
 M.Sc. (C. S.)
SEMESTER - II (CBCS)

PAPER I
ADVANCED

OPERATING SYSTEM

SUBJECT CODE: PSCS201

© UNIVERSITY OF MUMBAI

Dr. Suhas Pednekar
Vice Chancellor

University of Mumbai, Mumbai
Prof. Prakash Mahanwar

Director,
IDOL, University of Mumbai

				

Prof. Ravindra D. Kulkarni
Pro Vice-Chancellor,

University of Mumbai

Published by : Director,
Institute of Distance and Open Learning,

University of Mumbai,
Vidyanagari,Mumbai - 400 098.

May 2022, Print - 1 			

DTP composed and Printed by: Mumbai University Press

Programme Co-ordinator	 :	 Shri Mandar Bhanushe
		 Head, Faculty of Science and Technology IDOL,
			 Univeristy of Mumbai – 400098

Course Co-ordinator		 : Mr Sumedh Shejole
			 Assistant Professor,

		 IDOL, University of Mumbai- 400098

Course Writers	 :	 Dr. Sujatha Sundar Iyer
			 Satish Pradhan Dnyanasadhana College,

		 Thane.

		 :	 Ms. Mitali Shewale
			 Somaiya Vidyavihar University,

		 Mumbai

		 :	 Mr. Prashant Londhe
			 R. P. Gogate College of Arts and Science &

		 R. V. Jogalekar College of Commerce , Ratnagiri
		

CONTENTS

Unit No.	 Title	 Page No.

1.		 Linux Operating System Introduction...1

2.		 Memory Management and Virtual Memory in Linux..16

3. 		 Input/ Output in Linux...52

4. 		 Android Operating System..77

M.Sc. (C. S.)
Semester - II PAPER I

ADVANCED OPERATING SYSTEM

SYLLABUS

18

Detailed syllabus of semester – II
Course Code Course Title Credits
PSCS201 Advanced Operating Systems 04
Unit I: Linux Operating Systems

Introduction to kernel, Types of kernel (monolithic, micro, exo), Operating system

booting process GRUB-I, GRUB-II. Processes, Interprocess Communication,

Scheduling.

Unit II: Memory management and virtual memory in Linux

Basic memory management, swapping, virtual memory, Page replacement algorithms,

Design issues for paging systems, segmentation. Case Study: Linux memory

management .

Unit III: Input/ Output in Linux

Principles of I/O Hardware, Principles of I/O Software, Deadlocks, RAM Disks, Disks,

Terminals. File Systems: Files, Directories, File System Implementation, Security,

Protection mechanisms in different Linux versions

Unit IV: Android Operating System

The Android Software Stack, The Linux Kernel – its functions, essential hardware

drivers. Libraries - Surface Manager, Media framework, SQLite, WebKit, OpenGL.

Android Runtime - Dalvik Virtual Machine, Core Java Libraries. Application Framework -

Activity Manager, Content Providers, Telephony Manager, Location Manager, Resource

Manager. Android Application – Activities and Activity Lifecycle, applications such as

SMS client app, Dialer, Web browser, Contact manager

Text book:

 An Introduction to Operating Systems: Concepts and Practice (GNU/Linux), 4th

18

Detailed syllabus of semester – II
Course Code Course Title Credits
PSCS201 Advanced Operating Systems 04
Unit I: Linux Operating Systems

Introduction to kernel, Types of kernel (monolithic, micro, exo), Operating system

booting process GRUB-I, GRUB-II. Processes, Interprocess Communication,

Scheduling.

Unit II: Memory management and virtual memory in Linux

Basic memory management, swapping, virtual memory, Page replacement algorithms,

Design issues for paging systems, segmentation. Case Study: Linux memory

management .

Unit III: Input/ Output in Linux

Principles of I/O Hardware, Principles of I/O Software, Deadlocks, RAM Disks, Disks,

Terminals. File Systems: Files, Directories, File System Implementation, Security,

Protection mechanisms in different Linux versions

Unit IV: Android Operating System

The Android Software Stack, The Linux Kernel – its functions, essential hardware

drivers. Libraries - Surface Manager, Media framework, SQLite, WebKit, OpenGL.

Android Runtime - Dalvik Virtual Machine, Core Java Libraries. Application Framework -

Activity Manager, Content Providers, Telephony Manager, Location Manager, Resource

Manager. Android Application – Activities and Activity Lifecycle, applications such as

SMS client app, Dialer, Web browser, Contact manager

Text book:

 An Introduction to Operating Systems: Concepts and Practice (GNU/Linux), 4th

19

edition, Pramod Chandra P. Bhatt, Prentice-Hall of India Pvt. Ltd, 2014.

 Operating System Concepts with Java Eight Edition, Avi Silberschatz, Peter

Baer Galvin, Greg Gagne, John Wiley & Sons, Inc.,

2009, http://codex.cs.yale.edu/avi/os-book/OS8/os8j

 UNIX and Linux System Administration Handbook, Fourth Edition, Evi Nemeth,

Garth Snyder, Tren Hein, Ben Whaley, Pearson Education, Inc, 2011,

 PROFESSIONAL Android™ 4 Application Development, Reto Meier, John Wiley

& Sons, Inc. 2012.
References:

 Operating Systems: Design and Implementation, Third Edition, Andrew S.

Tanenbaum, Albert S. Woodhull, Prentice Hall, 2006.

 Fedora Documentation, http://docs.fedoraproject.org/en-US/index.html

 Official Ubuntu Documentation, https://help.ubuntu.com/

 Android Developers, http://developer.android.com/index.html.

Course Code Course Title Credits
PSCS202 Design and implementation of Modern Compilers 04
Unit I: Introduction to Compilers

The structure of a compiler, A simple approach to the design of lexical analyzers,

Regular expressions, Finite automata, From regular expressions to finite automata,

Minimizing the number of states of a DFA, Context-free grammars, Derivations and

Parse trees, Parsers, Shift-reduce parsing, Operator-precedence parsing, Top- down

parsing, Predictive parsers.

Unit II: Automatic Construction of Efficient Parsers

LR parsers, The canonical collection of LR(0) items, Constructing SLR parsing tables,

Constructing canonical LR parsing tables, Constructing LALR parsing tables, Using

ambiguous grammars, An automatic parser generator, Implementation of LR parsing

tables, Constructing LALR sets of items.

1

1
LINUX OPERATING SYSTEM

INTRODUCTION

Unit Structure

1.0 Objectives
1.1 Introduction
1.2 Linux Versus Other Unix-Like Kernels
1.3 Types of Kernels
1.4 GRUB in Linux
1.5 Inter Process Communication
1.6 Let us Sum Up
1.7 List of References
1.8 Bibliography
1.9 Unit End Exercise

1.0 Objective

1. To presents a general picture of what is inside a Unix kernel and
how Linux competes against other well-known Unix systems.

2. To learn various kernel types.
3. To gain knowledge on GRUB
4. To learn about Inter process communication

1.1 Introduction

Linux is a member of the large family of Unix-like operating systems. A
relative newcomer experiencing sudden spectacular popularity starting in
the late 1990s, Linux joins such well-known commercial Unix operating
systems as System V Release 4 (SVR4) developed by AT&T, which is
now owned by Novell; the 4.4 BSD release from the University of
California at Berkeley (4.4BSD), Digital Unix from Digital Equipment
Corporation (now Compaq); AIX from IBM; HP-UX from Hewlett-
Packard; and Solaris from Sun Microsystems.

Linux was initially developed by Linus Torvalds in 1991 as an operating
system for IBM compatible personal computers based on the Intel 80386
microprocessor. Linus remains deeply involved with improving Linux,
keeping it up to date with various hardware developments and
coordinating the activity of hundreds of Linux developers around the
world. Over the years, developers have worked to make Linux available
on other architectures, including Alpha, SPARC, Motorola MC680x0,
PowerPC, and IBM System/390.

2

Advanced Operating
System

2

1.2 Linux Versus Other Unix-Like Kernels

One of the more appealing benefits to Linux is that it isn't a commercial
operating system: its source code under the GNU Public License is open
and available to anyone to study.

The GNU project is coordinated by the Free Software Foundation, Inc.
(http://www.gnu.org/); its aim is to implement a whole operating system
freely usable by everyone. The availability of a GNU C compiler has been
essential for the success of the Linux project. Technically speaking, Linux
is a true Unix kernel, although it is not a full Unix operating system,
because it does not include all the applications such as filesystem utilities,
windowing systems and graphical desktops, system administrator
commands, text editors, compilers, and so on. However, since most of
these programs are freely available under the GNU General Public
License, they can be installed into one of the filesystems supported by
Linux. Since Linux is a kernel, many Linux users prefer to rely on
commercial distributions, available on CD-ROM, to get the code included
in a standard Unix system. Alternatively, the code may be obtained from
several different FTP sites.
The Linux source code is usually installed in the /usr/src/linux directory.
In the rest of this book, all file pathnames will refer implicitly to that
directory. 1.1 Linux Versus Other Unix-Like Kernels The various Unix-
like systems on the market, some of which have a long history and may
show signs of archaic practices, differ in many important respects. All
commercial variants were derived from either SVR4 or 4.4BSD; all of
them tend to agree on some common standards like IEEE's POSIX
(Portable Operating Systems based on Unix) and X/Open's CAE
(Common Applications Environment).
Understanding the Linux Kernel 7 The current standards specify only an
application programming interface (API)—that is, a well-defined
environment in which user programs should run. Therefore, the standards
do not impose any restriction on internal design choices of a compliant
kernel. As a matter of fact, several non-Unix operating systems like
Windows NT are POSIX-compliant. In order to define a common user
interface, Unix-like kernels often share fundamental design ideas and
features. In this respect, Linux is comparable with the other Unix-like
operating systems. The 2.2 version of the Linux kernel aims to be
compliant with the IEEE POSIX standard. This, of course, means that
most existing Unix programs can be compiled and executed on a Linux
system with very little effort or even without the need for patches to the
source code. Moreover, Linux includes all the features of a modern Unix
operating system, like virtual memory, a virtual filesystem, lightweight
processes, reliable signals, SVR4 inter process communications, support
for Symmetric Multiprocessor (SMP) systems, and so on. By itself, the
Linux kernel is not very innovative. When Linus Torvalds wrote the first
kernel, he referred to some classical books on Unix internals, like Maurice
Bach's The Design of the Unix Operating System (Prentice Hall, 1986).
Actually, Linux still has some bias toward the Unix baseline described in
Bach's book (i.e., SVR4).

3

Linux Operating
System Introduction

1.3 Types of Kernels

The microkernel and monolithic kernels are two types of kernels in the
operating system. The kernel is the main part of the OS. As a result, the
kernel's important code is stored in different memory spaces. The kernel is
a crucial component because it maintains the proper functioning of the
complete system. It manages hardware and processes, files handling, and
several other functions.

Microkernel
The microkernel is a type of kernel that permits the customization of the
OS. It is privileged and provides low-level address space management as
well as Inter-Process Communication (IPC). Furthermore, OS functions
like the virtual memory manager, file system, and CPU scheduler are built
on top of the microkernel. Every service has its address space to make
them secure. Moreover, every application has its address space. As a
result, there is protection between applications, OS Services, and the
kernel.

When an application requests a service from the OS services, the OS
services communicate with one another in order to provide the requested
service to the application. Inter-Process Communication (IPC) can assist
in establishing this communication. Overall, microkernel-based operating
systems offer a high level of extensibility. It is also possible to customize
the operating system's services to meet the needs of the application.

Monolithic Kernel
The monolithic kernel manages the system's resources between the system
application and the system hardware. Unlike the microkernel, user and
kernel services are run in the same address space. It increases the kernel
size and also increases the size of the OS.

The monolithic kernel offers CPU scheduling, device management, file
management, memory management, process management, and other OS
services via the system calls. All of these components, including file
management and memory management, are located within the kernel. The
user and kernel services use the same address space, resulting in a fast-
executing operating system. One drawback of this kernel is that if anyone
process or service of the system fails, the complete system crashes. The
entire operating system must be modified to add a new service to a
monolithic kernel.

Exo Kernel
It is the type of kernel which follows end-to-end principle. It has fewest
hardware abstractions as possible. It allocates physical resources to
applications.

Example:
Nemesis, ExOS etc.

4

Advanced Operating
System

4

However, Linux doesn't stick to any particular variant. Instead, it tries to
adopt good features and design choices of several different Unix kernels.
Here is an assessment of how Linux competes against some well-known
commercial Unix kernels:

 The Linux kernel is monolithic: It is a large, complex do-it-
yourself program, composed of several logically different
components. In this, it is quite conventional; most commercial Unix
variants are monolithic. A notable exception is CarnegieMellon's
Mach 3.0, which follows a microkernel approach.

 Traditional Unix kernels are compiled and linked statically. Most
modern kernels can dynamically load and unload some portions of
the kernel code (typically, device drivers), which are usually called
modules. Linux's support for modules is very good, since it is able to
automatically load and unload modules on demand. Among the main
commercial Unix variants, only the SVR4.2 kernel has a similar
feature.

 Kernel threading: Some modern Unix kernels, like Solaris 2.x and
SVR4.2/MP, are organized as a set of kernel threads. A kernel
thread is an execution context that can be independently scheduled;
it may be associated with a user program, or it may run only some
kernel functions. Context switches between kernel threads are
usually much less expensive than context switches between ordinary
processes, since the former usually operate on a common address
space. Linux uses kernel threads in a very limited way to execute a
few kernel functions periodically; since Linux kernel threads cannot
execute user programs, they do not represent the basic execution
context abstraction. (That's the topic of the next item.)

 Multithreaded application support: Most modern operating
systems have some kind of support for multithreaded applications,
that is, user programs that are well designed in terms of many
relatively independent execution flows sharing a large portion of the
application data structures. A multithreaded user application could
be composed of many lightweight processes (LWP), or processes
that can operate on a common Understanding the Linux Kernel 8
address space, common physical memory pages, common opened
files, and so on. Linux defines its own version of lightweight
processes, which is different from the types used on other systems
such as SVR4 and Solaris. While all the commercial Unix variants
of LWP are based on kernel threads, Linux regards lightweight
processes as the basic execution context and handles them via the
nonstandard clone() system call.

 Linux is a nonprimitive kernel: This means that Linux cannot
arbitrarily interleave execution flows while they are in privileged
mode. Several sections of kernel code assume they can run and
modify data structures without fear of being interrupted and having
another thread alter those data structures. Usually, fully pre-emptive
kernels are associated with special real-time operating systems.
Currently, among conventional, general-purpose Unix systems, only

5

Linux Operating
System Introduction

Solaris 2.x and Mach 3.0 are fully pre-emptive kernels. SVR4.2/MP
introduces some fixed pre-emption points as a method to get limited
pre-emption capability.

 Multiprocessor support: Several Unix kernel variants take
advantage of multiprocessor systems. Linux 2.2 offers an evolving
kind of support for symmetric multiprocessing (SMP), which means
not only that the system can use multiple processors but also that
any processor can handle any task; there is no discrimination among
them. However, Linux 2.2 does not make optimal use of SMP.
Several kernel activities that could be executed concurrently—like
filesystem handling and networking—must now be executed
sequentially.

 Filesystem: Linux's standard filesystem lacks some advanced
features, such as journaling. However, more advanced filesystems
for Linux are available, although not included in the Linux source
code; among them, IBM AIX's Journaling File System (JFS), and
Silicon Graphics Irix's XFS filesystem. Thanks to a powerful
objectoriented Virtual File System technology (inspired by Solaris
and SVR4), porting a foreign filesystem to Linux is a relatively easy
task.

 STREAMS: Linux has no analog to the STREAMS I/O subsystem
introduced in SVR4, although it is included nowadays in most Unix
kernels, and it has become the preferred interface for writing device
drivers, terminal drivers, and network protocols.
Several features make Linux a wonderfully unique operating system.
Commercial Unix kernels often introduce new features in order to
gain a larger slice of the market, but these features are not
necessarily useful, stable, or productive. As a matter of fact, modern
Unix kernels tend to be quite bloated. By contrast, Linux doesn't
suffer from the restrictions and the conditioning imposed by the
market, hence it can freely evolve according to the ideas of its
designers (mainly Linus Torvalds).
Specifically, Linux offers the following advantages over its
commercial competitors: Linux is free. You can install a complete
Unix system at no expense other than the hardware (of course).
Understanding the Linux Kernel 9 Linux is fully customizable in all
its components. Thanks to the General Public License (GPL), you
are allowed to freely read and modify the source code of the kernel
and of all system programs. Several commercial companies have
started to support their products under Linux, most of which aren't
distributed under a GNU Public License. Therefore, you may not be
allowed to read or modify their source code. Linux runs on low-end,
cheap hardware platforms. You can even build a network server
using an old Intel 80386 system with 4 MB of RAM. Linux is
powerful. Linux systems are very fast, since they fully exploit the
features of the hardware components.
The main Linux target is efficiency, and indeed many design choices
of commercial variants, like the STREAMS I/O subsystem, have
been rejected by Linus because of their implied performance

6

Advanced Operating
System

6

penalty. Linux has a high standard for source code quality. Linux
systems are usually very stable; they have a very low failure rate and
system maintenance time. The Linux kernel can be very small and
compact. Indeed, it is possible to fit both a kernel image and full root
filesystem, including all fundamental system programs, on just one
1.4 MB floppy disk! As far as we know, none of the commercial
Unix variants is able to boot from a single floppy disk. Linux is
highly compatible with many common operating systems. It lets you
directly mount filesystems for all versions of MS-DOS and MS
Windows, SVR4, OS/2, Mac OS, Solaris, SunOS, NeXTSTEP,
many BSD variants, and so on. Linux is also able to operate with
many network layers like Ethernet, Fiber Distributed Data Interface
(FDDI), High Performance Parallel Interface (HIPPI), IBM's Token
Ring, AT&T WaveLAN, DEC RoamAbout DS, and so forth. By
using suitable libraries, Linux systems are even able to directly run
programs written for other operating systems.
For example, Linux is able to execute applications written for
MSDOS, MS Windows, SVR3 and R4, 4.4BSD, SCO Unix,
XENIX, and others on the Intel 80x86 platform. Linux is well
supported. Believe it or not, it may be a lot easier to get patches and
updates for Linux than for any proprietary operating system! The
answer to a problem often comes back within a few hours after
sending a message to some newsgroup or mailing list. Moreover,
drivers for Linux are usually available a few weeks after new
hardware products have been introduced on the market. By contrast,
hardware manufacturers release device drivers for only a few
commercial operating systems, usually the Microsoft ones.
Understanding the Linux Kernel 10 Therefore, all commercial Unix
variants run on a restricted subset of hardware components. With an
estimated installed base of more than 12 million and growing,
people who are used to certain creature features that are standard
under other operating systems are starting to expect the same from
Linux. As such, the demand on Linux developers is also increasing.
Luckily, though, Linux has evolved under the close direction of
Linus over the years, to accommodate the needs of the masses.

1.4 GRUB in Linux

The GRUB (Grand Unified Bootloader) is a bootloader available from the
GNU project. A bootloader is very important as it is impossible to start an
operating system without it. It is the first program which starts when the
program is switched on. The bootloader transfers the control to the
operating system kernel.

GRUB Features
GRUB is the default bootloader for many of the Linux distributions. This
is because it is better than many of the previous versions of the
bootloaders. Some of its features are:

7

Linux Operating
System Introduction

 GRUB supports LBA (Logical Block Addressing Mode) which puts
the addressing conversion used to find files into the firmware of the
hard drive

 GRUB provides maximum flexibility in loading the operating
systems with required options using a command based, pre-
operating system environment.

 The booting options such as kernel parameters can be modified
using the GRUB command line.

 There is no need to specify the physical location of the Linux kernel
for GRUB. It only required the hard disk number, the partition
number and file name of the kernel.

 GRUB can boot almost any operating system using the direct and
chain loading boot methods.

GRUB Installation Process
GRUB automatically becomes the default loader after it is installed. The
following steps are followed to install GRUB:

 It is important to use the latest GRUB package available to install
GRUB. Or the GRUB package from the installation CD-ROM is
used.

 The root shell prompt is opened and the command /sbin/grub-
install is run after the GRUB package is installed. The in the
command is the location where the GRUB stage 1 boot loader
should be installed.

 After all this is done, the GRUB graphical boot loader menu appears
before the kernel loads into memory when the system boots.

GRUB Boot Process
The boot process using GRUB requires the GRUB to load itself into
memory. This is done in the following steps:

 The stage 1 boot loader is loaded into the memory by the BIOS. This
boot loader is also known as the primary boot loader. It exists on
512 bytes or less of disk space within the master boot record. The
primary boot loader can load the stage 1.5 or stage 2 boot loader if
required.

 The stage 1.5 boot loader is loaded into the memory by the stage 1
boot loader if required. This may be necessary in some cases as
some hardware require a middle step before moving on to the stage
2 loader.

 The secondary boot loader is also known as the stage 2 boot loader
and it can be loaded into the memory by the primary boot loader.
Display of the GRUB menu and command environment are
functions performed by the secondary boot loader. This allows the
user to look at system parameters and select the operating system to
boot.

8

Advanced Operating
System

8

 The operating system or kernel is loaded into the memory by the
secondary boot loader. After that, the control of the machine is
transferred to the operating system.

GRUB Interfaces
There are three interfaces in GRUB which all provide different levels of
functionality. The Linux kernel can be booted by the users with the help of
these interfaces. Details about the interfaces are:

Menu Interface
The GRUB is configured by the installation program in the menu
interface. It is the default interface available. It contains a list of the
operating systems or kernels which is ordered by name. A specific
operating system or kernel can be selected using the arrow keys and it can
be booted using the enter key.

Menu Entry Editor Interface
The e key in the boot loader menu is used to access the menu entry editor.
All the GRUB commands for the particular menu entry are displayed there
and these commands may be altered before loading the operating system.
Command Line Interface
This interface is the most basic GRUB interface, but it grants the most
control to the user. Using the command line interface, any command can
be executed by typing it and then pressing enter. This interface also
features some advanced shell features.
GRUB vs GRUB2
The default menu for GRUB2 looks very similar to GRUB but there are
some changes made in this.

 Grub has two configuration files namely menu. lst and grub.
conf whereas, Grub2 has only one main configuration file namely
grub.cfg and it looks very close to a full scripting language. And this
configuration file is overwritten by certain Grub 2 package updates,
whenever a kernel is added or removed, or when the user runs
update-grub. For any configuration changes, we need to run update-
grub to make the changes effective.

 In Grub, it is really hard for the normal user to modify the
configuration. But Grub2 is more user-friendly, Grub-mkconfig will
automatically changes the configuration.

 In Grub, partition number starts from 0, whereas in Grub2 it starts
with 1. The first device is still identified with hd0. These changes
can be altered if needed by making some changes to device.map file
of the '/etc/grub' folder.

 Grub uses physical and logical addresses to address the disk, it can't
even read from new partitions whereas, Grub2 uses UUID to
identify a disk thus is more reliable. It supports LVM and RAID
devices.

9

Linux Operating
System Introduction

 In today’s Linux Distros including (Ubuntu 16.04 and RHEL 7),
GRUB2 will now directly show a login prompt and no menu is
displayed now.

 If you want to see the menu during boot you need to hold down
SHIFT key. Even sometimes by pressing ESC you can also display
the menu.

 Users have also now choice of creating custom files in which they
can place their own menu entries. You can make use of a file called
40_custom which is available in '/etc/grub.d' folder.

 Even users can now change the menu display settings. This is done
through a file called grub located in /etc/default folder.

1.5 Inter Process Communication (IPC)

A process can be of two types:

 Independent process.
 Co-operating process.

An independent process is not affected by the execution of other processes
while a co-operating process can be affected by other executing processes.
Though one can think that those processes, which are running
independently, will execute very efficiently, in reality, there are many
situations when co-operative nature can be utilized for increasing
computational speed, convenience, and modularity. Inter-process
communication (IPC) is a mechanism that allows processes to
communicate with each other and synchronize their actions. The
communication between these processes can be seen as a method of co-
operation between them. Processes can communicate with each other
through both:

1. Shared Memory
2. Message passing

Figure 1 below shows a basic structure of communication between
processes via the shared memory method and via the message passing
method.
An operating system can implement both methods of communication.
First, we will discuss the shared memory methods of communication and
then message passing. Communication between processes using shared
memory requires processes to share some variable, and it completely
depends on how the programmer will implement it. One way of
communication using shared memory can be imagined like this: Suppose
process1 and process2 are executing simultaneously, and they share some
resources or use some information from another process. Process1
generates information about certain computations or resources being used
and keeps it as a record in shared memory. When process2 needs to use
the shared information, it will check in the record stored in shared memory
and take note of the information generated by process1 and act
accordingly. Processes can use shared memory for extracting information

10

Advanced Operating
System

10

as a record from another process as well as for delivering any specific
information to other processes.
Let’s discuss an example of communication between processes using the
shared memory method.

ii) Messaging Passing Method
Now, We will start our discussion of the communication between
processes via message passing. In this method, processes
communicate with each other without using any kind of shared
memory. If two processes p1 and p2 want to communicate with each
other, they proceed as follows:

 Establish a communication link (if a link already exists, no
need to establish it again.)

 Start exchanging messages using basic primitives.
We need at least two primitives:
– send (message, destination) or send(message)
– receive (message, host) or receive(message)

11

Linux Operating
System Introduction

The message size can be of fixed size or of variable size. If it is of fixed
size, it is easy for an OS designer but complicated for a programmer and if
it is of variable size then it is easy for a programmer but complicated for
the OS designer. A standard message can have two parts: header and
body.

The header part is used for storing message type, destination id, source
id, message length, and control information. The control information
contains information like what to do if runs out of buffer space, sequence
number, priority. Generally, message is sent using FIFO style.

Process Scheduling in Linux Scheduling is the action of
assigning resources to perform tasks. We will mainly focus on scheduling
where our resource is a processor or multiple processors, and the task will
be a thread or a process that needs to be executed. The act of scheduling is
carried out by a process called scheduler.

The scheduler goals are to
 Maximize throughput (number of tasks done per time unit)
 Minimize wait time (amount of time passed since the process was

ready until it started to execute)
 Minimize response time (amount of time passed since the process

was ready until it finished executing)
 Maximize fairness (distributing resources fairly for each task)

Process Types in Linux
Linux has two types of processes
 Real-time Processes
 Conventional Processes

Real-time processes are required to ‘obey’ response time constraints
without any regard to the system’s load. In different words, real-time
processes are urgent and cannot be delayed no matter the circumstances.
An example of a real-time process in Linux is the migration process which
is responsible for distributing processes across CPU cores (a.k.a load
balancing).

Conventional processes don’t have strict response time constraints and
they can suffer from delays in case the system is ‘busy’. Each process type
has a different scheduling algorithm, and as long as there are ready-to-run
real-time processes they will run and make the conventional processes
wait.

Real-Time Scheduling
There are two scheduling policies when it comes to real-time scheduling,
SCHED_RR and SCHED_FIFO. The policy affects how much runtime a
process will get and how is the runqueue is operating. The ready-to-run
processes I have mentioned are stored in a queue called runqueue. The
scheduler is picking processes to run from this runqueue based on the
policy.

12

Advanced Operating
System

12

SCHED_FIFO
In this policy the scheduler will choose a process based on the arrival time
(FIFO = First In First Out). A process with a scheduling policy of
SCHED_FIFO can ‘give up’ the CPU under a few circumstances:

 Process is waiting, for example for an IO operation. When the
process is back to ‘ready’ state it will go back to the end of the
runqueue.

 Process yielded the CPU, with the system call sched_yield. The
process will immediately go back to the end of the runqueue.

SCHED_RR
RR = Round Robin
In this scheduling policy, every process in the runqueue gets a time slice
(quantum) and executes in his turn (based on priority) in a cyclic fashion.
Let’s consider an example where we have 3 processes in our runqueue, A
B C, all of them have the policy of SCHED_RR.
As shown in the drawing below, each process gets a time slice and
executes in his turn. when all processes ran 1 time, they repeat the same
execution order.

