S.Y.B.Sc. (C. S.)
SEMESTER - 111 (CBCYS)

PHYSICAL COMPUTING AND
I0T PROGRAMMING

SUBJECT CODE: USCS306

© UNIVERSITY OF MUMBAI

Dr. Suhas Pednekar
Vice Chancellor

University of Mumbai, Mumbai

Prof. Ravindra D. Kulkarni
Pro Vice-Chancellor,
University of Mumbai

Prof. Prakash Mahanwar
Director,
IDOL, University of Mumbai

Programme Co-ordinator

Course Co-ordinator

Course Writers

Course Writers

: Shri Mandar Bhanushe

Head, Faculty of Science and Technology IDOL,
Univeristy of Mumbai — 400098

Mr Sumedh Shejole
Assistant Professor,
IDOL, University of Mumbai- 400098

: Mr.Satish Parihar

Assistant Professor.
Mulund College of Commerce
Mulund West, Mumbai, Maharashtra 400080

¢ Ms. Mitali Vijay Shewale

Assistant Professor
Somaiya Vidyavihar University
Vidyavihar, Mumbai: 400 077

: Ms. Geeta Sahu

Assistant Professor

Vidyalankar School of Information Technology
Vidyalankar College Marg,

Wadala (E) Mumbai 400037

May 2022, Print - 1

Published by : Director,
Institute of Distance and Open Learning,

University of Mumbai,

Vidyanagari,Mumbai - 400 098.

DTP composed and Printed by: Mumbai University Press

CONTENTS

Unit No. Title Page No.
1. SOC and Raspberry Pl... ... 1
2. Programming Raspberry Pl..........cccoooiiiiiiiiiiiee e 78
3. Programming INterfaces........ccouuiiiiiiiiiiiee e 103
4. Raspberry Pl INtErfaces......cuiiiiierieiiiiiiieee ettt e e e e e e e e e eeaees 112
5 Useful Implementationscc..veiiirieieeiieiiiieeeeeee e e e e e e eeierreeeeeeeeeeeeeenneees 134
6 ToT Service as a Platform..........cooiiiiiiiiiiiiiiic e 144
7 ToT Security and Interoperability..........ccccciiiiiiieeieiiiiiiiiee e 162

8 INtrodUCTION 10 TOT ..oeeieeeie e e 169

S.Y.B.Sc. (C. S.)
Semester - 111

PHYSICAL COMPUTING AND IOT PROGRAMMING

SYLLABUS
Course: TOPICS (Credits : 02 Lectures/Week:03)
USCS306 Physical Computing and IoT Programming

Objectives:
To learn about SoC architectures; Learn how Raspberry Pi. Learn to program Raspberry Pi.
Implementation of internet of Things and Protocols.
Expected Learning Qutcomes:
1. Enable learners to understand System On Chip Architectures.
2. Introduction and preparing Raspberry Pi with hardware and installation.
3. Learn physical interfaces and electronics of Raspberry Pi and program them using practical’s
4

. Learn how to make consumer grade loT safe and secure with proper use of protocols.

Unit I

SoC and Raspberry Pi

System on Chip: What is System on chip? Structure of System on Chip.
SoC products: FPGA, GPU, APU, Compute Units.

ARM 8 Architecture: SoC on ARM 8. ARM 8 Architecture Introduction
Introduction to Raspberry Pi: Introduction to Raspberry Pi, Raspberry Pi
Hardware, Preparing your raspberry Pi.

Raspberry Pi Boot: Learn how this small SoC boots without BIOS.

Configuring boot sequences and hardware.

15L

Unit 11

Programming Raspberry Pi

Raspberry Pi and Linux: About Raspbian, Linux Commands, Configuring
Raspberry Pi with Linux Commands

Programing interfaces: Introduction to Node.js, Python.

Raspberry Pi Interfaces: UART, GPIO, 12C, SPI

Useful Implementations: Cross Compilation, Pulse Width Modulation, SPI

for Camera.

15L

Unit 111

Introduction to IoT: What is IoT? IoT examples, Simple IoT LED Program.
IoT and Protocols

IoT Security: HTTP, UPnp, CoAP, MQTT, XMPP.

IoT Service as a Platform: Clayster, Thinger.io, SenseloT, carriots and
Node RED.

IoT Security and Interoperability: Risks, Modes of Attacks, Tools for
Security and Interoperability.

15L

Textbook(s):
1) Learning Internet of Things, Peter Waher, Packt Publishing(2015)

2) Mastering the Raspberry Pi, Warren Gay, Apress(2014)

Additional Reference(s):
1) Abusing the Internet of Things, Nitesh Dhanjani, O’Reilly

SOC AND RASPBERRY PI

Unit Structure

1.0
1.1
1.2

1.3

1.4

1.5

1.6

1.7
1.8
1.9

Objectives

Introduction

System on Chip

1.2.1 What is System on chip?

1.2.2 Structure of System on Chip

SoC products

1.3.1 FPGA

1.3.2 GPU

1.3.3 APU

1.3.4 Compute Units

ARM 8 Architecture

1.4.1 SoC on ARM 8

1.4.2 ARM 8 Architecture Introduction
Introduction to Raspberry Pi

1.5.1 Introduction to Raspberry Pi
1.5.2 Raspberry Pi Hardware

1.5.3 Preparing your raspberry Pi
Raspberry Pi Boot

1.6.1 Learn how this small SoC boots without BIOS
1.6.2 Configuring boot sequences and hardware
Summary

List of References

Unit End Exercises

1.0 OBJECTIVES

After going through this unit, you will be able to:

Understand the concept and structure of System on Chip

Describe and illustrate several SoC products

Explain and describe about the ARM 8 Architecture

Introduce and prepare Raspberry Pi with hardware and installation

1.1 INTRODUCTION

System on Chip

A system on chip also known as SoC is an integrated circuit (IC) that
integrates all the components into a single chip that is the complete system
is present on the same single chip and hence its name. It has analog, digital,

Physical Computing and
IoT Programming

mixed signal and other radio frequency function all present on a single chip
substrate. Now-a-days, SoCs applications are more commonly found in
electronics industry due to its low power consumption. Also, the greater use
of SoCs is found in embedded system applications. SoCs generally consists
of control unit (comprises of microprocessor, microcontroller, digital signal
processor etc.); memory blocks (i.e ROM, RAM, Flash memory,
EEPROM); timing units (oscillators, PLLs); other peripherals (it consists
counter timers, real-time timers and power on reset generators); basic SoC
interfaces (analog interfaces, external interfaces, voltage regulators and
power management units).

Raspberry Pi

Raspberry Pi is a series of compact single-board computers developed by
the Raspberry Pi Foundation in collaboration with Broadcom in the United
Kingdom. These projects are generally inclined towards teaching and
promoting basic computer science in schools and in developing countries.
Due to its low cost, modularity and open design it finds wide application
ranging from weather monitoring, robotics and many more.

Several generations have been released of Raspberry Pi’s such as Raspberry
Pi Model B (February 2012), followed by Model A, Model B+ (in 2014),
Raspberry Pi2(February 2015), Raspberry PiZero (November 2015),
Raspberry Pi Zero W (On 28 February 2017), Raspberry Pi Zero WH (On
12 January 2018), Raspberry Pi 3 Model B (February 2016), Raspberry Pi 3
Model B+ (2018), Raspberry Pi4 Model B (released in June 2019),
Raspberry Pi 400 (November 2020) and Raspberry Pi Pico (in January
2021).

1.2 SYSTEM ON CHIP

1.2.1 What is System on Chip (SoC)?

SoC is an integrated circuit embedded on a small single platform coin-sized
chip with a microprocessor / microcontroller along with all other electronic
components integrated onto it. As the name suggests it is the entire system
(complete circuit) on a single chip. SoC design usually incorporates central
processing unit, input and output ports, memory, secondary storage devices,
as well as analog input and output blocks, digital or analog signal processing
system or a floating-point unit and peripheral interfaces such as 12C, SPI,
UART, CAN, Timers, etc. It is capable of performing several tasks
including signal processing, wireless communication, artificial intelligence
and more.

1.2.1.2 Why SoC?

As technology is becoming more and more advanced, the main motivator
and primary goal is to reduce energy waste, save up on spending costs, as
well as reduce the space occupied by large systems. This essential
requirement is possible by SoC as it size-down multichip design onto a
single processor comparatively consuming less power than before. These
chips helped us to developed portable devices that can be carried anywhere

and everywhere easily without compromising on the capability and
functionality of the gadgets. SoCs have a plethora of practical uses that are
both unlimited and priceless. These are associated with systems pertaining
to the Internet of Things, embedded systems, smartphones, cameras, tablets,
cars, wireless technologies etc.

The working of a SoC can be best described with an example of
smartphones. When you use your cell phones you not only make and receive
the calls; you LSO use it for browsing the internet, listening audio, watching
videos, taking photos, playing games etc. Multiple components, such as a
graphics card, internet support, wireless connections, GPS, and several
more aspects, make all of these features feasible. All of these components
can be merged into a single chip, which can then be shrunk down to fit in
the palm of your hand and carried about. In recent years, SoC technology
are used in small sized personal computers, laptops for reducing power
consumption thus further improving the performance by using a single chip
managing all the functionalities of the system.

1.2.1.3 SoC Building Blocks

SoC comprises of several building blocks as shown in the figure 1.1.

EE-r

AXI slave 1-6

AXI

AXImaster 1-3

Figure 1.1 Building blocks of SoC

. Firstly, at its core, a system on chip must consist of a processor that
will define all its functions. Generally, an SoC has multiple processor
cores. A microcontroller, microprocessor, digital signal processor, or
application specific instruction set processor can all be used.

. Secondly, for performing the computation the chip must have its
memory. It could have memory in the form of RAM, ROM,
EEPROM, or even flash memory.

SOC and Raspberry PI

Physical Computing and
IoT Programming

External interfaces are the next requirement, as they will allow it to
conform to industry standard communication protocols such as USB,
Ethernet, and HDMI. It can also make use of wireless technology and
protocols such as WiFi and Bluetooth.

For visualizing the interfaces, it must have a Graphical Processing
Unit (GPU).

Voltage regulators, phase lock loop control systems and oscillators,
clocks and timers, analog to digital and digital to analog converters
must also be included in SoC.

For connecting all the individual blocks it must have an internal
interface bus or a network.

1.2.1.4 Advantages of SoC

Low power

Low cost

High reliability

Small form factor
High integration levels
Fast operation

Greater design

Small size

Low latency

Better efficiency and performance
Less time to market

1.2.1.5 Disadvantages of SoC

More verification.
Fabrication cost.
Increased complexity.
Time to market demands

1.2.1.6 SoC varieties

NVIDIA Tegra 3 is a graphics processor from NVIDIA

The NVIDIA Tegra 3 is a Tegra family SoC that is found in a variety
of Android handsets. The Tegra 3 is used in some devices such as the
Asus Eee Pad, HTC One X, and Google Nexus Tablet. This model
includes a CPU with five cores. Each core is an ARM Cortex A9 chip,
with the fifth core running at S00MHz and using a low-power silicon
process.

Qualcomm's Snapdragon S4 processor

When it comes to Android smartphones and tablets, Qualcomm is
crucial. It is powered by a processor that is similar to the ARM Cortex
AlS.

Samsung Exynos 4 Quad

The ARM architecture is used in this SoC. It has a quad-core ARM
Cortex-A9 CPU and a 1.4GHz ARM Mali-400 MP4 quad-core GPU.
This processor can handle a wide range of tasks, including 3D
gaming, multitasking, and video recording and playback.

Intel Medfield

The Medfield SoCs from Intel are not based on the ARM architecture.
These SoCs are built using x86 technology. Medfield SoCs can

provide OEMs with a single-core processor running at 1.6-2GHz with
a PowerVR SGX540 GPU.

OMAP 4 from Texas Instruments

The ARM Cortex A9 45nm architecture is used in the fourth
generation of OMAPs. Motorola Atrix 2, Motorola Droid RAZR, LG
Optimus 3D, and LG Optimus Max are some Android devices that
employ this SoC.

1.2.1.7 SoC design challenges

The different SoC design challenges are given below:

AN

Strategy for architecture
Strategy for test design
Strategy for validation
Backend Strategy and Synthesis
Integration Strategy

On chip Isolation

. Strategy for Architecture

The type of processor we employ to create the SoC is an
extremely significant issue to consider. Furthermore, the type of
bus that must be used is a question of decision.

. Strategy for Test Design

The majority of frequent physical problems are represented as
faults in this approach. The essential circuitry incorporated in
the SoC architecture assist in defect detection.

. Strategy for validation

There are two primary concerns to consider while validating
SoC designs. The first issue is that we need to double-check

SOC and Raspberry PI

Physical Computing and
IoT Programming

the IP cores. The second issue is that we need to double-check
the system's integration.

. Backend Strategy and Synthesis

Many physical effects must be taken into account while
planning the SoC synthesis and strategy. IR drop, cross talk, 3D
noise, antenna effects, and EMI effects are all examples of
effects. Chip planning, power planning, DFT planning, clock
planning, timing, and area budgeting are all required early in the
design process to address these difficulties.

. Strategy for Integration

To create a smooth integration strategy, all of the above-
mentioned data must be examined and combined.

J On chip Isolation

Many factors must be considered in on-chip isolation, including
the impact of process technology, grounding effects, guard
rings, shielding, and on-chip decoupling.

1.2.1.8 SoC applications

Following are few applications of SoC

Market for mobile phones

The mobile industry, particularly in smartphones, is the most popular
and basic application of SoC. Because smartphones are becoming
slimmer and lighter as technology advances, the use of a SoC (whose
size is shrinking at an alarming rate with each new generation) is the
greatest fit for this change. Furthermore, high performance and low
power consumption are two significant elements that influence
smartphone performance, and SoC excels at both. As illustrated in this
image, the A6 CPU was the first system on chip used in the
deconstruction of the iPhone 5.

Embedded systems SOC and Raspberry PI

In the modern world, almost every microcontroller and CPU has a
SoC operating on top of it. Component coupling is tighter, resulting
in greater reliability and performance.

Embedded systems can be seen in Apple's smart watch. The apple S1
SoC is used in this smart watch.

Apple Watch

The SoC in the Samsung Galaxy Gear is based on the ARM Cortex
M4 microcontroller. For example STM32F401B.

= i -

~ W -

11

SR LR

LRI R e e

* STMicroelectronics
STM32F401B ARM-
Cortex M4 MCU with
128KB Flash

Personal computers

Another important application of the SoC is personal computers;
many modern personal computers do not have a motherboard,
instead relying on the SoC to provide great performance and
minimal size.

Physical Computing and
IoT Programming

1.2.1.9 Examples of SoCs

The majority of SoCs on the market today are ARM-based. Qualcomm's
Snapdragon SoCs, Apple's A4, and Nvidia's Tegra series are some examples
of smartphone SoCs. The Raspberry Pi 2 uses the Broadcom BCM2836
SoC. The Open Cores community has created a number of SoCs.

1.2.2 Structure of System on Chip: Design Flow
SoC design flow structure is as shown in the following figure 1.2

JTIAG SCAN € ARM PROCEESOR VOLTAGE
- <> prouiator €

SYSTEM CONTROLLER ‘

¢ EBI
M
ADVANCED INT. CTRL. | e
POWER MGT. CTRL € > M
‘ o
P PLL
“«—> — Y ¢— SRAM
osC
I AR Tan Peripheral C
3 (o]
0 Bridge e
RESET CTRL, T
BROWNOUT DETECT g
POWER ON RESET b
E +—r FLASH

PROG. INT. TIMER | o r

WATCHDOG TIMER

> R
DEBUG UNIT
PID CTAL. FLASH MENTRY
+—> PROGRAMMER CONTROLLER

< » PERIPHERAL < >
DATA CONTROLLER

Figure 1.2 SoC design flow structure

The goal of the SoC design flow is to build the hardware and software of
SoC designs. In general, the design pipeline of SoCs includes the following
steps:

o Hardware and Software Modules: SoC hardware blocks are made up
of pre-qualified hardware components and software modules that are
combined in a software development environment. For the
development of the modules, hardware description languages like as
Verilog, VHDL, and SystemC are utilised.

o Functional Verification: Before being sent to the foundry, the SoCs
are tested for logic accuracy.

. Verify hardware and software designs: Engineers have used FPGA,
simulation acceleration, emulation, and other technologies to verify
and debug the hardware and software of SoC designs.

o Place and Route: After the SoC has been debugged, the next step is to
place and route the whole design onto the integrated circuit before it
is sent to manufacture. Full custom, standard cell, and FPGA
technologies are widely used in the fabrication process.

1.3 SOC PRODUCTS

This section describes various SoC products such as FPGA, GPU, APU
and compute unit in detail.

1.3.1 FPGA

Field Programmable Gate Array is the abbreviation for FPGA. It's an
integrated circuit that may be configured by a user after it's been created for
a specific purpose. Adaptive logic modules (ALMs) and logic elements
(LEs) are coupled via programmable interconnects in modern FPGAs.
These blocks combine to form a physical array of logic gates that can be
configured to execute a variety of tasks. This distinguishes them from other
types of microcontrollers or Central Processing Units (CPUs), whose
configuration is fixed and cannot be changed by the manufacturer. FPGA
overview is shown in the figure 1.3 below

= HPS 1/0s
SERE
Distributed |l & ARM Corex-A9
Memory =I [l MPCore HPS
| | [I8
[1] o Variable-Precision
PCle Gen2 x4 —H B - DSP Blocks
Hard IP (GX, GT), il 1 =E
PCle Gen 3 x8 | | I | 1]
Hard IP (GZ) E= == == M10K Internal Mamary
Bl I8l | e Blocks (GX, GT)
Il [18 1] M20K Internal Memory Blocks (GZ)
Fractional PLLs ——S "N B [||
15l || [1]
BB E
=l . 11 == Hard |P per Transceiver (PCS)
u I |1
High-Speed _] I [||
Serial Transceivers n I | 1]
m Il | 1]
e mE LIS Integrated Multiport
Memory Controllers
General-Purpose U0s (LVDS, Memory Interfaces) {GX and GT only)

Figure 1.3 An overview of FPGA

The early programmable circuits were quite basic, consisting solely of logic
gates. This was sufficient to execute a variety of logical functions with zeros
and ones as inputs and outputs. Programmable circuits became increasingly
and more powerful over time. You programme logic cells that can act as
registers, adders, multiplexers, or lookup tables in programmable circuits.

SOC and Raspberry PI

Physical Computing and
IoT Programming

10

While the circuit is running, the way the cells work and the structure of the
cells can both be altered. A circuit can be reprogrammed to fulfil several
roles, including those of an ARM processor, a network interface card, or a
video encoder, to mention a few. Figure 1.4 shows the adaptive logic
module of FPGA.

1—
7 —

3I—

4 — Combinational
5 —3 Logic

6 —

17—

8 —

— [Reglster —T— regout(0)

3 combout(D)

regout(1)
— | Register
combout(1)

ALM Inputs

8-Input Fracturable LUT [Two Adders Two Registers

Figure 1.4 Adaptive Logic Module of an Altera/Intel FPGA
1.3.1.1 Working of FPGA

The FPGAs are made up of logical modules that are linked together through
routing channels. Each module is made up of a programmable lookup table
that is used to manipulate the elements that make up each cell and perform
logical functions on those elements. Each cell, in addition to the lookup
table, contains cascaded adders that allow addition to be performed.
Subtraction can also be accomplished by altering the input's logical states.
There are additionally registers (logical elements used to conduct the most
basic memory functions) and multiplexers in addition to these (switching
elements).

Depending on the manufacturer model, FPGAs can also incorporate static
and dynamic on-chip memory. CPU cores, memory controllers, USB
controllers, and network cards are among the ready-to-use components
found in FPGAs. There is no need to include these components in the FPGA
framework because they are so widely used. Instead, you can use a
component that has already been made.

1.3.1.2 What can you do using FPGA programming?

FPGAs are primarily employed in the development of application-specific
integrated circuits (ASICs). To begin, you must create the circuit's
architecture. The prototype is then built and tested using an FPGA. Errors
are reversible. Once the prototype has proven to be functional, an ASIC
project based on the FPGA design is produced and fabricated. Because
manufacturing an integrated circuit is a complex and time-consuming
procedure, this helps you to save time. It also saves money because a single
FPGA can handle multiple versions of the same project. In this regard, it's

worth noting that modern Tensor Processing Units (TPUs), often known
as crypto currency miners, were first designed as FPGAs and only then
built.

In real-time systems, when response time is critical, FPGAs are also used.
Response time is not fixed in ordinary CPUs, thus you never know when
you'll get a response once the initial signal comes. Real-time operating
systems are used to reduce it or keep it within a certain range. Even yet, in
cases requiring a quick response time (sub milliseconds), this falls short. To
solve this problem, the requested algorithm must be implemented in FPGA
using combinational or sequential logic to guarantee a consistent response
time of less than milliseconds. Once ready, a real-time system designed in
FPGA can be changed and pushed into production. This method will result
in a considerably speedier and more energy-efficient integrated circuit.

FPGAs are also employed in applications where the hardware configuration
is subject to change and a circuit that can adapt to these changes is required.
FPGA becomes an obvious alternative if your hardware supplier’s move
and the new hardware does not have the needed interface.

1.3.1.3 How to program FPGAs?

It's possible that the term "FPGA programming" is a misleading. After all,
unlike CPUs and GPUs, there is no true program to run sequentially. FPGA
programming is designing a hardware architecture that can run a given
algorithm and describing it using a hardware description language (HDL).
As a result, unlike normal programs executed by CPUs or GPUs, the
building blocks of this algorithm will not be a memory register and a set of
operations to be done. Low-level elements such as logic gates, adders,
registers, and multiplexers will make up a "FPGA program."

This provides you with a lot of versatility. If your data type is 20 bits, for
example, you can only use 20-bit instructions to conduct operations. In the
realm of CPUs, there are only manufacturer-set registers and instructions
that cannot be modified. You can change to the data type in FPGAs, on the
other hand, because you design the hardware architecture yourself.

You can also use general-purpose CPUs to perform processes that are either
complex or time-consuming. CPUs, for example, conduct block cyphers
and cryptographic tasks in many cycles, taking substantially longer than
FPGA:s.

1.3.1.4 Languages used in FPGA programming

Specific languages, like as VHDL or Verilog, are used to programme
FPGAs. The syntax of VHDL is more close to Pascal than C, allowing for
programming that is distinct from that of traditional high-level languages.
Verilog, on the other hand, is similar to C, making it more intuitive and
user-friendly for those with no prior familiarity with low-level
programming.

SOC and Raspberry PI

11

Physical Computing and
IoT Programming

12

VHDL is an obsolete language with a number of drawbacks, one of which
being the difficulty in determining whether the architecture works as
planned. Python is used to generate chunks of the code in various
applications to make our lives easier. Of course, everything could be written
in VHDL, but Python is more user-friendly.

The HDL simulator is the most important tool for designing hardware. It
enables you to simulate how the architecture functions using sample input
data. As a result, you can see how the data flows. The HDL simulator is
particularly important since compiling a given hardware description into an
FPGA board and programming the board itself, even for a basic programme,
might take a long time. You can use the simulator to extensively test the
algorithm you wish to put on an FPGA board.

1.3.1.5 FPGA Architecture

A typical FPGA design (Figure 1.5) is made up of thousands of basic
elements called configurable logic blocks (CLBs), which are connected by
a system of programmable interconnects called a fabric that routes signals
between CLBs. The FPGA and external devices are connected using
input/output (I/O) blocks.

The CLB is also known as a logic block (LB), a logic element (LE), or a
logic cell (LC), depending on the manufacturer.

IV ‘_,J J*/'
——l

~ FT:[{T 100 - > oo

A B "4 ...55 i_,"!; I = [PS] & ;—}:_ - }

=D Do 1’.‘::'_'=~Tr'—ﬁ[— g-ff. - 4?—‘
- [_ I 1 [1 1 s 4 _(_.]T:'*i.'

Logic Blocks CE
[

1O Blocks

Programimable
Frousing

Figure 1.5: The fundamental FPGA architecture

A CLB is made up of numerous logic blocks (see Figure 1.6). An FPGA's
lookup table (LUT) is a distinguishing feature. LUTs with four to six input
bits are commonly utilised, and they hold a predefined list of logic outputs
for any combination of inputs. Multiplexers (mux), full adders (FAs), and
flip-flops are all commonly used logic functions.

carry in clk

1
-
C
=

bt i —_FA : 7 frefrou
< IRLUTL D :FD DFF
YT f

4
carry out clk

Figure 1.6: A simplified CLB: The four-input LUT is formed from two
three-input units

The number and location of components in the CLB vary depending
on the device; in the simplified example in Figure 1.6, during FPGA
programming, two three-input LUTs (1), an FA (3), and a D-type flip-
flop (5), as well as a standard mux (2) and two muxes, (4) and (6), are
configured.

There are two modes of operation for this reduced CLB. The LUTs are
merged with Mux 2 to produce a four-input LUT in normal mode, and
the LUT outputs are provided as inputs to the FA along with a carry
input from another CLB in arithmetic mode. Mux 4 switches between
the FA and LUT outputs. The D flip-flop in Mux 6 decides whether the
operation is asynchronous or synchronised to the FPGA clock.

CLBs in current-generation FPGAs can combine for more complicated
operations such as multipliers, registers, counters, and even digital
signal processing (DSP) capabilities; CLBs can combine for more
sophisticated operations such as multipliers, registers, counters, and
even DSP functions.

1.3.1.6 FPGA Applications

FPGAs are well-suited to a variety of markets because to their
programmability. Xilinx, as the industry leader, provides wide range
of solutions that include FPGA devices, powerful software, and
configurable, ready-to-use IP cores for markets and applications
including:

J Aerospace and Defense - FPGAs for image processing, waveform
synthesis, and partial reconfiguration for SDRs that are radiation-
tolerant.

o ASIC Prototyping - ASIC prototyping with FPGAs allows for
quick and accurate SoC system modelling and embedded
software verification.

SOC and Raspberry PI

13

Physical Computing and
IoT Programming

14

. Automobiles - Silicon and IP solutions for gateway and driving
assistance systems, as well as comfort, convenience, and in-vehicle
infotainment.

o Broadcast & Pro AV - With Broadcast Targeted Design Platforms and
solutions for high-end professional broadcast systems, you can adapt
to changing requirements faster and extend product life cycles.

J Consumer Electronics - Affordably priced technologies that enable
next-generation, full-featured consumer applications such convergent
handsets, digital flat panel display, information appliances, home
networking, and residential set-top boxes.

. Data Center - Designed for high-bandwidth, low-latency servers,
networking, and storage applications to boost cloud deployment
value.

° Network Attached Storage (NAS), Storage Area Network (SAN),
servers, and storage appliances solutions for high-performance
computing and data storage.

. Industrial - Xilinx FPGAs and targeted design platforms for
Industrial, Scientific, and Medical (ISM) enable higher degrees of
flexibility, faster time-to-market, and lower overall non-recurring
engineering costs for a wide range of applications including industrial
imaging and surveillance, industrial automation, and medical imaging
equipment (NRE).

o Wired Communications - Wired Communications' end-to-end
solutions cover reprogrammable networking linecard packet
processing, framer/MAC, serial backplanes, and more.

° Wireless Communications - RF, baseband, connection, transport, and
networking solutions for wireless equipment, including WCDMA,
HSDPA, WiMAX, and other standards.

1.3.1.7 Artificial Intelligence: The next frontier for FPGAs

FPGAs are now gaining traction in another field: artificial intelligence (AI)
using deep neural networks (DNNs) (AI). It needs a lot of processing
resources to run DNN inference models. GPUs are frequently used to speed
up inference processing, but in some circumstances, high-performance
FPGAs may surpass GPUs when it comes to evaluating massive amounts
of data for machine learning.

Microsoft is already utilizing Intel FPGA flexibility for Al acceleration.
Customers can use Microsoft Azure cloud services to access Intel Stratix
FPGAs as part of Project Brainwave. These FPGAs have been configured
specifically for running deep learning models on cloud servers with these
FPGAs. Developers can use the Microsoft service to tap into the capabilities
of FPGA chips without having to buy or configure additional gear or

software. Developers can instead use open-source tools like the Microsoft
Cognitive Toolkit or the Tensor Flow Al programming framework.

1.3.1.8 Benefits by using FPGAs

i] Flexibility

Every time the device is powered up, the FPGA functionality
can vary. So, if a design engineer wants to make a modification,
all they have to do is download a new configuration file into the
device and try it out.

Frequently, updates to the FPGA can be made without the need
for costly PC board replacements.

ASSPs and ASICs have fixed hardware functionality that
cannot be modified without a significant financial and time
investment.

ii] Acceleration

Improve your system's performance and/or get items to market
faster.

In comparison to ASICs, FPGAs are available “off the shelf”
(which require manufacturing cycles taking many months).

OEMs can deploy systems as soon as the design is operational
and proven because to FPGA flexibility.

FPGAs provide CPUs with off-load and acceleration features,
allowing the entire system to run faster.

ili] Integration

On-die CPUs, transceiver I/Os at 28 Gbps (or faster), RAM
blocks, DSP engines, and other features are available in today's
FPGAs. More functionality in the FPGA mean fewer devices on
the circuit board, which improves reliability by decreasing
device failures.

iv] Total Cost of Ownership (TCO)

While ASICs are less expensive per unit than FPGAs, they
require a non-recurring expense (NRE), expensive software
tools, specialist design teams, and extended production cycles
to produce.

Long lifecycles (15 years or more) are supported by Intel
FPGAs, eliminating the cost of rebuilding and requalifying
OEM production equipment whenever one of the electronic
components on-board becomes obsolete (EOL).

SOC and Raspberry PI

15

Physical Computing and
IoT Programming

16

. FPGAs lower risk by allowing prototype systems to be shipped
to clients for field testing while still allowing for quick changes
before ramping up to volume production.

1.3.2 GPU

The CPU (central processing unit) is referred to as a computer's brain and
GPU its soul. GPUs, on the other hand, have broken out from the limits of
the PC over the last decade.

GPUs have sparked a global Al craze. They've evolved into an important
component of current supercomputing. They've been incorporated into new
hyper scale data centers that are expansive. They've evolved into
accelerators, speeding up everything from cryptography to networking to
artificial intelligence.

They also continue to drive gaming and professional graphics
advancements in workstations, desktop PCs, and a new generation of
laptops.

1.3.2.1 What is a GPU?

GPUs (graphics processing units) are now much more than the PCs in which
they first appeared, but they are still based on a much older concept known
as parallel computing. GPUs are extremely powerful because of this.

CPUs, to be sure, are still necessary. CPUs are quick and versatile, and they
race through a series of tasks that require a lot of interaction. For example,
retrieving data from a hard drive in response to a user's keystrokes.

GPUs, on the other hand, divide complex problems into thousands or
millions of smaller tasks and solve them all at once. This makes them ideal
for graphics, where textures, lighting, and shape rendering must all be done
at the same time to keep images moving across the screen.

The Diference between g CPU and GPU

Figure 1.7: Difference between CPU and GPU
1.3.2.2 Difference between CPU and GPU

CPU GPU

Full Form: Central Processing Full Form: Graphics Processing
Unit Unit

Few cores Many cores

Low latency High throughput

Good for serial processing Good for parallel processing
Can do a limited operations at Can do thousands of operations
once at once

Because the CPU only has a few cores and a lot of cache memory, it can
only process a few software threads at a time, whereas the GPU consisting
of hundreds of cores thus handling thousands threads at once.

Parallel computing, which was once an esoteric technology, is now
available thanks to GPUs. It's a technology with an illustrious pedigree that
includes names like Seymor Cray, the father of supercomputing. GPUs put
this idea to work in the desktops and gaming consoles of over a billion
gamers, rather than taking the form of hulking supercomputers.

1.3.2.3 What does a GPU do?

The graphics processing unit (GPU) has emerged as one of the most
important types of computing technology for both personal and business
computing. The GPU, which was created for parallel processing, is used in
a variety of applications, including graphics and video rendering. GPUs are
becoming more popular for use in creative production and Al, despite being
best known for their gaming capabilities.

GPUs were created with the intention of speeding up the rendering of 3D
graphics. They improved their capabilities by becoming more flexible and
programmable over time. With advanced lighting and shadowing
techniques, graphics programmers were able to create more interesting
visual effects and realistic scenes. Others began to use GPUs to dramatically
speed up additional workloads in high-performance computing (HPC), deep
learning, and other areas.

1.3.2.4 Unified GPU Architecture

A parallel array of multiple programmable processors encourages unified
GPU architectures. Unlike earlier GPUs, which had distinct processors
specialized to each processing type, they combine vertex, geometry, and
pixel shader processing and parallel computing on the same processors. For
texture filtering, rasterization, raster operations, anti-aliasing, compression,
decompression, display, video decoding, and high-definition video

SOC and Raspberry PI

17

Physical Computing and
IoT Programming

18

processing, the programmable processor array is intimately linked with
fixed function processors.

Many core GPUs have a distinct architectural design point than multicore
CPUs, focusing on efficiently running many parallel threads on many
processor cores. More of the per-chip transistor budget is given to
computation, and less to on-chip caches and overhead, by using many
simpler cores and optimizing for data-parallel behavior among groups of
threads.

The logical pipeline, which consists of discrete independent programmable
stages, is mapped onto a physical dispersed array of processors in shown in
the figure 1.8.

Input
Assembler

Setup &

[: Rastenzer

Raster Operations/
Output Merger

Figure 1.8 Logical pipeline mapped to physical processors. On the array of
unified processors, the programmable shader stages run, and the logical
graphics pipeline dataflow recirculates via the processors.

Processor Array

Many processor cores are grouped into multithreaded multiprocessors in a
unified GPU processor array. A GPU with 112 streaming processor (SP)
cores structured as 14 multithreaded streaming multiprocessors (SM) is
shown in Figure 1.9. Each SP core is extremely multithreaded, with 96
concurrent threads and their hardware states to manage. An interconnection
network connects the CPUs to four 64-bit-wide DRAM partitions. Each SM
is equipped with eight SP cores, two SFUs, instruction and constant caches,
a multithreaded instruction unit, and shared memory. This is the NVIDIA
GeForce 8800's implementation of the Tesla architecture. Traditional
graphics applications such as vertex, geometry, and pixel shading run on the
unified SMs and SP cores, while computation programs operate on the same
processors.

[
=

| Input Assembler |

5
]
&

Warex Work
Disariwtion

TPC TRPC TPC
[1L]]
——|| ([] —
== —
| (|
e EFE
] (W[

%@llllﬁ
L8 |l e -

Figure 1.9 Basic unified GPU architecture

By adjusting the number of multiprocessors and memory partitions, the
processor array design can be scaled to smaller and bigger GPU systems.
Seven clusters of two SMs share a texture unit and a texture L1 cache in
Figure 1.9. Given a set of coordinates into a texture map, the texture unit
returns filtered results to the SM. Because the filter regions of support for
subsequent texture requests frequently overlap, a tiny streaming L1 texture
cache can help minimize the number of queries to the memory system. A
GPU-wide interconnection network connects the processor array to raster
operation (ROP) processors, L2 texture caches, external DRAM storage,
and system memory. The number of processors and memories in a GPU
system can be scaled to meet the needs of various performance and market
sectors.

1.3.2.5 Applications of GPU

GPUs were largely employed to accelerate real-time 3D graphics
applications, such as gaming, two decades ago. Computer experts believed
that GPUs had the potential to address some of the world's most complex
computing challenges as the twenty-first century began.

The general-purpose GPU era began as a result of this insight. Graphics
technology is now being used to solve an ever-widening range of
challenges. GPUs are more programmable than they've ever been, allowing
them to speed up a wide range of applications beyond graphics rendering.

J GPUs for gaming: With hyper realistic graphics and enormous,
sophisticated in-game worlds, video games have become more
computationally intensive. With the rise of virtual reality games and
improved display technologies such as 4K panels and high refresh
rates, graphics processing demands are rapidly increasing. GPUs can
render visuals in both 2D and 3D modes. Games can be played at

SOC and Raspberry PI

19

Physical Computing and
IoT Programming

20

greater resolutions, quicker frame rates, or both with superior visual
performance.

J GPUs for Video Editing and Content Creation: Long rendering times
have plagued video editors, graphic designers, and other creative
professions for years, sapping computing resources and stifling
creative flow. GPUs' parallel processing now makes rendering video
and graphics in higher-definition formats faster and easier.

J GPUs for Machine Learning: Al and machine learning are two of the
most interesting applications for GPU technology. GPUs can give
amazing acceleration in workloads that take use of GPUs' highly
parallel nature, such as image recognition, because they have such a
large amount of processing capability. Many of today's deep learning
solutions rely on GPUs and CPUs working together.

1.3.3 APU

An APU is a 64-bit microprocessor that combines the processing
capabilities of a CPU (Central Processing Unit) and a GPU (Graphics
Processing Unit) onto a single chip. While APU may sound like any other
computer processor, it is only used by AMD as the brand name for the
CPU/GPU combo chips they produce. To understand what an APU is, it's
helpful to know a little about the two CPUs it combines.

The CPU, also known as the "brain" of the computer, is the main processing
unit that receives and executes instructions from software or applications. It
also transmits instructions to other elements of the system, instructing them
on what they should do. It is the most important component of a computer
system; without it, the computer would be rendered useless.

The GPU performs comparable tasks to the CPU, but it only handles
graphics-related data and generates graphical output. A computer without a
GPU is blind, with no video output, just as a computer without a CPU is.

The CPU and GPU are two independent components in most systems.
Except that the data transfer rate will improve if the two processors are
closer to each other, there isn't much of a problem with this. Furthermore,
having these two units running at the same time results in higher power
usage, which AMD is well aware of. They released their first high-
performance and energy-efficient processor, the APU, in 2011, which
merged the benefits of the CPU and GPU into a single chip.

1.3.3.1 Evolution of APU

AMD has been developing structured and efficient architecture for their
CPUs and GPUs as a major manufacturer of computer hardware. Their
APUs is usually a combination of their existing CPU and GPU designs. The
resulting processor outperforms the typical CPU and GPU when used
together. It was formerly known as the "Fusion" before being renamed the
"APU." The term was eventually changed to APU because to a trademark
infringement concern.

AMD makes two kinds of APUs: one for high-performance devices and the
other for low-power devices. Llano was the codename for the first
generation APU for high-performance devices, which contained K10 CPU
cores and a Radeon HD 6000-series GPU. Similarly, the first APU for low-
power devices, codenamed Brazos, had the Bobcat microarchitecture and a
Radeon HD 6000-series GPU. Trinity, AMD's second generation of high-
performance APU, and Brazos 2.0, AMD's second generation of low-power
APU, were released in 2012. As AMD's CPU and GPU architecture
improved, the APU improved as well, with performance at the forefront of
each improvement. Following versions used the most up-to-date
architecture available at the time, and each iteration saw significant
advancements over the previous one. Apart from performance, AMD has
increased the upgradability of its products. Previously, future CPU upgrades
were not conceivable, but starting with the APU Ryzen series, this was no
longer the case. Renoir, the 2020 release, is built on the Zen 2 core
architecture and features Vega 8 graphics.

