
SUBJECT CODE : USIT506

ENTERPRISE JAVA

T.Y.B.Sc. (IT)
SEMESTER - V (CBCS)

ipin Enterprises
Tantia Jogani Industrial Estate, Unit No. 2,
Ground Floor, Sitaram Mill Compound,
J.R. Boricha Marg, Mumbai - 400 011

July 2022, Print I

© UNIVERSITY OF MUMBAI

Prof. Prakash Mahanwar
Director

IDOL, University of Mumbai.

Prof. Suhas Pednekar
Vice Chancellor

University of Mumbai, Mumbai.

Prof. Ravindra D. Kulkarni
Pro Vice-Chancellor,
University of Mumbai.

Programe Co-ordinator : Shri. Mandar L. Bhanushe
Head, Faculty of Science and Technology,
IDOL, University of Mumbai – 400098.

Course Co-ordinator : Ms. Gouri S. Sawant
Assistant Professor B.Sc.IT, IDOL,
University of Mumbai- 400098.

Editor : Dr Vinayak Pujari
Assistant Professor,
D. Y. Patil Engineering College, Kolhapur.

Course Writers : Mr. Umesh Waghmare
Assistant Professor,
MKSSS’s K.B. Joshi Institute of Information technology, Pune.

: Ms. Sujata Rizal
Assistant Professor, SM Shetty College Powai, Hiranandani Powai.

: Ms. Sherilyn Kevin Kuruthukulangara
Assistant Professor, Thakur College of Science and Commerce,
Thakur Village, Kandivali.

: Ms. Ifrah Rizwan Kampoo
Assistant Professor, D.G Ruparel College.

: Ms. Fatima Shaikh
Assistant Professor, Jai Hind College, Churchgate.

DTP COMPOSEDAND PRINTED BY
Mumbai University Press

Vidyanagari, Santacruz (E), Mumbai - 400098.

Published by
Director

Institute of Distance and Open Learning,
University of Mumbai,

Vidyanagari, Mumbai - 400 098.

CONTENTS
Chapter No. Title Page No

Unit I

1. Understanding Java EE 1

2. Java EE Architecture, Server and Containers 19

3. Introduction to Java Servlets 30

4. Servlet API and Lifecycle 45

5. Working with Servlets 62

6. Working with Databases 72

Unit II

7. Request Dispatcher 90

8. Cookies 95

9. Sessions 103

10. Work with Files 111

11. Non-Blocking 119

Unit III

12. Introduction to Java Server Pages 125

13. Getting Started with Java Server Pages, Action Elements 137

14. Implicit Objects, Scope and EL Expressions 158

15. JSP Standard Tag Libraries 174

Unit IV

16. Introduction to Enterprise Javabeans 194

17. Working with Session Beans and Message Driven Bean 209

18. Interceptors 217

Unit V

19. Persistence, Object/Relational Mapping and JPA 228

20. Java Persistent API 243

21. Hibernate 257

Syllabus

B. Sc. (InformationTechnology) Semester – V

Course Name: Enterprise Java Course Code: USIT506

(Elective II)
Periods per week (1 Period is 50 minutes) 5

Credits 2

 Hours Marks

Evaluation System Theory Examination Internal Theory Examination 2½ 75

 Internal - 25

Uni

t

Details Lecture

s

I Understanding Java EE: What is an Enterprise

Application? What is java enterprise edition? Java EE

Technologies, Java EE evolution, Glassfish server

Java EE Architecture, Server and Containers: Types of

System Architecture, Java EE Server, Java EE Containers.

Introduction to Java Servlets: The Need for Dynamic

Content, Java Servlet Technology, Why Servlets? What

can Servlets do?

Servlet API and Lifecycle: Java Servlet API, The Servlet

Skeleton, The Servlet Life Cycle, A Simple Welcome

Servlet

Working with Servlets: Getting Started, Using

Annotations Instead of Deployment Descriptor.

Working with Databases: What Is JDBC? JDBC

Architecture, Accessing Database, The Servlet GUI and

Database Example.

12

II Request Dispatcher: Resquestdispatcher Interface,

Methods of Requestdispatcher, Requestdispatcher

Application.

COOKIES: Kinds of Cookies, Where Cookies Are Used?

Creating Cookies Using Servlet, Dynamically Changing

the Colors of A Page

SESSION: What Are Sessions? Lifecycle of Http Session,

Session Tracking With Servlet API, A Servlet Session

Example

Working with Files: Uploading Files, Creating an Upload

File Application, Downloading Files, Creating a Download

File Application.

Working with Non-Blocking I/O: Creating a Non-Blocking
Read Application, Creating The Web Application, Creating
Java Class, Creating Servlets, Retrieving The File, Creating
index.jsp

12

III Introduction To Java Server Pages: Why use Java

Server Pages? Disadvantages Of JSP, JSP v\s Servlets,

Life Cycle of a JSP Page, How does a JSP function? How

does JSP execute? About Java Server Pages

12

Getting Started With Java Server Pages: Comments,

JSP Document, JSP Elements, JSP GUI Example.

Action Elements: Including other Files, Forwarding JSP

Page to Another Page, Passing Parameters for other

Actions, Loading a Javabean.

Implicit Objects, Scope and El Expressions: Implicit

Objects, Character Quoting Conventions, Unified

Expression Language [Unified El], Expression Language.

IV Introduction To Enterprise Javabeans: Enterprise Bean

Architecture, Benefits of Enterprise Bean, Types of

Enterprise Bean, Accessing Enterprise Beans, Enterprise

Bean Application, Packaging Enterprise Beans

Working with Session Beans: When to use Session

Beans? Types of Session Beans, Remote and Local

Interfaces, Accessing Interfaces, Lifecycle of Enterprise

Beans, Packaging Enterprise Beans, Example of Stateful

Session Bean, Example of Stateless Session Bean,

Example of Singleton Session Beans.

Working with Message Driven Beans: Lifecycle of a

Message Driven Bean, Uses of Message Driven Beans,

The Message Driven Beans Example.

Interceptors: Request and Interceptor, Defining An

Interceptor, AroundInvoke Method, Applying Interceptor,

Adding An Interceptor To An Enterprise Bean, Build and

Run the Web Application.

Java Naming and Directory Interface: What is Naming
Service? What is Directory Service? What is Java Naming
and Directory interface? Basic Lookup, JNDI Namespace in
Java EE, Resources and JNDI, Datasource Resource
Definition in Java EE.

12

V Persistence, Object/Relational Mapping And JPA:

What is Persistence? Persistence in Java, Current

Persistence Standards in Java, Why another Persistence

Standards? Object/Relational Mapping,

Introduction to Java Persistence API: The Java

Persistence API, JPA, ORM, Database and the

Application, Architecture of JPA, How JPA Works? JPA

Specifications.

Writing JPA Application: Application Requirement

Specifications, Software Requirements, The Application

Development Approach, Creating Database and Tables in

Mysql, creating a Web Application, Adding the Required

Library Files, creating a Javabean Class, Creating

Persistence Unit [Persistence.Xml], Creating JSPS, The

JPA Application Structure, Running the JPA Application.

Introduction to Hibernate: What is Hibernate? Why

Hibernate? Hibernate, Database and The Application,

Components of Hibernate, Architecture of Hibernate, How

Hibernate Works?

Writing Hibernate Application: Application Requirement
Specifications, Software Requirements, The Application

12

Development Approach, Creating Database and Tables in
Mysql, creating a Web Application, Adding the Required
Library Files, creating a Javabean Class, Creating Hibernate
Configuration File, Adding a Mapping Class, Creating JSPS,
Running The Hibernate Application.

Books and References:
Sr.

No.

Title Author/s Publisher Edition Year

1.

Java EE 7 For

Beginners

Sharanam Shah,

Vaishali Shah

SPD

First

2017

2.

Java EE 8

Cookbook: Build

reliableapplicatio

ns with the most

robust and mature

technology for

enterprise

development

Elder Moraes

Packt

First

2018

3.

Advanced Java

Programming

Uttam Kumar

Roy

Oxford

Press

 2015

 1

UNIT I

1
UNDERSTANDING JAVA EE

Unit Structure

1.1 Objectives

1.2 Introduction to Java EE

1.3 Basic Concepts related Java EE

1.3.1 Specification of Java EE

1.3.2 What is an Enterprise Application

1.3.3 What is java enterprise edition

1.3.3.1 Business [Model]

1.3.3.2 Présentation [View]

1.3.3.3 Persistence layers(Controllers)

1.3.4 Java EE Technologies

1.3.5 Java EE evolution

1.3.6 Glassfish Server

1.4 Questions

1.5 Summary

1.6 Reference for further reading

1.1 OBJECTIVES

1) Java EE Provides More Flexible Technology.

2) Java EE is a collection of API where students/professionals are able to

design server side applications.

3) Students/professionals are able to originally design and develop

applications in a thin-client-tiered environment.

4) Java EE applications are hosted on application servers (WebSphere,

GlassFish, WildFly, Apache Tomcat etc….)

5) When we design & develop Java EE applications to use popular

design patterns [MVC].

6) Java EE support for Enhanced Extensibility.

7) Java EE provides a powerful API for Strong and Dynamic Web

Programming.

Enterprise Java

2

1.2 INTRODUCTION TO JAVA EE

The Java EE stands for Java Enterprise Edition, which was earlier known

as J2EE and is currently known as Jakarta EE in JDK latest version. The

Java EE provides a platform for Student/professionals with enterprise

features including- distributed computing and web services. Java EE types

of applications are usually run on microservers or application servers.

Areas where Java EE is used are e-commerce, accounting, banking

information systems.

1.3 BASIC CONCEPTS RELATED TO JAVA EE

1.3.1 Specification of Java EE:

Java EE has various specifications which are useful in Designing &

Developing applications and web pages, reading and writing from the

database in various transactional ways and also managing distributed

queues in network communication. Java EE API such as Enterprise

JavaBeans, connectors, Servlets, Java Server Pages and various web

services.

1.3.2 What is an Enterprise Application?:

In Java EE we can design the Enterprise /Business/Commercial level

Applications. Java EA is a large software system platform designed to

operate in a corporate / business or government level environment. Java

EE Applications are complex,scalable, component-based, distributed and

mission critical.

Java EA consists of a large number of programs with shared business

applications and organizational modeling utilities designed for

unparalleled functionalities.

Enterprise Application’s software is a critical component of any computer-

based information system. Enterprise level Application software

ultimately enhances their efficiency and productivity through various

levels of functionality in business.

1.3.3 What is java enterprise edition?:

Java EE frameworks provide common design patterns rarely used in

development of Java EE Application, and add into reusable class libraries.

These class libraries are implemented to access the database for various

processing ways- security, transaction processing, screen layout, data

validation,object construction, caching, and other

development/Programming related tasks so that Java EE developers can

focus on the purely business logic .

Understanding Java EE

3

1.3.3 A Figure shows Java EE Architecture.

Above Figure indicate flow of java EE applications first layer as an client

where they can be send & receive responses from server side(Java

Enterprise Edition Programs) ,second layer is an middle Tier

[Combination of java’s web enabled API’s] where it can be acting as a

Controller of client & Database .

Java Enterprise Edition (Java EE) technology provides services to

enterprise applications using a multi-layer architecture. Java EE

applications/projects are web-enabled and Java based, which means they

may be written once and deployed on any container supporting the

powerful execution in Java EE environment.

 Following are The three most common Java EE design patterns also

known as MVC model focus on:

1) business(Model)

2) presentation(View)

3) persistence layers(Controllers).

1.3.3.1 Business [Model]:

Model/Business Logic represents an object or JAVA POJO[purely old

java object] carrying data. It can also have logic to update controllers if its

data changes vary to Action.Model represents the state of the application

i.e. data. Model containing business logic.

1.3.3.2 Presentation [View]:

View represents the visualization of the data and represents on the user

screen that model contains processed data/result oriented. View is an

represents the presentation i.e. UI(User Interface)/front end..

1.3.3.3 Persistence layers [Controllers]:

Controllers are handled on both model and view. It controls the data flow

into the model object and updates the view whenever data

changes/requirements change . It keeps view and model separate.

Enterprise Java

4

In MVC Controller acts as an interface/Intermediate between View and

Model. Controller Handling all the incoming requests from Model &

View as per request redirect to automatically as per request & response

preference .

1.3.3 A Figure shows Java EE design patterns Communication.

1.3.3 B Figure shows Java EE design patterns Communication[MVC].

 1.3.4 JAVA EE TECHNOLOGIES.

Java EE is actually a collection of various technologies and

API[Application Programming Interface] for the Java EE platform

designed & Developed to support "Enterprise" levels Applications which

can generally be classed as large-scale, Multi-tier , distributed,

transactional and highly-available applications designed to support

mission-critical/handling critical processes in business requirements.

● Following are list of java EE Technologies:

1. JDBC:

JDBC stands for Java Database Connectivity.JDBC is a Java API used to

connect and execute the sql query with their relevant database. JDBC can

Understanding Java EE

5

handle backend & frontend transactions the JDBC API uses JDBC drivers

to connect with the database/backend to front end or java application .

Fig: shows JDBC for Database connectivity with java application.

There are four types of JDBC drivers:

A) JDBC-ODBC Bridge Driver.

B) Native Driver.

C) Network Protocol Driver.

D) Thin Driver.

2. JNDI:

Java Naming and Directory Interface is the name of the interface in the

Java programming language. It is an API(Application Program Interface)

that works with servers for fetching files from a database using naming

conventions. The naming convention(Name of class,interface etc….) can

be a single phrase or a word. It can also be incorporated in a socket to

implement socket programming, using servers transferring data files or flat

files in a project.

JNDI is used in web pages in browsers/clients where there are instances

of many directories/files. JNDI provides users in Java related various

facilities to search objects in Java using the Java coding language.

Fig: shows Architecture of JNDI.

Enterprise Java

6

3. EJB:

EJB stands for Enterprise Java Bean. It is a specification provided by Sun

Microsystems/Oracle corporation or IBM to develop robust,secure and

scalable distributed applications using Java EE.

To run the Java EJB applications, you should install an application

server(EJB Container) such as Weblogic,Jboss,Websphere, Glassfish etc.

It performs Following Transaction of EJB application:

1. life cycle management.

2. security.

3. transaction management.

4. object pooling.

● Use of EJB:

1) EJB Application needs Remote Access. In other words, it is distributed.

2) EJB Application needs to be scalable. Java EJB applications support

load balancing, clustering and fail-over.

3) EJB Application needs encapsulated business logic. Java EJB

application is separated from presentation and persistent layer.

● Types of Enterprise Java Bean:

There are 3 types of enterprise beans in java.

1) Session Bean:

Session bean contains business logic that can be invoked by local, remote

or web service clients/browsers.

2) Message Driven Bean:

Message Driven Bean also Like Session Bean, it contains the business

logic but it is invoked by passing messages/message communication.

3) Entity Bean:

IN Entity Bean It encapsulates the state that can be persisted in the

database. Currently it is known as or it is replaced with JPA (Java

Persistence API).

4) RMI:

The RMI (Remote Method Invocation) is an API that provides a

mechanism to create distributed applications in java. The RMI allows an

object to invoke methods on an object running in another JVM.

Understanding Java EE

7

The RMI provides remote communication between the applications using

two objects stub and skeleton.

● Understanding stub and skeleton:

In client server communication RMI uses stub and skeleton objects for

communication with the remote object for both objects are accessing

purpose .

Note: A remote object is an object whose method can be invoked from

another JVM.

Let's understand the stub and skeleton objects:

1) stub:

The stub is an object, acts as a gateway for the client side. All the outgoing

requests are routed through it. It resides at the client side and represents

the remote object. When the caller invokes method on the stub object, it

does the following tasks:

1. It implement a connection with remote Virtual Machine (JVM),

2. It writes and transmits (marshalls) the parameters to the remote Virtual

Machine (JVM),

3. It waits for the result from the remote JVM.

4. Stub reads (unmarshalls) the return value or exception.

5. Stub finally returns the value to the caller .

2) skeleton:

The skeleton is an instance/object, and acts as an interface for the server

side object. All the incoming requests are routed through skeleton. When

the skeleton receives the incoming request, it does the following

operations:

1. Skeleton reads the parameter for the remote method.

2. Skeleton invokes the method on the actual remote object as per

communication.

3. Skeleton writes and transmits (marshalls) the result to the caller.

Enterprise Java

8

Fig: Shows communication of stub & skeleton.

5) JSP:

In Java EE uses JSP technology to create web applications just like

Servlet technology. It can be treated as an enhancement to Servlet because

it provides more functionality than servlet such as expression language,

JSTL, etc.

In the JSP page containing HTML tags and JSP tags. The JSP pages are

easier to maintain than Servlet because we can separate the code of

designing and development. It provides some additional features such as

implicit objects,Expression Language, Custom Tags, etc.

6) Java servlets:

Servlet technology is used to create a web application (Executes/resides on

server side and generates a dynamic web page & response to browser).

Servlet is a technology that would be robust and scalable because of the

Java language. Before Servlet, to use one common interface CGI

(Common Gateway Interface) scripting language was common as a server-

side programming language.

● What is a Servlet?

Following are the Servlet can be described in many ways

● Servlet is a technology which is used to create and design a dynamic

web application.

● Servlet consists of an API that provides various interfaces and classes.

● Servlet is an interface that must be implemented for creating any

Servlet class.

● Servlet is a class that extends the capabilities of the servers and

responds to the incoming requests. It can respond to any requests.

● In java EE Servlet is a web component that is deployed on the server to

create a dynamic web page.

Understanding Java EE

9

Fig: Using servlet interface implementing client server

communication.

7) XML:

XML (Extensible Markup Language) is a very popular simple text-

based/marked up language that can be used as an interface of

communication between different applications. It is considered as a

standard technique to transport and store data. JAVA provides excellent

support and a rich set of libraries to modify, parse and inquire XML

documents.

8) JMS:

MS (Java Message Service) is an API that provides the facility to create,

send and read messages.JMS is also known as a messaging service. It

provides loosely coupled, reliable and asynchronous communication.

Use of Java Messaging Service:

● In JMS Service messaging is a technique to communicate applications

or software components.

● JMS service is mainly used to send and receive messages from one

application to another.

● Generally, the user sends a message to the application. But, if we want

to send messages from one application to another, we need to use the

JMS API.

● Consider a scenario, one application A is running in INDIA and

another application B is running in the UK. To send a message from A

application to B, we need to use JMS.

9) Java IDL:

In Java EE IDL stands for (Interface Definition Language) is a

technology for distributed objects-that is, objects can

communicate/interact on different platforms across a network. Java IDL is

similar to RMI (Remote Method Invocation), But in IDL which supports

distributed objects written entirely in the Java programming language.

Enterprise Java

10

10) JTS:

In Java The JTS stands for Java Topology Suite (JTS) is an open source

Java API/ library that provides an object model for planar geometry

together with a set of fundamental geometric functions.

 JTS is specifically designed to be used as a core component of vector-

based geomatics software such as GIS-Geographical Information Systems.

Now JTS also be used as a general-purpose library providing algorithms in

computational geometry in java applications.

11) JTA:

The Java Transaction API (JTA) allows for applications to perform

distributed transactions, that is, transactions that access and update data on

two or more networked computer resources. The JTA specifies standard

Java interfaces between a transaction manager and the other network

component.

12) Java Mail:

In Java EE Technology JavaMail is an API that is used to compose, write

and read electronic messages i.e (to send & receive emails).

These JavaMail API provides services related to protocol-independent

and platform-independent frameworks for sending and receiving mail

through the network.

The javax.mail and javax.mail.activation packages contain the core classes

of JavaMail API.

13) JAF:

JFA (Java Framework Architecture) is an API included in the Software

Development Kit(SDK) for designing software applications in Indian

languages. It consists of a set of Java components ,Interfaces and

supporting classes which enable the creation of content in Indian

scripts(Language). The scripts supported are Devanagari,Oriya ,

Kannada,Assamese, Bengali, Tamil, Gujarati, Punjabi, Malayalam,Telugu

and English.

1.3.5 Java EE evolution:

Java EE Formerly called as a J2EE, the first version of Java EE platform

was officially released in December 1999 with 10 specifications. Among

these specifications, there were Servlets and JavaServer Pages (JSP) for

data presentation, Enterprise JavaBeans (EJB) for the management of

persistent data and secure transactions, remote access to business services

through RMI-IIOP protocol (Remote Method Invocation over Internet

Inter-ORB Protocol), and the JMS (Java Message Service) specification,

which was used to send messages.

More effort and many contributions, early versions of Java EE were too

much complex and difficult to implement because JEE provides more

Understanding Java EE

11

specification than J2EE. This leading to much criticism/complexity of

code and caused the rise of competing frameworks such as Spring

Framework.

1.3.6 Glassfish Server:

GlassFish is an application server/web server started by Sun Microsystems

for Java Enterprise Edition which is now owned & managed by Oracle

corporation. It is a free software that is released under two free software

licenses. The one is a common development and distribution license and

the other is GNU general public license. Sun Microsystems launched the

project on June 6, 2005.

Requirement:

1. JDK must be installed on the system.

2. Windows OS

3. Login as an admin.

Steps to Install Glassfish web server in Eclipse:

1. Open Eclipse.

2. Go to Help > Eclipse Marketplace.

3. Search for GlassFish.

4. Click on Install.

5. Glassfish Tools and oracle. eclipse. tools. glassfish is selected. Click

Confirm.

Steps to configure Glassfish server with eclipse:

Step-1 launch Eclipse IDE. Click Window menu > select Show View

sub menu > select Servers.

Enterprise Java

12

Or, right click mouse anywhere in the Servers page > select New menu >

select Server sub menu.

 Step-2: in the New Server page, notice in the middle box which list the

available servers. We are going to download the Glassfish server which is

not in the list. Type the Server’s host name (if needed). In this case we are

using 'localhost'. Then, click the Download additional server adapters link.

Understanding Java EE

13

The Install New Extension wizard will begin, searching available server

adapters which are available from the update servers.

 Step-3 from the list of available server adapter, select Glassfish server

and click Next.

Enterprise Java

14

 The download requirements and dependencies process will begin.

After the download requirement and dependencies process is completed,

click Next.

Understanding Java EE

15

Step-4 Accept the license agreement and click Finish.

 Step -5 Click OK for the server adapter download confirmation prompt

window.

 The Glassfish download and installation will begin. Click Details for the

details process.

Enterprise Java

16

The task can be set to be done at the background by clicking the Run in

Background button.

Step-6 restart Eclipse in order the new downloaded and installed

Glassfish server take effect.

Step-7 Now, in the New Server page, Glassfish server will be visible in

the list of the available servers that are associated with Eclipse and ready

to be used.

Understanding Java EE

17

1.4 SUMMARY

We can use the Java EE tools for implementing new features in

applications that are structured around modules with different purposes,

such as web sites, web applications and Enterprise applications. When

you use Java Enterprise Edition components, you can create distributed,

secure applications with transactional support.

1.5 QUESTIONS

Q.1 Define java EE?

Q.2 Applications of Java EE.

Q.3 Explain Design Pattern [MVC] in Java EE.

Q.4 Explain what technologies are used in Java EE.

Q.5 Define Java Enterprise Application.

Enterprise Java

18

Q.6 Explain Servlet & JSP.

Q.7 Define Web Server?

Q.8 Explain steps to configure glassfish web server in eclipse.

Q.9 Define JavaMail API.

Q.10 Explain Architecture of JEE.

1.6 REFERENCE FOR FURTHER READING

1. Java EE 6 Enterprise Architect Exam Guide ,Author: PaulAllen ,

Publisher: McGraw-Hill

2. The Complete Reference -Java Enterprise Edition (Black Book)

,Author:Herbert schildt.

3. Java EE 7 The Big Picture by - Dr.Danny Coward Publisher- Oracle

press.

4. Advanced Java by-Balaguruswamy .

5. The Java Ee 7 Tutorial by-Ricardo Cervera-Navarro

 19

2
JAVA EE ARCHITECTURE, SERVER AND

CONTAINERS

Unit Structure

2.1 Objectives

2.2 Introduction to Java EE Architecture

2.3 Types of System Architecture

 A) Java Enterprise System deployments based Architecture

 2.3.1 Logical Tiers Level

2.3.2 Infrastructure Service Levels

2.3.3 Quality of Service Level

B) Java EE Development Architecture

2.4 Java EE Server

2.5 Java EE Containers

2.6 Questions

2.7 Summary

2.8 Reference for further reading

2.1 OBJECTIVES

1) Java EE Provides Simplified coding Technique.

2) Java EE Provides Flexible Architecture where we can design in

various perspective levels..

3) students/professionals are able to originally design and develop &

Deploy their application on server.

4) Java EE Server for implementation of Enterprise Application.

5) Java EE Provides various Containers to transform Business logic etc...

6) Java EE provides a powerful API for Strong and Dynamic Web

Programming.

2.2 JAVA ENTERPRISE SYSTEM ARCHITECTURE

Fig: 2.2 Java Enterprise System Architecture.

Enterprise Java

20

A) Java Enterprise System deployments based Architecture:

To discuss java EE architectural concepts upon which Java Enterprise

System deployments are based.

Java Enterprise Edition is a framework in which Java Enterprise System

deployment architectures are analyzing along with the following three

ways/Dimensions:

 Logical tiers.

 Infrastructure service levels,

 Quality of service.

These three dimensions, following figure, help to clarify the architectural

functions of Java Enterprise System components while designing and

developing projects. In Java EE The three-dimensional framework is the

key to designing successful Design & deployment architectures for

business software solutions.

Figure 2.3-A Three Dimensions of Java Enterprise System

Architectural Framework

1) Logical Tiers:

In Java EE standard architecture for distributed applications separates

application logic into a number of tiers. These tiers signify a logical and

physical organization of components into an ordered chain/processing

sequence of service providers and consumers in network.

Figure 2.3.1 Logical Tiers for Distributed Enterprise Applications

Java EE Architecture, Server

and Containers

21

I) Client Tier:

The client tier consists of application logic/Business logic accessed

directly by an end user/client side through a user interface. The logic in

the client tier could include browser-based clients.

II) Presentation Tier:

The presentation tier consists of application logic/Business logic that

prepares data as per request/response for sending to the client tier and

processes requests from the client tier to get the back-end business logic as

per concern of request & response. The logic in the presentation tier

typically consists of J2EE components such as Java Servlet components or

JSP components that prepare data for HTML or XML sending/receiving or

that receive requests for processing from client to server or vice versa.

This tier includes various services - secure, personalized, and customized

access to business services in the business service tier.

III) Business Service Tier:

The business service tier consists of actual required Business logic that

performs the main functionality of the applications such as processing

data, implementing business rules, coordinating multiple users, and

managing external resources such as databases or legacy systems as per

request & response from the network. In J2EE components can be

assembled to deliver complex business services/business processes such as

an inventory service or tax calculation service etc.

The various implementations of business services encapsulate specific

application functionality that can reside and run on a particular computing

node/client.

IV) Data Tier:

The data tier consists of data used by business logic. The data can be

persistent application data stored in a database management system. The

data can also include data feeds from external sources or data accessible

from legacy systems.

2) Infrastructure Service Levels:

The interacting software components of distributed enterprise applications

require an underlying set of infrastructure services that allows the

distributed components to communicate with each other on network

communication i.e client to server & server to client, coordinate their

work, implement secure access, and so forth. This set of distributed

services constitutes an infrastructure upon which distributed components

can be design & built.

Enterprise Java

22

Distributed Infrastructure Services:

Distributed infrastructure services distributed at many different levels.

Figure 2.3.2 Distributed Infrastructure Service Levels

The Infrastructure Service Levels in the above Figure reflect a general

dependence of the various distributed services on one another, from the

lowest-level operating system services to the highest-level application and

integration services in Java Enterprise.

Following are the list of Levels from bottom to top:

I) Operating system platform:

It Provides the basic support for any process running on a computing

node. The operating system manages physical devices as well as memory,

threads, and other resources necessary to support the Java Virtual Machine

.

II) Network transport:

Network transport Provides basic networking support for communication

between distributed application components running on different

computing nodes/Network connected different nodes or clients. All These

services include support for protocols such as TCP and HTTP/ HTTPS.

III) Persistence:

It Provides support for accessing/fetching and storing both static data

(such as user, directory, or configuration information) and dynamic

application data (information that is frequently being updated).

VI) Messaging:

Messaging Layer Provides support for both synchronous and

asynchronous communication between application components in client

and server. Synchronous messaging is real-time sending and receipt of

Java EE Architecture, Server

and Containers

23

messages; it includes remote method invocation (RMI) between J2EE

components and SOAP interactions with web services. Asynchronous

messaging is communication in which the sending of a message does not

depend on the readiness of the consumer to immediately receive it.

Asynchronous messaging specifications, for example, Java Message

Service (JMS) and ebXML, It will support guaranteed reliability and other

messaging semantics.

VII) Runtime:

It Provides support required by any distributed component model, such as

the J2EE or CORBA models. In addition to the remote method invocation

needed for tightly coupled distributed components, runtime services

include component state (life-cycle) management, thread pool

management, synchronization (mutex locking), persistence services,

distributed transaction monitoring, and distributed exception handling. In a

J2EE environment, these runtime services are provided by EJB, web, and

message-driven bean (MDB) containers in an application server or web

server.

VIII) Security and policy:

Provides support for secure access to application resources. These services

include support for policies that govern group or role-based access to

distributed resources, as well as single sign-on capabilities. The

enhancement of authentication in Single sign-on allows a user’s

authentication to one service in a distributed system to be automatically

applied to other services (J2EE components, business services, and web

services) in the system.

IX) User collaboration:

It Provides services that play a key role in supporting direct

communication between users and collaboration among users in enterprise

and Internet environments. And also, all these services are application-

level business services, normally provided by standalone servers (such as

an e-mail server).

X) Integration:

It Provides the services that aggregate existing business services, either by

providing a common interface for accessing them through a network, as in

a portal, or by integrating them through a process engine that coordinates

them within a production workflow. Integration can also take place as

business-to-business interactions between different enterprises/ various

enterprise applications.

3) Quality of Service Layer:

The previous two architectural Levels (logical tiers and infrastructure

service levels) largely define the logical/business logical aspects of

architecture, namely which components are needed to interact in what are

the ways where to deliver services to end users/clients.

Enterprise Java

24

As internet and E-commerce services now become more critical to handle

business operations/services, scalability, performance, security,

availability and serviceability of these services has become a key

requirement of large-scale, high-performance deployment architectures in

java enterprise applications.

Following are the List of Quality Services required in Java EE

Architecture.

1) Performance:

To check out measurement of response time and latency with respect to

user load conditions.

2) Availability:

A measuredly system’s resources and services are accessible to end

users/clients, often expressed as the uptime of a desired system.

3) Security:

Regarding security, a complex combination of factors that describe the

integrity of a system and its users. Security includes authentication and

authorization of users as well as the secure transport of information

through the network.

4) Scalability:

In Enterprise applications the ability to add capacity (and users) to a

deployed system over time. Scalability typically involves adding resources

to the system but should not require changes to the deployment

architecture while designing java applications.

B) Java EE Development Architecture:

Following are Java EE provides an environment for development and

deployment of web-based enterprise applications using multi-tier

architecture.

The above diagram demonstrates J2EE multi-tier architecture that

encompasses several J2EE containers each including its own J2EE

components.

Java EE Architecture, Server

and Containers

25

Following a list of overview about the different tiers of J2EE

architecture:

1) Client Tier:

In JEE Architecture Components of Client Tier will run in the client

devices / containers. Client Tier components are standalone or web based

java applications, static and dynamic HTML pages, and applets.

2) Middle Tier:

I) Web Tier: In JEE the web tier components namely JSP and Servlets

execute with the help of J2EE web server in a web container.

II) Business Tier: In this tire integrate purely Business logic with

Enterprise Java Beans (EJB) are the business tier components that are

executed within the EJB container using J2EE Application

Server/web server.

3) EIS Tier:

EIS (Enterprise Information Systems) tier follows operations related to

application data that are stored in a database. EIS tier may also include

ERP’s varois big operations or legacy systems.

2.4 JAVA EE SERVER

A Java EE server is a server application that implements the Java EE

platform APIs and provides the standard Java EE services for Design &

developing Applications. Java EE servers are sometimes called application

servers or web servers, because they allow you to serve application data to

clients, same processing on web servers serve web pages to web

browsers. Java EE servers host several application component types that

correspond to the tiers in a multi-tiered application. The Java EE server

provides services to these components in the form of a container.

Fig: 2.4 Java EE Communication Server:

Enterprise Java

26

2.4.1 Java EE Containers:

Java EE containers are the interface between the component and the

lower-level functionality of the application server provided by the

platform to support that component and API . The functionality of the

container is defined by the platform to provide more productivity, and is

different for each component type. The server allows the different

component types to work together to provide the enhancement of

functionality in an enterprise application.

Fig: 2.4.1 Java EE Containers

2.4.2 The Web Container:

The web container is the interface between web components or API and

the web server. A web component can be a JSP page, or a JavaServer

Faces Facelets page, and servlet. The web container manages the

processes of Request & Response in the component’s lifecycle ,

dispatches requests to application components, and provides interfaces to

context data, such as information about the current request.

Fig: 2.4.2 TheWeb Container:

Java EE Architecture, Server

and Containers

27

2.4.3 The Application Client Container:

The application client container is the interface between Java EE

applications and clients/browsers , which are special Java SE applications

that use Java EE server components with more API’s , and the Java EE

server. The application client container runs on the client machine, and is

the gateway between the client application and the Java EE server

components that the client/browsers uses.

Fig: 2.4.3 The Application Client Container.

2.4.4 The EJB Container:

The EJB container is the interface between enterprise java beans, which

provide the business logic in a Java EE application to manage data

transportation in critical condition with the Java EE server. The EJB

container runs on the Java EE server or web server and manages the

execution of an application’s enterprise beans in Business Logic to

Database and viceversa.

Fig: 2.4.4 The EJB Container.

2.5 JAVA EE CONTAINERS

Containers easily manage their transaction and state management,

multithreading, resource pooling, and other complex low-level details. The

component-based and platform-independent.

Enterprise Java

28

Java EE architecture provides better service to write business logic that is

organized into reusable components.

Container Services:

Containers are the interface between a component and the low-level

platform-specific functionality that supports the component. Before a web,

enterprise bean, or application client component can be executed, it must

be assembled into a Java EE module and deployed into its container.

Key points of Container:

 In Java EE security models configure a web component or EJB so

that system resources are accessed at client side/browsers only by

authorized users.

 The Java EE transaction model provides relationships among

methods/functions that communicate a single transaction so that all

methods/functions in single transaction are treated as a single unit.

 The Java EE can be remotely connectivity model manages low-level

communications between clients and EJB

Following diagrams shows The deployment process installs Java EE

application components in the Java EE containers as illustrated in

Following Figure.

Figure 2.5 Java EE Server and Container.

Following are the list of Types of Container:

1) Enterprise JavaBeans (EJB) container:

EJB containers can manage the execution of enterprise beans for Java EE

applications/ web applications & services. EJB and their container run on

the Java EE server/web server.

Java EE Architecture, Server

and Containers

29

2) Web container:

Here Web containers can manage the execution of JSP page and servlet

components for Java EE applications. Web components and their

containers run on the Java EE server/web server.

3) Application client container:

Java EE Application client container can manage the execution of

application client components. Java EE Application clients and their

container run on the client/browser.

4) Applet container:

Manages the execution of applets/java programs executed on client.

Applet container consists of a web browser and Java Plug-in running on

the client.

2.6 QUESTION

1 Explain in detail the container with types.

2 Explain Java EE Development Architecture.

3 Difference between Apache tomcat & Glassfish server.

4 Explain Java EE Deployment Architecture.

5 Explain Quality of Service layer in Java EE Deployment Architecture.

6 Define the web container.

7 Define the EJB container.

2.7 SUMMARY

Web server is a computer where the web content is stored. Basically a web

server is used to host the web sites. In java EE Containers are the interface

between a component and the low-level, platform-specific functionality

that supports the component. Java Enterprise Edition is a set of various

specifications, for enterprise features such as distributed computing,

Security, Powerful API’s and web services.

2.8 REFERENCE FOR FURTHER READING:

1. Java EE 6 Enterprise Architect Exam Guide ,Author: PaulAllen,

Publisher: McGraw-Hill

2. The Complete Reference -Java Enterprise Edition (Black Book),

Author:Herbert schildt.

3. Java EE 7 The Big Picture by - Dr.Danny Coward Publisher- Oracle

press.

4. Advanced Java by-Balaguruswamy .

5. The Java Ee 7 Tutorial by-Ricardo Cervera-Navarro

 30

3
INTRODUCTION TO JAVA SERVLETS

Unit Structure

3.1 Objectives

3.2 The Need for DynamicContent

3.2.1 Introduction

3.2.2 Dynamic content vs static content

3.2.3 Areas to implement Dynamic Content

3.3 Java Servlet Technology

3.3.1 Use of Servlet

3.3.2 CGI (Common Gateway Interface)

3.3.3 Servlet Technology

3.4 Why Servlets

3.5 What can Servlets do

3.6 Questions

3.7 Summary

3.8 Reference for further reading

3.1 OBJECTIVES

1) Java servlet provides server side coding technique.

2) Java servlet is used to develop & design web applications in a web

server.

3) Using servlet for students/professionals are able to originally design

and develop & Deploy their application on server.

4) Servlet is a technology which is used to create a web application

executed at server side.

5) Java servlet provides a powerful API for best Dynamic Web

Programming.

3.2 THE NEED FOR DYNAMIC CONTENT

3.2.1 Introduction:

Dynamic content refers to web content that changes based on

the behaviour, preferences, and interests of the user. It refers to websites as

well as e-mail content and is generated at the moment a user requests a

page. Dynamic content is personalized and adapts based on the data you

have about the user and on the access time, its goal being to deliver an

engaging and satisfying online experience for the visitor.

Introduction to Java Servlets

31

Dynamic content (adaptive content) refers to web content that changes

based on the behaviour, preferences, and interests of the user. It refers to

websites as well as Email content and is generated at the moment a user

requests a page. Dynamic content is personalized and adapts based on the

data you have about the user and on the access time, its goal being to

deliver an engaging and satisfying online experience for the visitor.

A server-side dynamic web page is a web page whose construction is

controlled by an application server to process server-side scripts

dynamically. In server-side scripting programming, an parameters

determine how the assembly of every new web page proceeds as per user

request, including the setting up of more client-side processing

This content can be displayed in a variety of different forms on the Web.

The way it is usually presented is based on the type of website you are on.

However, things like pictures, text, videos, newsletters, and other web

forms are often great examples of this content being used.

3.2.2 Dynamic content vs static content:

Static content has not changed on the internet. This is because it’s much

easier to implement than the dynamic text alternatives on the Web.

However, the downside is that static content is not personalized and thus it

reduces the performance of the website. Dynamic content has various

benefits as follows:

Difference between Static and Dynamic Web Pages

Sr.

No

Static Web Page Dynamic Web Page

1. In static web pages, Pages will

remain same until someone

changes it manually.

In dynamic web pages, Content

of pages are different for

different visitors.

2. Static Web Pages are simple in

terms of complexity.

Dynamic web pages are

complicated.

3. In static web pages,

Information are change rarely.

In dynamic web page,

Information are change

frequently.

4. Static Web Page takes less

time for loading than dynamic

web page.

Dynamic web page takes more

time for loading.

5. In Static Web Pages, database

is not used.

In dynamic web pages, database

is used.

6. Static web pages are written in

languages such as: HTML,

JavaScript, CSS, etc.

Dynamic web pages are written

in languages such as: CGI,

AJAX, ASP, ASP.NET, etc.

7. Static web pages does not

contain any application

program

Dynamic web pages contains

application program for different

services.

https://www.omniconvert.com/what-is/behaviour-segmentation/

Enterprise Java

32

8. Static web pages require less

work and cost in designing

them.

Dynamic web pages require

comparatively more work and

cost in designing them.

● it makes for a more user-friendly experience on the web/Internet.

● it helps increase vital current data, latest information or instant info.

● Within page layout properly & accurate displays data.

● Once has been upload, live and active, you don’t need to tend to it

anymore

3.2.3 Areas to implement Dynamic Content:

1) Newsletters and Emails:

Newsletters and emails are probably the most basic and classic forms of

dynamic content being presented as per requirement. Customized emails

or customized form fields for specific users have been around on the web

for a long time. Presenting your dynamic content this way is always a

good choice because data is frequently changed. And some newsletter

plugins will display its content/data as per updated content you re-purpose.