Real-Time Scheduling Summary
A real-time process can be scheduled in two different policies,
SCHED_FIFO and SCHED_RR. The policy affects how the runqueue is
working and how much time each process is getting for execution.
Conventional Scheduling
CFS — Completely Fair Scheduler is the scheduling algorithm of
conventional processes since version 2.6.23 of Linux.So CFS is focusing
mainly on one metric — it wants to be fair as much as possible, meaning
that he gives every process gets an even time slice of the CPU.
Note that, processes with higher priority might still get bigger time slices.
In order for us to understand how CFS works, we will have to get familiar
with a new term — virtual runtime (vruntime).
Virtual Runtime
Virtual runtime of a process is the amount of time spent by actually
executing, not including any form of waiting. As we mentioned, CFS tries
to be as fair as possible.
To accomplish that, CFS will schedule the process with the minimum
virtual time that is ready to run. CFS maintains variables holding the
maximum and minimum virtual runtime for reasons we will understand
soon.

13

Linux Operating
System Introduction

CFS — Completely Fair Scheduler
Before talking about how the algorithm works, let’s understand what data
structure this algorithm is using. CFS uses a red-black tree which is a
balanced binary search tree — meaning that insertion, deletion, and look-
up are performed in O(logN) where N is the number of processes.

The key in this tree is the virtual runtime of a process. New processes or
processes that got back to the ready state from waiting are inserted into the
tree with a key vruntime=min_vruntime. This is extremely important in
order to prevent starvation of older processes in the tree. Moving on to the
algorithm, at first, the algorithm sets itself a time limit — sched_latency.

In this time limit, it will try to execute already processes — N.
This means that each process will get a time slice of the time limit divided
by the number of processes — Qᵢ = sched_latency/N.

When a process finishes its time-slice (Qᵢ), the algorithm picks the process
with the least virtual runtime in the tree to execute next.

1.6 Let us Sum Up

 Linux is a member of the large family of Unix-like operating
systems

 The microkernel and monolithic kernels are two types of kernels in
the operating system. The kernel is the main part of the OS.

 The GRUB (Grand Unified Bootloader) is a bootloader available
from the GNU project. A bootloader is very important as it is
impossible to start an operating system without it.

 Inter-process communication (IPC) is a mechanism that allows
processes to communicate with each other and synchronize their
actions.

 Process Scheduling in Linux Scheduling is the action of
assigning resources to perform tasks.

1.7 List of References

 Linux Pocket Guide is a book written by Daniel J. Barrett

 The Complete Reference is a book written by Richard Petersen

 Linux Kernel Development is a book written by Robert Love

 The Linux Programming Interface is a book written by Michael
Kerrisk

1.8 Bibliography

 Linux Kernel Development is a book written by Robert Love
 The Linux Programming Interface is a book written by Michael

Kerrisk

14

Advanced Operating
System

14

1.9 Unit End Exercise

1. Explain Linux Kernel.
2. What are the types of Kernels?
3. Explain Operating system booting process.
4. Mention the difference between GRUB-I, GRUB-II.
5. Explain Inter Processes communication.
6. Explain various scheduling.



15

2
MEMORY MANAGEMENT AND

VIRTUAL MEMORY IN LINUX

Unit Structure

2.0 Objectives

2.1 Introduction

2.2 Basic memory management

 2.2.1. Monoprogramming without Swapping or Paging

 2.2.2. Multiprogramming with Fixed Partitions

 2.2.3. Relocation and Protection

2.3 Swapping

 2.3.1. Memory Management with Bitmaps

 2.3.2 Memory Management with Linked Lists

2.4 Virtual memory

 2.4.1 Paging

 2.4.2 Page Table

 2.4.3 Translation look aside buffers

2.5 Page replacement algorithms

 2.5.1 First In First Out (FIFO)

 2.5.2 Least Recently Used (LRU)

 2.5.3 Optimal Range

 2.5.4 Last In First Out (LIFO)

 2.5.5 Practice problems based on page replacement algorithm

2.6 Design issues for paging systems

 2.6.1 The working set model

 2.6.2 Local versus Global Allocation Policies

 2.6.3 Page size

 2.6.4 Virtual Memory Interface

2.7 Segmentation

 2.7.1 Types of segmentation

 2.7.2 Characteristics of segmentation

 2.7.3 Need of segmentation

 2.7.4 User’s view of a program

 2.7.5 Segmentation Architecture

 2.7.6 Segmentation Hardware

 2.7.7 Advantages of Segmentation

 2.7.8 Disadvantages of Segmentation

 2.7.9 Example of Segmentation

2.8 Case Study: Linux memory management

2.9 Summary

2.10 List of References

2.11 Unit End Exercises

16

Advanced Operating
System

16

2.0 OBJECTIVES

 After going through this unit, you will be able to:

• Understand the fundamentals of operating system

• Acquaint with the operating system mechanism in handling and

managing the process and threads along with their communication

• Understand the mechanisms and conceptualize the components

involved in designing the memory management in contemporary

operating system

2.1 INTRODUCTION

Memory is a valuable resource that must be maintained properly. While

today's average home computer has two thousand times the memory of the

IBM 7094 (the world's largest computer in the early 1960s), applications

and the data they are expected to process have also increased dramatically.

"Programs and their data expand to fill the memory available to contain

them," says Parkinson's Law. We'll look at how operating systems handle

and manage memory in this chapter.

Every programmer dreams of having an endlessly huge, infinitely fast

memory that is also nonvolatile, meaning it does not lose its contents if the

power goes off. Why not ask for it to be reasonably priced while we're at

it? Unfortunately, technology is unable to transform such fantasies into

reality. As a result, most computers contain a memory hierarchy, with a

tiny amount of extremely fast, expensive volatile cache memory, hundreds

of megabytes of medium-speed, medium-price volatile main memory

(RAM), and tens or hundreds of gigabytes of slow, inexpensive

nonvolatile disc storage. The operating system's role is to coordinate how

these memories are utilized.

The memory manager is the element of the operating system that handles

the memory hierarchy. Its role is to keep track of which bits of memory

are in use and which are not, to allocate memory to processes when they

require it and deallocate it when they are finished, and to manage

swapping between main memory and disc when main memory is

insufficient to accommodate all processes. It's in the kernel on most

systems (excluding MINIX 3).

In this chapter, we'll look at a variety of memory management strategies,

ranging from the most basic to the most complex. We'll start at the

beginning, looking at the most basic memory management system

available, and work our way up to more complex systems.

2.2 BASIC MEMORY MANAGEMENT

There are two types of memory management systems: those that swap

processes between main memory and disc during execution (swapping and

paging) and those that don't. Keep in mind that swapping and paging are

largely artifacts of a lack of main memory that can hold all apps and data

17

Memory Management and
Virtual Memory in Linux

at the same time. If primary memory grows to the point that there is

genuinely enough of it, arguments for one memory management technique

or another may become obsolete.

On the other hand, as previously said, software appears to increase at the

same rate as memory, so effective memory management may be required

at all times. Many institutions in the 1980s used a 4 MB VAX to run a

timesharing system with dozens of (mostly satisfied) users. For a single-

user Windows XP machine, Microsoft now recommends at least 128 MB.

The trend toward multimedia places even greater demands on memory,

therefore good memory management will be required for at least the next

decade.

2.2.1. MONOPROGRAMMING WITHOUT SWAPPING OR

PAGING

The simplest memory management approach is to execute only one

application at a time, with that program and the operating system sharing

memory. Figure 2.1 depicts three variations on this topic. The operating

system may be in RAM (Random Access Memory) at the bottom of

memory, as shown in figure 2.1(a), or in ROM (Read-Only Memory) at

the top of memory, as shown in figure 2.1(b), or the device drivers may be

in ROM at the top of memory, with the rest of the system in RAM down

below, as shown in figure 2.1(c). The first model was once common on

mainframes and minicomputers, but it is now rarely seen. On some

palmtop computers and embedded systems, the second model is used.

Early on, the third model was employed. Personal computers (e.g., those

running MS-DOS), where the BIOS is the piece of the system stored in the

ROM (Basic Input Output System).

Only one process can execute at a time when the system is organized this

way. The operating system copies the desired application from disc to

memory and executes it as soon as the user forms a command. The

operating system shows a prompt character and waits for a new command

when the process is complete. It loads a new program into memory,

overwriting the old one, when it receives the command.

Figure 2.1 With one operating system and one user process, there are three

easy ways to organize memory. Other options are also available.

18

Advanced Operating
System

18

2.2.2. MULTIPROGRAMMING WITH FIXED PARTITIONS

Monoprogramming is rarely implemented these days, with the exception

of very small embedded devices. Multiple processes can run at the same

time in most modern systems. When many processes are operating at the

same time, one can use the CPU while the other is waiting for I/O to

complete. As a result, multiprogramming improves CPU usage. Although

network servers can always execute several processes (for distinct clients)

at the same time, most client (i.e., desktop) systems now have this

capability as well.

The simplest method for achieving multiprogramming is to divide

memory into n (potentially uneven) segments. This partitioning can be

done manually, for example, when the machine is booted.

When a job comes in, it can be placed in the input queue for the smallest

partition that can accommodate it. Because the partitions in this system are

fixed, any space in a partition that is not used by a work is wasted while

that process is running. This system of fixed partitions and independent

input queues is depicted in figure 2.2(a).

Figure 2.2: (a) Memory partitions are fixed, and each partition has its own

input queue.

 (b) Memory partitions are fixed, and each partition has a single input

queue.

When the large partition of queue is vacant but the queue for a small

partition is filled, as is the situation for partitions 1 and 3 in figure 2.2 (a),

the disadvantage of dividing the incoming jobs into different queues

becomes obvious. Even if there is plenty of memory available, little jobs

must wait to get into memory. Maintaining a single queue, as shown in

figure 2.2 (b), is an alternate arrangement. Whenever a partition becomes

available, the work closest to the top of the queue that fits in it could be

loaded and executed.

19

Memory Management and
Virtual Memory in Linux

As wasting a large partition on a tiny project is undesirable, another

technique is to examine the whole input queue whenever a partition

becomes available and select the largest job that fits. It's worth noting that

the latter approach considers little tasks as unworthy of a full partition,

whereas it's normally preferable to provide the best service to the smallest

jobs (often interactive activities), not the worst.

Having at least one little partition around is one way out. Small jobs will

be able to run on this partition without the need for a huge partition.

Another option is to establish a rule that no job that is eligible to run may

be skipped over more than k times. It receives one point for each time it is

skipped over. It cannot be skipped once it has accumulated k points.

2.2.3. RELOCATION AND PROTECTION

Multiprogramming brings two key issues that must be addressed:

relocation and privacy. Separate jobs will be run at different addresses, as

shown in Figure 2.2. When a program is linked, the linker needs to know

where in memory the program will start.

Assume an example that the first instruction is a call to a procedure

located at absolute address 100 in the binary file generated by the linker.

This program will jump to absolute address 100, which is inside the

operating system, if it is loaded in partition 1 (at address 100K). A call to

100K + 100 is all that is required. If the program is loaded into partition 2,

the call to 200K + 100, and so on, must be made. This issue is called as

the relocation problem.

One option is to change the instructions while the program is being loaded

into memory. 100K is added to each address in program put into partition

1, 200K is added to addresses in program loaded into partition 2, and so

on. To conduct this type of relocation during loading, the linker must

include a list or bitmap in the binary program that specifies which program

words are addresses to be relocated and which are opcodes, constants, or

other elements that must not be relocated.

The problem of protection is not solved by relocating during loading. A

malicious application can create a new instruction and jump to it at any

time. There is no mechanism to prevent a program from creating an

instruction that reads or writes any word in memory since program in this

system use absolute memory addresses rather than addresses relative to a

register. Allowing processes to read and write memory belonging to other

users is very undesirable in multiuser systems.

Equipping the machine with two unique hardware registers, known as the

base and limit registers, is an alternate solution to both the relocation and

protection difficulties. When a process is scheduled, the start address of its

partition is loaded into the base register, and the length of the partition is

placed into the limit register. Before being transmitted to memory, every

memory address is automatically supplemented with the contents of the

base register. Thus, if the base register has the value 100K, a CALL 100

instruction becomes a CALL 100K + 100 instructions without changing

the instruction itself. The limit register is also verified to ensure that

20

Advanced Operating
System

20

addresses do not attempt to target memory outside the current partition.

The base and limit registers are protected by hardware to prevent user

program from changing them.

The necessity to do an addition and a comparison on each memory

reference is a disadvantage of this technique. Although comparisons are

quick, addition takes a long time due to carry propagation time unless

specific addition circuits are employed.

2.3 SWAPPING

Organizing memory into fixed segments is straightforward and effective

using a batch system. When a work reaches the front of the queue, it is

loaded into a partition. It is retained in memory until it is completed.

There's no reason to use anything more elaborate if you can keep enough

jobs in memory to keep the CPU active all the time.

The situation is different with timesharing systems or graphics-oriented

personal computers. When main memory is insufficient to accommodate

all of the presently running processes, extra processes must be stored on

disc and brought in to execute dynamically.

Depending on the hardware available, there are two broad techniques to

memory management. Swapping is the most basic technique, which

involves bringing in each process in its whole, executing it for a bit, and

then putting it back on the disc. Virtual memory, on the other hand, allows

applications to run even if they are only partially in main memory.

In figure 2.3, the operation of a switching system is depicted. Only process

A is initially stored in memory. Processes B and C are then either created

or swapped in from memory. A is swapped off to storage in figure 2.3(d).

Then D arrives, and B exits. Finally, A arrives. Because A is now in a

different location, the addresses it contains must be redirected, either by

software when it is swapped in or (most likely) by hardware during

program execution.

Figure 2.3 As processes enter and exit memory, the memory allocation

changes. The shaded areas are memory that hasn't been used yet.

When swapping generates many memory holes, they can be merged into

one large one by shifting all the processes as far down as possible. This

21

Memory Management and
Virtual Memory in Linux

concept is known as memory compaction. It is frequently avoided since it

consumes a significant amount of CPU time.

One thing worth mentioning is the amount of memory that should be

assigned to a process when it is created or swapped in. When processes are

established with a constant size, the allocation is straightforward: the

operating system allocates exactly what is required, no more and no less.

If, on the other hand, processes' data segments can grow by dynamically

allocating memory from a heap, as many programming languages allow, a

problem arises whenever a process attempts to grow. If there is a hole

adjacent to the process, it can be allocated and the process permitted to

develop into it. If, on the other hand, the expanding process is adjacent to

another process, it will either have to be transferred to a memory hole

large enough for it, or one or more processes will have to be swapped out

to make room. If a process can't grow in memory and the swap area on the

disc is full, it'll have to wait or die.

If most processes are expected to grow as they run, allocating a little more

memory whenever a process is swapped in or moved is probably a good

idea to reduce the overhead involved with moving or swapping processes

that no longer fit in their assigned memory. When switching processes to

disc, however, only the memory that is really in use should be changed;

exchanging the extra RAM is wasteful. Figure 2.4(a) shows a memory

arrangement in which two processes have been given space for expansion.

Figure 2.4: (a) Making space for an expanding data portion.

 (b) Setting aside space for a rising stack and data segment.

If processes can have two expanding segments, for example, the data

segment as a heap for dynamically created and released variables and a

stack segment for typical local variables and return addresses, an alternate

design, shown in figure 2.4(b), emerges. We can see that each process has

22

Advanced Operating
System

22

a stack at the top of its allotted memory that is increasing downward, as

well as a data segment just beyond the program text that is rising upward

in this diagram. Either segment can make use of the shared memory

between them. If it runs out, the process must be transferred to a hole with

enough space, swapped out of memory until a larger hole can be created,

or destroyed.

2.3.1. MEMORY MANAGEMENT WITH BITMAPS

When memory is dynamically allotted, the operating system is responsible

for managing it. Bitmaps and free lists are the two most common

techniques to keep track of memory use.

A bitmap divides memory into allocation units, which can be many

kilobytes in size. To each of the allocation unit a bit in the bitmap

corresponds to 0 if the unit is free and 1 if it is occupied (or vice versa).

Figure 2.5 depicts a section of memory and the bitmap that corresponds.

Figure 2.5: (a) A section of memory that contains five processes and three

holes. The memory allocation units are indicated by tick

marks. Shaded areas (0 in the bitmap) are unrestricted.

 (b) Its related bitmap.

 (c) The same data as in a list.

The size of the allocation unit is a crucial design consideration. The

greater the bitmap, the smaller the allocation unit. However, even with a

4-byte allocation unit, 32 bits of memory will only require 1 bit of the

map. Because a memory of 32n bits uses n map bits, the bitmap will only

take up 1/33 of the memory. The bitmap will be smaller if the allocation

unit is large, but if the process size is not an exact multiple of the

allocation unit, significant memory will be wasted in the last unit of the

process.

Because the size of a bitmap depends only on the size of memory and the

size of the allocation unit, it is a straightforward approach to keep track of

memory words in a set amount of memory. The main problem is that when

a k-unit process is brought into memory, the memory management must

scan the bitmap for a sequence of k consecutive 0 bits in the map. Because

23

Memory Management and
Virtual Memory in Linux

the run may transcend word boundaries in the map, searching a bitmap for

a run of a particular length is a long process; this is an argument against

bitmaps.

2.3.2 MEMORY MANAGEMENT WITH LINKED LISTS

Maintaining a linked list of allocated and free memory segments, where a

segment is either a process or a gap between two processes, is another

technique to keep track of memory. Figure 2.5(c) depicts the memory of

figure 2.5(a) as a linked list of segments. Each list entry describes a hole

(H) or process (P), as well as the location at which it begins, the length,

and a pointer to the next entry.

The segment list is kept ordered by address in this example. The

advantage of sorting this method is that updating the list is simple when a

process ends or is replaced. Except when it's at the very top or very bottom

of memory, a terminating process usually has two neighbors. These could

be holes or processes, resulting in the four combinations indicated in

figure 2.6. Updating the list in figure 2.6(a) necessitates replacing a P with

an H. Two entries are combined into one in figure 2.6(b) and figure 2.6(c),

making the list one entry shorter.

Three entries are combined in figure 2.6(d), and two items are eliminated

from the list. Because the terminating process's process table slot will

usually point to the process's list entry, it may be more convenient to have

the list as a double-linked list rather than the single-linked list shown in

figure 2.5(c). This format makes it easy to locate the prior entry and

determine whether or not a merge is possible.

Figure 2.6 For the terminating process, X, there are four neighboring

combinations.

Several strategies can be used to allocate memory for a newly generated

process (or an old process being swapped in from disc) when the processes

and holes are kept on a list sorted by address. The memory management,

we suppose, knows how much memory to allocate. First fit is the simplest

algorithm. The process manager checks the list of segments until it locates

a large enough hole. Except in the statistically unusual situation of a

precise fit, the hole is then split into two portions, one for the process and

24

Advanced Operating
System

24

one for the unused memory. Because it searches as little as possible, first

fit is a fast algorithm.

Next fit is a small variant of first fit. It functions similarly to initial fit,

with the exception that it retains track of its location whenever it finds a

suitable hole. When it's called to discover a hole again, it starts searching

the list from where it left off the last time, rather than starting from the

beginning, as first fit does. According to Bays (1977) simulations,

following fit performs somewhat worse than first fit. Best fit is another

well-known method. Best fit scans the entire list for the tiniest hole that is

suitable. Rather than splitting up a large hole that may be needed later,

best fit looks for a hole that is near to the actual size required.

Consider figure 2.5 as an example of initial fit and best fit. If a block of

size 2 is required, the hole will be allocated at 5, but the hole will be

allocated at 18. Because it must search the complete list every time it is

invoked, best fit is slower than first fit. It also resulted in more wasted

memory than first fit or next fit because it tends to fill memory with tiny,

useless holes. On average, the first fit produces larger holes.

To get around the difficulty of breaking up nearly precise matches into a

process and a little hole, consider the worst fit approach, which is to

always select the largest available hole, ensuring that the hole broken off

is large enough to be useful. Worst fit has also been proved to be a bad

concept through simulation. By keeping distinct lists for processes and

holes, all four algorithms can be made faster. As a result, they can focus

all of their attention on holes rather than processes. Because a freed

segment must be deleted from the process list and entered into the hole

list, the additional complexity and slowdown when deallocating memory

is an unavoidable cost of this allocation speedup. If separate lists for

processes and holes are kept, the hole list can be sorted by size to find the

best fit faster. When best fit examines a list of holes from smallest to

largest, it recognizes that the hole that fits is the smallest one that will

perform the task, resulting in the best fit. As with the single list technique,

no additional searching is required. First fit and best fit are equally fast

with a hole list organized by size, and next fit is meaningless. A slight

optimization is achievable when the holes are kept on separate lists from

the processes. The holes themselves can be utilized instead of a distinct set

of data structures for keeping the hole list, as shown in figure 2.5(c). Each

hole's first word may represent the hole size, while the second word could

be a link to the next item. Figure 2.5(c) which requires three words and

one bit (P/H) are no longer required.

2.4 VIRTUAL MEMORY

People were initially confronted with programs that were too large to fit in

the available memory many years ago. The most common technique was

to divide the programs into sections known as overlays. Overlay 0 would

be the first to run. It would then request for another overlay when it was

finished. Some overlay systems were extremely complicated, allowing

many overlays to be stored in memory at the same time. The overlays

25

Memory Management and
Virtual Memory in Linux

were stored on disc and dynamically swapped in and out of memory by

the operating system as needed.

Although the system did the actual work of shifting overlays in and out,

the programmer was responsible for deciding how to partition the program

into sections. It took a long time and was tedious to break down enormous

programs into small, modular bits. It didn't take long for someone to come

up with a means to automate the entire process.

Virtual memory is the name given to the method that was invented

(Fotheringham, 1961). Virtual memory works on the premise that the total

size of the program, data, and stack may exceed the amount of physical

memory accessible. The operating system keeps the bits of the program in

main memory that is currently in use, and the remainder on the disc.

2.4.1 PAGING

Paging is a memory management strategy that does away with the need for

contiguous physical memory allocation. This approach allows a process's

physical address space to be non-contiguous.

• Logical Address or Virtual Address (Represented in bits): The CPU

generates an address.

• The set of all logical addresses generated by a program (expressed in

words or bytes) is known as the logical address space or virtual

address space.

• Physical Address (in bits): An address that is physically existent on

the memory unit.

• The set of all physical addresses that correspond to the logical

addresses (expressed in words or bytes) is known as the Physical

Address Space.

Example:

• Logical Address Space = 2^31 words = 2 G words (1 G = 2^30) if

Logical Address is 31 bits.

• Logical Address = log2 2^27 = 27 bits if Logical Address Space =

128 M words = 2^7 * 2^20 words.

• Physical Address Space = 2^22 words = 4 M words (1 M = 2^20) if

Physical Address is 22 bits.

• Physical Address = log2 2^24 = 24 bits if Physical Address Space =

16 M words = 2^4 * 2^20 words.

The memory management unit (MMU), which is a hardware component,

performs the mapping from virtual to physical address, which is known as

the paging mechanism.

• The Physical Address Space is organized into frames, which are

fixed-size pieces of data.

• The Logical Address Space is also divided into pages, which are

fixed-size blocks.

• Page Dimensions = Frame Dimensions

26

Advanced Operating
System

26

Consider the following scenario:

• When the Physical Address is 12 bits, the Physical Address Space is

4 kilobytes.

• If the logical address is 13 bits, the address space is 8 K words.

• 1 K words Equals page size = frame size (assumption)

The address generated by the CPU is categorized into two parts.

• Page Number (p): It indicates the number of bits required to indicate

pages in Logical Address Space

• Page offset (d): It indicates the number of bits necessary to

represent a certain word in a page, the size of a page in Logical

Address Space, the word number of a page, or the offset of a page.

The physical address is separated into two parts.

• Frame number (f): The number of bits necessary to represent a frame

of Physical Address Space.

• Frame offset (d): The number of bits necessary to represent a certain

word in a frame, or the physical address space frame size, or the

word number of a frame, or the frame offset.

Dedicated registers can be used to implement the page table in hardware.

However, using a register for the page table is only useful if the page table

is tiny. We can employ TLB (translation Look-aside buffer), a particular,

small, fast look-up hardware cache, if the page table has a significant

number of entries.

• The TLB is a high-speed, associative memory.

• TLB entries are made up of two parts: a tag and a value.

• When this memory is accessed, an item is compared to all tags at the

same time. If the object is located, the value associated with it is

returned.

27

Memory Management and
Virtual Memory in Linux

Time to access main memory = m

Effective access time = m (for page table) + m (for main memory) if page

tables are kept in main memory (for particular page in page table)

2.4.2 PAGE TABLE

The Page Table is a data structure that is used by the virtual memory

system in the operating system of a computer to record the mapping

between physical and logical addresses. With the help of the page table,

the logical address created by the CPU is converted into a physical

address. As a result, the page table primarily supplies the relevant frame

number (frame base address) where that page is stored in main memory.

Figure 2.7 represents the paging model of physical and logical memory.

Figure 2.7 Physical and logical memory paging model

28

Advanced Operating
System

28

Characteristics of the Page Table

The following are some of the features of the Page Table:

• It's saved in the system's main memory.

• In general, the number of entries in the page table equals the number

of pages divided by the procedure.

• PTBR stands for page table base register, and it is used to store the

base address for the current process's page table.

• Each process has its own table of contents.

Techniques used for structuring the Page Table

The following are some of the most popular approaches for structuring the

Page table:

[1] Hierarchical Paging

[2] Hashed Page Tables

[3] Inverted Page Tables

[1] Hierarchical Paging

It is also known as multilevel paging. If the page table is too large to

accommodate in a single place, we may need to create a hierarchy with

multiple levels. The logical address space is divided into multiple page

tables in this sort of paging. One of the simplest ways is hierarchical

paging, which may be accomplished using a two-level page table or a

three-level page table.

• Two-level page Table

Consider a system with a 32-bit logical address space and a 1 KB

page size, which is partitioned into:

• The page number is made up of 22 bits.

• Page Offset is a 10-bit value.

As we page the Page table, the page number is further separated into

• The page number is made up of 12 bits.

• Page Offset is a 10-bit value.

As a result, the logical address is:

In the diagram above,

• P1 is the Outer Page table's index.

29

Memory Management and
Virtual Memory in Linux

• The displacement within the page of the Inner page Table is

indicated by P2.

Forward-mapped Page Table is so named because address translation

operates from the outer page table inward.

The Address Translation Scheme for a Two-Level Page Table is shown in

the diagram below.

• Three-level page Table

A two-level paging technique is not suited for a system with a 64-bit

logical address space. Let's pretend the page size is 4KB in this

example. If we apply the two-page level method in this situation, the

addresses will appear as in the image below.

To prevent creating such a big table, divide the outer page table,

which will result in a three-level page table:

[2] Hashed Page Tables

This method is used to deal with address spaces larger than 32 bits.

The number is hashed into a page table on this virtual page. This

Page table consists primarily of a chain of elements that hashes to

the same elements.

30

Advanced Operating
System

30

The following are the main components of each element:

• The number of the virtual page

• The mapped page frame's value.

• A pointer to the linked list's next element.

The Hashed Page Table's address translation technique is shown in the

diagram below:

Figure 2.8 Hashed Page Table

In this chain, the Virtual Page numbers are compared for a match; if a

match is discovered, the matching physical frame is extracted. Clustered

page tables are often used in this approach for 64-bit address space.

• Clustered Page Tables

These are similar to hashed tables, but instead of one page, each

item links to many pages (i.e. 16). Typically utilized in sparse

address spaces where memory references are dispersed and non-

contiguous.

[3] Inverted Page Tables

The Inverted Page table is a data structure that combines a page

table and a frame table into one. Each virtual page number and real

memory page has their own entries. The virtual address of the page

stored in that real memory location, as well as information about the

process that owns the page, make up the majority of the entry. While

this strategy reduces the amount of memory required to store each

page table, it also increases the time required to search the table

whenever a page reference is encountered.

The address translation scheme of the Inverted Page Table is shown

in the diagram below:

31

Memory Management and
Virtual Memory in Linux

Figure 2.9 Inverted page table’s address translation scheme

Because numerous processes may have the identical logical addresses, we

must keep track of the process id of each entry. After running through the

hash function, numerous entries can map to the same index in the page

table. As a result, chaining is utilized to deal with this.

2.4.3 Translation Look aside Buffers

• Drawbacks of Paging:

1] The size of a Page table might be quite large, resulting in a

waste of main memory.

