F.Y.B.Sc.

(Computer Science)
SEMESTER - II (CBCS)

PROGRAMMING WITH
PYTHON - 11

SUBJECT CODE : USCS202

© UNIVERSITY OF MUMBAI

University of Mumbai,

Prof. Suhas Pednekar
Vice-Chancellor,

University of Mumbai,
Prof. Ravindra D. Kulkarni Prof. Prakash Mahanwar
Pro Vice-Chancellor, Director,

IDOL, University of Mumbai,

Course Co-ordinator

Editor

Course Writers

Programme Co-ordinator : Shri Mandar Bhanushe

Head, Faculty of Science and Technology,
IDOL, University of Mumbai, Mumbai

: Mr. Sumedh Shejole

Asst. Professor,
IDOL, University of Mumbai, Mumbai

: Mr. Patilshirke Santosh

Smt. Janakibai Rama Salvi College,
Manisha Nagar, Kalwa west, Thane

: Mlind Thorat

Asst. Professor,
KJSIEIT, Sion, ,Mumbai

: Vandana Maurya

Asst. Professor,
B. K. Birla College (Autonomous), Kalyan

February 2022, Print -1

Published by . Director
Institute of Distance and Open Learning,
University of Mumbai,
Vidyanagari, Mumbai - 400 098.
DTP Composed and : Mumbai University Press
Printed by Vidyanagari, Santacruz (E), Mumbai - 400098

CONTENTS

Unit No. Title Page No.

Unit-I

1. Python File Input-Output 01

2. Exception handling 13

3. Regular Expressions 23
Unit - 1T

4. GUIProgramming in Python -1 34

5. GUI Programmingin Python - 45
Unit - 111

6. Database & Networking connectivity 61

%
o
%
o

F.Y.B.Sc. (Computer Science)
SEMESTER -1 (CBCS)
Programming with Python — II
(Credits : 2 Lectures/Week: 3)

Objective:

The objective of this paper is to explore the style of structured
programming to give the idea to the students how programming can be
used for designing real-life applications by reading/writing to files, GUI
programming, interfacing database/networks and various other features.

Expect
1)

2)
3)

4)

5)

ed Learning Outcomes

Students should be able to understand how to read/write to files
using python.

Students should be able to catch their own errors that happen
during execution of programs.

Students should get an introduction to the concept of pattern
matching.

Students should be made familiar with the concepts of GUI
controls and designing GUI applications.\Students should be able
to connect to the database to move the data to/from the application.

Students should know how to connect to computers, read from
URL and send email.

Unit I

Python File Input-Output: Opening and closing
files, various types of file modes, reading and
writing to files, manipulating directories.
Iterables, iterators and their problem solving
applications.

Exception handling: What is an exception, various | 15 L
keywords to handle exceptions such try, catch,
except, else, finally, raise.

Regular Expressions: Concept of regular
expression, various types of regular expressions,
using match function.

Unit II

GUI Programming in Python (using Tkinter/wx
Python/Qt)

What is GUI, Advantages of GUI, Introduction to
Ul library. Layout management, events and
bindings, fonts, colours, drawing on canvas (line, | 15 L
oval, rectangle, etc.)

Widgets such as : frame, label, button, check button,
entry, list box, message, radio button, text, spin box
etc

Database connectivity in Python: Installing mysql
connector, accessing connector module module,
using connect, cursor, execute & close functions,
reading single & multiple results of query execution,
executing different types of statements, executing

Unit I transactions, understanding exceptions in database 5L
connectivity.
Network connectivity: Socket module, creating
server-client programs, sending email, reading from
URL

Text books:

1. Paul Gries , Jennifer Campbell, Jason Montojo, Practical
Programming: An Introduction to Computer
Science Using Python 3, Pragmatic Bookshelf, 2/E 2014

Additional References:

1. James Payne , Beginning Python: Using Python 2.6 and Python 3,
Wiley India, 2010

2. A. Lukaszewski, MySQL for Python: Database Access Made Easy,
Pact Publisher, 2010

O O, O O
0® 00 0,0 00

I

UNIT 1

PYTHON FILE INPUT- OUTPUT

Unit Structure

1.1 Introduction

1.2 Opening files in python

1.3 Closing files in python

1.4 Write to an existing file

1.5 Create a new file

1.6 Python delete file

1.7 Python directory
1.7.1 Get current directory
1.7.2 Changing directory
1.7.3List directories and files
1.7.4 Making a new directory

1.7.5 Removing directory or file

1.1 INTRODUCTION

Files are named locations on disk to store information. They are used to
permanently store data in a non-volatile memory e.g. hard disk.

Random Access Memory (RAM) is volatile memory means it loses its
data when the computer is turned off, we use files for future use of the
data by permanently storing them.

When we want to read from or write to a file, we need to open it first.

When we have finished our work, it needs to be closed so that the
resources that are attached with the file are freed.

Hence, in Python, a file operation takes place in the following sequence:
1. Open a file
2. Read or write (perform operation)

3. Close the file

Programming with Python— II

1.2 OPENING FILES IN PYTHON

Python has a built-in open() function to open a file.

The open () function returns a file object, which has a read () method for
reading the content of the file:

>>> f = open(''test.txt") # open file in current directory
>>> f = open("C:/Python38/ README.txt") # specifying full path
We can specify the mode while opening any file.

In mode, we specify whether we want to read r, write w or append a to
the file. We can also specify if we want to open the file in text mode or
binary mode.

e The default is reading in text mode. In this mode, we get strings
when reading from the file.

¢ On the other hand, binary mode returns bytes, and this is the mode to
be used when dealing with non-text files like images or executable

files.

Mode Description

. It opens a file for reading. (By
default)

W It opens a file for writing. Creates a new file if it does
not exist or truncates the file if it exists.

< It opens a file for exclusive creation. If the file
already exists, the operation fails.
It opens a file for appending at the end of the file

a without truncating it. Creates a new file if it does not
exist.

t Opens in text mode. (By default)

b Opens in binary mode

+ Opens a file for updating (reading and writing)

This is the test.txt file we have

| test - Notepad
File Edit Format View Help

Hello all
good luck!!!!

Example 1.1

™ prgl.py - C\Program Files\Python38\programs\prgl.py (3.8.9)

File- Edit Format Run Options Window Help

f = open{"test.Lxtc", "r")
print{f.read())}

Output:

‘ # IDLE Shell 389

File Edit Shell Debug Options Window Help
Bython 3.8.9 (tags/v3.8.9:a743f81, Apr € 2021, 14:02:34) [M5C v.1928 64 bit (A
Dé4)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

b

=

RESTART: C:\Program Files\Python3f\programs\prgl.py
Hellg all
good luck!!!!
b g

If the file is located in a different location, you will have to specify the file
path, as follows:

Example 1.2

= prg2.py - C:/Program Files/Python38/programs/prg2.py (3.8.9)
File Edit Window Help

Lr=ropenf "oyl e Yweltome S ExXE™ . me™)
print{f.read(})

Format Run Options

Output:

RESTART: C:/Program Files/Python3g/programs/prg2.pyv
Welcome to this text file!
Thiz file is located in a folder named "filea", on the D driwve.
Good Luck!

Python File Input- Output

Programming with Python—11 < Read Only Parts of the File

By default the read () method returns the whole text, but you can also
specify how many characters you want to return:

Example 1.3Return the 5 first characters of the file
¢ prg3.py - C:/Program Files/Python38/programs/prg3.py (3.8.9)

File Edit Format Run Options Window Help

)

You can return one line by using the readline () method:

Example 1.4Read one line of the file:

= prgd.py - C:/Program Files/Python38/programs/prgd.py (3.8.9)
File Edit Format Run Options Window Help

| &= open {TrEgEL R i "EY)

| print (£.readline ())]

-------------- RESTART: C:/Program Files/Python3g/programs/prod.py

Hello all
By calling readline() two times, you can read the two first lines:
Example 1.5Read two lines of the file:

prg5.py - C:/Program Files/Python38/programs/prg5.py (3.8.9)
File: Edit Format Run Options Window Help

f = DE‘:;:‘.-IE'.'.-__E:;-__.-__KZ”, “”:".;:I-

print (f.readline ())
pr;:t(f.xeadlineijﬂ
Output:
REESTART: C:/Program Files/Pyvthon3g8/programs/prog5.py
Hello all
good luck!!!!
e

By looping through the lines of the file, we can read the whole file, line by
line:

Example 1.6Loop through the file line by line

- prgb.py - Ci/Program Files/Python38/prgb.py (3.8.9)
File | Edit | Format Rumn Options Window Help

‘ =-cpé:(“325:.:x:”, B
- B o B o
| print (=)
Output:

Hello all

1.3 CLOSING FILES IN PYTHON

When we have completed performing operations on the file, we need to
properly close the file.

Closing a file will free up the resources that were attached with the file. It
is done using the close() method available in Python.

Python has a garbage collector to clean up unreferenced objects, but we
must not rely on it to close the file.

Example 1.7

'+ prg?.py - C:/Program Files/Python38/programs/prgi.py (3.8.8)
File Edit Formmat Run Options Window Help

Ermropend N eeat. BaE" o Bel)
print(f.readline{})
f.clcsetﬂ
Output
============== RESTART: C:/Program Files/Python38/programs/prq7.py ==
Hello all
Note:

You should always close your files, in some cases, due to buffering,
changes made to a file may not show until you close the file.

Python File Input- Output

RESTART: C:/Program Files/Python38/prg6.pyv =

Programming with Python—1I' 1 4 WRITE TO AN EXISTING FILE

To write to an existing file, we must add a parameter to
the open () function:

"a" - Append

It will append to the end of the file.
"w" - Write

It will overwrite any existing content.
Example 1.8

Open the file "test.txt" and append content to the file:

e pra8.py - C:/Program Files/Python38/programs/prg8.py (3.8.9)
Fite: Edit Format Run Options Window Help

f = open|"ceac.cxc” Pa®)

f.write ["A1
f.clo=ze()

i
13
[
[
i

#open and read the file after appending:
f = open(™teat..LxE™, ")

print (f.read(}))

Output:

============== RESTART: C:/Program Files/Python3&/programs/prod.py
Hello all

good luck!!!''A11 the best!

>3 |

Example 1.9

Open the file "test.txt" and overwrite its content:

prgd.py - C:/Program Files/Python38/programs/prgd.py (3.8.9)
File Edit Format Run Options Window Help

T = apen{™E ~EELTy Pwh])
E.write{"Py
f.cla=se ()
#fopen and read the file
= agpen{"test.cxt", T
rint({f.read())

============== RESTART: C:/Program Files/Python38/programs/prg%.py
Python Programming
FEx I

1.5 CREATE A NEW FILE

To create a new file in Python, use the open() method, with one of the
following parameters:

"x" - Create

It will create a file, returns an error if the file exist.
"a" - Append

It will create a file if the specified file does not exist.
"w' - Write

It will create a file if the specified file does not exist.