APUs are still evolving today, and with AMD's newest and more powerful
architectures, the next generation of APUs is on the way.

1.3.3.2 Benefits over CPU and GPU

The game-changing technology of the APU is a key advancement in the
computing industry, with various advantages over the CPU + GPU
configuration.

Improved performance: The data transfer rate was greatly enhanced by
combining the CPU and GPU in the same chip because they now share the
same bus and resources. OpenCL (Open Computer Language), a standard
interface for parallel computing that makes use of the computing power
supplied by GPUs, is also supported by APUs. Tasks that demand the high
processing power of a CPU and the fast image processing of a GPU can
benefit from the performance of an APU's multi-core CPU and GPU.

Power-efficient: Not only do combining two chips reduce space, but it also
saves electricity. Apart from enhancing the APU's performance, AMD is
constantly working to reduce the chip's power consumption, despite the fact
that it is already low. Low Thermal Design Power is a feature of newer
models (TDP). The Ryzen Embedded 1102G, for example, has the lowest
TDP of only 6W.

Cost-effective: The cost benefit of AMD's APU over a CPU and GPU
combination is arguably the most significant. Buying an APU is often less
expensive than buying a CPU and GPU individually, with prices ranging
from $100 to $400 depending on the specifications. Though the higher-end
components are more expensive, they are still less expensive than the cost
of a CPU and GPU with the same level of performance. This applies to
future upgrades as well. Due to AMD's permissive attitude toward APU
upgradability and compatibility, consumers can save a lot of money by
replacing just one processor rather than both.

SOC and Raspberry PI

21

Physical Computing and
IoT Programming

22

1.3.3.3 What sectors can benefit from APUs?

Accelerated Processing Units have been used in a variety of areas,
including:

Software Development

Software developers can employ APUs to create heterogeneous
computing architectures that blend CPU and GPU technology. This
combination allows them to work on projects that require a high level
of speed and processing power. Today's APUs also supports Open
Computing Language (OpenCL) pictures, which helps. OpenCL is a
standard interface for task- and data-based parallelism in parallel
computing. The majority of activities necessitate a lot of computer
power (from CPUs) and quick picture processing (a GPU feature).
However, CPUs and GPUs rarely process data at the same time. The
process is sped up by APUs, which combine both capabilities and
allow parallel processing.

APUs are also less expensive than buying a CPU and GPU, making
them perfect for software developers who don't need a lot of
processing power.

Visual content creation

The majority of today's digital material is mainly visual. Digital
content creators may quickly create high-quality videos that elevate
the user experience with an APU-powered computer.

Advanced Micro Devices (AMD), the company that invented APUs,
allows content makers to employ built-in universal video decoders
(UVDs) to enhance video content so that it may be displayed on a big
screen without losing quality.

APUs allow content creators to clean up photos and movies in
addition to offering high-quality displays, simplifying and
streamlining the content creation process.

Gaming

APUs for gaming are also handy for gamers who want to build their
own computers. These enable them to take advantage of improved and
quicker graphics processing, enhancing their gaming experience
without breaking the bank.

1.3.3.4 Is it a Better Processor?

APUs have been found in a variety of devices, including desktops, laptops,
servers, mobile phones, and gaming consoles. For a decade, businesses and
consumers have supported this heterogeneous chip. Can it, however, truly
replace the CPU and GPU? In the end, it would be determined by the wants
and demands of the user.

Consumers, PC builders, and budget gamers can take use of APU's
advantages. The majority of APUs are capable of delivering adequate
performance. In fact, it has the ability to exceed mid-range CPUs and GPUs.
It's an excellent alternative for customers who don't want intense graphics
or the maximum available CPU speed. It will also work well with ordinary
PCs at home and in the business. AMD continues to create sophisticated
APUs, with latest models capable of handling graphics-intensive tasks.

When it comes to intensive gaming, though, an APU will not suffice. It's
still unable to match the graphical experience provided by high-end discrete
graphics cards. An APU, on the other hand, would be an excellent choice
for low-budget, entry-level PC building and gaming.

Although an APU cannot totally replace the CPU and GPU, it is a suitable
high-performance, low-power option in many circumstances. As AMD's
designs improve and new technologies emerge, it wouldn't be surprising if
future generations of the APU can completely replace both the CPU and the
GPU.

1.3.4 Compute Units

Compute units are comparable to host groups, but they have the added
feature of granularity, allowing cluster-wide structures that mimic network
architecture to be constructed. Task scheduling that considers processing
unit resource needs optimizes job placement based on the underlying system
architecture, eliminating communications bottlenecks. When conducting
communication-intensive parallel operations across multiple hosts,
compute units are extremely handy. Compute units represent the topology
of a cluster network for workloads that require a lot of communication
between processes. Computing units, for example, can help reduce network
latency and take use of fast interconnects by putting all job operations in the
same rack, rather than making several network hops.

Availability of resources Strings can be used to indicate compute unit
requirements such as performing a job solely (excl), evenly distributing a
job across many compute units (balancing), or selecting compute units
depending on other criteria.

A computation unit is made up of 64 shader processors and four TMUs. The
compute unit is independent from the render output units, yet it feeds into
them (ROPs). A CU Scheduler, a Branch & Message Unit, four SIMD
Vector Units (each 16-lane wide), four 64KiB VGPR files, one scalar unit,
a 4 KiB GPR file, a 64 KiB local data share, four Texture Filter Units,
sixteen Texture Fetch Load/Store Units, and a 16 KiB L1 Cache are all
contained in each Compute Unit. A 16KB L1 instruction cache and a 32KB
L1 data cache are shared by four computing units and are both read-only. A
SIMD-VU can process 16 items at a time (per cycle), but an SU can only
process one element at a time (per cycle). In addition, the SU performs other
tasks like as branching.

Every SIMD-VU has its own private memory where its registers are stored.
There are two sorts of registers: scalar registers (s0, s1, etc.), which contain

SOC and Raspberry PI

23

Physical Computing and
IoT Programming

24

four bytes of data, and vector registers (v0, v1, etc.), which hold 64 bytes of
data. Every operation on the 64 numbers in the vector registers is performed
in simultaneously. When you work with them, you're truly working with 64
inputs. For instance, suppose you're working on 64 separate pixels at the
same time (for each of them the inputs is slightly different, and thus you get
slightly different color at the end). There are 512 scalar registers and 256
vector registers in each SIMD-VU.

1.3.4.1 Compute unit configuration

Compute unit configuration must meet the following requirements to ensure
consistency:

. Hosts and host groups are only found in the highest granularity
compute unit type.

. At most one compute unit of the finest granularity's membership list
contains hosts.

J The same type of compute units (or hosts) is members of all compute
units of the same type.

1.3.4.2 Where to use compute units?

The following parameters in LSF configuration files can be defined using
LSF compute units:

. The compute unit type allowed for the queue is EXCLUSIVE in
Isb.queues.

o The hosts on which jobs from this queue can be run are listed in
Isb.queues as HOSTS.

o RES REQ in Isb.queues is used to track resource requirements for
queue compute units.

o For application profile compute unit resource needs, see RES REQ in
Isb.applications.

1.3.4.3 Different configurations of compute unit

Customers can select from the following compute unit configurations based
on their requirements as shown in the following Table I:

Table I: Compute unit configurations

Compute Unit Configuration Size Parameter
Value
Lite edition 1 CPU Core; 3072 MB lite

Main memory

Professional 2 CPU Cores; 4096 MB pro
edition Main memory

Compute Unit Configuration Size Parameter
Value
Premium edition 4 CPU Cores; 8192 MB prem

Main memory

Premium Plus 8 CPU Cores; 16384 prem-plus
edition MB Main memory
1.4 ARM 8 ARCHITECTURE

1.4.1 SoC on ARM 8

A RISC processor is what the ARM processor is. Around 1980, the RISC
was born out of processor development programs at Stanford and Berkeley
universities. Between 1983 and 1985, Acorn Computers Limited in
Cambridge, England, developed the ARM processor. It was the first
commercially available RISC CPU, and it differs significantly from
subsequent RISC architectures.

ARM Limited was founded in 1990 as a distinct company with the sole
purpose of expanding the use of ARM technology. Since then, the ARM has
been licensed to a number of semiconductor manufacturers throughout the
world. It has established itself as an industry leader in low-power, low-cost
embedded applications. Without the support of hardware and software
development tools, no processor is very valuable. An instruction set
emulator for hardware modeling and software testing and benchmarking, an
assembler, C and C++ compilers, a linker, and a symbolic debugger are all
part of the ARM toolset.

The Acorn RISC Machine

Between October 1983 and April 1985, Acorn Computers Limited in
Cambridge, England, created the first ARM processor. ARM stood for
Acorn RISC Machine at the time and until the foundation of Advanced
RISC Machines Limited (later called simply ARM Limited) in 1990.
Because of the popularity of the BBC (British Broadcasting Corporation)
microcomputer, Acorn had established a strong position in the UK personal
computer market. The BBC micro was an 8-bit microprocessor-based
machine that quickly established itself as the dominant machine in UK
schools following its launch in January 1982 in support of a series of BBC
television programs. It also received enthusiastic support from the hobbyist
community and was adopted by a number of research labs and higher
education institutions.

Following the success of the BBC micro, Acorn's developers looked at
different microprocessors to use in a successor computer, but all of the
commercial options were missing. In 1983, 16-bit CISC microprocessors
were available, although they were slower than ordinary memory

SOC and Raspberry PI

25

Physical Computing and
IoT Programming

26

components. They also featured instructions that required many clock
cycles (in some cases hundreds of clock cycles) to complete, resulting in
extremely lengthy interrupt latency. The BBC micro profited immensely
from the 6502's fast interrupt response, thus Acorn's designers were
adamant that this feature of the processor's performance not be
compromised.

The design of a proprietary microprocessor was contemplated as a result of
these problems with commercial microprocessor products. The main
stumbling issue was the fact that the Acorn team was well aware that
commercial microprocessor programmes had consumed hundreds of man-
years of design time. Because Acorn was a small company with only about
400 people, it couldn't consider such a large investment. It had to come up
with a superior design in a fraction of the time, with no prior experience in
bespoke chip design other than a few modest gate arrays for the BBC micro.

The papers on the Berkeley RISC I sprang out of nowhere in this seemingly
improbable scenario. This was a processor that had been built in less than a
year by a few postgraduate students and was competitive with the leading
commercial products. There were no complex instructions to compromise
the interrupt latency because it was fundamentally simple. It also came with
supporting arguments that suggested it could be a harbinger of things to
come, yet technical merit, no matter how strongly backed by academic
reasoning, is no guarantee of commercial success.

The ARM was born as a result of a fortunate confluence of events, and it
went on to become the main component of Acorn's product line. It later
contributed its name to the firm founded to expand its market beyond
Acorn's product line following a careful revision of the acronym expansion
to Advanced RISC Machine. Despite the name change, the architecture is
still quite similar to the Acorn design.

1.4.2 ARM 8 Architecture Introduction
1.4.2.1 Architectural inheritance

The Berkeley RISC I and II and the Stanford MIPS (which stands for
Microprocessor without Interlocking Pipeline Stages) were the only
examples of RISC architectures at the time the first ARM chip was
designed, though some earlier machines, such as the Digital PDP-8, the
Cray-1, and the IBM 801, which predated the RISC concept, shared many
of the characteristics that later came to be associated with the RISC concept.

A number of Berkeley RISC design concepts were included into the ARM
architecture, although others were discarded. A load-store architecture,
fixed-length 32-bit instructions, and 3-address instruction formats were all
used.

The following features were used on Berkeley RISC concepts that were
rejected by ARM designers:

o Register windows

The Berkeley RISC processors' register banks contained a vast number of
registers, with 32 of them visible at any given moment. The visible 'window'
was shifted to provide each operation access to fresh registers, minimizing
the data traffic between the CPU and memory caused by register saving and
restoring.

The main issue with register windows is the high amount of chip space used
up by the large number of registers. Although the shadow registers used to
manage exceptions on the ARM are not too dissimilar in concept, this
functionality was rejected on cost concerns.

Because it was included in the Berkeley prototypes in the early days of
RISC, the register window technique was firmly connected with the RISC
concept, although only the Sun SPARC architecture has embraced it in its
original form since then.

o Delayed branches

Branches in pipelines obstruct the smooth flow of instructions, producing
problems. Most RISC processors address the issue by employing delayed
branches, which take effect after the next instruction has completed. Delay
branches have the drawback of removing the atomicity of individual
instructions. They function well on single-issue pipelined processors, but
they don't scale well to super-scalar implementations and can cause
problems when combined with branch prediction methods.

Delay branches were not utilized on the original ARM because they made
exception handling more complicated; however, this has proved out to be a
smart decision in the long run because it simplifies re-implementing the
architecture with a new pipeline.

o Single-cycle execution of all instructions

Although the ARM can process most data in a single clock cycle, many
other instructions require numerous clock cycles. The reasoning behind this
was based on the fact that even a basic load or store instruction requires at
least two memory accesses when using a single memory for both data and
instructions (one for the instruction and one for the data). As a result, single-
cycle operation of all instructions is only achievable with separate data and
instruction memory, which were deemed too costly for the ARM
application areas.

Instead of executing all instructions in a single cycle, the ARM was
designed to use the fewest amount of cycles possible for memory accesses.
Where this was more than one, the extra cycles were employed to do
something beneficial, such as enable auto-indexing addressing modes,
whenever possible. This minimizes the overall amount of ARM instructions
needed to complete any given series of operations, resulting in improved
performance and code density.

SOC and Raspberry PI

27

Physical Computing and
IoT Programming

28

The need to keep the design basic was a major priority for the original ARM
design team. Acorn designers had only worked with gate arrays with
complexities of up to 2,000 gates prior to the first ARM processors;
therefore the full-custom CMOS design medium was treated with caution.
When travelling into unfamiliar area, it's best to limit the hazards that you
can control, because there are still major risks from things that aren't well
understood or fundamentally uncontrollable.

The ARM's simplicity is more visible in the hardware structure and
implementation than in the instruction set architecture. From the perspective
of the programmer, it manifests itself as conservatism in the ARM
instruction set design, which, although adhering to the essential principles
of the RISC approach, is less radical than many subsequent RISC designs.

The ARM's power-efficiency and tiny core size are due to the combination
of basic hardware with an instruction set that is based on RISC ideas but
preserves a few essential CISC elements, resulting in a substantially higher
code density than a pure RISC.

1.4.2.2 About ARM Architecture

The ARM architecture, defines the behaviour of an abstract machine known
as a Processing Element, or PE for short. Implementations that follow the
ARM architecture must follow the Processing Element's defined behaviour.
It is not intended to specify how to construct a PE implementation or to limit
the scope of such implementations to the behaviours stated.

The programmer-visible behaviour of an implementation that is consistent
with the ARM architecture must be the same as a simple sequential
execution of the program on the processor element, unless the architecture
specifies otherwise. The execution time of the program is not included in
this programmer-visible behaviour.

. An associated debug architecture

o Corresponding trace architectures, which describe trace macrocells
that implementers can implement with the associated processor
hardware, are all defined in the ARM architecture.

The ARM architecture is RISC architecture with the following RISC
architecture characteristics:

o A big file of uniform registers.

. A load/store architecture, in which data-processing operations are
performed on register contents rather than memory contents directly.

J Modes with simple addressing, where all load/store addresses are
determined only by register contents and instruction fields

The architecture specifies how the Processing Element interacts with
memory, which includes caches, as well as a memory translation

mechanism. It also explains how several Processing Elements in a system
interact with one another and with other observers.

The ARM architecture allows for implementations at a variety of
performance levels. The ARM architecture is known for its small
implementation size, high performance, and low power consumption.

Backwards compatibility, paired with the freedom to implement in a wide
range of conventional and specific use cases, is a key characteristic of the
ARMVS architecture.

o AArch64, a 64-bit execution state compatible with prior versions of
the ARM architecture

o AArch32, a 32-bit execution state compatible with previous
generations of the ARM architecture

1.4.2.3 Architecture Profiles

Since its introduction, the ARM architecture has changed tremendously,
and ARM continues to improve it. To date, eight major versions of the
architecture have been defined, with version numbers ranging from 1 to 8.
The first three versions are no longer in use.

The 64-bit and 32-bit execution states are referred to as AArch64 and
AArch32, respectively.

° AArch64: This is the 64-bit execution state, which means that
addresses are stored in 64-bit registers and that instructions in the base
instruction set can operate 64-bit registers. The A64 instruction set is
supported by the AArch64 state.

° AArch32: This is the 32-bit execution state, which means that
addresses are stored in 32-bit registers and instructions in the base
instruction sets are processed using 32-bit registers. The T32 and A32
instruction sets are supported by the AArch32 state.

Three architecture profiles are defined by ARM:
A: Application profile

o Supports a Memory Management Unit-based Virtual Memory System
Architecture (VMSA) (MMU)

o AArchv8-A is the name given to an ARMvS8-A implementation.
o The A64, A32, and T32 instruction sets are supported.
R: Real time profile

o Based on a Memory Protection Unit in real-time (MPU) it provides
support for Protected Memory System Architecture (PMSA).

o Both A32 and T32 instruction sets are supported.

SOC and Raspberry PI

29

Physical Computing and
IoT Programming

30

M: Microcontroller profile

Provides a programmers' model for low-latency interrupt
processing, including hardware register stacking and support
for interrupt handlers written in high-level languages.

Implements an R-profile PMSA variation.

Supports a T32 instruction set variant.

1.4.2.4 ARMVvS architectural concepts

ARMvS8 makes significant improvements to the ARM architecture while
keeping a high level of compatibility with earlier versions.

The subsections that follow explain fundamental ARMvS architectural
concepts. Each section begins with an explanation of the concepts that are
used to describe the architecture:

i Execution state

The PE execution environment is defined by the Execution
state, which includes:

The supported register widths.

The instruction sets that are supported.
Important features of:

o The model of the outlier.

. The Architecture of the Virtual Memory System
(VMSA).

. The model of the programmers.

The following are the execution states:

° AArch64

The state of 64-bit execution

Provides a 64-bit program counter (PC), stack pointer (SPs),
and exception link registers

Provides 31 64-bit general-purpose registers, of which X30 is
utilized as the procedure link register (ELRs)

Supports SIMD vector and scalar floating-point calculations
with 32 128-bit registers

Has a single instruction set, A64
Support for 64-bit virtual addressing
Defines a number of PSTATE components that retain PE state

Defines the ARMvS8 Exception model, with up to four
Exception levels, ELO - EL3, that give an execution privilege
hierarchy Instructions that operate directly on certain PSTATE
elements are included in the A64 instruction set

Each system register is given a suffix that corresponds to the
lowest Exception level at which it can be accessed.

° AArch32

The execution state is 32 bits.

Provides 13 32-bit general-purpose registers, as well as a 32-bit
PC, SP, and link register in this execution state (LR). Both an
ELR and a procedure link register, the LR is utilized.

For use in different PE modes, some of these registers contain
numerous banked instances.

Provides a single ELR for Hyp mode exception returns.

Supports Advanced SIMD vector and scalar floating-point with
32 64-bit registers.

Both A32 and T32 instruction sets are included.

Supports the ARMv7-A exception model, which is based on PE
modes, and translates it to the ARMv8 Exception model, which
is based on Exception levels.

32-bit virtual addresses are used.

The PE state is stored in a single Current Program State Register
(CPSR).

Interprocessing is the process of switching between the
AArch64 and AArch32 execution states.

Only by changing the Exception level can the PE switch between execution
states. This means that software layers executing at distinct Exception
levels, such as an application, an operating system kernel, and a hypervisor,
might execute in separate execution states.

ii] ARM instruction sets

The potential instruction sets in ARMv8 are determined by the
execution state:

AArch64: Only one instruction set, A64, is supported by the
AArch64 state. This is a 32-bit instruction set with a fixed
length instruction set.

AArch32: The following instruction sets are supported by the
AArch32 state:

A32: This is a 32-bit instruction set with a fixed length
instruction set. It can be used with the ARMvV7 instruction set

T32: This is a variable-length instruction set with both 16-bit
and 32-bit encodings. The ARMv7 Thumb® instruction set is
supported

Each of these instruction sets is expanded by ARMVS.

SOC and Raspberry PI

31

Physical Computing and
IoT Programming

32

]

iv]

The instruction set that the PE executes is determined by the PE
Instruction set state. SIMD and scalar floating-point instructions are
supported by the ARMvS instruction sets.

System registers

Control and status information for architected features are provided
through system registers. The naming format for System registers is
<register name>.<bit field name> to identify specific registers, as
well as control and status bits within a register, use bit field name.

Bits can also be expressed numerically in the form <register
name>[x:y] or in the generic form bits[x:y].

In addition, most register names in the AArch64 state include the
lowest Exception level that can access the register as a suffix:
<register name> ELx, where xis 0, 1, 2, or 3

The System registers consists of:

. General system control registers

o Registers for debugging.

J Timer registers that are generic.

. Performance Monitor can optionally register.
. Trace registers are optional.

. Generic Interrupt Controller (GIC) CPU interface registers are
optional.

ARMYvVS8 Debug
The following are supported by ARMvVS:
. Debugging on your own server

The PE generates debug exceptions in this model. The ARMvS
Exception model includes debug exceptions.

J Debugging from the outside

Debug events cause the PE to enter the Debug state in this
model. The PE is managed by an external debugger in the
Debug stage.

Both models are supported by all ARMvS implementations. The
model chosen by a given user is determined by the debug
requirements at various phases of the product's design and
development life cycle. External debug, for example, may be
utilized during hardware implementation and OS bring-up,
while self-hosted debug could be used during program
development.

1.4.2.5 Supported data types SOC and Raspberry PI
The following integer data types are supported by the ARMvS architecture:

. Byte: 8 bits

o Halfword: 16 bits

o Word: 32 bits

o Doubleword: 64 bits

o Quadword: 128 bits

Floating-point data types such as half precision, single precision, double
precision, are also supported by the architecture.

It also supports:
. Fixed-point word and doubleword interpretation.

o Vectors, which consist of numerous elements of the same data type
held in a single register.

There are two register files in the ARMv8 architecture:
o A registration file that can be used for general purpose.
o A file with SIMD and floating-point registers.

The available register sizes in each of them are determined by the Execution
state.

In AArch64 state:

. A general-purpose register file comprises 64-bit registers in the
AArch64 state

. These registers can be accessed as 64-bit registers or as 32-bit
registers by using only the bottom 32 bits in many operations.

o There are 128-bit registers in a SIMD and floating-point register file

. The quadword integer data types are applicable only to the
SIMD and floating-point register files.

o The floating-point data types are applicable only to the SIMD
and floating-point register files. Despite the fact that the
AArch64 vector registers provide 128-bit vectors, the effective
vector length depends on the A64 instruction encoding utilized.

In AArch32 state:

. A general-purpose register file comprises 32-bit registers in the
AArch32 state:

o A doubleword can be supported by two 32-bit registers.
o The use of vector formatting is possible.

. 64-bit registers are contained in a SIMD and floating-point register
file:

o The quadword integer and floating-point data types are not
supported in the AArch32 state.

o A 128-bit register is made up of two successive 64-bit registers. 13

Physical Computing and
IoT Programming

34

1.4.2.6 ARM memory model
The ARM memory model supports the following:

o Exception generation on an unaligned memory access is supported by

the ARM memory model.

o Restricting application access to specific memory locations.

. Converting virtual addresses from executable instructions to physical
addresses.

. Switching between big-endian and little-endian interpretation of
multi-byte data.

J Managing the order in which memory accesses are made.
J Caches and address translation structures are under control.
J Multiple PEs accessing shared memory at the same time.

Support for virtual addresses (VA) is conditional on the Execution state, as
follows:

AArch64 state

The Translation Control Register determines the VA range supported by the
AArch64 state, which supports 64-bit virtual addressing. Two distinct VA
ranges with their own translation controls are supported by execution at EL1
and ELO.

AArch32 state

The Translation Control Register determines the VA range supported by the
AArch32 state, which supports 32-bit virtual addressing. The VA range can
be split into two subranges, each with its own translation controls, for
execution at EL.1 and ELO.

System software can discover the supported physical address space, which
is IMPLEMENTATION DEFINED. The Virtual Memory System
Architecture (VMSA) can translate VAs to blocks or pages of memory
anywhere within the supporting physical address space, regardless of the
Execution state.

1.5 INTRODUCTION TO RASPBERRY PI

Raspberry Pi is a series of compact single-board computers developed by
the Raspberry Pi Foundation in collaboration with Broadcom in the United
Kingdom. These projects are generally inclined towards teaching and
promoting basic computer science in schools and in developing countries.
Due to its low cost, modularity and open design it finds wide application
ranging from weather monitoring, robotics and many more.

Several generations have been released of Raspberry Pi’s such as Raspberry
Pi Model B (February 2012), followed by Model A, Model B+ (in 2014),
Raspberry Pi2(February 2015), Raspberry PiZero (November 2015),
Raspberry Pi Zero W (On 28 February 2017), Raspberry Pi Zero WH (On
12 January 2018), Raspberry Pi 3 Model B (February 2016), Raspberry Pi 3
Model B+ (2018), Raspberry Pi4 Model B (released in June 2019),
Raspberry Pi 400 (November 2020) and Raspberry Pi Pico (in January
2021).

1.5.1 Introduction to Raspberry Pi

The Raspberry Pi is a fascinating device: it's a fully functional computer
packed into a small and inexpensive compact. Whether you want to use the
Raspberry Pi to surf the web or play games, learn how to write your own
programs, or build your own circuits and physical devices, the Raspberry Pi
— and its incredible community — will be there to help you every step of the
way.

The Raspberry Pi is a single-board computer, which means it's a computer
that's similar to a desktop, laptop, or smartphone but is built on a single
printed circuit board. The Raspberry Pi, like most single-board computers,
is little — it has about the same footprint as a credit card — but that doesn't
mean it's not powerful: it can accomplish everything a larger, more power-
hungry computer can do, just not as rapidly.

The Raspberry Pi family was created out of a desire to promote more hands-
on computer education throughout the world. The Raspberry Pi Foundation,
which was founded by its designers, had no clue it would become so
popular: the first few thousand units manufactured in 2012 to test the waters
were quickly sold out, and millions have been distributed all over the world
in the years afterwards. These circuit boards have been found in homes,
classrooms, businesses, data centers, factories, and even self-driving boats
and space balloons.

Since the initial Model B, other Raspberry Pi variants have been released,
each with enhanced specifications or functionality tailored to a certain use-
case. The Raspberry Pi Zero line, for example, is a miniature version of the
full-size Raspberry Pi that foregoes a few capabilities — notably multiple
USB ports and a wired network interface — in favor of a much smaller
footprint and lower power consumption.

Raspberry Pi is a single-board computer with a compact footprint. The
Raspberry Pi may be used as a little computer by adding peripherals such
as a keyboard, mouse, and display. Raspberry Pi is a popular platform for
real-time image/video processing, l1oT applications, and robotics. The
Raspberry Pi is slower than a laptop or desktop computer, but it is still a
computer that can give all of the expected features and abilities while using
very little power.

Raspbian OS is based on Debian and is officially provided by the Raspberry
Pi Foundation. They also offer NOOBS OS for Raspberry Pi. Several Third-
Party OS versions, such as Ubuntu, Archlinux, RISC OS, Windows 10 IOT
Core, and others, can be installed.

Raspbian OS is an approved operating system that may be used for free.
This operating system is well-suited to the Raspberry Pi. Raspbian has a
graphical user interface (GUI) that provides tools for browsing, Python
programming, office, gaming, and more. To save the OS, we should use an
SD card (minimum 8 GB is advised) (operating System).

SOC and Raspberry PI

35

Physical Computing and
IoT Programming

36

Raspberry Pi is more than a computer because it allows developers to access
on-chip hardware, such as GPIOs, to create applications. By using GPIO,
we may connect and control devices such as LEDs, motors, and sensors. It
includes an ARM-based Broadcom Processor SoC as well as an on-chip

GPU (Graphics Processing Unit).

Raspberry Pi's CPU speed ranges from 700 MHz to 1.2 GHz. It also
includes SDRAM on board, which varies from 256 MB to 1 GB. On-chip
SPI, 12C, 12S, and UART modules are also available for the Raspberry Pi.

The Raspberry Pi is available in a variety of versions, which are listed

below:

1. Raspberry Pi 1 Model A
2. Raspberry Pi 1 Model A+
3. Raspberry Pi 1 Model B
4. Raspberry Pi 1 Model B+
5. Raspberry Pi 2 Model B
6. Raspberry Pi 3 Model B
7. Raspberry Pi Zero

The following are the features of the aforementioned versions of Raspberry

Pi that are most commonly used as described in the Table II:

Table II: Features of various versions of Raspberry Pi

Raspberry Rasp b orry Rasp.b orry Raspberry
Features | oo nfodel B+| F12 Pi 3 Pi zero
Model B Model B
SoC BCM2835 | BCM2836 | BCM2837 | BCM2835
Quad Cortex | Quad Cortex
CPU ARMI11 A7 AS3 ARMI11
Operating | 66 i, | 900 MHz | 1.2 GHz 1 GHz
Freq.
RAM 512 MB 1 GB 1 GB 512 MB
SDRAM SDRAM SDRAM SDRAM
GPU 250 MHz 250MHz 400 MHz 250MHz
Videocore IV|Videocore IV|Videocore IV|Videocore IV
Storage micro-SD | Micro-SD | micro-SD | micro-SD
Ethernet Yes Yes Yes No
. WiFi and
Wireless Bluctooth No No No

1.5.1.1 What’s the Raspberry Pi foundation?

The Raspberry Pi Foundation is dedicated to putting the power of computers
and digital fabrication into the hands of people all over the world. It
accomplishes this by making low-cost, high-performance computers
available for people to learn, solve issues, and have fun with. It conducts
outreach and education to assist more people gain access to computing and
digital making—it creates free materials to help people learn about
computers and how to make things with them, and it also trains educators
to help others learn.

The Raspberry Pi Foundation sponsors Code Club and CoderDojo, however
both programs are platform-agnostic (they aren't bound to Raspberry Pi
hardware). The Raspberry Pi Foundation promotes these clubs and assists
in the expansion of the network around the world, ensuring that every child
has the opportunity to learn about computers. Raspberry Jams, on the other
hand, are Raspberry Pi-focused gatherings where people of all ages can
learn about the Raspberry Pi and exchange ideas and projects.

1.5.1.2 Is Raspberry Pi open source?

The Raspberry Piruns Linux (a number of versions), and its main supported
operating system, Pi OS, is open source and runs a suite of open source
software. The Raspberry Pi Foundation contributes to the Linux kernel and
other open source projects, as well as publishing open source versions of
many of its own software.

The schematics for the Raspberry Pi are frequently given as documentation,
but the board is not open hardware.

5
:]

ir

SOC and Raspberry PI

37

Physical Computing and
IoT Programming

38

1.5.1.3 Uses of Raspberry Pi

Community

One of the most intriguing aspects of the project, according to Jamie
Ayre of FLOSS software business AdaCore, is the Raspberry Pi
community. According to community blogger Russell Davis, the
Foundation's strength allows it to focus on documentation and
education. The community created The MagPi, a fanzine based on the
platform that was handed over to the Raspberry Pi Foundation by its
volunteers in 2015 to be maintained in-house. Across the UK and
around the world, a series of community Raspberry Jam events have
taken place.

Education

As of January 2012, inquiries about the board had been received from
schools in both the public and private sectors in the United Kingdom,
with the latter receiving around five times as much interest.
Businesses are hoped to finance purchases for less fortunate schools.
Premier Farnell's CEO stated that the government of a Middle Eastern
country has expressed interest in distributing a board to every
schoolgirl in order to improve her employment possibilities.

The Raspberry Pi Foundation engaged a number of members of its
community, including former teachers and software developers, in
2014 to create a set of free instructional tools on its website. The
Foundation also launched Picademy, a teacher training program
aimed at assisting teachers in preparing to teach the new computing
curriculum using the Raspberry Pi in the classroom.

NASA launched the JPL Open Source Rover Project in 2018 to
encourage students and hobbyists to get involved in mechanical,
software, electronics, and robotics engineering. The JPL Open Source
Rover Project is a scaled-down version of the Curiosity rover that uses
a Raspberry Pi as the control module.

Home automation

The Raspberry Pi is being used by a variety of developers and
applications for home automation. These programmers are working
to turn the Raspberry Pi into a low-cost energy monitoring and power
usage solution. Because of the Raspberry Pi's low price, it has become
a popular and cost-effective alternative to more expensive
commercial solutions.

Industrial automation

TECHBASE, a Polish industrial automation company, released
ModBerry, an industrial computer based on the Raspberry Pi
Compute Module, in June 2014. The device includes a variety of
interfaces, including RS-485/232 serial ports, digital and analogue
inputs/outputs, CAN, and low-cost 1-Wire buses, all of which are

common in the automation sector. Because of the design, the
Compute Module can be utilized in tough industrial conditions,
implying that the Raspberry Pi is no longer confined to home and
science projects, but can be extensively used as an Industrial IoT
solution to fulfill Industry 4.0 goals.

SUSE announced commercial support for SUSE Linux Enterprise on
the Raspberry Pi 3 Model B in March 2018, with a handful of
unknown customers using the Raspberry Pi to provide industrial
monitoring. TECHBASE introduced a Raspberry Pi Compute Module
4 cluster in January 2021 for usage as an Al accelerator, routing, and
file server. One or more regular Raspberry Pi Compute Module 4s are
housed in an industrial DIN rail enclosure, with some variants
including one or more Coral Edge tensor processing units.

Commercial products

Critter & Guitari designed and manufactured the Organelle, a portable
synthesiser, sampler, sequencer, and effects processor. It has a
Raspberry Pi computer module that runs Linux on it. Next Thing Co.
invented the OTTO digital camera. It has a Raspberry Pi Compute
Module built in. It was successfully crowdfunded through a
Kickstarter effort in May 2014. Slice is a digital media player that is
powered by a Compute Module. It was funded through a Kickstarter
effort in August of 2014. Slice's operating system is based on Kodi.
The Raspberry Pi is used in a number of commercial thin client
computer terminals.

Covid-19 pandemic

During the coronavirus pandemic in Q1 2020, Raspberry Pi
computers saw a significant increase in demand, owing to an increase
in working from home, as well as the use of many Raspberry Pi Zeros
in ventilators for COVID-19 patients in countries like Colombia,
which helped to relieve strain on the healthcare system. Raspberry Pi
sales surpassed 640,000 units in March 2020, the second highest
month in the company's history.

1.5.1.4 Raspberry Pi foundation hall of fame

Members of the Raspberry Pi Hall of Fame include:

Al

Eben Upton

Eben Christopher Upton is presently employed by Broadcom as a
Technical Director and ASIC Architect. He is the man who is known
for being the founder and former trustee of the Raspberry Pi
Foundation, as well as the current CEO of the Raspberry Pi trading
firm. Eben Upton's primary responsibility is the creation of the
Raspberry Pi device's general software and hardware architecture.

SOC and Raspberry PI

39

Physical Computing and
IoT Programming

40

BJ

Cl

D]

E]

F]

Gl

H]

Paul Beech

Paul Beech designed the current Raspberry Pi Foundation logo and is
now working on producing diagrams, posters, and developing the
Official Raspberry Pi website. Pimoroni, which makes Pibow, PiHub,
Pibrella, and other useful doo-hickeys to make raspberry pi more fun
to study and engage with, counts him as a founding member.

Alex Bradbury

Alex Bradbury, a Ph.D. student at the University of Cambridge, has
been a volunteer for the Raspberry Pi Foundation since its inception.
Alex is in charge of maintaining repositories that contain custom
versions of the Raspbian operating system, and he has even co-
authored a popular book titled "Learning Python with Raspberry Pi."

Dom Cobley

Dom Cobley (Engineer at Broadcom) has made a number of
successful contributions to turning the Raspberry Pi into a Media
Streaming device. Dom Cobley has provided VideoCore firmware for
the Raspberry Pi, Kernel maintenance, and even developed XBMC
(Xtreme Box Media Center) as a developer to enable media streaming
(Video and Audio) over the Raspberry Pi.

Peter Green

Peter Green created the Raspbian Debian derivative and manages the
Raspbian repository. Peter is now working on making a stable
Raspbian version based on Debian Jessie (Debian 8) available.

James Hughes

Since 2011, James Hughes has been one of the original volunteers for
the Raspberry Pi Foundation. He is now the chief developer of
Camera Board Software, the Moderator of the Pi Forum, and the
diligent maintainer of the Raspberry Pi website and Twitter page.

Mike Thompson

Mike Thompson collaborated on the Raspbian operating system for
the Raspberry Pi alongside Peter Green.

Gert Van Loo

Gert Van Loo is a Broadcom engineer who was responsible for the
development of the first hardware design of Alpha boards in 2011,
which later became known as the "Raspberry Pi." In addition, he
created the Gertboard and Gertduino expansion boards for the
Raspberry Pi.

I] Rob Mullins SOC and Raspberry PI

Along with Eben Upton, Rob Mullins was a co-founder of the
Raspberry Pi Foundation and served as a trustee until 2014. He is
currently employed as a Senior Lecturer in the University of
Cambridge's Computer Laboratory. Computer Architecture and
VLSI- On-chip Interconnection networks, chip-multi-processors, and
innovative parallel processing fabrics are among his areas of
specialization.

1.5.1.5 Advantages of Raspberry Pi

The following are the benefits of using a Raspberry Pi:

1. The Raspberry Pi is a small, powerful, and efficient cum compact
form factor computer that is also quite inexpensive to purchase.
Raspberry Pi can be used by a variety of small and medium-sized
businesses to perform functions such as web server, database server,
and media server. As a result, a significant amount of money can be
saved on the purchase of numerous servers.

2. Raspberry Pi can be used as a single platform for a wide range of
programming tasks. Pi supports a variety of programming languages,
and users can install the appropriate compiler to ensure proper code
execution. Python, the main programming language used by Pi, is a
simple and easy-to-learn language. It allows for more efficient code
creation, fewer lines of code, and automatic memory management.

3. The product is open source and supports open source operating
systems and apps. As a result, Raspberry Pi has access to a large
number of operating systems in various variants of Linux, as well as
millions of apps for that operating system.

4. The Raspberry Pi includes add-on hardware such as the Camera,
Component Moduler Kit, Gertboard, and HAT board, allowing users
to connect thousands of third-party devices like as buttons and LEDs
to perform various tasks on the Pi.