2) Landing Pages:

A landing page is built specifically to target a certain thing or targeted

audience. Whether it is a product or a service that has to be reached, the

landing page acts as an informational doorway to what you are selling to

an accurate customer. Take it further by presenting a landing page that

uses dynamic content to display different information and items based on

who is viewing it as per search & updated data.

3) Articles:

Articles can be used to display dynamic content based on the

device/platforms that is being used to read the article. This type of content

can be displayed properly on any device and screen size or resolution. This

is why your website should be mobile friendly and responsive web

content. Giving the user viewable content no matter where they access it

would be displayed in proper layout to any device or screen.

4) Forms and Purchases:

As per every user requirement or organization operation perspective

Different form and purchase fields or other information can be displayed,

based on how the checkout is going to be on demand , who the user is, and

what their interests are different users makes the entire experience much

better for them.

5) Product Pages:

In E-commerce online stores will use product pages to cross-sell and

match related items for the site user where the user chooses the products.

https://www.greengeeks.com/blog/2020/02/20/update-content/
https://www.greengeeks.com/blog/2014/04/16/12-ways-to-build-a-landing-page-that-converts/
https://www.greengeeks.com/blog/2019/03/14/wordpress-contact-form-plugins/

Introduction to Java Servlets

33

This is dynamic content at work using certain things to match up what we

think or what the users need as per the user wants to see. Online store

organization bounce offers like sales and coupons or other special

recommendations as well.

6) Website Ads:

Ads on websites, social media and on Google can use Digital marketing or

Digital advertisement using dynamic content technique. These ads display

content on what users search and interests the website or Application. This

makes ad interaction and click-throughs much more likely where users

easily interact with.

3.3 Java Servlet Technology:

Servlet is a technology used to create a java web application (placed at

server side and generates a dynamic web page as per client request).

Servlet is a technology that is robust and scalable and secure because of

the Java language. Before Servlet, CGI (Common Gateway Interface)

scripting language was common as a server-side programming language.

There were many disadvantages of CGI. Some of these disadvantages are

discussed below.

Servlet API is a collection of various interfaces and classes in the Servlet

API such as Servlet, ServletResponse,ServletRequest GenericServlet,

HttpServlet... etc.

3.3.1 Use of Servlet:

Servlet technology can be described in many ways, As follows.

● Servlet is a technology which is used to create a java web application.

● Servlet is an API collection of various interfaces and classes.

● Servlet is an interface that must be implemented for creating any

Servlet page.

Enterprise Java

34

● Servlet is a class that extends the capabilities of the servers and

responds to the incoming requests. It can respond to any requests.

● Servlet is a web component that is deployed on the server to create a

dynamic web page.

Fig: 3.3 Communication of Java Servlet Technology.

What is a web application?

A web application is a server side application which is accessible from the

web/web browser. A web application is composed of web components like

Servlet, Filter & JSP, etc. and other elements such as HTML, CSS, and

JavaScript. The web components typically execute in Web Server and

respond to the HTTP request.

3.3.2 CGI (Common Gateway Interface):

CGI technology enables the web server to call an external program and

pass HTTP request information to the external program to process the

request. For each & every request, it starts a new process or creates a new

Thread for every request. i.e. Number request coming to CGI, a number of

newly processes or threads to create. CGI will get more load & responses

are slow or its processing task may be heavy.

The Common Gateway Interface (CGI) provides the middleware

between WWW servers and external databases and information sources.

The World Wide Web Consortium (W3C) defined the Common Gateway

Interface (CGI) and also defined how a program interacts with a Hyper

Text Transfer Protocol (HTTP) server. The Web server typically passes

the form information to a small application program that processes the

data and may send back a confirmation message. This process or

convention for passing data back and forth between the server and the

application is called the common gateway interface (CGI).

Features of CGI:

 It is a very well defined and supported standard.

Introduction to Java Servlets

35

 CGI scripts are generally written in either Perl, C, or maybe just a

simple shell script.

 CGI is a technology that interfaces with HTML.

 CGI is the best method to create a counter because it is currently the

quickest

 CGI standard is generally the most compatible with today’s

browsers.

Advantages of CGI:

 The advanced tasks are currently a lot easier to perform in CGI than

in Java.

 It is always easier to use the code already written than to write your

own.

 CGI specifies that the programs can be written in any language, and

on any platform, as long as they conform to the specification.

 CGI-based counters and CGI code to perform simple tasks are

available in plenty.

Fig: 3.3.2 CGI (Common Gateway Interface) Communication flow.

Disadvantages of CGI:

There are many problems in CGI technology:

1. If the number of clients increases, it takes more time to send the

response.

2. For each request, it starts a process, and the web server is limited to

start processes.

3. It uses platform dependent languages e.g. C, C++, perl.

4. CGI facing Network Traffic, because of heavy load.

5. Number request, Number of newly processes so CGI contain heavy

load.

https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-tutorial
https://www.javatpoint.com/perl-tutorial

Enterprise Java

36

3.3.3 Servlet Technology & its Advantages:

Fig: 3.3.3 Servlet Technology Communication flow.

As per comparison of Servlet & CGI there are many advantages of Servlet

over CGI. The web container/Servlet will create threads for handling the

multiple requests to the Servlet. Threads have many benefits over the

Processes happening in Network such as they share a common memory

area of the server, are lightweight, and cost of communication between the

threads are low.

Shortly after the Web began to be used for delivering services, service

providers recognized the need for dynamic content. Applets, one of the

earliest attempts toward this goal, focused on using the client platform to

deliver dynamic user experiences. At the same time, developers also

investigated using the server platform for the same purpose. Initially,

Common Gateway Interface (CGI) server-side scripts were the main

technology used to generate dynamic content. Although widely used, CGI

scripting technology had many shortcomings, including platform

dependence and lack of scalability. To address these limitations, Java

Servlet technology was created as a portable way to provide dynamic,

user-oriented content.

The advantages of Servlet are as follows:

1. Better performance: No of processes is converted into threads so,

because it creates a thread for each request, not process.

2. Portability: Servlet programs execute any platform because it uses

Java language.

3. Robust: JVM manages Servlet programs, so we don't need to worry

about the memory leak, garbage collection, etc.

4. Secure: because it uses java language.

Introduction to Java Servlets

37

Difference between Servlet and CGI

Servlet CGI(Common Gateway Interface)

Servlets are portable and efficient. CGI is not portable

In Servlets, sharing data is

possible.

In CGI, sharing data is not possible.

Servlets can directly communicate

with the webserver.

CGI cannot directly communicate

with the webserver.

Servlets are less expensive than

CGI.

CGI is more expensive than

Servlets.

Servlets can handle the cookies. CGI cannot handle the cookies.

3.4 WHY SERVLETS?

Today’s Web applications trends it to creating dynamic web pages i.e the

ones which have the capability to change the site contents according to the

time/response or are able to generate the contents according to the request

received by the client. If you like coding in Java, then you will be happy to

know about Java. There also exists a way to generate dynamic web pages

and that way is Java Servlet API. first understand the need for server-side

extensions i.e why use servlet to develop dynamic applications.

A servlet is a Java Programming language class that is used to extend the

capabilities of servers that host applications accessed by means of a

request-response programming model. Although servlets can respond to

any type of request, they are commonly used to extend the applications

hosted by web servers. It is also a web component that is deployed on the

server to create a dynamic web page.

Fig: How servlet Work.

Enterprise Java

38

In this figure you can see, a client sends a request to the server and the

server generates the response, analyses it and sends the response to the

client.

Servlets are the Java programs that run on the Java-enabled web server or

application server[Apache server, Glassfish server, etc….]. They are used

to handle the request obtained from the web server/Client, process the

request, produce the response, then send a response back to the web

server/web browser.

Properties of Servlets are as follows:

 Servlets work on the server-side.

 Servlets are capable of handling complex requests obtained from the

web server.

Fig: 3.4 Servlet Architecture

Execution of Servlets basically involves following basic steps:

1. The clients/browsers send the request to the web server.

2. The web server receives the request from clients.

3. The web server passes the request to the corresponding servlet

container.

4. The servlet processes the request and generates the response in the

form of output.

5. The servlet sends the response back to the web server.

Introduction to Java Servlets

39

6. The web server sends the response back to the client and the client

browser displays it on the screen.

3.5 WHAT CAN SERVLETS DO?

Introduction:

Java Servlets are programs that run on a Web or Application server and act

as a middle layer between a request coming from a Web browser or other

HTTP client and databases or applications on the HTTP server.

Using Servlets, you can collect input from users through web page forms,

present records from a database or another source, and create web pages

dynamically.

Java Servlets often serve the same purpose as programs implemented

using the Common Gateway Interface (CGI).

But Servlets offer several advantages in comparison with the CGI:

 Performance is significantly better.

 Servlets execute within the address space of a Web server. It is not

necessary to create a separate process to handle each client request.

 Servlets are platform-independent because they are written in Java.

 Java security manager on the server enforces a set of restrictions to

protect the resources on a server machine. So servlets are trusted.

 The full functionality of the Java class libraries is available to a

servlet. It can communicate with applets, databases, or other software

via the sockets and RMI mechanisms that you have seen already.

Servlets Architecture

The following diagram shows the position of Servlets in a Web

Application.

Fig: Servlet Architecture

Enterprise Java

40

Servlets Tasks:

Servlets perform the following major tasks

 Read the explicit data sent by the clients (browsers). This includes an

HTML form on a Web page or it could also come from an applet or a

custom HTTP client program.

 Read the implicit HTTP request data sent by the clients (browsers).

This includes cookies, media types and compression schemes the

browser understands, and so forth.

 Process the data and generate the results. This process may require

talking to a database, executing an RMI or CORBA call, invoking a

Web service, or computing the response directly.

 Send the explicit data (i.e., the document) to the clients (browsers).

This document can be sent in a variety of formats, including text

(HTML or XML), binary (GIF images), Excel, etc.

 Send the implicit HTTP response to the clients (browsers). This

includes telling the browsers or other clients what type of document is

being returned (e.g., HTML), setting cookies and caching parameters,

and other such tasks.

1) Dynamic website:

Dynamic website is a collection of dynamic web pages whose content

changes dynamically. It accesses content from a database or Content

Management System (CMS). Therefore, when you alter or update the

content of the database, the content of the website is also altered or

updated.

Dynamic websites are those websites that changes the content or layout

with every request to the webserver. These websites have the capability

of producing different content for different visitors from the same source

code file. There are two kinds of dynamic web pages i.e. client side

scripting and server side scripting. The client-side web pages changes

according to your activity on the web page. On the server-side, web

pages are changed whenever a web page is loaded.

Dynamic websites use client-side scripting or server-side scripting, or both

to generate dynamic content.

Dynamic websites use client-side scripting or server-side scripting, or both

to generate dynamic content.

Client side scripting generates content at the client computer on the basis

of user input. The web browser downloads the web page from the server

and processes the code within the page to render information to the user.

Introduction to Java Servlets

41

In server side scripting, the software runs on the server and processing is

completed in the server then plain pages are sent to the user.

2) The server-side extensions:

In Java server side extensions i.e. servlet or JEE are nothing but the

technologies that are used to create dynamic Web pages. In servlet

Technology to provide the facility of dynamic Web pages, Web pages

need a container or Web server. To complete this requirement,

independent Web server providers offer some essentials solutions in the

form of APIs(Application Programming Interface).

3) Handling Request & Response:

In Servlet Technology for the purpose of communication to use HTTP

protocol. The Hypertext Transfer Protocol (HTTP) is an application-level

protocol for distributed, collaborative and hypermedia information

systems. HTTP Request & Response are the data communication protocol

used to establish communication between client and server.

HTTP is a stateless TCP/IP based communication protocol, which is used

to send & receive data like image files, query results, HTML files etc on

the World Wide Web (WWW) with the default port being TCP 80. It

provides a standardized way for computers to communicate with each

other in a network.

Fig:A- Handling Http Request & Response

Enterprise Java

42

Fig:B- Handling Http Request & Response.

The Basic Characteristics of HTTP (HyperText Transfer Protocol):

 HTTP protocol allows web servers and browsers to exchange data

over the web.

 HTTP a request response protocol.

 HTTPuses the reliable TCP connections by default on TCP port 80.

 HTTP is stateless means each request is considered as the new

request. In other words, the server doesn't recognize the user by

default.

HttpServlet class provides specialized methods that handle the various

types of HTTP requests. A servlet developer typically overrides one of

these methods. These methods are doDelete(), doGet(), doHead(),

doOptions(), doPost(), doPut(), and doTrace(). However, the GET and

POST requests are commonly used when handling form input.

The doPost() method is overridden to process any HTTP POST requests

that are sent to this servlet. It uses the getParameter() method of

HttpServletRequest to obtain the selection that was made by the user.

4) Filtering Requests and Responses:

In Servlet Technology to provide a filter object that can transform the

header and content (or both) of a request or response. In the Servlet Filters

objects differ from web components in that filters usually do not

themselves create a response. Instead a filter object provides functionality

that can be “attached” to any kind of web resource with servlet objects.

In Servlet filter Object can perform following tasks:

● Filter object Query the request and act accordingly.

● Block the request-and-response pair from passing any further

transaction.

● Filter objects can modify the request headers and data. You do this by

providing a customized version of the request.

Introduction to Java Servlets

43

● In Filter Modify the response headers and data. You do this by

providing a customized version of the response.

● Filter Objects are Interact with various external resources.

5) Sharing Information:

In servlet its mechanism is objects communicate in through a network.

There are several ways they can do this. In Java Servlet class can use

private helper objects (for example, JavaBeans components), Servlet class

(beans) can share objects that are attributes of a public scope or private,

they can use a database, and they can invoke other web resources.

In servlet its mechanism is objects communicate in through a network.

There are several ways they can do this. In Java Servlet class can use

private helper objects (for example, JavaBeans components), Servlet class

(beans) can share objects that are attributes of a public scope or private,

they can use a database, and they can invoke other web resources.

The Java Servlet technology mechanisms that can be allowed to access a

component to invoke other web resources are described in Invoking Other

Web Resources.

6) Accessing the Web Context:

In The Servlet context in which web components execute is an object that

implements the ServletContext interface. You retrieve the web context

using the getServletContext method. The web context provides methods

for accessing:

● Initialization parameters.

● Resources associated with the web context.

● Object-valued attributes.

● Logging capabilities.

3.6 QUESTIONS

1. Explain what is Dynamic Content?

2. Explain what is needed to be Design Dynamic Content.

3. Explain the features of Servlet.

4. Explain in detail Why Servlet is popular as compared to CGI.

5. Difference between Servlet Vs CGI.

6. Explain Use of Servlet in Web Application.

7. Define Servlet API.

Enterprise Java

44

8. Explain in brief What can servlet do?

9. Explain in detail Servlet Architecture.

10. Define Request & Response Methodology.

3.7 SUMMARY

A server-side dynamic web page is a web page whose construction is

controlled by an application server to process server-side scripts

dynamically. In server-side scripting programming, parameters determine

how the assembly of every new web page proceeds as per user request,

including the setting up of more client-side processing.

Dynamic content is personalized and adapts based on the data you have

about the user and on the access time, its goal being to deliver an engaging

and satisfying online experience for the visitor.

Servlet is a technology used to create a java web application (placed at

server side and generates a dynamic web page as per client request).

Servlet is a technology that is robust and scalable and secure because of

the Java language. Before Servlet, CGI (Common Gateway Interface)

scripting language was common as a server-side programming language.

There were many disadvantages of CGI. Some of these disadvantages are

discussed below.

The client-side web pages changes according to your activity on the web

page. On the server-side, web pages are changed whenever a web page is

loaded.

Dynamic website is a collection of dynamic web pages whose content

changes dynamically so we can design such a dynamic application using

servlet. It accesses content from a database or Content Management

System (CMS).

3.8 REFERENCE FOR FURTHER READING

1. The Complete Reference -Java Enterprise Edition (Black Book) ,

Author:Herbert schildt.

2. Java EE 7 The Big Picture by - Dr.Danny Coward Publisher- Oracle

press.

3. Advanced Java by-Balaguruswamy .

4. The Java Ee 7 Tutorial by-Ricardo Cervera-Navarro.

45

4
SERVLET API AND LIFECYCLE

Unit Structure

4.1 Objectives

4.2 Java Servlet API

4.3 The Servlet Skeleton

4.4 The Servlet Life Cycle

4.5 A Simple Welcome Servlet Program

4.6 Questions

4.7 Summary

4.8 Reference for further reading

4.1 OBJECTIVES

1) Java Servlet Provides Server side Programming techniques.

2) Java Servlet Provides Flexible Architecture where we can

communicate easily through a web server.

3) Java Servlet for implementation of communication between client &

server.

4) Java Servlet Provides a mechanism i.e handles the request & response

services.

5) Java Servlet provides a powerful API for Strong and Dynamic Web

Programming.

6) Students/professionals are able to originally design and develop &

deploy their application on server.

4.2 JAVA SERVLET API

 In Java Servlet Containing API i.e the javax.servlet and

javax.servlet.http packages represent interfaces and classes for servlet

API Where to design java web applications.

 The javax.servlet package contains so many interfaces and classes

that are used by the servlet or web container programming.

 The javax.servlet.http package contains interfaces and classes that are

responsible for handling HTTP related Requests & Responses from

client to server & viceversa.

In Java EE Servlet interface provides common behavior to all the servlets.

Servlet interface defines methods that all servlets must implement for

handling processes.

Enterprise Java

46

Servlet interface needs to be implemented for creating any servlet (either

directly or indirectly) Without servlet interface servlet class will not be

generate.

In the Javax.servlet package, the ServletRequest Interface is used to

handle client requests to access a servlet. It provides the information of a

servlet like, parameter names, content type, content length and values.

In the Javax.servlet package, the ServletResponse interface defines an

object to help a Servlet in sending a response to the client/browser. It has

various methods that help communicate a servlet to respond to the client

requests.

In the Javax.servlet package, the RequestDispatcher interface provides the

facility of dispatching the request to another resource , be it html, servlet

or jsp. This interface can also be used to include the content of another

resource.

Following are the interfaces of javax.servlet package:

There are many interfaces in the javax.servlet package. They are as

follows:

1. Servlet Interface.

2. ServletRequest.

3. ServletResponse.

4. RequestDispatcher.

5. ServletConfig:

6. ServletContext

7. ServletRequestListener

8. ServletRequestAttributeListener

9. ServletContextListener

10. ervletContextAttributeListener

Following are the List of Classes in javax.servlet package

1. GenericServlet.

2. ServletInputStream.

3. ServletOutputStream.

Servlet API and Lifecycle

47

4. ServletRequestWrapper.

5. ServletResponseWrapper.

6. ServletRequestEvent.

7. ServletContextEvent.

8. ServletRequestAttributeEvent.

9. ServletContextAttributeEvent.

10. ServletException.

11. UnavailableException.

Following are the List of Interfaces in javax.servlet.http package:

1) HttpServletRequest.

2) HttpServletResponse.

3) HttpSession.

4) HttpSessionListener.

5) HttpSessionAttributeListener.

6) HttpSessionBindingListener.

7) HttpSessionActivationListener.

Following are the List of Classes in javax.servlet.http package:

1) HttpServlet.

2) Cookie.

3) HttpServletRequestWrapper

4) HttpServletResponseWrapper

5) HttpSessionEvent.

6) HttpSessionBindingEvent.

4.3 THE SERVLET SKELETON

Servlet development: a skeleton Servlet, Once you have set up your

Servlet environment, the first step is generally to write a test Servlet using

code such as the skeleton shown in this example.

https://www.javamex.com/tutorials/servlets/index.shtml
https://www.javamex.com/tutorials/servlets/index.shtml

Enterprise Java

48

To write a basic Servlet, you generally:

 overwrite HttpServlet;

 overwrite the doGet() and doPut().

In servlet there are two methods: doGet() and doPut(). These methods will

be called in response to GET and POST requests from the user's web

browser/client side. Unless you specifically need your web application to

respond differently to the two types of request.

Servlet code looks as follows:

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class BasicServlet extends HttpServlet

 {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException

{

 res.setContentType("text/html");

 PrintWriter pw = res.getWriter();

 // ... output page to pw...

 }

 public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException

{

 doGet(req, res);

 }

 }

The above example doesn't actually output any HTML, but it shows the

basic anatomy of a servlet class. Class extends HttpServlet and must

provide implementations of the two methods. These methods correspond

to HTTP get() and post() methods respectively. Developers can generally

make doPost() simply pass the request to doGet(). Servlets containing

both types of requests essentially look the same. For example, parameters

will be extracted from either a URL or POSTed data.

https://www.javamex.com/tutorials/servlets/get_post.shtml

Servlet API and Lifecycle

49

4.4 THE SERVLET LIFE CYCLE

In Java Servlet, The web container maintains the life cycle of a servlet

instance/Object.

Following are the Stages of life cycle of the servlet:

1. Servlet class is loaded.

2. Servlet instance is created.

3. init method is invoked.

4. service method is invoked.

5. destroy method is invoked.

Fi

g: 4.4 Stages of servlet life cycle .

As displayed in the above diagram, there are three states of a servlet

namely: new, ready and end.

 The servlet is in a new state if the servlet instance is created.

 After invoking the init() method, Servlet comes in the ready state. In

the ready state, servlet performs all the tasks.

 When the web container invokes the destroy() method, it shifts to the

end state.

1) Servlet class is loaded:

In servlet while executing the servlet class first stage is i.e classloader is

responsible for loading the servlet class into RAM. servlet class is loaded

when the first request comes from the web container.

Enterprise Java

50

2) Servlet instance is created:

After loading the servlet class web container creates the instance of a

servlet t class. The servlet instance/object is created only once in the

servlet life cycle; the second time request is not created.

3) init method is invoked:

The web container/web server calls the init() method only once after

creating the servlet instance. Basically the init() method is used to

initialize the servlet. init() method is the content of the life cycle of the

javax.servlet.Servlet interface.

Syntax:

public void init(ServletConfig config)

4) service method is invoked:

The web container/web server calls the service method each time when a

request for the servlet is received. If the servlet class or object is not

initialized, again it follows the first three steps as described above then

calls the service method. If the servlet is initialized, it calls the service

method.

Syntax:

public void service(ServletRequest request, ServletResponse response)

5) destroy method is invoked:

The web container/web server calls the destroy method before removing

the servlet instance from the RAM. destroy() method gives the servlet an

opportunity to clean up any resource for example memory, thread etc.

4.5 SIMPLE WELCOME SERVLET PROGRAM

There are 6 steps to create a servlet Program example.

Following are These steps are required for writing the Servlet Programs.

The servlet example can be created by three ways:

 Implementing Servlet interface.

 Inheriting GenericServlet class.

 Inheriting HttpServlet class.

The most used approach is by extending HttpServlet in the desired servlet

file because it provides http request/response, specific methods such as

doGet(), doPost(), doHead().

❖ Steps to Create & Execute servlet Program:

Servlet API and Lifecycle

51

1) Create a directory structures:

The directory structure defines where to put the different types of files so

that the web container may get the information and respond to the client.

The Sun Microsystem defines a unique standard to be followed by all the

server vendors. Let's see the directory structure that must be followed to

create the servlet.

As you can see, the servlet class file must be in the classes folder. The

web.xml file must be under the WEB-INF folder.

2) Create a Servlet file:

There are three ways to create the servlet

1. By implementing the Servlet interface

2. By inheriting the GenericServlet class

3. By inheriting the HttpServlet class

The HttpServlet class is widely used to create the servlet because it

provides methods to handle http requests such as doGet(), doPost

doHead() etc.

In this servlet example we are going to create a servlet class that will be

extended from HttpServlet class. In this example, we are inheriting the

HttpServlet class and providing the implementation of the doGet()

method. Notice that get request is the default request

Enterprise Java

52

Create File : SampleServlet.java

import javax.servlet.http.*;

import javax.servlet.*;

import java.io.*;

public class SampleServlet extends HttpServlet//servlet class is extends

from Httpservlet class.

{

public void doGet(HttpServletRequest request,HttpServletResponse

response)

throws ServletException,IOException

{

response.setContentType("text/html");//setting the content type

PrintWriter pw=response.getWriter();//get the stream to write the data

//writing html in the stream

pw.println("<html><body>");

pw.println("Welcome to servlet");

pw.println("</body></html>");

pw.close();//closing the stream

}

}

3) Compile the servlet:

For compiling the Servlet, a jar file is required to be loaded. Different

Servers provide different jar files:

Jar files Desired Server

1) servlet-api.jar Apache Tomcat

2) weblogic.jar Weblogic

3) javaee.jar Glassfish

4) javaee.jar JBoss

Put the java file in any folder. After compiling the java file, paste the class

file of servlet in WEB-INF/classes directory.

Servlet API and Lifecycle

53

4) Create the deployment descriptor (web.xml file):

The deployment descriptor is an xml file, from which Web Container gets

the information about the servet to be invoked.

The web container uses the Parser to get the information from the web.xml

file. There are many xml parsers such as SAX, DOM and Pull.

There are many elements in the web.xml file. Here are some necessary

elements to run the simple servlet program.

web.xml file

<web-app>

<servlet>

<servlet-name>umesh</servlet-name>

<servlet-class>SampleServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>umesh</servlet-name>

<url-pattern>/welcome</url-pattern>

</servlet-mapping>

</web-app>

Description of the content of web.xml file:

There are too many elements in the web.xml file. Here is the illustration of

some elements that are used in the above web.xml file. The elements are

as follows:

1. <web-app> represents the whole application.

2. <servlet> is a sub element of <web-app> and represents the servlet.

3. <servlet-name> is a sub element of <servlet> that represents the name

of the servlet.

4. <servlet-class> is a sub element of <servlet> that represents the class

of the servlet.

5. <servlet-mapping> is a sub element of <web-app>. It is used to map

the servlet.

6. <url-pattern> is a sub element of <servlet-mapping>. This pattern is

used at client side to invoke the servlet.

Enterprise Java

54

5) Start the Server and deploy the project:

To start Apache Tomcat server, double click on the startup.bat file under

apache-tomcat/bin directory.

❖ One Time Configuration for Apache Tomcat Server

You need to perform 2 tasks:

1. We have to set JAVA_HOME or JRE_HOME in the environment

variable (It is required to start the server).

2. To Change the port number of tomcat (optional). It is required if

another server is running on the same port (8080).

1) How to set JAVA_HOME in the environment variable:

To start Apache Tomcat server JAVA_HOME and JRE_HOME must be

set in Environment variables.

Right click on my computer/ThisPC -> Click on advanced tab then

environment variables -> Click on the new tab of user variable -> Write

JAVA_HOME in variable name and paste the path of jdk folder in

variable value -> Then click on ok

Go Computer properties:

Servlet API and Lifecycle

55

Click on advanced system settings:

Click on the new tab of user variable or system variable whenever

required:

Enterprise Java

56

JAVA_HOME in variable name and paste the path of jdk folder in

variable value until bin directory:

Servlet API and Lifecycle

57

Finally, the Apache server is started successfully.

2) How to change port number of apache tomcat:

TO change port number is required if there is another server running on

the same system with the same port number.

Suppose you have installed oracle, you need to change the port number of

apache tomcat because both have the default port number 8080.

By manually we can change the port no. Open server.xml file in notepad.

It is located inside the apache-tomcat/conf directory. TO Change the

Connector port = 8080 and replace 8080 by any four digit number instead

of 8080. E.g replace it by 9999 and save this file.

5) How to deploy the servlet project:

Copy the project and paste it in the webapps folder under apache tomcat.

You can also create a war file, and paste it inside the webapps directory.

To do so, you need to use a jar tool to create the war file. Go inside the

project directory (before the WEB-INF), then write:

projectfolder> jar cvf myproject.war

Creating a war file has the advantage that moving the project from one

location to another takes less time.

6) How to access the servlet class:

Now Open browser and write in the address bar

http://hostname:portno/contextroot/urlpatternofservlet. For example:

http://localhost:9999/demo/welcome

Enterprise Java

58

2) Example of Student Registration form in servlet:

In this example, we have created the three pages.

 register.html

 Register.java

 web.xml

1) StudentRegister.html:

In this web page, we have input from the user using text fields and

Dropdown list. The information entered by the user is forwarded to the

Register servlet.

<html>

<body>

<form action="/Register" method="post">

Enter Student Name:<input type="text" name="userName"/>

Enter Password:<input type="password" name="userPass"/>

Enter Email Id:<input type="text" name="userEmail"/>

Select Country:

<select name="userCountry">

<option>India</option>

<option>USA</option>

<option>Australia</option>

 <option>Other</option>

</select>

<input type="submit" value="register"/>

</form>

Servlet API and Lifecycle

59

</body>

</html>

2) Register.java:

This Java Servlet class File is designed to receive all the data entered by

the user and store it into the database. Here, we are performing the

database logic.

import java.io.*;

import java.sql.*;

import javax.servlet.ServletException;

import javax.servlet.http.*;

 public class Register extends HttpServlet {

public void doPost(HttpServletRequest request, HttpServletResponse

response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String uname=request.getParameter("userName");

String upass=request.getParameter("userPass");

String uemail=request.getParameter("userEmail");

String uc=request.getParameter("userCountry");

PrintWriter out = response.getWriter();

 out.println("<p>User name=" +uname + "</p>");

 out.println("<p>User pass=" +upass+ "</p>");

 out.println("<p>User email=" +uemail+ "</p>");

 out.println("<p>User country=" +uc+ "</p>");

out.close();

}

}

3) web.xml file:

Web.xml is the configuration file, to provide information about the

servlet.

<web-app>

 <servlet>

<servlet-name>Register</servlet-name>

Enterprise Java

60

<servlet-class>Register</servlet-class>

</servlet>

 <servlet-mapping>

<servlet-name>Register</servlet-name>

<url-pattern>/register</url-pattern>

</servlet-mapping>

 <welcome-file-list>

 <welcome-file>StudentRegister.html</welcome-file>

</welcome-file-list>

 </web-app>

Output:

1) Input Screen - StudentRegister.html:

2) Output Screen - Register,java// servlet file executed

4.6 QUESTIONS

1. Define Servlet?

2. Explain in detail the servlet life cycle.

3. Explain API of Servlet.

4. Differentiate between servlet & CGI.

Servlet API and Lifecycle

61

5. Why use servlets?

6. Explain servlet interface.

7. Explain Role of servlet in web application.

8. Explain stages of executing servlet programs.

9. Explain javax.servlet package.

10. Explain javax.servlet.http package.

4.7 SUMMARY

In java servlet technology is used to create a web application (basically

resides at server side and generates a dynamic web page as per request).

Java Servlet technology is secure, robust and scalable because of the Java

language features. Before Servlet, CGI (Common Gateway Interface) this

scripting language was used for server-side programming language. In the

servlet API there are many interfaces and classes such as Servlet,

GenericServlet, HttpServlet, ServletRequest, ServletResponse.

4.8 REFERENCE FOR FURTHER READING

1. The Complete Reference -Java Enterprise Edition (Black Book) ,

Author:Herbert schildt.

2. Java EE 7 The Big Picture by - Dr.Danny Coward Publisher- Oracle

press.

3. Advanced Java by-Balaguruswamy.

4. The Java Ee 7 Tutorial by-Ricardo Cervera-Navarro.

62

5
WORKING WITH SERVLETS

Unit structure

5.1 Objectives

5.2 Annotations in Java

5.3 Getting Started with servlet

5.4 Using Annotations Instead of Deployment Descriptor

5.5 Servlet Program

5.6 Questions

5.7 Summary

5.8 Reference for further reading

5.1 OBJECTIVES

1) Java Servlet Provides Server side Programming techniques.

2) In Java Servlet for implementation of XML file or Deployment

Descriptor file.

3) We can use Annotation “ @webservlet” for there is no requirement

for a Deployment Descriptor file i.e web.xml .

4) Java Servlet provides a powerful API for Strong and Dynamic Web

Programming.

5) students/professionals are able to originally design and develop &

Deploy their application on server.

5.2 JAVA ANNOTATIONS

In java Annotations is a tag that represents the metadata(Data about Data)

i.e. attached with class, interface, methods or fields to indicate some

additional information which can be used by java compiler and JVM.

Annotations in Java are used to provide additional information, so it is an

alternative option for XML i.e web.xml file (Deployment Descriptor) and

Java marker interfaces.

 Built-In Java Annotations:

There are several built-in annotations in Java. Some annotations are

applied to Java code and some to other annotations.

Built-In Java Annotations used in Java code:

1. @Override

2. @SuppressWarnings

3. @Deprecated

Working with Servlets

63

● Let's Discuss with Built-In Annotations:

1) @Override:

@Override annotation assures that the subclass method is overriding the

parent class method. If it is not so, a compile time error occurs.

Sometimes, we make silly mistakes such as spelling mistakes etc. So, it is

better to mark @Override annotation that provides assurity that method is

overridden.

class Student

{

void learnSomething()

{

System.out.println("Learning something");

}

}

 class Result extends Student

{

@Override

void learnsomething()

{

System.out.println("Result----”);

}//should be override learnSomething

}

 class TestStudent

{

public static void main(String args[])

{

Student a=new Result();

a.learnSomething();

}

}

Output:

Compile Time Error

2) @SuppressWarnings:

@SuppressWarnings annotation: is used to suppress warnings issued by

the compiler.

import java.util.*;

Enterprise Java

64

class Employee

{

@SuppressWarnings("unchecked")

public static void main(String args[])

{

ArrayList emplist=new ArrayList();

list.add("Umesh");

list.add("Datta");

list.add("Monu");

for(Object obj1:emplist)

System.out.println(obj1);

}

}

At Compile Time:

Now no warning at compile time.

If you remove the @SuppressWarnings("unchecked") annotation, it will

show a warning at compile time because we are using a non-generic

collection.

3) @Deprecated:

@Deprecated annotation marks that this method is deprecated so the

compiler prints a warning. It informs users that it may be removed in the

future versions. So, it is better not to use such methods.

class A

{

void mfun(){System.out.println("hello m");

}

@Deprecated

void nfun()

{

System.out.println("hello n");

}

}

class TestAnnotation3

{

public static void main(String args[])

{

A a=new A();

Working with Servlets

65

a.nfun();

}

}

At Compile Time:

Note: Test.java uses or overrides a deprecated API.

5.3 GETTING STARTED WITH SERVLET

Servlet is the key component that forms a typical Java EE application,

beside JSP, EJB, XML and other related technologies.

 A Java EE application can be packaged/Archived in a WAR file (Web

ARchive) in order to be deployed on a web server/Application server. A

web server that can run Java servlets is called a servlet container. The

most popular and widely used servlet containers are - Apache Tomcat,

JBoss, Glassfish etc.

In Java EE servlet is a simple Java class that extends either:

● javax.servlet.GenericServletclass for generic client-server protocol.

● javax.servlet.http.HttpServlet class for HTTP protocol communication

purpose.

Java servlet is mostly used for handling HTTP requests & response , by

overriding the HttpServlet’s doGet(), doPost() methods to handle GET and

POST methods to response, respectively.

The servlet container supplies an HttpServletRequest object and

HttpServletResponse object for dealing with the handling request and

response .

Servlet is usually used in conjunction with JSP for generating dynamic

content based on client’s requests.

 Annotations in servlet:

In Servlet Annotation represents the metadata. It will be prefix “@”

symbol in Servlet with Annotation,

When you use annotation (@WebServlet), deployment descriptor

(web.xml file) is not required. If we want to execute a servlet using

annotations you should have a tomcat7 and above web server to execute

the servlet. As it will not run in the previous versions of tomcat.

@WebServlet annotation is used to map the servlet with the specified

name(URL).

In Java Servlet uses the deployment descriptor (web.xml file) for

deploying/hosting your application into a web server. In java Servlet API

3.0 has introduced a new package called “ javax.servlet.annotation ” . It

provides annotation types which can be used for annotating a servlet class.

Enterprise Java

66

If you use annotation, then the deployment descriptor (web.xml) is not

required. But you should use tomcat7 or any latest version of tomcat.

Annotations can replace equivalent XML file configuration in the web

deployment descriptor file (web.xml) such as servlet declaration,servlet

class,servlet url and servlet mapping. Servlet containers will process the

annotated classes at deployment time.

Following are The list of annotation types introduced in Servlet 3.0.:

Sr. No. Annotation & Description

1
@WebServlet:

To declare a servlet.

2
@WebInitParam:

 To specify an initialization parameter.

3
@WebFilter:

To declare a servlet filter.

4
@WebListener:

To declare a WebListener

5

@HandlesTypes:

To declare the class types that a

ServletContainerInitializer can handle.

6

@HttpConstraint:

This annotation is used within the

ServletSecurity annotation to represent the

security constraints to be applied to all HTTP

protocol methods for which a corresponding

HttpMethodConstraint element does NOT

occur within the ServletSecurity annotation.

7

@HttpMethodConstraint:

This annotation is used within the

ServletSecurity annotation to represent security

constraints on specific HTTP protocol

messages.

8

@MultipartConfig:

Annotation that may be specified on a Servlet

class, indicating that instances of the Servlet

expect requests that conform to the

multipart/form-data MIME type.

9

@ServletSecurity:

This annotation is used on a Servlet

implementation class to specify security

constraints to be enforced by a Servlet

container on HTTP protocol message.

Working with Servlets

67

5.4 USING ANNOTATIONS INSTEAD OF

DEPLOYMENT DESCRIPTOR

1) A Program of simple servlet by annotation without web.xml file

(Deployment Descriptor):

SimpleExample.java:

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

@WebServlet("/SimpleExample") //Annotations

public class SimpleExample extends HttpServlet

{

protected void doGet(HttpServletRequest request, HttpServletResponse

response)

throws ServletException, IOException

{

response.setContentType("text/html");

PrintWriter out=response.getWriter();

out.print("<html><body>");

out.print("<h3>Hello Servlet</h3>");

out.print("</body></html>");

}

}

Output:

Enterprise Java

68

5.5 -SERVLET PROGRAM

2) A Program Design Student Registration process using servlet by

annotation without web.xml file:

TO Designing a servlet we have to create the three pages.

1. register.html

2. Register.java

1) StudentRegister.html:

In this page, we have input from the user using text fields and combobox.

The information entered by the user is forwarded to the Register servlet.

<html>

<body>

<form action="/Register" method="post">

 Enter Student Name:<input type="text" name="userName"/>

Enter Password:<input type="password" name="userPass"/>

Enter Email Id:<input type="text" name="userEmail"/>

Select Country:

<select name="userCountry">

<option>India</option>

<option>USA</option>

<option>Australia</option>

 <option>Other</option>

</select>

<input type="submit" value="register"/>

</form>

</body>

</html>

2) Register.java:

This servlet class receives all the data entered by the user and stores it into

the database. Here, we are performing the database logic. But you may

separate it, which will be better for the web application.

import java.io.*;

import javax.servlet.http.*;

import java.io.IOException;

Working with Servlets

69

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

@WebServlet("/register")

public class Register extends HttpServlet

{

public void doPost(HttpServletRequest request, HttpServletResponse

response)

throws ServletException, IOException

{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String uname=request.getParameter("userName");

String upass=request.getParameter("userPass");

String uemail=request.getParameter("userEmail");

String uc=request.getParameter("userCountry");

PrintWriter out = response.getWriter();

out.println("<p>User name=" +uname + "</p>");

out.println("<p>User pass=" +upass+ "</p>");

out.println("<p>User email=" +uemail+ "</p>");

out.println("<p>User country=" +uc+ "</p>");

}

}

Output:

1) Input screen: StudentRegister.html

Enterprise Java

70

2) Output Screen : Register.java:

5.6 QUESTIONS

1. Explain what is the use of “annotation” in Java.

2. Explain in detail @WebServlet annotation in java.

3. What is needed to use annotations except web.xml.

4. Explain @override annotations in java.

5. Explain @Deprecated annotations in java.

6. Explain in detail the flow of executing annotations.

7. List of annotations in servlet 3.0

8. Write a servlet program for calculate simple & compound interest.

9. Write a servlet program for Display entered Username .

5.7 SUMMARY

Java Annotation is a tag that represents the metadata i.e. attached with

class, interface, methods or fields to indicate some additional information

which can be used by java compiler and JVM.

Annotations in Java are used to provide additional information, so it is an

alternative option for XML and Java marker interfaces.

The servlet container supplies an HttpServletRequest object and

HttpServletResponse object for dealing with the handling request and

response.

In Servlet Annotation represents the metadata. It will be prefix “@”

symbol in Servlet with Annotation,

When you use annotation (@WebServlet), deployment descriptor

(web.xml file) is not required. If we want to execute a servlet using

annotations you should have a tomcat7 and above web server to execute

the servlet.

Working with Servlets

71

5.8 REFERENCE FOR FURTHER READING

1. The Complete Reference -Java Enterprise Edition (Black Book),

Author:Herbert schildt.