Example 1.10 Create a file called "myfile.txt"

= prgll.py - C:/Program Files/Python38/prograrms/prgll.py (3.8.9)
File Edit Format Run Options Window Help

T = open{™myfile.txt™, "x™)
Output:
Result: a new empty file is created!

| myfile - Motepad
File Edit Format View Help

Returns an error if the file exist

============= RESTART: C:/Program Files/Python38/programs/prglld.py =======
Traceback (most recent call last):

File "C:/Program Filesz/Python38/programs/prgl0.py", line 1, in <modulel
f = open("myfile.txt™, "x")
FileExiztsError: [Errno 17] File exists: 'myfile.txt'

Example 1.11Create a new file if it does not exist:

prgll.py - C/Program Files/Python38/programs/prgllipy (3.8.9)
File Edit Format PRun Options Window Help

;f = gpen ("myfile.tx=L™, "w")
I

Note: the "w" method will overwrite the entire file.

1.6 PYTHON DELETE FILE

To delete a file, we must import the OS module, and run
its os.remove() function.

Python File Input- Output

Programming with Python— 11 Example 1.12Remove the file "test.txt":

& prgld.py - C/Program Files/Python38/programs/prgl2.py (3.8.9)
File Edit Format Run Cptions Window Help

impart oS
as.remove ["cest.ExE")

Note: test.txt got deleted from programs folder.
Check if File exist:

To avoid getting an error, you might want to check if the file exists before
you try to delete it:

Example 1.13Check if file exists, then delete it:

¢ prgl3.py - C/Program Files/Python38/programs/prgl3.py (3.8.9)
File | Edit| Format Run Options Window Help

mport oS
- oa.path.exists [("testfile.tac”

============= RESTART: C:/Program Files/Python38/programs/progli.py
The file does not exist

Delete Folder
To delete an entire folder, use the os.rmdir() method:

Example 1.14Remove the folder "myprograms":

' # prgld.py - Ci/Program Files/Python38/programs/prgld.py (3.8.9)
File | Edit Format PRun Options Window Help

============= RESTART: C:/Program Files/Python38/programs/prgld.py
Folder deleted successfully

Note: You can only remove empty folders.

1.7 PYTHON DIRECTORY

If there are many files in our Python program, we can arrange our code
within different directories to make things more manageable.

A directory or folder is a collection of files and subdirectories.

Python has the os module that provides us with many useful methods to
work with directories (and files as well).

1.7.1 GET CURRENT DIRECTORY

We can get the present working directory by using the getcwd() method of
the os module.

We use the OS module to interact with the operating system.
This method returns the current working directory in the form of a string.

Example 1.15
= prgl5.py - C:/Program Files/Python38/programs/prgl5.py 3.8.9)
File Edit Format Run Options Window Help
fimporting the os module
import. o8
#to get the current working.directory
directory = os.getcwd()
print (directory)

============= RESTART: C:/Program Filez/Python3g8/programs/prgls.p
C:\Program Files\Python38\programs

1.7.2 CHANGING DIRECTORY

In case if we want to change the current working directory, we can do so
by using the chdir() method .

Syntax of chdir()
os.chdir(path)

Parameters:

path - The path to the new directory

The new path that we want to change into must be supplied as a string to
this method.

We can use both the forward-slash / or the backward-slash \ to separate the
path elements.

It is safer to use an escape sequence when using the backward slash.

Python File Input- Output

Programming with Python—1I ~ Example 1.16

i proglé.py - C:/Program Files/Python38/programs/prgl6.py (3.89)
File- Edit Format Run Options Windew Help
impart o3

| e8.chdix ("C:\Temp")

| print {o=s.getcwd {))

============= RESTART: C:/Program Files/Python38/programs/prglé.py

1.7.3 LIST DIRECTORIES AND FILES

All files and sub-directories inside a directory can be listed using
the listdir() method.

This method takes in a path and returns a list of subdirectories and files in
that path.

If no path is specified, it returns the list of subdirectories and files from the
current working directory.

Example 1.17

¢ *prgl7.py - C:/Program Files/Python38/programs/prgl7.py (3.8.9)*
File Edit Format Run Options Window Help

| import os

print (o=s.getewd())

| print (os.listdir(})

============= QESTART: C:/Program Files/Python38/programs/prgl7.py =——=======—=
C:\Program Files\Python38\programs

["filecpen.py', 'myfile.txt', 'prgl.py', 'prglld.py', 'prgll.py', 'prglZ.pv', 'pr
gl3.py', 'prgld.py', 'prgls.py', 'prglé.py', 'prglT.py', 'prg2.py', 'prgd.py', '
Frgﬁ-PY'r 'prgs.py', 'prg7.pv', 'pro8.py', 'prgd.py', 'subprograms’']

1.7.4 MAKING A NEW DIRECTORY
We can make a new directory by usingmkdir() method.

This method takes in the path of the new directory.

If the full path is not specified, the new directory is created in the current
working directory.

10

Example 1.18

' prgl8.py - C:/Program Files/Python38/programs/prgl8.py (3.8.9)
File | Edit| Format Run Options Window Help

import os
os.mkdir|'cestc") # It will create test folder

Result: a new folder is created!
| test
1.7.5 REMOVING DIRECTORY OR FILE
A file can be removed (deleted) using the remove() method.
Similarly, the rmdir() method removes an empty directory.

Example 1.19

= prglS.py - C/Program Files/Python38/programs/prgl.py (3.8.9)
File Edit Format Run Options Window Help

IMOOrT o8

directory = es.listdir()
print(directory)

as.remove | 'myfile.cxt')

directoryl = o=s.1listdir()
print(directoryl)

a3 . rmdir | "subprograms")
printl{os.listdir ()}]I

============= RESTART: C:/Program Files/Python38/programs/prgl9.py =———————=—===
['fileopen.py', , 'prgl.py', 'prglO.py', 'prgll.py', 'prglZ.py', 'pr
gl3.py', 'prglé.py', 'prgld.py', 'prglé.py’, 'prgl7.py', 'prgl8.py', 'prgll.py’,
'prg2.py', 'prg3.py', 'prod.py', 'prgS.py', 'prg7.py', 'prgf.py', 'prgl.pyv', 'B

[bprograms’], ‘vest']

['fileopen.py', 'L:rgl-py'. 'prgld.py', 'prgll.py', 'prglZ.py', 'prgl3.py', 'prgl comyfile kit deleted

4.py', 'prgls.py', 'prglé.py', 'prgl7.py', 'prgls.py', 'prgld.py', 'prg2.py', 'p
rg3.py', 'prg4.py', 'prgS.py', 'prg7.py', 'prgg.py', 'prgd.py', 'subprograms', '
test']

['fileopen.py', 'prgl.py', 'prglO.py', 'prgll.py', 'prgl2.py', 'prgl3.py', 'prgl
4.py', 'prgls.py', 'prglé.py', 'prgl7.py', 'prgls.py', 'prgll.py', 'prg2.pyv’, 'P |
rg3.py', 'pro4.py', 'progs.py', 'prg7.py', 'progf.py', 'progd.py’, 'test']
>

Note: The rmdir() method can only remove empty directori

We can notremove a non-empty directory.

subprograms folder
deleted

€s.

Python File Input- Output

11

Programming with Python— II

12

Example 1.20

File Ed_it Format_ Run Ogtions Windqw Help_-

iMport o3
directory = os.listdir{)
print (directory)

gs.rodir ('test') #remove test directory
print {o=.listdir(})

Output:

RESTART: C:/Program Files/Python38/programs/prg20.py

t']
Traceback (most recent call last):
File "C:/Program Files/Pythondd/programs/prg20.py", line 5, in <module>
pz.rmdir('test')
SSE:_:D:: [WinError 145] The directory iz not empty: 'test'

In order to remove a non-empty directory, we can
the rmtree() method inside the shutil module.

Example 1.21

~ “prgZLpy - Ci/Program Files/Python38/ programs/prg2L.py (389)"
File Edit | Format| Run Options Window Help

import oS
rc shutil

shutil . .rmtree ("test') #deleting test directory
print ("Deleted successfally™)
print (o=s.1listdir())

Output:

RESTART: C:/Program Files/Python3&/programs/prg2l.py
Deleted successfully

["filecpen.py', 'prol.py', 'prgll.py', 'prgll.py', 'progll.py', 'progld.py', 'prgl
d.py'y 'proli.py', 'prolé.py', 'prol7.py', 'prol.py', 'proll.py', 'prol.py’,
rg20.py', 'prg3.py', 'prgd.py', 'prgS.py', 'prg7.py', 'prgf.py', 'prgd.py', 'tes

'p

use

['fileopen.py', 'prol.py', 'prgll.py', 'prgll.py', 'prgl2.py', 'prgl3.py', 'prgl

4.pyv', 'prgls.py', 'prglé.py', ‘'prglT.py', ‘prol8.py', 'prgld.py', 'pro2.pyv',

rg20.py', 'pro2l.py', 'prg3.py', 'prod.py’', 'prgs.py', 'pro’v.py', 'progg.py’,
g9.p¥'"]

X
X
X
X

'D
‘pr

EXCEPTION HANDLING

Unit Structure
2.1 Introduction
2.1.1 Syntax error
2.1.2 Exceptions
2.1.3 Built-in Exceptions
2.2 Catching Exceptions
2.3 Catching Specific Exception

2.1 INTRODUCTION

Error in Python can be of two types i.e. Syntax errors and Exceptions.

Errors are the problems in a program due to which the program will stop

the execution.

2.1.1 Syntax Error

This error is caused bywrong syntax in the code. It leads to the

termination of the program.

Example 2.1

prol.py - C\Program Files\Python38\Exception_programs\prgl.py (3.8.9)

File' Edit Format Run Options Window Help

initialize the amount wvariable
3

if(item amount > 2333)

i | - FEpe e S, s TR e i RS
print ("You are eligible to purchase

13

Programming with Python— 11 Qutput:

-

= prgl.py - C:/Program Files/Python38/Exception_programs/prgl.py (3.8.9)

Fite Edit Format Run Options Window Help
| # initialize the amount wvariable
item amount = 10000

check that You are eligible to
purchase item or not
if (item amount > 2999)|

print{"You ‘are =ligible to purchase item or not"™)

= SyntaxError

|f6:l invalid syntax

2.1.2 Exceptions

Exceptions are raised when the program is syntactically correct, but the
code resulted in an error. This error does not stop the execution of the
program; however, it changes the normal flow of the program.

Example 2.2

*prgl.py - C\Program F.-'rlfes\ﬂyrt'hurﬂﬁ';-.&cepfiun_p:ugrams\p:gl.py {(3.8.9)
File: Edit Format Run Options Window Help

| # initialize the amount variable
item amount = 10000

check that You are eligible to
purchase item or not
fiitem amount > 2999)

| print ("You are eligible to p

========= RESTART: C:/Program Files/Python3g/Exception programs/prg2.py ========
Traceback (most recent call last):
File "C:/Program Files/Python3d/Exception programs/prg2.py", line 5, in <modul
B
a =marks / 0
ZeroDivisionError: division by zero

Here, we are trying to divide a number by 0 hence it raised
ZeroDivisionErrorException.

Python hasbuilt-in exceptions that are raised when your program
encounters an errori.esomething in the program goes wrong.

When these exceptions occur, the Python interpreter stops the current flow
and passes it to the calling process until it is handled. If not handled, the

program may crash.

14

For example:

Let us consider a program where we have a function A that calls
function B, which in turn calls function C.If an exception occurs in
function C but is not handled in C, an exception passes to B and then to A.