5. The product is energy efficient and offers small businesses a greener,
more ethical option. This credit card-sized product is simple to recycle
and saves money on cooling solutions.

1.5.1.6 Disadvantages/Limitations of Raspberry Pi
The following are the Raspberry Pi's limitations/drawbacks:

1. Because the Ethernet Port and Processing CPU are not fast enough to
process multitasking computing cycles, it cannot function as a full-
fledged computer.

2. Does not work with a fully functional Windows operating system.

3. The product is limited to SMEs and is not particularly beneficial,
whereas larger organizations/enterprises have access to a wide range
of facilities.
41

Physical Computing and
IoT Programming

42

Doesn't have a battery-backed Real Time Clock (RTC). NTP Server
is the sole way to work with time, and most operating systems do this
automatically.

There is no built-in ADC converter. For ADC, an external charger is
used.

Bluetooth and Wi-Fi are not supported out of the box, and numerous
USB-based dongles are likewise not supported for wireless
connectivity.

1.5.1.7 Generations of Raspberry Pi

Various generations of Raspberry Pi, ranging from the Raspberry Pi Model
A through the Raspberry Pi Model B+, as well as the recently introduced
Raspberry Pi Zero, will be addressed in this part, along with their extensive
technical specifications.

Raspberry Pi Model A

The Raspberry Pi Model A is the first generation of Raspberry Pi models to
be launched. Two models of the Raspberry Pi Model A were released: the
Raspberry Pi 1 Model A and the Raspberry Pi 1 Model A+.

Al

Raspberry Pi: Model A

The Raspberry Pi Model A as shown in the figure 1.10 is a lower-spec
version of the Raspberry Pi. Because this model of Pi lacks crucial
hardware interfaces, it was designed specifically for embedded
projects. In comparison to Model B, Model A is lighter and uses less
energy. Model A has become obsolete and is no longer easily
accessible on the market.

-
-
—
=
—
-
=
—
—
—=
—
=
=

Figure 1.10 Raspberry Pi: Model A

The Technical Specification of the Raspberry Pi 1 Model A is listed
in the Table III below:

BJ

Table III: Specifications of Raspberry Pi: Model A

Hardware Description
parameters
SoC Broadcom BCM2835
CPU 700 MHz Single Core ARM 1176JZF-S
GPU Broadcom VideoCore IV @ 250 MHz
RAM 256 MB
Onboard Ports 1 USB; 1 HDMI (Ver 1.4); 3.5mm
Sound Jack
Video Input 15-pin MIPI camera interface (CSI)
Connector
Audio Input 2 Boards via I2S
Onboard Storage SD/MMC/SDIO Card slot
Ethernet No
GPIO 8 GPIO including UART, 12C, SPI Bus
with two chip selects, 12S audio, +3.3 V,
+5V, GND
Adapter Rating 5V; 300 mA
Launch Date February 2013
Price $25

Raspberry Pi: Model A+

In terms of size and power consumption, the Raspberry Pi 1 Model
A+ as illustrated in the figure 1.11 was the successor and well-updated
model of the Raspberry Pi 1 Model A. Additional GPIO pins,
MicroSD card capability, and better audio reproduction are among the
enhancements made with the Model A+. The Raspberry Pi Model A+
could also run a variety of operating systems and serve as a solid
backbone for a variety of space-related applications and media center
operations. Because more advanced variants are now available, the
Model A+ is likewise being phased out of the market.

Figure 1.11 Raspberry Pi: Model A+

SOC and Raspberry PI

43

Physical Computing and
IoT Programming

44

Cl

The Technical Specification of the Raspberry Pi 1 Model A+ is
listed in the table IV below:

Table IV: Specifications of Raspberry Pi: Model A+

Hardware Description
parameters
SoC Broadcom BCM2835
CPU 700 MHz Single Core ARM 1176JZF-S
GPU Broadcom VideoCore IV @ 250 MHz
RAM 256 MB
Onboard Ports 1 USB; 1 HDMI (Ver 1.4); 3.5mm
Sound Jack
Video Input 15-pin MIPI camera interface (CSI)
Connector
Audio Input 2 Boards via I2S
Onboard Storage MicroSD Card slot
Ethernet No
GPIO 17 GPIO including UART, I2C, SPI
Bus with two chip selects, 12S audio,
+3.3 V, +5V, GND, HAT ID Bus
Adapter Rating 5V; 200 mA
Launch Date February 2014
Price $20

Raspberry Pi: Model B

Because of the large RAM, additional USB port slots, and Ethernet
port, the Raspberry Pi 1 Model B (Figure 1.12) was viewed as a higher
specification model of the Pi 1 Model A with good working
performance. Raspberry Pi 1 Model B paved the way for children to
pursue computing as a hobby, leading to education, programming,
and home projects.

Figure 1.12 Raspberry Pi: Model B

Cl

The Technical Specification of the Raspberry Pi 1 Model B is listed
in the table V below:

Table V: Specifications of Raspberry Pi: Model B

Hardware Description
parameters

SoC Broadcom BCM2835

CPU 700 MHz Single Core ARM 1176JZF-S

GPU Broadcom VideoCore IV @ 250 MHz

RAM 512 MB

Onboard Ports 2 USB; 1 HDMI (Ver 1.4); 3.5mm
Sound Jack

Video Input 15-pin MIPI camera interface (CSI)
Connector

Audio Input 2 Boards via I2S

Onboard Storage SD/MMC/SDIO Card

Ethernet 10/100 Mbps

GPIO 8 GPIO including UART, I2C, SPI Bus
with two chip selects, 12S audio, +3.3 V,
+5V, GND, Additional 4 GPIO on P5
pad

Adapter Rating 5V; 700 mA

Launch Date February 2012

Price $35

Raspberry Pi: Model B+

Under the Raspberry Pi 1 models category, Model B+ (Figure 1.13)
was considered the last cum final version. Model B+ superseded
Model B and had more enhanced hardware features like as more
GPIO, more USB ports, a better MicroSD card, lower power
consumption, and better audio output when compared to all Raspberry
1 generations products.

Figure 1.13 Raspberry Pi: Model B+

SOC and Raspberry PI

45

Physical Computing and
IoT Programming

46

Al

The Technical Specification of the Raspberry Pi 1 Model B+ is
listed in the table VI below:

Table VI: Specifications of Raspberry Pi: Model B+

Hardware Description
parameters

SoC Broadcom BCM2835

CPU 700 MHz Single Core ARM 1176JZF-S

GPU Broadcom VideoCore IV @ 250 MHz

RAM 512 MB

Onboard Ports 4 USB; 1 HDMI (Ver 1.4); 3.5mm
Sound Jack

Video Input 15-pin MIPI camera interface (CSI)
Connector

Audio Input 2 Boards via I2S

Onboard Storage MicroSD Card

Ethernet 10/100 Mbps

GPIO 17 GPIO including UART, I2C, SPI
Bus with two chip selects, 12S audio,
+3.3 V, +5V, GND, HAT ID bus

Adapter Rating 5V; 600 mA

Launch Date July 2014

Price $25

Raspberry Pi 2 Model B

After the Model A generations, the Raspberry Pi Model B generations
were released, with improved functionality, more powerful hardware,
and better operating system support.

Raspberry Pi 2: Model B

The Raspberry Pi 2 Model B (Figure 1.14) is the Raspberry Pi's
second iteration. In terms of a powerful CPU, RAM, GPIO, and other
hardware connector features, it superseded the Raspberry Pi 1 Model
B+ variants.

Figure 1.14 Raspberry Pi2: Model B

The Technical Specification of the Raspberry Pi 2 Model B is listed in the
table VII below:

Table VII: Specifications of Raspberry Pi2: Model B

Hardware Description
parameters
SoC Broadcom BCM2836
CPU 900 MHz Quad-Core ARM Cortex-A7
GPU Broadcom VideoCore IV @ 250 MHz
RAM 1 GB
Onboard Ports 4 USB; 1 HDMI (Ver 1.4); 3.5mm
Sound Jack
Video Input 15-pin MIPI camera interface (CSI)
Connector
Audio Input 2 Boards via I2S
Onboard Storage MicroSD Card
Ethernet 10/100 Mbps
GPIO 17 GPIO including UART, I2C, SPI
Bus with two chip selects, 12S audio,
+3.3 V, +5V, GND, HAT ID bus
Adapter Rating 5V; 800 mA
Launch Date February 2015
Price $35

SOC and Raspberry PI

Raspberry Pi - Zero

The Raspberry Pi ZERO (Figure 1.15) is a new member of the
Raspberry Pi family. It is the cheapest and most affordable board,
costing around $5. Raspberry Pi Zero is capable of running Raspbian
and all other programs that other Pi’s can. The size is approximately
half that of the A+ model, and the quantity of utilities is doubled.

Figure 1.15 Raspberry Pi - Zero

47

Physical Computing and
IoT Programming

48

The Technical Specification of the Raspberry Pi Zero is listed in the table
VIII below:

Table VIII: Specifications of Raspberry Pi Zero

Hardware Description
parameters

SoC Broadcom BCM2835

CPU 1GHz ARM 1176JZF-S Single Core

GPU Broadcom VideoCore IV @ 250 MHz

RAM 512 MB

Onboard Ports Micro-USB; Mini-HDMI (Ver 1.4);

Audio via PWN on GPIO

Video Input N/A

Audio Input 2 Boards via I2S

Onboard Storage MicroSD Card

Ethernet N/A

GPIO 40 GPIO Pins

Adapter Rating 5V; 160 mA

Launch Date November 2015

Price $5

1.5.1.8 Raspberry Pi operating systems

The operating system is considered to be the most important software for
computer hardware to function and to provide an interface between the
computer hardware and the programs that are running. There are numerous
operating systems for the Raspberry Pi that are based on Linux and are free
and open source.

Raspberry Pi and Linux

Linus Torvalds, the creator of the Linux operating system, made Linux
available as a platform for community development. The Raspberry Pi
Foundation opted to include Raspbian Pi, an official Linux distribution that
is tailored for Raspberry Pi.

Firmware and Kernel

Kernel is regarded as the "Brain" of the whole system, with the operating
system serving as the "Outer Body." Kernel is an operating system

component that interacts with installed hardware devices. Because it is
software that is semi-permanently written on Partition 1 of the SD card,
kernel is also known as "Firmware." This section will provide an overview
of the numerous operating systems that can be installed and supported by
the Raspberry Pi.

There are two types of operating systems available for the Raspberry Pi:

A] Officially available operating systems:

1]

2]

Raspbian Operating System

Based on Debian, the Raspbian operating system is tailored for
Raspberry Pi devices. Raspbian is a collection of programmes
and utilities that run on the Raspberry Pi. It comes with over
35000 packages and is straightforward to install on the
Raspberry Pi.

Raspbian Pi, as the Pi's primary operating system, has been
designed for speed and stability, and is also being actively
developed by the open source community.

Download: https://www.raspbian.org/Raspbianlmages

Latest Version: Raspbian Jessie; Kernel Version: 4.1

Figure 1.16 GUI interface of Raspbian operating system

Arch Linux ARM

Arch Linux ARM is a Linux distribution that is specifically
designed for ARM processors. Arch Linux ARM is known for
being easy to use and giving end users complete control. It
provides a lightweight foundation framework that allows users
to configure the system according to their needs, and it is only
because of this that Arch Linux ARM lacks a GUI interface.

Arch, like Raspbian, is under constant development and is
updated on a regular basis.

SOC and Raspberry PI

49

https://www.raspbian.org/RaspbianImages

Physical Computing and Download: https://www.archlinux.org/download/
IoT Programming

Latest Version: 2015.12.1

FiLe Edit View arch Terminal Tabs Help

Terminal > root@himbeerchen:~

[root@himbeerchen ~]# archey

ot

: himbeerchen

Arch Linux
11-12-ARCH+

architecture: 7
/ 461 MB
/S 386

[root@himbeerchen ~]#

Figure 1.17 CUI Interface of ARCH Linux for Raspberry Pi
3] OpenELEC (Open Embedded Linux Entertainment Center)

OpenELEC is a Linux-based distribution that is specifically
built for managing HTPCs and is based on KODI (XBMC-
Media Player).

XBMC Frodo 12.1 is supported by OpenELEC. OpenELEC is
primarily intended for speedier system booting, and it can
transform any blank PC into a full-fledged media streaming
computer in about 15 minutes. The OpenELEC operating
system is optimised for a variety of architectures, including
Atom, ION, Intel, Fusion, Raspberry Pi, and others.

Download: http://openelec.tv/

Latest Version: 3.0.0

B9 Videos IMAX Collection

— Movie Details Director
- David Lickley

entary

Writer

720 H.EB64

Figure 1.18 GUI Interface of OpenELEC Raspberry Pi
50

https://www.archlinux.org/download/
http://openelec.tv/

4]

3]

Pidora

The “Raspberry Pi Fedora Remix” operating system is also
known as Pidora. Pidora is a Linux distro created specifically
for the Raspberry Pi. It consists of Fedora Project software
packages that have been specifically tailored/modified to work
on the Raspberry Pi. Pidora, like a Fedora-based operating
system, also provides a platform for the open source community
to submit apps to the operating system.

Download: http://pidora.ca/
Latest Version: Pidora 2014

- Apphcations Menu [Fedora Project - sta Pa... B jake - Fils Manager

NNNNN

pppppppppppppppp

Tmplatas

51 Frow saece 13565
— —
BE e @Q

Figure 1.19 GUI Interface of Pidora Operating System

Puppy Linux

Puppy Linux is a lightweight distribution that focuses on ease
of use and minimal memory use. Puppy Linux has been
modified for the Raspberry Pi and includes a large number of
application suites. Like other distributions, open source
community developers and even penetration testers are working
throughout the world to improve the system's reliability,
performance, and efficiency, and the community provides
regular software and updates for the operating system, as well
as bug fixes.

Download:
http://puppyvlinux.org/main/Download%20Latest%20Release.h
tm

Latest Version: Slacko Puppy 6.3
rOcBX /@
A
0@
T
]

a @ B

B T Te— «oscom-

SOC and Raspberry PI

51

http://puppylinux.org/main/Download%20Latest%20Release.htm
http://puppylinux.org/main/Download%20Latest%20Release.htm

Physical Computing and Figure 1.20 GUI Interface for Puppy Linux for Raspberry Pi

IoT Programming

6] RISC OS

The ARM Team created RISC OS specifically for ARM
processors. Because it is not tied to Windows or Linux, RISC
OS is an extremely fast, compact, and efficient operating
system. It includes a full desktop environment as well as a
library of applications for Raspberry Pi.

Download:
https://www.riscosopen.org/content/downloads/raspberry-pi

Latest Version: RISC OS 14

Figure 1.21 GUI Interface of RISC OS for Raspberry Pi
71 OSMC (Open Source Media Center)

Open Source Media Center is a Linux distribution centred on a
free and open source media player with over 30000 packages.
OSMC is a free and open source operating system that just takes
a few minutes to set up. OSMC has a thriving community that
releases updates and new packages on a monthly basis. “As
OSMC says, ‘Play Anything from Anywhere.”

Download: https://osmc.tv/download/

Version: 2015.11.1

59 Figure 1.22 GUI Interface of OSMC for Raspberry Pi

https://www.riscosopen.org/content/downloads/raspberry-pi
https://osmc.tv/download/

8]

9]

Ubuntu Mate

Ubuntu Mate is a Raspberry Pi-specific version of Ubuntu 15.10
that was launched on October 22, 2015. With Ubuntu Mate, the
Pi now has access to the same huge software repository as
Ubuntu. Ubuntu Mate is a full-featured desktop environment
that can run a variety of graphical applications as well as other
standard Ubuntu tasks. Ubuntu Mate is the result of Raspberry
Jams' efforts to improve “out of the box” GPIO functionality.

Download: https://ubuntu-mate.org/wily/

Latest Version: Ubuntu Mate 15.10

Figure 1.23 GUI Interface for Ubuntu Mate 15.10
Window 10 IoT core

Microsoft's Windows 10 IoT Core is a platform for creating
IoT-based applications for the Raspberry Pi. The Windows 10
[oT core delivers the power of Windows to Raspberry Pi,
making it simple to integrate rich experiences such as natural
user interfaces, searching, online storage, and even cloud
computing with gadgets.

Download: http://ms-iot.github.io/content/en-US/Downloads.
htm

Latest Version: Windows 10

Figure 1.24 Windows 10 [oT Core

SOC and Raspberry PI

53

https://ubuntu-mate.org/wily/
http://ms-iot.github.io/content/en-US/Downloads.%20htm
http://ms-iot.github.io/content/en-US/Downloads.%20htm

Physical Computing and
IoT Programming

54

B] Miscellaneous Operating system

Other operating systems that can be downloaded and installed on the
Raspberry Pi include as follows:

1]

2]

3]

4]

5]

6]

Q40S: Raspberry Pi operating systems that are fast and
powerful, with a focus on security, dependability, long-term
stability, and cautious incorporation of validated new features.

Xbian: Xbian is a media centre distribution for the Raspberry Pi
that is tiny, fast, and lightweight. Based on Debian minor, this
is the fastest Kodi solution for a variety of small form factor
computers.

openSUSE: SuSE Linux Professional, previously known as
SUSE Linux, is a good platform for open source tools for
software developers and administrators, as well as a user-
friendly desktop and feature-rich server GUI interface.

FressBSD: Since November 2012, FreeBSD has supported the
Raspberry Pi and is identical to Linux. FreeBSD is a full-
featured operating system that includes kernel, device drivers,
userland utilities, and documentation.

Kali Linux: Kali Linux, a Debian-based forensics and
penetration testing operating system, now includes support for
the Raspberry Pi. It comes with over 600 testing programs, a
graphical user interface, and other ethical hacking tools.

SailPi: The SailPi operating system is based on the Sailfish OS
2.0.0.10 version. This operating system has a more powerful OS
core, supports a variety of architectures, including Intel Atom
and the Raspberry Pi, and offers good security, multitasking,
and a better user interface.

1.5.2 Raspberry Pi Hardware

Unlike a standard computer, which has all of its components, ports, and
features hidden behind a cover, a Raspberry Pi has all of its components,
ports, and functions on show — though you may purchase a case for added
protection if you like. This makes it an excellent tool for learning about the
functions of various computer components, as well as for figuring out where
to plug in the numerous extras (known as peripherals) you'll need to get
started. Figure 1.25 (below) depicts the Raspberry Pi from above.

Figure 1.25 Raspberry Pi Model B+

While the Raspberry Pi appears to have a lot crammed (crowd) into its little
board, it's actually quite simple to understand, starting with its components
and the inner workings that keep the gadget running.

The Pi, like any computer, is made up of a variety of components, each of
which plays an important function in its operation. The first, and possibly
most essential, of these is the system-on-chip, which can be found right
above the center point on the top side of the board (Figure 1.26), covered in
a metal cap (SoC).

Figure 1.26 The Raspberry Pi’s system-on-chip

The name system-on-chip gives you a good idea of what you'll find if you
pry the metal cover off the Raspberry Pi: a silicon chip, also known as an
integrated circuit that houses the majority of the Raspberry Pi's system. This
includes the central processing unit (CPU), which is known as a computer's
"brain," and the graphics processing unit (GPU), which is in charge of the
visual side of things.

However, a brain is useless without memory, and on the Raspberry Pi's
underbelly, you'll find just that: another chip, which looks like a small black

SOC and Raspberry PI

55

Physical Computing and
IoT Programming

56

plastic square (Figure 1.27). These components work together to create the
Pi's volatile and non-volatile memories: the volatile RAM loses its contents
when the Pi is turned off, whilst the non-volatile microSD card preserves its
contents.

Figure 1.27 Raspberry Pi’s random access memory (RAM)

When you flip the board over, you'll notice another metal lid in the upper-
right corner, this one with an etched Raspberry Pi logo (Figure 1.28). This
section discusses the radio, which allows the Raspberry Pi to communicate
wirelessly with other devices. In actuality, the radio has two main functions:
a WiFi radio for connecting to computer networks, and a Bluetooth radio
for connecting to peripherals such as mice and sending and receiving data
from nearby smart devices such as sensors and smartphones.

Figure 1.28 The Raspberry Pi’s radio module

Just behind the middle row of USB ports, another black, plastic-covered
chip can be seen near the bottom border of the board. This is the network
and USB controller, which is in charge of the Ethernet port as well as the
four USB ports. A final black chip, much smaller than the others, can be
found just above the micro USB power connector on the upper-left side of
the board (Figure 1.29); this is known as a power management integrated
circuit (PMIC), and it handles converting the power from the micro USB
port into the power the Pi requires to run.

Figure 1.29 Raspberry Pi’s power management integrated circuit (PMIC)

The Raspberry Pi’s port

The Raspberry Pi features a variety of ports, starting with four USB ports
on the center and right-hand sides of the bottom edge (Figure 1.30). These
ports allow you to attach any USB-compatible peripheral to the Pi,
including keyboards, mouse, digital cameras, and flash drives. These are
known as USB 2.0 ports in technical terms, which indicates they are based
on the Universal Serial Bus standard version two.

Figure 1.30 The Raspberry Pi’s USB ports

An Ethernet port, often known as a network port, is located to the left of the
USB ports (Figure 1.31). This port can be used to connect the Raspberry Pi
to a wired computer network through a cable with an RJ45 connector on the
other end. If you look closely at the Ethernet port, you'll notice two light-
emitting diodes (LEDs) on the bottom; these are status LEDs that indicate
whether or not the connection is active.

SOC and Raspberry PI

57

Physical Computing and
IoT Programming

58

Figure 1.31 The Raspberry Pi’s Ethernet ports

A 3.5 mm audio-visual (AV) jack is located just above the Ethernet port on
the Raspberry Pi's left-hand edge (Figure 1.32). This is also known as the
headphone jack, and it can be used for that purpose — albeit connecting it
to amplified speakers rather than headphones will provide superior sound.
The 3.5 mm AV jack, however, has a secret feature: in addition to audio, it
transmits a video signal that can be linked to TVs, projectors, and other
displays that support a composite video signal with a special connection
known as a tip-ring-ring-sleeve (TRRS) adapter.

Figure 1.32 The Raspberry Pi’s 3.5mm AV jack

A strange-looking connector with a plastic flap that can be pushed up sits
directly above the 3.5 mm AV jack; this is the camera connector, also
known as the Camera Serial Interface (CSI) (Figure 1.33). This enables you
to use the Raspberry Pi Camera Module, which was created specifically for
the Raspberry Pi.

Figure 1.33 Raspberry Pi’s camera connector

The High-Definition Multimedia Interface (HDMI) connection (Figure
1.34), which is the same sort of connector seen on a games console, set-top
box, and TV, is located above that, still on the left-hand edge of the board.
The multimedia component of its name indicates that it can carry both audio
and video information, while high-definition indicates that the quality will
be superb. This will be used to link the Raspberry Pi to your display device,
which could be a computer monitor, television, or projector.

Figure 1.34 Raspberry Pi’s HDMI port

A micro USB power port (Figure 1.35), located above the HDMI port, is
used to connect the Raspberry Pi to a power source. On smartphones,
tablets, and other portable gadgets, the micro USB port is a regular
appearance. So you could use a regular phone charger to power the Pi, but
the official Raspberry Pi USB Power Supply is recommended for optimum
performance.

Figure 1.35 The Raspberry Pi’s micro USB power port

Another strange-looking connector (Figure 1.35) can be seen towards the
top edge of the board, which at first glance appears to be identical to the
camera connector. This, on the other hand, is a display connector, or Display
Serial Interface (DSI), made specifically for the Raspberry Pi Touch
Display (Figure 1.36).

SOC and Raspberry PI

59

Physical Computing and
IoT Programming

60

Figure 1.36 The Raspberry Pi’s touch display

There are 40 metal pins on the right-hand edge of the board, divided into
two rows of 20 pins each (Figure 1.37). The GPIO (general-purpose
input/output) header is a feature of the Raspberry Pi that allows it to
communicate with external hardware such as LEDs, buttons, temperature
sensors, joysticks, and pulse-rate monitors. Another, smaller header with
four pins is just below and to the left of this header: This is used to attach
the Power over Ethernet (PoE) HAT, an optional add-on that allows the
Raspberry Pi to get power through a network connection instead of the
micro USB socket.

Figure 1.37 The Raspberry Pi’s GPIO header

The Raspberry Pi has one more port, but it's not visible from the top. Turn
the board over, and on the opposite side of the board from the display
connector is a microSD card connector (Figure 1.38). The Raspberry Pi's
storage is as follows: All of the files you save, all of the software you install,
and the operating system that makes the Raspberry Pi function are stored on
the microSD card put in this slot.

Figure 1.38 The Raspberry Pi’s microSD card connector

The Raspberry Pi’s peripherals

A Raspberry Pi by itself can't do much, like a desktop computer by itself
isn't much more than a door-stop. A microSD card for storage, a monitor or
TV to view what you're doing, a keyboard and mouse to tell the Pi what to
do, and a 5 volt (5 V) micro USB power source rated at 2.5 amps (2.5 A) or
better are all required for the Raspberry Pi to work. You've got yourself a
completely functional computer with those.

The Raspberry Pi Case helps protect the Pi while you're using it without
blocking access to its various ports; the Camera Module, the Raspberry Pi
Camera Module; the Raspberry Pi Touch Display, which connects to the
display port and provides both a video display and a tablet-style touchscreen
interface; and the SPI Display, which connects to the display port and
provides both a video display and a tablet-style touchscreen interface; the
SPI Display and the sense HAT (figure 1.39)

SOC and Raspberry PI

61

Physical Computing and
IoT Programming

62

A wide range of third-party accessories are also available, ranging from kits
to convert a Raspberry Pi into a laptop or tablet to add-ons that allow it to
comprehend and respond to your voice.

Figure 1.39 The sense HAT

1.5.3 Preparing your raspberry Pi

The Raspberry Pi was created to be as simple to set up and operate as
possible, but it, like any computer, is dependent on a variety of external
components known as peripherals. While it's fine to look at the Raspberry
Pi's bare circuit board, which differs drastically from the encased, closed-
off computers you're used to, and worry that things are about to get
complicated, this isn't the case. Simply follow the procedures outlined in
the next section to have the Raspberry Pi up and running in under ten
minutes.

If you have the Raspberry Pi Starter Kit, you'll have almost everything you
need to get started: all you need is a computer monitor or TV with an HDMI
connection (the same type of connector used by set-top boxes, Blu-ray
players, and games consoles) so you can see what the Raspberry Pi is up to.
If you don't have the Raspberry Pi Starter Kit, you'll also need the following
items in addition to the Raspberry Pi 3 Model B+:

USB power supply: A power supply having a micro USB connector and a
rating of 2.5 amps (2.5A) or 12.5 watts (12.5W). The Official Raspberry Pi
Power Supply is the best option because it can handle the Raspberry Pi's
fast switching power demands.

NOOBS on a microSD card: The microSD card serves as the Raspberry
Pi's permanent storage, storing all of the data you generate and software you
install, as well as the operating system itself. A 8GB card will get you
started, but a 16GB card will give you more room to expand. Using a card
with pre-installed NOOBS (New Out-Of-Box Software) will save
your time.

USB keyboard and mouse: The Raspberry Pi can be controlled with the
help of a USB keyboard and mouse. Almost any USB-connected wired or
wireless keyboard and mouse will function with the Raspberry Pi, though

some ‘gaming' keyboards with colourful LEDs may drain too much power
to be used reliably.

HDMI Cable: The HDMI cable connects your Raspberry Pi to your TV or
monitor and transmits sound and video. There's no need to splurge on a
high-end HDMI cable. If you want to connect your Raspberry Pi to an older
TV that uses composite video or has a SCART socket, use a 3.5 mm tip-
ring-ringsleeve (TRRS) audio/video cable; if you want to connect your
Raspberry Pi to an older TV that uses composite video or has a SCART
socket, use a 3.5 mm tip-ring-ringsleeve (TRRS) audio/video cable.

Without a case, the Raspberry Pi is safe to use as long as it is not placed on
a metal surface that could conduct electricity and cause a short-circuit.
However, an optional case can give further protection; the Starter Kit
contains the Official Raspberry Pi Case, while third-party cases can be
found at any respectable retailer.

You'll also need a network cable if you wish to use the Raspberry Pi on a
wired network rather than a wireless (WiFi) network. This should be
connected to your network's switch or router on one end. You won't need a
cable if you wish to utilize the Raspberry Pi's built-in wireless radio; you
will, however, need to know the name and key or pass for your wireless
network.

1.5.3.1 Setting up the hardware

You'll also need a network cable if you wish to use the Raspberry Pi on a
wired network rather than a wireless (WiFi) network. This should be
connected to your network's switch or router on one end. You won't need a
cable if you wish to utilize the Raspberry Pi's built-in wireless radio; you
will, however, need to know the name and key or pass for your wireless
network.

Assembling the case

It should be your first step if you're placing your Pi in a case. If you're using
the Official Raspberry Pi Case, start by separating the five pieces: the red
base, two white sides, red upper and white lid.

1] Take the base and place it on your left side with the elevated end
facing you and the lower end facing you.

SOC and Raspberry PI

63

Physical Computing and 2] Holding the Pi by its USB and Ethernet ports and the GPIO header at
IoT Programming the top, insert the left-hand side into the case at an angle, then slowly
drop the right-hand side down until it lies flat.

3] Find the one with the cutouts for the power connector, HDMI port,
and 3.5 mm AV jack among the two white side parts. Line it up with
the Raspberry Pi's ports and carefully press it in until you hear a click.

4] Place the solid white side piece on the GPIO header side of the
casing and click it in place.

64

5] Place the two clips on the left of the red plastic upper piece into the SOC and Raspberry PI
matching holes on the left of the base, above the microSD card slot.
Push the right-hand side (above the USB ports) down until you hear
a click once they're in place.

6] Finally, carefully press the white lid down until you hear a click,
making that the Raspberry Pi logo is to your right and the small raised
clips on its underside are lined up with the hole on the top of the case.
Your case is now complete.

Connecting the microSD card

Turn the Raspberry Pi over and insert the microSD card into the microSD
slot with the label facing away from the Pi to install the microSD card,
which is the Raspberry Pi's storage. It can only go one way and should go
into place without too much difficulty.

SeseSsSsSRERERERERES
ssssssssssssssssanall

65

Physical Computing and
IoT Programming

66

The microSD card will go into the connector and then come to a halt without
making a click.

LR E R R L L]
[YT R RN LY]

If you want to remove it in the future, simply grab the card's end and
carefully pull it out. If you're using an earlier Raspberry Pi, you'll need to
gently push the card to unlock it; this isn't necessary if you're using a
Raspberry Pi 3 or newer.

Connecting a keyboard and a mouse

Connect the USB connection from the keyboard to one of the Raspberry Pi's
four USB ports. Once the keyboard is connected, attach the mouse in the
same way.

The USB connectors for the keyboard and mouse should slip into place
without too much force; if you have to force them in, something is amiss.
Make sure the USB connector is pointing in the appropriate direction!

o MOUSE & KEYBOARD: The keyboard and mouse are your primary
way of instructing the Raspberry Pi; these are known as input devices
in computing, as opposed to the display, which is an output device.

Connecting a display

Connect one end of the HDMI cable to your Raspberry Pi and the other end
to your monitor (it doesn't matter which). Look for a port number next to
the connector itself if your display has more than one HDMI port; you'll
need to switch the TV to this input to see the Pi's display. Don't worry if you
can't see a port number: simply switch through each input until you find the
Pi.

. CONNECTION TO THE TV: It doesn't imply you can't use the
Raspberry Pi if your TV or monitor doesn't have an HDMI port.
Adapter cables, which can be found at any electronics store, can
convert the Raspberry Pi's HDMI port to DVI-D, Display Port, or
VGA for use with older computer monitors; they are simply attached
to the Pi's HDMI port, and then an appropriate cable is used to connect
the adapter cable to the monitor. If your TV only has a composite
video or SCART input, you can buy 3.5 mm tip-ring-ring-sleeve
(TRRS) adapter cables and composite-to-SCART adapters to plug
into the 3.5 mm AV port.

Connecting a network cable (optional)

To connect your Raspberry Pi to a wired network, insert a network cable —
also known as an Ethernet cable — into the Ethernet port on the Pi, with the
plastic clip facing down, until you hear a click. If the cable needs to be
removed, simply squeeze the plastic clip inwards towards the plug and
gently slip the cable free.

In the same way, attach the opposite end of your network cable to any free
port on your network hub, switch, or router.

SOC and Raspberry PI

67

Physical Computing and
IoT Programming

68

Connecting a power supply

The last stage in the hardware setup procedure is to connect the Raspberry
Pi to a power source, which you should do only when you're ready to set up
its software: the Raspberry Pi lacks a power switch and will turn on as soon
as it's attached to a live power supply.

Connect the micro USB end of the power supply cable to the Raspberry Pi's
micro USB power connection. It can only travel one way, with the thin part
of the connector pointing down, and should softly slide home.

J POWER SUPPLY: If you're using the Official Raspberry Pi Power
Supply, you'll see that it comes with multiple mains connectors that
are compatible with different nations' sockets. Choose the one that
corresponds to the socket type in your nation, and then slide it onto
the power supply body until you hear a click.

Finally, connect the power supply to a mains socket and turn it on; the
Raspberry Pi will start running instantly.

You've completed the assembly of your Raspberry Pi!

Setting up the software

You'll need to set up the Raspberry Pi's software, particularly its operating
system, which regulates what the Pi can do, before you can start using it in
earnest. NOOBS, or New Out-Of-Box Software, is designed to make this
process as simple as possible by allowing you to choose from a variety of
operating systems and have them installed automatically. Even better, you
can accomplish all of this with only a few mouse clicks.

You'll see a screen with the Raspberry Pi logo on it and a small progress
window at the upper-left when the Pi is initially switched on, or booted,
with a fresh installation of NOOBS on its microSD card. You'll see the
screen shown in Figure 1.40 after a brief wait, which might take up to a
minute the first time you use the NOOBS microSD card.

BaCaTiE w10 Bast: Py I3 2U0E

=

bl 0 HE

Figure 1.40 The NOOBS menu without any operating system installed
3 ARE THERE NO PICTURES?

Check that you're using the correct input if you can't see the Raspberry
Pi on your screen. If your TV or monitor has multiple HDMI inputs,
use the ‘Source' or ‘Input' buttons to cycle through each one until you
get the NOOBS menu.

This is the NOOBS menu, which allows you to select an operating
system for your Raspberry Pi. Raspbian, a version of the Debian
Linux operating system customised exclusively for the Raspberry Pi,
and LibreELEC, a version of the Kodi Entertainment Centre software,
are supplied as standard with NOOBS. You can also download and

SOC and Raspberry PI

69

Physical Computing and
IoT Programming

70

install different operating systems if the Pi is connected to the network
- either through a wired connection or using the ‘Wifi networks (w)'
option from the top bar of icons.

Use the mouse to draw a cross in the box to the left of Raspbian Full:
position the pointer at the white box and click once with the left mouse
button to begin installing an operating system. When you've done so,
the ‘Install I menu icon will no longer be greyed-out, indicating that
your operating system is ready to install (Figure 1.41)

PETTT T
et ey ool | U8 COORAME RlTLTS |
A P |, A O el (B el (e] o)] e L
% el AR D
‘,f LrgE LEC & & linl sl i ervily Kodi Efdarlamant Carler 2adribiu
Parsgirian Lie &
A pi of Dt Srelih A the Bsplsorty P | el v | #
Loy PP -
Voo CHT rolie @ivess e (oo -
L]

Bapghiar
A i oF D, SWirelclh bor Bhae BoapBserry M (Rl S bl o vy e | .-"

== L3t FWLESn
| B g esply B ETHE et d doeie g {o Dhe paeLlen byl # :|

M o .
mﬂi‘

Meeded SLEL N

doy wiiaiky % Pk M

L L L e LU

Figure 1.41 Choosing an operating system to install through
NOOBS

When you press the left mouse button on the ‘Install (i)' icon, a
warning notice appears, informing you that installing the operating
system would overwrite any data currently saved on the microSD
card, except for NOOBS, which will remain intact. The installation
process will begin once you click ‘Yes' (Figure 1.42)

i il i v
ETE T
LInN - .

i Sy inss T Bl (L) = ek P R |

Figure 1.42 Installing the Raspbian operating system

Depending on the speed of your microSD card, the installation
process can take anywhere from 10 to 30 minutes. Progress is
presented in a bar down the bottom of the window as the operating
system is installed, and you'll watch a slide show outlining some of
its important features.

WARNING!

It's critical that the installation isn't interrupted because doing so risks
destroying the software through a process known as data corruption.
While the operating system is being installed, do not remove the
microSD card or unplug the power cable; if something happens to
interrupt the installation, unplug the Raspberry Pi from its power
supply, then press the SHIFT key on the keyboard while reconnecting
the Raspberry Pi to its power supply to bring up the NOOBS menu.
This is known as recovery mode, and it's a terrific way to get a Pi back
into working condition when its software has been corrupted. After a
successful installation, it also allows you to access the NOOBS menu,
where you can reinstall the operating system or install one of the other
operating systems.

When the installation is complete, a popup with a ‘OK' button will
appear; click this to restart the Pi in its newly installed operating
system. The boot messages will scroll up the screen (Figure 1.43), and
the first time you boot into Raspbian, it may take a minute or two as
it adapts to make the greatest use of the free space on your microSD
card. Things will move more rapidly the next time you boot.

SOC and Raspberry PI

71

Physical Computing and
IoT Programming

72

Figure 1.43 The Raspbian boot messages

Finally, before the Raspbian desktop and setup wizard display, you'll
see a window with the Raspberry Pi logo on it, as shown in Figure
1.44. Your operating system has now completed installation and is
ready for configuration.

‘ man '..._, ki Sanlr
e

Figure 1.44 The Raspbian desktop

1.6 RASPBERRY PI BOOT

There is no BIOS on the Raspberry Pi. Your SDCard contains GPU
firmware that allows you to use the GPU. The GPU kicks off the ARM
processor and loads the Linux kernel. Hundreds of documents detailing
how that procedure works can be found on the internet.

On the Raspberry Pi, Android is a NON-STARTER.

Windows 10 IoT isn't the same as the Windows you're used to (and despise)
on your laptop. It's a specialized Windows internet of things system that
only operates on an RPI2.

1.6.1 Learn how this small SoC boots without BIOS

Instead of BIOS, the Raspberry Pi uses "firmware." To add to the confusion,
all B models require this firmware to be installed on the SD card. You won't
even get error messages if your SD card isn't working or if you neglect to
put the firmware on it. The Raspberry Pi will do nothing. The simplest
method for dual booting a Pi is to use different SD cards. The SD card
functions similarly to a hard disc on a desktop or laptop computer; swapping
it, however, allows you to use a different operating system. It's similar to a
Gameboy cartridge. The GPU handles everything, after which the kernel is
loaded and the CPU is turned on.