2. Java EE 7 The Big Picture by - Dr. Danny Coward Publisher- Oracle

press.

3. Advanced Java by-Balaguruswamy.

72

6
WORKING WITH DATABASES

Unit structure
6.1 Objectives

6.2 What Is JDBC

6.3 JDBC Architecture

 6.3.1 Two-tier Architecture

 6.3.2 Three-tier Architecture

6.4 Accessing Database

6.5 The Servlet GUI and Database Example

6.6 Questions

6.7 Summary

6.8 Reference for further reading

6.1 OBJECTIVES

1) JDBC is useful for A DataSource object that is used to establish

connections.

2) Using Objects of JDBC classes & interfaces to be executing SQL

Statements.

3) Extracting metadata of a data source via JDBC driver.

4) JDBC Driver Manager can also be used to establish a connection

between Java & Database .

5) Using JDBC API we can Design & Develop GUI Web Application in

Java.

6.2 WHAT IS JDBC

JDBC stands for Java Database Connectivity JDBC basically used in java

programming for create/implement connection between java application &

database. Java API provides JDBC Driver is a software component /

module that enables java applications to connect with the database. JDBC

is a Java API to connect and execute the SQL query with the database.

JDBC API uses JDBC drivers to connect with the database and java

application.

Following are the types of JDBC drivers:

1. JDBC-ODBC Bridge Driver,

2. Native Driver,

3. Network Protocol Driver, and

Working with Databases

73

4. Thin Driver:

In a java application we can use JDBC API to access tabular/structured

data stored in any relational database. With the help of JDBC API, we can

save, update, delete and fetch data from the database. JDBC like Open

Database Connectivity (ODBC) provided by Microsoft.

Fig: 6.2 JDBC Connection

The java.sql package contains classes and interfaces for JDBC API.

How to import java.sql package in to java application

E.g Import java.sql.*;

Following are the list of popular interfaces of JDBC API :

1. Driver interface:

In JDBC API the JDBC Driver interface provides powerful

implementations of the abstract classes provided by the JDBC API for

connection. JDBC driver must provide implementations of the java.sql.

CallableStatement, PreparedStatement, Connection, Statement, ResultSet.

2. Connection interface:

In JDBC API a Connection interface is the session between a Java

application and database. The Connection interface is a factory of

PreparedStatement, Statement, and DatabaseMetaData, that means objects

of Connection can be used to get the object of Statement and

DatabaseMetaData.

Commonly used methods of Connection interface:

A) public Statement createStatement():

In Java creates a statement object that can be used to execute SQL queries.

Enterprise Java

74

B) public Statement createStatement(int resultSetType,int

resultSetConcurrency):

Creates a Statement object that will generate ResultSet objects with the

given type.

C) public void close():

closes the connection and Releases a JDBC resources immediately.

1. Statement interface:

The Statement interface provides methods to execute queries with the

database. The statement interface is a factory of ResultSet i.e. it provides a

factory method to get the object of ResultSet.

Following are the important methods of Statement interface:

A) public ResultSet executeQuery(String sql):

In Java is used to execute SELECT query. It returns the object of

ResultSet when executing the query.

B) public int executeUpdate(String sql):

In Java is used to execute specified query, it may be create, drop, insert,

update, delete.

C) public boolean execute(String sql): is used to execute queries that

may return multiple results from a database.

1. PreparedStatement interface:

The PreparedStatement interface is a subinterface of Statement. It is used

to execute parameterized queries.

example of parameterized query:

String sql="insert into emp values(?,?,?)";

In the above example , we are passing parameters (?) for the values. Its

value will be set by calling the setter methods of PreparedStatement.

Why use PreparedStatement?:

● Improves performance: The performance of the application will be

faster if you use PreparedStatement interface because the query is

compiled only once.

Methods of PreparedStatement interface.

Working with Databases

75

Following are the important methods of PreparedStatement interface

are given below:

Method Description

public void setInt(int

paramIndex, int value)

In This method sets the integer

value to the given parameter index.

public void setString(int

paramIndex, String value)

In This method sets the String value

to the given parameter index.

public void setFloat(int

paramIndex, float value)

In This method sets the float value

to the given parameter index.

public void setDouble(int

paramIndex, double value)

In This method sets the double

value to the given parameter index.

public int executeUpdate() In This method executes the query.

It is used for create, drop, insert,

update, delete etc.

public ResultSet

executeQuery()

In This method executes the select

query. It returns an instance of

ResultSet.

2. CallableStatement interface:

In JDBC API CallableStatement interface is used to call the stored

procedures and functions. We can have business logic on the database by

the use of stored procedures and functions that will make the performance

better because these are precompiled.

Suppose you need to get the age of the employee based on the date of

birth, you may create a function that receives date as the input and returns

age of the employee as the output.

Following are the differences between stored procedures and

functions:

Procedure Function

is used to perform business

logic.

is used to perform calculations.

must not have the return type. must have the return type.

may return 0 or more values. may return only one value.

We can call functions from the

procedure.

Procedure cannot be called from

function.

Procedure supports input and

output parameters.

Function supports only input

parameters.

Exception handling using

try/catch block can be used in

stored procedures.

Exception handling using

try/catch can't be used in user

defined functions.

Enterprise Java

76

3. ResultSet interface:

The object of ResultSet maintains a cursor pointing to a row of a table.

Initially, the cursor points to the first row.

But we can make this object to move forward and backward direction by

passing either TYPE_SCROLL_INSENSITIVE or

TYPE_SCROLL_SENSITIVE in createStatement(int,int) method as well

as we can make this object as updatable by:

Following are the Commonly used methods of ResultSet interface:

Methods Description

1) public boolean next(): This method is used to move the cursor

to the one row next from the current

position.

2)public boolean previous(): This method is used to move the cursor

to the one row previous from the

current position.

3) public boolean first(): This method is used to move the cursor

to the first row in the result set object.

4) public boolean last(): This method is used to move the cursor

to the last row in the result set object.

5) public boolean

absolute(int row):

This method is used to move the cursor

to the specified row number in the

ResultSet object.

6) public boolean relative(int

row):

This method is used to move the cursor

to the relative row number in the

ResultSet object, it may be positive or

negative.

7) public int getInt(int

columnIndex):

This method is used to return the data

of specified column index of the

current row as int.

8) public int getInt(String

columnName):

This method is used to return the data

of the specified column name of the

current row as int.

Working with Databases

77

9) public String getString(int

columnIndex):

This method is used to return the data

of the specified column index of the

current row as String.

10) public String

getString(String

columnName):

This method is used to return the data

of the specified column name of the

current row as String

Following are the a popular classes of JDBC API:

DriverManager class:

In JDBC API the DriverManager class acts as an interface between user

and drivers for implementing bridge between Java Application &

Database . It keeps track of the drivers that are available and handles

establishing a connection between a database and the driver.

Following are the methods of DriverManager class:

Method Description

1) public static void

registerDriver(Driver driver):

This method is used to register the

given driver with DriverManager.

2) public static void

deregisterDriver(Driver

driver):

This method is used to deregister the

given driver (drop the driver from the

list) with DriverManager.

3) public static Connection

getConnection(String url):

This method is used to establish the

connection with the specified url.

4) public static Connection

getConnection(String url,

String userName, String

password):

This method is used to establish the

connection with the specified url,

username and password.

6.3 JDBC ARCHITECTURE

The JDBC API supports both two-tier and three-tier architecture of sql

processing models for database access data .

Enterprise Java

78

6.3.1 Two-tier Architecture:

In the JDBC two-tier architecture model, a Java applet or application talks

directly to the data source. This requires a JDBC driver that can

communicate with the particular data source/database being accessed.

A client sends a request to execute the database or other data source, and

the results of those statements are sent back to the user. The data source

may be located on another machine to which the user is connected via a

network. This is referred to as a client/server configuration where they can

communicate to each other .

Figure 1: 6.3.1 Two-tier Architecture for Data Access.

6.3.2 Three-tier Architecture:

In Java JDBC is a three-tier architecture model, commands are sent to a

"middle tier" of services, which then sends the commands to the data

source/database. The data source /database processes the commands and

sends the results back to the middle tier, which then sends them to the

user.

In this three-tier model is very attractive because the middle tier makes it

possible to maintain control over access and the kinds of updates that can

be made to corporate data. One more advantage is that it simplifies the

deployment of javabapplications. Three-tier architecture can provide

performance advantages.

Figure 2: 6.3.2 Three-tier Architecture for Data Access.

Working with Databases

79

The JDBC API is being used more and more in the middle tier of a three-

tier architecture. In JDBC various features that make JDBC a server

technology are its support for connection pooling, distributed transactions.

The JDBC API is also what allows access to a data source/database from

a Java middle tier.

6.4 ACCESSING DATABASE

A) Insert Records in Database(MySql):

In this example how to insert records in a table using the JDBC

application.

Required Steps:

The following are the steps to create a new Database using JDBC

application:

1. Import the packages: import keywords specify that you include the

packages containing the JDBC classes needed for database

programming. Most often, using import java.sql.* will suffice.

2. Register the JDBC driver: Requires that you initialize a driver so

you can open a communications channel with the database.

3. Open a connection: Open() method used in the

DriverManager.getConnection() method to create and open a

Connection object, which represents a physical connection with a

database .

1. Execute a query: execute() method used for an object of type

Statement for building and submitting an SQL statement to insert

records into a desired table.

2. Cleaning up the environment with resources automatically closes the

resources.

Sample Code

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

public class InsertData

 {

String DB_URL = "jdbc:mysql://localhost/Umesh";

String USER = "guest";

String PASS = "guest123";

public static void main(String[] args)

Enterprise Java

80

{

// Open a connection

Connection conn = DriverManager.getConnection(DB_URL, USER,

PASS);

Statement stmt = conn.createStatement();

Try

{

// Execute a query

System.out.println("Inserting records into the table...");

String sql = "insert into UserRegistration VALUES (100, 'Umesh',

'Waghmare', 30)";

stmt.executeUpdate(sql);

sql = "insert into UserRegistration VALUES (101, 'Shreya', 'Patil', 25)";

stmt.executeUpdate(sql);

sql = "insert into UserRegistration VALUES (102,’Nilima’, 'Adagale',

30)";

stmt.executeUpdate(sql);

sql = "insert into UserRegistration VALUES(103, 'Mimu', 'Mittal', 25)";

stmt.executeUpdate(sql);

System.out.println("Inserted records into the table...");

}

catch (SQLException e)

{

e.printStackTrace();

}

}

}

Now let us compile the above example as follows −

C:\>javac InsertData.java

C:\>

When you run InsertData, it produces the following result −

C:\>java InsertData

Inserting records into the table...

Inserted records into the table...

C:\>

Working with Databases

81

B) Retrieve/Access Records from Database(MySql):

In java JDBC API specify to select/ fetch records from a table using JDBC

Driver/application.

Following are the Required Steps:

The following steps are required to create a new Database using JDBC

application:

1. Import the packages: import keywords that include the packages

containing the JDBC classes needed for database related programming.

E.g import java.sql.*;

2. Open a connection: Open() method used in the

DriverManager.getConnection() method to create a Connection object,

which represents a physical connection with a database .

3. Execute a query: executeQuery() method used as an object of type

Statement for building and submitting an SQL statement to select (i.e.

fetch/access) records from a table.

4. Extract Data: SQL query is executed successfully , you can

fetch/access records from the table.

5. Clean up the environment: try with resources automatically.

Sample Code

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

public class AccessData

 {

String DB_URL = "jdbc:mysql://localhost/umesh";

String USER = "guest";

String PASS = "guest123";

String QUERY = "SELECT id, first, last, age FROM Registration";

 public static void main(String[] args)

{

// Open a connection

Connection conn = DriverManager.getConnection(DB_URL, USER,

PASS);

Statement stmt = conn.createStatement();

Enterprise Java

82

 ResultSet rs = stmt.executeQuery(QUERY);

try {

while(rs.next())

 //Display values

System.out.print("ID: " + rs.getInt("id"));

System.out.print(", Age: " + rs.getInt("age"));

System.out.println(", Last: " + rs.getString("last"));

}

}

catch (SQLException e)

{

e.printStackTrace();

}

}

}

Execute example as follows:

C:\>javac AccessData.java

C:\>

When you run AccessData, it produces the following result:

C:\>java AccessData

ID: 100, Age: 30, First: Umesh, Last: Waghmare

ID: 101, Age: 25, First: Shreya, Last: Patil

ID: 102, Age: 30, First: Nilima, Last: Adagale

ID: 103, Age: 25, First: Mimu, Last: Mittal

6.5 THE SERVLET GUI AND DATABASE EXAMPLE:

To start with basic concept, let us create a simple table and create few

records in that table as follows −

Create Table

To create the Employees table in TEST database, use the following steps –

Step 1:

Open a Command Prompt and change to the installation directory as

follows −

C:\>

Working with Databases

83

C:\>cd Program Files\MySQL\bin

C:\Program Files\MySQL\bin>

Step 2:

Login to database as follows

C:\Program Files\MySQL\bin>mysql -u root -p

Enter password: ********

mysql>

Step 3:

Create the table Student in teststudent database as follows −

mysql> use teststudent;

mysql> create table Student (

id int not null,

age int not null,

first varchar (255),

last varchar (255)

);

Query OK, 0 rows affected (0.08 sec)

mysql>

Create Data Records

Finally you create few records in Student table as follows −

mysql> INSERT INTO Student VALUES (100, 30, 'Umesh',

'Waghmare');

Query OK, 1 row affected (0.05 sec)

 mysql> INSERT INTO Student VALUES (101, 25, 'Shreya', 'Patil');

Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO Student VALUES (102, 30, 'Nilima', 'Adagale');

Query OK, 1 row affected (0.00 sec)

 mysql> INSERT INTO Student VALUES (103, 28, 'Mimu', 'Mittal');

Query OK, 1 row affected (0.00 sec)

 mysql>

Accessing a Database

Here is an example which shows how to access teststudent database using

Servlet.

// Loading required libraries

Enterprise Java

84

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.sql.*;

 public class DatabaseAccess extends HttpServlet

 {

public void doGet(HttpServletRequest request, HttpServletResponse

response)

throws ServletException, IOException

{

// JDBC driver name and database URL

String JDBC_DRIVER = "com.mysql.jdbc.Driver";

String DB_URL="jdbc:mysql://localhost/teststudent";

// Database credentials

String USER = "root";

String PASS = "root";

// Set response content type

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String title = "Database Result";

 out.println(

"<html>\n" +

"<head><title>" + title + "</title></head>\n" +

"<body bgcolor = \"#f0f0f0\">\n" +

"<h1 align = \"center\">" + title + "</h1>\n");

try

{

// Register JDBC driver

Class.forName("com.mysql.jdbc.Driver");

 // Open a connection

Connection conn = DriverManager.getConnection(DB_URL, USER,

PASS);

// Execute SQL query

Statement stmt = conn.createStatement();

String sql;

Working with Databases

85

sql = "SELECT id, first, last, age FROM Student";

ResultSet rs = stmt.executeQuery(sql);

// Extract data from result set

while(rs.next())

{

//Retrieve by column name

int id = rs.getInt("id");

int age = rs.getInt("age");

String first = rs.getString("first");

String last = rs.getString("last");

//Display values

out.println("ID: " + id + "
");

out.println(", Age: " + age + "
");

out.println(", First: " + first + "
");

out.println(", Last: " + last + "
");

}

out.println("</body></html>");

// Clean-up environment

rs.close();

stmt.close();

conn.close();

}

catch(Exception e)

 {

//Handle errors for Class.forName

e.printStackTrace();

}

}

}

Now let us compile above servlet and create following entries in web.xml

....

<servlet>

<servlet-name>DatabaseAccess</servlet-name>

<servlet-class>DatabaseAccess</servlet-class>

</servlet>

Enterprise Java

86

 <servlet-mapping>

<servlet-name>DatabaseAccess</servlet-name>

<url-pattern>/DatabaseAccess</url-pattern>

</servlet-mapping>

Now call this servlet using URL http://localhost:8080/DatabaseAccess

which would display following response −

Database Result:

ID: 100, Age: 30, First: Umesh, Last: Waghmare

ID: 101, Age: 25, First: Shreya, Last: Patil

ID: 102, Age: 30, First: Nilima, Last: Adagale

ID: 103, Age: 25, First: Mimu, Last: Mittal

Example of Fetching Result for the given country:

Here, you will learn how to fetch results for the given country. I am

assuming that there is a table as given below:

CREATE TABLE `registeruser` (

 `uname` varchar(50) NOT NULL,

 `upass` varchar(45) DEFAULT NULL,

 `email` varchar(45) DEFAULT NULL,

 `country` varchar(45) DEFAULT NULL

);

We are assuming there are many records in this table. In this example, we

are getting the data from the database in servlet and Display on screen.

In this example, we have create three files:

1. index.html

2. Search.java

3. web.xml

1) index.html:

This page gets rollno from the user and forwards this data to servlet which

is responsible to show the records based on the given country.

<html>

<body>

<form action="servlet/Search">

Enter your Country:<input type="text" name="country"/>

Working with Databases

87

<input type="submit" value="search"/>

</form>

</body>

</html>

2) Search.java:

This is the servlet file which gets the input from the user and maps this

data with the database and prints the record for the matched data. In this

page, we are displaying the column name of the database along with data,

so we are using the ResultSetMetaData interface.

import java.io.*;

import java.sql.*;

import javax.servlet.ServletException;

import javax.servlet.http.*;

public class Search extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse

response)

throws ServletException, IOException

{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String country=request.getParameter("country");

try{

Class.forName("com.mysql.jdbc.Driver");

Connection con=DriverManager.getConnection(

"jdbc:mysql://localhost:3306/teststudent","root","root");

//here teststudent is database name, root is username and password

Statement stmt=con.createStatement();

ResultSet rs=stmt.executeQuery("select * from registeruser where country

like +country+");

while(rs.next())

System.out.println(rs.getString(1)+" "+rs.getString(2)+"

"+rs.getString(3));

con.close();

}

catch(Exception e)

{

Enterprise Java

88

System.out.println(e);

}

}

}

3) web.xml file

This is the configuration file which provides information of the servlet to

the container.

<web-app>

<servlet>

<servlet-name>Search</servlet-name>

<servlet-class>Search</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>Search</servlet-name>

<url-pattern>/servlet/Search</url-pattern>

</servlet-mapping>

</web-app>

Output:

1) Input Screen

2) Output Screen:

6.7 SUMMARY

JDBC is basically used in java programming for creating/implementing

connections between java applications & databases. In Java API JDBC

Driver is a software component that enables java applications to connect

with the database. JDBC is a Java API to connect and execute the SQL

Working with Databases

89

query with the database. JDBC is a part of JavaSE (Java Standard

Edition). JDBC API uses JDBC drivers to connect with the database.

6.6 QUESTIONS

1 What is the use of JDBC?

2 Explain Architecture of JDBC.

3 Explain Two Tier Architecture.

4 Explain types of JDBC drivers.

5 Explain Three Tier Architecture.

6 Discuss steps to connect java to a database.

7 Design a Employee registration (HTML form) insert records in the

EmployeeDetails table and display all records.

8 Design Result (HTML form) and a servlet program for calculating

student results with grades and display on browser.

6.8 REFERENCE FOR FURTHER READING

1. The Complete Reference -Java Enterprise Edition (Black Book),

Author:Herbert schildt.

2. Java EE 7 The Big Picture by - Dr.Danny Coward Publisher- Oracle

press.

3. Advanced Java by-Balaguruswamy .

90

UNIT II

7
REQUEST DISPATCHER

Unit Structure

7.0 Objectives

7.1 RequestDispatcher interface

7.2 Request Methods Dispatcher

7.3 Request Sender’s Request

7.4 Summary

7.5 References

7.6 Questions

7.0 OBJECTIVES

The servlet container forms a RequestDispatcher object, which is used as a

cover around a server resource located in a particular path or named. This

link is intended for wrapping servlets, but the servlet container can create

RequestDispatcher items to wrap any type of app.

7.1 REQUESTDISPATCHER INTERFACE

• A RequestDispatcher is an extremely important Java class that allows

you to "include" content in a request / response or to "forward" a

request / response to a resource. As a typical example, a servlet can

use a RequestDispatcher to include or forward a request / response to

a JSP.

• A RequestDispatcher object can forward a client's request to a

resource or include the resource itself in the response to the client. A

resource can be another servlet, an HTML file or a JSP file, and so on.

• You can also think of a RequestDispatcher object as a container for

the resource located on a given path given as an argument to the

getRequestDispatcher method.

• To construct a RequestDispatcher object, you can use the

ServletRequest.getRequestDispatcher () method or the

ServletContext.getRequestDispatcher () method. They both do the

same thing, but impose slightly different constraints on the path of the

topic. For the former, it looks for the resource in the same web

application that the invocation servlet belongs to, and the path name

specified can be relative to the invocation servlet. For the latter, the

path name must start with '/' and is interpreted in relation to the root of

the web application.

Request Dispatcher

91

7.2 METHODS OF THE REQUESTDISPATCHER

INTERFACE

 public void forward (ServletRequest request, ServletResponse

response) throws ServletException, java.io.IOException:

Forwards a request for a servlet to another resource (servlet, JSP file,

or HTML file) on the server.

 public void include (ServletRequest request, ServletResponse

response) throws ServletException, java.io.IOException:

Include the content of a resource (servlet, JSP page, or HTML file) in the

response.

How to get the RequestDispatcher object:

• The getRequestDispatcher () method of the ServletRequest interface

returns the RequestDispatcher object.

How to get a RequestDispatcher object:

• RequestDispatcher rs = request.getRequestDispatcher ("hello.html");

rs.forward (request, response);

Enterprise Java

92

RequestDispatcher rs = request.getRequestDispatcher ("hello.html");

rs.include (request, response);

7.3 REQUEST THE SENDER'S REQUEST

• In this example, we are validating the password entered by the user. If

the password is a servlet, it will forward the request to the

WelcomeServlet; otherwise it will display an error message: sorry,

wrong username or password!

In this example, we have created the following files:

 index.html file: to obtain information about the user.

 Access file.java: a servlet class to process the response. If the

password is admin123, it will send the request to the welcome servlet.

 WelcomeServlet.java file: a servlet class to display the welcome

message.

 web.xml file: a deployment descriptor file that contains servlet

information.

index.html:

 <form method = "post" action = "Validation"> Name: <input type =

"text" name = "user">

Request Dispatcher

93

 Password: <input type = "password" name = "pass">

 <input type = "submit" value = "submit"> </form>

Validate.java:

import java.io. *;

import javax.servlet. *;

import javax.servlet.http. *;

Validate public class extends HttpServlet {

protected void doPost (HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {

 response.setContentType ("text / html; character set = UTF-8");

 PrintWriter out = response.getWriter ();

 to deal {

 String name = request.getParameter ("user");

 Password string = request.getParameter ("pass");

 if (password.equal ("admin123"))

 {

 RequestDispatcher rd = request.getRequestDispatcher ("Welcome");

 rd.forward (request, response);

 } the rest

 {

 out.println (" You entered an incorrect password

 ");

 RequestDispatcher rd = request.getRequestDispatcher ("index.html");

 rd.include (request, response);

 }

 } Long last {

 out.close ();

 }

}

}

Welcome.java:

import java.io. *;

import javax.servlet. *;

import javax.servlet.http. *;

The public class welcome extends HttpServlet

Enterprise Java

94

{

protected void doPost (HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException

{

 response.setContentType ("text / html; character set = UTF-8");

PrintWriter out = response.getWriter ();

to deal

{

out.println ("<h2> Welcome user </h2>");

}

Long last

{

out.close (); }}}

7.4 SUMMARY

The RequestDispatcher interface provides the facility of dispatching the

request to another resource it may be html, servlet or jsp. This interface

can also be used to include the content of another resource also. It is one

of the ways of servlet collaboration.

7.5 REFERENCES

 https://www.javatpoint.com/java-tutorial

 https://www.tutorialspoint.com/java/index.htm

 https://www.geeksforgeeks.org/java/

 https://www.oracle.com/in/java/technologies/java-ee-glance.html

 https://developers.redhat.com/topics/enterprise-java

 https://www.javacodegeeks.com/enterprise-java-tutorials

7.6 QUESTIONS

1. Explain the RequestDispatcher interface with its methods and

diagram.

2. How to get the RequestDispatcher object with syntax.

3. Provide an example to validate the password entered by the user.

https://www.javatpoint.com/java-tutorial
https://www.tutorialspoint.com/java/index.htm
https://www.geeksforgeeks.org/java/
https://www.oracle.com/in/java/technologies/java-ee-glance.html
https://developers.redhat.com/topics/enterprise-java
https://www.javacodegeeks.com/enterprise-java-tutorials

95

8
COOKIES

Unit Structure

8.1 Introduction

8.1.1 Types of cookies

8.1.2 Where are cookies used?

8.1.3 Servlet cookie methods

8.2. Cookie settings with Servlet

8.3. Where are cookies used?

8.3.1 Applications

8.4 Where are cookies placed?

8.5 Simple example of a servlet cookie

8.6 Summary

8.7 References

8.8 Questions

8.1 INTRODUCTION

 Cookies are text files stored on the customer's computer and are saved

for various information tracking purposes. Java Servlet transparently

supports HTTP cookies.

 There are three steps involved in identifying recurring users:

 The server script sends a series of cookies to the browser. For

example, name, age or identification number, etc.

 The browser stores this information on the local machine for future

use.

 The next time the browser sends a request to the web server, it will

send the cookie information to the server and the server will use that

information to identify you.

 A servlet will access the cookie via the request.getCookies () request

method which returns an array of Cookie objects.

Some of the common uses of cookies are:

1. Session authentication uses cookies:

2. Personalized response to the customer based on their preferences, for

example, we can set the background color as a cookie in the

customer's browser and then use it to customize the background color

of the response, image, etc.

Enterprise Java

96

8.1.1 Types of cookies:

There are 2 types of cookies in servlets:

1. Non-persistent cookie

2. Persistent cookie

Non-persistent cookie:

It is valid for one session only. It is removed every time the user closes the

browser.

Persistent cookie:

It is valid for multiple sessions. It is not removed every time the user

closes the browser. It is removed only if the user logs out or logs out.

Advantage of cookies:

1. The simplest technique for maintaining the state.

2. Cookies are stored on the client side.

Disadvantage of cookies:

1. It will not work if cookies are disabled in the browser.

2. Only textual information can be set in the Cookie object.

3. Cookie class

4. javax.servlet.http.Cookieclass provides the functionality of using

cookies. Provides many useful methods for cookies.

5. Cookie class constructor

Builder Description

Cracker() build a biscuit.

Cookie (string name, string

value)

constructs a cookie with a

specified name and value.

Cookies

97

1.2 How do cookies work?

By default, each request is considered a new request. In the cookie

technique, we add cookies with the response of the servlet. The cookies

are then stored in the browser cache. Subsequently, if the user submits the

request, the cookie is added with the request by default. Therefore, we

recognize the user as the previous user.

8.1.3 Cookie Servlet Modes:

public void setDomain (string schema)

• This method sets the domain to which the cookie applies, for example

google.com.

public String getDomain ()

• This method gets the domain to which the cookie applies, for example

google.com.

public void setMaxAge (expiration int)

• This method sets the time (in seconds) that must elapse before the

cookie expires.

public int getMaxAge ()

• This method returns the maximum age of the cookie, specified in

seconds. By default, -1 indicates that the cookie will persist until the

browser is deactivated.

public String getName ()

• This method returns the name of the cookie. The name cannot be

changed after creation.

public void setValue (String newValue)

• This method sets the value associated with the cookie.

Enterprise Java

98

public String getValue ()

• This method gets the value associated with the cookie.

public void setPath (String uri)

• This method sets the path to which this cookie applies.

public String getPath ()

• This method gets the path to which this cookie is applied.

public void setSecure (boolean flag)

• This method sets the Boolean value that indicates whether the cookie

should be sent only over encrypted connections (i.e. SSL).

public void setComment (purpose of string)

• This method specifies a comment that describes the purpose of a

cookie. The comment is useful if the browser presents the cookie to

the user.

public string getComment ()

• This method returns the comment describing the purpose of this

cookie or null if the cookie contains no comments.

8.2 COOKIE SETTINGS WITH SERVLET

Setting up cookies with servlets involves three steps:

(1) Creation of a Cookie object:

You call the cookie constructor with a cookie name and a cookie value,

both are strings.

Cookie cookie = new Cookie ("name", "value");

Note that neither the name nor the value must contain spaces or any of the

following characters: [] () =, "/? @:;

(2) Set the maximum age:

Use setMaxAge to specify how long (in seconds) the cookie should be

valid. The following would set a cookie for 24 hours.

cookie.setMaxAge (60 * 60 * 24);

(3) Sending the cookie to the HTTP response headers:

Use response.addCookie to add cookies in the HTTP response header as

follows

 response.addCookie (cookie);

Cookies

99

8.3 WHERE ARE COOKIES USED?

 Create a temporary session where the site remembers in some way in

the short term what the user was doing or had chosen from the

requests of the web page, for example:

 Who the user is currently logged into.

 What the user has ordered in an online shopping cart.

 To remember low-security information more permanently, for

example:

 A user's search results preferences.

 What topic did the user browse during the user's last visit?

 For advertising purposes or to improve the functionality of a site.

 Identify a user during an e-commerce session.

 To avoid entering your username and password to access the site.

8.3.1 Applications:

 Shopping cart request

 Bank online

 Generation of a visitor's profile

 Generation of a visitor's profile

 Website monitoring

8.4 WHERE ARE COOKIES PLACED?

 By default, all cookies generated are stored on the hard drive of the

user's local computer.

 The locations are different but the cookie format is the same.

 Use the search function to get the cookie directory.

 It expires after a certain time.

How to create a cookie?:

Cookie ck =new one Cracker("user", "sonoo jaiswal"); // creation of a

cookie object

response.addCookie (ck);// adding cookies in response

How to delete the cookie?

Cookie ck =new one Cracker("Username", ""); // removing the value of

the cookie

Enterprise Java

100

ck.setMaxAge (0); // change the maximum age to 0 seconds

response.addCookie (ck);// adding cookies in response

How to get cookies?

Cookie ck [] = request.getCookies ();

from(In t i =0; i <ck. length; i ++) {

 out.print"
" + ck [i] .getName () + "" + ck [i] .getValue ()); // print the

name and value of the cookie

}

 8.5 SIMPLE EXAMPLE OF A SERVLET COOKIE

In this example, we are storing the user's name in the cookie object and

accessing it in another servlet. As we all know, that session corresponds to

the particular user. So, if you log in from too many browsers with different

values, you will get a different value.

index.html

<action form =method "servlet1" = "publish">

Name: <input type ="text" name = "userName" />

<input type =value "send" = "go" />

</form>

FirstServlet.java

importjava.io. *;

importjavax.servlet. *;

importjavax.servlet.http. *;

public class FirstServlet it extends HttpServlet {

public empty doPost (HttpServletRequest request, HttpServletResponse

response) {

 to deal{

 response.setContentType ("text / html");

 PrintWriter out = response.getWriter ();

Cookies

101

 String n = request.getParameter ("Username");

 out.print"Welcome" + n);

 Cookie ck =new one Cracker("one", n); // creation of a cookie object

 response.addCookie (ck);// adding cookies in response

 // create the submit button

 out.print"<form action = 'servlet2'>");

 out.print"<input type = 'send' value = 'go'>");

 out.print"</form>");

 out.close ();

 }capture(Exception e) {System.out.println (e);}

 }

}

SecondServlet.java

importjava.io. *;

importjavax.servlet. *;

importjavax.servlet.http. *;

public class SecondServlet it extends HttpServlet {

public empty doPost (HttpServletRequest request, HttpServletResponse

response) {

 to deal{

 response.setContentType ("text / html");

 PrintWriter out = response.getWriter ();

 Cookie ck [] = request.getCookies ();

 out.print"Hello" + ck [0] .getValue ());

 out.close ();

 } capture(Exception e)

{

System.out.println (e);

}

 }

}

8.6 SUMMARY

A cookie is a bit of information sent by a web server to a browser that can

later be read back from that browser. When a browser receives a cookie, it

saves the cookie and thereafter sends the cookie back to the server each

Enterprise Java

102

time it accesses a page on that server, subject to certain rules. Because a

cookie's value can uniquely identify a client, cookies are often used for

session tracking.

8.7 REFERENCES

 https://www.javatpoint.com/java-tutorial

 https://www.tutorialspoint.com/java/index.htm

 https://www.geeksforgeeks.org/java/

 https://www.oracle.com/in/java/technologies/java-ee-glance.html

 https://developers.redhat.com/topics/enterprise-java

 https://www.javacodegeeks.com/enterprise-java-tutorials

8.8 QUESTIONS

1. Explain the cookies with your use.

2. What types of cookies are there? Provide advantages and

disadvantages of cookies with their builders.

3. How do cookies work? Explain your methods.

4. Where are cookies used? Give your applications. Explain the syntax

to create and delete the obtained cookies.

5. Provide an example of Cookie.

https://www.javatpoint.com/java-tutorial
https://www.tutorialspoint.com/java/index.htm
https://www.geeksforgeeks.org/java/
https://www.oracle.com/in/java/technologies/java-ee-glance.html
https://developers.redhat.com/topics/enterprise-java
https://www.javacodegeeks.com/enterprise-java-tutorials

103

9
SESSIONS

Unit Structure

9.1 Introduction

9.1.1 Advantages of stateless nature

9.1.2 Disadvantages of the stateless nature

9.1.3 Solutions

9.2 How the session works

9.2.1 HttpSession interface

9.2.2 How to get the HttpSession object?

9.2.3 Commonly used methods of the HttpSession interface

9.2.4 Solution

9.3 Session ID

9.3.1 Session life cycle

9.3.2 Session Monitoring API

9.3.3 Session Monitoring Methods

9.3.4 Session Management API

9.3.5 Example of using HttpSession

9.4 Summary

9.5 References

9.6 Questions

9.1 INTRODUCTION

 Session simply means a particular time interval.

 Session monitoring it is a way to maintain the state (data) of a user.

Also known as servlet session management.

 The HTTP protocol is stateless, so we need to maintain state through

session tracking techniques. Each time the user requests the server,

the server treats the request as a new request. Therefore, we need to

maintain a user's status to recognize a particular user.

 HTTP is stateless, which means that each request is treated as the new

request.

 All requests and responses are independent. But sometimes it is

necessary to monitor customer activity on multiple requests. For

example. When a user logs into your website, regardless of which

web page they visit after logging in, their credentials will remain on

the server until they log off. Then this is handled by creating a

session.

 The session is used to store everything we can get from the client of

all the requests the client makes.

Enterprise Java

104

9.1.1 Advantages of stateless nature:

 Keeps the protocol simple and straightforward

 Consume fewer resources on the web server.

 Can admit simultaneous visitors.

9.1.2 Disadvantages of the stateless nature:

 The increased overhead required a new connection to be created with

each request.

 The inability to track a single visitor crossing a website.

 The web server cannot automatically accept the browser request with

a particular session.

9.1.3 Alternative solutions:

Web applications have used several techniques to circumvent HTTP

stateless operations:

1. The client is identified each time it makes a request and the server

stores and retrieves data related to that client - Sessions

2. The server sends the data to the client and forces the client to return

them at each request made - Cookies

9.2 HOW THE SESSION WORKS

 The concept behind the session is that, whenever a user starts using

our application, we can save unique identifying information about

him, in an object available throughout the application, until it is

destroyed. So wherever the user goes, we will always have his

information and we can always manage which user is doing what.

Whenever a user wants to exit your application, destroy the object

with its information.

Sessions

105

 On the client's first request, the web container generates a unique

session ID and returns it to the client with a response. This is a

temporary session created by the web container.

 The client returns the session ID with each request. It makes it easier

for the web container to identify where the request is coming from.

 The web container uses this ID, finds the session that matches the ID,

and associates the session with the request.

9.2.1 HttpSession interface:

9.2.2 How to get the HttpSession object?:

The HttpServletRequest interface provides two methods to get the

HttpSession object:

publicHttpSessiongetSession ():

Returns the current session associated with this request or, if the request

does not have a session, create one.

publicHttpSessiongetSession (boolean creation):

Returns the current HttpSession associated with this request or, if there is

no current session and create is true, it returns a new session.

9.2.3 Commonly used methods of the HttpSession interface:

public string getId ():

Returns a string that contains the unique identifier value.

long public getCreationTime ():

Returns the time this session was created, measured in milliseconds since

midnight on January 1, 1970 GMT.

Enterprise Java

106

public long getLastAccessedTime ():

Returns the last time the client sent a request associated with this session,

as the number of milliseconds since midnight January 1, 1970 GMT.

public void invalidate ():

Replace this session and then unlink all objects linked to it.

In a typical stateless protocol transaction, the client:

1. Establishes a connection to the web server

2. Submit a request

3. Get an answer

4. Close connection

Because a persistent connection is not maintained between such requests,

the connection from the web servers to the client is broken after the

connection is closed. Disconnection between a client and the web server

entails the following limitations:

• If the web server requires client authentication, for example a client

needs to log in, the client needs to log in again on each request. The

web server does not realize that it has already authenticated this client

because the connection between the two has been lost.

• The web server cannot distinguish one client from another.

9.2.4 Solution:

• Establish a permanent connection between the client and the web

server.

• Visitor's web browser requests.

• The web server assigns session IDs to each request.

• The web server identifies visitors through virtual connections called

sessions.

9.3 SESSION ID

A session ID is a unique number that a website server assigns to a specific

user during that user's visit (session). The session ID can be stored as a

cookie, form field or URL (Uniform Resource Locator). Some web servers

generate session IDs simply by incrementing static numbers. However,

most servers use algorithms that involve more complex methods, such as

taking into account the date and time of the visit along with other variables

defined by the server administrator.

Sessions

107

9.3.1 Session life cycle:

• A visitor, using a web browser, requests a resource from the web

server.

• The web server offers the authentication form which causes the

visitor's web browser to display a login form.

• The web browser returns the username and password, which are then

returned to the web server.

• The web server returns a valid session ID to uniquely identify this

visitor.

• The visitor's web browser sends any number of requests to the web

server. The web server identifies users based on session IDs.

• The visitor closes the browser without explicitly logging out.

9.3.2 Session Monitoring API:

• The session monitoring API is based on the first four methods. This is

to help the developer minimize the overhead of session monitoring.

This type of session tracking is provided by the underlying

technology. Let's take the example of the Java servlet. The servlet

container handles session tracking activity and the user does not need

to explicitly do this using Java servlets. This is the best of all

methods, because all handling and errors related to session monitoring

will be handled by the container itself.

• Each server client will be mapped to a javax.servlet.http.HttpSession

object. Java servlets can use the session object to store and retrieve

Java objects during the session. Session monitoring is best when

implemented using the session monitoring API.

• A session is a collection of HTTP requests, over a period of time. A

session is user specific and a new session is created for each user to

track all user requests. In the servlet session, tracing can be used to

track user state. Session monitoring is also known as session

management, it is a mechanism used to maintain a user's state within a

set of requests for a period of time. We can say that session

monitoring is a means of keeping track of session data. This data

represents the data that is transferred in a session.

9.3.3 Session Monitoring Methods:

• User authentication: This is the very common way that the user can

provide authentication credentials from the login page and then we

can pass the authentication information between the server and the

client to maintain the session. This is not a very effective method

because it will not work if the same user is logged in from different

browsers.

Enterprise Java

108

• HTML hidden field: We can create a unique hidden field in the

HTML and when the user starts browsing we can set its unique value

for the user and keep track of the session. This method cannot be used

with bindings because it requires the form to be submitted each time a

client-to-server request is made with the field hidden. Also, it's not

safe because we can get the hidden field value from the HTML source

and use it to hack the session.

• URL rewrite: We can add a session identifier parameter with each

request and response to keep track of the session. This is very tedious

because we have to keep track of this parameter in every response and

make sure it doesn't collide with other parameters.

• Cookies: Cookies are small pieces of information sent by the web

server in the response header and stored in the browser's cookies.

When the client makes an additional request, it adds the cookie to the

request header and we can use it to track the session. We can maintain

a session with cookies, but if the client disables cookies, it will not

work.

9.3.4 Session Management API:

The Session Management API builds on the previous methods for session

monitoring. Some of the major disadvantages of all of the above methods

are:

1. Most of the time we don't just want to keep track of the session, we

need to store some data in the session that we can use in future

requests. This will require a lot of effort if we try to implement it.

2. All of the above methods are not complete by themselves, they will

not all work in a particular scenario. So we need a solution that can

use these session tracking methods to provide session management in

all cases.