If it is never handled, an error message is displayed, and program comes to
a sudden unexpected halt.

Note: Exception is the base class for all the exceptions in Python.
2.1.3 BUILT-IN EXCEPTIONS

The table below shows built-in exceptions that are usually raised in
Python:

Exception Description

ArithmeticError Raised when an error occurs in numeric
calculations.

AssertionError Raised when an assert statement fails.

AttributeError Raised when attribute reference or
assignment fails.

Exception Base class for all exceptions.

EOFError Raised when the input() method hits an "end
of file" condition (EOF).

FloatingPointError Raised when a floating point calculation
fails.

GeneratorExit Raised when a generator is closed (with the
close() method).

ImportError Raised when an imported module does not
exist.

IndentationError Raised when indendation is not correct.

IndexError Raised when an index of a sequence does not
exist.

KeyError Raised when a key does not exist in a
dictionary.

KeyboardInterrupt Raised when the user presses Ctrl+c, Ctrl+z
or Delete.

Exception Handling

15

Programming with Python— II

16

LookupError Raised when errors raised cant be found.

MemoryError Raised when a program runs out of memory.

NameError Raised when a variable does not exist.

NotImplementedError | Raised when an abstract method requires an
inherited class to override the method.

OSError Raised when a system related operation
causes an error.

OverflowError Raised when the result of a numeric
calculation is too large.

ReferenceError Raised when a weak reference object does
not exist.

RuntimeError Raised when an error occurs that do not
belong to any specific expections.

Stoplteration Raised when the next() method of an iterator
has no further values.

SyntaxError Raised when a syntax error occurs.

TabError Raised when indentation consists of tabs or
spaces.

SystemError Raised when a system error occurs.

SystemEXxit Raised when the sys.exit() function is called.

TypeError Raised when two different types are
combined.

UnboundLocalError Raised when a local variable is referenced
before assignment.

UnicodeError Raised when a unicode problem occurs.

UnicodeEncodeError | Raised when a unicode encoding problem
occurs.

UnicodeDecodeError | Raised when a unicode decoding problem
occurs.

UnicodeTranslateError | Raised when a unicode translation problem

occurs.

ValueError Raised when there is a wrong value in a
specified data type.

ZeroDivisionError Raised when the second operator in a
division is zero.

2.2 CATCHING EXCEPTIONS

Try and Except Statement

Try and except statements are used to catch and handle exceptions in
Python. Statements that may raise exceptions are kept inside the try
clause and the statements that handle the exception are written inside
except clause.

Example:

Let us try to access the array element which doesn’t exist i.e whose index
is out of bound and handle the corresponding exception.

Example2.3
= prg3.py - Ci/Program Files/Python38/Exception_programs/prg3.py (3.8.9)
Fite Edit Format Run Options Window Help
Pyvthon program to handle simple runtime error

ai=ipl, 2, 3, 4

print ("Third slement = 3d" %(al21})}
Throws error since there are only 4 elements in array
print - ("EFifth =le L = %d" %(al5]1))

========= RESTARI: C:/Program Files/Python3g/Exception programs/prg3.py
Third element = 3
&n error occurred

In the above example,statements that may cause the error are placed
inside the try statement (second print statement in our case).

The second print statement tries to access the fifth element; which is not
there in the list;so it throws an exception. This exception is then caught
by the except statement.

2.3 CATCHING SPECIFIC EXCEPTION

A try statement can have more than one except clause, to specify
handlers for different exceptions. Please note that at most one handler
will be executed.

Exception Handling

17

Programming with Python—1I For example, we can add IndexError in the above code.
The general syntax for adding specific exceptions are —
try:
statement(s)
except IndexError:
statement(s)
except ValueError:
statement(s)
Example2.3Catching specific exception in Python
= prgd.py - C:\Program Files\Python38\Exception_programsiprgd.py (3.8.9)

Filer Edit Format Run Options Window Help
with one

1]

Program to handlie maltiple error
except statement

|i%i Ffun (a) :
s b T Sl A
¥ throws ZeroDivisionError for a = 3
b = a/f{a—-3)
¥ throws NameError if a >=— 4
print{"vValue of b = ™, b}
Fan (3}
Ffun (5)
¥ mote that braces () are necessary here for
Ff multiple exceptions
except ZeroDivisio 0
print {"Ze visionError Coccurred and Handlied™)
ept HameErr
print {"NameErrar Ococcurred and Handied™)

Here fun(5) is commented.

Output:

————————— RESTART: C:\Program Files\Python38\Exception programs\prg4.py

ZeroDivisionError Occurred and Handled

If you comment the line fun(3), the output will be :

18

'~ prg4.py - C:\Program Files\Python38\Exception_programs\prg4.py (3.8.9) Exception Handling
File: Edit Format Run Options Window Help

Program to handie maltiple errors with one
except statement
defT fuanl{a}:
LE Bl
¥ throws ZerogDivisionError for a = 3
b = a/f(a-3)
¥ throws MNameFError if a >= 4
print (™ Value of b = ™, b}
Foan [3)
Ffun [(5)
note that braces () are necessary here for
F multiple exceptions
except ZeroDivisionError:
print ("ZeroDivisionError Occurred and Handled™)
except HameError:
print {"NameErroy Oocurred and Handled™)
|

Here fun(3) is commented.

Output:

RESTART: C:\Program Files\Python38\Exception programs\prg4.py
HameError Occurred and Handled

In the above example, python tries to access the value of b, so
NameError occurs.

+ TRY WITH ELSE CLAUSE

In python, you can also use the else clause on the try-except block
which must be present after all the except clauses. The code will
enterelse block only if the try clause does not raise an exception.

Example 2.4 Try with else clause

Py *prg5.py - Ci/Program Files/Python38/Exception_programs/prg5.py (3.8.9)%
Filer Edit Format Run Options Window Help

Program to depict else clause with try-except
Function which returns a/b
def AdivB(a , b):

c = ((la+b) / (a-b))
pt ZeroDivisionError:
print ("a/b result in O7)

print (c}

Driver program to test above function
AdivB (2.0, 3.0)
AdivB (2.0, 3.0)

19

Programming with Python— II

20

Output:

========= RESTART: C:/Program Files/Python38/Exception programs/prgs.py
-5.0
a/b result in O

s FINALLY KEYWORD IN PYTHON

Python provides a keyword finally, which is always executed after the
try and except blocks. The finally block always executes after normal
termination of try block or after try block terminates due to some
exception.

Syntax:
try:

Some Code....
except:

optional block

Handling of exception (if required)
else:

execute if no exception
finally:

Some code(always executed)
Example 2.5 finally keyword in python

= *prgh.py - C:/Program Files/Python38/Exception_programs/prg6.py (3.8.9)*
File Edit Format Run | Options | Window Help

Python program to demonstrate finally
| # Ho exception Exception raised in try block

k= 5//0 $raises divide by zZero exception.
rint (k)

handles zerodivision exception
except ZeroDivisionError:

print{"Can't divide by zero"™)

this block. is always executed
regerdless of exception generation.
printi{'This is always executed')

========= RESTART: C:/Program Files/Python38/Exception programs/prgé.py
Can't divide by zero
Thi= line iz always executed

Example 2.6

= prgl.py - C:\Program Files\Python38\Exception_programs'prg7.py (3.8.9) = IE

File Edit Format Run Options Window Help

#The try block will raisze an error when trying to write to a read-only file:
f = ppen{"demofile.txt")

f.write("Hello all™)

.prl_‘_::*.'.ct“_’-czr.a:':.;:-; Wwent wrong wheén writing to the file™)
" G
. p;: '."t(”’w'“ra:’_'; went wrong when opening the file"’)
Output:

========= RESTART: C:‘Program Files\Python38\Exception programs\prg7.py
Something went wrong when writing to the file

RAISING EXCEPTION

The raise statement allows the programmer to force a specific exception
to occur.This must be either an exception instance or an exception class
(a class that derives from Exception).

Example 2.8
= prgB.py - T\Program Files\Python38\Exception_programs'\prgé.py (3.8.9) |_|:|_|
Fiter Edit Format Run Options Window Help

Program to depict Rais=ing Exception

raize NameError ("Hello agll...") #Raise Error
except Name
print ([("An exception™)

aise #To determine whether the exception was raised or not

Iror:

The output of the above code is simply “An exception” but a Runtime
error will also occur at the end due to raise statement in the last line. So,
the output on your command line will look like this:

Exception Handling

21

Programming with Python— II

22

Output:

RESTART: C:\Program Files\Python38\Exception programs\prg8.py
An exception
Traceback (most recent call last):
File "C:\Program Files\Python32\Exception programs'prg8.py", line 4, in <modul
=3
raize NameError("Hello all...") #Raisze Error
NameError: Hello all...

Example 2.9

Raise an error and stop the program if value of x is lower than 0

* ¢ *prg9.py - C:/Program Files/Python38/Exception_programs/prgd.py (3.8.9
File Edit Format Run Options Window Help

x = -1

[
[
! if = < 0y
‘ raigse Exception{"Sorry, no numbers below zero")

Output:

RESTART: C:/Program Files/Python38/Exception programs/prg8.py
Traceback (most recent call last):
File "C:/Program Files/Python38/Exception programs/prg9.py", line 4, in <modul
er
raize Exception("Sorry, no numbers below zerao")
Exception: Sorry, no numbers below zero

The raise keyword is used to raise an exception.

You can define what kind of error to raise, and the text to print to the user.

Example 2.10 Raise a TypeError if x is not an integer

' *prgl0.py - C:/Program Files/Python38/Exception_programs/prgld.py (3.89)"
File Edit Format Run Options Window Help

x = "onodMorning®
it oot type{x) isg IiTit:
raise TypeError({™Cnly integers are allowed™)
Output:

RESTART: C:/Program Files/Python38/Exception programs/prgl0.py
Traceback (most recent call last):
File "C:/Program Files/Python38/Exception programs/prgll.py", line 4, in <modu
le»
raize TypeError ("Only integers are allowed")
TypeError: Only integersz are allowed

O o0 0 0
A XA XA X X

REGULAR EXPRESSIONS

Unit Structure

3.1 Introduction

3.2 Reg Ex functions
3.3 Metacharacters
3.4 Special sequences

3.5 Sets

3.1 INTRODUCTION

Regular Expression, or aRegEx, is a sequence of characters that forms a
search pattern.

RegEx can be used to check if a string contains the specified search
pattern.

+ Reg Ex Module

Python has a built-in package called re, which can be used to work with
Regular Expressions.

Import the re module:
Import re
% Reg Ex in Python

Once you have importedre module, you can start using regular
expressions:

Example 3.1Search the string to see if it starts with "The" and ends with
"Spain":

¢ prgl.py - C:/Program Files/Python38/Regkx_programs/prgl.py (3.8.9)
File: Edit Format Run ‘Options Window Help

L e

#Check if the =string starts with "The™ and ends with "Spain”
tXt = "The rain in Spain”
X = re.search (" "The.*Spai ", LXEL)

f x:

print ("¥ES! There is a match!™)

print ("Ho match™)

23

Programming with Python— II

24

Output:

YES! There is a match!

RESTART: C:/Program Files/Python38/RegEx programs/prgl.py

3.2 REGEXFUNCTIONS

The re module offers a set of functions that allows us to search a string for

a match.

