S.Y.B.Sc.

(Computer Science)
SEMESTER - 111 (CBCS)

CORE JAVA

SUBJECT CODE : USCS302

© UNIVERSITY OF MUMBAI

Prof. Suhas Pednekar
Vice-Chancellor,

University of Mumbai,
Prof. Ravindra D. Kulkarni Prof. Prakash Mahanwar
Pro Vice-Chancellor, Director,
University of Mumbai, IDOL, University of Mumbai,

Programme Co-ordinator :Shri Mandar Bhanushe
Head, Faculty of Science and Technology,
IDOL, University of Mumbai, Mumbai

Course Co-ordinator : Mr. Sumedh Shejole
Asst. Professor,
IDOL, University of Mumbai, Mumbai

Editor : Mr Milind Thorat
Assistant Professor
K J Somaiya Institute of Engineering & IT
Mumbai

Writers : Ahtesham Shaikh

Anjuman-i-Islam's Akbar Peerbhoy College
Vashi, Navi Mumbai

: Mrs. Vandana Maurya
B.K. Birla College(Autonomous), Kalyan

: Dr. Manisha Divate
Usha Pravin Gandhi College of Arts,
Science and Commerce, Mumbai

July 2022, Print -1

Published by . Director
Institute of Distance and Open Learning,

University of Mumbai,
Vidyanagari, Mumbai - 400 098.

DTP Composed and : Mumbai University Press
Printed by Vidyanagari, Santacruz (E), Mumbai - 400098

CONTENTS

Unit No. Title Page No.
Unit-I
1 The Java Language 01
2. OOPS 18
3. String Manipulations and Introduction to Packages 33
Unit - 1T
4. Exception Handling 50
5. Multithreading 66
6. /O Streams 86
7. Networking 102
Unit - 111
Wrapper Classes 117
. Collection Framework 123
10. Inner Classes 138
11. AWT 146

O, O, O O
0® 00 00 o0

Course:

USCS302

TOPICS (Credits : 02 Lectures/Week:03)

Core Java

Objectives

The objective of this course is to teach the learner how to use Object Oriented paradigm to develop

code and understand the concepts of Core Java and to cover-up with the pre-requisites of Core java.

Expected Learning Outcomes:

1.

2
3.
4

Object oriented programming concepts using Java.
Knowledge of input, its processing and getting suitable output.
Understand, design, implement and evaluate classes and applets.

Knowledge and implementation of AWT package.

Unit |

The Java Language: Features of Java, Java programming format, Java Tokens,
Java Statements, Java Data Types, Typecasting, Arrays

OOPS: Introduction, Class, Object, Static Keywords, Constructors, this Key
Word, Inheritance, super Key Word, Polymorphism (overloading and
overriding), Abstraction, Encapsulation, Abstract Classes, Interfaces

String Manipulations: String, String Buffer, String Tokenizer

Packages: Introduction to predefined packages (java.lang, java.util, java.io,

java.sqgl, java.swing), User Defined Packages, Access specifiers

15L

Unit 11

Exception Handling: Introduction, Pre-Defined Exceptions, Try-Catch-Finally,
Throws, throw, User Defined Exception examples

Multithreading: Thread Creations, Thread Life Cycle, Life Cycle Methods,
Synchronization, Wait() notify() notify all() methods

I/0 Streams: Introduction, Byte-oriented streams, Character- oriented streams,
File, Random access File, Serialization

Networking: Introduction, Socket, Server socket, Client —Server

Communication

15L

Wrapper Classes: Introduction, Byte, Short, Integer, Long, Float, Double,
Character, Boolean classes
Collection Framework: Introduction, util Package interfaces, List, Set, Map,

List interface & its classes, Set interface & its classes, Map interface & its classes

Inner Classes: Introduction, Member inner class, Static inner class, Local inner
class, Anonymous inner class

Unit 111 | AWT: Introduction, Components, Event-Delegation-Model, Listeners, Layouts, | 151
Individual components Label, Button, CheckBox, Radio Button, Choice, List,

Menu, Text Field, Text Area

Textbook(s):
1) Herbert Schildt, Java The Complete Reference, Ninth Edition, McGraw-Hill Education, 2014

Additional Reference(s):
1) E. Balagurusamy, Programming with Java, Tata McGraw-Hill Education India, 2014

2) Programming in JAVA, 2nd Ed, Sachin Malhotra & Saurabh Choudhary, Oxford Press

3) The Java Tutorials: http://docs.oracle.com/javase/tutorial/

http://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Balagurusamy&search-alias=stripbooks
https://www.bookdepository.com/publishers/Tata-McGraw-Hill-Education-India

THE JAVA LANGUAGE

Unit Structure

1.0 Objectives

1.1 Features of Java

1.2 Java programming format
1.3 Summary

1.4 Textbook

1.5 Additional References

1.6 Questions

1.0 OBJECTIVES:

The objective of this chapter is to learn the basic building blocks of java
and understand the concepts of Core Java and to cover-up with the pre-
requisites of Core java, Advanced Java, J2EE and J2ME.

Topics:

Features of Java, Java programming format, Java Tokens, Java
Statements, Java Data Types, Typecasting, Arrays

1.1 FEATURES OF JAVA

» Simple: A very simple, easy to learn and understand language for
programmers who are already familiar with OOP concepts. Java’s
programming style and structure follows the lineage of C, C++ and other
similar languages makes the use of java efficiently.

» Object-oriented: Java is object oriented. Java inherits features of
C++. OQOP features of java are influenced by C++. OOP concept forms the
heart of java language that helps java program in survive the inevitable
changes accompanying software development.

» Secure, Portable and Robust: Java programs are safe and secure to
download from internet. At the core of the problem is the fact that
malicious code can cause its damage due to unauthorized access gained to
system resources. Java achieved this protection by confining a program to
the Java execution environment and not allowing it access to other parts of
the computer. The same code must work on al/l computers. Therefore,
some means of generating portable executable code was needed. The
multi-platform environment of the Web places extraordinary demands on
a program, because the program must execute reliably in a variety of

Core JAVA

systems. Thus, the ability to create robust programs was given a high
priority in the design of Java. To gain reliability, Java restricts a few key
areas and forces to find your mistakes early in program development. At
the same time, Java frees a programmer from having to worry about many
of the most common causes of programming errors.

» Multithreaded: Java supports multithreaded programming, which
allows a programmer to write programs that performs multiple tasks
simultaneously. The Java run-time system comes with an elegant and
sophisticated solution for multi-process synchronization that helps to
construct smoothly running interactive systems.

> Architecture-neutral: Java was designed to support applications on
networks composed of a variety of systems with a variety of CPU and
operating system architectures. With Java, the same version of the
application runs on all platforms. The Java compiler does this by
generating bytecode instructions which have nothing to do with particular
processor architecture. Rather, they are designed to be both easy to
interpret on any machine and easily translated into native machine code on
the fly.

> Interpreted & High performance: Java enables the creation of
cross-platform programs by compiling into an intermediate representation
called Java bytecode. This code can be executed on any system that
implements the Java Virtual Machine. Most previous attempts at cross-
platform solutions have done so at the expense of performance. The Java
bytecode was carefully designed so that it would be easy to translate
directly into native machine code for very high performance by using a
just-in-time compiler. Java run-time systems that provide this feature lose
none of the benefits of the platform-independent code.

» Distributed: Java is designed for the distributed environment of the
Internet because it handles TCP/IP protocols. In fact, accessing a resource
using a URL is not much different from accessing a file. Java also
supports Remote Method Invocation (RMI). This feature enables a
program to invoke methods across a network.

» Dynamic: Java programs carry with them substantial amounts of
run-time type information that is used to verify and resolve accesses to
objects at run time. This makes it possible to dynamically link code in a
safe and expedient manner. This is crucial to the robustness of the Java
environment, in which small fragments of byte code may be dynamically
updated on a running system.

1.2 JAVA PROGRAMMING FORMAT

1) Package It must be the first line of a java program or can be

Section omitted if the class is to be kept only in the default
package. The package statement defines a namespace
in which classes are stored, based on functionality. If
omitted, the classes are put into the default package,
which has no name.

2) Import Specifies the location to use a class or package into a

Section program.

3) Class /| A java program may contain several classes or

Interface interfaces.

section

4) Class with | Every Java stand-alone program requires the main

Main Method method as the starting point of the program. This is an
essential part of a Java program. There may be many
classes in a Java program code file, and only one class
defines the main method.

Example:

/] -———- 1 Package Section -------

Package mypack;

/] === 2 Import Section -------

import java.util.Date;

package
import java.awt.*;
package

/] —mmmmmmmeem 3
class A {

// Class Body

h

interface B {

// Interface Body
h

/] —mmmmmmmeem 4

public class Test{

// This line will import only one class from the util

// This line will import all classes available in awt

Class / Interface Section ------—---

Main Method Section ----------

public static void main(String[] args){
// body of main method

The Java Language

Core JAVA

2

Java Tokens

Tokens are the basic building blocks of the java programming language
that are used in constructing expressions, statements and blocks. The
different types of tokens in java are:

Keywords s Eg. class, mt. if, super

identifier = Eg user id.age, showResult

Litrals i Eg 10, Mumbai. 3.14

Operators e Eg + -, &&

Separators Ez [l.{}.O

1. Keywords: these words are already been defined by the language
and have a predefined meaning and use. Key words cannot be used as a
variable, method, class or interface etc.

abstract Dboolean break byte case catch

char class const continue default do

double else extends final finally float

for goto if implements import instanceof
int interface long native new package
private protected public return short static
strictfp super switch synchronized this throw
throws transient try void volatile while
assert

2. Identifiers: Identifiers are used to name a variable, method, block,
class or interface etc. Java is case-sensitive. Identifier may be any
sequence of uppercase and lowercase letters, numbers, or the underscore
characters.

Rules for defining identifier:

All variable names must begin with a letter of the alphabet. The
dollar sign and the underscore are used in special case.

After the first initial letter, variable names may also contain letters
and the digits 0 to 9. No spaces or special characters are allowed.

The name can be of any length.

Uppercase characters are distinct from lowercase characters.
Variable names are case-sensitive.

o Java keyword (reserved word) cannot be used for a variable name.

Examples of valid identifiers in java: numl, name, Resi addr,
Type of road, Int etc.

Examples of invalid identifiers in java: Inum, full-name, Resiaddr,
Type*ofroad, int etc.

3. Literals: Literals are the value assigned to a variable;
Example: 10, “Mumbai”, 3.14, ‘Y’, “\n’ etc.

4. Operators: Operators are the symbols that performs operations.
Java contains different types of operators like Arithmetic Operator (+,-
,¥,/,%), Logical Operator (&&, ||, ~,), Relational Operator(<, <=, >, >=,
I=, ==), Bitwise Operators (&, |, ~), Shift Operators (<<, >>, >>>) |
Assignment Operators(=, +=, -+, *=, /=, %=), Conditional Operator (?:),
InstanceOf Operator

5. Separators: Separators are used to separate words, expressions,
sentences, blocks etc.

Symbol | Name Description

Space Used to separate tokens.
Semicolon | Used to separate the statements

@) Parentheses | Used to contain the lists of parameters in method definition and
invocation. Also used for defining the precedence in
expressions, containing expressions in control statements, and
surrounding cast types.

{} Braces Used to contains the values of automatically initialized arrays.
Also used to define a block of code, for classes, methods, and
local scopes.

[] Brackets Used to declare array types. Also used when dereferencing array
values.
Comma Separates consecutive identifiers in a variable declarations. Also

used to chain statements together inside a for statement
Period Used to separate packages names from subpackages and classes.

Also used to separate a variable or method from a reference
variable.

3 Java Statements

A statement specifies an action in a Java program. Statements in Java can
be broadly classified into three categories:

The Java Language

Core JAVA

if - else

Declaration

Branching / Selection

switch - case

Ao

Java
Statements

Expression

Looping / Iteration

for - each
Control Flow

break

Jump Control continue

return

1. Declaration

A declaration statement is used to declare a variable, method or class.
For example: int num;

double PI = 3.14;

String name="University of Mumbai;

int showResult(int a, int b);

2. Expression

An expression is a construct made up of variables, operators, and method
invocations, which are constructed according to the syntax of the
language, that evaluates to a single value.

Arithmetic Expression: (A+B)*C-(D%E)*(-F+QG)
Logical Expression: ~(Mm>n&&x<y)!l= (m<=n|x>=y)

3. Flow Control

By default, all the statements in a java program are executed in the order
they appear in the program code. However sometime a set of statements
need to be executed and a part to be skipped, also some part need to be
repeated as long as a condition is true or till some fix number of iteration.
Java programming language uses flow control statements to cause the flow
of execution to advance and branch based on changes to the state of a
program. Java’s program control statements can be put into the following
categories: Branching / selection, Looping / iteration, and jump control.
Selection statements allow your program to choose different paths of
execution based upon the outcome of an expression or the state of a
variable. Iteration statements enable program execution to repeat one or
more statements (that is, iteration statements form loops). Jump statements
allow your program to execute in a nonlinear fashion.

L. Selection / Branching:

Java supports two selection statements: if and switch. These statements
allow you to control the flow of your program’s execution based upon
conditions known only during run time.

> if

The if statement is Java’s conditional branch statement. It can be used to
route program execution through two different paths.

General Syntax:

if (condition)

statementl / { if Block };

else

statement2 / { else Block};

Here, each statement may be a single statement or a compound statement
enclosed in curly braces (that is, a block). The condition is any expression
that returns a boolean value. The else clause is optional.

Example:

class ifelsetest{

public static void main(String[] args){

int num=10;

if(num%2 == 0){

System.out.println(“Number is EVEN”);

}
else {
System.out.println(“Number is ODD”);
}
}
}

» The if-else-if Ladder

A common programming construct that is based upon a sequence of
nested ifs is the if-else-if ladder. General Syntax:

if(condition)

statement;

else if(condition)

statement;

else if(condition) statement;

else statement;

The if statements are executed from the top down. As soon as one of the
conditions controlling the if is true, the statement associated with that if is
executed, and the rest of the ladder is bypassed. If none of the conditions
is true, then the final else statement will be executed. The final else acts as

The Java Language

Core JAVA

a default condition; that is, if all other conditional tests fail, then the last
else statement is performed. If there is no final else and all other
conditions are false, then no action will take place.

Example:

class ladderifelsetest {

public static void main(String[] args){
int num=10;

if(num> 0){
System.out.println(“Number is +VE”);

}

else if(num<0){

System.out.println(“Number is -VE”);

else {

System.out.println(“Number is ODD”);

}

b
b

> switch

The switch statement is Java’s multiway branch statement. It provides an
easy way to dispatch execution to different parts of your code based on the
value of an expression. As such, it often provides a better alternative than
a large series of if-else-if statements.

General Syntax:
switch (expression)

{

case valuel:

// statement sequence
break;

case value2:

// statement sequence

break;

The Java Language

casevalueN :
//statement sequence break;
default:

// default statement sequence

}

For versions of Java prior to JDK 7, expression must be of type byte,
short, int, char, or an enumeration. JDK 7 onwards the switch expression
can also be of type String.

Example:

class switchcasetest {

public static void main(String[] args){
int num=10;

switch(num){

case I:
System.out.println(“Monday”);

break;

case 2:
System.out.println(“Tuesday”);

break;

case 3:
System.out.println(“Wednesday™);

break;

case 4:
System.out.println(“Thursday”);

break;

case 5:
System.out.println(*“Friday”);

break;

case 6:
System.out.println(“Saturday’);

break;

case 7:
System.out.println(“Sunday”);

break;

Core JAVA

10

default:
System.out.println(“~~~ Invalid Week day No ~~~~");

break;
}
}
}

II. Branching / Iteration Statements

Java’s iteration statements are for, while, and do-while. These statements
create what we commonly call loops. As you probably know, a loop
repeatedly executes the same set of instructions until a termination
condition is met. As you will see, Java has a loop to fit any programming
need.

> while

The while loop is Java’s most fundamental loop statement. It repeats a
statement or block while its controlling expression is true.

General Syntax:
while(condition)

{
// body of loop

}

The condition in java must be strictly a Boolean expression. The body of
the loop will be executed as long as the conditional expression is true.
When condition becomes false, control passes to the next line of code
immediately following the loop. The curly braces are unnecessary if only a
single statement is being repeated.

Examples:

public class WhileDemo

{

public static void main(String args[])

{ intn=10;

while(n > 0)

{

System.out.println("Count Doun Value" + n);

n--;

}

}
> do-while

Sometimes it is desirable to execute the body of a loop at least once, even
if the conditional expression is false to begin with. In other words, there
are times when you would like to test the termination expression at the end
of the loop rather than at the beginning. Java provides a loop that does just
that: the do-while. The do-while loop always executes its body at least
once, because its conditional expression is at the bottom of the loop.

General Syntax:

do {

// body of loop

} while (condition);

Each iteration of the do-while loop first executes the body of the loop and
then evaluates the conditional expression. If this expression is true, the
loop will repeat. Otherwise, the loop terminates. As with all of Java’s
loops, condition must be a Boolean expression.

Examples:
public class DoWhileDemo
{
public static void main(String args[])
{ intn = 10;
do{
System.out.println("Loop Executed Once even if condition is False");
n--;
} while(n > 10) ;
}

}
> For

The for loop operates as follows. When the loop first starts, the
initialization portion of the loop is executed. Generally, this is an
expression that sets the value of the loop control variable, which acts as a
counter that controls the loop. It is important to understand that the

The Java Language

11

Core JAVA

12

initialization expression is executed only once. Next, condition is
evaluated. This must be a Boolean expression. It usually tests the loop
control variable against a target value. If this expression is true, then the
body of the loop is executed. If it is false, the loop terminates. Next, the
iteration portion of the loop is executed. This is usually an expression that
increments or decrements the loop control variable. The loop then iterates,
first evaluating the conditional expression, then executing the body of the
loop, and then executing the iteration expression with each pass. This
process repeats until the controlling expression is false.

General Syntax:

for(initialization; condition; increment / decrement expression)

{

/I loop body
}

Examples:

public class ForDemo

{

public static void main(String args[])
{
for(intx=1;x <=10; x++)
{
System.out.println("Loop Variable Value is : " + x);
}
¥
}

There will be times when you will want to include more than one
statement in the initialization and iteration portions of the for loop.

Example:

public class TwoVarFor

{

public static void main(String args[]) {

inta,b;

for(a=1, b=4; a<=b; at+, b--){

System.out.println(“value of A is : “+a+” Value of B is : “+b);
}

I

» The For-Each Loop The Java Language

A for-each loop by using the keyword for-each, Java adds the for-each
capability by enhancing the for statement. The advantage of this approach
is that no new keyword is required, and no pre-existing code is broken.
The for-each style of for is also referred to as the enhanced for loop.

General Syntax

for(type itr-var : collection)

{

/! statement-block;
H

Example:

public class ForEachDemo {
public static void main(String args[])

{ String names[] = {“Mumbai”, “Pune”, “Nagpur”, “Aurangabad”,
“Thane”, “Nasik” };

for (String x : names)

{ System.out.println("Name of the City in Maharashtra is: " + x);

}

System.out.println("~~~~Printing on City Names Done~~~~~ ”)

}
III. Jump Control Statement

Java supports three jump statements: break, continue, and return. These
statements transfer control to another part of a java program.

In Java, the break statement has three uses. First, as you have seen, it
terminates a statement sequence in a switch statement. Second, it can be
used to exit a loop. Third, it can be used as a form of goto statement in
C/C++.

Sometimes it is useful to force an early iteration of a loop. That is, you
might want to continue running the loop but stop processing the remainder
of the code in its body for this particular iteration. This is, in effect, a goto
just past the body of the loop, to the loop’s end. The continue statement
performs such an action. In while and do-while loops, a continue
statement causes control to be transferred directly to the conditional
expression that controls the loop. In a for loop, control goes first to the
iteration portion of the for statement and then to the conditional
expression. For all three loops, any intermediate code is bypassed.

The last control statement is return. The return statement is used to
explicitly return from a method. That is, it causes program control to
transfer back to the caller of the method.

13

Core JAVA

14

4 Java Data Types

Java Data type

Premitive Derived

byte, short, int, long, char, Array, Class, Interface
float, double, boolean

The Primitive Types: Java defines eight primitive types of data: byte,
short, int, long, char, float, double, and boolean. The primitive types are
also commonly referred to as simple types.

These can be put in four groups:

1. Integers This group includes byte, short, int, and long, which are
for whole-valued signed numbers.

Name Width Range

byte 8 1 byte —128 to 127

short16 2 byte -32,768 to 32,767

int 32 4byte —2,147,483,648 to 2,147,483,647
long 64 6 byte —-9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

The smallest integer type is byte. Variables of type byte are especially
useful when you’re working with a stream of data from a network or file.
They are also useful when you’re working with raw binary data that may
not be directly compatible with Java’s other built-in types. The most
commonly used integer type is int. long is a signed 64-bit type and is
useful for those occasions where an inttype is not large enough to hold the
desired value.

2. Floating-point numbers This group includes float and double,
which represent numbers with fractional precision.

Name Width Approximate Range
float 32 4 byte 1.4e-045 to 3.4e+038
double 64 8 byte 4.9e-324 to 1.8e+308

The type float specifies a single-precision value that uses 32 bits of
storage. Single precision is faster on some processors and takes half as
much space as double precision, but will become imprecise when the
values are either very large or very small. Variables of type float are
useful when you need a fractional component, but don’t require a large
degree of precision. Double precision, as denoted by the double keyword,
uses 64 bits to store a value. Double precision is actually faster than single
precision on some modern processors that have been optimized for high-
speed mathematical calculations.

3. Characters This group includes char, which represents symbols in
a character set, like letters and numbers. C++ char is 8 bit i.e. 256 symbols
while java char uses 16 bit i.e. 65536 symbols to represent Unicode
characters. Unicode defines a fully international character set that can
represent all of the characters found in all human languages and is a
unification of character sets, such as Latin, Greek, Arabic, Cyrillic
Hebrew, Katakana, Hangul, and many more. There is no signed char in
java. char can also be used as an integer type on which you can perform
arithmetic operations.

Example: if char ans =’A’ then ans = ans + 5 will result ‘F’.

4. Boolean This group includes boolean, which is a special type for
representing true/false values.

5 Typecasting

As a part of Java’s safety and robustness Java is a strongly typed language.
Every variable has a type, every expression has a type, all assignments,
whether explicit or via parameter passing in method calls is checked for
type compatibility and every type is strictly defined. There are no
automatic coercions or conversions of conflicting types. If the two types
are compatible and the target type is equal to or larger than the source type
JVM performs automatic type conversion. This type of conversion is also
called implicit conversion or automatic type casting or widening
conversion.

byte=> short 2int-> long or int-> float = double

If the two types are incompatible and the target type is smaller than the
source type then typecasting is required conversion. This type of
conversion is also called explicit conversion or manual type casting or
narrowing conversion.

General syntax: (type type) valuelexpression
Eg. int a = (int) 3.14;

Truncation will occur when a floating-point value is assigned to an integer
type, because integers do not have fractional component. For example, if
the value 3.14 is assigned to an integer, the resulting value will simply be
3: the 0.14 will have been truncated.

Java also performs type promotion while evaluating mix mode expression.
Java defines several type promotion rules that apply to expressions. They
are as follows: First, all byte, short, and char values are promoted to int,
as just described. Then, if one operand is a long, the whole expression is
promoted to long. If one operand is a float, the entire expression is
promoted to float. If any of the operands are double, the result is double.

The Java Language

15

Core JAVA

16

= Widening Casting({implicit)

byte —short —int —long — float — double

N
e

widening

= Marrowing Casting(Explicitly done)

double—float—long— int—=short—byte
N

" rd
Narrowing

6 Arrays

An array is a collection of similar data type, identified by a common name
and stored in consecutive memory location. Array elements can be
conveniently accessed using index number. Java arrays are reference type.
A one-dimensional array is a list of like typed variables. The general form
of a one-dimensional array declaration is

[access_specifier] type var-name| |,
or [access specifier]type[| var-name;

Here, type declares the element type (also called the base type) of the
array. The element type determines the data type of each element that
comprises the array. Thus, the element type for the array determines what
type of data the array will hold. For example, the following declares an
array named temp_janwith the type “array of int”: public float temp jan[]

The declaration creates a reference to an array. The fact is that actual array
does not exist in memory. Memory allocation is done using “new”
operator.

temp_jan = new float[31]

This will create 31 float variable in memory and assign the base reference
to temp _jan.

