
 S.Y.B.Sc. (C. S.)
SEMESTER - III (CBCS)

PHYSICAL COMPUTING AND
IOT PROGRAMMING

SUBJECT CODE: USCS306

© UNIVERSITY OF MUMBAI

Dr. Suhas Pednekar
Vice Chancellor

University of Mumbai, Mumbai
Prof. Prakash Mahanwar

Director,
IDOL, University of Mumbai

				

Prof. Ravindra D. Kulkarni
Pro Vice-Chancellor,

University of Mumbai

Published by : Director,
Institute of Distance and Open Learning,

University of Mumbai,
Vidyanagari,Mumbai - 400 098.

May 2022, Print - 1 			

DTP composed and Printed by: Mumbai University Press

Programme Co-ordinator	 :	 Shri Mandar Bhanushe
		 Head, Faculty of Science and Technology IDOL,
			 Univeristy of Mumbai – 400098

Course Co-ordinator		 : Mr Sumedh Shejole
			 Assistant Professor,

		 IDOL, University of Mumbai- 400098

Course Writers	 :	 Mr.Satish Parihar
			 Assistant Professor.

		 Mulund College of Commerce
			 Mulund West, Mumbai, Maharashtra 400080

Course Writers		 :	 Ms. Mitali Vijay Shewale
			 Assistant Professor
			 Somaiya Vidyavihar University
			 Vidyavihar, Mumbai: 400 077

		 :	 Ms. Geeta Sahu
			 Assistant Professor
			 Vidyalankar School of Information Technology
			 Vidyalankar College Marg,

		 Wadala (E) Mumbai 400037

			

CONTENTS

Unit No.	 Title	 Page No.

1.		 SOC and Raspberry PI...1

2.		 Programming Raspberry PI..78

3. 		 Programming Interfaces...103

4. 		 Raspberry PI Interfaces..112

5		 Useful Implementations...134

6		 IoT Service as a Platform...144

7		 IoT Security and Interoperability...162

8		 Introduction to IoT...169

S.Y.B.Sc. (C. S.)
Semester - III

PHYSICAL COMPUTING AND IOT PROGRAMMING

SYLLABUS

A Concrete Example, Integer Solutions of Linear Programming

Problems. Combinatorial Applications of Network Flows: Introduction,

Matching in Bipartite Graphs, Chain partitioning, Pólya’s Enumeration

Theorem: Coloring the Vertices of a Square.

Textbook(s):

1) Applied Combinatorics, Mitchel T. Keller and William T. Trotter, 2016,

http://www.rellek.net/appcomb.

Additional Reference(s):

1) Applied Combinatorics, sixth.edition, Alan Tucker, Wiley; (2016)

2) Graph Theory and Combinatorics, Ralph P. Grimaldi, Pearson Education; Fifth edition

(2012)

3) Combinatorics and Graph Theory, John Harris, Jeffry L. Hirst, Springer(2010).

4) Graph Theory: Modeling, Applications and Algorithms, Agnarsson, Pearson Education India

(2008).

Course:

USCS306

TOPICS (Credits : 02 Lectures/Week:03)

 Physical Computing and IoT Programming

Objectives:

 To learn about SoC architectures; Learn how Raspberry Pi. Learn to program Raspberry Pi.

Implementation of internet of Things and Protocols.

Expected Learning Outcomes:

1. Enable learners to understand System On Chip Architectures.

2. Introduction and preparing Raspberry Pi with hardware and installation.

3. Learn physical interfaces and electronics of Raspberry Pi and program them using practical’s

4. Learn how to make consumer grade IoT safe and secure with proper use of protocols.

Unit I

SoC and Raspberry Pi

System on Chip: What is System on chip? Structure of System on Chip.

SoC products: FPGA, GPU, APU, Compute Units.

ARM 8 Architecture: SoC on ARM 8. ARM 8 Architecture Introduction

Introduction to Raspberry Pi: Introduction to Raspberry Pi, Raspberry Pi

Hardware, Preparing your raspberry Pi.

Raspberry Pi Boot: Learn how this small SoC boots without BIOS.

Configuring boot sequences and hardware.

15L

Unit II

Programming Raspberry Pi

Raspberry Pi and Linux: About Raspbian, Linux Commands, Configuring

Raspberry Pi with Linux Commands

Programing interfaces: Introduction to Node.js, Python.

Raspberry Pi Interfaces: UART, GPIO, I2C, SPI

Useful Implementations: Cross Compilation, Pulse Width Modulation, SPI

for Camera.

15L

Unit III

Introduction to IoT: What is IoT? IoT examples, Simple IoT LED Program.

IoT and Protocols

IoT Security: HTTP, UPnp, CoAP, MQTT, XMPP.

IoT Service as a Platform: Clayster, Thinger.io, SenseIoT, carriots and

Node RED.

IoT Security and Interoperability: Risks, Modes of Attacks, Tools for

Security and Interoperability.

15L

Textbook(s):
1) Learning Internet of Things, Peter Waher, Packt Publishing(2015)
2) Mastering the Raspberry Pi, Warren Gay, Apress(2014)

Additional Reference(s):
1) Abusing the Internet of Things, Nitesh Dhanjani, O’Reilly

1

1

SOC AND RASPBERRY PI

Unit Structure

1.0 Objectives

1.1 Introduction

1.2 System on Chip

 1.2.1 What is System on chip?

 1.2.2 Structure of System on Chip

1.3 SoC products

 1.3.1 FPGA

 1.3.2 GPU

 1.3.3 APU

 1.3.4 Compute Units

1.4 ARM 8 Architecture

 1.4.1 SoC on ARM 8

 1.4.2 ARM 8 Architecture Introduction

1.5 Introduction to Raspberry Pi

 1.5.1 Introduction to Raspberry Pi

 1.5.2 Raspberry Pi Hardware

 1.5.3 Preparing your raspberry Pi

1.6 Raspberry Pi Boot

 1.6.1 Learn how this small SoC boots without BIOS

 1.6.2 Configuring boot sequences and hardware

1.7 Summary

1.8 List of References

1.9 Unit End Exercises

1.0 OBJECTIVES

After going through this unit, you will be able to:

• Understand the concept and structure of System on Chip

• Describe and illustrate several SoC products

• Explain and describe about the ARM 8 Architecture

• Introduce and prepare Raspberry Pi with hardware and installation

1.1 INTRODUCTION

System on Chip

A system on chip also known as SoC is an integrated circuit (IC) that

integrates all the components into a single chip that is the complete system

is present on the same single chip and hence its name. It has analog, digital,

2

Physical Computing and

IoT Programming

2

mixed signal and other radio frequency function all present on a single chip

substrate. Now-a-days, SoCs applications are more commonly found in

electronics industry due to its low power consumption. Also, the greater use

of SoCs is found in embedded system applications. SoCs generally consists

of control unit (comprises of microprocessor, microcontroller, digital signal

processor etc.); memory blocks (i.e ROM, RAM, Flash memory,

EEPROM); timing units (oscillators, PLLs); other peripherals (it consists

counter timers, real-time timers and power on reset generators); basic SoC

interfaces (analog interfaces, external interfaces, voltage regulators and

power management units).

Raspberry Pi

Raspberry Pi is a series of compact single-board computers developed by

the Raspberry Pi Foundation in collaboration with Broadcom in the United

Kingdom. These projects are generally inclined towards teaching and

promoting basic computer science in schools and in developing countries.

Due to its low cost, modularity and open design it finds wide application

ranging from weather monitoring, robotics and many more.

Several generations have been released of Raspberry Pi’s such as Raspberry

Pi Model B (February 2012), followed by Model A, Model B+ (in 2014),

Raspberry Pi 2(February 2015), Raspberry Pi Zero (November 2015),

Raspberry Pi Zero W (On 28 February 2017), Raspberry Pi Zero WH (On

12 January 2018), Raspberry Pi 3 Model B (February 2016), Raspberry Pi 3

Model B+ (2018), Raspberry Pi 4 Model B (released in June 2019),

Raspberry Pi 400 (November 2020) and Raspberry Pi Pico (in January

2021).

1.2 SYSTEM ON CHIP

1.2.1 What is System on Chip (SoC)?

SoC is an integrated circuit embedded on a small single platform coin-sized

chip with a microprocessor / microcontroller along with all other electronic

components integrated onto it. As the name suggests it is the entire system

(complete circuit) on a single chip. SoC design usually incorporates central

processing unit, input and output ports, memory, secondary storage devices,

as well as analog input and output blocks, digital or analog signal processing

system or a floating-point unit and peripheral interfaces such as I2C, SPI,

UART, CAN, Timers, etc. It is capable of performing several tasks

including signal processing, wireless communication, artificial intelligence

and more.

1.2.1.2 Why SoC?

As technology is becoming more and more advanced, the main motivator

and primary goal is to reduce energy waste, save up on spending costs, as

well as reduce the space occupied by large systems. This essential

requirement is possible by SoC as it size-down multichip design onto a

single processor comparatively consuming less power than before. These

chips helped us to developed portable devices that can be carried anywhere

3

SOC and Raspberry PI and everywhere easily without compromising on the capability and

functionality of the gadgets. SoCs have a plethora of practical uses that are

both unlimited and priceless. These are associated with systems pertaining

to the Internet of Things, embedded systems, smartphones, cameras, tablets,

cars, wireless technologies etc.

The working of a SoC can be best described with an example of

smartphones. When you use your cell phones you not only make and receive

the calls; you LSO use it for browsing the internet, listening audio, watching

videos, taking photos, playing games etc. Multiple components, such as a

graphics card, internet support, wireless connections, GPS, and several

more aspects, make all of these features feasible. All of these components

can be merged into a single chip, which can then be shrunk down to fit in

the palm of your hand and carried about. In recent years, SoC technology

are used in small sized personal computers, laptops for reducing power

consumption thus further improving the performance by using a single chip

managing all the functionalities of the system.

1.2.1.3 SoC Building Blocks

SoC comprises of several building blocks as shown in the figure 1.1.

Figure 1.1 Building blocks of SoC

• Firstly, at its core, a system on chip must consist of a processor that

will define all its functions. Generally, an SoC has multiple processor

cores. A microcontroller, microprocessor, digital signal processor, or

application specific instruction set processor can all be used.

• Secondly, for performing the computation the chip must have its

memory. It could have memory in the form of RAM, ROM,

EEPROM, or even flash memory.

4

Physical Computing and

IoT Programming

4

• External interfaces are the next requirement, as they will allow it to

conform to industry standard communication protocols such as USB,

Ethernet, and HDMI. It can also make use of wireless technology and

protocols such as WiFi and Bluetooth.

• For visualizing the interfaces, it must have a Graphical Processing

Unit (GPU).

• Voltage regulators, phase lock loop control systems and oscillators,

clocks and timers, analog to digital and digital to analog converters

must also be included in SoC.

• For connecting all the individual blocks it must have an internal

interface bus or a network.

1.2.1.4 Advantages of SoC

• Low power

• Low cost

• High reliability

• Small form factor

• High integration levels

• Fast operation

• Greater design

• Small size

• Low latency

• Better efficiency and performance

• Less time to market

1.2.1.5 Disadvantages of SoC

• More verification.

• Fabrication cost.

• Increased complexity.

• Time to market demands

1.2.1.6 SoC varieties

• NVIDIA Tegra 3 is a graphics processor from NVIDIA

The NVIDIA Tegra 3 is a Tegra family SoC that is found in a variety

of Android handsets. The Tegra 3 is used in some devices such as the

Asus Eee Pad, HTC One X, and Google Nexus Tablet. This model

includes a CPU with five cores. Each core is an ARM Cortex A9 chip,

with the fifth core running at 500MHz and using a low-power silicon

process.

5

SOC and Raspberry PI • Qualcomm's Snapdragon S4 processor

When it comes to Android smartphones and tablets, Qualcomm is

crucial. It is powered by a processor that is similar to the ARM Cortex

A15.

• Samsung Exynos 4 Quad

The ARM architecture is used in this SoC. It has a quad-core ARM

Cortex-A9 CPU and a 1.4GHz ARM Mali-400 MP4 quad-core GPU.

This processor can handle a wide range of tasks, including 3D

gaming, multitasking, and video recording and playback.

• Intel Medfield

The Medfield SoCs from Intel are not based on the ARM architecture.

These SoCs are built using x86 technology. Medfield SoCs can

provide OEMs with a single-core processor running at 1.6-2GHz with

a PowerVR SGX540 GPU.

• OMAP 4 from Texas Instruments

The ARM Cortex A9 45nm architecture is used in the fourth

generation of OMAPs. Motorola Atrix 2, Motorola Droid RAZR, LG

Optimus 3D, and LG Optimus Max are some Android devices that

employ this SoC.

1.2.1.7 SoC design challenges

The different SoC design challenges are given below:

1. Strategy for architecture

2. Strategy for test design

3. Strategy for validation

4. Backend Strategy and Synthesis

5. Integration Strategy

6. On chip Isolation

• Strategy for Architecture

The type of processor we employ to create the SoC is an

extremely significant issue to consider. Furthermore, the type of

bus that must be used is a question of decision.

• Strategy for Test Design

The majority of frequent physical problems are represented as

faults in this approach. The essential circuitry incorporated in

the SoC architecture assist in defect detection.

• Strategy for validation

There are two primary concerns to consider while validating

SoC designs. The first issue is that we need to double-check

6

Physical Computing and

IoT Programming

6

the IP cores. The second issue is that we need to double-check

the system's integration.

• Backend Strategy and Synthesis

Many physical effects must be taken into account while

planning the SoC synthesis and strategy. IR drop, cross talk, 3D

noise, antenna effects, and EMI effects are all examples of

effects. Chip planning, power planning, DFT planning, clock

planning, timing, and area budgeting are all required early in the

design process to address these difficulties.

• Strategy for Integration

To create a smooth integration strategy, all of the above-

mentioned data must be examined and combined.

• On chip Isolation

Many factors must be considered in on-chip isolation, including

the impact of process technology, grounding effects, guard

rings, shielding, and on-chip decoupling.

1.2.1.8 SoC applications

Following are few applications of SoC

• Market for mobile phones

The mobile industry, particularly in smartphones, is the most popular

and basic application of SoC. Because smartphones are becoming

slimmer and lighter as technology advances, the use of a SoC (whose

size is shrinking at an alarming rate with each new generation) is the

greatest fit for this change. Furthermore, high performance and low

power consumption are two significant elements that influence

smartphone performance, and SoC excels at both. As illustrated in this

image, the A6 CPU was the first system on chip used in the

deconstruction of the iPhone 5.

7

SOC and Raspberry PI • Embedded systems

In the modern world, almost every microcontroller and CPU has a

SoC operating on top of it. Component coupling is tighter, resulting

in greater reliability and performance.

Embedded systems can be seen in Apple's smart watch. The apple S1

SoC is used in this smart watch.

The SoC in the Samsung Galaxy Gear is based on the ARM Cortex

M4 microcontroller. For example STM32F401B.

• Personal computers

Another important application of the SoC is personal computers;

many modern personal computers do not have a motherboard,

instead relying on the SoC to provide great performance and

minimal size.

8

Physical Computing and

IoT Programming

8

1.2.1.9 Examples of SoCs

The majority of SoCs on the market today are ARM-based. Qualcomm's

Snapdragon SoCs, Apple's A4, and Nvidia's Tegra series are some examples

of smartphone SoCs. The Raspberry Pi 2 uses the Broadcom BCM2836

SoC. The Open Cores community has created a number of SoCs.

1.2.2 Structure of System on Chip: Design Flow

SoC design flow structure is as shown in the following figure 1.2

Figure 1.2 SoC design flow structure

The goal of the SoC design flow is to build the hardware and software of

SoC designs. In general, the design pipeline of SoCs includes the following

steps:

• Hardware and Software Modules: SoC hardware blocks are made up

of pre-qualified hardware components and software modules that are

combined in a software development environment. For the

development of the modules, hardware description languages like as

Verilog, VHDL, and SystemC are utilised.

• Functional Verification: Before being sent to the foundry, the SoCs

are tested for logic accuracy.

9

SOC and Raspberry PI • Verify hardware and software designs: Engineers have used FPGA,

simulation acceleration, emulation, and other technologies to verify

and debug the hardware and software of SoC designs.

• Place and Route: After the SoC has been debugged, the next step is to

place and route the whole design onto the integrated circuit before it

is sent to manufacture. Full custom, standard cell, and FPGA

technologies are widely used in the fabrication process.

1.3 SOC PRODUCTS

This section describes various SoC products such as FPGA, GPU, APU

and compute unit in detail.

1.3.1 FPGA

Field Programmable Gate Array is the abbreviation for FPGA. It's an

integrated circuit that may be configured by a user after it's been created for

a specific purpose. Adaptive logic modules (ALMs) and logic elements

(LEs) are coupled via programmable interconnects in modern FPGAs.

These blocks combine to form a physical array of logic gates that can be

configured to execute a variety of tasks. This distinguishes them from other

types of microcontrollers or Central Processing Units (CPUs), whose

configuration is fixed and cannot be changed by the manufacturer. FPGA

overview is shown in the figure 1.3 below

Figure 1.3 An overview of FPGA

The early programmable circuits were quite basic, consisting solely of logic

gates. This was sufficient to execute a variety of logical functions with zeros

and ones as inputs and outputs. Programmable circuits became increasingly

and more powerful over time. You programme logic cells that can act as

registers, adders, multiplexers, or lookup tables in programmable circuits.

10

Physical Computing and

IoT Programming

10

While the circuit is running, the way the cells work and the structure of the

cells can both be altered. A circuit can be reprogrammed to fulfil several

roles, including those of an ARM processor, a network interface card, or a

video encoder, to mention a few. Figure 1.4 shows the adaptive logic

module of FPGA.

Figure 1.4 Adaptive Logic Module of an Altera/Intel FPGA

1.3.1.1 Working of FPGA

The FPGAs are made up of logical modules that are linked together through

routing channels. Each module is made up of a programmable lookup table

that is used to manipulate the elements that make up each cell and perform

logical functions on those elements. Each cell, in addition to the lookup

table, contains cascaded adders that allow addition to be performed.

Subtraction can also be accomplished by altering the input's logical states.

There are additionally registers (logical elements used to conduct the most

basic memory functions) and multiplexers in addition to these (switching

elements).

Depending on the manufacturer model, FPGAs can also incorporate static

and dynamic on-chip memory. CPU cores, memory controllers, USB

controllers, and network cards are among the ready-to-use components

found in FPGAs. There is no need to include these components in the FPGA

framework because they are so widely used. Instead, you can use a

component that has already been made.

1.3.1.2 What can you do using FPGA programming?

FPGAs are primarily employed in the development of application-specific

integrated circuits (ASICs). To begin, you must create the circuit's

architecture. The prototype is then built and tested using an FPGA. Errors

are reversible. Once the prototype has proven to be functional, an ASIC

project based on the FPGA design is produced and fabricated. Because

manufacturing an integrated circuit is a complex and time-consuming

procedure, this helps you to save time. It also saves money because a single

FPGA can handle multiple versions of the same project. In this regard, it's

11

SOC and Raspberry PI worth noting that modern Tensor Processing Units (TPUs), often known

as crypto currency miners, were first designed as FPGAs and only then

built.

In real-time systems, when response time is critical, FPGAs are also used.

Response time is not fixed in ordinary CPUs, thus you never know when

you'll get a response once the initial signal comes. Real-time operating

systems are used to reduce it or keep it within a certain range. Even yet, in

cases requiring a quick response time (sub milliseconds), this falls short. To

solve this problem, the requested algorithm must be implemented in FPGA

using combinational or sequential logic to guarantee a consistent response

time of less than milliseconds. Once ready, a real-time system designed in

FPGA can be changed and pushed into production. This method will result

in a considerably speedier and more energy-efficient integrated circuit.

FPGAs are also employed in applications where the hardware configuration

is subject to change and a circuit that can adapt to these changes is required.

FPGA becomes an obvious alternative if your hardware supplier’s move

and the new hardware does not have the needed interface.

1.3.1.3 How to program FPGAs?

It's possible that the term "FPGA programming" is a misleading. After all,

unlike CPUs and GPUs, there is no true program to run sequentially. FPGA

programming is designing a hardware architecture that can run a given

algorithm and describing it using a hardware description language (HDL).

As a result, unlike normal programs executed by CPUs or GPUs, the

building blocks of this algorithm will not be a memory register and a set of

operations to be done. Low-level elements such as logic gates, adders,

registers, and multiplexers will make up a "FPGA program."

This provides you with a lot of versatility. If your data type is 20 bits, for

example, you can only use 20-bit instructions to conduct operations. In the

realm of CPUs, there are only manufacturer-set registers and instructions

that cannot be modified. You can change to the data type in FPGAs, on the

other hand, because you design the hardware architecture yourself.

You can also use general-purpose CPUs to perform processes that are either

complex or time-consuming. CPUs, for example, conduct block cyphers

and cryptographic tasks in many cycles, taking substantially longer than

FPGAs.

1.3.1.4 Languages used in FPGA programming

Specific languages, like as VHDL or Verilog, are used to programme

FPGAs. The syntax of VHDL is more close to Pascal than C, allowing for

programming that is distinct from that of traditional high-level languages.

Verilog, on the other hand, is similar to C, making it more intuitive and

user-friendly for those with no prior familiarity with low-level

programming.

12

Physical Computing and

IoT Programming

12

VHDL is an obsolete language with a number of drawbacks, one of which

being the difficulty in determining whether the architecture works as

planned. Python is used to generate chunks of the code in various

applications to make our lives easier. Of course, everything could be written

in VHDL, but Python is more user-friendly.

The HDL simulator is the most important tool for designing hardware. It

enables you to simulate how the architecture functions using sample input

data. As a result, you can see how the data flows. The HDL simulator is

particularly important since compiling a given hardware description into an

FPGA board and programming the board itself, even for a basic programme,

might take a long time. You can use the simulator to extensively test the

algorithm you wish to put on an FPGA board.

1.3.1.5 FPGA Architecture

A typical FPGA design (Figure 1.5) is made up of thousands of basic

elements called configurable logic blocks (CLBs), which are connected by

a system of programmable interconnects called a fabric that routes signals

between CLBs. The FPGA and external devices are connected using

input/output (I/O) blocks.

The CLB is also known as a logic block (LB), a logic element (LE), or a

logic cell (LC), depending on the manufacturer.

Figure 1.5: The fundamental FPGA architecture

A CLB is made up of numerous logic blocks (see Figure 1.6). An FPGA's

lookup table (LUT) is a distinguishing feature. LUTs with four to six input

bits are commonly utilised, and they hold a predefined list of logic outputs

for any combination of inputs. Multiplexers (mux), full adders (FAs), and

flip-flops are all commonly used logic functions.

13

SOC and Raspberry PI

Figure 1.6: A simplified CLB: The four-input LUT is formed from two

three-input units

The number and location of components in the CLB vary depending

on the device; in the simplified example in Figure 1.6, during FPGA

programming, two three-input LUTs (1), an FA (3), and a D-type flip-

flop (5), as well as a standard mux (2) and two muxes, (4) and (6), are

configured.

There are two modes of operation for this reduced CLB. The LUTs are

merged with Mux 2 to produce a four-input LUT in normal mode, and

the LUT outputs are provided as inputs to the FA along with a carry

input from another CLB in arithmetic mode. Mux 4 switches between

the FA and LUT outputs. The D flip-flop in Mux 6 decides whether the

operation is asynchronous or synchronised to the FPGA clock.

CLBs in current-generation FPGAs can combine for more complicated

operations such as multipliers, registers, counters, and even digital

signal processing (DSP) capabilities; CLBs can combine for more

sophisticated operations such as multipliers, registers, counters, and

even DSP functions.

1.3.1.6 FPGA Applications

FPGAs are well-suited to a variety of markets because to their

programmability. Xilinx, as the industry leader, provides wide range

of solutions that include FPGA devices, powerful software, and

configurable, ready-to-use IP cores for markets and applications

including:

• Aerospace and Defense - FPGAs for image processing, waveform

synthesis, and partial reconfiguration for SDRs that are radiation-

tolerant.

• ASIC Prototyping - ASIC prototyping with FPGAs allows for

quick and accurate SoC system modelling and embedded

software verification.

14

Physical Computing and

IoT Programming

14

• Automobiles - Silicon and IP solutions for gateway and driving

assistance systems, as well as comfort, convenience, and in-vehicle

infotainment.

• Broadcast & Pro AV - With Broadcast Targeted Design Platforms and

solutions for high-end professional broadcast systems, you can adapt

to changing requirements faster and extend product life cycles.

• Consumer Electronics - Affordably priced technologies that enable

next-generation, full-featured consumer applications such convergent

handsets, digital flat panel display, information appliances, home

networking, and residential set-top boxes.

• Data Center - Designed for high-bandwidth, low-latency servers,

networking, and storage applications to boost cloud deployment

value.

• Network Attached Storage (NAS), Storage Area Network (SAN),

servers, and storage appliances solutions for high-performance

computing and data storage.

• Industrial - Xilinx FPGAs and targeted design platforms for

Industrial, Scientific, and Medical (ISM) enable higher degrees of

flexibility, faster time-to-market, and lower overall non-recurring

engineering costs for a wide range of applications including industrial

imaging and surveillance, industrial automation, and medical imaging

equipment (NRE).

• Wired Communications - Wired Communications' end-to-end

solutions cover reprogrammable networking linecard packet

processing, framer/MAC, serial backplanes, and more.

• Wireless Communications - RF, baseband, connection, transport, and

networking solutions for wireless equipment, including WCDMA,

HSDPA, WiMAX, and other standards.

1.3.1.7 Artificial Intelligence: The next frontier for FPGAs

FPGAs are now gaining traction in another field: artificial intelligence (AI)

using deep neural networks (DNNs) (AI). It needs a lot of processing

resources to run DNN inference models. GPUs are frequently used to speed

up inference processing, but in some circumstances, high-performance

FPGAs may surpass GPUs when it comes to evaluating massive amounts

of data for machine learning.

Microsoft is already utilizing Intel FPGA flexibility for AI acceleration.

Customers can use Microsoft Azure cloud services to access Intel Stratix

FPGAs as part of Project Brainwave. These FPGAs have been configured

specifically for running deep learning models on cloud servers with these

FPGAs. Developers can use the Microsoft service to tap into the capabilities

of FPGA chips without having to buy or configure additional gear or

15

SOC and Raspberry PI software. Developers can instead use open-source tools like the Microsoft

Cognitive Toolkit or the Tensor Flow AI programming framework.

1.3.1.8 Benefits by using FPGAs

i] Flexibility

• Every time the device is powered up, the FPGA functionality

can vary. So, if a design engineer wants to make a modification,

all they have to do is download a new configuration file into the

device and try it out.

• Frequently, updates to the FPGA can be made without the need

for costly PC board replacements.

• ASSPs and ASICs have fixed hardware functionality that

cannot be modified without a significant financial and time

investment.

ii] Acceleration

• Improve your system's performance and/or get items to market

faster.

• In comparison to ASICs, FPGAs are available “off the shelf”

(which require manufacturing cycles taking many months).

• OEMs can deploy systems as soon as the design is operational

and proven because to FPGA flexibility.

• FPGAs provide CPUs with off-load and acceleration features,

allowing the entire system to run faster.

iii] Integration

• On-die CPUs, transceiver I/Os at 28 Gbps (or faster), RAM

blocks, DSP engines, and other features are available in today's

FPGAs. More functionality in the FPGA mean fewer devices on

the circuit board, which improves reliability by decreasing

device failures.

iv] Total Cost of Ownership (TCO)

• While ASICs are less expensive per unit than FPGAs, they

require a non-recurring expense (NRE), expensive software

tools, specialist design teams, and extended production cycles

to produce.

• Long lifecycles (15 years or more) are supported by Intel

FPGAs, eliminating the cost of rebuilding and requalifying

OEM production equipment whenever one of the electronic

components on-board becomes obsolete (EOL).

16

Physical Computing and

IoT Programming

16

• FPGAs lower risk by allowing prototype systems to be shipped

to clients for field testing while still allowing for quick changes

before ramping up to volume production.

1.3.2 GPU

The CPU (central processing unit) is referred to as a computer's brain and

GPU its soul. GPUs, on the other hand, have broken out from the limits of

the PC over the last decade.

GPUs have sparked a global AI craze. They've evolved into an important

component of current supercomputing. They've been incorporated into new

hyper scale data centers that are expansive. They've evolved into

accelerators, speeding up everything from cryptography to networking to

artificial intelligence.

They also continue to drive gaming and professional graphics

advancements in workstations, desktop PCs, and a new generation of

laptops.

1.3.2.1 What is a GPU?

GPUs (graphics processing units) are now much more than the PCs in which

they first appeared, but they are still based on a much older concept known

as parallel computing. GPUs are extremely powerful because of this.

CPUs, to be sure, are still necessary. CPUs are quick and versatile, and they

race through a series of tasks that require a lot of interaction. For example,

retrieving data from a hard drive in response to a user's keystrokes.

GPUs, on the other hand, divide complex problems into thousands or

millions of smaller tasks and solve them all at once. This makes them ideal

for graphics, where textures, lighting, and shape rendering must all be done

at the same time to keep images moving across the screen.

Figure 1.7: Difference between CPU and GPU

1.3.2.2 Difference between CPU and GPU

17

SOC and Raspberry PI
CPU GPU

Full Form: Central Processing

Unit

Full Form: Graphics Processing

Unit

Few cores Many cores

Low latency High throughput

Good for serial processing Good for parallel processing

Can do a limited operations at

once

Can do thousands of operations

at once

Because the CPU only has a few cores and a lot of cache memory, it can

only process a few software threads at a time, whereas the GPU consisting

of hundreds of cores thus handling thousands threads at once.

Parallel computing, which was once an esoteric technology, is now

available thanks to GPUs. It's a technology with an illustrious pedigree that

includes names like Seymor Cray, the father of supercomputing. GPUs put

this idea to work in the desktops and gaming consoles of over a billion

gamers, rather than taking the form of hulking supercomputers.

1.3.2.3 What does a GPU do?

The graphics processing unit (GPU) has emerged as one of the most

important types of computing technology for both personal and business

computing. The GPU, which was created for parallel processing, is used in

a variety of applications, including graphics and video rendering. GPUs are

becoming more popular for use in creative production and AI, despite being

best known for their gaming capabilities.

GPUs were created with the intention of speeding up the rendering of 3D

graphics. They improved their capabilities by becoming more flexible and

programmable over time. With advanced lighting and shadowing

techniques, graphics programmers were able to create more interesting

visual effects and realistic scenes. Others began to use GPUs to dramatically

speed up additional workloads in high-performance computing (HPC), deep

learning, and other areas.

1.3.2.4 Unified GPU Architecture

A parallel array of multiple programmable processors encourages unified

GPU architectures. Unlike earlier GPUs, which had distinct processors

specialized to each processing type, they combine vertex, geometry, and

pixel shader processing and parallel computing on the same processors. For

texture filtering, rasterization, raster operations, anti-aliasing, compression,

decompression, display, video decoding, and high-definition video

18

Physical Computing and

IoT Programming

18

processing, the programmable processor array is intimately linked with

fixed function processors.

Many core GPUs have a distinct architectural design point than multicore

CPUs, focusing on efficiently running many parallel threads on many

processor cores. More of the per-chip transistor budget is given to

computation, and less to on-chip caches and overhead, by using many

simpler cores and optimizing for data-parallel behavior among groups of

threads.

The logical pipeline, which consists of discrete independent programmable

stages, is mapped onto a physical dispersed array of processors in shown in

the figure 1.8.

Figure 1.8 Logical pipeline mapped to physical processors. On the array of

unified processors, the programmable shader stages run, and the logical

graphics pipeline dataflow recirculates via the processors.

Processor Array

Many processor cores are grouped into multithreaded multiprocessors in a

unified GPU processor array. A GPU with 112 streaming processor (SP)

cores structured as 14 multithreaded streaming multiprocessors (SM) is

shown in Figure 1.9. Each SP core is extremely multithreaded, with 96

concurrent threads and their hardware states to manage. An interconnection

network connects the CPUs to four 64-bit-wide DRAM partitions. Each SM

is equipped with eight SP cores, two SFUs, instruction and constant caches,

a multithreaded instruction unit, and shared memory. This is the NVIDIA

GeForce 8800's implementation of the Tesla architecture. Traditional

graphics applications such as vertex, geometry, and pixel shading run on the

unified SMs and SP cores, while computation programs operate on the same

processors.

19

SOC and Raspberry PI

Figure 1.9 Basic unified GPU architecture

By adjusting the number of multiprocessors and memory partitions, the

processor array design can be scaled to smaller and bigger GPU systems.

Seven clusters of two SMs share a texture unit and a texture L1 cache in

Figure 1.9. Given a set of coordinates into a texture map, the texture unit

returns filtered results to the SM. Because the filter regions of support for

subsequent texture requests frequently overlap, a tiny streaming L1 texture

cache can help minimize the number of queries to the memory system. A

GPU-wide interconnection network connects the processor array to raster

operation (ROP) processors, L2 texture caches, external DRAM storage,

and system memory. The number of processors and memories in a GPU

system can be scaled to meet the needs of various performance and market

sectors.

1.3.2.5 Applications of GPU

GPUs were largely employed to accelerate real-time 3D graphics

applications, such as gaming, two decades ago. Computer experts believed

that GPUs had the potential to address some of the world's most complex

computing challenges as the twenty-first century began.

The general-purpose GPU era began as a result of this insight. Graphics

technology is now being used to solve an ever-widening range of

challenges. GPUs are more programmable than they've ever been, allowing

them to speed up a wide range of applications beyond graphics rendering.

• GPUs for gaming: With hyper realistic graphics and enormous,

sophisticated in-game worlds, video games have become more

computationally intensive. With the rise of virtual reality games and

improved display technologies such as 4K panels and high refresh

rates, graphics processing demands are rapidly increasing. GPUs can

render visuals in both 2D and 3D modes. Games can be played at

20

Physical Computing and

IoT Programming

20

greater resolutions, quicker frame rates, or both with superior visual

performance.

• GPUs for Video Editing and Content Creation: Long rendering times

have plagued video editors, graphic designers, and other creative

professions for years, sapping computing resources and stifling

creative flow. GPUs' parallel processing now makes rendering video

and graphics in higher-definition formats faster and easier.

• GPUs for Machine Learning: AI and machine learning are two of the

most interesting applications for GPU technology. GPUs can give

amazing acceleration in workloads that take use of GPUs' highly

parallel nature, such as image recognition, because they have such a

large amount of processing capability. Many of today's deep learning

solutions rely on GPUs and CPUs working together.

1.3.3 APU

An APU is a 64-bit microprocessor that combines the processing

capabilities of a CPU (Central Processing Unit) and a GPU (Graphics

Processing Unit) onto a single chip. While APU may sound like any other

computer processor, it is only used by AMD as the brand name for the

CPU/GPU combo chips they produce. To understand what an APU is, it's

helpful to know a little about the two CPUs it combines.

The CPU, also known as the "brain" of the computer, is the main processing

unit that receives and executes instructions from software or applications. It

also transmits instructions to other elements of the system, instructing them

on what they should do. It is the most important component of a computer

system; without it, the computer would be rendered useless.

The GPU performs comparable tasks to the CPU, but it only handles

graphics-related data and generates graphical output. A computer without a

GPU is blind, with no video output, just as a computer without a CPU is.

The CPU and GPU are two independent components in most systems.

Except that the data transfer rate will improve if the two processors are

closer to each other, there isn't much of a problem with this. Furthermore,

having these two units running at the same time results in higher power

usage, which AMD is well aware of. They released their first high-

performance and energy-efficient processor, the APU, in 2011, which

merged the benefits of the CPU and GPU into a single chip.