1.6.2 Configuring boot sequences and hardware

To begin, you must understand that the Raspberry Pi does not operate in the
same way as a traditional desktop computer. The graphics processor starts
up before the ARM processor!

Here's a diagram of the Raspberry Pi with the Broadcom BCM2835 SoC
highlighted before we dive into the details.

Raspberry Pi
Model & ©

STATUS
LEDS

-

e

SD CARD

] -
==
MICRD USE
POWER Z56ME RAM
BROADCOM BCMZB3S

Figure 1.45 Raspberry Pi with the Broadcom BCM2835 SoC

The ARM CPU, VideoCore Graphics Processor, ROM (Read-Only
Memory) chips, SDRAM, and other components are all found on the SoC
(or System-on-Chip). Consider a SoC to be a combination of your
motherboard and CPU crammed into a single chip.

The initial bits of code that run when you turn on your Raspberry Pi are
saved in a ROM chip in the SoC that was integrated into the Pi during
manufacturing! The first-stage bootloader is what it's called. On startup, the
SoC is hardwired to run this code on a tiny RISC Core (Reduced Instruction

SOC and Raspberry PI

73

Physical Computing and
IoT Programming

74

Set Computer). It's utilized to access the second-stage bootloader by
mounting the FAT32 boot partition on your SDCard. So, what exactly is
this SD Card's "second-stage bootloader"? It's called 'bootcode.bin'. If you
had mounted the SD Card in Windows, you might have seen this file. Here's
when it gets tricky. Your ARM CPU (which is in reset) and RAM have not
yet been initialized by the first-stage bootloader. As a result, the second-
stage bootloader must operate on the GPU as well. The bootloader.bin file
is loaded and executed from the GPU's 128K 4 way set associative L2
cache. This activates the RAM and loads start.elf from your SD Card. This
is the most significant of the three-stage bootloaders. It's the GPU's
firmware, which means it has the settings or, in our case, instructions for
loading the settings from config.txt on the SD Card. The config.txt file can
be thought of as the ‘BIOS settings' (as is mentioned in the forum). The
following are some of the options available to you:

J arm_freq: It is the ARM frequency in MHz. Default frequency is
700MHz.

J gpu_freq: This sets core freq, h264 freq, isp freq, v3d freq
together.

o core_freq: It is the GPU processor core frequency and is expressed
in MHz. Default frequency is 250MHz.

J h264_freq: This is the hardware video block frequency in MHz.
Default is 250MHz.

J isp_freq: It illustrates the image sensor pipeline block frequency in
MHz. Default is 250MHz.

o v3d_freq: It describes the frequency of 3D block in MHz. Default is
250MHz.

. sdram_freq: This is the SDRAM frequency expressed in MHz.
Default is 400MHz.

In addition, the start.elf divides the RAM between your GPU and the ARM
CPU. Only the address space left over from the GPU address space is
accessible to the ARM. The MMU (Memory Management Unit) of the
VideoCore maps the physical addresses detected by the ARM core to
another address in the VideoCore (0xC0000000 and beyond). Because the
config.txt is loaded after the split, you can't specify the dividing amounts
there. However, the SD Card has a variety of .elf files with various splits.
You can rename those files to start.elf and boot the Pi, according on your
needs. The GPU wins every time on the Raspberry Pi!

The start.elf additionally loads cmdline.txt if it exists, in addition to loading
config.txt and splitting RAM. It specifies the command line parameters for
the kernel to be loaded. The boot process has now reached its end. The
commencement .elf loads kernel.img, the binary file containing the OS
kernel (DUH!?) and relieves the CPU reset. The ARM CPU then executes
the kernel.img instructions, which loads the operating system.

Here's how it goes: SOC and Raspberry PI

Kernel starts booting

Figure 1.46 Flow process of boot sequence configuration

So the Raspberry Pi, unlike a PC, does not require a BIOS sequence
because the required startup functions are incorporated into the GPU.

1.7 SUMMARY

In this chapter we presented the concept and approaches used in creating a
system-on-chip (SoC) based on a microprocessor core, as well as the
microprocessor core itself, were introduced in this course. The reader
gained a better grasp of how SoCs are built and used, as well as why current
processors are designed the way they are.

The ARM images bring reality to topics that can otherwise appear ethereal
to the reader who only wants to know the basic principles; the general
principles reveal the logic for the ARM being as it is to the reader who wants
to understand the design of the ARM.

75

Physical Computing and
IoT Programming

76

The technical insights about the Raspberry Pi are discussed that covered up
the basic introduction of Pi, various generations of Raspberry Pi models.
The content acquainted the reader to set up their own operating system and
can also connect the wiring and circuits directly with the Raspberry Pi board
along with the discussion of onboard hardware components. Lastly, the unit
concluded with the discussion on configuring the boot sequence and

hardware.

1.8 LIST OF REFERENCES

1) Learning Internet of Things, Peter Waher, Packt Publishing(2015)

2) Mastering the Raspberry Pi, Warren Gay, Apress(2014)

3) Abusing the Internet of Things, Nitesh Dhanjani, O’Reilly

4) Michael J. Flynn, Wayne Luk, Computer System Design: System on
Chip, John Wiley and Sons Inc. 2011, ISBN 978-0-470-64336-5

5) SystemC: From the Ground Up, 2nd Edition, D.C. Black, J Donovan,
B. Bunton, A. Keist, Springer 2010, ISBN 978-0-387-69958-5.

6) On-Chip Communication Architectures, System on Chip
Interconnect, S. Pascricha and N. Dutt, Morgan Kaufmann-Elsevier
Publishers 2008, ISBN 978-0-12-373892-9.

7) https://www.cs.cmu.edu/afs/cs/academic/class/15462-f11/www
/lec_slides/lec19.pdf

8) https://www.researchgate.net/publication/260687001
GPU_computing

9) https://cdn.iiit.ac.in/cdn/cstar.iiit.ac.in/~kkishore/GPUArchitec
ture.pdf

10) http://web.eecs.umich.edu/~prabal/teaching/eecs373
f12/readings/ARM_ Architecture_Overview.pdf

11) https://web.sonoma.edu/users/f/farahman/sonoma/courses/es
310/310_arm/lectures/Chapter_3-and-1_ARM.pdf

12) https://www.cs.unca.edu/~bruce/Fall14/360/RPi UsersGuide.pdf

13) http://meseec.ce.rit.edu/551-projects/spring2017/2-3.pdf

1.9 UNIT END EXERCISES

1) Explain the concept of SoC

2) Write a note on significance and design challenges of SoC.

3) Describe the advantages, disadvantages and applications of system on
chip.

4) Write a short note on system on chip.

https://www.cs.cmu.edu/afs/cs/academic/class/15462-f11/www%20/lec_slides/lec19.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15462-f11/www%20/lec_slides/lec19.pdf
https://www.researchgate.net/publication/260687001_%20GPU_computing
https://www.researchgate.net/publication/260687001_%20GPU_computing
https://cdn.iiit.ac.in/cdn/cstar.iiit.ac.in/~kkishore/GPUArchitec%20ture.pdf
https://cdn.iiit.ac.in/cdn/cstar.iiit.ac.in/~kkishore/GPUArchitec%20ture.pdf
http://web.eecs.umich.edu/~prabal/teaching/eecs373%20f12/readings/ARM_Architecture_Overview.pdf
http://web.eecs.umich.edu/~prabal/teaching/eecs373%20f12/readings/ARM_Architecture_Overview.pdf
https://web.sonoma.edu/users/f/farahman/sonoma/courses/es%20310/310_arm/lectures/Chapter_3-and-1_ARM.pdf
https://web.sonoma.edu/users/f/farahman/sonoma/courses/es%20310/310_arm/lectures/Chapter_3-and-1_ARM.pdf
https://www.cs.unca.edu/~bruce/Fall14/360/RPi%20UsersGuide.pdf

5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)

Explain the architecture of FPGA.

Write a note on working and applications of FPGA.
Describe the architecture and applications of GPU.
What is the difference between GPU and CPU?
Write a note on APU.

Explain the configuration of compute units.
Describe ARMS architecture.

Write a note on Raspberry Pi.

Explain the various generations of Raspberry Pi.
Describe the Raspberry Pi operating system.
Describe the hardware of Raspberry Pi.

Write a note on configuring boot sequence and hardware along with
its flow diagram.

ke otk e ke e ke

SOC and Raspberry PI

77

Physical Computing and
IoT Programming !

PROGRAMMING RASPBERRY PI

Unit Structure

2.0 Objectives
2.1 Introduction
2.3 Raspberry Pi and Linux
2.3.1 About Raspbian
2.3.1.1 History of Raspbian
2.3.1.2 Features of Raspbian
2.3.1.3 Who Should Use the Raspberry Pi Operating System?
2.4 Linux Commands

2.5 Configuring Raspberry Pi with Linux Commands
2.6 Summary
2.7 List of References

2.8 Unit End Exercises

2.0 OBJECTIVES

After going through this unit, you will be able to:

. Understand the concept of Raspberry Pi and its configuration with
Linux commands

. Acquaint with the programming interfaces such as Node.js and
Python
. Understand and implement various Raspberry Pi interfaces

. Get familiar with useful case study implementations

2.1 INTRODUCTION

One of the most popular physical computing boards on the market is the
Raspberry Pi. People use the Raspberry Pi every day to engage with the
world around them, from hobbyists making DIY projects to students
learning to program for the first time. The Raspberry Pi is a fantastic single-
board computer (SBC) that can run Linux and a variety of other programs.
Python is a user-friendly programming language that can be used in schools,
web development, scientific research, and a variety of other fields. Python
is pre-installed on the Raspberry Pi, so you may use it to create your own
Raspberry Pi projects.

78

When it comes to dealing with the Raspberry Pi, you have various
alternatives. The Pi is most typically used as a standalone computer, which
necessitates the use of a monitor, keyboard, and mouse (listed below). The
Pi can also be used as a headless computer to save money (without a
monitor, keyboard, and mouse). Because you'll need to use a command-line
interface (CLI) from another computer, this configuration has a slightly
steeper learning curve.

The Raspberry Pi is a single-board computer created by the Raspberry Pi
Foundation, a non-profit organization based in the United Kingdom. Its
compact size, full Linux environment, and general-purpose input—output
(GPIO) pins have gained it a significant following in the maker and DIY
communities. It was originally meant to provide young people with an
affordable computing option to learn how to program. With all of the
features and capabilities crammed onto this compact board, the Raspberry
Pi has no shortage of projects and applications.

People use the Raspberry Pi all across the world to learn programming,
develop hardware projects, automate their homes, implement Kubernetes
clusters and Edge computing, and even employ them in industrial
applications. The Raspberry Pi1 is a low-cost computer that runs Linux and
has a set of GPIO (general purpose input/output) ports for controlling
electronic components and experimenting with the Internet of Things (IoT).

2.3 RASPBERRY PI AND LINUX

2.3.1 ABOUT RASPBIAN

The Raspberry Pi can run a variety of operating systems. While many Pi
compatible OSes are Linux distributions (distros), the RasPi also supports
Android, Chrome OS, and non-Linux images. Despite the numerous
operating system options, the Raspberry Pi Foundation's own Raspberry Pi
OS remains one of the best Raspberry Pi distros available. The operating
system originally known as Raspbian, on the other hand, has evolved
significantly since its start.

Raspbian is a free operating system based on Debian and designed
specifically for the Raspberry Pi. An operating system is a collection of
programs and tools that enable your Raspberry Pi to function. Raspbian, on
the other hand, is more than just an operating system: it includes over 35,000
packages, which are pre-compiled software packages packaged in a
convenient style for quick installation on your Raspberry Pi.

In June of 2012, the initial build of nearly 35,000 Raspbian packages,
optimized for the Raspberry Pi, was completed. Raspbian, on the other
hand, is still in active development, with the goal of enhancing the reliability
and performance of as many Debian programs as possible. The Raspberry
Pi Foundation is not linked with Raspbian. Raspbian was produced by a
small, dedicated team of developers who are enthusiastic about the
Raspberry Pi hardware, the Raspberry Pi Foundation's educational mission,
and, of course, the Debian Project.

Programming Raspberry PI

79

Physical Computing and
IoT Programming

80

Raspbian is a Raspberry Pi operating system based on Debian. The
Raspberry Pi Foundation has officially released it as the primary operating
system for the line of Raspberry Pi single-board computers since 2015.
Mike Thompson and Peter Green started Raspbian as an independent
project. The first phase of construction was finished in June 2012. The
operating system is currently being developed. The Raspberry Pi line's low-
performance ARM CPUs are well-suited to Raspbian. As of the most recent
release, Raspbian's main desktop environment is PIXEL, Pi Improved
Xwindows Environment, and Lightweight. It consists of a modified LXDE
desktop environment and the Openbox stacking window manager, which
has been updated with a new theme and a few additional tweaks. As of the
newest edition, the distribution includes a copy of the computer algebra tool
Mathematica, a version of Minecraft dubbed Minecraft Pi, and a lightweight
version of Chromium.

2.3.1.1 HISTORY OF RASPBIAN

The developers behind Raspbian have released several distinct versions
since its beginning. Because it's a Linux-based distribution, it's simple to
make changes and update it on a regular basis.

. Raspbian Wheezy

The Raspberry Pi Foundation officially supported the first release of
Raspbian in 2015, which was mostly based on Debian Wheezy.
Wheezy is an unofficial copy of Debian Wheezy armhf, and before
official support, Raspberry Pis came pre-installed with Debian
Squeeze as the official operating system, which was later superseded
by Raspbian Wheezy. This is because Wheezy's engineers noticed
that Squeeze was being used to support less-capable ARM devices,
causing the Pi's CPU to perform poorly during floating point-
intensive applications like graphics programs.

o Raspbian Jessie

Along with the usual security fixes and under-the-hood tweaks, Jessie
added a few more obvious additions. The Raspberry Pi Foundation
made some tiny tweaks to make it seem more like a'real' PC in order
to make it not simply cheap computers for education, but also
affordable computers in their own right. The LibreOffice suite and
Claws Mail, for example, were installed as standard, allowing users
to use word processors, spreadsheets, and email management from
within Raspbian. For the first time, Raspberry Pi’s booted to a
Raspbian desktop GUI by default, rather than a Linux command line,
as a result of a software update.

Raspbian Jessie with PIXEL was released in September 2016 for
people who wanted a GUI desktop. The PIXEL (Pi Improved
Xwindow Environment, Lightweight) desktop was the first time the
OS acquired a GUI desktop, as it had previously only been a Linux
code screen - it even had a boot splash page like a genuine OS.
Indicators of performance were also incorporated. When the Pi was
overworked in previous versions, for example, red and yellow pixels

would appear on the screen. Under voltage was indicated by a
lightning bolt, and temperature warnings were indicated by a
thermometer.

o Raspbian Stretch

Debian releases new official distros every two years, and Raspbian,
which has always been based on Debian, follows suit. Stretch was
launched just before Jessie's two-year anniversary, and like Jessie
before it, the changes to Stretch were designed to go unnoticed by the
end user.

The inbuilt Bluetooth audio manager, on the other hand, was one of
the more noticeable changes. PulseAudio was used in Jessie, but it
was replaced by bluez-alsa because the former was awkward and
didn't do a good job of encoding diverse audio sources. Following the
revelation of firmware vulnerability in the Pi 3 and Pi Zero W wireless
chipsets, Stretch included a modification to the base code layer.

. Raspbian Buster

Buster was released two years and one month after Stretch, and it
corresponded with the release of the Raspberry Pi 4. With the
exception of a few security updates, the organization conceded that
there were "unfortunately" no significant functional differences
between Buster and its predecessor. Buster, on the other hand,
included a slew of improvements to the OS's overall appearance and
feel, as well as tweaks to the user interface. The OS was given a flatter
and cleaner look with this design upgrade, which provided the first
major Ul improvements since Jessie.

Buster also replaced IDLE with the Thonny Python development
environment as the default Python editor. This was accompanied by a
number of modest functionality enhancements, such as the 'eject’
symbol for deleting USB devices only appearing if there are devices
to eject.

2.3.1.2 FEATURES OF RASPBIAN

The Raspberry Pi OS, like the Pi hardware, has grown significantly over
time. Pi OS now supports both 32-bit and 64-bit images. Other Linux
distributions for the Pi, such as Ubuntu, have 64-bit and 32-bit installers.
The Raspberry Pi OS has gradually introduced more functions, with a focus
on desktop use, which complements the new hardware. Whether as a
desktop, network-attached storage (NAS) device, cluster, or something else,
more RAM and a beefier processor combine with overlying software for an
increasingly competent computing experience.

Programming resources have been built into the Raspberry Pi for quite some
time now. Integrated development environments (IDEs) and office
productivity tools such as the LibreOffice suite come pre-installed. A
bookshelf app with access to a boatload of Raspberry Pi books and

Programming Raspberry PI

81

Physical Computing and
IoT Programming

82

publications, including MagPi and HackSpace, is now included.
Additionally, a Magnifier software improves visibility for all users,
especially for smaller on-screen objects, resulting in greater accessibility.
It's in the section under Universal Access.

Basic features are as follows:

. Developer: Raspberry Pi Foundation

J OS family: Unix-like

. Source model: Open source

. Latest release: Raspbian Jessie with PIXEL / 16.02.2017

J Marketing target: Raspberry Pi

. Update method: APT

o Package manager: dpkg

J Platforms: ARM

J Kernel type: Monolithic

J Userland: GNU

° Default user interface: PIXEL, LXDE

J License: Free and open-source software licenses (mainly GPL)
J Official website: https://www.raspberrypi.org/downloads/raspbian/

2.3.1.3 WHO SHOULD USE THE RASPBERRY PI OPERATING
SYSTEM?

Raspberry Pi OS is a fantastic desktop operating system. When paired with
an 8GB Pi board or even a 4GB Pi, the 64-bit version should demonstrate
the credit card-sized maker board's multitasking and general computing
capabilities. Raspberry Pi OS may be easily adapted for certain use cases
because it is based on Linux. For a Raspberry Pi NAS, you can install media
server software like Plex, Emby, or Subsonic. Alternatively, for a home
theatre PC, install Kodi and VLC (HTPC). It's ideal for office productivity,
such as picture and audio editing, as well as programming.

And gaming is a lot of fun. Many games run natively on the Raspberry Pi,
or you can use emulators like Retro Arch to run them. In general, Raspberry
Pi OS is the best distribution for the majority of Pi users. It's a flexible
operating system that will undoubtedly be polished and improved in the
future. A desktop variation with suggested applications, a barebones
desktop image, and a simple command-line only option are among the
alternatives offered. You may also look at Ubuntu, which has images for
both 32-bit and 64-bit Raspberry Pi’s.

2.4 LINUX COMMANDS

The Linux command is a piece of software that comes with the Linux
operating system. Commands can be used to complete all simple and
complicated operations. On the Linux terminal, the commands are run. The

https://www.raspberrypi.org/downloads/raspbian/

terminal is a command-line interface for interacting with the system,
comparable to the Windows command prompt. In Linux, commands are
case-sensitive.

In comparison to other operating systems like Windows and MacOS, Linux
has a robust command-line interface. Through its terminal, we can perform
both basic and complicated tasks. We can perform some fundamental
operations such as creating, removing, and moving files. We can also
execute complicated jobs including administrative chores (such as package
installation and user administration), networking tasks (such as ssh
connections), security tasks, and so forth.

Because it offers a variety of assistance features, the Linux terminal is a
user-friendly terminal. To open the Linux terminal, press the "CTRL + ALT
+ T" keys together, then click the "ENTER" key to run a command.

The top 50 most commonly used Linux commands will be discussed in this
topic, along with examples. These commands are beneficial to both
beginners and professionals.

o Linux directory commands

1] pwd command: It is used for displaying the current working
directory location.
Syntax: pwd
Output:

javatpoint@javatpoint-Inspiron-3542:~5 pwd

/home fjavatpoint

2] mkdir command: Used for creating a new directory under any
directory.

Syntax: mkdir <directory name>

Output:

javatpoint@javatpoint-Inspiron-3542:~$% mkdir new directory

javatpoint@javatpoint-Inspiron-3542:~$ I

3] rmdir Command: used for deleting a directory.
Syntax: rmdir <directory name>
Output:

javatpoint@javatpoint-Inspiron-3542:~% rmdir new_directory

javatpoint@javatpoint-Inspiron-3542:~% I

4] 1Is Command: for displaying a list of content of a directory.
Syntax: Is
Output:

Programming Raspberry PI

83

Physical Computing and
IoT Programming

84

5]

6]

7]

8

9l

javatpoint@javatpoint-Inspiron-3542:~S 1s
D p examples.desktop
ory hello.

hello. i

hello.
L hello.
LIxt i in e index.html
LSIxt- e mail

cd Command: for changing the current directory.

Syntax: cd <directory name>

Output:

javatpoint@javatpoint-Inspiron-3542:~$ cd Desktop

javatpoint@javatpoint-Inspiron-3542:~/Desktop$ I

Linux File commands

Touch Command: used for creating an empty files. Executing
this command once will create multiple empty files.

Syntax:

touch <file name>
touch <filel> <file2>

Output:

javatpoint@javatpoint-Inspiron ewfolderS touch Demo.txt
javatpoint@javatpoint-Inspiron r$ touch Demol.txt Demo2.txt

javatpoint@javatpoint-Inspiron- rs s
Demol.txt Demoz2.txt Demo.txt

cat command: This command is a multi-purpose utility in the
Linux system. It is used for creating a file, displaying its
content, copy the content of one file to another file, etc.

Syntax: cat [OPTION]... [FILE]..

To create a file, execute it as follows:
cat > <file name>

// Enter file content

Press "CTRL+ D" keys to save the file. To display the content
of the file, execute it as follows:

cat <file name>

Output:

javatpoint@javatpoint-Inspiron-3542:~/Newfolder$ cat > Demo.txt
This is a text file.

javatpoint@javatpoint-Inspiron-3542:~/Newfolder$ cat Demo.txt
This is a text file.

rm Command: This command is used for removing a file
Syntax: rm <file name>

Output:

jgng;boiuc@jgnggbo}uc-Iuab}uou-3215 ' 1 L2 LW DEWOT'EXL DEWOS " £XL

Jsasgbosug@lonagbosur-TuebsrLov-3245:-\ L L2 LW DBWO* £X[

cp command: It is used for copying a file or directory.
Syntax: To copy in the same directory:

cp <existing file name> <new file name>

10]

11]

12]

13]

Output: Programming Raspberry PI

javatpoint@javatpoint-Inspiron-3542:~5 cp demo.txt demol.txt

javatpoint@javatpoint-Inspiron-3542:~5 cp demo.txt Documents

mv Command: This command is used for moving a file or a
directory from one location to another.

Syntax: mv <file name> <directory path>
Output:

javatpoint@javatpoint-Inspiron-3542:~5 mv demo.txt Directory

rename Command: This command is used to rename the
large group of files

Syntax: rename 's/old-name/new-name/' files

Example: Execute the following command for converting the
entire text files into pdf files

rename 's/\.txt$/\.pdf/" *.txt
Output:

javatpoint@javatpoint-Inspiron-3542:~5 rename 'sf\.txtS/\.pdf/' *.txt
2:~5 1s
examples.desktop
hello.

hello. i

hello.

hello.

index

mail Python

° Linux File Content Commands

head Command: For displaying the content of a file. It
displays the first 10 lines of a file.

Syntax: head <file name>
Output:

javatpoint@javatpoint-Inspiron-3542:~5 head Demo.txt

tail Command: This is similar to the head command. The only
difference is this is used to display the last ten lines of the file
content. It's useful for deciphering error messages.

Syntax: tail <file name>
Output:

85

Physical Computing and
IoT Programming

86

14]

javatpoint@javatpoint-Inspiron-3542:~5 tail Demo.txt

= A B SR

tac Command: This command is the reverse of cat command,
as its name specified. It reverses the order of the contents of the
file (from the last line).

Syntax: tac <file name>

Output:

javatpoint@javatpoint-Inspiron-3542:~$ tac Demo.txt
11

8
7
6
5
4
3
2
1

15] more command: The more command is quite similar to the cat

command in that it displays the contents of a file in the same
way that the cat command does. The only difference between
the two methods is that the more command displays a screenful
of output at a time in the event of larger files.

The following keys are used to scroll the page in the more
command:

ENTER key: To scroll down page by line.
Space bar: To advance to the next page.

b key: To return to the previous page.

/ key: To search the string.

Syntax: more <file name>

Output:

16]

17]

18]

333 gyp.el - font-lock-mode support for gyp files.

Copyright (c) 2012 Google Inc. All rights reserved.
Use of this source code is governed by a BSD-style license that can be
; found in the LICENSE file.

;3 Put this somewhere in your load-path and
; (require 'gyp)

(require 'python)
(require 'cl)
(when (string-match "python-meode.el" (symbol-file 'python-mode 'defun))
(error (concat "python-mode must be locaded from python.el (bundled with "
"recent emacsen), not from the older and less maintained "
"python-mode.el")))
(defadvice python-indent-calculate-levels (after gyp-outdent-closing-parens
activate)
"De-indent closing parens, braces, and brackets in gyp-mode."
(when (and (eq major-mode 'gyp-mode)
(string-match "~ *[]1)}]1[1,)3}]1* *$"
(buffer-substring-no-properties
--More--(7%)

less Command: The less command works in the same way as
the more command. It also has some added functions, such as
'terminal width and height modification.' The more command,
on the other hand, reduces the output to the width of the
terminal.

Syntax: less <file name>

Output:

;33 gyp.el - font-lock-mode support for gyp files.

;: Copyright (c) 2012 Google Inc. All rights reserved.
;3 Use of this source code is governed by a BSD-style license that can be
;; found in the LICENSE file.

;3 Put this somewhere in your load-path and
;5 (require 'gyp)

e 'python)

(when (string-match "python-mode.el" (symbol-file 'python-mode 'defun))
(error (concat "python-mode must be loaded from python.el (bundled with
"recent emacsen), not from the older and less maintained "
"python-mode.el")))

(defadvice python-indent-calculate-levels (after gyp-outdent-closing-parens
activate)

° Linux User Commands

su Command: The su command grants another user
administrative privileges. In other words, it grants another user
access to the Linux shell.

Syntax: su <user name>
Output:

javatpoint@javatpoint-Inspiron-3542:~$ su javatpoint
Password:

javatpoint@javatpoint-Inspiron-3542:~§ I

id Command: used for displaying the user ID (UID) and group
ID (GID).

Syntax: id

Output:

javatpoint@javatpoint-Inspiron-3542:~$ id
uid=1000(javatpoint) gid=1000(javatpoint) groups=1000(javatpoint),4(adm),24(cdro

m),27(sudo),30(dip),46(plugdev),116(1padmin),126(sambashare)
javatpoint@javatpoint-Inspiron-3542:~$ I

Programming Raspberry PI

87

Physical Computing and
IoT Programming

88

19]

20]

21]

22]

23]

useradd Command: On a Linux server, the useradd
command is used to add or remove users.

Syntax: useradd username

Output:

javatpoint@javatpoint-Inspiron-3542:—5 sudo useradd ITP
[sudo] password for javatpoint:
javatpoint@javatpoint-Inspiron-3542:~5% I

passwd Command: The passwd command is used to set and
update a user's password.

Syntax: passwd <username>
Output:

javatpoint@javatpoint-Inspiron-3542:~$ sudo passwd JTP
Enter new UNIX password:

Retype new UNIX password:
passwd: password updated successfully

groupadd Command: Used for create a user group.

Syntax: groupadd <group name>

Output:

javatpoint@javatpoint-Inspiron-3542:~5 sudo groupadd Developer

javatpoint@javatpoint-Inspiron-3542:~5%

° Linux Filter Commands

cat Command: The cat command can also be used to filter
data. It's used inside pipes to filter files.

Syntax: cat <fileName> | cat or tac | cat or tac |. . .

Output:

javatpoint@javatpoint-Inspiron-3542:~S cat Demo.txt | tac | cat | cat | tac

1
2
B
4
5
6
-
8
g
1
1

cut Command: To choose a specific column of a file, use the
cut command. A space (' '), a slash (/), a hyphen (-), or
anything else can be used as a delimiter using the '-d' option.
A column number is specified using the '-f' option.

Syntax: cut -d(delimiter) -f(columnNumber) <fileName>

Output:

javatpoint@javatpoint-Inspiron-3542:~$ cat >marks.txt

Programming Raspberry PI

point-Inspiron-3542:~

24] grep Command: In a Linux system, the grep command is
the most powerful and often used filter. "Global regular
expression print" is what grep stands for. It's useful for
looking for information in a file. It's usually used in
conjunction with a pipe.

Syntax: command | grep <searchWord>

Output:

javatpoint@javatpoint-Inspiron-3542:~$ cat marks.txt | grep 9
elena-20

25] comm Command: To compare two files or streams, use the
'comm' command. It displays three columns by default: the
first column shows non-matching things from the first file,
the second column shows non-matching items from the
second file, and the third column shows matched items from
both files.

Syntax: comm <file1> <file2>

Output:

javatpoint@javatpoint-Inspiron-3542:~5 comm Demo.txt Demol.txt
1
2
3
comm: file 2 is not in sorted order
11
4
5

: file 1 is not in sorted order

26] sed command: sed is also known as the stream editor
command. It's used to employ a regular expression to
modify files. It does not edit files indefinitely; instead, the
modified material is just displayed. It has no effect on the
file itself.

Syntax: command | sed 's/<oldWord>/<newWord>/'

Output:

89

Physical Computing and
IoT Programming

90

27]

28]

29]

30]

C[922]0
Janagbosup@lanagbosug-TuzbsLou-3245:-2 6cpo crazzy | 26q ,2\1\10\,

1eby
Janagbosur@lanagbosug-TuzbsLou-3245:-2 6cpo craz2) | 26q ,2\craza\1by,

tee command: The cat command and the tee command are
very similar. The sole difference between the two filters is
that one writes standard input to standard output while the
other does not.

Syntax: cat <fileName> | tee <newFile>| cat or tac |.....
Output:

javatpoint@javatpoint-Inspiron-3542:~§ cat marks.txt | tee new.txt | cat

justin-8e
javatpoint@javatpoint-Inspiron-3542:~5 cat new.txt

tr Command: The tr command is used to convert file text
from lower case to upper case, for example.

Syntax: command | tr <'old™> <'new"
Output:
javatpoint@javatpoint-Inspiron-3542:~§ cat marks.txt | tr 'prcu’ 'PRCU'

uniq Command: The uniq command creates a sorted list in
which each word appears just once.

Syntax: command <fileName> | uniq

Output:

javatpoint@javatpoint-Inspiron-3542:~5 sort marks.txt |unig

we Command: A file's lines, words, and characters are
counted with the wc programme.

Syntax: wc <file name>
Output:

31]

32]

33]

javatpoint@javatpoint-Inspiron-3542:~% wc marks.txt

6 6 52 marks.txt

od Command: The od command displays a file's content in
various formats, including hexadecimal, octal, and ASCII
characters.

Syntax:

od -b <fileName> // Octal format

od -t x1 <fileName> // Hexa decimal format
od -c <fileName> // ASCII character format
Output:

javatpoint@javatpoint-Inspiron-3542:~$ od -b marks.txt

0000000 141 154 145 170 055 065 060 012 141 154 145 156 055 067 060 012
0000020 152 157 156 055 067 065 012 143 141 162 162 171 055 070 065 012
0000040 143 145 154 145 156 141 055 071 060 012 152 165 163 164 151 156
0000060 655 670 060 012

0000064

javatpoint@javatpoint-Inspiron-3542:~5 od -t x1 marks.txt

0e0BPB0 61 6c 65 78 2d 35 30 Ma 61 6c 65 6e 2d 37 30 Oa

000020 6a 6f 6e 2d 37 35 Ba 63 61 72 72 79 2d 38 35 0fa

0000040 63 65 6C 65 6e 61 2d 39 30 Ba 6a 75 73 74 69 Ge

0000060 2d 38 30 fa

0000064

javatpoint@javatpoint-Inspiron-3542:~$ od -c marks.txt

0000000 e X - 5 8 \n a 1

peeee20 - 7 5\ ¢ a r

CELLEES] e e n a - 9 8 \n

0000060 - 8 \n

0000064

sort Command: Sorting files in alphabetical order is done
with the sort command.

Syntax: sort <file name>
Output:

javatpoint@javatpoint-Inspiron-3542:~$ sort marks.txt

carry-85
celena-90
jon-75
justin-86

gzip Command: To reduce the file size, use the gzip
command. It's a tool for compressing data. The compressed
file with the '.gz' extension replaces the original file.

Syntax: gzip <filel> <file2> <file3>...
Output:

javatpoint@javatpoint-Inspiron-3542:~5 gzip Demo.txt Demol.txt
javatpoint@javatpoint-Inspiron-3542:~5 1s

examples.desktop

hello.

hello. i

hello. p Templates
helle.s ict s Test.pdf
index.html V 0

> mail

e marks.txt Python

Programming Raspberry PI

91

Physical Computing and
IoT Programming

92

34]

35]

36]

gunzip Command: To decompress a file, use the gunzip
command. It's the inverse of the gzip command.

Syntax: gunzip <filel> <file2> <file3>. .

Output:

javatpoint@javatpoint-Inspiron-3542:~S5 gunzip Demo.txt Demol.txt
javatpoint@javatpoint-Inspiron-3542:~$ 1s
Demo. txt~ examples.desktop Music
Deskto hello.c
irecto hello.i

hello.o
hello.s
index.html
mail

> marks. txt

Linux Utility Commands

find Command: The find command allows you to locate a
specific file within a directory. It also allows you to search
for files by name, type, date, and other criteria.

Following the find command, the following symbols are
used:

(.) For the current directory
(/): for the root

Syntax: find . -name "*.pdf"
Output:

javatpoint@javatpoint-Inspiron-3542:~5 find . -name "*.pdf"

.[Test.pdf

./Python-3.8.8/Doc/library/turtle-star.pdf

. [Akash/Joomla/0rigional Copy/Brochure-Joomla-2819.pdf

. [Akash/Joomla/0rigional Copy/Joomla-Guide-Final.pdf
./.localfshare/Trash/files/2400966-250544e72f817db3bcef- 1587140240830, pdf
./.localfshare/Trash/files/2400966- 3ad982eaa58c5d43fb53- 1585763620407 . pdf
find: ‘./.anydesk/incoming’: Permission denied

. /Downloads /ConfirmationPage 20030070774.pdf

. /demol.pdf

find: ‘./.dbus’: Permission denied

find: ‘./.cache/dconf’: Permission denied

./Directory/demo.pdf

./Directory/demo2.pdf

./Directory/demol.pdf

locate Command: The locate command allows you to look
for a file by name. It works similarly to the locate command,
with the exception that it runs in the background. The find
command searches the file system, whereas the find
command examines the database. It's quicker than using the
find command. Keep your database up to date if you want
to use the locates command to find the file.

Syntax: locate <file name>

37]

38]

39]

Output: Programming Raspberry PI

|javatpoint@javatpoint-Inspiron-3542:~5 locate sysctl.conf
[etc/sysctl.conf

[etc/sysctl.d/99-sysctl.conf

Jetc/ufw/sysctl.conf

|/snap/core/8935/etc/sysctl.conf
/snap/core/B935/etc/sysctl.d/99-sysctl.conf

/snap/core/90866/etc/sysctl.conf
/snap/core/9866/etc/sysctl.d/99-sysctl.conf

| /snap/core18/1705/etc/sysctl.d/99-sysctl.conf
| /snap/corelB/1754/etc/sysctl.d/99-sysctl.conf
|/ usr/share/doc/procps/examples/sysctl.conf
j/usr/share/man/man5/sysctl.conf.5.9z

date Command: The date command is used to display
information such as the date, time, and time zone.

Syntax: date
Output:

javatpoint@javatpoint-Inspiron-3542:~$ date
Fri May 22 21:51:05 IST 2020

cal Command: The cal function displays the calendar for
the current month, with the current date highlighted.

Syntax: cal<
Output:

javatpoint@javatpoint-Inspiron-3542:~$ cal
May 2020
Su Mo Tu We Th Fr Sa
1 2
3 4 5 6 7 8 9
16 11 12 13 14 15
17 18 19 20 21 BB
24 25 26 27 28 29
31

sleep Command: The sleep command is used to keep the
terminal awake for a set period of time. It takes time in
seconds by default.

Syntax: sleep <time>

Output:

iavatpotnt@javatpoint-Inspiron-3542:~5 sleep 4
93

Physical Computing and 40] time Command: The time command is used to show the
loT Programming amount of time it takes to perform a command.

Syntax: time

Output:

javatpoint@javatpoint-Inspiron-3542:~5 time

real 0Om0.0OOs
user 0Om@.00Os
sys 0m0.00os

41] zcat Command: The compressed files are displayed using
the zcat command.

Syntax: zcat <file name>

Output:

javatpoint@javatpoint-Inspiron-3542:~% 1s

examples.desktop

hello.c

hello.i

hello.o

hello.s

index.html

mail

ce marks.txt

javatpoint@javatpoint-Inspiron-3542:~$ zcat Demo.txt
1

2
3
4
3
6

42] df Command: The df command is used to display the file
system's disc space use. It shows the number of used blocks,
available blocks, and the mounted directory in the output.

Syntax: df
Output:

94

43]

44]

45]

javatpoint@javatpoint-Inspiron-3542:~§ df Programming Raspberry PI
Filesystem 1K-blocks Used Available Use% Mounted on
udev 1931652 0 1931652 0% /dev
tmpfs 393260 1756 391504 1% /run
dev/sdal 479668904 26471148 428762148 6% |
1966284 243536 1722748 13% [dev/shm
5120 4 5116 1% run/lock

1966284 O 1966284 0% [sys/fs/cgroup
dev/loopl 231936 231936 0 160% /snap/wine-platform-runtime/136
dev/loop2 144128 144128 8 180% /snap/gnone-3-26-1604/98
[dev/loopd 384 384 0 100% /snap/gnome-characters/539
[dev/loopé 220160 220160 0 100% /snap/wine-platform-5-stable/4
/dev/loops 164096 164096 0 160% /snap/gnone-3-28-1894/116

mount Command: The mount command is used to attach a
file system from an external device to the system's file
system.