Array Elements

4 b

a[0] | a[1] | a[2] | a[3] | a[4] | a[5]

1-D Array with 6 Elements

Declaration and initialization of array can be combined eg. public float
temp_jan[]= new float[31];

two-dimensional array is a list of list of like typed variables or an array of
array. The general form of a one-dimensional array declaration is

[access_specifier] type var-namel][|;
Eg. publicint m1[][]=new int[3][3]

This will declare a 2D array of int to hold 3 rows and 3 columns.

Right index determines column.

[o]Ce] | [edCx]| [e][2] | [ed (21| Ce] 4]

iafiindex EY|CIN{EY KN [EAR KNI X RY(EY

determines
TOW.

(21 (0] | 210 |[2][2] | 2] (50| (21 el

[31(o]| [2][x]| [a]L=]| [3][s]| [2]L4]

Given:inttwoD [] [] = new int [4] [5];

A conceptual view of a 4 by 5, two-dimensional array

Java allows creating a multi-dimensional array to be created by declaring
the first dimension and allocate the remaining dimension separately. This
creates a jagged array or variable size array with different rows having
different number of columns.

int Week work[][]= new int[6][]; » 0.0]0.1{0.20.3 l 0.4 ‘
/__m. T

Week work[0] = new im!.‘-]/ 3.0 2] | 22|

Week work[1]= new im[.’:‘]'/ — —

Week work[2]= new i|11[3]:/ 3,0|131(32(|33

Week work[3]= new int[4]; 4,0(4,1(42]43|44|45]46

Week work[4] = new iui[?]:f ;

Week work[5]=new i|1!|2];—1 2.0 (5.1

1.3 SUMMARY:

The chapter helps to learn the features of java language, the format of java
program, basic building blocks of java and understand the concepts of
Core Java and to cover-up with the pre-requisites of Core java, Advanced
Java, J2EE and J2ME.

1.4 TEXTBOOKS:

1) Herbert Schildt, Java The Complete Reference, Ninth Edition,
McGraw-Hill Education, 2014

1.5 ADDITIONAL REFERENCES:

1) E. Balagurusamy, Programming with Java, Tata McGraw-Hill
Education India, 2014

2) Programming in JAVA, 2nd Ed, Sachin Malhotra &SaurabhChoudhary,
Oxford Press

1.6 QUESTIONS:

1. Explain the feature of Java
2. Explain the For-Each Loop with example?

O, 0 0 0
0.0 0.0 0.0 0.0

The Java Language

17

18

OOPS

Unit Structure

2.0
2.1
2.2
23
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

Objectives
Introduction

Class

Object

Static Keywords
Constructors

this Key Word
Inheritance

super Keyword
Polymorphism (overloading and overriding)
Abstraction
Encapsulation
Abstract Classes
Interfaces

Summary

Textbook

Additional References

Questions

2.0 OBJECTIVES

The objective of this chapter is to learn the basic concepts of Object
Oriented Programming and its implementation in java to develop the code
to cover-up with the pre-requisites of Core java, Advanced Java, J2EE and

J2ME.

Topics:

2.1 INTRODUCTION

Object oriented programming implements object oriented model in
software development.OOP is based on three principles i.e. Encapsulation,
Inheritance and polymorphism.OOP allows decomposing a large system

into small object.

Encapsulationis the mechanism of binding together code and the data it
manipulates, and keeps both safe from outside interference and misuse. It
is like a protective wrapper that prevents the code and data from being
arbitrarily accessed by other code defined outside the wrapper. Access to
the code and data inside the wrapper is tightly controlled through a well-
defined interface.

Inheritance is the process by which one object acquires the properties of
another object. It is a way of making new classes using existing one and
redefining them.

Polymorphism (Greek meaning “many forms”) is a feature that allows one
interface to be used for a general class of actions. More generally, the
concept of polymorphism is often expressed by the phrase “one interface,
multiple methods.” This means that it is possible to design a generic
interface to a group of related activities. This helps reduce complexity by
allowing the same interface to be used to specify a general class of action.

2.2 CLASS

A class is a blue print for creating objects. A class is a group of objects
which have common properties.A classdefines the data and code that can
be shared by a set of objects. Each object of a given class contains the
structure and behavior defined by the class, as if it were stamped out by a
mold in the shape of the class.

| Class |

-
~ - = -

bl A el TTeely : .
- - A

N TR = e @ @
Camry Camaro Benz Caprice Sonata
[access_specifier] [modifier] class <class name>{

Fields

Methods

Constructors

Blocks

Nested class and interface

}

OOPS

19

Core JAVA

20

The data, or variables, defined within a class are called instance variables.
The code is contained within methods. The methods, constants and
variables etc. defined within a class are called members of the class.

2.3 OBJECT

An entity that has state and behavior is known as an object. An object has
three characteristics:

o State: represents the data or value of an object.

o Behavior: represents the behavior (functionality) of an object such as
deposit, withdraw, etc.

o Identity: An object identity is a unique ID.

An object represents a class during program execution. Thus, a class is a
template for an object, and an object is an instance of a class. Because an
object is an instance of a class, you will often see the two words object and
instance used interchangeably.

There are five different ways to create objects in java:
Using new keyword:

Complex com = new Complex(10, 20);

1. Using Class.forName():
Class.forName(“‘sun.jdbc.odbc.JdbcOdbceDriver”);

2. Using clone():

Complex com1 = com.clone();

3. Using Object Deserialization

ObjectInputStreamois =new objectInputStream(some data);
MyObject object=(MyObject) instream.readObject();
Using newIntance() method

Object obj =
DemoClass.class.getClassLoader().loadClass("DemoClass").new
Instance ();

2.4 STATIC KEYWORDS

Static is a non-access modifier in Java, it is used with variables, methods,
blocks and nested class. It is a keyword that are used for share the same
variable or method of a given class. This is used for a constant variable or
a method that is the same for every object of a class. The main method of
a class is generally labeled static. The static keyword is used in java
mainly for memory management. No object needs to be created to use
static variable or call static methods, just put the class name before the
static variable or method to use them. Static method cannot call non-static
method. The static variable allocate memory only once in class area at the
time of class loading. It is use to make our program memory efficient.

When a variable is declared as static, then a single copy of variable is
created and shared among all objects at class level. Static variables are,
essentially, global variables. All instances of the class share the same
static variable and can be created at class-level only.

When a method is declared with static keyword, it is known as static
method. The most common example of a static method is main() method.
Any static member can be accessed before any objects of its class are
created, and without reference to any object. Methods declared as static
can only directly call other static methods and can only directly access
static data. They cannot refer to this or super.

2.5 CONSTRUCTORS

A constructor initializes an object at the time of creation. It has the same
name as the class in which it resides. The constructor is automatically
called when the object is created, before the newoperator completes.
Constructors have no return type, not even void. This is because the
implicit return type of a class’ constructor is the class type itself. It is the
constructor’s job to initialize the internal state of an object so that the code
creating an instance will have a fully initialized, usable object
immediately.

There are three rules defined for the constructor.

1. Constructor name must be the same as its class name

2. A Constructor must have no explicit return type

3. A Java constructor cannot be abstract, static, final, and synchronized

Default constructor: If not implemented any constructor by the
programmer in a class, Java compiler inserts a default constructor with
empty body into the code, this constructor is known as default constructor.
If user defines any parameterized constructor, then compiler will not
create default constructor and vice versa if user don’t define any
constructor, the compiler creates the default constructor by default during
compilation

Eg:
Program code Compile time
class complex { ::> class complex {
} complex(){
}
}

no-arg constructor: Constructor with no arguments is known as no-arg
constructor. The signature is same as default constructor; however body
can have any code unlike default constructor where the body of the
constructor is empty.

OOPS

21

Core JAVA

22

Eg: class complex{
int real, img;
public complex (){
real=0;

img=0;

}

}

Parameterized constructor: Constructor with arguments is known as no-arg
constructor. The signature is same as default constructor; however body
can have any code unlike default constructor where the body of the
constructor is empty.

class complex {

inta,b,c;

public complex (int r, inti){
real=r;

img=i;

}

3

Copy Constructor: Values from one object to another object can be
copied using constructor or by clone() method of Object class.

A copy constructor is a parameterized constructor but the parameter is the
reference of containing class.

class complex {

inta,b,c;

public complex (complex c){
real=c.real, img=c.img;
}

}

Difference between constructor and method in Java

Java Constructor

Java Method

A constructor is used to initialize
the state of an object.

A method is used to expose the
behavior of an object.

A constructor must not have aj
return type.

A method must have a return type.

The constructor 1is invoked

implicitly.

The method is invoked explicitly.

The Java compiler provides a
default constructor if you don't
have any constructor in a class.

The method is not provided by the
compiler in any case.

The constructor name must be
same as the class name.

The method name may or may not be
same as class name.

Constructor Overloading: Sometimes there is a need of initializing an
object in different ways. This can be done using constructor overloading.

E.g. A frame object can be created

using default constructor or using title

of the frame. Multiple constructors can be created by changing the no. of
parameters, type of parameters, order of parameters or combination of

any.

Eg.

class Complex {
intrel, img;
doublerell, imgg
Complex(){}

Complex(int 1, inti){ rel=r; img=i; }

Complex(double r, double 1){rell=r;

imgg=i; }

Complex (intr, double r){rel =r; imgg=i; }

Complex(double 1, inti) {rell=r;
Complex(Complex c){rel=c.rel;

}

img=i; }

img=c.img; }

OOPS

23

Core JAVA

24

2.6 THIS KEY WORD

“this” is a reference to object itself. ‘this’ keyword can be used to refer
current class instance variables, to invoke current class constructor,
to return the current class instance, as method parameter, to invoke
current class method and as an argument in the constructor call.
“this” keyword when used in a constructor can only be the first statement
in Constructor and constructor can have either this or super keyword but
not both.

class A{

int a=10;

public void show(){
double a=100.200;

System.out.println(“Value of A is : “+a);

}

}

The above program code will display “Value of A is : 100.200”, because
the preference will always go to local variable or the variable with
immediate scope.

System.out.println(“Value of A is : “+this.a);

The above statement will display “Value of A is: 107, because the
reference “this” will point to current instance variable “a” of the class.

class A{

AO{

this(111);

System.out.println(“ Default Constructor Called”);

}

A(int a){

System.out.println(“ Parameterized Constructor Called”);
}

}

The call A obj = new A() will create an object of “A” using default
constructor and will also call the parameterized constructor by passing
value 111 using “this”.

2.7 INHERITANCE

Flying Birds

Attributes

Inheritance is an important concept of OOP. It is the mechanism in java by
which one class is allows inheriting the fields and methods of another
class. Inheritance facilitates code reusability to reuse the fields and
methods of the existing class. The class from which a new class is created
is called as a parent, base or super class and the new class is also called as
child, derived or sub class.

Bird
Attributes
Feathers
Lay Eges
Non-Flying Bird
Attributes

Swallow Penguin Kiwi
Attributes Attributes Attributes

There are Three types of inheritance in Java using classes:

ClassA Classa,
F 9 F s
ClassB ClassB
-
1) Single
ClassC
2) Multilevel

ClassA

2

ClassB

ClassC

3) Hierarchical

OOPS

25

Core JAVA Java supports multiple inheritance using Interfaces:

interface interface interface interface
| 3 |
~ Vd
\\ . ,/ implements extends
N e
class interface
Multiple Inheritance in Java

Single Inheritance: In Single Inheritance one class extends another class
(one class only).

class A{ double pi=3.14;

public void add(int a , int b){

System.out.println(“Add = “+(a+b));} }

class B extends A {

int Max=100;

public void sub(int a, int b){

Syststem.out.println(“Sub = "+(a-b));} }

If an object obj is created for class B, it will also have methods and
properties from its parent class.

Multilevel Inheritance: In Multilevel Inheritance, one class can inherit
from a derived class. Hence, the derived class becomes the base class for
the new class.

class A{ int a=10;}

class B extends A {int b=20;}

class C extends B {int ¢c=30;}

If an object obj is created for class C, it will also have methods and
properties from A & B parent classes.

Hierarchical Inheritance: In Hierarchical Inheritance, one class is inherited
by many sub classes.

class Person { String name, gender; int age;}
class Student extends Person{ int roll; }
class Teacher extends Person{ intempid; }

class Doctor extends Person{ String specialty; }

In the above example Person class properties will be inherited in Student,
teacher and Doctor.

2.8 SUPER KEY WORD

“super” is the reference to the parent class. Super keyword can be used to
access parent class variable, method and to invoke parent class
constructor.

26

class A{

String var="ANAAS”; }

class B extends A {

String var="AARISH”;}

public void show(){

String var="NASHRAH”;

System.out.println(“Variable value is :”+var):
System.out.println(“Variable value is :”+this.var):
System.out.println(“Variable value is :”+super.var):

1

In the above example var refer to the local context, this refer to the class
variable and super will refer to super class member.

o super keyword can only be the first statement in Constructor.

o A constructor can have either this or super keyword but not both.
class A{

A(){System.out.printin(“Hello at A”);}

A(String name){System.out.println(name+ “ Hello at A”);}}

class B extends B{

B(String name){System.out.println(name+ “ Hello at B”);}}

}

B obj = new B(“AnAriNash”) will create an object of B using string
argument and will create an object of class A using default (non-
parametrised) constructor.

class A{

A(){System.out.printin(“Hello at A”);}

A(String name) {System.out.println(name+ “ Hello at A”);}}

class B extends B{

B(String name){

super(name);

System.out.printin(name+ “ Hello at B”);}}

}

The above program will invoke the parameterized constructor of class A.

OOPS

27

Core JAVA

28

2.9 POLYMORPHISM (OVERLOADING AND
OVERRIDING)

Method Overloading is a mechanism in which a class allows more than
one method with same name but with different prototype. Multiple
methods can be created by changing the no. of parameters, type of
parameters, order of parameters or combination of any. The method
binding is done by the compiler at compile time and fix the calling method
based on the actual parameter matching or by using implicit type
conversion. This is also called as static binding, early binding or compile
time polymorphism.

Class MyMath {

public void add(){System.out.println(“Addition of 10 and 20 is
“+H(10+20));}

public void add (int nl, int n2){ System.out.println(n1+n2); }
public void add (double nl1, double n2){ System.out.println(n1+n2); }
public void add (int n1, double n2){ System.out.println(n1+n2); }
public void add (double n1, int n2){ System.out.println(n1+n2); }

public void add (Complex nl, Complex n2){ System.out.println(nl+n2);
3

Method Overriding is a mechanism in which a method in a child class that
is already defined in the parent class with the same method signature —
same name, arguments, and return type. Method overriding is used to
provide the specific implementation of a method which is already
provided by its superclass. The method binding is done by the java
interpreter at run time and fix the calling method based on the latest
implementation in class hierarchy. This is also called as dynamic binding,
late binding or run time polymorphism.

class MyClass1 {

public void add(int a, int b){ return a+b;}

}

class MyClass2 extends MyClass1 {

@override

public void add(int a, int b){ return 5*a+50*b; }

}

@override annotation tells the compiler that the method is meant to
override a method declared in a superclass.

Overloading Overriding

1 | More than one method with same | More than one method with same
name but different signature in | name and same signature in

same scope. different scope.

2 | Parameters are different Parameters are same

3 | Binding at compile time Binding at run time.

4 | Method return type may or may | Method return type should be
not be same same.

5 | Allowed for static method Not allowed for static method

6 | Cannot be prevented Can be prevented by declaring a

method as static or final.
7 | Occurs in same class. Occurs in sub class.
2.10 ABSTRACTION

Abstraction is a process of hiding the implementation details and showing
only functionality to the user. Abstraction is selecting data from a larger
pool to show only the relevant details to the object. It helps to reduce
programming complexity and effort. In Java, abstraction is accomplished
using Abstract classes and interfaces. Abstraction can be achieved using
Abstract Class and Abstract Method in Java.

2.11 ENCAPSULATION

Classes and packages are both means of encapsulating and containing the
name space and scope of variables and methods. Packages act as
containers for classes and other subordinate packages. Classes act as
containers for data and code. The class is Java’s smallest unit of
abstraction. Because of the interplay between classes and packages, Java
addresses four categories of visibility for class members:

* Subclasses in the same package

* Non-subclasses in the same package

* Subclasses in different packages

* Classes that are neither in the same package nor subclasses

The three access modifiers, private, public, and protected, provide a
variety of ways to produce the many levels of access required by these
categories.

2.12 ABSTRACT CLASSES

A class which is declared “abstract” is called as an abstract class. It can
have abstract methods as well as concrete methods. A normal class cannot
have abstract methods. Abstract classes help to describe generic types of
behaviors and object-oriented programming class hierarchy. It also

OOPS

29

Core JAVA

30

describes subclasses to offer implementation details of the abstract class.
Abstract class cannot be instantiated and is only used through inheritance.
A “final” keyword cannot be used with abstract class.

Abstract Method: A method without a body is known as an Abstract
Method. It must be declared in an abstract class. The abstract method will
never be final because the abstract class must implement all the abstract
methods. Abstract methods do not have an implementation; it only has
method signature

If a class is using an abstract method they must be declared abstract. The
opposite cannot be true. This means that an abstract class does not
necessarily have an abstract method. If a regular class extends an abstract
class, then that class must implement all the abstract methods of the
abstract parent otherwise this class will also become abstract. Abstract
methods are mostly declared where two or more subclasses are also doing
the same thing in different ways through different implementations.

abstract class MyMath1 {

public int add(int a, int b){return a+b;}
public abstract int sub(int a, int b);

}

class MyMath2 extends MyMathl {
@override

Public int sub(int a, int b){ return a-b;}
Public int mul(int a, int b){ return a*b;}

Public int div(int a, int b){return a/b;}

}

2.13 INTERFACES

An interface is like a class but, it has static constants and abstract methods
only. An interface in java is a blueprint of a class. The interface in Java is
a mechanism to achieve abstraction. There can be only abstract methods
in the Java interface, not method body.

An interface is declared using interface keyword. It is used to provide
total abstraction. That means all the methods in interface are declared with
empty body and are public and all fields are public, static and final by
default. A class that implement interface must implement all the methods
declared in the interface. To implement interface use implements
keyword.

Interface can extend another interface. Java allows multiple inheritance
using interface.

interface<interface name> [extends [Interface name]]{ OOPS
// fields

// Methods

}

Example:

Interface MyMath {

public static final double PI=3.14;
public int add(int a, int b);

public int sub(int a, int b);

public int mul(int a, int b);

public int div(int a, int b);

}

Difference between Abstract Class and Interface

Abstract Class Interface

An abstract class can have both
abstract and non-abstract
methods.

The interface can have only
abstract methods.

It does not support multiple It supports multiple inheritances.

inheritances.

It can provide the h cannot provide the
. . . implementation of the abstract
implementation of the interface. class

An abstract class can have
protected and abstract public
methods.

An interface can have only have
public abstract methods.

An abstract class can have final,
static, or static final variable
with any access specifier.

The interface can only have a
public static final variable.

2.14 SUMMARY:

The chapter helps to learn the concept of OOPS, like Classes, Inheritance,
the keywords associated with OOP, implementation of polymorphism and
Abstraction in java.

31

Core JAVA

32

2.15 TEXTBOOK(S):

1) Herbert Schildt, Java The Complete Reference, Ninth Edition,

McGraw-Hill Education, 2014

2.16 ADDITIONAL REFERENCE(S):

1) E. Balagurusamy, Programming with Java, Tata McGraw-Hill

Education India, 2014

2) Programming in JAVA, 2nd Ed, Sachin Malhotra &SaurabhChoudhary,

Oxford Press

2.17 QUESTIONS:

1.
2.

What is interface? Explain with example?
Write a short note on abstarct class?
Explain the difference between Overloading & Overiding.

Exaplain the Difference between constructor and method in Java.

STRING MANIPULATIONS AND
INTRODUCTION TO PACKAGES

Unit Structure

3.0 Objectives

3.1 String Manipulations
3.2 Packages

3.3 Summary.

3.4 Textbook

3.5 Additional Reference(s)

3.6 Questions:

3.0 OBJECTIVES:

The objective of this chapter is to learn the classes used in string
manipulation. The different methods associated with string manipulation.
String is a commonly used in many desktop and web application and has a
wide range of applications. The chapter further introduces the concept of
Package and access specifiers.

3.1.1 Topics: String, StringBuffer, String Tokenizer & packages.

3.1 STRING MANIPULATIONS:

String is a group of characters. String is defined as array of characters
without a null char to terminate the array. Any string declared represents
an object of java.lang.String class. This sting is an immutable string object
stored in memory. Each time altered version of an existing string, a new
String object is created that contains the modifications keeping the
original string unchanged. This approach is used because fixed, immutable
strings can be implemented more efficiently than changeable ones. For
those cases in which a modifiable string is desired, Java provides two
options: java.lang. String Buffer and java.lang.String Builder. Both hold
strings that can be modified after they are created.

3.1.2 String

Any string variable decalred represents and object of Java.lang.String
class. A string can be declared using a sequence of characters enclosed in
double quotes or can be initialized using different constructors of String
class.

33

Core JAVA

34

Constructors:

String()

Create a string object without any content.

String(char chars[])

Creates an string object using array of characters.

String(char chars|], intstartIndex, intnumChars)

Creates a string object using selected range of characters from array.
String(byte chrs|)

Creates a string object using array of bytes.

String(byte chrs| |, intstartIndex, intnumChars)

Creates a string object using selected range of byte from array.
String(String strObj)

Creates a string object using another string.

Methods:

String S1 = “Monu, Saru, Yes Mama, Eating Sugar, No Mama!!”
String S2="Yellow Color Yellow Color Where are you? Here [am ..”

Modifier
and Method and Description
Type
charAt(int index)
char Returns the char value at the specified index.

sl.charAt(2) will return ‘n’

compareTo(String anotherString)
Compares two strings lexicographically.

int “ABCD”.compareTo(“ABXY”) will math A, B then calculate
the difference between first unmatched character X — C ie 88-67
= 22 is the result.

compareTolgnoreCase(String str)
Compares two strings lexicographically, ignoring case

int differences.

Same as above but comparison will ignore case differences.
concat(String str)

String Concatenates the specified string to the end of this string.
“Abcd”.concat(“Xyz”) will result “AbcdXyz”, can also be
done using “+” operator.

static copyValueOf(char[] data)

1 . .

String Returns a String that represents the character sequence in the

array specified.

static
String

copyValueOf(char[] data, int offset, int count)

Returns a String that represents the character sequence in the
array specified.

boolean

ends With(String suffix)
Tests if this string ends with the specified suffix.

S1.endsWith(“Mama™) will return true. And
S2.endsWith(“Mama”) will return false.

boolean

equals(Object anObject)
Compares this string to the specified object.
S1.equals(“mypassword”) will return false.

boolean

equalsIgnoreCase(String anotherString)

Compares this String to another String, ignoring case
considerations.

bytef]

getBytes()
Encodes this String into a sequence of bytes using the platform's
default charset, storing the result into a new byte array.

byte(]

getBytes(String charsetName)

Encodes this String into a sequence of bytes using the named
charset, storing the result into a new byte array.

void

getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)

Copies characters from this string into the destination character
array.

int

indexOf(int ch)

Returns the index within this string of the first occurrence of the
specified character.

S1.indexOf(‘M”); will return 0

int

indexOf(String str)

Returns the index within this string of the first occurrence of the
specified substring.

S1.indexOf(“Mama”); will return 15

int

indexOf{int ch, int fromIndex)

Returns the index within this string of the first occurrence of the
specified character, starting the search at the specified index.

S1.indexOf(‘M’,5); will return 15

boolean

iIsEmpty()
Returns true if, and only if, length() is 0.

int

lastIndexOf{(int ch)

Returns the index within this string of the last occurrence of the
specified character.

String Manipulations and
Introduction to Packages

35

Core JAVA

36

S1.lastindexOf(‘M”) will return 40

nt

lastIndexOf{(String str)

Returns the index within this string of the last occurrence of the
specified substring.