1.3.3.1 Evolution of APU

AMD has been developing structured and efficient architecture for their

CPUs and GPUs as a major manufacturer of computer hardware. Their

APUs is usually a combination of their existing CPU and GPU designs. The

resulting processor outperforms the typical CPU and GPU when used

together. It was formerly known as the "Fusion" before being renamed the

"APU." The term was eventually changed to APU because to a trademark

infringement concern.

21

SOC and Raspberry PI AMD makes two kinds of APUs: one for high-performance devices and the

other for low-power devices. Llano was the codename for the first

generation APU for high-performance devices, which contained K10 CPU

cores and a Radeon HD 6000-series GPU. Similarly, the first APU for low-

power devices, codenamed Brazos, had the Bobcat microarchitecture and a

Radeon HD 6000-series GPU. Trinity, AMD's second generation of high-

performance APU, and Brazos 2.0, AMD's second generation of low-power

APU, were released in 2012. As AMD's CPU and GPU architecture

improved, the APU improved as well, with performance at the forefront of

each improvement. Following versions used the most up-to-date

architecture available at the time, and each iteration saw significant

advancements over the previous one. Apart from performance, AMD has

increased the upgradability of its products. Previously, future CPU upgrades

were not conceivable, but starting with the APU Ryzen series, this was no

longer the case. Renoir, the 2020 release, is built on the Zen 2 core

architecture and features Vega 8 graphics.

APUs are still evolving today, and with AMD's newest and more powerful

architectures, the next generation of APUs is on the way.

1.3.3.2 Benefits over CPU and GPU

The game-changing technology of the APU is a key advancement in the

computing industry, with various advantages over the CPU + GPU

configuration.

Improved performance: The data transfer rate was greatly enhanced by

combining the CPU and GPU in the same chip because they now share the

same bus and resources. OpenCL (Open Computer Language), a standard

interface for parallel computing that makes use of the computing power

supplied by GPUs, is also supported by APUs. Tasks that demand the high

processing power of a CPU and the fast image processing of a GPU can

benefit from the performance of an APU's multi-core CPU and GPU.

Power-efficient: Not only do combining two chips reduce space, but it also

saves electricity. Apart from enhancing the APU's performance, AMD is

constantly working to reduce the chip's power consumption, despite the fact

that it is already low. Low Thermal Design Power is a feature of newer

models (TDP). The Ryzen Embedded 1102G, for example, has the lowest

TDP of only 6W.

Cost-effective: The cost benefit of AMD's APU over a CPU and GPU

combination is arguably the most significant. Buying an APU is often less

expensive than buying a CPU and GPU individually, with prices ranging

from $100 to $400 depending on the specifications. Though the higher-end

components are more expensive, they are still less expensive than the cost

of a CPU and GPU with the same level of performance. This applies to

future upgrades as well. Due to AMD's permissive attitude toward APU

upgradability and compatibility, consumers can save a lot of money by

replacing just one processor rather than both.

22

Physical Computing and

IoT Programming

22

1.3.3.3 What sectors can benefit from APUs?

Accelerated Processing Units have been used in a variety of areas,

including:

• Software Development

Software developers can employ APUs to create heterogeneous

computing architectures that blend CPU and GPU technology. This

combination allows them to work on projects that require a high level

of speed and processing power. Today's APUs also supports Open

Computing Language (OpenCL) pictures, which helps. OpenCL is a

standard interface for task- and data-based parallelism in parallel

computing. The majority of activities necessitate a lot of computer

power (from CPUs) and quick picture processing (a GPU feature).

However, CPUs and GPUs rarely process data at the same time. The

process is sped up by APUs, which combine both capabilities and

allow parallel processing.

APUs are also less expensive than buying a CPU and GPU, making

them perfect for software developers who don't need a lot of

processing power.

• Visual content creation

The majority of today's digital material is mainly visual. Digital

content creators may quickly create high-quality videos that elevate

the user experience with an APU-powered computer.

Advanced Micro Devices (AMD), the company that invented APUs,

allows content makers to employ built-in universal video decoders

(UVDs) to enhance video content so that it may be displayed on a big

screen without losing quality.

APUs allow content creators to clean up photos and movies in

addition to offering high-quality displays, simplifying and

streamlining the content creation process.

• Gaming

APUs for gaming are also handy for gamers who want to build their

own computers. These enable them to take advantage of improved and

quicker graphics processing, enhancing their gaming experience

without breaking the bank.

1.3.3.4 Is it a Better Processor?

APUs have been found in a variety of devices, including desktops, laptops,

servers, mobile phones, and gaming consoles. For a decade, businesses and

consumers have supported this heterogeneous chip. Can it, however, truly

replace the CPU and GPU? In the end, it would be determined by the wants

and demands of the user.

23

SOC and Raspberry PI Consumers, PC builders, and budget gamers can take use of APU's

advantages. The majority of APUs are capable of delivering adequate

performance. In fact, it has the ability to exceed mid-range CPUs and GPUs.

It's an excellent alternative for customers who don't want intense graphics

or the maximum available CPU speed. It will also work well with ordinary

PCs at home and in the business. AMD continues to create sophisticated

APUs, with latest models capable of handling graphics-intensive tasks.

When it comes to intensive gaming, though, an APU will not suffice. It's

still unable to match the graphical experience provided by high-end discrete

graphics cards. An APU, on the other hand, would be an excellent choice

for low-budget, entry-level PC building and gaming.

Although an APU cannot totally replace the CPU and GPU, it is a suitable

high-performance, low-power option in many circumstances. As AMD's

designs improve and new technologies emerge, it wouldn't be surprising if

future generations of the APU can completely replace both the CPU and the

GPU.

1.3.4 Compute Units

Compute units are comparable to host groups, but they have the added

feature of granularity, allowing cluster-wide structures that mimic network

architecture to be constructed. Task scheduling that considers processing

unit resource needs optimizes job placement based on the underlying system

architecture, eliminating communications bottlenecks. When conducting

communication-intensive parallel operations across multiple hosts,

compute units are extremely handy. Compute units represent the topology

of a cluster network for workloads that require a lot of communication

between processes. Computing units, for example, can help reduce network

latency and take use of fast interconnects by putting all job operations in the

same rack, rather than making several network hops.

Availability of resources Strings can be used to indicate compute unit

requirements such as performing a job solely (excl), evenly distributing a

job across many compute units (balancing), or selecting compute units

depending on other criteria.

A computation unit is made up of 64 shader processors and four TMUs. The

compute unit is independent from the render output units, yet it feeds into

them (ROPs). A CU Scheduler, a Branch & Message Unit, four SIMD

Vector Units (each 16-lane wide), four 64KiB VGPR files, one scalar unit,

a 4 KiB GPR file, a 64 KiB local data share, four Texture Filter Units,

sixteen Texture Fetch Load/Store Units, and a 16 KiB L1 Cache are all

contained in each Compute Unit. A 16KB L1 instruction cache and a 32KB

L1 data cache are shared by four computing units and are both read-only. A

SIMD-VU can process 16 items at a time (per cycle), but an SU can only

process one element at a time (per cycle). In addition, the SU performs other

tasks like as branching.

Every SIMD-VU has its own private memory where its registers are stored.

There are two sorts of registers: scalar registers (s0, s1, etc.), which contain

24

Physical Computing and

IoT Programming

24

four bytes of data, and vector registers (v0, v1, etc.), which hold 64 bytes of

data. Every operation on the 64 numbers in the vector registers is performed

in simultaneously. When you work with them, you're truly working with 64

inputs. For instance, suppose you're working on 64 separate pixels at the

same time (for each of them the inputs is slightly different, and thus you get

slightly different color at the end). There are 512 scalar registers and 256

vector registers in each SIMD-VU.

1.3.4.1 Compute unit configuration

Compute unit configuration must meet the following requirements to ensure

consistency:

• Hosts and host groups are only found in the highest granularity

compute unit type.

• At most one compute unit of the finest granularity's membership list

contains hosts.

• The same type of compute units (or hosts) is members of all compute

units of the same type.

1.3.4.2 Where to use compute units?

The following parameters in LSF configuration files can be defined using

LSF compute units:

• The compute unit type allowed for the queue is EXCLUSIVE in

lsb.queues.

• The hosts on which jobs from this queue can be run are listed in

lsb.queues as HOSTS.

• RES REQ in lsb.queues is used to track resource requirements for

queue compute units.

• For application profile compute unit resource needs, see RES REQ in

lsb.applications.

1.3.4.3 Different configurations of compute unit

Customers can select from the following compute unit configurations based

on their requirements as shown in the following Table I:

Table I: Compute unit configurations

Compute Unit Configuration Size Parameter

Value

Lite edition 1 CPU Core; 3072 MB

Main memory

lite

Professional

edition

2 CPU Cores; 4096 MB

Main memory

pro

25

SOC and Raspberry PI

Compute Unit Configuration Size Parameter

Value

Premium edition 4 CPU Cores; 8192 MB

Main memory

prem

Premium Plus

edition

8 CPU Cores; 16384

MB Main memory

prem-plus

1.4 ARM 8 ARCHITECTURE

1.4.1 SoC on ARM 8

A RISC processor is what the ARM processor is. Around 1980, the RISC

was born out of processor development programs at Stanford and Berkeley

universities. Between 1983 and 1985, Acorn Computers Limited in

Cambridge, England, developed the ARM processor. It was the first

commercially available RISC CPU, and it differs significantly from

subsequent RISC architectures.

ARM Limited was founded in 1990 as a distinct company with the sole

purpose of expanding the use of ARM technology. Since then, the ARM has

been licensed to a number of semiconductor manufacturers throughout the

world. It has established itself as an industry leader in low-power, low-cost

embedded applications. Without the support of hardware and software

development tools, no processor is very valuable. An instruction set

emulator for hardware modeling and software testing and benchmarking, an

assembler, C and C++ compilers, a linker, and a symbolic debugger are all

part of the ARM toolset.

The Acorn RISC Machine

Between October 1983 and April 1985, Acorn Computers Limited in

Cambridge, England, created the first ARM processor. ARM stood for

Acorn RISC Machine at the time and until the foundation of Advanced

RISC Machines Limited (later called simply ARM Limited) in 1990.

Because of the popularity of the BBC (British Broadcasting Corporation)

microcomputer, Acorn had established a strong position in the UK personal

computer market. The BBC micro was an 8-bit microprocessor-based

machine that quickly established itself as the dominant machine in UK

schools following its launch in January 1982 in support of a series of BBC

television programs. It also received enthusiastic support from the hobbyist

community and was adopted by a number of research labs and higher

education institutions.

Following the success of the BBC micro, Acorn's developers looked at

different microprocessors to use in a successor computer, but all of the

commercial options were missing. In 1983, 16-bit CISC microprocessors

were available, although they were slower than ordinary memory

26

Physical Computing and

IoT Programming

26

components. They also featured instructions that required many clock

cycles (in some cases hundreds of clock cycles) to complete, resulting in

extremely lengthy interrupt latency. The BBC micro profited immensely

from the 6502's fast interrupt response, thus Acorn's designers were

adamant that this feature of the processor's performance not be

compromised.

The design of a proprietary microprocessor was contemplated as a result of

these problems with commercial microprocessor products. The main

stumbling issue was the fact that the Acorn team was well aware that

commercial microprocessor programmes had consumed hundreds of man-

years of design time. Because Acorn was a small company with only about

400 people, it couldn't consider such a large investment. It had to come up

with a superior design in a fraction of the time, with no prior experience in

bespoke chip design other than a few modest gate arrays for the BBC micro.

The papers on the Berkeley RISC I sprang out of nowhere in this seemingly

improbable scenario. This was a processor that had been built in less than a

year by a few postgraduate students and was competitive with the leading

commercial products. There were no complex instructions to compromise

the interrupt latency because it was fundamentally simple. It also came with

supporting arguments that suggested it could be a harbinger of things to

come, yet technical merit, no matter how strongly backed by academic

reasoning, is no guarantee of commercial success.

The ARM was born as a result of a fortunate confluence of events, and it

went on to become the main component of Acorn's product line. It later

contributed its name to the firm founded to expand its market beyond

Acorn's product line following a careful revision of the acronym expansion

to Advanced RISC Machine. Despite the name change, the architecture is

still quite similar to the Acorn design.

1.4.2 ARM 8 Architecture Introduction

1.4.2.1 Architectural inheritance

The Berkeley RISC I and II and the Stanford MIPS (which stands for

Microprocessor without Interlocking Pipeline Stages) were the only

examples of RISC architectures at the time the first ARM chip was

designed, though some earlier machines, such as the Digital PDP-8, the

Cray-1, and the IBM 801, which predated the RISC concept, shared many

of the characteristics that later came to be associated with the RISC concept.

A number of Berkeley RISC design concepts were included into the ARM

architecture, although others were discarded. A load-store architecture,

fixed-length 32-bit instructions, and 3-address instruction formats were all

used.

The following features were used on Berkeley RISC concepts that were

rejected by ARM designers:

27

SOC and Raspberry PI • Register windows

The Berkeley RISC processors' register banks contained a vast number of

registers, with 32 of them visible at any given moment. The visible 'window'

was shifted to provide each operation access to fresh registers, minimizing

the data traffic between the CPU and memory caused by register saving and

restoring.

The main issue with register windows is the high amount of chip space used

up by the large number of registers. Although the shadow registers used to

manage exceptions on the ARM are not too dissimilar in concept, this

functionality was rejected on cost concerns.

Because it was included in the Berkeley prototypes in the early days of

RISC, the register window technique was firmly connected with the RISC

concept, although only the Sun SPARC architecture has embraced it in its

original form since then.

• Delayed branches

Branches in pipelines obstruct the smooth flow of instructions, producing

problems. Most RISC processors address the issue by employing delayed

branches, which take effect after the next instruction has completed. Delay

branches have the drawback of removing the atomicity of individual

instructions. They function well on single-issue pipelined processors, but

they don't scale well to super-scalar implementations and can cause

problems when combined with branch prediction methods.

Delay branches were not utilized on the original ARM because they made

exception handling more complicated; however, this has proved out to be a

smart decision in the long run because it simplifies re-implementing the

architecture with a new pipeline.

• Single-cycle execution of all instructions

Although the ARM can process most data in a single clock cycle, many

other instructions require numerous clock cycles. The reasoning behind this

was based on the fact that even a basic load or store instruction requires at

least two memory accesses when using a single memory for both data and

instructions (one for the instruction and one for the data). As a result, single-

cycle operation of all instructions is only achievable with separate data and

instruction memory, which were deemed too costly for the ARM

application areas.

Instead of executing all instructions in a single cycle, the ARM was

designed to use the fewest amount of cycles possible for memory accesses.

Where this was more than one, the extra cycles were employed to do

something beneficial, such as enable auto-indexing addressing modes,

whenever possible. This minimizes the overall amount of ARM instructions

needed to complete any given series of operations, resulting in improved

performance and code density.

28

Physical Computing and

IoT Programming

28

The need to keep the design basic was a major priority for the original ARM

design team. Acorn designers had only worked with gate arrays with

complexities of up to 2,000 gates prior to the first ARM processors;

therefore the full-custom CMOS design medium was treated with caution.

When travelling into unfamiliar area, it's best to limit the hazards that you

can control, because there are still major risks from things that aren't well

understood or fundamentally uncontrollable.

The ARM's simplicity is more visible in the hardware structure and

implementation than in the instruction set architecture. From the perspective

of the programmer, it manifests itself as conservatism in the ARM

instruction set design, which, although adhering to the essential principles

of the RISC approach, is less radical than many subsequent RISC designs.

The ARM's power-efficiency and tiny core size are due to the combination

of basic hardware with an instruction set that is based on RISC ideas but

preserves a few essential CISC elements, resulting in a substantially higher

code density than a pure RISC.

1.4.2.2 About ARM Architecture

The ARM architecture, defines the behaviour of an abstract machine known

as a Processing Element, or PE for short. Implementations that follow the

ARM architecture must follow the Processing Element's defined behaviour.

It is not intended to specify how to construct a PE implementation or to limit

the scope of such implementations to the behaviours stated.

The programmer-visible behaviour of an implementation that is consistent

with the ARM architecture must be the same as a simple sequential

execution of the program on the processor element, unless the architecture

specifies otherwise. The execution time of the program is not included in

this programmer-visible behaviour.

• An associated debug architecture

• Corresponding trace architectures, which describe trace macrocells

that implementers can implement with the associated processor

hardware, are all defined in the ARM architecture.

The ARM architecture is RISC architecture with the following RISC

architecture characteristics:

• A big file of uniform registers.

• A load/store architecture, in which data-processing operations are

performed on register contents rather than memory contents directly.

• Modes with simple addressing, where all load/store addresses are

determined only by register contents and instruction fields

The architecture specifies how the Processing Element interacts with

memory, which includes caches, as well as a memory translation

29

SOC and Raspberry PI mechanism. It also explains how several Processing Elements in a system

interact with one another and with other observers.

The ARM architecture allows for implementations at a variety of

performance levels. The ARM architecture is known for its small

implementation size, high performance, and low power consumption.

Backwards compatibility, paired with the freedom to implement in a wide

range of conventional and specific use cases, is a key characteristic of the

ARMv8 architecture.

• AArch64, a 64-bit execution state compatible with prior versions of

the ARM architecture

• AArch32, a 32-bit execution state compatible with previous

generations of the ARM architecture

1.4.2.3 Architecture Profiles

Since its introduction, the ARM architecture has changed tremendously,

and ARM continues to improve it. To date, eight major versions of the

architecture have been defined, with version numbers ranging from 1 to 8.

The first three versions are no longer in use.

The 64-bit and 32-bit execution states are referred to as AArch64 and

AArch32, respectively.

• AArch64: This is the 64-bit execution state, which means that

addresses are stored in 64-bit registers and that instructions in the base

instruction set can operate 64-bit registers. The A64 instruction set is

supported by the AArch64 state.

• AArch32: This is the 32-bit execution state, which means that

addresses are stored in 32-bit registers and instructions in the base

instruction sets are processed using 32-bit registers. The T32 and A32

instruction sets are supported by the AArch32 state.

Three architecture profiles are defined by ARM:

A: Application profile

• Supports a Memory Management Unit-based Virtual Memory System

Architecture (VMSA) (MMU)

• AArchv8-A is the name given to an ARMv8-A implementation.

• The A64, A32, and T32 instruction sets are supported.

R: Real time profile

• Based on a Memory Protection Unit in real-time (MPU) it provides

support for Protected Memory System Architecture (PMSA).

• Both A32 and T32 instruction sets are supported.

30

Physical Computing and

IoT Programming

30

M: Microcontroller profile

• Provides a programmers' model for low-latency interrupt

processing, including hardware register stacking and support

for interrupt handlers written in high-level languages.

• Implements an R-profile PMSA variation.

• Supports a T32 instruction set variant.

1.4.2.4 ARMv8 architectural concepts

ARMv8 makes significant improvements to the ARM architecture while

keeping a high level of compatibility with earlier versions.

The subsections that follow explain fundamental ARMv8 architectural

concepts. Each section begins with an explanation of the concepts that are

used to describe the architecture:

i] Execution state

• The PE execution environment is defined by the Execution

state, which includes:

• The supported register widths.

• The instruction sets that are supported.

• Important features of:

• The model of the outlier.

• The Architecture of the Virtual Memory System

(VMSA).

• The model of the programmers.

The following are the execution states:

• AArch64

• The state of 64-bit execution

• Provides a 64-bit program counter (PC), stack pointer (SPs),

and exception link registers

• Provides 31 64-bit general-purpose registers, of which X30 is

utilized as the procedure link register (ELRs)

• Supports SIMD vector and scalar floating-point calculations

with 32 128-bit registers

• Has a single instruction set, A64

• Support for 64-bit virtual addressing

• Defines a number of PSTATE components that retain PE state

• Defines the ARMv8 Exception model, with up to four

Exception levels, EL0 - EL3, that give an execution privilege

hierarchy Instructions that operate directly on certain PSTATE

elements are included in the A64 instruction set

31

SOC and Raspberry PI • Each system register is given a suffix that corresponds to the

lowest Exception level at which it can be accessed.

• AArch32

• The execution state is 32 bits.

• Provides 13 32-bit general-purpose registers, as well as a 32-bit

PC, SP, and link register in this execution state (LR). Both an

ELR and a procedure link register, the LR is utilized.

• For use in different PE modes, some of these registers contain

numerous banked instances.

• Provides a single ELR for Hyp mode exception returns.

• Supports Advanced SIMD vector and scalar floating-point with

32 64-bit registers.

• Both A32 and T32 instruction sets are included.

• Supports the ARMv7-A exception model, which is based on PE

modes, and translates it to the ARMv8 Exception model, which

is based on Exception levels.

• 32-bit virtual addresses are used.

• The PE state is stored in a single Current Program State Register

(CPSR).

• Interprocessing is the process of switching between the

AArch64 and AArch32 execution states.

Only by changing the Exception level can the PE switch between execution

states. This means that software layers executing at distinct Exception

levels, such as an application, an operating system kernel, and a hypervisor,

might execute in separate execution states.

ii] ARM instruction sets

The potential instruction sets in ARMv8 are determined by the

execution state:

• AArch64: Only one instruction set, A64, is supported by the

AArch64 state. This is a 32-bit instruction set with a fixed

length instruction set.

• AArch32: The following instruction sets are supported by the

AArch32 state:

• A32: This is a 32-bit instruction set with a fixed length

instruction set. It can be used with the ARMv7 instruction set

• T32: This is a variable-length instruction set with both 16-bit

and 32-bit encodings. The ARMv7 Thumb® instruction set is

supported

• Each of these instruction sets is expanded by ARMv8.

32

Physical Computing and

IoT Programming

32

The instruction set that the PE executes is determined by the PE

Instruction set state. SIMD and scalar floating-point instructions are

supported by the ARMv8 instruction sets.

iii] System registers

Control and status information for architected features are provided

through system registers. The naming format for System registers is

<register_name>.<bit_field_name> to identify specific registers, as

well as control and status bits within a register, use bit field name.

Bits can also be expressed numerically in the form <register

name>[x:y] or in the generic form bits[x:y].

In addition, most register names in the AArch64 state include the

lowest Exception level that can access the register as a suffix:

<register_name>_ELx, where x is 0, 1, 2, or 3

 The System registers consists of:

• General system control registers

• Registers for debugging.

• Timer registers that are generic.

• Performance Monitor can optionally register.

• Trace registers are optional.

• Generic Interrupt Controller (GIC) CPU interface registers are

optional.

iv] ARMv8 Debug

 The following are supported by ARMv8:

• Debugging on your own server

The PE generates debug exceptions in this model. The ARMv8

Exception model includes debug exceptions.

• Debugging from the outside

Debug events cause the PE to enter the Debug state in this

model. The PE is managed by an external debugger in the

Debug stage.

Both models are supported by all ARMv8 implementations. The

model chosen by a given user is determined by the debug

requirements at various phases of the product's design and

development life cycle. External debug, for example, may be

utilized during hardware implementation and OS bring-up,

while self-hosted debug could be used during program

development.

33

SOC and Raspberry PI 1.4.2.5 Supported data types

The following integer data types are supported by the ARMv8 architecture:

• Byte: 8 bits

• Halfword: 16 bits

• Word: 32 bits

• Doubleword: 64 bits

• Quadword: 128 bits

Floating-point data types such as half precision, single precision, double

precision, are also supported by the architecture.

It also supports:

• Fixed-point word and doubleword interpretation.

• Vectors, which consist of numerous elements of the same data type

held in a single register.

There are two register files in the ARMv8 architecture:

• A registration file that can be used for general purpose.

• A file with SIMD and floating-point registers.

The available register sizes in each of them are determined by the Execution

state.

In AArch64 state:

• A general-purpose register file comprises 64-bit registers in the

AArch64 state

• These registers can be accessed as 64-bit registers or as 32-bit

registers by using only the bottom 32 bits in many operations.

• There are 128-bit registers in a SIMD and floating-point register file

• The quadword integer data types are applicable only to the

SIMD and floating-point register files.

• The floating-point data types are applicable only to the SIMD

and floating-point register files. Despite the fact that the

AArch64 vector registers provide 128-bit vectors, the effective

vector length depends on the A64 instruction encoding utilized.

In AArch32 state:

• A general-purpose register file comprises 32-bit registers in the

AArch32 state:

• A doubleword can be supported by two 32-bit registers.

• The use of vector formatting is possible.

• 64-bit registers are contained in a SIMD and floating-point register

file:

• The quadword integer and floating-point data types are not

supported in the AArch32 state.

• A 128-bit register is made up of two successive 64-bit registers.

34

Physical Computing and

IoT Programming

34

1.4.2.6 ARM memory model

The ARM memory model supports the following:

• Exception generation on an unaligned memory access is supported by
the ARM memory model.

• Restricting application access to specific memory locations.

• Converting virtual addresses from executable instructions to physical
addresses.

• Switching between big-endian and little-endian interpretation of
multi-byte data.

• Managing the order in which memory accesses are made.

• Caches and address translation structures are under control.

• Multiple PEs accessing shared memory at the same time.

Support for virtual addresses (VA) is conditional on the Execution state, as
follows:

AArch64 state

The Translation Control Register determines the VA range supported by the
AArch64 state, which supports 64-bit virtual addressing. Two distinct VA
ranges with their own translation controls are supported by execution at EL1
and EL0.

AArch32 state

The Translation Control Register determines the VA range supported by the
AArch32 state, which supports 32-bit virtual addressing. The VA range can
be split into two subranges, each with its own translation controls, for
execution at EL1 and EL0.

System software can discover the supported physical address space, which
is IMPLEMENTATION DEFINED. The Virtual Memory System
Architecture (VMSA) can translate VAs to blocks or pages of memory
anywhere within the supporting physical address space, regardless of the
Execution state.

1.5 INTRODUCTION TO RASPBERRY PI

Raspberry Pi is a series of compact single-board computers developed by
the Raspberry Pi Foundation in collaboration with Broadcom in the United
Kingdom. These projects are generally inclined towards teaching and
promoting basic computer science in schools and in developing countries.
Due to its low cost, modularity and open design it finds wide application
ranging from weather monitoring, robotics and many more.

Several generations have been released of Raspberry Pi’s such as Raspberry
Pi Model B (February 2012), followed by Model A, Model B+ (in 2014),
Raspberry Pi 2(February 2015), Raspberry Pi Zero (November 2015),
Raspberry Pi Zero W (On 28 February 2017), Raspberry Pi Zero WH (On
12 January 2018), Raspberry Pi 3 Model B (February 2016), Raspberry Pi 3
Model B+ (2018), Raspberry Pi 4 Model B (released in June 2019),
Raspberry Pi 400 (November 2020) and Raspberry Pi Pico (in January
2021).

35

SOC and Raspberry PI 1.5.1 Introduction to Raspberry Pi

The Raspberry Pi is a fascinating device: it's a fully functional computer

packed into a small and inexpensive compact. Whether you want to use the

Raspberry Pi to surf the web or play games, learn how to write your own

programs, or build your own circuits and physical devices, the Raspberry Pi

– and its incredible community – will be there to help you every step of the

way.

The Raspberry Pi is a single-board computer, which means it's a computer

that's similar to a desktop, laptop, or smartphone but is built on a single

printed circuit board. The Raspberry Pi, like most single-board computers,

is little – it has about the same footprint as a credit card – but that doesn't

mean it's not powerful: it can accomplish everything a larger, more power-

hungry computer can do, just not as rapidly.

The Raspberry Pi family was created out of a desire to promote more hands-

on computer education throughout the world. The Raspberry Pi Foundation,

which was founded by its designers, had no clue it would become so

popular: the first few thousand units manufactured in 2012 to test the waters

were quickly sold out, and millions have been distributed all over the world

in the years afterwards. These circuit boards have been found in homes,

classrooms, businesses, data centers, factories, and even self-driving boats

and space balloons.

Since the initial Model B, other Raspberry Pi variants have been released,

each with enhanced specifications or functionality tailored to a certain use-

case. The Raspberry Pi Zero line, for example, is a miniature version of the

full-size Raspberry Pi that foregoes a few capabilities – notably multiple

USB ports and a wired network interface – in favor of a much smaller

footprint and lower power consumption.

Raspberry Pi is a single-board computer with a compact footprint. The

Raspberry Pi may be used as a little computer by adding peripherals such

as a keyboard, mouse, and display. Raspberry Pi is a popular platform for

real-time image/video processing, IoT applications, and robotics. The

Raspberry Pi is slower than a laptop or desktop computer, but it is still a

computer that can give all of the expected features and abilities while using

very little power.

Raspbian OS is based on Debian and is officially provided by the Raspberry

Pi Foundation. They also offer NOOBS OS for Raspberry Pi. Several Third-

Party OS versions, such as Ubuntu, Archlinux, RISC OS, Windows 10 IOT

Core, and others, can be installed.

Raspbian OS is an approved operating system that may be used for free.

This operating system is well-suited to the Raspberry Pi. Raspbian has a

graphical user interface (GUI) that provides tools for browsing, Python

programming, office, gaming, and more. To save the OS, we should use an

SD card (minimum 8 GB is advised) (operating System).

36

Physical Computing and

IoT Programming

36

Raspberry Pi is more than a computer because it allows developers to access

on-chip hardware, such as GPIOs, to create applications. By using GPIO,

we may connect and control devices such as LEDs, motors, and sensors. It

includes an ARM-based Broadcom Processor SoC as well as an on-chip

GPU (Graphics Processing Unit).

Raspberry Pi's CPU speed ranges from 700 MHz to 1.2 GHz. It also

includes SDRAM on board, which varies from 256 MB to 1 GB. On-chip

SPI, I2C, I2S, and UART modules are also available for the Raspberry Pi.

The Raspberry Pi is available in a variety of versions, which are listed

below:

1. Raspberry Pi 1 Model A

2. Raspberry Pi 1 Model A+

3. Raspberry Pi 1 Model B

4. Raspberry Pi 1 Model B+

5. Raspberry Pi 2 Model B

6. Raspberry Pi 3 Model B

7. Raspberry Pi Zero

The following are the features of the aforementioned versions of Raspberry

Pi that are most commonly used as described in the Table II:

Table II: Features of various versions of Raspberry Pi

Features
Raspberry

Pi Model B+

Raspberry

Pi 2

Model B

Raspberry

Pi 3

Model B

Raspberry

Pi zero

SoC BCM2835 BCM2836 BCM2837 BCM2835

CPU ARM11
Quad Cortex

A7

Quad Cortex

A53
ARM11

Operating

Freq.
700 MHz 900 MHz 1.2 GHz 1 GHz

RAM
512 MB

SDRAM

1 GB

SDRAM

1 GB

SDRAM

512 MB

SDRAM

GPU
250 MHz

Videocore IV

250MHz

Videocore IV

400 MHz

Videocore IV

250MHz

Videocore IV

Storage micro-SD Micro-SD micro-SD micro-SD

Ethernet Yes Yes Yes No

Wireless
WiFi and

Bluetooth
No No No

37

SOC and Raspberry PI 1.5.1.1 What’s the Raspberry Pi foundation?

The Raspberry Pi Foundation is dedicated to putting the power of computers

and digital fabrication into the hands of people all over the world. It

accomplishes this by making low-cost, high-performance computers

available for people to learn, solve issues, and have fun with. It conducts

outreach and education to assist more people gain access to computing and

digital making—it creates free materials to help people learn about

computers and how to make things with them, and it also trains educators

to help others learn.

The Raspberry Pi Foundation sponsors Code Club and CoderDojo, however

both programs are platform-agnostic (they aren't bound to Raspberry Pi

hardware). The Raspberry Pi Foundation promotes these clubs and assists

in the expansion of the network around the world, ensuring that every child

has the opportunity to learn about computers. Raspberry Jams, on the other

hand, are Raspberry Pi-focused gatherings where people of all ages can

learn about the Raspberry Pi and exchange ideas and projects.

1.5.1.2 Is Raspberry Pi open source?

The Raspberry Pi runs Linux (a number of versions), and its main supported

operating system, Pi OS, is open source and runs a suite of open source

software. The Raspberry Pi Foundation contributes to the Linux kernel and

other open source projects, as well as publishing open source versions of

many of its own software.

The schematics for the Raspberry Pi are frequently given as documentation,

but the board is not open hardware.

38

Physical Computing and

IoT Programming

38

1.5.1.3 Uses of Raspberry Pi

• Community

One of the most intriguing aspects of the project, according to Jamie

Ayre of FLOSS software business AdaCore, is the Raspberry Pi

community. According to community blogger Russell Davis, the

Foundation's strength allows it to focus on documentation and

education. The community created The MagPi, a fanzine based on the

platform that was handed over to the Raspberry Pi Foundation by its

volunteers in 2015 to be maintained in-house. Across the UK and

around the world, a series of community Raspberry Jam events have

taken place.

• Education

As of January 2012, inquiries about the board had been received from

schools in both the public and private sectors in the United Kingdom,

with the latter receiving around five times as much interest.

Businesses are hoped to finance purchases for less fortunate schools.

Premier Farnell's CEO stated that the government of a Middle Eastern

country has expressed interest in distributing a board to every

schoolgirl in order to improve her employment possibilities.

The Raspberry Pi Foundation engaged a number of members of its

community, including former teachers and software developers, in

2014 to create a set of free instructional tools on its website. The

Foundation also launched Picademy, a teacher training program

aimed at assisting teachers in preparing to teach the new computing

curriculum using the Raspberry Pi in the classroom.

NASA launched the JPL Open Source Rover Project in 2018 to

encourage students and hobbyists to get involved in mechanical,

software, electronics, and robotics engineering. The JPL Open Source

Rover Project is a scaled-down version of the Curiosity rover that uses

a Raspberry Pi as the control module.

• Home automation

The Raspberry Pi is being used by a variety of developers and

applications for home automation. These programmers are working

to turn the Raspberry Pi into a low-cost energy monitoring and power

usage solution. Because of the Raspberry Pi's low price, it has become

a popular and cost-effective alternative to more expensive

commercial solutions.

• Industrial automation

TECHBASE, a Polish industrial automation company, released

ModBerry, an industrial computer based on the Raspberry Pi

Compute Module, in June 2014. The device includes a variety of

interfaces, including RS-485/232 serial ports, digital and analogue

inputs/outputs, CAN, and low-cost 1-Wire buses, all of which are

39

SOC and Raspberry PI common in the automation sector. Because of the design, the

Compute Module can be utilized in tough industrial conditions,

implying that the Raspberry Pi is no longer confined to home and

science projects, but can be extensively used as an Industrial IoT

solution to fulfill Industry 4.0 goals.

SUSE announced commercial support for SUSE Linux Enterprise on

the Raspberry Pi 3 Model B in March 2018, with a handful of

unknown customers using the Raspberry Pi to provide industrial

monitoring. TECHBASE introduced a Raspberry Pi Compute Module

4 cluster in January 2021 for usage as an AI accelerator, routing, and

file server. One or more regular Raspberry Pi Compute Module 4s are

housed in an industrial DIN rail enclosure, with some variants

including one or more Coral Edge tensor processing units.

• Commercial products

Critter & Guitari designed and manufactured the Organelle, a portable

synthesiser, sampler, sequencer, and effects processor. It has a

Raspberry Pi computer module that runs Linux on it. Next Thing Co.

invented the OTTO digital camera. It has a Raspberry Pi Compute

Module built in. It was successfully crowdfunded through a

Kickstarter effort in May 2014. Slice is a digital media player that is

powered by a Compute Module. It was funded through a Kickstarter

effort in August of 2014. Slice's operating system is based on Kodi.