Syntax: mount -t type <device> <directory>

Output:

javatpoint@javatpoint-Inspiron-3542:~5 mount

sysfs on [sys type sysfs (rw,nosuid,nodev,noexec,relatime)

proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)

udev on /dev type devtmpfs (rw,nosuid,relatime,size=1931652k,nr_inodes=482913,mo
de=755)

devpts on /dev/pts type devpts (rw,nosuid,noexec,relatime,qgid=5,mode=620,ptmxmod
e=p00)

tmpfs on /run type tmpfs (rw,nosuid,noexec,relatime,size=393266k,mode=755)
/dev/sdal on | type extd (rw,relatime,errors=remount-ro)

securityfs on /sys/kernel/security type securityfs (rw,nosuid,nodev,noexec,relat
ime)

tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev)

exit Command: The exit command in Linux is used to quit
the current shell. It accepts a number as an argument and
leaves the shell with a status number return.

Syntax: exit
Output:

javatpoint@javatpoint-Inspiron-3542:~5 exitl

It will exit the terminal after pressing the ENTER key.

clear Command: To clear the terminal screen, use the Linux
clear command.

Syntax: clear

Output:

95

Physical Computing and
IoT Programming

96

46]

47]

48]

49]

javatpoint@javatpoint-Inspiron-3542:~5 1s

a examples.desktop Music

Akash) i hello.c i

a.out hello.i sna
hello.o pico enpla

hello.s Pictures Test.pdf
index. html project Videos
mail Public
eclipse-u e marks.txt Python
javatpoint@javatpoint-Inspiron-3542:~$ clearl

The terminal screen will be cleared after pressing the ENTER
key.

. Linux Networking Commands

ip Command: The ipconfig command in Linux has been
replaced by the ip command. Its functions include assigning
an IP address, initialising an interface, and disabling an
interface.

Syntax: ip a or ip addr
Output:

javatpoint@javatpoint-Inspiron-3542:~$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group defaul
t qlen 1000
link/loopback ©0:00:00:00:00:00 brd 60:00:00:00:00:00
inet 127.08.0.1/8 scope host lo
valid_Lft forever preferred_Lft forever
inet6 ::1/128 scope host
valid_Lft forever preferred_Lft forever
2: enp7sO: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc fq_codel state DOW
N group default qlen 1600
link/ether 74:e6:22:02:93:b8 brd ff:ff:ff:ff:ff:ff
3: wlp6s®: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP gro
up default qlen 1000
link/ether 80:71:cc:00:e2:89 brd ff:ff:ff:ff:ff:ff
inet 192.168.43.240/24 brd 192.168.43.255 scope global dynamic noprefixroute
wlp6s@
valid_Lft 2296sec preferred_lft 2296sec
inet6 feB0::8c59:e84e:1670:27cc/64 scope link noprefixroute
valid Lft forever preferred Lft forever

ssh Command: The ssh command in Linux is used to
establish a remote connection using the ssh protocol.

Syntax: ssh user name@host(IP/Domain_name)</p>

mail Command: From the command line, the mail
command is used to send emails.

Syntax: mail -s "Subject" <recipient address>

Output:

javatpoint@javatpoint-Inspiron-3542:~S mail -s "Hello World" Himanshudubey481@gmail.com
Cc:

Helle There
Hope you are doing well.

ping Command: The ping command is used to determine
whether two nodes are connected, i.e. whether the server is
connected. It's an abbreviation for '"Packet Internet
Groper."

Syntax: ping <destination>

Output:

javatpoint@javatpoint-Inspiron-3542:~5 ping javatpoint.com

PING javatpoint.com (194.169.80.121) 56(84) bytes of data.

64 bytes from www.javatpoint.com (194.169.80.121): icmp_seq=1 ttl=48 time=3889 m
s

64 bytes from www.javatpoint.com (194.169.80.121): icmp_seq=2 ttl=48 time=3043 m

s
64 bytes from www.javatpoint.com (194.165.80.121): icmp_seq=3 ttl=48 time=2136 m
S
64 bytes from www.javatpoint.com (194.169.80.121): icmp_seq=4 ttl=48 time=1122 m

50] host Command: The host command displays the IP address
associated with a specified domain name and vice versa. For
the DNS Query, it does DNS lookups.

Syntax: host <domain name> or <ip address>

Output:

javatpoint@javatpoint-Inspiron-3542:~$% host javatpoint.com

iavatpnint.com has address 194.169.868.121

25

CONFIGURING RASPBERRY PI WITH LINUX
COMMANDS

When you first get your hands on a Raspberry Pi, you'll need to install an
operating system and link it to a Micro-SD card. On the Raspberry Pi,
Raspberry Pi not only supports their native Raspberry Pi OS, but also a
variety of different Linux versions. So, once you've installed an operating
system on a Raspberry Pi, you may communicate with it in a variety of

ways.

Using the HDMI connector to connect a monitor to experience a user
interface

Use the serial interface to communicate.
Remotely communicate using an SSH connection

When you connect to a display, you're faced with a user interface, and
it's as simple as using your own computer to browse around the
operating system. When connecting through serial interface or remote
SSH, however, there is no such thing as a user interface. Instead,
you'll have to use a command-line interface to navigate about your
Raspberry Pi, which is analogous to the command prompt or
PowerShell on a Windows PC and the terminal on a Macintosh.

When utilizing a command-line, you generally instruct the Raspberry
Pi to complete tasks by typing instructions into the terminal, as
opposed to the traditional method of interaction, which involves using
a mouse. You might assume it's easier to communicate with a
Raspberry Pi by connecting a display and using a user interface, but
after you've mastered the command-line, your workflow will be much
faster and you'll have more control over your Raspberry Pi. You'll be

Programming Raspberry PI

97

Physical Computing and
IoT Programming

98

able to combine these instructions into scripts and run them to speed
up the completion of tasks. Also, there may be times when you need
to deploy your Raspberry Pi to a different place, in which case the
command line will come in handy.

This section will help you become familiar with the majority of the
helpful commands you'll need to explore and interact with your
Raspberry Pi! These commands will also work with any Linux
distribution on the Raspberry Pi, as well as any other Linux-based
system!

Command-line on the Raspberry Pi

The prompt pi@raspberrypi $ will appear on the first line when you
log in to the command line on your Raspberry Pi. This signifies that
you have logged in to your Raspberry Pi successfully. You can type
your commands in front of this text in the commands line.

Updating the system

When you first switch on your Raspberry Pi, it's a good idea to update
the operating system and its sources to the most recent version. You
can do so by typing the commands below:

sudo apt-get update

sudo apt-get upgrade
sudo apt-get dist-upgrade
sudo rpi-update

These commands can be used alone or in combination, as shown
below:

sudo apt-get update && sudo apt-get upgrade && sudo apt-get
dist-upgrade & & sudo rpi-update

Note that you must type "sudo" at the start of each command to
tell the Raspberry Pi that you are a ""root" user. This enables you
to use all of the commands available in Linux without any
limitations.

Navigating through files and folders

To navigate through your files and directories, there are a few
commands you can use:

pwd: It stands for print working directory, and it tells you where you
are in the directory tree.

Is : displays a list of all the contents of the directory you're in.

Is —I: lists all of the files in the directory you're in and gives you further
information about them.

cd: This command is used to return to the root directory. When you
use “cd” with the name of another folder in the current directory,
however, you will be switched to that directory.

cd..: This command is used to return from one directory to another.
Performing file and folder operations

You may use following commands to execute tasks like creating new
folders, copying, moving, and deleting files and directories.

mkdir: for creating a new directory

Example: mkdir pidir will create a new directory, with the label
"pidir" as the name.

cp: you can use this command to copy files from one directory to
another.

Example: cp /home/pi/new/file.txt /home/pi/project/, copies the
file.txt from the /home/pi/new/ directory and pastes it into the
/home/pi/project/ directory.

mv: This will perform a cut-and-paste operation, moving the file from
one directory to another. This command, on the other hand, can be
used to rename file names in the same directory.

Example: mv /home/pi/new/file.txt /home/pi/project/ will copy
file.txt from /home/pi/new/ to /home/pi/project/.

Example: mv oldproject.txt newproject.txt will rename the file from
oldproject to newproject.

rm: This is handy for deleting files that are no longer needed.

Programming Raspberry PI

99

Physical Computing and
IoT Programming

100

Example: rm testfile.txt will remove testfile.txt from its current
directory.

clear: This clears all commands from the current screen and replaces
it with a fresh one.

Creating a new file and editing the contents

You may want to alter the contents of a file, such as a text file, after
you've created it. You might wish to use a command-line text editor
like GNU Nano for this. By running the command below, you will be
able to create a new file named newproject.txt or modify an existing
file named newproject.txt, and you will be given the option to add
content to it.

nano newproject.txt

By simply modifying the file format, such as newproject.py for
python files and newproject.conf for configuration files, you may
create or edit different types of files in the same way.

You'll be able to use arrow keys to browse around the newproject.txt
text file and type content inside it once it's been created. When you're
finished, press Ctrl+x on your keyboard, then Y when it asks if you
want to save it.

Raspberry Pi hardware information

You may need to check the hardware details on your Raspberry Pi
from time to time and be unsure how to do so. Don't be concerned. To
check all of the hardware details, use the instructions listed below.

cat /proc/cpuinfo : displays information about the processor.

cat /proc/meminfo : displays information on the Raspberry Pi's
memory.

cat /proc/partitions: shows the number and size of partitions on your
SD card.

cat /proc/version : tells you what Pi version you're running.

vcgencmd measure temp: displays the CPU temperature, which is
crucial to check if you're running heavy programmes and want to keep
an eye on the temperature.

free -0 -h: displays the amount of system memory available.

top d1 : This command examines the CPU load and shows
information for each core.

df -h: This command can be used to determine how much free disc
space your Raspberry Pi has.

uptime: this shows how long the Raspberry Pi has been running as
well as the load average.

° Troubleshoot Raspberry Pi hardware Programming Raspberry PI
If you're searching for a report on how the Raspberry Pi's CPU and
RAM are being used by running programs, run the following
command.

htop

This will allow you to see if a specific app is running as well as
determine which apps are slowing down your Raspberry Pi. You can
close this window by using ctrl+c.

Also, if you're having network problems, run the following
command to see a list of all the networks to which you're connected.

ifconfig

If you're using Ethernet, look for the ethO portion, and if you're using
Wi-Fi, look for the wlan0 section. You may also check out your IP
address.

o Shutdown and restart your Raspberry Pi

You may use a few of instructions to shut down or restart your
Raspberry Pi right away.

sudo shutdown -h now: This will turn off your Raspberry P1 right
away.

However, if you want a schedule to shut down in 2 hours, for
example, type the following command. -02:00 sudo shutdown

sudo reboot : This will restart your Raspberry Pi right away.

2.6 SUMMARY

This unit made us familiar with the fundamentals required for programming
Raspberry Pi. Starting with the operating system required by Raspberry Pi
that is Raspbian we saw different Linux commands used for Raspberry Pi
programming.

2.7 LIST OF REFERENCES

1) Mastering the Raspberry Pi, Warren Gay, Apress(2014)

2) https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-
Operating-System.pdf

3) https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners

4) https://www.geeksforgeeks.org/linux-commands/

101

https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-Operating-System.pdf
https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-Operating-System.pdf
https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners
https://www.geeksforgeeks.org/linux-commands/

Physical Computing and
IoT Programming

102

5) https://www.javatpoint.com/nodejs-tutorial

6) https://www.tutorialspoint.com/nodejs/index.htm

7) https://www.w3schools.com/python/

8) https://docs.python.org/3/tutorial/

9) https://www.javatpoint.com/python-tutorial

10) https://www.analog.com/en/analog-dialogue/articles/uart-a-
hardware-communication-protocol.html

11) https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=
1632378909735&ref url=https%253A%252F%252Fwww.google.c
om%?252F

12) https://www.seeedstudio.com/blog/2020/02/19/how-to-use-
raspberry-pi-gpio-pins-python-tutorial/

13) https://www.ti.com/lit/an/slva704/slva704.pdf?ts=
1632361805005&ref” url=https%253A%252F%252Fwww.google.c
om%252F

14) https://embetronicx.com/tutorials/tech_devices/i2¢c_1/

15) https://practicalee.com/spi/

16) http://events7.linuxfoundation.org/sites/events/files
/slides/Shuah_Khan_cross_compile_linux.pdf

17) https://projects.raspberrypi.org/en/projects/getting-started-with-
picamera

UNIT END EXERCISES

1] Write a note on Raspbian.

2] Explain the history and features of Raspbian.

3] Write a detailed note on different Linux commands.

4] State the various Linux commands for configuring the Raspberry Pi.

ke o o ke o e e

https://www.javatpoint.com/nodejs-tutorial
https://www.tutorialspoint.com/nodejs/index.htm
https://www.w3schools.com/python/
https://docs.python.org/3/tutorial/
https://www.javatpoint.com/python-tutorial
https://www.analog.com/en/analog-dialogue/articles/uart-a-hardware-communication-protocol.html
https://www.analog.com/en/analog-dialogue/articles/uart-a-hardware-communication-protocol.html
https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.seeedstudio.com/blog/2020/02/19/how-to-use-raspberry-pi-gpio-pins-python-tutorial/
https://www.seeedstudio.com/blog/2020/02/19/how-to-use-raspberry-pi-gpio-pins-python-tutorial/
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://embetronicx.com/tutorials/tech_devices/i2c_1/
https://practicalee.com/spi/
http://events17.linuxfoundation.org/sites/events/files%20/slides/Shuah_Khan_cross_compile_linux.pdf
http://events17.linuxfoundation.org/sites/events/files%20/slides/Shuah_Khan_cross_compile_linux.pdf
https://projects.raspberrypi.org/en/projects/getting-started-with-picamera
https://projects.raspberrypi.org/en/projects/getting-started-with-picamera

PROGRAMING INTERFACES

Unit Structure

3.0 Objectives
3.1 Introduction to Node.js
3.1.1 Why should you use Node.js?
3.2.2 Features of Node.js
3.1.3 Who makes use of Node.js?
3.1.4 When should you use Node.js?
3.1.5 When will you avoid using Node.js?
3.1.6 Components of Node.js
3.1.7 Node.js frameworks and tools
3.2 Python
3.2.1 Python 2 Vs Python 3
3.2.2 History of Python
3.2.3 Why to learn Python?
3.2.4 Characteristics of Python
3.2.5 Applications of Python
3.3 Summary
3.4 List of References
3.5 Unit End Exercises

3.0 OBJECTIVES

After going through this unit, you will be able to:

. Acquaint with the programming concepts and its real-world
applications

. To understand the fundamentals and applications of Node.js

° To introduce with the cores and significance of python and its
applications in several domain

3.1 INTRODUCTION TO NODE.JS

Node.js is a cross-platform environment and framework for running
JavaScript applications, and it's commonly used to build networking and
server-side applications. Node.js is a cross-platform runtime environment
and framework for executing JavaScript outside of the browser. It's used to

103

Physical Computing and
IoT Programming

104

make server-side and network web applications. It's free to use and open
source. It is available for download at https://nodejs.org/en/.

Node.js is a real-time online application framework that uses an event-
driven architecture and a non-blocking Input/ Output API to improve
throughput and scalability. The frameworks available for web development
for a long time were all based on a stateless approach. A stateless model is
one in which the data generated in one session (such as user settings and
events) is not saved for use in a subsequent session with that user. It took a
lot of effort to keep track of a user's session information between requests.
However, with Node.js, web applications may now have real-time two-way
connections, where both the client and the server can initiate
communication and freely share data.

3.1.1 WHY SHOULD YOU USE NODE.JS?

Let's look at what makes this framework so popular. The majority of the
applications were built using a stateless request-response framework over
time. In these kinds of apps, it's up to the developer to make sure the correct
code was written to keep the user's web session alive as they worked with
the system.

You may now work in real-time and have two-way communication with
Node.js web applications. The state is preserved, and the communication
can be initiated by either the client or the server.

3.1.2 FEATURES OF NODE.JS
Let's take a look at some of Node.js' most important features.

1] Concurrent request processing is aided by asynchronous event-driven
10, which is undoubtedly Node.js' most compelling feature. This
functionality essentially means that whenever Node receives a request
for an Input /Output operation, it will do the action in the background
while continuing to process other requests. This differs from other
programming languages in several ways. The code below shows a
simple example of this-

var fs = require('fs");
fs.readFile("Sample.txt",function(error,data)

{

console.log("Reading Data completed");
$);

. The code line above examines reading a file named Sample.txt.
In other programming languages, the next line of processing
would take place only after the full file has been read.

° However, in the case of Node.js, the definition of the function
(‘function(error,data)’) is the most significant part of the code to
pay attention to. A callback function is what this is called.

https://nodejs.org/en/

2

3]

4]

5]

. So, in this case, the file reading activity will begin in the
background. While the file is being read, other processing can
take place at the same time. This anonymous function will be
called whenever the file read process is complete, and the text
"Reading Data done" will be written to the console log.

The V8 JavaScript Runtime engine, which is also utilized by Google
Chrome, is used by Node. Node features a wrapper for the JavaScript
engine that speeds up the runtime engine and, as a result, the
processing of requests within Node.

Concurrent request handling - Another important feature of Node is
its ability to manage several connections with very little overhead in
a single process.

JavaScript is used by the Node.js library, which is another crucial part
of Node.js development. Because a large portion of the development
community is already familiar with javascript, developing with
Node.js becomes easier for those who are.

The Node.js framework has a thriving and active community. Because
of the active community, major upgrades to the framework are always
available. This ensures that the framework is always up to date with
the current web development trends.

3.1.3 WHO MAKES USE OF NODE.JS?

Many significant corporations use Node.js. A couple of them are listed
below.

Paypal - A number of sites within Paypal have begun to migrate to
Node.js.

LinkedIn - LinkedIn's Mobile Servers, which run the iPhone,
Android, and Mobile Web products, are powered by Node.js.

Node.js, which has a half-billion instals, was used by Mozilla to
support browser APIs.

eBay's HTTP API service is hosted in Node.js.

3.1.4 WHEN SHOULD YOU USE NODE.JS?

1]

2]

3]

Node.js is ideally suited for use in real-time streaming or event-based
systems like Applications for chatting

Game servers - If you need a fast and high-performance server that
can handle thousands of requests at once, this is the framework for
you.

Good for collaborative workplaces - This is ideal for document
management setups. Multiple persons will submit their documents
and make frequent modifications by checking out and checking in
documents in a document management environment. Because the

Programming Interfaces

105

Physical Computing and
IoT Programming

106

4]

3]

event loop in Node.js can be triggered anytime documents are
modified in a document managed environment, its ideal for these
setups.

Advertisement servers - You may receive thousands of requests to
extract adverts from a central server, and Node.js is an excellent
foundation for this.

Multimedia streaming servers - Another suitable scenario for Node is
for multimedia streaming servers, where clients request various
multimedia materials from the server.

When you require a lot of parallelism but not a lot of devoted CPU
time, Node.js is a smart choice.

Best of all, because Node.js is based on JavaScript, it works best when
creating client-side applications that use the same framework.

3.1.5 WHEN WILL YOU AVOID USING NODE.JS?

Node.js can be used in a variety of applications for different reasons. The
only time it should not be used is when the program requires significant
processing durations. Node is designed to run in a single thread. If an
application is required to perform some lengthy calculations in the
background, it will be unable to handle any further requests. As previously
said, Node.js is best used when processing requires less devoted CPU time.

3.1.6 COMPONENTS OF NODE.JS

The figure below depicts several key components of Node.js:

Buffer Modules Debugger

N

Streaming Console

DMNS Cluster
Domain Add-ons
Global Callback
Net Error Handling Crypto

Figure 1.1 Components of Node.js

3.1.7 NODE.JS FRAMEWORKS AND TOOLS

Node.js is a low-level programming language. Thousands of libraries were
written on Node.js by the community to make things easier and more
exciting for developers. Many of these have become popular options over
time. The following is a partial list of the ones worth learning:

AdonisJS: It is a TypeScript-based, full-featured framework that
prioritizes developer comfort, stability, and confidence. Adonis is a
Node.js web framework that is one of the quickest.

Egg.js: It is a framework that uses Node.js and Koa to create better
enterprise frameworks and apps.

Express: It's one of the simplest yet most powerful ways to set up a
web server. Its success is due to its minimalist approach, which is
unprejudiced and focused on the essential qualities of a server.

Fastify: It is a web framework that focuses on giving developers the
best possible experience with the least amount of overhead and a
flexible plugin architecture. Fastify is a Node.js web framework that
is one of the fastest.

FeatherJS: It is a lightweight web framework that uses JavaScript or
TypeScript to create real-time apps and REST APIs. Prototypes may
be created in minutes, and production-ready apps can be developed in
days.

Gatsby: It is a static site generator built on React and powered by
GraphQL, with a large ecosystem of plugins and starters.

Hapi: It is a sophisticated framework for developing apps and
services that allows developers to focus on defining reusable
application logic rather than infrastructure.

koa: It was created by the same team who created Express, and it
strives to be even simpler and smaller, based on years of experience.
The desire to make incompatible changes without disrupting the
existing community spawned the new project.

Loopback.io: Makes it simple to create modern apps with complex
integrations.

Meteor is a full-stack framework with an isomorphic approach to
building apps using JavaScript that allows you to share code between
the client and the server. Formerly an all-in-one tool, it now interfaces
with the frontend libraries React, Vue, and Angular. It's also possible
to make mobile apps with it.

Micro: It creates asynchronous HTTP microservices using a very
light server.

NestJS is a TypeScript-based progressive Node.js framework for
creating enterprise-grade server-side apps that are quick, dependable,
and scalable.

Next.js: A React framework with all the capabilities you need for
production, including hybrid static and server rendering, TypeScript
support, smart bundling, route pre-fetching, and more.

Programming Interfaces

107

Physical Computing and
IoT Programming

108

. Nx: It is a full-stack monorepo development toolkit that includes
NestJS, Express, React, Angular, and more. Nx enables you to scale
your development from a single team producing a single app to
several teams working on multiple apps!

o Sapper: Sapper is a web application framework with a beautiful
development experience and configurable filesystem-based routing
for web applications of all sizes. Offers SSR as well as other services!

. Socket.io: It is a network application development platform that uses
real-time communication.

. Strapi: Strapi is an open-source Headless CMS that allows
developers to use their preferred tools and frameworks while also
allowing editors to manage and distribute their content simply. Strapi
helps the world's largest enterprises to expedite content delivery while
creating stunning digital experiences by making the admin panel and
API expandable through a plugin system.

3.2 PYTHON

Python is a dynamic, high-level, and interpreted programming language
with a wide range of applications. It supports the development of
applications using an Object-Oriented programming approach. It's simple
and straightforward to learn, and it comes with a plethora of high-level data
structures. Python is a scripting language that is simple to learn but powerful
and versatile, making it ideal for application development. Python's syntax
and dynamic typing, combined with the fact that it is interpreted, make it an
excellent language for scripting and rapid application development. Python
supports a variety of programming techniques, including object-oriented,
imperative, functional, and procedural.

Python is not designed for a specific task, such as web programming.
Because it can be used with web, enterprise, 3D CAD, and other
applications, it is known as a multipurpose programming language. Because
variables are dynamically typed, we don't need to use data types to declare
them. For example, we can write a=10 to assign an integer value to an
integer variable. Python allows for quick development and debugging
because there is no compilation step in the development process, and the
edit-test-debug cycle is very short.

3.2.1 PYTHON 2 Vs. PYTHON 3

When a new version of a programming language is released, it usually
supports the features and syntax of the previous version, making it easier
for projects to switch to the newer version. However, when it comes to
Python, the two versions, Python 2 and Python 3, are vastly different.

The following is a list of differences between Python 2 and Python 3:

1] Printis a statement in Python 2 that can be used as print "something"
to print a string to the console. Print, on the other hand, is a function

in Python 3 that can be used as print("something") to print something
to the console.

2] Rawinput () is a function in Python 2 that accepts user input. It returns
a string that represents the value entered by the user. To convert it into
the integer, we need to use the int () function in Python. On the other
hand, Python 3 uses input () function which automatically interpreted
the type of input entered by the user. However, we can cast this value
to any type by using primitive functions (int (), str (), etc.).

3] In Python 2, the implicit string type is ASCII, whereas, in Python 3,
the implicit string type is Unicode.

4] The xrange() function from Python 2 is not available in Python 3. The
xrange() function is a variant of the range() function that returns an
xrange object that works in the same way as a Java iterator. The
range() returns a list for example the function range(0,3) contains 0,
1,2.

5] There is also a small change made in Exception handling in Python 3.
It defines a keyword as which is necessary to be used. We will discuss
it in Exception handling section of Python programming tutorial.

3.2.2 HISTORY OF PYTHON

Python was fabricated by Guido Van Rossum in 1991 at CWI in Netherland.
The thought of Python programming language has taken from the ABCs
programming language or we can say that ABCs may be a precursor of
Python language. There is additionally a logic behind the selection of a
name Python. Guido Van Rossum was an exponent of the popular BBC
comedy show “Monty Python’s Flying Circus” at that era. Therefore, he
decided to choose the name Python for his new created programming
language. Python has the large community across the globe and releases its
version inside the short amount.

3.2.3 WHY TO LEARN PYTHON?

Python is a scripting language that is high-level, interpreted, interactive, and
object-oriented. Python is intended to be a very understandable language. It
typically uses English terms instead of punctuation, and it has fewer
syntactical structures than other languages.

Python is a must-have skill for students and working professionals who
want to become exceptional software engineers, especially if they work in
the Web Development field. Here some of the primary benefits of learning
Python are discussed:

1] Python is Interpreted Python is handled by the interpreter during
runtime. Before running your software, you do not need to assemble
it. This is similar to the programming languages PERL and PHP.

2] Python is interactive in the sense that you can sit at a Python prompt
and write your programs by interacting directly with the interpreter.

Programming Interfaces

109

Physical Computing and
IoT Programming

110

4]

Python is Object-Oriented Python supports the Object-Oriented
programming style or approach, which encapsulates code inside
objects.

Python is a Fantastic Language for Beginners Python is a great
language for beginners because it allows you to create a wide range
of programs, from simple text processing to web browsers and games.

3.2.4 CHARACTERISTICS OF PYTHON

The following are some of the most important features of Python
programming:

It supports OOP as well as functional and structured programming
methods.

It can be used as a scripting language or compiled into byte-code for
large-scale application development.

It provides very high-level dynamic data types and supports dynamic
type checking.

It supports automatic garbage collection.

It can be easily integrated with C, C++, COM, ActiveX, CORBA, and
Java

3.2.5 APPLICATIONS OF PYTHON

As mentioned before, Python is one of the most widely used languages over
the web. Few of the applications are discussed here:

Easy-to-learn — Python has few keywords, simple structure, and a
clearly defined syntax. This allows the student to pick up the language
quickly.

Easy-to-read — Python code is more clearly defined and visible to the
eyes.

Easy-to-maintain — Python's source code is fairly easy-to-maintain.
A broad standard library — Python's bulk of the library is very portable
and cross-platform compatible on UNIX, Windows, and Macintosh.
Interactive Mode — Python has support for an interactive mode which
allows interactive testing and debugging of snippets of code.

Python is portable, meaning it can run on a wide range of hardware
systems and has the same user interface across all of them.

The Python interpreter can be extended by adding low-level modules.
These modules allow programmers to improve the efficiency of their
tools by adding to or customizing them.

Python has interfaces to all of the major commercial databases.
Python supports GUI applications that can be created and ported to a
variety of system calls, libraries, and operating systems, including
Windows MFC, Macintosh, and Unix's X Window system.

Python is more scalable than shell scripting in terms of structure and
support for large programs.

3.3 SUMMARY

Python is a scripting language that is high-level, interpreted, interactive, and
object-oriented. Python is intended to be a very understandable language. It
typically uses English terms instead of punctuation, and it has fewer
syntactical structures than other languages.

Node.js (Node) is an open source server-side execution platform for
JavaScript code. Node is commonly used for real-time applications like as
chat, news feeds, and web push notifications and is useful for designing
apps that require a persistent connection from the browser to the server.

3.4 LIST OF REFERENCES

1) Mastering the Raspberry Pi, Warren Gay, Apress(2014)

2) https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-
Operating-System.pdf

3) https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners

4) https://www.geeksforgeeks.org/linux-commands/

5) https://www.javatpoint.com/nodejs-tutorial

6) https://www.tutorialspoint.com/nodejs/index.htm

7) https://www.w3schools.com/python/

8) https://docs.python.org/3/tutorial/

9) https://www.javatpoint.com/python-tutorial

10) https://www.analog.com/en/analog-dialogue/articles/uart-a-
hardware-communication-protocol.html

11) https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=
1632378909735&ref url=https%253A%252F%252Fwww.google.c
om%252F

12) https://www.seeedstudio.com/blog/2020/02/19/how-to-use-
raspberry-pi-gpio-pins-python-tutorial/

13) https://www.ti.com/lit/an/slva704/slva704.pdf?ts=
1632361805005&ref url=https%253A%252F%252Fwww.google.c
om%?252F

14) https://embetronicx.com/tutorials/tech_devices/i2¢c_1/

15) https://practicalee.com/spi/

16) http://events]7.linuxfoundation.org/sites/events/files
/slides/Shuah_Khan_cross_compile_linux.pdf

17) https://projects.raspberrypi.org/en/projects/getting-started-with-
picamera

3.5 UNIT END EXERCISES

1] Write a short note on Node.js.
2] Discuss the concept of Python.

ke o o ke o e sk

Programming Interfaces

111

https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-Operating-System.pdf
https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-Operating-System.pdf
https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners
https://www.geeksforgeeks.org/linux-commands/
https://www.javatpoint.com/nodejs-tutorial
https://www.tutorialspoint.com/nodejs/index.htm
https://www.w3schools.com/python/
https://docs.python.org/3/tutorial/
https://www.javatpoint.com/python-tutorial
https://www.analog.com/en/analog-dialogue/articles/uart-a-hardware-communication-protocol.html
https://www.analog.com/en/analog-dialogue/articles/uart-a-hardware-communication-protocol.html
https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.seeedstudio.com/blog/2020/02/19/how-to-use-raspberry-pi-gpio-pins-python-tutorial/
https://www.seeedstudio.com/blog/2020/02/19/how-to-use-raspberry-pi-gpio-pins-python-tutorial/
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://embetronicx.com/tutorials/tech_devices/i2c_1/
https://practicalee.com/spi/
http://events17.linuxfoundation.org/sites/events/files%20/slides/Shuah_Khan_cross_compile_linux.pdf
http://events17.linuxfoundation.org/sites/events/files%20/slides/Shuah_Khan_cross_compile_linux.pdf
https://projects.raspberrypi.org/en/projects/getting-started-with-picamera
https://projects.raspberrypi.org/en/projects/getting-started-with-picamera

Physical Computing and
IoT Programming

RASPBERRY PI INTERFACES

Unit Structure

4.0 Objectives
4.1 UART
4.1.1 Introduction to UART communication
4.1.2 Why UART is used?
4.1.3 Block Diagram
4.1.4 How UART works
4.1.5 Steps of UART transmission
4.1.6 Advantages of UART
4.1.7 Disadvantages of UART
4.2 GPIO
4.2.1 Purpose of the peripheral
4.2.2 Features
4.2.3 Functional block diagram
4.2.4 Raspberry Pi1 GPIO pinout
4.2.5 Configuring GPIO pin
4.2.6 Essential products for Raspberry Pi GP1IO
43 12C
4.3.1 Working of 12C
4.3.2 12C data transmission steps
4.3.3 Single master multiple slaves
4.3.4 Multiple master multiple slaves
4.3.5 Advantages
4.3.6 Disadvantages
4.4 SPI
4.4.1 SPI interface
4.4.2 Characteristics of SPI bus
4.4.3 Multi-device topologies
4.4.4 SPI data transmission steps
4.4.5 Advantages
4.4.6 Disadvantages
4.4.7 Applications
4.5 Summary
4.6 List of References

4.7 Unit End Exercises
112

4.0 OBJECTIVES

After going through this unit, you will be able to:

° Understand the concept and applications of communication interfaces

° Introduce with various raspberry pi communication interfaces such as
UART, GPIO, I2C, SPI along with its characteristics, working and its
applications point of view

4.1 UART

Universal Asynchronous Receiver/Transmitter (UART) is an acronym for
Universal Asynchronous Receiver/Transmitter. It is a physical circuit in a
microcontroller or a stand-alone IC, not a communication protocol like SPI
or 12C. The primary function of a UART is to transmit and receive serial
data.

4.1.1 INTRODUCTION TO UART COMMUNICATION

Two UARTs communicate directly with each other in UART
communication. The transmitting UART translates parallel data from a
controlling device, such as a CPU, into serial data and sends it to the
receiving UART, which then converts the serial data back into parallel data
for the receiving device. To send data between two UARTS, only two wires
are required. Data transfers from the transmitting UART's Tx pin to the
receiving UART's Rx pin:

UART 1 UART 2

Tx

Hx

UARTS send data asynchronously, which means there is no clock signal to
synchronize the transmitting UART's output of bits with the receiving
UART's sampling of bits. The transmitting UART adds start and stop bits
to the data packet being transferred instead of a clock signal. These bits
indicate the start and end of the data packet, allowing the receiving UART
to determine when to begin reading the bits.

When a start bit is detected by the receiving UART, it begins reading the
incoming bits at a particular frequency known as the baud rate. The baud
rate is a unit of measurement for data transfer speed, given in bits per second
(bps). Both UARTs must communicate at a similar baud rate. The baud rate

Raspberry PI Interfaces

113

Physical Computing and
IoT Programming

114

difference between the transmitting and receiving UARTSs can only be about
10% before the bit timing becomes too off. Both UARTSs must also be set
up to send and receive data packets with the same structure.

4.1.2 WHY UART IS USED?

For quick communication, protocols such as SPI (serial peripheral interface)
and USB (universal serial bus) are employed. UART is utilized when high-
speed data transport is not necessary. It's a low-cost communication device
that only has one transmitter and receiver. It only requires one wire for data
transmission and another for data reception. An RS232-TTL or USB-TTL
converter can be used to connect it to a PC (personal computer). The only
thing that RS232 and UART have in common is that they both transmit and
receive data without the use of a clock. For serial data transport, the UART
frame comprises of one start bit, one or two stop bits, and a parity bit.

PC
TKI | RX
Microcontroller - RS232
OR | — UART OR
Microprocessor USB

Figure 4.2 UART interface
4.1.3 BLOCK DIAGRAM

The fundamental components of the UART are as follows. They are the
transmitter and the receiver, respectively. The Transmit hold register,
Transmit shift register, and control logic make up the transmitter. A Receive
hold register, Receiver shift register, and control logic are also present in
the receiver. A baud rate generator is included in both the transmitter and
the receiver.

Transmitter Receiver

* A

Transmit hold Receiver hold
Register Register

Transmit shift =D Receiver shift RxD
Register Register

N ¥

Control Baud rate Control

Logic | generator J Logic

Figure 4.3 UART block diagram

The baud rate generator determines how fast the transmitter and receiver
must send and receive data. The data byte to be transmitted is stored in the
Transmit hold register. The bits are shifted to the left or right in the transmit
and receive shift registers until a byte of data is transferred or received.

A read or write control logic is also provided to determine when to read or
write. The baud rate generator can produce speeds ranging from 110 bps to
230400 bps. For faster data transfer, microcontrollers typically use higher
baud rates such as 115200 and 57600. Slower baud rates of 4800 and 9600
are used by devices like GPS and GSM.

4.1.4 HOW UART WORKS

The data for the UART that will transmit it comes from a data bus. Another
device, such as a CPU, RAM, or microcontroller, uses the data bus to deliver
data to the UART. Data is sent in parallel from the data bus to the
transmitting UART. After receiving parallel data from the data bus, the
transmitting UART creates the data packet by adding a start bit, a parity bit,
and a stop bit. The data packet is then serially output at the Tx pin, bit by
bit. The Rx pin on the receiving UART reads the data payload bit by bit.
The data is subsequently converted back into parallel form and the start,
parity, and stop bits are removed by the receiving UART. Finally, the
receiving UART sends the data packet to the data bus on the receiving end
in parallel.

DATA BUS UART 1 UART 2 DATA BUE
bil) ——p —l Bl O
Bl 1 e— —e 111 1
bit 2 —————p —p bit 2
il) — —de bl 3
Bl & — —l bl 4
Bt) — — it S
BT 0 — —l il
Bit T —— —_— bt T

The data sent over UART is divided into packets. Each packet has one start
bit, five to nine data bits (depending on the UART), an optional parity bit,
and one or two stop bits.

Packet
0D io 1 =
1 stan S to © data bils parnty ‘o3
bit hite stop bits

e, —

Data Frame

Raspberry PI Interfaces

115

Physical Computing and
IoT Programming

116

Start Bit

When the UART data transmission line is not transmitting data, it is
generally held at a high voltage level. The transmitting UART pulls the
transmission line from high to low for one clock cycle to initiate data
transfer. When the receiving UART detects a high-to-low voltage transition,
it starts reading the bits in the data frame at the baud rate's frequency.

Data Frame

The actual data being sent is contained in the data frame. If a parity bit is
employed, it can be anything from 5 to 8 bits long. The data frame can be 9
bits long if no parity bit is used. The data is usually delivered with the least
significant bit first.

Parity

The evenness or oddness of a number is described by parity. The receiving
UART uses the parity bit to determine if any data has changed during
transmission. Electromagnetic radiation, mismatched baud rates, and long-
distance data transmissions can all alter bits. After reading the data frame,
the receiving UART counts the number of bits with a value of 1 and
determines whether the total is even or odd. The 1 bits in the data frame
should amount to an even number if the parity bit is a 0 (even parity). The
1 bits in the data frame should sum to an odd number if the parity bitis a 1
(odd parity). The UART understands that the transmission was error-free
when the parity bit matches the data. The UART knows that bits in the data
frame have changed if the parity bit is a 0 and the total is odd; or if the parity
bit is a 1 and the total is even.

Stop bit

The sending UART drives the data transmission line from a low voltage to
a high voltage for at least two bit lengths to signify the end of the data
packet.

4.1.5 STEPS OF UART TRANSMISSION

1. The transmitting UART receives data from the data bus in parallel.
TRAMSEMITTING

DATA BUS UART
L
1— T
00— .
00—
L —y -

11—
e —

11— g

2. The starting bit, parity bit, and stop bit(s) are added to the data frame Raspberry PI Interfaces
by the transmitting UART.

TRANSMITTING UART

01001101
A

F s TA FHRAME

+0

S AT BN

3. From the transmitting UART to the receiving UART, the full packet
is transferred serially. The data line is sampled by the receiving UART
at the specified baud rate.

TRANSMITTING RECEIVING
UART UART
1 o 1 o 1 1 ad o 1 o ad
» Hx

4. The data frame's start, parity, and stop bits are discarded by the
receiving UART.

RECEIVING UART

01001101

DAsTA FHAME

= Al BN

5. On the receiving end, the receiving UART translates the serial data to
parallel and transfers it on the data bus.

117

Physical Computing and
IoT Programming

118

RECEIVING
UART

4.1.6 ADVANTAGES OF UART

° Only two wires are used.
. There is no need for a clock signal.
° Has a parity bit that can be used to check for errors.