S1.lastIndexOf(“Mama”) will return 40

nt

length()
Returns the length of this string.
S1.length(‘Mama’) will return 45

String

replace(char oldChar, char newChar)

Returns a new string resulting from replacing all occurrences of
oldChar in this string with newChar.

“a for apple”.replace(‘a’,’@’) will return @ for @pple

boolean

startsWith(String prefix)
Tests if this string starts with the specified prefix.

boolean

startsWith(String prefix, int toffset)

Tests if the substring of this string beginning at the specified
index starts with the specified prefix.

String

substring(int beginlndex)
Returns a new string that is a substring of this string.
S1.substring(25) will return “ting Sugar, No Mamal!!”

String

substring(int beginlndex, int endIndex)
Returns a new string that is a substring of this string.
S1.substring(25, 33) will return “ting Sugar”

charf[]

toCharArray()
Converts this string to a new character array.

String

toLowerCase()

Converts all of the characters in this String to lower case using
the rules of the default locale.

S1.to LowerCase() will return “monu, saru, yes mama, eating
sugar, no mamal!!”

String

toUpperCase()

Converts all of the characters in this String to upper case using
the rules of the default locale.

S1.to UpperCase() will return “MONU, SARU, YES MAMA,
EATING SUGAR, NO MAMA!!”

String

trim()

Returns a copy of the string, with leading and trailing
whitespace omitted.

“ AnuAruNash “.trim() will return “AnuAruNash”

3.1.3 String Buffer

StringBuffer class represents a mutable string that is growable and

writable

character sequences. StringBuffermay have characters and

substrings inserted in the middle or appended to the end. StringBuffer will
automatically grow to make room for such additions and often has more
characters preallocated than are actually needed, to allow room for growth.

Constructors

StringBuffer defines these four constructors:

StringBuffer()

Creates a StringBuffer object with empty contents and has an initial
capacity of 16 characters.

StringBuffer(intcapacity)

Creates a StringBuffer object with empty contents with specified capacity.

StringBuffer(String s#r)

Creates a StringBuffer object with specified contents and has an initial
capacity of 16 characters.

Modifier Method and Description

and Type

StringBuf |append (StringBuffer sb)

fer Appends the specified StringBuffer to this sequence.

) capacity ()

nt .
Returns the current capacity.

char charAt(int index)
Returns the char value in this sequence at the specified index.

StringBuf |delete (int start, int end)

fer Removes the characters in a substring of this sequence.

StringBuf |delete Char At (int index)

fer Removes the char at the specified position in this sequence.
ensure Capacity (int minimumCapacity)

void Ensures that the capacity is at least equal to the specified
minimum.
index Of (String str)

int Returns the index within this string of the first occurrence of the

specified substring.

String Manipulations and
Introduction to Packages

37

Core JAVA

38

index Of(String str, int fromIndex)

int Returns the index within this string of the first occurrence of the
specified substring, starting at the specified index.
) insert(int offset, char c
StringBuf (:) . . .
for Inserts the string representation of the char argument into this
sequence.
StringBuf |insert(int offset, String str)
fer Inserts the string into this character sequence.
lastIndexOf(String str)
int Returns the index within this string of the rightmost occurrence of
the specified substring.
lastIndex Of(String str, int fromIndex)
int Returns the index within this string of the last occurrence of the
specified substring.
it length()
in
Returns the length (character count).
. replace(int start, int end, String str
StringBuf place(. g str) . . .
for Replaces the characters in a substring of this sequence with
characters in the specified String.
) reverse
StringBuf ().
for Causes this character sequence to be replaced by the reverse of the
sequence.
oid setCharAt(int index, char ch)
\% . . .
The character at the specified index is set to ch.
. setLength(int newLength)
void
Sets the length of the character sequence.
substring(int start)
String Returns a new String that contains a subsequence of characters
currently contained in this character sequence.
substring(int start, int end)
String Returns a new String that contains a subsequence of characters
currently contained in this sequence.
. toStrin
String g0 . . o
Returns a string representing the data in this sequence.
) trimToSize
void 0

Attempts to reduce storage used for the character sequence.

3.1.4 String Tokenizer

The String Tokenizer class from java.util package provides the first step
in parsing process, called the lexer, lexical analyzer or scanner. Parsing is
the division of text into a set of discrete parts or tokens. String
tokenization is a process where a string is broken into several parts. Each
part is called a foken. For example, if "Anu, Aru, Nash, Yes Mama” is a
string, the discrete parts—such as, "Anu,””Aru,” “Nash” “Yes” and "
Mama" aretokens.

Constructors:
StringTokenizer(String str)

Creates an object using String to be tokenized and space as delimiter
excluding space from token.

StringTokenizer(String str, String delimiters)

Creates an object using String to be tokenized and second argument as
delimiter excluding space from token.

StringTokenizer(String str, String delimiters, booleandelimAsToken)

Creates an object using String to be tokenized and second argument as
delimiter excluding space from token as specified by true/false.

String S1 = “Anu, Aru, Nash, Yes Mama, Eating Sugar, No Mama!!”
Stk = StringTokenizer(S1)

Method |Description

int countTokens()

Calculates the number of times that this tokenizer'snextToken
method can be called before it generates an exception.

stk.countTokens() will return 8

boolean hasMoreElements()

Returns the same value as the hasMoreTokens method.

boolean hasMoreTokens()

Tests if there are more tokens available from this tokenizer's
string.

Object |nextElement()

Returns the same value as the nextToken method, except that its
declared return value is an Object rather than a String.

String Manipulations and
Introduction to Packages

39

Core JAVA

40

String |nextToken()

Returns the next token from this string's tokenizer.
stk.nextToken() will return “Anu,”
stk.nextToken() will return “Aru, *

String |nextToken(String delim)

Returns the next token in this string's tokenizer's string.
stk.nextToken(“u,”) will return “An”
stk.nextToken(“Mama’) will return “ Aru, Nash, Yes,”

3.2 PACKAGES:

3.2.1 Introduction to predefined packages (java.lang, java.util, java.io,

java.sql, java.swing)

java.ang: Every java program implicitly uses a package java.lang. It
contains classes and interfaces that are fundamental to all of Java
programming. It is Java’s most widely used package as it provides classes
that are fundamental to the design of the Java programming language.

Class Description
The Boolean class wraps a value of
Boolean the primitive type boolean in an
object.
Byte The Byte class wraps a value of
vt primitive type byte in an object.
The Character class wraps a value of
Character . .)
the primitive type char in an object.
Instances of the class Class represent
Class<T> classes and interfaces in a running
Java application.
ClassLoader A class. loader is an object that is
responsible for loading classes.
The Compiler class is provided to
Compiler support Java-to-native-code
compilers and related services.
Double The Double class wraps a value of the

primitive type double in an object.

Enum<E extends Enum<E>>

This is the common base class of all
Java language enumeration types.

Float

The Float class wraps a value of
primitive type float in an object.

Integer

The Integer class wraps a value of the
primitive type int in an object.

Long

The Long class wraps a value of the
primitive type long in an object.

Math

The class Math contains methods for
performing basic numeric operations
such as the elementary exponential,
logarithm, square root, and
trigonometric functions.

Number

The abstract class Number is the
superclass of classes BigDecimal,
Biglnteger, Byte, Double, Float,
Integer, Long, and Short.

Object

Class Object is the root of the class
hierarchy.

Package

Package objects contain version
information about the implementation
and specification of a Java package.

Runtime

Every Java application has a single
instance of class Runtime that allows
the application to interface with the
environment in which the application
is running.

SecurityManager

The security manager is a class that
allows applications to implement a
security policy.

Short

The Short class wraps a value of
primitive type short in an object.

String

The String class represents character
strings.

StringBuffer

A thread-safe, mutable sequence of
characters.

StringBuilder

A mutable sequence of characters.

System

The System class contains several
useful class fields and methods.

Thread

A thread is a thread of execution in a
program.

String Manipulations and
Introduction to Packages

41

Core JAVA

42

A thread group represents a set of

ThreadGroup threads.
ThreadLocal<T> Th1§ class provides thread-local
variables.
The Throwable class is the superclass
Throwable of all errors and exceptions in the
Java language.
The Void class is anuninstantiable
Void placeholder class to hold a reference
to the Class object representing the
Java keyword void.
ArithmeticException Thrown when an exceptional

arithmetic condition has occurred.

ArrayIlndexOutOfBoundsException

Thrown to indicate that an array has
been accessed with an illegal index.

ClassNotFoundException

Thrown when an application tries to
load in a class through its string name
using: The forName method in class
Class.

The class Exception and its
subclasses are a form of Throwable

Exception that indicates conditions that a
reasonable application might want to
catch.

Thrown when an application attempts

NullPointerException to use null in a case where an object

is required.

NumberFormatException

Thrown to indicate that the
application has attempted to convert a
string to one of the numeric types, but
that the string does not have the
appropriate format.

java.util

Contains the collections framework, legacy collection classes, event
model, date and time facilities, internationalization, and miscellaneous
utility classes (a string tokenizer, a random-number generator, and a bit

array).

Class Description
ArrayList<E> |Resizable-array implementation of the List interface.
This class contains various methods for manipulating
Arrays . .
arrays (such as sorting and searching).
The Calendar class is an abstract class that provides
methods for converting between a specific instant in
Calendar time and a set of calendar fields such as YEAR,
MONTH, DAY _OF MONTH, HOUR, and so on, and
for manipulating the calendar fields, such as getting the
date of the next week.
. This class consists exclusively of static methods that
Collections .
operate on or return collections.
Currency Represents a currency.
The class Date represents a specific instant in time,
Date . i1pe ..
with millisecond precision.
. The root class from which all event state objects shall
EventObject .
be derived.
Formatter An interpreter for printf-style format strings.
. GregorianCalendar is a concrete subclass of Calendar
GregorianCalend .
and provides the standard calendar system used by
ar
most of the world.
LinkedList<E> Doubly'-hnked list implementation of the List and
Deque interfaces.
A Locale object represents a specific geographical,
Locale I .
political, or cultural region.
) This class consists of static utility methods for
Objects . .
operating on objects.
Properties The Pr'opertles class represents a persistent set of
properties.
An instance of this class is used to generate a stream of
Random
pseudorandom numbers.
ResourceBundle [Resource bundles contain locale-specific objects.
Scanner A simple text scanner which can parse primitive types

and strings using regular expressions.

String Manipulations and
Introduction to Packages

43

Core JAVA

44

The Stack class represents a last-in-first-out (LIFO)

<E> .
Stack<E stack of objects.
StringTokenizer The strmg tqkemzer class allows an application to
break a string into tokens.
. A facility for threads to schedule tasks for future
Timer ..
execution in a background thread.
. TimeZone represents a time zone offset, and also
TimeZone . .
figures out daylight savings.
UUID A class that represents an immutable universally unique
identifier (UUID).
Vector<E> ThF: Vector class implements a growable array of
objects.
java.io

Provides for system input and output through data streams, serialization
and the file system.

Class Description
A BufferedInputStream adds functionality to
BufferedfnputStream another input stream-namely, the ability to buffer

the input and to support the mark and reset
methods.

BufferedOutputStream |The class implements a buffered output stream.

BufferedReader

Reads text from a character-input stream,
buffering characters so as to provide for the
efficient reading of characters, arrays, and lines.

BufferedWriter

Writes text to a character-output stream,
buffering characters so as to provide for the
efficient writing of single characters, arrays, and
strings.

DatalnputStream

A data input stream lets an application read
primitive Java data types from an underlying
input stream in a machine-independent way.

A data output stream lets an application write

DataOutputStream primitive Java data types to an output stream in a

portable way.

File

An abstract representation of file and directory
pathnames.

Instances of the file descriptor class serve as an
opaque handle to the underlying machine-

FileDescriptor specific structure representing an open file, an
open socket, or another source or sink of bytes.
. A FilelnputSt tains input fi fil
FileInputStream A Filelnpu Stream obtains input bytes from a file
in a file system.
FileOutputStream A .ﬁle output strgam is an output .stream for
writing data to a File or to a FileDescriptor.
FilePermission This class represents access to a file or directory.
FileReader Convenience class for reading character files.
FileWriter Convenience class for writing character files.
This abstract class is the superclass of all classes
InputStream . .
representing an input stream of bytes.
An InputStreamReader is a bridge from byte
streams to character streams: It reads bytes and
InputStreamReader . .)
decodes them into characters using a specified
charset.
An ObjectInputStreamdeserializes primitive data
ObjectInputStream and objects previously written using an
ObjectOutputStream.
This abstract class is the superclass of all classes
OutputStream .
representing an output stream of bytes.
An OutputStreamWriter is a bridge from
OutputStreamWriter chgracter st.reams to byte gtreams: Chargcters
written to it are encoded into bytes using a
specified charset.
PrintWriter Prints formatted representations of objects to a
text-output stream.
Writer Abstract class for writing to character streams.
TOException Signals that an I/O exception of some sort has

occurred.

FileNotFoundException

Signals that an attempt to open the file denoted
by a specified pathname has failed.

java.sql

Provides the API for accessing and processing data stored in a relational
database using the Java programming language.

String Manipulations and
Introduction to Packages

45

Core JAVA

46

Class

Description

Driver interface

Every JDBC driver must implement the Driver
interface.

Driver Manager is the backbone of the JDBC
architecture The DriverManager class is responsible

DriverManager for loading JDBC drivers and creating Connection
objects.
Connection A connection (session) with a specific database.
interface SQL statements are executed and results are
returned within the context of a connection.
Statement The Statement interface executes SQL statements.
The PreparedStatement interface allows programs to
PreparedStatement |precompile =~ SQL statements for increased
performance.
The ResultSet interface represents a database result
ResultSet set, allowing programs to access the data in the
result set.
An object that can be used to get information about
the types and properties of the columns in a
ResultSetMetaData |ResultSet object. This interface provides meta
information about the data underlying a particular
ResultSet.
. A SQLException object is thrown by any JDBC
SQLException method that encounters an error.
CallableStatement The interface used to execute SQL stored

procedures.

javax.swing

The javax.swing package provides classes for java swing API such as
JButton, JTextField, JTextArea, JRadioButton, JCheckbox, JMenu,

JColorChooser etc.

Class Description

JComponent |Super class of all component classes in swing.

JFrame Creates a top class container to hold GUI components.
JApplet Create a browser based GUI application called applet.
JLabel The class is used to create a label.

JButton The JButton class is used to create a push button.

JTextField The class is used to create a text input output component

JRadioButton | The class is used to create a option button component.

JList The class is used to create a list control.

3.2.2 User Defined Packages

Packages are the used to segregate classes into meaningful groups. Java
puts a class file in package at run time and locates the class from there.
Java uses file system directories to store packages. The package statement
defines a name space in which classes are stored. If you omit the package
statement, the class names are put into the default package, which has no
name.

This is the general form of the package statement:
Package pkg;

eg: package mypack;

class A{}

class B{};

The compiler will store A.class and B.class file in mypack
directory/package/namespace. Hierarchy of packages can be created using
the period “.” separator.

Eg. packagemypack.source.test;
class A{}
class B{};

The compiler will store A.class and B.class file in test sub-package of
source package and the source package is located in mypack
directory/package.

String Manipulations and
Introduction to Packages

47

Core JAVA The java run time system by default uses the current working directory as
its starting point. After the current working directory the runtime system
searches the -CLASSPATH environmental variable and uses the directory
to locate class files. Then the run time system searches the -CLASSPATH
location used with javac or java command.

3.2.3 Access specifiers

Encapsulationis the mechanism of binding together code and the data it
manipulates, and keeps both safe from outside interference and misuse.
Java achieves this using class and four different access levels. Public,
private, no-specifier (default) and protected. A public Class, method and
field can be accessed from any other class in the Java program, whether
they are in the same package or in another package. Private Fields and
methods can be accessed within the same class to which they belong.
Using private specifier we can also achieve encapsulation which is used
for hiding data. Protected ficlds and methods can only be accessed by
subclasses in another package or any class within the package of protected
members class. Default i. e. if not declared any specifier, it will follow the
default accessibility level and can access class, method, or field which
belongs to the same package, but not from outside this package.

| Visibility __Public | Protected | Default | Private

| From the same class ' Yes : Yes ' Yes ' Yes :
From any classin the same package Yes Yes Yes No

| From asubclassin the samcpacjiagc Yes | Yes (i’ac:kdgeJ Yes No

i | Inheritance) | (Package) |
From a subclassoutside the same Yes Yes No No

| package I | _ | (Inheritance) | _ .

| From any non-subclass class outside Yes | No No No

| the package

3.3 CHAPTER SUMMARY:

The chapter help to learn the classes used in string manipulation. The
different methods associated with string manipulation. String is a
commonly used in many desktop and web application and has a wide
range of applications. The chapter further introduced the concept of
Package and access specifiers.

3.4 TEXT BOOK(S):

1) Herbert Schildt, Java The Complete Reference, Ninth Edition,
McGraw-Hill Education, 2014

3.5 ADDITIONAL REFERENCE(S):

1) E. Balagurusamy, Programming with Java, Tata McGraw-Hill
Education India, 2014

48

2) Programming in JAVA, 2nd Ed, Sachin Malhotra &SaurabhChoudhary, String Manipulations and
Oxford Press Introduction to Packages

3) Core Java — SYBSC CS — Sheth Publication — Prof. Ahtesham Shaikh,
Prof.Beena Kapadia

3) The Java Tutorials: http://docs.oracle.com/javase/tutorial/

3.6 QUESTIONS:

1) What is a string? Write a program to accept a string as a command line
argument and print its reverse.

2) What is a string? Explain, with example, the following methods of
String class:

(1) indexOf{() (ii) substring()

3) What is a package? Explain

4) List any five predefine packages in java.

5) What is the purpose of java.utilpackage. List any five classes or
interfaces.

6) What is the purpose of java.io package. List any five classes or
interfaces.

7) What is the purpose of java.sqlpackage. List any five classes or
interfaces.

8) How to define use defined package? How JVM locates user defined
packages? Explain.

9) Explain the visibility of class and there members for different access
specifier.

o
XS
o
XS

49

50

Unit I1

EXCEPTION HANDLING

Unit Structure

4.1 Introduction

4.2 Types of errors

4.3 Exceptions

4.4 Syntax of Exception Handling Code
4.5 Multiple catch Statements

4.6 Using finally Statement

4.7 Throw and throws keyword
4.9 Using Exception for debugging
4.9 Summary

4.10 Textbook

4.11 Additional References
4.12 Questions

4.1 INTRODUCTION

Rarely does a program run successfully at its very first attempt. It is very
common to make mistakes while developing as well as typing a program.
A mistake might lead to an error causing the program to produce
unexpected results. Errors can make a program go wrong.

An error may terminate the execution of the program or may produce an
incorrect output or even may cause the system to crash. It is important to
detect and manage properly all the possible error condition in the program
so that the program will not terminate/crash during execution.

4.2 TYPES OF ERRORS

Errors may be classified into two categories:

e Compile-time errors
¢ Run-time errors

Compile-Time Errors

All syntax errors are detected and displayed by the Java compiler and
hence these errors are known as compile-time errors. Whenever the
compiler displays an error, it will not create the .class file. Therefore, it is
necessary that we fix all the errors before we can successfully compile and
run the program.

Program 4.1 lllustration of compile-time errors
/*This program contains an error*/
class Errorl

{

public static void main (String[] args)

{
System.out.println("Hello, World!")//Missing;

}

The Java compiler does a nice job of telling us where the errors have
occurred in the program. For example, if we have missed the semicolon at
the end of print statement in Program 4.1, the following message will
appear on the screen.

Errorld. java:z:?: error: ';° expected
System.out . .println{"Hello. '.-Jurld'!‘")A A#Missing:

1 error

We can now go to the appropriate line, correct an error and recompile the
program. Sometimes, a single error may be the source of multiple errors
later in the compilation. For example, use of an undeclared variable in
several places will cause a series of errors of type “undefined variable”.
In such case, we should consider the earliest errors as the major source of
problem. Once we fix an error, we should recompile the program and look
for other errors.

Most of the compile-time errors are due to typing mistakes. Typographical
errors are hard to find, and we may have to check code word by word. The
most common problems are:

e Missing semicolons

e Missing (or mismatch of) brackets in classes and methods
e Misspelling of keywords and identifiers

e Missing double quotes in strings

e Using undeclared variables

e Use of = in place of == operator and so on.

Exception Handling

51

Core JAVA

52

Other errors may occur because of directory paths. An error such as
javac: command not found

It means that we have not set the path correctly. We must include the
path directory where the Java executables are stored.

Run-Time Errors

Sometimes, a program may compile successfully creating.class file but it
may not run properly. Such programs may produce incorrect output due to
wrong logic or may terminate due to errors such as stack overflow. Most
common run-time errors are:

¢ Dividing an integer by zero

e Accessing an element that is out of the bounds of an array

¢ Trying to store a value into an array of an incompatible class

¢ Passing a parameter that is not in a valid range or value for a method

¢ Trying to illegally change the state of a thread

e Attempting to use a negative size for an array

e Using a null object reference as a legitimate object reference to
access a method or a variable

e Converting invalid string to a number
¢ And many more

When such errors are encountered, Java typically generates an error
message and aborts the program. Program 4.2 illustrates how a run-time
error causes termination of execution of the program.

Program 4.2 Hllustration of run-time errors

class Error2

{
public static void main(String[] args)
{
int x = 10;
int y =5/0;
int z=5/0;
int a=x/(y-z); //Division by zero
System.out.println("a=" +x);
int b =x/(y+z);
System.out.println("b=" +y);
}
}

Program 4.2 is syntactically correct and therefore does not cause any
problem during compilation. However, during execution, it displays the
following message and stops without executing remaining statements.

Exception in thread "main" java.lang.ArithmeticException: / hy zero
at Errorl.main(Error2.java:il)

When Java run-time tries to execute a division by zero, it generates an
error condition, which causes the program to stop after displaying an
appropriate message.

4.3 EXCEPTIONS

An exception is a condition caused by a run-time error in the program.
When the Java interpreter encounters an error such as dividing an integer
by zero, it creates and throws an exception object (i.e., informs us that an
error has occurred). If the exception object is not caught and handled
properly, the interpreter will display an error message as shown in the
output of Program 4.2 and will terminate the program.

If we want our program to continue with the execution of the remaining
code, then we should try to catch the exception object thrown by the error
condition and then display an appropriate message for taking corrective
actions. This task is known as exception handling.

The purpose of exception handling is to detect and report an “exceptional
circumstance” so that appropriate action can be taken. Error handling code
performs the following tasks:

1.Find the problem (Hit the exception).

2.Inform that an error has occurred (Throw the exception)
3.Receive the error information (Catch the exception)
4.Take corrective actions (Handle the exception)

Error handling code consists of two segments, one to detect errors and to
throw exceptions and the other to catch exceptions and take appropriate
actions.

While writing programs, we must check for places in the program where
an exception could be generated. Some common exceptionsare listed in
Table 4.1

Exception Handling

53

Core JAVA

54

Table 4.1 Common java Exceptions

Exception Type

Cause of Exception

ArithmeticException

It is caused by math errors such as
division by zero

ArrayIlndexOutOfBoundsException

Caused by bad array indexes

ArrayStoreException

Caused when a program tries to
store the wrong type of data in an
array

FileNotFoundException

Caused by an attempt to access a
nonexistent file

IOException Caused by general I/O failures, such
as inability to read from a file
NullPointerException Caused by referencing a null object

NumberFormatException

Caused when a conversion between
strings and number fails

OutOfMemoryException Caused when there’s not enough
memory to allocate a new object
SecurityException Caused when an applet tries to

perform an action not allowed by
the browser’s security setting

StackOverflowException

Caused when the system runs out of
stack space

StringIndexOutOfBoundsException

Caused when a program attempts to
access a nonexistent character
position in a string.

4.4 SYNTAX OF EXCEPTION HANDLING CODE

The basic concepts of Exception handling are throwing an exception and
catching it. This is illustrated in Fig. 4.1

try block
Statement which causes an Exception obiject creator
exception
Throws
Exception
object
catch block

exception

Statement which handles an | Exception handler

Fig 4.1 Exception handling mechanism

Java uses a keyword try to preface a block of code that is likely to cause
an error condition and “throw” an exception.The catch block is added
immediately after the try block. A catch block “catches” the exception
“thrown” by the try block and handles it appropriately.