Function Description

Findall Returns a list containing all matches.

Search Returns a Match object if there is a match anywhere in the
string.

Split Returns a list where the string has been split at each match.

Sub Replaces one or many matches with a string.

3.3 METACHARACTERS

Meta characters are characters with a special meaning.

Character

[]

{

0

Description
A set of characters

Signals a special sequence (can also be used to
escape special characters)

Any character (except newline character)
Starts with

Ends with

Zero or more occurrences

One or more occurrences

Exactly the specified number of occurrences
Either or

Capture and group

Let’s discuss each of these metacharacters in detail.

Example
n [a_m] n

H\d"

"he..o"
"~hello"
"world$"
"aix*"
"aix+"
"al{2}"

"falls|stays"

e [] Square Brackets

Square Brackets ([]) represents a character class consisting of a set of
characters that we wish to match.

For example, the character class [abc] will match any single a, b, or c.

We can also specify a range of characters using — inside the square
brackets.

For example:
. [0, 3] is sample as [0123]
. [a-c] is same as [abc]
We can also invert the character class using the caret(") symbol.
For example,
[*0-3] means any number except 0, 1, 2, or 3.
[*a-c] means any character except a, b, or c.
e . Dot

Dot(.) symbol matches only a single character except for the newline
character (\n).

For example:

a.b will check for the string that contains any character at the place
of the dot such as acb, acbd, abbb, etc.

It will check if the string contains at least 2 characters.
e " Caret

Caret (") symbol matches the beginning of the string i.e. checks whether
the string starts with the given character(s) or not.

For example:
~g will check if the string starts with g such asglobe, girl, g, etc.

~ge will check if the string starts with ge such as geeks, geeksandgeek
etc.

e $ Dollar

Dollar($) symbol matches the end of the string i.e checks whether the
string ends with the given character(s) or not.

For example :

s$ will check for the string that ends with geeks, ends, s, etc.

Regular Expressions

25

Programming with Python— II

26

ks$ will check for the string that ends with ks such as geeks,
geeksandgeeks, ks, etc.

e |Or

Or symbol works as the or operator meaning it checks whether the
pattern before or after the or symbol is present in the string or not.

For example:
a/b will match any string that contains a or b such as acd, bcd, abed, etc.
o 2 Question Mark

Question mark(?) checks if the string before the question mark in the
regex occurs at least once or not at all.

For example:

ab?c will be matched for the string ac, acb, dabc but will not be
matched for abbc because there are two b.

Similarly, it will not be matched for abdc because b is not followed
by c.

o Star

Star (*) symbol matches zero or more occurrences of the regex preceding
the * symbol.

For example:

ab*c will be matched for the string ac, abc, abbbc, dabc, etc. but will
not be matched for abdc because b is not followed by c.

e + Plus

Plus (+) symbol matches one or more occurrences of the regex preceding
the + symbol.

For example:

ab+c will be matched for the string abc, abbc, dabc, but will not be
matched for ac, abdc because there is no b in ac and d is not followed
by ¢ in abdc.

o {m, n}— Braces

Braces matches any repetitions preceding regex from m to n both
inclusive.

For example :

a{2, 4} will be matched for the string aaab, baaaac, gaad, but will not
be matched for strings like abc, be because there is only one a or no a
in both the cases.

o (<regex>)— Group

Group symbol is used to group sub-patterns.

For example :

(ajb)cd will match for strings like acd, abed, gacd, etc.

3.4 SPECIAL SEQUENCES

A special sequence is a\ followed by one of the characters in the list
below, and has a special meaning:

Character

\A

\b

\d

\D

\s

\S

Description

Returns a match if the specified characters are
at the beginning of the string.

Returns a match where the specified
characters are at the beginning or at the end of
a word
(the "r" in the beginning is making sure that
the string is being treated as a "raw string")

Returns a match where the specified
characters are present, but NOT at the
beginning (or at the end) of a word
(the "r" in the beginning is making sure that
the string is being treated as a "raw string")

Returns a match where the string contains
digits (numbers from 0-9)

Returns a match where the string DOES NOT
contain digits

Returns a match where the string contains a
white space character

Returns a match where the string DOES NOT
contain a white space character

Example

"AThe"

r"\bain"
r"ain\b"

r'"\Bain"
r"ain\B"

IY\dH

IY\D!I

"\SH

"\S"

Regular Expressions

27

Programming with Python— II . .
\w Returns a match where the string contains any "\w"

word characters (characters from a to Z, digits
from 0-9, and the underscore _ character)

\W Returns a match where the string DOES NOT "\W"
contain any word characters

\Z Returns a match if the specified characters are "Spain\Z"
at the end of the string

3.5 SETS
A set is a set of characters inside a pair of square brackets [] with a special
meaning:
Set Description
[arn] Returns a match where one of the specified characters (a,r,
or n) are present.
[a-n] Returns a match for any lower-case character, alphabetically
between a and n.
[Marn] Returns a match for any character EXCEPT a, r, and n.
[0123] Returns a match where any of the specified digits (0, 1, 2,
or 3) are present.
[0-9] Returns a match for any digit between 0 and 9.

[0-5][0-9] Returns a match for any two-digit numbers from 00 and 59.

[a-zA-Z] Returns a match for any character alphabetically
between a and z, lower case OR upper case.

[+] In sets,+ * .. |,(),$,{} has no special meaning,
so [+] means: return a match for any + character in the string.

28

% The findall() Function

The findall() function returns a list containing all matches.

Example 3.2 Print a list of all matches

prg2.py - C/Program Files/Python38/Regkx_programs/prg2.py (3.8.9)

File Edit Format Run Options Window Help

3 T

L IALL)

Ort g

#Return - a l1ist contalning every occurrence of ®ai™:

text = "The rain in Spain®
y-=:re.findall{"ai", Eext)
print (y)

Output:

EESTRRT: C:/Program Files/Python38/RegEx programs/prg2.py
[13! . 1ai!]

The list contains the matches in the order they are found.

If no matches are found, an empty list is returned:

Example 3.3 Return an empty list if no match was found

-+ *prg3.py - C:/Program Files/Python38,/RegEx_programs/prg3.py (3.8.9)*
File Edit Format Run Options Window Help

import Te

text = "The rain in Spain®

vy = re.Tindall ("Portugal™, textc)

print (v}

e B gl 75 0
print{®Yea, there ig at least one match!™)
print {"No match™

Output:

RESTART: C:/Program Files/Python3&/RegEx programs/prg3.py
[1

Ho match
% The search() Function

The search() function searches the string for a match, and returns a Match
object if there is a match.

Regular Expressions

29

If there is more than one match, only the first occurrence of the match will
be returned.

Programming with Python— II

Example 3.4 Search for the first white-space character in the string

| *prgd.py - Ci/Program Files/Python38/RegEx_programs/prod.py (3.8.9)" —|[-E
File Edit Format Run Options Window Help

text = "The rain in Spain”

¥ = re.=zearch{"\s", text)

print {"The firast white-space character is located at position:", y.start())

Output:

RESTART: C:/Program Files/Python38/RegEx programs,/prgé.py
The _first white—-space character is located at position: 3

If no matches are found, the value None is returned:
Example 3.5 Make a search that returns no match

= prg3.py - C:/Program Files/Python38/Regkx_programs/prg5.py (3.89)
Fite Edit Format Run Options Window Help

import Te
text = "The rain in Spain®

v = ressearch{"Portugal™, texk)
print (¥)

Output:

RESTART: C:/Program Files/Python38/RegEx programs/prg5.py

Hone
% The split() Function

The split() function returns a list where the string has been split at each
match.

30

Example 3.6 Split at each white-space character

"~ prgb.py - C:/Program Files/Python38/RegEx_programs/prg6.py (3.8.9)
File Edit Format Run Options Window Help

IMpOFLT Ee

#5plit the string at every white-space character

text = "The rain in Spain®
v = re.split("\a", text)
print (v}

Output:

RESTART: C:/Program Files/Python38/RegEx programs/prgé.py
['The', 'rain', 'in', 'Spain']

Example 3.7Split the string only at the first occurrence

- *prgl.py - C:/Program Files/Python38/RegEx_programs/prg7.py (3.8.9)*
File Edit Format Run Options Window Help

TMpOTT Te

#5plit the =string at the first white-space character

text = "The rain in Spain”
¥ = re.split{™\=", te=mt, 1)
print {y}

Output:

RESTART: C:/Program Files/Python38/RegEX programs/prg7.py
['The', 'rain in Spain']

«» The sub() Function

The sub() function replaces the matches with the text of your choice.
Example 3.8 Replace every white-space character with the number 9
‘@ prgd.py - C/Program Files/Python38/RegEx_programs/prgl.py (3.8.9)

Fite Edit Format Run Options Window Help

1mMporT. re

#Beplace all white-space characters with the digit ™g"

text = "The rain in Spain™
¥ = re.sub{"\s", 749", text)
rint (v)

Output:

RESTART: C:/Program Files/Python38/RegEx programs/prgf.py
TheSrain9in9S5pain

You can control the number of replacements by specifying
the count parameter:

Regular Expressions

31

Programming with Python—1I Example 3.9 Replace the first 2 occurrences

= *prgd.py - C:/Program Files/Python38/RegEx_programs/prgd.py (3.8.9)* |~ E] E
File Edit Format Rum Options Window Help

I Pe

#Replace the first two occurrences of a white-space character with the digit 8

text = "The rain in Spain®
= rezaub(P\aP: 990 cextg 2)
print (v)

Output:

=========== RESTART: C:/Program Files/Python38/RegEx programs/prgd.py
TheS9rainf%in Spain

+ Match Object

A Match Object is an object containing information about the search and
the result.

Note:

If there is no match, the value None will be returned, instead of the Match
Object.

Example 3.10 Do a search that will return a Match Object

= prgll.py - C:/Program Files/Python38/RegEx_programs/prglQ.py (3.8.9)
Fite Edit Format Run Options Window Help

rL e
#The zsearch() function returns a Match object:
text = "The rain in Spain™

¥y = re.search[™ai", text

print (¥)

========== RESTART: C:/Program Files/Python38/RegEx programs/prgll.py
<re.Match object; span=(5, 7), match="ai'>

The Match object has properties and methods used to retrieve information
about the search, and the result:

.span() - returns a tuple containing the startand end positions of the match.
.string- returns the string passed into the function.

.group()-returns the part of the string where there was a match.

Example 3.11 Print the position (start- and end-position) of the first
match occurrence.