. The data packet's structure can be modified as long as both sides are
prepared.

. This approach is well-documented and commonly used.

4.1.7 DISADVANTAGES OF UART

. The data frame size is restricted to a maximum of 9 bits.
. Multiple slave or master systems are not supported.
. Each UART's baud rates must be within ten percent of one another.

4.2 GPIO

GPIO, or General-Purpose Input Output, is a standard interface for digital
input and output found on microcontrollers and SBCs. It enables these
devices to control external components such as motors and infrared
transmitters (output) as well as receive data from sensor modules and
switches (input). In essence, GPIO allows our Raspberry Pi to communicate
with a wide range of external components, making it useful for projects
ranging from a weather station to a self-driving robot. Software
configurations will be necessary for GPIO pins to work. Don't worry;
beginner-friendly Python packages like GPIOzero exist to make physical
computing more accessible to everyone. GPIO access libraries such as
wiringPI are also available for more experienced programmers who prefer
C or C++.

Figure 1.4 Raspberry Pi4 40 Pin GPIO Header

4.2.1 PURPOSE OF THE PERIPHERAL

In order to interact with other components in the system via low-speed
interface pins, most devices require some general-purpose input/output
(GPIO) functionality. The GPIO peripheral is where you may control and
use the GPIO capability on this device.

4.2.2 FEATURES
The following are the characteristics of the GPIO peripheral.

. Separate data set and clear registers provide output set/clear
capabilities, allowing several software processes to control GPIO
signals without compromising crucial section protection.

. Set/clear functionality is also supported by writing to a single output
data register.

. Input/output registers are separated

. The output register can be read to see the status of the output
drive.

. The input register can be read to see the status of the pins.

. With adjustable edge detection, all GPIO signals can be used as
interrupt sources.

. All GPIO signals can be used to send EDMA messages.

Raspberry PI Interfaces

119

https://www.seeedstudio.com/Raspberry-Pi-4-Computer-Model-B-4GB-p-4077.html?utm_source=blog&utm_medium=blog

Physical Computing and 4.2.3 FUNCTIONAL BLOCK DIAGRAM

IoT Programming

Figure 1.5 below represents the GPIO peripheral block diagram

DIR Direction
register logic

L

SET_DATA
register

GPIO
signal

OUTDATA

CLR_DATA register
register

Synchronizing flip-flops

INDATA
register

"
*

SET_RIS_TRIG
register

k4

Interrupt to
DSP CPU

CLR_RIS_TRIG N .
register " dge

= detection

SET_FAL_TRIG logic
register

4

l—» EDMA event

CLR_FAL_TRIG
register

L 3

INSTAT
register

F Y

Figure 1.5 GPIO peripheral block diagram
4.2.4 RASPBERRY PI GPIO PINOUT

On the GPIO header of the Raspberry Pi B+, 2, 3, Zero, or the latest
Raspberry Pi 4 Model B, you'll find a total of 40 GPIO pins. Older RPI
models, such as the Raspberry Pi Model B, only have 26 pins.

' ~
3v3 power o o 5V power
GPIO 2 (SDA) = o BV power
GPI0 3 (SCL) o Ground
GPIO 4 (GPCLKD) o o GPIO 14 (TXD)
Ground o o GPI0 15 (RXD)
GPIO 17 o o GPIO 18 (PCM_CLK)
GPIO 27 o o Ground
GPIO 22 o o GPIO23
3V3 power o) o GPIO24
GPIO 10 (MOSI) =) o Ground
GPI0 9 (MISO) =] o GPIO 25
GPIO 11 (SCLK) o o o GPIO B (CEO)
Ground 30 o GPIOT (CET)
GPIOO (ID.SD) © GG o GPIO1(ID_SC)
GPIO 5 o (0 o Ground
GPIO 6 o 00 o GPI0 12 (PWMO)
GPIO 13 (PWM1) G0 o Ground
GPI0 19 (PCM_FS) o L0 o GPIO16
GPIO 26 o) o GPIO 20 (PCM_DIN)
Ground o 230 o GPIO 21 (PCM_DOUT)

Figure 1.6 Raspberry Pi4 GPIO pin header
120

https://www.seeedstudio.com/Raspberry-Pi-4-Computer-Model-B-4GB-p-4077.html?utm_source=blog&utm_medium=blog

Each pin on the 40-pin header has a specific purpose. In the table below, the
various categories are described.

GPIO pin Pin functionality
type

GPIO GPIO pins are general — purpose pins that can be used to
switch external devices on and off, such as an LED.

Power

External components are supplied with 5V and 4.3V po
wer via the 5V and 3V3 pins.

12C I2C pins are used to connect and communicate with
external modules that are I12C compliant.

SPI Hardware communication is also done via SPI (Serial
Peripheral Interface Bus) pins, although with a different
protocol.

UART For serial communication, UART (Universal
Asynchronous Receiver/Transmitter) pins are utilized.

DNC DNC (Do Not Connect) pins should be avoided at all
costs.

GND GND (Ground) pins are pins in your circuits that offer
electrical grounding.

4.2.5 CONFIGURING GPIO PIN

You can skip these steps and get right into programming with GPIO if
you're using the latest version of Raspberry Pi OS.

Otherwise, you'll have to update your RPI with the following commands
in the serial terminal:

sudo apt-get update
sudo apt-get upgrade

If you don't have the GPIO package loaded for some reason, execute the
following command to install it:

sudo apt-get install rpi.gpio
4.2.6 ESSENTIAL PRODUCTS FOR RASPBERRY PI GPIO
° Grove Base Hat for Raspberry Pi

The Grove Base Hat adds 15 Grove connectors to the Raspberry Pi's
initial 40 GPIO pins, extending the device's capabilities. Grove is a
modular, standardized connector system that eliminates the need for
jumper wires or solder for rapid and easy electronics prototyping.

Raspberry PI Interfaces

121

https://www.seeedstudio.com/Grove-Base-Hat-for-Raspberry-Pi.html

Physical Computing and
IoT Programming

122

Figure 1.7 Grove Base Hat for Raspberry Pi

The Grove Base Hat allows the Raspberry Pi to connect to the Grove
ecosystem, which includes over 300 sensors, actuators, and
communication modules. Getting started with Raspberry Pi GPIO
projects has never been easier than it is now, thanks to Grove's
libraries and clear documentation.

° Raspberry Pi 40pin to 26pin GPIO Board

This 40-Pin to 26-Pin GPIO adapter board will come in handy if you
have older Raspberry Pi accessories that were designed for the
original 26-Pin layout. This GPIO board transforms the latest
Raspberry Pi models' 40-pin header to the original 26-pin layout,
allowing you to use your existing Raspberry Pi accessories.

4.3 12C

12C brings together the greatest aspects of SPI and UARTSs. Numerous
slaves can be connected to a single master (like SPI) via 12C, and multiple
masters can control single or multiple slaves. When you wish to have
multiple microcontrollers logging data to a single memory card or
displaying text on a single LCD, this is really beneficial.

https://www.seeedstudio.com/Raspberry-Pi-A-B-2-40pin-to-26pin-GPIO-Board-p-2190.html?utm_source=blog&utm_medium=blog

12C employs only two wires to send data between devices, similar to UART
communication.

Master Slave

>

>

. SDA (Serial Data): The data transmission and reception line between
the master and slave.

o Serial Clock Line (SCL): This is the line that carries the clock signal.

12C is a serial communication technology, which means data is sent bit by
bit over a single wire (the SDA line).

12C, like SPI, is synchronous, which means that a clock signal shared by the
master and slave synchronizes the output of bits with the sampling of bits.
The master is always in charge of the clock signal.

4.3.1 WORKING OF 12C

12C sends data in the form of messages. Frames of data are used to break up
messages. Each message consists of an address frame with the slave's binary
address and one or more data frames containing the data to be delivered.
Between each data frame, the message additionally comprises start and stop
conditions, read/write bits, and ACK/NACK bits:

Message
Raad/ ALK ACK ACK

Start 7 or 10 Bits wite |uack| B Bits |wack| B Bits |nack| Step

Bit Bl B Bt

——

Address Frame Data Frame 1 Data Frame 2

Start Condition Stop Condition

. Start Condition: Before the SCL line shifts from high to low voltage,
the SDA line switches from high to low voltage.

° Stop Condition: After the SCL line switches from low to high voltage,
the SDA line switches from low to high voltage.

° Address frame: When the master wants to talk to a slave, it uses an
address frame, which is a 7- or 10-bit sequence that uniquely identifies
the slave.

Raspberry PI Interfaces

123

Physical Computing and
IoT Programming

124

Read/Write bit: A single bit indicating whether the master is
providing data to the slave (low voltage level) or requesting data from
it (high voltage level) (high voltage level).

ACK/NACK Bit: An acknowledge/no-acknowledge bit follows each
frame in a communication. The receiving device returns an ACK bit
to the sender if an address frame or data frame was successfully
received.

Addressing

Because 12C lacks slave select lines like SPI, it requires a different
method of informing the slave that data is being transmitted to it and
not to another slave. It accomplishes this through addressing. In a new
message, the address frame is always the first frame after the start bit.

Every slave connected to the master receives the address of the slave
with whom it wishes to interact. After that, each slave compares the
address sent by the master to its own. It sends a low voltage ACK
signal back to the master if the addresses match. The slave does
nothing if the addresses do not match, and the SDA line remains high.

Read/Write bit

A single bit at the end of the address frame tells the slave whether the
master wishes to write data to it or receive data from it. The read/write
bit is a low voltage level if the master wants to send data to the slave.
The bit is a high voltage level if the master is seeking data from the
slave.

Data Frame

The initial data frame is ready to be delivered after the master detects
the ACK signal from the slave.

The data frame is always 8 bits long, and the most significant bit is
always sent first. Each data frame is immediately followed by an
ACK/NACK bit to confirm that it was successfully received. Before
the next data frame can be delivered, the ACK bit must be received
by either the master or the slave (depending on who is transmitting
the data).

The master can send a stop condition to the slave to interrupt the
transmission when all of the data frames have been sent. After a low
to high transition on the SCL line, the stop condition is a voltage
transfer from low to high on the SDA line, with the SCL line
remaining high.

4.3.2 12C DATA TRANSMISSION STEPS

Before moving the SCL line from high to low, the master sends the
start condition to all linked slaves by switching the SDA line from
high to low voltage:

Slave 1 Raspberry PI Interfaces

Slastar Slave 2

Slave 3

i

2. The master sends the read/write bit and the 7 or 10 bit address of the
slave it wants to connect with to each slave:

Slave 1
Master Slave 2

Slave 3
et _”_‘H
- LITLS ML
3. Each slave checks the address sent by the master against its own. The
slave returns an ACK signal by pulling the SDA line low for one bit

if the addresses match. The slave leaves the SDA line high if the
master's address does not match the slave's own address.

Slave 1

o M,

Master Slave 2

+ f— UL

Slave 3

125

Physical Computing and
IoT Programming

126

4.

The data frame is sent or received by the master:

Slave 1

coroe11 01

i "

g MrLLInnn,

Master Slave 2

Slave 3

The receiving device sends another ACK bit to the sender after each
data frame has been delivered to acknowledge successful reception of
the frame:

-

Slave

Master

The master transmits a stop condition to the slave by switching SCL
high before switching SDA high to cease data transmission:

Slave 1
@ 191101

" R B R Ry Ty 1ol i H

Master Slave 2

* *
= =
- .

Slave 3

|

4.3.3 SINGLE MASTER MULTIPLE SLAVES

Because 12C employs addressing, a single master can control numerous
slaves. There are 128 (27) unique addresses possible using a 7 bit address.
It's unusual to use 10 bit addresses, yet they provide 1,024 (210) unique
addresses. If you want to link numerous slaves to a single master, use 4.7K
Ohm pull-up resistors to connect the SDA and SCL lines to Vcc.

Master Slave 1

Slave 3

4.3.4 MULTIPLE MASTER MULTIPLE SLAVES

A single slave or several slaves can be tied to multiple masters. When two
masters in the same system try to send or receive data over the SDA line at
the same time, the problem arises. To overcome this issue, each master must
first determine if the SDA line is low or high before sending a message. If
the SDA line is low, another master is in charge of the bus, and the master
should hold off on sending the message. It is safe to transfer the message if
the SDA line is high. Use the following schematic, with 4.7K Ohm pull-up
resistors connecting the SDA and SCL lines to Vcc, to connect many
masters to multiple slaves.

Raspberry PI Interfaces

127

Physical Computing and
IoT Programming

128

4.3.5 ADVANTAGES

. Only two wires are used.
° Multiple masters and slaves are supported.

. The ACK/NACK bit indicates whether each frame was successfully
transferred.

° The hardware is simpler than using UARTs.
. Protocol that is well-known and extensively utilized
4.3.6 DISADVANTAGES

° Data transport rate is slower than SPI.
° The data frame size is limited to 8 bits.
. Hardware that is more difficult to implement than SPI is required.

4.4 SPI

Serial Peripheral Interface (SPI) stands for Serial Peripheral Interface. It's a
serial communication protocol used to link low-speed devices together.
Motorola created it in the mid-1980s for inter-chip communication. It's
frequently used to communicate with flash memory, sensors, real-time
clocks (RTCs), and analog-to-digital converters, among other things. It's a
full-duplex synchronous serial communication, which means data can be
sent in both directions at the same time.

The fundamental benefit of the SPI is that it allows data to be transferred
without interruption. This protocol allows for a large number of bits to be
broadcast or received at once.

Devices communicate using this protocol in a master-slave relationship.
The slave device is controlled by the master device, and the slave device
follows the master device's instructions. A single slave and a single master
is the most basic arrangement of the Serial Peripheral Interface (SPI). One
master device, on the other hand, can control several slave devices.

4.4.1 SPI INTERFACE

The communication in the SPI protocol is done via four wires. They are
depicted in the diagram.

Master Slave

MOSI: MOSI (Master Output Slave Input) is an acronym that stands
for Master Output Slave Input. It's utilized to transfer data between
the master and the slave.

MISO: MISO (Master Input Slave Output): MISO stands for Master
Input Slave Output. It's utilized to transfer data between the slave and
the master.

SCL/SCLK: The clock signal is denoted by the letters SCK or SCLK
(Serial Clock).

SS/CS: The master uses SS/CS (Slave Select / Chip Select) to deliver
data by selecting a slave.

NOTE: If only one slave is present in the communication, only three wires
are necessary. It does not require the SS (slave select).

4.4.2 CHARACTERISTICS OF SPI BUS

The maximum frequency has yet to be determined. The bus can travel
as quickly as your chips and board design allow

Data transmissions of 25-50 Mbits/sec are possible
The Serial Data

Point-to-Point topology is simple to implement and allows
transceivers to convert SPI signaling to RS485, CAN, fiber-optic, and
other protocols. The SPI protocol is unaffected, thus long-distance
and isolated connections are possible.

4.4.3 MULTI-DEVICE TOPOLOGIES

The daisy-chain and star multi-device topologies are supported by SPI. The
clock is split in two by the Daisy-chain topology, allowing it to route in
parallel to the slaves. However, data is still point-to-point. The MISO of one
slave is linked to the MOSI of another, forming a chain. Similar to a
boundary scan, data for all devices clocks through all devices in a chain;
each device just selects out the data intended to it. The chain's final device
sends its MISO to the master.

SCLK — SCLK
MOSI > MOS]
Slave1
Master MISO (= MISO
CS50_L > » C5 L
C51 L
— SCLK
—» MOS]
Slave?2
MISO
—» G5 L

Figure 1.8 SPI Bus — Daisy Chain Topology

Raspberry PI Interfaces

129

Physical Computing and Except for chip select, all signals in the Star topology are separated and

IoT Programming routed to each slave in parallel. Individual slave devices are selected using
multiple chip select. This mode is supported by more devices than daisy-
chaining.

SCLEKE & > SCLEK
MOSI1 & > OS]
Slavel
Master MISO € - MISO
CS0_L » CS_L
C51_L
» SCLE
> OS]
Slave2
MISD
—»{ G5 L

Figure 1.9 SPI Bus — Star Topology
4.4.4 SPI DATA TRANSMISSION STEPS

1. The clock signal is output by the master.

Master

_rrrrrurn

2. The master activates the slave by lowering the voltage on the SS/CS
pin.

Mastar

_Mrrrrururon

3. Along the MOSI line, the master transfers the data one bit at a time to
the slave. As the bits are received, the slave reads them.

ME® Firei

Master 4 4 5000 1 0

_rrruraran

130

If a response is required, the slave sends data to the master one bit at
a time via the MISO line. As the bits are received, the master reads
them.

11000010 =lave

SCLK

4.4.5 ADVANTAGES

The fundamental benefit of the SPI is that it allows data to be
transferred without interruption.

Simple in hardware.
It can communicate in full duplex mode.
In this protocol, the slave does not require a unique address.

Because it uses the master's clock, this protocol does not necessitate
accurate slave device oscillation.

The software implementation is straightforward in this case.
It has a fast transfer rate.
Signals are only sent in one direction.

It contains independent MISO and MOSI lines, allowing data to be
delivered and received simultaneously.

4.4.6 DISADVANTAGES

It usually only supports one master.

Unlike the UART, it does not check for errors.

It has a larger number of pins than the other protocol.
Only from a limited distance can it be used.

It makes no acknowledgement of whether or not the data has been
received.

4.4.7 APPLICATIONS

Memory: SD Card, MMC, EEPROM, and Flash memory are all
options.

Sensors: Temperature and pressure sensors are used.

Control devices: ADC, DAC, digital POTS, and Audio Codec are the
control devices.

Others: Other features include a camera lens mount, a touchscreen, an
LCD, an RTC, a video game controller, and so on.

Raspberry PI Interfaces

131

Physical Computing and
IoT Programming

132

4.5 SUMMARY

Different Raspberry Pi interfaces such as UART, GPIO, 12C, SPI is
explored. The UART interface of Raspberry Pi is used for serial
communication. General purpose I/O is also investigated. For example,
GPIO 14 can be an input, an output, or a serial port TX data line. As a result,
the Raspberry Pi is extremely adaptable. The Pi's GPIO interface has a weak
CMOS 3 V interface, which is one of the issues. The I/O pins are weak
drivers, and the GPIO pins are prone to static electricity harm (2 to 16 mA).
GPIO power must also be budgeted from the 50 mA total spare current
capacity. Using adapter boards solves these issues however it comes at a
high price. This creates a fertile ground for developing low-cost, high-
effective roll-your-own solutions. The concept of 12C bus is also explored.
Philips invented the 12C bus, commonly known as the two-wire interface
(TWI), in 1982 to facilitate communication with slower devices. It was also
cost-effective because it just required two wires (excluding ground and
power). Other standards, such as the SMBus, have been developed since
then, expanding on this structure. The original I2C bus, on the other hand,
continues to be popular as a simple and cost-effective means to connect
peripherals. Followed by this the SPI technique is also discussed. The Serial
Peripheral Interface bus, or spy for short, is a synchronous serial interface
created by Motorola. The SPI protocol works in full-duplex mode, which
means it may send and receive data at the same time. In general, SPI
outperforms the 12C protocol in terms of speed, but it necessitates more
connections. Lastly the useful implementation such as cross compilation
technique, pulse width modulation and the interface for camera has been
studied.

4.6 LIST OF REFERENCES

1) Mastering the Raspberry Pi, Warren Gay, Apress(2014)

2) https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-
Operating-System.pdf

3) https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners

4) https://www.geeksforgeeks.org/linux-commands/

5) https://www.javatpoint.com/nodejs-tutorial

6) https://www.tutorialspoint.com/nodejs/index.htm

7) https://www.w3schools.com/python/

8) https://docs.python.org/3/tutorial/

9) https://www.javatpoint.com/python-tutorial

10) https://www.analog.com/en/analog-dialogue/articles/uart-a-
hardware-communication-protocol.html

https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-Operating-System.pdf
https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-Operating-System.pdf
https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners
https://www.geeksforgeeks.org/linux-commands/
https://www.javatpoint.com/nodejs-tutorial
https://www.tutorialspoint.com/nodejs/index.htm
https://www.w3schools.com/python/
https://docs.python.org/3/tutorial/
https://www.javatpoint.com/python-tutorial
https://www.analog.com/en/analog-dialogue/articles/uart-a-hardware-communication-protocol.html
https://www.analog.com/en/analog-dialogue/articles/uart-a-hardware-communication-protocol.html

11)

12)

13)

14)

15)
16)

https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts= Raspberry PI Interfaces
1632378909735&ref url=https%253A%252F%252Fwww.google.c
om%?252F

https://www.seeedstudio.com/blog/2020/02/19/how-to-use-
raspberry-pi-gpio-pins-python-tutorial/

https://www.ti.com/lit/an/slva704/slva704.pdf?ts=
1632361805005&ref url=https%253A%252F%252Fwww.google.c
om%252F

https://embetronicx.com/tutorials/tech devices/i2¢c 1/

https://practicalee.com/spi/

http://events17.linuxfoundation.org/sites/events/files
/slides/Shuah_Khan_cross_compile_linux.pdf

17) https://projects.raspberrypi.org/en/projects/getting-started-with-
picamera

4.7 UNIT END EXERCISES

1] Write a note on UART.

2] Explain the block diagram of UART and explain in brief why it is

3]
4]
5]
6]

7]
8]
9]
10]
11]
12]
13]

used?

State the advantages and disadvantages of UART.
Write a note on UART transmission steps.
Discuss the purpose, features of GPIO.

Write a note on working of I2C and state its advantages and
disadvantages.

Describe the various 12C data transmission steps.

Write a note on single master multiple slaves.

Explain the concept of multiple master multiple slaves.

Write a note on SPI interfaces along with its characteristics.
Describe the SPI multidevice topologies.

Write a note on advantages, disadvantages and applications of SPI.

Explain the SPI data transmission steps.

ke o o ke o e sk

133

https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.seeedstudio.com/blog/2020/02/19/how-to-use-raspberry-pi-gpio-pins-python-tutorial/
https://www.seeedstudio.com/blog/2020/02/19/how-to-use-raspberry-pi-gpio-pins-python-tutorial/
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://embetronicx.com/tutorials/tech_devices/i2c_1/
https://practicalee.com/spi/
http://events17.linuxfoundation.org/sites/events/files%20/slides/Shuah_Khan_cross_compile_linux.pdf
http://events17.linuxfoundation.org/sites/events/files%20/slides/Shuah_Khan_cross_compile_linux.pdf
https://projects.raspberrypi.org/en/projects/getting-started-with-picamera
https://projects.raspberrypi.org/en/projects/getting-started-with-picamera

Physical Computing and
IoT Programming

134

USEFUL IMPLEMENTATIONS

Unit Structure

5.0 Introduction
5.1 Cross Compilation
5.1.1 Need of cross compilers
5.1.2 Why cross compiling is difficult?
5.1.3 Working of cross compilation
5.1.4 Build process of cross compiler
5.2 Pulse Width Modulation
5.2.1 PWM principle
5.2.2 Applications of PWM
5.3 SPI for Camera
5.3.1 Applications
5.3.2 Features
5.3.3 Pin definition
5.3.4 Wiring
54 Summary
5.5 List of References
5.6 Unit End Exercises

5.0 OBJECTIVES

After going through this unit, you will be able to:
. Understand the fundamentals of cross compilation
° Acquaint with the concepts of pulse width modulation

. Interfacing of SPI for camera with its applications

5.1 CROSS COMPILATION

A compiler is a piece of software that converts source code to executable
code. A compiler, like all programs, operates on a specific type of computer,
and the new programs it generates run on the same type of computer.

The computer on which the compiler runs is known as the host, whereas the
computer on which new programs execute is known as the target. The
compiler is a native compiler when the host and target machines are of the
same type. The compiler is a cross compiler when the host and target are
different. The act of compiling code for one computer system (commonly
referred to as the target) on a different computer system (often referred to

as the host) is known as cross-compilation. When the target system is too
small to host the compiler and all essential files, this is a highly handy
strategy.

Where does cross compiler come into play?

Cross compiler is used in Bootstrapping. Meaning- Getting started on
a new platform. A cross compiler is used to compile necessary tools
such as the OS and a native compiler when developing software for a
new platform.

5.1.1 NEED OF CROSS COMPILERS

In theory, a PC user might get the proper target hardware (or emulator), boot
a Linux distro on it, and compile natively within that environment. While
this is a valid strategy (and perhaps even a good one when dealing with a
Mac Mini), it has a few significant drawbacks when dealing with items like
a Linksys router or an iPod.

Speed - Target platforms are often an order of magnitude or slower
than hosts. The majority of special-purpose embedded hardware is
made for low cost and low power consumption, rather than for high
performance. By virtue of running on high-powered desktop
hardware, modern emulators (like gemu) are actually quicker than a
lot of the real-world hardware they simulate.

Capability - Compiling consumes a lot of resources. The target
platform typically lacks the resources of a desktop, such as gigabytes
of memory and hundreds of gigabytes of disc space; it may not even
have the resources to generate "hello world," let alone huge and
complex packages.

Availability - A cross-compiler is required to bring Linux up on a
hardware platform it has never run on before. Finding an up-to-date
full-featured prebuilt native environment for a given target, even on
long-established platforms like Arm or Mips, can be difficult. If the
platform isn't typically used as a development workstation, there may
not be a recent prebuilt distro available, and if there is, it's likely out
of date. You're back to cross-compiling anyway if you have to build
your own distro for the target before you can build on the target.

Flexibility - A fully functional Linux distribution has hundreds of
packages, but in most cases, a cross-compile environment can rely on
the host's existing distro. Cross compiling focuses on constructing the
target packages to be deployed rather than spending time on the target
system for build-only prerequisites to work.

Convenience - The user interface of headless boxes can be a little
claustrophobic. It's difficult enough to diagnose build errors as it is.
It's a hassle to install software from a CD onto a machine that doesn't
have a CD-ROM drive. It's wonderful to be able to recover from
accidently lobotomizing your test system rather of having to reboot
back and forth between your test environment and your development
environment.

Useful Implementations

135

Physical Computing and
IoT Programming

136

5.1.2 WHY CROSS COMPILING IS DIFFICULT?

Portable native compiling is hard.

It's difficult to compile native code in a portable format. The majority
of applications are written on x86 hardware and compiled natively.
Cross-compiling thus encounters two categories of issues: issues with
the applications themselves and issues with the build mechanism.

The first sort of issue affects all non-x86 targets, both native and
cross-built versions. Most programs make assumptions about the sort
of system they operate on, and these assumptions must match the
platform in issue or the program will not run. The following are some
common assumptions:

Word size - On a 64-bit platform, copying a pointer into an int may
lose data, and calculating the size of a malloc by multiplying by 4
instead of sizeof(long) isn't ideal. Integer overflow issues can
sometimes be subtle, such as "if (x+y size) memset(src+x,0,y);",
which results in a 4 GB memset on 32-bit hardware when x=1000 and
y=0xFFFFFFFO...

Endianness - Different systems store binary data internally in
different ways, requiring translation when reading int or float data
from disc or the network.

Alignment - Some platforms (such as arm) can only read or write
integers from addresses that are an even multiple of four bytes, or they
may segfault. Even those that can tolerate arbitrary alignments are
slower when dealing with unaligned data (they must fetch both halves
twice), hence the compiler will frequently pad structures to align
variables. Treating structures as a blob of data that can be written to
disc or delivered over the network necessitates additional effort to
assure consistency.

Default signedness - Whether the "char" data type is signed or
unsigned by default varies from platform to platform (and, in some
situations, from compiler to compiler), which might result in some
unexpected issues. The simple solution is to use a compiler parameter
such as "-funsigned-char" to force the default value to a known value.

NOMMU - If your target platform lacks a memory management unit,
you'll need to make a few adjustments. Only certain sorts of mmap()
work (shared or read only, but not copy on write), and the stack
doesn't grow dynamically, so you'll need vfork() instead of fork().

Most packages seek to be portable when compiled natively, and will at the
very least accept patches given to the proper development mailing list to
remedy any of the above concerns (with the possible exception of NOMMU
difficulties).

Cross- compiling
Cross-compiling has its own set of challenges in addition to native
compiling's:

Configuration difficulties - To be portable when natively compiled,
packages having a separate configuration step (the "./configure"
section of the typical configure/make/make install) frequently test for
factors like endianness or page size. Because these values differ
across the host and target systems when cross-compiling, performing
tests on the host system yields incorrect results. When the target
doesn't have that package or has an incompatible version,
configuration can detect its presence on the host and include support
for it.

HOSTCC vs. TARGETCC - Many build procedures, such as the
above configuration tests, or programs that generate code (such as a
C program that generates a.h file that is then #included during the
main build), need compiling items to execute on the host system.
Simply substituting a target compiler for the host compiler damages
packages that require the build of objects that run during the build
process. These packages require access to both a host and a target
compiler, as well as instruction on when to use each.

Toolchain Leaks - An incorrectly configured cross-compile
toolchain can leak pieces of the host system into built applications,
causing failures that are normally easy to detect but complex to
diagnose and fix. At link time, the toolchain may #include the
incorrect header files or search the incorrect library directories.
Shared libraries frequently rely on other shared libraries, which can
introduce unintended host-system link-time references.

Libraries - At compile time, dynamically linked applications must
access the proper shared libraries. In order for programs to link against
shared libraries on the target system, they must be included to the
cross-compile toolchain.

Testing - The development system provides a handy testing
environment for native builds. Confirming that "hello world"
compiled properly while cross-compiling can necessitate configuring
(at the very least) a bootloader, kernel, root file system, and shared
libraries.

5.1.3 WORKING OF CROSS COMPILATION

A cross compiler is a compiler that can generate executable code for
platforms other than the one on which it is currently operating. In
paravirtualization, a single machine runs numerous operating systems, and
a cross compiler might build executable for each from a single source. The
ultimate purpose of several separate components is to produce the byte code
that the target CPU utilizes. You've successfully cross-compiled when you
can generate the assembled byte code. Any compiler's key components are:

Parser: The parser translates the source code of the raw language to
assembly language. The parser must be familiar with the destination
assembly language because you're converting from one format to
another (C to assembly).

Useful Implementations

137

Physical Computing and
IoT Programming

138

. Assembler: The assembler translates assembly language code into
byte code, which is then executed by the CPU.

. Linker: The linker assembles the individual object files generated by
the assembler into a single executable application. Encapsulation
mechanisms and standards vary depending on the operating system
and CPU mix. To function, the linker must be aware of the target
format.

. Standard C library: A central C library contains the essential C
functions (for example, printf). If the application uses functions from
the C library, this library is utilized in conjunction with the linker and
the source code to build the final executable.

Each of these components of a standard host-based C compiler is
designed to produce the host's associated assembly code, byte code,
and target execution format. Although the application is meant to run
on the host, the assembly language, linker, and C library are all
created for the target platform and processor in a cross-compiler. You
might cross-compile an application on an Intel-based Linux computer
so that the assembly language and final application are for a Solaris-
based SPARC host.

As aresult, creating a cross-compiler necessitates creating a different
version of the C compiler suite that creates and links applications for
the target host. You can develop your own cross-compilers since you
can compile GCC and the related tools.

5.1.4 BUILD PROCESS OF CROSS COMPILER

The GNU utilities (that is, the GCC), which include the C compiler, binary
utilities, and the C library, have a number of advantages, the most notable
of which is that they are free, open source, and simple to compile. From a
cross-compiler standpoint, the fact that GCC has been ported to a variety of
systems means that the code supports a variety of CPU and platform types.
However, there are certain limits. GCC does not support all processor kinds
or systems (albeit it does produce the majority). When you run the
configuration tools, you'll get a warning.

You'll need three components from the GNU suite to make a cross-
compiler:

. binutils: Basic binary utilities like the assembler and linker, as well
as related tools like Size and Strip, are included in the binutils
package. Both the essential components for generating an application
and the tools that may be used to build and edit the target execution
format are included in the binary utilities. The Strip utility, for
example, eliminates symbol tables, debugging, and other "useless"
information from an object file or application, but it has to know the
target format to avoid removing the erroneous data.

gcc: The major component of the compilation process is the gcc. Gee
is made up of two parts: a C preprocessor (cpp) and a translator that
transforms C code to the target CPU assembly language. Gcece also
serves as a user interface for the entire process, invoking cpp, the
translator, the assembler, and the linker as needed.

newlib/glibc: This library is the standard C library. Newlib was
created by Redhat and may be slightly more user-friendly in cross-
compilers intended for embedded targets.

You'll also need the target operating system's header files, which are
required so that you can access all of the operating system's functions
and system calls needed to build the program. The headers are
relatively easy to obtain on Linux. You can copy an existing set of
headers for various operating systems.

You can also construct the GNU debugger - gdb - for the target host
if you like. Because emulation is required, you can't create a debugger
that can execute code for the target while running on the host. You
can, however, create a gdb executable for your target host.

5.2

PULSE WIDTH MODULATION

PWM (Pulse Width Modulation) is a technique for varying the width of
pulses in a pulse train. It's a digital technique that manipulates the quantity
of power given to a gadget. It uses a digital source to generate analogue
signals. A PWM signal is a square wave that alternates between on and off

states

. A PWM signal's behavior is determined by its duty cycle and

frequency. PWM is used to operate servos and speed controllers, as well as
limit the effective power of motors and LEDs.

5.2.1

PWM principle

A square wave with changing high and low times is what pulse width
modulation is. The following diagram depicts a basic PWM signal.

Amplitude

5V =

L . -

Time

Several terms are associated with PWM such as

ON Time: The duration of the time signal when it is ON is high.

OFF Time: The duration of the time signal is low.

Useful Implementations

139

Physical Computing and
IoT Programming

140

Period: The sum of the on-time and off-time of a PWM signal is the
period.

Duty cycle: The percentage of time that the signal remains on during
the period of the PWM signal is referred to as duty cycle.

Frequency: The time it takes for this signal to complete a one-and-
off cycle is measured in periods. The frequency is the inverse of the
period, and it is the number of times a periodic change is
accomplished per unit time. It establishes the rate at which the PWM
completes one cycle, i.e., the rate at which the signal flips from high
to low states. The output will behave like an analogue signal with a
constant voltage if we turn the digital signal on and off with a high
enough frequency.

Period:

Ton signifies the signal's on-time, and Toff denotes the signal's oft-
time, as illustrated in the diagram. Period is determined as the sum
of both on and off times, as stated in the equation below.

TTotal= Ton + Torr
Duty cycle:

The on-time of the period of time is used to determine the duty cycle.
Using the above-mentioned period, the duty cycle is determined as
follows:

D =Vfrac{T_{on}H{T_{on}+T {ofi}} = \frac{T_{on}HT _{total}}

5.2.2 APPLICATIONS OF PWM

Adjusting screen brightness: PWM can be used to adjust the
brightness of the screen. Adjusting the brightness of the screen via
PWM does not rely on electricity, but rather on the screen alternating
on and off. When the PWM dimming screen is turned on, it does not
output light continuously, but it does light up and switch off the screen
frequently. If this changes quickly enough, our eyes will perceive it
as always on, but with varying brightness dependent on duty cycles.
The brighter the screen, the higher the duty cycle.

Set the volume of the buzzer to a different level.
Control the motor's speed.

A servo's direction can be controlled.

Providing analog output.

Create an audio signal

Telecommunication: Message encoding

5.3 SPI1 FOR CAMERA

Since 2012, the Arducam team has been developing the world's first high-
resolution SPI camera solution for Arduino, which fills a gap in the Arduino
community's camera supply. These SPI cameras are general-purpose
solutions that can be used on any hardware platform that has the SPI and
12C interfaces, not just the Arduino platform. The SPI bus' flexibility
increases the utility of the SPI camera by allowing customers to connect
several cameras to a single microcontroller and shoot images at the same
time. Support for LCD screens is optional.

Universal SPl Camera Shield SPI Mini Camera Shield
It hides the complex nature of the camera It can be used in many platforms like Arduino
and provides the plug and play camera Raspberry Pi, Maple, Chipkit, Beaglebone
control interface as well as the ready to use black, as long as they have SPIl and 12C
software source code library and demo interface and can be well mated with standard
code Arduino boards

The Raspberry Pi Pico, as an alternative to Arduino, lacks processing
power, memory, and a CSI interface, making it incompatible with the
official or any MIPI CSI-2 camera modules. Pico, fortunately, has a variety
of versatile I/O choices, including SPI, which allows the Arducam SPI
camera to function with Pico.

5.3.1 APPLICATIONS

. Cameras for internet of things (IoT) applications
° Cameras for robots

. Camcorders for wildlife

. Other battery-operated devices

. MCU, Raspberry Pi, ARM, DSP, and FPGA platforms are all
compatible.

5.3.2 FEATURES

° 0OV2640 (B0067) 2MP image sensor / OV5642 SMP image sensor
(B0068)

° Lens holder for M12 or CS mounts with interchangeable lenses

. With the right lens combination, IR sensitive

° Sensor setup through the 12C interface

. Camera commands and data stream are sent over the SPI interface.
. All of the 10 ports are 5V/3.3V compatible.

° JPEG compression mode, single and multiple shoot mode, one-time
capture multiple read operation, burst read operation, low power
mode, and other features are all supported.

. Standard Raspberry Pi Pico boards are well matched.

° Open-source code libraries for Arduino, STM32, Chipkit, Raspberry
Pi, and BeagleBone Black are available.

° Small form factor

Useful Implementations

141

Physical Computing and

IoT Programming

142

5.3.3 PIN DEFINITION

Pin No Pin Name
2 MOSI

3 MISO

4 SCLK

5 GND

6 +5V

7 SDA

8 SCL

5.3.4 WIRING

Type Deseription

Input SPI slave chip select input

Input SPI master output slave input
QOutput SPI master input slave output
Input SPI serial clock

Ground Power ground

POWER 5V Power supply

Bi-directiona Two-Wire Serial Interface Data I/0
Input Two-Wire Serial Interface Clock

CS MOSI MIOS 5CK Gl

Connect SPI Camera to Pico

Camnera cs MOSI MISO SCK GND VCC sDA SCL
Pico GP5 GP3 GP4 GP2 GND 3V3 GP8 GP?
5.4 SUMMARY

This unit made us familiar with the fundamentals of SPI technique. The
Serial Peripheral Interface bus, or spy for short, is a synchronous serial
interface created by Motorola. The SPI protocol works in full-duplex mode,
which means it may send and receive data at the same time. In general, SPI
outperforms the 12C protocol in terms of speed, but it necessitates more
connections. Lastly the useful implementation such as cross compilation
technique, pulse width modulation and the interface for camera has been

studied.