Exception Handling

statement ; //generates an exception

}
catch (Exception- type ¢)

{

statement ; //processes the exception

The try block can have one or more statements that could generate an
exception. If any one statement generates an exception, the remaining
statements in the try block are skipped and execution jumps to the catch
block that is placed immediately next to the try block.

The catch block can have one or more statements that are necessary to
process the exception. Every try statement should be followed by at least
one catch statement; otherwise compilation error will occur.

The catch statement works like a method definition. A single parameter,
which is reference to the exception object is thrown (by the try block). If
the catch parameter matches with the type of exception object, then the
exception is caught and statements in the catch block will be executed.
Otherwise, the exception is not caught, and the default exception handler
will cause the execution to terminate.

Program 4.3 illustrates the use of try and catch blocks to handle an
arithmetic exception. Note that program 4.3 is a modified version of
Program 4.2.

55

Core JAVA Program 4.3 Using try and catch for exception handling

class Error3

{
public static void main(String[] args)
{
int x = 10;
inty=35;
intz=>5;
try
{
inta = x/(y-z); //Exception here
}
catch(ArithmeticException e)
{
System.out.println("Division by zero");
}
int b = x/(y+z);
System.out.printin("b=" +y);
}
}

Program 4.3 displays the following output:

Division hy zero
h=5

Note that the program did not stop when an exception is caused inside try
block. Exception is caught by catch block and it prints the error message,
and then continues the execution, as if nothing has happened. Compare
with the output of Program 4.2 which did not give the value of y.

Program 4.4 shows another example of using exception handling
mechanism.

56

Program 4.4 Example of ArrayIndexOutOfBoundsException Exception Handling

class TryCatchExample
{

public static void main(String[] args)

try
{

int arr[]= {1,3,5,7};

System.out.println(arr[4]); /may throw exception

}

catch(ArrayIndexOutOfBoundsException €¢) // handling an array
exception

{

System.out.println("Array index doesnt exist");

}

Output:

firray index doesnt exist

In this program we have array which contains 4 elements i.e arr[0], arr[1],
arr[2], arr[3]. We are printing arr[4] which doesn’t exist in the array list.
Hence ArrayIndexOutOfBoundsException is caused by try block and
caught by catch block.

4.5 MULTIPLE CATCH STATEMENTS

It is possible to have more than one catch statement in the catch block as
illustrate below:

statement; //generates an exception

57

Core JAVA

58

catch (Exception- Type-1 ¢)

{

statement; // processes exception type 1
}
catch (Exception- Type-2 ¢)
{

statement; // processes exception type 2
}
catch (Exception- Type-3e)
{

statement; // processes exception type N
}

When an exception in a try block is generated, the Java treats the multiple
catch statements like cases in a switch statement. The first statement
whose parameter matches with the exception object will be executed, and
the remaining statements will get skipped.

Note that Java does not require any processing of the exception at all. We
can simply have a catch statement with an empty block to avoid program
abortion.

Example:
catch (Exception e);

Here, the catch statement simply ends with a semicolon, which does
nothing. This statement will catch an exception and then ignore it.

Program 4.5 Using multiple catch blocks
class MultipleCatchBlock

{
public static void main(String[] args)
{
try
{
int a[]=new int[5];
System.out.println(a[10]); //doesnt exist
}

catch(ArrayIndexOutOfBoundsException e)
{

System.out.println(" ArraylndexOutOfBounds Exception
occurs");

}

catch(ArithmeticException e)

{

System.out.println(" Arithmetic Exception occurs");

}

catch(Exception e)

{

System.out.println("Parent Exception occurs");

}

System.out.println("rest of the code");

}

Program 4.5 uses a chain of catch blocks and, when run, produces the
following output:

HrraylndexUut0f Bounds Exception occurs
rest of the code

Note that the array element a [10] does not exist because array a is defined
to have only five elements, a[0], a[1], a[2], a[3], a[4]. Therefore, the index
10 is outside the array boundary thus causing the block

catch (ArrayIndexOutofBoundsException e)

to catch and handle the error. Remaining catch blocks are skipped.

4.6 USING FINALLY STATEMENT

Java supports finally statement that can be used to handle an exception
that is not caught by any of the previous catch statements. finally block
can be used handle any exception generated within a try block. It can be
added immediately after the try block or after the last catch block shown
as follows:

try try
{ {
§ §

Exception Handling

59

Core JAVA

60

finally catch(......)

finally

When a finally block is defined, it is guaranteed to execute, regardless of
whether an exception is thrown or not. As a result, we can use it to
perform operations such as closing files and releasing system resources.

In Program 4.5, we may include the laststatements inside a finally block as
shown below:

Program 4.6 Using finally blocks
class FinallyBlock

{

public static void main(String[] args)

try

int a[] = new int[5];

System.out.println(a[10]); //doesnt exist

}

catch(ArrayIndexOutOfBoundsException e) Exception Handling

{

System.out.println(" ArrayIndexOutOfBounds Exception occurs");

}

catch(ArithmeticException e)

{

System.out.println(" Arithmetic Exception occurs");

b

catch(Exception e)

{

System.out.println("Parent Exception occurs");

}
finally

{

System.out.println("rest of the code");

}

This will produce the same output.

ArrayIndexQut0f Bounds Exception occurs

rest of the code

4.7 THROWING OUR OWN EXCEPTIONS

The Java throw keyword is used to throw an exception explicitly.

We specify the exception object which is to be thrown. The Exception has
some message with it that provides the error description.We can do this by
using the keyword throw as follows:

throw newThrowable subclass;
Examples:
throw new ArithmeticException();

throw new NumberFormatException();

61

Core JAVA In Program 4.6, we have created validate method that takes integer value
as a parameter. If the age is less than 18, we are throwing the
ArithmeticException otherwise print a message welcome to vote.

Program 4.6 Throwing our own exception

class TestThrow

{
public static void validate(int age) //validate(age=10)
{
if(age<18) //10<18
{

//throw Arithmetic exception if not eligible to vote
throw new ArithmeticException("not eligible for voting");

}

else

{
System.out.println("You are eligible for voting");
b
b
public static void main(String args[])
{
validate(10); //calling the function

System.out.println("Rest of the code...");

h
h

A run of Program 4.6 produces:

Exception in thread "main" java.lang.ArithmeticException: not eligible for votin

at TestThrnw.ua}idate(TestTht:muJ.jaua:iﬂ)

]l LI] dud e i Fl

Program 4.7 Java throws keyword
import java.io.*;

class Mainl
62

{ Exception Handling
// declaring the type of exception

public static void findFile() throws IOException
{

// code that may generate IOException
File newFile = new File("test.txt");

FileInputStream stream = new FileInputStream(newFile);

b

public static void main(String[] args)

{
try

findFile();

}
catch (IOException e)

System.out.println(e);

java.io.FileNotFoundException: test.txt (The system cannot find the file specifi
ed)

Program 4.8 Throwing our own exception
import java.lang.Exception;

class MyException extends Exception

{
MyException(String message)
{
super(message);
}
}

63

Core JAVA class OwnException

{
public static void main (String args|[])
{
intx =5, y=1000;
try
{
float z = (float) x / (float) y;
if(z < 0.01)
{
throw new MyException("Number is too small");
}
}
catch(MyException e)
{
System.out.println("Caught my exception");
System.out.println(e.getMessage());
}
finally
{
System.out.println("I am always here");
}
}
}

I am alwaysz here

The object e which contains the error message “Number is too small” is
caught by the catch block which then display’s the message using the
getMessage() method.

Note that Program 4.8 also illustrates the use of finally block. The last
line of output is produced by the finally block.

64

4.8 USING EXCEPTION FOR DEBUGGING

As we have seen, the exception-handling mechanism can be used to hide
errors from rest of the program. It is possible that the programmers may
misuse this technique for hiding errors rather than debugging the code.
Exception handling mechanism can be effectively used to locate the type
and place of errors. Once we identify an error, we must try to find out why
these errors occurred before we coverup them with exception handlers.

4.9 SUMMARY

A good program does not produce unexpected results. We should
incorporate features that could check for potential problem spots in
programs and guard against program failures. Exceptions in Java must be
handled carefully to avoid any program failures.

In this chapter we have discussed the following:

v'What exceptions are

v'try,catch and finally block

v'How to catch and handle different types of exceptions.
v'How to throw system exceptions

4.10 TEXTBOOK(S):

1) Herbert Schildt, Java The Complete Reference, Ninth Edition,
McGraw-Hill Education, 2014

4.11 ADDITIONAL REFERENCE(S):

1) E. Balagurusamy, Programming with Java, Tata McGraw-Hill
Education India, 2014

2) Programming in JAVA, 2nd Ed, Sachin Malhotra & Saurabh
Choudhary, Oxford Press

4.12 QUESTIONS:

1) What is Exception? Explain the types of exceptions.
2) What is error? Explain the types of error.

3) How the exceptions are handled in Java?

O, 0 0 0
0’0 0’0 0’0 0’0

Exception Handling

65

70

MULTITHREADING

Unit Structure

5.1 Introduction

5.2 Creating threads

5.3 Extending the thread Class
5.4 Stopping and Blocking a thread
5.6 Life Cycle of A thread

5.6 Using thread Methods

5.7 Synchronization in Java
5.8 Summary

5.9 Textbook

5.10 Additional Reference(s)

5.11 Questions

5.1 INTRODUCTION

Those who are familiar with the modern operating systems (Windows 10)
may recognize that they can execute several programs simultaneously.
This ability is known as multitasking. In system's terminology, it is called
multithreading.

Multithreading is a conceptual programming paradigm where a program
(process) is divided into two or more subprograms (processes), which can
be implemented in parallel. This is similar to dividing one task into
subtasks and assigning them to different people for execution
independently and simultaneously. For example, one subprogram can
display an animation on the screen while another may build the next
animation to be displayed.

In most computers, there is only a single processor and therefore, in
reality, the processor does only one thing at a time. However, the
processor switches between the processes so fast that it appears to human
beings that all of them are being executed simultaneously. Java programs
that we have seen and discussed so far contain only a single sequential
flow of control. This is what happens when we execute a normal program.
The program begins, runs through a sequence of executions, and finally
ends. At any given point of time, there is only one statement under
execution.

A thread is similar to a program that has a single flow of control. It has a
beginning, a body, and an end, and executes commands sequentially. All
main programs in our earlier (previous chapters) examples can be called
single-threaded programs. Every program will have at least one thread as
shown in Fig. 5.1

Class AB

{
+++++++ Beginning
+++++++ Execution of commands
....... sequentially in Single
....... threaded program
....... v End

}

Fig. 5.1 Single-threaded program

A unique property of Java is its support for multithreading. That
is, Java enables us to use multiple flows of control in developing
programs. Each flow of control may be thought of as a separate tiny
program (or module) known as a thread that runs in parallel with each
other as shown in Figure 5.2.

A program that contains multiple flows of control is known as
multithreaded program. Fig. 5.2 illustrates a Java program with four
threads, one main and two others.The main method module is main thread,
which is designed to create and start the other two threads, namely Thread
A, Thread B.

Multithreading

71

Core JAVA

72

Main Thread

y start

switching

ThreadA ThreadB

Fig. 5.2 A Multithreaded program

Once initiated by the main thread, the threads A, B run concurrently and
share the resources jointly. It is like people living in joint families and
sharing certain resources among all of them. Since threads in Java are
subprograms of a main application program and share the same memory
space, they are known as lightweight threads or lightweight processes.

It is important to remember that 'threads running in parallel' does not
really mean that they are running at the same time. Since all the threads
are running on a single processor, the flow of execution is shared between
the threads. The Java interpreter handles the switching of control between
the threads in such a way that it appears they are running concurrently.

Multithreading is a powerful programming tool that makes Java distinctly
different from its fellow programming languages. Multithreading enables
programmers to do multiple things at same time. They can divide a long
program (containing operations that are conceptually concurrent) into
threads and execute them in parallel. For example, we can send print
command into the background and continue to perform some other task in
the foreground. This approach would considerably improve the speed of
our programs.

Any application we are working on that requires two or more things to be
done at the same time is probably a best one for use of threads.

5.2 CREATING THREADS

Creating threads in Java is simple. Threads are implemented in the form of
objects that contain a method called run(). The run() method is the heart
and soul of any thread. It makes up the entire body of a thread and is the

only method in which the thread's behaviour can be implemented. A

’ Multithreading
typical run() method would appear as follows:

public void run()

The run() method should be invoked by an object of the concerned
thread. This can be achieved by creating the thread and initiating it with
the help of another thread method called start().

A new thread can be created in two ways.

1. By creating a thread class:
Define a class that extends Thread class and override its run() method
with the code required by the thread.

2. By converting a class to a thread:

Define a class that implements Runnable interface. The Runnable interface
has only one method, run(), that is to be defined in the method with the
code to be executed by the thread.

The approach to be used depends on class which we have created, and
what it requires. If it needs to extend another class, then we have no choice
but to implement the Runnable interface, since Java classes cannot have
two super classes.

5.3 EXTENDING THE THREAD CLASS

We can make our class runnable as a thread by extending the class
java.lang.Thread. This gives us access to all the thread methods directly.
It includes the following steps:

1. Declare the class as extending the Thread class.
Implement the run() method that is responsible for executing the
sequence of code that the thread will execute.

3. Create a thread object and call the start() method to initiate the thread
execution.

73

Core JAVA

74

K/

< Declaring the Class
The Thread class can be extended as follows:

class TestThread extends Thread

Now have a new type of thread TestThread.

< Implementing the run() Method

The run() method has been inherited by the class TestThread. We must
override this method in order to implement the code to be executed by our
thread. The basic implementation of run() is as follows:

public void run()

......................... //Thread code here

When we start any new thread, Java calls the thread's run() method, so it
is the run () where all the action takes place.

+ Starting New Thread

To create and run an instance of our thread class, we will write:
TestThread t1 = new TestThread();
tl.start(); /l invokes run() method

The first line instantiates a new object of class TestThread. Note that this
statement just creates the object. The thread that will run this object is not
yet running. The thread is in a newborn state.

The second line calls the start () method causing the thread to move into
the runnable state. Then, the Java runtime will schedule the thread to run
by invoking its run () method. Now. the thread is in the running state.

R/

“ An Example of Using the Thread Class

Program 5.1 illustrates the use of Thread class for creating and running
threads in an application. In program we have created two threads A and B
for undertaking two different tasks. The main method in the ThreadTest1
class also constitutes another thread which we may call the "main thread".

The main thread dies at the end of its main method. However, before it
dies. it creates and starts other two threads A, B.

We can start a thread as follows:
A t1 = new A();
tl.start();

Immediately after the thread A is started, there will be two threads running
in the program: the main thread and the thread A.

The start() method returns back to the main thread immediately after
invoking the run() method, thus the allowing the main thread to start the
thread B.

Program 5.1 Creating threads using the thread class

class A extends Thread

{
public void run()
{
for (int 1 =1; 1<=5; i++)
{
System.out.println("Thread A: i=" +1);
}
System.out.println("Exit from A");
}
}
class B extends Thread
{
public void run()
{
for (int j =1; j<=5; j++)
{
System.out.println("Thread B: j=" +j);
b

Multithreading

75

Core JAVA System.out.println("Exit from B");

h
h

class Threadtest1

{

public static void main(String args[])
{
A tl =new A();
B t2 = new B();
t1.start(); //start first thread
t2.start(); //start second thread

}
}
Output:
First run
Thread

Thread
Thread

A
B
A
B
A
B
A
A

Bl L I3 CFT = i G o

76

Third run

[l o o o e = = e = e = =]
I o o Bty e e e e e
A R
1T B) D b 6) [

By the time the main thread has reached the end of its main method, there
are a total of three separate threads running in parallel.

We have simply initiated two new threads and started them. We did not
hold on to them further. They are running concurrently on their own. Note
that the outputs from the threads are not sequential. They do not follow
any specific order.

They are running independently of one another and each executes
whenever it has a chance. Remember, once the threads started. We cannot
decide with certainty the order in which they may execute statements.
Note a second run and third run has a different output sequence.

5.4 STOPPING AND BLOCKING A THREAD

Stopping a Thread

Whenever we want to stop a thread from running further, we may do so by
calling stop()method, like:

aThread.stop();

This statement causes the thread to move to the dead state. A thread will
also move to the dead state automatically when it reaches the end of its
method. The stop() method may be used when the premature death of a
thread is desired.

Blocking a Thread

A thread can also be suspended temporarily or blocked from entering
into the runnable and subsequently running state by using either of the
following thread methods:

sleep() / / blocked for a specified time
suspend() //blocked until further orders
wait () / / blocked until certain condition occurs

These methods cause the thread to go into the blocked (or not-runnable)
state.

Multithreading

77

Core JAVA

78

The thread will return to the runnable state when the specified time is
elapsed in the case of sleep().

The resume() method is invoked in the case of suspend(), and the notify
() method is called in the case of wait().

5.5 LIFE CYCLE OF A THREAD

During the lifetime of a thread, it can enter many states. It includes:
1. Newborn state

2. Runnable state

3. Running state

4. Blocked state

5. Dead state

A thread is always in one of these five states. It can move from one state
to another via a variety of ways as shown in Fig. 5.3.

New Thread Newborn
T
| o T stop
4 —l—‘\ _I_
Active | . \ 4 ™ stop Killed
Thread '-\ Running | | \ . Runnable _/,\ Dead Thread
| yield t
suspend
sleep resume -~ stop
wait notify
Idle Thread Blocked
(Not Runnable)

Fig. 5.3 State transition diagram of a thread
Newborn State

When we create a thread object, the thread is born and is said to be in
newborn state. The thread is not yet scheduled for running. At this state,
we can do only one of the following things with it:

v" We can schedule it for running using start() method.
v' We can Kkill it using stop() method.

If scheduled, it moves to the runnable state (Fig. 5.4). If we attempt to use
any other method at this stage, an exception will be thrown.

I -\I
| Newborn |
start " S stop
—_— e T,
i pY
I./' Runnable ‘\.I f Dead \

| |
| | \ ta /
_ State J __ State

Fig. 5.4 scheduling a newborn thread
Runnable State

The runnable state means that the thread is ready for execution and is
waiting for the availability of the processor, i.e the thread has joined the
queue of threads that are waiting for execution. If all threads have equal
priority, then they are given time slots for execution in first- come, first-
serve manner. The thread that relinquishes control joins the queue at the
end and again waits for its turn.

However, if we want a thread to relinquish control to another thread of
equal priority before its turn comes, we can do so by using the yield()
method. (Fig. 5.5)

yield
P —_— T ~ P 3 == 3
/ / \ \ \
[[} | L JI- | [] | [[)
\\h f/) \, i ____,.""/ Il\\x% - d__/; \\\5 =l
Runniné“"-»..,,____
Thread N Runnable Threads

Fig. 5.5 Relinquishing control using yield() method
Running State

Running means that the processor has given its time to the thread for its
execution. The thread runs until it relinquishes control on its own or it is
pre-empted by a higher priority thread.

A running thread may relinquish its control in one of the following
situations.

1) It has been suspended by using suspend() method. A suspended
thread can be revived by using the resume() method.

This approach is useful when we do not want to kill a thread but want to
suspend it for some time due to certain reason.

Multithreading

79

Core JAVA

suspend
Pl T Ny
A 7 N resume I %
| [] | —|| . .I'— |I\ . .
! 7 !
N i NS Bl
Running Runnable Suspended

Fig. 5.6 Relinquishing control using suspend() method

2) It has been made to sleep. We can make a thread to sleep for a
specified time period using the method sleep (time) where time is in
milliseconds.

It means that the thread is out of the queue during this time period. As
soon as this time period is elapsed, the thread re-enters the runnable state.

sleep(t)
Pe— -~ f-d-'_ __\\\ -,.._\1---—_ o
4 i ® / \ After t 4 N
([o) — =«) i ([&)
\\R__ _J,/ \\5__ | ,/’} &\H_____,/
Running Runnable Sleeping

Fig. 5.7 Relinquishing control using sleep() method

3) It has been told to wait until some event occurs. It is done using the
wait() method.

The thread can be scheduled to run again using the notify() method.

wait
e =)
/ \ / h! notify | X
| [] |« —Ik L _}-— - k] |
\\E _ ,/ \\h___ ___f.--’ﬂJ \&_q__ __,//
Running Runnable Waiting

Fig. 5.8 Relinquishing control using wait() method

80

Blocked State

A thread is said to be in blocked state when it is prevented from entering
the runnable state and subsequently the running state.

It happens when the thread is suspended, sleeping or waiting in order to
satisfy certain requirements.

A blocked thread is considered “not runnable” but it is not dead and
therefore fully qualified to run again.

Dead State

Every thread has a life cycle. A running thread ends its life when it
completes executing its run () method. It is a natural death.

However, we can kill it by sending the stop message to it at any state thus
causing a premature death. A thread can be killed as soon as it is born, or
while it is running, or even when it is in “not runnable” (blocked)
condition.

5.6 USING THREAD METHODS

Thread class methods can be used to control the behaviour of a thread.
We have already used the methods start() and run() in program 5.1. There
are methods that can move a thread from one state to another.

Program 5.2 illustrates the use of yield(), sleep(), and stop() methods.
Program 5.2 Use of yield(), stop(), and sleep() methods

class A extends Thread

{
public void run()
{
for (int 1 =1; 1<=5; i++)
{
if(i==1) yield();
System.out.println("Thread A: i=" +1);
b
System.out.println("Exit from A");
}
}

class B extends Thread

Multithreading

81

Core JAVA {

public void run()
{
for (int k =1; k<=5; k++)
{
System.out.println("Thread B: k=" +k);
if(k==1)
try
{
sleep(2000);

¥
catch(Exception e)
{
}

System.out.println("Exit from B");

¥
¥
class ThreadMethods

{

public static void main(String args[])
{

A tl =new A();

B t2 = new B();
System.out.println("Start thread A");
t1.start();
System.out.println("Start thread B");

t2.start();

82

System.out.println("End of main thread"); Multithreading

Start thread A

Start thread B
main thread
A: i=1

k=1

i=2

i=3

i=4

i=5

B
A
A
A
A

LM e G [

Thread B:
Exit from

mEEErED

Program 5.2 uses the yield() method in thread A at the iteration i=I.
Therefore, the thread A, although started first, has relinquished its control
to the thread B.

The thread B started sleeping after executing for loop only once.

When it woke up (after 2000 milliseconds), the other thread has already
completed its runs and therefore was running alone.

The main thread died much earlier than the other two threads.

5.7 SYNCHRONIZATION IN JAVA

So far, we have seen threads that use their own data and methods provided
inside their run()methods. What happens when they try to use data and
methods outside themselves? In such situations, they may compete for the
same resources and may lead to serious problems.

For example, one thread may try to read a record from a file while another
is still writing to the same file. Depending on the situation, we may get
strange results.

Java provides a way to overcome this problem using a technique known as
synchronization.

In case of Java, the keyword synchronized helps to solve such problems
by keeping a watch on such locations. For example, the method that will
read information from a file and the method that will update the same file
may be declared as synchronized.

83

Core JAVA

84

Example:

synchronized void update()

...................... //code here is synchronized

When we declare a method synchronized, Java creates a “monitor” and
hands it over to the thread that calls the method first time. As long as the
thread is holding the monitor, no other thread can enter the synchronized
section of the code. A monitor is like a key and the thread that holds the
key can only open the lock.

It is also possible to mark a block of code as synchronized as shown
below:

synchronized (lock-object)

........................ //code here is synchronized

Whenever a thread completes its work of using synchronized method (or
block of code), it will hand over the monitor to the next thread that is
ready to use the same resource.

A deadlock situation may occur when two or more threads are waiting to
gain control of a resource. Due to some reason, the condition on which the
waiting threads rely on to gain control does not happen.

For example, assume that the thread X must access Method1 before it can
release Method2, but the thread Y cannot release Methodl until it gets
hold of Method2. Because these are mutually exclusive conditions, a
deadlock occurs. The code below illustrates this:

Thread X
synchronized method2 ()

{

synchronized method1()

}
}
Thread Y
synchronized methodl ()
{
synchronized method2 ()
{
}
}

5.8 SUMMARY

A thread is a single line of execution within a program. Multiple threads
can run concurrently in any single program.