9.3.5 Example of using HttpSession:

In this example, we're setting the session-scope attribute in one servlet and

getting that value from the session-scope in another servlet. To set the

attribute within the session, we used the setAttribute () method of the

HttpSession interface and to get the attribute we used the getAttribute

method.

index.html:

<form method = "post" action = "Validate">

User: <input type = "text" name = "user" />

Password: <input type = "text" name = "pass">

<input type = "submit" value = "submit"> </form>

Validate.java:

import java.io. *;

Sessions

109

importjavax.servlet. *;

importjavax.servlet.http. *;

Public class ValidateextendsHttpServlet

{

protected void doPost (HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {

response.setContentType ("text / html; character set = UTF-8");

String name = request.getParameter ("user");

String pass = request.getParameter ("pass");

if (pass.equal ("1234"))

{

HttpSessionsession = request.getSession (); session.setAttribute ("user",

name); response.sendRedirect ("Welcome");

}}}

Welcome.java:

import java.io. *;

importjavax.servlet. *;

importjavax.servlet.http. *;

public class WelcomeextendsHttpServlet

{

protected void doGet (HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException

{

response.setContentType ("text / html; character set = UTF-8");

PrintWriterout = response.getWriter ();

HttpSessionsession = request.getSession ();

String user = (String) session.getAttribute ("user"); out.println ("Hello" +

user);

}}

9.4 SUMMARY

The session object is used to record the access status of each client within

the session scope, so that it is easy to track the operation status of each

client, and the information stored in the session can obtain the valid data

of these sessions when the browser makes subsequent requests.

In the jsp page, you can use the session object directly (built-in object of

jsp), or you can go back to the session object through pageContext.

Enterprise Java

110

getSession () or request. getSession. Session can save user information and

implement shopping cart and other functions.

9.5 REFERENCES

 https://www.javatpoint.com/java-tutorial

 https://www.tutorialspoint.com/java/index.htm

 https://www.geeksforgeeks.org/java/

 https://www.oracle.com/in/java/technologies/java-ee-glance.html

 https://developers.redhat.com/topics/enterprise-java

 https://www.javacodegeeks.com/enterprise-java-tutorials

9.6 QUESTIONS

1. Define the sessions. Explain session monitoring with the advantages

and disadvantages of the stateless nature of the HTTP protocol.

2. How does the session work? Explain with the diagram.

3. How does the HTTP session work? Explain with the diagram.

4. Explain the steps for the stateless protocol transaction with its

limitations and solutions.

5. Define the session ID. Explain the session life cycle.

6. What is the Session Monitoring API? Provide methods for session

monitoring.

7. Provide an example of an HTTP session to validate the user's

password.

https://www.javatpoint.com/java-tutorial
https://www.tutorialspoint.com/java/index.htm
https://www.geeksforgeeks.org/java/
https://www.oracle.com/in/java/technologies/java-ee-glance.html
https://developers.redhat.com/topics/enterprise-java
https://www.javacodegeeks.com/enterprise-java-tutorials

111

10
WORK WITH FILES

Unit Structure
10.1 File upload

10.2 Downloading files

10.3 Servlet annotations

10.4 References

10.5 Questions

10.6 Summary

10.1 FILE UPLOAD

You can use a servlet with an HTML form tag to allow users to upload

files to the server. An uploaded file can be a text file or an image file or

any document.

Creating a file upload form

The following HTM code below creates an upload form. The following

are the important points to note:

 The form method attribute must be set to POSTmethod and the GET

method cannot be used

 The form enctype attribute must be set to multipart / form-data.

 The module action attribute should be set to a servlet file that would

handle uploading files to the backend server. The following example

uses the UploadServlet servlet to upload the file.

 To upload a single file, you need to use a single <input ... /> tag with

attribute type = "file". To allow multiple file uploads, include more

than one input tag with different values for the name attribute. The

browser associates each of them with a Browse button.

 <html> <head>

 <title> File upload module </title>

 </head> <body>

 <h3> Upload file: </h3>

 Select a file to upload:

 <form action = "UploadServlet" method = "post" enctype = "multipart /

form-data">

 <input type = "file" name = "file" size = "50" />

Enterprise Java

112

 <input type = "send" value = "Upload file" />

 </form> </body> </html>

This will display the following output which will allow you to select a file

from the local PC and when the user clicks "Upload File" the form will be

sent along with the selected file.

Write backend servlet

Below is the UploadServlet servlet that would take care of accepting the

uploaded file and storing it in the <Tomcat-installation-directory> /

webapps / data directory. This directory name can also be added using an

external setting such as a context-param element in web.xml as follows:

 <web-app>

 <context-parameter>

 <description> Location to store the uploaded file </description>

 <param-name> upload file </param-name>

 <value-param>

 c: \ apache-tomcat-5.5.29 \ webapps \ data \

 </param-value>

 </context-param>

</web-app>

Below is the UploadServlet source code, which can handle uploading

multiple files at the same time. Before proceeding, you should make sure

of the following:

 The following example depends on FileUpload, so make sure you

have the latest version of the commons-fileupload.xxjar file in your

classpath. You can download it

fromhttps://commons.apache.org/fileupload/.

https://commons.apache.org/fileupload/

Work with Files

113

 FileUpload depends on Commons IO, so make sure you have the

latest version of the commons-io-xxjar file in your classpath. You can

download it fromhttps://commons.apache.org/io/.

 When testing the following example, a file smaller than maxFileSize

must be loaded; otherwise the file will not be loaded.

 Make sure you have created the c: \ temp and c: \ apache-tomcat8.0.28

\ webapps \ data directories well in advance.

// Import the necessary Java libraries

import java.io. *;

import java.util. *;

import javax.servlet.ServletConfig;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.apache.commons.fileupload.FileItem;

import org.apache.commons.fileupload.FileUploadException;

import org.apache.commons.fileupload.disk.DiskFileItemFactory;

import org.apache.commons.fileupload.servlet.ServletFileUpload;

import org.apache.commons.io.output. *;

The UploadServlet public class extends HttpServlet {

 isMultipart private boolean;

 FilePath private string;

 private int maxFileSize = 50 * 1024;

 private int maxMemSize = 4 * 1024;

 private archive file;

 public void init () {

 // Get the location of the file where it would be stored.

filePath = getServletContext (). getInitParameter ("file upload");

 }

 public void doPost (HttpServletRequest request, HttpServletResponse

response)

 throw ServletException, java.io.IOException {

 // Check that we have a request to upload the file

 isMultipart = ServletFileUpload.isMultipartContent (required);

 response.setContentType ("text / html");

https://commons.apache.org/io/

Enterprise Java

114

 java.io.PrintWriter out = response.getWriter ();

 if (! isMultipart) {

 out.println ("<html>");

 out.println ("<head>");

 out.println ("<title> Loading servlet </title>");

 out.println ("</head>");

 out.println ("<body>");

 out.println ("<p> No files uploaded </p>");

 out.println ("</body>");

 out.println ("</html>");

 Return;

 }

 DiskFileItemFactory factory = new DiskFileItemFactory ();

 factory.setSizeThreshold (maxMemSize); // maximum size to be stored in

memory factory.setRepository (new File ("c: \\ temp")); // Location to

save data larger than maxMemSize.

ServletFileUpload upload = new ServletFileUpload (factory); // Create a

new file upload controller

upload.setSizeMax (maxFileSize); // maximum size of the file to upload.

 to deal {

List fileItems = upload.parseRequest (required); // Parse the request to get

the elements of the file.

Iterator i = fileItems.iterator (); // Process the elements of the uploaded file

 out.println ("<html>");

 out.println ("<head>");

 out.println ("<title> Loading servlet </title>");

 out.println ("</head>");

 out.println ("<body>");

 while (i.hasNext ()) {

 FileItem fi = (FileItem) i.next ();

 if (! fi.isFormField ()) {

 // Get the parameters of the uploaded file

 String fieldName = fi.getFieldName ();

 String filename = fi.getName ();

 String contentType = fi.getContentType ();

 isInMemory = fi.isInMemory ();

Work with Files

115

 long sizeInBytes = fi.getSize ();

 // Write the file

 if (fileName.lastIndexOf ("\\")> = 0) {

 file = new file (file path + file name.substring (file name.lastIndexOf

("\\")));

 } the rest {

 file = new file (file path + file name.substring (file name.lastIndexOf

("\\") + 1));

 }

 fi.write (file);

 out.println ("Uploaded file name:" + file name + "
");

 }

 }

 out.println ("</body>");

 out.println ("</html>");

 } catch (ex exception) {

 System.out.println (es);

 }}

 public void doGet (HttpServletRequest request, HttpServletResponse

response)

 throw ServletException, java.io.IOException {

 throw a new ServletException ("GET method used with" +

 getClass () .getName () + ": POST method is required.");

 }}}

10.2 DOWNLOADING FILES

In this example, we are creating three files:

 index.html

 DownloadServlet.java

 web.xml

index.html

This file provides a link to download the file.

 download the jsp file

DownloadServlet.java

importjava.io. *;

import javax.servlet.ServletException;

Enterprise Java

116

importjavax.servlet.http. *;

public class DownloadServlet extends HttpServlet {

public void doGet (HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {

response.setContentType ("text / html");

PrintWriter out = response.getWriter ();

String filename = "home.jsp";

String file path = "e: \\";

response.setContentType ("APPLICATION / OCTETO-STREAM");

response.setHeader ("Content-Disposition", "attachment; filename = \" "+

filename +" \ "");

FileInputStream fileInputStream = new FileInputStream (file path + file

name);

In t I;

weather ((i = fileInputStream.read ())! = -1) {

out.write (i);

}

fileInputStream.close ();

out.close ();

}}

web.xml file

<web-app>

<servlet>

<servlet-name> DownloadServlet </servlet-name>

<servlet-class> DownloadServlet </servlet-class>

</servlet>

<mapping-servlet>

<servlet-name> DownloadServlet </servlet-name>

<url-pattern> / servlet / DownloadServlet </url-pattern>

</servlet-mapping>

</web-app>

10.3 SERVLET ANNOTATIONS

 Servlet uses the deployment descriptor (web.xml file) to deploy the

application to a web server. Servlet API 3.0 introduced a new package

called javax.servlet.annotation. Provides annotation types that can be

used to annotate a servlet class. If you use annotation, the deployment

Work with Files

117

descriptor (web.xml) is not required. But you should be using

Tomcat7 or any later version of Tomcat.

 Annotations can override the equivalent XML configuration in the

web deployment descriptor file (web.xml), such as the servlet

declaration and servlet mapping. Servlet containers will process the

classes noted at the time of deployment. The types of annotations

introduced in Servlet 3.0 are:

Sr.No. Annotation and description

1 @WebServlet: Declare a servlet.

2 @WebInitParam: To specify an initialization

parameter.

3 @WebFilter: Declare a servlet filter.

4 @WebListener: To declare a WebListener

5 @HandlesTypes: Declare the types of classes that a

ServletContainerInitializer can handle.

6 @HttpConstraint: This annotation is used within the

ServletSecurity annotation to represent security

restrictions that will apply to all HTTP protocol methods

for which a corresponding HttpMethodConstraint

element is NOT produced within the ServletSecurity

annotation.

7 @HttpMethodConstraint: This annotation is used

within the ServletSecurity annotation to represent

security restrictions on specific HTTP protocol

messages.

8 @MultipartConfig: An annotation that can be specified

in a Servlet class, indicating that Servlet instances

expect requests that conform to the multipart / form-data

MIME type.

9 @ServletSecurity: This annotation is used in a Servlet

implementation class to specify the security restrictions

that a Servlet container must apply on HTTP protocol

messages.

10.4 REFERENCES

 https://www.javatpoint.com/java-tutorial

 https://www.tutorialspoint.com/java/index.htm

 https://www.geeksforgeeks.org/java/

 https://www.oracle.com/in/java/technologies/java-ee-glance.html

 https://developers.redhat.com/topics/enterprise-java

 https://www.javacodegeeks.com/enterprise-java-tutorials

https://www.javatpoint.com/java-tutorial
https://www.tutorialspoint.com/java/index.htm
https://www.geeksforgeeks.org/java/
https://www.oracle.com/in/java/technologies/java-ee-glance.html
https://developers.redhat.com/topics/enterprise-java
https://www.javacodegeeks.com/enterprise-java-tutorials

Enterprise Java

118

10.6 SUMMARY

10.5 QUESTIONS

1. Take an example to upload a file.

2. Take an example to download a file.

3. Explain the different servlet annotations

 113

11
NON-BLOCKING

Unit Structure

11.1 Introduction to I / O

11.1.1 Why NIO?

11.2 Stream against blocks

11.3 Integrated I / O integrated

11.4 I / O. blocking and non-blocking

11.5 Read from a file

11.5.1 Write to file

11.6 Listeners

11.7 Steps to implement WriteListener

11.8 Steps to implement ReadListener

11.9 Summary

11.10 References

11.11 Questions

11.1 INTRODUCTION TO I / O

 I / O, or input / output, refers to the interface between a computer and

the rest of the world, or between a single program and the rest of the

computer. It is such a crucial element of any computer system that

most of any I / O is built into the operating system. Individual

programs generally do most of the work for them.

 In Java programming, I / O has until recently been done using a flow

metaphor. All I / O is considered to be moving individual bytes, one

at a time, through an object called Stream. Stream I / O is used to

contact the outside world. It is also used internally, to convert objects

to bytes and then back to objects.

 NIO has the same function and purpose as the original I / O, but uses

a different metaphor: block I / O. As you will learn in this tutorial,

block I / O can be much more efficient than streaming I / O.

11.1.1 Why NIO?:

NIO was created to allow Java programmers to implement high-speed I /

O without having to write custom native code. NIO shifts more time-

consuming I / O tasks (that is, buffering and flushing) to the operating

system, allowing for a noticeable increase in speed.

Enterprise Java

114

11.2 STREAM AGAINST BLOCKS

 The most important distinction between the original I / O library

(found in java.io. *) and NIO has to do with how data is packaged and

transmitted. As mentioned earlier, the original I / O takes care of the

data in streams, while the NIO takes care of the data in chunks.

 A flow-oriented I / O system handles data one at a time. An input

stream produces one byte of data and an output stream consumes one

byte of data. It is very easy to create filters for the transmitted data. It

is also relatively easy to chain multiple filters together so that each

plays its part in a unique and sophisticated processing mechanism. On

the other hand, streaming-oriented I / O is usually quite slow.

 A block-oriented I / O system manages the data in blocks. Each

operation produces or consumes a block of data in a single step. The

data processing by the block can be much faster than the byte

processing (transmitted). But block-oriented I / O lacks the elegance

and simplicity of flow-oriented I / O.

11.3 INTEGRATED I / O INTEGRATED

 The original I / O package and NIO have been well integrated into

JDK 1.4. java.io. * was redeployed using NIO as a base, so you can

now take advantage of some NIO features. For example, some of the

classes in the java.io package. * contain methods for reading and

writing data in blocks, leading to faster processing even on more

flow-oriented systems.

 You can also use the NIO library to implement standard I / O

functions. For example, you can easily use I / O blocks to move data

one byte at a time. But as you will see, NIO also offers many benefits

that are not available in the original I / O package.

11.4 IO BLOCKING AND NON-BLOCKING

 Various Java I / O streams are blocked. This means that when a thread

calls alight() or write(), that thread is blocked until there is no data to

read or until the data is completely written. The thread can't do

anything else in the meantime.

 Java NIO's non-blocking mode allows a thread to request to read data

from a channel and get only what is currently available, or nothing, if

no data is currently available. Instead of getting stuck until the data is

available for reading, the thread can continue with something else.

 The same goes for non-blocking writing. A thread may request some

data to be written to a channel, but not wait for it to be fully written.

The thread can continue and do something else in the meantime.

 Whereas threads spend their idle time when they aren't blocked during

I / O calls, they are generally doing I / O on other channels in the

Non-Blocking

115

meantime. That is, a single thread can now handle multiple input and

output channels.

11.5 READ FROM A FILE

 If we were using the original I / O, we would simply create a

FileInputStreamand read it. In NIO, however, things work a little

differently: first we get aChannel object of FileInputStreamand then

use that channel to read the data.

 Whenever you perform a read operation on a NIO system, you are

reading from a channel, but not reading directly from a channel. Since

all data ultimately resides in the buffer, it is read from a channel to a

buffer.

 So, reading from a file involves three steps: (1) getting the Channel

from FileInputStream; (2) create theBumper; and (3) reading

theCannel to Bumper. Now, let's see how it works.

Three simple steps:

Our first step is to get a channel. We take the channel

fromFileInputStream:

FileInputStream fin = new FileInputStream ("readandshow.txt");

FileChannel fc = fin.getChannel ();

The next step is to create a buffer:

 ByteBuffer buffer = ByteBuffer.allocate (1024);

And finally, we need to read from channel to buffer, as shown here:

fc.read (buffer);

11.5.1 WRITE TO FILE

Writing to a file in NIO is similar to reading from one. Let's start by

getting a channel from toFileOutputStream:

FileOutputStream fout = new FileOutputStream ("writesomebytes.txt");

FileChannel fc = fout.getChannel ();

Enterprise Java

116

Our next step is to create a buffer and insert data into it; in this case the

data will be taken from a named arrayMessage A containing the ASCII

bytes for the string "Some bytes".

ByteBuffer buffer = ByteBuffer.allocate (1024);

 for (int i = 0; i <message.length; ++ i) {

 buffer.put (message [i]);

}

buffer.flip ();

Our last step is to write to the buffer:

fc.write (buffer);

11.6 LISTENERS

Java EE provides non-blocking I / O support for servlets and filters when

processing requests in asynchronous mode. The following steps

summarize how to use non-blocking I / O to process requests and write

responses within the service's methods.

 Put the request in asynchronous mode as described in Asynchronous

Processing.

 Get an inflow and / or outflow from the request and response objects

in the service method.

 Assign a read listener to the input stream and / or a write listener to

the output stream.

 Process the request and response within the listener's callback

methods

Non-blocking I / O support in javax.servlet.ServletInputStream

Method Description

void setReadListener

(ReadListener rl)

Associate this input stream with a listener that

contains callback methods to read the data

asynchronously. Provide the listener as an

anonymous class or use another mechanism to

pass the input stream to the read listener.

boolean isReady () Returns true if the data can be read without

blocking.

Non-Blocking

117

boolean isFinished () Returns true when all data has been read.

Non-blocking I / O support in javax.servlet.ServletOutputStream

Method Description

void setWriteListener

(WriteListener wl)

Associate this output stream with

a listener that contains callback

methods for writing data

asynchronously. Provide the write

listener as an anonymous class or

use another mechanism to pass the

output stream to the write listener

boolean isReady () Returns true if the data can be

written without locks.

Listening interfaces for non-blocking I / O support

Interface methods Description

Read

Listener

void onDataAvailable ()

void suAllDataRead ()

void onError

(Throwable t)

TO ServletInputStream The

instance calls these methods

on its listener when data is

available to read, when all

data has been read, or when

an error occurs.

Write

Listener

void onWritePossible ()

void onError

(Throwable t)

TO ServletOutputStream The

instance calls these methods

in its listener when it can

write data without blocking

or when an error occurs.

11.7 STEPS TO IMPLEMENT WRITELISTENER

1. In the Projects tab, right-click on your project and say Html5 and

Servlet 3.1 and select New> Other.

Enterprise Java

118

2. In the New File dialog box, complete the following steps on the

Choose File Type page:

a. Select Java in Categories.

b. Select Java Class in File Types.

c. Click Next.

3. On the New Java Class page, do the following:

a. Pay in Write ListenerImpl as the name of the class.

b. Pay in com.example as the package name.

c. Click Finish.

4. Import the following packages:

Importjava.io.IOException;

importjava.util.Queue;

Non-Blocking

119

importjavax.servlet.AsyncContext;

importjavax.servlet.ServletOutputStream;

import javax.servlet.WriteListener;

5. Modify the class to implement the Write Listener Interface.

The public class WriteListenerImpl implements WriteListener {

6. Declare the following variables:

ServletOutputStreamprivateoutput=null;

privatequeue=null;

private AsyncContext context = null;

7. Add a constructor to the class:

WriteListenerImpl (ServletOutputStream sos, Queue q, AsyncContext c) {

output=sos;

tail=q;

context = c; }

8. Add the onWritePossible ()method:

publicvoidonWritePossible()throwsIOException{

while (queue.peek ()! = null && output.isReady ())

Datastring= (String)queue.poll ();

 output.print (data);

Enterprise Java

120

 }

 if (queue.peek () == null) {

 context.com complete ();

 }}

9. Add the onError method.

public void onError (final Throwable t) {

 context.complete ();

t.printStackTrace (); }

11.8 STEPS TO IMPLEMENT READLISTENER

Perform the following steps to implement the ReadListenerImpl class:

1. On the Projects tab, right-click Html5 and Servlet3.1 and select New>

Other.

Non-Blocking

121

2. In the New File dialog box, complete the following steps on the

Choose File Type page:

a. Select Java in Categories.

b. Select Java Class in File Types.

c. Click Next.

3. On the New Java Class page, do the following:

a. Pay in ReadListenerImpl as the name of the class.

b. Pay in com.example as the package name.

c. Click Finish.

4. Import the following packages:

import java.io.IOException; import java.util.Queue;

import java.util.concurrent.LinkedBlockingQueue; import

javax.servlet.AsyncContext; import javax.servlet.ReadListener; import

javax.servlet.ServletInputStream; import

javax.servlet.ServletOutputStream; import

javax.Lxistepnervlet.Write.Write .HttpServletResponse;

5. Modify the class to implement the Read Listener Interface:

The public ReadListenerImpl class implements ReadListener

Enterprise Java

122

6. Declare the following variables:

private entry ServletInputStream = null; Private HttpServletResponse res

= null; Private AsyncContext ac = null; private queue queue = new

LinkedBlockingQueue();

7. Add a constructor to the class:

ReadListenerImpl (ServletInputStreamin, ttpServletResponser,

AsyncContext c) {input = in; re = r; ac = c; }

8. Add the onDataAvailable () method:

public void onDataAvailable () throws IOException {System.out.println

("Dataisavailable");

StringBuilder sb = new StringBuilder (); int len = -1; byte b [] = new byte

[1024]; while (input.isReady () && (len = input.read (b))! = -1) {String

data = new String (b, 0, len); sb.append (data); } queue.add (sb.toString

()); }

Non-Blocking

123

9. Añade el onAllDataRead ()method:

public void onAllDataRead () throws IOException {System.out.println

("All data is read"); // now all data has been read, set a WriteListener to

write the output ServletOutputStream = res.getOutputStream ();

WriteListener writeListener = new WriteListenerImpl (output, queue, ac);

output.setWriteListener (writeListener);}

10. Add the onError method.:

public void onError (final Throwable t) {ac.complete (); t.printStackTrace

(); }

After ServletInputStream.setReadListener is called, Read Listener in

DataAvailablecalled immediately if there is data to read. Otherwise, it is

invoked when the data is ready. When all the data has been read,Read

Listener establishes a Write Listener to write data in non-blocking mode.

11.9 SUMMARY

Java NIO's non-blocking mode enables a thread to request reading data

from a channel, and only get what is currently available, or nothing at all,

if no data is currently available. Rather than remain blocked until data

becomes available for reading, the thread can go on with something else.

Enterprise Java

124

11.10 REFERENCES

 https://www.javatpoint.com/java-tutorial

 https://www.tutorialspoint.com/java/index.htm

 https://www.geeksforgeeks.org/java/

 https://www.oracle.com/in/java/technologies/java-ee-glance.html

 https://developers.redhat.com/topics/enterprise-java

 https://www.javacodegeeks.com/enterprise-java-tutorials

11.11 Questions

1. Explain I / O and NIO. Differentiate between flows and blocks.

2. Explain embedded I / O with the difference between blocking and

non-blocking I / O.

3. How to read and write files? Give an example.

4. Tell listeners how to read and write a file.

5. Explain the steps to implement WriteListener.

6. Explain the steps for ReadListener.

https://www.javatpoint.com/java-tutorial
https://www.tutorialspoint.com/java/index.htm
https://www.geeksforgeeks.org/java/
https://www.oracle.com/in/java/technologies/java-ee-glance.html
https://developers.redhat.com/topics/enterprise-java
https://www.javacodegeeks.com/enterprise-java-tutorials

125

UNIT III

12
INTRODUCTION TO JAVA SERVER

PAGES

Unit Structure

12.0 Objectives

12.1 Introduction to Java Server Pages

12.2 Why use Java Server Pages?

12.3 Disadvantages of JSP

12.4 JSP v/s Servlets

12.5 Lifecycle of a JSP Page

12.6 How does a JSP function?

12.7 How can a JSP Program be executed?

12.8 Directory Structure of JSP

12.9 Summary

12.10 List of References

12.11 Questions

12.0 OBJECTIVES

After going through this chapter, you will:

 Understand the basics of Java Server Pages technology

 Learn the advantages and disadvantages of JSP

 Differentiate between JSP and Servlets

 Understand lifecycle of a JSP program

 Learn how to execute a JSP program

12.1 INTRODUCTION TO JAVA SERVER PAGES

Java Server Pages (JSP), a server side technology, which is a part of Java

EE framework, is used for creating dynamic web applications in a very

simple yet powerful way. JSP technology allows you to develop JSP pages

which are text based documents that processes a request and generates a

response. It has access to the powerful enterprise Java API including the

JDBC API and hence can be used to access enterprise databases.

A JSP Page consists of both static and dynamic content. The static content

can be written using plain HTML or XML and dynamic content can be

written either using the regular java style of programming embedded in

specific elements or using the tag style approach. This eliminates the need

of writing multiple println statements that generate HTML like in Servlets.

Enterprise Java

126

JSP provides developers with the ability to cleanly separate the application

logic from the presentation logic. In other words, JSP can easily

differentiate the coding in the view layer and application logic layer.

Hence any requirement changes that is needed to be done in the look and

feel of the web application can very easily be done as it would require

changes only in the HTML part of code and not the logical part written in

java, thus eliminating the need to recompile the entire web application

again.

It also supports unified expression language (UEL) to access server

objects without having explicit need to declare them.

The file extension for JSP pages is .jsp

12.2 WHY USE JAVA SERVER PAGES

JSP has the following benefits:

1. Nobody can borrow the code:

Since JSP page are written, runs and remains on the server, nobody can

copy the logic written in a jsp page even if they wanted to. Thus, security

of the code is maintained.

2. Faster loading of pages:

Response page customization as requested by the user is done at the server

side itself thus no extra code or content is sent to the client side resulting

in faster loading of pages.

3. No Browser compatibility issues:

Since JSP runs on the server side, the developer ends up sending standard

HTML to the user browser. This largely eliminates cross browser

compatibility issues.

4. JSP Support:

JSP is supported by a number of Web Servers. Built-in Support for JSP is

available in Java Web Server from Oracle.

5. Compilation:

In JSP technology, each JSP page is compiled into executable code the

first time it is requested and invokes the resulting code directly on all

subsequent requests. When coupled with a persistent JVM, this allows the

server to process request to JSP pages much faster.

6. Similarity to HTML:

A JSP page looks a lot like a HTML or XML page except for the business

logic written either in scripting elements or JSP tags or both. Writing the

business logic in JSP tags brings consistency to the coding style used on

the entire JSP page.

Introduction to Java Server

Pages

127

7. Separation of logic from view

It enables to separate presentation layer with the business logic layer in the

web application.

 12.3 DISADVANTAGES OF JSP

The disadvantages of JSP are:

 1. Attractive Java code:

Putting Java code within a webpage is really bad design, but JSP makes it

tempting to do just that. Avoid this as far as possible.

2. Java Code Required:

To do relatively simple things in JSP can actually demand putting Java

code in a page. Assume a page needs to determine the context root of the

current web application, perhaps to create a link to the web

applications,home page. This is done using Java code in JSP.

<a href=’<%=request.getContextPath()%> /index.html’>Home Page

Java code can be avoided by using <jsp:getProperty> but that makes the

code spec even more complex.

<a href=’<jsp:getProperty name=”request”

property=”contextPath”/>/index.html’>Home Page

3. Simple Tasks are Hard to Code:

Even including page headers and footers is a bit difficult with JSP. In JSP

the best way to do this is as follows:

<% @include file=”/header.jsp”;%>

/*Some content here*/

<% @include file=”/footer.jsp”;%>

4. Occupies a lot of space:

 JSP pages require about double the disk space to hold the page. Because

JSP pages are translated into class files, the server has to store the resultant

class files with the JSP pages.

5. Debugging not easy:

It is hard to trace JSP pages error because JSP pages are translated to

servlet before the compilation process.

6. Difficult Looping in JSP:

Looping in JSP is a bit complicated.

Enterprise Java

128

7. Database Connection not easy:

Database connectivity is not as easy as it should be. Most of the servlet

engine vendors do not support connection pooling natively, as of this day.

Consequently, one has to write a lot of custom code to do the job.

12.4 JSP V/S SERVLETS

Servlets provide the ability to build dynamic content for websites using

Java and is supported by all Web Servers.

Servlet JSP

Servlets run faster than JSP.

JSP runs slower than servlet as it

takes time to compile the

program and convert into

servlets.

It is hard to write code in servlet.
It’s easier to code in JSP

compared to servlets.

In MVC architecture, servlet

works as a controller.

In MVC architecture, JSP works

as a view for displaying output.

It should be use when there is

more data processing involved.

JSP is generally used when there

is no involvement of much data

processing.

There is no custom tag writing

facility in servlets.

You can easily build custom tags

that can directly call Java beans.

Servlet is a java code. JSP is a HTML-based code.

It can accept all protocol requests,

including HTTP.

It can only accept HTTP

requests.

You can override the service()

method.

In JSP, you can’t override the

service() method.

In Servlet, by default, session

management is not enabled, user

has to enable it explicitly.

In JSP, session management is

automatically enabled.

In Servlet, you have to implement

both business logic and

presentation logic in the single

file.

In JSP, business logic is split

from presentation logic.

Modification in Servlet file is a

time consuming due to reloading,

recompiling, and restarting the

server.

JSP modification is fast, as you

just need to click one refresh

button.

Introduction to Java Server

Pages

129

12.5 LIFECYCLE OF A JSP PAGE

A JSP life cycle is defined as the process from its creation till the

destruction. This is similar to a servlet life cycle with an additional step

which is required to compile a JSP into servlet.

When the browser asks for a JSP, JSP engine first checks whether it needs

to compile the page. If the JSP is last compiled or the recent modification

is done in JSP, then the JSP engine compiles the page.

Compilation process of JSP page involves three steps:

 Parsing of JSP

 Turning JSP into servlet

 Compiling the servlet

JSP Lifecycle follows the following steps:

1. Translation of JSP page

2. Compilation of JSP page(Compilation of JSP page into _jsp.java)

3. Classloading (_jsp.java is converted to class file _jsp.class)

4. Instantiation(Object of generated servlet is created)

5. Initialisation(_jspinit() method is invoked by container)

6. Request Processing(_jspservice() method is invoked by the container)

7. Destroy (_jspDestroy() method invoked by the container)

1. Translation of the JSP Page:

A Java servlet file is generated from a JSP source file. This is the first step

of JSP life cycle. In translation phase, container validates the syntactic

correctness of JSP page and tag files.

The JSP container interprets the standard directives and actions, and the

custom actions referencing tag libraries used in this JSP page.

For example, a program named demo.jsp as shown below:

demo.jsp

<html>

<head>

<title>Demo JSP</title>

</head>

<%

int demovar=0;%>

https://www.guru99.com/java-tutorial.html

Enterprise Java

130

<body>

Count is:

<% out.println(demovar++); %>

<body>

</html>

will get translated into demo_jsp.java as below:

In the above example,

 demo.jsp, is a JSP where one variable is initialized and incremented.

This JSP is converted to the servlet (demo_jsp.class) wherein the JSP

engine loads the JSP Page and converts to servlet content.

 When the conversion happens all template text is converted to

println() statements and all JSP elements are converted to Java code.

2. Compilation of the JSP Page:

 The generated java servlet file is compiled into java servlet class

 The translation of java source page to its implementation class can

happen at any time between the deployment of JSP page into the

container and processing of the JSP page.

 In the above pictorial description demo_jsp.java is compiled to a class

file demo_jsp.class

3. Class loading:

 Servlet class that has been loaded from JSP source is now loaded into

the container

4. Instantiation:

 In this step the object i.e. the instance of the class is generated.

 The container manages one or more instances of this class in the

response to requests and other events. Typically, a JSP container is

built using a servlet container. A JSP container is an extension of

servlet container as both the container support JSP and servlet.

Introduction to Java Server

Pages

131

 A JSPPage interface which is provided by container provides init()

and destroy () methods.

 There is an interface HttpJSPPage which serves HTTP requests, and it

also contains the service method.

5. Initialization:

public void jspInit()

{

//initializing the code

}

 _jspinit() method will initiate the servlet instance which was

generated from JSP and will be invoked by the container in this phase.

 Once the instance gets created, init method will be invoked

immediately after that

 It is only called once during a JSP life cycle, the method for

initialization is declared as shown above

6. Request processing:

void _jspservice(HttpServletRequest request HttpServletResponse

response)

{

//handling all request and responses

}

 _jspservice() method is invoked by the container for all the requests

raised by the JSP page during its life cycle

 For this phase, it has to go through all the above phases and then only

service method can be invoked.

 It passes request and response objects

 This method cannot be overridden

 The method is shown above: It is responsible for generating of all

HTTP methods i.eGET, POST, etc.

7. Destroy:

public void _jspdestroy()

{

//all clean up code

}

_jspdestroy() method is also invoked by the container

Enterprise Java

132

 This method is called when container decides it no longer needs the

servlet instance to service requests.

 When the call to destroy method is made then, the servlet is ready for

a garbage collection

 This is the end of the life cycle.

 We can override jspdestroy() method when we perform any cleanup

such as releasing database connections or closing open files.

Whenever the JSP file changes ,the Web Server automatically detects the

change and rebuilds the corresponding servlet. The JSP to Servlet

compilation phase imposes a slight delay the first time a page is retrieved.

Many web servers permit pre-compilation of JSPs to get around this

problem.

12.6 HOW DOES JSP FUNCTION:

JSP code spec can be broken into two categories:

 Elements that are processed by the JSP Engine on the Web Server

 Template data or everything other than such elements that the JSP

engine ignores.

A JSP page is executed by a web server that either has a built-in JSP

engine or accesses a third party JSP engine,which it is configured to use.

When a client asks for a JSP page , the Web Server sends that request and

delivers it to the JSP engine along with a response object.

The JSP engine then processes the client’s request and delivers the output

back to the Web Server for further delivery to the client.

Let’s look into a simple example to understand the functioning of a JSP

page. In this example, we are creating a html page to accept a name from

the user and submit it to the Server. The Web Server will process the

request which will consist the name entered by the user and in return print

a “Hello “ name on the client’s browser.

Example: Program to understand the basic functioning of a JSP page.

Index.html

<html>

Introduction to Java Server

Pages

133

<head>

<title>User Page</title>

</head>

<body>

<form action="Hello.jsp">

Enter Your Name <input type="text" name="name" >

<input type="submit" value="Submit">

</form>

</body>

</html>

When viewed in a browser,the HTML page looks like:

When the user clicks Submit ,the data entered on the form will be sent as

a request to the JSP page on the Web Server for further processing.

The Web Server accepts the data returned from the browser and passes it

as a parameter to hello.jsp which creates the response HTML page which

will be sent back to the client’s browser.

Hello.jsp

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<html>

 <head>

 <title>JSP Page</title>

Enterprise Java

134

 </head>

 <body>

 Hello

 <%=request.getParameter("name")%>

 </body>

</html>

In the above Hello.jsp page, the first line:

<%@page contentType="text/html" pageEncoding="UTF-8"%>

is a JSP directive (denoted by <%@). Hence the JSP engine recognizes

that:

 The MIME type is text/html for JSP Style JSP tag.

 The character encoding is UTF-8 for XML style tags.

The next part of code <%=request.getParameter("name")%> is a block of

expression tag which is used to evaluate the expression after = and return

the value .

Thus the output of the above code will be Hello followed by the name

entered by the user on index.html.

The response from the web server displayed in the user browser is :

12.7 HOW DOES JSP PROGRAM EXECUTE?

The following happens when a user browser requests index.jsp.

The browser sends its request to the Web Server as

http://localhost:8080/Sample/index.jsp?numtimes=5

This specifies the value of numtimes as a GET parameter.

Web Server recognizes index.jsp in the URL sent in by the browser. Web

Server recognizes index.jsp as a jsp page by its extension and that the

information delivered by the browser encoded in the URL must be passed

onto index.jsp.

Index.jsp is then translated into a java class by the JSP engine, This

translation and compilation phase occurs only when the JSP is first called.

(or it is subsequently changed)Hence there will be slight delay the first

time when index.jsp is run.

http://localhost:8080/Sample/index.jsp?numtimes=5

Introduction to Java Server

Pages

135

For every subsequent request for that JSP page thereafter, there is no delay

because the request is forwarded directly to the servlet already in the

memory.

12.8 DIRECTORY STRUCTURE OF JSP

The directory structure of JSP page is same as Servlet. We contain the JSP

page outside the WEB-INF folder or in any directory.

12.9 SUMMARY

 Java Server Pages is a server side technology used for creating

dynamic web application.

 Tags are used to insert JAVA code into HTML pages.

 JSP is first converted into servlet by JSP container before processing

the client’s request.

Enterprise Java

136

 JSP easily separates the presentation logic from the business logic

 JSP code can be easily modified to incorporate any look and feel

changes to the application

12.10 LIST OF REFERENCES

Java EE 7 for Beginners, Sharanam Shah, Vaishali Shah, First Edition,

SPD

Web References:

1. https://www.guru99.com

 12.11 QUESTIONS

Q1. How does JSP differ from Servlets?

Q2. Write a note on lifecycle of a JSP.

Q3. What are the advantages and disadvantages of using JSP for

developing web applications?

Q4. How are JSP pages executed?

137

13
GETTING STARTED WITH JAVA SERVER

PAGES, ACTION ELEMENTS

Unit Structure

13.0 Objectives

13.1 Introduction

13.2 Comments in JSP

13.3 JSP Documents

13.4 JSP Elements

13.5 JSP Directives

 13.5.1 Page directive

 13.5.2 Include directive

 13.5.3 Taglib directive

13.6 JSP Scripting Elements

 13.6.1 Scriptlets Tag

 13.6.2 Expressions Tag

 13.6.3 Declarations Tag

13.7 JSP Action Elements

 13.7.1 <jsp:include>

 13.7.2 <jsp:forward>

 13.7.3 <jsp:useBean>

 13.7.4 <jsp:setProperty>

 13.7.5 <jsp:getProperty >

13.8 JSP GUI Example

13.9 Summary

13.10 List of References

13.11 Questions

13.0 OBJECTIVES

After going through this chapter, you will:

 Understand Java Server Pages documents

 Learn the various elements that can be used in a JSP page

 Lean how to include and forward JSP pages

 Understand what are Java Beans and why it is used?

Enterprise Java

138

13.1 INTRODUCTION

A JSP Page looks very similar to a HTML or XML page. It consists of

both static and dynamic content. The static content can be written using

plain HTML or XML and dynamic content can be written either using the

regular java style of programming embedded in specific elements or using

the tag style approach.

JSP tags are nothing but holders of Java code spec in an HTML page. This

code spec is then executed by the web server whenever the page is

requested.

13.2 COMMENTS IN JSP

Comments are text that is written for maintaining JSP pages. These are

ignored by the JSP engine when it translates the JSP page into a Servlet.

The comment will therefore not be sent to the user (Web Browser) in the

response and thus will not be visible using the browser’s View Source

option.

There are 2 syntax of writing comments in a JSP page:

1) <%-- This is JSP comment --%>

This comment will be ignored by the JSP engine:

2) <!--This is HTML comment -->

This is a HTML comment and will be ignored by the browser.

Example: Program showing how to write JSP comments

<html>

 <head>

 <title>JSP Program to show comments</title>

 </head>

 <body>

 Hello World!

 <%-- This is a JSP comment and will not be processed by JSP Engine

--%>

 </body>

</html>

13.3 JSP DOCUMENTS

A JSP document can use either the traditional JSP style syntax or XML

style JSP syntax within its source file.

JSP pages uses the traditional or short-hand syntax, whereas JSP

documents are completely XML-compliant.

Getting Started With Java

Server Pages, Action

Elements

139

JSP documents are also referred to as JSP pages using XML syntax.

Following are the advantages of using JSP documents:

1. JSP documents can be easily verified as well-formed XML/HTML.

2. JSP documents can be validated against an XML-Schema.

3. JSP documents can be readily written and parsed using standard XML

tools.