5.5 LIST OF REFERENCES

1) Mastering the Raspberry Pi, Warren Gay, Apress(2014)

2) https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-
Operating-System.pdf

3) https://maker.pro/linux/tutorial/basic-linux-commands-for-
beginners

4) https://www.geeksforgeeks.org/linux-commands/

5) https://www.javatpoint.com/nodejs-tutorial

6) https://www.tutorialspoint.com/nodejs/index.htm

7) https://www.w3schools.com/python/

8) https://docs.python.org/3/tutorial/

9) https://www.javatpoint.com/python-tutorial

10) https://www.analog.com/en/analog-dialogue/articles/uart-a-
hardware-communication-protocol.html

11) https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=
1632378909735&ref url=https%253A%252F%252Fwww.goo
gle.com%?252F

12) https://www.seeedstudio.com/blog/2020/02/19/how-to-use-
raspberry-pi-gpio-pins-python-tutorial/

13) https://www.ti.com/lit/an/slva704/slva704.pdf?ts=
1632361805005&ref url=https%253A%252F%252Fwww.goo
gle.com%252F

14) https://embetronicx.com/tutorials/tech_devices/i2¢c_1/

15) https://practicalee.com/spi/

16) http://events]7.linuxfoundation.org/sites/events/files
/slides/Shuah_Khan_cross_compile_linux.pdf

17) https://projects.raspberrypi.org/en/projects/getting-started-
with-picamera

5.6 UNIT END EXERCISES

11 Explain the process of cross compilation.

2] What is the need of cross compilation?

3] Explain the working and build process of cross compilation.

4] State the principle of PWM.

5] State the features, applications and pin definition of SPI.

ke o ke o ke e ke

Useful Implementations

143

https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-Operating-System.pdf
https://mitu.co.in/wp-content/uploads/2017/09/03-Raspbian-Operating-System.pdf
https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners
https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners
https://www.geeksforgeeks.org/linux-commands/
https://www.javatpoint.com/nodejs-tutorial
https://www.tutorialspoint.com/nodejs/index.htm
https://www.w3schools.com/python/
https://docs.python.org/3/tutorial/
https://www.javatpoint.com/python-tutorial
https://www.analog.com/en/analog-dialogue/articles/uart-a-hardware-communication-protocol.html
https://www.analog.com/en/analog-dialogue/articles/uart-a-hardware-communication-protocol.html
https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ug/spruf95/spruf95.pdf?ts=%201632378909735&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.seeedstudio.com/blog/2020/02/19/how-to-use-raspberry-pi-gpio-pins-python-tutorial/
https://www.seeedstudio.com/blog/2020/02/19/how-to-use-raspberry-pi-gpio-pins-python-tutorial/
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/slva704/slva704.pdf?ts=%201632361805005&ref_url=https%253A%252F%252Fwww.google.com%252F
https://embetronicx.com/tutorials/tech_devices/i2c_1/
https://practicalee.com/spi/
http://events17.linuxfoundation.org/sites/events/files%20/slides/Shuah_Khan_cross_compile_linux.pdf
http://events17.linuxfoundation.org/sites/events/files%20/slides/Shuah_Khan_cross_compile_linux.pdf
https://projects.raspberrypi.org/en/projects/getting-started-with-picamera
https://projects.raspberrypi.org/en/projects/getting-started-with-picamera

Physical Computing
and IoT Programming

144

10T SERVICE AS A PLATFORM

Unit Structure

6.0 Objective

6.1 Introduction

6.2 IoT Security

6.3 The UPNP Protocol

6.4 The COAP Protocol

6.5 MQTT Protocol

6.6 XMPP Protocol

6.7 Summary

6.8 References for Future reading
6.9 Unit End Exercise

6.0 OBJECTIVE

° IoT requires expertise in enabling smart sensors to observe, learn, and
make decisions to produce limitless market opportunities.

. IoT development services in India leverage widespread
interconnected devices to enhance products that retain connectivity,
convert data, and supervise them constantly.

6.1 INTRODUCTION

HTTP is a stateless request & response protocol where clients request
information from a server and the server responds to these requests
accordingly. A request is made up of a method, a resource, some headers,
and some optional content. A response is made up of a three-digit status
code, some headers and some optional content.

6.2 10T SECURITY: HTTP, UPNP, COAP, MQTT, XMPP.

6.2.1. Hypertext Transfer Protocol (HTTP): It is used in machine-to-
machine (M2M) communication, automation, and Internet of Things,
among other things.

6.2.2. Introduction

HTTP is a stateless request & response protocol where clients request
information from a server and the server responds to these requests
accordingly. A request is made up of a method, a resource, some headers,

and some optional content. A response is made up of a three-digit status
code, some headers, and some optional content. A Uniform Resource
Locator (URL) identifies each resource, originally thought to be a collection
of Hypertext documents or HTML documents. Clients simply use the GET
method to request a resource from the corresponding server. In the structure
of the URL presented next, the path and the server identify the resource by
the authority portions of the URL. The PUT and DELETE methods allow
clients to upload and remove content from the server, while the POST
method allows them to send data to a resource on the server.

HTTP is a cornerstone of service-oriented architecture (SOA), where
methods for publishing services through HTTP are called web services. One
important manner of publishing web services is called Simple Object
Access Protocol (SOAP), where web methods, their arguments, return
values, bindings, and so on, are encoded in a specific XML format. It is then
documented using the Web Services Description Language (WSDL).

6.2.3. Adding HTTP support to the sensor

The following are the three strategies used when publishing the data using
HTTP:

° In the first strategy the sensor is a client who publishes information to
a server on the Internet. The server acts as a broker and informs the
interested parties about sensor values. This pattern is called
publish/subscribe.

. Second Strategy is to allow all entities in the network be both clients
and servers, depending on what they need to do. The UPnP Protocol.
This reduces latency in communication but requires all participants to
be on the same side of any firewalls.

Third Strategy is to let the sensor become an HTTP server, and who is
interested in knowing the status of the sensor become the clients. It also
allows easy access to the sensor from the parties behind firewalls if the
sensor is publicly available on the Internet.

6.2.4. Setting up an HTTP server on the sensor
To begin with,
1. add the namespace in the application.

using System.Xml;
using System.Text;
using System.lIO;
using System.Drawing;
2. Then, add references to the following Clayster namespaces, which

will help to work with HTTP and along with different content types
mentioned.

ToT Service as a Platform

145

Physical Computing
and IoT Programming

146

using Clayster.Library.Internet;

using Clayster.Library.Internet. HTTP;

using Clayster.Library.Internet. HTML,;

using Clayster.Library.Internet. MIME;

using Clayster.Library.Internet.JSON;

using Clayster.Library.Internet.Semantic. Turtle;
using Clayster.Library.Internet.Semantic.Rdf;
using Clayster.Library.loT;

using Clayster.Library.IoT.SensorData;

using Clayster.Library.Math;

The Internet library helps us with communication and encoding, the

IoT library deals with an interoperability, and the Math library deals
with graphs.

Next step is application initialization, which is done using the
following code:

HttpSocketClient.RegisterHttpProxyUse (false, false);

To instantiate an HTTP server, add the following code before
application initialization ends and the main loop begins:

HttpServer HttpServer = new HttpServer (80, 10, true, true, 1);

Log.Information ("HTTP Server receiving requests on port” +
HttpServer.Port. ToString ());

The HTTP server can process both synchronous and asynchronous
web resources:

A synchronous web resource responds within the HTTP handler we
register for each resource. These are executed within the context of a
working thread.

An asynchronous web resource handles processing outside the
context of the actual request and is responsible for responding by
itself. This is not executed within the context of a working thread.

Register web resources on the server: register the path of each
resource and connect that path with an HTTP handler method, which
will process each corresponding request.

HttpServer.Register ("/", HttpGetRoot, false);

HttpServer.Register ("/html", HttpGetHtml, false);
HttpServer.Register ("/historygraph", HttpGetHistoryGraph, false);
HttpServer.Register ("/xml", HttpGetXml, false);
HttpServer.Register ("/json", HttpGetJson, false);

HttpServer.Register ("/turtle", HttpGetTurtle, false); IoT Service as a Platform
HttpServer.Register ("/rdf", HttpGetRdf, false);

Disposing the server when the application ends
HttpServer.Dispose ();

Adding a root menu

Add a root menu which is accessible through the path /.

private static void HttpGetRoot (HttpServerResponse resp,
HttpServerRequest req)

{
networkLed.High ();

try
{

resp.ContentType = "text/html";
resp.Encoding = System.Text.Encoding. UTFS;
resp.ReturnCode = HttpStatusCode.Successful OK;

}
finally

{
networkLed.Low ();

b
}

Return the actual HTML page with the following code:

resp. Write ("<html><head><title>Sensor</title></head>");
resp. Write ("<body><h1>Welcome to Sensor</h1>");

resp. Write ("<p>Below, choose what you want to do.</p>");
resp. Write ("View Data");

resp. Write ("'");
resp.Write ("View data as XML using REST</1i>");
resp. Write ("'");
resp.Write ("View data as JSON using REST</1i>");
resp. Write ("'");
resp.Write ("View data as TURTLE using REST</1i>");
resp. Write ("'");

resp.Write ("View data as RDF using REST");

resp. Write (""); 147

Physical Computing
and IoT Programming

148

resp.Write ("Data in a HTML page with graphs");
resp. Write ("</body></htmI>");

Accessing WSDL

The SOAP web service interface is documented in what is called a Web
Service Definition Language (WSDL) document. The web services engine
automatically generates this document.

Adding HTTP support to the controller

Sensor and an actuator that speaks about HTTP also need to add HTTP to
the controller. The controller will act as an HTTP client.

6.3 THE UPNP PROTOCOL

Universal Plug and Play (UPnP) is a protocol or an architecture that uses
multiple protocols, helps devices in ad hoc IP networks to discover each
other, detects services hosted by each device, and executes actions and
reports events. Ad hoc networks are networks with no predefined topology
or configuration; here, devices find themselves and adapt themselves to the
surrounding environment. UPnP is largely used by consumer electronics in
home or office environments. The standard body for UPnP is the UPnP
Forum (upnp.org). UPnP is largely based on an HTTP application where
both clients and servers are participants.

Discovery of devices in the network is performed using Simple Service
Discovery Protocol (SSDP), which is based on HTTP over UDP, and event
subscriptions and notifications are based on General Event Notification
Architecture (GENA). Both SSDP and GENA introduce new HTTP
methods to search, notify and subscribe to and unsubscribe from an event.
Actions on services are called using SOAP web service calls.

UPnP defines an object hierarchy for UPnP-compliant devices. Each device
consists of a root device. Each root device can publish zero or more services
and embedded devices. Each embedded device can iteratively publish more
services and embedded devices by itself. Each service in turn publishes a
set of actions and state variables. Actions are methods that can be called on
the service using SOAP web service method calls. Actions take a set of
arguments. Each argument has a name, direction (if it is input or output),
and a state variable reference. From this reference, the data type of the
argument is deduced. State variables define the current state of a service,
and each one has a name, data type, and variable value. Furthermore, state
variables can be normal, evented, and/or multicast-evented. When evented
state variables change their value, they are propagated to the network
through event messages. Normally, evented state variables are sent only to
subscribers who use normal HTTP. Multicast-evented state variables are
propagated through multicast HTTPMU NOTIFY messages on the SSDP
multicast addresses being used, but using a different port number.

Each UPnP-compatible device in the network is described in a Device
Description Document (DDD), an XML document hosted by the device

itself. When the device makes its presence known to the network, it always
includes a reference to the location of this document. Interested parties then
download the document and any referenced material to learn what type of
device this is and how to interact with it. The document includes some basic
information understandable by machines, but it also includes information
for human interfaces. Finally, the DDD includes references to embedded
devices, if any, and references to any services published by the device.

Each service published by a device is described in a standalone Service
Control Protocol Description (SCPD) document, each one an XML
document also hosted by the device. Even though SOAP is used to call
methods on each service, UPnP-compliant services are drastically reduced
in functionality compared to normal SOAP web services. SOAP and WSDL
simply give devices too many options, making interoperability a problem.

6.4 THE COAP PROTOCOL

CoAP reduces the set of methods that can be used; it allows you to have
four methods: GET, POST, PUT, and DELETE. In addition, in CoAP,
method calls can be made using confirmable and non-confirmable message
services. When you receive a confirmable message, the receiver always
returns an acknowledgement. The sender can, in turn, resend messages if an
acknowledgement is not returned within the given time period. The number
of response code has also been reduced to make implementation simpler.
CoAP also broke away from the Internet Media Type scheme used in HTTP
and other protocols and replaced this with a reduced set of Content-Formats,
where a number instead of its corresponding Internet Media Type identifies
each format.

CoAP supports multicasting, which is used to detect devices or
communicate through firewalls; it also provides a set of useful extensions.
One of these extensions provides a block transfer algorithm, which allows
you to transfer larger amounts of data. CoAP also supports encryption in
the unicast case with Datagram Transport Layer Security (DTLS).

CoAP
(resources)
UCP

(ports)
Internet Protocol

(unicast/multicast address)

Local Area Network
(MAC address)
Physical

(Cables, Radio)

Fig: CoAP protocol stack diagram:

ToT Service as a Platform

149

Physical Computing
and IoT Programming

150

CoAP is relatively new; the availability of development tools for this
protocol is not available. There exists an add-on to Firefox, which allows
you to view and interact with CoAP resources.

CoAP resources- The CoAP endpoint registers a resource by itself called
.well-known/core. Here, it publishes a Link Format document called the
Constrained RESTful Environments (CoRE) Link Format document. This
document contains a list of resources published by the endpoint and some
basic information about these documents. This document corresponds in
some sense to WSDL documents for web services, even though the Link
Format document is very lightweight. It consists of a sequence of resources
and some corresponding attributes for each resource.

6.5 MQTT PROTOCOL

The MQTT protocol is based on the publish/subscribe pattern, as opposed
to the request/response and the event subscription patterns. The
publish/subscribe pattern has three types of actors:

a. Publisher: The role of the publisher is to connect to the message
broker and publish content.

b. Subscriber: They connect to the same message broker and subscribe
to content that they are interested in

c. Message broker: This makes sure that the published content is relayed
to interested subscribers

Content is identified by topic. When publishing content, the publisher can
choose whether the server should retain the content or not. If retained, each
subscriber will receive the latest published value directly when subscribing.
Furthermore, topics are ordered into a tree structure of topics, much like a
file system. The forward slash character (/) is used as a delimiter when
describing a topic path. When subscribing to content, a subscriber can
subscribe to either a specific topic by providing its path, or an entire branch
using the hash wildcard character (#). There is also a single-level wildcard
character: the plus character (+).

MQTT MQTT (SSL/TLS)
TCP TCP
(port 1883) (port 8883)

Internet Protocol (IP)

(Unicast/multicast IP address)

Local Area Network (LAN)

Physical (Cables, Radio)

Fig : MQTT architecture

There are three Quality of Service levels in MQTT available while
publishing content. The lowest level is an unacknowledged service. In this,
the message is delivered at most once to each subscriber. The next level is
an acknowledged service. Here, each recipient acknowledges the receipt of
the published information. If no receipt is received, the information can be
sent again. This makes sure the information is delivered at least once. The
highest level is called the assured service. Here, information is not only
acknowledged but sent in two steps. First, it is transmitted and then
delivered. Each step is acknowledged. This makes it possible to make sure
that the content is delivered exactly once to each subscriber.

6.6 XMPP PROTOCOL

Extensible Messaging and Presence Protocol (XMPP) protocol. The XMPP
protocol also uses message brokers to bypass firewall barriers. Apart from
the publish/subscribe pattern, it also supports other communication patterns,
such as point-to-point request/response and asynchronous messaging, that
allow you to have a richer communication

XMPP was originally designed for use in instant messaging applications (or
chat). It is an open protocol, flexible and richness of communication
patterns.

The XMPP architecture is built on scalability of the Simple Mail Transfer
Protocol (SMTP). XMPP uses a network of XMPP servers as message
brokers to allow clients behind separate firewalls to communicate with each
other. Each server controls its own domain and authenticates users on that
domain. Clients can communicate with clients on other domains using
federation where the servers create connections between themselves in a
secure manner to interchange messages between their domains. They only
need to ensure that they maintain the connection with their respective
servers, and through the servers, each of them will have the possibility to
send messages to any other client in the federated network. XMPP is
scalable and allows you to make billions of devices communicate with each
other in the same federated network.

XMPP provides each client with an authenticated identity. When clients
connect, the servers make sure the clients authenticate themselves by
providing their corresponding client credentials, which would consist of a
username and password. This authentication is done securely using an
extensible architecture based on Simple Authentication and Security Layer
(SASL). The connection can also be switched over to Transport Layer
Security (TLS) through negotiation between the client and the server. The
identity of the client is often called XMPP address or Jabber ID (JID).

The reason for using XMPP servers is to relay communication to assure the
clients that only authorized communication will be relayed. This feature is
used for small devices with limited decision-making capabilities. The server
does so by ensuring that the full JID identifier instead of only the bare JID
identifier is used to communicate with the application.

ToT Service as a Platform

151

Physical Computing
and IoT Programming

152

The reason is:

First, multiple clients might use the same account at the same time.
Then provide the resource part of the full JID for the XMPP Server to
be able to determine which connection the corresponding message
should be forwarded to. Only this connection will receive the
message. This enables the actual clients to have direct communication
between them.

Second, only trusted parties (or friends) are given access to the
resource part once the thing or application is connected. This means
that, in turn, only friends can send messages between each other, as
long as the resource parts are sufficiently long and random so they
cannot be guessed, and the resource part is kept hidden and not
published somewhere else. XMPP communication consists of
bidirectional streams of XML fragments.

IoT Service as a Platform: Clayster, Thinger.io, SenseloT, carriots and
Node RED.

1.

Clayster

There are many available platforms, they vary in functionality and
development. To get the IoT platform go to
http://postscapes.com/internet-of-things-platforms and review the
registered platforms.

Clayster Platform

Download the Clayster platform by downloading from
http://www.clayster.com/downloads. All the information about
Clayster, including examples and tutorials, is available in a wiki. You
can access this wiki at https://wiki.clayster.com/.

Libraries

Clayster.AppServer.Infrastructure: This library contains the
application engine available in the platform. Apart from managing
applications, it also provides report tools, cluster support,
management support for operators and administrators; it manages
backups, imports, exports, localization and various data sources used
in IoT, and it also provides rendering support for different types of
GUIs, among other things.

Clayster.Library.Abstract: This library contains a data abstraction
layer, and is a crucial tool for the efficient management of objects in
the system.

Clayster.Library.Installation: This library defines the concept of
packages.

Clayster.Library.Meters: This library replaces the Clayster. Library. IoT Service as a Platform
IoT library used in previous chapters. It contains an abstraction model
for things such as sensors, actuators, controllers, meters, and so on.

Clayster: To facilitate the development of IoT applications, seven
Clayster libraries are used for private and commercial applications.

Clayster Library Description

Clayster.Library.Data It provides the application with
a powerful object database.
Objects are persisted and can
be searched directly in the code
using the object's class
definition. Data can be stored
in the SQLite database
provided in Raspberry Pi.

Clayster.Library.EventLog This provides the application
with an extensible event
logging architecture that can be
used to get an overview of what
happens in a network of things.

Clayster.Library.Internet It consist of classes that
implements various internet
protocol. This library can be
used dynamically for
communication via internet.

Clayster.Library.Language It is used to create localizable
applications that are simple to
translate and that can work in
an international setting.

Clayster.Library.Math It has powerful mathematical
scripting language that will be
used in automation, scripting,
graph plotting, and others.

Clayster.Library.IoT It has classes that help the
applications to become
interoperable by providing data
representation and parsing
capabilities of data in [oT.

Clayster.Library.RaspberryPi | It has Hardware Abstraction
Layer (HAL) used in
Raspberry Pi. It provides
object-oriented interfaces to
interact with devices connected

to the general-purpose
Input/output (GPIO) pins
available.

153

Physical Computing
and IoT Programming

154

4. Service modules

The service modules available are:

Clayster. HomeApp.MomentaryValues: This is a simple service that
displays momentary values using gauges. We will use this project to
display gauges of our sensor values.

Clayster.Metering. Xmpp: This module contains an implementation of
XMPP on top of the abstraction model defined in the
Clayster.Library.Metersz namespace.

5. Clayster Management Tool (CMT)

It comes with a management tool that helps you to manage the server.
This Clayster Management Tool (CMT) can also be downloaded from
http://www.clayster.com/downloads. This includes data sources,
objects in the object database, current activities, statistics and reports,
and data in readable event logs

Browsing data sources

Most of the configurable data in Clayster is ordered into data sources. These
can be either tree-structured, flat or singular data sources. Singular data
sources contain only one object. Flat data sources contain a list (ordered or
unordered) of objects. Tree structured data sources contain a tree structure
of objects, where each object in the structure represents a node. The tree-
structured data sources are the most common, and they are also often stored
as XML files. Objects in such data sources can be edited directly in the
corresponding XML file, or indirectly through the CMT, other applications
or any of the other available APIs. When you open the CMT for the first
time, make sure that you open the Topology data source. It is a tree-
structured data source whose nodes represent [oT devices. The tree structure
shows how they are connected to the system. The Root represents the server
itself.

Interfacing the devices

XMPP is already implemented and supported through the Clayster.
Metering. This module models each entity in XMPP as a separate node in
the Topology data source. Connections with provisioning servers and thing
registries are handled automatically through separate nodes dedicated to this
task. Friendships are handled through simple child creation and removal
operations. It can be done automatically through requests made by others or
recommendations from the provisioning server, or manually by adding
friends in the CMT. Provide specialized classes that override base class
functionality and add specific features that are needed.

6. Thinger.io
What is Thinger.io

Thinger.io is a cloud IoT Platform that provides every needed tool to
prototype, scale and manage connected products in a very simple way.

Features ToT Service as a Platform

o Free IoT platform: Thinger.io provides a lifetime freemium account
with only few limitations to start learning and prototyping when your
product becomes ready to scale, you can deploy a Premium Server
with full capacities within minutes.

J Simple but Powerful: Just a couple code lines to connect a device
and start retrieving data or controlling its functionalities with our web-
based Console, able to connect and manage thousands of devices in a
simple way.

o Hardware agnostic: Any device from any manufacturer can be easily
integrated with Thinger.io's infrastructure.

o Extremely scalable & efficient infrastructure: thanks to our unique
communication paradigm, in which the IoT server subscribes device
resources to retrieve data only when it is necessary, a single
Thinger.io instance is able to manage thousands of IoT devices with
low computational load, bandwidth and latencies.

o Open-Source: most of the platform modules, libraries and APP
source code are available in our Github repository to be downloaded
and modified with MIT license.

Thinger.io platform is formed by two main products a Backend
(which is the actual IoT server) and a web-based Frontend that
simplifies working with all the features using any computer or
smartphone.

o Connect devices: Fully compatible with every kind of device, no
matter the processor, the network, or the manufacturer. Thinger.io
allows to create bidirectional communications with Linux, Arduino,
Raspberry Pi, or MQTT devices and even with edge technologies like
Sigfox or LoRaWAN or other internet API data resources.

o Store Device Data: Just a couple clicks to create a Data Bucket a
store IoT data in a scalable, efficient, and affordable way, that also
allows real-time data aggregation.

J Display Real-time or Stored Data in multiple widgets such as time
series, donut charts, gauges, or even custom-made representations to
create awesome dashboards within minutes.

J Trigger events and data values using an embedded Node-RED rule
engine

o Extend with custom features with multiple plugins to integrate loT
projects into your company's software or any other third-party Internet
service.

155

Physical Computing
and IoT Programming

156

. Custom the appearance thanks to our fully rebrand able frontend,
that allows introducing your branding colours, logotypes and web
domain. Refer: https://docs.thinger.io/

Store

% Show / analyze
i / analy

EE Data Toolkit - —

loT devices C{'B Devices
& < ©

Manage Customers
Thinger.io
> Server
REST API Extensions
= L ©
Bidirectional Plugins 34 party integration

communications

7. SenseloT

The Sense 10T cloud server is a logical server built, hosted, and delivered
through a cloud computing platform over the internet. Unlike normal
physical servers, cloud servers can be accessed remotely at any time.

The term IoT stands for Internet of Things, and it is the most significant as
well as promising technology nowadays. There are a billion devices relate
to sensors like wearables, smartphones, etc. Currently, every sensor plays
an essential role in the Internet of Things. These sensors are mainly used for
detecting or monitoring the quality of air, health status, home security, etc.
Similarly, these sensors are used in IoT for monitoring the process of
production, so named as [oT sensor.

There are different types of sensors which is used for different applications
like to collect the data from the environment. In an IoT ecosystem, there are
two main things the internet & the physical devices such as actuators &
sensors. The sensor and network connectivity in the IoT mainly located in
the bottom layer. The main function of this is to collect the information.
This bottom layer in the IoT is a very important part, and it includes
connectivity of network to next layer like the gateway & network layer.

The main function of these sensors is to gather information from the
surroundings. The connection of these to IoT can be done directly otherwise
indirectly once the conversion of signal & processing is done. All the
sensors are not similar because different IoT applications need different
kinds of sensors.

Types of IoT Sensors

The different types of [oT sensors with its working as follows:

Temperature Sensor ToT Service as a Platform

The temperature sensor is used to detect the heat energy which is produced
from an object or nearby area. The main role of these sensors in
manufacturing is for temperature monitoring of machines. Similarly, in the
agriculture field, these sensors are used to monitor the temperature of plants,
soil, and water. The applications of temperature sensors mainly include
refrigerators, ACs, etc.

Smoke Sensor

Smoke sensors have been using in various applications like homes,
industries, etc. These sensors are very convenient as well as easy to use by
the arrival of the Internet of Things. Also, by adding a wireless connection
to smoke detectors, the additional features can be enabled to increase
security & ease.

Motion Sensor

The motion sensor is used in hand dryers, energy management systems,
automatic parking systems, automatic door controls, automated toilet
flushers, automated sinks, etc.

157

Physical Computing
and IoT Programming

158

Humidity Sensors

Humidity sensors are used to monitor the level of humidity in the amount
of vapor of water within the air. The units for measurement humidity is RH
(relative humidity) & PPM (parts per million).

Pressure Sensor

The pressure sensors are used in IoT for monitoring devices and systems
which are determined by force signals. As the range of pressure is outside
the threshold stage, then the device gives an alert to the user regarding the
issues that must be fixed. The best example of a pressure sensor is BMP180,
which can be used in mobile phones, GPS navigation devices, etc. These
sensors are also applicable in aircraft and smart vehicles to decide altitude
& force correspondingly. In a motor vehicle, TMPS (tire pressure
monitoring system) can also be used for giving an alert to the driver while
tire pressure is extremely less & it could make unsafe driving situations.

= i
£ -

<l

i

Gas Sensor

Gas sensors are mainly used to detect toxic gases. The most frequently used
technologies are photoionization, semiconductor, and electrochemical.

IR Sensors

Infrared sensors are mainly used to measure the heat which is produced by
objects. These sensors are used in the various applications of IoT like
healthcare for monitoring the flow of blood, BP, etc. These sensors are used
in smartphones for controlling, wearable devices for detecting the amount
of light, detection of blind spot within vehicles, etc.

Accelerometer Sensor

Accelerometer sensors are utilized in aircrafts vehicles, smartphones.
Similarly, these are used in different applications to identify the direction of
an object, tilt, tap, shake, positioning, and motion, vibration, or shock.
Types of accelerometers are like capacitive, Hall-effect & piezoelectric.

Image Sensor

Image sensors are applicable in medical imaging systems, thermal imaging
devices, digital cameras, night-vision equipment, sonars, radars, &
biometric systems. These sensors are used in the retail industry for
monitoring the visiting count of the customers in the store with the help of
network like IoT. The applications of image sensors mainly include offices,
corporate buildings for monitoring the employees.

Proximity Sensors

Proximity sensors are used to detect the existence or nonexistence of a near
object with no physical contact. These sensors are classified into different
types like capacitive, inductive, ultrasonic, magnetic, and photoelectric.
These sensors are frequently used for process monitoring, control, and
object counters.

Source: 10T Sensor: Different Types, Working and Its Applications
(elprocus.com)

7. Carriots

The Carriots 10T Platform is designed to help companies, businesses and
institutions to improve their business and efficiency by controlling their [oT
devices, and provides safe transfer of information among IoT devices, cloud
and by bringing solutions to the problems by using AI and other
technologies.

Carriots is a smart Platform as a Service (PaaS), functions in a machine-to-
machine way and doesn’t necessitate any human interruption after the
system is set up. It is also established by Altair Engineering.

What Does Carriots Do?

Carriots has a four-staged working mechanism in helping a business to find
solutions to its problems. First stage is the data analysis stage. The investors
who want to develop their business by innovation gives the data to the
Carriots IoT platform after it is set up to the system. After the data on
business is given to the Carriots platform, the Carriots begins to analyse the
data and try to detect the problems, obstacles and other latent issues in the
business operation process. In the second stage, Carriots tries to find a
solution to the problems that it detected in the first stage. It has its own
mechanism to eliminate the methods which are not useful to the business.
In the third stage, it approves the solution method which should be
implemented on the business that decided in the second stage.

What are the Advantages of Carriots IoT Platform?
Features of Carriots that make it more advantageous:

. Carriots has an open architecture that enables it to work in
collaboration with the third-party machines. This enables it to find the

ToT Service as a Platform

159

https://iot5.net/iot-platforms/

Physical Computing
and IoT Programming

160

best solution due to its wide data collection because of this feature and
flexibility.

The Carriots Platform can be controlled by a device that is connected
to a remote controller. This feature enables to keep a watch what they
are doing with your business. Also, Carriots is not bound by the check
status and can change configurations.

Rules: Carriots has rule to apply in complex business scripts.

Carriots also has new triggers that push the data into the platforms and
enables the usage of that data.

It can integrate with other Al and IT systems

System also has custom alarms when it faces a problematic situation
during the innovation.

carriots

Source: Carriots IoT Platform | IoT5.net

9.Node RED.
Node-Red is based on graphical interface and has three components:

Flow -A project is called a flow and consist of data and functions linked
together.

Message-It carries data from one node to another.

Nodes- These are the functions that generate, transfer or use messages.

The Node-RED GUI consists of three parts, from left to right:

The left pane lists all the nodes, grouped by categories.

The centre pane corresponds to the working area, where the flow is
going to be designed.

https://iot5.net/iot-platforms/carriots-iot-platform/

The right pane provides useful tools as documentation, a console for
debugging, and the organisation for the dashboard.

Node-RED offers native support for other services. For example, there is a
node for sending e-mails. Node-RED relies on MQTT, which requires a
TCP/IP stack.

6.7 SUMMARY

Innovative companies utilize information potential in Internet of
Things as a service (IoTaaS) technology that senses information to
create better products for that satisfies customers.

The complex handling of IoT's fusion technologies leaves enterprises
without in-house expertise or software to make IoT a profitable and
worthwhile investment.

6.8 REFERENCES

Learning Internet of Things by Peter Waher, Packt Publishing. (All
notes are taken from this prescribed reference book).

Notes also taken from the link below:

https://github.com/Clayster/ Learning-loT-CoAP.
https://docs.thinger.io/

IoT Sensor: Different Types, Working and Its Applications

(elprocus.com)

6.9 UNIT END EXERCISE QUESTIONS

S

What is Clayster in [oT? Explain different libraries in it.

Explain the following IoT security: HTTP, UPnp, CoAP, MQTT,
XMPP

What is meant by IoT service as a platform?

Explain different types of IoT Service as a Platform: Clayster,
Thinger.io, SenseloT, carriots and Node RED.

What is Thinger.i0? What are the features of it.
Describe SenseloT?
What are sensors? Explain different types of sensors used in IoT.

What are Carriots? What are its advantages

ke o o ke o sk

ToT Service as a Platform

161

https://docs.thinger.io/
https://www.elprocus.com/iot-sensor-working-and-its-applications/
https://www.elprocus.com/iot-sensor-working-and-its-applications/

Physical Computing and
IoT Programming

162

IOT SECURITY AND
INTEROPERABILITY

Unit Structure

7.1 Objective

7.2 Introduction

7.3 10T Security and Interoperability
7.4 Risks

7.5 Modes of Attacks

7.6 Tools for Achieving Security
7.7 The need for Interoperability

7.8 Summary

7.9 References for Future reading
7.10 Unit End Exercise

7.1 OBJECTIVE

Hardware, Software, and other devices needs security to work efficiently.
Without security in IoT devices & it’s hardware will result in hacking &
hackers will gain access to the controlling of the IoT devices and hence the
10T application will fail.

This chapter talks about the different types of security mechanisms,
protocols, methods & techniques that should be deployed when the IoT
devices & its application are ready to function.

Also discussed various types of virus, malwares & Trojan horse which has
harmed the devices & made the resources less to perform.

7.2 INTRODUCTION

There are a lot of different technologies that can be used for Internet of
Things (IoT), but security and interoperability issues come to any extent.
We will discuss the topics, issues and that need to be addressed during the
design of the overall architecture to avoid many of the unnecessary
problems that might otherwise arise and minimize the risk.

7.3 10T SECURITY AND INTEROPERABILITY

Risks with IoT, Modes of attacking a system and some counter measures,
The importance of interoperability in IoT.

7.4 RISKS

There are many solutions and products under IoT that lack basic security
architectures. It is very easy for a knowledgeable person to take control of
devices for malicious purposes. Not only devices at home are at risk, but
cars, trains, airports, stores, ships, logistics applications, building
automation, utility —metering applications, industrial automation
applications, health services, and so on, are also at risk because of the lack
of security measures in their underlying architecture.

5.MODES OF ATTACKS

a. Denial of Service

A Denial of Service (DoS) or Distributed Denial of Service (DDoS)
attack is normally used to make a service on the Internet crash or
become unresponsive, and in some cases, behave in a way that it can
be exploited. The attack consists in making repetitive requests to a
server until its resources gets exhausted. In a distributed version, the
requests are made by many clients at the same time, which obviously
increases the load on the target. It is often used for blackmailing or
political purposes.

b. Guess the Username and Password

Getting it in the system is to try to impersonate by guessing the
username and password of the authenticated clients. Guessing the
client credentials is risky and it makes the attack less effective, in the
communication. Always have the habit of changing the credentials
frequently. The preset and fixed password helps the attacker to crack
it easily.

c. Access to stored credentials

People reusing the credentials in different systems. There are various
ways to avoid this risk. Credentials of the clients are not to be reused
in different devices or across different services and applications.
Another is to randomize the credentials, lessening the desire to reuse
memorized credentials. Never store actual credentials centrally, even
encrypted if possible, and instead store hashed values of these
credentials. This is often possible since authentication methods use
hash values of credentials in their computations. Even though some
hashing functions are vulnerable in such a way that a new string can
be found that generates the same hash value.

d. Man in the Middle attack (MITM)

Man-in-the-middle (MITM) attacks are a valid and extremely
successful threat vector.

A man in the middle (MITM) attack is a general term for when a
perpetrator positions himself in a conversation between a user and an

IoT Security and
Interoperability

163

Physical Computing and
IoT Programming

164

application—either to eavesdrop or to impersonate one of the parties,
making it appear as if a normal exchange of information is underway.

The goal of an attack is to steal personal information, such as login
credentials, account details and credit card numbers. Targets are
typically the users of financial applications, businesses, e-commerce
sites and other websites where logging is needed.

. K
a X
User Web Application
4
a™

Perpetrator

P,
' T

https://www.imperva.com/learn/application-security/man-in-the-
middle-attack-mitm/

An MITM attack can take a few different forms. ARP poisoning is the
most common, but DHCP, DNS, and ICMP poisoning are also
effective, as well as the use of a malicious wireless access point (AP).
Fake APs have become a common threat vector, exploiting the way
clients automatically connect to known SSIDs. This enables an
attacker to connect and intercept the victim’s network traffic without
the victim seeing any indication they are under attack. To hasten a
connection, attacks against the legitimate AP can be made to help the
malicious AP become the last AP standing.

It can lead to launch the different attacks:

IP spoofing involves an attacker disguising himself as an application
by altering packet headers in an IP address. As a result, users
attempting to access a URL connected to the application are sent to
the attacker’s website.

ARP spoofing is the process of linking an attacker’s MAC address
with the IP address of a legitimate user on a local area network using
fake ARP messages. As a result, data sent by the user to the host [P
address is instead transmitted to the attacker.

DNS spoofing, also known as DNS cache poisoning, involves
infiltrating a DNS server and altering a website’s address record. As
a result, users attempting to access the site are sent by the altered DNS
record to the attacker’s site.

MITM Attack Prevention

o Avoiding Wi-Fi connections that aren’t password protected.

. Paying attention to browser notifications reporting a website as
being unsecured.

. Immediately logging out of a secure application when it’s not
in use.

° Not using public networks (e.g., coffee shops, hotels) when
conducting sensitive transactions.

Sniffing Network Communications

Sniffing occurs when an unauthorized third party captures network
packets destined for computers other than their own. Packet sniffing
allows the attacker to look at transmitted content and may reveal
passwords and confidential data.

Specialized packet driver software must be connected to the network
segment they want to sniff, and must use sniffer software. By default,
a network interface card (NIC) in a computer will usually drop any
traffic not destined for it. By putting the NIC in promiscuous mode, it
will read any packet going by it on the network wire.

Packet-sniffing attacks are more common in areas where many
computer hosts share the same collision domain.

Sniffing and Spoofing-Computer's exchange messages with each
other in the form of small groups of data called packets. Packets
contains the actual data to be sent & addressing information.
Attackers target these packets as they travel from source to
destination. Thus, two types of attacks:

Packet Sniffing(snooping)/IP Sniffing — It is a type of passive attack
where an attacker need not hijack a conversation but simply
observe(sniff) packets as they pass through. To prevent sniffing, the
information must be protected by encoding or the transmission link
itself is encoded.

Packet Spoofing/IP Spoofing — The attacker sends packets with an
incorrect source address. The receiver will receive these packets
containing false address and replies back to this forged address
(spoofed address) not to an attacker. It will lead to three possible
cases:

° If the attacker is between the destination and the forged source,
the attacker can see the reply & use that information for
hijacking.

° If the attacker’s intention was DOS attack, then the attacker
need not bother about the reply.

IoT Security and
Interoperability

165

Physical Computing and
IoT Programming

166

. The attacker could simply be angry with the host, so it may put
that host’s address as the forged source address & send the
packet to the destination. The attacker does not want a reply
from the destination, as it wants the host with the forged address
to receive it & get confused.

Pharming (DNS Spoofing)-

Domain Name Server maintains the mapping between domain names
& the corresponding IP address. Eg- Merchant (Bob) whose sites
domain name is Error! Hyperlink reference not valid. & The IP
address is 100.10.10.20 in the DNS.

Attacker (Tom IP address- 100.20.20.20) manages to hack and
replace the IP address of the Bob with its own IP address. Now Bob’s
IP address is 100.20.20.20 for Error! Hyperlink reference not
valid..