The regular expression looks for any words that starts with an upper case
"S"‘

32

prqlL.py - C/Pragram Files/Pythan38/ReqEx_programs/prqll.py (38.9) @ Regular Expressions
File Edit Format Run Options Window Help

1mMpOIT e

#5earch for en upper case "3" character in the beginning of a word, .end print it

text = "The rain in Spain®
y = re.search(r"\b3\w+", text)
print(y.span())

Output:

RESTART: C:/Program Files/Python38/RegEx programs/prgll.py
(12, 17

Example 3.12 Print the string passed into the function

= *prgl2.py - C:/Program Fﬂﬁfﬁihmﬁ!fﬂteg&_pmgmnﬂ prgl2.py 389"
File Edit Format Run Options Window Help

import re
#The string property returns the search string:
text = "The rain in Spain®

v = re.search{r™\b5\w+", text)
print{y.string)

Output:

RESTART: C:/Program Files/Python38/RegEx programs/prgl2.py
The rain in Spain

Example 3.13 Print the part of the string where there was a match.
The regular expression looks for any words that starts with an upper case

HSH:

- *prgl3.py - C:/Program Files/Python38/RegEx_programs/prgl3.py (3.8.9)*
File Edit Format Run Options Window Help

1mpart re

text = "The rain in Spain”

¥ = re.search (r"\b3\w+", Ctext)
ipriﬂtty-grnupt}}

Output:

RESTART: C:/Program Files/Python38/RegEx programs/prgl3.py
Spain

O o% % °
AX A XS XS X4

33

UNIT-II

4

GUI PROGRAMMING IN PYTHON-I

Unit Structure

4.0 Objective

4.1 Introduction

4.2 What is GUI

4.3 Advantages of GUI

4.4 Introduction to GUI library
4.5 Layout management

4.6 Events and bindings

4.7 Fonts

4.8 Colors

4.9 Summary

4.10 Reference for further reading
4.11 Unit End Exercises

4.0 OBJECTIVE

e Understand GUI Programming

e Understand concept of window and main loop
e Understand different widget

e Understand menu driven programming

4.1 INTRODUCTION

The graphical user interface (GUI), developed in the late 1970s by
the Xerox Palo Alto research laboratory and Apple’s Macintosh and
Microsoft’s Windows, was designed.

4.2 WHAT IS GUI

Graphical user interfaces (GUI) would become the standard of
user-centered design in software application programming, providing
users to operate computers through the direct manipulation of graphical
icons such as Text box, Buttons, Scroll bars, Spin box, Windows, Radio
Button, Menus, and Cursors etc.

Gui Programming in Python-I

4.3 ADVANTAGES OF GUI

1. GUI s very user-friendly

2. GUI is more attractive and multi-colored.

3. It is much easy than the command-driven interface

4. User can switch easily between tasks on the GUI interface

Disadvantages of GUI:
1. It becomes complex if the user needs to communicate with the
computer directly

2. It is fully based applications require more RAM .

3. GUI uses more processing power compared to other interface types

4.4 INTRODUCTION TO GUI LIBRARY

Tkinter is the standard GUI library for Python. Python when combined
with Tkinter provides a fast and easy way to create GUI applications.
Python provides various options for developing graphical user interfaces
(GUISs) such as Tkinter, wxPython, JPython.

Tkinter — Tkinter is the Python interface to the Tk GUI toolkit shipped
with Python.

wxPython — This is an open-source Python interface for wxWindows
http://wxpython.org.

JPython — JPython is a Python port for Java which gives Python scripts.
Tkinter Programming;:

Tkinter is the standard GUI library for Python. Tkinter provides a easy as
well as fast way to create GUI applications. Tkinter provides a powerful
object-oriented interface to the Tk GUI toolkit.

Creating a GUI application using Tkinter you need to do the following
steps —

Import the Tkinter module.

Create the GUI application main window.

Add one or more of the above-mentioned widgets to the GUI application.
Enter the main event loop to take action against each event triggered by
the user.

Importing Tkinter:

How to import Tkinter?
To import the Tkinter, use the import statement and write the
tkinter and create iGts object. Call the Tk() GUI Kit. Call the
mainloop() method from the Tk().

35

Programming with Python— II

36

Example:-

>>> import tkinter as x
>>> a=x.Tk()
>>>a.mainloop()

Output

4.5 LAYOUT MANAGEMENT

Tkinter has three built-in layout managers: the pack , grid , and place
managers. The place geometry manager positions widgets using absolute
positioning. The pack geometry manager organizes widgets in horizontal
and vertical boxes. The grid geometry manager places widgets in a two
dimensional grid.
1. Pack method()

The pack method of geometry manager organizes the widget in
blocks before the appear on the parent widget.

Syntax:

Widget.pack(pack option);

There are three option of pack method and they are expand, fill and side
Expand — if the value of expand option is set to true then widget expand to
fill any space. If the value of expand option is set to False then it is used in
widget’s parent.

Fill- The fill option is used to fill any extra space allocated to it by packer.
The fill method has its own minimal dimensions and they are NONE, X
(horizontally), Y (vertically) or Both (Vertical and Horizontal)

Side- It find out which side of the parent widget packs against : TOP ,
BOTTOm, LEFT or RIGHT.

Example-

fromtkinter import *

r=Tk()

r.geometry('350x300+120+100"

11 = Label(r, text="Python", bg="#E74C3C", fg="white").pack(fill=X,
padx=12)

12 = Label(r, text="JAVA", bg="#2ECC71", fg="black").pack(fill=X,
padx=12)

13 = Label(r, text="Database", bg="#F1C40F", fg="white").pack(fill=X,
padx=12)

14 = Label(r, text="Python GUI", bg="#34495E", fg="white").pack(fill=X,
padx=12, pady=12, side=LEFT)

15 = Label(r, text="Python Database", bg="#5DADE2",
fg="black").pack(fill=X, padx=12, side=LEFT)

16 = Label(r, text="Python Networking", bg="#A569BD",
fg="white").pack(fill=X, padx=12, side=LEFT)

listbox = Listbox()

listbox.pack(fill=BOTH, expand=1)

for i in range(10):

listbox.insert(END, str(i))

mainloop()

Outpyt:

Python

Python GUI _ Python MNetworking

WD 00 =] Ohn B Ll Ra O

Grid method:
Grid method geometry manager is used to organize widgets in a table like
structure in the parent widget.

Syntax:

Widget.grid(options)

There are following option

Column : It is a column to put widget in default 0.

Columnspan : This tells that how many columns widget occupies. The
default value is 1.

Row : it is a row to put widget in. default the first row that is still empty.
Rowspan : it tells how many row widget have occupied, be default is is 1.
Example:

fromtkinter import *

Gui Programming in Python-I

37

Programming with Python— II

38

Label(text="Rollno", width=10).grid(row=0, column=0)
Label(text="Name", width=10).grid(row=0, column=1)
Label(text="Age", width=10).grid(row=0, column=2)
Label(text="1001", width=10).grid(row=1, column=0)
Label(text="Sandeep", width=10).grid(row=1, column=1)
Label(text="18", width=10).grid(row=1, column=2)
Label(text="1003", width=10).grid(row=2, column=0)
Label(text="Sachin", width=10).grid(row=2, column=1)
Label(text="17", width=10).grid(row=2, column=2)
Label(text="1005", width=10).grid(row=3, column=0)
Label(text="Deepak", width=10).grid(row=3, column=1)
Label(text="19", width=10).grid(row=3, column=2)
Label(text="1012", width=10).grid(row=4, column=0)
Label(text="Rajesh", width=10).grid(row=4, column=1)
Label(text="21", width=10).grid(row=4, column=2)

mainloop()
Output: _ .)

Rollno Marne
1001 Sandeep
1003 Sachin

1005 Deepak
12 Rajesh

Place()
The place() method of layout manager organizes widgets in the parent
widget by placing them in a specific position.

Syntax:
widget.place(place option)

The following option:

Anchor — The exact spot of widget other option refer to may ne N,E, S, W,
NE, NW, SE or SW, compass directions indicating the corners and sides
od widget: default is NW.

Bordermode — INSIDE to indicate that other option refer to the parent’s
inside, OUTSIDE otherwise.

Height, width- It determines the height and width in pixel.
X,y — It determines horizontal and vertical offset in pixcel.
fromtkinter import *

root = Tk() Gui Programming in Python-I
Label(root, text="Rollno is : 1090 ").place(x=10, y=20)

Label(root, text="Name is : Sandeep ").place(x=10, y=60)

Label(root, text="Age : 18 ").place(x=10, y=100)

Label(root, text="DOB : 31 March 2005 ").place(x=10, y=140)

Label(root, text="Location is : Mumbai ").place(x=10, y=180)

Label(root, text="University is : Mumbai University ", bg="red",
fg="white").place(x=10, y=220)

mainloop()

Output:

v LR =

Rolino s : 1090

Mame is : Sandeep

Age : 18

D08 : 31 March 2005

Location is : Mumbai

University is : Mumbai University

4.6 EVENTS AND BINDINGS

Events and bindings plays important role in events handing in
python.Widget configuration and styling is also vital in GUI

To bind an event to any widget in python , bind() is used.
Syntax

widget.bind(event,handler)

Where,

event can be button clicked or key press etc

39

Programming with Python— II

40

handler can be type of button or key used to handle event

Whenever event occurs the handler is called to execute particular function

related to the event.

Example:

fromtkinter import *

defadditon():

res=int(n1.get())+int(n2.get())

mt.set(res)

m = Tk()

mt=StringVar()

Label(m, text="Enter First Number ").grid(row=0, sticky=W)
Label(m, text="Enter Second Number ").grid(row=1, sticky=W)
Label(m, text="Addition is :").grid(row=3, sticky=W)

result=Label(m, text="", textvariable=mt).grid(row=3,column=1,
sticky=W)

nl = Entry(m)

n2 = Entry(m)

nl.grid(row=0, column=1)

n2.grid(row=1, column=1)

b = Button(m, text="Click for Addition", command=additon)
b.grid(row=0, column=2,columnspan=2, rowspan=2)
mainloop()

output:

| Enter First Mumber 512 . .
J il Cllckforﬁ\ddmmni
Enter Second Mumber |5

Addition is: 17

A« T

Events

Tkinter provides a powerful mechanism to deal with events. For each
widget, you can bind python functions and methods to events. If an event
matching the event description occurs in the widget, the given handler is
called with an object describing the event.

The event sequence is given as a string, using the following:
Syntax
(modifier-type-detail)

The type field is the essential part of an event specifier, whereas the
“modifier” and “detail” fields are not obligatory and are left out in many
cases. They are used to provide additional information for the chosen
“type”. The event “type” describes the kind of event to be bound, e.g.
actions like mouse clicks, key presses or the widget got the input focus.

Events and its Description

<buttton> - A mouse button is pressed with the mouse pointer over the
widget. If you press down a mouse button over a widget and keep it
pressed.

<motion> (x,y) - The mouse is moved with a mouse button being held
down.The current position of the mouse pointer is provided in the x and y
members of the event object passed to the callback, i.e. event.x, event.y

<ButtonRelease>- Event, if a button is released.

The current position of the mouse pointer is provided in the x and y
members of the event object passed to the callback, i.e. event.x, event.y

<Double-Button>- Similar to the Button event, see above, but the button is
double clicked instead of a single click

Class bindings

The bind method we used in the above example creates an instance
binding. This means that the binding applies to a single widget only; if you
create new frames, they will not inherit the bindings.

But Tkinter also allows you to create bindings on the class and application
level

Example:

fromtkinter import *

def functionl(event):

print("Single Click on Button ,Button-1")

def function2(event):

Gui Programming in Python-I

41

Programming with Python— II

42

print("Double Click on Button")

import sys; sys.exit()

widget = Button(None, text="Mouse Clicks')
widget.pack()

widget.bind('<Button-1>', function1)
widget.bind('<Double-1>', function2)
widget.mainloop()

Output:

e DR, e
}i Meouse Clicks i

Single Click on Button ,Button-1
Single Click on Buttom ,Buttomn-1

Double Click on Button

>»>» Single Click on Buttom ,Button-1
Double Click on Button

Single Click on Buttom ,Buttom-1
Double Click on Button

4.7 FONTS

The Simple Tuple fonts are commonly use for specify the font. The
tuple contains first element font family, Second element size in points
and third element style modifiers like underline, bold etc.