A thread is created either by sub classing the Thread class or
implementing the Runnable interface. Careful application of
multithreading will considerably improve the execution speed of Java
programs.

5.9 TEXTBOOK

Herbert Schildt, Java The Complete Reference, Ninth Edition, McGraw-
Hill Education, 2014

5.10 ADDITIONAL REFERENCE(S)

1. E. Balagurusamy, Programming with Java, Tata McGraw-Hill
Education India, 2014

2. Programming in JAVA, 2nd Ed, Sachin Malhotra & Saurabh
Choudhary, Oxford Press

5.11 QUESTIONS

1. What is thread? Explain the life cycle of thread.
2. Explain the synchronization of thread.
3. Write a java program to implement the concept of thread.

O O O 0
0’0 0’0 0’0 0’0

Multithreading

85

86

I/0 STREAMS

Unit Structure
6.1 Introduction
6.2 Types of Streams
6.2.1 Byte Stream
6.2.2 Character Stream
6.3 Java Input Stream Class
6.3.1 Java FileInput Stream Class
6.3.2 Java Byte Array Input Stream Class
6.4 Java Output Stream Class
6.4.1 Java File Output Stream Class
6.4.2 Java Byte Array Output Stream Class
6.5 Java Reader and Writer
6.6 Summary
6.7 Textbooks

6.8 Questions

6.1 INTRODUCTION

Java 1/0 (Input and Output) is used to process the input and produce the
output.

Java uses the concept of a stream to make I/O operation fast. The java.io
package contains all the classes required for input and output operations.

CONCEPT OF STREAMS
A stream is a sequence of data. In Java, a stream is composed of bytes.

It's called a stream because it is like a stream of water that continues to
flow.

In Java, streams are the sequence of data that are read from the source and
written to the destination.An input stream is used to read data from the
source and, an output stream is used to write data to the destination.

Program 6.1
class HelloWorld

{

public static void main(String[] args)

{
System.out.printin("Hello, World!");

}
}

For example, in above HelloWorld program, we have used System.out to
print a string. Here, the System.out is a type of output stream.

Similarly, there are input streams to take input.

Reading data from source

input stream

Writing data to destination

output stream

6.2 TYPES OF STREAMS

Depending upon the data a stream holds, it can be classified into following
types:

v' Byte Stream
v" Character Stream

6.2.1 BYTE STREAM
Byte stream is used to read and write a single byte (8 bits) of data.

All byte stream classes are derived from base abstract classes called
InputStream and OutputStream.

1/0O Streams

87

Core JAVA

88

6.2.2 CHARACTER STREAM
Character stream is used to read and write a single character of data.

All the character stream classes are derived from base abstract
classes Reader and Writer.

6.3 JAVA INPUTSTREAM CLASS

The InputStream class of the java.io package is an abstract superclass
that represents an input stream of bytes.

Since InputStream is an abstract class, it is not useful by itself. However,
its subclasses can be used to read data.

s SUBCLASSES OF INPUTSTREAM

In order to use the functionality of InputStream, we can use its following
subclasses.

FileInputStream
ByteArraylnputStream
ObjectInputStream
BufferedInputStream

AN

s CREATE AN INPUTSTREAM

In order to «create an InputStream, we must import the
java.io.InputStream package first.

Once we import the package, here is how we can create the input stream.
/I Creates an InputStream
InputStream objectl = new FileInputStream();

Here, we have created an input stream using FileInputStream. It is
because InputStream is an abstract class. Hence, we cannot create an
object of InputStream.

% METHODS OF INPUTSTREAM

The InputStreamclass provides different methods that are implemented by
its subclasses.

Some of the commonly used methods are:

v read()-

It reads one byte of data from the input stream.

v' read(byte[] array) —

It reads bytes from the stream and stores in the specified array.
v' available() —

It returns the number of bytes available in the input stream.

v mark() -

It marks the position in the input stream up to which data has been read.
v reset() —

It returns the control to the point in the stream where the mark was set.
v" markSupported() -

It checks if the mark() and reset() method is supported in the stream.

1/0O Streams

v skips() -
It skips and discards the specified number of bytes from the input stream.
v close() -

It closes the input stream.

6.3.1 JAVA FileInputStream CLASS

The FileInputStream class of the java.io package can be used to read
data (in bytes) from files. It extends the InputStream abstract class.

% CREATE A FilelnputStream

In order to «create a FilelnputStream, we must import
the java.io.FileInputStream package first. Once we import the package,
here is how we can create a file input stream in Java.

o Using the path to file
FileInputStream input = new FileInputStream(stringPath);

Here, we have created an input stream that will be linked to the file
specified by the path.

o Using an object of the file
FileInputStream input = new FileInputStream(File fileObject);

Here, we have created an input stream that will be linked to the file
specified by fileObject.

«» METHODS OF FileInputStream

The FileInputStream class provides implementations for different
methods present in the InputStream class.

read() Method

v' read() - It reads a single byte from the file.

v' read(byte[] array) —It reads the bytes from the file and stores in the
specified array.

v' read(byte[] array, int start, int length) —It reads the number of
bytes equal to length from the file and stores in the specified array starting
from the position start.

EXAMPLE: INPUTSTREAM USING FileInputStream

Here is how we can implement Input Stream using the File Input
Stream class.

89

Core JAVA Suppose we have a file named test.txt with the following content.

File Edit Format View Help

Hello
Good Morning aII.|

Let's try to read this file wusing FilelnputStream (a subclass
of InputStream).

Program 6.2
import java.io.FileInputStream;
import java.io.InputStream;

class Program

{
public static void main(String args[])
{
byte[] array = new byte[100];
try
{

InputStream input = new FileInputStream("test.txt");
System.out.println("Available bytes in the file: " + input.available());
// Read byte from the input stream
input.read(array);
System.out.println("Data read from the file: ");
// Convert byte array into string
String data = new String(array);

System.out.println(data);

// Close the input stream
input.close();
}

catch (Exception e)
90

{ 1/0O Streams

e.getStackTrace();
b

E:“programs>javac Program.java

E:“programs>java Program

Available bytes in the file: 24
Data read from the file dis:
ello

ood Morning all.

In the above example, we have created an input stream using
the FileInputStream class.

The input stream is linked with the file test.txt.
InputStream input = new FileInputStream(''test.txt");

To read data from the test.txt file, we have implemented these two
methods.

input.read(array); // to read data from the input stream
input.close(); // to close the input stream

We have used the available() method to check the number of available
bytes in the file input stream.

6.3.2 JAVA ByteArraylnputStream CLASS

The ByteArrayInputStream class of the java.io package can be used to
read an array of input data (in bytes). It extends the InputStream abstract
class.

% CREATE A BYTEARRAYINPUTSTREAM

In order to create a byte array input stream, we must import the
java.io.ByteArraylnputStream package first.

Once we import the package, we can create an input stream as follows:
// Creates a ByteArraylnputStream that reads entire array

ByteArraylnputStream input = new ByteArraylnputStream(byte|]
arr);

Here, we have created an input stream that reads entire data from
the arr array.

91

Core JAVA

92

However, we can also create the input stream that reads only some data
from the array.

/I creates a ByteArraylnputStream that reads a portion of array

ByteArraylnputStream input = new ByteArraylnputStream(byte[]
arr, int start, int length);

Here the input stream reads the number of bytes equal to length from the
array starting from the start position.

% METHODS OF BYTEARRAYINPUTSTREAM

The ByteArrayInputStream class provides implementations for different
methods present in the InputStream class.

read() Method

v read() —
It reads the single byte from the array present in the input stream.

v' read(byte|] array) —
It reads bytes from the input stream and stores in the specified array.

v' read(byte[] array, int start, int length) —
It reads the number of bytes equal to length from the stream and stores in
the specified array starting from the position start.

EXAMPLE: BYTEARRAYINPUTSTREAM TO READ DATA
Program 6.3

import java.io.ByteArraylnputStream;

class Program3

{

public static void main(String[] args)

{

// Creates an array of byte
byte[] array = {1, 2, 3, 4};

try
{
ByteArraylnputStream input = new ByteArraylnputStream(array);

System.out.print("The bytes read from the input stream: ");

for(int i= 0; i<array.length; i++)

{
// Reads the bytes

int data = input.read(); 1/O Streams
System.out.print(data + ", ");

}

input.close();

}

catch(Exception e)

{

e.getStackTrace();

E:~programs>javac Programd.java

E:~programs>java Program3
Ihe bytes read from the input stream: 1.

In the above example, we have created a byte array input stream
named input.

ByteArraylnputStream input = new ByteArraylnputStream(array);
Here, the input stream includes all the data from the specified array.

To read data from the input stream, we have used the read() method.

6.4 JAVA OUTPUTSTREAM CLASS

The OutputStream class of the java.io package is an abstract superclass
that represents an output stream of bytes.

Since OutputStream is an abstract class, it is not useful by itself.
However, its subclasses can be used to write data.

s SUBCLASSES OF OUTPUTSTREAM

In order to use the functionality of OutputStream, we can use its
subclasses. Some of them are:

FileOutputStream
ByteArrayOutputStream
ObjectOutputStream
BufferedOutputStream

AN NN

% CREATE AN OUTPUTSTREAM

In order to create an OutputStream, we must import the
java.io.OutputStream package first. Once we import the package, here is
how we can create the output stream.

93

Core JAVA

94

// Creates an OutputStream
OutputStream object = new FileOutputStream();

Here, we have created an object of output stream using File Output
Stream. It is because QutputStream is an abstract class, so we cannot
create an object of OutputStream.

< METHODS OF OUTPUTSTREAM

The OutputStream class provides different methods that are implemented
by its subclasses. Some of the methods are as follows:

v’ write() -
It writes the specified byte to the output stream.

v' write(byte[] array) —
It writes the bytes from the specified array to the output stream.

v' flush() -
It forces to write all data present in output stream to the destination.

v close() -
It closes the output stream.

6.4.1 JAVA FileOutputStream CLASS

The FileOutputStream class of the java.io package can be used to write
data (in bytes) to the files. It extends the OutputStream abstract class.

s CREATE A FILEOUTPUTSTREAM

In order to create a file output stream, we must import
the java.io.FileOutputStream package first.

Once we import the package, we can create a file output stream in Java as
follows.

1. Using the path to file
// Including the boolean parameter

FileOutputStream output = new FileOutputStream(String path,
boolean value);

// Not including the boolean parameter
FileOutputStream output = new FileOutputStream(String path);

Here, we have created an output stream that will be linked to the file
specified by the path.

Also, value is an optional boolean parameter. If it is set to true, the new
data will be appended to the end of the existing data in the file. Otherwise,
the new data overwrites the existing data in the file.

2. Using an object of the file
FileOutputStream output = new FileOutputStream(File fileObject);

Here, we have created an output stream that will be linked to the file
specified by fileObject.

EXAMPLE: OUTPUTSTREAM USING FILEOUTPUTSTREAM
Programé.4

import java.io.FileOutputStream,;

import java.io.OutputStream;

class Programl

{
public static void main(String args[])
{
String data = "This is a line of text inside the file.";
try
{

OutputStream out = new FileOutputStream("output.txt");
// Converts the string into bytes
byte[] dataBytes = data.getBytes();
// ' Writes data to the output stream
out.write(dataBytes);
System.out.println("Data is written to the file successfully.");
// Closes the output stream
out.close();

}

catch (Exception e)

{
e.getStackTrace();

1/0O Streams

95

Core JAVA

96

b

When we run the program, the output.txt file is filled with the following
content.

E:sprograms *javac Programl. java

E:sprograns *java Programl
Data is written to the file successfully.

Output.txt file filled with content

| output - Notepad
File Edit Format WView Help

This is a line of text inside thefile.|

In the above example, we have created an output stream using
the FileOutputStream class. The output stream is now linked with the
file output.txt.

OutputStream out = new FileOutputStream(" output.txt');

To write data to the output.txt file, we have implemented following
methods.

out.write(); // To write data to the file
out.close(); // To close the output stream
6.4.2 Java ByteArrayOutputStream CLASS

The ByteArrayOutputStream class of the java.io package can be used to
write an array of output data (in bytes).It extends the Output
Stream abstract class.

*» CREATE a ByteArrayOutputStream

In order to create a byte array output stream, we must import
the java.io.ByteArrayOutputStream package first.

Once we import the package, here is how we can create an output stream.
// Creates a ByteArrayOutputStream with default size
ByteArrayOutputStream out = new ByteArrayQutputStream();

Here, we have created an output stream that will write data to an array of
bytes with default size 32 bytes. However, we can change the default size
of the array.

1/0O Streams

/I Creating a ByteArrayOutputStream with specified size

ByteArrayOutputStream out = new ByteArrayOQutputStream(int
size);

Here, the size specifies the length of the array.
% METHODS OF ByteArrayOutputStream

The ByteArrayOutputStream class provides the implementation of the
different methods present in the OutputStream class.

write() Method

v' write(int byte) —

It writes the specified byte to the output stream.

v' write(byte[] array) —

It writes the bytes from the specified array to the output stream.

v' write(byte[] arr, int start, int length) —

It writes the number of bytes equal to length to the output stream from an
array starting from the position start.

v' writeTo(ByteArrayOutputStream outl) —

It writes the entire data of the current output stream to the specified output
stream.

EXAMPLE: ByteArrayOutputStreamTO WRITE DATA
Program 6.5

import java.io.ByteArrayOutputStream;

class Program4

{

public static void main(String[] args)

{
String data = "Hello all";
try
{

// Creates an output stream

ByteArrayOutputStream out = new ByteArrayOutputStream();
byte[] array = data.getBytes();
/I Writes data to the output stream

out.write(array);
97

Core JAVA

98

// Retrieves data from the output stream in string format
String streamData = out.toString();

System.out.println("Output stream: " + streamData);

out.close();

}

catch(Exception ¢)

{
e.getStackTrace();

}

E:\programs>javac Programd.java

E:sprogramns >java Programd
Output stream: Hello all

In the above example, we have created a byte array output stream
named output.

ByteArrayOutputStream output = new ByteArrayOQutputStream();
To write the data to the output stream, we have used the write() method.

To close the output stream, we can use the close() method.

6.5 JAVA READER

Java Reader is an abstract class for reading character streams. The only
methods that a subclass must implement are read(char[], int, int) and
close().

Some of the
implementation class are BufferedReader, CharArrayReader, FilterReader,
InputStreamReader,

PipedReader, StringReader
Program 6.6

import java.io.*;

class ReaderExample

{
public static void main(String[] args)
{
try
{
Reader reader = new FileReader("file.txt");
int data = reader.read();
while (data !=-1)
{
System.out.print((char) data);
data = reader.read();
¥
reader.close();
} catch (Exception ex)

{

System.out.println(ex.getMessage());

}

}

It is file.txthaving content “I love my India.”

| filetit - Notepad
File | Edit Format View Help

[love my India.|

Output:

ssprograms *javac ReaderExample. java

ssprograms »java ReaderExample
[love my India.

1/0O Streams

929

Core JAVA

100

Java Writer

It is an abstract class for writing to character streams. The methods that a
subclass must implement are write(char[], int, int), flush(), and close().

Program 6.7
import java.io.*;
public class WriterExample
{
public static void main(String[] args)
{
try
{

Writer w = new FileWriter("outputl.txt");

String content = "I love my country";
w.write(content);
w.close();

System.out.println("Success");

}
catch (IOException e)
{
e.printStackTrace();
b

E:sprograms *javac WriterExample.java

E:sprograms *java WriterExample
SUCCess

Content is written to file output].txt

outputl.txt:

| outputl - MNotepad
File: Edit | Format | View Help

| love my cnuntry.|

6.6 SUMMARY 1/O Streams

An I/O Stream represents an input source or an output destination. A
stream can represent many different kinds of sources and destinations,
including disk files, devices, other programs, and memory arrays.

Streams support many different kinds of data, including simple bytes,
primitive data types, localized characters, and objects. Some streams
simply pass on data; others manipulate and transform the data in useful
ways.

6.7 TEXTBOOKS

Herbert Schildt, Java The Complete Reference, Ninth Edition, McGraw-
Hill Education, 2014

6.8 QUESTIONS

1) What is stream? Explain the types of stream.

2) Explain the difference between input & output stream class?

O 0 0, O
0’0 0’0 0’0 0’0

101

102

NETWORKING

Unit Structure
7.1 Introduction
7.2 Java networking terminology
7.3 Java networking classes
7.4 Java networking interfaces
7.5 Java socket programming
7.5.1 Socket class
7.5.2 ServerSocket class
7.6 Summary
7.7 Reference

7.8 Questions

7.1 INTRODUCTION

Networking is a concept of connecting two or more computing devices
together so that we can share resources. Java socket programming
provides facility to share data between different computing devices.

The java.net package supports two protocols:
1. TCP:

TCP stands for Transmission Control Protocol. It provides reliable
communication between the sender and receiver.

It is used along with the Internet Protocol referred as TCP/IP. TCP is a
connection-oriented protocol which means that once a connection is
established, data can be transmitted in two directions. This protocol is
typically used over the Internet Protocol. Therefore, TCP is also referred
to as TCP/IP.

TCP has built-in methods to examine for errors and ensure the delivery
of data in the order it was sent, making it a complete protocol for
transporting information like still images, data files, and web pages.

2. UDP:

UDP stands for User Datagram Protocol. It provides a connection-less
protocol service by allowing packet of data to be transferred along two or

more nodes. It allows data packets to be transmitted between different
applications.

UDP is a simple Internet protocol in which error-checking and recovery
services are not required. In UDP, there is no overhead for opening a
connection, maintaining a connection, or terminating a connection. In
UDP, the data is continuously sent to the recipient, whether they receive
it or not.

7.2 JAVA NETWORKING TERMINOLOGY

Java Networking Terminologies are given as follows:
1. IP Address

An IP address is a unique address assigned to a device that distinguishes
a device on the internet or a local network.

IP stands for “Internet Protocol.” It comprises a set of rules governing
the format of data sent via the internet or local network. It is composed
of octets. The range of each octet varies from 0 to 255.

o Range of the IP Address — 0.0.0.0 to 255.255.255.255
e [P address Example — 192.168.0.1
2. Protocol

A network protocol is an organized set of commands that define how
data is transmitted between different devices in the same network.
Network protocols are the reason through which a user can easily
communicate with people all over the world and thus play a critical role
in modern digital communications.

For Example — Transmission control protocol(TCP), File Transfer
Protocol (FTP), Post Office Protocol(POP), etc.

3. MAC Address

MAC address stands for Media Access Control address. It is a
identifier that is allocated to a NIC (Network Interface Controller/ Card).
It contains a 48 bit or 64-bit address, which is combined with the
network adapter. MAC address can be in hexadecimal composition. In
simple words, a MAC address is a unique number that is used to track a
device in a network.

4. Socket

A socket is an endpoint of a two-way communication connection
between the two applications running on the network. The socket
mechanism presents a method of inter-process communication (IPC) by
setting named contact points between which the communication occurs.
A socket is bound to a specific port number so that the TCP layer can
identify the application to which the data is intended to be sent to.

Networking

103

Core JAVA

104

5. Connection-oriented and Connection-less protocol

In a connection-oriented service, the user must establish a connection
before starting the communication. When the connection is established,
the user can send the message or the information, and after this, they can
release the connection.

In connectionless protocol, the data is transported in one route from
source to destination without verifying that the destination is still there
or not or if it is ready to receive the message. Authentication is not
needed in the connectionless protocol.

o Example of Connection-oriented Protocol
Transmission Control Protocol (TCP)

o Example of Connectionless Protocol

User Datagram Protocol (UDP)

6. Port Number

A port number is a way to recognize a process connecting internet or
other network information when it reaches a server. The port number is
used to identify different applications uniquely and behaves as a
communication endpoint among applications. The port number is
associated with an IP addressfor transmission and communication among
two applications. There are 65,535 port numbers, but not all are used
every day.

7.3 JAVA NETWORKING CLASSES

The java.net package of the Java programming language includes
various classes that provide an easy-to-use means to access network
resources. The classes covered in the java.net package are given as
follows —

1. CacheRequest

This class is used in java whenever there is a need to store resources in
ResponseCache. The objects of this class provide an edge for the
OutputStream object to store resource data into the cache.

2. CookieHandler

This class is used in Java to implement a callback mechanism to hook up
an HTTP state management policy implementation inside the HTTP
protocol handler. The HTTP state management mechanism specifies the
mechanism of how to make HTTP requests and responses.

3. CookieManager

This class is used to provide a precise implementation of CookieHandler.
This class separates the storage of cookies from the policy surrounding

accepting and rejecting cookies. A CookieManager comprises a
CookieStore and a CookiePolicy.

4. DatagramPacket

This class is used for the connectionless transfer of messages from one
system to another. This class provides tools to produce datagram packets
for connectionless transmission by applying the datagram socket class.

5. InetAddress

This class i1s used to provide methods to get the IP address of any
hostname. An IP address is represented by a 32-bit or 128-bit unsigned
number. InetAddress can handle both IPv4 and IPv6 addresses.

6. ServerSocket

This class is used for implementing system-independent implementation
of the server-side of a client/server Socket Connection. The constructor
for ServerSocket class throws an exception if it can’t listen on the
specified port.

For example —
It will throw an exception if the port is already in use.
7. Socket

This class is used to create socket objects that help users in
implementing all fundamental socket operations. The users can
implement various networking actions such as sending, reading data, and
closing connections.

Each Socket object is built using java.net.Socket class that has been
connected exactly with 1 remote host; for connecting to another host, a
user must create a new socket object.

8. DatagramSocket

This class is a network socket that provides a connection-less point for
sending and receiving packets. Datagram Sockets is Java’s mechanism
for providing network communication via UDP instead of TCP. Every
packet sent from a datagram socket is individually routed and delivered.
It can further be practiced for transmitting and accepting broadcast
information.

9. Proxy

A proxy is a kind of tool or program or system, which serves to preserve
the data of its users and computers. It behaves like a wall between
computers and internet users. A Proxy Object represents the Proxy
settings to be applied with a connection.

Networking

105

Core JAVA

106

10. URL

The URL class in Java is the entry point to any available sources on the
internet. A Class URL describes a Uniform Resource Locator, which is
a signal to a “resource” on the World Wide Web.

A source can be a simple file or directory, or it can indicate a more
difficult object, such as a query to a database or a search engine.

7.4 JAVA NETWORKING INTERFACES

The java.net package of the Java programming language includes
various interfaces that provide an easy-to-use means to access network
resources. The interfaces included in the java.net package are as
follows:

1. CookiePolicy

The CookiePolicy interface in the java.net package provides the classes
for implementing various networking applications. It decides which
cookies should be accepted and which should be rejected.

In CookiePolicy, there are three pre-defined policy implementations,
namely ACCEPT ALL, ACCEPT NONE, and
ACCEPT_ORIGINAL SERVER.

2. CookieStore

A CookieStore is an interface that describes a storage space for cookies.
CookieManager combines the cookies to the CookieStore for each HTTP
response and recovers cookies from the CookieStore for each HTTP
request.

3. FileNameMap

The FileNameMap interface is an uncomplicated interface that
implements a tool to outline a file name and a MIME type string.
FileNameMap charges a filename map (known as a mimetable) from a
data file.

4. SocketOption

The SocketOption interface helps the users to control the behavior of
sockets. Often, it is essential to develop necessary features in Sockets.
SocketOptions allows the user to set various standard options.

5. SocketImplFactory

The SocketlmplFactory interface defines a factory for SocketImpl
instances. It is used by the socket class to create socket implementations
that implement various policies.

6. ProtocolFamily
This interface represents a family of communication protocols.

The ProtocolFamily interface contains a method known as name(), which
returns the name of the protocol family.

7.5 JAVA SOCKET PROGRAMMING

Socket programming is a way of connecting two nodes on a network to
communicate with each other. One socket (node) listens on a specific port
at an IP, while other socket reaches out to the other in order to form a

connection.
2. Response

< " Server

Fig. 7.1Client- Server communication

1. Request

Iien |

The server forms the listener socket while the client reaches out to the
server.