4. JSP uses XML compliant include and forward actions as well as

custom tags.

5. JSP documents require slightly more developer discipline than JSP

pages. This makes the code spec more readable and maintainable

especially to those to whom JSP is new.

13.4 JSP ELEMENTS

JSP page usually provide dynamic behaviour. This means they are

supposed to change the response as per specific client requests.

JSP pages can be given dynamic behaviour by embedding Java code in

them. To clearly separate JSP elements are used. It helps to inform the JSP

translator which part of code is java and which part is HTML.

JSP Elements enclose the Java code in a JSP page and are categorized

as follows:

1. Directives

2. Scripting Elements

3. Action Elements

13.5 JSP DIRECTIVES

JSP directives serve special processing information about the page to the

JSP Server.

A JSP directive affects the overall structure of the servlet class. They do

not produce any output that is visible to the client.

It usually has the following form:

<%@ directive attribute = "value" %>

Directives can have a number of attributes which you can list down as

key-value pairs and separated by commas.

The blanks between the @ symbol and the directive name, and between

the last attribute and the closing %>, are optional.

Enterprise Java

140

There are three types of directive tag:

Sr.No. Directive & Description

1 <%@ page ... %>

Defines page-dependent attributes, such as scripting language,

error page, and buffering requirements.

2 <%@ include ... %>

Includes a file during the translation phase.

3 <%@ taglib ... %>

Declares a tag library, containing custom actions, used in the

page

13.5.1 Jsp Page Directive:

The page directive is used to provide instructions to the container. These

instructions pertain to the current JSP page. You may code page directives

anywhere in your JSP page. By convention, page directives are coded at

the top of the JSP page.

Following is the basic syntax of the page directive:

<%@ page attribute = "value" %>

You can write the XML equivalent of the above syntax as follows −

<jsp:directive.page attribute = "value" />

The following are the most common attributes associated with the page

directive:

Sr.No. Attribute and Example

1 language

Defines the programming language used in the JSP page.

Eg: <%@ page language="java"%>

2 import

Specifies a list of packages or classes for use in the JSP as

the Java import statement does for Java classes.

Eg: <%@ page import="java.util.Date" %>

3 contentType

Defines the character encoding scheme.

Eg: <%@ page contentType=application/msword %>

4 extends

Specifies a superclass that the generated servlet must

extend.

Eg: <%@ page extends = "somePackage.SomeClass" %>

Getting Started With Java

Server Pages, Action

Elements

141

5 isErrorPage

Indicates if this JSP page is a URL specified by another

JSP page's errorPage attribute.

Eg: <%@ page isErrorPage="true" %>

6

session

Specifies whether or not the JSP page participates in

HTTP sessions.

Eg: <%@ page session = "true" %>

7 info

The info attribute lets you provide a description of the

JSP.

<%@ page info = "This is a JSP Page" %>

Example:

<%@ page contentType="text/html" %>

<html>

 <body>

 Today is: <%= new java.util.Date()%>

 </body>

</html>

13.5.2 JSP Include Directive:

The include directive is used to include a file during the translation phase.

This directive tells the container to merge the content of other external

files with the current JSP during the translation phase. You may code the

include directives anywhere in your JSP page.

The general usage form of this directive is as follows:

<%@ include file = "relative url" >

The filename in the include directive is actually a relative URL. If you just

specify a filename with no associated path, the JSP compiler assumes that

the file is in the same directory as your JSP.

You can write the XML equivalent of the above syntax as follows:

<jsp:directive.include file = "relative url" />

The file attribute:

A page-relative or context-relative URI path to the file that will be

included at the current position in the file. This attribute includes a static

file ,merging its content with the including page before the combined

result is converted to a JSP page implementation class. A page can contain

multiple include directives.

Enterprise Java

142

Example:

<html>

<body>

 <%@ include file="header.html" %>

 Today is: <%= java.util.Calendar.getInstance().getTime() %>

 </body>

</html>

13.5.3 JSP Taglib Directive:

The taglib directive declares that your JSP page uses a set of custom tags,

identifies the location of the library, and provides means for identifying

the custom tags in your JSP page. Custom Tags allow developers to hide

complex server side code spec from web designers.

A taglib directive in a JSP is a link to an XML document that describes a

set of custom tag. This XML document also determine which Tag Handler

class implements the action of each tag. The XML document names the

tag library which holds the custom tags.The JSP engine uses this tag

library to determine what to do when it comes across custom tags

The taglib directive follows the syntax given below:

<%@ taglib uri = "uri" prefix = "prefixOfTag" >

You can write the XML equivalent of the above syntax as follows:

<jsp:directive.taglib uri = "uri" prefix = "prefixOfTag" />

The uri attribute:

A Uniform Resource Identifier (URI) that identifies the Tag Library

Descriptor ,which is used to uniquely name the set of custom tags and

inform the server what to do with the specified tags.

The prefix attribute:

It defines the prefix string in <prefix>:<tagname> pair and informs the

JSP container which bits of markup are custom tags.

Example:

<%@ taglib uri = "http://www.abc.com/mylib" prefix = "mytag" %>

<html>

 <body>

 <mytag:hello/>

Getting Started With Java

Server Pages, Action

Elements

143

 </body>

</html>

13.6 SCRIPTING ELEMENTS

The scripting elements provides the ability to insert java code inside the

jsp. There are three types of scripting elements:

 Declaration tag

 Expression tag

 Scriptlet tag

These elements allow declaring variables and methods,including scripting

code and evaluating an expression.

13.6.1 Declarations Tag:

The JSP declaration tag is used to declare fields and methods. The code

written inside the jsp declaration tag is placed outside the service() method

of auto generated servlet. So it doesn't get memory at each request.

The Syntax of JSP declaration tag is as follows:

<%!

 Java variable and method declaration(s)

 %>

You can write the XML equivalent of the above syntax as follows:

 <jsp:declaration>

 Java variable and method declaration(s)

 </jsp:declaration>

Example:

<%!

 int num=0;

 public void count(){

 {

 int num=10;

}

%>

Enterprise Java

144

13.6.2 Scriptlets Tag:

A scriptlet is a block of Java code spec that is executed at runtime.

Scriptlets also known as JSP code fragments are embedded within <% ….

%> tags.

A Scriptlet can produce output passed through an output stream back to

the client.

The Syntax of JSP Scriptlets tag is as follows:

<%

Scriptlet code Spec

%>

You can write the XML equivalent of the above syntax as follows:

<jsp:scriptlet>

Scriptlet code Spec

</jsp:scriptlet>

The following example program prints “Welcome to JSP” on the page.

Example:

<html>

<body>

<% out.print("Welcome to jsp"); %>

</body>

</html>

13.6.3 Expressions Tag:

It is mainly used to print the values of variable or method. The code

placed within JSP expression tag is written to the output stream of the

response. So you need not write out.print() to write data.

After an expression is evaluated, the result is converted to a string and

displayed.

The Syntax of JSP Expression tag is as follows:

<%= statement %>

You can write the XML equivalent of the above syntax as follows:

<jsp:expression>

Statements:

</jsp:expression>

Getting Started With Java

Server Pages, Action

Elements

145

Example:

<html>

<body>

Current Time: <%= java.util.Calendar.getInstance().getTime() %>

</body>

</html>

13.7 ACTION ELEMENTS

JSP Action tags are used to control the flow between pages and to use Java

Bean.

JSP Action Elements are processed during the request processing phase as

opposed to JSP directives which are processed during translation. Actions

use construct in XML syntax.It looks like a regular HTML tag and does

not follow the <% … %> syntax.

There are many JSP action tags or elements. Each JSP action tag is used to

perform some specific tasks.

JSP Action Tags Description

jsp:forward forwards the request and response to

another resource.

jsp:include includes another resource.

jsp:useBean creates or locates bean object.

jsp:setProperty sets the value of property in bean

object.

jsp:getProperty prints the value of property of the bean.

jsp:plugin embeds another components such as

applet.

jsp:param sets the parameter value. It is used in

forward and include mostly.

jsp:fallback can be used to print the message if

plugin is working. It is used in

jsp:plugin.

13.7.1 JSP: forward Action Tag:

The forward action terminates the action of the current page and forwards

the request to another resource such as a static page, another JSP page, or

Enterprise Java

146

a Java Servlet. It is same as forwarding to resources using

RequestDispatcher interface in Servlets.

Syntax:

<jsp:forward page=”<url>”>

 <jsp:param name=”<ParameterName>”

value=”<ParameterValue>”/>

</jsp:forward>

page attribute:

It is a string or an expression representing the relative URL of the

component to which the request is forwarded.

<jsp:param> tag

It is used to send one or more name=value pairs as parameters to a

dynamic resource such as JSP,Servlets or other resources.

 <jsp:forward > Example without parameter

Index.jsp

<html>

<head>

 <title>The forward JSP example</title>

</head>

<body>

 <jsp:forward page = "date.jsp" />

</body>

</html>

<jsp:forward > Example with parameter

Index.jsp

<html>

<body>

<h2>Forwarding with Parameters</h2>

 <jsp:forward page="date.jsp" >

<jsp:param name="name" value="Saturday" />

</jsp:forward>

Getting Started With Java

Server Pages, Action

Elements

147

 </body>

</html>

date.jsp

<html>

 <body>

 <%out.print("Today is:" +

java.util.Calendar.getInstance().getTime());%>

 <%= request.getParameter("name")%>

 </body>

</html>

13.7.2 JSP: Include Action Tag:

The include action terminates the action of the current page and forwards

the request to another resource such as a static page, another JSP page, or

a Java Servlet. It is same as forwarding to resources using

RequestDispatcher interface in Servlets.

Syntax:

<jsp:include page=”<url>”>

<jsp:param name=”<ParameterName>” value=”<ParameterValue>”/>

</jsp: include>

page attribute:

It is a string or an expression representing the relative URL of the

component to which the request is forwarded.

<jsp:param> tag:

It is used to send one or more name=value pairs as parameters to a

dynamic resource such as JSP,Servlets or other resources.

<jsp:include > Example without parameter

Index.jsp

<html>

<head>

 <title>The include JSP example</title>

</head>

<body>

Enterprise Java

148

 <jsp:include page = "footer.jsp" />

</body>

</html>

<jsp:include > Example with parameter

Index.jsp

<html>

<body>

<h2>Including with Parameters</h2>

<jsp:include page="date.jsp" >

<jsp:param name="name" value="Saturday" />

</jsp:include>

 </body>

</html>

date.jsp

<html>

<body>

<% out.print("Today is:" + java.util.Calendar.getInstance().getTime());%>

<%= request.getParameter("name")%>

</body>

</html>

Note:

 The difference between jsp include directive and include action tag is

Include action includes response of a resource into the response of the

JSP page

 Include directive includes resources in a JSP page at translation time.

Getting Started With Java

Server Pages, Action

Elements

149

13.7.3 jsp: useBean Action Tag:

Before understanding what is <jsp:useBean> ,we need to first understand

JavaBean.

JavaBean

A JavaBean is a Java class that should follow the following

conventions:

 It should have a no-arg constructor.

 It should be Serializable.

 It should provide methods to set and get the values of the properties,

known as getter and setter methods.

Example of JavaBean class:

//Employee.java

Enterprise Java

150

package mypack;

public class Employee implements java.io.Serializable{

private int id;

private String name;

public Employee(){}

public void setId(int id){this.id=id;}

public int getId(){return id;}

public void setName(String name){this.name=name;}

public String getName(){return name;}

}

To access the JavaBean class, we should use getter and setter

methods.

package mypack;

 public class Test{

 public static void main(String args[]){

 Employee e=new Employee();//object is created

 e.setName("Steve");//setting value to the object

 System.out.println(e.getName());

 }

}

<jsp:usebean> Action Tag:

In JSP, <jsp:useBean> is used to access the bean. <jsp:useBean>

instantiates an object of the class specified by the class and binds it to a

variable with the name specified by ID.A new object is instantiated only if

there is no existing one with the same ID and scope. Once a bean exists,

its properties can be modified using <jsp:setProperty> or by using a

scriptlet and calling a method explicitly. Existing properties can be read in

a JSP or scriptlet by using <jsp:getProperty>.

<jsp:useBean> makes a JavaBean available to a JSP Page and ensures that

the bean object is available for an appropriate scope specified in the

element.

Syntax of jsp:useBean action tag:

<jsp:useBean id= "instanceName" scope= "page | request | session | applic

ation"

class= "packageName.className" type= "packageName.className"

Getting Started With Java

Server Pages, Action

Elements

151

beanName="packageName.className | <%= expression >" >

</jsp:useBean>

Attributes and Usage of jsp:useBean action tag:

1. id: is used to identify the bean in the specified scope.

2. scope: represents the scope of the bean. It may be page, request,

session or application. The default scope is page.

o page: specifies that you can use this bean within the JSP page. The

default scope is page.

o request: specifies that you can use this bean from any JSP page that

processes the same request. It has wider scope than page.

o session: specifies that you can use this bean from any JSP page in the

same session whether processes the same request or not. It has wider

scope than request.

o application: specifies that you can use this bean from any JSP page in

the same application. It has wider scope than session.

3. class: instantiates the specified bean class (i.e. creates an object of the

bean class) but it must have no-arg or no constructor and must not be

abstract.

4. type: provides the bean a data type if the bean already exists in the

scope. It is mainly used with class or beanName attribute. If you use it

without class or beanName, no bean is instantiated.

5. beanName: instantiates the bean using the

java.beans.Beans.instantiate() method.

Example:

Calculator.java (a simple Bean class)

package com.javatpoint;

public class Calculator{

 public int cube(int n){return n*n*n;}

 }

index.jsp file

<jsp:useBean id="obj" class="com.javatpoint.Calculator"/>

 <%

int m=obj.cube(5);

out.print("cube of 5 is "+m);

%>

Enterprise Java

152

13.7.4 <jsp:setProperty> Action Tag:

<jsp:setProperty> is used in conjunction with <jsp:useBean> and sets the

value of simple and indexed properties in a bean.

The properties in a bean can be set either:

 At request time from parameters in the request object or

 At request time from an evaluated expression or

 From a specified string(or hard coded in the page)

Syntax of jsp:setProperty Action Tag

<jsp:setProperty name="instanceOfBean" property= "*" |

 property="propertyName" param="parameterName" |

 property="propertyName" value="{ string | <%= expression %>}"

 />

Example:

<jsp:setProperty name="bean" property="*" />

<jsp:setProperty name="bean" property="username" />

<jsp:setProperty name="bean" property="username" value="Chris” />

13.7.5 jsp:getProperty action tag:

The jsp:getProperty action tag accesses the value of a bean

property,converts it to a String and prints it.

Syntax of jsp:getProperty action tag

<jsp:getProperty name="instanceOfBean" property="propertyName" />

Example:

<jsp:useBean id=”obj” scope=”page” class=”mypack.Student”/>

<jsp:getProperty name="obj" property="name" />

Here, <jsp:getProperty> invokes getName() available in the Student class.

13.8 JSP GUI EXAMPLE

Create a registration and login JSP application to register and authenticate

the user based on username and password using JDBC.

Initial.html:

Sign up for New User

Getting Started With Java

Server Pages, Action

Elements

153

Login for Existing User

Index.html

<html>

 <head>

 <title>Registration Page</title>

 </head>

 <body>

 <form action="Register.jsp" >

 <h1> New User Registration Page</h1>

 Enter UserName <input type="text" name="txtName" >

 Enter Password <input type="password" name="txtPass1" >

 Re-Enter Password<input type="password" name="txtPass2"

>

 Enter Email<input type="text" name="txtEmail" >

 Enter Country Name <input type="text" name="txtCon" >

 <input type="reset" >

 <input type="submit" value="REGISTER" >

 </form>

 </body>

</html>

Register.jsp

<%@page contentType="text/html" pageEncoding="UTF-8"

import="java.sql.*"%>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-

8">

 <title>Registration JSP Page</title>

 </head>

 <body>

 <%

 String uname = request.getParameter("txtName");

 String pass1 = request.getParameter("txtPass1");

 String pass2 = request.getParameter("txtPass2");

 String email = request.getParameter("txtEmail");

 String ctry = request.getParameter("txtCon");

Enterprise Java

154

 if (pass1.equals(pass2)) {

 try {

 Class.forName("org.apache.derby.jdbc.ClientDriver");

 Connection con =

DriverManager.getConnection("jdbc:derby://localhost:1527/mydb",

"root", "root");

 PreparedStatement stmt = con.prepareStatement("insert into

UserDetails values(?,?,?,?)");

 stmt.setString(1, uname);

 stmt.setString(2, pass1);

 stmt.setString(3, email);

 stmt.setString(4, ctry);

 int row = stmt.executeUpdate();

 if (row == 1) {

 out.println("<h1>Registration Successful!!!</h1>");

 out.println("
Login here");

 } else {

 out.println("<h1>Registration Failed!!!</h1>");

 %>

 <jsp:include page="index.html"/>

 <%

 }

 } catch (Exception e) {

 out.println(e);

 }

 } else {

 out.println("<h1>Password Mismatch!!!</h1>");

 %>

 <jsp:include page="index.html"/>

 <% }

 %>

 </body>

</html>

Login.html

<html>

 <head>

Getting Started With Java

Server Pages, Action

Elements

155

 <title>Login Application</title>

 </head>

 <body>

 <form method="post" action="login.jsp">

 <h1> Login Application</h1>

 Enter Username <input type="text" name="t1">

 Enter Password <input type="password" name="t2">

 <input type="reset">

 <input type="submit" value="Login">

 </form>

 </body>

</html>

login.jsp

<%@page contentType="text/html" pageEncoding="UTF-8"

import="java.sql.*"%>

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-

8">

 <title>Login JSP Page</title>

 </head>

 <body>

 <%

 String uname = request.getParameter("t1");

 String pass = request.getParameter("t2");

 try {

 Class.forName("org.apache.derby.jdbc.ClientDriver");

 Connection con =

DriverManager.getConnection("jdbc:derby://localhost:1527/mydb",

"root", "root");

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery("select password from

UserDetails where username='" + uname + "'");

 rs.next();

 if (pass.equals(rs.getString(1))) {

 out.println("<h1>Welcome"+uname+"</h1>");

Enterprise Java

156

 } else {

 out.println("<h1>Login Failed!!!</h1>");

 %>

 <jsp:include page="login.html"/>

 <%

 }

 } catch (Exception e) {

 out.println("<h1>User does not exist!!!!!</h1>");

 %>

 <jsp:include page="login.html"/>

 <%

 }

 %>

 </body>

</html>

13.9 SUMMARY

 JSP comments are ignored by the JSP engine when it translates the

JSP page into a Servlet.

 A JSP document can use either the traditional JSP style syntax or

XML style JSP syntax within its source file.

 JSP Elements enclose the Java code in a JSP page and are categorized as

follows:

1. Directives

2. Scripting Elements

3. Action Elements

 JSP directives serve special processing information about the page to

the JSP Server.

 The scripting elements provides the ability to insert java code inside

the jsp. There are three types of scripting elements:

1. Declaration tag

2. Expression tag

3. Scriptlet tag

 JSP Action tags are used to control the flow between pages and to use

Java Bean.

Getting Started With Java

Server Pages, Action

Elements

157

 13.10 LIST OF REFERENCES

1. Java EE 7 for Beginners, Sharanam Shah, Vaishali Shah, First

Edition, SPD

Web References:

1. https://www.javatpoint.com

2. https://www.tutorialspoint.com

3. https://www.guru99.com

 13.11 QUESTIONS

Q1. What are the different ways of writing comments in Java?

Q2. What are the various attributes used in the page directive?Explain

with an example.

Q3. What is the benefit of using taglib directive?

Q4. What are the various Scripting elements available in JSP? Why are

they used?

Q5. What is the difference between include directive and include action

tag?

Q6. What is a JavaBean?Why is it used?Explain with an example.

Q7. How is <jsp:useBean> action tag used to set and access properties of a

JavaBean?

https://www.javatpoint.com/
https://www.tutorialspoint.com/
https://www.guru99.com/

158

14
IMPLICIT OBJECTS, SCOPE AND EL

EXPRESSIONS

Unit Structure

14.0 Objectives

14.1 Implicit Objects

14.2 Scope

14.3 Character Quoting Conventions

14.4 Unified Expression Language (UEL)

 14.4.1 Types of UEL

 14.4.2 Method Expressions

 14.4.3 Operators

14.5 Summary

14.6 List of References

14.7 Questions

14.0 OBJECTIVES

After going through this chapter, you will:

 You will understand what are the various implicit objects in JSP

 Learn the various scope of objects in JSP

 Know what are character quoting conventions and how to write them

 Learn what is Unified Expression Language and the benefits of using

them

14.1 IMPLICIT OBJECTS

Java Scripting Elements provide a great deal of power and flexibility to

the developer to achieve dynamic website content delivery.To achieve

this, JSP engine exposes a number of internal Java objects to the

developer. These objects do not need to be declared or instantiated by the

developer but are provided by the JSP engine in its implementation and its

execution.

All implicit objects are available only to scriptlets or expressions.They are

not available in declarations.

Implicit Objects, Scope And EL

Expressions

159

There are 9 implicit objects in JSP as follows:

Object Type

out JspWriter

request HttpServletRequest

response HttpServletResponse

config ServletConfig

application ServletContext

session HttpSession

pageContext PageContext

page Object

exception Throwable

1. out:

This is the JspWriter object associated with the output stream of the

response.For writing any data to the buffer, JSP provides an implicit

object named out. It is the object of JspWriter. In case of servlet you need

to write:

PrintWriter out=response.getWriter();

But in JSP, you don't need to write this code as out is pre-defined.

Example

<html>

<body>

<% out.print("This is Enterprise Java”); %>

</body>

</html>

Here, we are simply printing the line “This is Enterprise Java” as the

response.

2. Request:

The JSP request is an implicit object of type HttpServletRequest i.e.

created for each jsp request by the web container. It can be used to get

request information such as parameter, header information, remote

address, server name, server port, content type, character encoding etc.

It can also be used to set, get and remove attributes from the jsp request

scope.

Example

index.html

<form action="welcome.jsp">

<input type="text" name="uname">

Enterprise Java

160

<input type="submit" value="go">

</form>

welcome.jsp

<%

String name=request.getParameter("uname");

out.print("welcome "+name);

%>

3. response:

In JSP, response is an implicit object of type HttpServletResponse. The

instance of HttpServletResponse is created by the web container for each

jsp request.

It can be used to add or manipulate response such as redirect response to

another resource, send error etc.

Let's see the example of response implicit object where we are redirecting

the response to the Google.

Example of response implicit object

index.html

<form action="welcome.jsp">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

welcome.jsp

<%

response.sendRedirect("http://www.google.com");

%>

4) config:

In JSP, config is an implicit object of type ServletConfig. This object can

be used to get initialization parameter for a particular JSP page. The

config object is created by the web container for each jsp page.

Generally, it is used to get initialization parameter from the web.xml file.

Example:

index.html

<form action="welcome">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

Implicit Objects, Scope And EL

Expressions

161

web.xml file

<web-app>

<servlet>

<servlet-name>sonoojaiswal</servlet-name>

<jsp-file>/welcome.jsp</jsp-file>

 <init-param>

<param-name>dname</param-name>

<param-value>sun.jdbc.odbc.JdbcOdbcDriver</param-value>

</init-param>

 </servlet>

 <servlet-mapping>

<servlet-name>sonoojaiswal</servlet-name>

<url-pattern>/welcome</url-pattern>

</servlet-mapping>

 </web-app>

welcome.jsp:

<%

out.print("Welcome "+request.getParameter("uname"));

 String driver=config.getInitParameter("dname");

out.print("driver name is="+driver);

%>

5) application:

In JSP, application is an implicit object of type ServletContext.

The instance of ServletContext is created only once by the web container

when application or project is deployed on the server.

This object can be used to get initialization parameter from configuaration

file (web.xml). It can also be used to get, set or remove attribute from the

application scope.

t("driver namExample:

index.html

<form action="welcome">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

web.xml file

Enterprise Java

162

<web-app>

<servlet>

<servlet-name>sonoojaiswal</servlet-name>

<jsp-file>/welcome.jsp</jsp-file>

</servlet>

 <servlet-mapping>

<servlet-name>sonoojaiswal</servlet-name>

<url-pattern>/welcome</url-pattern>

</servlet-mapping>

 <context-param>

<param-name>dname</param-name>

<param-value>sun.jdbc.odbc.JdbcOdbcDriver</param-value>

</context-param>

 </web-app>

welcome.jsp

<%

 out.print("Welcome "+request.getParameter("uname"));

 String driver=application.getInitParameter("dname");

out.prine is="+driver);

%>

6. session:

In JSP, session is an implicit object of type HttpSession.The Java

developer can use this object to set,get or remove attribute or to get

session information.

Example

index.html

<html>

<body>

<form action="welcome.jsp">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

</body>

</html>

Implicit Objects, Scope And EL

Expressions

163

welcome.jsp

<html>

<body>

<%

 String name=request.getParameter("uname");

out.print("Welcome "+name);

 session.setAttribute("user",name);

 second jsp page

 %>

</body>

</html>

second.jsp

<html>

<body>

<%

String name=(String)session.getAttribute("user");

out.print("Hello "+name);

%>

</body>

</html>

7. pageContext:

In JSP, pageContext is an implicit object of type PageContext class.The

pageContext object can be used to set,get or remove attribute from one of

the following scopes:

 page

 request

 session

 application

In JSP, page scope is the default scope.

Example

index.html

<html>

<body>

<form action="welcome.jsp">

Enterprise Java

164

<input type="text" name="uname">

<input type="submit" value="go">

</form>

</body>

</html>

welcome.jsp

<html>

<body>

<%

String name=request.getParameter("uname");

out.print("Welcome "+name);

pageContext.setAttribute("user",name,PageContext.SESSION_SCOPE);

second jsp page

%>

</body>

</html>

second.jsp

<html>

<body>

<%

String name=(String)pageContext.getAttribute("user",PageContext.SESSI

ON_SCOPE);

out.print("Hello "+name);

%>

</body>

</html>

8) page:

In JSP, page is an implicit object of type Object class.This object is

assigned to the reference of auto generated servlet class. It is written as:

Object page=this;

For using this object it must be cast to Servlet type.For example:

<% (HttpServlet)page.log("message"); %>

Since, it is of type Object it is less used because you can use this object

directly in jsp.For example:

<% this.log("message"); %>

Implicit Objects, Scope And EL

Expressions

165

9) exception:

In JSP, exception is an implicit object of type java.lang.Throwable class.

This object can be used to print the exception. But it can only be used in

error pages.It is better to learn it after page directive. Let's see a simple

example:

Example

error.jsp

<%@ page isErrorPage="true" %>

<html>

<body>

 Sorry following exception occured:<%= exception %>

 </body>

</html>

14.2 SCOPE OF JSP OBJECTS

The availability of a JSP object for use from a particular place of the

application is defined as the scope of that JSP object. Every object created

in a JSP page will have a scope. Object scope in JSP is segregated into

four parts and they are page, request, session and application.

Page Scope:

Objects with page scope are accessible only within the page in which

they're created. The data is valid only during the processing of the current

response; once the response is sent back to the browser, the data is no

longer valid. If the request is forwarded to another page or the browser

makes another request as a result of a redirect, the data is also lost.

//Example of JSP Page Scope

<jsp:useBean id="employee" class="EmployeeBean" scope="page" />

Request Scope:

Objects with request scope are accessible from pages processing the same

request in which they were created. Once the container has processed the

request, the data is released. Even if the request is forwarded to another

page, the data is still available though not if a redirect is required.

//Example of JSP Request Scope

<jsp:useBean id="employee" class="EmployeeBean" scope="request" />

Session Scope:

Objects with session scope are accessible from pages processing requests

that are in the same session as the one in which they were created. A

session is the time users spend using the application, which ends when

Enterprise Java

166

they close their browser, when they go to another Web site, or when the

application designer wants (after a logout, for instance). So, for example,

when users log in, their username could be stored in the session and

displayed on every page they access. This data lasts until they leave the

Web site or log out.

//Example of JSP Session Scope

<jsp:useBean id="employee" class="EmployeeBean" scope="session" />

Application Scope:

Objects with application scope are accessible from JSP pages that reside in

the same application. This creates a global object that's available to all

pages.

Application scope uses a single namespace, which means all your pages

should be careful not to duplicate the names of application scope objects

or change the values when they're likely to be read by another page (this is

called thread safety). Application scope variables are typically created and

populated when an application starts and then used as read-only for the

rest of the application.

//Example of JSP Application Scope

<jsp:useBean id="employee" class="EmployeeBean" scope="application"

/>

14.3 CHARACTER QUOTING CONVENTIONS

Because certain character sequences are used to represent start and stop

tags, the developer sometimes needs to escape a character so the JSP

engine does not interpret it as part of a special character sequence.

In a scripting element, if the character needs %> needs to be used,escape

the greater than sign with a backslash.

<%String message=” This is the %/> message”;%>

The backslash before the expression acts as an escape character and

informs the JSP engine to not evaluate it.

There are a number of cases where backslash needs to be used otherwise

characters will be treated specially by the JSP engine.

Escape

Characters

Description

\’ A single quote in an attribute that uses

single quote

\” A double quote in an attribute that uses

double quote

\\ A backslash in an attribute that uses

backslash

Implicit Objects, Scope And EL

Expressions

167

%\> Escaping the scriptlet end tag with a

backslash

<\% Escaping the scriptlet start tag with a

backslash

\$ Escaping the $ sign with a backslash

14.4 UNIFIED EXPRESSION LANGUAGE (UEL)

JSP Expression Language provides a way to simplify expressions. It is a

simple language used for accessing implicit objects. Java classes and for

manipulating collections in an elegant manner. It is the newly added

feature in JSP technology version 2.0.

The expression language also allows page authors to use simple

expressions to dynamically read data from JavaBean components.

Unified Expression Language allows usage of simple expressions to

perform the following tasks:

 Dynamically read application data stored in JavaBeans components,

various data structures and implicit objects.

 Dynamically write data such user input into forms to JavaBeans

components.

 Dynamically perform arithmetic operations.

14.4.1 Types of Evaluation Expressions:

Unified EL supports two types of evaluation expressions: Immediate and

Deferred evaluation

Immediate Evaluation:

Immediate evaluation means that the expression is evaluated and the result

returned as soon as the page is first rendered.

Syntax:

${<Expression>}

Here, Expression stands for valid expression.

The following example shows a tag whose value attribute references an

immediate evaluation expression that updates the quantity of books

retrieved from the backing bean named catalog:

<h:outputText value="${catalog.bookQuantity}" />

Deferred Evaluation:

Deferred evaluation means that the technology using the expression

language can use its own machinery to evaluate the expression sometime

later during the page’s lifecycle, whenever it is appropriate to do so.

Enterprise Java

168

Syntax:

#{<Expression>}

Here, Expression stands for valid expression.

Because of its multiphase lifecycle, JavaServer Faces technology uses

mostly deferred evaluation expressions. During the lifecycle, component

events are handled, data is validated, and other tasks are performed in a

particular order. Therefore, a JavaServer Faces implementation must defer

evaluation of expressions until the appropriate point in the lifecycle.

Other technologies using the EL might have different reasons for using

deferred expressions.

The following example shows a JavaServer Faces h:inputText tag, which

represents a field component into which a user enters a value. The

h:inputText tag’s value attribute references a deferred evaluation

expression that points to the name property of the customer bean:

<h:inputText id="name" value="#{customer.name}" />

14.4.2 Value Expressions:

The unified EL provides two types of value expressions:

 Rvalue Expressions:

Can only read data, but cannot write data. Expressions that use deferred

valuation syntax are always rvalue expressions.

 Lvalue Expressions:

Can read and write data. Expressions that uses deferred evaluation syntax

can act as both Rvalue and Lvalue expressions.

Consider the following two value expressions:

${customer.name}

#{customer.name}

The former uses immediate evaluation syntax, whereas the latter uses

deferred evaluation syntax. The first expression accesses the name

property, gets its value, and passes the value to the tag handler. With the

second expression, the tag handler can defer the expression evaluation to a

later time in the page lifecycle if the technology using this tag allows.

In the case of JavaServer Faces technology, the latter tag’s expression is

evaluated immediately during an initial request for the page. During a

postback request, this expression can be used to set the value of the name

property with user input.

Implicit Objects, Scope And EL

Expressions

169

14.4.3 Method Expressions:

EL also supports deferred method expressions. A method expression is

used to refer to a public method of a bean and has the same syntax as an

lvalue expression.

A JSF component element usesmethod expressions, which in turn invokes

method that do some process on behalf of the component element. For

standard components, these methods are necessary for handling events that

the components generates as well as validating component data.

Example

Solution:

<h:inputTextid=”firstnameid” value=”#{customer.firstname}”

Validator=”#{customer.validateFirstname}”/>

Explanation:

The validator attribute of <h:inputText> references validateFirstnameid()

owned by a bean called customer.

<h:inputText> specifies that validateFirstName() should be invoked

during the validation process phase of the JSF lifecycle.

Because a method can be invoked during different phases of the lifecycle,

method expressions must always use the deferred evaluation syntax.

14.4.4 Operators:

EL the following operators, most of which are usual operators available in

Java:

1. Arithmetic Operators:

The following are the arithmetic operators:

 +Addition

 [Binary]:(subtraction)

 :Multiplication

 / or div:Division

 % or mod:modulo[remainder]

 -[unary]:Negation of a value

Example

1. ${5*5+4}

2. ${1.2E4+1.4}

Enterprise Java

170

3. ${10 mod 4}

4. ${3 div 4}

Output:

1. 29

2. 12001.4

3. 2

4. 0.75

2. Logical Operators:

The following are the logical operators:

 && or AND: Test for logical AND

 || or OR : Test for logical OR

 ! or NOT :Unary Boolean complement

Example

<%-- Evaluates if variable is not empty --%>

${!empty<VariableAName>}

3. Relational Operators:

The following are the relational operators:

== or eq :Test for equality

!= or ne: :Test for inequality

< or lt: Test for less than

> or gt : Test for greater than

<= or le : Test for less than or equal

>= or ge : Test for greater than or equal

Example:

${10>3}

${1>8}

${10 le 3}

Implicit Objects, Scope And EL

Expressions

171

4. Conditional Operators:

The following is the syntax for conditional operators:

Condition ? If true :If false

Solution

A?B:C

Here B is evaluated if A is true else is evaluated if A is false

5. The [Dot] Operator:

It is a shorthand for calling a JavaBeans property accessor for the property

whose name is on the right side of the operator.

Solution

${pageContext.servletContext.servletContextName}

6. The [] Operator:

Is is used for polymorphic indexing, which can be used for indexing

collections including Maps,Lists and Arrays. The value inside the brackets

is used as a key into a map or as a List or array index.

Example:

${colors[5]}

${colors[1]>colors[6]}

7. The empty operator:

It is a prefix operator that is used to determine if a value is null or empty.

Example

${empty Name}

This expression returns true if Name refers a null value.

14.4.5 JSP EL IMPLICIT OBJECTS:

The JSP expression language supports the following implicit objects :

Sr. No. Implicit object & Description

1
pageScope

Scoped variables from page scope

2
requestScope

Scoped variables from request scope

3
sessionScope

Scoped variables from session scope

Enterprise Java

172

4
applicationScope

Scoped variables from application scope

5
param

Request parameters as strings

6

paramValues

Request parameters as collections of

strings

7
header

HTTP request headers as strings

8

headerValues

HTTP request headers as collections of

strings

9
initParam

Context-initialization parameters

10
cookie

Cookie values

11

pageContext

The JSP PageContext object for the

current page

14.5 SUMMARY

 JSP provides a number of implicit objects which need not be declared

or instantiated by the developer.

 Implicit objects are available only to scriptlets or expressions.They

are not available in declarations.

 JSP objects have 4 scopes: page,request,session and application

 The escape character backslash can be used to inform the JSP engine

not to evaluate certain expressions.

 Unified Expression Language provides a way to simplify expressions

and can be used for accessing implicit objects.

 UEL supports both immediate and deferred evaluation.

 UEL also supports various operators and can be used to call methods.

14.6 LIST OF REFERENCES

Java EE 7 for Beginners, Sharanam Shah, Vaishali Shah, First Edition,

SPD

Web References:

1. https://www.javatpoint.com

2. https://www.java-samples.com

https://www.javatpoint.com/

Implicit Objects, Scope And EL

Expressions

173

14.7 QUESTIONS

Q1. List the various implicit objects in JSP.

Q2. Explain the scope of JSP objects.

Q3. What is Immediate and Deferred Evaluation? Explain with an

example.

Q4. Write a note on character quoting conventions.

Q5. Explain Method Expressions in short.

Q6. What are the various operators supported by JSP EL?

174

15
JSP STANDARD TAG LIBRARIES

Unit Structure

15.0 Objectives

15.1 Introduction to Java Server Pages Standard Tag Libraries

15.2 Disadvantages of JSP Scriptlet Tags

15.3 Advantages of JSTL

15.4 Disadvantages of JSTL

15.5 How is JSTL different from Scriptlets?

15.6 Types of Tag Libraries

15.6.1 Core Tag Library

15.6.2 Functions Tag Library

15.6.3 Database/SQL Tag Library

15.6.4 Formatting Tag Library

15.6.5 XML Tag Library

15.7 Summary

15.8 List of References

15.9 Questions

15.0 OBJECTIVES

After going through this chapter, you will:

 Understand what is Java Server Pages Tag Libraries

 Understand the advantages and disadvantages of JSTL

 Learn what are the issues of using Scriptlet Tags

 Learn the various types of Tag Libraries and available tags

15.1 INTRODUCTION TO JSP STANDARD TAG

LIBRARIES

JSTL was introduced to allow JSP programming developers to create web

applications using tags rather than scriptlets (Java code). It is a collection

of useful JSP tags which encapsulates the core functionality common to

many JSP applications. JSTL does nearly everything that a regular

scriptlet does.

JSTL has support for common, structural tasks such as iteration and

conditionals, tags for manipulating XML documents, internationalization

tags, and SQL tags. It also provides a framework for integrating the

existing custom tags with the JSTL tags.

JSP Standard Tag Libraries

175

15.2 DISADVANTAGES OF JSP SCRIPTLET TAGS

1. The Java code embedded within the Scriptlet looks ugly and

inconsistent with the HTML tags.

2. The developer who does not know Java actually cannot modify the

embedded Java code. Thus, this disadvantage nullifies the major

benefit of JSP, which is the empowerment of designers and business

people to update page content.

3. The Java code embedded within the scriptlets cannot be re-used by

another JSP Pages. So, the common logic code gets duplicated in

multiple JSP pages.

4. Accessing values from HTTP request and sessions needs to be

specifically typecasted to the object‟s class, which should be known

to the JSP by importing or fully qualifying the class name.

15.3 ADVANTAGES OF JSTL

1. JSTL tags are XML based tags, they cleanly and consistently blend

into a page‟s HTML markup tags.

2. JSTL tags are easier to use effectively as they do not require any

knowledge of Java programming.

3. JSTL tags can be reused in various pages unlike scriptlets which

needs to be repeated everywhere.

4. JSTL tags can reference objects in Request and Session objects

without knowing the object‟s type with no typecasting required.

5. JSTL makes use of UEL which makes it easier to call the getter and

setter methods on Java objects.

15.4 DISADVANTAGES OF JSTL

1. JSTL increases the processing burden on the server. Java scriptlet and

the tag libraries both are compiled into a servlet, which is then

executed by the Servlet engine. Java code in scriptlets is pretty much

just copied into Servlets but on the other hand, JSTL tags casue much

more code to be added to the Servlet.

2. JSTL provides a powerful set of reusable libraries to JSP developers

but JSTL cannot do everything that the Java code spec can do.

15.5 HOW IS JSTL DIFFERENT FROM SCRIPTLETS

An example of scriptlet-based programming, which counts to 10, is shown

here:

<html>

Enterprise Java

176

 <head>

 <title>Count to 10 in JSP scriptlet</title>

 </head>

 <body>

<%

for(int i=1;i<=10;i++)

{

%>

<%=i%>

<%

}

%>

 </body>

</html>

As you can see from the preceding example, using scriptlet code produces

page source code that contains a mix of HTML tags and Java statements

making the code looking non-consistent.

Consider the following example, which shows how to count from 1 to 10

using JSTL rather than scriptlet code.

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>

 <head>

 <title>Count to 10 Example (using JSTL)</title>

 </head>

 <body>

 <c:forEach var="i" begin="1" end="10" step="1">

 <c:out value="${i}" />

 </c:forEach>

 </body>

</html>

When you examine the preceding source code, you can see that the JSP

page consists entirely of tags thus bringing consistency and uniformity to

the code.