Example:
(“Arial,””zg’”79b01d77
For Font object Fonts

User can create a font object by importing the tkFont and using its font
class constructor.

Import tkFont

Font= tkFont.Font(option...)

Option are:

Family — It is the font family name as a string

Size- It is the font height as an integer in points.

Weight — it uses “bold” for boldface

Underline use 1 for underline, 0 for normal

Example

X=tkFont.Font(family="Arial”, size=14, weight="bold”)

4.8 COLORS

Standard attributes and properties of Widgets-
There are some common attributes like color, size, and font.
Color:

Color is represented in the string format. User can specify the color in the
following:

Name

User can use any locally defined standard color name like “red”, “green”,
“white”, “black”, “green” etc.

Hexadecimal unit

Instead of color name use hexadecimal digit like ‘#{ff” for white, ‘#00000’
for balck, ‘#000fff000’ for pure green.

Color option
The following color option

activebackground - It is used to set Background color for the active
widget

activeforeground - It is used to set foreground color for the active widget
Background — bg is used to set background color for the active widget

highlightbackground — bg is used to set background color for the highlight
region when the widget has focus.

highlightcolor— It is used to set the foreground color for the highlight
region when the widget has focus.

Selectbackground - It is used to set the background color for the selected
item of the widget.

Selectforeground - It is used to set the foreground color for the selected
item of the widget.

disabledforeground - It is used to set foreground color for the disable
widget

Foreground — fg is used to set foreground color for the active widget

Gui Programming in Python-I

43

Programming with Python— II

44

4.9 SUMMARY

1.
2.

GUI is more attractive and multi-colored.

Tkinter is the standard GUI library for Python. Python when combined
with

Tkinter provides a fast and easy way to create GUI applications.
Tkinter has three built-in layout managers: the pack , grid , and place
managers.

4.10 REFERENCE FOR FURTHER READING

. Paul Gries , Jennifer Campbell, Jason Montojo, Practical

Programming: An Introduction to Computer Science Using Python 3,
Pragmatic Bookshelf, 2/E 2014

James Payne , Beginning Python: Using Python 2.6 and Python 3,
Wiley India, 2010

4.11 UNIT END EXERCISES

A

Explain the layout management features.
Explain bind with example

Explain color in GUL

Explain Font in GUI.

Write a program for addition and multiplication of two number using
Entry

GUI PROGRAMMING IN PYTHON-II

Unit Structure
5.0 Objective
5.1 Introduction
5.2 Drawing on canvas:
a. line,
b.oval,
c.rectangle
5.3 Widgets such as :
d. frame,
e. label,
f. button,
g.check button,
h. entry,
1. list box,
J. message,
k.radio button,
1. text,
m. spin box
5.4 Summary
5.5 Reference for further reading
5.6 Unit End Exercises

5.0 OBJECTIVE

e Understand canvas, frame, Label
e Understand concept of Entry, Message, List
e Understand Check button, Button

e Understand Radio Button, Text etc

5.1 INTRODUCTION

Graphical user interfaces (GUI) would become the standard of
user-centered design in software application programming, providing

Programming with Python— II

46

users to operate computers through the direct manipulation of graphical
icons such as Text box, Buttons, Scroll bars, Spin box etc.

5.2 DRAWING ON CANVAS:

a. line
The create line method creates a line item on the Canvas.
Example:
fromtkinter import *
t=Tk()
C = Canvas(t, bg="green", height=350, width=400)
coord = 10, 50, 240, 210
arc = C.create line(55, 85, 155, 85, 105, 180, 55, 85)
C.pack()
t.mainloop()

output :

b. oval

The create_oval() method is used to create a circle item. The first
four parameters are the bounding box coordinates of the circle. In other
words, they are x and y coordinates of the top-left and bottom-right points
of the box, in which the circle is drawn.

Example:

fromtkinter import *

t=Tk()

C = Canvas(t, bg="green", height=350, width=400)
coord = 10, 50, 240, 210

arc = C.create_oval(10, 10, 350, 200, width=1)
C.pack()
t.mainloop()

output:

c. rectangle

To create a rectangle create rectangle() method is used.
This method accepts 4 parameters x1, y1, x2, y2. Here x1 and y1 are
the coordinates for the top left corner and x2 and y2 are the
coordinates for the bottom right corner.

Example:

fromtkinter import *

t=Tk()

C = Canvas(t, bg="green", height=350, width=400)
coord = 10, 50, 240, 210

arc = C.create rectangle(50, 50, 290, 260, width=2)
C.pack()

t.mainloop()

output:

Gui Programming in Python-II

47

Programming with Python— II

48

2. Widgets such as :
a. Frame

The frame widget is used to group the widget in a friendly way. Its helps
to look the GUI organized. It is like a container which arranges the
position of the other widget .

Syntax:

F=Frame (master, option)

Example:

fromtkinter import *

root = Tk()

frame = Frame(root)

frame.pack()

bottomframe = Frame(root)

bottomframe.pack(side = BOTTOM)

button1 = Button(frame, text="Add", fg="green")
buttonl.pack(side = LEFT)

button2 = Button(frame, text="Div", fg="brown")
button2.pack(side = LEFT)

button3 = Button(frame, text="Sub", fg="blue")
button3.pack(side = LEFT)

button4 = Button(bottomframe, text="Multi", fg="black")
button4.pack(side = BOTTOM)

root.mainloop()

Output:

AN e
o |

b. Label

Labels

The label widget is a display box where we can place text or images. We
can change label text any time we want . If we want to underline the text
we can do that and also we can span text across multiple lines

Syntax
Simple syntax to create this widget —
x = Label (master, option, ...)

The argument master represents the parent window and the argument
option is the option used by label widget as a key-value pairs and they are
separated by comma.

The list of most commonly used options for this widget

Anchor This options controls where the text is positioned. The
default is anchor=CENTER.

Bg The background color displayed behind the label.

Bd The size of the border around. Default is 2 pixels.

Font The font option specifies in what font that text will be
displayed.

Image To display a static image in the label widget.

Width Width of the label in characters.

Example:

importtkinter as tk

r = tk. Tk()
x = tk.Label(r, text="Hello Student ")
x.pack()
r.mainloop()
output
¥ (E=REETL
Hello Student
Example 2:
importtkinter as tk
r = tk. Tk()
tk.Label(r,
text="Mumbai University",
fg = "red",
font = "Times").pack()
tk.Label(r,
text="python programming",
fg = "light green",
bg = "dark green",
font = "Helvetica 16 bold italic").pack()
tk.Label(r,
text="object oriented programming python",
fg = "blue",
bg = "yellow",

font = "Verdana 14 bold").pack()

r.mainloop()

Gui Programming in Python-II

49

Programming with Python—11 ~ Qutput:

Mumbai University

python programming

object oriented programming python

Example:

importtkinter as tk

r=tk. Tk()

imgl = tk.PhotoImage(file="python123.gif")

txt = "Hi, Student "

w = tk.Label(r, compound = tk. CENTER,
text=txt,

image=img1).pack(side="right")

r.mainloop()

output:

c. Button

Labels

The label widget is a display box where we can place text or images. We
can change label text any time we want . If we want to underline the text
we can do that and also we can span text across multiple lines

Syntax

Simple syntax to create this widget —

x = Label (master, option, ...)

50

The argument master represents the parent window and the argument
option is the option used by label widget as a key-value pairs and they are
separated by comma.

The list of most commonly used options for this widget

Anchor This options controls where the text is positioned. The
default is anchor=CENTER.

Bg The background color displayed behind the label.

Bd The size of the border around. Default is 2 pixels.

Font The font option specifies in what font that text will be
displayed.

Image To display a static image in the label widget.

Width Width of the label in characters.

Example:

importtkinter as tk

r = tk. Tk()

x = tk.Label(r, text="Hello Student ")

x.pack()

r.mainloop()

output

=

§ tk

Hello Student

Example 2:

importtkinter as tk

r = tk.Tk()

tk.Label(r,

tk.Label(r,

tk.Label(r,

r.mainloop()

text="Mumbai University",
fg — "red",
font = "Times").pack()

text="python programming",

fg = "light green",

bg = "dark green",

font = "Helvetica 16 bold italic").pack()

text="object oriented programming python",
fg = "blue",

bg = "yellow",

font = "Verdana 14 bold").pack()

Gui Programming in Python-II

51

Programming with Python—11 ~ Qutput:

Mumbai University

python programming

object oriented programming python

Example:

importtkinter as tk

r=tk. Tk()

imgl = tk.PhotoImage(file="python123.gif")

txt = "Hi, Student "

w = tk.Label(r, compound = tk. CENTER,
text=txt,

image=img1).pack(side="right")

r.mainloop()

d. check button,

The Checkbutton widget is used to display a number of options to a
user as toggle buttons. The user can then select one or more options
by clicking the button.

52

Syntax

w = Checkbutton(master, option, ...)
Example

fromtkinter import *

r=Tk()

C1 = Checkbutton(r, text = "Python")
C2 = Checkbutton(r, text = "Java")
C3 = Checkbutton(r, text = "C++")
C4 = Checkbutton(r, text = "HTML")
Cl.pack()

C2.pack()

C3.pack()

C4.pack()

r.mainloop()

Output:

¥ Python
v lava
[T C+s

[~ HTML

e. entry

The Entry widget accepts single line text strings.
Syntax

e = Entry(master, option, ...)

Parameters

master — This represents the parent window.

options — These options can be used as key-value pairs separated by
commas.

Gui Programming in Python-II

53

Programming with Python— II

54

Option Description

Font The font used for the text.

Command A procedure to be called every time the user
changes the state of this check button.

Bg The normal background color displayed behind the
label and indicator.

Bd The size of the border around the indicator. Default
is 2 pixels.

exportselection By default, if you select text within an Entry
widget, it is automatically exported to the
clipboard. To avoid this exportation, use
exportselection=0.

Justify If the text contains multiple lines, this option

controls how the text is justified: CENTER, LEFT,
or RIGHT.

List of methods are commonly used for this widget —

Methods

Description

get()

Returns the entry's current text as a string.

icursor (index)

Set the insertion cursor just before the character at
the given index.

insert (index, s)

Inserts string s before the character at the given
index.

select clear()

Clears the selection.

select range (start,
end)

Selects the text starting at the start index, up to but
not including the character at the end index.

Example :
fromtkinter import *
t=Tk()

11= Label(t, text="Enter Your Rollno")

11.pack(side = LEFT)
el = Entry(t,bd=12)

el.pack(side = RIGHT)

t.mainloop()

Gui Programming in Python-II

Enter ¥our Rollino

f. list box

The listbox widget displays a list of items. The user can select the item
from the given list. ListBox can display different types of items. These
items must be of the same type of font and color. The user can select one
or more items from the given list according to the requirement.

Syntax
L=Listbox(master, option,...)