Now let’s understand the core concept of Socket Programming i.e. a
socket.

% SOCKET

A socket inJavais one endpoint of a two-way communication link
between two programs running on the network. A socketis bound to a
port number so that the TCP layer can identify the application that data is
destined to be sent to.

‘ Connection ‘
Server Port ‘ —‘ Client Port

Fig. 7.2 Socket

Networking

107

Core JAVA

108

An endpoint is a combination of an IP address and a port number. The
package in the Java platform provides a class, Socket which implements
one side of a two-way connection between your Java program and another
program on the network.

The class sits on top of a platform-dependent implementation, hiding the
details of any system from your Java program. By using the class instead
of relying on native code, your Java programs can communicate over the
network in a platform-independent fashion.

Java Socket programming can be connection-oriented or connection-less.

Socket and ServerSocket classes are for connection-oriented socket
programming and DatagramSocket and DatagramPacket classes are
used for connection-less socket programming.

The client in socket programming must know these two things:
1. IP Address of Server, and
2. Port number

A client application generates a socket on its end of the communication
and strives to combine this socket with a server. When the connection is
established, the server generates an object of socket class on its
communication end. The client and the server can now communicate by
writing to and reading from the socket.

The java.net.Socket class describes a socket, and the java.net.Server
Socket class implements a tool for the server program to host clients and
build connections with them.

7.5.1 SOCKET CLASS

The Socket class is used to create socket objects that help the users in
implementing all basic socket operations. The users can implement
various networking actions such as sending data, reading data, and
closing connections.

Each Socket object created using java.net.Socket class has been
associated specifically with 1 remote host. If a user wants to connect to
another host, then he must create a new socket object.

Methods of Socket Class

In Socket programming, both the client and the server have a Socket
object, so all the methods under the Socket class can be invoked by both
the client and the server. There are many methods in the Socket class.

Sr
No. Method Description
It is used to connect the socket to the specified
public void connect host. This method is required only when the user
(Socket Address host, int | instantiates the Socket applying the no-argument
1 timeout) constructor.
It is used to return the port to which the socket is
2 public int get Port() pinned on the remote machine.
public Inet Address get It is used to return the location of the other
3 Inet Address() computer to which the socket is connected.
It is used to return the port to which the socket is
4 public int getLocalPort() joined on the local machine.
public Socket Addressget
5 Remote Socket Address() It returns the location of the remote socket.
It is used to return the input stream of the socket.
public Input Streamget This input stream is combined with the output
6 Input Stream() stream of the remote socket.
It is used to return the output stream of the socket.
public Output Streamget The output stream is combined with the input
7 Output Stream() stream of the remote socket.
It is used to close the socket, which causes the
object of the Socket class to no longer be able to
8 public void close() connect again to any server.

7.5.2 SERVERSOCKET CLASS

The ServerSocket classis used for providing system-independent
implementation of the server-side of a client/server Socket Connection.

The constructor for ServerSocket class throws an exception if it can’t
listen on the specified port. For example —

It will throw an exception if the port is already in use.

Networking

109

Core JAVA

110

Methods of Server Socket Class:

Methods of the Server Socket class are as follows:

Sr
No.

Method

Description

public int get Local
Port()

This method of Server Socket class is
used to give the port number of the
server on which this socket is listening.
If the socket was bound before being
closed, then this method will continue to
return the port number after the socket is
closed.

public void set So
Timeout (int timeout)

It is used to set the time-out value for
the time in which the server socket
pauses for a client during the accept ()
method. The timeout value should be
greater than 0 otherwise, it will throw an
error.

Public Socket accept ()

This method waits for an incoming
client. This method is blocked till either
a client combines to the server on the
specified port or the socket times out,
considering that the time-out value has
been set using the setSoTimeout()
method. Otherwise, this method will be
blocked indefinitely.

public void bind
(Socket Address host,
int backlog)

This method is used to bind the socket
to the specified server and port in the
object of Socket Address. The user
should use this method if he has
instantiated the Server Socket using the
no-argument constructor.

Program 7.1 Example of Java Socket Programming

Creating Server:

To create the server application, we need to create the instance of Server
Socket class.

Here, we are using 6666 port number for the communication between the
client and server. You can also choose any other port number.

The accept() method waits for the client. If clients connect with the given
port number, it returns an instance of Socket.

ServerSocket ss=new ServerSocket(6666);

Socket s= ss.accept();//establishes connection and waits for the client
Creating Client:

To create the client application, we need to create the instance of Socket
class.

Here, we need to pass the IP address or hostname of the Server and a port
number. Here, we are using "localhost" because our server is running on
same system.

Socket s=new Socket("localhost",6666);

Let's see a simple example of Java socket programming where client sends
a text message, server receivesand prints it.

Filename: MyServer.java

import java.io.*;

import java.net.*;

public class MyServer

{

public static void main(String[] args)

{

try

{

ServerSocket ss=new ServerSocket(6666);

Socket s=ss.accept(); //establishes connection
DatalnputStream dis=new DatalnputStream(s.getInputStream());
String str=(String)dis.readUTF();
System.out.println("message= "-+str);

ss.close();

}

catch(Exception ¢)

{

System.out.println(e);

Networking

111

Core JAVA }

File: MyClient.java

import java.io.*;

import java.net.*;

public class MyClient

{

public static void main(String[] args)

{

try

{

Socket s= new Socket("localhost",6666);
DataOutputStreamdout=new DataOutputStream(s.getOutputStream());
dout.writeUTF("Hello Server");
dout.flush();

dout.close();

s.close();

}

catch(Exception e)

{
System.out.println(e);
b
b
b

To run on Terminal or Command Prompt

Open two windows one for Server and another for Client.

112

1. First run the Server application (MyServer.java). It will show: Networking

E:“programs >javac MyServer.java

E:“programs>java MyServep

Server started
Waiting for a client ...

2. Then run the Client application (MyClient.java) on another terminal. It
will show:

E:\programs>javac MyClient.java

E:\programs>java MyClient

and the server accepts the client and a message will be displayed on the
server console.

Ssprogramsrjavac MyServer. java

ssprogramsrjava MyServer
Cerver started

Jaiting for a client ...
essage= Hello Server

BN Administrator: Command Prompt ER Administrator: Command Prompt

E:wprograns >javac MyServer.java

E:sprograms>javac MyClient. java
\prograns >java MyServer

Server started

Maiting for a client ...
essage= Hello Server

E:\programns >java MyClient
Connected

E:sprograms >
INprograms >

Program 7.2 Example of Java Socket Programming (Read-Write both
side)

In this example, client will write first to the server then server will receive
and print the text.

Then server will write to the client, client will receive and print the text.
The step goes on.
File: MyServerl.java

import java.net.*;
113

Core JAVA

114

import java.io.*;
class MyServerl

{

public static void main(String args[]) throws Exception

{

ServerSocket ss=new ServerSocket(3333);

Socket s=ss.accept();

DatalnputStream din=new DatalnputStream(s.getInputStream());
DataOutputStreamdout=new DataOutputStream(s.getOutputStream());

BufferedReaderbr=new BufferedReader(new
InputStreamReader(System.in));

String str="",str2="";
while(!str.equals("stop"))
{

str=din.readUTF();
System.out.println("client says: "+str);
str2=br.readLine();
dout.writeUTF(str2);
dout.flush();

}

din.close();

s.close();

ss.close();

}

}

File: MyClientl.java
import java.net.*;
import java.io.*;
class MyClientl

{

public static void main(String args[])throws Exception

{

Socket s=new Socket("localhost",3333);

DatalnputStream din=new DatalnputStream(s.getInputStream());
DataOutputStreamdout=new DataOutputStream(s.getOutputStream());

BufferedReaderbr=new BufferedReader(new
InputStreamReader(System.in));

String str="",str2="";
while(!str.equals("stop"))

{

str=br.readLine();

dout.writeUTF(str);

dout.flush();

str2=din.readUTF();
System.out.println("Server says: "+str2);
h

dout.close();

s.close();

b
b

First run the Server application. It will show:

E® Administrator: Command Prompt - java MyServerl

ssprograms rjavac MyServerl . java

ssprograms »java MyServerd

Networking

115

Core JAVA

116

Then run the Client application on another terminal. It will show:

-

ER Administrator; Command Prompt - java MyClientl

sprogramns »Jjavac MyClientl. java

ssprograms »Jjava MyClientl

and the server accepts the client

Then you can start typing messages in the Server and Client window.

& Administrator: Command Prompt - java MyClientl X Administrator: Command Prompt - java MyServerl
E:\prograns >javac MyServerl.java

E:\programs >javac MyClientl.java

E:\prograns >java MySepverl

E:\programns >java MyClientl
lient says: Hello

B Administrator, Command Prompt - java MyClientl B3 Administrator: Command Prompt - java MyServerl

E:\prograns >javac MyClientl. java \programs > javac MyServerl.java

E:\prograns >java MyClientl ‘\programs >java HyServerl

lient says: Hello
ow are you?

Hello
Server says: How are you?

7.6 SUMMARY

Networking is a concept of connecting two or more computing devices
together so that we can share resources. Java socket programming
provides facility to share data between different computing devices.

7.7 REFERENCE

1) E. Balagurusamy, Programming with Java, Tata McGraw-Hill
Education India, 2014

2) Programming in JAVA, 2nd Ed, Sachin Malhotra &SaurabhChoudhary,
Oxford Press

7.8 QUESTIONS

1) Write a short note on java.net package.

2) What is socket? Explain the Socket Class with example.

o
o
o
o

Unit 111

WRAPPER CLASSES

Unit Structure

8.0 Objective

8.1 Introduction

8.2 Types of Wrapper classes
8.3 Summary

8.4 Exercise

8.5 Reference

8.0 OBJECTIVE

Objective of this chapter is to learn

1. Need of objects and primitive data types
. How to convert primitive data types to objects and vies-a-versa
3. Autoboxing and unboxing feature of Javas

8.1 INTRODUCTION:

As you know Java supports primitive data types and non-primitive data
types. In programming, many cases, there is need of object representation.
In such standard representation primitive data types are not suitable. For
example,

1. Data structures implemented by java uses collection of objects.

2. To maintain the state of the data while sending it to remote machine,
java objects are serialized. Serialization is the process of converting an
object type to byte stream so that data can transfer over the network.
Similarly at receiver side once data is received, those byte stream data
need to convert into an object. This process is called Deserialization.

A wrapper class provides the mechanism of converting primitive data type
to an objects and object into primitive data types. Table 9.1 shows the
primitive data types and their respective wrapper class

117

Core JAVA

118

Table 8.1 Primitive types and their Wrappers

Primitive types Wrapper classes
boolean Boolean

byte Byte

short Short

int Integer

long Long

float Float

double Double

char Character

In Next session lets discuss in detail about each class.

8.2 WRAPPER CLASSES

Boolean

Methods

Description

Boolean(boolean b)

Creates the Boolean object which holds the
same Boolean value as that of b

Ex: boolean b=True;

Boolean b1= Boolean(b)

Boolean(String b)

Creates the Boolean object which holds the
same Boolean value as that of String variable b
ex: String b="True”;

Boolean b1= Boolean(b)

booleanbooleanValue()

Returns primitive boolean equivalent value of
Boolean object

boolean b=b1.booleanValue();

Following program 8.1, demonstrate the use of boolean wrapper class

Program 8.1: Use of Boolean wrapper class

public class booeandemo {

public static void main(String []args)

{

boolean b=true;

Boolean bl=new Boolean(b);

System.out.println("Boolean object --> "+b1);

String s="False";

bl=new Boolean(s);

System.out.println("Boolean object --> "+bl);

System.out.println("Boolean object to primitive value -->
"+b1.booleanValue());

}

}
Output:

Boolean object --> true

Boolean object --> false

Boolean object to primitive value --> false

Table 8.2 shows the listing of other wrapper classes and their methods

Table 8.2: Wrapper classes and their methods

Wrapper | Method Description
class
Integer Integer(int intval) Creates an Integer objects from

Integer(String intval)
throws
NumberFormatException

int value

Creates an Integer objects from
String coded int value.

Ex: String intval="10";

If intval is not in above form
then it throws the
NumberFormatException

Refer program 8.2

int intValue()

Return the int value present in
Integer Object.

Wrapper Classes

119

Core JAVA

120

Byte Byte(byte b) Creates Byte objects from byte
Byte(String b) throws Aol
NumberFormatException
Creates Byte objects from String
coded byte value.
Byte byteValue() Return the byte value present in
Byte Object.
Short Short(short sh) Creates Short objects from short
Short(String sh) throws value
NumberFormatException | Creates Short objects from
String coded short value.
Short shortValue() Return the short value present in
Short Object.
Long Long(long 1) Creates Long objects from long
Long(String 1) throws value
NumberFormatException | Creates Long objects from
String coded long value.
long longValue() Return the long value present in
Long Object.
Float Float(float f) Creates Float objects from float
Float(String f) throws Aol
NumberFormatException | Creates Float objects from
String coded float value.
Float floatValue() Return the float value present in
Float Object.
Double Double(double d) Creates Double objects from
double value
Double(String d) throws gre?ates é)gu;leblobjef ts from
NumberFormatException tring coded double value.
Double doubleValue() Return the double value present
in Double Object.
Character | Character(char ch) Creates Character objects from
char value
Character charValue() Return the char value present in

Character Object.

Use of wrapper classes in java program will be similar as demonstrated in
program 8.1.

Program 8.2: Demonstrate use of Integer Wrapper class and
NumberFormatException

public class wrapperdemo

{

public static void main(String [Jargs)
{
String s="10";
Integer nl=new Integer(s);
System.out.println("Integer object --> "+n1);
String s1="Ten";
Integer n2=new Integer(s1);

System.out.println("Integer value --> "+n2);

}
}

Integer object --> 10

Exception in thread "main" java.lang.NumberFormatException: For input
string: "Ten"

At
java.lang.NumberFormatException.forlnputString(NumberFormatExceptio
n.java:65)

at java.lang.Integer.parselnt(Integer.java:580)
at java.lang.Integer.<init>(Integer.java:867)

at booeandemo.main(booeandemo.java:8)

8.3 AUTOBOXING AND UNBOXING

Java 5 supports automatic conversion of primitive data type into its
corresponding wrapper class. It is known as autoboxing. The reverse of it
is called as unboxing. Program 8.3 shows the autoboxing and unboxing.

Program 8.3: Demo of AutoBoxing and Unboxing
import java.util. *;
public class wrapperdemo {
public static void main(String []args)
{
int s=12;
Integer nl=s; //autoboxing

Integer [] n2={20,30}; //autoboxing

Wrapper Classes

121

Core JAVA

122

ArrayList<Integer> al = new ArrayList<Integer>();

al.add(nl);
al.add(n2[0]);
al.add(n2[1]);

System.out.printIn("Elements in arraylist are--> "+al);

if(n1<10) //unboxing

System.out.printin(n1+" is smaller than 10 ");

else

System.out.printin(n1+" is larger than 10");

h
b

Output:

Elements in arraylist are--> [12, 20, 30]

121

s larger than 10

8.4

SUMMARY:

1.

For handling the collection of objects required primitive data

n

object form

2. Wrapper classes wrapped the primitive data and present them in
object form

3. There are Long, Short, Byte, Integer, Float, Double, Character,
Boolean wrapper classes in java

4. xxxValue() method used to convert xxx type object into primitive
data form.

8.5 EXERCISE:

1. What is wrapper class?

. Create a list of integer values 10,20,30,40,50.

3. What is autoboxing and unboxing?

8.6 REFERENCES:

1. H. Schildt, Java Complete Reference, vol. 1, no. 1. 2014.

2.

E. Balagurusamy, Programming with Java, Tata McGraw-Hill

Education India, 2014

Sachin Malhotra & Saurabh Choudhary, Programming in JAVA, 2nd

Ed, Oxford Press

The Java Tutorials: http://docs.oracle.com/javase/tutorial/

O o% % °
A XA XS XS X4

COLLECTION FRAMEWORK

Unit Structure
9.0 Objective
9.1 Introduction to Collections Framework

9.2 Util package

9.3 List
9.4 Set
9.5 Map

9.6 List interface & its classes
9.6.1 ArrayList
9.6.2 LinkedList

9.7 Set interface & its classes
9.7.1 HashSet
9.7.2 TreeSet

9.8 Map interface & its classes
9.8.1 HashMap
9.8.2 TreeMap
9.8.3 Iterator

9.9 Summary

9.10 Exercise

9.11 Reference & Bibliography

9.0 OBJECTIVE

Objective of this Chapter is to provide

e Detail insight of Collection Framework

e Use of various framework classes such as List, Set, Map in Java
language

e Understanding of use of collection classes in various application

9.1 INTRODUCTION TO COLLECTIONS
FRAMEWORK:

Collection means group of things. For example, collection of coins called
a bunch, collection of tickets. Similarly,in computing collection of data in
a one unit which helps to store, manipulate the data easily.

123

Core JAVA

124

Collection framework is a framework which is use to represent the data
and helps in manipulating the data in easy way. Each collection
framework provides the methods to represent the data (Interface),
manipulate the data (Implementations) and algorithms to search, sort the
data efficiently.

Collection framework provides high performance by allowing the
programmer to implement the defined data structures and algorithms. Low
level complexities for defining the data structure and the algorithms are
eliminated. Instead, use of appropriate Collection framework for defining
and manipulating the group of data is required.

9.2 UTIL PACKAGE

Utility classes such as Collection framework, event, date and time,
internationalization, currency, StringTokenizer are present in the java.util
package. Lets see Collection framework in detail.

Collection framework provides different Interfaces for representing the
data. Figure 9.1 shows the collection framework hierarchy.

Collection

1
[| | 1

Set List Queue Deque

— SortedSet

Figure 9.1: Collection Interfaces

Collection Interface: It is a super interface and provides the basic methods
such as addition of element in collection, removal of element, etc. Table
9.1 shows the basic methods supported by Collection interface.

Table 9.1- Methods of Collection Interface

Method Description

Boolean add (Object | Add single element into collection
element)

Boolean remove (Object | Remove single element from the collection
element)

int size() Return the size of collection
boolean isEmpty() Returns true if collection is empty otherwise
false

boolean contains (Object | Returns if element is present in the collection
element) otherwise false

Boolean contains All
(Collection collection)

Returns true if collection is a subset of
current collection otherwise false

boolean add All
(Collection collection)

Returns true if all elements of collection are
added to current collection

void remove All
(Collection collection)

Returns true if all elements of collection are
removed from current collection

void retain All (Collection
collection)

It retains all the elements of current
collectionwhich are present in the collection
and removes the elements that are not in
collection (similar to intersection)

void clear()

Removes all elements from the collection

Iterator iterator()

start to finish traversal in collection is
possible using Iterator interface object. This
method gives reference to the Iterator
Interface hence its methods can be used.

9.3 LIST INTERFACE:

List is the interface derived from Collection interface. List allows the
duplicates and stores the elements in order. List maintains the position-
oriented collection of objects. Table 9.2 shows the methods of list

interface.
Table 9.2- Methods of List Interface
Method Description
void add(int index, Object | Insert an elements at specific index
element) location
boolean addAll(int index, | Insert all elements of collection at

Collection collection)

specific index location.

Object get(int index)

Returns the element
specified index position

present at

int indexOf(Object element)

Returns an index value of specified
element

int lastindexOf(Object element)

Returns the last index of elements
specified. If the element is not present
in the list then it returns -1

Object remove(int index)

Returns an element which is present at
specified index position.

Object set(int index, Object | It replaces the element present at the

element) specified index position with new
element.

List subList(int fromIndex, int | Returns the sub-list from- to index

tolndex) position

Collection Framework

125

Core JAVA

126

9.4 THE SET INTERFACE:

Set is the derived from Collection interface and does not allow the
duplication of elements.If we try to add duplicate element using add
method, it returns false. Set does not have any additional method. All
methods are inherited from Collection interface (please refer Table 9.1).

9.5 MAP INTERFACE:

Map is not inherited from Collection interface. Map interface allows the
collection of elements in the form of key-value pair. With the help of the
key, value can be searched. Keys duplication is not allowed but value may
be duplicated. Table 9.3 listed the methods of Map interface.

Table 9.3 shows the methods of Map interface.

Method

Description

Object put (Object key, Object
value)

Insert an object in a MAp

Object remove (Object key)

Removes an object having specified
key from Map

void putAll(Map mapping)

Put all the elements specified in the
Map.

void clear ()

All map entries are cleared

Object get(Object key)

Returns an element whose key is
mention

boolean containsKey(Object key)

Returns true if key is in Map
otherwise false

boolean containsValue(Object | Returns true if the value is present in

value) map otherwise false

boolean isEmpty() Returns true if Map 1is empty
otherwise false

int size() Returns the size or number of

elements present in the map

public Set keyset ()

Returns Set of keys present in map

public Collection values()

Returns all values in Collection form

public Set entrySet()

Returns Set of all elements in key and
value pair form

9.6 LIST INTERFACE & ITS CLASSES:

Table 9.4 shows the interfaces and their implementation classes.
Interfaces and the classes which implement them.

Interface name Classes
List ArrayList
LinkedList
Set HashSet
TreeSet
Map HashMap
TreeMap

9.6.1 ArrayList class

ArrayList class extends AbstractList class and implements List interface.
Arrays in java are fixed in size but arrayList
allows you to create a collection of object which can be accessible like
array and can grow or shrink during execution. Table 9.5 shows the

ArrayList is a resizable.

constructor and methods of ArrayList class

Table 10.5 Methods of ArrayList class

Methods

Description

ArrayList()

Creates an empty ArrayList object

ArrayList(Collection c)

Creates an ArrayList object using existing collection

ArrayList(int capacity)

Creates an ArrayList object with some initial capacity

object[] toArray()

Converts ArrayList object to an array of object.

The code below demonstrates the use of ArrayList class.

Program 9.1: ArrayList class.

import java.util. *;

public class ArrayListDemo {

public static void main(String args[])

{

// Create an array list.

ArrayList<Integer> al = new ArrayList<Integer>();

// Add elements to the array list.

Collection Framework

127

Core JAVA

128

al.add(1);
al.add(2);
al.add(3);
al.add(4);

System.out.println("Contents of ArrayList : " + al);

// Get the array.

Integer ia[] = new Integer|al.size()];

ia = al.toArray(ia);
int sum = 0;

// 'Sum the array.

for(int i=0;i<ia.length;i++)

sum += ia[i];

System.out.println ("Sum of elements of an Array is: " + sum);

}

}
Output:

Contents of ArrayList : [1, 2, 3, 4]

Sum of elements of an Array is: 10

9.6.2 LinkedList class

The LinkedList class extends AbstractSequentialList class and implements
the List, Deque, and Queue interfaces. Table 9.6 shows the constructors
and the methods of LinkedList class.

Table 9.6: Methods of LinkedList class

(Collection c)

Methods Description
LinkedList() Creates an empty Linkedlist object.
LinkedList Creates Linked list object using existing

collection elements.

void addFirst() Add the elements in the beginning of the list

void addLast() Add the elements at the end of the list

E peekFirst() To obtain the first element of the list, where E
is a type parameter

E peekLast() To obtain/retrieve the last element of the list

Collection Framework

Program to demonstrate use of LinkedList class

Program 9.2: LinkedList class

import java.util. *;

public class LinkedListDemo {

public static void main(String args[]) {

/I Create a linked list.

LinkedList<String> 1l = new LinkedList<String>();
/I Add elements to the linked list.

1l.add("Seeta"),

1l.add("Babita");

1l.add("Deepak");

1l.add("Keshav");

1l.addLast("Zareena");

1l.addFirst(" Amita");

1l.add(1, "Aarti");

System.out.println("Original elements of list: " + 11);
// Remove elements from the linked list.
Il.remove("Deepak");

1l.remove(1);

System.out.println("list elements after deletion: " + 11);
// Remove first and last elements.

1l.removeFirst();

1l.removeLast();

System.out.println("List elements after deleting first and last: " + 11);
/I Get and set a value.