15.6 TYPES OF JSTL TAG LIBRARIES

JSTL Tag Libraries can be broken down into specific functional areas

belonging to an application. JSTL is composed of five tag libraries:

JSP Standard Tag Libraries

177

 Core Tag Library

 Functions Tag Library

 Database/SQL Tag Library

 Formatting Tag Library

 XML Tag Library

Let‟s understand the various tags under each of the above Tag Libraries.

15.6.1 Core Tag Library:

The Core Tag Library contains tags that are essential to nearly any Web

application. Examples of core tag libraries are looping, evaluation of

expression and basic input and output.

The URI of the Core Tag Library is “http://java.sun.com/jsp/jstl/core” and

prefix is c.

The syntax used for including JSTL Core tags library in your JSP is:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

The Core Tag Library consists of four distinct functional sections:

A) General - Purpose Actions:

These actions allow adding and removing variables ,displaying variable

values and enclosing a group of tags within a try-catch block.

1. <c:out>

The <c:out> tag displays the result of an expression. This is almost similar

to the way <%= %> works.

Example:

<c:out value = "${'Hello World‟}"/>

This will print Hello World as a response.

2. <c:set>

The <c:set> tag sets the result of an expression evaluation in a 'scope'.

Example

<c:set var = "salary" scope = "session" value = "${2000}"/>

This will set a variable names session with the value 2000.

3. <c:remove >

The <c:remove > tag removes a scoped variable (from a particular scope,

if specified).

http://java.sun.com/jsp/jstl/core
https://www.tutorialspoint.com/jsp/jstl_core_remove_tag.htm
https://www.tutorialspoint.com/jsp/jstl_core_remove_tag.htm

Enterprise Java

178

Example:

<c:remove var = "salary"/>

This will remove the variable named salary.

4. <c:catch>

The <c:catch> tag catches any Throwable that occurs in its body and

optionally exposes it.

Example:

<c:catch var ="catchException">

 <% int x = 5/0;%>

 </c:catch>

This code block will catch ArithmeticException.

B) Conditional Actions Or Flow Control Statements:

Conditional Actions are used for conditional processing within a JSP page.

1. <c:if>

The <c:if> tag evaluates an expression and displays its body content only

if the expression evaluates to true.

Example:

<c:if test = "${salary > 20000}">

<p>My salary is: <c:out value = "${salary}"/><p>

 </c:if>

This will print the statement within <c:if > tag if the condition mentioned

in test evaluates to true.

2. <c:choose>,<c:when>,<c:otherwise>:

The <c:choose> works like a Java switch statement in that it lets you

choose between a number of alternatives. Where the switch statement has

case statements, the <c:choose> tag has <c:when> tags. Just as a switch

statement has the default clause to specify a default action, <c:choose> has

<c:otherwise> as the default clause.

Example:

<c:set var="number1" value="${222}"/>

<c:set var="number2" value="${12}"/>

<c:set var="number3" value="${10}"/>

<c:choose>

https://www.tutorialspoint.com/jsp/jstl_core_if_tag.htm

JSP Standard Tag Libraries

179

 <c:when test="${number1 < number2}">

 ${"number1 is less than number2"}

 </c:when>

 <c:when test="${number1 <= number3}">

 ${"number1 is less than equal to number2"}

 </c:when>

 <c:otherwise>

 <c:out value=" ${'number1 is largest number!'}"/>

 </c:otherwise>

</c:choose>Example

<c:set var="number1" value="${222}"/>

<c:set var="number2" value="${12}"/>

<c:set var="number3" value="${10}"/>

<c:choose>

 <c:when test="${number1 < number2}">

 ${"number1 is less than number2"}

 </c:when>

 <c:when test="${number1 <= number3}">

 ${"number1 is less than equal to number2"}

 </c:when>

 <c:otherwise>

 <c:out value=" ${'number1 is largest number!'}"/>

 </c:otherwise>

</c:choose>

C) Iterator Actions:

Iterator Actions simplify iteration through collection of objects.

1. <c:forEach >

The <c:forEach> tag is a commonly used tag because it repeats the nested

body content for fixed number of times or over collection.

Example

 <c:forEach var = "i" begin = "1" end = "5">

 Item <c:out value = "${i}"/><p>

 </c:forEach>

https://www.tutorialspoint.com/jsp/jstl_core_foreach_tag.htm

Enterprise Java

180

This will print the values from 1 to 5.

2. <c:forTokens>

The <c:forTokens> tag iterates over tokens which is separated by the

supplied delimeters. It is used for break a string into tokens and iterate

through each of the tokens to generate output.

This tag has similar attributes as <c:forEach> tag except one additional

attributes delims which is used for specifying the characters to be used as

delimiters.

Example

<c:forTokens items=”Chris-Steve-Liza" delims="-" var="name">

<c:out value="${name}"/><p>

</c:forTokens>

This will print the names as separate tokens.

D.) URL RELATED ACTIONS:

These actions are used to import resources, redirect HTTP responses

,create URLs or encode a request of parameters.

1. <c:redirect>

The < c:redirect > tag redirects the browser to a new URL.

Example:

 <c:redirect url="http://abc.com"/>

This will redirect to abc.com

2. <c:url>

The < c:url > tag creates a URL with optional query parameter. It is used

for url encoding or url formatting. This tag automatically performs the

URL rewriting operation.

Example:

<c:url value="/Register.jsp"/>

3. <c:param>

The < c:param > tag add the parameter in a containing 'import' tag's URL.

Example:

<c:url value="/index.jsp" var="completeURL"/>

<c:param name="user" value="Ann"/>

JSP Standard Tag Libraries

181

15.6.2 Functions Tag Library:

The Functions Tag Library provides a number of standard functions, most

of these functions are common string manipulation functions.

The URI of the Functions Tag Library is

“http://java.sun.com/jsp/jstl/functions” and prefix is fn.

The syntax used for including JSTL Functions tags library in your JSP is:

<%@ taglib uri="http://java.sun.com/jsp/jstl/functions" prefix="fn" %>

Tag Explanation Example Output

fn:contains()

It is used to test if an

input string containing

the specified substring

in a program.

${fn:contains(„Ja

va‟,‟av‟)}

True

fn:containsIg

noreCase()

It is used to test if an

input string contains the

specified substring as a

case insensitive way.

${fn:containsIgno

reCase(„Java‟, 'A

V')}

True

fn:endsWith(

)

It is used to test if an

input string ends with

the specified suffix.

${fn:endsWith(„J

SP

Program‟, 'Progra

m')}

True

fn:escapeXm

l()

It escapes the characters

that would be

interpreted as XML

markup.

${fn:escapeXml(„

It is <xyz>second

 String.</xyz>‟)}

It is <xyz

>second

String.</

xyz>

fn:indexOf()

It returns an index

within a string of first

occurrence of a

specified substring.

${fn:indexOf(„He

llo

World‟,‟ „Hello‟)

}

0

fn:trim()

It removes the blank

spaces from both the

ends of a string.

${fn:trim(Welco

me to JSP pro

gramming)}

Welcom

e to JSP

program

ming

fn:startsWith

()

It is used for checking

whether the given string

is started with a

particular string value.

${fn:endsWith(„J

SP

Program‟, 'JSP')}

True

fn:split()
It splits the string into

an array of substrings.

${fn:split(Welco

me-to-JSP-

Programming, '-

')}

Welcom

e

To

JSP

Program

ming

fn:toLowerC

ase()

It converts all the

characters of a string to

lower case.

${fn:toLowerCas

e("HELLO")}

hello

https://www.javatpoint.com/jstl-fn-contains-function
https://www.javatpoint.com/jstl-fn-contains-ignorecase-function
https://www.javatpoint.com/jstl-fn-contains-ignorecase-function
https://www.javatpoint.com/jstl-fn-endwidth-function
https://www.javatpoint.com/jstl-fn-endwidth-function
https://www.javatpoint.com/jstl-fn-escapexml-function
https://www.javatpoint.com/jstl-fn-escapexml-function
https://www.javatpoint.com/jstl-fn-indexof-function
https://www.javatpoint.com/jstl-fn-trim-function
https://www.javatpoint.com/jstl-fn-startswith-function
https://www.javatpoint.com/jstl-fn-startswith-function
https://www.javatpoint.com/jstl-fn-split-function
https://www.javatpoint.com/jstl-fn-tolowercase-function
https://www.javatpoint.com/jstl-fn-tolowercase-function

Enterprise Java

182

fn:toUpperC

ase()

It converts all the

characters of a string to

upper case.

${fn:toLowerCas

e("hello")}

HELLO

fn:substring(

)

It returns the subset of a

string according to the

given start and end

position.

${fn:substring("T

his is the first stri

ng.", 5, 17)}

is the firs

t

fn:substring

After()

It returns the subset of

string after a specific

substring.

${fn:substringAft

er(“Chris

Kevin”, "Chris")}

Kevin

fn:substring

Before()

It returns the subset of

string before a specific

substring.

${fn:substringBef

ore(“Chris

Kevin”, "Kevin")

}

Chris

fn:length()

It returns the number of

characters inside a

string, or the number of

items in a collection.

${fn:length(“Hell

o”)}

5

fn:replace()

It replaces all the

occurrence of a string

with another string

sequence.

${fn:replace(“Chr

is

Kevin”, "Chris", "

Steve")}

Steve

Kevin

15.6.3 Database/ SQL Tag Library:

The SQL tag library allows the tag to interact with RDBMSs (Relational

Databases) such as Microsoft SQL Server, mySQL, or Oracle.

The URI of the SQL Tag Library is “http://java.sun.com/jsp/jstl/sql” and

prefix is sql.

The syntax used for including JSTL Database tags library in your JSP is:

<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql" %>

1) <sql:setDataSource>

The <sql:setDataSource> tag is used to create the data source variable

directly from JSP and it is stored inside a scoped variable. It can be used

as input for other database actions.

Example:

<sql:setDataSource var="db" driver="com.mysql.jdbc.Driver" url="jdbc:

mysql://localhost/test"

user="root" password="1234"/>

This code is used for setting the connection with database server.

https://www.javatpoint.com/jstl-fn-touppercase-function
https://www.javatpoint.com/jstl-fn-touppercase-function
https://www.javatpoint.com/jstl-fn-substring-function
https://www.javatpoint.com/jstl-fn-substring-function
https://www.javatpoint.com/jstl-fn-substringafter-function
https://www.javatpoint.com/jstl-fn-substringafter-function
https://www.javatpoint.com/jstl-fn-substringbefore-function
https://www.javatpoint.com/jstl-fn-substringbefore-function
https://www.javatpoint.com/jstl-fn-length-function
https://www.javatpoint.com/jstl-fn-replace-function

JSP Standard Tag Libraries

183

2) <sql:query>

The <sql:query> tag is used for executing the SQL query defined in its sql

attribute or the body. It is used to execute an SQL SELECT statement and

saves the result in scoped variable.

Example:

<sql:query dataSource="${db}" var="rs">

SELECT * from Students;

</sql:query>

3) <sql:update>

The <sql:update> tag is used for executing the SQL DML query defined in

its sql attribute or in the tag body. It may be SQL UPDATE, INSERT or

DELETE statements.

Example:

<sql:update dataSource="${db}" var="count">

INSERT INTO Students VALUES (154,‟Chris‟, 'Kevin', 25);

</sql:update>

4. <sql:param>

The <sql:param> tag sets the parameter value in SQL statement.

It is used as nested tag for <sql:update> and <sql:query> to provide the

value in SQL query parameter. If null value is provided, the value is set at

SQL NULL for value attribute.

Example:

<c:set var="StudentId" value="152"/>

<sql:update dataSource="${db}" var="count">

DELETE FROM Students WHERE Id = ?

<sql:param value="${StudentId}" />

</sql:update>

5. <sql:dateParam>

The <sql:dateParam> is used to set the specified date for SQL query

parameter.

It is used as nested tag for <sql:update> and <sql:query> to provide the

date and time value for SQL query parameter.

If null value is provided, the value is set at SQL NULL.

Enterprise Java

184

Example:

<%

Date DoB = new Date("2000/10/16");

int studentId = 151;

%>

<sql:update dataSource="${db}" var="count">

 UPDATE Student SET dob = ? WHERE Id = ?

 <sql:dateParam value="<%=DoB%>" type="DATE" />

 <sql:param value="<%=studentId%>" />

</sql:update>

6. <sql:transaction>

The <sql:transaction> tag is used for transaction management. It is used to

group multiple <sql:update> into common transaction. If you group

multiple SQL queries in a single transaction, database is hit only once.

It is used for ensuring that the database modifications are performed by the

nested actions which can be either rolled back or committed.

Example:

<%

Date DoB = new Date("2000/10/16");

int studentId = 151;

%>

<sql:transaction dataSource="${db}">

 <sql:update var="count">

 UPDATE Student SET First_Name = „Ann‟ WHERE Id = 150

 </sql:update>

 <sql:update var="count">

 UPDATE Student SET Last_Name= „Seema‟ WHERE Id = 153

 </sql:update>

 <sql:update var="count">

 INSERT INTO Student VALUES (101,'Kate', 'David', '2021/10/7');

 </sql:update>

</sql:transaction>

15.6.4 Formatting Tag Library:

The formatting tags provide support for message formatting, number and

date formatting etc.

JSP Standard Tag Libraries

185

The url for the formatting tags is http://java.sun.com/jsp/jstl/fmt and prefix

is fmt.

The syntax used for including JSTL FORMATTING tags library in your

JSP is:

<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>

1. <fmt:parseNumber>

The <fmt:parseNumber> tag is used to Parses the string representation of a

currency, percentage, or number. It is based on the customized formatting

pattern.

Example:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<c:set var="Amount" value="786.970" />

<fmt:parseNumber var="j" type="number" value="${Amount}" />

<p><i>Amount is:</i> <c:out value="${j}" /></p>

 <fmt:parseNumber var="j" integerOnly="true" type="number" value="$

{Amount}" />

<p><i>Amount is:</i> <c:out value="${j}" /></p>

2. <fmt:formatNumber>

The <fmt:formatNumber> tag is used to format the numerical value using

the specific format or precision. It is used to format percentages,

currencies, and numbers according to the customized formatting pattern.

Example:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt"%>

<body>

<h3>Formatting of Number:</h3>

<c:set var="Amount" value="9850.14115" />

<p> Formatted Number-1:

<fmt:formatNumber value="${Amount}" type="currency" /></p>

<p>Formatted Number-2:

<fmt:formatNumber type="number" groupingUsed="true" value="${Amo

unt}" /></p>

<p>Formatted Number-3:

<fmt:formatNumber type="number" maxIntegerDigits="3" value="${Am

ount}" /></p>

Enterprise Java

186

<p>Formatted Number-4:

<fmt:formatNumber type="number" maxFractionDigits="6" value="${A

mount}" /></p>

<p>Formatted Number-5:

<fmt:formatNumber type="percent" maxIntegerDigits="4" value="${Amo

unt}" /></p>

<p>Formatted Number-6:

<fmt:formatNumber type="number" pattern="###.###$" value="${Amou

nt}" /></p>

</body>

3. <fmt:parseDate>

The <fmt:parseDate> tag parses the string representation of a time and

date. It is used to format the time and date according to a customized

formatting pattern.

Example:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

<head>

<title>fmt:parseDate Tag</title>

</head>

<body>

<h3>Parsed Date:</h3>

<c:set var="date" value="13-09-2021" />

<fmt:parseDate value="${date}" var="parsedDate" pattern="dd-MM-

yyyy" />

<p><c:out value="${parsedDate}" /></p>

</body>

</html>

4. <fmt:bundle>

The <fmt:bundle> tag loads the resource bundle which is used by its tag

body. This tag will make the specified bundle available for all

<fmt:message> tags that occurs between the boundary of <fmt:bundle>

and </fmt:bundle> tags.

It is used to create the ResourceBundle objects which will be used by their

tag body.

JSP Standard Tag Libraries

187

Let us define the default resource bundle Simple.java as follows:

package com.javatpoint;

import java.util.ListResourceBundle;

public class Simple extends ListResourceBundle {

 public Object[][] getContents() {

return contents;

}

 static final Object[][] contents = { { "colour.Violet", "Violet" },

{ "colour.Indigo", "Indigo" }, { "colour.Blue", "Blue" }, };

}

Now you can use the below JSTL tags to display the three colors as

follows:

<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>

<html>

<head>

<title>fmt:bundle Tag</title>

</head>

<body>

 <fmt:bundle basename="com.javatpoint.Simple" prefix="colour.">

 <fmt:message key="Violet"/>

 <fmt:message key="Indigo"/>

 <fmt:message key="Blue"/>

 </fmt:bundle>

 </body>

</html>

Output:

1. Violet

2. Indigo

3. Blue

5. <fmt:setTimeZone>

The <fmt:setTimeZone> tag store the time zone inside a time zone

configuration variable. It is used for copy a time zone object inside a

specified scope variable.

Let's see the simple example to understand the formatting

<fmt:setTimeZone> tag:

Enterprise Java

188

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>

<html>

<head>

<title>fmt:setTimeZone Tag</title>

</head>

<body>

<c:set var="date" value="<%=new java.util.Date()%>" />

<p>Date and Time in Indian Standard Time(IST) Zone:

 <fmt:formatDate value="${date}" type="both" timeStyle="long" dateStyl

e="long" /></p>

<fmt:setTimeZone value="GMT-10" />

<p>Date and Time in GMT-

10 time Zone: <fmt:formatDate value="${date}"

 type="both" timeStyle="long" dateStyle="long" /></p>

</body>

</html>

6. <fmt:setBundle> and <fmt:message>

The <fmt:setBundle> tag is used to load the resource bundle and store

their value in the bundle configuration variable or the name scope

variable.

It is used for creating the ResourceBundle object which will be used by

tag body.

The <fmt:message> tag is used for displaying an internationalized

message. It maps the key of localized message to return the value using a

resource bundle specified in the bundle attribute.

Let us define the default resource bundle Main.java as follows:

package com.javatpoint;

import java.util.ListResourceBundle;

public class Main extends ListResourceBundle {

public Object[][] getContents() {

 return contents;

 }

static final Object[][] contents = { { "vegetable.Potato", "Potato" },

 { "vegetable.Tomato", "Tomato" }, { "vegetable.Carrot", "Carrot" }, };

}

JSP Standard Tag Libraries

189

Now, compile the above class as Main.class and make it available in

CLASSPATH of your Web application folder. Now you can use the below

JSTL tags to display the three vegetables as follows:

<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>

<html>

<head>

<title>fmt:setBundle Tag</title>

</head>

<body>

<fmt:setBundle basename="com.javatpoint.Main" var="lang"/>

<fmt:message key="vegetable.Potato" bundle="${lang}"/>

 <fmt:message key="vegetable.Tomato" bundle="${lang}"/>

 <fmt:message key="vegetable.Carrot" bundle="${lang}"/>

</body>

</html>

15.6.5 XML TAG LIBRARY:

The JSTL XML tags are used for providing a JSP-centric way of manipulating

and creating XML documents. The xml tags provide flow control, transformation

etc.

The url for the xml tags is http://java.sun.com/jsp/jstl/xml and prefix is x.

 The JSTL XML tag library has custom tags used for interacting with

XML data. The syntax used for including JSTL XML tags library in your

JSP is:

<%@ taglib uri="http://java.sun.com/jsp/jstl/xml" prefix="x" %>

1. <x:out> and <x:parse> tag

The <x:out> tag is used for displaying the result of an xml Path expression

and writes the result to JSP writer object.

The <x:parse> tag is used for parse the XML data specified either in the

tag body or an attribute. It is used for parse the xml content and the result

will stored inside specified variable.

Let's see the simple example to understand the xml <x:out> and <x:parse>

tag:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

 <%@ taglib prefix="x" uri="http://java.sun.com/jsp/jstl/xml" %>

 <html>

<head>

Enterprise Java

190

 <title>XML Tags</title>

</head>

<body>

<h2>Vegetable Information:</h2>

<c:set var="vegetable">

<vegetables>

 <vegetable>

 <name>onion</name>

 <price>40/kg</price>

 </vegetable>

 <vegetable>

 <name>Potato</name>

 <price>30/kg</price>

 </vegetable>

 <vegetable>

<name>Tomato</name>

<price>90/kg</price>

</vegetable>

</vegetables>

</c:set>

<x:parse xml="${vegetable}" var="output"/>

Name of the vegetable is:

<x:out select="$output/vegetables/vegetable[1]/name" />

Price of the Potato is:

<x:out select="$output/vegetables/vegetable[2]/price" />

</body>

</html>

2. <x:set>

The <x:set> tag is used to set a variable with the value of an XPath

expression. It is used to store the result of xml path expression in a scoped

variable.

Example

<x:set var="fragment" select="$output/vegetables/vegetable[1]/name "/>

JSP Standard Tag Libraries

191

3. <x:choose>, <x:when>, <x:otherwise>

The <x:choose> tag is a conditional tag that establish a context for

mutually exclusive conditional operations. It works like a Java switch

statement in which we choose between a numbers of alternatives.

The <x:when> is subtag of <x:choose> that will include its body if the

condition evaluated be 'true'.

The <x:otherwise> is also subtag of <x:choose> it follows <x:when> tags

and runs only if all the prior condition evaluated is 'false'.

The <x:when> and <x:otherwise> works like if-else statement. But it must

be placed inside <x:choose> tag.

Example:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="x" uri="http://java.sun.com/jsp/jstl/xml" %>

 <html>

<head>

 <title>x:choose Tag</title>

</head>

<body>

<h3>Books Information:</h3>

 <c:set var="xmltext">

<books>

<book>

 <name>Three mistakes of my life</name>

 <author>Chetan Bhagat</author>

 <price>200</price>

</book>

<book>

 <name>Tomorrow land</name>

 <author>Brad Bird</author>

 <price>2000</price>

</book>

</books>

</c:set>

 <x:parse xml="${xmltext}" var="output"/>

<x:choose>

Enterprise Java

192

 <x:when select="$output//book/author = 'Chetan bhagat'">

 Book is written by Chetan bhagat

 </x:when>

 <x:when select="$output//book/author = 'Brad Bird'">

 Book is written by Brad Bird

 </x:when>

 <x:otherwise>

 The author is unknown...

</x:otherwise>

</x:choose>

</body>

</html>

Output:

Books Information:

Book is written by Brad Bird

4. <x:if>

The <x:if> tag is used for evaluating the test XPath expression. It is a

simple conditional tag which is used for evaluating its body if the supplied

condition is true.

Example:

<x:if select="$output/vegetables/vegetable/price < 100">

Vegetables prices are very low.

</x:if>

15.7 SUMMARY

JSTL allows JSP programming developers to create web applications

using tags rather than scriptlets (Java code).

1. JSTL tags are XML based tags, they cleanly and consistently blend

into a page‟s HTML markup tags.

2. JSTL makes use of UEL which makes it easier to call the getter and

setter methods on Java objects.

3. JSTL increases the processing burden on the server.

4. JSTL is composed of five tag libraries:

a. Core Tag Library

JSP Standard Tag Libraries

193

b. Functions Tag Library

c. Database/SQL Tag Library

d. Formatting Tag Library

e. XML Tag Library

15.8 LIST OF REFERENCES

1. Java EE 7 for Beginners, Sharanam Shah, Vaishali Shah, First

Edition, SPD

Web References:

1. https://www.tutorialspoint.com

2. https://www.javatpoint.com

15.9 QUESTIONS

Q1. What are the various advantages of using JSTL over scriptlets?

Q2. What are the various disadvantages of using JSTL?

Q3. Explain <xml:parse>,<xml:set> and <x:out> tags with example.

Q4. Explain how database connection can be established and queries can

be executed using Database Tag Library.

Q5. Explain any 5 tags of Formatting Tag Library.

Q6. What are the various conditional and iteration tags in Core Tag

Library?

https://www.tutorialspoint.com/
https://www.javatpoint.com/

194

UNIT IV

16
INTRODUCTION TO ENTERPRISE

JAVABEANS

Unit Structure

16.0 Objectives

16.1 Introduction

 16.1.1 When to use Enterprise Java Beans?

 16.1.2 Advantages of Enterprise Java Beans

 16.1.3 Disadvantages of Enterprise Java Beans

16.2 Architecture of EJB

16.2.1 Enterprise bean server

16.2.2 Enterprise bean container

16.2.3 Enterprise bean

 16.2.4 Enterprise bean clients

16.3 Container and its types

16.4 Types of Enterprise Java Beans

16.4.1 Session Bean

 16.4.2 Entity Bean

 16.4.3 Message Driven Beans

16.5 Accessing Enterprise Bean’

16.6 How to use Beans in Clients

 16.6.1 Remote Clients

 16.6.2 Local Clients

 16.6.3 Characteristics of Remote clients

 16.6.4 Characteristics of Local clients

16.7 Summary

16.8 References

16.9 Unit End Questions

16.0 OBJECTIVES

After going through this chapter, you will be able to:

• Understand use, advantage, disadvantage of EJB

• Analysis architecture of EJB.

• Type of Java Beans

• How to access and use beans in clients

Introduction to Enterprise

Javabeans

195

16.1 INTRODUCTION

What is EJB?:

EJB stands for Enterprise Java Bean.

An Enterprise Java Bean is in its basic form any POJO (Plain Old Java

Object) that is registered with the container in which it is deployed.

Enterprise Java Beans are deployed into an EJB container. The EJB

container is governed by the EJB specification.

EJB (Enterprise Java Bean) is used to develop scalable, robust and secured

enterprise applications in java.

EJB is a server-side software element that summarizes business logic of an

application.

Enterprise Java Beans (EJB) is a development architecture for building

highly scalable and robust enterprise level applications to be deployed on

J2EE compliant Application Server such as JBOSS, Web Logic etc.

EJB 3.0 is being a great shift from EJB 2.0 and makes development of

EJB based applications quite easy.

EJB stands for Enterprise Java Beans. EJB is an essential part of a J2EE

platform. J2EE platform has component based architecture to provide

multi-tiered, distributed and highly transactional features to enterprise

level applications.

EJB provides an architecture to develop and deploy component based

enterprise applications considering robustness, high scalability, and high

performance. An EJB application can be deployed on any of the

application server compliant with the J2EE 1.3 standard specification.

16.1.1 When to use Enterprise Java Beans?:

• Application needs Remote Access: In other words, it is distributed.

• Application needs to be scalable: EJB applications supports load

balancing, clustering and fail-over.

• Application needs encapsulated business logic: EJB application is

differentiated from demonstration and persistent layer.

16.1.2 Advantages of Enterprise Java Beans:

• Interoperability:

EJB architecture is mapped to standard CORBA.EJB make it work with

components developed in different language like VC++ and CORBA.

The EJB client view interface serves as well-defined integration point

between components built using different programming languages.

Enterprise Java

196

• One business logic having many presentation logic:

EJB performs a separation between business logic and presentation logic.

This separation makes it possible to develop multiple presentation logic

for the same business process.

• Complete Focus only on Business Logic:

This allows the server vendor to concentrate on system level

functionalities, while the developer can concentrate more on only the

business logic for the domain specific applications.

Developer need not code for these hardcore services. The results of

application get more quickly.

• Server-Side Write Once, Run Anywhere:

EJB uses java language which is portable across multiple platforms. They

can be developed once and then deployed multiple platforms without

recompilation or source code modification.

• EJB provides Distributed Transaction support:

EJB provides transparency for distributed transactions. This means that a

client can begin a transaction and then invoke methods on Beans present

within two different servers, running on different machines, platforms or

JVM.

• It provides of vendor specific enhancements:

Since the EJB specification provides a lot of flexibility for the vendors to

create their own enhancements, the EJB environment may end being

feature rich.

16.1.3 Disadvantages of Enterprise Java Beans:

• The EJB specification is an inconvenient tool because of its vast

documentation and complex nature. A good developer must take the

time to read and study the EJB specification - even if some

information is irrelevant to EJB code writing and deployment.

• EJB requires more development and debugging resources than basic

Java coding, as it is difficult to determine whether a bug is inside the

code or EJB container.

• EJB implementation is complex. For example, a developer may write

10 or more files (versus one) for a simple application, such as printing

simple text like "hello world."

• EJB specification changes result in obsolete code. Thus, making code

compatible with a new EJB container requires extra effort and higher

costs.

Introduction to Enterprise

Javabeans

197

16.2 ARCHITECTURE OF EJB

EJB Architecture:

The Enterprise JavaBeans (EJB) component architecture is designed to

enable enterprises to build scalable, secure, multiplatform, business-

critical applications as reusable, server-side components.

EJB architecture is at the heart of the Java 2 platform, Enterprise Edition

(J2EE). With the growth of the Web and the Internet, more and more

enterprise applications are now Web based, including both intranet and

extranet applications.

Together, the J2EE and EJB architectures provide superior support for

Web-based enterprise applications.

EJB architecture is composed of:

17 Enterprise bean server

18 Enterprise bean container

19 Enterprise bean

20 Enterprise bean clients

16.2.1 Enterprise Bean Server:

An EJB server is a component transaction server. It supports the EJB

server side component model for developing and deploying distributed

enterprise level applications in multi-tiered environment.

The key responsibilities of an Application Server are:

• Management API

• Process and thread management

• Database connection pooling and caching

• System Resources management

Enterprise Java

198

16.2.2 Enterprise Bean Container:

The EJB container is one of the logical constructs which makes up the Full

Java EE profile. An EJB container manages the enterprise beans contained

within it. EJB server provides one or more containers. From our

architecture diagram, we saw that the EJB container construct is the

second outmost construct of the architecture. Furthermore, its key

responsibilities are:

• It provides a runtime environment for Enterprise Java Beans

• It provides persistence management

• It is responsible for the Lifecycle management of EJBs

• It is in charge of ensuring that all EJBs are secured

16.2.3 Enterprise Bean:

Enterprise Beans are reusable modules code that combine related tasks

into well-defined interface.

These enterprise bean EJB components contain the methods that execute

business login and access data sources. Business component developed

using EJB architecture are called as Enterprise Beans.

EJBS are server-side components for encapsulating application's business

logic. An EJB can offer specific enterprise service either alone or in

conjunction with other EJBs.

16.2.4 Enterprise Bean Clients:

There are two types of client view:

• Remote Client View

• Local Client View

1. Remote Client View:

The remote client view specification became available beginning with EJB

1.1. The remote client view of an enterprise bean is location independent.

A client running in the same JVM as a bean instance uses the same API to

access the bean as a client running in a different JVM on the same or

different machine.

Remote interface: The remote interface specifies the remote business

methods that a client can call on an enterprise bean.

Remote home interface: The remote home interface specifies the

methods used by remote clients for locating, creating, and removing

instances of enterprise bean classes.

Introduction to Enterprise

Javabeans

199

2. Local Client View:

Unlike the remote client view, the local client view of a bean is location

dependent. Local client view access to an enterprise bean requires both the

local client and the enterprise bean that provides the local client view to be

in the same JVM.

The local client view therefore does not provide the location transparency

provided by the remote client view.

Local interfaces and local home interfaces provide support for lightweight

access from enterprise bean that are local clients.

Session and entity beans can be tightly couple with their clients, allowing

access without the overhead typically associated with remote method calls.

The local client view specification is available in EJB 2.0 or later.

Local interface:

The local interface is a lightweight version of the remote interface, but for

local clients. It includes business logic methods that can be called by a

local client.

Local home interface:

The local home interface specifies the methods used by local clients for

locating, creating, and removing instances of enterprise bean classes.

16.3 CONTAINER AND ITS TYPES

EJB Containers:

Enterprise beans (EJB components) are Java programming language

server components that contain business logic. The EJB container provides

local and remote access to enterprise beans.

The container is responsible for creating the enterprise bean, binding the

enterprise bean to the naming service so other application components can

access the enterprise bean, ensuring only authorized clients have access to

the enterprise bean’s methods, saving the bean’s state to persistent storage,

caching the state of the bean, and activating or passivating the bean when

necessary.

It is responsible for all the operations of the EJB applications.

The container acts as an intermediary action between the business logic of

the bean and the rest of the world of the enterprise application.

 One or more EJB modules can be installed within a single EJB

container.

 The role of EJB container is to perform transactional actions such as,

Enterprise Java

200

1. Starting a transaction.

2. Rollback a transaction or commit a transaction.

3. Managing various connection pools for the database resources.

4. Bean’s instance variables with corresponding data items which are

stored in a database will be synchronized.

The four types of container that J2EE supports:

1. EJB container

2. Web Container

3. Application client container

4. Applet client container

1) EJB Container:

 An EJB container will provide the runtime environment for EJB

applications within the application server.

 It is responsible for all the operations of the EJB applications.

 The container acts as an intermediary action between the business

logic of the bean and the rest of the world of the enterprise

application.

 One or more EJB modules can be installed within a single EJB

container. The role of EJB container is to perform transactional

actions such as,

1. Starting a transaction.

2. Rollback a transaction or commit a transaction.

3. Managing various connection pools for the database resources.

4. Bean’s instance variables with corresponding data items which are

stored in a database will be synchronized.

2) Web Container:

 A web container implements a web component such as servlet

container.

 A servlet container supports the operations of a servlet.

 It supports the web server operations and the client java operations

such as JRE,maps the URL specific requests into servlet requests.

 The servlet cotainers have the ability to dynamically add or remove

servlets from the system.

Introduction to Enterprise

Javabeans

201

 Individual servlets will get registered by the servlet container.

 The servlet API is provided by different vendors for a specific servlet

standard.

3) Application Client Container:

 An application client container includes set of java classes, libraries

and the set of files that are needed and distributed among various java

client applications which executes on their own JVMs.

 The ACC is responsible for managing the applications execution by

providing all the system services that are needed for the execution of

java client programs.

 It is light-weighted and communicates with different application

servers.

4) Applet client container:

 Like application client container, applet container executes the client

applications.

 The difference is an applet executes the application in a separate

browser.

 They execute on their own JVMs.

 It supports the applet programming model.

 JEE client may use java plug-in to provide the required environment

that executes the applet.

Developer classes vs. container classes:

 The developer classes are the classes that are authored by the

developers

 The container classes are the classes which supports the container to

manage the container specific functionality.

16.4 TYPES OF ENTERPRISE JAVA BEANS

Enterprise Java

202

The EJB 2.0 specification defines three types of Enterprise JavaBeans: the

session bean, the entity bean, and the message-driven bean.

Session beans contain business-processing logic. Entity beans contain

data-processing logic. Message-driven beans allow clients to

asynchronously invoke business logic.

16.4.1 Session Bean:

 Session beans are Java beans which encapsulate the business logic in

a centralized and reusable manner such that it can be used by a

number of clients.

 A session bean objects are short-lived.

 Are not persistent in a database.

 They can be stateful or stateless.

 Execute for a single client.

 Can be transaction aware.

As its name suggests, session beans implement a conversation between a

client and the server side. Session beans execute a particular business task

on behalf of a single client during a single session. They implement

business logic such as workflow, algorithms, and business rules.

Session beans are analogous to interactive sessions. Just as an interactive

session isn’t shared among users, a session bean is not shared among

clients. Like an interactive session, a session bean isn’t persistent (that is,

its data isn’t saved to a database). Session beans are removed when the

EJB container is shut down or crashes.

You can think of a session bean object as an extension of the client on the

server side. It works for its client, sparing the client from complexity by

executing business tasks inside the server.

Session beans typically contain business process logic and workflow, such

as sending an email, looking up a stock price from a database, and

implementing compression and encryption algorithms.

There are 3 types of Session beans:

 Stateless

 Stateful

 Singleton

I. Stateless Session Beans:

A stateless session bean, by comparison, does not maintain any

conversational state. Stateless session beans are pooled by their container

to handle multiple requests from multiple clients.

Introduction to Enterprise

Javabeans

203

II. Stateful Session Beans:

A stateful session bean acts on behalf of a single client and maintains

client-specific session information(called conversational state) across

multiple method calls and transactions. It exists for the duration of a single

client/server session.

III. Singleton Session Beans:

Provide shared data to client and components within an access application

and are instantiated only once per application.

16.4.2 Entity Beans:

If you’ve worked with databases, you’re familiar with persistent data. The

data in a database is persistent; that is, it exists even after the database

server is shut down.

 Entity beans are persistent objects. They typically represent business

entities, such as customers, products, accounts, and orders. Typically, each

entity bean has an underlying table in a relational database, and each

instance of the bean corresponds to a row in that table.

The state of an entity bean is persistent, transactional, and shared among

different clients. It hides complexity behind the bean and container

common services. Because the clients might want to change the same data,

it’s important that entity beans work within transactions. Entity beans

typically contain data-related logic, such as inserting, updating, and

removing a customer record in the database.

Two types of entity beans are relevant to persistence:

• container-managed persistence (CMP)

• bean-managed persistence (BMP).

In a CMP entity bean, the EJB container manages the bean’s persistence

according to the data-object mapping in the deployment descriptor. Any

change in the entity bean’s state will be automatically saved to the

database by the container. No code is required in the bean to reflect these

changes or to manage the database connection. On the other hand, a BMP

entity bean has to manage both the database connections and all the

changes to the bean’s state.(Entity bean that manage their own persistence

are called BMP entity bean.)

16.4.3 Message Driven Beans:

Message-driven beans are enterprise beans that receive and process JMS

messages. Unlike session or entity heans, message-driven be ans have no

interfaces. They can be accessed only through messaging and they do not

maintain any conversational state.

Enterprise Java

204

Message-driven beans allow asynchronous communication between the

queue and the listener, and provide separation between message

processing and business logic.

Message driven beans are:

 Do not have home and component interface.

 Do not have business methods but define message listener method

which the EJB container invokes to deliver messages.

 Do not hold any state between calls of the message listener method.

 Are relatively short-lived.

 Can be Transaction aware.

 Do not represent directly shared data in the database, but they can

access and update this data.

In synchronous communication, the client blocks until the server-side

object completes processing. In asynchronous communication, the client

sends its message and does not need to wait for the receiver to receive or

process the message. Session and entity beans process messages

synchronously.

Message-driven beans, on the other hand, are stateless components that

are asynchronously invoked by the container as a result of the arrival of a

Java Message Service (JMS) message. A message-driven bean receives a

message from a JMS destination, such as a queue or topic, and performs

business logic based on the message contents, such as logic to receive and

process a client notification.

An example of a message-driven bean is when a shopper makes an online

purchase order; an order bean could notify a credit verification bean. A

credit verification bean could check the shopper’s credit card in the

background and send a notification message for approval. Because this

notification is asynchronous, the shopper doesn’t have to wait for the

background processing to complete.

16.5 ACCESSING ENTERPRISE BEANS

Enterprise beans are accessed by the client in two ways either through a

no-interface view or through a business interface.

• No-interface view:

A no-interface view of an enterprise bean exposes the public methods of

the enterprise bean implementation class to clients.

Clients using the no-interface view of an enterprise bean may invoke any

public methods in the enterprise bean implementation class or any

superclasses of the implementation class.

Introduction to Enterprise

Javabeans

205

• Business interface:

A business interface is a standard Java programming language interface

that contains the business methods of the enterprise bean.

To use a session bean client will have to required either bean's business's

interface methods or enterprise bean's public methods which has a no-

interface view.

Session beans can have more than one business interface. Session beans

should, but are not required to, implement their business interface or

interfaces.

16.6 HOW TO USE ENTERPRISE BEANS IN CLIENTS

The client of an enterprise bean obtains a reference to an instance of an

enterprise bean through either dependency injection, using Java

programming language annotations, or JNDI lookup, using the Java

Naming and Directory Interface syntax to find the enterprise bean

instance.

Dependency injection is the simplest way of obtaining an enterprise bean

reference. Clients that run within a Java EE server-managed environment,

Java Server Faces web applications, JAX-RS web services, other

enterprise beans, or Java EE application clients, support dependency

injection using the javax.ejb.EJB annotation.

Applications that run outside a Java EE server-managed environment,

such as Java SE applications, explicit lookup. JNDI supports a must

perform an global syntax for identifying Java EE components to simplify

this explicit lookup.

16.6.1 Remote or Local Access:

1. Local Clients:

A local client has these characteristics.

• It must run in the same application as the enterprise bean it accesses.

• It can be a web component or another enterprise bean.

• To the local client, the location of the enterprise bean it accesses is not

transparent.

Accessing Local Enterprise Beans Using the No-Interface View:

Client access to an enterprise bean that exposes a local, no-interface view

is accomplished through either dependency injection or JNDI lookup.

To obtain a reference to the no-interface view of an enterprise bean

through dependency injection, use the javax.ejb.EJB annotation and

specify the enterprise bean's implementation class

Enterprise Java

206

@EJB

ExampleBean exampleBean;

To obtain a reference to the no-interface view of an enterprise bean

through JNDI lookup, use the javax.naming.InitialContext interface's

lookup method:

ExampleBean exampleBean=(ExampleBean)

InitialContext.lookup("java:module/ExampleBean");

Clients do not use the new operator to obtain a new instance of an

enterprise bean that uses a no-interface view.