The argument master represents the parent window and the argument
option is the option used by Listbox widget as a key-value pairs and they
separated by comma.

Methods on listbox:

activate (index) Selects the line specifies by the index.

get (first, last=None | Returns a values containing the text of the lines

) with indices from first to last

curselection() Returns values containing the line numbers of the
selected element or elements, counting from zero.

delete (first, | Deletes the lines whose indices are in the range

last=None) [first, last]

Example:

fromtkinter import *
t=Tk()

Lb1 = Listbox(t)
Lbl.insert(1, "Mumbai")
Lbl.insert(2, "Thane")
Lb1.insert(3, "Pune")
Lbl.insert(4, "Nashik")
Lbl.insert(5, "Nagpur")
Lb1.pack()

t.mainloop()
55

Programming with Python— II

56

Output

iNashik
Magpur

g. message

It is GUI element of tkinter. It is multiline and non-editable object. It
displays the static text. If length of message is large, it automatically
breaks the long text to multiple lines. It is similar to label widget. The only
difference is the message widget automatically wraps the text where the
label widget does not do automatically.

Syntax:
M=Message(master, option)

The argument master represents the parent window and the argument
option is the option used by message widget as a key-value pairs and they
separated by comma.

Example:

fromtkinter import *

t=Tk()

varl = StringVar()

labell = Message(t, textvariable=varl, relief=RAISED)

varl.set("It is GUI element of tkinter. It is multiline and non-editable
object.")

labell.pack()

t.mainloop()
Output:

|

It is GUI element of
tkinter. It is
multiline and
non-editable
ohject.

h. radio button

The radio button is also known as option button. The option button allows
user to select values from the predefined set of values. Radio button
contains text as well as image. We can associate the function with the
option button when we select the option the function is called
automatically.

Methods use in Radio Button

Methods Description

select() Sets the radiobutton.

deselect() Clears the radiobutton.

invoke() You can call this method to get the same actions
that would occur if the user clicked on the option
button to change its state.

Example:

fromtkinter import *

t =Tk()

def functionl1():

selection = "selected your subject " + str(varl.get())
label.config(text = selection)

varl = IntVar()

R1 = Radiobutton(t, text="Python", variable=var1, value=1,
command=functionl)

R1.pack(anchor =W)

R2 = Radiobutton(t, text="Java", variable=varl, value=2,
command=functionl)

R2.pack(anchor = W)

R3 = Radiobutton(t, text="perl", variable=varl, value=3,
command=functionl)

R3.pack(anchor = W)

label = Label(root)

label.pack()

t.mainloop()

Gui Programming in Python-II

57

Programming with Python—1I Qutput:

T
:1 " Python .-
™ Java
" perl

e e R e
1. text

Text widget allows user to edit the multiline text. User can also format the
text the way user want to it display. User can change the color of the text,
foreground color as well as background color for the text and also user can
set the font of the text.

Syntax:
T= Text(master, option,...)
Method

Text object have following methods

Method Description

Get() This method returns a specific character of text.

Insert() This method inserts strings at the specified index
location.

See(index) This method returns true if the text located at the

index position is visible.

Index() Returns the absolute value of an index based on
the given index.

Example:

fromtkinter import *

t =Tk()

defonclick():

pass

text = Text(t)
text.insert(INSERT, "Mumbai")
text.insert(END, "University")
text.pack()

58

text.tag_add("123","1.0", "1.4")
text.tag_add("444","1.8","1.13")
text.tag config("123", background="yellow", foreground="red")

Gui Programming in Python-II

text.tag_config("444", background="black", foreground="blue")

t.mainloop()

J. spin box

The spinbox contains the fixed number of values and it allows selecting
the value from the given values. It is a standard Tkinter Entry eidget.

Syntax:
s = Spinbox(master, option)

The argument master represents the parent window and the argument
option is the option used by message widget as a key-value pairs and they
separated by comma.

Option Description

from The minimum value.

Justify Default is LEFT

State One of NORMAL, DISABLED, or
"readonly".

To See from.

Validate Validation mode. Default is none

Width Widget width, in character units. Default is
20.

59

Programming with Python— II

60

Example

fromtkinter import *

t="Tk()

s = Spinbox(t, from_=0, to=10)

s.pack()
b.pack()
Output

5.4 SUMMARY

¢ In this chapter we studied the GUI programming with different widget.

e Widget such as Button, Text, List, Radio button etc. call function
when user clicks on button and different widget.

5.5 REFERENCE FOR FURTHER READING

1. Mastering GUI Programming with Python: Develop impressive cross-
platform.

2. Python GUI Programming with Tkinter: Develop responsive and
powerful GUI applications with Tkinter

5.6 UNIT END EXERCISES
1. Explain Menu widget with Example
2. Write a program for Addition of two number using tkinter.
3. Write a program for factorial of given number using tkinter.
4. Explain any three widget.
5. Explain tkMessagebox module
6. Explain PanedWindow and Toplevel widget
XX EXR

UNIT-III

DATABASE & NETWORKING
CONNECTIVITY

Unit Structure
6.0 Objective
6.1 Introduction
6.2 Database connectivity in Python:
a. Installing mysql connector,
b.accessing connector module,
C.using connect,
d.cursor,
e. execute & close functions,
f. reading single & multiple results of query execution,
g.executing different types of statements,
h. executing transactions,
i. Understanding exceptions in database connectivity.
6.3 Network connectivity:
Jj- Socket module,
k.creating server-client programs,
1. sending email,
m. reading from URL
6.4 Summary
6.5 Reference for further reading
6.6 Unit End Exercises

6.0 OBJECTIVE

e Understand Python and connector installation
e Understand concept of database
e Understand Create table, insert record

e Understand how the record are delete, update etc

61

Programming with Python— II

62

6.1 INTRODUCTION

Python supports various databases like MySQL, Oracle, Sybase, Postgre
SQL, etc. Python also supports Data Definition Language (DDL), Data
Manipulation Language (DML) and Data Query Statements. For database
programming, the Python DB API is a widely used module that provides a
database application programming interface.

6.2 DATABASE CONNECTIVITY IN PYTHON:

a. Installing mysql connector,

Connector/Python Installation

Connector/Python runs on any platform where Python is installed. Python
comes preinstalled on most Unix and Unix-like systems, such as Linux,
macOS, and FreeBSD. On Microsoft Windows, a Python installer is
available at the Python Download website. If necessary, download and
install Python for Windows before attempting to install Connector/Python.

Connector/Python implements the MySQL client/server protocol two
ways:

* As pure Python; an implementation written in Python. Its
dependencies are the Python Standard Library and Python Protobuf>=
3.0.0.

* Asa C Extension that interfaces with the MySQL C client library. This
implementation of the protocol is dependent on the client library, but
can use the library provided by MySQL Server packages (see MySQL
C API Implementations).

Obtaining Connector/Python

Packages are available at the Connector/Python download site. For some
packaging formats, there are different packages for different versions of
Python; choose the one appropriate for the version of Python installed on
your system.

Installing Connector/Python from a Binary Distribution
Connector/Python installers in native package formats are available for
Windows and for Unix and Unix-like systems:

* Windows: MSI installer package
* Linux: RPM packages for Oracle Linux, Red Hat, and SuSE;
* macOS: Disk image package with PKG installer

You may need root or administrator privileges to perform the
installation operation.

Binary distributions that provide the C Extension link to an already
installed C client library provided by a MySQL Server installation. For
those distributions that are not statically linked, you must install MySQL

Server if it is not already present on your system. To obtain it, visit the
MySQL download site.

Installing Connector/Python on Microsoft Windows

Managing all of your MySQL products, including MySQL
Connector/Python, with MySQL Installer is the recommended approach. It
handles all requirements and prerequisites, configurations, and upgrades.

Prerequisite. The Microsoft Visual C++ 2015 Redistributable must be
installed on your system.

* MySQL Installer (recommended): When executing MySQL Installer,
choose MySQL Connector/Python as one of the products to install.
MySQL Installer installs the Windows MSI Installer described in this
documentation.

* Windows MSI Installer (.msi file): To use the MSI Installer, launch it
and follow the prompts in the screens it presents to install
Connector/Python in the location of your choosing.

Like with MySQL Installer, subsequent executions of the
Connector/Python MSI enable you to either repair or remove the existing
Connector/Python installation.

Connector/Python Windows MSI Installers (.msi files) are available from
the Connector/Python download site (see Section 4.1, “Obtaining
Connector/Python”). Choose an installer appropriate for the version of
Python installed on your system. As of Connector/Python 2.1.1, MSI
Installers include the C Extension; it need not be installed separately.

Installing Connector/Python from Source on Microsoft Windows

A Connector/Python Zip archive (.zip file) is available from the
Connector/Python download site (see Section 4.1, “Obtaining
Connector/Python”).

To install Connector/Python from a Zip archive, download the latest
version and follow these steps:

1. Unpack the Zip archive in the intended installation directory (for
example, C:\mysql-connector\) using WinZip or another tool that can
read .zip files.

2. Start a console window and change location to the folder where you
unpacked the Zip archive:

$> cd C:\mysql-connector\

3. Inside the Connector/Python folder, perform the installation using
this command:

$> python setup.py install

Database & Networking
Connectivity

63

Programming with Python— II

64

To include the C Extension (available as of Connector/Python 2.1.1),
use this command instead:

$> python setup.py install --with-mysql-capi="path _name"

The argument to --with-mysql-capi is the path to the installation directory
of MySQL Server.

To see all options and commands supported by setup.py, use this
command:
$> python setup.py —help

b. accessing connector module,

Configuration file is used to store credentials like permission to database,
table and database related commands to specific users. The configuration
file is used to the MySql server and then creates your own database on the
MySql server.

Establishing a Connection with MySQL Server

MySQL is a server-based database management system. One server might
contain multiple databases. To interact with a database, you must first
establish a connection with the server. The general workflow of a Python
program that interacts with a MySQL-based database is as follows:

e Connect to the MySQL server.

o Create a new database.

e Connect to the newly created or an existing database.

e Execute a SQL query and fetch results.

¢ Inform the database if any changes are made to a table.

¢ Close the connection to the MySQL server.
¢. using connect,
d. cursor, execute & close functions

To execute a SQL query in Python, you’ll need to use a cursor, which
abstracts away the access to database records. MySQL
Connector/Python provides you with the MySQLCursor class, which
instantiates objects that can execute MySQL queries in Python. An
instance of the MySQLCursor class is also called a cursor.

cursor objects make use of a MySQLConnection object to interact with
your MySQL server. To create a cursor, use the .cursor() method of
your connection variable:

cursor = connection.cursor()

Inserting Records in Tables

In the last section, you created three tables in your database: movies,
reviewers, and ratings. Now you need to populate these tables with data.

This section will cover two different ways to insert records in the MySQL
Connector for Python.

The first method, .execute(), works well when the number of records is
small and the records can be hard-coded. The second method,
.executemany(), is more popular and is better suited for real-world
scenarios.

Using .execute()

The first approach uses the same cursor.execute() method that you’ve been
using until now. You write the INSERT INTO query in a string and pass it
to cursor.execute(). You can use this method to insert data into the movies
table.