Alice will communicate with Bob’s site; it will query the DNS & will
get Bob’s IP address - 100.20.20.20. Hence Alice is communicating
with an attacker (Tom) assuming that she is communicating with the
Bob.

Port Scanning and Web Crawling

It is technique of determining which port on the network is open and
which could send and receive data, it is also a process for sending
packets to specific ports on a host and analyzing responses to identify
vulnerabilities. This scanning take place by first identifying a list of
active hosts and mapping those hosts to their IP addresses. The goal
behind port and network scanning is to identify the organization of IP
addresses, hosts, and ports to properly determine open or vulnerable
server locations and diagnose security levels. Port scanning can be
used by both IT administrators and cybercriminals to verify or check
the security policies of a network and identify vulnerabilities, also
exploit any potential weak entry points.

Web Crawling Web crawling is the process of indexing data on web
pages by using a program or automated script. These automated
scripts or programs are known by multiple names, including web
crawler, spider, spider bot, or a crawler.

Web crawlers copy pages for processing by a search engine, which
indexes the downloaded pages so that users can search more
efficiently. The goal of a crawler is to learn what webpages are about.
This enables users to retrieve any information on one or more pages
when it’s needed.

Wildcards

Devices that use multicast communications, such as UPnP, CoAP,
anybody can listen and see who sends the messages. Devices that use
single-cast communication, such as those using HTTP or CoAP, port-

scanning techniques can be used. For devices that are protected by
firewalls and use message brokers to protect against incoming attacks,
such as those that use XMPP and MQTT, search features or wildcards
can be used to find the identities of devices managed by the broker

HTTP and CoAP that support some level of local client authentication
but lacks a good distributed identity and authentication mechanism.

XMPP only permits messages from specific requests that has come
from another end. The device which accepts the request is a friend
devise or not. This can be either configured by somebody else with
access to the account or by using a provisioning server if the device
cannot make such decisions by itself. The device does not need to
worry about client authentication, as this is done by the brokers
themselves, and the XMPP brokers always propagate the
authenticated identities of everybody who send them messages.

In MQTT the only way to control who gets access to the data is by
building a proprietary end-to-end encryption layer on top of the
MQTT protocol, thereby limiting interoperability.

Breaking Ciphers

Cryptanalysis is the study of analyzing information systems in order
to study the hidden aspects of the systems. Cryptanalysis is used to
breach cryptographic security systems and gain access to the contents
of encrypted messages, even if the cryptographic key is unknown.

In addition to mathematical analysis of cryptographic algorithms,
cryptanalysis includes the study of side-channel attacks that do not
target weaknesses in the cryptographic algorithms themselves, but
instead exploit weaknesses in their implementation. Attacks can be
classified based on what type of information the attacker has
available.

Cryptography-An art of achieving security by encoding messages
to make them non-readable.

Cryptanalysis- A technique of decoding messages from a non-
readable format back to a readable format without knowing how
they were initially converted from readable format to a non-readable
format.

Plain Text — Message in a plain text can be understood by anybody
& it is in human readable form.

Cipher Text —When a plain text message is coded using a suitable
scheme, the resulting message is called cipher text.

Encryption(encoding)- It transforms a plain text into a cipher text.
Decryption(decoding) — It transforms a cipher text into a plain text.

Two ways in which a plain text can be coded to obtain the
corresponding cipher text - substitution & Transposition.

IoT Security and
Interoperability

167

https://en.wikipedia.org/wiki/Information_system
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Key_(cryptography)
https://en.wikipedia.org/wiki/Side-channel_attacks

Physical Computing and Eg :Substitution Techniques — The characters of a plain text
loT Programming messages are replaced by other characters, numbers or symbols.

a. Caesar Cipher — Algorithm

e Read each alphabet in the cipher text message, & search
for it in the second row of the replacement table.

e When a match is found replace that alphabet in the cipher
text message with the corresponding alphabet in the same
column but the first row of the table

e Repeat the process for all alphabets in the cipher text
message.

ABCDEFGHI JKLMNOPQRSTUV WXYZ

DEFGHI J KLMNOPQRSTUVWXYZAIBLC

Eg- Plain Text— HELLO HOW ARE YOU
Cipher Text - KHOOR KRZ DUH BRX.
Eg- Cipher Text — I AM FINE
Plain Text-F XJ CFKB

L Password Cracking

Password crackers either try to guess passwords or they use brute-
force tools. Brute-force tools attempt to guess a password by trying
all the character combinations listed in an accompanying dictionary.
The dictionary may start off blindly guessing passwords using a
simple incremental algorithm. (For example, trying aaaaa, aaaab,
aaaac, and so on) or it may use passwords known to be common on
the host (such as password, blank, michael, and so on).

If the attacked system locks out accounts after a certain number of
invalid login attempts, some password attackers will gain enough
access to copy down the password database, and then brute force it
offline.

7.6 TOOLS FOR ACHIEVING SECURITY

There are a number of tools that architects and developers can use to
protect against malicious use of the system.

a. Virtual Private Networks

A method that is often used to protect unsecured solutions on
the Internet is to protect them using Virtual Private Networks
(VPNs). Machine to Machine solutions work well in local
intranets that needs to expand across the Internet. One way to
achieve this is to create such VPNs that allow the devices to
believe they are in a local intranet, even though communication
168 is transported across the Internet. Telephone operators use the

Internet to transport long distance calls, it doesn't make it Voice
over IP (VoIP). Using VPNs might protect the solution, but it
eliminates the possibility to interoperate with others on the
Internet.

A virtual private network, or VPN, is an encrypted connection
over the Internet from a device to a network. The encrypted
connection helps ensure that sensitive data is safely transmitted.
It prevents unauthorized people from eavesdropping on the
traffic and allows the user to conduct work remotely. VPN
technology is widely used in corporate environments.

How does a virtual private network (VPN) work?

A VPN extends a corporate network through encrypted
connections made over the Internet. Because the traffic is
encrypted between the device and the network, traffic remains
private as it travels. An employee can work outside the office
and still securely connect to the corporate network. Even
smartphones and tablets can connect through a VPN.

X.509 certificates and encryption

The use of certificates to validate the identity of high-value
entities on the Internet. Certificates allow you to validate not
only the identity, but also to check whether the certificate has
been revoked or any of the issuers of the certificate have had
their certificates revoked, which might be the case if a
certificate has been compromised. Certificates also provide a
Public Key Infrastructure (PKI) architecture that handles
encryption. Each certificate has a public and private part. The
public part of the certificate can be freely distributed and is used
to encrypt data, whereas only the holder of the private part of
the certificate can decrypt the data. Using certificates incurs a
cost in the production or installation of a device or item. They
also have a limited life span, so they need to be given either a
long lifespan or updated remotely during the life span of the
device. Certificates also require a scalable infrastructure for
validating them. It is difficult to see that certificates will be used
by other than high-value entities that are easy to administer in a
network.

Digital Certificate

A standard called X.509 defines the structure of a digital
certificate. Figure shows the structure of a X.509 V3 digital
certificate.

IoT Security and
Interoperability

169

Physical Computing and Version \ \ \
[oT Programuting Certificate Serial Number - » "
Signature Algorithm Identifier " " "
Issuer Name 5 5 5
Validity (Not Before / Not After ¢ o)
Subject Name 2 2 g
Subject Public Key Information)
Issuer Unique Identifier
Subject Unique Identifier)
Extensions W,
Certification Authority’s Digital Signature | All versions

Version Identifies a particular version of the
X.509 protocol, which is used for this
digital certificate. Currently, this field
can contain 1, 2 or 3.

Certificate Serial Contains a unique integer number, which

Number is generated by the CA.

Signature Algorithm Identifies the algorithm used by the CA

Identifier to sign this certificate.

Issuer Name Identifies the Distinguished Name (DN)
of the CA that created and signed this
certificate.

Validity (Not Contains two date-time values (Not
Before/Not After) Before and Not After), which specify the
time frame within which the certificate
should be considered valid. These values
generally specify the date and time up to
seconds or milliseconds.

Subject Name Identifies the Distinguished Name (DN)
of the end entity (i.e. the user or the
organization) to whom this certificate
refers. This field must contain an entry
unless an alternative name is defined in
Version 3 extensions.

Subject Public Key Contains the subject's public key and
Information algorithms related to that key. This field
can never be blank.

170

PKIX Services

a.

Registration

It is the process where an end-entity (subject) makes itself known to
a CA. Usually, this is via an RA.

Initialization

This deals with the basic problems, such as who the end-entity is sure
that it is talking to the right CA?

Certification

In this step, the CA creates a digital certificate for the end-entity and
returns it to the end-entity maintains a copy for its own records and
copies it in public directories, if required.

Key pair recovery

Keys used for encryption may be required to be recovered later for
decrypting some old documents. Key archival and recovery services
can be provided by a CA or by an independent key recovery system.

Key generation

PKIX specifies that the end-entity should be able to generate private
and public key pairs or the CA/RA should be able to do this for the
end-entity (and then distribute these keys securely to the end-entity).

Key update

This allows a smooth transition from one expiring key pair to a fresh
one, by the automatic renewal of digital certificates. However, there
is a provision for manual digital certificates renewal request and
response.

Cross-certification

Helps in establishing trust models, so that end-entities that are
certified by different CAs can cross-verify each other.

Revocation

PKIX provides support for the checking of the certificate status in two
modes: online (using OCSP) or offline (using CRL).

Public Key Cryptography Standards (PKCS)

PKCS#S % Password Based Encryption (PBE) Standard

PBE is a solution for keeping the symmetric session keys safe. This
technique ensures that the symmetric keys are protected from an
unauthorized access. The PBE method uses a password-based technique for
encrypting a session key.

IoT Security and
Interoperability

171

Physical Computing and
IoT Programming

172

— — - —
LStep 1: The plain tex t dala is encrypted using the symmetric key, as usual. }

b «/‘Simmetric key

*
~ Encryption
algorithm

Cipher text

‘ Step 2: The symmetric key itself is encrypted using the Key Encryption Key.

‘</Q P
Symmetric key '
0/"‘

Key Encryption Key
(KEK)

first encrypt the plain-text message with the symmetric key, and then
encrypt the symmetric key with a Key Encryption Key (KEK). This protects
the symmetric key from an unauthorized access.

To protect KEK, never store it anywhere! This will ensure that no one will
have access to it.

the approach used in PBE is to generate it on demand, use it for
encrypting/decrypting the symmetric key, and then discard it immediately.
The password is the input to a key-generation process (usually a message
digest algorithm), the output of which is the KEK.

-

Key Encryption Key |
(KEK)

Password

c. Authentication of identities

Authentication is the process of validating whether the identity
provided is actually correct or not. Authenticating a server might be
as simple as validating a domain certificate provided by the server,
making sure it has not been revoked and that it corresponds to the
domain name used to connect to the server. Authenticating a client
might be more involved, as it has to authenticate the credentials
provided by the client. Normally, this can be done in many different
ways. It is vital for developers and architects to understand the
available authentication methods and how they work to be able to

assess the level of security used by the systems they develop. Some ToT Security and
protocols, such as HTTP and XMPP, use the standardized Simple Interoperability
Authentication and Security Layer (SASL) to publish an extensible

set of authentication methods that the client can choose from. This is

good since it allows for new authentication methods to be added. But

it also provides a weakness: clients can be tricked into choosing an

unsecure authentication mechanism, thus unwittingly revealing their

user credentials to an impostor. MD5-DIGEST, and so on, even if

they are the only options available.

Message Digest

What is a message digest -1t is a fingerprint or the summary of a message?
It is similar to the concept of Longitudinal Redundancy Check (LRC) or
Cyclic Redundancy Check (CRC) that is used to verify the integrity if the
data. (i.e., to ensure that a message has not been tampered with after it
leaves the sender before it reaches the receiver)

The requirements of the message digest concept, as follows:

(a) Given a message, it should be very easy to find its corresponding
message digest. This is shown in Figure, Also, for a given message,
the message digest must always be the same.

(b) Given a message digest, it should be very difficult to find the
original message for which the digest was created.

— - -
Original data [,&;
— Bloa® 2. s i
Should be possible and the Message- :z;::ii
result should always be the digest Must not be possible prh ?
same algorithm argcgrflim
| Original data

(c) Given any two messages, if we calculate their message digests, the
two message digests must be different.

| Original data Original data i
block 1 block 2
Message- Massage-
d-ggst digest
algorithm algorithim

Message Message
digest 1 digest 2
\ These two message /

digests must be differant

173

Physical Computing and
IoT Programming

174

MDS hashing algorithm:
MDS5 is quite fast and produces 128-bit message digest.
Secure Hash Algorithm (SHA).

SHA works with any input message that is less than 2 bits in length. The
output of SHA is a message digest, which is 160 bits in length (32 bits
more than the message digest produced by MD5).

Comparison between MDS & SHA.

I I
Message-digest
length in bits

Attack to try and Requires 2! Requires 2!

find the original operations to operations to break
message given a break in in, therefore more
message digest secure

Attack to try and
find two messages
producing the same
message digest

Requires 2% Requires 2%
operations to operations to break
break in in

Successful attacks There have been No such claims so
so for reported attempts far.
to some extent.

Software
implementation

Faster (64 Slower (80
iterations and 128 iterations, and 160
bit buffer.) bit buffer)

Simple, does not
need any large
programs or
complex tables.

Simple does not
need any large
programs or
complex table.

Usernames and passwords

A common method to provide user credentials during authentication
is by providing a simple username and password to the server. Some
solutions use the concept of a pre-shared key (PSK) instead, as it is
more applicable to machines. One way to generate secure, difficult-
to-guess usernames and passwords is to randomly create them. In this
way, they correspond more to pre-shared keys. Both the server and
the client need to be aware of this information. The identity must also
be distributed among the entities that are to communicate with the
device. In the case of XMPP, this problem has been solved. The
XMPP Protocol. Here, the device creates its own random identity and
creates the corresponding account in the XMPP server in a secure

manner. It then reports its identity to a Thing Registry or provisioning IoT Security and
server where the owner can claim it and learn the newly created Interoperability
identity. This method never compromises the credentials and does not
affect the cost of production negatively. Furthermore, passwords
should never be stored in clear text. Important on servers where many
passwords are stored. Instead, hashes of the passwords should be
stored. Most modern authentication algorithms support the use of
password hashes. Storing hashes minimizes the risk of unwanted
generation of original passwords for attempted reuse in other systems.

e. Using message brokers and provisioning servers

Using message brokers can greatly enhance security in an IoT
application and lower the complexity of implementation when it
comes to authentication, if message brokers provide authenticated
identity information in messages it forwards. In XMPP, all the
federated XMPP servers authenticate clients connected to them as
well as the federated servers themselves when they intercommunicate
to transport messages between domains. This relieves clients from the
burden of having to authenticate each entity in trying to communicate
with it since they all have been securely authenticated. It's sufficient
to manage security on an identity level. Even this step can be relieved
further using provisioning, as described in Chapter 6, The XMPP
Protocol. Unfortunately, not all protocols using message brokers
provide this added security since they do not provide information
about the sender of packets. MQTT is an example of such a protocol.

f. Centralization versus decentralization

When designing IoT architecture -avoid storing data in a central
position if possible. Only store the data centrally which is actually
needed to bind things together. Distribute logic, data, and workload.
Perform work out of network as far as possible. This makes the
solution more scalable, and it utilizes existing resources better. Use
the linked data to spread data across the Internet, and use standardized
grid computation technologies to assemble distributed data (for
example, SPARQL) to avoid the need to store and replicate data
centrally. Use a federated set of small local brokers instead of trying
to get all the devices on the same broker.

7.7 THE NEED FOR INTEROPERABILITY

Interoperability is the ability of two or more devices, systems,
platforms or networks to work in conjunction. Interoperability enables
communication between heterogeneous devices or system in order to
achieve a common goal. The devices and systems are fragmented with
respect to the communication technologies, protocols, and data
formats. This makes it difficult for the devices and systems in the IoT
network to communicate and share their data with one another.

175

Physical Computing and
IoT Programming

176

a.

Solves complexity

Those companies that believe they can control the entire value chain,
from things to services, middleware, administration, operation, apps.
What will happen if they fail to operate. Companies that built devices
with protocols, middleware, and mobile phone applications, where
human can control things. Imagine a future where you have a
thousand different things in your apartment from a hundred
manufacturers. Would you want to download a hundred smart phone
apps to control them? Would you like five different applications just
to control your lights at home, just because you have light bulbs from
five different manufacturers? An alternative would be to have one app
to rule them based on requirement & feedback. To make it
interoperable, they should communicate using a commonly
understood language.

Reduces cost

Interoperability does not only affect simplicity of installation and
management; it also takes care of the price of installation and solution
to it. Companies that promote products, where you're forced to use
their system to control your devices, can force their clients to pay a
high price for future devices and maintenance, or the large investment
made originally might be lost. Interoperability provides competition,
and competition drives down cost and increases functionality and
quality.

Allows new Kkinds of services and reuse of devices

New applications and services will be built that will reuse existing
devices, which were installed perhaps as part of other systems and
services. These applications will deliver new value to the inhabitants
of the city without the need of installing new duplicate devices but
such multiple use of devices is only possible if the devices
communicate in an open and interoperable way. However, care must
be taken at the same time since installing devices in an open
environment requires the communication infrastructure to be secure
as well. To build smart cities, it is important to use technologies that
allow to have both a secure communication infrastructure and an
interoperable.

Combining security and interoperability

Depending on the communication infrastructure, we might have to
use security measures that directly oppose the idea of an interoperable
infrastructure, prohibiting third parties from accessing existing
devices in a secure fashion. It is important during the architecture
design phase, before implementation, to thoroughly investigate what
communication technologies are available, and what they provide and
what they do not provide. All such implementation is by its very
nature proprietary, and therefore not interoperable.

7 . 8 SUMM ARY IoT Security and

Interoperability

In this we talked about the risks involved in IoT, Security and
interoperability. There always a risk associated in any kind of work
whether it is technical or non-technical. [oT security is the protection
of Internet of Things devices from attack. While many business
owners are aware that they need to protect computers and phones with
antivirus, the security risks related to IoT devices are less well known
and their protection is often neglected. While consumer IoT devices
allow lifestyle benefits, businesses are quickly adopting [oT devices
due to high potential for savings. IoT devices can greatly increase
productivity for businesses, they also come with risks. Since IoT
devices are connected to the internet, they can be hacked just like any
other internet-enabled device. The attack surface of a network
consists of all the possible places where it can be attacked, and it
expands with every new internet-connected device. Even if the chance
of one device being accessed by a perpetrator is small, the large
number of [oT devices being brought into businesses can create a
significant security risk.

7.9 REFERENCES FOR FUTURE READING

Learning Internet of Things by Peter Waher, Packt Publishing.
(All notes are taken from this prescribed reference book).

Notes are taken from the link below:
https://blog.avast.com/iot-security-business-risk.

https://www.cisco.com/c/en_in/products/security/vpn-endpoint-
security-clients/what-is-vpn.html.

https://www.imperva.com/learn/application-security/man-in-the-
middle-attack-mitm/

7.10 UNIT END EXERCISE

What is a risk in [oT. Elaborate with an example.
What are the different modes of attacks in the network.
What do you mean by interoperability in IoT?

What is the need of interoperability in IoT.

Explain Denial of Service attack.

What do you mean by Man-in-the-Middle attack?
Describe in detail port scanning and Web Crawling?

O NNk WD =

How wildcards and breaking cipher helps in attacks in the
network.

9. What are the different tools available to achieve security?
10. Explain Virtual Private Network (VNP)? What are its features.

5 55 5 8 0 177

https://blog.avast.com/best-iot-small-business

INTRODUCTION TO IOT

Unit Structure

8.1 Obijective

8.2 Introduction

8.3 Definition

8.4 Features of IoT

8.5 Applications

8.6 loT Examples

8.7 Simple lIoT LED Program

8.8 Summary

8.9 References for Future Reading
8.10 Unit End Exercise

8.1 OBJECTIVE

The aim of the Internet of Things to creation network is:

To coordinate and help to increase and optimize the utilization of results
and value creation in loT.

To create innovation strategies for the development of enabling
technologies (nano-electronics, embedded systems, communication
technologies, software, and cloud computing, etc.) required for loT
applications.

The main purpose of 10T is to create an ecosystem that connects everything.
An ecosystem where everything is connected to each other is known as the
Internet of Everything.

8.2 INTRODUCTION

Nowadays information technology is developed to be as one part that covers
different phases related to the spread of the Internet and the Web into the
tangible infrastructure which is called as the Internet of Things. The Internet
of Things (10T) is considered important knowledge that adapted the human
to live in a smart and speed life, through enabling things to communicate
with other objects, such as machines. 10T describes a system that contains
many things that are exiting in the real world, along with sensors attached
to them or embedded in these things, and connected to the Internet through
a networked structure both as wireless or wired media.

169

Physical Computing and loT
Programming

170

8.3 DEFINITION

The 10T is «an interconnected environment in which all kinds of objects
have a digital presence and the ability to communicate with other objects
and people. 10T device comes with some common set of features like
connectivity, analytics, endpoint management, etc.

The loT enables the entities to connect and control the 10T devices present
in the network by-

1. The entity can use a remote (tablets, smartphones) for sending a
command or request for information over an 10T device.

2. The device then performs the command or can even send the
information back over the network which has to be analyzed

3. This storing and analyzing of data can be carried out in multiple
locations which include- cloud, local database or sometimes the data
himself.

8.4 FEATURES OF INTERNET OF THINGS

Any loT device should have the following features associated with it.

1. Connectivity

loT devices can be connected over Radio waves, Bluetooth, Wi-Fi,
Li-Fi, etc. Various protocols of internet connectivity layers can be
used to maximize efficiency and establish connectivity across IoT
Industry. Without seamless communication among the interrelated
components of the 10T ecosystems (i.e sensors, compute engines, data
hubs, etc.) it is not possible to execute any business.

2. Sensing

In the case of 10T we need to read the analog signal, convert it in such
a way that we can derive meaningful insights out of it. Use of
electrochemical, gyroscope, pressure, light sensors, GPS,
Electrochemical, pressure, RFID, etc. to gather data based on an
analysis. For example, for automotive use cases, we use Light
detection sensors along with pressure, velocity and imagery sensors.

3. Active Engagements

loT device connects various products, technologies and services work
together by establishing an active engagement between them. Cloud
computing is used to establish active engagements among loT
components. In the case of Industry grade, 10T takes the raw data
which need to be acquired, preprocessed, and rescale as per business
capacity. While designing an 10T ecosystems carriers need to consider
the future needs of manipulating such a huge scale of data to satisfy
incremental business needs.

Scale

loT devices should be designed in such a way that they can be scaled
up or down easily on demand based on market or industry standards.
In general, 10T is being used from smart home automation to
automating large factories and workstations. A carrier should design
their 10T infrastructure depending upon their current and future
engagement scale.

Dynamic Nature

For any 0T use case, the first and important step is to collect and
convert data in such a way that means business decisions can be made
of it. In this whole process, various components of 10T need to change
their state dynamically. For example, the input of a temperature
sensor will vary continuously based on weather conditions, locations,
etc. 10T devices should be designed this keeping in mind.

Intelligence

In 10T, the data is used to make important business insights and drive
important business decisions based on the analysis. Various machine
learning & deep learning algorithms are built to models on top of this
massive data to obtain valuable insights. The analog signals are
preprocessed and converted to a format on which machine-learning
models are trained.

Energy

From end components to connectivity and analytics layers, the whole
ecosystems demand a lot of energy. While designing an IoT
ecosystem, one need to consider design methodology such that it
should be eco-friendly and energy consumption is minimal moreover
recycling can also be done.

Safety

One of the main features of the 10T ecosystem is security. In the
network of an 10T system, crucial and sensitive information travels
from endpoints to the analytics layer via connectivity components.
While designing an 10T system we need to adhere to proper safety,
security measures, and firewalls to keep the data away from misuse
and manipulations. Compromising any component of an IoT system
can eventually lead to failure of the whole system.

Integration

loT integrates various cross-domain models to enrich user experience.
It also ensures proper trade-off between infrastructure and operational
costs.

Introduction to loT

171

Physical Computing and loT
Programming

172

8.5 APPLICATIONS OF IOT

The Internet of Things (10T) provides the ability to interconnect computing
devices, mechanical machines, objects, animals or unique identifiers and
people to transfer data across a network without the need for human-to-
human or human-to-computer is a system of conversation. loT applications
bring a lot of value in our lives. The Internet of Things provides objects,
computing devices, or unique identifiers and people’s ability to transfer data
across a network without the human-to-human or human-to-computer
interaction.

Online _ ___---
Shopping

Home and
Application

Analytics

Source : https://www.javatpoint.com/internet-of-things-applications

A traffic camera is an intelligent device. The camera monitors traffic
congestion, accidents and weather conditions and can access it to a
common entrance.

This gateway receives data from such cameras and transmits information to
the city's traffic monitoring system.

Network
Gateway

City wide
Monitoring
system L

Traffic
Camera

Source: https://www.javatpoint.com/internet-of-things-applications

Wearables

Wearable technology is the hallmark of 10T applications and one of
the earliest industries to deploy 10T. Devices are designed for heart
rate monitors and smartwatches etc. nowadays.

Guardian glucose monitoring device has been developed to help
people with diabetes. It detects glucose levels in our body, uses a
small electrode called the glucose sensor under the skin, and relates it
to a radiofrequency monitoring device.

Smart Home Applications

The smart home or smart city talks about the IoT application. Al home
automation is employed, home automation system, where a string of
musical notes uses in-house functions.

Health care

loT applications can transform reactive medical-based systems into
active wellness-based systems. Resources uses controlled
environments, leftover data, and volunteers for clinical trials. The
Internet of Things improves the device's power, precision, and
availability.

Smart Cities

Smart city uses technology of 10T to provide services. The smart city
includes improving transportation and social services, promoting
stability etc.

Engineers use the Internet of Things to analyze the complex factors
of town and each city. 10T applications help in water management,
waste control and emergencies.

Eg: Smart city - Palo Alto.

Palo Alto, San Francisco, is the city to acquire the traffic approach.
They realized that most cars roam around the same block on the streets
in search of parking spots. It is the primary cause of traffic congestion
in the city. Thus, the sensors were installed at all parking areas in the
city. These sensors pass occupancy status to the cloud of each spot.
And hence the vacant space for cars is identified and cars can be
parked properly.

Agriculture

To feed such a large population, agriculture needs to collaborate with
technology and get the best results out of it. Eg: Smart Greenhouse
where farming techniques grow crops by environmental parameters.
Traditional method of manual handling results in production losses,
energy losses and labor costs, making it less effective and involves
huge amount of loss due to weather conditions. The greenhouse
makes it easy to monitor and enables to control the climate inside it.

Introduction to loT

173

Physical Computing and loT
Programming

174

6.

10.

11.

Industrial Automation

In industry automation is must where the quality of products is an
essential factor for a more significant investment return and good
turnover. Anyone can design or re-construct products and their
packaging to provide superior quality and performance in cost and
customer experience with loT applications. 10T will prove as a game-
changer. In industrial automation, 10T is used in the areas such as:

. Product flow monitoring

. Factory digitization

° Inventory management

° Safety and security

. Logistics and Supply Chain Optimization
. Quality control

° Packaging customization

Hacked Car

A connected car is a technology-driven car with Internet access and a
WAN network. The technology offers the user some benefits such as
in-car infotainment, advanced navigation and fuel efficiency.

Healthcare

Healthcare does real-time monitoring with the help of smart devices.
It gathers and transfers health data such as blood pressure, blood sugar
levels, weight, oxygen, and ECG. The patient can contact the doctor
by the smart mobile application in case of any emergency.

Smart Retail

loT applications in retail give shoppers a new experience. Customers
do not have to stand in long queues as the checkout system can read
the tags of the products and deduct the total amount from the
customer's payment app with 10T applications' help.

Smart Supply Chain

Customers automate the delivery and shipping with a smart supply
chain. It also provides details of real-time conditions and supply
networks.

Smart Farming

Farmers can minimize waste and increase productivity. The system
allows the monitoring of fields with the help of sensors. Farmers can
monitor the status of the area.

8.6 IOT EXAMPLES IN REAL LIFE Introduction to loT

1. Sensors

IoT sensors consist of manual or digital sensors connected to circuit
boards such as Arduino Uno or Raspberry Pi 2. The circuit boards can
be programmed to measure a range of data collected from a sensor
device such as carbon monoxide, temperature, humidity, pressure,
vibration, and motion. 10T sensors gather data at different physical
environments and sends data to the connected devices. They can be
used by businesses for predictive maintenance, enhanced efficiency,
and reduced costs.

2. Data Analysis

Businesses are increasingly using loT data analytics to determine
trends and patterns by analyzing big and small data. 10T data analytics
apps can analyze structured, unstructured, and semi-structured data to
extract meaningful insights and predict the result.

loT can be applied to data analytics to investigate different types of
data including motion data sets, geographical data, and health care
data. It can be used by businesses for predictive and descriptive
analysis to improve customer knowledge, enhance operational
efficiency, and create business value.

3. Tracking and Monitoring Systems

A lot of industry such as Amazon, Flip Kart etc. are using 10T systems
for asset tracking. loT asset tracking devices use GPS or radio
frequency (RF) to track and monitor the product. The smart devices
can be used for long-range identification and verification of assets.

4. Smart Supply Chain Management

Supply chain managers can make improved predictions through smart
routing and rerouting algorithms. 10T devices are tagged to packages
that can provide instant location finding facility via GPS and RFID
signals that can help to make informed supply chain decisions. 10T
applications can help in mitigating uncertainty risks in supply chain
management. Supply chain managers can make use of smart supply
chain management programs for minimizing variance, reducing costs,
and improving profitability. The programs can help in inventory
management, vendor relationship, fleet management, and scheduled
maintenance.

5. Smart Barcode Readers

IoT barcode readers can help in better inventory management for
retailers. The readers support Al-based digital signal processing.
These devices can optimize the operations of many sectors including
retail, logistics, warehouse, and much more.
175

Physical Computing and loT
Programming

176

loT based bar card readers feature cloud data connections to connect
with other systems. Using the connected bar code reader will ease the
process of managing inventory.

loT barcode readers can be incorporated into shopping carts. The
readers use Al-based sensor to detect products as they are dropped or
removed from the cart. The reader can transfer data to the computer
automatically, and that can save a lot of time in checkout resulting in
an improved experience for the customers.

Smart Grids

The smart grid is another industrial application of 1oT. The grid
allows real-time monitoring of data regarding supply and demand of
electricity. It involves the application of computer intelligence for the
efficient management of resources.

Utility companies can use loT smart grid technologies for more
efficient outage management. They can use the technology to identify
load distribution and improve reliability. The technology can also
assist in fault detection and repairs.

With the smart grid, utilities can interconnect all their assets including
meters and substations. Applying loT technologies to the grid
ecosystem allows utility companies to exercise greater control over
the power infrastructure and resources. Moreover, they allow
consumers with better quality access to energy.

Connected HealthCare System

loT has numerous applications in the healthcare industry. The
technology can be used to provide high-quality medical services using
smart medical devices.

loT automates the workflow by allowing the provision of effective
health care services to the patients.

loT medical devices can help in real-time monitoring of patients
remotely. The devices can report an emergency like an asthma attack,
heart failure, etc., immediately to a physician. This can help in
potentially saving the lives of many individuals.

IoT devices can collect health care data including blood pressure,
sugar levels, oxygen, and weight. Data is stored online and can be
accessed anytime by a physician.

Smart Farming

Farmers can use smart 0T farming applications for optimizing a lot
of different activities such as determining the best time to harvest
plants, creating fertilizer based on the chemicals in the soil, and
sensing soil nutrients and moisture levels.

loT technologies can help in precise farming which can result in
optimized production. Some 10T devices and sensors can detect
weather conditions and other environmental data. Applications of 0T
technologies can help to boost both the quality and quantity of
agriculture production.

8.7 SIMPLE 10T LED PROGRAM

Simple LED Blink example

Aim: Simple experiment of connecting LED lights with Raspberry Pi
device (device only with Windows 10 IoT Core OS)

Requirements:

Raspberry Pi 2/3 with Windows 10 loT Core OS connected to internet
Laptop or PC with Windows 10 OS connected to internet

Visual Studio 2015 installed on your laptop or PC

Bread Board

LED Light

Resistor

Step — 01: Select File -> Create new project -> Name it "Simple Led Blink"

Ye &

Uriversad

Carvel

Step — 02: Right click on the selection and add reference. Select Windows
loT Extension for the UWP and click ok.

Introduction to loT

177

Physical Computing and loT y :
Programming & : : e -

[£ Wsoms bt bt s e A TN

Step — 03: Open MainPage.xaml and add the following for Ul
<Grid Background="Wheat">

<StackPanel Horizontal Alignment="Center"
Vertical Alignment="Center">

<Ellipse x:Name="LED" Fill="LightGray" Stroke="White"
Width="100" Height="100" Margin="10"/>

<TextBlock x:Name="DelayText" Text="500ms" Margin="10"
TextAlignment="Center" FontSize="26.667" />

<TextBlock x:Name="GpioStatus" Text="Waiting to initialize
GPIO..." Margin="10,50,10,10" TextAlignment="Center"
FontSize="26.667" />

</StackPanel>
</Grid>

Step — 04: Open the MainPage.xaml.cs add the following in the cs file.
private const int LED_PIN =5;

private GpioPin pin;
private GpioPinValue pinValue;
private DispatcherTimer timer;

private SolidColorBrush redBrush = new
SolidColorBrush(Windows.Ul.Colors.Red);

private SolidColorBrush grayBrush = new
SolidColorBrush(Windows.Ul.Colors.LightGray);

public MainPage()
{

InitializeComponent();
178

timer = new DispatcherTimer(); Introduction to loT
timer.Interval = TimeSpan.FromMilliseconds(500);
timer.Tick += Timer_Tick;
InitGPIO();
if (pin !=null)
{
timer.Start();
}
}
private void InitGP1O()

{
var gpio = GpioController.GetDefault();

/I Show an error if there is no GPIO controller
if (gpio == null)
{
pin = null;
GpioStatus.Text = "There is no GPIO controller on this device.";
return;
}
pin = gpio.OpenPin(LED_PIN);
pinValue = GpioPinValue.High;
pin.Write(pinValue);
pin.SetDriveMode(GpioPinDriveMode.Output);
GpioStatus. Text = "GPIO pin initialized correctly.";
}

private void Timer_Tick(object sender, object e)

{
if (pinValue == GpioPinValue.High)
179

Physical Computing and loT {
Programming . L
pinValue = GpioPinValue.Low;
pin.Write(pinValue);
LED.Fill = redBrush;
}

else

{
pinValue = GpioPinValue.High;
pin.Write(pinValue);
LED.Fill = grayBrush;

Use GPIO (General Purpose Input Output) 5 over here
- £ [2]sv ewr |
- [12¢1 DA [3] [a]svewr |
. [tacisct 5] O G-
So’Q [cPio4 [7] [8 [Reserved |
[ono 1S) DEETE
[sp11cso 1a] 12]cPro 18 |
CTEm® sfcno]
[GP10 22 [15] 16]GP1o 23 |
7] 18]GP10 24 |
XM 2olcno
[SP10 M1SO [21) 22]GP10 25 |
[sP10 scik [23] 24 sp10 cso |
GND DEIXTW
[Reserved [27] 28] Reserved |
[ep10s |29 golcno
= e [cP106 [31) 32]cP10 12 |
= £ [Grio 13 [53 Salcno |
14393 14393 [sP11 m1so [35} 36]GP10 16 |
AE] CEOR D s8] ser: mosi)
— [onvo [39) jao] sp11 scik |

Step — 05: Now build the solution and select ARM and select Remote
Machine, In the address column enter the Ip address of the network
connected with Raspberry Pi device and click ok.

180

¥ id " et Build bug earn lf Anal Window telp
- ¢ P De oy o
- P 1 "
y . I ok
¥ using System; L
Syst C Found 0 connections &
{~) Manual Configuration
- . > .' - . A ”
using Windows.ApplicationModel; Address:
using Windows.ApplicationModel.Activation; Authentication Mode: = Universal (Unencrypted Protocod)
using Windows.UI.Xaml; -7 o 4
ol 2
using Windows.UI.Xaml.Controls; FNNLENSOU
using Windows.UI.Xaml.Navigation;
namespace Simple_Led_8link
{
Provicdes ‘:[;213?;:” '.:‘Q:'.‘.;Z behavior t¢
Not all de can be auto detected. If you do not see a device you

: e et ecy e e P ok g Ve
singleton applicatiod Lesm more about Remote Diag

Remote Connections ? X
Filter Jo
Found 0 connections
@ Manual Configuration

Address: 1192.168.1.12]

Authentication Mode: | Universal (Unencrypted Protocol) v

Select I

@ Auto Detected

Step — 06: Now once Remote Machine is selected build and run the
application. Once the application is build & run operation is completed
successfully in the sense you will find the LED blinking according to the
timer set.

Source:
https://social.technet.microsoft.com/wiki/contents/articles/33948.iot-
simple-led-blink-example.aspx

8.8.SUMMARY

The Internet of Things (1oT) provides the ability to interconnect computing
devices, mechanical machines, objects, animals or unique identifiers and
people to transfer data across a network without the need for human-to-
human or human-to-computer is a system of conversation.

Introduction to loT

181

Physical Computing and loT
Programming

182

IoT applications bring a lot of value in our lives. The Internet of Things
provides objects, computing devices, or unique identifiers and people's
ability to transfer data across a network without the human-to-human or
human-to-computer interaction.

loT is used in real life applications such as —health monitoring systems,
whether forecasting, tracking of the product, inventory management, smart
grid and many more.

8.9.REFERENCES FOR FUTURE READING

Notes taken from the link below:

https://www.javatpoint.com/internet-of-things-applications

https://www.educha.com/iot-features/

https://www.softwaretestinghelp.com/best-iot-examples/#10_Best_Real-
World_loT_Examples

https://social.technet.microsoft.com/wiki/contents/articles/33948.iot-
simple-led-blink-example.aspx

8.10 UNIT END EXERCISE

What is 10T?

What are the features of 10T?

Explain the applications of loT

With an example explain the real-life application of 10T?
Elaborate the process of 10T in supply chain management system?
Explain how loT is applicable to medical industry?

Write a note on “Improvement in traffic congestion relief using IoT?

ke o o ke o e ke

https://www.javatpoint.com/internet-of-things-applications
https://www.educba.com/iot-features/

	106 Starting pages
	01 (1-77)
	02 (78-102)Edit
	03 (103-111)Edit
	04 (112-133)Edit
	05 (134-143)edit
	06 (144-161)Edit
	07 (153-177)
	08 (178-182)