16.6.2 Remote Clients:

A remote client of an enterprise bean has the following characteristics.

It can run on a different machine and a different JVM from the enterprise

bean it accesses. (It is not required to run on a different JVM.)

It can be a web component, an application client, or another enterprise

bean.

To a remote client, the location of the enterprise bean is transparent.

The enterprise bean must implement a business interface. That is, remote

clients may not access an enterprise bean through a no-interface view.

Accessing Remote Enterprise Beans Using the business Interface

View:

Client access to an enterprise bean that implements a remote business

interface is

accomplished through either dependency injection or JNDI lookup.

To obtain a reference to the remote business interface of an enterprise

bean through

dependency injection, use the javax.ejb.EJB annotation and specify the

enterprise bean's remote business interface name:

@EJB

Example:

To obtain a reference to a remote business interface of an enterprise bean

through JNDI lookup, use the javax.naming.InitialContext interface's

lookup method:

ExampleRemote example=(ExampleRemote)

InitialContext.lookup("java:global/myApp/ExampleRemote");

Introduction to Enterprise

Javabeans

207

16.6.3 Characteristics of Local clients:

• They must run in the same application.

• Clients can be a web component or other enterprise bean.

• To the local client the location of the enterprise bean it accesses is not

transparent.

16.6.4 Characteristics of Remote clients:

• An enterprise bean which will access the client, called remote client if

it run on an other machine or JVM however, running on different

JVM is not necessary.

• Clients can be a web component, an application client, or other

enterprise bean.

• To the Remote client the location of the enterprise bean it accesses is

transparent

• Remote clients which will use an enterprise bean that, enterprise bean

will must have to implement the business interface.

EnterpriseBeanApplication/PackagingEnterpriseBeans

Enterprise Java

208

16.7 SUMMARY

EJB stands for Enterprise Java Beans. EJB is an essential part of a J2EE

platform. J2EE platform has component based architecture to provide

multi-tiered, distributed and highly transactional features to enterprise

level applications.

EJB provides an architecture to develop and deploy component based

enterprise applications considering robustness, high scalability, and high

performance. An EJB application can be deployed on any of the

application server compliant with the J2EE 1.3 standard specification

16.8 REFERENCES

1. Java EE for beginners by-Sharanam Shah

2. Advanced Java Programming by-Uttan Kumar Roy

3. Java EE 8 by-Elder Moreas

4. www.javatutorial.com

16.9 UNIT END QUESTIONS

1. Explain EJB with advantages and disadvantages?

2. Explain different types of EJB?

3. How to use Enterprise Beans in clients?

4. Explain characteristics of local clients?

209

17
WORKING WITH SESSION BEANS AND

MESSAGE DRIVEN BEAN

Unit Structure

17.0 Objectives

17.1 Introduction

 17.1.1 What is Session Beans?

 17.1.2 When to use Session Bean?

17.2 Types of Session Beans

17.3 Remote and local Interface

17.4 Accessing Interfaces

17.5 Accessing Local Enterprise Beans That Implement Business

Interfaces

17.6 When to Use Message-Driven Beans

17.7 The Lifecycle of a Message-Driven Bean

17.8 Message Driven Bean Example

17.9 Summary

17.10 References

17.11 Unit End Questions

17.0 OBJECTIVES

After going through this chapter, you will be able to:

• Understand use, advantage, disadvantage of Session Beans

• When to use session beans.

• Type of Session Beans

• How to access and beans in different interfaces

• Understand what is message Driven Beans

• Life Cycle of Message Driven Beans

• Use of Message Driven Beans

17.1 INTRODUCTION

17.1.1 What is Session Bean?:

A session bean is an EJB 3.0 or EJB 2.1 enterprise bean component

created by a client for the duration of a single client/server session. The

session bean performs work for its client, shielding it from complexity by

executing business tasks inside the server.

Enterprise Java

210

A session bean is not persistent. (That is, its data is not saved to a

database.)

A session bean encapsulates business logic that can be invoked

programmatically by a client over local, remote, or web service client

views.

17.1.2 When to Use Session Beans:

Stateful session beans are appropriate if any of the following conditions

are true.

• The bean’s state represents the interaction between the bean and a

specific client.

• The bean needs to hold information about the client across method

invocations.

• The bean mediates between the client and the other components of the

application, presenting a simplified view to the client.

• Behind the scenes, the bean manages the work flow of several

enterprise beans.

To improve performance, you might choose a stateless session bean if it

has any of these traits.

• The bean’s state has no data for a specific client.

• In a single method invocation, the bean performs a generic task for all

clients. For example, you might use a stateless session bean to send an

email that confirms an online order.

• The bean implements a web service.

Singleton session beans are appropriate in the following circumstances.

• State needs to be shared across the application.

• A single enterprise bean needs to be accessed by multiple threads

concurrently.

• The application needs an enterprise bean to perform tasks upon

application startup and shutdown.

• The bean implements a web service.

17.2 TYPES OF SESSION BEANS

Session beans are of three types: stateful, stateless, and singleton.

Stateful Session Beans:

The state of an object consists of the values of its instance variables. In a

stateful session bean, the instance variables represent the state of a unique

Working with Session Beans

and Message Driven Bean

211

client/bean session. Because the client interacts (“talks”) with its bean, this

state is often called the conversational state.

As its name suggests, a session bean is similar to an interactive session. A

session bean is not shared; it can have only one client, in the same way

that an interactive session can have only one user. When the client

terminates, its session bean appears to terminate and is no longer

associated with the client.

The state is retained for the duration of the client/bean session. If the client

removes the bean, the session ends and the state disappears. This transient

nature of the state is not a problem, however, because when the

conversation between the client and the bean ends, there is no need to

retain the state.

Stateless Session Beans:

A stateless session bean does not maintain a conversational state with the

client. When a client invokes the methods of a stateless bean, the bean’s

instance variables may contain a state specific to that client but only for

the duration of the invocation. When the method is finished, the client-

specific state should not be retained. Clients may, however, change the

state of instance variables in pooled stateless beans, and this state is held

over to the next invocation of the pooled stateless bean. Except during

method invocation, all instances of a stateless bean are equivalent,

allowing the EJB container to assign an instance to any client. That is, the

state of a stateless session bean should apply across all clients.

Because they can support multiple clients, stateless session beans can offer

better scalability for applications that require large numbers of clients.

Typically, an application requires fewer stateless session beans than

stateful session beans to support the same number of clients.

A stateless session bean can implement a web service, but a stateful

session bean cannot.

Singleton Session Beans:

A singleton session bean is instantiated once per application and exists

for the lifecycle of the application. Singleton session beans are designed

for circumstances in which a single enterprise bean instance is shared

across and concurrently accessed by clients.

Singleton session beans offer similar functionality to stateless session

beans but differ from them in that there is only one singleton session bean

per application, as opposed to a pool of stateless session beans, any of

which may respond to a client request. Like stateless session beans,

singleton session beans can implement web service endpoints.

Singleton session beans maintain their state between client invocations but

are not required to maintain their state across server crashes or shutdowns.

Enterprise Java

212

Applications that use a singleton session bean may specify that the

singleton should be instantiated upon application startup, which allows the

singleton to perform initialization tasks for the application. The singleton

may perform cleanup tasks on application shutdown as well, because the

singleton will operate throughout the lifecycle of the application.

17.3 REMOTE AND LOCAL INTERFACES

1. Local interface:

The local interface is used for Local client. Local interface are the type of

interface that are used for making local connections to EJB. @Local

annotation is used for declaring interface as Local. Javax.ejb.Local

package is used for creating Local interface.

Syntax:

@Local

public interface InterfaceName { ... }

Example:

Package ejb;

import javax.ejb.Local;

@Local

Public interface SessionLocal

{

}

2. Remote interface:

The Remote interface is used for Remote client. Remote interface are the

interface that has the methods that relate to a particular bean instance.

@Remote annotation is used for declaring interface as Remote.

Javax.ejb.Remote package is used for creating Remote interface.

Syntax:

@Remote

public interface InterfaceName { ... }

Example:

Package ejb;

import javax.ejb.Remote;

@Remote

Public interface SessionRemote

Working with Session Beans

and Message Driven Bean

213

{

 String getMessage();

 String getAddress();

}

17.4 ACCESSING INTERFACES

Accessing Local Enterprise Beans Using the No-Interface View:

Client access to an enterprise bean that exposes a local, no-interface view

is accomplished through either dependency injection or JNDI lookup.

• To obtain a reference to the no-interface view of an enterprise bean

through dependency injection, use the javax.ejb.EJB annotation and

specify the enterprise bean’s implementation class:

• @EJB

ExampleBean exampleBean;

• To obtain a reference to the no-interface view of an enterprise bean

through JNDI lookup, use the javax.naming.InitialContext interface’s

lookup method:

• ExampleBean exampleBean = (ExampleBean)

 InitialContext.lookup("java:module/ExampleBean");

Clients do not use the new operator to obtain a new instance of an

enterprise bean that uses a no-interface view.

17.5 ACCESSING LOCAL ENTERPRISE BEANS THAT

IMPLEMENT BUSINESS INTERFACES

Client access to enterprise beans that implement local business interfaces

is accomplished through either dependency injection or JNDI lookup.

• To obtain a reference to the local business interface of an enterprise

bean through dependency injection, use the javax.ejb.EJB annotation

and specify the enterprise bean’s local business interface name:

• @EJB

Example example;

• To obtain a reference to a local business interface of an enterprise

bean through JNDI lookup, use the javax.naming.InitialContext

interface’s lookup method:

• ExampleLocal example = (ExampleLocal)

 InitialContext.lookup("java:module/ExampleLocal");

Enterprise Java

214

17.6 WHEN TO USE MESSAGE-DRIVEN BEANS

A message driven bean (MDB) is a bean that contains business logic. But,

it is invoked by passing the message. So, it is like JMS Receiver.

MDB asynchronously receives the message and processes it.

A message driven bean receives message from queue or topic, so you must

have the knowledge of JMS API.

A message-driven bean is an enterprise bean that allows Java EE

applications to process messages asynchronously. This type of bean

normally acts as a JMS message listener, which is similar to an event

listener but receives JMS messages instead of events. The messages can be

sent by any Java EE component (an application client, another enterprise

bean, or a web component) or by a JMS application or system that does

not use Java EE technology. Message-driven beans can process JMS

messages or other kinds of messages.

Session beans allow you to send JMS messages and to receive them

synchronously but not asynchronously. To avoid tying up server

resources, do not to use blocking synchronous receives in a server-side

component; in general, JMS messages should not be sent or received

synchronously. To receive messages asynchronously, use a message-

driven bean.

17.7 THE LIFECYCLE OF A MESSAGE-DRIVEN BEAN

Figure illustrates the stages in the lifecycle of a message-driven bean.

Figure illustrates Lifecycle of a Message-Driven Bean:

Working with Session Beans

and Message Driven Bean

215

The EJB container usually creates a pool of message-driven bean

instances. For each instance, the EJB container performs these tasks.

1. If the message-driven bean uses dependency injection, the container

injects these references before instantiating the instance.

2. The container calls the method annotated @PostConstruct, if any.

Like a stateless session bean, a message-driven bean is never passivated

and has only two states: nonexistent and ready to receive messages.

At the end of the lifecycle, the container calls the method annotated

@PreDestroy, if any. The bean’s instance is then ready for garbage

collection

17.8 MESSAGE DRIVEN BEAN EXAMPLE

To create the message driven bean, you need to declare @MessageDriven

annotation and implement MessageListener interface.

In eclipse ide, create EJB Project then create a class as given below:

File: MyListener.java

1. package com.javatpoint;

2. import javax.ejb.MessageDriven;

3. import javax.jms.*;

4.

5. @MessageDriven(mappedName="myTopic")

6. public class MyListener implements MessageListener{

7. @Override

8. public void onMessage(Message msg) {

9. TextMessage m=(TextMessage)msg;

10. try{

11. System.out.println("message received: "+m.getText());

12. }catch(Exception e){System.out.println(e);}

13. }

14. }

17.9 SUMMARY

A message-driven bean is an enterprise bean that allows Java EE

applications to process messages asynchronously. This type of bean

normally acts as a JMS message listener, which is similar to an event

listener but receives JMS messages instead of events. The messages can be

sent by any Java EE component (an application client, another enterprise

Enterprise Java

216

bean, or a web component) or by a JMS application or system that does

not use Java EE technology. Message-driven beans can process JMS

messages or other kinds of messages.

The most visible difference between message-driven beans and session

beans is that clients do not access message-driven beans through

interfaces. Unlike a session bean, a message-driven bean has only a bean

class. A session bean encapsulates business logic that can be invoked

programmatically by a client over local, remote, or web service client

views. To access an application that is deployed on the server, the client

invokes the session bean’s methods.

17.10 REFERENCES

1. Java EE for beginners by-Sharanam Shah

2. Advanced Java Programming by-Uttan Kumar Roy

3. Java EE 8 by-Elder Moreas

4. www.javatutorial.com

17.11 UNIT END QUESTIONS

1. What is session beans? Explain use of session beans.

2. What are the types of session beans?

3. Explain local and remote interfaces

4. What is Message Driven Beans with its uses?

5. Explain Lifecycle of Message Driven Beans?

6. Write a program to show implementation of Message Driven Beans?

217

18
INTERCEPTORS

Unit Structure

18.0 Objectives

18.1 Introduction

18.2 Interceptor Metadata Annotations

18.3 Interceptor Classes

18.4 Interceptor Lifecycle

18.5 The Interceptor Application

18.6 Running the interceptor Example

18.7 Services

 18.7.1Naming Service

 18.7.2 Directory Service

18.8 Characteristics of Directory Services

18.9 Architecture

18.10 Different Packages

18.11 Resources and JNDI Naming

18.12 Summary

18.13 References

18.14 Unit End Questions

18.0 OBJECTIVES

After going through this chapter, you will be able to:

• Understand what is interceptors

• LifeCycle of interceptors

• Different annotations of interceptors

• Understand what is naming directory

• Different packages of directory

• Its Architecture

18.1 INTRODUCTION

Interceptors are used in conjunction with Java EE managed classes to

allow developers to invoke interceptor methods on an associated target

class, in conjunction with method invocations or lifecycle events.

Common uses of interceptors are logging, auditing, and profiling. An

interceptor can be defined within a target class as an interceptor method,

or in an associated class called an interceptor class. Interceptor classes

Enterprise Java

218

contain methods that are invoked in conjunction with the methods or

lifecycle events of the target class.

Interceptor classes and methods are defined using metadata annotations, or

in the deployment descriptor of the application containing the interceptors

and target classes.

18.2 INTERCEPTOR METADATA ANNOTATIONS

Interceptor Metadata

Annotation

Description

javax.interceptor.AroundInvoke Designates the method as an

interceptor method.

javax.interceptor.AroundTimeout Designates the method as a timeout

interceptor, for interposing on

timeout methods for enterprise bean

timers.

javax.annotation.PostConstruct Designates the method as an

interceptor method for post-

construct lifecycle events.

javax.annotation.PreDestroy Designates the method as an

interceptor method for pre-destroy

lifecycle events.

18.3 INTERCEPTOR CLASSES

Interceptor classes may be designated with the optional

javax.interceptor.Interceptor annotation, but interceptor classes aren’t

required to be so annotated. An interceptor class must have a public, no-

argument constructor.

The target class can have any number of interceptor classes associated

with it. The order in which the interceptor classes are invoked is

determined by the order in which the interceptor classes are defined in the

javax.interceptor.Interceptors annotation. However, this order can be

overridden in the deployment descriptor.

Interceptor classes may be targets of dependency injection. Dependency

injection occurs when the interceptor class instance is created, using the

naming context of the associated target class, and before any

@PostConstruct callbacks are invoked.

18.4 INTERCEPTOR LIFECYCLE

Interceptor classes have the same lifecycle as their associated target class.

When a target class instance is created, an interceptor class instance is also

created for each declared interceptor class in the target class. That is, if the

target class declares multiple interceptor classes, an instance of each class

is created when the target class instance is created. The target class

instance and all interceptor class instances are fully instantiated before any

@PostConstruct callbacks are invoked, and any @PreDestroy callbacks

Interceptors

219

are invoked before the target class and interceptor class instances are

destroyed.

18.5 THE INTERCEPTOR APPLICATION

The interceptor example demonstrates how to use an interceptor class,

containing an @AroundInvoke interceptor method, with a stateless session

bean.

The HelloBean stateless session bean is a simple enterprise bean with two

business methods, getName and setName, to retrieve and modify a string.

The setName business method has an @Interceptors annotation that

specifies an interceptor class, HelloInterceptor, for that method.

@Interceptors(HelloInterceptor.class)

public void setName(String name) {

 this.name = name;

}

The HelloInterceptor class defines an @AroundInvoke interceptor

method, modifyGreeting, that converts the string passed to

HelloBean.setName to lowercase.

@AroundInvoke

public Object modifyGreeting(InvocationContext ctx) throws Exception {

 Object[] parameters = ctx.getParameters();

 String param = (String) parameters[0];

 param = param.toLowerCase();

 parameters[0] = param;

 ctx.setParameters(parameters);

 try {

 return ctx.proceed();

 } catch (Exception e) {

 logger.warning("Error calling ctx.proceed in modifyGreeting()");

 return null;

 }

}

The parameters to HelloBean.setName are retrieved and stored in an

Object array by calling the InvocationContext.getParameters method.

Because setName has only one parameter, it is the first and only element

in the array. The string is set to lowercase and stored in the parameters

array, then passed to InvocationContext.setParameters. To return control

to the session bean, InvocationContext.proceed is called.

Enterprise Java

220

The user interface of interceptor is a JavaServer Faces web application

that consists of two Facelets views: index.xhtml, which contains a form

for entering the name, and response.xhtml, which displays the final name.

18.6 RUNNING THE INTERCEPTOR EXAMPLE

You can use either NetBeans IDE or Ant to build, package, deploy, and

run the interceptor example.

To Run the interceptor Example Using NetBeans IDE:

1. From the File menu, choose Open Project.

2. In the Open Project dialog, navigate to tut-install/examples/ejb/.

3. Select the interceptor folder and click Open Project.

4. In the Projects tab, right-click the interceptor project and select Run.

This will compile, deploy, and run the interceptor example, opening a

web browser page to http://localhost:8080/interceptor/.

5. Type a name into the form and select Submit.

The name will be converted to lowercase by the method interceptor

defined in the HelloInterceptor class.

To Run the interceptor Example Using Ant:

1. Go to the following directory:

tut-install/examples/ejb/interceptor/

2. To compile the source files and package the application, use the

following command:

ant

This command calls the default target, which builds and packages the

application into a WAR file, interceptor.war, located in the dist

directory.

3. To deploy and run the application using Ant, use the following

command:

ant run

This command deploys and runs the interceptor example, opening a

web browser page to http://localhost:8080/interceptor/.

4. Type a name into the form and select Submit:

The name will be converted to lowercase by the method interceptor

defined in the Hello Interceptor class.

Interceptors

221

18.7 SERVICES

The Java Naming and Directory Interface™ (JNDI) is an application

programming interface (API) that provides naming and directory

functionality to applications written using the Java™ programming

language. It is defined to be independent of any specific directory service

implementation. Thus a variety of directories -new, emerging, and already

deployed can be accessed in a common way.

18.7.1 Naming Service:

The Java Naming and Directory Interface (JNDI) is an application

programming interface (API) for accessing different kinds of naming and

directory services. JNDI is not specific to a particular naming or directory

service, it can be used to access many different kinds of systems including

file systems; distributed objects systems like CORBA, Java RMI, and

EJB; and directory services like LDAP, Novell NetWare, and NIS+.

JNDI is similar to JDBC in that they are both Object-Oriented Java APIs

that provide a common abstraction for accessing services from different

vendors. While JDBC can be used to access a variety of relational

databases, JNDI can be used to access a variety of of naming and directory

services. Using one API to access many different brands of a service is

possible because both JDBC and JNDI subscribe to the same architectural

tenet: Define a common abstraction that most vendors can implement. The

common abstraction is the API. It provides an objectified view of a service

while hiding the details specific to any brand of service. The

implementation is provided by the vendor, it plugs into the API and

implements code specific to accessing that vendor's product.

JNDI provides two APIs and one SPI. JNDI has a naming API that allows

Java applications to access naming systems like CORBA's Naming

services and a directory API that extends the naming service to provide

access to directory services like LDAP. JNDI also has a SPI (Service-

Provider Interface) which is a programming model that vendors use to

write JNDI plug-ins or implementations for their specific product. Each

vendor's plug-in is called a service-provider. A service-provider

implements the JNDI APIs so that a Java application can access that

vendor's product. For the most part, JNDI hides the implementation details

of the a service-provider so that Java developer that uses JNDI can use the

same objects and method regardless of the brand of naming or directory

service accessed. This is the real power behind APIs like JDBC and JNDI:

They provide one programming model for accessing many different

products; there is no need to learn a different programming model every

time a different product is used.

18.7.2 Directory Service:

Directory services are an essential part of today’s network-centric

computing infrastructure. Directory-enabled applications now power

almost all the mission critical processes of an enterprise, including

Enterprise Java

222

resource planning, value chain management, security and firewalls, and

resource provisioning. Directory services also provide the foundation for

deployment of e-business and extranet applications. So what exactly is a

Directory Service?

A directory service is the collection of software and processes that store

information about your enterprise, subscribers, or both. An example of a

directory service is the Domain Name System (DNS), which is provided

by DNS servers. A DNS server stores the mappings of computer host

names and other forms of domain name to IP addresses. A DNS client

sends questions to a DNS server about these mappings (e.g. what is the IP

address of test.example.com?). Thus, all of the computing resources

(hosts) become clients of the DNS server. The mapping of host names

enables users of the computing resources to locate computers on a

network, using host names rather than complex numerical IP addresses.

Whereas the DNS server stores only two types of information: names and

IP addresses, an LDAP directory service can store information on many

other kinds of real-world and conceptual objects. Sun Java System

Directory Server stores all of these types of information in a single,

network-accessible repository. You may for example want to store

physical device information, employee information (name, E-mail

address), contract or account information (name, delivery dates, contract

numbers, etc.), authentication information, manufactured production

information. It is worth noting that although a directory service can be

considered an extension of a

18.8 CHARACTERISTICS OF DIRECTORY SERVICES

• Hierarchical naming model:

A hierarchical naming model uses the concept of containment to reduce

ambiguity between names and simplify administration. The name for most

objects in the directory is relative to the name of some other object which

conceptually contains it. For example, the name of an object representing

an employee of a particular company contains the name of the object

representing the company, and the name of the company might contain the

name of the objects representing the country where the company operates,

e.g. cn=John Smith, o=Example Corporation, c=US. Together the names

of all objects in the directory service form a tree, and each Directory

Server holds a branch of that tree, which in the Sun Java System Directory

Server documentation is also referred to as a suffix.

• Extended search capability:

Directory services provide robust search capabilities, allowing searches on

individual attributes of entries.

• Distributed information model:

A directory service enables directory data to be distributed across multiple

servers within a network.

Interceptors

223

• Shared network access:

While databases are defined in terms of APIs, directories are defined in

terms of protocols. Directory access implies network access by definition.

Directories are designed specifically for shared access among applications.

This is achieved through the object-oriented schema model. By contrast,

most databases are designed for use only by particular applications and do

not encourage data sharing.

• Replicated data:

Directories support replication (copies of directory data on more than one

server) which make information systems more accessible and more

resistant to failure.

• Datastore optimized for reads:

The storage mechanism in a directory service is generally designed to

support a high ratio of reads to writes.

• Extensible schema:

The schema describes the type of data stored in the directory. Directory

services generally support the extension of schema, meaning that new data

types can be added to the directory.

18.9 ARCHITECTURE

The JNDI architecture consists of an API and a service provider interface

(SPI). Java applications use the JNDI API to access a variety of naming

and directory services. The SPI enables a variety of naming and directory

services to be plugged in transparently, thereby allowing the Java

application using the JNDI API to access their services.

Enterprise Java

224

Packaging:

JNDI is included in the Java SE Platform. To use the JNDI, you must have

the JNDI classes and one or more service providers. The JDK includes

service providers for the following naming/directory services:

• Lightweight Directory Access Protocol (LDAP)

• Common Object Request Broker Architecture (CORBA) Common

Object Services (COS) name service

• Java Remote Method Invocation (RMI) Registry

• Domain Name Service (DNS)

Other service providers can be downloaded from the JNDI page or

obtained from other vendors.

18.10 DIFFERENT PACKAGES

The JNDI is divided into five packages:

• javax.naming

• javax.naming.directory

• javax.naming.ldap

• javax.naming.event

• javax.naming.spi

Naming Package:

The javax.naming package contains classes and interfaces for accessing

naming services.

Context:

The javax.naming package defines a Context interface, which is the core

interface for looking up, binding/unbinding, renaming objects and creating

and destroying subcontexts.

Lookup:

The most commonly used operation is lookup(). You supply lookup() the

name of the object you want to look up, and it returns the object bound to

that name.

Bindings:

listBindings() returns an enumeration of name-to-object bindings. A

binding is a tuple containing the name of the bound object, the name of the

object's class, and the object itself.

Interceptors

225

List:

list() is similar to listBindings(), except that it returns an enumeration of

names containing an object's name and the name of the object's class. list()

is useful for applications such as browsers that want to discover

information about the objects bound within a context but that don't need

all of the actual objects. Although listBindings() provides all of the same

information, it is potentially a much more expensive operation.

Name:

Name is an interface that represents a generic name—an ordered sequence

of zero or more components. The Naming Systems use this interface to

define the names that follow its conventions as described in the Naming

and Directory Concepts lesson.

References:

Objects are stored in naming and directory services in different ways. A

reference might be a very compact representation of an object.

The JNDI defines the Reference class to represent reference. A reference

contains information on how to construct a copy of the object. The JNDI

will attempt to turn references looked up from the directory into the Java

objects that they represent so that JNDI clients have the illusion that what

is stored in the directory are Java objects.

18.11 RESOURCES AND JNDI NAMING

In a distributed application, components need to access other components

and resources, such as databases. For example, a servlet might invoke

remote methods on an enterprise bean that retrieves information from a

database. In the Java EE platform, the Java Naming and Directory

Interface (JNDI) naming service enables components to locate other

components and resources.

A resource is a program object that provides connections to systems, such

as database servers and messaging systems. (A Java Database

Connectivity resource is sometimes referred to as a data source.) Each

resource object is identified by a unique, people-friendly name, called the

JNDI name. For example, the JNDI name of the JDBC resource for the

Java DB database that is shipped with the GlassFish Server is

jdbc/__default.

An administrator creates resources in a JNDI namespace. In the GlassFish

Server, you can use either the Administration Console or the asadmin

command to create resources. Applications then use annotations to inject

the resources. If an application uses resource injection, the GlassFish

Server invokes the JNDI API, and the application is not required to do so.

However, it is also possible for an application to locate resources by

making direct calls to the JNDI API.

Enterprise Java

226

A resource object and its JNDI name are bound together by the naming

and directory service. To create a new resource, a new name/object

binding is entered into the JNDI namespace. You inject resources by using

the @Resource annotation in an application.

You can use a deployment descriptor to override the resource mapping

that you specify in an annotation. Using a deployment descriptor allows

you to change an application by repackaging it rather than by both

recompiling the source files and repackaging. However, for most

applications, a deployment descriptor is not necessary.

Data source resource definition in Javav EE:

DataSource resources are used to define a set of properties required to

identify and access a database through the JDBC API. These properties

include information such as the URL of the database server, the name of

the database, and the network protocol to use to communicate with the

server. DataSource objects are registered with the Java Naming and

Directory Interface (JNDI) naming service so that applications can use the

JNDI API to access a DataSource object to make a connection with a

database.

Prior to Java EE 7, DataSource resources were created administratively as

described in Configuring WebLogic JDBC Resources in Administering

JDBC Data Sources for Oracle WebLogic Server. Java EE 7 provides the

option to programmatically define DataSource resources for a more

flexible and portable method of database connectivity.

The name element uniquely id entifies a DataSource and is registered with

JNDI. The value specified in the name element begins with a namespace

scope. Java EE 7 includes the following scopes:

• java:comp: Names in this namespace have per-component visibility.

• java:module: Names in this namespace are shared by all components

in a module, for example, the EJB components defined in an a ejb-

jar.xml file.

• java:app: Names in this namespace are shared by all components and

modules in an application, for example, the application-client, web,

and EJB components in an .ear file.

• java:global: Names in this namespace are shared by all the

applications in the server.

18.12 SUMMARY

Interceptors are used in conjunction with Java EE managed classes to

allow developers to invoke interceptor methods on an associated target

class, in conjunction with method invocations or lifecycle events.

Common uses of interceptors are logging, auditing, and profiling.

Interceptors

227

Clients use the naming service to locate objects by name. The Java

Naming and Directory Interface (JNDI) is designed by Sun Microsystems

Ltd. to simplify access to the directory infrastructure, which advanced

network applications are being built on, by providing an unified set of

interfaces

18.13 REFERENCES

1. Java EE for beginners by-Sharanam Shah

2. Advanced Java Programming by-Uttan Kumar Roy

3. Java EE 8 by-Elder Moreas

4. www.javatutorial.com

18.14 UNIT END QUESTIONS

1. What is interceptors with different annotations?

2. Explain interceptors lifecycle?

3. Explain the steps for running interceptors application?

4. Explain interceptors with example?

5. What is naming service and directory service ?

6. Explain Characteristics of Directory Service?

7. Explain different packages of java naming directory?

228

UNIT V

19

PERSISTENCE, OBJECT/RELATIONAL

MAPPING AND JPA

Unit Structure

19.1 Objectives

19.2 Persistence, Object/Relational Mapping And JPA

19.3 What is Persistence?

19.4 Persistence in Java

19.5 Current Persistence Standards in Java

19.6 Why another Persistence Standards?

19.7 Object/Relational Mapping

19.8 Summary

19.9 Sample Questions

19.10 References

19.1 OBJECTIVES

This chapter will introduce Data Persistence it’s means for an application

to persist and retrieve information from a non-volatile storage system.

Persistence is vital to enterprise applications because of the required

access to relational databases.

19.2 PERSISTENCE, OBJECT/RELATIONAL MAPPING

AND JPA

Data is an important asset to any computer application. All computer

applications require that a person or another computer access their data.

This data is used in different ways.

Data can be:

 Read-only

 Read-write

 Read for update over multiple requests

 Modified through batch updates

 Used in bulk data retrieval

The attention span of a computer is only as long as its cord is connected to

a power supply. The precious data is within the confines of electronic

Persistence, Object/Relational

Mapping and JPA

229

memory. If the application does not preserve data when it was powered

off, the application is of little or rather no practical use. Hence, it is

required to make the precious data live longer than the application. This is

where Persistence comes in.

19.3 WHAT IS PERSISTENCE?

Most business applications require that data must be persistent. Data can

be labeled as persistent only when it manages to survive day to day

problems such as system crashes and network failures. Often multiple

users request for data simultaneously. Here, there is a definite possibility

of data getting corrupt, if mid-request, system failure, occurs. Maintaining

the persistence of data in an enterprise wide application is quite a

challenging job.

In enterprise application architecture, data persistence is implemented as:

 Having data stored outside an application’s active memory, known as

persistent data store, typically, a relational database or an object

database or a flat file system

 Having a rollback system, where, in case of system failure, the state

of the data is rolled back to its last known valid data state

Persistence is one of the fundamental concepts of application

development. It allows DATA to outlive the execution of an application

that created it. It is one of the most vital pieces of an application without

which all the data is simply lost. Majority of applications use persistent

data. For example, GUI applications need to store user preferences across

program invocations, Web applications track user movements and orders

over long periods of time.

Hence, it is imperative to choose an appropriate persistence data store.

Often when choosing the persistence data store the following fundamental

qualifiers are considered:

1. The length of time data must be persisted

2. The volume of data

Application may consider an HTTP session when the life of a piece of

data is limited to the user’s session. However, persistence over several

sessions or several users requires a larger data store. Large amounts of

data should not be stored in an HTTP session, instead a database should be

considered. The type of database that is chosen also plays an important

influence on the architecture and design.

19.4 PERSISTENCE IN JAVA

Most of enterprise systems and applications save data into a relational

database of some kind. This is why persistence has been a major

application development concern for many decades. Persistence in Java

Enterprise Java

230

usually means storing data in a relational database using SQL. In Java,

persistence is accomplished by storing data in a Relational Database

Management System [RDBMS]. SQL is used to get data in and out of the

relational database. Java Database Connectivity [JDBC]: The Java API IS

used to connect to the RDBMS and fire SQL statements.

Persistence of Object-Oriented Models:

Today most of the development is carried out in an object-oriented manner

using languages such as Smalltalk, C++ and Java. Object [Domain]

modelling is a concept always linked with Persistence. In fact, it is often

the domain model that is persisted.

Object Oriented Programming is based on OBJECTS that represent the

business model [the real world]. Objects are easily traversed through

relationship graphs using inheritance, associations. When thinking in

terms of Java as the programming language of choice, the business logic

of an application works with Objects of different class types.

However, when dealing with the data store, it’s important to note that the

tables of a database are not Objects, which becomes an issue. This is

where the concept of Object Persistence comes in. Object Persistence

deals with persistence in object-oriented programs such as Java. It means

determining how objects and their relationships are persisted in a

relational database.

Object persistence is about:

 Mapping object state

 Determining how an object’s state [data stored in member variables of

an object] is stored in database table columns

 Dealing with the fact that object state types may not align with

relational database types

 Mapping object relationships

 Determining how associations between objects are stored as relational

database keys or in relational database intersection tables

Why Object-Oriented Models?

 Business logic can be implemented in Java as opposed to stored

procedures

 Design patterns and sophisticated object-oriented concepts such as

inheritance and polymorphism can be used

 Provides code reusability and maintainability

In most of the applications, storing and retrieving information usually

involves some kind of interaction with a relational database.

Persistence, Object/Relational

Mapping and JPA

231

Why Relational Database?:

Today, computer applications that involve storing data, involve accessing

a relational database. Relational databases are the persistence store for

most applications. A relational database is a choice because of the

following:

 It is a proven data persistence technology

 Provides flexible and robust approach to data management

 It is the De-facto standard in software development

19.5 CURRENT PERSISTENCE STANDARDS IN JAVA

The Java platform was always supported for managing persistence to

relational databases. It

provides programming interfaces that in turn provide gateway to the

relational databases. There already exist the following options that allow

the Java developers to store and retrieve persistent data:

 Serialization

 JDBC

 EJB 2 Entity Beans

 Java Data Objects

Serialization:

Serialization allows transforming an object graph into a series of bytes,

which can then be sent over the network or stored in a file. Serialization

seems to be quite simple, but it has a few limitations:

1. Unsuitable for Large Amount of Data: It must store and retrieve the

entire object graph at once. This makes it unsuitable for dealing with

large amounts of data.

2. Lacks strict data integrity: Changes made to objects cannot be

undone, if an error occurs while updating information. This makes it

unsuitable for applications that require strict data integrity.

3. No Concurrent Access to Information: Multiple threads or

programs cannot read and write the same serialized data concurrently

without conflicting with each other.

4. No Querying Capability: It provides no query capabilities.

JDBC:

JDBC overcomes a lot of limitations that serialization has such as:

1. It can handle large amounts of data

Enterprise Java

232

2. Ensures data integrity

3. Supports concurrent access to information

4. Provides a sophisticated query language in SQL

Unfortunately, JDBC does not provide ease of use. JDBC was not

designed for storing objects. JDBC allows the Java programs to fully

interact with the database. However, this interaction is heavily reliant on

SQL. It requires a considerable amount of code spec that deals with taking

tabular row and column data and converting it back and forth into objects.

EJB 2 Entity Beans:

The Enterprise Edition of the lava platform introduced entity Enterprise

JavaBeans [EJBs]

EJB 2.x entities are components that represent persistent information in a

data store.

EJB 2.x entities:

 Provide an object-oriented view of persistent data

 Use a strict standard, making them portable across vendors

Unfortunately, EJB 2.x entities:

 Are slow

 Are difficult to code

 Are not serializable

 Require a one-to-one mapping to database tables

 Require expensive application servers to run, as they have to reside

within a J2EE application server environment

 Require developers to determine which bean field maps to which table

column

 Do not offer features such as inheritance, polymorphism and complex

relations

Java Data Objects:

Java Data Objects [JDO] was initiated to provide another persistence

specification effort due to the failures of the EJB persistence model.

JDO:

 Provides an object-oriented query language, which was not well

accepted by the relational database users

Persistence, Object/Relational

Mapping and JPA

233

 Supports non-relational databases. In fact, it was driven by members

of the object-oriented database community and is now being adopted

by object-oriented database products as the primary API

JDO never became an integrated part of the enterprise Java platform. It

had many good features in it and was adopted by a small community of

devoted and loyal users who stuck by it and tried to promote it.

Unfortunately, the major commercial vendors did not share the same view

of how a persistence framework should be implemented.

19.6 WHY ANOTHER PERSISTENCE STANDARDS?

The answer to this question is that, each of the above-mentioned

persistence solutions have severe limitations.

Object/ Relational Mapping:

The object oriented [domain] model use classes, whereas the relational

databases use tables. This creates a gap [The Impedance Mismatch].

Getting the data and associations from objects into relational table

structure and vice versa requires a lot of tedious programming due to the

difference between the two. This difference is called The Impedance

Mismatch.

Developers need something simple to convert from one to the other

automatically. Bridging the gap between the object model and the

relational model is known as Object-Relational Mapping [O-R mapping or

ORM].

The Impedance Mismatch:

This issue arises as the design of relational data and object-oriented

instances share a very different relationship structure within their

respective environments. Relational databases are structured in a tabular

manner and the object-oriented instances are structured in a hierarchical

manner. This means that in this object-oriented world, data is represented

as OBJECTS [often Called DOMAIN model]. However, the storage

medium is based on a RELATIONAL paradigm. Hence, there exists an

inevitable mismatch, the so-called Object/Relational Impedance

Mismatch which creates a vacuum between the Object-Oriented Model

of a well-designed application [the DOMAIN model] and the relational

model in a database schema. This vacuum is surprisingly wide.

Enterprise Java

234

How to Map One to the Other?:

The most native approach that is usually taken is a simple mapping

between each class the

database table. This approach requires writing a lot of code spec that maps

one to the other. This code spec is often complex, tedious and costly to

develop.

The Solution to The Impedance Mismatch:

This impedance mismatch has led to the development of several different

object persistence

technologies attempting to bridge the gap between the relational world and

the object-oriented world. Hence the solution is using an Object

Relational Mapping Tool. An Object Relational Mapping Tool provides

Persistence, Object/Relational

Mapping and JPA

235

a simple, API for storing and retrieving Java objects directly to and from

the relational database.

Object/Relational Mapping [ORM] is a technique that allows an

application written in an

object oriented language to deal with the information [it manipulates] as

objects, rather than using database specific concepts such as ROWS,

COLUMNS and TABLES which is facilitated by a software called

Object/Relational Mapper.

An Object/Relational Mapper is a piece of software that is used to

transform: An OBJECT

view of the data INTO A RELATIONAL view Object/Relational

Mapper also offers persistence services [CRUD] such as:

1. CREATE

2. READ

3. UPDATE

4. DELETE

O/R mapping is performed by a persistence framework. This framework

knows how to:

 Query the database to retrieve objects

 Persist those objects back to their representation in the database’s

tables and columns All this is known with the help of Mappings.

Mappings are defined in metadata, typically annotations.

ORM has several benefits. In particular:

 Eliminates writing SQL to load and persist object state, leaving the

developer free to concentrate on the business logic

 Enables creating an appropriate DOMAIN model, after which, the

developer only needs to think in terms of OBJECIS, rather than

TABLES, ROWS and COLUMNS

 Reduces dependence on database specific SQL and thus provides

Portability across databases

 Reduces more than 30% of the amount of Java code spec that needs to

be written by adopting an ORM

Enterprise Java

236

19.7 OBJECT/RELATIONAL MAPPING

An ORM provides the following advantages:

1. Better System Architecture:

Most of the times all the application functionality and the database access

code spec is held together. This brings in some severe disadvantages. It

becomes really difficult to reuse code spec. Hence code repetitions occur

at several different places. Changing anything becomes quite difficult, as

each and every place that holds the repetitive code spec needs to be

located and changed accordingly. If the application functionality [business

logic] and the database access code spec [persistence mechanism] are

separated, applying changes become very easy. Changes can be made to

one part without influencing the other parts.