The Raspberry Pi is used in a number of commercial thin client

computer terminals.

• Covid-19 pandemic

During the coronavirus pandemic in Q1 2020, Raspberry Pi

computers saw a significant increase in demand, owing to an increase

in working from home, as well as the use of many Raspberry Pi Zeros

in ventilators for COVID-19 patients in countries like Colombia,

which helped to relieve strain on the healthcare system. Raspberry Pi

sales surpassed 640,000 units in March 2020, the second highest

month in the company's history.

1.5.1.4 Raspberry Pi foundation hall of fame

Members of the Raspberry Pi Hall of Fame include:

A] Eben Upton

Eben Christopher Upton is presently employed by Broadcom as a

Technical Director and ASIC Architect. He is the man who is known

for being the founder and former trustee of the Raspberry Pi

Foundation, as well as the current CEO of the Raspberry Pi trading

firm. Eben Upton's primary responsibility is the creation of the

Raspberry Pi device's general software and hardware architecture.

40

Physical Computing and

IoT Programming

40

B] Paul Beech

Paul Beech designed the current Raspberry Pi Foundation logo and is

now working on producing diagrams, posters, and developing the

Official Raspberry Pi website. Pimoroni, which makes Pibow, PiHub,

Pibrella, and other useful doo-hickeys to make raspberry pi more fun

to study and engage with, counts him as a founding member.

C] Alex Bradbury

Alex Bradbury, a Ph.D. student at the University of Cambridge, has

been a volunteer for the Raspberry Pi Foundation since its inception.

Alex is in charge of maintaining repositories that contain custom

versions of the Raspbian operating system, and he has even co-

authored a popular book titled "Learning Python with Raspberry Pi."

D] Dom Cobley

Dom Cobley (Engineer at Broadcom) has made a number of

successful contributions to turning the Raspberry Pi into a Media

Streaming device. Dom Cobley has provided VideoCore firmware for

the Raspberry Pi, Kernel maintenance, and even developed XBMC

(Xtreme Box Media Center) as a developer to enable media streaming

(Video and Audio) over the Raspberry Pi.

E] Peter Green

Peter Green created the Raspbian Debian derivative and manages the

Raspbian repository. Peter is now working on making a stable

Raspbian version based on Debian Jessie (Debian 8) available.

F] James Hughes

Since 2011, James Hughes has been one of the original volunteers for

the Raspberry Pi Foundation. He is now the chief developer of

Camera Board Software, the Moderator of the Pi Forum, and the

diligent maintainer of the Raspberry Pi website and Twitter page.

G] Mike Thompson

Mike Thompson collaborated on the Raspbian operating system for

the Raspberry Pi alongside Peter Green.

H] Gert Van Loo

Gert Van Loo is a Broadcom engineer who was responsible for the

development of the first hardware design of Alpha boards in 2011,

which later became known as the "Raspberry Pi." In addition, he

created the Gertboard and Gertduino expansion boards for the

Raspberry Pi.

41

SOC and Raspberry PI I] Rob Mullins

Along with Eben Upton, Rob Mullins was a co-founder of the

Raspberry Pi Foundation and served as a trustee until 2014. He is

currently employed as a Senior Lecturer in the University of

Cambridge's Computer Laboratory. Computer Architecture and

VLSI- On-chip Interconnection networks, chip-multi-processors, and

innovative parallel processing fabrics are among his areas of

specialization.

1.5.1.5 Advantages of Raspberry Pi

The following are the benefits of using a Raspberry Pi:

1. The Raspberry Pi is a small, powerful, and efficient cum compact

form factor computer that is also quite inexpensive to purchase.

Raspberry Pi can be used by a variety of small and medium-sized

businesses to perform functions such as web server, database server,

and media server. As a result, a significant amount of money can be

saved on the purchase of numerous servers.

2. Raspberry Pi can be used as a single platform for a wide range of

programming tasks. Pi supports a variety of programming languages,

and users can install the appropriate compiler to ensure proper code

execution. Python, the main programming language used by Pi, is a

simple and easy-to-learn language. It allows for more efficient code

creation, fewer lines of code, and automatic memory management.

3. The product is open source and supports open source operating

systems and apps. As a result, Raspberry Pi has access to a large

number of operating systems in various variants of Linux, as well as

millions of apps for that operating system.

4. The Raspberry Pi includes add-on hardware such as the Camera,

Component Moduler Kit, Gertboard, and HAT board, allowing users

to connect thousands of third-party devices like as buttons and LEDs

to perform various tasks on the Pi.

5. The product is energy efficient and offers small businesses a greener,

more ethical option. This credit card-sized product is simple to recycle

and saves money on cooling solutions.

1.5.1.6 Disadvantages/Limitations of Raspberry Pi

The following are the Raspberry Pi's limitations/drawbacks:

1. Because the Ethernet Port and Processing CPU are not fast enough to

process multitasking computing cycles, it cannot function as a full-

fledged computer.

2. Does not work with a fully functional Windows operating system.

3. The product is limited to SMEs and is not particularly beneficial,

whereas larger organizations/enterprises have access to a wide range

of facilities.

42

Physical Computing and

IoT Programming

42

4. Doesn't have a battery-backed Real Time Clock (RTC). NTP Server

is the sole way to work with time, and most operating systems do this

automatically.

5. There is no built-in ADC converter. For ADC, an external charger is

used.

6. Bluetooth and Wi-Fi are not supported out of the box, and numerous

USB-based dongles are likewise not supported for wireless

connectivity.

1.5.1.7 Generations of Raspberry Pi

Various generations of Raspberry Pi, ranging from the Raspberry Pi Model

A through the Raspberry Pi Model B+, as well as the recently introduced

Raspberry Pi Zero, will be addressed in this part, along with their extensive

technical specifications.

Raspberry Pi Model A

The Raspberry Pi Model A is the first generation of Raspberry Pi models to

be launched. Two models of the Raspberry Pi Model A were released: the

Raspberry Pi 1 Model A and the Raspberry Pi 1 Model A+.

A] Raspberry Pi: Model A

The Raspberry Pi Model A as shown in the figure 1.10 is a lower-spec

version of the Raspberry Pi. Because this model of Pi lacks crucial

hardware interfaces, it was designed specifically for embedded

projects. In comparison to Model B, Model A is lighter and uses less

energy. Model A has become obsolete and is no longer easily

accessible on the market.

Figure 1.10 Raspberry Pi: Model A

The Technical Specification of the Raspberry Pi 1 Model A is listed

in the Table III below:

43

SOC and Raspberry PI Table III: Specifications of Raspberry Pi: Model A

Hardware

parameters

Description

SoC Broadcom BCM2835

CPU 700 MHz Single Core ARM 1176JZF-S

GPU Broadcom VideoCore IV @ 250 MHz

RAM 256 MB

Onboard Ports 1 USB; 1 HDMI (Ver 1.4); 3.5mm

Sound Jack

Video Input 15-pin MIPI camera interface (CSI)

Connector

Audio Input 2 Boards via I2S

Onboard Storage SD/MMC/SDIO Card slot

Ethernet No

GPIO 8 GPIO including UART, I2C, SPI Bus

with two chip selects, I2S audio, +3.3 V,

+5V, GND

Adapter Rating 5V; 300 mA

Launch Date February 2013

Price $25

B] Raspberry Pi: Model A+

In terms of size and power consumption, the Raspberry Pi 1 Model

A+ as illustrated in the figure 1.11 was the successor and well-updated

model of the Raspberry Pi 1 Model A. Additional GPIO pins,

MicroSD card capability, and better audio reproduction are among the

enhancements made with the Model A+. The Raspberry Pi Model A+

could also run a variety of operating systems and serve as a solid

backbone for a variety of space-related applications and media center

operations. Because more advanced variants are now available, the

Model A+ is likewise being phased out of the market.

Figure 1.11 Raspberry Pi: Model A+

44

Physical Computing and

IoT Programming

44

The Technical Specification of the Raspberry Pi 1 Model A+ is

listed in the table IV below:

Table IV: Specifications of Raspberry Pi: Model A+

Hardware

parameters

Description

SoC Broadcom BCM2835

CPU 700 MHz Single Core ARM 1176JZF-S

GPU Broadcom VideoCore IV @ 250 MHz

RAM 256 MB

Onboard Ports 1 USB; 1 HDMI (Ver 1.4); 3.5mm

Sound Jack

Video Input 15-pin MIPI camera interface (CSI)

Connector

Audio Input 2 Boards via I2S

Onboard Storage MicroSD Card slot

Ethernet No

GPIO 17 GPIO including UART, I2C, SPI

Bus with two chip selects, I2S audio,

+3.3 V, +5V, GND, HAT ID Bus

Adapter Rating 5V; 200 mA

Launch Date February 2014

Price $20

C] Raspberry Pi: Model B

Because of the large RAM, additional USB port slots, and Ethernet

port, the Raspberry Pi 1 Model B (Figure 1.12) was viewed as a higher

specification model of the Pi 1 Model A with good working

performance. Raspberry Pi 1 Model B paved the way for children to

pursue computing as a hobby, leading to education, programming,

and home projects.

Figure 1.12 Raspberry Pi: Model B

45

SOC and Raspberry PI The Technical Specification of the Raspberry Pi 1 Model B is listed

in the table V below:

Table V: Specifications of Raspberry Pi: Model B

Hardware

parameters

Description

SoC Broadcom BCM2835

CPU 700 MHz Single Core ARM 1176JZF-S

GPU Broadcom VideoCore IV @ 250 MHz

RAM 512 MB

Onboard Ports 2 USB; 1 HDMI (Ver 1.4); 3.5mm

Sound Jack

Video Input 15-pin MIPI camera interface (CSI)

Connector

Audio Input 2 Boards via I2S

Onboard Storage SD/MMC/SDIO Card

Ethernet 10/100 Mbps

GPIO 8 GPIO including UART, I2C, SPI Bus

with two chip selects, I2S audio, +3.3 V,

+5V, GND, Additional 4 GPIO on P5

pad

Adapter Rating 5V; 700 mA

Launch Date February 2012

Price $35

C] Raspberry Pi: Model B+

Under the Raspberry Pi 1 models category, Model B+ (Figure 1.13)

was considered the last cum final version. Model B+ superseded

Model B and had more enhanced hardware features like as more

GPIO, more USB ports, a better MicroSD card, lower power

consumption, and better audio output when compared to all Raspberry

1 generations products.

Figure 1.13 Raspberry Pi: Model B+

46

Physical Computing and

IoT Programming

46

The Technical Specification of the Raspberry Pi 1 Model B+ is

listed in the table VI below:

Table VI: Specifications of Raspberry Pi: Model B+

Hardware

parameters

Description

SoC Broadcom BCM2835

CPU 700 MHz Single Core ARM 1176JZF-S

GPU Broadcom VideoCore IV @ 250 MHz

RAM 512 MB

Onboard Ports 4 USB; 1 HDMI (Ver 1.4); 3.5mm

Sound Jack

Video Input 15-pin MIPI camera interface (CSI)

Connector

Audio Input 2 Boards via I2S

Onboard Storage MicroSD Card

Ethernet 10/100 Mbps

GPIO 17 GPIO including UART, I2C, SPI

Bus with two chip selects, I2S audio,

+3.3 V, +5V, GND, HAT ID bus

Adapter Rating 5V; 600 mA

Launch Date July 2014

Price $25

Raspberry Pi 2 Model B

After the Model A generations, the Raspberry Pi Model B generations

were released, with improved functionality, more powerful hardware,

and better operating system support.

A] Raspberry Pi 2: Model B

The Raspberry Pi 2 Model B (Figure 1.14) is the Raspberry Pi's

second iteration. In terms of a powerful CPU, RAM, GPIO, and other

hardware connector features, it superseded the Raspberry Pi 1 Model

B+ variants.

Figure 1.14 Raspberry Pi2: Model B

47

SOC and Raspberry PI The Technical Specification of the Raspberry Pi 2 Model B is listed in the

table VII below:

Table VII: Specifications of Raspberry Pi2: Model B

Hardware

parameters

Description

SoC Broadcom BCM2836

CPU 900 MHz Quad-Core ARM Cortex-A7

GPU Broadcom VideoCore IV @ 250 MHz

RAM 1 GB

Onboard Ports 4 USB; 1 HDMI (Ver 1.4); 3.5mm

Sound Jack

Video Input 15-pin MIPI camera interface (CSI)

Connector

Audio Input 2 Boards via I2S

Onboard Storage MicroSD Card

Ethernet 10/100 Mbps

GPIO 17 GPIO including UART, I2C, SPI

Bus with two chip selects, I2S audio,

+3.3 V, +5V, GND, HAT ID bus

Adapter Rating 5V; 800 mA

Launch Date February 2015

Price $35

Raspberry Pi - Zero

The Raspberry Pi ZERO (Figure 1.15) is a new member of the

Raspberry Pi family. It is the cheapest and most affordable board,

costing around $5. Raspberry Pi Zero is capable of running Raspbian

and all other programs that other Pi’s can. The size is approximately

half that of the A+ model, and the quantity of utilities is doubled.

Figure 1.15 Raspberry Pi - Zero

48

Physical Computing and

IoT Programming

48

The Technical Specification of the Raspberry Pi Zero is listed in the table

VIII below:

Table VIII: Specifications of Raspberry Pi Zero

Hardware

parameters

Description

SoC Broadcom BCM2835

CPU 1GHz ARM 1176JZF-S Single Core

GPU Broadcom VideoCore IV @ 250 MHz

RAM 512 MB

Onboard Ports Micro-USB; Mini-HDMI (Ver 1.4);

Audio via PWN on GPIO

Video Input N/A

Audio Input 2 Boards via I2S

Onboard Storage MicroSD Card

Ethernet N/A

GPIO 40 GPIO Pins

Adapter Rating 5V; 160 mA

Launch Date November 2015

Price $5

1.5.1.8 Raspberry Pi operating systems

The operating system is considered to be the most important software for

computer hardware to function and to provide an interface between the

computer hardware and the programs that are running. There are numerous

operating systems for the Raspberry Pi that are based on Linux and are free

and open source.

Raspberry Pi and Linux

Linus Torvalds, the creator of the Linux operating system, made Linux

available as a platform for community development. The Raspberry Pi

Foundation opted to include Raspbian Pi, an official Linux distribution that

is tailored for Raspberry Pi.

Firmware and Kernel

Kernel is regarded as the "Brain" of the whole system, with the operating

system serving as the "Outer Body." Kernel is an operating system

49

SOC and Raspberry PI component that interacts with installed hardware devices. Because it is

software that is semi-permanently written on Partition 1 of the SD card,

kernel is also known as "Firmware." This section will provide an overview

of the numerous operating systems that can be installed and supported by

the Raspberry Pi.

There are two types of operating systems available for the Raspberry Pi:

A] Officially available operating systems:

1] Raspbian Operating System

Based on Debian, the Raspbian operating system is tailored for

Raspberry Pi devices. Raspbian is a collection of programmes

and utilities that run on the Raspberry Pi. It comes with over

35000 packages and is straightforward to install on the

Raspberry Pi.

Raspbian Pi, as the Pi's primary operating system, has been

designed for speed and stability, and is also being actively

developed by the open source community.

Download: https://www.raspbian.org/RaspbianImages

Latest Version: Raspbian Jessie; Kernel Version: 4.1

Figure 1.16 GUI interface of Raspbian operating system

2] Arch Linux ARM

Arch Linux ARM is a Linux distribution that is specifically

designed for ARM processors. Arch Linux ARM is known for

being easy to use and giving end users complete control. It

provides a lightweight foundation framework that allows users

to configure the system according to their needs, and it is only

because of this that Arch Linux ARM lacks a GUI interface.

Arch, like Raspbian, is under constant development and is

updated on a regular basis.

https://www.raspbian.org/RaspbianImages

50

Physical Computing and

IoT Programming

50

Download: https://www.archlinux.org/download/

Latest Version: 2015.12.1

Figure 1.17 CUI Interface of ARCH Linux for Raspberry Pi

3] OpenELEC (Open Embedded Linux Entertainment Center)

OpenELEC is a Linux-based distribution that is specifically

built for managing HTPCs and is based on KODI (XBMC-

Media Player).

XBMC Frodo 12.1 is supported by OpenELEC. OpenELEC is

primarily intended for speedier system booting, and it can

transform any blank PC into a full-fledged media streaming

computer in about 15 minutes. The OpenELEC operating

system is optimised for a variety of architectures, including

Atom, ION, Intel, Fusion, Raspberry Pi, and others.

Download: http://openelec.tv/

Latest Version: 3.0.0

Figure 1.18 GUI Interface of OpenELEC Raspberry Pi

https://www.archlinux.org/download/
http://openelec.tv/

51

SOC and Raspberry PI 4] Pidora

The “Raspberry Pi Fedora Remix” operating system is also

known as Pidora. Pidora is a Linux distro created specifically

for the Raspberry Pi. It consists of Fedora Project software

packages that have been specifically tailored/modified to work

on the Raspberry Pi. Pidora, like a Fedora-based operating

system, also provides a platform for the open source community

to submit apps to the operating system.

Download: http://pidora.ca/

Latest Version: Pidora 2014

Figure 1.19 GUI Interface of Pidora Operating System

5] Puppy Linux

Puppy Linux is a lightweight distribution that focuses on ease

of use and minimal memory use. Puppy Linux has been

modified for the Raspberry Pi and includes a large number of

application suites. Like other distributions, open source

community developers and even penetration testers are working

throughout the world to improve the system's reliability,

performance, and efficiency, and the community provides

regular software and updates for the operating system, as well

as bug fixes.

Download:

http://puppylinux.org/main/Download%20Latest%20Release.h

tm

Latest Version: Slacko Puppy 6.3

http://puppylinux.org/main/Download%20Latest%20Release.htm
http://puppylinux.org/main/Download%20Latest%20Release.htm

52

Physical Computing and

IoT Programming

52

Figure 1.20 GUI Interface for Puppy Linux for Raspberry Pi

6] RISC OS

The ARM Team created RISC OS specifically for ARM

processors. Because it is not tied to Windows or Linux, RISC

OS is an extremely fast, compact, and efficient operating

system. It includes a full desktop environment as well as a

library of applications for Raspberry Pi.

Download:

https://www.riscosopen.org/content/downloads/raspberry-pi

Latest Version: RISC OS 14

Figure 1.21 GUI Interface of RISC OS for Raspberry Pi

7] OSMC (Open Source Media Center)

Open Source Media Center is a Linux distribution centred on a

free and open source media player with over 30000 packages.

OSMC is a free and open source operating system that just takes

a few minutes to set up. OSMC has a thriving community that

releases updates and new packages on a monthly basis. “As

OSMC says, ‘Play Anything from Anywhere.”

Download: https://osmc.tv/download/

Version: 2015.11.1

Figure 1.22 GUI Interface of OSMC for Raspberry Pi

https://www.riscosopen.org/content/downloads/raspberry-pi
https://osmc.tv/download/

53

SOC and Raspberry PI 8] Ubuntu Mate

Ubuntu Mate is a Raspberry Pi-specific version of Ubuntu 15.10

that was launched on October 22, 2015. With Ubuntu Mate, the

Pi now has access to the same huge software repository as

Ubuntu. Ubuntu Mate is a full-featured desktop environment

that can run a variety of graphical applications as well as other

standard Ubuntu tasks. Ubuntu Mate is the result of Raspberry

Jams' efforts to improve “out of the box” GPIO functionality.

 Download: https://ubuntu-mate.org/wily/

Latest Version: Ubuntu Mate 15.10

Figure 1.23 GUI Interface for Ubuntu Mate 15.10

9] Window 10 IoT core

Microsoft's Windows 10 IoT Core is a platform for creating

IoT-based applications for the Raspberry Pi. The Windows 10

IoT core delivers the power of Windows to Raspberry Pi,

making it simple to integrate rich experiences such as natural

user interfaces, searching, online storage, and even cloud

computing with gadgets.

Download: http://ms-iot.github.io/content/en-US/Downloads.

htm

Latest Version: Windows 10

Figure 1.24 Windows 10 IoT Core

https://ubuntu-mate.org/wily/
http://ms-iot.github.io/content/en-US/Downloads.%20htm
http://ms-iot.github.io/content/en-US/Downloads.%20htm

54

Physical Computing and

IoT Programming

54

B] Miscellaneous Operating system

Other operating systems that can be downloaded and installed on the

Raspberry Pi include as follows:

1] Q4OS: Raspberry Pi operating systems that are fast and

powerful, with a focus on security, dependability, long-term

stability, and cautious incorporation of validated new features.

2] Xbian: Xbian is a media centre distribution for the Raspberry Pi

that is tiny, fast, and lightweight. Based on Debian minor, this

is the fastest Kodi solution for a variety of small form factor

computers.

3] openSUSE: SuSE Linux Professional, previously known as

SUSE Linux, is a good platform for open source tools for

software developers and administrators, as well as a user-

friendly desktop and feature-rich server GUI interface.

4] FressBSD: Since November 2012, FreeBSD has supported the

Raspberry Pi and is identical to Linux. FreeBSD is a full-

featured operating system that includes kernel, device drivers,

userland utilities, and documentation.

5] Kali Linux: Kali Linux, a Debian-based forensics and

penetration testing operating system, now includes support for

the Raspberry Pi. It comes with over 600 testing programs, a

graphical user interface, and other ethical hacking tools.

6] SailPi: The SailPi operating system is based on the Sailfish OS

2.0.0.10 version. This operating system has a more powerful OS

core, supports a variety of architectures, including Intel Atom

and the Raspberry Pi, and offers good security, multitasking,

and a better user interface.

1.5.2 Raspberry Pi Hardware

Unlike a standard computer, which has all of its components, ports, and

features hidden behind a cover, a Raspberry Pi has all of its components,

ports, and functions on show — though you may purchase a case for added

protection if you like. This makes it an excellent tool for learning about the

functions of various computer components, as well as for figuring out where

to plug in the numerous extras (known as peripherals) you'll need to get

started. Figure 1.25 (below) depicts the Raspberry Pi from above.

55

SOC and Raspberry PI

Figure 1.25 Raspberry Pi Model B+

While the Raspberry Pi appears to have a lot crammed (crowd) into its little

board, it's actually quite simple to understand, starting with its components

and the inner workings that keep the gadget running.

The Pi, like any computer, is made up of a variety of components, each of

which plays an important function in its operation. The first, and possibly

most essential, of these is the system-on-chip, which can be found right

above the center point on the top side of the board (Figure 1.26), covered in

a metal cap (SoC).

Figure 1.26 The Raspberry Pi’s system-on-chip

The name system-on-chip gives you a good idea of what you'll find if you

pry the metal cover off the Raspberry Pi: a silicon chip, also known as an

integrated circuit that houses the majority of the Raspberry Pi's system. This

includes the central processing unit (CPU), which is known as a computer's

"brain," and the graphics processing unit (GPU), which is in charge of the

visual side of things.

However, a brain is useless without memory, and on the Raspberry Pi's

underbelly, you'll find just that: another chip, which looks like a small black

56

Physical Computing and

IoT Programming

56

plastic square (Figure 1.27). These components work together to create the

Pi's volatile and non-volatile memories: the volatile RAM loses its contents

when the Pi is turned off, whilst the non-volatile microSD card preserves its

contents.

Figure 1.27 Raspberry Pi’s random access memory (RAM)

When you flip the board over, you'll notice another metal lid in the upper-

right corner, this one with an etched Raspberry Pi logo (Figure 1.28). This

section discusses the radio, which allows the Raspberry Pi to communicate

wirelessly with other devices. In actuality, the radio has two main functions:

a WiFi radio for connecting to computer networks, and a Bluetooth radio

for connecting to peripherals such as mice and sending and receiving data

from nearby smart devices such as sensors and smartphones.

Figure 1.28 The Raspberry Pi’s radio module

Just behind the middle row of USB ports, another black, plastic-covered

chip can be seen near the bottom border of the board. This is the network

and USB controller, which is in charge of the Ethernet port as well as the

four USB ports. A final black chip, much smaller than the others, can be

found just above the micro USB power connector on the upper-left side of

the board (Figure 1.29); this is known as a power management integrated

circuit (PMIC), and it handles converting the power from the micro USB

port into the power the Pi requires to run.

57

SOC and Raspberry PI

Figure 1.29 Raspberry Pi’s power management integrated circuit (PMIC)

The Raspberry Pi’s port

The Raspberry Pi features a variety of ports, starting with four USB ports

on the center and right-hand sides of the bottom edge (Figure 1.30). These

ports allow you to attach any USB-compatible peripheral to the Pi,

including keyboards, mouse, digital cameras, and flash drives. These are

known as USB 2.0 ports in technical terms, which indicates they are based

on the Universal Serial Bus standard version two.

Figure 1.30 The Raspberry Pi’s USB ports

An Ethernet port, often known as a network port, is located to the left of the

USB ports (Figure 1.31). This port can be used to connect the Raspberry Pi

to a wired computer network through a cable with an RJ45 connector on the

other end. If you look closely at the Ethernet port, you'll notice two light-

emitting diodes (LEDs) on the bottom; these are status LEDs that indicate

whether or not the connection is active.

58

Physical Computing and

IoT Programming

58

Figure 1.31 The Raspberry Pi’s Ethernet ports

A 3.5 mm audio-visual (AV) jack is located just above the Ethernet port on

the Raspberry Pi's left-hand edge (Figure 1.32). This is also known as the

headphone jack, and it can be used for that purpose — albeit connecting it

to amplified speakers rather than headphones will provide superior sound.

The 3.5 mm AV jack, however, has a secret feature: in addition to audio, it

transmits a video signal that can be linked to TVs, projectors, and other

displays that support a composite video signal with a special connection

known as a tip-ring-ring-sleeve (TRRS) adapter.

Figure 1.32 The Raspberry Pi’s 3.5mm AV jack

A strange-looking connector with a plastic flap that can be pushed up sits

directly above the 3.5 mm AV jack; this is the camera connector, also

known as the Camera Serial Interface (CSI) (Figure 1.33). This enables you

to use the Raspberry Pi Camera Module, which was created specifically for

the Raspberry Pi.

Figure 1.33 Raspberry Pi’s camera connector

59

SOC and Raspberry PI

The High-Definition Multimedia Interface (HDMI) connection (Figure

1.34), which is the same sort of connector seen on a games console, set-top

box, and TV, is located above that, still on the left-hand edge of the board.

The multimedia component of its name indicates that it can carry both audio

and video information, while high-definition indicates that the quality will

be superb. This will be used to link the Raspberry Pi to your display device,

which could be a computer monitor, television, or projector.

Figure 1.34 Raspberry Pi’s HDMI port

A micro USB power port (Figure 1.35), located above the HDMI port, is

used to connect the Raspberry Pi to a power source. On smartphones,

tablets, and other portable gadgets, the micro USB port is a regular

appearance. So you could use a regular phone charger to power the Pi, but

the official Raspberry Pi USB Power Supply is recommended for optimum

performance.

Figure 1.35 The Raspberry Pi’s micro USB power port

Another strange-looking connector (Figure 1.35) can be seen towards the

top edge of the board, which at first glance appears to be identical to the

camera connector. This, on the other hand, is a display connector, or Display

Serial Interface (DSI), made specifically for the Raspberry Pi Touch

Display (Figure 1.36).

60

Physical Computing and

IoT Programming

60

Figure 1.35 The Raspberry Pi’s display connector (DSI)

Figure 1.36 The Raspberry Pi’s touch display

There are 40 metal pins on the right-hand edge of the board, divided into

two rows of 20 pins each (Figure 1.37). The GPIO (general-purpose

input/output) header is a feature of the Raspberry Pi that allows it to

communicate with external hardware such as LEDs, buttons, temperature

sensors, joysticks, and pulse-rate monitors. Another, smaller header with

four pins is just below and to the left of this header: This is used to attach

the Power over Ethernet (PoE) HAT, an optional add-on that allows the

Raspberry Pi to get power through a network connection instead of the

micro USB socket.

61

SOC and Raspberry PI

Figure 1.37 The Raspberry Pi’s GPIO header

The Raspberry Pi has one more port, but it's not visible from the top. Turn

the board over, and on the opposite side of the board from the display

connector is a microSD card connector (Figure 1.38). The Raspberry Pi's

storage is as follows: All of the files you save, all of the software you install,

and the operating system that makes the Raspberry Pi function are stored on

the microSD card put in this slot.

Figure 1.38 The Raspberry Pi’s microSD card connector

The Raspberry Pi’s peripherals

A Raspberry Pi by itself can't do much, like a desktop computer by itself

isn't much more than a door-stop. A microSD card for storage, a monitor or

TV to view what you're doing, a keyboard and mouse to tell the Pi what to

do, and a 5 volt (5 V) micro USB power source rated at 2.5 amps (2.5 A) or

better are all required for the Raspberry Pi to work. You've got yourself a

completely functional computer with those.

The Raspberry Pi Case helps protect the Pi while you're using it without

blocking access to its various ports; the Camera Module, the Raspberry Pi

Camera Module; the Raspberry Pi Touch Display, which connects to the

display port and provides both a video display and a tablet-style touchscreen

interface; and the SPI Display, which connects to the display port and

provides both a video display and a tablet-style touchscreen interface; the

SPI Display and the sense HAT (figure 1.39)

62

Physical Computing and

IoT Programming

62

A wide range of third-party accessories are also available, ranging from kits

to convert a Raspberry Pi into a laptop or tablet to add-ons that allow it to

comprehend and respond to your voice.

Figure 1.39 The sense HAT

1.5.3 Preparing your raspberry Pi

The Raspberry Pi was created to be as simple to set up and operate as

possible, but it, like any computer, is dependent on a variety of external

components known as peripherals. While it's fine to look at the Raspberry

Pi's bare circuit board, which differs drastically from the encased, closed-

off computers you're used to, and worry that things are about to get

complicated, this isn't the case. Simply follow the procedures outlined in

the next section to have the Raspberry Pi up and running in under ten

minutes.

If you have the Raspberry Pi Starter Kit, you'll have almost everything you

need to get started: all you need is a computer monitor or TV with an HDMI

connection (the same type of connector used by set-top boxes, Blu-ray

players, and games consoles) so you can see what the Raspberry Pi is up to.

If you don't have the Raspberry Pi Starter Kit, you'll also need the following

items in addition to the Raspberry Pi 3 Model B+:

USB power supply: A power supply having a micro USB connector and a

rating of 2.5 amps (2.5A) or 12.5 watts (12.5W). The Official Raspberry Pi

Power Supply is the best option because it can handle the Raspberry Pi's

fast switching power demands.

NOOBS on a microSD card: The microSD card serves as the Raspberry

Pi's permanent storage, storing all of the data you generate and software you

install, as well as the operating system itself. A 8GB card will get you

started, but a 16GB card will give you more room to expand. Using a card

with pre-installed NOOBS (New Out-Of-Box Software) will save

your time.

USB keyboard and mouse: The Raspberry Pi can be controlled with the

help of a USB keyboard and mouse. Almost any USB-connected wired or

wireless keyboard and mouse will function with the Raspberry Pi, though

63

SOC and Raspberry PI some ‘gaming' keyboards with colourful LEDs may drain too much power

to be used reliably.

HDMI Cable: The HDMI cable connects your Raspberry Pi to your TV or

monitor and transmits sound and video. There's no need to splurge on a

high-end HDMI cable. If you want to connect your Raspberry Pi to an older

TV that uses composite video or has a SCART socket, use a 3.5 mm tip-

ring-ringsleeve (TRRS) audio/video cable; if you want to connect your

Raspberry Pi to an older TV that uses composite video or has a SCART

socket, use a 3.5 mm tip-ring-ringsleeve (TRRS) audio/video cable.

Without a case, the Raspberry Pi is safe to use as long as it is not placed on

a metal surface that could conduct electricity and cause a short-circuit.

However, an optional case can give further protection; the Starter Kit

contains the Official Raspberry Pi Case, while third-party cases can be

found at any respectable retailer.

You'll also need a network cable if you wish to use the Raspberry Pi on a

wired network rather than a wireless (WiFi) network. This should be

connected to your network's switch or router on one end. You won't need a

cable if you wish to utilize the Raspberry Pi's built-in wireless radio; you

will, however, need to know the name and key or pass for your wireless

network.

1.5.3.1 Setting up the hardware

You'll also need a network cable if you wish to use the Raspberry Pi on a

wired network rather than a wireless (WiFi) network. This should be

connected to your network's switch or router on one end. You won't need a

cable if you wish to utilize the Raspberry Pi's built-in wireless radio; you

will, however, need to know the name and key or pass for your wireless

network.

Assembling the case

It should be your first step if you're placing your Pi in a case. If you're using

the Official Raspberry Pi Case, start by separating the five pieces: the red

base, two white sides, red upper and white lid.

1] Take the base and place it on your left side with the elevated end

facing you and the lower end facing you.

64

Physical Computing and

IoT Programming

64

2] Holding the Pi by its USB and Ethernet ports and the GPIO header at

the top, insert the left-hand side into the case at an angle, then slowly

drop the right-hand side down until it lies flat.

3] Find the one with the cutouts for the power connector, HDMI port,

and 3.5 mm AV jack among the two white side parts. Line it up with

the Raspberry Pi's ports and carefully press it in until you hear a click.

4] Place the solid white side piece on the GPIO header side of the

casing and click it in place.

65

SOC and Raspberry PI 5] Place the two clips on the left of the red plastic upper piece into the

matching holes on the left of the base, above the microSD card slot.

Push the right-hand side (above the USB ports) down until you hear

a click once they're in place.

6] Finally, carefully press the white lid down until you hear a click,

making that the Raspberry Pi logo is to your right and the small raised

clips on its underside are lined up with the hole on the top of the case.

Your case is now complete.

Connecting the microSD card

Turn the Raspberry Pi over and insert the microSD card into the microSD

slot with the label facing away from the Pi to install the microSD card,

which is the Raspberry Pi's storage. It can only go one way and should go

into place without too much difficulty.

66

Physical Computing and

IoT Programming

66

The microSD card will go into the connector and then come to a halt without

making a click.

If you want to remove it in the future, simply grab the card's end and

carefully pull it out. If you're using an earlier Raspberry Pi, you'll need to

gently push the card to unlock it; this isn't necessary if you're using a

Raspberry Pi 3 or newer.

Connecting a keyboard and a mouse

Connect the USB connection from the keyboard to one of the Raspberry Pi's

four USB ports. Once the keyboard is connected, attach the mouse in the

same way.

The USB connectors for the keyboard and mouse should slip into place

without too much force; if you have to force them in, something is amiss.

Make sure the USB connector is pointing in the appropriate direction!

• MOUSE & KEYBOARD: The keyboard and mouse are your primary

way of instructing the Raspberry Pi; these are known as input devices

in computing, as opposed to the display, which is an output device.

Connecting a display

Connect one end of the HDMI cable to your Raspberry Pi and the other end

to your monitor (it doesn't matter which). Look for a port number next to

the connector itself if your display has more than one HDMI port; you'll

need to switch the TV to this input to see the Pi's display. Don't worry if you

can't see a port number: simply switch through each input until you find the

Pi.

67

SOC and Raspberry PI

• CONNECTION TO THE TV: It doesn't imply you can't use the

Raspberry Pi if your TV or monitor doesn't have an HDMI port.

Adapter cables, which can be found at any electronics store, can

convert the Raspberry Pi's HDMI port to DVI-D, Display Port, or

VGA for use with older computer monitors; they are simply attached

to the Pi's HDMI port, and then an appropriate cable is used to connect

the adapter cable to the monitor. If your TV only has a composite

video or SCART input, you can buy 3.5 mm tip-ring-ring-sleeve

(TRRS) adapter cables and composite-to-SCART adapters to plug

into the 3.5 mm AV port.