2] Reading a single word from the main memory will take longer

on the CPU.

• How to decrease the page size table

1] The size of the page table can be reduced by raising the page

size, however this will result in internal fragmentation and

page waste.

2] Another option is to use multilevel paging, but this increases

the effective access time and is therefore not a viable option.

• How to decrease the effective access time

1] The CPU can utilize a register with the page table stored inside

it to reduce the time it takes to access the page table, but the

registers are not inexpensive and are small in comparison to

the page table size, so this is not a realistic solution.

2] To solve these numerous paging flaws, we must seek out a

memory that is less expensive than the register and faster than

the main memory, allowing the CPU to focus on accessing the

actual word rather than repeatedly accessing the page table.

• Locality of reference

The notion of locality of reference in operating systems asserts that,

rather than loading the complete process in main memory, the OS

can load only the number of pages in main memory that are

regularly accessed by the CPU, as well as the page table entries that

correspond to those many pages.

• Translation look aside buffer (TLB)

A translation look aside buffer is a memory cache that can be

utilized to reduce the time it takes to repeatedly access the page

32

Advanced Operating
System

32

table. It's a memory cache that's closer to the CPU; therefore it takes

the CPU less time to access TLB than it does to access main

memory. To put it another way, TLB is faster and smaller than main

memory, but it is also cheaper and larger than the register. TLB

adheres to the principle of locality of reference, which means it only

stores the entries of the many pages that the CPU accesses regularly.

In translation look aside the buffers; there are tags and keys that are

used to map data. When the requested entry is located in the

translation look aside buffer, it is referred to as a TLB hit. When this

occurs, the CPU just accesses the actual location in main memory. If

the item isn't located in the TLB (TLB miss), the CPU must first

read the page table in main memory, then the actual frame in main

memory. As a result, the effective access time in the case of a TLB

hit will be less than in the case of a TLB miss. As a result, the

effective access time can be calculated as follows:

EAT = P (t + m) + (1 - p) (t + k.m + m)

Where,

‘p’ is the TLB hit rate,

‘t’ is the time taken to access TLB,

‘m’ indicates the time taken to access main memory k = 1, if the

single level paging has been implemented.

We can deduce from the formula that

1] If the TLB hit rate is increased, the effective access time will

be reduced.

2] In the case of multilevel paging, the effective access time will

be increased.

2.5 PAGE REPLACEMENT ALGORITHMS

When a new page needs to be loaded into the main memory, the Page

Replacement Algorithm determines which page to remove, also known as

swap out. When a requested page is not present in the main memory and

33

Memory Management and
Virtual Memory in Linux

the available space is insufficient to allocate to the requested page, Page

Replacement occurs.

When the page chosen for replacement is paged out and referenced again,

it must read in from disc, which necessitates I/O completion. The quality

of the page replacement method is determined by this process: the less

time spent waiting for page-ins, the better.

A page replacement algorithm tries to determine which pages should be

replaced in order to reduce the frequency of page misses. There are

numerous page replacement algorithms to choose from. These algorithms

are tested by executing them on a specific memory reference string and

counting the number of page faults. The method for that circumstance is

better if there are less page faults. When a process requests a page and that

page is found in main memory, it is referred to as a page hit; otherwise, it

is referred to as a page miss or a page fault.

There are several page replacement algorithms in operating system as

indicated in the diagram 2.10 below

Figure 2.10 Various page replacement algorithms

2.5.1 First In First Out (FIFO)

This is the most basic page replacement method. The OS maintains a

queue in this algorithm, with the oldest page at the front and the most

recent page at the back, to keep track of all the pages in memory.

When a page needs to be replaced, the FIFO algorithm replaces the page at

the front of the queue, which is the page that has been in memory the

longest.

• EXAMPLE:

Consider the following page reference string of size 12: 1, 2, 3, 4, 5,

1, 3, 1, 6, 3, 2, 3 with frame size 4 (i.e. maximum 4 pages in a

frame).

34

Advanced Operating
System

34

Total Page Fault=9

All four spaces are initially empty, therefore when 1, 2, 3, and 4 arrive,

they are assigned to the empty spots in the order of their arrival. This is a

page fault because the numbers 1, 2, 3, and 4 are not in memory.

When page 5 arrives, it is not available in memory, so a page fault occurs,

and the oldest page in memory, 1, is replaced.

Because 1 is not in memory when it arrives, a page fault occurs, and it

replaces the oldest page in memory, i.e. 2.

When 3,1 arrives, it is already in the memory, i.e., Page Hit, therefore

there is no need to update it.

When page 3 arrives, it is not in memory, therefore a page fault occurs,

and the oldest page in memory, 4, is replaced.

When page 2 arrives, it is not in memory, therefore a page fault occurs,

and the oldest page in memory, 5, is replaced.

When 3 arrives, it is already in the memory, i.e., Page Hit, therefore there

is no need to update it.

Page Fault Ratio = 9/12, i.e. total miss/total cases possible

• Advantages

1] Simple and straightforward to implement.

2] Low overhead.

• Disadvantages

1] Poor performance.

2] It doesn't take into account how often you use it or when you

last used it; it just changes the oldest page.

3] Belady's Anomaly affects this algorithm (i.e. more page faults

when we increase the number of page frames).

2.5.2 Least Recently Used (LRU)

The Least Recently Used page replacement algorithm maintains track of

how many times a page has been used in a short period of time. It is based

on the assumption that the pages that have been widely utilized in the past

will also be heavily used in the future.

35

Memory Management and
Virtual Memory in Linux

When page replacement occurs in LRU, the page that has not been utilized

for the longest period is replaced.

• EXAMPLE:

Total Page Fault: 8

All four spaces are initially empty, therefore when 1, 2, 3, and 4 arrive;

they are assigned to the empty spots in the order of their arrival. This is a

page fault because the numbers 1, 2, 3, and 4 are not in memory.

Because 5 is not in memory when it arrives, a page fault occurs, and it

replaces 1 as the least recently utilized page.

When 1 arrives, it is not in memory, therefore a page fault occurs, and it

takes the place of 2.

When 3,1 arrives, it is already in the memory, i.e., Page Hit, therefore

there is no need to update it.

When 6 arrives, it is not found in memory, causing a page fault, and it

takes the place of 4.

When 2 arrives, it is not found in memory, causing a page fault, and it

takes the place of 5.

When 3 arrives, it is already in the memory, i.e., Page Hit, therefore there

is no need to update it.

Page Fault Ratio = 8/12

• Advantages

1] Efficient

2] Not affected by Belady's Anomaly.

• Disadvantages

1] Implementation is difficult.

2] Expensive.

3] Hardware support is required.

2.5.3 Optimal Page Replacement

The best page replacement algorithm is the Optimal Page Replacement

algorithm, which produces the fewest page faults. This algorithm is also

known as OPT that stands for clairvoyant replacement algorithm, or

36

Advanced Operating
System

36

Belady's optimal page replacement policy. This algorithm replaces pages

that will not be used for the longest period of time in the future, i.e., pages

in the memory that will be referred to the farthest in the future.

This approach was first proposed a long time ago and is difficult to

execute since it necessitates future knowledge about program behavior.

Using the page reference information obtained on the first run, however, it

is possible to implement optimal page replacement on the second run.

• EXAMPLE:

Total Page Fault=6

All four spaces are initially empty, therefore when 1, 2, 3, and 4

arrive, they are assigned to the empty spots in the order of their

arrival. This is a page fault because the numbers 1, 2, 3, and 4 are

not in memory.

When 5 arrives, it is not in memory, causing a page fault, and it

substitutes 4, which will be utilized the most in the future among 1,

2, 3, and 4.

When 1,3,1 arrives, they are already in the memory, i.e., Page Hit,

therefore there is no need to update them.

When 6 arrives, it is not found in memory, causing a page fault, and

it takes the place of 1.

When 3, 2, 3 appears, it is already in the memory, i.e., Page Hit, thus

there is no need to update it.

Page Fault Ratio = 6/12

• Advantages

1] Implementation is simple.

2] The data structures are simple.

3] Extremely effective.

• Disadvantages

1] Future knowledge of the program is required.

2] Time-consuming.

37

Memory Management and
Virtual Memory in Linux

2.5.4 Last In First Out (LIFO)

The FIFO principle is comparable to how this method works. The newest

page, which is the last to arrive in the primary memory, gets replaced in

this way. This algorithm uses the stack to keep track of all the pages.

The last items entered are the first to be eliminated in the LIFO technique

of data processing. FIFO (First In, First Out) is the contrary of LIFO, in

which objects are deleted in the order they were entered.

Imagine stacking a deck of cards by laying one card on top of the other,

starting at the bottom, to help understand LIFO. You begin removing

cards from the top of the deck after it has been entirely stacked. Because

the last cards to be placed on the deck are the first to be removed, this

procedure is an example of the LIFO approach.

When pulling data from an array or data buffer, computers sometimes

employ the LIFO approach. The LIFO method is used when a computer

needs to access the most recent data entered. The FIFO approach is

utilized when data must be retrieved in the order it was entered.

2.5.5 PRACTICE PROBLEMS BASED ON PAGE REPLACEMENT

ALGORITHMS

Problem-01: In main memory, a system uses three page frames to store

process pages. It employs a FIFO (First in, First Out) page replacement

policy. Assume that all of the page frames are blank at first. What is the

total number of page faults that will be generated while processing the

following page reference string-

4, 7, 6, 1, 7, 6, 1, 2, 7, 2

Calculate the hit and miss ratios as well.

Solution:

Number of total references = 10

From this figure,

Total number of page fault occurred = 6

Calculating Hit ratio-

Total number of page hits

38

Advanced Operating
System

38

= Total number of references – Total number of page misses or page faults

= 10 – 6

= 4

 Thus, Hit ratio

= Total number of page hits / Total number of references

= 4 / 10

= 0.4 or 40%

Calculating Miss ratio-

Total number of page misses or page faults = 6

Thus, Miss ratio

= Total number of page misses / Total number of references

= 6 / 10

= 0.6 or 60%

 Alternatively,

Miss ratio

= 1 – Hit ratio

= 1 – 0.4

= 0.6 or 60%

Problem-02: In main memory, a system uses three page frames to store

process pages. It replaces pages based on the Least Recently Used (LRU)

policy. Assume that all of the page frames are blank at first. What is the

total number of page faults that will be generated while processing the

following page reference string-

4 , 7, 6, 1, 7, 6, 1, 2, 7, 2

Calculate the hit and miss ratios as well.

Solution:

Number of total references = 10

From this figure,

Total number of page fault occurred = 6

Solving same as above-

• Hit ratio = 0.4 or 40%

• Miss ratio = 0.6 or 60%

Problem-03: In main memory, a system uses three page frames to store

process pages. The Optimal page replacement policy is used. Assume that

all of the page frames are blank at first. What is the total number of page

39

Memory Management and
Virtual Memory in Linux

faults that will be generated while processing the following page reference

string-

4, 7, 6, 1, 7, 6, 1, 2, 7, 2

Calculate the hit and miss ratios as well.

Solution:

Number of total references = 10

From this figure,

Total number of page fault occurred = 5

Solving same as above-

• Hit ratio = 0.5 or 50%

• Miss ratio = 0.5 or 50%

2.6 DESIGN ISSUES FOR PAGING SYSTEMS

The difficulties that operating system designers must address in order to

acquire optimal performance from a paging system will be discussed in

the following sections.

2.6.1 The working set model

Processes are started with none of their pages in memory in the purest

form of paging. The CPU receives a page fault as soon as it attempts to

acquire the first instruction, requiring the operating system to bring in the

page holding the first instruction. Other page faults, such as those

affecting global variables and the stack, frequently appear rapidly. After a

while, the process has most of the pages it requires and begins to run

smoothly with minimal page errors. Demand paging is the name given to a

system in which pages are loaded only when they are needed, rather than

in advance.

Of course, writing a test program that reads all the pages in a huge address

space in a methodical manner, creating so many page faults that there isn't

enough memory to keep them all is simple. Thankfully, most procedures

do not operate in this manner. They have a locality of reference, which

means that during any phase of execution, the process only refers to a

small portion of the total number of pages. For example, each pass of a

multipass compiler only looks at a fraction of the pages, and a different

fraction at that.

The working set refers to the set of pages that a process is currently using.

The process will operate without creating many errors if the full working

set is in memory until it progresses to the next execution phase (e.g., the

next pass of the compiler). Because executing an instruction takes a few

nanoseconds and reading a page from the disc takes around 10

milliseconds, if the available memory is insufficient to hold the complete

40

Advanced Operating
System

40

working set, the operation will generate multiple page faults and run

slowly. It will take a long time to complete at a rate of one or two

instructions per 10 milliseconds. Thrashing is a term used to describe a

program that causes page faults every few instructions.

Processes are regularly relocated to disc (i.e., all of their pages are deleted

from memory) in a multiprogramming system to give other processes a

chance at the CPU. When a process is brought back in, the question of

what to do emerges. Nothing needs to be done from a technical standpoint.

Until its working set is loaded, the process will only create page faults.

The issue is that having 20, 100, or even 1000 page faults every time a

process is loaded is slow and wastes a lot of CPU time, because processing

a page fault takes the operating system a few milliseconds of CPU time,

not to mention a lot of disc I/O.

As a result, many paging systems attempt to keep track of each process'

working set and verify that it is in memory before allowing it to operate.

The working set model is the name for this method. It is intended to

drastically minimize the number of page faults. Prepaging is the process of

loading pages before allowing processes to run. It's worth noting that the

working set evolves with time.

The operating system must keep track of which pages are in the working

set in order to implement the working set concept. The aging algorithm is

one technique to keep track of this data. The clock algorithm's

performance can be improved by using information about the working set.

2.6.2 Local versus Global Allocation Policies

Several strategies for selecting a page to replace when a defect occurs

have been discussed in the preceding sections. The allocation of memory

among the competing runnable processes is a major challenge involved

with this decision.

Consider figure 2.11 (a). The set of runnable processes in this diagram is

made up of three processes: A, B, and C. Assume A receives a page fault.

Should the page replacement method look for the least recently used page

using only the six pages now allocated to A, or all the pages in memory?

When only A's pages are examined, the page with the lowest age value is

A5, resulting in the condition depicted in Figure 2.11. (b).

Figure 2.11: Local Vs. Global page replacement

41

Memory Management and
Virtual Memory in Linux

(a) Original Configuration

(b) Local page replacement

(c) Global page replacement

If, on the other hand, the page with the lowest age value is eliminated

regardless of whatever page it is, page B3 is chosen, and we will have the

scenario as shown in the figure 2.11(c). The algorithm shown in figure

2.11 (b) is a local page replacement algorithm, whereas the algorithm

shown in figure 2.11 (c) is a global algorithm. Local algorithms effectively

correspond to dedicating a fixed portion of memory to each process. Page

frames are dynamically allocated among the runnable processes via global

algorithms. As a result, the amount of page frames allocated to each

activity changes over time.

Global algorithms perform better in general, especially when the working

set size varies throughout the course of an operation. Even if there are lots

of free page frames, thrashing will occur if a local algorithm is employed

and the working set expands. Local algorithms waste memory as the

working set shrinks. If you utilize a global approach, the system will have

to decide how many page frames to give each process on a regular basis.

One method is to keep an eye on the working set size as indicated by the

ageing bits, but this does not guarantee that thrashing will not occur. The

working set can grow or shrink in microseconds, but the ageing bits are a

rough estimate based on a number of clock ticks.

2.6.3 Page size

The page size is frequently a setting that the operating system can set.

Even if the hardware supports 512-byte pages, the operating system can

treat pages 0 and 1, 2 and 3, 4 and 5, and so on as 1-KB pages by

allocating two consecutive 512-byte page frames for them.

The ideal page size is determined by balancing numerous competing

elements. As a result, there is no one-size-fits-all solution. To begin, there

are two arguments in favor of a tiny page size. A text, data, or stack

segment picked at random will not fill an integral number of pages. Half

of the final page will be blank on average. That page's extra space is being

squandered. Internal fragmentation is the term for this type of waste.

Internal fragmentation will waste np/ 2 bytes with n segments in memory

and a page size of p bytes. This supports the idea of a tiny page size.

When we consider a program that consists of eight 4 KB sequential

phases, another rationale for a modest page size emerges. With a 32-KB

page size, the program must always be given 32 KB. It only takes 16 KB

with a 16-KB page size. It only takes 4 KB at any time with a page size of

4 KB or less. A big page size, on average, will result in more unneeded

program being stored in memory than a small page size. Small pages, on

the other hand, imply that applications will require a high number of

pages, necessitating the use of a large page table.

When the CPU switches from one process to another on some machines,

the page table must be loaded into hardware registers. A small page size

on these machines means that the time required to load the page registers

42

Advanced Operating
System

42

increases as the page size decreases. Furthermore, as the page size lowers,

the page table takes up more space.

2.6.4 Virtual Memory Interface

Our entire discussion has been based on the assumption that virtual

memory is transparent to processes and programmers. That is, all they

perceive on a machine with a smaller physical memory is a big virtual

address space. That is true for many systems, but in certain advanced

systems, programmers have some control over the memory map and can

use it in unconventional ways to improve program behavior. We'll take a

look at a couple of them in this section.

Allowing two or more processes to share the same memory is one

rationale for providing programmers control over their memory map. If

programmers can identify memory areas, it may be conceivable for one

process to give the name of a memory region to another so that the latter

can map it in. High bandwidth sharing is feasible when two (or more)

processes share the same pages: one process writes to the shared memory

while the other reads from it.

A high-performance message forwarding system can also be implemented

via page sharing. Normally, data is duplicated from one address space to

another when messages are passed, which costs a lot of money. A message

can be passed by having the sending process unmap the page(s) containing

the message and the receiving process map them in if processes can

manage their page map. Instead of copying all of the data, only the page

names must be copied. Distributed shared memory is yet another advanced

memory management technology. The concept is to allow different

processes on a network to share a set of pages, maybe as a single shared

linear address space, but not necessary. A page fault occurs when a

process refers to a page that is not currently mapped in. The page fault

handler, which may be in kernel or user space, then locates the machine

that is holding the page and sends it a message instructing it to unmap the

page and transfer it over the network. The page is mapped in and the

faulting instruction is restarted when it comes.

2.7 SEGMENTATION

Segments are used to break down a procedure. Segments are the sections

into which a program is separated that are not always all the same size.

Another method of splitting accessible memory is segmentation. It's a new

memory management technique that generally supports the user's

perspective on memory. The logical address space consists primarily of

segments. Each section is given a name as well as a length.

A procedure is divided into segments in generally. Segmentation splits or

segments the memory in the same way as paging does. However, there is a

distinction: paging splits the memory into fixed segments, whereas

segmentation divides the memory into variable segments, which are then

loaded into logical memory space. A program is essentially a grouping of

segments. A segment is a logical unit that includes things like: main

43

Memory Management and
Virtual Memory in Linux

program, procedure, function, method, object, local and global variable,

symbol table, common block, stack, arrays.

2.7.1 Types of segmentation

The following are the several forms of segmentation:

1] Virtual Memory Segmentation: In this sort of segmentation, each

process is divided into n divisions, but they are not segmented all at

once.

2] Simple Segmentation: With this type, each process is divided into n

divisions and all of them are segmented at the same time, but during

runtime, and they can be non-contiguous (that is they may be

scattered in the memory).

2.7.2 Characteristics of segmentation

The following are some characteristics of the segmentation technique:

1] Variable-size partitioning is used in the Segmentation scheme.

2] Segments are the conventional name for supplementary memory

partitions.

3] The length of modules determines the partition size.

4] Secondary memory and main memory are thus partitioned into

unequal-sized sections using this technique.

2.7.3 Need of segmentation

The separation of the user's image of memory and the real physical

memory is one of the major downsides of memory management in the

operating system. Paging is a technique that allows these two memories to

be separated.

The user's perspective is essentially mapped to physical storage. This

mapping also allows for the separation of physical and logical memory.

The operating system may partition the same function into multiple pages,

which may or may not be loaded into memory at the same time. The

operating system is also unconcerned about the user's perspective on the

process. The system's efficiency suffers as a result of this strategy.

Because it breaks the process into chunks, segmentation is a better

technique.

2.7.4 User’s view of a program

The user's perspective on segmentation is depicted in the figure 2.12

below

44

Advanced Operating
System

44

Figure 2.12 User’s view of segmentation

Basic Method

A segmented computer system has a logical address space that can be

divided into several parts. And the segment's size is changeable, meaning

it can expand or shrink. As we previously stated, each segment has a name

and length throughout execution. And the address primarily specifies the

segment's name as well as its displacement inside the segment. As a result,

the user provides each address using two values: segment name and offset.

Because implementation segments are numbered rather than named, they

are referred to as segment number rather than name.

As a result, the logical address is made up of two tuples:

<segment-number, offset>

where,

Segment Number(s): A Segment Number is a number that represents the

number of bits needed to represent a segment.

Offset(d): The amount of bits necessary to express the size of the segment

is represented by segment offset.

2.7.5 Segmentation Architecture

Segment Table

The term "Segment Table" refers to a table that is used to store data from

all process segments. In this method, there isn't a straightforward link

between logical and physical addresses. The segment table is used to

convert a two-dimensional logical address to a one-dimensional physical

address. This table is primarily stored in the main memory as a distinct

segment. The base address of the segment table is stored in a table known

as the Segment table base register (STBR)

Each entry in the segment table has the following information:

45

Memory Management and
Virtual Memory in Linux

1] Segment Base/Base Address: The segment base primarily comprises

the starting physical address in the memory where the segments are

stored.

2] Segment Limit: The segment limit is mostly used to define the

segment's length.

Segment Table Base Register (STBR): The STBR register is used to

point to the memory location of the segment table.

Segment Table Length Register (STLR): The number of segments used

by a program is indicated by this register. If s<STLR, the segment number

s is allowed.

2.7.6 Segmentation Hardware

The segmentation hardware is depicted in the figure 2.13 below

Figure 2.13 Segmentation hardware

46

Advanced Operating
System

46

The two portions of the logical address generated by the CPU are:

• Segment Number(s): It's a key to the segment table.

• Offset(d): It must be between '0' and also it should be in a 'segment

limit'. If the Offset is greater than the segment limit, the trap is

generated.

As a result, correct offset + segment base = physical memory address and

a segment table is essentially a collection of base-limit register pairs.

2.7.7 Advantages of Segmentation

The following are some of the benefits of using the segmentation

technique:

• The segment table is mostly utilized in the Segmentation technique

to keep track of segments. In addition, the segment table takes

significantly less space than the paging table.

• Internal Fragmentation does not exist.

• In general, segmentation allows us to separate a program into

modules for easier viewing.

• The size of the segments varies.

2.7.8 Disadvantages of Segmentation

The following are some of the technique's drawbacks:

• The overhead of maintaining a segment table for each process is

significant.

• This method is quite costly.

• Because two memory visits are now necessary, the time it takes to

fetch the instruction increases.

• In segmentation, segments are of different sizes and so are not ideal

for exchanging.

• As the open space is divided down into smaller bits, and processes

are loaded and withdrawn from the main memory, this strategy leads

to external fragmentation, resulting in a lot of memory waste.

2.7.9 Example of Segmentation

The segmentation example is shown below, with five segments numbered

from 0 to 4. As illustrated, these portions will be stored in physical

memory. Each segment has its own entry in the segment table, which

provides the segment's beginning entry address in physical memory

(referred to as the base) as well as the segment's length (denoted as limit).

47

Memory Management and
Virtual Memory in Linux

Segment 2 starts at position 4300 and is 400 bytes long. As a result, a

reference to byte 53 of segment 2 is mapped to position 4300

(4300+53=4353) in this scenario. 3200 (the base of segment 3) +

852=4052 is mapped to a reference to segment 3, byte 85. Because this

segment is 1000 bytes long, a reference to byte 1222 of segment 0 would

result in a trap to the OS.

2.8 CASE STUDY: LINUX MEMORY MANAGEMENT

• Memory management is one of the most difficult tasks performed by

the Linux kernel. It is linked to a number of topics and issues.

• One of the most significant aspects of the operating system is the

memory management subsystem. There has always been a demand

for more memory than is physically available in a system since the

dawn of computing. Virtual memory is the most successful of the

strategies explored to overcome this issue. Virtual memory gives the

impression that the system has more memory than it actually has by

spreading it across competing processes as needed.

• Virtual memory does more than merely extend the memory of your

machine. The memory management subsystem allows you to

manage your memory.

• Large Address Spaces: The operating system gives the impression

that the system has more memory than it actually has. The virtual

memory in the system can be many times greater than the physical

memory.

48

Advanced Operating
System

48

• Security: Each system process has its own virtual address space.

Because these virtual address spaces are fully distinct, a process

executing one program will not influence another. Furthermore, the

hardware virtual memory techniques enable for the protection of

memory sectors against writing. This prevents unauthorized apps

from overwriting code and data.

• Memory Mapping: Memory mapping is a technique for mapping

picture and data files into the address space of a process. The

contents of a file are linked directly into the virtual address space of

a process through memory mapping.

• Equitable Physical Memory Allocation: The memory management

subsystem allots a fair share of the system's physical memory to

each operating process.

• Virtual Memory Sharing: Although virtual memory allows program

to have their own (virtual) address space, there are situations when

they must share memory. For example, the bash command shell

could be used by multiple processes in the system. Rather than

having multiple copies of bash, one for each process' virtual address

space, it is preferable to have only one copy in physical memory,

which all bash-running processes share. Another typical example of

executing code shared by several processes is dynamic libraries.

Shared memory can also be utilized as an Inter Process

Communication (IPC) mechanism, allowing two or more processes

to exchange data via shared memory. Unix TM System V shared

memory IPC is supported by Linux.

• The virtual and physical memory is separated into pages, which are

fixed length blocks of memory.

• The theoretical page table contains the following information for

each entry.

49

Memory Management and
Virtual Memory in Linux

• Valid flag: This determines whether or not the page table entry is

valid.

• The physical page frame number.

 Information on access control: This section explains how to use the page.

Is it possible to write to it? Is there any executable code in it?

Linux Memory Management System Calls

Physical memory management

Linux separates memory into three zones:

• ZONE DMA - these are pages that can be used to perform DMA

operations.

• ZONE NORMAL - pages that are mapped on a regular basis.

• ZONE HIGHMEM - non-permanently mapped pages with high-

memory addresses.

2.9 SUMMARY

We looked at memory management in this chapter. The simplest systems,

we discovered, do not swap or page at all. When a program is loaded into

memory, it stays there until it is completed. This is how most embedded

systems function, with the programming maybe even stored in ROM.

Some operating systems only allow one process in memory at a time,

whilst others allow multiprogramming.

Swapping is the next stage. The system can handle more processes than it

has memory for when swapping is used. Processes that don't have enough

memory are moved to the disc. A bitmap or a hole list can be used to keep

track of free space in memory and on disc.

Virtual memory is commonly found in more modern computers. Each

process address space is partitioned into uniformly sized chunks called

pages, which can be inserted into any available page frame in memory in

their most basic form. There has been a slew of page replacement

algorithms proposed. Second chances and ageing are two of the more

well-known examples. Choosing an algorithm isn't enough to make paging

systems operate successfully; other considerations include establishing the

working set, memory allocation policy, and page size.

Segmentation makes it easier to link and share data structures that change

in size during execution. It also makes it easier to provide varying levels

of protection to different areas. To create a two-dimensional virtual

50

Advanced Operating
System

50

memory, segmentation and paging are sometimes coupled. Segmentation

and paging are supported by the Intel Pentium.

2.10 LIST OF REFERENCES

1] An Introduction to Operating Systems: Concepts and Practice

(GNU/Linux), 4th edition, Pramod Chandra P. Bhatt, Prentice-Hall

of India Pvt. Ltd, 2014

2] Operating System Concepts with Java Eight Edition, Avi

Silberschatz, Peter Baer Galvin, Greg Gagne, John Wiley & Sons,

Inc., 2009, http://codex.cs.yale.edu/avi/os book/OS8/os8j

3] UNIX and Linux System Administration Handbook, Fourth Edition,

Evi Nemeth, Garth Snyder, Tren Hein, Ben Whaley, Pearson

Education, Inc, 2011,

4] Operating Systems: Design and Implementation, Third Edition,

Andrew S. Tanenbaum, Albert S. Woodhull, Prentice Hall, 2006.