2. Reduce Coding Time:

Most of the time the database access code spec is simple inserts, updates

or deletes. These are SQL statements which sometimes are quite tedious to

code. ORM tool helps here, by generating them on the fly and thereby

saves a lot of time.

3. Caching and Transactions:

Most ORM tools such as Hibernate come with features such as Caching

and Transactions. These features, if chosen to hand code are not so easy to

implement. And it definitely does not make sense to develop them when

they already exist.

Persistence, Object/Relational

Mapping and JPA

237

Where Does Java Persistence API Fit In?:

Today, there are several good ORM tools available that perform the

mapping between objects Relational Database Tables and thereby

solve the Impedance Mismatch:

1. Hibernate

2. OpenJPA

3. TopLink

4. EclipseLink

These Object-Relational Mapping tools/frameworks allow the developers

to focus on the object model instead of dealing with the mismatch between

the object-oriented and relational paradigms. Unfortunately, each of these

tools has its own set of APIs. This ties the application code spec to the

proprietary interfaces of a specific vendor [ORM tool]. Since the code

spec is tied to a specific vendor [referred to as Vendor Lock-In], switching

to another tool is not possible without rewriting all the persistence code

spec.

Java Persistence API:

The Java Enterprise Edition’s [Java EE 5] Enterprise JavaBeans 3 has

introduced a new way of communicating with databases called the lava

Persistence API [JPA], a section of EJB 3.0.

JPA defines a persistence framework which provides a way of

automatically mapping normal Java objects to an SQL database. In other

words, it helps load, search and save the data model objects. JPA

combines the best features from most of the available persistence

standards:

 Is extremely easy to use, entities can be created as simple as creating

serializable classes

 Supports large data sets

 Provides data consistency

 Allows concurrent use of information

 Provides querying capabilities of JDBC

 Allows using advanced object-oriented concepts such as inheritance

Java Persistence API As A Specification:

JPA is a specification from Sun, which is released under Java EE 5

specification.

Enterprise Java

238

It is not:

 An implementation

 A product

Hence, it cannot be used as it is for persistence. It needs an ORM

implementation to work with and persist Java Objects. Technically, JPA is

just a set of interfaces [a Specification] and thus requires an

implementation. All specifications require vendors or open source projects

to implement them. Using JPA therefore requires picking up an

implementation [ORM tool such as Hibernate, Toplink, OpenJPA or any

other ORM that implements JPA].

JPA defines the interface that an implementation has to implement. The

whole point of having a standard interface is that users can, in principle,

switch between implementations of JPA without changing their code. This

way, JPA helps prevent Vendor Lock-In by relying on a strict

specification such as JDO and EJB 2.x entities. Currently most of the

persistence vendors [ORM tool providers] have released implementations

of JPA. Since, the Java Persistence code spec covers several persistence

frameworks into a single API, an application written using JPA will work

across several implementations [Hibernate Toplink and so on]. This is

very useful, especially when, development begins using the free ‘open

source ORM implementations and later on when the need arises, the open

source’ implementation is swapped with a commercial ORM

implementation.

JPA 1.0 as a part of EJB 3:

After the failure of EIB 2, BIB 3.0 came into existence to make Enterprise

JavaBeans easier and more productive to use. EJB 3.0 introduced a new

model for persistence called The Java Persistence API 1.0. Developers

from the leading vendors of object-relational mapping solutions such as

Hibernate, Toplink and JDO joined the Java group and helped shape the

new EJB specification. This resulted into a new specification of EJB 3.0

[Java EE 5] with the following distinct pieces:

1. Existing EJB 2.1 APIs and the traditional contracts from the

perspectives of the container, the bean provider and the client with

new features such as Java EE injection, EJB 3.0 interceptor

Specifications and lifecycle call-back changes

2. A simplified API for developing new session and message-driven

components

3. The Java Persistence API

Even though, Java Persistence API is defined as part of the EJB 3.0

specification, it is not needed to have an EJB container or a Java EE

application server in order to run applications that use persistence.

Persistence, Object/Relational

Mapping and JPA

239

19.8 SUMMARY

Data Persistence is a means for an application to persist and retrieve

information from a non-volatile storage system. Persistence is vital to

enterprise applications because of the required access to relational

databases.

19.9 PRACTICE QUESTIONS:

MCQ:

Q.1) Which one of the following best illustrates the concept of Object

Persistence.

a) Determining how an object’s state[data stored in member variable of

an object]is stored in database table columns.

b) Provides an object – oriented view of persistent data.

c) Design patterns and sophisticated object oriented concepts such as

inheritance and polymorphism can be used.

d) Provide one to one mapping to database table.

Answer: A

Q.2) Which of the following is not a correct explanation of JDO.

a) JDO is a standard way to access persistent data in databases, using

plain old Java objects (POJO) to represent persistent data.

b) JDO is an object relational mapping tool.

c) Provides object relational query language and support non-relational

databases.

d) JDO was popular and an integrated part of enterprise java platform.

Answer: D

Q.3) What is ORM.

a) Object Relation Map

b) Object Rate Mapping

c) Object Relational Mapping

d) Object Relational Mapper

Answer: C

Enterprise Java

240

Q.4) Which method is used to remove a persistent instance from the

datastore.

a) Session.remove()

b) Session.delete()

c) Session.del()

d) Session.rm()

Answer: B

Q.5) Which tool provides a set of persistent annotations to define

mapping metadata.

a) JPA

b) JSR

c) XML

d) JRE

Answer: A

Q.6) Which of the following simplifies Object Relational Mapping tool.

a) Data Creation ,Data Isolation, Data Access

b) Data Manipulation, Data Creation, Data Extraction

c) Data Creation, Data Manipulation, Data Access

d) Data Isolation, Data Extraction, Data Manipulation

Answer: C

Q.7) The problem which arises because of the difference between model

of programming language and model of database is classified as.

a) modelling mismatch

b) referential mismatch

c) dependence mismatch

d) impedance mismatch

Answer: D

Q.8) An ORM Framework persist your objects according to the mapping

metadata you provide.

a) False

b) True

javascript:void(0);
javascript:void(0);
javascript:void(0);

Persistence, Object/Relational

Mapping and JPA

241

c) May be

d) Can’t say

Answer: B

Q.9) Which technique is used by Hibernate to persist collections of

embeddable types.

a) ElementCollection

b) ManyToMany

c) OneToMany

d) CollectionElement

Answer: A

Q.10) What is the JPA equivalent of hibernate.cfg.xml file.

a) configuration.xml

b) persistence.xml

c) jpa.configuration.xml

d) jpa.persistence.xml

Answer: B

Descriptive:

1. Write a note on Java Persistence API.

2. Explain the architecture of JPA 2.0.

3. What is Persistence?

4. What are the various options that allow the Java developers to store

and retrieve persistent data?

5. What is Object/Relational Mapping?

6. List and explain various advantages provided by Object Relational

Mapping.

19.10 REFERENCES

Books and References:

Sr.

No.

Title Author/s Publisher Edition Year

1. Java EE 7 For

Beginners

Sharanam

Shah,

Vaishali

SPD First 2017

Enterprise Java

242

Shah

2.

Java EE 8 Cookbook:

Build reliable

applications with the

most robust and

mature technology for

enterprise

development

Elder

Moraes

Packt First 2018

3. Advanced Java

Programming

Uttam

Kumar Roy

Oxford

Press

NA 2015

243

 20

JAVA PERSISTENT API

Unit Structure

20.1 Objectives

20.2 Introduction to Java Persistence API

20.3 Writing JPA Application

20.4 Summary

20.5 Sample Questions

20.6 References

20.1 OBJECTIVES

In this chapter we will learn the Java Persistence API (JPA) specification

of Java. Also learn how it is used to persist data between Java object and

relational database. JPA acts as a bridge between object-oriented domain

models and relational database systems. As JPA is just a specification, it

doesn't perform any operation by itself. It requires an implementation. So,

ORM tools like Hibernate, TopLink and iBatis implements JPA

specifications for data persistence.

20.2 INTRODUCTION TO JAVA PERSISTENCE API

20.2.1 Introduction to Java Persistence API:

Conventionally when a programmer is dealing with applications, he/she

probably imagines that an application has some specific functions

[business logic / application logic] and all that it has to do is process and

then finally save data in a database. When thinking in terms of Java as the

programming language of choice for most programmers, the business

logic of an application works with OBJECTS of different CLASS types.

However, when dealing with the storage medium, it’s important to note

that the tables of a database are not OBJECT. This becomes a little

difficult to handle.

Today, there are several Object/Relational mapping tools that have

become popular because they help bridge up the gap between the Objects

and the relational database which in turn allows the developers concentrate

on the business logic:

 Hibernate

 TopLink

 EclipseLink

 OpenJPA

Enterprise Java

244

And many others are available, unfortunately, each of these tools has its

own set of APIs. This ties the application code spec to the proprietary

interfaces of a specific vendor [ORM tool]. In spite of having so many

Object/Relational mapping tools, there is no single persistence standard

for the Java platform that can be used in both the Java EE and Java SE

environments. This is where Java Persistence API comes in.

JPA helps standardize the persistence API for the Java platform. A lot of

these Object/ Relational tool vendors [such as TopLink and Hibernate, as

well as other leading application server vendors and JDO vendors] have

widely accepted the JSR-220 specification and most of them have also

released their implementation of JPA.

20.2.2 The Java Persistence API:

The Java Persistence API is a standard API that allows accessing,

persisting and managing data between Java objects / classes and the

relational database in Java EE 5 platform. JPA was defined as a part of the

EJB 3.0 specification as a replacement to the EJB 2 CMP (Container-

Managed Persistence) Entity Beans specification. It is now considered the

standard industry approach for Object  Relational Mapping in the Java

Industry.

With the help of a standard API, JPA provides standard mechanisms to

using Object Relational Mapping tools.

Java Persistence consists of three areas:

 The Java Persistence API

 Object/ Relational mapping metadata

 The Query language

Object-relational mapping with the Java Persistence API is entirely

metadata driven. It can be done by adding annotations to the code spec OR

using externally defined XML 0R using annotations as well as externally

defined XML.

JPA uses Annotations or XML to map Objects to a Relational Database.

These Objects are called Entities. Entities are nothing but POJOs that do

not extend any class nor implement any interface. JPA also allows

querying and retrieving data using its own query language called Java

Persistence Query Language. It generates all the necessary SQL calls to

achieve this and thereby, relieves the developers from manual result-set

handling and object conversion.

Java Persistent API

245

20.2.3 JPA, ORM, Database and the Application:

JPA is made up of a few classes and interfaces. The application

communicates with the configured IPA provider [in this case EclipseLink]

to access the underlying data. Typically, applications invoke the

appropriate methods of the Java Persistence API. These methods are

passed the persistence objects and instructed to operate upon them. The

information about the mapping [metadata] between the instance variables

of classes and the columns of the tables in the database is available either

in XML and/ or POJOs with the help of Annotations.

POJOs are Java classes that represent the tables in the database. Data

Access Object [DAO] is the design pattern that can be used [if required] to

deal with database operations. EclipseLink uses the database [using JDBC

API internally] and refers to the metadata to provide persistence services

[and Persistent Objects] to the application. The application talks to

EclipseLink via the JPA to perform the SELECT, INSERT, UPDATE and

DELETE operations on the database tables. The ORM tool automatically

creates the required SQL queries and fires them using the JDBC APIs.

20.2.4 Architecture of JPA:

Enterprise Java

246

Persistence:

The javax.persistence.Persistence class contains static helper methods to

obtain EntityManagerFactoryinstances in a vendor-neutral fashion.

EntityManagerFactory:

The EntityManagerFactory is created with the help of a Persistence Unit

during the application start up. It serves as a factory for spawning

EntityManager objects when required. Typically, it is created once [one

EntityManagerFactory object per database] and for later use kept alive for

later use.The javax.persistence.EntityManagerFactory class is a factory for

EntityManagers.

EntityManager:

The EntityManager object [javax.persistence.EntityManager] is

lightweight and inexpensive to create. It provides the main interface to

perform actual database operations. All the POJOs i. e. persistent objects

are saved and retrieved with the help of EntityManager object. Typically,

EntityManager objects are created as needed and destroyed when not

required. Each EntityManager manages a set of persistent objects and has

APIs to insert new Objects and delete existing ones. EntityManagers also

act as factories for Query instances and CriteriaQuery instances.

Entity:

Entites are persistent objects that represent datastore records.

Entity Transaction:

A Transaction represents a unit of work with the database. Any kind of

modifications initiated via the EntityManager object are placed within a

transaction. An EntityManager object helps creating an EntityTransaction

object. Transaction Objects are typically used for a short time and are

closed by either committing or rejecting.

Query:

Persistent objects are retrieved using a Query object. Query objects

[javax.persistence.Query] allows using SQL or Java Persistence Query

Language [JPQL] queries to retrieve the actual data from the database and

create objects.

Criteria:

Criteria API IS a non-string-based API for the dynamic construction of

object-based queries [javax.persistence.criteria]. Just like JPQL static and

dynamic queries, criteria query objects are passed to the

EntityManager’screateQuery() method to create Query objects and then

executed using the methods of the Query API. A CriteriaQuery object can

be thought of as a set of nodes corresponding to the semantic constructs of

the query:

Java Persistent API

247

 Domain objects, which correspond to the range variables and other

identification variables of the JPQL FROM clause

 WHERE clause predicates, which comprise one or more conditional

expression objects

 SELECT clauses, which comprise one or more select item objects

 ORDER-BY and GROUP-BY items

 Subqueries

20.2.5 How JPA works?:

An XML is created or annotations are added to POJOS, which inform the

JPA provider [such as Eclipselink] about:

1. The classes needed to Store the data

2. How the classes are related to the tables and columns in the database

This way all the necessary information is provided to the JPA provider.

During the runtime, the IPA provider reads the XML and/or annotations

and dynamically builds Java classes to manage the translation between the

database and the Java objects. An EntityManagerFactory is created from

the compiled collection of mapping metadata. The EntityManagerFactory

provides the mechanism for managing persistent classes and the

EntityManagerinterface. The EntityManager class provides the interface

between the persistent data store and the application. The EntityManager

interface wraps a JDBC connection, which can be user managed or

controlled by the JPA provider and is only intended to be used by a single

application thread, then closed and discarded.

All the database interaction is done via a simple, intuitive API that JPA

provides. This allows performing queries against the objects represented

by the database. This API informs the JPA provider:

 To save the changes whenever the objects are changed

 To store the objects in the database whenever new objects are created

Based on all the above discussion, the following is what will be

required to build an application that persists data.

An ORM tool:

 To avoid low level JDBC and SQL code

 To leverage object-oriented programming and object model usage

 To provide database and schema independence

 Since it’s free [Most ORMs are free and open source]

Enterprise Java

248

 To use high end performance features such as caching and

sophisticated database and query optimizations

JPA:

 To gain portability across application sewers and persistence

providers [ORMs]

 Since it’s a standard and part of EJB 3 and Java EE

 Since it provides a usable and functional specification

 Since it supports both Java EE and Java SE

20.2.6 JPA Specification:

Specification is part of Java EE 6 where IPA has been officially separated

from distinct API.

JPA 2.0 brings in the following enhancements:

1. ORM mapping enhancements such as:

(a) Ability to model collections, maps and lists using

@ElementCollection annotation

(b) Ability to map unidirectional one-to-many relationships as JPA 1.0

only allowed Bidirectional one-to-many relationships

2. EntityManager and the Query APIs now support:

(a) Retrieving the first result

(b) Accessing the underlying vendor-specific entity manager/ query

objects

(c) Pessimistic locking

3. JPQL has been enhanced with SQL-like CASE, NULLIF, COALESCE

and like capabilities

4. Criteria API similar to the one that Hibernate provides

5. Standardization of:

(a) Second level caching

(b) Hints for Query configuration and for EntityManager configuration

(c) Metadata to support DDL generation and Java2DB mapping

6. Support for validation

Java Persistent API

249

20.3 WRITING JPA APPLICATION

JPA Practical using GuestBook

Steps:

1. Create Web Application with dedicated folder for Library

2. Add Simple java class or Persitent Entity class from Database (code

below GuestBook.java)

3. Add SQL Connector Jar file to Library

4. Create Persistence Unit using jdbc connection to MySQL database

5. Create the JSP files (codes given below)

6. Run the Application.

GuestBook.java

~~~~~~~~~~~~~ 

package tyit; 

import javax.persistence.*; 

 

@Entity 

@Table(name="GuestBook") 

public class GuestBook { 

    @Id 

    @GeneratedValue(strategy = GenerationType.IDENTITY) 

    @Column(name="VisitorNo", unique=true, updatable=false) 

    private Integer visitorNo; 

    @Column(name="VisitorName") 

    private String visitorName; 

    @Column(name="Message") 

    private String message; 

    @Column(name="MessageDate") 



   

 

Enterprise Java 

250 

    private String messageDate; 

 

    public GuestBook() { 

    } 

 

    public Integer getVisitorNo() { 

        return visitorNo; 

    } 

    public void setVisitorNo(Integer visitorNo) { 

        this.visitorNo = visitorNo; 

    } 

 

    public String getVisitorName() { 

        return visitorName; 

    } 

    public void setVisitorName(String visitorName) { 

        this.visitorName = visitorName; 

    } 

 

    public String getMessage() { 

        return message; 

    } 

    public void setMessage(String message) { 

        this.message = message; 

    } 

 

    public String getMessageDate() { 

        return messageDate; 

    } 

    public void setMessageDate(String messageDate) { 

        this.messageDate = messageDate; 

    } 



 

 

Java Persistent API 

 

251 

} 

index.jsp 

~~~~~~~~~~ 

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

 <body style="background-color: pink;">

 Sign the Guest Book

 <form action="GuestBookView.jsp" method="post">

 Visitor Name: <input name="guest" maxlength="25"

size="50" />

 Message: <textarea rows="5" cols="36"

name="message"></textarea>

 <input type="submit" name="btnSubmit" value="Submit" />

 </form>

 </body>

</html>

GuestBookView.jsp

~~~~~~~~~~~~~~~~~ 

<%@page import="java.util.*,javax.persistence.*,tyit.GuestBook" %> 

<%@page contentType="text/html" pageEncoding="UTF-8"%> 

<!DOCTYPE html> 

<%! 

    private EntityManagerFactory entityManagerFactory; 

    private EntityManager entityManager; 

    private EntityTransaction entityTransaction; 

    List<GuestBook> guestbook; 

%> 

<% 

    entityManagerFactory = 

Persistence.createEntityManagerFactory("JPAApplicationPU"); 

    entityManager = entityManagerFactory.createEntityManager(); 

    String submit = request.getParameter("btnSubmit"); 



   

 

Enterprise Java 

252 

    if(submit != null && ("Submit").equals(submit)) { 

        try { 

            String guest = request.getParameter("guest"); 

            String message = request.getParameter("message"); 

            String messageDate = new java.util.Date().toString(); 

 

            GuestBook gb = new GuestBook(); 

            gb.setVisitorName(guest); 

            gb.setMessage(message); 

            gb.setMessageDate(messageDate); 

            entityTransaction = entityManager.getTransaction(); 

            entityTransaction.begin(); 

            entityManager.persist(gb); 

            entityTransaction.commit(); 

        } catch (RuntimeException e) { 

            if(entityTransaction != null) entityTransaction.rollback(); 

            throw e; 

        } 

        response.sendRedirect("GuestBookView.jsp"); 

    } 

 

    try { 

        guestbook = entityManager.createQuery("SELECT * from 

GuestBook").getResultList(); 

    } catch (RuntimeException e) { } 

   entityManager.close(); 

%> 

<html> 

    <body> 

       View the Guest Book  <b>Click <a href="index.jsp"> here</a> to 

sign the guestbook.</b>     

                      

        <hr /> 



 

 

Java Persistent API 

 

253 

        <% 

          Iterator iterator = guestbook.iterator(); 

          while (iterator.hasNext()) { 

              GuestBook obj = (GuestBook) iterator.next(); 

         %> 

              On <%= obj.getMessageDate() %>,<br /> 

              <b><%= obj.getVisitorName() %>:</b> 

              <%= obj.getMessage() %> 

              <br /><br /> 

         <% 

          } 

         %> 

    </body> 

</html> 

20.4 SUMMARY 

The Java Persistence API (JPA) is a specification of Java. It is used to 

persist data between Java object and relational database. JPA acts as a 

bridge between object-oriented domain models and relational database 

systems. 

As JPA is just a specification, it doesn't perform any operation by itself. It 

requires an implementation. So, ORM tools like Hibernate, TopLink and 

iBatis implements JPA specifications for data persistence. 

20.5 SAMPLE QUESTIONS 

MCQ: 

Q.1 What is the full form of JPQL 

a)  Java Persistence Query Language  

b)  Java Provider Query Language 

c)  Java POJO Query Language 

d)  Java performance query language 

Ans: a) Java Persistence Query Language 

Q.2 Which tool automatically creates the required SQL queries 

a)  XML  



   

 

Enterprise Java 

254 

b)  JPQL 

c)  ORM 

d)  JPA 

Ans: c) ORM  

Q.3  Which one is the simple java class that represents a row in a database 

table. 

a)  Attribute 

b)  Primary key   

c)  foreign key 

d)  Entity 

Ans: d) Entity 

Q.4  An object is called persistent if it is stored in the database and can be 

accessed anytime. This type of entity property is called as 

a)  Persistability 

b)  Persistent Identity 

c)  Transactionality 

d)  Granularity. 

Ans: a) Persistability 

Q.5  Which keyword makes possible to filter results after evry join, leading 

to smaller results after each successive join. 

a)  ON  

b)  delete. 

c)  enter 

d)  remove. 

Ans: a) ON 

Q.6  Which annotation is used to link two tables through a relation table?  

a. @RelationTable 

b. @JoinTable 

c. @LinkTable 

d. @GroupTable 



 

 

Java Persistent API 

 

255 

Ans:  b) @JoinTable 

Q.7  Which annotation is used to create Pk-Fk relation b/w two tables? 

a. @JoinColumn     

b. @ForeignKey    

c. @JoinedKey    

d. @PrimaryKey    

Ans: a) @JoinColumn     

Q.8  Which statement(S) is/are incorrect 

a. Stored procedure may return a value and function must return a 

value. 

b. Function has only IN parameter. 

c. Try and Catch can be used with both stored procedure and 

function. 

d. Stored procedure has IN and OUT parameter. 

Ans: c)Try and Catch can be used with both stored procedure and 

function. 

Q.9  Which API is used to define queries for entities and their persistent 

state by creating query-defining objects 

a)  Criteria API. 

b)  Query API 

c)  Entity API 

d)  Transaction API 

Ans: a) criteria API 

Q.10  JPA 2.1 introduced Which method to call databse funtions which are 

not directly supported by the standard 

a)  delete() 

b)  insert() 

c)  call() 

d)  function() 

Ans: d) function() 

Descriptive: 



   

 

Enterprise Java 

256 

1.  Write a note on Java Persistence API. 

2.  Explain the architecture of JPA 2.0. 

3.  Using suitable example explain the various components of JPA. 

4.  Create simple JPA application to store and retrieve Book details. << 

similar to above example >> 

5.  Develop a JPA Application to demonstrate use of ORM associations. 

20.6 REFERENCES 

Books and References:  

Sr. 

No. 

Title Author/s Publisher Edition Year 

1.  Java EE 7 For Beginners  Sharanam 

Shah, Vaishali 

Shah  

SPD  First  2017  

2.  

 

Java EE 8 Cookbook: 

Build reliable applications 

with the most robust and 

mature technology for 

enterprise development  

Elder Moraes  Packt  First  2018  

3.  Advanced Java 

Programming  

Uttam Kumar 

Roy  

Oxford 

Press  

NA 2015  

 

 

 

 

 

***** 



   

 

257 

21 
HIBERNATE 

Unit Structure 

21.1  Objectives 

21.2  Introduction to Hibernate 

21.3  Writing Hibernate Application 

21.4  Summary 

21.5  Sample Questions 

21.6  References 

21.1 OBJECTIVES 

In this we will explain What is hibernate and how to install Hibernate & 

other associated packages to prepare a develop environment for the 

Hibernate applications. We will work with MySQL database to 

experiment with Hibernate examples, so make sure you already have setup 

for MySQL database.  

21.2 INTRODUCTION TO HIBERNATE 

21.2.1 What is Hibernate?: 

Any project that requires database interaction have started looking at 

ORM tools than considering the traditional approach i.e. JDBC. Hibernate 

ease the job of programmer in working with traditional database using 

concrete SQL queries in Java by using java object mapped with data base 

and allow programmer to interact with database just like other java class 

or object. The objective of Hibernate is to free the programmer from 

tedious database interaction and focus on working with java objects and 

features of application instead of worrying about how to work with data 

from database. Hibernate does this by copying data from database table to 

java class and saving state of an object to database table. 

Hibernate is a free, open source, high performance persistent ORM and 

query tool. 

Gavin King, founded the Hibernate Project in 2001 at JBoss Inc. [now part 

of RedHat Inc.] 

Hibernate provides: 

 Mapping of java classes to Database table. 

o e.g.: Student.java class → Student table in Oracle 

 Mapping of java data type to SQL data type. 



   

 

Enterprise Java 

258 

o e.g.: int → number, String → varchar, java.sql.Date → DateTime, 

etc. 

 Flexibility in Querying and retrieving data from any database. 

 Freedom to switch to any data base without changing the application 

logic/presentation logic. 

21.2.2 Why Hibernate?: 

 Hibernate is a high-performance Object/Relational persistence and 

query service, available free under the open source GNU Lesser 

General Public License (LGPL). 

 Takes care of all SQL operations in a java program. 

 Make feel like working with Objects rather than SQL in performing 

Create, Read, Update and Delete SQL operations. 

 Complete portability across database. 

 Supports IDE like Netbeans by providing plug-in. 

 Cuts down development time by using Object oriented technology 

like inheritance, composition and java collection framework. 

 Can have multiple primary key generations through multiple identity 

column mapping. 

 Hibernate has two cache layers for handling thread safety, non-

blocking concurrent data access, connection pooling etc. 

 Allows working with any database like Oracle, MySql, DB2, Sybase, 

PostgresSQL, Apache Derby, MS SQL Server, MS Access, etc. 

21.2.3 Hibernate, Database and The Application 

 

Application program uses persistent objects that represent data from 

database. Configuration is stored in configuration files like 



 

 

Hibernate 

 

259 

Hibernate.properties and hibernate.cfg.xml to map the objects to 

corresponding database and hibernate dilect to choose appropriate SQL 

statement for database. A mapping file is used to map instance variables of 

class to database columns. Hibernate uses JDBC API with JTA to perform 

database operations like Create, Insert, Update, Delete, Select etc. to 

automatically fire queries bases on operations performed by application 

program on java objects. 

21.2.4 Components of Hibernate: 

The main components of Hibernate are: 

1. Connection Management: Hibernate solves the problems which arise 

when a relational database is connected by an application written in object 

oriented programming language style, due to data type differences, 

manipulative differences, transactional differences, structural and integrity 

differences. Connection Management provides efficient connection 

management and removes the overhead of database interaction from 

application program. 

2. Transaction Management: Transaction in hibernate is managed by 

JTA and JDBC. It allow to fire more than one SQL query at a time. 

3. Object Relation Management: It is used to map java objects to 

database tables. Hibernate stores the persistent objects in session and reads 

the state of an object to execute appropriate database query. 

21.1.5 Architecture of Hibernate: 

Hibernate is a layered architecture. The main components are 

Configuration, Session Factory, Session, Transaction, Query and Criteria. 

Hibernate uses existing Java APIs, like JDBC for database connectivity, 

Java Transaction API(JTA) for transaction and Java Naming and 

Directory Interface (JNDI) for easy integration with other enterprise 

applications. 

 

 



   

 

Enterprise Java 

260 

Following is a detailed view of the Hibernate Application Architecture 

with few important core classes. 

 

Hibernate uses various existing Java APIs, like JDBC, Java Transaction 

API(JTA), and Java Naming and Directory Interface (JNDI). JDBC 

provides a rudimentary level of abstraction offunctionality common to 

relational databases, allowing almost any database with a JDBC driver to 

supported by Hibernate. JNDI and JTA allow Hibernate to be integrated 

with J2EE application servers. 

Configuration: It represents properties/configuration of a hibernate 

application. It the first object created in a hibernate application and created 

once at the time of application execution. This object reads the 

configuration file to establish database connection and mapping. This 

object helps in creating session factory. 

It represents a configuration or properties file required by the Hibernate. 

The Configuration object provides two keys components: 

1. Database Connection: This is handled through one or more 

configuration files supported by Hibernate. These files are 

hibernate.properties and hibernate.cfg.xml. 

2. Class Mapping Setup This component creates the connection between 

the Java classes and database tables. 

Session Factory:  It is created using configuration object at the time of 

application startup to serve as a base for creating light weight sessions 

conveniently during client’s request. One session factory is created for one 

database for multiple database multiple session factory objects are created. 

Session Object:  Sessions are single threaded, lightweight objects to 

communicate with database represented by session class from 

org.hinernate package. Persistent object are created, saved and retrieved 

using session object during client interaction. It wraps the Connection 

class from java.sql package and serves as factory for Transaction. The 

session objects should not be kept open for a long time because they are 



 

 

Hibernate 

 

261 

not usually thread safe and they should be created and destroyed them as 

needed. 

Transaction:  Transaction is a single threaded object used by application 

to represent group of SQL queries to form a unit of work called 

transaction. Transactions in Hibernate are handled by an underlying 

transaction manager and transaction (from JDBC or JTA). All changes 

during a session are placed within transaction. Transactions are either 

completed using commit or canceled using rollback. The 

org.hibernate.Transaction interface provides methods for transaction 

management. 

Query: It uses either conventional SQL or Hibernate Query Language 

(HQL) to communicate with database. It associates the query parameters, 

restricts the results coming from database and executes queries. Persistent 

objects are retrieved using query object. 

Criteria:  Criteria objects are used to create and execute object oriented 

criteria queries to retrieve objects. 

21.2.6 How Hibernate Works?: 

•  All configuration files hibernate.cfg.xml are created to describe about 

the java classes and there mapping with database tables. 

•  At the time of application startup these files are compiled to provide 

hibernate framework with necessary information. 

•  This dynamically builds java class objects by mapping them to 

appropriate database table. 

•  A session factory object is created from compiled collections of 

mapping documents. 

•  Session Factory spawns a lightweight session to provide interface 

between java objects and applications. 

•  Database communication is performed by this session using hibernate 

API used to map the changes from java object to database table and 

vice versa. 

 



   

 

Enterprise Java 

262 

21.3 WRITING HIBERNATE APPLICATION 

In this section we will develop a Hibernate application to store Feedback 

of Website Visitor in MySQL Database. The application to be built is 

called Guestbook Feedback Entry using Hibernate. This application 

should be capable of accepting and displaying employee details using 

database. To achieve this, it should provide a user interface that accepts 

Guest’s name, message and date. 

From the application development perspective, the following software will 

be required on the 

development machine: 

1.  Java Development Kit 

2.  NetBeans IDE 

3. MySQL community Server [The database server] 

4.  JDBC driver for MySQL 

5. Hibernate 4.XXX or Higher (ORM Tool) [Available on 

www.hibernate.org/downloads] 

create database feedbackdb; 

create table GuestBook( 

vno int PRIMARY KEY AUTO_INCREMENT, 

vname varchar(50), 

msg varchar(100), 

mdate varchar(50) 

) 

 

Library Files: The Java library [.JAR] i.e. JDBC driver is required. This 

will be specific to a relational database to be used. In this case MySQL is 

used as the database of choice, hence, the database specific JDBC driver 

file will be MySQL Connector/J 5.1.10. 

The following is the list of jar files required 



 

 

Hibernate 

 

263 

 

hibernate-release-

5.3.0.Final\lib\required 

-->antlr.jar 

-->hibernate-common-annotations 

-->hibernate-core 

-->hibernate-jpa-2.0-api 

-->javaassist 

-->jboss-logging 

-->jboss-transaction-api-1.1-spec 

hibernate-release-5.3.0.Final\lib\jpa 

-->hibernate-entitymanager.jar 

download from dom4j.sourceforge.net 

-->dom4j-2.1.1.jar 

 

 

The Application Development Approach: 

The application will be built using JSP. 

The data entry form that captures the data will be called index.html and 

the page that will fetch and display the entries will be called Fetch.jsp. 

The captured data will be stored in a table called GuestBook under the 

feedbackdb MySQL database server. 

In the Java application, the POJO that will represent the GuestBook 

database table will be called mypack.GuestBookBean.java. 

The following steps are required to build this application: 

1.  Create the database schema 



   

 

Enterprise Java 

264 

2.  Create the Web application 

3.  Add the Java libraries to the application 

4.  Create a POJO to represent the table in the database schema 

5.  Generate a hibernate configuration file. 

6.  Annotate the POJO to indicate the mapping between the JavaBean 

properties and the columns in the table 

7.  Create JSPs with code spec: 

(a)  To build a Configuration object 

(b) To build a SessionFactory object by referencing the 

Configuration object. 

(c)  To obtain an HiberanteSession object from the SessionFactory 

(d)  To perform the required database operations. 

GuestBookBean.java  

package mypack; 

import javax.persistence.*; 

@Entity  

@Table(name="guestbook") 

public class GuestBookBean implements java.io.Serializable { 

    @Id 

    @GeneratedValue 

    @Column(name="vno") 

    private Integer visitorNo; 

    @Column(name="vname") 

    private String visitorName; 

    @Column(name="msg") 

    private String msg; 

    @Column(name="mdate") 

    private String msgDate; 

   public GuestBookBean()  {   } 

   public Integer getVisitorNo()               {    return visitorNo;  } 

   public String getVisitorName()     {    return visitorName;  } 

   public String getMsg()                  {    return msg;  } 

   public String getMsgDate()           {    return msgDate;  } 



 

 

Hibernate 

 

265 

  public void setVisitorNo(Integer vn)               {    visitorNo = vn ;  } 

   public void setVisitorName(String vn)     {    visitorName = vn;  } 

   public void setMsg(String m)                  {    msg = m;  } 

   public void setMsgDate(String md)           {    msgDate=md;  } 

} 

Source packages new  othersselect category Hibernate 

Hibernate Configuration Wizard 

 

 

 

<hibernate-configuration> 

  <session-factory> 

    <property 

name="hibernate.dialect">org.hibernate.dialect.MySQLDialect</property

> 

    <property 

name="hibernate.connection.driver_class">com.mysql.jdbc.Driver</prope

rty> 

    <property 

name="hibernate.connection.url">jdbc:mysql://localhost:3306/feedbackdb

?zeroDateTimeBehavior=convertToNull</property> 



   

 

Enterprise Java 

266 

    <property name="hibernate.connection.username">root</property> 

    <property name="hibernate.connection.password">root</property> 

     

    <mapping class="mypack.GuestBookBean" /> 

  </session-factory> 

</hibernate-configuration> 

index.html: 

<h1>Website Feedback Form for google.con </h1> 

<form action="fb.jsp" > 

    Enter Your Name: <input type="text" name="name" ><br> 

    Enter Your Message : <textarea rows="10" cols="50" name="message" 

></textarea><br> 

    <input type="submit" value="Submit My FeedBack " > 

</form> 

 fb.jsp: 

<%@page  import="org.hibernate.*, org.hibernate.cfg.*, mypack.*"  %> 

<%!          SessionFactory sf; 

org.hibernate.Session hibSession; 

%> 

<% 

sf = new Configuration().configure().buildSessionFactory(); 

hibSession = sf.openSession(); 

Transaction tx = null; 

GuestBookBean gb = new GuestBookBean(); 

try{ 

tx = hibSession.beginTransaction(); 

String username = request.getParameter("name"); 

String usermsg = request.getParameter("message"); 

String nowtime = ""+new java.util.Date(); 

gb.setVisitorName(username); 

gb.setMsg(usermsg); 

gb.setMsgDate(nowtime); 



 

 

Hibernate 

 

267 

hibSession.save(gb); 

tx.commit(); 

out.println("Thank You for your valuable feedback...."); 

}catch(Exception e){out.println(e);} 

hibSession.close(); 

%> 

Output: 

 

 

21.4 SUMMARY 

In this Chapter we studied hibernate and steps to install Hibernate & other 

associated packages to prepare a develop environment for the Hibernate 

applications. We also worked with MySQL database to 

experiment with Hibernate examples, so make sure you already have setup 

for MySQL database.  

21.5 PRACTICE QUESTIONS 

MCQ: 

1) What is hibernate? 

a) CRM 

b) Programming Tool 

c) ORM 

d) SQL tool. 



   

 

Enterprise Java 

268 

2) Hibernate framework simplifies the development of java application 

to interact with the database 

a) True 

b) False 

3) Which of the following is true about SessionFactory object in 

hibernate? 

a) SessionFactory object configures Hibernate for the application 

using the supplied configuration file. 

b) SessionFactory object allows for a Session object to be 

instantiated. 

c) The SessionFactory is a thread safe object. 

d) All options mentioned for this question. 

4) Which method is used to update the state of the given instance from 

the underlying database? 

a) Session.store() 

b) Session.keep() 

c) Session.update() 

d) Session.load() 

5) HOL stands for 

a) Hibernate Queue Language 

b) Hibernate Query Language 

c) Hypertext Query Language 

d) HighSpeed Query Language 

6) Hibernate uses PersisterClassProvider by default. 

a) True 

b) Fales 

7) _______________ object is used to create SessionFactory object in 

Hibernate. 

a) Session 

b) Configuration 

c) Transaction 

d) TransactionFactory 



 

 

Hibernate 

 

269 

8) In hibernate, QBC stands for  

a) Query By Criteria 

b) Query By Call 

c) Query By Code 

d) Query By Column 

9) Which method is easy for Java Programmer to add criterion? 

a) SQL 

b) HCQL 

c) HQL 

d) AQL 

10) Which of the following simplifies an Object Relational Mapping 

Tool?  

a) Data creation 

b) Data manipulation 

c) Data access 

d) All options mentioned for this question. 

11) _______ is not a core interface of hibernate. 

a) Criteria 

b) Session 

c) SessionManagement 

d) Configuration 

12) Is SessionFactory a ThreadSafe object 

a) Yes 

b) No 

13)  Is Session created per thread in hibernate? 

a) Yes 

b) No 

14) All POJO must implement non-argument constructor in hibernate. 

a) True 

b) False 



   

 

Enterprise Java 

270 

15) When several entities point to the target entity, that is achieved by 

a) @OneToOne 

b) @OneToMany 

c) @ManyToOne 

d) @ManyToMany 

16) If entity is not annotated with @Table, what will happen? 

a) Throws error because no table name is assigned 

b) No error and class name will be mapped with table name. 

17)   A __________ is used to get a physical connection with a database.  

a) SessionFactory 

b) Session 

c) Transaction 

d) ConnectionProvider 

18) A _________ represents a unit of work with the database and the Java 

object. 

a) SessionFactory 

b) ConnectionProvoder 

c) Transaction 

d) Session 

19) _________ is a factory of JDBC connections. 

a) SessionFactory 

b) ConnectionProvoder 

c) Transaction 

d) Session 

20) Mapping in hibernate can be given to an ORM tool either in the form 

of an ______or in the form of the annotations 

a) XHTML 

b) JSON 

c) HTML 

d) XML 



 

 

Hibernate 

 

271 

Answers: 

1) c 

2) a 

3) d 

4) c 

5) b 

6) a 

7) b 

8) a 

9) d 

10) d 

11) c 

12) a 

13) a 

14) a 

15) c 

16) b 

17) b 

18) c 

19) b 

20) d 

Descriptive: 

1.  Explain software development approach of Hibernate? 

2.  Develop a Hibernate application to store and retrieve employee details 

in MySQL Database. 

3.  Develop a Hibernate application to store Feedback of Website Visitor 

in MySQL Database. 

4.  Develop an application to demonstrate Hibernate One- To -One 

Mapping Using Annotation. 

 

 



   

 

Enterprise Java 

272 

21.6 REFERENCES 

Books and References:  

Sr. 

No. 

Title Author/s Publisher Edition Year 

1.  Java EE 7 For 

Beginners  

Sharanam 

Shah, 

Vaishali 

Shah  

SPD  First  2017  

2.  

 

Java EE 8 Cookbook: 

Build reliable 

applications with the 

most robust and 

mature technology for 

enterprise 

development  

Elder 

Moraes  

Packt  First  2018  

3.  Advanced Java 

Programming  

Uttam 

Kumar Roy  

Oxford 

Press  

NA 2015  

 

 

 

 

***** 