Connecting a network cable (optional)

To connect your Raspberry Pi to a wired network, insert a network cable –

also known as an Ethernet cable – into the Ethernet port on the Pi, with the

plastic clip facing down, until you hear a click. If the cable needs to be

removed, simply squeeze the plastic clip inwards towards the plug and

gently slip the cable free.

In the same way, attach the opposite end of your network cable to any free

port on your network hub, switch, or router.

68

Physical Computing and

IoT Programming

68

Connecting a power supply

The last stage in the hardware setup procedure is to connect the Raspberry

Pi to a power source, which you should do only when you're ready to set up

its software: the Raspberry Pi lacks a power switch and will turn on as soon

as it's attached to a live power supply.

Connect the micro USB end of the power supply cable to the Raspberry Pi's

micro USB power connection. It can only travel one way, with the thin part

of the connector pointing down, and should softly slide home.

• POWER SUPPLY: If you're using the Official Raspberry Pi Power

Supply, you'll see that it comes with multiple mains connectors that

are compatible with different nations' sockets. Choose the one that

corresponds to the socket type in your nation, and then slide it onto

the power supply body until you hear a click.

Finally, connect the power supply to a mains socket and turn it on; the

Raspberry Pi will start running instantly.

You've completed the assembly of your Raspberry Pi!

69

SOC and Raspberry PI Setting up the software

You'll need to set up the Raspberry Pi's software, particularly its operating

system, which regulates what the Pi can do, before you can start using it in

earnest. NOOBS, or New Out-Of-Box Software, is designed to make this

process as simple as possible by allowing you to choose from a variety of

operating systems and have them installed automatically. Even better, you

can accomplish all of this with only a few mouse clicks.

You'll see a screen with the Raspberry Pi logo on it and a small progress

window at the upper-left when the Pi is initially switched on, or booted,

with a fresh installation of NOOBS on its microSD card. You'll see the

screen shown in Figure 1.40 after a brief wait, which might take up to a

minute the first time you use the NOOBS microSD card.

Figure 1.40 The NOOBS menu without any operating system installed

• ARE THERE NO PICTURES?

Check that you're using the correct input if you can't see the Raspberry

Pi on your screen. If your TV or monitor has multiple HDMI inputs,

use the ‘Source' or ‘Input' buttons to cycle through each one until you

get the NOOBS menu.

This is the NOOBS menu, which allows you to select an operating

system for your Raspberry Pi. Raspbian, a version of the Debian

Linux operating system customised exclusively for the Raspberry Pi,

and LibreELEC, a version of the Kodi Entertainment Centre software,

are supplied as standard with NOOBS. You can also download and

70

Physical Computing and

IoT Programming

70

install different operating systems if the Pi is connected to the network

- either through a wired connection or using the ‘Wifi networks (w)'

option from the top bar of icons.

Use the mouse to draw a cross in the box to the left of Raspbian Full:

position the pointer at the white box and click once with the left mouse

button to begin installing an operating system. When you've done so,

the ‘Install I menu icon will no longer be greyed-out, indicating that

your operating system is ready to install (Figure 1.41)

Figure 1.41 Choosing an operating system to install through

NOOBS

When you press the left mouse button on the ‘Install (i)' icon, a

warning notice appears, informing you that installing the operating

system would overwrite any data currently saved on the microSD

card, except for NOOBS, which will remain intact. The installation

process will begin once you click ‘Yes' (Figure 1.42)

71

SOC and Raspberry PI

Figure 1.42 Installing the Raspbian operating system

Depending on the speed of your microSD card, the installation

process can take anywhere from 10 to 30 minutes. Progress is

presented in a bar down the bottom of the window as the operating

system is installed, and you'll watch a slide show outlining some of

its important features.

• WARNING!

It's critical that the installation isn't interrupted because doing so risks

destroying the software through a process known as data corruption.

While the operating system is being installed, do not remove the

microSD card or unplug the power cable; if something happens to

interrupt the installation, unplug the Raspberry Pi from its power

supply, then press the SHIFT key on the keyboard while reconnecting

the Raspberry Pi to its power supply to bring up the NOOBS menu.

This is known as recovery mode, and it's a terrific way to get a Pi back

into working condition when its software has been corrupted. After a

successful installation, it also allows you to access the NOOBS menu,

where you can reinstall the operating system or install one of the other

operating systems.

When the installation is complete, a popup with a ‘OK' button will

appear; click this to restart the Pi in its newly installed operating

system. The boot messages will scroll up the screen (Figure 1.43), and

the first time you boot into Raspbian, it may take a minute or two as

it adapts to make the greatest use of the free space on your microSD

card. Things will move more rapidly the next time you boot.

72

Physical Computing and

IoT Programming

72

Figure 1.43 The Raspbian boot messages

Finally, before the Raspbian desktop and setup wizard display, you'll

see a window with the Raspberry Pi logo on it, as shown in Figure

1.44. Your operating system has now completed installation and is

ready for configuration.

Figure 1.44 The Raspbian desktop

1.6 RASPBERRY PI BOOT

There is no BIOS on the Raspberry Pi. Your SDCard contains GPU

firmware that allows you to use the GPU. The GPU kicks off the ARM

processor and loads the Linux kernel. Hundreds of documents detailing

how that procedure works can be found on the internet.

On the Raspberry Pi, Android is a NON-STARTER.

73

SOC and Raspberry PI Windows 10 IoT isn't the same as the Windows you're used to (and despise)

on your laptop. It's a specialized Windows internet of things system that

only operates on an RPI2.

1.6.1 Learn how this small SoC boots without BIOS

Instead of BIOS, the Raspberry Pi uses "firmware." To add to the confusion,

all B models require this firmware to be installed on the SD card. You won't

even get error messages if your SD card isn't working or if you neglect to

put the firmware on it. The Raspberry Pi will do nothing. The simplest

method for dual booting a Pi is to use different SD cards. The SD card

functions similarly to a hard disc on a desktop or laptop computer; swapping

it, however, allows you to use a different operating system. It's similar to a

Gameboy cartridge. The GPU handles everything, after which the kernel is

loaded and the CPU is turned on.

1.6.2 Configuring boot sequences and hardware

To begin, you must understand that the Raspberry Pi does not operate in the

same way as a traditional desktop computer. The graphics processor starts

up before the ARM processor!

Here's a diagram of the Raspberry Pi with the Broadcom BCM2835 SoC

highlighted before we dive into the details.

Figure 1.45 Raspberry Pi with the Broadcom BCM2835 SoC

The ARM CPU, VideoCore Graphics Processor, ROM (Read-Only

Memory) chips, SDRAM, and other components are all found on the SoC

(or System-on-Chip). Consider a SoC to be a combination of your

motherboard and CPU crammed into a single chip.

The initial bits of code that run when you turn on your Raspberry Pi are

saved in a ROM chip in the SoC that was integrated into the Pi during

manufacturing! The first-stage bootloader is what it's called. On startup, the

SoC is hardwired to run this code on a tiny RISC Core (Reduced Instruction

74

Physical Computing and

IoT Programming

74

Set Computer). It's utilized to access the second-stage bootloader by

mounting the FAT32 boot partition on your SDCard. So, what exactly is

this SD Card's "second-stage bootloader"? It's called 'bootcode.bin'. If you

had mounted the SD Card in Windows, you might have seen this file. Here's

when it gets tricky. Your ARM CPU (which is in reset) and RAM have not

yet been initialized by the first-stage bootloader. As a result, the second-

stage bootloader must operate on the GPU as well. The bootloader.bin file

is loaded and executed from the GPU's 128K 4 way set associative L2

cache. This activates the RAM and loads start.elf from your SD Card. This

is the most significant of the three-stage bootloaders. It's the GPU's

firmware, which means it has the settings or, in our case, instructions for

loading the settings from config.txt on the SD Card. The config.txt file can

be thought of as the ‘BIOS settings' (as is mentioned in the forum). The

following are some of the options available to you:

• arm_freq: It is the ARM frequency in MHz. Default frequency is

700MHz.

• gpu_freq: This sets core_freq, h264_freq, isp_freq, v3d_freq

together.

• core_freq: It is the GPU processor core frequency and is expressed

in MHz. Default frequency is 250MHz.

• h264_freq: This is the hardware video block frequency in MHz.

Default is 250MHz.

• isp_freq: It illustrates the image sensor pipeline block frequency in

MHz. Default is 250MHz.

• v3d_freq: It describes the frequency of 3D block in MHz. Default is

250MHz.

• sdram_freq: This is the SDRAM frequency expressed in MHz.

Default is 400MHz.

In addition, the start.elf divides the RAM between your GPU and the ARM

CPU. Only the address space left over from the GPU address space is

accessible to the ARM. The MMU (Memory Management Unit) of the

VideoCore maps the physical addresses detected by the ARM core to

another address in the VideoCore (0xC0000000 and beyond). Because the

config.txt is loaded after the split, you can't specify the dividing amounts

there. However, the SD Card has a variety of .elf files with various splits.

You can rename those files to start.elf and boot the Pi, according on your

needs. The GPU wins every time on the Raspberry Pi!

The start.elf additionally loads cmdline.txt if it exists, in addition to loading

config.txt and splitting RAM. It specifies the command line parameters for

the kernel to be loaded. The boot process has now reached its end. The

commencement .elf loads kernel.img, the binary file containing the OS

kernel (DUH!?) and relieves the CPU reset. The ARM CPU then executes

the kernel.img instructions, which loads the operating system.

75

SOC and Raspberry PI Here's how it goes:

Figure 1.46 Flow process of boot sequence configuration

So the Raspberry Pi, unlike a PC, does not require a BIOS sequence

because the required startup functions are incorporated into the GPU.

1.7 SUMMARY

In this chapter we presented the concept and approaches used in creating a

system-on-chip (SoC) based on a microprocessor core, as well as the

microprocessor core itself, were introduced in this course. The reader

gained a better grasp of how SoCs are built and used, as well as why current

processors are designed the way they are.

The ARM images bring reality to topics that can otherwise appear ethereal

to the reader who only wants to know the basic principles; the general

principles reveal the logic for the ARM being as it is to the reader who wants

to understand the design of the ARM.

76

Physical Computing and

IoT Programming

76

The technical insights about the Raspberry Pi are discussed that covered up

the basic introduction of Pi, various generations of Raspberry Pi models.

The content acquainted the reader to set up their own operating system and

can also connect the wiring and circuits directly with the Raspberry Pi board

along with the discussion of onboard hardware components. Lastly, the unit

concluded with the discussion on configuring the boot sequence and

hardware.

1.8 LIST OF REFERENCES

1) Learning Internet of Things, Peter Waher, Packt Publishing(2015)

2) Mastering the Raspberry Pi, Warren Gay, Apress(2014)

3) Abusing the Internet of Things, Nitesh Dhanjani, O’Reilly

4) Michael J. Flynn, Wayne Luk, Computer System Design: System on

Chip, John Wiley and Sons Inc. 2011, ISBN 978-0-470-64336-5

5) SystemC: From the Ground Up, 2nd Edition, D.C. Black, J Donovan,

B. Bunton, A. Keist, Springer 2010, ISBN 978-0-387-69958-5.

6) On-Chip Communication Architectures, System on Chip

Interconnect, S. Pascricha and N. Dutt, Morgan Kaufmann-Elsevier

Publishers 2008, ISBN 978-0-12-373892-9.

7) https://www.cs.cmu.edu/afs/cs/academic/class/15462-f11/www

/lec_slides/lec19.pdf

8) https://www.researchgate.net/publication/260687001_

GPU_computing

9) https://cdn.iiit.ac.in/cdn/cstar.iiit.ac.in/~kkishore/GPUArchitec

ture.pdf

10) http://web.eecs.umich.edu/~prabal/teaching/eecs373

f12/readings/ARM_Architecture_Overview.pdf

11) https://web.sonoma.edu/users/f/farahman/sonoma/courses/es

310/310_arm/lectures/Chapter_3-and-1_ARM.pdf

12) https://www.cs.unca.edu/~bruce/Fall14/360/RPi UsersGuide.pdf

13) http://meseec.ce.rit.edu/551-projects/spring2017/2-3.pdf

1.9 UNIT END EXERCISES

1) Explain the concept of SoC

2) Write a note on significance and design challenges of SoC.

3) Describe the advantages, disadvantages and applications of system on

chip.

4) Write a short note on system on chip.

https://www.cs.cmu.edu/afs/cs/academic/class/15462-f11/www%20/lec_slides/lec19.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15462-f11/www%20/lec_slides/lec19.pdf
https://www.researchgate.net/publication/260687001_%20GPU_computing
https://www.researchgate.net/publication/260687001_%20GPU_computing
https://cdn.iiit.ac.in/cdn/cstar.iiit.ac.in/~kkishore/GPUArchitec%20ture.pdf
https://cdn.iiit.ac.in/cdn/cstar.iiit.ac.in/~kkishore/GPUArchitec%20ture.pdf
http://web.eecs.umich.edu/~prabal/teaching/eecs373%20f12/readings/ARM_Architecture_Overview.pdf
http://web.eecs.umich.edu/~prabal/teaching/eecs373%20f12/readings/ARM_Architecture_Overview.pdf
https://web.sonoma.edu/users/f/farahman/sonoma/courses/es%20310/310_arm/lectures/Chapter_3-and-1_ARM.pdf
https://web.sonoma.edu/users/f/farahman/sonoma/courses/es%20310/310_arm/lectures/Chapter_3-and-1_ARM.pdf
https://www.cs.unca.edu/~bruce/Fall14/360/RPi%20UsersGuide.pdf

77

SOC and Raspberry PI 5) Explain the architecture of FPGA.

6) Write a note on working and applications of FPGA.

7) Describe the architecture and applications of GPU.

8) What is the difference between GPU and CPU?

9) Write a note on APU.

10) Explain the configuration of compute units.

11) Describe ARM8 architecture.

12) Write a note on Raspberry Pi.

13) Explain the various generations of Raspberry Pi.

14) Describe the Raspberry Pi operating system.

15) Describe the hardware of Raspberry Pi.

16) Write a note on configuring boot sequence and hardware along with

its flow diagram.



78

Physical Computing and

IoT Programming

78

2

PROGRAMMING RASPBERRY PI

Unit Structure

2.0 Objectives

2.1 Introduction

2.3 Raspberry Pi and Linux

 2.3.1 About Raspbian

 2.3.1.1 History of Raspbian

 2.3.1.2 Features of Raspbian

 2.3.1.3 Who Should Use the Raspberry Pi Operating System?

2.4 Linux Commands

2.5 Configuring Raspberry Pi with Linux Commands

2.6 Summary

2.7 List of References

2.8 Unit End Exercises

2.0 OBJECTIVES

 After going through this unit, you will be able to:

• Understand the concept of Raspberry Pi and its configuration with

Linux commands

• Acquaint with the programming interfaces such as Node.js and

Python

• Understand and implement various Raspberry Pi interfaces

• Get familiar with useful case study implementations

2.1 INTRODUCTION

One of the most popular physical computing boards on the market is the

Raspberry Pi. People use the Raspberry Pi every day to engage with the

world around them, from hobbyists making DIY projects to students

learning to program for the first time. The Raspberry Pi is a fantastic single-

board computer (SBC) that can run Linux and a variety of other programs.

Python is a user-friendly programming language that can be used in schools,

web development, scientific research, and a variety of other fields. Python

is pre-installed on the Raspberry Pi, so you may use it to create your own

Raspberry Pi projects.

79

Programming Raspberry PI When it comes to dealing with the Raspberry Pi, you have various

alternatives. The Pi is most typically used as a standalone computer, which

necessitates the use of a monitor, keyboard, and mouse (listed below). The

Pi can also be used as a headless computer to save money (without a

monitor, keyboard, and mouse). Because you'll need to use a command-line

interface (CLI) from another computer, this configuration has a slightly

steeper learning curve.

The Raspberry Pi is a single-board computer created by the Raspberry Pi

Foundation, a non-profit organization based in the United Kingdom. Its

compact size, full Linux environment, and general-purpose input–output

(GPIO) pins have gained it a significant following in the maker and DIY

communities. It was originally meant to provide young people with an

affordable computing option to learn how to program. With all of the

features and capabilities crammed onto this compact board, the Raspberry

Pi has no shortage of projects and applications.

People use the Raspberry Pi all across the world to learn programming,

develop hardware projects, automate their homes, implement Kubernetes

clusters and Edge computing, and even employ them in industrial

applications. The Raspberry Pi is a low-cost computer that runs Linux and

has a set of GPIO (general purpose input/output) ports for controlling

electronic components and experimenting with the Internet of Things (IoT).

2.3 RASPBERRY PI AND LINUX

2.3.1 ABOUT RASPBIAN

The Raspberry Pi can run a variety of operating systems. While many Pi

compatible OSes are Linux distributions (distros), the RasPi also supports

Android, Chrome OS, and non-Linux images. Despite the numerous

operating system options, the Raspberry Pi Foundation's own Raspberry Pi

OS remains one of the best Raspberry Pi distros available. The operating

system originally known as Raspbian, on the other hand, has evolved

significantly since its start.

Raspbian is a free operating system based on Debian and designed

specifically for the Raspberry Pi. An operating system is a collection of

programs and tools that enable your Raspberry Pi to function. Raspbian, on

the other hand, is more than just an operating system: it includes over 35,000

packages, which are pre-compiled software packages packaged in a

convenient style for quick installation on your Raspberry Pi.

In June of 2012, the initial build of nearly 35,000 Raspbian packages,

optimized for the Raspberry Pi, was completed. Raspbian, on the other

hand, is still in active development, with the goal of enhancing the reliability

and performance of as many Debian programs as possible. The Raspberry

Pi Foundation is not linked with Raspbian. Raspbian was produced by a

small, dedicated team of developers who are enthusiastic about the

Raspberry Pi hardware, the Raspberry Pi Foundation's educational mission,

and, of course, the Debian Project.

80

Physical Computing and

IoT Programming

80

Raspbian is a Raspberry Pi operating system based on Debian. The

Raspberry Pi Foundation has officially released it as the primary operating

system for the line of Raspberry Pi single-board computers since 2015.

Mike Thompson and Peter Green started Raspbian as an independent

project. The first phase of construction was finished in June 2012. The

operating system is currently being developed. The Raspberry Pi line's low-

performance ARM CPUs are well-suited to Raspbian. As of the most recent

release, Raspbian's main desktop environment is PIXEL, Pi Improved

Xwindows Environment, and Lightweight. It consists of a modified LXDE

desktop environment and the Openbox stacking window manager, which

has been updated with a new theme and a few additional tweaks. As of the

newest edition, the distribution includes a copy of the computer algebra tool

Mathematica, a version of Minecraft dubbed Minecraft Pi, and a lightweight

version of Chromium.

2.3.1.1 HISTORY OF RASPBIAN

The developers behind Raspbian have released several distinct versions

since its beginning. Because it's a Linux-based distribution, it's simple to

make changes and update it on a regular basis.

• Raspbian Wheezy

The Raspberry Pi Foundation officially supported the first release of

Raspbian in 2015, which was mostly based on Debian Wheezy.

Wheezy is an unofficial copy of Debian Wheezy armhf, and before

official support, Raspberry Pis came pre-installed with Debian

Squeeze as the official operating system, which was later superseded

by Raspbian Wheezy. This is because Wheezy's engineers noticed

that Squeeze was being used to support less-capable ARM devices,

causing the Pi's CPU to perform poorly during floating point-

intensive applications like graphics programs.

• Raspbian Jessie

Along with the usual security fixes and under-the-hood tweaks, Jessie

added a few more obvious additions. The Raspberry Pi Foundation

made some tiny tweaks to make it seem more like a'real' PC in order

to make it not simply cheap computers for education, but also

affordable computers in their own right. The LibreOffice suite and

Claws Mail, for example, were installed as standard, allowing users

to use word processors, spreadsheets, and email management from

within Raspbian. For the first time, Raspberry Pi’s booted to a

Raspbian desktop GUI by default, rather than a Linux command line,

as a result of a software update.

Raspbian Jessie with PIXEL was released in September 2016 for

people who wanted a GUI desktop. The PIXEL (Pi Improved

Xwindow Environment, Lightweight) desktop was the first time the

OS acquired a GUI desktop, as it had previously only been a Linux

code screen - it even had a boot splash page like a genuine OS.

Indicators of performance were also incorporated. When the Pi was

overworked in previous versions, for example, red and yellow pixels

81

Programming Raspberry PI would appear on the screen. Under voltage was indicated by a

lightning bolt, and temperature warnings were indicated by a

thermometer.

• Raspbian Stretch

Debian releases new official distros every two years, and Raspbian,

which has always been based on Debian, follows suit. Stretch was

launched just before Jessie's two-year anniversary, and like Jessie

before it, the changes to Stretch were designed to go unnoticed by the

end user.

The inbuilt Bluetooth audio manager, on the other hand, was one of

the more noticeable changes. PulseAudio was used in Jessie, but it

was replaced by bluez-alsa because the former was awkward and

didn't do a good job of encoding diverse audio sources. Following the

revelation of firmware vulnerability in the Pi 3 and Pi Zero W wireless

chipsets, Stretch included a modification to the base code layer.

• Raspbian Buster

Buster was released two years and one month after Stretch, and it

corresponded with the release of the Raspberry Pi 4. With the

exception of a few security updates, the organization conceded that

there were "unfortunately" no significant functional differences

between Buster and its predecessor. Buster, on the other hand,

included a slew of improvements to the OS's overall appearance and

feel, as well as tweaks to the user interface. The OS was given a flatter

and cleaner look with this design upgrade, which provided the first

major UI improvements since Jessie.

Buster also replaced IDLE with the Thonny Python development

environment as the default Python editor. This was accompanied by a

number of modest functionality enhancements, such as the 'eject'

symbol for deleting USB devices only appearing if there are devices

to eject.

2.3.1.2 FEATURES OF RASPBIAN

The Raspberry Pi OS, like the Pi hardware, has grown significantly over

time. Pi OS now supports both 32-bit and 64-bit images. Other Linux

distributions for the Pi, such as Ubuntu, have 64-bit and 32-bit installers.

The Raspberry Pi OS has gradually introduced more functions, with a focus

on desktop use, which complements the new hardware. Whether as a

desktop, network-attached storage (NAS) device, cluster, or something else,

more RAM and a beefier processor combine with overlying software for an

increasingly competent computing experience.

Programming resources have been built into the Raspberry Pi for quite some

time now. Integrated development environments (IDEs) and office

productivity tools such as the LibreOffice suite come pre-installed. A

bookshelf app with access to a boatload of Raspberry Pi books and

82

Physical Computing and

IoT Programming

82

publications, including MagPi and HackSpace, is now included.

Additionally, a Magnifier software improves visibility for all users,

especially for smaller on-screen objects, resulting in greater accessibility.

It's in the section under Universal Access.

Basic features are as follows:

• Developer: Raspberry Pi Foundation

• OS family: Unix-like

• Source model: Open source

• Latest release: Raspbian Jessie with PIXEL / 16.02.2017

• Marketing target: Raspberry Pi

• Update method: APT

• Package manager: dpkg

• Platforms: ARM

• Kernel type: Monolithic

• Userland: GNU

• Default user interface: PIXEL, LXDE

• License: Free and open-source software licenses (mainly GPL)

• Official website: https://www.raspberrypi.org/downloads/raspbian/

2.3.1.3 WHO SHOULD USE THE RASPBERRY PI OPERATING

SYSTEM?

Raspberry Pi OS is a fantastic desktop operating system. When paired with

an 8GB Pi board or even a 4GB Pi, the 64-bit version should demonstrate

the credit card-sized maker board's multitasking and general computing

capabilities. Raspberry Pi OS may be easily adapted for certain use cases

because it is based on Linux. For a Raspberry Pi NAS, you can install media

server software like Plex, Emby, or Subsonic. Alternatively, for a home

theatre PC, install Kodi and VLC (HTPC). It's ideal for office productivity,

such as picture and audio editing, as well as programming.

And gaming is a lot of fun. Many games run natively on the Raspberry Pi,

or you can use emulators like Retro Arch to run them. In general, Raspberry

Pi OS is the best distribution for the majority of Pi users. It's a flexible

operating system that will undoubtedly be polished and improved in the

future. A desktop variation with suggested applications, a barebones

desktop image, and a simple command-line only option are among the

alternatives offered. You may also look at Ubuntu, which has images for

both 32-bit and 64-bit Raspberry Pi’s.

2.4 LINUX COMMANDS

The Linux command is a piece of software that comes with the Linux

operating system. Commands can be used to complete all simple and

complicated operations. On the Linux terminal, the commands are run. The

https://www.raspberrypi.org/downloads/raspbian/

83

Programming Raspberry PI terminal is a command-line interface for interacting with the system,

comparable to the Windows command prompt. In Linux, commands are

case-sensitive.

In comparison to other operating systems like Windows and MacOS, Linux

has a robust command-line interface. Through its terminal, we can perform

both basic and complicated tasks. We can perform some fundamental

operations such as creating, removing, and moving files. We can also

execute complicated jobs including administrative chores (such as package

installation and user administration), networking tasks (such as ssh

connections), security tasks, and so forth.

Because it offers a variety of assistance features, the Linux terminal is a

user-friendly terminal. To open the Linux terminal, press the "CTRL + ALT

+ T" keys together, then click the "ENTER" key to run a command.

The top 50 most commonly used Linux commands will be discussed in this

topic, along with examples. These commands are beneficial to both

beginners and professionals.

• Linux directory commands

1] pwd command: It is used for displaying the current working

directory location.

 Syntax: pwd

 Output:

2] mkdir command: Used for creating a new directory under any

directory.

 Syntax: mkdir <directory name>

 Output:

3] rmdir Command: used for deleting a directory.

Syntax: rmdir <directory name>

Output:

4] ls Command: for displaying a list of content of a directory.

Syntax: ls

Output:

84

Physical Computing and

IoT Programming

84

5] cd Command: for changing the current directory.

 Syntax: cd <directory name>

 Output:

• Linux File commands

6] Touch Command: used for creating an empty files. Executing

this command once will create multiple empty files.

Syntax:

touch <file name>

touch <file1> <file2>

Output:

7] cat command: This command is a multi-purpose utility in the

Linux system. It is used for creating a file, displaying its

content, copy the content of one file to another file, etc.

Syntax: cat [OPTION]... [FILE]..

To create a file, execute it as follows:

cat > <file name>

// Enter file content

Press "CTRL+ D" keys to save the file. To display the content

of the file, execute it as follows:

cat <file name>

Output:

8] rm Command: This command is used for removing a file

Syntax: rm <file name>

Output:

9] cp command: It is used for copying a file or directory.

Syntax: To copy in the same directory:

cp <existing file name> <new file name>

85

Programming Raspberry PI Output:

10] mv Command: This command is used for moving a file or a

directory from one location to another.

Syntax: mv <file name> <directory path>

Output:

11] rename Command: This command is used to rename the

large group of files

Syntax: rename 's/old-name/new-name/' files

Example: Execute the following command for converting the

entire text files into pdf files

rename 's/\.txt$/\.pdf/' *.txt

Output:

 • Linux File Content Commands

12] head Command: For displaying the content of a file. It

displays the first 10 lines of a file.

 Syntax: head <file name>

 Output:

13] tail Command: This is similar to the head command. The only

difference is this is used to display the last ten lines of the file

content. It's useful for deciphering error messages.

 Syntax: tail <file name>

 Output:

86

Physical Computing and

IoT Programming

86

14] tac Command: This command is the reverse of cat command,

as its name specified. It reverses the order of the contents of the

file (from the last line).

 Syntax: tac <file name>

 Output:

15] more command: The more command is quite similar to the cat

command in that it displays the contents of a file in the same

way that the cat command does. The only difference between

the two methods is that the more command displays a screenful

of output at a time in the event of larger files.

The following keys are used to scroll the page in the more

command:

ENTER key: To scroll down page by line.

Space bar: To advance to the next page.

b key: To return to the previous page.

/ key: To search the string.

Syntax: more <file name>

Output:

87

Programming Raspberry PI

16] less Command: The less command works in the same way as

the more command. It also has some added functions, such as

'terminal width and height modification.' The more command,

on the other hand, reduces the output to the width of the

terminal.

Syntax: less <file name>

Output:

• Linux User Commands

17] su Command: The su command grants another user

administrative privileges. In other words, it grants another user

access to the Linux shell.

 Syntax: su <user name>

 Output:

18] id Command: used for displaying the user ID (UID) and group

ID (GID).

Syntax: id

Output:

88

Physical Computing and

IoT Programming

88

19] useradd Command: On a Linux server, the useradd

command is used to add or remove users.

Syntax: useradd username

Output:

20] passwd Command: The passwd command is used to set and

update a user's password.

Syntax: passwd <username>

Output:

21] groupadd Command: Used for create a user group.

Syntax: groupadd <group name>

Output:

• Linux Filter Commands

22] cat Command: The cat command can also be used to filter

data. It's used inside pipes to filter files.

Syntax: cat <fileName> | cat or tac | cat or tac |. . .

Output:

23] cut Command: To choose a specific column of a file, use the

cut command. A space (' '), a slash (/), a hyphen (-), or

anything else can be used as a delimiter using the '-d' option.

A column number is specified using the '-f' option.

Syntax: cut -d(delimiter) -f(columnNumber) <fileName>

Output:

89

Programming Raspberry PI

24] grep Command: In a Linux system, the grep command is

the most powerful and often used filter. "Global regular

expression print" is what grep stands for. It's useful for

looking for information in a file. It's usually used in

conjunction with a pipe.

Syntax: command | grep <searchWord>

Output:

25] comm Command: To compare two files or streams, use the

'comm' command. It displays three columns by default: the

first column shows non-matching things from the first file,

the second column shows non-matching items from the

second file, and the third column shows matched items from

both files.

Syntax: comm <file1> <file2>

Output:

26] sed command: sed is also known as the stream editor

command. It's used to employ a regular expression to

modify files. It does not edit files indefinitely; instead, the

modified material is just displayed. It has no effect on the

file itself.

Syntax: command | sed 's/<oldWord>/<newWord>/'

Output:

90

Physical Computing and

IoT Programming

90

27] tee command: The cat command and the tee command are

very similar. The sole difference between the two filters is

that one writes standard input to standard output while the

other does not.

Syntax: cat <fileName> | tee <newFile> | cat or tac |.....

Output:

28] tr Command: The tr command is used to convert file text

from lower case to upper case, for example.

Syntax: command | tr <'old'> <'new'>

Output:

29] uniq Command: The uniq command creates a sorted list in

which each word appears just once.

Syntax: command <fileName> | uniq

Output:

30] wc Command: A file's lines, words, and characters are

counted with the wc programme.

Syntax: wc <file name>

Output:

91

Programming Raspberry PI

31] od Command: The od command displays a file's content in

various formats, including hexadecimal, octal, and ASCII

characters.

Syntax:

od -b <fileName> // Octal format

od -t x1 <fileName> // Hexa decimal format

od -c <fileName> // ASCII character format

Output:

32] sort Command: Sorting files in alphabetical order is done

with the sort command.

 Syntax: sort <file name>

 Output:

33] gzip Command: To reduce the file size, use the gzip

command. It's a tool for compressing data. The compressed

file with the '.gz' extension replaces the original file.

 Syntax: gzip <file1> <file2> <file3>...

 Output:

92

Physical Computing and

IoT Programming

92

34] gunzip Command: To decompress a file, use the gunzip

command. It's the inverse of the gzip command.

 Syntax: gunzip <file1> <file2> <file3>. .

 Output:

• Linux Utility Commands

35] find Command: The find command allows you to locate a

specific file within a directory. It also allows you to search

for files by name, type, date, and other criteria.

Following the find command, the following symbols are

used:

(.) For the current directory

(/): for the root

Syntax: find . -name "*.pdf"

Output:

36] locate Command: The locate command allows you to look

for a file by name. It works similarly to the locate command,

with the exception that it runs in the background. The find

command searches the file system, whereas the find

command examines the database. It's quicker than using the

find command. Keep your database up to date if you want

to use the locates command to find the file.

 Syntax: locate <file name>

93

Programming Raspberry PI Output:

37] date Command: The date command is used to display

information such as the date, time, and time zone.

 Syntax: date

 Output:

38] cal Command: The cal function displays the calendar for

the current month, with the current date highlighted.

 Syntax: cal<

 Output:

39] sleep Command: The sleep command is used to keep the

terminal awake for a set period of time. It takes time in

seconds by default.

 Syntax: sleep <time>

 Output:

94

Physical Computing and

IoT Programming

94

40] time Command: The time command is used to show the

amount of time it takes to perform a command.

 Syntax: time

 Output:

41] zcat Command: The compressed files are displayed using

the zcat command.

 Syntax: zcat <file name>

 Output:

42] df Command: The df command is used to display the file

system's disc space use. It shows the number of used blocks,

available blocks, and the mounted directory in the output.

 Syntax: df

 Output:

95

Programming Raspberry PI

43] mount Command: The mount command is used to attach a

file system from an external device to the system's file

system.

 Syntax: mount -t type <device> <directory>

 Output:

44] exit Command: The exit command in Linux is used to quit

the current shell. It accepts a number as an argument and

leaves the shell with a status number return.

 Syntax: exit

 Output:

 It will exit the terminal after pressing the ENTER key.

45] clear Command: To clear the terminal screen, use the Linux

clear command.

 Syntax: clear

 Output:

96

Physical Computing and

IoT Programming

96

The terminal screen will be cleared after pressing the ENTER

key.

• Linux Networking Commands

46] ip Command: The ipconfig command in Linux has been

replaced by the ip command. Its functions include assigning

an IP address, initialising an interface, and disabling an

interface.

 Syntax: ip a or ip addr

 Output:

47] ssh Command: The ssh command in Linux is used to

establish a remote connection using the ssh protocol.

 Syntax: ssh user_name@host(IP/Domain_name)</p>

48] mail Command: From the command line, the mail

command is used to send emails.

 Syntax: mail -s "Subject" <recipient address>

 Output:

49] ping Command: The ping command is used to determine

whether two nodes are connected, i.e. whether the server is

connected. It's an abbreviation for "Packet Internet

Groper."

97

Programming Raspberry PI Syntax: ping <destination>

 Output:

50] host Command: The host command displays the IP address

associated with a specified domain name and vice versa. For

the DNS Query, it does DNS lookups.

 Syntax: host <domain name> or <ip address>

 Output:

2.5 CONFIGURING RASPBERRY PI WITH LINUX

COMMANDS

When you first get your hands on a Raspberry Pi, you'll need to install an

operating system and link it to a Micro-SD card. On the Raspberry Pi,

Raspberry Pi not only supports their native Raspberry Pi OS, but also a

variety of different Linux versions. So, once you've installed an operating

system on a Raspberry Pi, you may communicate with it in a variety of

ways.

• Using the HDMI connector to connect a monitor to experience a user

interface

• Use the serial interface to communicate.

• Remotely communicate using an SSH connection

When you connect to a display, you're faced with a user interface, and

it's as simple as using your own computer to browse around the

operating system. When connecting through serial interface or remote

SSH, however, there is no such thing as a user interface. Instead,

you'll have to use a command-line interface to navigate about your

Raspberry Pi, which is analogous to the command prompt or

PowerShell on a Windows PC and the terminal on a Macintosh.