String val = 1l.get(1);

Il.set(1, val +" FY");

129

Core JAVA

130

System.out.println("List after modification: " + 11);

}
b

Output:

Original elements
Zareena]

of list: [Amita, Aarti, Seeta, Babita, Deepak, Keshav,

list elements after deletion: [Amita, Seeta, Babita, Keshav, Zareena]

List elements after deleting first and last: [Seeta, Babita, Keshav]

List after modification: [Seeta, Babita FY, Keshav]

9.7 SET INTERFACE & ITS CLASSES

9.7.1 HashSet class

HashSet extends AbstractSet and implements Set interface. HashSet uses
the concept of hashing to store the elements. Key is automatically
converted to hash code automatically. We could not able to access the
hash code. Here HashSet does not have its own methods. They are
inherited from the super class and interface it implements. HashSet does
not guarantee the arrangement of the elements in sorted order. Table 9.7
lists constructors of HashSet class.

Table 9.7: Constructors of HashSet class

Methods

Description

HashSet()

HashSet is used to create a HashSet
which has default initial capacity of
16 elements and fil-ration of 0.75

HashSet(Collection c)

Create a HashSet with existing
Collection object.

HashSet(int capacity)

Creates a HashSet object with initial
capacity

HashSet(int capacity,
fillRatio)

float

Capacity is the numeric value which
tells how many elements in hashSet
Fillratio is the number that tells at
what size, the capacity of HashSet
should be increase automatically.

9.7.2 TreeSet class

Objects in TreeSet are stored in ascending order. Object retrieval time is
fast. Figure 9.2 shows the class hierarchy and Table 9.8 shows the
constructors of TreeSet class.

SortedSet

NavigableSet

Set
& Extends

Extends
4

l implements

TreeSet

Figure 9.2: TreeSet class hierarchy

Table 9.8 Constructors of TreeSet class

Constructors Description

TreeSet() Creates an empty TreeSet object

TreeSet(Collection c) Create TreeSet object from existing
collection object

TreeSet(Comparator Create TreeSet object in order define by the

comp) comparator object.

TreeSet(SortedSet ss) Create TreeSet object from existing

SortedSet object

Program 9.3 demonstrates how to create an object an object and use the
methods of TreeSet class and HashSet class.

Program 9.3 : Demo of TreeSet class and HashSet class

import java.util. *;

public class SetClassDemo {

public static void main(String args[]) {

// Create a hash set.

HashSet<String> hs = new HashSet<String>();
// Add elements to the hash set.

hs.add("1");
hs.add("21");
hs.add("31");

Collection Framework

131

Core JAVA hs.add("3");
hs.add("Epsilon");
hs.add("Omega");

System.out.println("HashSet-->--> Storing is as per the hash-code
generated automatically "+hs);

TreeSet<String> ts = new TreeSet<String>();
ts.add("Beta");

ts.add("Alpha");

ts.add("12");

ts.add("zerba");

ts.add("Eta");

ts.add("56");

System.out.println(" TreeSet-->Elements are in sorted Order "+ts);

}

h
Output:

HashSet--> Storing is as per the hash-code generated automatically[1, 3,
Epsilon, Omega, 31, 21]

TreeSet-->Elements are in sorted Order [12, 56, Alpha, Beta, Eta, zerba]

9.8 MAP INTERFACE & ITS CLASSES

Figure 9.3 shows the hierarchy of the classes implementing Map interface.
Lets see in detail the implementation and use of these classes.

Map

‘ Implements
Implements

NavigableMap D SortedMap
extends
Implements l
TreeMap <——— AbstractMap » HashMap
extends extends

Figure 9.3: Map Interfaces and classes

9.8.1 HashMap class:

Hashmap class extends AbstractMap and implements Map interface.
Table 9.9 shows constructors of HashMap class.

132

Table 9.9 Constructors of HashMap class

Collection Framework

Methods Description

HashMap() Create empty HashMap

HashMap(Map m) Create HashMap with existing
Map elements.

HashMap(int capacity) Create a HashMap with initial
capacity.

HashMap(int capacity, float | Create a HashMap with initial
fillRatio) capacity and the fill ratio which is
in between 0.0 to 1.0

Following code demonstrate the use of HashMap

Program 9.4: Demonstrate the use of HashMap

import java.util. *;

public class Student {

public static void main(String args[]) {

// Create a hash map.

HashMap<String, Integer> hm = new HashMap<String, Integer>(2);
// Put elements to the map

hm.put("Akash", new Integer(34));

hm.put("Mahesh", new Integer(123));

hm.put("Prakash", new Integer(137));
System.out.println(hm.get(" Akash"));

// Deposit 1000 into John Doe's account.

Integer oldmark = hm.get("Akash");

hm.put("Akash", oldmark + 10);

System.out.println("Akash new marks : " + hm.get("Akash"));
}

b
Output:

34
Akash new marks : 44

133

Core JAVA

134

9.8.2 TreeMap class

The TreeMap class is used to implement Map interface. The class is
defined by extending AbstractMap and implementing the NavigableMap
interface. The Objects are stored in a tree structure. In TreeMap key/value
pairs are stored in sorted order and it allows fast retrieval of elements.
Table 9.10 shows the constructors and methods of TreeMap class.

Table 9.10 Constructors of TreeMap class

Methods

Description

TreeMap()

Constructor used to create an empty
tree map and keys will be sorted in
natural order

TreeMap(Comparator
comp)

Constructor creates an empty tree-
based map and keys will be sorted
using the Comparator object.

TreeMap(Map m)

constructor creates a tree map using
existing map elements and keys will
be sorted in natural order.

TreeMap(SortedMap sm)

Constructor creates a tree map using
existing SortedMap, and keys will be
sorted in the same order asin
SortedMap sm.

Program shows the demonstration of how to use TreeMap.

Program 9.5: Demonstration of TreeMap

import java.util. TreeMap;

public class TreeMapClass {

public static void main(String[] args) {

// TODO code application logic here

TreeMap tm=new TreeMap();

//adding Elements in TreeMap

tm.put("BSCIT", new Integer(120));

tm.put("MSCIT", new Integer(40));

tm.put("BSCCS", new Integer(40));

System.out.println("TreeMAp Elements");

System.out.println(tm);

//remove element from TreeMap

tm.remove("BSCIT");

System.out.println("After Removing TreeMAp Element");

System.out.println(tm);

}

}
Output

TreeMAp Elements
{BSCCS=40, BSCIT=120, MSCIT=40}

After Removing TreeMAp Element
{BSCCS=40, MSCIT=40}

9.8.3 Iterator:

This Iterator Interface is used for any collection to traverse through
collection. It is a cursor which is iterated through the collection to access
or to remove the element from the collection. Table 9.11 shoes the

methods of Iterator Interface.

Table 9.11: Methods of Iterator

Methods Description

boolean Returns true if collection has more elements in

hasNext() iteration

Object next(). Returns the next elements in the iteration process
of collection.

void remove() Removes the element from collection the last
elements accessed by iterator .

Collection Framework

135

Core JAVA Following code demonstrate the use of Iterator class.

Program 9.6: Demonstration of Iterator Class
import java.io.*;
import java.util. *;
public class IteratorExample {
public static void main(String[] args)
{
ArrayList<String> names = new ArrayList<String>();
names.add("Akash");
names.add("Sunil");
names.add("Anil");
names.add("Sania");
names.add("Nirmala");
// Tterator to iterate the cityNames
Iterator iterator = names.iterator();
System.out.println("Names elements : ");
while (iterator.hasNext())

System.out.print(iterator.next() + " ");

}
Output:

Names elements:

Akash Sunil Anil Sania Nirmala

9.9 SUMMARY

o Collection interfaces are foundation interfaces for managing the
group of objects.

o Java collection framework supports the List, Set, Map.

o List elements are accessed with index.

o ArrayList, are the classes of List interface.

136

Set collects unique elements. Treeset uses the concept of tree to store
the data elements whereas Hashset uses hashing techniques.

HashSet stores the elements in hashTable.

Map interface allows the mapping between key and value. Map is
implemented using HashMap and TreeMap classes.

HashMap allows storing null elements but the keys for those
elements must be different.

9.10 EXERCISE

1. What is collection in java? How to define collection of objects?

2. Write a java code to define the list of 10 students’ information.

3. Write the java code to sort the above students’ collection on basis of
their first name.

4. How to convert ArrayList elements to Array?

5. What is the difference between HashSet and ArrayList?

6. What is a difference between ArrayList and LinedList?

7. How to access the elements from HashMap? Write the java code for

the same.

9.11 REFERENCES

H. Schildt, Java Complete Reference, vol. 1, no. 1. 2014.

E. Balagurusamy, Programming with Java, Tata McGraw-Hill
Education India, 2014

Sachin Malhotra & Saurabh Choudhary, Programming in JAVA, 2nd
Ed, Oxford Press

The Java Tutorials: http://docs.oracle.com/javase/tutorial/

o
o
o
o

Collection Framework

137

138

10

INNER CLASSES

Unit Structure

10.0 Objective

10.1 Introduction

10.2 Inner class/nested class
10.3 Method Local inner class
10.4 Static inner class

10.5 Anonymous inner class
10.6 Summary

10.7 Exercise

10.8 References

10.0 OBJECTIVE:

Objective of this chapter is

e Learn the use of inner classes
e Learn the different type of inner classes
e Learn implementation of classes with the help of anonymous class.

10.1 INTRODUCTION

Inner class is the class which is a member of other class. Inner Class could
not be accessed from outside world. They are accessible to only class
inclosing it. When the developer does not want the outside world to access
some classes then the concept of inner class is useful.

There are four types of inner classes as shown in the table 10.1.

Table 10.1: Types of Inner classes

Sr Type of inner | Description

No classes

1 Nested inner class Class created inside the outer class

2 Method Local inner | Class created inside the method of outer
class class

3 Static inner class Static class inside the outer class

4 Anonymous inner | Class created for implementing an interface
class or extending the class but it has no name. it

is decided by the compiler

Let’s see in details the types of inner classes

10.2 NESTED INNER CLASS

Class defined inside the other class is called nested class.

For example

Outer cl ‘<

ass scope

o

class Outer

{

class Inner

{

Inner class {

¥

Here Inner class can access the methods and data members of outer class
but not a vise a versa. Following code demonstrate the same.

Program 10.1:
public class Outer

{
int a=10;
class Inner

{
int p=20;
void show(String al)
{
System.out.println(a);
}
}
public void disp()
{

System.out.println("in disp "+new Inner().p);

}

public static void main(String ar[])

Inner Classes

139

Core JAVA

140

Outer ol=new Outer();

ol.disp();

}

}
Output:

in disp 20

10.3 METHOD LOCAL INNER CLASSES

This type of the class is written inside the method of outer class. The
inner class can access the methods and data members defined in outer
class but class’s own member functions and data is not accessible
outside. The program 10.2 demonstrates the method local inner class.

Program 10.2: Demonstration of method local inner class

public class Outer
{
int outp=7;
void outerClassMethod()
{
System.out.println("inside outerMethod");
int p=9;
// Inner class is local to outerMethod()
class Inner
{
int inp=10;
void innerClassMethod()

{

System.out.println("inside innerMethod-->"+p); Inner Classes

System.out.println("inside innerMethod-->"+outp);

b
b

Inner y = new Inner();
y.innerClassMethod();

System.out.println("outside class-->"+y.inp);

}

public static void main(String[] args)

{

Outer x = new Outer();

x.outerClassMethod();

§
}
Output:
inside outerMethod
inside innerMethod-->9
inside innerMethod-->7

outside class-->10

Here in this program class Inner is defined inside the method of
outerClassmethod. Scope of the class is limited to the method. Inner
class have an access to the method and data members of outer class but
its own method and data members can not be accessible to outside
method without the object of class.

10.4 ANONYMOUS INNER CLASSES

Anonymous inner class means no name is assigned to the class.
Compiler at the runtime assigns the name to the anonymous class.
Purpose of the anonymous class is to extend the abstract class or
implements an interface without defining the child class explicitly.
Following code demonstrate how to define anonymous class.

141

Core JAVA

142

Program 10.3: Demonstration of anonymous class.
//abstract class defination
abstract class Greet {

abstract void greetSomeone();
§
/lextending abstract class to define its method
class Hello extends Greet {

void greetSomeone() {

System.out.println("DO greetings --from extended class ");

}

}
public class HelloTest {

void anonymousMethod()
{
//here use the anonymous class to define the abstract method.

Greet gl=new Greet(){ void greetSomeone() {
System.out.println(" Anonymous greeting --from anonymous class");} };

//invoke the abstract method
gl.greetSomeone();
System.out.println("Anonymous class name "+gl);

§

public static void main(String []Jar) {
HelloTest h1 =new HelloTest();
System.out.println("Demo class name "+h1);

Hello h=new Hello();

System.out.println("Extended class name "+h);
h.greetSomeone();

hl.anonymousMethod();

Output: Inner Classes
Demo class name HelloTest@6d06d69¢

Extended class name Hello@7852¢922

DO greeting --from extended class

Anonymous greeting --from anonymous class
Anonymous class name HelloTest$1@4e25154f

Output shows that compiler had created the anonymous class with name
HelloTest$1

10.5 STATIC NESTED CLASS

A static class inside the other (non-static) class is called nested static class.
It is known that static members are directly accessible with the class name
and non-static members are not directly accessible inside the static
method/class scope. Program 10.1 demonstrates the accession of the static
variables.

Program 10.1: Example for accessing the static variable

public class staticdemo {
static int sp=12;
int nsp=24;
public static void main(String ar[])
{
System.out.println("Static variable --> "+sp);

System.out.printIn("Non-Static variable --> "+new staticdemo().nsp);

}

}
Output:

Static variable --> 12

Non-Static variable --> 24

Here static variable is directly accessible in the static main method but not
the same case for the non-static variable. It requires the object reference.

Following program 10.2, demonstrate the use of static nested class.

Program 10.2: Demo of static nested class

public class Outer

{

static int data=30;

143

Core JAVA

144

int p=10;
static class Inner
{
int stat p=20;
void show()
{
System.out.println("accessing static data in static class "+ data);

System.out.println("accessing non-static data in static class "+ new
Outer().p);

§
}
void disp()

{

System.out.println("--accessing static class data in non-static class method
-->"+ new Inner().stat p);

}

public static void main(String args[])
{
Outer.Innerobj=new Outer.Inner();
obj.show();
new Outer().disp();

b
b

Output:
accessing static data in static class 30
accessing non-static data in static class 10

--accessing static class data in non-static class method --> 20

10.6 SUMMARY

The chapter gives the brief introduction about the inner class. Inner classes
restrict the use of data members and member function to the outside
world. Anonymous classes ease the job of implementing the interface and

extending abstract class. One can use abstract class or interface without
defining their implementation classes with the help of anonymous class.

Inner Classes

10.7 EXERCISE:

1. What is nested class? Why there is a need of nested class?
2. What are the types of nested class?

3. What is the outcome of following program?

public class Excercisel

{
String s;

static class Inner

{
void innerMethod()

{

s = "First problem";

}

4. What is a use ofanonymous inner classes in java?

10.8 REFERENCES:
1. H. Schildt, Java Complete Reference, vol. 1, no. 1. 2014.

2. E. Balagurusamy, Programming with Java, Tata McGraw-Hill
Education India, 2014

3. Sachin Malhotra & Saurabh Choudhary, Programming in JAVA, 2nd
Ed, Oxford Press

4. The Java Tutorials: http://docs.oracle.com/javase/tutorial/

O o% % °
AX A XS XS X4

145

146

AWT

Unit Structure

11.0 Objective
11.1 Introduction,
11.2 Components,
11.3 Containers
11.4 Event-Delegation-Model and Listeners,
11.5 Button
11.6 Label
11.7 CheckBox, and CheckboxGroup
11.8 TextComponents: Text Field and Text Area
11.9 List
11.10 Choice
11.11 Menu
11.12 Layout Managers
11.12.1 FlowLayout
11.12.2 BorderLayout
11.12.3 CardLayout
11.12.4 GridLayout
11.12.5 GridBaglLayout
11.12 Summary
11.14 Exercise

11.15 References

11

11.0 OBJECTIVE

Objective of this chapter is

e To learn how to do GUI programming in Java.

e To understand the components and containers in Java.

e To understand the event Delegation Model in Java Programming

e To understand what is Layout and how to use various layouts in java.

11.1 INTRODUCTION

AWT is java’s first User Interface.
AWT are called heavy weight components as they usethe resources of
underline operating system. AWT components will have different look
and fill for the different platforms like windows, Linux, MAC OS etc.
The hierarchy of AWT classes is shown in figure 11.1.

e [o

Figure 11.1.: Hierarchy of AWT

11.2 COMPONENTS

Component is anabstract superclass for all visual components in AWT (as
shown in figure 11.1). Component is responsible for the remembering the
background, foreground colour and the font. Table 11.1 shows some of the
methods of Component class

Table 11.1 Methods of Component class

Methods Description

public void setSize(int
width,int height)

Set the size of the component with
specific width and height

public void
setLayout(LayoutManagerm)

Set the layout manager for the component.

Set the visibility of control. If status is
true. Control is visible otherwise not.

public void
setVisible(boolean status)
Public Graphics
getGraphics()

Graphics context is obtained by calling
getGraphics() method.

Void setBackground(Color
cl)

Set the background color of the
component

AWT

147

Core JAVA

148

11.3 CONTAINER

Container is where components are added. To nest the component there is
a requirement of container. To place the components at specific location,
to group some components together, containers are used. As shown in
figure 11.1, there are four components in AWT, window, frame, panel,
dialog, and applet. Table 11.2 shows some common methods of Container
class

Table 11.2: Methods of Container class

Methods Description

Componentadd(Component Add the component ¢

comp)

void remove(Component c) Removes the component c¢ from
container

Insets getlnsets() Insets is the amount of space leave

in between the container and the
window which contains the

container

LayoutManager getLayout() Get the layout manager of this
container

void removeAll() Removes all components from

invoking container

Now let’s see the types of the container.

11.3.1 Window:

Window is a top-level container which provides the display surface. It is
not contained within any object. It has no border, title bar, menu bar. We
can’t create window’s object directly. Instead, we use its subclasses Frame
or Dialog.

11.3.2 Frame:

Frame is a subclass of a window and has border, menu bar, and title bar.
Table 11.3 shows the methods and the constructors of Frame class.
Table 11.3 Methods of Frame class

Methods Description

Frame() Creates empty frame

Frame(String title) Create a frame with title

Void setTitle(String title)) Sets the title for a frame window

Void setSize(int w, int h) Set the width and height for a frame
window

Void setVisible(boolean v) | Set the visibility for frame window. If v
is true frame is visible otherwise not.

Program 11.1 is for frame window using association (creating object of
frame class).

Program 11.1: Frame using Association
import java.awt.*;
public class framedemo {
framedemo() {
Frame f=new Frame("Frame window Demo");
f.setSize(600,500);
f.setVisible(true);
}
public static void main(String args[]){
framedemo f=new framedemo(); }

}

Output:

| £ Frame window Demo — O X

Program 11.2 shows how to use Frame class using inheritance.

AWT

149

Core JAVA Program 11.2. Frame using Inheritance
import java.awt.*;
public class framedemo extends Frame{
framedemo() {
setTitle("Frame using inheritance ");
setSize(600,200);
setVisible(true);
}
public static void main(String args[]) throws Exception
{ framedemo f=new framedemo(); }

}
Output:

| £ Frame using inheritance - O X

11.3.3 Dialog:

Dialog is a container which required a parent container. This is used for
accepting inputs from user or to display the information to user. It will get
close if parent window will close. Program 11.3 is the demonstration of
how to use Dialog class.

Program 11.3: Dialog class Demo

import java.awt.*;

public class DialogDemo extends Frame {

public DialogDemo() {

setTitle("Frame Window");
setSize(400,600);
Dialog d = new Dialog(this, false);
d.setLocation(100, 100);
d.setTitle("Dialog Window");
d.setSize(200, 200);

150

d.setVisible(true);
setVisible(true);
}
public static void main(String args[]) throws Exception
{ DialogDemo f=new DialogDemo(); }
}

Output:

o Window

11.3.4 Panel:

Panel does not have borders. It is a simple container use for grouping the
controls. Table 11.4. shows the constructors of Panel class.

Table 11.4: Constructors of Panel class

Methods Description

Panel() Creates the panel object with default
layout manager

Panel(LayoutManager Im) Creates a panel with specific layout
manager

Example:

Panel p=new Panel();

p.add(new Button());

the above code creates the Panel as a window and contains component
Button. Panel is not a main container. Now let’s see how events are
designed in AWT.

11.4 EVENT DELEGATION MODEL AND LISTENERS
IN JAVA:

In GUI based programming, user communicates with the program by
performing certain actions such as button click, key typing, closing and
opening of window etc. This action causes the state change. Here we
define the event as change in state of an object.

For example, we click on submit button present on the form. The form is
submitted means the data gets saved on server and we received page or
message saying your form is submitted successfully.

AWT

151

Core JAVA

152

Here the source of the action is Button and its state change means button
gets presses. This change in state causes some activity happen like form
get submitted etc. This whole mechanism is called as Event Handling.

Java uses the event delegation model as shown in figure 11.2.

Event Source
Ex. Button o
Performs certain action Registered for Listeners

Ex: Button clicked 9

Event Listener
Ex: ActionListener

0 l Re-action is shown

Ex: Data saved

Figure 11.2: Event delegation model in java

Key components of event delegation model are shown in figure 11.2 with
numbers.

1. Event Source: it is source which generates the events. Components
such as Button, Frame, Textbox etc. are event sources.

2. Events: It is a change in state accurse in object

3. Listeners: They listen for the event which occurs. They get the
notification of the event for which they are registered.

EventObject is the supper class for all the events defines in AWT. Table
11.5 shows the methods of EventObject class

Table 11.5: Methods of EventObject class

Method Description

EventObject(Object source) Constructs the Event object for the
source object

Object getSource() Returns the source object which
regenerates the event

String toString() Returns the string representation of the
event

How to write the code for event handling?

Stepl: Import java.awt.event.*

Step2: Implement an appropriate listener for the event
Implements the Listener for the event

Ex: public class abc extends Frame implements ActionListener {
Step3: Register the source for the event listener
this.addActionListener(this)

Step4: Implement the even handlers

public void actionPerformed(ActionEvent ae)

Table 11.6 shows the list event and respective event listeners for the

various components.

Table 11.6: List of controls, Listeners and respective event class

Controls Listeners Event Event Class | Trigger time

Handlers
Button, List, | Action Public void | ActionEvent | Button Pressed
Menultem, Listener action List Item double
TextField Performed clicked

(Action Menu Item

Event ae) selected
Checkbox, ItemListener | void item State | ItemEvent Checkbox item
Choice, List Changed (Item or List item is

Event ie) clicked
Canvas, Mouse void mouse | MouseEvent | mouse is
Dialog, Listener Pressed (Mouse moved, mouse
Frame, Event me) button is
Panel, void mouse pressed or
Window Released released, etc.

(Mouse Event

me)

void mouse

Entered (Mouse

Event me)

void

mouseExited(M

ouseEvent me)

AWT

153

Core JAVA

154

Dialog,
Frame

Window-
Listener

void
windowClosing
(Window Event
we)

void window
Opened
(Window Event
we)

void window
Deiconified
(Window Event
we)

void window
Closed
(Window Event
we)

void window
Activated
(Window Event
we)

void window
Deactivated
(Window Event
we)

Window
Event

window is
activated,
deactivated,
window is
closed or
closing

Canvas,
Dialog,
Frame,
Panel,
Window

Mouse
Motion-
Listener

void mouse
Dragged
(Mouse
me)
void mouse
Moved (Mouse
Event me)

Event

Mouse Event

mouse 18
dragged or
moved

Component

Key Listener

void key
Pressed (Key
Event ke)

void key
Released (Key
Event ke)

void key Typed
(Key Event ke)

Key Event

key is pressed,
released and
typed

Text-
Component

TextListener

void text
Changed (Text
Event te)

TextEvent

Text is
typed/entered in
the textbox

Now let’s see the various controls in AWT with the event they support.