5] https://www.cs.helsinki.fi/u/niklande/opetus/kj/2008/lectures/os-

2008-l05-slides

6] https://www.cs.princeton.edu/courses/archive/fall16/cos318/lectures/

14.VM-Design.pdf

7] https://www.cs.unm.edu/~cris/481/481.170memory.pdf

8] https://www.cpp.edu/~gsyoung/CS4310/Notes/Part2Memory

Management.pdf

9] https://kgut.ac.ir/useruploads/1552306818833dqu.pdf

10] https://www.cs.helsinki.fi/u/niklande/opetus/kj/2008/lectures/os-

2008-l05-handout6.pdf

11] https://sritsense.weebly.com/uploads/5/7/2/7/57272303/case_study_

on_linux.pdf

2.11 UNIT END EXERCISES

1] Explain the concept of memory management.

2] Write a note on relocation and protection.

3] Write in brief about swapping concept.

4] Discuss the concept of virtual memory.

5] What do you mean by Paging?

6] Explain the concept of Page table.

http://codex.cs.yale.edu/avi/os
https://www.cs.helsinki.fi/u/niklande/opetus/kj/2008/lectures/os-2008-l05-slides
https://www.cs.helsinki.fi/u/niklande/opetus/kj/2008/lectures/os-2008-l05-slides
https://www.cs.princeton.edu/courses/archive/fall16/cos318/lectures/%2014.VM-Design.pdf
https://www.cs.princeton.edu/courses/archive/fall16/cos318/lectures/%2014.VM-Design.pdf
https://www.cs.unm.edu/~cris/481/481.170memory.pdf
https://www.cpp.edu/~gsyoung/CS4310/Notes/Part2Memory%20Management.pdf
https://www.cpp.edu/~gsyoung/CS4310/Notes/Part2Memory%20Management.pdf
https://kgut.ac.ir/useruploads/1552306818833dqu.pdf
https://www.cs.helsinki.fi/u/niklande/opetus/kj/2008/lectures/os-2008-l05-handout6.pdf
https://www.cs.helsinki.fi/u/niklande/opetus/kj/2008/lectures/os-2008-l05-handout6.pdf
https://sritsense.weebly.com/uploads/5/7/2/7/57272303/case_study_%20on_linux.pdf
https://sritsense.weebly.com/uploads/5/7/2/7/57272303/case_study_%20on_linux.pdf

51

Memory Management and
Virtual Memory in Linux

7] Write a note on various techniques used for structuring the page

table.

8] Write a short note on translational look aside buffer.

9] Discuss various page replacement algorithms.

10] Explain First in First Out page replacement algorithm along with an

example.

11] Explain with an example the concept of Least Recently Used

Algorithm.

12] Discuss on optimal page replacement algorithm.

13] Write a note on Last in First Out page replacement algorithm.

14] Discuss the various design issues for paging system.

15] What is the need of Segmentation?

16] Explain the concept of segmentation and state its characteristics.

17] What are the types of segmentation? Explain in brief.

18] Write a note on segmentation hardware.

19] Explain segmentation architecture and state its advantages,

disadvantages along with an example.

20] Discuss on the case study of Linux memory management.



52

Advanced Operating
System

52

3
INPUT/ OUTPUT IN LINUX

Unit Structure

3.0 Objective

3.1 History

3.2 Principles of I/O Hardware

3.3 File, Directories and Implementation

3.4 Security

3.5 Summary

3.6 Exercise

3.7 References

3.0 OBJECTIVE

• To explore the history of the UNIX operating system from which

Linux is derived and the principles upon which Linux’s design is

based

• To examine the Linux process model and illustrate how Linux

schedules processes and provides interprocess communication

• To look at memory management in Linux

• To explore how Linux implements file systems and manages I/O

devices

3.1 HISTORY

Linux is a modern, free operating system based on UNIX standards. First

developed as a small but self-contained kernel in 1991 by Linus Torvalds,

with the major design goal of UNIX compatibility, released as open

source. Its history has been one of collaboration by many users from all

around the world, corresponding almost exclusively over the Internet. It

has been designed to run efficiently and reliably on common PC hardware,

but also runs on a variety of other platforms. The core Linux operating

system kernel is entirely original, but it can run much existing free UNIX

software, resulting in an entire UNIX-compatible operating system free

from proprietary code. Linux system has many, varying Linux

distributions including the kernel, applications, and management tools.

3.2 PRINCIPLES OF I/O HARDWARE

Input and Output

To the user, the I/O system in Linux looks much like that in any UNIX

system. That is, to the extent possible, all device drivers appear as normal

53

Input/ Output in Linux files. A user can open an access channel to a device in the same way she

opens any other file—devices can appear as objects within the file system.

 The system administrator can create special files within a file system that

contain references to a specific device driver, and a user opening such a

file will be able to read from and write to the device referenced. By using

the normal file-protection system, which determines who can access which

file, the administrator can set access permissions for each device. Linux

splits all devices into three classes: block devices, character devices, and

network devices.

Figure 3.1: Structure of Device Driver System

Figure illustrates the overall structure of the device-driver system. Block

devices include all devices that allow random access to completely

independent, fixed-sized blocks of data, including hard disks and floppy

disks, CD-ROMs, and flash memory. Block devices are typically used to

store file systems, but direct access to a block device is also allowed so

that programs can create and repair the file system that the device

contains.

Applications can also access these block devices directly if they wish; for

example, a database application may prefer to perform its own, fine-tuned

laying out of data onto the disk, rather than using the general-purpose file

system. Character devices include most other devices, such as mice and

keyboards. The fundamental difference between block and character

devices is random access—block devices may be accessed randomly,

while character devices are only accessed serially.

For example, seeking to a certain position in a file might be supported for

a DVD but makes no sense to a pointing device such as a mouse. Network

devices are dealt with differently from block and character devices. Users

cannot directly transfer data to network devices; instead, they must

communicate indirectly by opening a connection to the kernel's

networking subsystem.

Block Devices

Block devices provide the main interface to all disk devices in a system.

Performance is particularly important for disks, and the block-device

system must provide functionality to ensure that disk access is as fast as

54

Advanced Operating
System

54

possible. This functionality is achieved through the scheduling of I/O

operations In the context of block devices, a block represents the unit with

which the kernel performs I/O. When a block is read into memory, it is

stored in a buffer. The request manager is the layer of software that

manages the reading and writing of buffer contents to and from a block-

device driver. A separate list of requests is kept for each block-device

driver. Traditionally, these requests have been scheduled according to a

unidirectional-elevator (C-SCAN) algorithm that exploits the order in

which requests are inserted in and removed from the per-device lists. The

request lists are maintained in sorted order of increasing starting-sector

number. When a request is accepted for processing by a block-device

driver, it is not removed from the list. It is removed only after the I/O is

complete, at which point the driver continues with the next request in the

list, even if new requests have been inserted into the list before the active

request. As new I/O requests are made, the request manager attempts to

merge requests in the per-device lists. The scheduling of I/O operations

changed somewhat with version 2.6 of the kernel. The fundamental

problem with the elevator algorithm is that I/O operations concentrated in

a specific region of the disk can result in starvation of requests that need to

occur in other regions of the disk.

The deadline I/O scheduler used in version 2.6 works similarly to the

elevator algorithm except that it also associates a deadline with each

request, thus addressing the starvation issue. By default, the deadline for

read requests is 0.5 second and that for write requests is 5 seconds. The

deadline scheduler maintains a sorted queue of pending I/O operations

sorted by sector number. However, it also maintains two other queues—a

read queue for read operations and a write queue for write operations.

These two queues are ordered according to deadline.

Every I/O request is placed in both the sorted queue and either the read or

the write queue, as appropriate. Ordinarily, I/O operations occur from the

sorted queue. However, if a deadline expires for a request in either the

read or the write queue, I/O operations are scheduled from the queue

containing the expired request. This policy ensures that an I/O operation

will wait no longer than its expiration time

Character Devices

A character-device driver can be almost any device driver that does not

offer random access to fixed blocks of data. Any character-device drivers

registered to the Linux kernel must also register a set of functions that

implement the file I/O operations that the driver can handle. The kernel

performs almost no preprocessing of a file read or write request to a

character device; it simply passes the request to the device in question and

lets the device deal with the request.

The main exception to this rule is the special subset of character-device

drivers that implement terminal devices. The kernel maintains a standard

interface to these drivers by means of a set of tty_struc t structures. Each

of these structures provides buffering and flow control on the data stream

from the terminal device and feeds those data to a line discipline.

55

Input/ Output in Linux A line discipline is an interpreter for the information from the terminal

device. The most common line discipline is the tt y discipline, which glues

the terminal's data stream onto the standard input and output streams of a

user's running processes, allowing those processes to communicate

directly with user's terminal. This job is complicated by the fact that

several such processes may be running simultaneously, and the tt y line

discipline is responsible for attaching and detaching the terminal's input

and output from the various processes connected to it as those processes

are suspended or awakened by the user.

Other line disciplines also are implemented that have nothing to do with

I/O to a user process. The PPP and SLIP networking protocols are ways of

encoding a networking connection over a terminal device such as a serial

line. These protocols are implemented under Linux as drivers that at one

end appear to the terminal system as line disciplines and at the other end

appear to the networking system as network-device drivers. After one of

these line disciplines has been enabled on a terminal device, any data

appearing on that terminal will be routed directly to the appropriate

network-device driver.

I/O Hardware:-

One of the important jobs of an Operating System is to manage various

I/O devices including mouse, keyboards, touch pad, disk drives, display

adapters, USB devices, Bit-mapped screen, LED, Analog-to-digital

converter, On/off switch, network connections, audio I/O, printers etc.

An I/O system is required to take an application I/O request and send it to

the physical device, then take whatever response comes back from the

device and send it to the application. I/O devices can be divided into two

categories −

Block devices − A block device is one with which the driver

communicates by sending entire blocks of data. For example, Hard disks,

USB cameras, Disk-On-Key etc.

Character devices − A character device is one with which the driver

communicates by sending and receiving single characters (bytes, octets).

For example, serial ports, parallel ports, sounds cards etc

Device Controllers

Device drivers are software modules that can be plugged into an OS to

handle a particular device. Operating System takes help from device

drivers to handle all I/O devices.

The Device Controller works like an interface between a device and a

device driver. I/O units (Keyboard, mouse, printer, etc.) typically consist

of a mechanical component and an electronic component where electronic

component is called the device controller.

There is always a device controller and a device driver for each device to

communicate with the Operating Systems. A device controller may be

able to handle multiple devices. As an interface its main task is to convert

serial bit stream to block of bytes, perform error correction as necessary.

Any device connected to the computer is connected by a plug and socket,

and the socket is connected to a device controller. Following is a model

56

Advanced Operating
System

56

for connecting the CPU, memory, controllers, and I/O devices where CPU

and device controllers all use a common bus for communication.

 Synchronous vs asynchronous I/O

Synchronous I/O − In this scheme CPU execution waits while I/O

proceeds

Asynchronous I/O − I/O proceeds concurrently with CPU execution

Communication to I/O Devices

The CPU must have a way to pass information to and from an I/O device.

There are three approaches available to communicate with the CPU and

Device.

Special Instruction I/O

Memory-mapped I/O

Direct memory access (DMA)

Special Instruction I/O

This uses CPU instructions that are specifically made for controlling I/O

devices. These instructions typically allow data to be sent to an I/O device

or read from an I/O device.

Memory-mapped I/O

When using memory-mapped I/O, the same address space is shared by

memory and I/O devices. The device is connected directly to certain main

memory locations so that I/O device can transfer block of data to/from

memory without going through CPU.

57

Input/ Output in Linux While using memory mapped IO, OS allocates buffer in memory and

informs I/O device to use that buffer to send data to the CPU. I/O device

operates asynchronously with CPU, interrupts CPU when finished.

The advantage to this method is that every instruction which can access

memory can be used to manipulate an I/O device. Memory mapped IO is

used for most high-speed I/O devices like disks, communication

interfaces.

Direct Memory Access (DMA)

Slow devices like keyboards will generate an interrupt to the main CPU

after each byte is transferred. If a fast device such as a disk generated an

interrupt for each byte, the operating system would spend most of its time

handling these interrupts. So a typical computer uses direct memory

access (DMA) hardware to reduce this overhead.

Direct Memory Access (DMA) means CPU grants I/O module authority to

read from or write to memory without involvement. DMA module itself

controls exchange of data between main memory and the I/O device. CPU

is only involved at the beginning and end of the transfer and interrupted

only after entire block has been transferred.

Direct Memory Access needs a special hardware called DMA controller

(DMAC) that manages the data transfers and arbitrates access to the

system bus. The controllers are programmed with source and destination

pointers (where to read/write the data), counters to track the number of

transferred bytes, and settings, which includes I/O and memory types,

interrupts and states for the CPU cycles.

58

Advanced Operating
System

58

 Polling vs Interrupts I/O

A computer must have a way of detecting the arrival of any type of input.

There are two ways that this can happen, known as polling and interrupts.

Both of these techniques allow the processor to deal with events that can

happen at any time and that are not related to the process it is currently

running.

Polling I/O

Polling is the simplest way for an I/O device to communicate with the

processor. The process of periodically checking status of the device to see

if it is time for the next I/O operation, is called polling. The I/O device

simply puts the information in a Status register, and the processor must

come and get the information.

Most of the time, devices will not require attention and when one does it

will have to wait until it is next interrogated by the polling program. This

is an inefficient method and much of the processors time is wasted on

unnecessary polls.

Compare this method to a teacher continually asking every student in a

class, one after another, if they need help. Obviously the more efficient

method would be for a student to inform the teacher whenever they require

assistance.

Interrupts I/O

An alternative scheme for dealing with I/O is the interrupt-driven method.

An interrupt is a signal to the microprocessor from a device that requires

attention.

A device controller puts an interrupt signal on the bus when it needs

CPU’s attention when CPU receives an interrupt, It saves its current state

and invokes the appropriate interrupt handler using the interrupt vector

(addresses of OS routines to handle various events). When the interrupting

device has been dealt with, the CPU continues with its original task as if it

had never been interrupted.

I/O software is often organized in the following layers −

User Level Libraries − This provides simple interface to the user program

to perform input and output. For example, stdio is a library provided by C

and C++ programming languages.

Kernel Level Modules − This provides device driver to interact with the

device controller and device independent I/O modules used by the device

drivers.

Hardware − This layer includes actual hardware and hardware controller

which interact with the device drivers and makes hardware alive.

A key concept in the design of I/O software is that it should be device

independent where it should be possible to write programs that can access

any I/O device without having to specify the device in advance. For

example, a program that reads a file as input should be able to read a file

on a floppy disk, on a hard disk, or on a CD-ROM, without having to

modify the program for each different device.

59

Input/ Output in Linux

Device Drivers

Device drivers are software modules that can be plugged into an OS to

handle a particular device. Operating System takes help from device

drivers to handle all I/O devices. Device drivers encapsulate device-

dependent code and implement a standard interface in such a way that

code contains device-specific register reads/writes. Device driver, is

generally written by the device's manufacturer and delivered along with

the device on a CD-ROM.

A device driver performs the following jobs −

To accept request from the device independent software above to it.

Interact with the device controller to take and give I/O and perform

required error handling

Making sure that the request is executed successfully

How a device driver handles a request is as follows: Suppose a request

comes to read a block N. If the driver is idle at the time a request arrives, it

starts carrying out the request immediately. Otherwise, if the driver is

already busy with some other request, it places the new request in the

queue of pending requests.

Interrupt handlers

An interrupt handler, also known as an interrupt service routine or ISR, is

a piece of software or more specifically a callback function in an operating

system or more specifically in a device driver, whose execution is

triggered by the reception of an interrupt.

When the interrupt happens, the interrupt procedure does whatever it has

to in order to handle the interrupt, updates data structures and wakes up

process that was waiting for an interrupt to happen.

The interrupt mechanism accepts an address ─ a number that selects a

specific interrupt handling routine/function from a small set. In most

architectures, this address is an offset stored in a table called the interrupt

vector table. This vector contains the memory addresses of specialized

interrupt handlers.

60

Advanced Operating
System

60

Device-Independent I/O Software

The basic function of the device-independent software is to perform the

I/O functions that are common to all devices and to provide a uniform

interface to the user-level software. Though it is difficult to write

completely device independent software but we can write some modules

which are common among all the devices. Following is a list of functions

of device-independent I/O Software −

Kernel I/O Subsystem

Kernel I/O Subsystem is responsible to provide many services related to

I/O. Following are some of the services provided.

Scheduling − Kernel schedules a set of I/O requests to determine a good

order in which to execute them. When an application issues a blocking I/O

system call, the request is placed on the queue for that device. The Kernel

I/O scheduler rearranges the order of the queue to improve the overall

system efficiency and the average response time experienced by the

applications.

Buffering − Kernel I/O Subsystem maintains a memory area known as

buffer that stores data while they are transferred between two devices or

between a device with an application operation. Buffering is done to cope

with a speed mismatch between the producer and consumer of a data

stream or to adapt between devices that have different data transfer sizes.

Caching − Kernel maintains cache memory which is region of fast

memory that holds copies of data. Access to the cached copy is more

efficient than access to the original.

Spooling and Device Reservation − A spool is a buffer that holds output

for a device, such as a printer, that cannot accept interleaved data streams.

The spooling system copies the queued spool files to the printer one at a

time. In some operating systems, spooling is managed by a system

daemon process. In other operating systems, it is handled by an in-kernel

thread.

Error Handling − An operating system that uses protected memory can

guard against many kinds of hardware and application errors.

3.3 FILE, DIRECTORIES AND IMPLEMENTATION: -

A file is a named collection of related information that is recorded on

secondary storage such as magnetic disks, magnetic tapes and optical

disks. In general, a file is a sequence of bits, bytes, lines or records whose

meaning is defined by the files creator and user.

File Structure

A File Structure should be according to a required format that the

operating system can understand.

A file has a certain defined structure according to its type.

A text file is a sequence of characters organized into lines.

A source file is a sequence of procedures and functions.

61

Input/ Output in Linux An object file is a sequence of bytes organized into blocks that are

understandable by the machine.

When operating system defines different file structures, it also contains the

code to support these file structure. Unix, MS-DOS support minimum

number of file structure.

File Type

File type refers to the ability of the operating system to distinguish

different types of file such as text files source files and binary files etc.

Many operating systems support many types of files. Operating system

like MS-DOS and UNIX have the following types of files −

Ordinary files

These are the files that contain user information. These may have text,

databases or executable program. The user can apply various operations

on such files like add, modify, delete or even remove the entire file.

Directory files

These files contain list of file names and other information related to these

files.

Special files

These files are also known as device files. These files represent physical

device like disks, terminals, printers, networks, tape drive etc.

These files are of two types −

Character special files − data is handled character by character as in case

of terminals or printers.

Block special files − data is handled in blocks as in the case of disks and

tapes.

File Access Mechanisms

File access mechanism refers to the manner in which the records of a file

may be accessed. There are several ways to access files −

• Sequential access

• Direct/Random access

• Indexed sequential access

Sequential access

A sequential access is that in which the records are accessed in some

sequence, i.e., the information in the file is processed in order, one record

after the other. This access method is the most primitive one. Example:

Compilers usually access files in this fashion.

Direct/Random access

Random access file organization provides, accessing the records directly.

Each record has its own address on the file with by the help of which it

can be directly accessed for reading or writing. The records need not be in

62

Advanced Operating
System

62

any sequence within the file and they need not be in adjacent locations on

the storage medium.

Indexed sequential access

This mechanism is built up on base of sequential access. An index is

created for each file which contains pointers to various blocks. Index is

searched sequentially and its pointer is used to access the file directly.

Space Allocation

Files are allocated disk spaces by operating system. Operating systems

deploy following three main ways to allocate disk space to files.

Contiguous Allocation

Linked Allocation

Indexed Allocation

Contiguous Allocation

Each file occupies a contiguous address space on disk.

Assigned disk address is in linear order.

Easy to implement.

External fragmentation is a major issue with this type of allocation

technique.

Linked Allocation

Each file carries a list of links to disk blocks.

Directory contains link / pointer to first block of a file.

No external fragmentation

Effectively used in sequential access file.

Inefficient in case of direct access file.

Indexed Allocation

Provides solutions to problems of contiguous and linked allocation.

A index block is created having all pointers to files.

Each file has its own index block which stores the addresses of disk space

occupied by the file.

Directory contains the addresses of index blocks of files.

3.4 SECURITY

Security refers to providing a protection system to computer system

resources such as CPU, memory, disk, software programs and most

importantly data/information stored in the computer system. If a computer

program is run by an unauthorized user, then he/she may cause severe

damage to computer or data stored in it. So a computer system must be

protected against unauthorized access, malicious access to system

memory, viruses, worms etc.

Authentication

Authentication refers to identifying each user of the system and

associating the executing programs with those users. It is the responsibility

of the Operating System to create a protection system which ensures that a

63

Input/ Output in Linux user who is running a particular program is authentic. Operating Systems

generally identifies/authenticates users using following three ways −

Username / Password − User need to enter a registered username and

password with Operating system to login into the system.

User card/key − User need to punch card in card slot, or enter key

generated by key generator in option provided by operating system to

login into the system.

User attribute - fingerprint/ eye retina pattern/ signature − User need to

pass his/her attribute via designated input device used by operating system

to login into the system.

One Time passwords

One-time passwords provide additional security along with normal

authentication. In One-Time Password system, a unique password is

required every time user tries to login into the system. Once a one-time

password is used, then it cannot be used again. One-time password are

implemented in various ways.

Random numbers − Users are provided cards having numbers printed

along with corresponding alphabets. System asks for numbers

corresponding to few alphabets randomly chosen.

Secret key − User are provided a hardware device which can create a

secret id mapped with user id. System asks for such secret id which is to

be generated every time prior to login.

Network password − Some commercial applications send one-time

passwords to user on registered mobile/ email which is required to be

entered prior to login.

Program Threats

Operating system's processes and kernel do the designated task as

instructed. If a user program made these process do malicious tasks, then it

is known as Program Threats. One of the common example of program

threat is a program installed in a computer which can store and send user

credentials via network to some hacker. Following is the list of some well-

known program threats.

Trojan Horse − Such program traps user login credentials and stores them

to send to malicious user who can later on login to computer and can

access system resources.

Trap Door − If a program which is designed to work as required, have a

security hole in its code and perform illegal action without knowledge of

user then it is called to have a trap door.

Logic Bomb − Logic bomb is a situation when a program misbehaves only

when certain conditions met otherwise it works as a genuine program. It is

harder to detect.

Virus − Virus as name suggest can replicate themselves on computer

system. They are highly dangerous and can modify/delete user files, crash

systems. A virus is generatlly a small code embedded in a program. As

64

Advanced Operating
System

64

user accesses the program, the virus starts getting embedded in other files/

programs and can make system unusable for user

System Threats

System threats refers to misuse of system services and network

connections to put user in trouble. System threats can be used to launch

program threats on a complete network called as program attack. System

threats creates such an environment that operating system resources/ user

files are misused. Following is the list of some well-known system threats.

Worm − Worm is a process which can choked down a system performance

by using system resources to extreme levels. A Worm process generates

its multiple copies where each copy uses system resources, prevents all

other processes to get required resources. Worms processes can even shut

down an entire network.

Port Scanning − Port scanning is a mechanism or means by which a

hacker can detects system vulnerabilities to make an attack on the system.

Denial of Service − Denial of service attacks normally prevents user to

make legitimate use of the system. For example, a user may not be able to

use internet if denial of service attacks browser's content settings.

What is Deadlock?

Deadlock is a situation that occurs in OS when any process enters a

waiting state because another waiting process is holding the demanded

resource. Deadlock is a common problem in multi-processing where

several processes share a specific type of mutually exclusive resource

known as a soft lock or software

What is Circular wait?

One process is waiting for the resource, which is held by the second

process, which is also waiting for the resource held by the third process

etc. This will continue until the last process is waiting for a resource held

by the first process. This creates a circular chain.

For example, Process A is allocated Resource B as it is requesting

Resource A. In the same way, Process B is allocated Resource A, and it is

requesting Resource B. This creates a circular wait loop.

65

Input/ Output in Linux Deadlock Detection

A deadlock occurrence can be detected by the resource scheduler. A

resource scheduler helps OS to keep track of all the resources which are

allocated to different processes. So, when a deadlock is detected, it can be

resolved using the below-given methods:

Deadlock Prevention:

It’s important to prevent a deadlock before it can occur. The system

checks every transaction before it is executed to make sure it doesn’t lead

the deadlock situations. Such that even a small change to occur dead that

an operation which can lead to Deadlock in the future it also never

allowed process to execute.

It is a set of methods for ensuring that at least one of the conditions cannot

hold.

No preemptive action:

No Preemption – A resource can be released only voluntarily by the

process holding it after that process has finished its task If a process which

is holding some resources request another resource that can’t be

immediately allocated to it, in that situation, all resources will be released.

Preempted resources require the list of resources for a process that is

waiting. The process will be restarted only if it can regain its old resource

and a new one that it is requesting. If the process is requesting some other

resource, when it is available, then it was given to the requesting process.

If it is held by another process that is waiting for another resource, we

release it and give it to the requesting process.

Mutual Exclusion:

Mutual Exclusion is a full form of Mutex. It is a special type of binary

semaphore which used for controlling access to the shared resource. It

includes a priority inheritance mechanism to avoid extended priority

inversion problems. It allows current higher priority tasks to be kept in the

blocked state for the shortest time possible. Resources shared such as read-

only files never lead to deadlocks, but resources, like printers and tape

drives, needs exclusive access by a single process.

Hold and Wait:

In this condition, processes must be stopped from holding single or

multiple resources while simultaneously waiting for one or more others.

Circular Wait:

It imposes a total ordering of all resource types. Circular wait also requires

that every process request resources in increasing order of enumeration.

Deadlock Avoidance

It is better to avoid a deadlock instead of taking action after the Deadlock

has occurred. It needs additional information, like how resources should

be used. Deadlock avoidance is the simplest and most useful model that

each process declares the maximum number of resources of each type that

it may need.

66

Advanced Operating
System

66

Avoidance Algorithms

The deadlock-avoidance algorithm helps you to dynamically assess the

resource-allocation state so that there can never be a circular-wait

situation.

A single instance of a resource type.

Use a resource-allocation graph

Cycles are necessary which are sufficient for Deadlock

Multiples instances of a resource type.

Cycles are necessary but never sufficient for Deadlock.

Uses the banker’s algorithm

Advantages of Deadlock

Here, are pros/benefits of using Deadlock method

This situation works well for processes which perform a single burst of

activity

No preemption needed for Deadlock.

Convenient method when applied to resources whose state can be saved

and restored easily

Feasible to enforce via compile-time checks

Needs no run-time computation since the problem is solved in system

design

Disadvantages of Deadlock method

Here, are cons/ drawback of using deadlock method

Disks

The ideal storage device is

1. Fast

2. Big (in capacity)

3. Cheap

4. Impossible

Disks are big and cheap, but slow.

Disk Hardware

Show a real disk opened up and illustrate the components

• Platter

• Surface

• Head

• Track

• Sector

• Cylinder

• Seek time

• Rotational latency

• Transfer rate

67

Input/ Output in Linux Overlapping I/O operations is important. Many controllers can do

overlapped seeks, i.e. issue a seek to one disk while another is already

seeking.

Modern disks cheat and do not have the same number of sectors on outer

cylinders as on inner one. However, the disks have electronics and

software (firmware) that hides the cheat and gives the illusion of the same

number of sectors on all cylinders.

(Unofficial) Despite what tanenbaum says later, it is not true that when

one head is reading from cylinder C, all the heads can read from cylinder

C with no penalty. It is, however, true that the penalty is very small.

Choice of block size

• We discussed this before when studying page size.

• Current commodity disk characteristics (not for laptops) result in

about 15ms to transfer the first byte and 10K bytes per ms for

subsequent bytes (if contiguous).

• Rotation rate is 5400, 7600, or 10,000 RPM (15K just now

available).

• Recall that 6000 RPM is 100 rev/sec or one rev per 10ms. So

half a rev (the average time for to rotate to a given point) is

5ms.

• Transfer rates around 10MB/sec = 10KB/ms.

• Seek time around 10ms.