When utilizing a command-line, you generally instruct the Raspberry

Pi to complete tasks by typing instructions into the terminal, as

opposed to the traditional method of interaction, which involves using

a mouse. You might assume it's easier to communicate with a

Raspberry Pi by connecting a display and using a user interface, but

after you've mastered the command-line, your workflow will be much

faster and you'll have more control over your Raspberry Pi. You'll be

98

Physical Computing and

IoT Programming

98

able to combine these instructions into scripts and run them to speed

up the completion of tasks. Also, there may be times when you need

to deploy your Raspberry Pi to a different place, in which case the

command line will come in handy.

This section will help you become familiar with the majority of the

helpful commands you'll need to explore and interact with your

Raspberry Pi! These commands will also work with any Linux

distribution on the Raspberry Pi, as well as any other Linux-based

system!

• Command-line on the Raspberry Pi

The prompt pi@raspberrypi $ will appear on the first line when you

log in to the command line on your Raspberry Pi. This signifies that

you have logged in to your Raspberry Pi successfully. You can type

your commands in front of this text in the commands line.

• Updating the system

When you first switch on your Raspberry Pi, it's a good idea to update

the operating system and its sources to the most recent version. You

can do so by typing the commands below:

sudo apt-get update

sudo apt-get upgrade

sudo apt-get dist-upgrade

sudo rpi-update

These commands can be used alone or in combination, as shown

below:

99

Programming Raspberry PI sudo apt-get update && sudo apt-get upgrade && sudo apt-get

dist-upgrade && sudo rpi-update

Note that you must type "sudo" at the start of each command to

tell the Raspberry Pi that you are a "root" user. This enables you

to use all of the commands available in Linux without any

limitations.

• Navigating through files and folders

To navigate through your files and directories, there are a few

commands you can use:

pwd: It stands for print working directory, and it tells you where you

are in the directory tree.

ls : displays a list of all the contents of the directory you're in.

ls –l: lists all of the files in the directory you're in and gives you further

information about them.

cd: This command is used to return to the root directory. When you

use “cd” with the name of another folder in the current directory,

however, you will be switched to that directory.

cd..: This command is used to return from one directory to another.

• Performing file and folder operations

You may use following commands to execute tasks like creating new

folders, copying, moving, and deleting files and directories.

mkdir: for creating a new directory

Example: mkdir pidir will create a new directory, with the label

"pidir" as the name.

cp: you can use this command to copy files from one directory to

another.

Example: cp /home/pi/new/file.txt /home/pi/project/, copies the

file.txt from the /home/pi/new/ directory and pastes it into the

/home/pi/project/ directory.

mv: This will perform a cut-and-paste operation, moving the file from

one directory to another. This command, on the other hand, can be

used to rename file names in the same directory.

Example: mv /home/pi/new/file.txt /home/pi/project/ will copy

file.txt from /home/pi/new/ to /home/pi/project/.

Example: mv oldproject.txt newproject.txt will rename the file from

oldproject to newproject.

rm: This is handy for deleting files that are no longer needed.

100

Physical Computing and

IoT Programming

100

Example: rm testfile.txt will remove testfile.txt from its current

directory.

clear: This clears all commands from the current screen and replaces

it with a fresh one.

• Creating a new file and editing the contents

You may want to alter the contents of a file, such as a text file, after

you've created it. You might wish to use a command-line text editor

like GNU Nano for this. By running the command below, you will be

able to create a new file named newproject.txt or modify an existing

file named newproject.txt, and you will be given the option to add

content to it.

nano newproject.txt

By simply modifying the file format, such as newproject.py for

python files and newproject.conf for configuration files, you may

create or edit different types of files in the same way.

You'll be able to use arrow keys to browse around the newproject.txt

text file and type content inside it once it's been created. When you're

finished, press Ctrl+x on your keyboard, then Y when it asks if you

want to save it.

• Raspberry Pi hardware information

You may need to check the hardware details on your Raspberry Pi

from time to time and be unsure how to do so. Don't be concerned. To

check all of the hardware details, use the instructions listed below.

cat /proc/cpuinfo : displays information about the processor.

cat /proc/meminfo : displays information on the Raspberry Pi's

memory.

cat /proc/partitions: shows the number and size of partitions on your

SD card.

cat /proc/version : tells you what Pi version you're running.

vcgencmd measure_temp: displays the CPU temperature, which is

crucial to check if you're running heavy programmes and want to keep

an eye on the temperature.

free -o -h: displays the amount of system memory available.

top d1 : This command examines the CPU load and shows

information for each core.

df -h: This command can be used to determine how much free disc

space your Raspberry Pi has.

uptime: this shows how long the Raspberry Pi has been running as

well as the load average.

101

Programming Raspberry PI • Troubleshoot Raspberry Pi hardware

If you're searching for a report on how the Raspberry Pi's CPU and

RAM are being used by running programs, run the following

command.

htop

This will allow you to see if a specific app is running as well as

determine which apps are slowing down your Raspberry Pi. You can

close this window by using ctrl+c.

Also, if you're having network problems, run the following

command to see a list of all the networks to which you're connected.

 ifconfig

If you're using Ethernet, look for the eth0 portion, and if you're using

Wi-Fi, look for the wlan0 section. You may also check out your IP

address.

• Shutdown and restart your Raspberry Pi

You may use a few of instructions to shut down or restart your

Raspberry Pi right away.

sudo shutdown -h now: This will turn off your Raspberry Pi right

away.

However, if you want a schedule to shut down in 2 hours, for

example, type the following command. -02:00 sudo shutdown

sudo reboot : This will restart your Raspberry Pi right away.

2.6 SUMMARY

This unit made us familiar with the fundamentals required for programming

Raspberry Pi. Starting with the operating system required by Raspberry Pi

that is Raspbian we saw different Linux commands used for Raspberry Pi

programming.

2.7 LIST OF REFERENCES

1) Mastering the Raspberry Pi, Warren Gay, Apress(2014)

2) https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-

Operating-System.pdf

3) https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners

4) https://www.geeksforgeeks.org/linux-commands/

https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-Operating-System.pdf
https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-Operating-System.pdf
https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners
https://www.geeksforgeeks.org/linux-commands/

102

Physical Computing and

IoT Programming

102

5) https://www.javatpoint.com/nodejs-tutorial

6) https://www.tutorialspoint.com/nodejs/index.htm

7) https://www.w3schools.com/python/

8) https://docs.python.org/3/tutorial/

9) https://www.javatpoint.com/python-tutorial

10) https://www.analog.com/en/analog-dialogue/articles/uart-a-

hardware-communication-protocol.html

11) https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=

1632378909735&ref_url=https%253A%252F%252Fwww.google.c

om%252F

12) https://www.seeedstudio.com/blog/2020/02/19/how-to-use-

raspberry-pi-gpio-pins-python-tutorial/

13) https://www.ti.com/lit/an/slva704/slva704.pdf?ts=

1632361805005&ref_url=https%253A%252F%252Fwww.google.c

om%252F

14) https://embetronicx.com/tutorials/tech_devices/i2c_1/

15) https://practicalee.com/spi/

16) http://events17.linuxfoundation.org/sites/events/files

/slides/Shuah_Khan_cross_compile_linux.pdf

17) https://projects.raspberrypi.org/en/projects/getting-started-with-

picamera

UNIT END EXERCISES

1] Write a note on Raspbian.

2] Explain the history and features of Raspbian.

3] Write a detailed note on different Linux commands.

4] State the various Linux commands for configuring the Raspberry Pi.



https://www.javatpoint.com/nodejs-tutorial
https://www.tutorialspoint.com/nodejs/index.htm
https://www.w3schools.com/python/
https://docs.python.org/3/tutorial/
https://www.javatpoint.com/python-tutorial
https://www.analog.com/en/analog-dialogue/articles/uart-a-hardware-communication-protocol.html
https://www.analog.com/en/analog-dialogue/articles/uart-a-hardware-communication-protocol.html
https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.seeedstudio.com/blog/2020/02/19/how-to-use-raspberry-pi-gpio-pins-python-tutorial/
https://www.seeedstudio.com/blog/2020/02/19/how-to-use-raspberry-pi-gpio-pins-python-tutorial/
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://embetronicx.com/tutorials/tech_devices/i2c_1/
https://practicalee.com/spi/
http://events17.linuxfoundation.org/sites/events/files%20/slides/Shuah_Khan_cross_compile_linux.pdf
http://events17.linuxfoundation.org/sites/events/files%20/slides/Shuah_Khan_cross_compile_linux.pdf
https://projects.raspberrypi.org/en/projects/getting-started-with-picamera
https://projects.raspberrypi.org/en/projects/getting-started-with-picamera

103

3

PROGRAMING INTERFACES

Unit Structure

3.0 Objectives

3.1 Introduction to Node.js

 3.1.1 Why should you use Node.js?

 3.2.2 Features of Node.js

 3.1.3 Who makes use of Node.js?

 3.1.4 When should you use Node.js?

 3.1.5 When will you avoid using Node.js?

 3.1.6 Components of Node.js

 3.1.7 Node.js frameworks and tools

3.2 Python

 3.2.1 Python 2 Vs Python 3

 3.2.2 History of Python

 3.2.3 Why to learn Python?

 3.2.4 Characteristics of Python

 3.2.5 Applications of Python

3.3 Summary

3.4 List of References

3.5 Unit End Exercises

3.0 OBJECTIVES

After going through this unit, you will be able to:

• Acquaint with the programming concepts and its real-world

applications

• To understand the fundamentals and applications of Node.js

• To introduce with the cores and significance of python and its

applications in several domain

3.1 INTRODUCTION TO NODE.JS

Node.js is a cross-platform environment and framework for running

JavaScript applications, and it's commonly used to build networking and

server-side applications. Node.js is a cross-platform runtime environment

and framework for executing JavaScript outside of the browser. It's used to

104

Physical Computing and

IoT Programming

104

make server-side and network web applications. It's free to use and open

source. It is available for download at https://nodejs.org/en/.

Node.js is a real-time online application framework that uses an event-

driven architecture and a non-blocking Input/ Output API to improve

throughput and scalability. The frameworks available for web development

for a long time were all based on a stateless approach. A stateless model is

one in which the data generated in one session (such as user settings and

events) is not saved for use in a subsequent session with that user. It took a

lot of effort to keep track of a user's session information between requests.

However, with Node.js, web applications may now have real-time two-way

connections, where both the client and the server can initiate

communication and freely share data.

3.1.1 WHY SHOULD YOU USE NODE.JS?

Let's look at what makes this framework so popular. The majority of the

applications were built using a stateless request-response framework over

time. In these kinds of apps, it's up to the developer to make sure the correct

code was written to keep the user's web session alive as they worked with

the system.

You may now work in real-time and have two-way communication with

Node.js web applications. The state is preserved, and the communication

can be initiated by either the client or the server.

3.1.2 FEATURES OF NODE.JS

Let's take a look at some of Node.js' most important features.

1] Concurrent request processing is aided by asynchronous event-driven

IO, which is undoubtedly Node.js' most compelling feature. This

functionality essentially means that whenever Node receives a request

for an Input /Output operation, it will do the action in the background

while continuing to process other requests. This differs from other

programming languages in several ways. The code below shows a

simple example of this-

var fs = require('fs');

 fs.readFile("Sample.txt",function(error,data)

 {

 console.log("Reading Data completed");

 });

• The code line above examines reading a file named Sample.txt.

In other programming languages, the next line of processing

would take place only after the full file has been read.

• However, in the case of Node.js, the definition of the function

(‘function(error,data)') is the most significant part of the code to

pay attention to. A callback function is what this is called.

https://nodejs.org/en/

105

Programming Interfaces • So, in this case, the file reading activity will begin in the

background. While the file is being read, other processing can

take place at the same time. This anonymous function will be

called whenever the file read process is complete, and the text

"Reading Data done" will be written to the console log.

2]` The V8 JavaScript Runtime engine, which is also utilized by Google

Chrome, is used by Node. Node features a wrapper for the JavaScript

engine that speeds up the runtime engine and, as a result, the

processing of requests within Node.

3] Concurrent request handling - Another important feature of Node is

its ability to manage several connections with very little overhead in

a single process.

4] JavaScript is used by the Node.js library, which is another crucial part

of Node.js development. Because a large portion of the development

community is already familiar with javascript, developing with

Node.js becomes easier for those who are.

5] The Node.js framework has a thriving and active community. Because

of the active community, major upgrades to the framework are always

available. This ensures that the framework is always up to date with

the current web development trends.

3.1.3 WHO MAKES USE OF NODE.JS?

Many significant corporations use Node.js. A couple of them are listed

below.

• Paypal - A number of sites within Paypal have begun to migrate to

Node.js.

• LinkedIn - LinkedIn's Mobile Servers, which run the iPhone,

Android, and Mobile Web products, are powered by Node.js.

• Node.js, which has a half-billion instals, was used by Mozilla to

support browser APIs.

• eBay's HTTP API service is hosted in Node.js.

3.1.4 WHEN SHOULD YOU USE NODE.JS?

1] Node.js is ideally suited for use in real-time streaming or event-based

systems like Applications for chatting

2] Game servers - If you need a fast and high-performance server that

can handle thousands of requests at once, this is the framework for

you.

3] Good for collaborative workplaces - This is ideal for document

management setups. Multiple persons will submit their documents

and make frequent modifications by checking out and checking in

documents in a document management environment. Because the

106

Physical Computing and

IoT Programming

106

event loop in Node.js can be triggered anytime documents are

modified in a document managed environment, its ideal for these

setups.

4] Advertisement servers - You may receive thousands of requests to

extract adverts from a central server, and Node.js is an excellent

foundation for this.

5] Multimedia streaming servers - Another suitable scenario for Node is

for multimedia streaming servers, where clients request various

multimedia materials from the server.

 When you require a lot of parallelism but not a lot of devoted CPU

time, Node.js is a smart choice.

 Best of all, because Node.js is based on JavaScript, it works best when

creating client-side applications that use the same framework.

3.1.5 WHEN WILL YOU AVOID USING NODE.JS?

Node.js can be used in a variety of applications for different reasons. The

only time it should not be used is when the program requires significant

processing durations. Node is designed to run in a single thread. If an

application is required to perform some lengthy calculations in the

background, it will be unable to handle any further requests. As previously

said, Node.js is best used when processing requires less devoted CPU time.

3.1.6 COMPONENTS OF NODE.JS

The figure below depicts several key components of Node.js:

Figure 1.1 Components of Node.js

3.1.7 NODE.JS FRAMEWORKS AND TOOLS

Node.js is a low-level programming language. Thousands of libraries were

written on Node.js by the community to make things easier and more

exciting for developers. Many of these have become popular options over

time. The following is a partial list of the ones worth learning:

107

Programming Interfaces • AdonisJS: It is a TypeScript-based, full-featured framework that

prioritizes developer comfort, stability, and confidence. Adonis is a

Node.js web framework that is one of the quickest.

• Egg.js: It is a framework that uses Node.js and Koa to create better

enterprise frameworks and apps.

• Express: It's one of the simplest yet most powerful ways to set up a

web server. Its success is due to its minimalist approach, which is

unprejudiced and focused on the essential qualities of a server.

• Fastify: It is a web framework that focuses on giving developers the

best possible experience with the least amount of overhead and a

flexible plugin architecture. Fastify is a Node.js web framework that

is one of the fastest.

• FeatherJS: It is a lightweight web framework that uses JavaScript or

TypeScript to create real-time apps and REST APIs. Prototypes may

be created in minutes, and production-ready apps can be developed in

days.

• Gatsby: It is a static site generator built on React and powered by

GraphQL, with a large ecosystem of plugins and starters.

• Hapi: It is a sophisticated framework for developing apps and

services that allows developers to focus on defining reusable

application logic rather than infrastructure.

• koa: It was created by the same team who created Express, and it

strives to be even simpler and smaller, based on years of experience.

The desire to make incompatible changes without disrupting the

existing community spawned the new project.

• Loopback.io: Makes it simple to create modern apps with complex

integrations.

• Meteor is a full-stack framework with an isomorphic approach to

building apps using JavaScript that allows you to share code between

the client and the server. Formerly an all-in-one tool, it now interfaces

with the frontend libraries React, Vue, and Angular. It's also possible

to make mobile apps with it.

• Micro: It creates asynchronous HTTP microservices using a very

light server.

• NestJS is a TypeScript-based progressive Node.js framework for

creating enterprise-grade server-side apps that are quick, dependable,

and scalable.

• Next.js: A React framework with all the capabilities you need for

production, including hybrid static and server rendering, TypeScript

support, smart bundling, route pre-fetching, and more.

108

Physical Computing and

IoT Programming

108

• Nx: It is a full-stack monorepo development toolkit that includes

NestJS, Express, React, Angular, and more. Nx enables you to scale

your development from a single team producing a single app to

several teams working on multiple apps!

• Sapper: Sapper is a web application framework with a beautiful

development experience and configurable filesystem-based routing

for web applications of all sizes. Offers SSR as well as other services!

• Socket.io: It is a network application development platform that uses

real-time communication.

• Strapi: Strapi is an open-source Headless CMS that allows

developers to use their preferred tools and frameworks while also

allowing editors to manage and distribute their content simply. Strapi

helps the world's largest enterprises to expedite content delivery while

creating stunning digital experiences by making the admin panel and

API expandable through a plugin system.

3.2 PYTHON

Python is a dynamic, high-level, and interpreted programming language

with a wide range of applications. It supports the development of

applications using an Object-Oriented programming approach. It's simple

and straightforward to learn, and it comes with a plethora of high-level data

structures. Python is a scripting language that is simple to learn but powerful

and versatile, making it ideal for application development. Python's syntax

and dynamic typing, combined with the fact that it is interpreted, make it an

excellent language for scripting and rapid application development. Python

supports a variety of programming techniques, including object-oriented,

imperative, functional, and procedural.

Python is not designed for a specific task, such as web programming.

Because it can be used with web, enterprise, 3D CAD, and other

applications, it is known as a multipurpose programming language. Because

variables are dynamically typed, we don't need to use data types to declare

them. For example, we can write a=10 to assign an integer value to an

integer variable. Python allows for quick development and debugging

because there is no compilation step in the development process, and the

edit-test-debug cycle is very short.

3.2.1 PYTHON 2 Vs. PYTHON 3

When a new version of a programming language is released, it usually

supports the features and syntax of the previous version, making it easier

for projects to switch to the newer version. However, when it comes to

Python, the two versions, Python 2 and Python 3, are vastly different.

The following is a list of differences between Python 2 and Python 3:

1] Print is a statement in Python 2 that can be used as print "something"

to print a string to the console. Print, on the other hand, is a function

109

Programming Interfaces in Python 3 that can be used as print("something") to print something

to the console.

2] Raw input () is a function in Python 2 that accepts user input. It returns

a string that represents the value entered by the user. To convert it into

the integer, we need to use the int () function in Python. On the other

hand, Python 3 uses input () function which automatically interpreted

the type of input entered by the user. However, we can cast this value

to any type by using primitive functions (int (), str (), etc.).

3] In Python 2, the implicit string type is ASCII, whereas, in Python 3,

the implicit string type is Unicode.

4] The xrange() function from Python 2 is not available in Python 3. The

xrange() function is a variant of the range() function that returns an

xrange object that works in the same way as a Java iterator. The

range() returns a list for example the function range(0,3) contains 0,

1, 2.

5] There is also a small change made in Exception handling in Python 3.

It defines a keyword as which is necessary to be used. We will discuss

it in Exception handling section of Python programming tutorial.

3.2.2 HISTORY OF PYTHON

Python was fabricated by Guido Van Rossum in 1991 at CWI in Netherland.

The thought of Python programming language has taken from the ABCs

programming language or we can say that ABCs may be a precursor of

Python language. There is additionally a logic behind the selection of a

name Python. Guido Van Rossum was an exponent of the popular BBC

comedy show “Monty Python’s Flying Circus” at that era. Therefore, he

decided to choose the name Python for his new created programming

language. Python has the large community across the globe and releases its

version inside the short amount.

3.2.3 WHY TO LEARN PYTHON?

Python is a scripting language that is high-level, interpreted, interactive, and

object-oriented. Python is intended to be a very understandable language. It

typically uses English terms instead of punctuation, and it has fewer

syntactical structures than other languages.

Python is a must-have skill for students and working professionals who

want to become exceptional software engineers, especially if they work in

the Web Development field. Here some of the primary benefits of learning

Python are discussed:

1] Python is Interpreted Python is handled by the interpreter during

runtime. Before running your software, you do not need to assemble

it. This is similar to the programming languages PERL and PHP.

2] Python is interactive in the sense that you can sit at a Python prompt

and write your programs by interacting directly with the interpreter.

110

Physical Computing and

IoT Programming

110

3] Python is Object-Oriented Python supports the Object-Oriented

programming style or approach, which encapsulates code inside

objects.

4] Python is a Fantastic Language for Beginners Python is a great

language for beginners because it allows you to create a wide range

of programs, from simple text processing to web browsers and games.

3.2.4 CHARACTERISTICS OF PYTHON

The following are some of the most important features of Python

programming:

• It supports OOP as well as functional and structured programming

methods.

• It can be used as a scripting language or compiled into byte-code for

large-scale application development.

• It provides very high-level dynamic data types and supports dynamic

type checking.

• It supports automatic garbage collection.

• It can be easily integrated with C, C++, COM, ActiveX, CORBA, and

Java

3.2.5 APPLICATIONS OF PYTHON

As mentioned before, Python is one of the most widely used languages over

the web. Few of the applications are discussed here:

• Easy-to-learn − Python has few keywords, simple structure, and a

clearly defined syntax. This allows the student to pick up the language

quickly.

• Easy-to-read − Python code is more clearly defined and visible to the

eyes.

• Easy-to-maintain − Python's source code is fairly easy-to-maintain.

• A broad standard library − Python's bulk of the library is very portable

and cross-platform compatible on UNIX, Windows, and Macintosh.

• Interactive Mode − Python has support for an interactive mode which

allows interactive testing and debugging of snippets of code.

• Python is portable, meaning it can run on a wide range of hardware

systems and has the same user interface across all of them.

• The Python interpreter can be extended by adding low-level modules.

These modules allow programmers to improve the efficiency of their

tools by adding to or customizing them.

• Python has interfaces to all of the major commercial databases.

• Python supports GUI applications that can be created and ported to a

variety of system calls, libraries, and operating systems, including

Windows MFC, Macintosh, and Unix's X Window system.

• Python is more scalable than shell scripting in terms of structure and

support for large programs.

111

Programming Interfaces 3.3 SUMMARY

Python is a scripting language that is high-level, interpreted, interactive, and

object-oriented. Python is intended to be a very understandable language. It

typically uses English terms instead of punctuation, and it has fewer

syntactical structures than other languages.

Node.js (Node) is an open source server-side execution platform for

JavaScript code. Node is commonly used for real-time applications like as

chat, news feeds, and web push notifications and is useful for designing

apps that require a persistent connection from the browser to the server.

3.4 LIST OF REFERENCES

1) Mastering the Raspberry Pi, Warren Gay, Apress(2014)

2) https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-

Operating-System.pdf

3) https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners

4) https://www.geeksforgeeks.org/linux-commands/

5) https://www.javatpoint.com/nodejs-tutorial

6) https://www.tutorialspoint.com/nodejs/index.htm

7) https://www.w3schools.com/python/

8) https://docs.python.org/3/tutorial/

9) https://www.javatpoint.com/python-tutorial

10) https://www.analog.com/en/analog-dialogue/articles/uart-a-

hardware-communication-protocol.html

11) https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=

1632378909735&ref_url=https%253A%252F%252Fwww.google.c

om%252F

12) https://www.seeedstudio.com/blog/2020/02/19/how-to-use-

raspberry-pi-gpio-pins-python-tutorial/

13) https://www.ti.com/lit/an/slva704/slva704.pdf?ts=

1632361805005&ref_url=https%253A%252F%252Fwww.google.c

om%252F

14) https://embetronicx.com/tutorials/tech_devices/i2c_1/

15) https://practicalee.com/spi/

16) http://events17.linuxfoundation.org/sites/events/files

/slides/Shuah_Khan_cross_compile_linux.pdf

17) https://projects.raspberrypi.org/en/projects/getting-started-with-

picamera

3.5 UNIT END EXERCISES

1] Write a short note on Node.js.

2] Discuss the concept of Python.



https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-Operating-System.pdf
https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-Operating-System.pdf
https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners
https://www.geeksforgeeks.org/linux-commands/
https://www.javatpoint.com/nodejs-tutorial
https://www.tutorialspoint.com/nodejs/index.htm
https://www.w3schools.com/python/
https://docs.python.org/3/tutorial/
https://www.javatpoint.com/python-tutorial
https://www.analog.com/en/analog-dialogue/articles/uart-a-hardware-communication-protocol.html
https://www.analog.com/en/analog-dialogue/articles/uart-a-hardware-communication-protocol.html
https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.seeedstudio.com/blog/2020/02/19/how-to-use-raspberry-pi-gpio-pins-python-tutorial/
https://www.seeedstudio.com/blog/2020/02/19/how-to-use-raspberry-pi-gpio-pins-python-tutorial/
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://embetronicx.com/tutorials/tech_devices/i2c_1/
https://practicalee.com/spi/
http://events17.linuxfoundation.org/sites/events/files%20/slides/Shuah_Khan_cross_compile_linux.pdf
http://events17.linuxfoundation.org/sites/events/files%20/slides/Shuah_Khan_cross_compile_linux.pdf
https://projects.raspberrypi.org/en/projects/getting-started-with-picamera
https://projects.raspberrypi.org/en/projects/getting-started-with-picamera

112

Physical Computing and

IoT Programming

112

4

RASPBERRY PI INTERFACES

Unit Structure

4.0 Objectives

4.1 UART

 4.1.1 Introduction to UART communication

 4.1.2 Why UART is used?

 4.1.3 Block Diagram

 4.1.4 How UART works

 4.1.5 Steps of UART transmission

 4.1.6 Advantages of UART

 4.1.7 Disadvantages of UART

4.2 GPIO

 4.2.1 Purpose of the peripheral

 4.2.2 Features

 4.2.3 Functional block diagram

 4.2.4 Raspberry Pi GPIO pinout

 4.2.5 Configuring GPIO pin

 4.2.6 Essential products for Raspberry Pi GPIO

4.3 I2C

 4.3.1 Working of I2C

 4.3.2 I2C data transmission steps

 4.3.3 Single master multiple slaves

 4.3.4 Multiple master multiple slaves

 4.3.5 Advantages

 4.3.6 Disadvantages

4.4 SPI

 4.4.1 SPI interface

 4.4.2 Characteristics of SPI bus

 4.4.3 Multi-device topologies

 4.4.4 SPI data transmission steps

 4.4.5 Advantages

 4.4.6 Disadvantages

 4.4.7 Applications

4.5 Summary

4.6 List of References

4.7 Unit End Exercises

113

Raspberry PI Interfaces 4.0 OBJECTIVES

After going through this unit, you will be able to:

• Understand the concept and applications of communication interfaces

• Introduce with various raspberry pi communication interfaces such as

UART, GPIO, I2C, SPI along with its characteristics, working and its

applications point of view

4.1 UART

Universal Asynchronous Receiver/Transmitter (UART) is an acronym for

Universal Asynchronous Receiver/Transmitter. It is a physical circuit in a

microcontroller or a stand-alone IC, not a communication protocol like SPI

or I2C. The primary function of a UART is to transmit and receive serial

data.

4.1.1 INTRODUCTION TO UART COMMUNICATION

Two UARTs communicate directly with each other in UART

communication. The transmitting UART translates parallel data from a

controlling device, such as a CPU, into serial data and sends it to the

receiving UART, which then converts the serial data back into parallel data

for the receiving device. To send data between two UARTs, only two wires

are required. Data transfers from the transmitting UART's Tx pin to the

receiving UART's Rx pin:

UARTs send data asynchronously, which means there is no clock signal to

synchronize the transmitting UART's output of bits with the receiving

UART's sampling of bits. The transmitting UART adds start and stop bits

to the data packet being transferred instead of a clock signal. These bits

indicate the start and end of the data packet, allowing the receiving UART

to determine when to begin reading the bits.

When a start bit is detected by the receiving UART, it begins reading the

incoming bits at a particular frequency known as the baud rate. The baud

rate is a unit of measurement for data transfer speed, given in bits per second

(bps). Both UARTs must communicate at a similar baud rate. The baud rate

114

Physical Computing and

IoT Programming

114

difference between the transmitting and receiving UARTs can only be about

10% before the bit timing becomes too off. Both UARTs must also be set

up to send and receive data packets with the same structure.

4.1.2 WHY UART IS USED?

For quick communication, protocols such as SPI (serial peripheral interface)

and USB (universal serial bus) are employed. UART is utilized when high-

speed data transport is not necessary. It's a low-cost communication device

that only has one transmitter and receiver. It only requires one wire for data

transmission and another for data reception. An RS232-TTL or USB-TTL

converter can be used to connect it to a PC (personal computer). The only

thing that RS232 and UART have in common is that they both transmit and

receive data without the use of a clock. For serial data transport, the UART

frame comprises of one start bit, one or two stop bits, and a parity bit.

Figure 4.2 UART interface

4.1.3 BLOCK DIAGRAM

The fundamental components of the UART are as follows. They are the

transmitter and the receiver, respectively. The Transmit hold register,

Transmit shift register, and control logic make up the transmitter. A Receive

hold register, Receiver shift register, and control logic are also present in

the receiver. A baud rate generator is included in both the transmitter and

the receiver.

Figure 4.3 UART block diagram

115

Raspberry PI Interfaces The baud rate generator determines how fast the transmitter and receiver

must send and receive data. The data byte to be transmitted is stored in the

Transmit hold register. The bits are shifted to the left or right in the transmit

and receive shift registers until a byte of data is transferred or received.

A read or write control logic is also provided to determine when to read or

write. The baud rate generator can produce speeds ranging from 110 bps to

230400 bps. For faster data transfer, microcontrollers typically use higher

baud rates such as 115200 and 57600. Slower baud rates of 4800 and 9600

are used by devices like GPS and GSM.

4.1.4 HOW UART WORKS

The data for the UART that will transmit it comes from a data bus. Another

device, such as a CPU, RAM, or microcontroller, uses the data bus to deliver

data to the UART. Data is sent in parallel from the data bus to the

transmitting UART. After receiving parallel data from the data bus, the

transmitting UART creates the data packet by adding a start bit, a parity bit,

and a stop bit. The data packet is then serially output at the Tx pin, bit by

bit. The Rx pin on the receiving UART reads the data payload bit by bit.

The data is subsequently converted back into parallel form and the start,

parity, and stop bits are removed by the receiving UART. Finally, the

receiving UART sends the data packet to the data bus on the receiving end

in parallel.

The data sent over UART is divided into packets. Each packet has one start

bit, five to nine data bits (depending on the UART), an optional parity bit,

and one or two stop bits.

116

Physical Computing and

IoT Programming

116

Start Bit

When the UART data transmission line is not transmitting data, it is

generally held at a high voltage level. The transmitting UART pulls the

transmission line from high to low for one clock cycle to initiate data

transfer. When the receiving UART detects a high-to-low voltage transition,

it starts reading the bits in the data frame at the baud rate's frequency.

Data Frame

The actual data being sent is contained in the data frame. If a parity bit is

employed, it can be anything from 5 to 8 bits long. The data frame can be 9

bits long if no parity bit is used. The data is usually delivered with the least

significant bit first.

Parity

The evenness or oddness of a number is described by parity. The receiving

UART uses the parity bit to determine if any data has changed during

transmission. Electromagnetic radiation, mismatched baud rates, and long-

distance data transmissions can all alter bits. After reading the data frame,

the receiving UART counts the number of bits with a value of 1 and

determines whether the total is even or odd. The 1 bits in the data frame

should amount to an even number if the parity bit is a 0 (even parity). The

1 bits in the data frame should sum to an odd number if the parity bit is a 1

(odd parity). The UART understands that the transmission was error-free

when the parity bit matches the data. The UART knows that bits in the data

frame have changed if the parity bit is a 0 and the total is odd; or if the parity

bit is a 1 and the total is even.

Stop bit

The sending UART drives the data transmission line from a low voltage to

a high voltage for at least two bit lengths to signify the end of the data

packet.

4.1.5 STEPS OF UART TRANSMISSION

1. The transmitting UART receives data from the data bus in parallel.

117

Raspberry PI Interfaces 2. The starting bit, parity bit, and stop bit(s) are added to the data frame

by the transmitting UART.

3. From the transmitting UART to the receiving UART, the full packet

is transferred serially. The data line is sampled by the receiving UART

at the specified baud rate.

4. The data frame's start, parity, and stop bits are discarded by the

receiving UART.

5. On the receiving end, the receiving UART translates the serial data to

parallel and transfers it on the data bus.

118

Physical Computing and

IoT Programming

118

4.1.6 ADVANTAGES OF UART

• Only two wires are used.

• There is no need for a clock signal.

• Has a parity bit that can be used to check for errors.

• The data packet's structure can be modified as long as both sides are

prepared.

• This approach is well-documented and commonly used.

4.1.7 DISADVANTAGES OF UART

• The data frame size is restricted to a maximum of 9 bits.

• Multiple slave or master systems are not supported.

• Each UART's baud rates must be within ten percent of one another.

4.2 GPIO

GPIO, or General-Purpose Input Output, is a standard interface for digital

input and output found on microcontrollers and SBCs. It enables these

devices to control external components such as motors and infrared

transmitters (output) as well as receive data from sensor modules and

switches (input). In essence, GPIO allows our Raspberry Pi to communicate

with a wide range of external components, making it useful for projects

ranging from a weather station to a self-driving robot. Software

configurations will be necessary for GPIO pins to work. Don't worry;

beginner-friendly Python packages like GPIOzero exist to make physical

computing more accessible to everyone. GPIO access libraries such as

wiringPI are also available for more experienced programmers who prefer

C or C++.

119

Raspberry PI Interfaces

Figure 1.4 Raspberry Pi4 40 Pin GPIO Header

4.2.1 PURPOSE OF THE PERIPHERAL

In order to interact with other components in the system via low-speed

interface pins, most devices require some general-purpose input/output

(GPIO) functionality. The GPIO peripheral is where you may control and

use the GPIO capability on this device.

4.2.2 FEATURES

The following are the characteristics of the GPIO peripheral.

• Separate data set and clear registers provide output set/clear

capabilities, allowing several software processes to control GPIO

signals without compromising crucial section protection.

• Set/clear functionality is also supported by writing to a single output

data register.

• Input/output registers are separated

• The output register can be read to see the status of the output

drive.

• The input register can be read to see the status of the pins.

• With adjustable edge detection, all GPIO signals can be used as

interrupt sources.

• All GPIO signals can be used to send EDMA messages.

https://www.seeedstudio.com/Raspberry-Pi-4-Computer-Model-B-4GB-p-4077.html?utm_source=blog&utm_medium=blog

120

Physical Computing and

IoT Programming

120

4.2.3 FUNCTIONAL BLOCK DIAGRAM

Figure 1.5 below represents the GPIO peripheral block diagram

Figure 1.5 GPIO peripheral block diagram

4.2.4 RASPBERRY PI GPIO PINOUT

On the GPIO header of the Raspberry Pi B+, 2, 3, Zero, or the latest

Raspberry Pi 4 Model B, you'll find a total of 40 GPIO pins. Older RPI

models, such as the Raspberry Pi Model B, only have 26 pins.

Figure 1.6 Raspberry Pi4 GPIO pin header

https://www.seeedstudio.com/Raspberry-Pi-4-Computer-Model-B-4GB-p-4077.html?utm_source=blog&utm_medium=blog

121

Raspberry PI Interfaces Each pin on the 40-pin header has a specific purpose. In the table below, the

various categories are described.