11.5 BUTTON:

This is push button when pressed action is triggered. Used for creating
navigational buttons, for submitting the form. Constructors and methods
are shown in table 11.7

Table 11.7: Methods of Button class

Methods Description

Button() Creates the button object with no
label on it

Button(String 1bl) Creates the button object with given
label on it

void setLabel(String str) Set the new label for the button

String getLabel() Returns the label of the button on
which this method is called

Void Register the button object for

addActionListener(ActionEvent ae) | ActionListener

Void Remove the ActionListener for the

removeActionListener(ActionEvent | button object.

ae)

11.6 LABEL:

It’s a simple component used to display a string. Constructors and
methods are shown in table 11.8. Static fields defined in label class are

1. static int LEFT: the label is placed to left

2. static int RIGHT: the label is placed to right.

3. static int CENTER: the label is placed to centre.
Table 11.8: Methods of Label class

Methods Description

Label() Constructs the label with no caption

Label(String text) Constructs the label with caption

Label(String text, int | Constructs the label with caption and

alignement) aligned it to the left, right or centre as
specified

Ex: Label(“Name”,Label. CENTER)

AWT

155

Core JAVA

156

void setText(String text)

Sets the caption/label to the label

String getText()

Returns the caption/label of the label

int getAlignment()

Returns the alignment value of the label

void setAlignment(int | Set the specified alignment value to the

alignment) label

Program 11.4 demonstrates the use of Button and Label class

11.7 CHECKBOX AND CHECK BOX GROUP

Checkbox:

It is used to select the option as ‘on’ or ‘off”. When we select or deselect
the checkbox, their states get changed and ItemEvent is fire. Table 11.9
shows the methods of Checkbox class.

Table 11.9: Methods of Checkbox class

Methods

Description

Checkbox()

Constructs the checkbox with no
label/string

Checkbox(String label)

Constructs the checkbox with

label/string

Checkbox(String label, Boolean
state)

Constructs the checkbox with
label/string and given state

Checkbox(String label, boolean
state, CheckboxGroup chk)

Constructs the checkbox with
label/string, its initial state and its
specified checkbox group

Void addItemListener
(IntemListener al)

It registers the checkbox for item
listener.

Boolean getState()

Returns the state of the checkbox.
True if it is selected otherwise false.

Check box Group

It is used to group the checkbox together. Once the group is created, only
one checkbox among the given is selected (like radio button).Table 11.10
shows the methods of Check box Group class

Table 11.10: Methods of Check box Group class

Methods Description
CheckboxGroup() Create the instance of checkbox group
Checkbox Returns the selected checkbox from

getSelectedCheckbox()

the group

Program 11.4 demonstrate the use of Checkbox components

11.8 TEXT COMPONENT:

It is a superclass for a TextField and TextArea Class that allows the user to

enter the text.

Text Field and Text Area:

TextField creates a single line where as TextArea for multiline text. Table
11.11 and table 11.12 shows some of the methods of TextField and

TextArea class

Table 11.11: Methods of Textfield class

Methods

Description

TextField()

Creates TextField component with no text

TextField(String text)

Creates TextField component with initial
text

TextField(int n)

Creates TextField component with n number
of columns

TextField(String text,int n)

Creates TextField component with initial
text and with n columns.

void setText(String t)

Set the text t for the textfield

Table 11.12: Methods of TextArea class

Methods Description
TextArea() Creates TextArea component with no text
TextArea (String text) Creates TextArea component with initial

text

TextArea (int row, int
column)

Creates TextArea component with rows and
columns

TextArea (String text, int
row, int column)

Creates TextArea component with initial
text and with rows and columns.

TextArea (String text, int
row, int column, int
scrollbars)

Creates TextArea component with initial
text and with rows and columns with
visibility

void setText(String t)

Set the text t for the TextArea

AWT

157

Core JAVA

158

Program 11.4 demonstrates the use of TextField class.

Program 11.4: Program demonstrate the use of Button, Label,
Checkbox, TextField

import java.awt.*;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.IltemEvent;
import java.awt.event.ItemListener;
public class chkdemo implements ItemListener,ActionListener
{
Label 1bl1,1bl2,1bl3;
Checkbox checkbox1,checkbox2,rl,r2,13;
TextField txtname,t2;
Button submit;
CheckboxGroup cbg;
chkdemo()
{
Frame f = new Frame("Checkbox Example");
f.setLayout(new GridLayout(5,2));
checkbox1 = new Checkbox("C++");
Ibl1=new Label("Enter your Name");
Ibl2=new Label();
Ibl3=new Label();
txtname=new TextField();
submit=new Button("save");
checkbox2 = new Checkbox("Java", true);
cbg=new CheckboxGroup();
rl=new Checkbox("8th",false, cbg);
r2=new Checkbox("9th",false, cbg);

r3=new Checkbox("10th",false, cbg);
f.add(1bll);

f.add(txtname);
f.add(checkbox1);
checkbox1.addItemListener(this);
checkbox2.addItemListener(this);
submit.addActionListener(this);
f.add(checkbox?);
f.add(r1);f.add(r2);f.add(r3);
f.add(1bl2);

f.add(submit);

f.add(1bI3);

f.setSize(400,400);
f.setVisible(true);

}

public void itemStateChanged(ItemEvent e)
{
if(e.getSource()==checkbox1)

Ib12.setText("C++: " +
(e.getStateChange()==1?"checked": "unchecked")):

if(e.getSource()==checkbox?2)

Ibl2.setText("Java : " +
(e.getStateChange()==1?"checked":"unchecked"));

b
public void actionPerformed(ActionEvent ae)
{

if(ae.getSource()==submit)

{

Ibl3.setText("Dear "+txtname.getText()+ " Your data is saved ");

AWT

159

Core JAVA

160

}

public static void main (String args[])

new chkdemo();
Output:
|£: | Checkbox Exa... —] XK
Swati
Enter your Mame
" C++ W Java
[~ 8th (* Oth
[~ 10th Java : checked
save Dear Swati Your data is saved

11.9 LIST:

This component displays the list of text items. Here user can select one or
multiple items from the list. Table 11.13 lists the methods of the List class.

Table 11.13: Methods of List class

Methods

Description

List()

Constructs the empty list

List(int num)

Constructs the list with number of
lines specified visible.

List(int num, Boolean mode)

Constructs the list with number of
lines visible and mode of selection. If
true then list is with multiselects
option otherwise false for single item
select.

void add(String item)

Add the given item in the list

void add(String item, int index)

Add the given item at the given
position in the list

void deselect(int index)

Deselects the given item in the list

String getltem(int index)

Returns the item present at specified
index position

int getltemCount()

Returns the total item present in the
list

String[] getltems()

Returns the names of the items
present in the list

int getRows()

Returns the count of visible lines in
the list

int getSelectedIndex()

Returns the index value of the
selected item in the list

VoidsetMultipleMode(boolean
mode)

Set the multiple selection mode for
the list if value is true otherwise set
single selects

void remove(String item)

Removes the specified item from the
list

void select(int index)

Selects the item in the given index
position

Following program 11.5, shows the demonstration of List class

Program 11.5: List Demo

import java.awt.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class ListDemo implements ActionListener{

Label 1bl;

Button btnadd;

List 11,12;

ListDemo() {
Frame f = new Frame();
11 = new List(5);

12 = new List(5);

btnadd=new Button("Add");

AWT

161

Core JAVA 11.add("Java Programming");
11.add("C Programming");
11.add("Python Programming");
11.add("C++ Programming");
11.add("C#"),
btnadd.addActionListener(this);
f.add(11);
f.add(12);
f.add(btnadd);
f.setSize(400, 400);
f.setLayout(new FlowLayout());
f.setVisible(true);

}
public void actionPerformed(ActionEvent ae) {
if(ae.getSource()==btnadd)
12.add(11.getSelectedItem());
H
public static void main(String args[]) {

new ListDemo();

b
b

Output:

=] ListDemo - O

C Programming
Python Programmir Add

< >

162

11.10 CHOICE:

Choice is a drop-down list component. User can select any one item from
the list. Every item in the choice has index value. Table 11.14 shows the

methods of Choice class.

Table 11.14: Methods of Choice class

Methods Description
Choice() Constructs the empty choice list
void add(String item) Adds the specified item in the

choice

String getltem(int index)

Returns the string/item present in
the given index position

int getltemCount()

Returns the number of items in
the choice.

String getSelectedItem()

Returns the selected string/item.

int getSelectedIndex()

Returns the index value of the
selected string/item.

void insert(String item, int index)

Insert the specific item at the
specific given index position.

void remove(int position)

Removes the item from the given
index position

void remove(String item)

Removes the specified item from
the choice

void removeAll()

Remove all items from the
choice.

void addItemListener(ItemListener 1)

Register the choice component
for the ItemListener

void

removeltemListener(ItemListener 1)

Remove the registration of choice
component for the ItemListener

void select(int pos)

Selects the item present at
specified index position

void select(String str)

Selects the specified item name

AWT

163

Core JAVA Program 11.6 demonstrates the use of Choice component.

Program 11.6: Choice class demo

import java.awt.*;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
public class ChoiceDemo extends Frame implements ActionListener {
Choice c;
Button bl;
Label Ibl;
ChoiceDemo() {
// creating a choice component
¢ =new Choice();
bl=new Button("Show");
Ibl=new Label();
setLayout(new GridLayout(2,2));
c.add("Mumbai");
c.add("Delhi");
c.add("Chennai");
c.add("Jaipur");
c.add("Banglore");
bl.addActionListener(this);
add(c);
add(bl);
add(Ibl);
setSize(200, 200);
setVisible(true);

}

public void actionPerformed(ActionEvent ae)
{
if(ae.getSource()==b1)
Ibl.setText(c.getSelectedItem());
}

public static void main(String args[])

{

164

new ChoiceDemo();

}

}

Output:

Chennai A Show
Chennai

11.11 MENU:

Menu is the list of pop up items associated with top level windows. AWT
provides three classes MenuBar, Menu, and Menultem. MenuBar has
multiple Menus and each menu can have sub-menus in drop-down list
form. Here Menultem is the superclass of Menu. CheckboxMenultem will
create the checkable menu item. Table 11.15 shows the methods of Menu

class.

Table 11.15: Methods of Menu class

Methods Description
Menu() Construct a new menu with no label
Menu(String label) Construct a new menu with label

Menultem add(Menultem mi)

Add the menu item to the menu

void add(String label)

Add the item with given label

void addSeparator()

Add separator between menu

int countltems()

Returns the items in the menu

void insert(Menultem menuitem,
int index)

Insert the menu item at specific
given index position

void remove(int index)

Removes the item present at given
index position

AWT

165

Core JAVA

166

Following program 11.7, demonstrate the use of MenuBar, Menultem and
Menu class

Program 11.7: Demonstrate the MenuBar, Menultem, Menu class

import java.awt.*;

public class MenuDemo extends Frame

{

MenuDemo(){

setTitle("Menu and Menultem Example");
MenuBar mb=new MenuBar();
Menu menu=new Menu("Menu");
Menu submenu=new Menu("Close");
Menultem il=new Menultem("New");
Menultem i2=new Menultem("Open");
Menultem 13=new Menultem("Save");
Menultem i4=new Menultem("Save As");
Menultem i5=new Menultem("Exit");
menu.add(il);
menu.add(i2);
menu.add(i3);
menu.add(i4);
submenu.add(i5);
menu.add(submenu);
mb.add(menu);
setMenuBar(mb);
setSize(400,400);
setLayout(null);
setVisible(true);

}

public static void main(String args[])

{

new MenuDemo();

b
}

Output:

[£)Menuand Me.. —] X

Mew
Cpen
Save
Save As

11.12. LAYOUT MANAGER:

When the GUI is designed, the components are placed at some defined
location using setBounds(int x, int y, int w, int h)or by using setSize(int w,
int h) and setLocation(int x, int y) method. If numbers of components are
more, it becomes difficult to define the position and size of each
component. AWT supports predefined layout manager classes which helps
to place the components on the define container. AWT supports following
Layout Managers namely:

o FlowLayout

BorderLayout

CardLayout

GridLayout

GridBagLayout

setLayout(LayoutManager obj) method is used to set a layout to a
container. Let’s see one by one these layout managers.

11.12.1 FlowLayout:

FlowLayout places the components in flow manner i.e. one after another
in a line starting from left to right and top to bottom. Table 11.16 shows
the constructors and methods of FlowLayout. Program 11.8 shows how to
use of FlowLayout.

AWT

167

Core JAVA

168

Table 11.16: Methods of FlowLayout class

Constructors/Methods

Description

FlowLayout()

Creates a default FlowLayout which place
the components starting from centre of first
line. By default, the space between two
components is 5 pixel.

FlowLayout(int alignment)

Creates a FlowLayout with 5 pixel space
between each components and places the
component as per the alignment specified

FlowLayout.LEFT
FlowLayout.RIGHT
FlowLayout. CENTER
FlowLayout. LEADING
FlowLayout. TRAILING

FlowLayout(int alignment,
int hgap, int vgap)

Creates FlowLayout with given alignment
and the spacing mentioned

Program 11.8: FlowLayout Demo

import java.awt.*;

public class FlowLayoutDemo {

Frame f;

FlowLayoutDemo()
{

f =new Frame();

Button b1 = new Button("1");

Button b2 = new Button("2");

Button b3 = new Button("3");

Button b4 = new Button("4");

Button b5 = new Button("5");

Button b6 = new Button("6");

fadd(b1);
fadd(b2);

f.add(b3); AWT
f.add(b4);
f.add(b5);
f.add(bo);
f.setLayout(new FlowLayout(FlowLayout.RIGHT));
f.setSize(300, 300);
f.setVisible(true);

}

public static void main(String argvs[])

{

new FlowLayoutDemo();

}
b

Output:

= | FlowlLayout Demo — [l X

1) 2] 3] 4]] 8]

11.12.2 BorderLayout:

BorderLayout arrange the components in five different regions, namely
centre, east, west, north, and south. Each region holds only one
component.

Following constants represents the region,

o BorderLayout. NORTH

o BorderLayout.SOUTH
o BorderLayout. EAST
o BorderLayout. WEST

o BorderLayout. CENTRE

169

Core JAVA

170

A component is explicitly added to the one of the above said region using

method,

Add(Component ¢, Object region)

Ex: to add a button in south region use

add (new Button(b1), BorderLayout.SOUTH)

Table 11.17 shows the constructors and methods of BorderLayout and

program 11.9 shows how to use borderLayout.
Table 11.17: Methods of BorderLayout class

Constructors/Methods

Description

BorderLayout()

Creates a default BorderLayout which
place the components at centre.

BorderLayout (int hgap, int
vgap)

Creates a BorderLayout with specific
space/gaps between components.

Program 11.9 BorderLayout Demo

import java.awt.BorderLayout;

import java.awt.Button;
import java.awt.FlowLayout;

import java.awt.Frame;

public class BorderLayoutDemo extends Frame

{
BorderLayoutDemo()

{

setLayout(new BorderLayout(10,10));

setSize(500, 500);

setTitle("BorderLayout Demo");

Button b1l = new Button("1");

Button b2 = new Button("2");

Button b3 = new Button("3");

Button b4 = new Button("4");

Button b5 = new Button("5");

add(b1l,BorderLayout. EAST); AWT
add(b2,BorderLayout. NORTH);

add(b3,BorderLayout. WEST);

add(b4,BorderLayout. SOUTH);

add(b5,BorderLayout. CENTER);

setVisible(true);

}

public static void main(String argvs[])

{

new BorderLayoutDemo();

}

}
Output:

|£ | BorderLayout Demo - [l X

11.12.3 CardLayout:

CardLayout keeps the components like the cards i. e. components are
stack and only one component is visible at a time. Table 11.18 shows the
constructors and methods of CardLayout.

171

Core JAVA

172

Table 11.18: Methods of CardLayout class

Constructors/Methods

Description

CardLayout()

Creates a default CardLayout

CardLayout (int
vgap)

hgap, int

Creates a CardLayout with specific
space/gaps between components.

void first(Container deck)

Here deck is the parent container which
holds the cards.

First card in the deck is return

void last(Container deck)

Shows the last card on the container

void next(Container deck)

Shows the next card (in sequence) on the
container

void previous(Container deck)

Shows the previous card (in sequence)
on the container

void show(Container deck,

String cardName)

Shows the specific given card on the
container

Program 11.10 demonstrates the use of Card Layout.

Program 11.10 CardLayout Demo

import java.awt.BorderLayout;

Import java.awt.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class CardLayoutDemo extends Frame implements ActionListener {

CardLayout crd;

Panel cardp,nevigate;

Button b1,b2,b3,b4,b5, first, last, next,previous,show;

CardLayoutDemo() {

//Set Layout for Main frame

setLayout(new BorderLayout());

setSize(500, 500);

setTitle("CardLayout Demo");

//add two panel on main frame AWT
// set the cardlayout for first panel
cardp=new Panel();
crd=new CardLayout();
cardp.setLayout(crd);
bl =new Button("1");
b2 = new Button("2");
b3 = new Button("3");
b4 = new Button("4");
b5 = new Button("5");
cardp.add("Button1",bl);
cardp.add("Button2",b2);
cardp.add("Button3", b3);
cardp.add("Button4",b4);
cardp.add("Button5",b5);
add(cardp,BorderLayout. CENTER);

// create a second panel; add navigation button ; set the flowlayout
Panel nevigate=new Panel();
nevigate.setLayout(new FlowLayout());
first = new Button("first");
last = new Button("last");
next = new Button("next");
previous = new Button("previous");
show = new Button("show");

//register the navigation buttons for ActionListener
first.addActionListener(this);
last.addActionListener(this);
next.addActionListener(this);

previous.addActionListener(this);

173

Core JAVA show.addActionListener(this);
nevigate.add(first);
nevigate.add(next);
nevigate.add(last);
nevigate.add(previous);
nevigate.add(show);
add(nevigate,BorderLayout. SOUTH);
setVisible(true);

}

public void actionPerformed(ActionEvent ae)
{
// on click of respective navigation button, card is displayed
if(ae.getSource()==last)
crd.last(cardp);
if(ae.getSource()==first)
crd.first(cardp);
if(ae.getSource()==next)
crd.next(cardp);
if(ae.getSource()==previous)
crd.previous(cardp);
if(ae.getSource()==show)
crd.show(cardp,"Button3");

}

public static void main(String argvs[])

{

new CardLayoutDemo();

174

Output: AWT

|£| CardLayout Demo — U X

irst | [

EJ previous | show

11.12.4 GridLayout:

This layout arranges the components in grid format i. e. in 2 X 2 matrixes.
Table 11.x shows the constructors of GridLayout class. Table 11.19 shows
the constructors and methods of GridLayout.

Table 11.19 Constructors of Grid Layout

Constructor Description

GridLayout() Creates the grid layout of single column

GridLayout(int r, int ¢) Creates the grid layout of given rows and
columns

GridLayoutlint r,int c,int | Creates the grid layout of given rows and
h_gap, int v_gap) columns and with specified gaps.

The program 11.11 demonstrate the use of GridLayout class

Program 11.11: Demonstration of GridLayout class

import java.awt.BorderLayout;
import java.awt.*;
public class GridLayoutDemo extends Frame {
Button b1,b2,b3,b4,b5,b6;
GridLayoutDemo()
{
setLayout(new GridLayout(3,2));
setSize(500, 500);

175

Core JAVA setTitle("GridLayout Demo");
bl =new Button("1");
b2 = new Button("2");
b3 = new Button("3");
b4 = new Button("4");
b5 = new Button("5");
b6 = new Button("6");
add(bl);

add(b2);

add(b3);

add(b4);

add(b5);

add(b6);
setVisible(true);

}

public static void main(String argvs[])

{

new GridLayoutDemo();

}

Output:

|£ | GridLayout Demo - O s

176

11.12.5 Grid Bag Layout: AWT

Grid Layout places the components in a grid in a sequence of adding those
on window. All those components have same/equal fixed dimensions.
Components’ size can not be resized.

Gridbag Layout allows placing the components in a grid at any specified
row and column with different (more than one cell) width and height i.e.
component may have width of more than one column span and height of
more than one row span. Table 11.20 shows the constructors and methods
of Grid Bag Layout.

Table 11.20 Methods of GridBaglLayout class

Methods Description

GridBagLayout() Creates a default GridBagLayout c

void setConstraints(Component | This method sets the constraint on the
comp, GridBagConstraints cons | components which is to be placed on
container.

Here GridBagConstraints is a helper
class which is used to set the
constraints for components.

Table 11.21 describes the grid Bag Constraints’ field and their purpose

Table 11.21 : Fields of Grid Bag Constraints

Methods Description

int anchor Specifies the location of a component
within a cell. The default is

Following Program 11.12 demonstrate the use of GridBagLayout class.

Program 11.12: Demo of GridBagLayout class

import java.awt.*;

import java.awt.Button;

import java.awt.GridBagConstraints;
import java.awt.GridBagLayout;

public class GridBagLayoutDemo extends Frame

{

177

Core JAVA

178

public GridBagLayoutDemo()

{

GridBagLayout gb = new GridBagLayout();
GridBagConstraints gbc = new GridBagConstraints();
setLayout(gb);

setTitle("GridBag Layout Example");
//GridBagLayout layout = new GridBagLayout();
//this.setLayout(layout);

//contraints for textfield

gbc. fill = GridBagConstraints. BOTH;
gbc.gridx = 0;

gbc.gridy = 0;

gbc.gridheight=1;

gbc.gridwidth=3;

this.add(new TextField("Enter Number"), gbc);
//contraints for button 1

gbc. fill = GridBagConstraints. BOTH;
gbc.gridx = 0;

gbc.gridy = 1;

gbc.gridheight=1;

gbc.gridwidth=1;

this.add(new Button("1"), gbc);

//contraints for button 2

gbc.gridx = 1;

gbc.gridy = 1;

gbc.gridheight=1;

gbc.gridwidth=1;

this.add(new Button("2"), gbc);

//contraints for button 3

gbc.fill = GridBagConstraints. BOTH,;
//gbc.ipady = 20;

gbc.gridx = 0;

gbc.gridy = 2;

gbc.gridheight=1;

gbc.gridwidth=1;

this.add(new Button("3"), gbc);
//contraints for button 4

gbc.gridx = 1;

gbc.gridy = 2;

gbc.gridheight=1;

gbc.gridwidth=1;

this.add(new Button("4"), gbc);
//contraints for button 2

gbc.gridx = 2;

gbc.gridy = 1;

gbc. fill = GridBagConstraints. BOTH;

gbc.gridwidth = 1;

gbc.gridheight=2;

this.add(new Button("+"), gbc);
gbc.gridx = 0;

gbc.gridy = 3;

gbc. fill = GridBagConstraints. BOTH;
gbc.gridwidth = 1;

gbc.gridheight=1;

this.add(new Button("="), gbc);
gbc.gridx = 1;

gbc.gridy = 3;

gbc. fill = GridBagConstraints. BOTH;

AWT

179

Core JAVA

180

gbc.gridwidth = 2;
gbc.gridheight=1;
this.add(new Button("-"), gbc);
setSize(600, 600);
setPreferredSize(getSize());
setVisible(true);

}

public static void main(String[] args)

{
GridBagLayoutDemo a = new GridBagLayoutDemo();

|£ | GridBag Layout Example — Il X

[Enter Number

2
4

+

N | =

11.13 SUMMARY

o AWT package provides the different API for designing a user
interface.

o Java supports the different kind of windows using Window, Frame,
Dialog, Panel etc.

o Events are handling using different interfaces.

o Event handling is done by registering the event first, then
implementing the event handler for the event.

o Java also defines the different layout managers for arranging the
components on window.

o FlowLayout is default layout for panel and applet, BorderLayout is
default layout for Frame.

11.14 EXERCISE: AWT

Why AWT components are called as light weight components?
What is a difference between container and components?

How event delegationmodel in java?

What is Listener? How do any components respond to event?

What is the difference between TextArea and TextField?

What is the difference between Choice and List?

What is the difference between the Frame and Panel?

What is the use of Layout managers? Explain the difference between
GridLayout and GridBagLayout manager class.

PN R W=

11.15 REFERENCES

1. H. Schildt, Java Complete Reference, vol. 1, no. 1. 2014.

2. E. Balagurusamy, Programming with Java, Tata McGraw-Hill
Education India, 2014

3. Sachin Malhotra & Saurabh Choudhary, Programming in JAVA, 2nd
Ed, Oxford Press

4. The Java Tutorials: http://docs.oracle.com/javase/tutorial/

XS
o
XS
o

181