• This favors large blocks, 100KB or more.

• But the internal fragmentation would be severe since many files are

small.

• Multiple block sizes have been tried as have techniques to try to

have consecutive blocks of a given file near each other.

• Typical block sizes are 4KB-8KB.

RAID (Redundant Array of Inexpensive Disks) (Skipped)

• The name RAID is from Berkeley.

• IBM changed the name to Redundant Array of Independent Disks. I

wonder why?

• A simple form is mirroring, where two disks contain the same data.

• Another simple form is striping (interleaving) where consecutive

blocks are spread across multiple disks. This helps bandwidth, but is

not redundant. Thus it shouldn't be called RAID, but it sometimes is.

• One of the normal RAID methods is to have N (say 4) data disks and

one parity disk. Data is striped across the data disks and the bitwise

parity of these sectors is written in the corresponding sector of the

parity disk.

• On a read if the block is bad (e.g., if the entire disk is bad or even

missing), the system automatically reads the other blocks in the

stripe and the parity block in the stripe. Then the missing block is

just the bitwise exclusive or of all these blocks.

68

Advanced Operating
System

68

• For reads this is very good. The failure free case has no penalty

(beyond the space overhead of the parity disk). The error case

requires N+1 (say 5) reads.

• A serious concern is the small write problem. Writing a sector

requires 4 I/O. Read the old data sector, compute the change, read

the parity, compute the new parity, write the new parity and the new

data sector. Hence one sector I/O became 4, which is a 300%

penalty.

• Writing a full stripe is not bad. Compute the parity of the N (say 4)

data sectors to be written and then write the data sectors and the

parity sector. Thus 4 sector I/Os become 5, which is only a 25%

penalty and is smaller for larger N, i.e., larger stripes.

• A variation is to rotate the parity. That is, for some stripes disk 1 has

the parity, for others disk 2, etc. The purpose is to not have a single

parity disk since that disk is needed for all small writes and could

become a point of contention.

Disk Arm Scheduling Algorithms

There are three components to disk response time: seek, rotational latency,

and transfer time. Disk arm scheduling is concerned with minimizing seek

time by reordering the requests.

These algorithms are relevant only if there are several I/O requests

pending. For many PCs this is not the case. For most commercial

applications, I/O is crucial and there are often many requests pending.

1. FCFS (First Come First Served): Simple but has long delays.

2. Pick: Same as FCFS but pick up requests for cylinders that are

passed on the way to the next FCFS request.

3. SSTF or SSF (Shortest Seek (Time) First): Greedy algorithm. Can

starve requests for outer cylinders and almost always favors middle

requests.

4. Scan (Look, Elevator): The method used by an old fashioned

jukebox (remember ``Happy Days'') and by elevators. The disk arm

proceeds in one direction picking up all requests until there are no

more requests in this direction at which point it goes back the other

direction. This favors requests in the middle, but can't starve any

requests.

5. C-Scan (C-look, Circular Scan/Look): Similar to Scan but only

service requests when moving in one direction. When going in the

other direction, go directly to the furthest away request. This doesn't

favor any spot on the disk. Indeed, it treats the cylinders as though

they were a clock, i.e. after the highest numbered cylinder comes

cylinder 0.

6. N-step Scan: This is what the natural implementation of Scan gives.

• While the disk is servicing a Scan direction, the controller

gathers up new requests and sorts them.

69

Input/ Output in Linux • At the end of the current sweep, the new list becomes the next

sweep.

Minimizing Rotational Latency

Use Scan based on sector numbers not cylinder number. For rotational

latency Scan which is the same as C-Scan. Why?

Ans: Because the disk only rotates in one direction.

Security Mechanism

OS security mechanisms:

Memory Protection:

One of the important aspects of Operating system security is Memory

Protection. Memory provides powerful indirect way for an attacker to

circumvent security mechanism, since every piece of information accessed

by any program will need to reside in memory at some point in time, and

hence may potentially be accessed in the absence of memory protection

mechanisms.

Memory protection is a way for controlling memory usage on a computer,

and is core to virtually every operating system. The main purpose of

memory protection is to prevent a process running on an operating system

from accessing the memory of other processes, or is used by the OS

kernel. This prevents a bug within the process from affecting other

processes, and also prevents malicious software from gaining

unauthorized access to the system, e.g., suppose that process A is

permitted access to a file F, while process B is not. Process B can bypass

this policy by attempting to read F's content that will be stored in A's

memory immediately after A reads F. Alternatively, B may attempt to

modify the access control policy that is stored in the OS memory so that

the OS thinks that B is permitted access to this file.

How to protect memory of one process from another?

The virtual memory mechanism supported on most OSes ensures that the

memory of different processes are logically disjoint. The virtual addresses,

which are logical addresses, are transformed into a physical memory

address using address translation hardware. To speed up translation,

various caching mechanisms are utilized. First, most L1 processor caches

are based on virtual addresses, so cache accesses don't need address

translation. Next, the paging hardware uses cache-like mechanisms

(TLBs) to avoid performing bounds checks on every virtual access.

In order to secure the virtual address translation mechanism, it is important

to ensure that processes cannot tamper with the address translation

mechanisms. To ensure this, processors have to provide some protection

primitives. Typically, this is done using the notion of privileged execution

modes.

Specifically, 2 modes of CPU execution are introduced: privileged and

unprivileged. (Processors may support multiple levels of privileges, but

today's OSes use only two levels.) Certain instructions, such as those

relating to I/O, DMA, interrupt processing, and page table translation are

permitted only in the privileged mode.

70

Advanced Operating
System

70

OSes rely on the protection mechanism provided by the processor as

follows. All user processes (including root-processes) execute in

unprivileged mode, while the OS kernel executes in privileged mode.

Obviously, user level processes need to access OS kernel functionality

from time time to time. Typically, this is done using system calls that

represent a call from unprivileged code to privileged code. Uncontrolled

calls across the privilege boundary can defeat security mechanism, e.g., it

should not be possible for arbitrary user code to call a kernel function that

changes the page tables. For this reason, privilege transitions need to be

carefully controlled. Usually, “software trap” instructions are used to

effect transition from low to high privilege mode. (Naturally, no protection

is needed for transitioning from privileged to unprivileged mode.) On

Linux, software interrupt 0x80 is used for this purpose. When this

instruction is invoked, the processor starts executing the interrupt handler

code for this interrupt in the privileged mode. (Note that the changes to

interrupt handler should itself be permitted only in the privileged mode, or

else this mechanism could be subverted.) This code should perform

appropriate checks to ensure that the call is legitimate, and then carry it

out. This basically means that the parameters to system calls have to be

thoroughly checked.

UNIX Processes and Security:

Processes have different type of ID’s. These Ids are inherited by a child

process from its parent, except in the case of setuid processes – in their

case, their effective userid is set to be the same as the owner of the file

that is executed.

1. User ID:

a) Effective User ID (EUID)

 Effective user id is used for all permission checking

operations.

b) Real User ID (RUID)

 Real user ID is the one that represents the “real user” that

launched the process.

c) Saved User ID (SUID)

 Saved userid stores the value of userid before a setuid

operation.

A privileged process (ie process with euid of 0) can change these 3 uids to

arbitrary values, while unprivileged processes can change them to one of

the values of these 3 uids. This constraint on unprivileged processes

prevents them for assuming the userid of arbitrary users, but allows

limited changes. For instance, an FTP server initially starts off with euid =

ruid = 0. When a user U logs in, the euid and ruid are set to U, but the

saved uid remains as root. This allows the FTP server to later change its

euid to 0 for the purpose of binding to a low-numbered port. (The original

FTP protocol requires this binding for each data connection.)

2. Group ID:

Group identifier (GID) is used to represent a specific group. As single user

can belongs to multiple groups, a single process can have multiple group

71

Input/ Output in Linux ids. These are organized as a “primary” group id, and a list of

supplementary gids. The primary gid has 3 flavors (real, effective and

save), analogous to uids. All objects created by a process will have the

effective gid of the process. Supplementary gids are used only for

permission checking.

3. Group Passwords :

If a user is not listed as belonging to a group G, and there is a password for

G, this user can change her group by providing this group password.

Inter-processes communication:

A process can influence the behavior of another process by

communicating with it. From a security point of view, this is not an issue

if the two processes belong to the same user. (Any damage that can be

effected by the second process can be effected by the first process as well,

so there is no incentive for the first process to attack the second --- this is

true on standard UNIX systems, where application-specific access control

policies (say, DTE) aren't used.) If not, we need to be careful. We need to

pay particular attention to situations where an unprivileged process

communicates with a privileged process in ways that the privileged

process did not expect.

1. Parent to child communication

If the parent has a child with higher privilege- e.g. the child is a setuid

program, then certain mechanism is needed to prevent the child taking

advantage of the setuid program. In particular, such a child program

should expect to receive parameters from an unprivileged process and

validate them. But it may not expect subversion attacks, for example, the

parent may modify the path (specified in an environment variable) for

searching for libraries. To prevent this, the loader typically ignores these

path specifications for seuid processes. Parents are still permitted to send

signals to children, even if their uids are different.

2. Signals are a mechanism for the OS to notify user-level processes about

exceptions, e.g.,invalid memory access. Their semantics is similar to that

of interrupts ---- processes typically install a “signal handler,” which can

be different for different signals. (UNIX defines about 30 such signals.)

When a signal occurs, process execution in interrupted, and control

transferred to the handler for that signal. Once the handler finishes

execution, the execution of application code resumes at the point where it

was interrupted.

Signals can also be used for communication: one process can send a signal

to another process using the “kill” system call. Due to security

considerations, this is permitted only when the userid of the process

sending the signal is zero, or equals that of the receiving process.

3. Debugging and Tracing

OSes need to provide some mechanisms for debugging. On Linux, this

takes the form of the ptrace mechanism. It allows a debugger to read or

write arbitrary locations in the memory of a debugged process. It can also

read or set the values of registers used by the debugged process. The

interface allows code regions to be written as well --- typically, code

72

Advanced Operating
System

72

regions are protected and hence the debugged process won't be able to

overwrite code without first using a system call to modify the permissions

on the memory page(s) that contains the code. But the debugger is able to

change code as well.

Obviously, the debugging interface enables a debugging process to exert a

great deal of control over the debugged process. As such, UNIX allows

debugging only if the debugger and the debugged processes are both run

by the same user.

(On Linux, ptrace can also be used for system call interception. In this

case, every time the debugged process makes a system call, the call is

suspended inside the kernel, and the information delivered to the

debugger. At this point, the debugger can change this system call or its

parameters, and then allow the system call to continue. When the system

call is completed, the debugger is notified again, and it can change the

return results or modify the debugged process memory. It can then let the

system call return to the debugged process, which then resumes

execution.)

4. Network Connection

a) Binding: Programs use the socket abstraction for network

communication. In order for a socket, which represents a

communication endpoint, to become visible from outside, it needs to

be associated with a port number. (This holds for TCP and UDP, the

two main protocols used for communication on the Internet.)

Historically, ports below 1024 were considered “privileged” ports ---

binding to them required root privileges. The justification is in the

context of large, multi-user systems where a number of user

applications are running on the same system as a bunch of services.

The assumption was that user processes are not trusted, and could

try to masquerade as a server. (For instance, a user process

masquerading as a telnet server could capture passwords of other

users and forward them to the attacker.) To prevent this possibility,

trusted servers would use only ports below 1024. Since such ports

cannot be bound to normal user processes, this masquerading wont

be possible.

b) Connect:

 A client initiates a connection. There are no access controls

associated with the connect operation on most contemporary OSes.

c) Accept :

 Accept is used by a server to accept an incoming connection (i.e., in

response to a connect operation invoked by a client). No permission

checks are associated with this operation on most contemporary

OSes.

Boot Security:

A number of security-critical services get started up at boot time. It is

necessary to understand this sequence in order to identify the relevant

security issues.

1) Loader loads the Kernel

73

Input/ Output in Linux Loader loads the kernel and init process starts. The PID of init process is

0.

2) Kernel modules get loaded and devices are initialized

Some kernel modules are loaded immediately; others are loaded explicitly

by boot scripts.

3) Boot scripts are stored at /etc/init.d

4) Run Levels

0 halt

1 single user

2 Full Multi-User mode (default)

3-5 Same as 2

6 Reboot

 Scripts that will be run at different run levels can be different. To support

this, UNIX systems typically use one directory per run level (named

/etc/rcN.d/) for storing these scripts.

These directories contain symbolic links to the actual files stored in

/etc/init.d. Script names that start with “S” are run at startup, while those

starting with “K” are run at shutdown time. The order of running the

scripts is determined by its name --- for instance, S01 will be run before

S02 and so on.

Other UNIX security issues

1) Devices

a) Hard disk

b) /dev/mem & /dev/kmem : (virtual memory and kernel memory)

c) /dev/tty

Access to raw devices must be carefully controlled, or else it can

defeat higher level security primitives. For instance, by directly

accessing the contents of a hard drive, a process can modify any

thing on the file system, thereby bypassing any permissions set on

the files stored therein. Similarly, one process can interfere with the

network packets that belong to another user's process by directly

reading (or writing to) the network interface. Finally, memory can

be accessed indirectly through low-level devices. In UNIX, all these

devices are typically configured so that only root processes can

access them.

2) Mounting File Systems

When we want to attach a file system to an operating system we

need to specify where in a directory structure we want to attach it,

this process is called mounting. This ability to mount raises several

security issues.

(a) For removable media (USB drives, CDROMs, etc), an

ordinary user may create a setuid-toroot executable on a

different system (on which she has root access). My mounting

this file system on a machine on which she has no root access,

74

Advanced Operating
System

74

she can obtain root privileges by running the suid application.

So. one should be careful about granting mount privileges to

ordinary users. One common approach is to grant these

privileges while disabling setuid option for filesystems

mounted by ordinary users.

(b) UNIX allows the same file system to be mounted at more than

one mount point. When this is done, the user has effectively

created aliases for file names. For instance, if a filesystem is

mounted on /usr and /mnt/usr, then a file A in this filesystem

can be accessed using the name /usr/A and /mnt/usr/A.

3) Search Path

A search path is a sequence of directories that a system uses to

locate an object (program, library, or file). Because programs rely on

search paths, users must take care to set them appropriately.

Some systems have many types of search paths. In addition to

searching for executables, a common search path contains

directories that are used to search for libraries when the system

supports dynamic loading. If an attacker is able to influence this

search path, then he induce other users (including root) to execute

code of his choice. For instance, suppose that an attacker A can

modify root's path to include /home/A at its beginning. Then, when

root types the command ls, the file /home/A/ls may get executed

with root privileges. Since the attacker created this file, it gives the

attacker the ability to run arbitrary code with root privileges.

4) Capabilities. Modern UNIX systems have introduced some

flexibility in places were policies were hard-coded previously. For

instance, the ability to change file ownerships is now treated as a

capability within Linux. (These are not fully transferable, in the

sense of classical capabilities, but they can inherited across a fork.)

A number of similar capabilities have been defined. (On Linux, try

“man capabilities.”)

5) Network Access

 Linux systems provide a built-in firewalling capabilities. This is

administered using the iptables program. When this service is

enabled, iptables related scripts are run at boottime. You can figure

out how to configure this by looking at the relevant scrips and the

documentation on iptables configuration. In addition to iptables,

additional mechanisms are available for controlled network access.

The most important ones among these are the hosts.allow and

hosts.deny files that specify which hosts are allowed to connect to

the local system.

Database security

Main issue in database security is fine granularity – it is not enough to

permit or deny access to an entire database. SQL supports an access

control mechanism that can be used to limit access to tables in much the

same way that access can be limited to specific files using a conventional

75

Input/ Output in Linux access control specification, e.g., a user may be permitted to read a table,

another may be permitted to update it, and so on.

Sometimes, we want to have finer granularity of protection, e.g.,

suppressing certain columns and/or rows. This can be achieved using

database views. Views are a mechanism in databases to provide a

customized view of a database to particular users. Typically, a view can be

defined as the result of a database query. As a result, rows can be omitted,

or columns can be projected out using a query. Thus, by combining views

with SQL access control primitives, we can realize fairly sophisticated

access control objectives.

Statistical security and the inference problem

When dealing with sensitive data, it is often necessary permit access to

aggregated even when access to individual data items may be too sensitive

to reveal. For instance, the census bureau collects a lot of sensitive

information about individuals. In general, no one should be able to access

detailed individual records. However, if we dont permit aggregate queries,

e.g., the number of people in a state that are african americans, then the

whole purpose of conducting census would be lost. The catch is that it

may be possible to identify sensitive information from the results of one of

more aggregate queries. This is called the inference problem. As an

example, consider a database that contains grade information for this

course. We may permit aggregate queries, e.g., average score on the final

exam. But if this average is computed over a small set, then it can reveal

sensitive information. To illustrate this, consider a class that has only a

single woman. By making a query that selects the students whose gender

is female, and asking for the average of these students, one can determine

the grade of a single individual in the class.

One can attempt to solve this problem by prescribing a minimum size on

the sets on which aggregates are computed. But an attacker can

circumvent this by computing aggregates on the complement of a set, e.g.,

by comparing the average of the whole class with the average for male

students, an attacker can compute the female student's grade. Another

possibility is to insert random errors in outputs. For instance, in the above

calculation, a small error in the average grades can greatly increase the

error in the inferred grade of the female student.

3.5 SUMMARY

This chapter mainly focuses on Memory management in Operating

System.

3.6 EXERCISE

Homework: Consider a disk with an average seek time of 10ms, an

average rotational latency of 5ms, and a transfer rate of 10MB/sec.

1. If the block size is 1KB, how long would it take to read a block?

2. If the block size is 100KB, how long would it take to read a block?

76

Advanced Operating
System

76

3. If the goal is to read 1K, a 1KB block size is better as the remaining

99KB are wasted. If the goal is to read 100KB, the 100KB block

size is better since the 1KB block size needs 100 seeks and 100

rotational latencies. What is the minimum size request for which a

disk with a 100KB block size would complete faster than one with a

1KB block size?

3.7 REFERENCES

• An Introduction to Operating Systems: Concepts and Practice

(GNU/Linux), 4th19 edition, Pramod Chandra P. Bhatt, Prentice-

Hall of India Pvt. Ltd, 2014.

• Operating System Concepts with Java Eight Edition, Avi

Silberschatz, Peter Baer Galvin, Greg Gagne, John Wiley & Sons,

Inc., 2009, http://codex.cs.yale.edu/avi/os-book/OS8/os8j

• UNIX and Linux System Administration Handbook, Fourth Edition,

Evi Nemeth, Garth Snyder, Tren Hein, Ben Whaley, Pearson

Education, Inc, 2011,



77

4
ANDROID OPERATING SYSTEM

Unit Structure

4.0 Introduction

4.1 The Android Software Stack

4.2 The Linux Kernel

4.3 Libraries

4.4 Application Framework

4.5 Summary

4.6 Exercise

4.7 References

4.0 INTRODUCTION

This chapter provides information about Android Operating System and

Implementation

4.1 THE ANDROID SOFTWARE STACK

Understanding the Android Software Stack

The Android software stack is, put simply, a Linux kernel and a collection

of C/C++ libraries exposed through an application framework that

provides services for, and management of, the run time and applications.

The Android software stack is composed of the elements shown in Figure

1-1.

• Linux kernel - Core services (including hardware drivers, process

and memory management, security, network, and power

management) are handled by a Linux 2.6 kernel. The kernel also

provides an abstraction layer between the hardware and the

remainder of the stack.

• Libraries - Running on top of the kernel, Android includes various

C/C++ core libraries such as libc and SSL, as well as the following:

• A media library for playback of audio and video media

• A surface manager to provide display management

• Graphics libraries that include SGL and OpenGL for 2D and

3D graphics

• SQLite for native database support

• SSL and WebKit for integrated web browser and Internet

security

• Android run time - The run time is what makes an Android phone

an Android phone rather than a mobile Linux implementation.

78

Advanced Operating
System

78

Including the core libraries and the Dalvik VM, the Android run

time is the engine that powers your applications and, along with the

libraries, forms the basis for the application framework.

• Core libraries - Although most Android application development is

written using the Java language, Dalvik is not a Java VM. The core

Android libraries provide most of the functionality available in the

core Java libraries, as well as the Androidspecific libraries.

• Dalvik VM - Dalvik is a register-based Virtual Machine that’s been

optimized to ensure that a device can run multiple instances

efficiently. It relies on the Linux kernel for threading and low-level

memory management.

• Application framework - The application framework provides the

classes used to create Android applications. It also provides a

generic abstraction for hardware access and manages the user

interface and application resources.

• Application layer - All applications, both native and third-party, are

built on the application layer by means of the same API libraries.

The application layer runs within the Android run time, using the

classes and services made available from the application framework.

Figure 4.1 Android Software Stack

4.2 THE LINUX KERNEL

The Linux Kernel – its functions

The kernel has 4 jobs:

• Memory management: Keep track of how much memory is used to

store what, and where

• Process management: Determine which processes can use the central

processing unit (CPU), when, and for how long

79

Android
Operating System

• Device drivers: Act as mediator/interpreter between the hardware

and processes

• System calls and security: Receive requests for service from the

processes

The kernel, if implemented properly, is invisible to the user, working in its

own little world known as kernel space, where it allocates memory and

keeps track of where everything is stored. What the user sees—like web

browsers and files—are known as the user space. These applications

interact with the kernel through a system call interface (SCI).

Think about it like this. The kernel is a busy personal assistant for a

powerful executive (the hardware). It’s the assistant’s job to relay

messages and requests (processes) from employees and the public (users)

to the executive, to remember what is stored where (memory), and to

determine who has access to the executive at any given time and for how

long.

To put the kernel in context, you can think of a Linux machine as having 3

layers:

• The hardware: The physical machine—the bottom or base of the

system, made up of memory (RAM) and the processor or central

processing unit (CPU), as well as input/output (I/O) devices such as

storage, networking, and graphics. The CPU performs computations

and reads from, and writes to, memory.

• The Linux kernel: The core of the OS. (See? It’s right in the middle.)

It’s software residing in memory that tells the CPU what to do.

• User processes: These are the running programs that the kernel

manages. User processes are what collectively make up user space.

User processes are also known as just processes. The kernel also

allows these processes and servers to communicate with each other

(known as inter-process communication, or IPC).

Code executed by the system runs on CPUs in 1 of 2 modes: kernel mode

or user mode. Code running in the kernel mode has unrestricted access to

the hardware, while user mode restricts access to the CPU and memory to

the SCI. A similar separation exists for memory (kernel space and user

space). These 2 small details form the base for some complicated

operations like privilege separation for security, building containers, and

virtual machines.

This also means that if a process fails in user mode, the damage is limited

and can be recovered by the kernel. However, because of its access to

memory and the processor, a kernel process crash can crash the entire

system. Since there are safeguards in place and permissions required to

cross boundaries, user process crashes usually can’t cause too many

problems.

4.3 LIBRARIES

SQLite Library used for data storage and light in terms of mobile memory

footprints and task execution.

80

Advanced Operating
System

80

WebKit Library mainly provides Web Browsing engine and a lot more

related features.

The surface manager library is responsible for rendering windows and

drawing surfaces of various apps on the screen.

The media framework library provides media codecs for audio and video.

The OpenGl (Open Graphics Library) and SGL(Scalable Graphics

Library) are the graphics libraries for 3D and 2D rendering, respectively.

The FreeType Library is used for rendering fonts.

Application Framework

It is a collection of APIs written in Java, which gives developers access to

the complete feature set of Android OS.

Developers have full access to the same framework APIs used by the core

applications, so that they can enhance more in terms of functionalities of

their application.

Enables and simplify the reuse of core components and services, like:

Activity Manager: Manages the Lifecycle of apps & provide common

navigation back stack.

Window Manager: Manages windows and drawing surfaces, and is an

abstraction of the surface manager library.

Content Providers: Enables application to access data from other

applications or to share their own data i.e it provides mechanism to

exchange data among apps.

View System: Contains User Interface building blocks used to build an

application's UI, including lists, grids, texts, boxes, buttons,etc. and also

performs the event management of UI elements(explained in later

tutorials).

Package Manager: Manages various kinds of information related to the

application packages that are currently installed on the device.

Telephony Manager: Enables app to use phone capabilities of the device.

Resource Manager: Provides access to non-code resources (localized

Strings, bitmaps, Graphics and Layouts).

Location Manager: Deals with location awareness capabilities.

Notification Manager: Enable apps to display custom alerts in the status

bar.

Applications

Top of the Android Application Stack, is occupied by the System apps and

tonnes of other Apps that users can download from Android's Official Play

Store, also known as Google Play Store. A set of Core applications are

pre-packed in the handset like Email Client, SMS Program, Calendar,

Maps, Browser, Contacts and few more. This layer uses all the layers

below it for proper functioning of these mobile apps. So as we can see and

understand, Android holds layered or we can say grouped functionalities

as software stack that makes Android work very fluently in any device.

Media framework

A multimedia framework is a software framework that handles media on a

computer and through a network. ... It is meant to be used by applications

81

Android
Operating System

such as media players and audio or video editors, but can also be used to

build videoconferencing applications, media converters and other

multimedia tools.

SQLite

SQLite is a opensource SQL database that stores data to a text file on a

device. Android comes in with built in SQLite database implementation.

SQLite supports all the relational database features. In order to access this

database, you don't need to establish any kind of connections for it like

JDBC,ODBC e.t.c

Database - Package

The main package is android.database.sqlite that contains the classes to

manage your own databases

Database - Creation

In order to create a database you just need to call this method

openOrCreateDatabase with your database name and mode as a parameter.

It returns an instance of SQLite database which you have to receive in

your own object.Its syntax is given below

SQLiteDatabase mydatabase = openOrCreateDatabase("your database

name",MODE_PRIVATE,null);

Apart from this , there are other functions available in the database

package , that does this job. They are listed below

Sr.No Method & Description

1 openDatabase(String path, SQLiteDatabase. CursorFactory

factory, int flags, DatabaseErrorHandler errorHandler)

This method only opens the existing database with the

appropriate flag mode. The common flags mode could be

OPEN_READWRITE OPEN_READONLY

2 openDatabase(String path, SQLiteDatabase. CursorFactory

factory, int flags)

It is similar to the above method as it also opens the existing

database but it does not define any handler to handle the errors

of databases

3 openOrCreateDatabase(String path, SQLiteDatabase.

CursorFactory factory)

It not only opens but create the database if it not exists. This

method is equivalent to openDatabase method.

4 openOrCreateDatabase(File file, SQLiteDatabase.

CursorFactory factory)

This method is similar to above method but it takes the File

object as a path rather then a string. It is equivalent to

file.getPath()

82

Advanced Operating
System

82

Database - Insertion

we can create table or insert data into table using execSQL method defined

in SQLiteDatabase class. Its syntax is given below

mydatabase.execSQL("CREATE TABLE IF NOT EXISTS

TutorialsPoint(Username VARCHAR,Password VARCHAR);");

mydatabase.execSQL("INSERT INTO TutorialsPoint

VALUES('admin','admin');");

This will insert some values into our table in our database. Another

method that also does the same job but take some additional parameter is

given below

Sr.No Method & Description

1 execSQL(String sql, Object[] bindArgs)

This method not only insert data , but also used to update or

modify already existing data in database using bind

arguments

Database – Fetching

We can retrieve anything from database using an object of the Cursor

class. We will call a method of this class called rawQuery and it will

return a resultset with the cursor pointing to the table. We can move the

cursor forward and retrieve the data.

Cursor resultSet = mydatbase.rawQuery("Select * from

TutorialsPoint",null);

resultSet.moveToFirst();

String username = resultSet.getString(0);

String password = resultSet.getString(1);

There are other functions available in the Cursor class that allows us to

effectively retrieve the data. That includes

Sr.No Method & Description

1 getColumnCount()

This method return the total number of columns of the table.

2 getColumnIndex(String columnName)

This method returns the index number of a column by
specifying the name of the column

3 getColumnName(int columnIndex)

This method returns the name of the column by specifying the
index of the column

83

Android
Operating System 4 getColumnNames()

This method returns the array of all the column names of the
table.