GPIO pin

type

Pin functionality

GPIO GPIO pins are general – purpose pins that can be used to

switch external devices on and off, such as an LED.

Power

External components are supplied with 5V and 4.3V po

wer via the 5V and 3V3 pins.

I2C I2C pins are used to connect and communicate with

external modules that are I2C compliant.

SPI Hardware communication is also done via SPI (Serial

Peripheral Interface Bus) pins, although with a different

protocol.

UART For serial communication, UART (Universal

Asynchronous Receiver/Transmitter) pins are utilized.

DNC DNC (Do Not Connect) pins should be avoided at all

costs.

GND GND (Ground) pins are pins in your circuits that offer

electrical grounding.

4.2.5 CONFIGURING GPIO PIN

You can skip these steps and get right into programming with GPIO if

you're using the latest version of Raspberry Pi OS.

Otherwise, you'll have to update your RPI with the following commands

in the serial terminal:

sudo apt-get update

sudo apt-get upgrade

If you don't have the GPIO package loaded for some reason, execute the

following command to install it:

sudo apt-get install rpi.gpio

4.2.6 ESSENTIAL PRODUCTS FOR RASPBERRY PI GPIO

• Grove Base Hat for Raspberry Pi

The Grove Base Hat adds 15 Grove connectors to the Raspberry Pi's

initial 40 GPIO pins, extending the device's capabilities. Grove is a

modular, standardized connector system that eliminates the need for

jumper wires or solder for rapid and easy electronics prototyping.

https://www.seeedstudio.com/Grove-Base-Hat-for-Raspberry-Pi.html

122

Physical Computing and

IoT Programming

122

Figure 1.7 Grove Base Hat for Raspberry Pi

The Grove Base Hat allows the Raspberry Pi to connect to the Grove

ecosystem, which includes over 300 sensors, actuators, and

communication modules. Getting started with Raspberry Pi GPIO

projects has never been easier than it is now, thanks to Grove's

libraries and clear documentation.

• Raspberry Pi 40pin to 26pin GPIO Board

This 40-Pin to 26-Pin GPIO adapter board will come in handy if you

have older Raspberry Pi accessories that were designed for the

original 26-Pin layout. This GPIO board transforms the latest

Raspberry Pi models' 40-pin header to the original 26-pin layout,

allowing you to use your existing Raspberry Pi accessories.

4.3 I2C

I2C brings together the greatest aspects of SPI and UARTs. Numerous

slaves can be connected to a single master (like SPI) via I2C, and multiple

masters can control single or multiple slaves. When you wish to have

multiple microcontrollers logging data to a single memory card or

displaying text on a single LCD, this is really beneficial.

https://www.seeedstudio.com/Raspberry-Pi-A-B-2-40pin-to-26pin-GPIO-Board-p-2190.html?utm_source=blog&utm_medium=blog

123

Raspberry PI Interfaces I2C employs only two wires to send data between devices, similar to UART

communication.

• SDA (Serial Data): The data transmission and reception line between

the master and slave.

• Serial Clock Line (SCL): This is the line that carries the clock signal.

I2C is a serial communication technology, which means data is sent bit by

bit over a single wire (the SDA line).

I2C, like SPI, is synchronous, which means that a clock signal shared by the

master and slave synchronizes the output of bits with the sampling of bits.

The master is always in charge of the clock signal.

4.3.1 WORKING OF I2C

I2C sends data in the form of messages. Frames of data are used to break up

messages. Each message consists of an address frame with the slave's binary

address and one or more data frames containing the data to be delivered.

Between each data frame, the message additionally comprises start and stop

conditions, read/write bits, and ACK/NACK bits:

• Start Condition: Before the SCL line shifts from high to low voltage,

the SDA line switches from high to low voltage.

• Stop Condition: After the SCL line switches from low to high voltage,

the SDA line switches from low to high voltage.

• Address frame: When the master wants to talk to a slave, it uses an

address frame, which is a 7- or 10-bit sequence that uniquely identifies

the slave.

124

Physical Computing and

IoT Programming

124

• Read/Write bit: A single bit indicating whether the master is

providing data to the slave (low voltage level) or requesting data from

it (high voltage level) (high voltage level).

• ACK/NACK Bit: An acknowledge/no-acknowledge bit follows each

frame in a communication. The receiving device returns an ACK bit

to the sender if an address frame or data frame was successfully

received.

• Addressing

Because I2C lacks slave select lines like SPI, it requires a different

method of informing the slave that data is being transmitted to it and

not to another slave. It accomplishes this through addressing. In a new

message, the address frame is always the first frame after the start bit.

Every slave connected to the master receives the address of the slave

with whom it wishes to interact. After that, each slave compares the

address sent by the master to its own. It sends a low voltage ACK

signal back to the master if the addresses match. The slave does

nothing if the addresses do not match, and the SDA line remains high.

• Read/Write bit

A single bit at the end of the address frame tells the slave whether the

master wishes to write data to it or receive data from it. The read/write

bit is a low voltage level if the master wants to send data to the slave.

The bit is a high voltage level if the master is seeking data from the

slave.

• Data Frame

The initial data frame is ready to be delivered after the master detects

the ACK signal from the slave.

The data frame is always 8 bits long, and the most significant bit is

always sent first. Each data frame is immediately followed by an

ACK/NACK bit to confirm that it was successfully received. Before

the next data frame can be delivered, the ACK bit must be received

by either the master or the slave (depending on who is transmitting

the data).

The master can send a stop condition to the slave to interrupt the

transmission when all of the data frames have been sent. After a low

to high transition on the SCL line, the stop condition is a voltage

transfer from low to high on the SDA line, with the SCL line

remaining high.

4.3.2 I2C DATA TRANSMISSION STEPS

1. Before moving the SCL line from high to low, the master sends the

start condition to all linked slaves by switching the SDA line from

high to low voltage:

125

Raspberry PI Interfaces

2. The master sends the read/write bit and the 7 or 10 bit address of the

slave it wants to connect with to each slave:

3. Each slave checks the address sent by the master against its own. The

slave returns an ACK signal by pulling the SDA line low for one bit

if the addresses match. The slave leaves the SDA line high if the

master's address does not match the slave's own address.

126

Physical Computing and

IoT Programming

126

4. The data frame is sent or received by the master:

5. The receiving device sends another ACK bit to the sender after each

data frame has been delivered to acknowledge successful reception of

the frame:

6. The master transmits a stop condition to the slave by switching SCL

high before switching SDA high to cease data transmission:

127

Raspberry PI Interfaces 4.3.3 SINGLE MASTER MULTIPLE SLAVES

Because I2C employs addressing, a single master can control numerous

slaves. There are 128 (27) unique addresses possible using a 7 bit address.

It's unusual to use 10 bit addresses, yet they provide 1,024 (210) unique

addresses. If you want to link numerous slaves to a single master, use 4.7K

Ohm pull-up resistors to connect the SDA and SCL lines to Vcc.

4.3.4 MULTIPLE MASTER MULTIPLE SLAVES

A single slave or several slaves can be tied to multiple masters. When two

masters in the same system try to send or receive data over the SDA line at

the same time, the problem arises. To overcome this issue, each master must

first determine if the SDA line is low or high before sending a message. If

the SDA line is low, another master is in charge of the bus, and the master

should hold off on sending the message. It is safe to transfer the message if

the SDA line is high. Use the following schematic, with 4.7K Ohm pull-up

resistors connecting the SDA and SCL lines to Vcc, to connect many

masters to multiple slaves.

128

Physical Computing and

IoT Programming

128

4.3.5 ADVANTAGES

• Only two wires are used.

• Multiple masters and slaves are supported.

• The ACK/NACK bit indicates whether each frame was successfully

transferred.

• The hardware is simpler than using UARTs.

• Protocol that is well-known and extensively utilized

4.3.6 DISADVANTAGES

• Data transport rate is slower than SPI.

• The data frame size is limited to 8 bits.

• Hardware that is more difficult to implement than SPI is required.

4.4 SPI

Serial Peripheral Interface (SPI) stands for Serial Peripheral Interface. It's a

serial communication protocol used to link low-speed devices together.

Motorola created it in the mid-1980s for inter-chip communication. It's

frequently used to communicate with flash memory, sensors, real-time

clocks (RTCs), and analog-to-digital converters, among other things. It's a

full-duplex synchronous serial communication, which means data can be

sent in both directions at the same time.

The fundamental benefit of the SPI is that it allows data to be transferred

without interruption. This protocol allows for a large number of bits to be

broadcast or received at once.

Devices communicate using this protocol in a master-slave relationship.

The slave device is controlled by the master device, and the slave device

follows the master device's instructions. A single slave and a single master

is the most basic arrangement of the Serial Peripheral Interface (SPI). One

master device, on the other hand, can control several slave devices.

4.4.1 SPI INTERFACE

The communication in the SPI protocol is done via four wires. They are

depicted in the diagram.

129

Raspberry PI Interfaces • MOSI: MOSI (Master Output Slave Input) is an acronym that stands

for Master Output Slave Input. It's utilized to transfer data between

the master and the slave.

• MISO: MISO (Master Input Slave Output): MISO stands for Master

Input Slave Output. It's utilized to transfer data between the slave and

the master.

• SCL/SCLK: The clock signal is denoted by the letters SCK or SCLK

(Serial Clock).

• SS/CS: The master uses SS/CS (Slave Select / Chip Select) to deliver

data by selecting a slave.

NOTE: If only one slave is present in the communication, only three wires

are necessary. It does not require the SS (slave select).

4.4.2 CHARACTERISTICS OF SPI BUS

• The maximum frequency has yet to be determined. The bus can travel

as quickly as your chips and board design allow

• Data transmissions of 25-50 Mbits/sec are possible

• The Serial Data

• Point-to-Point topology is simple to implement and allows

transceivers to convert SPI signaling to RS485, CAN, fiber-optic, and

other protocols. The SPI protocol is unaffected, thus long-distance

and isolated connections are possible.

4.4.3 MULTI-DEVICE TOPOLOGIES

The daisy-chain and star multi-device topologies are supported by SPI. The

clock is split in two by the Daisy-chain topology, allowing it to route in

parallel to the slaves. However, data is still point-to-point. The MISO of one

slave is linked to the MOSI of another, forming a chain. Similar to a

boundary scan, data for all devices clocks through all devices in a chain;

each device just selects out the data intended to it. The chain's final device

sends its MISO to the master.

Figure 1.8 SPI Bus – Daisy Chain Topology

130

Physical Computing and

IoT Programming

130

Except for chip select, all signals in the Star topology are separated and

routed to each slave in parallel. Individual slave devices are selected using

multiple chip select. This mode is supported by more devices than daisy-

chaining.

Figure 1.9 SPI Bus – Star Topology

4.4.4 SPI DATA TRANSMISSION STEPS

1. The clock signal is output by the master.

2. The master activates the slave by lowering the voltage on the SS/CS

pin.

3. Along the MOSI line, the master transfers the data one bit at a time to

the slave. As the bits are received, the slave reads them.

131

Raspberry PI Interfaces 4. If a response is required, the slave sends data to the master one bit at

a time via the MISO line. As the bits are received, the master reads

them.

4.4.5 ADVANTAGES

• The fundamental benefit of the SPI is that it allows data to be

transferred without interruption.

• Simple in hardware.

• It can communicate in full duplex mode.

• In this protocol, the slave does not require a unique address.

• Because it uses the master's clock, this protocol does not necessitate

accurate slave device oscillation.

• The software implementation is straightforward in this case.

• It has a fast transfer rate.

• Signals are only sent in one direction.

• It contains independent MISO and MOSI lines, allowing data to be

delivered and received simultaneously.

4.4.6 DISADVANTAGES

• It usually only supports one master.

• Unlike the UART, it does not check for errors.

• It has a larger number of pins than the other protocol.

• Only from a limited distance can it be used.

• It makes no acknowledgement of whether or not the data has been

received.

4.4.7 APPLICATIONS

• Memory: SD Card, MMC, EEPROM, and Flash memory are all

options.

• Sensors: Temperature and pressure sensors are used.

• Control devices: ADC, DAC, digital POTS, and Audio Codec are the

control devices.

• Others: Other features include a camera lens mount, a touchscreen, an

LCD, an RTC, a video game controller, and so on.

132

Physical Computing and

IoT Programming

132

4.5 SUMMARY

Different Raspberry Pi interfaces such as UART, GPIO, I2C, SPI is

explored. The UART interface of Raspberry Pi is used for serial

communication. General purpose I/O is also investigated. For example,

GPIO 14 can be an input, an output, or a serial port TX data line. As a result,

the Raspberry Pi is extremely adaptable. The Pi's GPIO interface has a weak

CMOS 3 V interface, which is one of the issues. The I/O pins are weak

drivers, and the GPIO pins are prone to static electricity harm (2 to 16 mA).

GPIO power must also be budgeted from the 50 mA total spare current

capacity. Using adapter boards solves these issues however it comes at a

high price. This creates a fertile ground for developing low-cost, high-

effective roll-your-own solutions. The concept of I2C bus is also explored.

Philips invented the I2C bus, commonly known as the two-wire interface

(TWI), in 1982 to facilitate communication with slower devices. It was also

cost-effective because it just required two wires (excluding ground and

power). Other standards, such as the SMBus, have been developed since

then, expanding on this structure. The original I2C bus, on the other hand,

continues to be popular as a simple and cost-effective means to connect

peripherals. Followed by this the SPI technique is also discussed. The Serial

Peripheral Interface bus, or spy for short, is a synchronous serial interface

created by Motorola. The SPI protocol works in full-duplex mode, which

means it may send and receive data at the same time. In general, SPI

outperforms the I2C protocol in terms of speed, but it necessitates more

connections. Lastly the useful implementation such as cross compilation

technique, pulse width modulation and the interface for camera has been

studied.

4.6 LIST OF REFERENCES

1) Mastering the Raspberry Pi, Warren Gay, Apress(2014)

2) https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-

Operating-System.pdf

3) https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners

4) https://www.geeksforgeeks.org/linux-commands/

5) https://www.javatpoint.com/nodejs-tutorial

6) https://www.tutorialspoint.com/nodejs/index.htm

7) https://www.w3schools.com/python/

8) https://docs.python.org/3/tutorial/

9) https://www.javatpoint.com/python-tutorial

10) https://www.analog.com/en/analog-dialogue/articles/uart-a-

hardware-communication-protocol.html

https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-Operating-System.pdf
https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-Operating-System.pdf
https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners
https://www.geeksforgeeks.org/linux-commands/
https://www.javatpoint.com/nodejs-tutorial
https://www.tutorialspoint.com/nodejs/index.htm
https://www.w3schools.com/python/
https://docs.python.org/3/tutorial/
https://www.javatpoint.com/python-tutorial
https://www.analog.com/en/analog-dialogue/articles/uart-a-hardware-communication-protocol.html
https://www.analog.com/en/analog-dialogue/articles/uart-a-hardware-communication-protocol.html

133

Raspberry PI Interfaces 11) https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=

1632378909735&ref_url=https%253A%252F%252Fwww.google.c

om%252F

12) https://www.seeedstudio.com/blog/2020/02/19/how-to-use-

raspberry-pi-gpio-pins-python-tutorial/

13) https://www.ti.com/lit/an/slva704/slva704.pdf?ts=

1632361805005&ref_url=https%253A%252F%252Fwww.google.c

om%252F

14) https://embetronicx.com/tutorials/tech_devices/i2c_1/

15) https://practicalee.com/spi/

16) http://events17.linuxfoundation.org/sites/events/files

/slides/Shuah_Khan_cross_compile_linux.pdf

17) https://projects.raspberrypi.org/en/projects/getting-started-with-

picamera

4.7 UNIT END EXERCISES

1] Write a note on UART.

2] Explain the block diagram of UART and explain in brief why it is

used?

3] State the advantages and disadvantages of UART.

4] Write a note on UART transmission steps.

5] Discuss the purpose, features of GPIO.

6] Write a note on working of I2C and state its advantages and

disadvantages.

7] Describe the various I2C data transmission steps.

8] Write a note on single master multiple slaves.

9] Explain the concept of multiple master multiple slaves.

10] Write a note on SPI interfaces along with its characteristics.

11] Describe the SPI multidevice topologies.

12] Write a note on advantages, disadvantages and applications of SPI.

13] Explain the SPI data transmission steps.



https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.seeedstudio.com/blog/2020/02/19/how-to-use-raspberry-pi-gpio-pins-python-tutorial/
https://www.seeedstudio.com/blog/2020/02/19/how-to-use-raspberry-pi-gpio-pins-python-tutorial/
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://embetronicx.com/tutorials/tech_devices/i2c_1/
https://practicalee.com/spi/
http://events17.linuxfoundation.org/sites/events/files%20/slides/Shuah_Khan_cross_compile_linux.pdf
http://events17.linuxfoundation.org/sites/events/files%20/slides/Shuah_Khan_cross_compile_linux.pdf
https://projects.raspberrypi.org/en/projects/getting-started-with-picamera
https://projects.raspberrypi.org/en/projects/getting-started-with-picamera

134

Physical Computing and

IoT Programming

134

5

USEFUL IMPLEMENTATIONS

Unit Structure

5.0 Introduction

5.1 Cross Compilation

 5.1.1 Need of cross compilers

 5.1.2 Why cross compiling is difficult?

 5.1.3 Working of cross compilation

 5.1.4 Build process of cross compiler

5.2 Pulse Width Modulation

 5.2.1 PWM principle

 5.2.2 Applications of PWM

5.3 SPI for Camera

 5.3.1 Applications

 5.3.2 Features

 5.3.3 Pin definition

 5.3.4 Wiring

5.4 Summary

5.5 List of References

5.6 Unit End Exercises

5.0 OBJECTIVES

After going through this unit, you will be able to:

• Understand the fundamentals of cross compilation

• Acquaint with the concepts of pulse width modulation

• Interfacing of SPI for camera with its applications

5.1 CROSS COMPILATION

A compiler is a piece of software that converts source code to executable

code. A compiler, like all programs, operates on a specific type of computer,

and the new programs it generates run on the same type of computer.

The computer on which the compiler runs is known as the host, whereas the

computer on which new programs execute is known as the target. The

compiler is a native compiler when the host and target machines are of the

same type. The compiler is a cross compiler when the host and target are

different. The act of compiling code for one computer system (commonly

referred to as the target) on a different computer system (often referred to

135

Useful Implementations as the host) is known as cross-compilation. When the target system is too

small to host the compiler and all essential files, this is a highly handy

strategy.

• Where does cross compiler come into play?

 Cross compiler is used in Bootstrapping. Meaning- Getting started on

a new platform. A cross compiler is used to compile necessary tools

such as the OS and a native compiler when developing software for a

new platform.

5.1.1 NEED OF CROSS COMPILERS

In theory, a PC user might get the proper target hardware (or emulator), boot

a Linux distro on it, and compile natively within that environment. While

this is a valid strategy (and perhaps even a good one when dealing with a

Mac Mini), it has a few significant drawbacks when dealing with items like

a Linksys router or an iPod.

• Speed - Target platforms are often an order of magnitude or slower

than hosts. The majority of special-purpose embedded hardware is

made for low cost and low power consumption, rather than for high

performance. By virtue of running on high-powered desktop

hardware, modern emulators (like qemu) are actually quicker than a

lot of the real-world hardware they simulate.

• Capability - Compiling consumes a lot of resources. The target

platform typically lacks the resources of a desktop, such as gigabytes

of memory and hundreds of gigabytes of disc space; it may not even

have the resources to generate "hello world," let alone huge and

complex packages.

• Availability - A cross-compiler is required to bring Linux up on a

hardware platform it has never run on before. Finding an up-to-date

full-featured prebuilt native environment for a given target, even on

long-established platforms like Arm or Mips, can be difficult. If the

platform isn't typically used as a development workstation, there may

not be a recent prebuilt distro available, and if there is, it's likely out

of date. You're back to cross-compiling anyway if you have to build

your own distro for the target before you can build on the target.

• Flexibility - A fully functional Linux distribution has hundreds of

packages, but in most cases, a cross-compile environment can rely on

the host's existing distro. Cross compiling focuses on constructing the

target packages to be deployed rather than spending time on the target

system for build-only prerequisites to work.

• Convenience - The user interface of headless boxes can be a little

claustrophobic. It's difficult enough to diagnose build errors as it is.

It's a hassle to install software from a CD onto a machine that doesn't

have a CD-ROM drive. It's wonderful to be able to recover from

accidently lobotomizing your test system rather of having to reboot

back and forth between your test environment and your development

environment.

136

Physical Computing and

IoT Programming

136

5.1.2 WHY CROSS COMPILING IS DIFFICULT?

• Portable native compiling is hard.

 It's difficult to compile native code in a portable format. The majority

of applications are written on x86 hardware and compiled natively.

Cross-compiling thus encounters two categories of issues: issues with

the applications themselves and issues with the build mechanism.

 The first sort of issue affects all non-x86 targets, both native and

cross-built versions. Most programs make assumptions about the sort

of system they operate on, and these assumptions must match the

platform in issue or the program will not run. The following are some

common assumptions:

• Word size - On a 64-bit platform, copying a pointer into an int may

lose data, and calculating the size of a malloc by multiplying by 4

instead of sizeof(long) isn't ideal. Integer overflow issues can

sometimes be subtle, such as "if (x+y size) memset(src+x,0,y);",

which results in a 4 GB memset on 32-bit hardware when x=1000 and

y=0xFFFFFFF0...

• Endianness - Different systems store binary data internally in

different ways, requiring translation when reading int or float data

from disc or the network.

• Alignment - Some platforms (such as arm) can only read or write

integers from addresses that are an even multiple of four bytes, or they

may segfault. Even those that can tolerate arbitrary alignments are

slower when dealing with unaligned data (they must fetch both halves

twice), hence the compiler will frequently pad structures to align

variables. Treating structures as a blob of data that can be written to

disc or delivered over the network necessitates additional effort to

assure consistency.

• Default signedness - Whether the "char" data type is signed or

unsigned by default varies from platform to platform (and, in some

situations, from compiler to compiler), which might result in some

unexpected issues. The simple solution is to use a compiler parameter

such as "-funsigned-char" to force the default value to a known value.

• NOMMU - If your target platform lacks a memory management unit,

you'll need to make a few adjustments. Only certain sorts of mmap()

work (shared or read only, but not copy on write), and the stack

doesn't grow dynamically, so you'll need vfork() instead of fork().

Most packages seek to be portable when compiled natively, and will at the

very least accept patches given to the proper development mailing list to

remedy any of the above concerns (with the possible exception of NOMMU

difficulties).

• Cross- compiling

Cross-compiling has its own set of challenges in addition to native

compiling's:

137

Useful Implementations • Configuration difficulties - To be portable when natively compiled,

packages having a separate configuration step (the "./configure"

section of the typical configure/make/make install) frequently test for

factors like endianness or page size. Because these values differ

across the host and target systems when cross-compiling, performing

tests on the host system yields incorrect results. When the target

doesn't have that package or has an incompatible version,

configuration can detect its presence on the host and include support

for it.

• HOSTCC vs. TARGETCC - Many build procedures, such as the

above configuration tests, or programs that generate code (such as a

C program that generates a.h file that is then #included during the

main build), need compiling items to execute on the host system.

Simply substituting a target compiler for the host compiler damages

packages that require the build of objects that run during the build

process. These packages require access to both a host and a target

compiler, as well as instruction on when to use each.

• Toolchain Leaks - An incorrectly configured cross-compile

toolchain can leak pieces of the host system into built applications,

causing failures that are normally easy to detect but complex to

diagnose and fix. At link time, the toolchain may #include the

incorrect header files or search the incorrect library directories.

Shared libraries frequently rely on other shared libraries, which can

introduce unintended host-system link-time references.

• Libraries - At compile time, dynamically linked applications must

access the proper shared libraries. In order for programs to link against

shared libraries on the target system, they must be included to the

cross-compile toolchain.

• Testing - The development system provides a handy testing

environment for native builds. Confirming that "hello world"

compiled properly while cross-compiling can necessitate configuring

(at the very least) a bootloader, kernel, root file system, and shared

libraries.

5.1.3 WORKING OF CROSS COMPILATION

A cross compiler is a compiler that can generate executable code for

platforms other than the one on which it is currently operating. In

paravirtualization, a single machine runs numerous operating systems, and

a cross compiler might build executable for each from a single source. The

ultimate purpose of several separate components is to produce the byte code

that the target CPU utilizes. You've successfully cross-compiled when you

can generate the assembled byte code. Any compiler's key components are:

• Parser: The parser translates the source code of the raw language to

assembly language. The parser must be familiar with the destination

assembly language because you're converting from one format to

another (C to assembly).

138

Physical Computing and

IoT Programming

138

• Assembler: The assembler translates assembly language code into

byte code, which is then executed by the CPU.

• Linker: The linker assembles the individual object files generated by

the assembler into a single executable application. Encapsulation

mechanisms and standards vary depending on the operating system

and CPU mix. To function, the linker must be aware of the target

format.

• Standard C library: A central C library contains the essential C

functions (for example, printf). If the application uses functions from

the C library, this library is utilized in conjunction with the linker and

the source code to build the final executable.

Each of these components of a standard host-based C compiler is

designed to produce the host's associated assembly code, byte code,

and target execution format. Although the application is meant to run

on the host, the assembly language, linker, and C library are all

created for the target platform and processor in a cross-compiler. You

might cross-compile an application on an Intel-based Linux computer

so that the assembly language and final application are for a Solaris-

based SPARC host.

As a result, creating a cross-compiler necessitates creating a different

version of the C compiler suite that creates and links applications for

the target host. You can develop your own cross-compilers since you

can compile GCC and the related tools.

5.1.4 BUILD PROCESS OF CROSS COMPILER

The GNU utilities (that is, the GCC), which include the C compiler, binary

utilities, and the C library, have a number of advantages, the most notable

of which is that they are free, open source, and simple to compile. From a

cross-compiler standpoint, the fact that GCC has been ported to a variety of

systems means that the code supports a variety of CPU and platform types.

However, there are certain limits. GCC does not support all processor kinds

or systems (albeit it does produce the majority). When you run the

configuration tools, you'll get a warning.

You'll need three components from the GNU suite to make a cross-

compiler:

• binutils: Basic binary utilities like the assembler and linker, as well

as related tools like Size and Strip, are included in the binutils

package. Both the essential components for generating an application

and the tools that may be used to build and edit the target execution

format are included in the binary utilities. The Strip utility, for

example, eliminates symbol tables, debugging, and other "useless"

information from an object file or application, but it has to know the

target format to avoid removing the erroneous data.

139

Useful Implementations • gcc: The major component of the compilation process is the gcc. Gcc

is made up of two parts: a C preprocessor (cpp) and a translator that

transforms C code to the target CPU assembly language. Gcc also

serves as a user interface for the entire process, invoking cpp, the

translator, the assembler, and the linker as needed.

• newlib/glibc: This library is the standard C library. Newlib was

created by Redhat and may be slightly more user-friendly in cross-

compilers intended for embedded targets.

You'll also need the target operating system's header files, which are

required so that you can access all of the operating system's functions

and system calls needed to build the program. The headers are

relatively easy to obtain on Linux. You can copy an existing set of

headers for various operating systems.

You can also construct the GNU debugger - gdb - for the target host

if you like. Because emulation is required, you can't create a debugger

that can execute code for the target while running on the host. You

can, however, create a gdb executable for your target host.

5.2 PULSE WIDTH MODULATION

PWM (Pulse Width Modulation) is a technique for varying the width of

pulses in a pulse train. It's a digital technique that manipulates the quantity

of power given to a gadget. It uses a digital source to generate analogue

signals. A PWM signal is a square wave that alternates between on and off

states. A PWM signal's behavior is determined by its duty cycle and

frequency. PWM is used to operate servos and speed controllers, as well as

limit the effective power of motors and LEDs.

5.2.1 PWM principle

A square wave with changing high and low times is what pulse width

modulation is. The following diagram depicts a basic PWM signal.

Several terms are associated with PWM such as

• ON Time: The duration of the time signal when it is ON is high.

• OFF Time: The duration of the time signal is low.

140

Physical Computing and

IoT Programming

140

• Period: The sum of the on-time and off-time of a PWM signal is the

period.

• Duty cycle: The percentage of time that the signal remains on during

the period of the PWM signal is referred to as duty cycle.

• Frequency: The time it takes for this signal to complete a one-and-

off cycle is measured in periods. The frequency is the inverse of the

period, and it is the number of times a periodic change is

accomplished per unit time. It establishes the rate at which the PWM

completes one cycle, i.e., the rate at which the signal flips from high

to low states. The output will behave like an analogue signal with a

constant voltage if we turn the digital signal on and off with a high

enough frequency.

• Period:

Ton signifies the signal's on-time, and Toff denotes the signal's off-

time, as illustrated in the diagram. Period is determined as the sum

of both on and off times, as stated in the equation below.

TTotal = TON + TOFF

• Duty cycle:

The on-time of the period of time is used to determine the duty cycle.

Using the above-mentioned period, the duty cycle is determined as

follows:

5.2.2 APPLICATIONS OF PWM

• Adjusting screen brightness: PWM can be used to adjust the

brightness of the screen. Adjusting the brightness of the screen via

PWM does not rely on electricity, but rather on the screen alternating

on and off. When the PWM dimming screen is turned on, it does not

output light continuously, but it does light up and switch off the screen

frequently. If this changes quickly enough, our eyes will perceive it

as always on, but with varying brightness dependent on duty cycles.

The brighter the screen, the higher the duty cycle.

• Set the volume of the buzzer to a different level.

• Control the motor's speed.

• A servo's direction can be controlled.

• Providing analog output.

• Create an audio signal

• Telecommunication: Message encoding

141

Useful Implementations 5.3 SPI FOR CAMERA

Since 2012, the Arducam team has been developing the world's first high-

resolution SPI camera solution for Arduino, which fills a gap in the Arduino

community's camera supply. These SPI cameras are general-purpose

solutions that can be used on any hardware platform that has the SPI and

I2C interfaces, not just the Arduino platform. The SPI bus' flexibility

increases the utility of the SPI camera by allowing customers to connect

several cameras to a single microcontroller and shoot images at the same

time. Support for LCD screens is optional.

The Raspberry Pi Pico, as an alternative to Arduino, lacks processing

power, memory, and a CSI interface, making it incompatible with the

official or any MIPI CSI-2 camera modules. Pico, fortunately, has a variety

of versatile I/O choices, including SPI, which allows the Arducam SPI

camera to function with Pico.

5.3.1 APPLICATIONS

• Cameras for internet of things (IoT) applications

• Cameras for robots

• Camcorders for wildlife

• Other battery-operated devices

• MCU, Raspberry Pi, ARM, DSP, and FPGA platforms are all

compatible.

5.3.2 FEATURES

• OV2640 (B0067) 2MP image sensor / OV5642 5MP image sensor

(B0068)

• Lens holder for M12 or CS mounts with interchangeable lenses

• With the right lens combination, IR sensitive

• Sensor setup through the 12C interface

• Camera commands and data stream are sent over the SPI interface.

• All of the IO ports are 5V/3.3V compatible.

• JPEG compression mode, single and multiple shoot mode, one-time

capture multiple read operation, burst read operation, low power

mode, and other features are all supported.

• Standard Raspberry Pi Pico boards are well matched.

• Open-source code libraries for Arduino, STM32, Chipkit, Raspberry

Pi, and BeagleBone Black are available.

• Small form factor

142

Physical Computing and

IoT Programming

142

5.3.3 PIN DEFINITION

5.3.4 WIRING

5.4 SUMMARY

This unit made us familiar with the fundamentals of SPI technique. The

Serial Peripheral Interface bus, or spy for short, is a synchronous serial

interface created by Motorola. The SPI protocol works in full-duplex mode,

which means it may send and receive data at the same time. In general, SPI

outperforms the I2C protocol in terms of speed, but it necessitates more

connections. Lastly the useful implementation such as cross compilation

technique, pulse width modulation and the interface for camera has been

studied.

143

Useful Implementations 5.5 LIST OF REFERENCES

1) Mastering the Raspberry Pi, Warren Gay, Apress(2014)

2) https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-

Operating-System.pdf

3) https://maker.pro/linux/tutorial/basic-linux-commands-for-

beginners

4) https://www.geeksforgeeks.org/linux-commands/

5) https://www.javatpoint.com/nodejs-tutorial

6) https://www.tutorialspoint.com/nodejs/index.htm

7) https://www.w3schools.com/python/

8) https://docs.python.org/3/tutorial/

9) https://www.javatpoint.com/python-tutorial

10) https://www.analog.com/en/analog-dialogue/articles/uart-a-

hardware-communication-protocol.html

11) https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=

1632378909735&ref_url=https%253A%252F%252Fwww.goo

gle.com%252F

12) https://www.seeedstudio.com/blog/2020/02/19/how-to-use-

raspberry-pi-gpio-pins-python-tutorial/

13) https://www.ti.com/lit/an/slva704/slva704.pdf?ts=

1632361805005&ref_url=https%253A%252F%252Fwww.goo

gle.com%252F

14) https://embetronicx.com/tutorials/tech_devices/i2c_1/

15) https://practicalee.com/spi/

16) http://events17.linuxfoundation.org/sites/events/files

/slides/Shuah_Khan_cross_compile_linux.pdf

17) https://projects.raspberrypi.org/en/projects/getting-started-

with-picamera

5.6 UNIT END EXERCISES

1] Explain the process of cross compilation.

2] What is the need of cross compilation?

3] Explain the working and build process of cross compilation.

4] State the principle of PWM.

5] State the features, applications and pin definition of SPI.



https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-Operating-System.pdf
https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-Operating-System.pdf
https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners
https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners
https://www.geeksforgeeks.org/linux-commands/
https://www.javatpoint.com/nodejs-tutorial
https://www.tutorialspoint.com/nodejs/index.htm
https://www.w3schools.com/python/
https://docs.python.org/3/tutorial/
https://www.javatpoint.com/python-tutorial
https://www.analog.com/en/analog-dialogue/articles/uart-a-hardware-communication-protocol.html
https://www.analog.com/en/analog-dialogue/articles/uart-a-hardware-communication-protocol.html
https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.seeedstudio.com/blog/2020/02/19/how-to-use-raspberry-pi-gpio-pins-python-tutorial/
https://www.seeedstudio.com/blog/2020/02/19/how-to-use-raspberry-pi-gpio-pins-python-tutorial/
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://embetronicx.com/tutorials/tech_devices/i2c_1/
https://practicalee.com/spi/
http://events17.linuxfoundation.org/sites/events/files%20/slides/Shuah_Khan_cross_compile_linux.pdf
http://events17.linuxfoundation.org/sites/events/files%20/slides/Shuah_Khan_cross_compile_linux.pdf
https://projects.raspberrypi.org/en/projects/getting-started-with-picamera
https://projects.raspberrypi.org/en/projects/getting-started-with-picamera

144

Physical Computing

and IoT Programming

144

6

IOT SERVICE AS A PLATFORM

Unit Structure

6.0 Objective

6.1 Introduction

6.2 IoT Security

6.3 The UPNP Protocol

6.4 The COAP Protocol

6.5 MQTT Protocol

6.6 XMPP Protocol

6.7 Summary

6.8 References for Future reading

6.9 Unit End Exercise

6.0 OBJECTIVE

• IoT requires expertise in enabling smart sensors to observe, learn, and

make decisions to produce limitless market opportunities.