Reading Records Using the SELECT Statement

To retrieve records, you need to send a SELECT query to cursor.execute().
Then you use cursor.fetchall() to extract the retrieved table in the form of a
list of rows or records.

Filtering Results Using the WHERE Clause

You can filter table records by specific criteria using the WHERE clause.
For example, to retrieve all movies with a box office collection greater
than $300 million, you could run the following query:

SELECT empno,ename

FROM emp

WHERE salary > 9000;

UPDATE Command

For updating records, MySQL uses the UPDATE statement

DELETE Command

Deleting records works very similarly to updating records. You use the
DELETE statement to remove selected records.

Example for connection:

importmysql.connector

cnx = mysql.connector.connect(user='abc', password="'123",
host='122.0.0.1",

database='xyz")

cnx.close()

Example for Connection using try

importmysql.connector

frommysql.connector import errorcode

Database & Networking
Connectivity

65

Programming with Python— II

66

try:

cnx | = mysql.connector.connect(user="abc',
database='emp1")
exceptmysql.connector.Error as errl:
if errl.errno == errorcode.ER_ ACCESS DENIED ERROR:
print("wrong user name or password")
elif errl.errno == errorcode.ER_ BAD DB _ERROR:
print("Database not found")
else:
print(err])
else:
cnx1.close()
Create dictionary to hold connection information
dbConfig={
‘user’:<adminName>, #your Admin Nmae
‘password’:<adminpwd>,#admin password

‘host’:122.0.0.1,#local host ip address

}
For creating own database use following commands
GUID="GuiDB”

Conn=mysql.connect(**guiConf.dbConfig)
Cursor.conn.cursor()
try:

cursor.execute(:CREATE DATABSE {} DEFAULT CHARACTER SET
‘utf8 ’9’.

Format(GUIDB))

Except mysql.Error as err:

Print(“Failed to create database{}”.format(err))
Conn.close()

In the above code we created the cursor object from connection object to
execute commands to MYSQL. A cursor is usually a place in a definite
row in a database table.

e. Reading single & multiple results of query execution, executing
different types of statements,executing transactions, Understanding
exceptions in database connectivity.

Retrieving record from table we used select command. where clause are
used with select command for matching particular condition.

Syntax:
Select Field Nol, Field No 2,
From <Table Name>
Where Condition.
Example
importmysql.connector
try:
connection = mysql.connector.connect(host="localhost',
database='db1',
user="abc',
password='123")
sql = "select * from Student"
cursor = connection.cursor()
cursor.execute(sql)
records = cursor.fetchall()
print("Total number of records ", cursor.rowcount)
print("\nPrinting each row")
for row in records:
print("Student ID =", row[0],)
print("Student Name =", row[1])
print("Phy =", row[2])

print("Chem =", row[2])
print("Bio =", row[3], "\n")
exceptmysql.connector.Error as e:
print("Error reading data", e)
finally:
ifconnection.is_connected():
connection.close()
cursor.close()
Show database command:
Import mysql.connector as mysql
Import GuiDBConfig as guiCon
Conn=mysql.connect(**guiConfig.dbConfig)
Cursor=conn.cursor()
Cursor.execute(“SHOW DATABASE”)

Database & Networking
Connectivity

67

Programming with Python— II

68

Print(cursor.fetchall())

Conn.close()

Command for Create table Student
Student table have following fields

Student Idint

Student Namevarchar

Phyint

ChemlInt

Bio int

Python code
Conn=mysql.connect(**guiConfig.dbConfig)
Cursor=conn.cursor()

Cursor.execute(“xyz”)
Cursor.execute(“CREATE TABLE Student(
Student Id INT primary key ,

Student NameVARCHAR(12) not null,

Phy INT,

Chem INT,

Bio INT)ENGINE=innoDB”)

Conn.close()

Above code create Student table in Database.
To create table having foreign key constraint
Create student_info table having following columns
Sr No INT not null auto_increment,

Student IdInt,

MobileNoint,

Age int

Command:

Cursor.execute(“USE guidb”)
Cursor.execute (“CREATE TABLE Student Info (
Sr No INT not null auto_increment,
Student id INT,

MobilrNo INT,

AGE INT,

FOREIGN KEY (Student Id)

REFERENCES Student(Student _ID) Database & Networking
ON DELETE CASCADE) Connectivity
ENGINE=Innodb”)

INSERT Command:

Below code is use to insert record in Student Table

Table Info

Studentid

Student Name

Phy

Chem

BIO
Insert into tables values(valuel,value2,....) query is used to insert new
record in table

Example

Import MySQLdb
db=MYSQLdb.connect(“localhost”,”abc,”123”,”database1”)
Cursor=db.cursor()

Sql="INSERT INTO STUDENT

(STUDENT ID,STUDENT NAME,PHY,CHEM,BIO)
Values(101,”xyz”,87,99,67)”

try:

cursor.execute(sql)

db.commit()

db.close()

UPDATE Command:

Update is used to update one or more records. We can use where with
UPDATE.

Syntax for UPDATE

UPDATE <table Name> Set <Field Name> where <Condition>
Import MySQLdb
db=MYSQLdb.connect(“localhost”,”abc”,”123”,”database1”)
Cursor=db.cursor()

Sql="UPDATE STUDENT

Set Phy=67

Where Student Id=101"

69

Programming with Python— 11 try:
cursor.execute(sql)
db.commit()
except
db.rollback()
db.close()
Example for update all record in table
Update chemistry subject marks by 10% of each student
Import MySQLdb
db=MYSQLdb.connect(“localhost”,”abc”,”123”,”database1”)
Cursor=db.cursor()
Sql="UPDATE STUDENT
Set chem=chem*.010”
try:
cursor.execute(sql)
db.commit()
except
db.rollback()
db.close()
DELETE Command

DELETE command is use for delete record from table. To delete
particular record we used where with condition.

Syntax:

DELETE FROM <TABLE NAME>
Where Condition.

Example:

Import MySQLdb
db=MYSQLdb.connect(“localhost”,”abc,”123”,”database1”)
Cursor=db.cursor()

Sql="DELETE FROM STUDENT
Where Student Id=101"

try:

cursor.execute(sql)

db.commit()

except

70

db.rollback()

db.close()

Example for DELETE ALL Record from Table
Import MySQLdb
db=MYSQLdb.connect(“localhost”,”abc,”123”,”database1”)
Cursor=db.cursor()

Sql="DELETE FROM STUDENT”

try:

cursor.execute(sql)

db.commit()

except

db.rollback()

db.close()

This code will delete all record from Student Table.

6.3 NETWORK CONNECTIVITY:

Python provides two levels of access to network services. At a low level,
you can access the basic socket support in the underlying operating
system, which allows you to implement clients and servers for both
connection-oriented and connectionless protocols.

Python also has libraries that provide higher-level access to specific
application-level network protocols, such as FTP, HTTP, and so on.

f. Socket module,

Sockets are the endpoints of a bidirectional communications channel.
Sockets may communicate within a process, between processes on the
same machine, or between processes on different continents.

Sockets may be implemented over a number of different channel types:
Unix domain sockets, TCP, UDP, and so on. The socket library provides
specific classes for handling the common transports as well as a generic
interface for handling the rest.

The socket Module

To create a socket, you must use the socket.socket() function available in
socket module, which has the general syntax —

s = socket.socket (socket family, socket type, protocol=0)
Here is the description of the parameters —

socket family — This is either AF UNIX or AF INET, as explained
earlier.

Database & Networking
Connectivity

71

Programming with Python—1I socket type — This is either SOCK_STREAM or SOCK_DGRAM.
protocol — This is usually left out, defaulting to 0.
g. creating server-client programs,

The socket Module

To create a socket, you must use the socket.socket() function available
in socket module, which has the general syntax —

s = socket.socket (socket family, socket type, protocol=0)

Here is the description of the parameters —

socket family — This is either AF UNIX or AF INET, as explained
earlier.

socket type — This is either SOCK_STREAM or SOCK_DGRAM.
protocol — This is usually left out, defaulting to 0.

Server Socket Methods

s.bind()

This method binds address (hostname, port number pair) to socket.
s.listen()

This method sets up and start TCP listener.

s.accept()

This passively accept TCP client connection, waiting until connection
arrives (blocking).

A Simple Server

To write Internet servers, we use the socket function available in socket
module to create a socket object. A socket object is then used to call
other functions to setup a socket server.

Now call bind(hostname, port) function to specify a port for your service
on the given host.

Example:

import socket

s = socket.socket()

host = socket.gethostname()

port = 12345

s.bind((host, port))

s.listen(5)

72

while True: Database & Networking

¢, addr = s.accept() Connectivity

print 'Got connection from', addr

c.send('Thank you for connecting')

c.close()

A Simple Client

Let us write a very simple client program which opens a connection to a
given port 12345 and given host. This is very simple to create a socket
client using Python's socket module function.

The socket.connect(hosname, port) opens a TCP connection to
hostname on the port. Once you have a socket open, you can read from it
like any IO object. When done, remember to close it, as you would close
a file.

import socket

s = socket.socket()

host = socket.gethostname()
port = 12345
s.connect((host, port))
prints.recv(1024)

s.close()

h. sending email,

When you send emails through Python, you should make sure that your
SMTP connection is encrypted, so that your message and login
credentials are not easily accessed by others. SSL (Secure Sockets
Layer) and TLS (Transport Layer Security) are two protocols that can be
used to encrypt an SMTP connection. It’s not necessary to use either of
these when using a local debugging server.

Using SMTP_SSL()

The code example below creates a secure connection with Gmail’s
SMTP server, using the SMTP_SSL() of smtplib to initiate a TLS-
encrypted connection. The default context of ssl validates the host name
and its certificates and optimizes the security of the connection.

importsmtplib, ssl
port =465 # For SSL
password = input("Type your password and press enter: ")

Create a secure SSL context

73

Programming with Python— II

74

context = ssl.create_default context()

withsmtplib.SMTP_SSL("smtp.gmail.com", port, context=context) as
server:

server.login("my@gmail.com", password)
reading from URL

urllib is a Python module that can be used for opening URLs. It
defines functions and classes to help in URL actions.

With Python you can also access and retrieve data from the internet
like XML, HTML, JSON, etc. You can also use Python to work with
this data directly. In this tutorial we are going to see how we can
retrieve data from the web. For example, here we used a guru99 video
URL, and we are going to access this video URL using Python as well
as print HTML file of this URL.

import urllib2

def main():

open a connection to a URL using urllib2

webUrl = urllib2.urlopen("https://www.youtube.com/user/uyyyt")

#get the result code and print it

print "result code: " + str(webUrl.getcode())

read the data from the URL and print it

data = webUrl.read()

print data

if name ==" main "

main()

6.4 SUMMARY

In this chapter we studied the use of database and Python.
Create database using python.

Create table with constraints such as primary key, not null and foreign
key etc., and insert values in table.

Update record using update command. Delete record from table.

Retrieve data from table using select command.

6.5 REFERENCE FOR FURTHER READING

1. Python: The Complete Reference

2. python and sql programming by Tony Coding

6.6 UNIT END EXERCISES

1. Explain the UPDATE Command
2. Explain the DELETE Command
3. Explain the INSERT Command
4. How to create database in python.
5. Explain the SELECT Command

6. Explain server client.

Database & Networking
Connectivity

75