5 getCount()

This method returns the total number of rows in the cursor

6 getPosition()

This method returns the current position of the cursor in the
table

7 isClosed()

This method returns true if the cursor is closed and return
false otherwise

Database - Helper class

For managing all the operations related to the database , an helper class

has been given and is called SQLiteOpenHelper. It automatically manages

the creation and update of the database. Its syntax is given below

public class DBHelper extends SQLiteOpenHelper {

 public DBHelper(){

 super(context,DATABASE_NAME,null,1);

 }

 public void onCreate(SQLiteDatabase db) {}

 public void onUpgrade(SQLiteDatabase database, int oldVersion, int

newVersion) {}

}

Example

Here is an example demonstrating the use of SQLite Database. It creates a

basic contacts applications that allows insertion, deletion and modification

of contacts.

To experiment with this example, you need to run this on an actual device

on which camera is supported.

Steps Description

1 You will use Android studio to create an Android application

under a package com.example.sairamkrishna.myapplication.

2 Modify src/MainActivity.java file to get references of all the

84

Advanced Operating
System

84

XML components and populate the contacts on listView.

3 Create new src/DBHelper.java that will manage the database

work

4 Create a new Activity as DisplayContact.java that will display

the contact on the screen

5 Modify the res/layout/activity_main to add respective XML

components

6 Modify the res/layout/activity_display_contact.xml to add

respective XML components

7 Modify the res/values/string.xml to add necessary string

components

8 Modify the res/menu/display_contact.xml to add necessary

menu components

9 Create a new menu as res/menu/mainmenu.xml to add the

insert contact option

10 Run the application and choose a running android device and

install the application on it and verify the results.

Following is the content of the modified MainActivity.java.

package com.example.sairamkrishna.myapplication;

import android.content.Context;

import android.content.Intent;

import android.support.v7.app.ActionBarActivity;

import android.os.Bundle;

import android.view.KeyEvent;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

import android.widget.AdapterView.OnItemClickListener;

import android.widget.ListView;

import java.util.ArrayList;

import java.util.List;

public class MainActivity extends ActionBarActivity {

 public final static String EXTRA_MESSAGE = "MESSAGE";

 private ListView obj;

 DBHelper mydb;

85

Android
Operating System

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 mydb = new DBHelper(this);

 ArrayList array_list = mydb.getAllCotacts();

 ArrayAdapter arrayAdapter=new

ArrayAdapter(this,android.R.layout.simple_list_item_1, array_list);

 obj = (ListView)findViewById(R.id.listView1);

 obj.setAdapter(arrayAdapter);

 obj.setOnItemClickListener(new OnItemClickListener(){

 @Override

 public void onItemClick(AdapterView<?> arg0, View arg1, int

arg2,long arg3) {

 // TODO Auto-generated method stub

 int id_To_Search = arg2 + 1;

 Bundle dataBundle = new Bundle();

 dataBundle.putInt("id", id_To_Search);

 Intent intent = new Intent (getApplicationContext(), Display

Contact.class);

 intent.putExtras(dataBundle);

 startActivity(intent);

 }

 });

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar if it is present.

 getMenuInflater().inflate(R.menu.menu_main, menu);

 return true;

 }

 @Override

 public boolean onOptionsItemSelected(MenuItem item){

 super.onOptionsItemSelected(item);

 switch(item.getItemId()) {

 case R.id.item1:Bundle dataBundle = new Bundle();

 dataBundle.putInt("id", 0);

 Intent intent = new Intent (getApplicationContext(), Display

Contact.class);

 intent.putExtras(dataBundle);

 startActivity(intent);

 return true;

 default:

 return super.onOptionsItemSelected(item);

 }

86

Advanced Operating
System

86

 }

 public boolean onKeyDown(int keycode, KeyEvent event) {

 if (keycode == KeyEvent.KEYCODE_BACK) {

 moveTaskToBack(true);

 }

 return super.onKeyDown(keycode, event);

 }

}

Following is the modified content of display contact activity

DisplayContact.java

package com.example.sairamkrishna.myapplication;

import android.os.Bundle;

import android.app.Activity;

import android.app.AlertDialog;

import android.content.DialogInterface;

import android.content.Intent;

import android.database.Cursor;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

import android.widget.Toast;

public class DisplayContact extends Activity {

 int from_Where_I_Am_Coming = 0;

 private DBHelper mydb ;

 TextView name ;

 TextView phone;

 TextView email;

 TextView street;

 TextView place;

 int id_To_Update = 0;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_display_contact);

 name = (TextView) findViewById(R.id.editTextName);

 phone = (TextView) findViewById(R.id.editTextPhone);

 email = (TextView) findViewById(R.id.editTextStreet);

 street = (TextView) findViewById(R.id.editTextEmail);

 place = (TextView) findViewById(R.id.editTextCity);

 mydb = new DBHelper(this);

 Bundle extras = getIntent().getExtras();

 if(extras !=null) {

 int Value = extras.getInt("id");

87

Android
Operating System

 if(Value>0){

 //means this is the view part not the add contact part.

 Cursor rs = mydb.getData(Value);

 id_To_Update = Value;

 rs.moveToFirst();

 String nam =

rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_NA

ME));

 String phon =

rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_PHO

NE));

 String emai =

rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_EM

AIL));

 String stree =

rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_STR

EET));

 String plac =

rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_CIT

Y));

 if (!rs.isClosed()) {

 rs.close();

 }

 Button b = (Button)findViewById(R.id.button1);

 b.setVisibility(View.INVISIBLE);

 name.setText((CharSequence)nam);

 name.setFocusable(false);

 name.setClickable(false);

 phone.setText((CharSequence)phon);

 phone.setFocusable(false);

 phone.setClickable(false);

 email.setText((CharSequence)emai);

 email.setFocusable(false);

 email.setClickable(false);

 street.setText((CharSequence)stree);

 street.setFocusable(false);

 street.setClickable(false);

 place.setText((CharSequence)plac);

 place.setFocusable(false);

 place.setClickable(false);

 }

 }

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

88

Advanced Operating
System

88

 // Inflate the menu; this adds items to the action bar if it is present.

 Bundle extras = getIntent().getExtras();

 if(extras !=null) {

 int Value = extras.getInt("id");

 if(Value>0){

 getMenuInflater().inflate(R.menu.display_contact, menu);

 } else{

 getMenuInflater().inflate(R.menu.menu_main menu);

 }

 }

 return true;

 }

 public boolean onOptionsItemSelected(MenuItem item) {

 super.onOptionsItemSelected(item);

 switch(item.getItemId()) {

 case R.id.Edit_Contact:

 Button b = (Button)findViewById(R.id.button1);

 b.setVisibility(View.VISIBLE);

 name.setEnabled(true);

 name.setFocusableInTouchMode(true);

 name.setClickable(true);

 phone.setEnabled(true);

 phone.setFocusableInTouchMode(true);

 phone.setClickable(true);

 email.setEnabled(true);

 email.setFocusableInTouchMode(true);

 email.setClickable(true);

 street.setEnabled(true);

 street.setFocusableInTouchMode(true);

 street.setClickable(true);

 place.setEnabled(true);

 place.setFocusableInTouchMode(true);

 place.setClickable(true);

 return true;

 case R.id.Delete_Contact:

 AlertDialog.Builder builder = new AlertDialog.Builder(this);

 builder.setMessage(R.string.deleteContact)

 .setPositiveButton(R.string.yes, new

DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int id) {

 mydb.deleteContact(id_To_Update);

 Toast.makeText(getApplicationContext(), "Deleted

Successfully",

 Toast.LENGTH_SHORT).show();

89

Android
Operating System

 Intent intent = new

Intent(getApplicationContext(),MainActivity.class);

 startActivity(intent);

 }

 })

 .setNegativeButton(R.string.no, new

DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int id) {

 // User cancelled the dialog

 }

 });

 AlertDialog d = builder.create();

 d.setTitle("Are you sure");

 d.show();

 return true;

 default:

 return super.onOptionsItemSelected(item);

 }

 }

 public void run(View view) {

 Bundle extras = getIntent().getExtras();

 if(extras !=null) {

 int Value = extras.getInt("id");

 if(Value>0){

 if(mydb.updateContact(id_To_Update,name.getText().toString(),

 phone.getText().toString(), email.getText().toString(),

 street.getText().toString(),

place.getText().toString())){

 Toast.makeText(getApplicationContext(), "Updated",

Toast.LENGTH_SHORT).show();

 Intent intent = new

Intent(getApplicationContext(),MainActivity.class);

 startActivity(intent);

 } else{

 Toast.makeText(getApplicationContext(), "not Updated",

Toast.LENGTH_SHORT).show();

 }

 } else{

 if(mydb.insertContact(name.getText().toString(),

phone.getText().toString(),

 email.getText().toString(),

street.getText().toString(),

 place.getText().toString())){

 Toast.makeText(getApplicationContext(), "done",

 Toast.LENGTH_SHORT).show();

90

Advanced Operating
System

90

 } else{

 Toast.makeText(getApplicationContext(), "not done",

 Toast.LENGTH_SHORT).show();

 }

 Intent intent = new

Intent(getApplicationContext(),MainActivity.class);

 startActivity(intent);

 }

 }

 }

}

Following is the content of Database class DBHelper.java

package com.example.sairamkrishna.myapplication;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.Hashtable;

import android.content.ContentValues;

import android.content.Context;

import android.database.Cursor;

import android.database.DatabaseUtils;

import android.database.sqlite.SQLiteOpenHelper;

import android.database.sqlite.SQLiteDatabase;

public class DBHelper extends SQLiteOpenHelper {

 public static final String DATABASE_NAME = "MyDBName.db";

 public static final String CONTACTS_TABLE_NAME = "contacts";

 public static final String CONTACTS_COLUMN_ID = "id";

 public static final String CONTACTS_COLUMN_NAME = "name";

 public static final String CONTACTS_COLUMN_EMAIL = "email";

 public static final String CONTACTS_COLUMN_STREET = "street";

 public static final String CONTACTS_COLUMN_CITY = "place";

 public static final String CONTACTS_COLUMN_PHONE = "phone";

 private HashMap hp;

 public DBHelper(Context context) {

 super(context, DATABASE_NAME , null, 1);

 }

 @Override

 public void onCreate(SQLiteDatabase db) {

 // TODO Auto-generated method stub

 db.execSQL(

 "create table contacts " +

 "(id integer primary key, name text,phone text,email text, street

text,place text)"

);

 }

 @Override

91

Android
Operating System

 public void onUpgrade(SQLiteDatabase db, int oldVersion, int

newVersion) {

 // TODO Auto-generated method stub

 db.execSQL("DROP TABLE IF EXISTS contacts");

 onCreate(db);

 }

 public boolean insertContact (String name, String phone, String email,

String street,String place) {

 SQLiteDatabase db = this.getWritableDatabase();

 ContentValues contentValues = new ContentValues();

 contentValues.put("name", name);

 contentValues.put("phone", phone);

 contentValues.put("email", email);

 contentValues.put("street", street);

 contentValues.put("place", place);

 db.insert("contacts", null, contentValues);

 return true;

 }

 public Cursor getData(int id) {

 SQLiteDatabase db = this.getReadableDatabase();

 Cursor res = db.rawQuery("select * from contacts where id="+id+"",

null);

 return res;

 }

 public int numberOfRows(){

 SQLiteDatabase db = this.getReadableDatabase();

 int numRows = (int) DatabaseUtils.queryNumEntries(db,

CONTACTS_TABLE_NAME);

 return numRows;

 }

public boolean updateContact (Integer id, String name, String phone,

String email, String street,String place) {

 SQLiteDatabase db = this.getWritableDatabase();

 ContentValues contentValues = new ContentValues();

 contentValues.put("name", name);

 contentValues.put("phone", phone);

 contentValues.put("email", email);

 contentValues.put("street", street);

 contentValues.put("place", place);

 db.update("contacts", contentValues, "id = ? ", new String[] {

Integer.toString(id) });

 return true;

 }

 public Integer deleteContact (Integer id) {

 SQLiteDatabase db = this.getWritableDatabase();

 return db.delete("contacts",

 "id = ? ",

 new String[] { Integer.toString(id) });

92

Advanced Operating
System

92

 }

 public ArrayList<String> getAllCotacts() {

 ArrayList<String> array_list = new ArrayList<String>();

 //hp = new HashMap();

 SQLiteDatabase db = this.getReadableDatabase();

 Cursor res = db.rawQuery("select * from contacts", null);

 res.moveToFirst();

 while(res.isAfterLast() == false){

array_list.add(res.getString(res.getColumnIndex(CONTACTS_COLUMN

_NAME)));

 res.moveToNext();

 }

 return array_list;

 }

}

Following is the content of the res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 android:paddingBottom="@dimen/activity_vertical_margin"

tools:context=".MainActivity">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/textView"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:textSize="30dp"

93

Android
Operating System

 android:text="Data Base" />

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Tutorials Point"

 android:id="@+id/textView2"

 android:layout_below="@+id/textView"

 android:layout_centerHorizontal="true"

 android:textSize="35dp"

 android:textColor="#ff16ff01" />

 <ImageView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/imageView"

 android:layout_below="@+id/textView2"

 android:layout_centerHorizontal="true"

 android:src="@drawable/logo"/>

 <ScrollView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/scrollView"

 android:layout_below="@+id/imageView"

 android:layout_alignParentLeft="true"

 android:layout_alignParentStart="true"

 android:layout_alignParentBottom="true"

 android:layout_alignParentRight="true"

94

Advanced Operating
System

94

 android:layout_alignParentEnd="true">

 <ListView

 android:id="@+id/listView1"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_centerHorizontal="true"

 android:layout_centerVertical="true" >

 </ListView>

 </ScrollView>

</RelativeLayout>

Following is the content of the res/layout/activity_display_contact.xml

<?xml version="1.0" encoding="utf-8"?>

<ScrollView

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/scrollView1"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 tools:context=".DisplayContact" >

 <RelativeLayout

 android:layout_width="match_parent"

 android:layout_height="370dp"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin">

 <EditText

 android:id="@+id/editTextName"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_marginTop="5dp"

 android:layout_marginLeft="82dp"

 android:ems="10"

 android:inputType="text" >

 </EditText>

95

Android
Operating System

 <EditText

 android:id="@+id/editTextEmail"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/editTextStreet"

 android:layout_below="@+id/editTextStreet"

 android:layout_marginTop="22dp"

 android:ems="10"

 android:inputType="textEmailAddress" />

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBottom="@+id/editTextName"

 android:layout_alignParentLeft="true"

 android:text="@string/name"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/editTextCity"

 android:layout_alignParentBottom="true"

 android:layout_marginBottom="28dp"

 android:onClick="run"

 android:text="@string/save" />

 <TextView

 android:id="@+id/textView2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBottom="@+id/editTextEmail"

 android:layout_alignLeft="@+id/textView1"

 android:text="@string/email"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView

 android:id="@+id/textView5"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBottom="@+id/editTextPhone"

 android:layout_alignLeft="@+id/textView1"

 android:text="@string/phone"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView

 android:id="@+id/textView4"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_above="@+id/editTextEmail"

96

Advanced Operating
System

96

 android:layout_alignLeft="@+id/textView5"

 android:text="@string/street"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <EditText

 android:id="@+id/editTextCity"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignRight="@+id/editTextName"

 android:layout_below="@+id/editTextEmail"

 android:layout_marginTop="30dp"

 android:ems="10"

 android:inputType="text" />

 <TextView

 android:id="@+id/textView3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBaseline="@+id/editTextCity"

 android:layout_alignBottom="@+id/editTextCity"

 android:layout_alignParentLeft="true"

 android:layout_toLeftOf="@+id/editTextEmail"

 android:text="@string/country"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <EditText

 android:id="@+id/editTextStreet"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/editTextName"

 android:layout_below="@+id/editTextPhone"

 android:ems="10"

 android:inputType="text" >

 <requestFocus />

 </EditText>

 <EditText

 android:id="@+id/editTextPhone"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/editTextStreet"

 android:layout_below="@+id/editTextName"

 android:ems="10"

 android:inputType="phone|text" />

 </RelativeLayout>

</ScrollView>

97

Android
Operating System

Following is the content of the res/value/string.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">Address Book</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="Add_New">Add New</string>

 <string name="edit">Edit Contact</string>

 <string name="delete">Delete Contact</string>

 <string name="title_activity_display_contact">DisplayContact</string>

 <string name="name">Name</string>

 <string name="phone">Phone</string>

 <string name="email">Email</string>

 <string name="street">Street</string>

 <string name="country">City/State/Zip</string>

 <string name="save">Save Contact</string>

 <string name="deleteContact">Are you sure, you want to delete

it.</string>

 <string name="yes">Yes</string>

 <string name="no">No</string>

</resources>

Following is the content of the res/menu/main_menu.xml

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android" >

 <item android:id="@+id/item1"

 android:icon="@drawable/add"

 android:title="@string/Add_New" >

 </item>

</menu>

Following is the content of the res/menu/display_contact.xml

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android" >

 <item

 android:id="@+id/Edit_Contact"

 android:orderInCategory="100"

 android:title="@string/edit"/>

 <item

 android:id="@+id/Delete_Contact"

 android:orderInCategory="100"

 android:title="@string/delete"/>

</menu>

98

Advanced Operating
System

98

This is the defualt AndroidManifest.xml of this project

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.sairamkrishna.myapplication" >

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name=".MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER"

/>

 </intent-filter>

 </activity>

 <activity android:name=".DisplayContact"/>

 </application>

</manifest>

Webkit

WebKit is the web browser engine used by Safari, Mail, App Store, and

many other apps on macOS, iOS, and Linux. Get started contributing

code, or reporting bugs.

Web developers can follow development, check feature status, download

Safari Technology Preview to try out the latest web technologies, and

report bugs.

OpenGL

Android supports OpenGL both through its framework API and the Native

Development Kit (NDK). This topic focuses on the Android framework

interfaces. For more information about the NDK, see the Android NDK.

There are two foundational classes in the Android framework that let you

create and manipulate graphics with the OpenGL ES API:

GLSurfaceView and GLSurfaceView.Renderer. If your goal is to use

OpenGL in your Android application, understanding how to implement

these classes in an activity should be your first objective.

99

Android
Operating System

GLSurfaceView

This class is a View where you can draw and manipulate objects using

OpenGL API calls and is similar in function to a SurfaceView. You can

use this class by creating an instance of GLSurfaceView and adding your

Renderer to it. However, if you want to capture touch screen events, you

should extend the GLSurfaceView class to implement the touch listeners,

as shown in OpenGL training lesson, Responding to touch events.

GLSurfaceView.Renderer

This interface defines the methods required for drawing graphics in a

GLSurfaceView. You must provide an implementation of this interface as

a separate class and attach it to your GLSurfaceView instance using

GLSurfaceView.setRenderer().

The GLSurfaceView.Renderer interface requires that you implement the

following methods:

• onSurfaceCreated(): The system calls this method once, when

creating the GLSurfaceView. Use this method to perform actions

that need to happen only once, such as setting OpenGL environment

parameters or initializing OpenGL graphic objects.

• onDrawFrame(): The system calls this method on each redraw of the

GLSurfaceView. Use this method as the primary execution point for

drawing (and re-drawing) graphic objects.

• onSurfaceChanged(): The system calls this method when the

GLSurfaceView geometry changes, including changes in size of the

GLSurfaceView or orientation of the device screen. For example,

the system calls this method when the device changes from portrait

to landscape orientation. Use this method to respond to changes in

the GLSurfaceView container.

The Dalvik Virtual Machine

One of the key elements of Android is the Dalvik VM. Rather than using a

traditional Java VM such as Java ME, Android uses its own custom VM

designed to ensure that multiple instances run efficiently on a single

device.

The Dalvik VM uses the device’s underlying Linux kernel to handle low-

level functionality, including security, threading, and process and memory

management. It’s also possible to write C/C++ applications that run closer

to the underlying Linux OS. Although you can do this, in most cases

there’s no reason you should need to.

If the speed and efficiency of C/C++ is required for your application,

Android provides a native development kit (NDK). The NDK is designed

to enable you to create C++ libraries using the libc and libm libraries,

along with native access to OpenGL.

All Android hardware and system service access is managed using Dalvik

as a middle tier. By using a VM to host application execution, developers

have an abstraction layer that ensures they should never have to worry

about a particular hardware implementation.

100

Advanced Operating
System

100

The Dalvik VM executes Dalvik executable files, a format optimized to

ensure minimal memory footprint. You create .dex executables by

transforming Java language compiled classes using the tools supplied

within the SDK

4.4 APPLICATION FRAMEWORK :-

Activity Manager − Controls all aspects of the application lifecycle and

activity stack. Content Providers − Allows applications to publish and

share data with other applications. Resource Manager − Provides access to

non-code embedded resources such as strings, color settings and user

interface layouts.

A content provider component supplies data from one application to others

on request. Such requests are handled by the methods of the

ContentResolver class. A content provider can use different ways to store

its data and the data can be stored in a database, in files, or even over a

network.

ContentProvider

sometimes it is required to share data across applications. This is where

content providers become very useful.

Content providers let you centralize content in one place and have many

different applications access it as needed. A content provider behaves very

much like a database where you can query it, edit its content, as well as

add or delete content using insert(), update(), delete(), and query()

methods. In most cases this data is stored in an SQlite database.

A content provider is implemented as a subclass of ContentProvider

class and must implement a standard set of APIs that enable other

applications to perform transactions.

101

Android
Operating System

public class My Application extends ContentProvider {

}

Content URIs

To query a content provider, you specify the query string in the form of a

URI which has following format −

<prefix>://<authority>/<data_type>/<id>

Here is the detail of various parts of the URI −

Sr.No Part & Description

1
prefix

This is always set to content://

2

authority

This specifies the name of the content provider, for

example contacts, browser etc. For third-party content

providers, this could be the fully qualified name, such

as com.tutorialspoint.statusprovider

3

data_type

This indicates the type of data that this particular provider

provides. For example, if you are getting all the contacts

from the Contacts content provider, then the data path would

be people and URI would look like

thiscontent://contacts/people

4

id

This specifies the specific record requested. For example, if

you are looking for contact number 5 in the Contacts content

provider then URI would look like

this content://contacts/people/5.

Create Content Provider

This involves number of simple steps to create your own content provider.

• First of all you need to create a Content Provider class that extends

the ContentProviderbaseclass.

• Second, you need to define your content provider URI address

which will be used to access the content.

• Next you will need to create your own database to keep the content.

Usually, Android uses SQLite database and framework needs to

override onCreate() method which will use SQLite Open Helper

method to create or open the provider's database. When your

application is launched, the onCreate() handler of each of its Content

Providers is called on the main application thread.

102

Advanced Operating
System

102

• Next you will have to implement Content Provider queries to

perform different database specific operations.

• Finally register your Content Provider in your activity file using

<provider> tag.

Here is the list of methods which you need to override in Content Provider

class to have your Content Provider working –

ContentProvider

• onCreate() This method is called when the provider is started.

• query() This method receives a request from a client. The result is

returned as a Cursor object.

• insert()This method inserts a new record into the content provider.

• delete() This method deletes an existing record from the content

provider.

• update() This method updates an existing record from the content

provider.

• getType() This method returns the MIME type of the data at the

given URI.

Example

This example will explain you how to create your own ContentProvider.

So let's follow the following steps to similar to what we followed while

creating Hello World Example−

103

Android
Operating System Step Description

1 You will use Android StudioIDE to create an Android

application and name it as My Application under a

package com.example.MyApplication, with blank Activity.

2 Modify main activity file MainActivity.java to add two new

methods onClickAddName() and onClickRetrieveStudents().

3 Create a new java file called StudentsProvider.java under the

package com.example.MyApplication to define your actual

provider and associated methods.

4 Register your content provider in

your AndroidManifest.xml file using <provider.../> tag

5 Modify the default content

of res/layout/activity_main.xml file to include a small GUI to

add students records.

6 No need to change string.xml.Android studio take care of

string.xml file.

7 Run the application to launch Android emulator and verify

the result of the changes done in the application.

Following is the content of the modified main activity file

src/com.example.MyApplication/MainActivity.java. This file can

include each of the fundamental life cycle methods. We have added two

new methods onClickAddName() and onClickRetrieveStudents() to

handle user interaction with the application.

package com.example.MyApplication;

import android.net.Uri;

import android.os.Bundle;

import android.app.Activity;

import android.content.ContentValues;

import android.content.CursorLoader;

import android.database.Cursor;

import android.view.Menu;

import android.view.View;

import android.widget.EditText;

import android.widget.Toast;

public class MainActivity extends Activity {

104

Advanced Operating
System

104

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 public void onClickAddName(View view) {

 // Add a new student record

 ContentValues values = new ContentValues();

 values.put(StudentsProvider.NAME,

 ((EditText)findViewById(R.id.editText2)).getText().toString());

 values.put(StudentsProvider.GRADE,

 ((EditText)findViewById(R.id.editText3)).getText().toString());

 Uri uri = getContentResolver().insert(

 StudentsProvider.CONTENT_URI, values);

 Toast.makeText(getBaseContext(),

 uri.toString(), Toast.LENGTH_LONG).show();

 }

 public void onClickRetrieveStudents(View view) {

 // Retrieve student records

 String URL =

"content://com.example.MyApplication.StudentsProvider";

 Uri students = Uri.parse(URL);

 Cursor c = managedQuery(students, null, null, null, "name");

 if (c.moveToFirst()) {

 do{

 Toast.makeText(this,

 c.getString(c.getColumnIndex(StudentsProvider._ID)) +

 ", " + c.getString(c.getColumnIndex(

StudentsProvider.NAME)) +

 ", " + c.getString(c.getColumnIndex(

StudentsProvider.GRADE)),

 Toast.LENGTH_SHORT).show();

 } while (c.moveToNext());

 }

 }

}

Create new file StudentsProvider.java under com.example.MyApplication

package and following is the content of

src/com.example.MyApplication/StudentsProvider.java −

105

Android
Operating System

package com.example.MyApplication;

import java.util.HashMap;

import android.content.ContentProvider;

import android.content.ContentUris;

import android.content.ContentValues;

import android.content.Context;

import android.content.UriMatcher;

import android.database.Cursor;

import android.database.SQLException;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteOpenHelper;

import android.database.sqlite.SQLiteQueryBuilder;

import android.net.Uri;

import android.text.TextUtils;

public class StudentsProvider extends ContentProvider {

 static final String PROVIDER_NAME =

"com.example.MyApplication.StudentsProvider";

 static final String URL = "content://" + PROVIDER_NAME +

"/students";

 static final Uri CONTENT_URI = Uri.parse(URL);

 static final String _ID = "_id";

 static final String NAME = "name";

 static final String GRADE = "grade";

 private static HashMap<String, String>

STUDENTS_PROJECTION_MAP;

 static final int STUDENTS = 1;

 static final int STUDENT_ID = 2;

 static final UriMatcher uriMatcher;

 static{

 uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);

 uriMatcher.addURI(PROVIDER_NAME, "students", STUDENTS);

 uriMatcher.addURI(PROVIDER_NAME, "students/#",

STUDENT_ID);

 }

 /**

 * Database specific constant declarations

 */

private SQLiteDatabase db;

 static final String DATABASE_NAME = "College";

 static final String STUDENTS_TABLE_NAME = "students";

 static final int DATABASE_VERSION = 1;

 static final String CREATE_DB_TABLE =

 " CREATE TABLE " + STUDENTS_TABLE_NAME +

 " (_id INTEGER PRIMARY KEY AUTOINCREMENT, " +

 " name TEXT NOT NULL, " +

 " grade TEXT NOT NULL);";

 /**

 * Helper class that actually creates and manages

 * the provider's underlying data repository.

106

Advanced Operating
System

106

 */

 private static class DatabaseHelper extends SQLiteOpenHelper {

 DatabaseHelper(Context context){

 super(context, DATABASE_NAME, null,

DATABASE_VERSION);

 }

 @Override

 public void onCreate(SQLiteDatabase db) {

 db.execSQL(CREATE_DB_TABLE);

 }

 @Override

 public void onUpgrade(SQLiteDatabase db, int oldVersion, int

newVersion) {

 db.execSQL("DROP TABLE IF EXISTS " +

STUDENTS_TABLE_NAME);

 onCreate(db);

 }

 }

 @Override

 public boolean onCreate() {

 Context context = getContext();

 DatabaseHelper dbHelper = new DatabaseHelper(context);

 /**

 * Create a write able database which will trigger its

 * creation if it doesn't already exist.

