM UP:

In this chapter we have learnt the following:

e Definition diffusion equation.
e 1-dimensional heat equation and its solution by separation of variable
method:
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e Existence and Uniqueness theorem for initial value problem for
infinite and semi-infinite domain.

¢ Maximum and Minimum principle for heat equation.

e 1- dimensional wave equation and its solution by separation of
variable method

5.9 UNIT END EXERCISE:

1. Let u(x,t) be the solution of the Cauchy problem

U = Uyy —o<x<o, t>0
1 x| <2
w0 =fw={; 3%
1 x| <2
w0 =g ={; M2

a) Evaluateu(O,é).

b) Discuss the large time behavior of the solution.

c) Find the maximum value of u(x,t) and point when this
maximum is achieved.

d) Find all the point when u € C2.

2. Obtain the solution of the wave equation
Ue = Czuxx
Under the following conditions:
i) u(0,t) = u(2,t) =0.
ii) u(x,0) = sin? (E)

2
iii)  u/(x,0) =0.
3. Solve the following heat problem:

1
utzzuxx 0<x<1 t>0.
u,(0,t) =u,(1,t) =0 t>0
u(x,0) = 100x(1 — x), 0<x<1
4. Use the maximum/minimum principle to show that the solution u
of the problem:
U = Uyy O0<x<m t>0.
u,(0,t) =u, (1,t) =0 t>0
1
u(x,0)=sinx+§sin2x, 0<x<m

3V3

Satisfies 0 < u(x, t) < - t> 0.
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5.

Solve the one-dimensional wave equation u; = 4u,, for0 < x <
1, t>0.
u,(0,t) =u, (1,t) =0 t=0
u(x,0) = f(x) =cos?nmx 0<x<1.
u(x,0) = g(x) =sin?mxcosmx 0<x<1.

6. Prove that the solution we found by separation of variables for the
vibration of a free
string can be represented as a superposition of a forward and a
backward wave.

7. Show that the solution of the 1-dimensional wave problem if it is
exists, is unique.

8. State and prove maximum and minimum principle.
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