• IoT development services in India leverage widespread

interconnected devices to enhance products that retain connectivity,

convert data, and supervise them constantly.

6.1 INTRODUCTION

HTTP is a stateless request & response protocol where clients request

information from a server and the server responds to these requests

accordingly. A request is made up of a method, a resource, some headers,

and some optional content. A response is made up of a three-digit status

code, some headers and some optional content.

6.2 IOT SECURITY: HTTP, UPNP, COAP, MQTT, XMPP.

6.2.1. Hypertext Transfer Protocol (HTTP): It is used in machine-to-

machine (M2M) communication, automation, and Internet of Things,

among other things.

6.2.2. Introduction

HTTP is a stateless request & response protocol where clients request

information from a server and the server responds to these requests

accordingly. A request is made up of a method, a resource, some headers,

145

IoT Service as a Platform and some optional content. A response is made up of a three-digit status

code, some headers, and some optional content. A Uniform Resource

Locator (URL) identifies each resource, originally thought to be a collection

of Hypertext documents or HTML documents. Clients simply use the GET

method to request a resource from the corresponding server. In the structure

of the URL presented next, the path and the server identify the resource by

the authority portions of the URL. The PUT and DELETE methods allow

clients to upload and remove content from the server, while the POST

method allows them to send data to a resource on the server.

HTTP is a cornerstone of service-oriented architecture (SOA), where

methods for publishing services through HTTP are called web services. One

important manner of publishing web services is called Simple Object

Access Protocol (SOAP), where web methods, their arguments, return

values, bindings, and so on, are encoded in a specific XML format. It is then

documented using the Web Services Description Language (WSDL).

6.2.3. Adding HTTP support to the sensor

The following are the three strategies used when publishing the data using

HTTP:

• In the first strategy the sensor is a client who publishes information to

a server on the Internet. The server acts as a broker and informs the

interested parties about sensor values. This pattern is called

publish/subscribe.

• Second Strategy is to allow all entities in the network be both clients

and servers, depending on what they need to do. The UPnP Protocol.

This reduces latency in communication but requires all participants to

be on the same side of any firewalls.

Third Strategy is to let the sensor become an HTTP server, and who is

interested in knowing the status of the sensor become the clients. It also

allows easy access to the sensor from the parties behind firewalls if the

sensor is publicly available on the Internet.

6.2.4. Setting up an HTTP server on the sensor

To begin with,

1. add the namespace in the application.

using System.Xml;

using System.Text;

using System.IO;

using System.Drawing;

2. Then, add references to the following Clayster namespaces, which

will help to work with HTTP and along with different content types

mentioned.

146

Physical Computing

and IoT Programming

146

using Clayster.Library.Internet;

using Clayster.Library.Internet.HTTP;

using Clayster.Library.Internet.HTML;

using Clayster.Library.Internet.MIME;

using Clayster.Library.Internet.JSON;

using Clayster.Library.Internet.Semantic.Turtle;

using Clayster.Library.Internet.Semantic.Rdf;

using Clayster.Library.IoT;

using Clayster.Library.IoT.SensorData;

using Clayster.Library.Math;

The Internet library helps us with communication and encoding, the

IoT library deals with an interoperability, and the Math library deals

with graphs.

3. Next step is application initialization, which is done using the

following code:

HttpSocketClient.RegisterHttpProxyUse (false, false);

To instantiate an HTTP server, add the following code before

application initialization ends and the main loop begins:

HttpServer HttpServer = new HttpServer (80, 10, true, true, 1);

Log.Information ("HTTP Server receiving requests on port” +

HttpServer.Port.ToString ());

The HTTP server can process both synchronous and asynchronous

web resources:

A synchronous web resource responds within the HTTP handler we

register for each resource. These are executed within the context of a

working thread.

• An asynchronous web resource handles processing outside the

context of the actual request and is responsible for responding by

itself. This is not executed within the context of a working thread.

4. Register web resources on the server: register the path of each

resource and connect that path with an HTTP handler method, which

will process each corresponding request.

HttpServer.Register ("/", HttpGetRoot, false);

HttpServer.Register ("/html", HttpGetHtml, false);

HttpServer.Register ("/historygraph", HttpGetHistoryGraph, false);

HttpServer.Register ("/xml", HttpGetXml, false);

HttpServer.Register ("/json", HttpGetJson, false);

147

IoT Service as a Platform HttpServer.Register ("/turtle", HttpGetTurtle, false);

HttpServer.Register ("/rdf", HttpGetRdf, false);

5. Disposing the server when the application ends

HttpServer.Dispose ();

Adding a root menu

Add a root menu which is accessible through the path /.

private static void HttpGetRoot (HttpServerResponse resp,

HttpServerRequest req)

{

 networkLed.High ();

 try

{

 resp.ContentType = "text/html";

 resp.Encoding = System.Text.Encoding.UTF8;

resp.ReturnCode = HttpStatusCode.Successful_OK;

}

finally

{

networkLed.Low ();

}

}

Return the actual HTML page with the following code:

resp.Write ("<html><head><title>Sensor</title></head>");

resp.Write ("<body><h1>Welcome to Sensor</h1>");

resp.Write ("<p>Below, choose what you want to do.</p>");

resp.Write ("View Data");

resp.Write ("");

resp.Write ("View data as XML using REST");

resp.Write ("");

resp.Write ("View data as JSON using REST");

resp.Write ("");

resp.Write ("View data as TURTLE using REST");

resp.Write ("");

resp.Write ("View data as RDF using REST");

resp.Write ("");

148

Physical Computing

and IoT Programming

148

resp.Write ("Data in a HTML page with graphs");

resp.Write ("</body></html>");

Accessing WSDL

The SOAP web service interface is documented in what is called a Web

Service Definition Language (WSDL) document. The web services engine

automatically generates this document.

Adding HTTP support to the controller

Sensor and an actuator that speaks about HTTP also need to add HTTP to

the controller. The controller will act as an HTTP client.

6.3 THE UPNP PROTOCOL

Universal Plug and Play (UPnP) is a protocol or an architecture that uses

multiple protocols, helps devices in ad hoc IP networks to discover each

other, detects services hosted by each device, and executes actions and

reports events. Ad hoc networks are networks with no predefined topology

or configuration; here, devices find themselves and adapt themselves to the

surrounding environment. UPnP is largely used by consumer electronics in

home or office environments. The standard body for UPnP is the UPnP

Forum (upnp.org). UPnP is largely based on an HTTP application where

both clients and servers are participants.

Discovery of devices in the network is performed using Simple Service

Discovery Protocol (SSDP), which is based on HTTP over UDP, and event

subscriptions and notifications are based on General Event Notification

Architecture (GENA). Both SSDP and GENA introduce new HTTP

methods to search, notify and subscribe to and unsubscribe from an event.

Actions on services are called using SOAP web service calls.

UPnP defines an object hierarchy for UPnP-compliant devices. Each device

consists of a root device. Each root device can publish zero or more services

and embedded devices. Each embedded device can iteratively publish more

services and embedded devices by itself. Each service in turn publishes a

set of actions and state variables. Actions are methods that can be called on

the service using SOAP web service method calls. Actions take a set of

arguments. Each argument has a name, direction (if it is input or output),

and a state variable reference. From this reference, the data type of the

argument is deduced. State variables define the current state of a service,

and each one has a name, data type, and variable value. Furthermore, state

variables can be normal, evented, and/or multicast-evented. When evented

state variables change their value, they are propagated to the network

through event messages. Normally, evented state variables are sent only to

subscribers who use normal HTTP. Multicast-evented state variables are

propagated through multicast HTTPMU NOTIFY messages on the SSDP

multicast addresses being used, but using a different port number.

Each UPnP-compatible device in the network is described in a Device

Description Document (DDD), an XML document hosted by the device

149

IoT Service as a Platform itself. When the device makes its presence known to the network, it always

includes a reference to the location of this document. Interested parties then

download the document and any referenced material to learn what type of

device this is and how to interact with it. The document includes some basic

information understandable by machines, but it also includes information

for human interfaces. Finally, the DDD includes references to embedded

devices, if any, and references to any services published by the device.

Each service published by a device is described in a standalone Service

Control Protocol Description (SCPD) document, each one an XML

document also hosted by the device. Even though SOAP is used to call

methods on each service, UPnP-compliant services are drastically reduced

in functionality compared to normal SOAP web services. SOAP and WSDL

simply give devices too many options, making interoperability a problem.

6.4 THE COAP PROTOCOL

CoAP reduces the set of methods that can be used; it allows you to have

four methods: GET, POST, PUT, and DELETE. In addition, in CoAP,

method calls can be made using confirmable and non-confirmable message

services. When you receive a confirmable message, the receiver always

returns an acknowledgement. The sender can, in turn, resend messages if an

acknowledgement is not returned within the given time period. The number

of response code has also been reduced to make implementation simpler.

CoAP also broke away from the Internet Media Type scheme used in HTTP

and other protocols and replaced this with a reduced set of Content-Formats,

where a number instead of its corresponding Internet Media Type identifies

each format.

CoAP supports multicasting, which is used to detect devices or

communicate through firewalls; it also provides a set of useful extensions.

One of these extensions provides a block transfer algorithm, which allows

you to transfer larger amounts of data. CoAP also supports encryption in

the unicast case with Datagram Transport Layer Security (DTLS).

CoAP

(resources)

UCP

(ports)

Internet Protocol

(unicast/multicast address)

Local Area Network

(MAC address)

Physical

(Cables, Radio)

Fig: CoAP protocol stack diagram:

150

Physical Computing

and IoT Programming

150

CoAP is relatively new; the availability of development tools for this

protocol is not available. There exists an add-on to Firefox, which allows

you to view and interact with CoAP resources.

CoAP resources- The CoAP endpoint registers a resource by itself called

.well-known/core. Here, it publishes a Link Format document called the

Constrained RESTful Environments (CoRE) Link Format document. This

document contains a list of resources published by the endpoint and some

basic information about these documents. This document corresponds in

some sense to WSDL documents for web services, even though the Link

Format document is very lightweight. It consists of a sequence of resources

and some corresponding attributes for each resource.

6.5 MQTT PROTOCOL

The MQTT protocol is based on the publish/subscribe pattern, as opposed

to the request/response and the event subscription patterns. The

publish/subscribe pattern has three types of actors:

a. Publisher: The role of the publisher is to connect to the message

broker and publish content.

b. Subscriber: They connect to the same message broker and subscribe

to content that they are interested in

c. Message broker: This makes sure that the published content is relayed

to interested subscribers

Content is identified by topic. When publishing content, the publisher can

choose whether the server should retain the content or not. If retained, each

subscriber will receive the latest published value directly when subscribing.

Furthermore, topics are ordered into a tree structure of topics, much like a

file system. The forward slash character (/) is used as a delimiter when

describing a topic path. When subscribing to content, a subscriber can

subscribe to either a specific topic by providing its path, or an entire branch

using the hash wildcard character (#). There is also a single-level wildcard

character: the plus character (+).

MQTT MQTT (SSL/TLS)

TCP

(port 1883)

TCP

(port 8883)

Internet Protocol (IP)

(Unicast/multicast IP address)

Local Area Network (LAN)

Physical (Cables, Radio)

Fig : MQTT architecture

151

IoT Service as a Platform There are three Quality of Service levels in MQTT available while

publishing content. The lowest level is an unacknowledged service. In this,

the message is delivered at most once to each subscriber. The next level is

an acknowledged service. Here, each recipient acknowledges the receipt of

the published information. If no receipt is received, the information can be

sent again. This makes sure the information is delivered at least once. The

highest level is called the assured service. Here, information is not only

acknowledged but sent in two steps. First, it is transmitted and then

delivered. Each step is acknowledged. This makes it possible to make sure

that the content is delivered exactly once to each subscriber.

6.6 XMPP PROTOCOL

Extensible Messaging and Presence Protocol (XMPP) protocol. The XMPP

protocol also uses message brokers to bypass firewall barriers. Apart from

the publish/subscribe pattern, it also supports other communication patterns,

such as point-to-point request/response and asynchronous messaging, that

allow you to have a richer communication

XMPP was originally designed for use in instant messaging applications (or

chat). It is an open protocol, flexible and richness of communication

patterns.

The XMPP architecture is built on scalability of the Simple Mail Transfer

Protocol (SMTP). XMPP uses a network of XMPP servers as message

brokers to allow clients behind separate firewalls to communicate with each

other. Each server controls its own domain and authenticates users on that

domain. Clients can communicate with clients on other domains using

federation where the servers create connections between themselves in a

secure manner to interchange messages between their domains. They only

need to ensure that they maintain the connection with their respective

servers, and through the servers, each of them will have the possibility to

send messages to any other client in the federated network. XMPP is

scalable and allows you to make billions of devices communicate with each

other in the same federated network.

XMPP provides each client with an authenticated identity. When clients

connect, the servers make sure the clients authenticate themselves by

providing their corresponding client credentials, which would consist of a

username and password. This authentication is done securely using an

extensible architecture based on Simple Authentication and Security Layer

(SASL). The connection can also be switched over to Transport Layer

Security (TLS) through negotiation between the client and the server. The

identity of the client is often called XMPP address or Jabber ID (JID).

The reason for using XMPP servers is to relay communication to assure the

clients that only authorized communication will be relayed. This feature is

used for small devices with limited decision-making capabilities. The server

does so by ensuring that the full JID identifier instead of only the bare JID

identifier is used to communicate with the application.

152

Physical Computing

and IoT Programming

152

The reason is:

• First, multiple clients might use the same account at the same time.

Then provide the resource part of the full JID for the XMPP Server to

be able to determine which connection the corresponding message

should be forwarded to. Only this connection will receive the

message. This enables the actual clients to have direct communication

between them.

• Second, only trusted parties (or friends) are given access to the

resource part once the thing or application is connected. This means

that, in turn, only friends can send messages between each other, as

long as the resource parts are sufficiently long and random so they

cannot be guessed, and the resource part is kept hidden and not

published somewhere else. XMPP communication consists of

bidirectional streams of XML fragments.

IoT Service as a Platform: Clayster, Thinger.io, SenseIoT, carriots and

Node RED.

1. Clayster

There are many available platforms, they vary in functionality and

development. To get the IoT platform go to

http://postscapes.com/internet-of-things-platforms and review the

registered platforms.

2. Clayster Platform

Download the Clayster platform by downloading from

http://www.clayster.com/downloads. All the information about

Clayster, including examples and tutorials, is available in a wiki. You

can access this wiki at https://wiki.clayster.com/.

3. Libraries

Clayster.AppServer.Infrastructure: This library contains the

application engine available in the platform. Apart from managing

applications, it also provides report tools, cluster support,

management support for operators and administrators; it manages

backups, imports, exports, localization and various data sources used

in IoT, and it also provides rendering support for different types of

GUIs, among other things.

Clayster.Library.Abstract: This library contains a data abstraction

layer, and is a crucial tool for the efficient management of objects in

the system.

Clayster.Library.Installation: This library defines the concept of

packages.

153

IoT Service as a Platform Clayster.Library.Meters: This library replaces the Clayster. Library.

IoT library used in previous chapters. It contains an abstraction model

for things such as sensors, actuators, controllers, meters, and so on.

Clayster: To facilitate the development of IoT applications, seven

Clayster libraries are used for private and commercial applications.

Clayster Library

Description

Clayster.Library.Data

It provides the application with

a powerful object database.

Objects are persisted and can

be searched directly in the code

using the object's class

definition. Data can be stored

in the SQLite database

provided in Raspberry Pi.

Clayster.Library.EventLog

This provides the application

with an extensible event

logging architecture that can be

used to get an overview of what

happens in a network of things.

Clayster.Library.Internet

It consist of classes that

implements various internet

protocol. This library can be

used dynamically for

communication via internet.

Clayster.Library.Language

It is used to create localizable

applications that are simple to

translate and that can work in

an international setting.

Clayster.Library.Math

It has powerful mathematical

scripting language that will be

used in automation, scripting,

graph plotting, and others.

Clayster.Library.IoT

It has classes that help the

applications to become

interoperable by providing data

representation and parsing

capabilities of data in IoT.

Clayster.Library.RaspberryPi

It has Hardware Abstraction

Layer (HAL) used in

Raspberry Pi. It provides

object-oriented interfaces to

interact with devices connected

to the general-purpose

Input/output (GPIO) pins

available.

154

Physical Computing

and IoT Programming

154

4. Service modules

The service modules available are:

Clayster.HomeApp.MomentaryValues: This is a simple service that

displays momentary values using gauges. We will use this project to

display gauges of our sensor values.

Clayster.Metering.Xmpp: This module contains an implementation of

XMPP on top of the abstraction model defined in the

Clayster.Library.Metersz namespace.

5. Clayster Management Tool (CMT)

It comes with a management tool that helps you to manage the server.

This Clayster Management Tool (CMT) can also be downloaded from

http://www.clayster.com/downloads. This includes data sources,

objects in the object database, current activities, statistics and reports,

and data in readable event logs

Browsing data sources

Most of the configurable data in Clayster is ordered into data sources. These

can be either tree-structured, flat or singular data sources. Singular data

sources contain only one object. Flat data sources contain a list (ordered or

unordered) of objects. Tree structured data sources contain a tree structure

of objects, where each object in the structure represents a node. The tree-

structured data sources are the most common, and they are also often stored

as XML files. Objects in such data sources can be edited directly in the

corresponding XML file, or indirectly through the CMT, other applications

or any of the other available APIs. When you open the CMT for the first

time, make sure that you open the Topology data source. It is a tree-

structured data source whose nodes represent IoT devices. The tree structure

shows how they are connected to the system. The Root represents the server

itself.

Interfacing the devices

XMPP is already implemented and supported through the Clayster.

Metering. This module models each entity in XMPP as a separate node in

the Topology data source. Connections with provisioning servers and thing

registries are handled automatically through separate nodes dedicated to this

task. Friendships are handled through simple child creation and removal

operations. It can be done automatically through requests made by others or

recommendations from the provisioning server, or manually by adding

friends in the CMT. Provide specialized classes that override base class

functionality and add specific features that are needed.

6. Thinger.io

What is Thinger.io

Thinger.io is a cloud IoT Platform that provides every needed tool to

prototype, scale and manage connected products in a very simple way.

155

IoT Service as a Platform Features

• Free IoT platform: Thinger.io provides a lifetime freemium account

with only few limitations to start learning and prototyping when your

product becomes ready to scale, you can deploy a Premium Server

with full capacities within minutes.

• Simple but Powerful: Just a couple code lines to connect a device

and start retrieving data or controlling its functionalities with our web-

based Console, able to connect and manage thousands of devices in a

simple way.

• Hardware agnostic: Any device from any manufacturer can be easily

integrated with Thinger.io's infrastructure.

• Extremely scalable & efficient infrastructure: thanks to our unique

communication paradigm, in which the IoT server subscribes device

resources to retrieve data only when it is necessary, a single

Thinger.io instance is able to manage thousands of IoT devices with

low computational load, bandwidth and latencies.

• Open-Source: most of the platform modules, libraries and APP

source code are available in our Github repository to be downloaded

and modified with MIT license.

 Thinger.io platform is formed by two main products a Backend

(which is the actual IoT server) and a web-based Frontend that

simplifies working with all the features using any computer or

smartphone.

• Connect devices: Fully compatible with every kind of device, no

matter the processor, the network, or the manufacturer. Thinger.io

allows to create bidirectional communications with Linux, Arduino,

Raspberry Pi, or MQTT devices and even with edge technologies like

Sigfox or LoRaWAN or other internet API data resources.

• Store Device Data: Just a couple clicks to create a Data Bucket a

store IoT data in a scalable, efficient, and affordable way, that also

allows real-time data aggregation.

• Display Real-time or Stored Data in multiple widgets such as time

series, donut charts, gauges, or even custom-made representations to

create awesome dashboards within minutes.

• Trigger events and data values using an embedded Node-RED rule

engine

• Extend with custom features with multiple plugins to integrate IoT

projects into your company's software or any other third-party Internet

service.

156

Physical Computing

and IoT Programming

156

• Custom the appearance thanks to our fully rebrand able frontend,

that allows introducing your branding colours, logotypes and web

domain. Refer: https://docs.thinger.io/

7. SenseIoT

The Sense IoT cloud server is a logical server built, hosted, and delivered

through a cloud computing platform over the internet. Unlike normal

physical servers, cloud servers can be accessed remotely at any time.

The term IoT stands for Internet of Things, and it is the most significant as

well as promising technology nowadays. There are a billion devices relate

to sensors like wearables, smartphones, etc. Currently, every sensor plays

an essential role in the Internet of Things. These sensors are mainly used for

detecting or monitoring the quality of air, health status, home security, etc.

Similarly, these sensors are used in IoT for monitoring the process of

production, so named as IoT sensor.

There are different types of sensors which is used for different applications

like to collect the data from the environment. In an IoT ecosystem, there are

two main things the internet & the physical devices such as actuators &

sensors. The sensor and network connectivity in the IoT mainly located in

the bottom layer. The main function of this is to collect the information.

This bottom layer in the IoT is a very important part, and it includes

connectivity of network to next layer like the gateway & network layer.

The main function of these sensors is to gather information from the

surroundings. The connection of these to IoT can be done directly otherwise

indirectly once the conversion of signal & processing is done. All the

sensors are not similar because different IoT applications need different

kinds of sensors.

Types of IoT Sensors

The different types of IoT sensors with its working as follows:

157

IoT Service as a Platform Temperature Sensor

The temperature sensor is used to detect the heat energy which is produced

from an object or nearby area. The main role of these sensors in

manufacturing is for temperature monitoring of machines. Similarly, in the

agriculture field, these sensors are used to monitor the temperature of plants,

soil, and water. The applications of temperature sensors mainly include

refrigerators, ACs, etc.

Smoke Sensor

Smoke sensors have been using in various applications like homes,

industries, etc. These sensors are very convenient as well as easy to use by

the arrival of the Internet of Things. Also, by adding a wireless connection

to smoke detectors, the additional features can be enabled to increase

security & ease.

Motion Sensor

The motion sensor is used in hand dryers, energy management systems,

automatic parking systems, automatic door controls, automated toilet

flushers, automated sinks, etc.

158

Physical Computing

and IoT Programming

158

Humidity Sensors

Humidity sensors are used to monitor the level of humidity in the amount

of vapor of water within the air. The units for measurement humidity is RH

(relative humidity) & PPM (parts per million).

Pressure Sensor

The pressure sensors are used in IoT for monitoring devices and systems

which are determined by force signals. As the range of pressure is outside

the threshold stage, then the device gives an alert to the user regarding the

issues that must be fixed. The best example of a pressure sensor is BMP180,

which can be used in mobile phones, GPS navigation devices, etc. These

sensors are also applicable in aircraft and smart vehicles to decide altitude

& force correspondingly. In a motor vehicle, TMPS (tire pressure

monitoring system) can also be used for giving an alert to the driver while

tire pressure is extremely less & it could make unsafe driving situations.

Gas Sensor

Gas sensors are mainly used to detect toxic gases. The most frequently used

technologies are photoionization, semiconductor, and electrochemical.

IR Sensors

Infrared sensors are mainly used to measure the heat which is produced by

objects. These sensors are used in the various applications of IoT like

healthcare for monitoring the flow of blood, BP, etc. These sensors are used

in smartphones for controlling, wearable devices for detecting the amount

of light, detection of blind spot within vehicles, etc.

Accelerometer Sensor

Accelerometer sensors are utilized in aircrafts vehicles, smartphones.

Similarly, these are used in different applications to identify the direction of

an object, tilt, tap, shake, positioning, and motion, vibration, or shock.

Types of accelerometers are like capacitive, Hall-effect & piezoelectric.

159

IoT Service as a Platform Image Sensor

Image sensors are applicable in medical imaging systems, thermal imaging

devices, digital cameras, night-vision equipment, sonars, radars, &

biometric systems. These sensors are used in the retail industry for

monitoring the visiting count of the customers in the store with the help of

network like IoT. The applications of image sensors mainly include offices,

corporate buildings for monitoring the employees.

Proximity Sensors

Proximity sensors are used to detect the existence or nonexistence of a near

object with no physical contact. These sensors are classified into different

types like capacitive, inductive, ultrasonic, magnetic, and photoelectric.

These sensors are frequently used for process monitoring, control, and

object counters.

Source: IoT Sensor: Different Types, Working and Its Applications

(elprocus.com)

7. Carriots

The Carriots IoT Platform is designed to help companies, businesses and

institutions to improve their business and efficiency by controlling their IoT

devices, and provides safe transfer of information among IoT devices, cloud

and by bringing solutions to the problems by using AI and other

technologies.

Carriots is a smart Platform as a Service (PaaS), functions in a machine-to-

machine way and doesn’t necessitate any human interruption after the

system is set up. It is also established by Altair Engineering.

What Does Carriots Do?

Carriots has a four-staged working mechanism in helping a business to find

solutions to its problems. First stage is the data analysis stage. The investors

who want to develop their business by innovation gives the data to the

Carriots IoT platform after it is set up to the system. After the data on

business is given to the Carriots platform, the Carriots begins to analyse the

data and try to detect the problems, obstacles and other latent issues in the

business operation process. In the second stage, Carriots tries to find a

solution to the problems that it detected in the first stage. It has its own

mechanism to eliminate the methods which are not useful to the business.

In the third stage, it approves the solution method which should be

implemented on the business that decided in the second stage.

What are the Advantages of Carriots IoT Platform?

Features of Carriots that make it more advantageous:

• Carriots has an open architecture that enables it to work in

collaboration with the third-party machines. This enables it to find the

https://iot5.net/iot-platforms/

160

Physical Computing

and IoT Programming

160

best solution due to its wide data collection because of this feature and

flexibility.

• The Carriots Platform can be controlled by a device that is connected

to a remote controller. This feature enables to keep a watch what they

are doing with your business. Also, Carriots is not bound by the check

status and can change configurations.

• Rules: Carriots has rule to apply in complex business scripts.

• Carriots also has new triggers that push the data into the platforms and

enables the usage of that data.

• It can integrate with other AI and IT systems

• System also has custom alarms when it faces a problematic situation

during the innovation.

Source: Carriots IoT Platform | IoT5.net

9.Node RED.

Node-Red is based on graphical interface and has three components:

Flow -A project is called a flow and consist of data and functions linked

together.

Message-It carries data from one node to another.

Nodes- These are the functions that generate, transfer or use messages.

The Node-RED GUI consists of three parts, from left to right:

• The left pane lists all the nodes, grouped by categories.

• The centre pane corresponds to the working area, where the flow is

going to be designed.

https://iot5.net/iot-platforms/carriots-iot-platform/

161

IoT Service as a Platform • The right pane provides useful tools as documentation, a console for

debugging, and the organisation for the dashboard.

Node-RED offers native support for other services. For example, there is a

node for sending e-mails. Node-RED relies on MQTT, which requires a

TCP/IP stack.

6.7 SUMMARY

• Innovative companies utilize information potential in Internet of

Things as a service (IoTaaS) technology that senses information to

create better products for that satisfies customers.

• The complex handling of IoT's fusion technologies leaves enterprises

without in-house expertise or software to make IoT a profitable and

worthwhile investment.

6.8 REFERENCES

• Learning Internet of Things by Peter Waher, Packt Publishing. (All

notes are taken from this prescribed reference book).

• Notes also taken from the link below:

• https://github.com/Clayster/ Learning-IoT-CoAP.

• https://docs.thinger.io/

• IoT Sensor: Different Types, Working and Its Applications

(elprocus.com)

6.9 UNIT END EXERCISE QUESTIONS

1. What is Clayster in IoT? Explain different libraries in it.

2. Explain the following IoT security: HTTP, UPnp, CoAP, MQTT,

XMPP

3. What is meant by IoT service as a platform?

4. Explain different types of IoT Service as a Platform: Clayster,

Thinger.io, SenseIoT, carriots and Node RED.

5. What is Thinger.io? What are the features of it.

6. Describe SenseIoT?

7. What are sensors? Explain different types of sensors used in IoT.

8. What are Carriots? What are its advantages



https://docs.thinger.io/
https://www.elprocus.com/iot-sensor-working-and-its-applications/
https://www.elprocus.com/iot-sensor-working-and-its-applications/

162

Physical Computing and

IoT Programming

162

7

IOT SECURITY AND

INTEROPERABILITY

Unit Structure

7.1 Objective

7.2 Introduction

7.3 IoT Security and Interoperability

7.4 Risks

7.5 Modes of Attacks

7.6 Tools for Achieving Security

7.7 The need for Interoperability

7.8 Summary

7.9 References for Future reading

7.10 Unit End Exercise

7.1 OBJECTIVE

Hardware, Software, and other devices needs security to work efficiently.

Without security in IoT devices & it’s hardware will result in hacking &

hackers will gain access to the controlling of the IoT devices and hence the

IOT application will fail.

This chapter talks about the different types of security mechanisms,

protocols, methods & techniques that should be deployed when the IoT

devices & its application are ready to function.

Also discussed various types of virus, malwares & Trojan horse which has

harmed the devices & made the resources less to perform.

7.2 INTRODUCTION

There are a lot of different technologies that can be used for Internet of

Things (IoT), but security and interoperability issues come to any extent.

We will discuss the topics, issues and that need to be addressed during the

design of the overall architecture to avoid many of the unnecessary

problems that might otherwise arise and minimize the risk.

7.3 IOT SECURITY AND INTEROPERABILITY

 Risks with IoT, Modes of attacking a system and some counter measures,

The importance of interoperability in IoT.

163

IoT Security and

Interoperability
7.4 RISKS

There are many solutions and products under IoT that lack basic security

architectures. It is very easy for a knowledgeable person to take control of

devices for malicious purposes. Not only devices at home are at risk, but

cars, trains, airports, stores, ships, logistics applications, building

automation, utility metering applications, industrial automation

applications, health services, and so on, are also at risk because of the lack

of security measures in their underlying architecture.

5.MODES OF ATTACKS

a. Denial of Service

A Denial of Service (DoS) or Distributed Denial of Service (DDoS)

attack is normally used to make a service on the Internet crash or

become unresponsive, and in some cases, behave in a way that it can

be exploited. The attack consists in making repetitive requests to a

server until its resources gets exhausted. In a distributed version, the

requests are made by many clients at the same time, which obviously

increases the load on the target. It is often used for blackmailing or

political purposes.

b. Guess the Username and Password

Getting it in the system is to try to impersonate by guessing the

username and password of the authenticated clients. Guessing the

client credentials is risky and it makes the attack less effective, in the

communication. Always have the habit of changing the credentials

frequently. The preset and fixed password helps the attacker to crack

it easily.

c. Access to stored credentials

People reusing the credentials in different systems. There are various

ways to avoid this risk. Credentials of the clients are not to be reused

in different devices or across different services and applications.

Another is to randomize the credentials, lessening the desire to reuse

memorized credentials. Never store actual credentials centrally, even

encrypted if possible, and instead store hashed values of these

credentials. This is often possible since authentication methods use

hash values of credentials in their computations. Even though some

hashing functions are vulnerable in such a way that a new string can

be found that generates the same hash value.

d. Man in the Middle attack (MITM)

Man-in-the-middle (MITM) attacks are a valid and extremely

successful threat vector.

A man in the middle (MITM) attack is a general term for when a

perpetrator positions himself in a conversation between a user and an

164

Physical Computing and

IoT Programming

164

application—either to eavesdrop or to impersonate one of the parties,

making it appear as if a normal exchange of information is underway.

The goal of an attack is to steal personal information, such as login

credentials, account details and credit card numbers. Targets are

typically the users of financial applications, businesses, e-commerce

sites and other websites where logging is needed.

https://www.imperva.com/learn/application-security/man-in-the-

middle-attack-mitm/

An MITM attack can take a few different forms. ARP poisoning is the

most common, but DHCP, DNS, and ICMP poisoning are also

effective, as well as the use of a malicious wireless access point (AP).

Fake APs have become a common threat vector, exploiting the way

clients automatically connect to known SSIDs. This enables an

attacker to connect and intercept the victim’s network traffic without

the victim seeing any indication they are under attack. To hasten a

connection, attacks against the legitimate AP can be made to help the

malicious AP become the last AP standing.

It can lead to launch the different attacks:

IP spoofing involves an attacker disguising himself as an application

by altering packet headers in an IP address. As a result, users

attempting to access a URL connected to the application are sent to

the attacker’s website.

ARP spoofing is the process of linking an attacker’s MAC address

with the IP address of a legitimate user on a local area network using

fake ARP messages. As a result, data sent by the user to the host IP

address is instead transmitted to the attacker.

DNS spoofing, also known as DNS cache poisoning, involves

infiltrating a DNS server and altering a website’s address record. As

a result, users attempting to access the site are sent by the altered DNS

record to the attacker’s site.

165

IoT Security and

Interoperability

MITM Attack Prevention

• Avoiding Wi-Fi connections that aren’t password protected.

• Paying attention to browser notifications reporting a website as

being unsecured.

• Immediately logging out of a secure application when it’s not

in use.

• Not using public networks (e.g., coffee shops, hotels) when

conducting sensitive transactions.

e. Sniffing Network Communications

Sniffing occurs when an unauthorized third party captures network

packets destined for computers other than their own. Packet sniffing

allows the attacker to look at transmitted content and may reveal

passwords and confidential data.

 Specialized packet driver software must be connected to the network

segment they want to sniff, and must use sniffer software. By default,

a network interface card (NIC) in a computer will usually drop any

traffic not destined for it. By putting the NIC in promiscuous mode, it

will read any packet going by it on the network wire.

 Packet-sniffing attacks are more common in areas where many

computer hosts share the same collision domain.

Sniffing and Spoofing-Computer's exchange messages with each

other in the form of small groups of data called packets. Packets

contains the actual data to be sent & addressing information.

Attackers target these packets as they travel from source to

destination. Thus, two types of attacks:

Packet Sniffing(snooping)/IP Sniffing – It is a type of passive attack

where an attacker need not hijack a conversation but simply

observe(sniff) packets as they pass through. To prevent sniffing, the

information must be protected by encoding or the transmission link

itself is encoded.

Packet Spoofing/IP Spoofing – The attacker sends packets with an

incorrect source address. The receiver will receive these packets

containing false address and replies back to this forged address

(spoofed address) not to an attacker. It will lead to three possible

cases:

• If the attacker is between the destination and the forged source,

the attacker can see the reply & use that information for

hijacking.

• If the attacker’s intention was DOS attack, then the attacker

need not bother about the reply.

166

Physical Computing and

IoT Programming

166

• The attacker could simply be angry with the host, so it may put

that host’s address as the forged source address & send the

packet to the destination. The attacker does not want a reply

from the destination, as it wants the host with the forged address

to receive it & get confused.

Pharming (DNS Spoofing)-

Domain Name Server maintains the mapping between domain names

& the corresponding IP address. Eg- Merchant (Bob) whose sites

domain name is Error! Hyperlink reference not valid. & The IP

address is 100.10.10.20 in the DNS.

Attacker (Tom IP address- 100.20.20.20) manages to hack and

replace the IP address of the Bob with its own IP address. Now Bob’s

IP address is 100.20.20.20 for Error! Hyperlink reference not

valid..

Alice will communicate with Bob’s site; it will query the DNS & will

get Bob’s IP address - 100.20.20.20. Hence Alice is communicating

with an attacker (Tom) assuming that she is communicating with the

Bob.

f. Port Scanning and Web Crawling

It is technique of determining which port on the network is open and

which could send and receive data, it is also a process for sending

packets to specific ports on a host and analyzing responses to identify

vulnerabilities. This scanning take place by first identifying a list of

active hosts and mapping those hosts to their IP addresses. The goal

behind port and network scanning is to identify the organization of IP

addresses, hosts, and ports to properly determine open or vulnerable

server locations and diagnose security levels. Port scanning can be

used by both IT administrators and cybercriminals to verify or check

the security policies of a network and identify vulnerabilities, also

exploit any potential weak entry points.