 */

 db = dbHelper.getWritableDatabase();

 return (db == null)? false:true;

 }

 @Override

 public Uri insert(Uri uri, ContentValues values) {

 /**

 * Add a new student record

 */

 long rowID = db.insert(STUDENTS_TABLE_NAME, "", values);

 /**

 * If record is added successfully

 */

 if (rowID > 0) {

 Uri _uri = ContentUris.withAppendedId(CONTENT_URI, rowID);

 getContext().getContentResolver().notifyChange(_uri, null);

 return _uri;

 }

 throw new SQLException("Failed to add a record into " + uri);

 }

 @Override

 public Cursor query(Uri uri, String[] projection,

 String selection,String[] selectionArgs, String sortOrder) {

 SQLiteQueryBuilder qb = new SQLiteQueryBuilder();

 qb.setTables(STUDENTS_TABLE_NAME);

107

Android
Operating System

 switch (uriMatcher.match(uri)) {

 case STUDENTS:

 qb.setProjectionMap(STUDENTS_PROJECTION_MAP);

 break;

 case STUDENT_ID:

 qb.appendWhere(_ID + "=" + uri.getPathSegments().get(1));

 break;

 default:

 }

 if (sortOrder == null || sortOrder == ""){

 /**

 * By default sort on student names

 */

 sortOrder = NAME;

 }

 Cursor c = qb.query(db, projection, selection,

 selectionArgs,null, null, sortOrder);

 /**

 * register to watch a content URI for changes

 */

 c.setNotificationUri(getContext().getContentResolver(), uri);

 return c;

 }

 @Override

 public int delete(Uri uri, String selection, String[] selectionArgs) {

 int count = 0;

 switch (uriMatcher.match(uri)){

 case STUDENTS:

 count = db.delete(STUDENTS_TABLE_NAME, selection,

selectionArgs);

 break;

 case STUDENT_ID:

 String id = uri.getPathSegments().get(1);

 count = db.delete(STUDENTS_TABLE_NAME, _ID + " = " + id

+

 (!TextUtils.isEmpty(selection) ? "

 AND (" + selection + ')' : ""), selectionArgs);

 break;

 default:

 throw new IllegalArgumentException("Unknown URI " + uri);

 }

 getContext().getContentResolver().notifyChange(uri, null);

108

Advanced Operating
System

108

 return count;

 }

 @Override

 public int update(Uri uri, ContentValues values,

 String selection, String[] selectionArgs) {

 int count = 0;

 switch (uriMatcher.match(uri)) {

 case STUDENTS:

 count = db.update(STUDENTS_TABLE_NAME, values,

selection, selectionArgs);

 break;

 case STUDENT_ID:

 count = db.update(STUDENTS_TABLE_NAME, values,

 _ID + " = " + uri.getPathSegments().get(1) +

 (!TextUtils.isEmpty(selection) ? "

 AND (" +selection + ')' : ""), selectionArgs);

 break;

 default:

 throw new IllegalArgumentException("Unknown URI " + uri);

 }

 getContext().getContentResolver().notifyChange(uri, null);

 return count;

 }

 @Override

 public String getType(Uri uri) {

 switch (uriMatcher.match(uri)){

 /**

 * Get all student records

 */

 case STUDENTS:

 return "vnd.android.cursor.dir/vnd.example.students";

 /**

 * Get a particular student

 */

 case STUDENT_ID:

 return "vnd.android.cursor.item/vnd.example.students";

 default:

 throw new IllegalArgumentException("Unsupported URI: " + uri);

 }

 }

}

109

Android
Operating System

Following will the modified content of AndroidManifest.xml file. Here

we have added <provider.../> tag to include our content provider:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.MyApplication">

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity android:name=".MainActivity">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER"

/>

 </intent-filter>

 </activity>

 <provider android:name="StudentsProvider"

android:authorities="com.example.MyApplication.StudentsProvider"/>

 </application>

</manifest>

Following will be the content of res/layout/activity_main.xml file−

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

110

Advanced Operating
System

110

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context="com.example.MyApplication.MainActivity">

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Content provider"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:textSize="30dp" />

 <TextView

 android:id="@+id/textView2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Tutorials point "

 android:textColor="#ff87ff09"

 android:textSize="30dp"

 android:layout_below="@+id/textView1"

 android:layout_centerHorizontal="true" />

 <ImageButton

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/imageButton"

 android:src="@drawable/abc"

 android:layout_below="@+id/textView2"

 android:layout_centerHorizontal="true" />

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/button2"

 android:text="Add Name"

 android:layout_below="@+id/editText3"

 android:layout_alignRight="@+id/textView2"

 android:layout_alignEnd="@+id/textView2"

 android:layout_alignLeft="@+id/textView2"

 android:layout_alignStart="@+id/textView2"

 android:onClick="onClickAddName"/>

 <EditText

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/editText"

 android:layout_below="@+id/imageButton"

 android:layout_alignRight="@+id/imageButton"

111

Android
Operating System

 android:layout_alignEnd="@+id/imageButton" />

 <EditText

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/editText2"

 android:layout_alignTop="@+id/editText"

 android:layout_alignLeft="@+id/textView1"

 android:layout_alignStart="@+id/textView1"

 android:layout_alignRight="@+id/textView1"

 android:layout_alignEnd="@+id/textView1"

 android:hint="Name"

 android:textColorHint="@android:color/holo_blue_light" />

 <EditText

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/editText3"

 android:layout_below="@+id/editText"

 android:layout_alignLeft="@+id/editText2"

 android:layout_alignStart="@+id/editText2"

 android:layout_alignRight="@+id/editText2"

 android:layout_alignEnd="@+id/editText2"

 android:hint="Grade"

 android:textColorHint="@android:color/holo_blue_bright" />

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Retrive student"

 android:id="@+id/button"

 android:layout_below="@+id/button2"

 android:layout_alignRight="@+id/editText3"

 android:layout_alignEnd="@+id/editText3"

 android:layout_alignLeft="@+id/button2"

 android:layout_alignStart="@+id/button2"

 android:onClick="onClickRetrieveStudents"/>

</RelativeLayout>

Make sure you have following content of res/values/strings.xml file:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">My Application</string>

</resources>;

112

Advanced Operating
System

112

Android TelephonyManager Tutorial

The android.telephony.TelephonyManager class provides information

about the telephony services such as subscriber id, sim serial number,

phone network type etc. Moreover, you can determine the phone state etc.

Android TelephonyManager Example

Let's see the simple example of TelephonyManager that prints information

of the telephony services.

activity_main.xml

Drag one textview from the pallete, now the xml file will look like this.

File: activity_main.xml

1. <RelativeLayout

xmlns:androclass="http://schemas.android.com/apk/res/android"

2. xmlns:tools="http://schemas.android.com/tools"

3. android:layout_width="match_parent"

4. android:layout_height="match_parent"

5. android:paddingBottom="@dimen/activity_vertical_margin"

6. android:paddingLeft="@dimen/activity_horizontal_margin"

7. android:paddingRight="@dimen/activity_horizontal_margin"

8. android:paddingTop="@dimen/activity_vertical_margin"

9. tools:context=".MainActivity" >

10.

11. <TextView

12. android:id="@+id/textView1"

13. android:layout_width="wrap_content"

14. android:layout_height="wrap_content"

15. android:layout_alignParentLeft="true"

16. android:layout_alignParentTop="true"

17. android:layout_marginLeft="38dp"

18. android:layout_marginTop="30dp"

19. android:text="Phone Details:" />

20.

21. </RelativeLayout>

Activity Class

Now, write the code to display the information about the telephony

services.

File: MainActivity.java

1. package com.javatpoint.telephonymanager;

2.

3. import android.os.Bundle;

113

Android
Operating System

4. import android.app.Activity;

5. import android.content.Context;

6. import android.telephony.TelephonyManager;

7. import android.view.Menu;

8. import android.widget.TextView;

9.

10. public class MainActivity extends Activity {

11. TextView textView1;

12. @Override

13. protected void onCreate(Bundle savedInstanceState) {

14. super.onCreate(savedInstanceState);

15. setContentView(R.layout.activity_main);

16.

17. textView1=(TextView)findViewById(R.id.textView1);

18.

19. //Get the instance of TelephonyManager

20. TelephonyManager

tm=(TelephonyManager)getSystemService(Context.TELEPHONY_

SERVICE);

21.

22. //Calling the methods of TelephonyManager the returns the

information

23. String IMEINumber=tm.getDeviceId();

24. String subscriberID=tm.getDeviceId();

25. String SIMSerialNumber=tm.getSimSerialNumber();

26. String networkCountryISO=tm.getNetworkCountryIso();

27. String SIMCountryISO=tm.getSimCountryIso();

28. String softwareVersion=tm.getDeviceSoftwareVersion();

29. String voiceMailNumber=tm.getVoiceMailNumber();

30.

31. //Get the phone type

32. String strphoneType="";

33.

34. int phoneType=tm.getPhoneType();

35.

36. switch (phoneType)

37. {

38. case (TelephonyManager.PHONE_TYPE_CDMA):

39. strphoneType="CDMA";

40. break;

41. case (TelephonyManager.PHONE_TYPE_GSM):

42. strphoneType="GSM";

43. break;

44. case (TelephonyManager.PHONE_TYPE_NONE):

114

Advanced Operating
System

114

45. strphoneType="NONE";

46. break;

47. }

48.

49. //getting information if phone is in roaming

50. boolean isRoaming=tm.isNetworkRoaming();

51.

52. String info="Phone Details:\n";

53. info+="\n IMEI Number:"+IMEINumber;

54. info+="\n SubscriberID:"+subscriberID;

55. info+="\n Sim Serial Number:"+SIMSerialNumber;

56. info+="\n Network Country ISO:"+networkCountryISO;

57. info+="\n SIM Country ISO:"+SIMCountryISO;

58. info+="\n Software Version:"+softwareVersion;

59. info+="\n Voice Mail Number:"+voiceMailNumber;

60. info+="\n Phone Network Type:"+strphoneType;

61. info+="\n In Roaming? :"+isRoaming;

62.

63. textView1.setText(info);//displaying the information in the textView

64. }

65.

66.

67. }

AndroidManifest.xml

You need to provide READ_PHONE_STATE permission in the

AndroidManifest.xml file.

File: AndroidManifest.xml

1. <?xml version="1.0" encoding="utf-8"?>

2. <manifest

xmlns:androclass="http://schemas.android.com/apk/res/android"

3. package="com.javatpoint.telephonymanager"

4. android:versionCode="1"

5. android:versionName="1.0" >

6.

7. <uses-sdk

8. android:minSdkVersion="8"

9. android:targetSdkVersion="17" />

10.

11. <uses-permission

android:name="android.permission.READ_PHONE_STATE"/>

12.

115

Android
Operating System

13. <application

14. android:allowBackup="true"

15. android:icon="@drawable/ic_launcher"

16. android:label="@string/app_name"

17. android:theme="@style/AppTheme" >

18. <activity

19.

android:name="com.javatpoint.telephonymanager.MainActivity"

20. android:label="@string/app_name" >

21. <intent-filter>

22. <action android:name="android.intent.action.MAIN" />

23.

24. <category android:name="android.intent.category.LAUNCHER" />

25. </intent-filter>

26. </activity>

27. </application>

28.

29. </manifest>

LocationManager

Kotlin |Java

public class LocationManager

extends Object

java.lang.Object

 ↳ android.location.LocationManager

This class provides access to the system location services. These services

allow applications to obtain periodic updates of the device's geographical

location, or to be notified when the device enters the proximity of a given

geographical location.

Unless otherwise noted, all Location API methods require the

Manifest.permission.ACCESS_COARSE_LOCATION or

Manifest.permission.ACCESS_FINE_LOCATION permissions. If

your application only has the coarse permission then providers will still

return location results, but the exact location will be obfuscated to a coarse

level of accuracy.

Requires the PackageManager#FEATURE_LOCATION feature which

can be detected using PackageManager.hasSystemFeature(String).

116

Advanced Operating
System

116

Summary

Constants

String ACTION_GNSS_CAPABILITIES_CHANGED

 Broadcast intent action when GNSS capabilities change.

String EXTRA_GNSS_CAPABILITIES

Intent extra included with

ACTION_GNSS_CAPABILITIES_CHANGED broadcasts,

containing the new GnssCapabilities.

String EXTRA_LOCATION_ENABLED

Intent extra included with MODE_CHANGED_ACTION

broadcasts, containing the boolean enabled state of location.

String EXTRA_PROVIDER_ENABLED

Intent extra included with

PROVIDERS_CHANGED_ACTION broadcasts, containing

the boolean enabled state of the location provider that has

changed.

String EXTRA_PROVIDER_NAME

Intent extra included with

PROVIDERS_CHANGED_ACTION broadcasts, containing

the name of the location provider that has changed.

String FUSED_PROVIDER

Standard name of the fused location provider.

String GPS_PROVIDER

Standard name of the GNSS location provider.

String KEY_FLUSH_COMPLETE

Key used for an extra holding an integer request code when

location flush completion is sent using a PendingIntent.

String KEY_LOCATIONS

Key used for an extra holding a array of Locations when a

location change is sent using a PendingIntent.

String KEY_LOCATION_CHANGED

Key used for an extra holding a Location value when a

location change is sent using a PendingIntent.

String KEY_PROVIDER_ENABLED

Key used for an extra holding a boolean enabled/disabled

status value when a provider enabled/disabled event is

broadcast using a PendingIntent.

String KEY_PROXIMITY_ENTERING

117

Android
Operating System

Key used for the Bundle extra holding a boolean indicating

whether a proximity alert is entering (true) or exiting (false)..

String KEY_STATUS_CHANGED

This constant was deprecated in API level 29. Status changes

are deprecated and no longer broadcast from Android Q

onwards.

String MODE_CHANGED_ACTION

Broadcast intent action when the device location enabled state

changes.

String NETWORK_PROVIDER

Standard name of the network location provider.

String PASSIVE_PROVIDER

A special location provider for receiving locations without

actively initiating a location fix.

String PROVIDERS_CHANGED_ACTION

Broadcast intent action when the set of enabled location

providers changes.

Public methods

boolean addGpsStatusListener(GpsStatus.Listener listener)

This method was deprecated in API level 24.

use registerGnssStatusCallback(android.location.GnssStatu

s.Callback) instead. No longer supported in apps targeting

S and above.

boolean addNmeaListener(OnNmeaMessageListener listener, Handl

er handler)

Adds an NMEA listener.

boolean addNmeaListener(OnNmeaMessageListener listener)

This method was deprecated in API level 30.

Use addNmeaListener(android.location.OnNmeaMessageLi

stener,

android.os.Handler) or addNmeaListener(java.util.concurr

ent.Executor,

android.location.OnNmeaMessageListener) instead.

boolean addNmeaListener(GpsStatus.NmeaListener listener)

This method was deprecated in API level 24.

Use addNmeaListener(GpsStatus.NmeaListener) instead.

boolean addNmeaListener(Executor executor, OnNmeaMessageList

ener listener)

Adds an NMEA listener.

void addProximityAlert(double latitude, double longitude, float

radius, long expiration, PendingIntent pendingIntent)

Sets a proximity alert for the location given by the position

https://developer.android.com/reference/android/location/LocationManager#addGpsStatusListener(android.location.GpsStatus.Listener)
https://developer.android.com/reference/android/location/GpsStatus.Listener
https://developer.android.com/reference/android/location/LocationManager#registerGnssStatusCallback(android.location.GnssStatus.Callback)
https://developer.android.com/reference/android/location/LocationManager#registerGnssStatusCallback(android.location.GnssStatus.Callback)
https://developer.android.com/reference/android/location/LocationManager#addNmeaListener(android.location.OnNmeaMessageListener,%20android.os.Handler)
https://developer.android.com/reference/android/location/OnNmeaMessageListener
https://developer.android.com/reference/android/os/Handler
https://developer.android.com/reference/android/os/Handler
https://developer.android.com/reference/android/location/LocationManager#addNmeaListener(android.location.OnNmeaMessageListener)
https://developer.android.com/reference/android/location/OnNmeaMessageListener
https://developer.android.com/reference/android/location/LocationManager#addNmeaListener(android.location.OnNmeaMessageListener,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#addNmeaListener(android.location.OnNmeaMessageListener,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#addNmeaListener(android.location.OnNmeaMessageListener,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#addNmeaListener(java.util.concurrent.Executor,%20android.location.OnNmeaMessageListener)
https://developer.android.com/reference/android/location/LocationManager#addNmeaListener(java.util.concurrent.Executor,%20android.location.OnNmeaMessageListener)
https://developer.android.com/reference/android/location/LocationManager#addNmeaListener(java.util.concurrent.Executor,%20android.location.OnNmeaMessageListener)
https://developer.android.com/reference/android/location/LocationManager#addNmeaListener(android.location.GpsStatus.NmeaListener)
https://developer.android.com/reference/android/location/GpsStatus.NmeaListener
https://developer.android.com/reference/android/location/LocationManager#addNmeaListener(android.location.GpsStatus.NmeaListener)
https://developer.android.com/reference/android/location/LocationManager#addNmeaListener(java.util.concurrent.Executor,%20android.location.OnNmeaMessageListener)
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/android/location/OnNmeaMessageListener
https://developer.android.com/reference/android/location/OnNmeaMessageListener
https://developer.android.com/reference/android/location/LocationManager#addProximityAlert(double,%20double,%20float,%20long,%20android.app.PendingIntent)
https://developer.android.com/reference/android/app/PendingIntent

118

Advanced Operating
System

118

(latitude, longitude) and the given radius.

void addTestProvider(String provider, ProviderProperties proper

ties)

Creates a test location provider and adds it to the set of

active providers.

void addTestProvider(String provider, ProviderProperties proper

ties, Set<String> extraAttributionTags)

Creates a test location provider and adds it to the set of

active providers.

void addTestProvider(String provider, boolean

requiresNetwork, boolean requiresSatellite, boolean

requiresCell, boolean hasMonetaryCost, boolean

supportsAltitude, boolean supportsSpeed, boolean

supportsBearing, int powerUsage, int accuracy)

Creates a test location provider and adds it to the set of

active providers.

void clearTestProviderEnabled(String provider)

This method was deprecated in API level 29.

Use setTestProviderEnabled(java.lang.String,

boolean) instead.

void clearTestProviderLocation(String provider)

This method was deprecated in API level 29. This method

has always been a no-op, and may be removed in the future.

void clearTestProviderStatus(String provider)

This method was deprecated in API level 29. This method

has no effect.

List<String> getAllProviders()

Returns a list of the names of all available location

providers.

String getBestProvider(Criteria criteria, boolean enabledOnly)

Returns the name of the provider that best meets the given

criteria.

void getCurrentLocation(String provider, LocationRequest locati

onRequest, CancellationSignal cancellationSignal, Executor

 executor, Consumer<Location> consumer)

Asynchronously returns a single current location fix from

the given provider based on the given LocationRequest.

void getCurrentLocation(String provider, CancellationSignal can

cellationSignal, Executor executor, Consumer<Location>

consumer)

Asynchronously returns a single current location fix from

the given provider.

List<GnssA

ntennaInfo>

getGnssAntennaInfos()

Returns the current list of GNSS antenna infos, or null if

unknown or unsupported.

https://developer.android.com/reference/android/location/LocationManager#addTestProvider(java.lang.String,%20android.location.provider.ProviderProperties)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/provider/ProviderProperties
https://developer.android.com/reference/android/location/LocationManager#addTestProvider(java.lang.String,%20android.location.provider.ProviderProperties,%20java.util.Set%3Cjava.lang.String%3E)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/provider/ProviderProperties
https://developer.android.com/reference/java/util/Set
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#addTestProvider(java.lang.String,%20boolean,%20boolean,%20boolean,%20boolean,%20boolean,%20boolean,%20boolean,%20int,%20int)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#clearTestProviderEnabled(java.lang.String)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#setTestProviderEnabled(java.lang.String,%20boolean)
https://developer.android.com/reference/android/location/LocationManager#setTestProviderEnabled(java.lang.String,%20boolean)
https://developer.android.com/reference/android/location/LocationManager#clearTestProviderLocation(java.lang.String)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#clearTestProviderStatus(java.lang.String)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/java/util/List
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#getAllProviders()
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#getBestProvider(android.location.Criteria,%20boolean)
https://developer.android.com/reference/android/location/Criteria
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.location.LocationRequest,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationRequest
https://developer.android.com/reference/android/os/CancellationSignal
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/java/util/function/Consumer
https://developer.android.com/reference/android/location/Location
https://developer.android.com/reference/android/location/LocationRequest
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/os/CancellationSignal
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/java/util/function/Consumer
https://developer.android.com/reference/android/location/Location
https://developer.android.com/reference/java/util/List
https://developer.android.com/reference/android/location/GnssAntennaInfo
https://developer.android.com/reference/android/location/GnssAntennaInfo
https://developer.android.com/reference/android/location/LocationManager#getGnssAntennaInfos()

119

Android
Operating System

GnssCapabil

ities

getGnssCapabilities()

Returns the supported capabilities of the GNSS chipset.

String getGnssHardwareModelName()

Returns the model name (including vendor and

hardware/software version) of the GNSS hardware driver,

or null if this information is not available.

int getGnssYearOfHardware()

Returns the model year of the GNSS hardware and software

build, or 0 if the model year is before 2016.

GpsStatus getGpsStatus(GpsStatus status)

This method was deprecated in API level 24. GpsStatus

APIs are deprecated, use GnssStatus APIs instead. No

longer supported in apps targeting S and above.

Location getLastKnownLocation(String provider)

Gets the last known location from the given provider, or

null if there is no last known location.

LocationPro

vider

getProvider(String provider)

This method was deprecated in API level 31. This method

has no way to indicate that a provider's properties are

unknown, and so may return incorrect results on rare

occasions.

Use getProviderProperties(java.lang.String) instead.

ProviderPro

perties

getProviderProperties(String provider)

Returns the properties of the given provider, or null if the

properties are currently unknown.

List<String> getProviders(boolean enabledOnly)

Returns a list of the names of available location providers.

List<String> getProviders(Criteria criteria, boolean enabledOnly)

Returns a list of the names of available location providers

that satisfy the given criteria.

boolean hasProvider(String provider)

Returns true if the given location provider exists on this

device, irrespective of whether it is currently enabled or

not.

boolean isLocationEnabled()

Returns the current enabled/disabled state of location.

boolean isProviderEnabled(String provider)

Returns the current enabled/disabled status of the given

provider.

boolean registerAntennaInfoListener(Executor executor, GnssAnten

naInfo.Listener listener)

Registers a GNSS antenna info listener that will receive all

changes to antenna info.

boolean registerGnssMeasurementsCallback(Executor executor, Gn

ssMeasurementsEvent.Callback callback)

https://developer.android.com/reference/android/location/GnssCapabilities
https://developer.android.com/reference/android/location/GnssCapabilities
https://developer.android.com/reference/android/location/LocationManager#getGnssCapabilities()
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#getGnssHardwareModelName()
https://developer.android.com/reference/android/location/LocationManager#getGnssYearOfHardware()
https://developer.android.com/reference/android/location/GpsStatus
https://developer.android.com/reference/android/location/LocationManager#getGpsStatus(android.location.GpsStatus)
https://developer.android.com/reference/android/location/GpsStatus
https://developer.android.com/reference/android/location/GnssStatus
https://developer.android.com/reference/android/location/Location
https://developer.android.com/reference/android/location/LocationManager#getLastKnownLocation(java.lang.String)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationProvider
https://developer.android.com/reference/android/location/LocationProvider
https://developer.android.com/reference/android/location/LocationManager#getProvider(java.lang.String)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#getProviderProperties(java.lang.String)
https://developer.android.com/reference/android/location/provider/ProviderProperties
https://developer.android.com/reference/android/location/provider/ProviderProperties
https://developer.android.com/reference/android/location/LocationManager#getProviderProperties(java.lang.String)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/java/util/List
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#getProviders(boolean)
https://developer.android.com/reference/java/util/List
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#getProviders(android.location.Criteria,%20boolean)
https://developer.android.com/reference/android/location/Criteria
https://developer.android.com/reference/android/location/LocationManager#hasProvider(java.lang.String)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#isLocationEnabled()
https://developer.android.com/reference/android/location/LocationManager#isProviderEnabled(java.lang.String)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#registerAntennaInfoListener(java.util.concurrent.Executor,%20android.location.GnssAntennaInfo.Listener)
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/android/location/GnssAntennaInfo.Listener
https://developer.android.com/reference/android/location/GnssAntennaInfo.Listener
https://developer.android.com/reference/android/location/LocationManager#registerGnssMeasurementsCallback(java.util.concurrent.Executor,%20android.location.GnssMeasurementsEvent.Callback)
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/android/location/GnssMeasurementsEvent.Callback
https://developer.android.com/reference/android/location/GnssMeasurementsEvent.Callback

120

Advanced Operating
System

120

Registers a GNSS measurements callback.

boolean registerGnssMeasurementsCallback(GnssMeasurementsEv

ent.Callback callback)

This method was deprecated in API level 30.

Use registerGnssMeasurementsCallback(GnssMeasuremen

tsEvent.Callback,

Handler) or registerGnssMeasurementsCallback(Executor,

GnssMeasurementsEvent.Callback) instead.

Requires Manifest.permission.ACCESS_FINE_LOCATION

boolean registerGnssMeasurementsCallback(GnssMeasurementReq

uest request, Executor executor, GnssMeasurementsEvent.

Callback callback)

Registers a GNSS measurement callback.

boolean registerGnssMeasurementsCallback(GnssMeasurementsEv

ent.Callback callback, Handler handler)

Registers a GNSS measurements callback.

boolean registerGnssNavigationMessageCallback(GnssNavigation

Message.Callback callback, Handler handler)

Registers a GNSS navigation message callback.

boolean registerGnssNavigationMessageCallback(Executor executo

r, GnssNavigationMessage.Callback callback)

Registers a GNSS navigation message callback.

boolean registerGnssNavigationMessageCallback(GnssNavigation

Message.Callback callback)

This method was deprecated in API level 30.

Use registerGnssNavigationMessageCallback(android.loca

tion.GnssNavigationMessage.Callback,

android.os.Handler) or registerGnssNavigationMessageCa

llback(java.util.concurrent.Executor,

android.location.GnssNavigationMessage.Callback) instea

d.

boolean registerGnssStatusCallback(GnssStatus.Callback callback)

This method was deprecated in API level 30.

Use registerGnssStatusCallback(android.location.GnssStat

us.Callback,

android.os.Handler) or registerGnssStatusCallback(java.ut

il.concurrent.Executor,

android.location.GnssStatus.Callback) instead.

boolean registerGnssStatusCallback(GnssStatus.Callback callback,

Handler handler)

Registers a GNSS status callback.

boolean registerGnssStatusCallback(Executor executor, GnssStatus.

Callback callback)

Registers a GNSS status callback.

void removeGpsStatusListener(GpsStatus.Listener listener)

https://developer.android.com/reference/android/location/LocationManager#registerGnssMeasurementsCallback(android.location.GnssMeasurementsEvent.Callback)
https://developer.android.com/reference/android/location/GnssMeasurementsEvent.Callback
https://developer.android.com/reference/android/location/GnssMeasurementsEvent.Callback
https://developer.android.com/reference/android/location/LocationManager#registerGnssMeasurementsCallback(android.location.GnssMeasurementsEvent.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#registerGnssMeasurementsCallback(android.location.GnssMeasurementsEvent.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#registerGnssMeasurementsCallback(android.location.GnssMeasurementsEvent.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#registerGnssMeasurementsCallback(java.util.concurrent.Executor,%20android.location.GnssMeasurementsEvent.Callback)
https://developer.android.com/reference/android/location/LocationManager#registerGnssMeasurementsCallback(java.util.concurrent.Executor,%20android.location.GnssMeasurementsEvent.Callback)
https://developer.android.com/reference/android/Manifest.permission#ACCESS_FINE_LOCATION
https://developer.android.com/reference/android/location/LocationManager#registerGnssMeasurementsCallback(android.location.GnssMeasurementRequest,%20java.util.concurrent.Executor,%20android.location.GnssMeasurementsEvent.Callback)
https://developer.android.com/reference/android/location/GnssMeasurementRequest
https://developer.android.com/reference/android/location/GnssMeasurementRequest
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/android/location/GnssMeasurementsEvent.Callback
https://developer.android.com/reference/android/location/GnssMeasurementsEvent.Callback
https://developer.android.com/reference/android/location/LocationManager#registerGnssMeasurementsCallback(android.location.GnssMeasurementsEvent.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/GnssMeasurementsEvent.Callback
https://developer.android.com/reference/android/location/GnssMeasurementsEvent.Callback
https://developer.android.com/reference/android/os/Handler
https://developer.android.com/reference/android/location/LocationManager#registerGnssNavigationMessageCallback(android.location.GnssNavigationMessage.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/GnssNavigationMessage.Callback
https://developer.android.com/reference/android/location/GnssNavigationMessage.Callback
https://developer.android.com/reference/android/os/Handler
https://developer.android.com/reference/android/location/LocationManager#registerGnssNavigationMessageCallback(java.util.concurrent.Executor,%20android.location.GnssNavigationMessage.Callback)
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/android/location/GnssNavigationMessage.Callback
https://developer.android.com/reference/android/location/LocationManager#registerGnssNavigationMessageCallback(android.location.GnssNavigationMessage.Callback)
https://developer.android.com/reference/android/location/GnssNavigationMessage.Callback
https://developer.android.com/reference/android/location/GnssNavigationMessage.Callback
https://developer.android.com/reference/android/location/LocationManager#registerGnssNavigationMessageCallback(android.location.GnssNavigationMessage.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#registerGnssNavigationMessageCallback(android.location.GnssNavigationMessage.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#registerGnssNavigationMessageCallback(android.location.GnssNavigationMessage.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#registerGnssNavigationMessageCallback(java.util.concurrent.Executor,%20android.location.GnssNavigationMessage.Callback)
https://developer.android.com/reference/android/location/LocationManager#registerGnssNavigationMessageCallback(java.util.concurrent.Executor,%20android.location.GnssNavigationMessage.Callback)
https://developer.android.com/reference/android/location/LocationManager#registerGnssNavigationMessageCallback(java.util.concurrent.Executor,%20android.location.GnssNavigationMessage.Callback)
https://developer.android.com/reference/android/location/LocationManager#registerGnssStatusCallback(android.location.GnssStatus.Callback)
https://developer.android.com/reference/android/location/GnssStatus.Callback
https://developer.android.com/reference/android/location/LocationManager#registerGnssStatusCallback(android.location.GnssStatus.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#registerGnssStatusCallback(android.location.GnssStatus.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#registerGnssStatusCallback(android.location.GnssStatus.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#registerGnssStatusCallback(java.util.concurrent.Executor,%20android.location.GnssStatus.Callback)
https://developer.android.com/reference/android/location/LocationManager#registerGnssStatusCallback(java.util.concurrent.Executor,%20android.location.GnssStatus.Callback)
https://developer.android.com/reference/android/location/LocationManager#registerGnssStatusCallback(java.util.concurrent.Executor,%20android.location.GnssStatus.Callback)
https://developer.android.com/reference/android/location/LocationManager#registerGnssStatusCallback(android.location.GnssStatus.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/GnssStatus.Callback
https://developer.android.com/reference/android/os/Handler
https://developer.android.com/reference/android/location/LocationManager#registerGnssStatusCallback(java.util.concurrent.Executor,%20android.location.GnssStatus.Callback)
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/android/location/GnssStatus.Callback
https://developer.android.com/reference/android/location/GnssStatus.Callback
https://developer.android.com/reference/android/location/LocationManager#removeGpsStatusListener(android.location.GpsStatus.Listener)
https://developer.android.com/reference/android/location/GpsStatus.Listener

121

Android
Operating System

This method was deprecated in API level 24.

use unregisterGnssStatusCallback(android.location.GnssSt

atus.Callback) instead. No longer supported in apps

targeting S and above.

void removeNmeaListener(OnNmeaMessageListener listener)

Removes an NMEA listener.

void removeNmeaListener(GpsStatus.NmeaListener listener)

This method was deprecated in API level 24.

Use removeNmeaListener(android.location.OnNmeaMessa

geListener) instead.

void removeProximityAlert(PendingIntent intent)

Removes the proximity alert with the given PendingIntent.

void removeTestProvider(String provider)

Removes the test location provider with the given name or

does nothing if no such test location provider exists.

void removeUpdates(LocationListener listener)

Removes all location updates for the

specified LocationListener.

void removeUpdates(PendingIntent pendingIntent)

Removes location updates for the specified PendingIntent.

void requestFlush(String provider, LocationListener listener, int

requestCode)

Requests that the given provider flush any batched

locations to listeners.

void requestFlush(String provider, PendingIntent pendingIntent,

int requestCode)

Requests that the given provider flush any batched

locations to listeners.

void requestLocationUpdates(String provider, long

minTimeMs, float

minDistanceM, LocationListener listener)

Register for location updates from the given provider with

the given arguments, and a callback on the Looper of the

calling thread.

void requestLocationUpdates(long minTimeMs, float

minDistanceM, Criteria criteria, LocationListener listener,

Looper looper)

This method was deprecated in API level 31.

Use requestLocationUpdates(java.lang.String, long, float,

android.location.LocationListener,

android.os.Looper) instead to explicitly select a provider.

void requestLocationUpdates(String provider, long

minTimeMs, float

minDistanceM, LocationListener listener, Looper looper)

Register for location updates from the given provider with

https://developer.android.com/reference/android/location/LocationManager#unregisterGnssStatusCallback(android.location.GnssStatus.Callback)
https://developer.android.com/reference/android/location/LocationManager#unregisterGnssStatusCallback(android.location.GnssStatus.Callback)
https://developer.android.com/reference/android/location/LocationManager#removeNmeaListener(android.location.OnNmeaMessageListener)
https://developer.android.com/reference/android/location/OnNmeaMessageListener
https://developer.android.com/reference/android/location/LocationManager#removeNmeaListener(android.location.GpsStatus.NmeaListener)
https://developer.android.com/reference/android/location/GpsStatus.NmeaListener
https://developer.android.com/reference/android/location/LocationManager#removeNmeaListener(android.location.OnNmeaMessageListener)
https://developer.android.com/reference/android/location/LocationManager#removeNmeaListener(android.location.OnNmeaMessageListener)
https://developer.android.com/reference/android/location/LocationManager#removeProximityAlert(android.app.PendingIntent)
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/location/LocationManager#removeTestProvider(java.lang.String)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#removeUpdates(android.location.LocationListener)
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/location/LocationManager#removeUpdates(android.app.PendingIntent)
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/location/LocationManager#requestFlush(java.lang.String,%20android.location.LocationListener,%20int)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/location/LocationManager#requestFlush(java.lang.String,%20android.app.PendingIntent,%20int)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20android.location.LocationListener)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/os/Looper
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(long,%20float,%20android.location.Criteria,%20android.location.LocationListener,%20android.os.Looper)
https://developer.android.com/reference/android/location/Criteria
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/os/Looper
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20android.location.LocationListener,%20android.os.Looper)
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20android.location.LocationListener,%20android.os.Looper)
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20android.location.LocationListener,%20android.os.Looper)
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20android.location.LocationListener,%20android.os.Looper)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/os/Looper

122

Advanced Operating
System

122

the given arguments, and a callback on the

specified Looper.

void requestLocationUpdates(String provider, long

minTimeMs, float

minDistanceM, Executor executor, LocationListener listene

r)

Register for location updates using the named provider, and

a callback on the specified Executor.

void requestLocationUpdates(String provider, LocationRequest l

ocationRequest, PendingIntent pendingIntent)

Register for location updates from the specified provider,

using a LocationRequest, and callbacks delivered via the

provided PendingIntent.

void requestLocationUpdates(String provider, LocationRequest l

ocationRequest, Executor executor, LocationListener listen

er)

Register for location updates from the specified provider,

using a LocationRequest, and a callback on the

specified Executor.

void requestLocationUpdates(long minTimeMs, float

minDistanceM, Criteria criteria, PendingIntent pendingInte

nt)

This method was deprecated in API level 31.

Use requestLocationUpdates(java.lang.String, long, float,

android.app.PendingIntent) instead to explicitly select a

provider.

void requestLocationUpdates(long minTimeMs, float

minDistanceM, Criteria criteria, Executor executor, Locatio

nListener listener)

This method was deprecated in API level 31.

Use requestLocationUpdates(java.lang.String, long, float,

java.util.concurrent.Executor,

android.location.LocationListener) instead to explicitly

select a provider.

void requestLocationUpdates(String provider, long

minTimeMs, float

minDistanceM, PendingIntent pendingIntent)

Register for location updates using the named provider, and

callbacks delivered via the provided PendingIntent.

void requestSingleUpdate(String provider, PendingIntent pendin

gIntent)

This method was deprecated in API level 30.

Use getCurrentLocation(java.lang.String,

android.os.CancellationSignal,

java.util.concurrent.Executor,

https://developer.android.com/reference/android/os/Looper
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20java.util.concurrent.Executor,%20android.location.LocationListener)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20android.location.LocationRequest,%20android.app.PendingIntent)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationRequest
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/location/LocationRequest
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20android.location.LocationRequest,%20java.util.concurrent.Executor,%20android.location.LocationListener)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationRequest
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/location/LocationRequest
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(long,%20float,%20android.location.Criteria,%20android.app.PendingIntent)
https://developer.android.com/reference/android/location/Criteria
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20android.app.PendingIntent)
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20android.app.PendingIntent)
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(long,%20float,%20android.location.Criteria,%20java.util.concurrent.Executor,%20android.location.LocationListener)
https://developer.android.com/reference/android/location/Criteria
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20java.util.concurrent.Executor,%20android.location.LocationListener)
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20java.util.concurrent.Executor,%20android.location.LocationListener)
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20java.util.concurrent.Executor,%20android.location.LocationListener)
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20android.app.PendingIntent)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/location/LocationManager#requestSingleUpdate(java.lang.String,%20android.app.PendingIntent)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)

123

Android
Operating System

java.util.function.Consumer) instead as it does not carry a

risk of extreme battery drain.

void requestSingleUpdate(Criteria criteria, PendingIntent pendin

gIntent)

This method was deprecated in API level 30.

Use getCurrentLocation(java.lang.String,

android.os.CancellationSignal,

java.util.concurrent.Executor,

java.util.function.Consumer) instead as it does not carry a

risk of extreme battery drain.

void requestSingleUpdate(String provider, LocationListener liste

ner, Looper looper)

This method was deprecated in API level 30.

Use getCurrentLocation(java.lang.String,

android.os.CancellationSignal,

java.util.concurrent.Executor,

java.util.function.Consumer) instead as it does not carry a

risk of extreme battery drain.

void requestSingleUpdate(Criteria criteria, LocationListener liste

ner, Looper looper)

This method was deprecated in API level 30.

Use getCurrentLocation(java.lang.String,

android.os.CancellationSignal,

java.util.concurrent.Executor,

java.util.function.Consumer) instead as it does not carry a

risk of extreme battery drain.

boolean sendExtraCommand(String provider, String command, Bun

dle extras)

Sends additional commands to a location provider.

void setTestProviderEnabled(String provider, boolean enabled)

Sets the given test provider to be enabled or disabled.

void setTestProviderLocation(String provider, Location location

)

Sets a new location for the given test provider.

void setTestProviderStatus(String provider, int

status, Bundle extras, long updateTime)

This method was deprecated in API level 29. This method

has no effect.

void unregisterAntennaInfoListener(GnssAntennaInfo.Listener li

stener)

Unregisters a GNSS antenna info listener.

void unregisterGnssMeasurementsCallback(GnssMeasurements

Event.Callback callback)

Unregisters a GPS Measurement callback.

void unregisterGnssNavigationMessageCallback(GnssNavigatio

https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#requestSingleUpdate(android.location.Criteria,%20android.app.PendingIntent)
https://developer.android.com/reference/android/location/Criteria
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#requestSingleUpdate(java.lang.String,%20android.location.LocationListener,%20android.os.Looper)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/os/Looper
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#requestSingleUpdate(android.location.Criteria,%20android.location.LocationListener,%20android.os.Looper)
https://developer.android.com/reference/android/location/Criteria
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/os/Looper
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#sendExtraCommand(java.lang.String,%20java.lang.String,%20android.os.Bundle)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/os/Bundle
https://developer.android.com/reference/android/os/Bundle
https://developer.android.com/reference/android/location/LocationManager#setTestProviderEnabled(java.lang.String,%20boolean)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#setTestProviderLocation(java.lang.String,%20android.location.Location)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/Location
https://developer.android.com/reference/android/location/LocationManager#setTestProviderStatus(java.lang.String,%20int,%20android.os.Bundle,%20long)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/os/Bundle
https://developer.android.com/reference/android/location/LocationManager#unregisterAntennaInfoListener(android.location.GnssAntennaInfo.Listener)
https://developer.android.com/reference/android/location/GnssAntennaInfo.Listener
https://developer.android.com/reference/android/location/LocationManager#unregisterGnssMeasurementsCallback(android.location.GnssMeasurementsEvent.Callback)
https://developer.android.com/reference/android/location/GnssMeasurementsEvent.Callback
https://developer.android.com/reference/android/location/GnssMeasurementsEvent.Callback
https://developer.android.com/reference/android/location/LocationManager#unregisterGnssNavigationMessageCallback(android.location.GnssNavigationMessage.Callback)
https://developer.android.com/reference/android/location/GnssNavigationMessage.Callback

124

Advanced Operating
System

124

nMessage.Callback callback)

Unregisters a GNSS Navigation Message callback.

void unregisterGnssStatusCallback(GnssStatus.Callback callbac

k)

Removes a GNSS status callback.

Inherited methods

From class java.lang.Object

Constants

ACTION_GNSS_CAPABILITIES_CHANGED

Added in API level 31

public static final String ACTION_GNSS_CAPABILITIES_CHANGED

Broadcast intent action when GNSS capabilities change. This is most

common at boot time as GNSS capabilities are queried from the chipset.

Includes an intent extra, EXTRA_GNSS_CAPABILITIES, with the new

GnssCapabilities.

See also:

• EXTRA_GNSS_CAPABILITIES

• getGnssCapabilities()

Constant Value:

"android.location.action.GNSS_CAPABILITIES_CHANGED"

EXTRA_GNSS_CAPABILITIES

Added in API level 31

public static final String EXTRA_GNSS_CAPABILITIES

Intent extra included with

ACTION_GNSS_CAPABILITIES_CHANGED broadcasts, containing

the new GnssCapabilities.

See also:

• ACTION_GNSS_CAPABILITIES_CHANGED

Constant Value: "android.location.extra.GNSS_CAPABILITIES"

EXTRA_LOCATION_ENABLED

Added in API level 30

public static final String EXTRA_LOCATION_ENABLED

Intent extra included with MODE_CHANGED_ACTION broadcasts,

containing the boolean enabled state of location.

https://developer.android.com/reference/android/location/GnssNavigationMessage.Callback
https://developer.android.com/reference/android/location/LocationManager#unregisterGnssStatusCallback(android.location.GnssStatus.Callback)
https://developer.android.com/reference/android/location/GnssStatus.Callback

125

Android
Operating System

See also:

• MODE_CHANGED_ACTION

Constant Value: "android.location.extra.LOCATION_ENABLED"

EXTRA_PROVIDER_ENABLED

Added in API level 30

public static final String EXTRA_PROVIDER_ENABLED

Intent extra included with PROVIDERS_CHANGED_ACTION

broadcasts, containing the boolean enabled state of the location provider

that has changed.

See also:

• PROVIDERS_CHANGED_ACTION

• EXTRA_PROVIDER_NAME

Constant Value: "android.location.extra.PROVIDER_ENABLED"

EXTRA_PROVIDER_NAME

Added in API level 29

public static final String EXTRA_PROVIDER_NAME

Intent extra included with PROVIDERS_CHANGED_ACTION

broadcasts, containing the name of the location provider that has changed.

See also:

• PROVIDERS_CHANGED_ACTION

• EXTRA_PROVIDER_ENABLED

Constant Value: "android.location.extra.PROVIDER_NAME"

FUSED_PROVIDER

Added in API level 31

public static final String FUSED_PROVIDER

Standard name of the fused location provider.

If present, this provider may combine inputs from several other location

providers to provide the best possible location fix. It is implicitly used for

all requestLocationUpdates APIs that involve a Criteria.

Constant Value: "fused"

GPS_PROVIDER

Added in API level 1

public static final String GPS_PROVIDER

Standard name of the GNSS location provider.

126

Advanced Operating
System

126

If present, this provider determines location using GNSS satellites. The

responsiveness and accuracy of location fixes may depend on GNSS

signal conditions.

The extras Bundle for locations derived by this location provider may

contain the following key/value pairs:

• satellites - the number of satellites used to derive the fix

Constant Value: "gps"

KEY_FLUSH_COMPLETE

Added in API level 31

public static final String KEY_FLUSH_COMPLETE

Key used for an extra holding an integer request code when location flush

completion is sent using a PendingIntent.

See also:

• requestFlush(String, PendingIntent, int)

Constant Value: "flushComplete"

KEY_LOCATIONS

Added in API level 31

public static final String KEY_LOCATIONS

Key used for an extra holding a array of Locations when a location change

is sent using a PendingIntent. This key will only be present if the location

change includes multiple (ie, batched) locations, otherwise only

KEY_LOCATION_CHANGED will be present. Use

Intent#getParcelableArrayExtra(String) to retrieve the locations.

The array of locations will never be empty, and will ordered from earliest

location to latest location, the same as with

LocationListener#onLocationChanged(List).

See also:

• requestLocationUpdates(String, LocationRequest, PendingIntent)

Constant Value: "locations"

KEY_LOCATION_CHANGED

Added in API level 3

public static final String KEY_LOCATION_CHANGED

Key used for an extra holding a Location value when a location change is

sent using a PendingIntent. If the location change includes a list of batched

locations via KEY_LOCATIONS then this key will still be present, and

will hold the last location in the batch. Use

Intent#getParcelableExtra(String) to retrieve the location.

See also:

• requestLocationUpdates(String, LocationRequest, PendingIntent)

Constant Value: "location"

KEY_PROVIDER_ENABLED

Added in API level 3

public static final String KEY_PROVIDER_ENABLED

127

Android
Operating System

Key used for an extra holding a boolean enabled/disabled status value

when a provider enabled/disabled event is broadcast using a

PendingIntent.

See also:

• requestLocationUpdates(String, LocationRequest, PendingIntent)

Constant Value: "providerEnabled"

KEY_PROXIMITY_ENTERING

Added in API level 1

public static final String KEY_PROXIMITY_ENTERING

Key used for the Bundle extra holding a boolean indicating whether a

proximity alert is entering (true) or exiting (false)..

Constant Value: "entering"

KEY_STATUS_CHANGED

Resource Manager

The job of a resource manager is, quite simply, to manage all available

resources that your company has, especially employees. One of the many

responsibilities of a resource manager (more commonly known as a

human resource manager, or HR manager) is to assign the right people to a

job.

There are many more items which you use to build a good Android

application. Apart from coding for the application, you take care of

various other resources like static content that your code uses, such as

bitmaps, colors, layout definitions, user interface strings, animation

instructions, and more. These resources are always maintained separately

in various sub-directories under res/ directory of the project.

This tutorial will explain you how you can organize your application

resources, specify alternative resources and access them in your

applications.

Organize resource in Android Studio

MyProject/

 app/

 manifest/

 AndroidManifest.xml

 java/

 MyActivity.java

 res/

 drawable/

 icon.png

 layout/

 activity_main.xml

 info.xml

 values/

 strings.xml

128

Advanced Operating
System

128

Sr.No. Directory & Resource Type

1 anim/
XML files that define property animations. They are saved in
res/anim/ folder and accessed from the R.anim class.

2 color/
XML files that define a state list of colors. They are saved in
res/color/ and accessed from the R.color class.

3 drawable/
Image files like .png, .jpg, .gif or XML files that are compiled into
bitmaps, state lists, shapes, animation drawable. They are saved in
res/drawable/ and accessed from the R.drawable class.

4 layout/
XML files that define a user interface layout. They are saved in
res/layout/ and accessed from the R.layout class.

5 menu/
XML files that define application menus, such as an Options Menu,
Context Menu, or Sub Menu. They are saved in res/menu/ and
accessed from the R.menu class.

6 raw/
Arbitrary files to save in their raw form. You need to
call Resources.openRawResource() with the resource ID, which
is R.raw.filename to open such raw files.

7 values/
XML files that contain simple values, such as strings, integers, and
colors. For example, here are some filename conventions for
resources you can create in this directory −

• arrays.xml for resource arrays, and accessed from
the R.array class.

• integers.xml for resource integers, and accessed from
the R.integer class.

• bools.xml for resource boolean, and accessed from
the R.bool class.

• colors.xml for color values, and accessed from
the R.color class.

• dimens.xml for dimension values, and accessed from
the R.dimen class.

• strings.xml for string values, and accessed from
the R.string class.

• styles.xml for styles, and accessed from the R.style class.

8 xml/
Arbitrary XML files that can be read at runtime by
calling Resources.getXML(). You can save various configuration files
here which will be used at run time.

129

Android
Operating System

Alternative Resources

Your application should provide alternative resources to support specific

device configurations. For example, you should include alternative

drawable resources (i.e.images) for different screen resolution and

alternative string resources for different languages. At runtime, Android

detects the current device configuration and loads the appropriate

resources for your application.

To specify configuration-specific alternatives for a set of resources, follow

the following steps −

• Create a new directory in res/ named in the form <resources_name>-

<config_qualifier>. Here resources_name will be any of the

resources mentioned in the above table, like layout, drawable etc.

The qualifier will specify an individual configuration for which

these resources are to be used. You can check official documentation

for a complete list of qualifiers for different type of resources.

• Save the respective alternative resources in this new directory. The

resource files must be named exactly the same as the default

resource files as shown in the below example, but these files will

have content specific to the alternative. For example though image

file name will be same but for high resolution screen, its resolution

will be high.

Below is an example which specifies images for a default screen and

alternative images for high resolution screen.

MyProject/

 app/

 manifest/

 AndroidManifest.xml

 java/

 MyActivity.java

 res/

 drawable/

 icon.png

 background.png

 drawable-hdpi/

 icon.png

 background.png

 layout/

 activity_main.xml

 info.xml

 values/

 strings.xml

Below is another example which specifies layout for a default language

and alternative layout for Arabic language.

130

Advanced Operating
System

130

MyProject/

 app/

 manifest/

 AndroidManifest.xml

 java/

 MyActivity.java

 res/

 drawable/

 icon.png

 background.png

 drawable-hdpi/

 icon.png

 background.png

 layout/

 activity_main.xml

 info.xml

 layout-ar/

 main.xml

 values/

 strings.xml

Accessing Resources

During your application development you will need to access defined

resources either in your code, or in your layout XML files. Following

section explains how to access your resources in both the scenarios −

Accessing Resources in Code

When your Android application is compiled, a R class gets generated,

which contains resource IDs for all the resources available in your res/

directory. You can use R class to access that resource using sub-directory

and resource name or directly resource ID.

Example

To access res/drawable/myimage.png and set an ImageView you will use

following code −

ImageView imageView = (ImageView)

findViewById(R.id.myimageview);

imageView.setImageResource(R.drawable.myimage);

Here first line of the code make use of R.id.myimageview to get

ImageView defined with id myimageview in a Layout file. Second line of

code makes use of R.drawable.myimage to get an image with name

myimage available in drawable sub-directory under /res.

131

Android
Operating System

Example

Consider next example where res/values/strings.xml has following

definition −

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="hello">Hello, World!</string>

</resources>

Now you can set the text on a TextView object with ID msg using a

resource ID as follows −

TextView msgTextView = (TextView) findViewById(R.id.msg);

msgTextView.setText(R.string.hello);

Example

Consider a layout res/layout/activity_main.xml with the following

definition −

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <TextView android:id="@+id/text"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello, I am a TextView" />

 <Button android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello, I am a Button" />

</LinearLayout>

132

Advanced Operating
System

132

This application code will load this layout for an Activity, in the

onCreate() method as follows −

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

}

Accessing Resources in XML

Consider the following resource XML res/values/strings.xml file that

includes a color resource and a string resource −

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <color name="opaque_red">#f00</color>

 <string name="hello">Hello!</string>

</resources>

Now you can use these resources in the following layout file to set the text

color and text string as follows −

<?xml version="1.0" encoding="utf-8"?>

<EditText xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:textColor="@color/opaque_red"

 android:text="@string/hello" />

Now if you will go through previous chapter once again where I have

explained Hello World! example, and I'm sure you will have better

understanding on all the concepts explained in this chapter. So I highly

recommend to check previous chapter for working example and check

how I have used various resources at very basic level.

133

Android
Operating System

Android Activity Lifecycle

Android Activity Lifecycle is controlled by 7 methods of

android.app.Activity class. The android Activity is the subclass of

ContextThemeWrapper class.

An activity is the single screen in android. It is like window or frame of

Java.

By the help of activity, you can place all your UI components or widgets

in a single screen.

The 7 lifecycle method of Activity describes how activity will behave at

different states.

Android Activity Lifecycle methods

Let's see the 7 lifecycle methods of android activity.

Method Description

onCreate called when activity is first created.

onStart called when activity is becoming visible to the user.

onResume called when activity will start interacting with the user.

onPause called when activity is not visible to the user.

onStop called when activity is no longer visible to the user.

onRestart called after your activity is stopped, prior to start.

onDestroy called before the activity is destroyed.

134

Advanced Operating
System

134

File: activity_main.xml

1. <?xml version="1.0" encoding="utf-8"?>

2. <android.support.constraint.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"

3. xmlns:app="http://schemas.android.com/apk/res-auto"

4. xmlns:tools="http://schemas.android.com/tools"

5. android:layout_width="match_parent"

6. android:layout_height="match_parent"

7. tools:context="example.javatpoint.com.activitylifecycle.

MainActivity">

8.

135

Android
Operating System

9. <TextView

10. android:layout_width="wrap_content"

11. android:layout_height="wrap_content"

12. android:text="Hello World!"

13. app:layout_constraintBottom_toBottomOf="parent"

14. app:layout_constraintLeft_toLeftOf="parent"

15. app:layout_constraintRight_toRightOf="parent"

16. app:layout_constraintTop_toTopOf="parent" />

17.

18. </android.support.constraint.ConstraintLayout>

Android Activity Lifecycle Example

It provides the details about the invocation of life cycle methods of

activity. In this example, we are displaying the content on the logcat.

File: MainActivity.java

1. package example.javatpoint.com.activitylifecycle;

2.

3. import android.app.Activity;

4. import android.os.Bundle;

5. import android.util.Log;

6.

7. public class MainActivity extends Activity {

8.

9. @Override

10. protected void onCreate(Bundle savedInstanceState) {

11. super.onCreate(savedInstanceState);

12. setContentView(R.layout.activity_main);

13. Log.d("lifecycle","onCreate invoked");

14. }

15. @Override

16. protected void onStart() {

17. super.onStart();

18. Log.d("lifecycle","onStart invoked");

19. }

20. @Override

21. protected void onResume() {

22. super.onResume();

23. Log.d("lifecycle","onResume invoked");

24. }

25. @Override

26. protected void onPause() {

27. super.onPause();

28. Log.d("lifecycle","onPause invoked");

136

Advanced Operating
System

136

29. }

30. @Override

31. protected void onStop() {

32. super.onStop();

33. Log.d("lifecycle","onStop invoked");

34. }

35. @Override

36. protected void onRestart() {

37. super.onRestart();

38. Log.d("lifecycle","onRestart invoked");

39. }

40. @Override

41. protected void onDestroy() {

42. super.onDestroy();

43. Log.d("lifecycle","onDestroy invoked");

44. }

45. }

Output:

You will not see any output on the emulator or device. You need to open

logcat.

4.5 SUMMARY

This chapter Describes basic things of Android.

4.6 EXERCISE

• Explain the Android application Architecture.

• What are the code names of android?

4.7 REFERENCES

• PROFESSIONAL Android™ 4 Application Development, Reto

Meier, John Wiley & Sons, Inc. 2012.



	0 97 Starting pages
	01 (1-14)
	02 (15-51)
	03 (53-77)
	04 (78-136)