Web Crawling Web crawling is the process of indexing data on web

pages by using a program or automated script. These automated

scripts or programs are known by multiple names, including web

crawler, spider, spider bot, or a crawler.

Web crawlers copy pages for processing by a search engine, which

indexes the downloaded pages so that users can search more

efficiently. The goal of a crawler is to learn what webpages are about.

This enables users to retrieve any information on one or more pages

when it’s needed.

g. Wildcards

Devices that use multicast communications, such as UPnP, CoAP,

anybody can listen and see who sends the messages. Devices that use

single-cast communication, such as those using HTTP or CoAP, port-

167

IoT Security and

Interoperability

scanning techniques can be used. For devices that are protected by

firewalls and use message brokers to protect against incoming attacks,

such as those that use XMPP and MQTT, search features or wildcards

can be used to find the identities of devices managed by the broker

HTTP and CoAP that support some level of local client authentication

but lacks a good distributed identity and authentication mechanism.

XMPP only permits messages from specific requests that has come

from another end. The device which accepts the request is a friend

devise or not. This can be either configured by somebody else with

access to the account or by using a provisioning server if the device

cannot make such decisions by itself. The device does not need to

worry about client authentication, as this is done by the brokers

themselves, and the XMPP brokers always propagate the

authenticated identities of everybody who send them messages.

In MQTT the only way to control who gets access to the data is by

building a proprietary end-to-end encryption layer on top of the

MQTT protocol, thereby limiting interoperability.

h. Breaking Ciphers

Cryptanalysis is the study of analyzing information systems in order

to study the hidden aspects of the systems. Cryptanalysis is used to

breach cryptographic security systems and gain access to the contents

of encrypted messages, even if the cryptographic key is unknown.

In addition to mathematical analysis of cryptographic algorithms,

cryptanalysis includes the study of side-channel attacks that do not

target weaknesses in the cryptographic algorithms themselves, but

instead exploit weaknesses in their implementation. Attacks can be

classified based on what type of information the attacker has

available.

Cryptography-An art of achieving security by encoding messages

to make them non-readable.

Cryptanalysis- A technique of decoding messages from a non-

readable format back to a readable format without knowing how

they were initially converted from readable format to a non-readable

format.

Plain Text – Message in a plain text can be understood by anybody

& it is in human readable form.

Cipher Text –When a plain text message is coded using a suitable

scheme, the resulting message is called cipher text.

Encryption(encoding)- It transforms a plain text into a cipher text.

Decryption(decoding) – It transforms a cipher text into a plain text.

Two ways in which a plain text can be coded to obtain the

corresponding cipher text - substitution & Transposition.

https://en.wikipedia.org/wiki/Information_system
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Key_(cryptography)
https://en.wikipedia.org/wiki/Side-channel_attacks

168

Physical Computing and

IoT Programming

168

Eg :Substitution Techniques – The characters of a plain text

messages are replaced by other characters, numbers or symbols.

a. Caesar Cipher – Algorithm

• Read each alphabet in the cipher text message, & search

for it in the second row of the replacement table.

• When a match is found replace that alphabet in the cipher

text message with the corresponding alphabet in the same

column but the first row of the table

• Repeat the process for all alphabets in the cipher text

message.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Eg- Plain Text – HELLO HOW ARE YOU

 Cipher Text – KHOOR KRZ DUH BRX.

Eg- Cipher Text – I AM FINE

 Plain Text - F XJ CFKB

I. Password Cracking

Password crackers either try to guess passwords or they use brute-

force tools. Brute-force tools attempt to guess a password by trying

all the character combinations listed in an accompanying dictionary.

The dictionary may start off blindly guessing passwords using a

simple incremental algorithm. (For example, trying aaaaa, aaaab,

aaaac, and so on) or it may use passwords known to be common on

the host (such as password, blank, michael, and so on).

If the attacked system locks out accounts after a certain number of

invalid login attempts, some password attackers will gain enough

access to copy down the password database, and then brute force it

offline.

7.6 TOOLS FOR ACHIEVING SECURITY

There are a number of tools that architects and developers can use to

protect against malicious use of the system.

a. Virtual Private Networks

A method that is often used to protect unsecured solutions on

the Internet is to protect them using Virtual Private Networks

(VPNs). Machine to Machine solutions work well in local

intranets that needs to expand across the Internet. One way to

achieve this is to create such VPNs that allow the devices to

believe they are in a local intranet, even though communication

is transported across the Internet. Telephone operators use the

169

IoT Security and

Interoperability

Internet to transport long distance calls, it doesn't make it Voice

over IP (VoIP). Using VPNs might protect the solution, but it

eliminates the possibility to interoperate with others on the

Internet.

A virtual private network, or VPN, is an encrypted connection

over the Internet from a device to a network. The encrypted

connection helps ensure that sensitive data is safely transmitted.

It prevents unauthorized people from eavesdropping on the

traffic and allows the user to conduct work remotely. VPN

technology is widely used in corporate environments.

How does a virtual private network (VPN) work?

A VPN extends a corporate network through encrypted

connections made over the Internet. Because the traffic is

encrypted between the device and the network, traffic remains

private as it travels. An employee can work outside the office

and still securely connect to the corporate network. Even

smartphones and tablets can connect through a VPN.

b. X.509 certificates and encryption

The use of certificates to validate the identity of high-value

entities on the Internet. Certificates allow you to validate not

only the identity, but also to check whether the certificate has

been revoked or any of the issuers of the certificate have had

their certificates revoked, which might be the case if a

certificate has been compromised. Certificates also provide a

Public Key Infrastructure (PKI) architecture that handles

encryption. Each certificate has a public and private part. The

public part of the certificate can be freely distributed and is used

to encrypt data, whereas only the holder of the private part of

the certificate can decrypt the data. Using certificates incurs a

cost in the production or installation of a device or item. They

also have a limited life span, so they need to be given either a

long lifespan or updated remotely during the life span of the

device. Certificates also require a scalable infrastructure for

validating them. It is difficult to see that certificates will be used

by other than high-value entities that are easy to administer in a

network.

Digital Certificate

A standard called X.509 defines the structure of a digital

certificate. Figure shows the structure of a X.509 V3 digital

certificate.

170

Physical Computing and

IoT Programming

170

Field Description

Version Identifies a particular version of the

X.509 protocol, which is used for this

digital certificate. Currently, this field

can contain 1, 2 or 3.

Certificate Serial

Number

Contains a unique integer number, which

is generated by the CA.

Signature Algorithm

Identifier

Identifies the algorithm used by the CA

to sign this certificate.

Issuer Name Identifies the Distinguished Name (DN)

of the CA that created and signed this

certificate.

Validity (Not

Before/Not After)

Contains two date-time values (Not

Before and Not After), which specify the

time frame within which the certificate

should be considered valid. These values

generally specify the date and time up to

seconds or milliseconds.

Subject Name Identifies the Distinguished Name (DN)

of the end entity (i.e. the user or the

organization) to whom this certificate

refers. This field must contain an entry

unless an alternative name is defined in

Version 3 extensions.

Subject Public Key

Information

Contains the subject's public key and

algorithms related to that key. This field

can never be blank.

171

IoT Security and

Interoperability

PKIX Services

a. Registration

 It is the process where an end-entity (subject) makes itself known to

a CA. Usually, this is via an RA.

b. Initialization

 This deals with the basic problems, such as who the end-entity is sure

that it is talking to the right CA?

c. Certification

 In this step, the CA creates a digital certificate for the end-entity and

returns it to the end-entity maintains a copy for its own records and

copies it in public directories, if required.

d. Key pair recovery

 Keys used for encryption may be required to be recovered later for

decrypting some old documents. Key archival and recovery services

can be provided by a CA or by an independent key recovery system.

e. Key generation

 PKIX specifies that the end-entity should be able to generate private

and public key pairs or the CA/RA should be able to do this for the

end-entity (and then distribute these keys securely to the end-entity).

f. Key update

 This allows a smooth transition from one expiring key pair to a fresh

one, by the automatic renewal of digital certificates. However, there

is a provision for manual digital certificates renewal request and

response.

g. Cross-certification

 Helps in establishing trust models, so that end-entities that are

certified by different CAs can cross-verify each other.

h. Revocation

 PKIX provides support for the checking of the certificate status in two

modes: online (using OCSP) or offline (using CRL).

Public Key Cryptography Standards (PKCS)

PKCS#5 ¾ Password Based Encryption (PBE) Standard

PBE is a solution for keeping the symmetric session keys safe. This

technique ensures that the symmetric keys are protected from an

unauthorized access. The PBE method uses a password-based technique for

encrypting a session key.

172

Physical Computing and

IoT Programming

172

first encrypt the plain-text message with the symmetric key, and then

encrypt the symmetric key with a Key Encryption Key (KEK). This protects

the symmetric key from an unauthorized access.

To protect KEK, never store it anywhere! This will ensure that no one will

have access to it.

the approach used in PBE is to generate it on demand, use it for

encrypting/decrypting the symmetric key, and then discard it immediately.

The password is the input to a key-generation process (usually a message

digest algorithm), the output of which is the KEK.

c. Authentication of identities

Authentication is the process of validating whether the identity

provided is actually correct or not. Authenticating a server might be

as simple as validating a domain certificate provided by the server,

making sure it has not been revoked and that it corresponds to the

domain name used to connect to the server. Authenticating a client

might be more involved, as it has to authenticate the credentials

provided by the client. Normally, this can be done in many different

ways. It is vital for developers and architects to understand the

available authentication methods and how they work to be able to

173

IoT Security and

Interoperability

assess the level of security used by the systems they develop. Some

protocols, such as HTTP and XMPP, use the standardized Simple

Authentication and Security Layer (SASL) to publish an extensible

set of authentication methods that the client can choose from. This is

good since it allows for new authentication methods to be added. But

it also provides a weakness: clients can be tricked into choosing an

unsecure authentication mechanism, thus unwittingly revealing their

user credentials to an impostor. MD5-DIGEST, and so on, even if

they are the only options available.

Message Digest

What is a message digest -It is a fingerprint or the summary of a message?

It is similar to the concept of Longitudinal Redundancy Check (LRC) or

Cyclic Redundancy Check (CRC) that is used to verify the integrity if the

data. (i.e., to ensure that a message has not been tampered with after it

leaves the sender before it reaches the receiver)

The requirements of the message digest concept, as follows:

(a) Given a message, it should be very easy to find its corresponding

message digest. This is shown in Figure, Also, for a given message,

the message digest must always be the same.

(b) Given a message digest, it should be very difficult to find the

original message for which the digest was created.

(c) Given any two messages, if we calculate their message digests, the

two message digests must be different.

174

Physical Computing and

IoT Programming

174

MD5 hashing algorithm:

MD5 is quite fast and produces 128-bit message digest.

Secure Hash Algorithm (SHA).

SHA works with any input message that is less than 2 bits in length. The

output of SHA is a message digest, which is 160 bits in length (32 bits

more than the message digest produced by MD5).

Comparison between MD5 & SHA.

Points MD5 SHA

Message-digest

length in bits

128 160

Attack to try and

find the original

message given a

message digest

Requires 2128

operations to

break in

Requires 2160

operations to break

in, therefore more

secure

Attack to try and

find two messages

producing the same

message digest

Requires 264

operations to

break in

Requires 280

operations to break

in

Successful attacks

so for

There have been

reported attempts

to some extent.

No such claims so

far.

Speed Faster (64

iterations and 128

bit buffer.)

Slower (80

iterations, and 160

bit buffer)

Software

implementation

Simple, does not

need any large

programs or

complex tables.

Simple does not

need any large

programs or

complex table.

d. Usernames and passwords

A common method to provide user credentials during authentication

is by providing a simple username and password to the server. Some

solutions use the concept of a pre-shared key (PSK) instead, as it is

more applicable to machines. One way to generate secure, difficult-

to-guess usernames and passwords is to randomly create them. In this

way, they correspond more to pre-shared keys. Both the server and

the client need to be aware of this information. The identity must also

be distributed among the entities that are to communicate with the

device. In the case of XMPP, this problem has been solved. The

XMPP Protocol. Here, the device creates its own random identity and

creates the corresponding account in the XMPP server in a secure

175

IoT Security and

Interoperability

manner. It then reports its identity to a Thing Registry or provisioning

server where the owner can claim it and learn the newly created

identity. This method never compromises the credentials and does not

affect the cost of production negatively. Furthermore, passwords

should never be stored in clear text. Important on servers where many

passwords are stored. Instead, hashes of the passwords should be

stored. Most modern authentication algorithms support the use of

password hashes. Storing hashes minimizes the risk of unwanted

generation of original passwords for attempted reuse in other systems.

e. Using message brokers and provisioning servers

Using message brokers can greatly enhance security in an IoT

application and lower the complexity of implementation when it

comes to authentication, if message brokers provide authenticated

identity information in messages it forwards. In XMPP, all the

federated XMPP servers authenticate clients connected to them as

well as the federated servers themselves when they intercommunicate

to transport messages between domains. This relieves clients from the

burden of having to authenticate each entity in trying to communicate

with it since they all have been securely authenticated. It's sufficient

to manage security on an identity level. Even this step can be relieved

further using provisioning, as described in Chapter 6, The XMPP

Protocol. Unfortunately, not all protocols using message brokers

provide this added security since they do not provide information

about the sender of packets. MQTT is an example of such a protocol.

f. Centralization versus decentralization

When designing IoT architecture -avoid storing data in a central

position if possible. Only store the data centrally which is actually

needed to bind things together. Distribute logic, data, and workload.

Perform work out of network as far as possible. This makes the

solution more scalable, and it utilizes existing resources better. Use

the linked data to spread data across the Internet, and use standardized

grid computation technologies to assemble distributed data (for

example, SPARQL) to avoid the need to store and replicate data

centrally. Use a federated set of small local brokers instead of trying

to get all the devices on the same broker.

7.7 THE NEED FOR INTEROPERABILITY

Interoperability is the ability of two or more devices, systems,

platforms or networks to work in conjunction. Interoperability enables

communication between heterogeneous devices or system in order to

achieve a common goal. The devices and systems are fragmented with

respect to the communication technologies, protocols, and data

formats. This makes it difficult for the devices and systems in the IoT

network to communicate and share their data with one another.

176

Physical Computing and

IoT Programming

176

a. Solves complexity

Those companies that believe they can control the entire value chain,

from things to services, middleware, administration, operation, apps.

What will happen if they fail to operate. Companies that built devices

with protocols, middleware, and mobile phone applications, where

human can control things. Imagine a future where you have a

thousand different things in your apartment from a hundred

manufacturers. Would you want to download a hundred smart phone

apps to control them? Would you like five different applications just

to control your lights at home, just because you have light bulbs from

five different manufacturers? An alternative would be to have one app

to rule them based on requirement & feedback. To make it

interoperable, they should communicate using a commonly

understood language.

b. Reduces cost

Interoperability does not only affect simplicity of installation and

management; it also takes care of the price of installation and solution

to it. Companies that promote products, where you're forced to use

their system to control your devices, can force their clients to pay a

high price for future devices and maintenance, or the large investment

made originally might be lost. Interoperability provides competition,

and competition drives down cost and increases functionality and

quality.

c. Allows new kinds of services and reuse of devices

New applications and services will be built that will reuse existing

devices, which were installed perhaps as part of other systems and

services. These applications will deliver new value to the inhabitants

of the city without the need of installing new duplicate devices but

such multiple use of devices is only possible if the devices

communicate in an open and interoperable way. However, care must

be taken at the same time since installing devices in an open

environment requires the communication infrastructure to be secure

as well. To build smart cities, it is important to use technologies that

allow to have both a secure communication infrastructure and an

interoperable.

d. Combining security and interoperability

Depending on the communication infrastructure, we might have to

use security measures that directly oppose the idea of an interoperable

infrastructure, prohibiting third parties from accessing existing

devices in a secure fashion. It is important during the architecture

design phase, before implementation, to thoroughly investigate what

communication technologies are available, and what they provide and

what they do not provide. All such implementation is by its very

nature proprietary, and therefore not interoperable.

177

IoT Security and

Interoperability
7.8 SUMMARY

In this we talked about the risks involved in IoT, Security and

interoperability. There always a risk associated in any kind of work

whether it is technical or non-technical. IoT security is the protection

of Internet of Things devices from attack. While many business

owners are aware that they need to protect computers and phones with

antivirus, the security risks related to IoT devices are less well known

and their protection is often neglected. While consumer IoT devices

allow lifestyle benefits, businesses are quickly adopting IoT devices

due to high potential for savings. IoT devices can greatly increase

productivity for businesses, they also come with risks. Since IoT

devices are connected to the internet, they can be hacked just like any

other internet-enabled device. The attack surface of a network

consists of all the possible places where it can be attacked, and it

expands with every new internet-connected device. Even if the chance

of one device being accessed by a perpetrator is small, the large

number of IoT devices being brought into businesses can create a

significant security risk.

7.9 REFERENCES FOR FUTURE READING

Learning Internet of Things by Peter Waher, Packt Publishing.

(All notes are taken from this prescribed reference book).

Notes are taken from the link below:

https://blog.avast.com/iot-security-business-risk.

https://www.cisco.com/c/en_in/products/security/vpn-endpoint-

security-clients/what-is-vpn.html.

https://www.imperva.com/learn/application-security/man-in-the-

middle-attack-mitm/

7.10 UNIT END EXERCISE

1. What is a risk in IoT. Elaborate with an example.

2. What are the different modes of attacks in the network.

3. What do you mean by interoperability in IoT?

4. What is the need of interoperability in IoT.

5. Explain Denial of Service attack.

6. What do you mean by Man-in-the-Middle attack?

7. Describe in detail port scanning and Web Crawling?

8. How wildcards and breaking cipher helps in attacks in the

network.

9. What are the different tools available to achieve security?

10. Explain Virtual Private Network (VNP)? What are its features.



https://blog.avast.com/best-iot-small-business

169

8

INTRODUCTION TO IOT

Unit Structure

8.1 Objective

8.2 Introduction

8.3 Definition

8.4 Features of IoT

8.5 Applications

8.6 IoT Examples

8.7 Simple IoT LED Program

8.8 Summary

8.9 References for Future Reading

8.10 Unit End Exercise

8.1 OBJECTIVE

The aim of the Internet of Things to creation network is:

To coordinate and help to increase and optimize the utilization of results

and value creation in IoT.

To create innovation strategies for the development of enabling

technologies (nano-electronics, embedded systems, communication

technologies, software, and cloud computing, etc.) required for IoT

applications.

The main purpose of IoT is to create an ecosystem that connects everything.

An ecosystem where everything is connected to each other is known as the

Internet of Everything.

8.2 INTRODUCTION

Nowadays information technology is developed to be as one part that covers

different phases related to the spread of the Internet and the Web into the

tangible infrastructure which is called as the Internet of Things. The Internet

of Things (IoT) is considered important knowledge that adapted the human

to live in a smart and speed life, through enabling things to communicate

with other objects, such as machines. IoT describes a system that contains

many things that are exiting in the real world, along with sensors attached

to them or embedded in these things, and connected to the Internet through

a networked structure both as wireless or wired media.

170

Physical Computing and IoT

Programming

170

8.3 DEFINITION

The IoT is «an interconnected environment in which all kinds of objects

have a digital presence and the ability to communicate with other objects

and people. IoT device comes with some common set of features like

connectivity, analytics, endpoint management, etc.

The IoT enables the entities to connect and control the IoT devices present

in the network by-

1. The entity can use a remote (tablets, smartphones) for sending a

command or request for information over an IoT device.

2. The device then performs the command or can even send the

information back over the network which has to be analyzed

3. This storing and analyzing of data can be carried out in multiple

locations which include- cloud, local database or sometimes the data

himself.

8.4 FEATURES OF INTERNET OF THINGS

Any IoT device should have the following features associated with it.

1. Connectivity

 IoT devices can be connected over Radio waves, Bluetooth, Wi-Fi,

Li-Fi, etc. Various protocols of internet connectivity layers can be

used to maximize efficiency and establish connectivity across IoT

Industry. Without seamless communication among the interrelated

components of the IoT ecosystems (i.e sensors, compute engines, data

hubs, etc.) it is not possible to execute any business.

2. Sensing

 In the case of IoT we need to read the analog signal, convert it in such

a way that we can derive meaningful insights out of it. Use of

electrochemical, gyroscope, pressure, light sensors, GPS,

Electrochemical, pressure, RFID, etc. to gather data based on an

analysis. For example, for automotive use cases, we use Light

detection sensors along with pressure, velocity and imagery sensors.

3. Active Engagements

 IoT device connects various products, technologies and services work

together by establishing an active engagement between them. Cloud

computing is used to establish active engagements among IoT

components. In the case of Industry grade, IoT takes the raw data

which need to be acquired, preprocessed, and rescale as per business

capacity. While designing an IoT ecosystems carriers need to consider

the future needs of manipulating such a huge scale of data to satisfy

incremental business needs.

171

Introduction to IoT 4. Scale

 IoT devices should be designed in such a way that they can be scaled

up or down easily on demand based on market or industry standards.

In general, IoT is being used from smart home automation to

automating large factories and workstations. A carrier should design

their IoT infrastructure depending upon their current and future

engagement scale.

5. Dynamic Nature

 For any IoT use case, the first and important step is to collect and

convert data in such a way that means business decisions can be made

of it. In this whole process, various components of IoT need to change

their state dynamically. For example, the input of a temperature

sensor will vary continuously based on weather conditions, locations,

etc. IoT devices should be designed this keeping in mind.

6. Intelligence

 In IoT, the data is used to make important business insights and drive

important business decisions based on the analysis. Various machine

learning & deep learning algorithms are built to models on top of this

massive data to obtain valuable insights. The analog signals are

preprocessed and converted to a format on which machine-learning

models are trained.

7. Energy

 From end components to connectivity and analytics layers, the whole

ecosystems demand a lot of energy. While designing an IoT

ecosystem, one need to consider design methodology such that it

should be eco-friendly and energy consumption is minimal moreover

recycling can also be done.

8. Safety

 One of the main features of the IoT ecosystem is security. In the

network of an IoT system, crucial and sensitive information travels

from endpoints to the analytics layer via connectivity components.

While designing an IoT system we need to adhere to proper safety,

security measures, and firewalls to keep the data away from misuse

and manipulations. Compromising any component of an IoT system

can eventually lead to failure of the whole system.

9. Integration

 IoT integrates various cross-domain models to enrich user experience.

It also ensures proper trade-off between infrastructure and operational

costs.

172

Physical Computing and IoT

Programming

172

8.5 APPLICATIONS OF IOT

The Internet of Things (IoT) provides the ability to interconnect computing

devices, mechanical machines, objects, animals or unique identifiers and

people to transfer data across a network without the need for human-to-

human or human-to-computer is a system of conversation. IoT applications

bring a lot of value in our lives. The Internet of Things provides objects,

computing devices, or unique identifiers and people's ability to transfer data

across a network without the human-to-human or human-to-computer

interaction.

Source : https://www.javatpoint.com/internet-of-things-applications

A traffic camera is an intelligent device. The camera monitors traffic

congestion, accidents and weather conditions and can access it to a

common entrance.

This gateway receives data from such cameras and transmits information to

the city's traffic monitoring system.

Source: https://www.javatpoint.com/internet-of-things-applications

173

Introduction to IoT 1. Wearables

 Wearable technology is the hallmark of IoT applications and one of

the earliest industries to deploy IoT. Devices are designed for heart

rate monitors and smartwatches etc. nowadays.

 Guardian glucose monitoring device has been developed to help

people with diabetes. It detects glucose levels in our body, uses a

small electrode called the glucose sensor under the skin, and relates it

to a radiofrequency monitoring device.

2. Smart Home Applications

 The smart home or smart city talks about the IoT application. AI home

automation is employed, home automation system, where a string of

musical notes uses in-house functions.

3. Health care

 IoT applications can transform reactive medical-based systems into

active wellness-based systems. Resources uses controlled

environments, leftover data, and volunteers for clinical trials. The

Internet of Things improves the device's power, precision, and

availability.

4. Smart Cities

 Smart city uses technology of IoT to provide services. The smart city

includes improving transportation and social services, promoting

stability etc.

 Engineers use the Internet of Things to analyze the complex factors

of town and each city. IoT applications help in water management,

waste control and emergencies.

 Eg: Smart city - Palo Alto.

 Palo Alto, San Francisco, is the city to acquire the traffic approach.

They realized that most cars roam around the same block on the streets

in search of parking spots. It is the primary cause of traffic congestion

in the city. Thus, the sensors were installed at all parking areas in the

city. These sensors pass occupancy status to the cloud of each spot.

And hence the vacant space for cars is identified and cars can be

parked properly.

5. Agriculture

 To feed such a large population, agriculture needs to collaborate with

technology and get the best results out of it. Eg: Smart Greenhouse

where farming techniques grow crops by environmental parameters.

Traditional method of manual handling results in production losses,

energy losses and labor costs, making it less effective and involves

huge amount of loss due to weather conditions. The greenhouse

makes it easy to monitor and enables to control the climate inside it.

174

Physical Computing and IoT

Programming

174

6. Industrial Automation

 In industry automation is must where the quality of products is an

essential factor for a more significant investment return and good

turnover. Anyone can design or re-construct products and their

packaging to provide superior quality and performance in cost and

customer experience with IoT applications. IoT will prove as a game-

changer. In industrial automation, IoT is used in the areas such as:

• Product flow monitoring

• Factory digitization

• Inventory management

• Safety and security

• Logistics and Supply Chain Optimization

• Quality control

• Packaging customization

7. Hacked Car

 A connected car is a technology-driven car with Internet access and a

WAN network. The technology offers the user some benefits such as

in-car infotainment, advanced navigation and fuel efficiency.

8. Healthcare

 Healthcare does real-time monitoring with the help of smart devices.

It gathers and transfers health data such as blood pressure, blood sugar

levels, weight, oxygen, and ECG. The patient can contact the doctor

by the smart mobile application in case of any emergency.

9. Smart Retail

 IoT applications in retail give shoppers a new experience. Customers

do not have to stand in long queues as the checkout system can read

the tags of the products and deduct the total amount from the

customer's payment app with IoT applications' help.

10. Smart Supply Chain

 Customers automate the delivery and shipping with a smart supply

chain. It also provides details of real-time conditions and supply

networks.

11. Smart Farming

 Farmers can minimize waste and increase productivity. The system

allows the monitoring of fields with the help of sensors. Farmers can

monitor the status of the area.

175

Introduction to IoT 8.6 IOT EXAMPLES IN REAL LIFE

1. Sensors

 IoT sensors consist of manual or digital sensors connected to circuit

boards such as Arduino Uno or Raspberry Pi 2. The circuit boards can

be programmed to measure a range of data collected from a sensor

device such as carbon monoxide, temperature, humidity, pressure,

vibration, and motion. IoT sensors gather data at different physical

environments and sends data to the connected devices. They can be

used by businesses for predictive maintenance, enhanced efficiency,

and reduced costs.

2. Data Analysis

 Businesses are increasingly using IoT data analytics to determine

trends and patterns by analyzing big and small data. IoT data analytics

apps can analyze structured, unstructured, and semi-structured data to

extract meaningful insights and predict the result.

 IoT can be applied to data analytics to investigate different types of

data including motion data sets, geographical data, and health care

data. It can be used by businesses for predictive and descriptive

analysis to improve customer knowledge, enhance operational

efficiency, and create business value.

3. Tracking and Monitoring Systems

 A lot of industry such as Amazon, Flip Kart etc. are using IoT systems

for asset tracking. IoT asset tracking devices use GPS or radio

frequency (RF) to track and monitor the product. The smart devices

can be used for long-range identification and verification of assets.

4. Smart Supply Chain Management

 Supply chain managers can make improved predictions through smart

routing and rerouting algorithms. IoT devices are tagged to packages

that can provide instant location finding facility via GPS and RFID

signals that can help to make informed supply chain decisions. IoT

applications can help in mitigating uncertainty risks in supply chain

management. Supply chain managers can make use of smart supply

chain management programs for minimizing variance, reducing costs,

and improving profitability. The programs can help in inventory

management, vendor relationship, fleet management, and scheduled

maintenance.

5. Smart Barcode Readers

 IoT barcode readers can help in better inventory management for

retailers. The readers support AI-based digital signal processing.

These devices can optimize the operations of many sectors including

retail, logistics, warehouse, and much more.

176

Physical Computing and IoT

Programming

176

 IoT based bar card readers feature cloud data connections to connect

with other systems. Using the connected bar code reader will ease the

process of managing inventory.

 IoT barcode readers can be incorporated into shopping carts. The

readers use AI-based sensor to detect products as they are dropped or

removed from the cart. The reader can transfer data to the computer

automatically, and that can save a lot of time in checkout resulting in

an improved experience for the customers.

6. Smart Grids

 The smart grid is another industrial application of IoT. The grid

allows real-time monitoring of data regarding supply and demand of

electricity. It involves the application of computer intelligence for the

efficient management of resources.

 Utility companies can use IoT smart grid technologies for more

efficient outage management. They can use the technology to identify

load distribution and improve reliability. The technology can also

assist in fault detection and repairs.

 With the smart grid, utilities can interconnect all their assets including

meters and substations. Applying IoT technologies to the grid

ecosystem allows utility companies to exercise greater control over

the power infrastructure and resources. Moreover, they allow

consumers with better quality access to energy.

7. Connected HealthCare System

 IoT has numerous applications in the healthcare industry. The

technology can be used to provide high-quality medical services using

smart medical devices.

 IoT automates the workflow by allowing the provision of effective

health care services to the patients.

 IoT medical devices can help in real-time monitoring of patients

remotely. The devices can report an emergency like an asthma attack,

heart failure, etc., immediately to a physician. This can help in

potentially saving the lives of many individuals.

 IoT devices can collect health care data including blood pressure,

sugar levels, oxygen, and weight. Data is stored online and can be

accessed anytime by a physician.

8. Smart Farming

 Farmers can use smart IoT farming applications for optimizing a lot

of different activities such as determining the best time to harvest

plants, creating fertilizer based on the chemicals in the soil, and

sensing soil nutrients and moisture levels.

177

Introduction to IoT IoT technologies can help in precise farming which can result in

optimized production. Some IoT devices and sensors can detect

weather conditions and other environmental data. Applications of IoT

technologies can help to boost both the quality and quantity of

agriculture production.

8.7 SIMPLE IOT LED PROGRAM

Simple LED Blink example

Aim: Simple experiment of connecting LED lights with Raspberry Pi

device (device only with Windows 10 IoT Core OS)

Requirements:

• Raspberry Pi 2/3 with Windows 10 IoT Core OS connected to internet

• Laptop or PC with Windows 10 OS connected to internet

• Visual Studio 2015 installed on your laptop or PC

• Bread Board

• LED Light

• Resistor

Step – 01: Select File -> Create new project -> Name it "Simple Led Blink"

Step – 02: Right click on the selection and add reference. Select Windows

IoT Extension for the UWP and click ok.

178

Physical Computing and IoT

Programming

178

Step – 03: Open MainPage.xaml and add the following for UI

<Grid Background="Wheat">

 <StackPanel HorizontalAlignment="Center"

VerticalAlignment="Center">

 <Ellipse x:Name="LED" Fill="LightGray" Stroke="White"

Width="100" Height="100" Margin="10"/>

 <TextBlock x:Name="DelayText" Text="500ms" Margin="10"

TextAlignment="Center" FontSize="26.667" />

 <TextBlock x:Name="GpioStatus" Text="Waiting to initialize

GPIO..." Margin="10,50,10,10" TextAlignment="Center"

FontSize="26.667" />

 </StackPanel>

 </Grid>

Step – 04: Open the MainPage.xaml.cs add the following in the cs file.

private const int LED_PIN =5;

 private GpioPin pin;

 private GpioPinValue pinValue;

 private DispatcherTimer timer;

 private SolidColorBrush redBrush = new

SolidColorBrush(Windows.UI.Colors.Red);

 private SolidColorBrush grayBrush = new

SolidColorBrush(Windows.UI.Colors.LightGray);

 public MainPage()

 {

 InitializeComponent();

179

Introduction to IoT timer = new DispatcherTimer();

 timer.Interval = TimeSpan.FromMilliseconds(500);

 timer.Tick += Timer_Tick;

 InitGPIO();

 if (pin != null)

 {

 timer.Start();

 }

 }

 private void InitGPIO()

 {

 var gpio = GpioController.GetDefault();

 // Show an error if there is no GPIO controller

 if (gpio == null)

 {

 pin = null;

 GpioStatus.Text = "There is no GPIO controller on this device.";

 return;

 }

 pin = gpio.OpenPin(LED_PIN);

 pinValue = GpioPinValue.High;

 pin.Write(pinValue);

 pin.SetDriveMode(GpioPinDriveMode.Output);

 GpioStatus.Text = "GPIO pin initialized correctly.";

 }

 private void Timer_Tick(object sender, object e)

 {

 if (pinValue == GpioPinValue.High)

180

Physical Computing and IoT

Programming

180

 {

 pinValue = GpioPinValue.Low;

 pin.Write(pinValue);

 LED.Fill = redBrush;

 }

 else

 {

 pinValue = GpioPinValue.High;

 pin.Write(pinValue);

 LED.Fill = grayBrush;

 }

 }

}

Use GPIO (General Purpose Input Output) 5 over here

Step – 05: Now build the solution and select ARM and select Remote

Machine, In the address column enter the Ip address of the network

connected with Raspberry Pi device and click ok.

181

Introduction to IoT

Step – 06: Now once Remote Machine is selected build and run the

application. Once the application is build & run operation is completed

successfully in the sense you will find the LED blinking according to the

timer set.

Source:

https://social.technet.microsoft.com/wiki/contents/articles/33948.iot-

simple-led-blink-example.aspx

8.8.SUMMARY

The Internet of Things (IoT) provides the ability to interconnect computing

devices, mechanical machines, objects, animals or unique identifiers and

people to transfer data across a network without the need for human-to-

human or human-to-computer is a system of conversation.

182

Physical Computing and IoT

Programming

182

IoT applications bring a lot of value in our lives. The Internet of Things

provides objects, computing devices, or unique identifiers and people's

ability to transfer data across a network without the human-to-human or

human-to-computer interaction.

IoT is used in real life applications such as –health monitoring systems,

whether forecasting, tracking of the product, inventory management, smart

grid and many more.

8.9.REFERENCES FOR FUTURE READING

Notes taken from the link below:

https://www.javatpoint.com/internet-of-things-applications

https://www.educba.com/iot-features/

https://www.softwaretestinghelp.com/best-iot-examples/#10_Best_Real-

World_IoT_Examples

https://social.technet.microsoft.com/wiki/contents/articles/33948.iot-

simple-led-blink-example.aspx

8.10 UNIT END EXERCISE

What is IoT?

What are the features of IoT?

Explain the applications of IoT

With an example explain the real-life application of IoT?

Elaborate the process of IoT in supply chain management system?

Explain how IoT is applicable to medical industry?

Write a note on “Improvement in traffic congestion relief using IoT?



https://www.javatpoint.com/internet-of-things-applications
https://www.educba.com/iot-features/

	106 Starting pages
	01 (1-77)
	02 (78-102)Edit
	03 (103-111)Edit
	04 (112-133)Edit
	05 (134-143)edit
	06 (144-161)Edit
	07 (153-177)
	08 (178-182)

