
SUBJECT CODE : USCS203

LINUX

F.Y.B.Sc. COMPUTER SCIENCE
SEMESTER -II (CBCS)

© UNIVERSITY OF MUMBAI

Prof. Suhas Pednekar
Vice Chancellor

University of Mumbai, Mumbai.

Programme Co-ordinator : Prof. Mandar Bhanushe
Head, Faculty of Science & Technology,
IDOL, University of Mumbai - 400 098.

Course Co-ordinator : Mr. Sumedh Shejole
Asst. Professor,
IDOL, University of Mumbai, Mumbai.

Editor : Mr. Vijay Kothawade
Assistant Professor,
Smt. Janakibai Rama Salvi College.

Course Writers : Dr. Sujatha Sundar Iyer
Satish Pradhan Dnyanasadhana College.

: Yuvraj Wagh
VPM R Z SHAH College.

: Priya Jadhav
N.G. Acharya and D.K.Marathe College.

May 2022, Print I

Prof. Ravindra D. Kulkarni
Pro Vice-Chancellor,

University of Mumbai.

Prof. Prakash Mahanwar
Director

IDOL, University of Mumbai.

Published by
Director

Institute of Distance and Open Learning, University of Mumbai,Vidyanagari, Mumbai - 400 098.

DTP COMPOSEDAND PRINTED BY
Mumbai University Press,

Vidyanagari, Santacruz (E), Mumbai - 400098.

CONTENT
Chapter No. Title Page No.

UNIT I

Unit I

1. Introduction 1

2. Installation 13

3. Linux Structure 22

Unit II

4. Graphical Desktop 36

5. Command Line 83

6. Linux Documentation 111

Unit III

7 . Security 161

8. Networking 168

9. Basic Shell Scripting 178

Syllabus

Course: USCS203 Linux (Credits : 2

Lectures/Week: 3)

Objectives: This course introduces various tools and techniques

commonly used by Linux programmers, system administrators and end

users to achieve their day to day work in Linux environment. It is designed

for computer students who have limited or no previous exposure to Linux.

Expected Learning Outcomes:
1) Upon completion of this course, students should have a good working

knowledge of Linux, from both a graphical and command line

perspective, allowing them to easily use any Linux distribution.

2) This course shall help student to learn advanced subjects in computer

science practically.

3) Student shall be able to progress as a Developer or Linux System

Administrator using the acquired skill set.

Unit I

Introduction History of Linux, Philosophy,

Community, Terminology, Distributions, Linux

kernel vs distribution. Why learn Linux?

Importance of Linux in software ecosystem:

web servers, supercomputers, mobile, servers.

Installation Installation methods, Hands on

Installation using CD/DVD or USB drive.

Linux Structure Linux Architecture,

Filesystem basics, The boot process, init

scripts, runlevels, shutdown process, Very

basic introductions to Linux processes,

Packaging methods: rpm/deb, Graphical Vs

Command line.

15L

Unit II

Graphical Desktop Session Management,

Basic Desktop Operations, Network

Management, Installing and Updating

Software, Text editors: gedit, vi, vim, emacs,

Graphics editors, Multimedia applications.

Command Line Command line mode options,

Shells, Basic Commands, General Purpose

Utilities, Installing Software, User

management, Environment variables,

Command aliases. Linux Documentation man

pages, GNU info, help command, More

documentation sources File Operations

Filesystem, Filesystem architecture, File types,

File attributes, Working with files, Backup,

compression.

15L

Unit III

Security Understanding Linux Security, Uses

of root, sudo command, working with

passwords, Bypassing user authentication,

15L

Understanding ssh Networking Basic

introduction to Networking, Network

protocols: http, ftp etc., IP address, DNS,

Browsers, Transferring files. ssh, telnet, ping,

traceroute, route, hostname, networking GUI.

Basic Shell Scripting Features and

capabilities, Syntax, Constructs, Modifying

files, Sed, awk command, File manipulation

utilities, Dealing with large files and Text,

String manipulation, Boolean expressions, File

tests, Case, Debugging, Regular expressions

Text book:
1) Unix Concepts and Applications by Sumitabha Das.

2) Official Ubuntu Book, 8th Edition, by Matthew Helmke & Elizabeth

K. Joseph with Jose Antonio Rey and Philips Ballew, Prentice Hall

Additional References:
1) Linux kernel Home: http://kernel.org

2) Open Source Initiative: https://opensource.org/

3) The Linux Foundation: http://www.linuxfoundation.org/

 1

UNIT I

1
INTRODUCTION

Unit Structure

1.0 Objectives

1.1 Introduction

1.2 An Overview

1.2.1 History of Linux

1.2.2 Philosophy

1.2.3 Community

1.2.4 Distributions

1.3 How is the Linux operating system used?

1.4 How the Linux Operating System Works

1.5 Linux Kernel vs Distribution

1.6 Why learn Linux?

1.6.1 Importance of Linux in software ecosystem

1.6.2 web servers

1.6.3 Supercomputers

1.6.4 Mobile

1.6.5 Servers

1.7 Pros and Cons of Linux

1.8 Let us Sum Up

1.9 Unit End Questions

1.10 List of References

1.11 Bibliography

1.0 OBJECTIVES

Introducing various tools and techniques commonly used by Linux

programmers, system administrators and end users to achieve their day-to-

day work in Linux environment.

1.1 INTRODUCTION

Linux is similar to Unix. It is coming under OS (Open source) and

community-developed operating system. Various devices like computers,

servers, mainframes, mobile devices, and embedded devices. Linux is

highly configurable. It depends on a modular design which provides

flexibility to users to customize their own versions of Linux.

 2

Introduction

1.2 AN OVERVIEW

Depending on the application, Linux can be optimized for different

purposes such as:

 Networking performance.

 Computation performance.

 Deployment on specific hardware platforms.

Users can choose different Linux distributions.

1.2.1 History of Linux:

In 1991, the Linux history started with the starting of a particular project

by the Finland student Linus Torvalds for creating a new free OS kernel.

The final Linux Kernel was remarked by continuous development

throughout the history since then.

o Linux was proposed by the Finland student Linus Torvalds in 1991.

o HP-UX (Hewlett Packard) 8.0 version was published.

o Hewlett Packard 9.0 version was published in 1992.

o FreeBSD 1.0 version and NetBSD8 version was released in 1993.

o Red Hat Linux was proposed in 1994. Caldera was detected by

Ransom love and Bryan Sparks and NetBSD 1.0 version published.

o HP-UX 10.0 version and FreeBSD 2.0 version was released in 1995.

o K Desktop Environment was established by Matthias Ettrich in

1996.

o HP-UX 11.0 version was released in 1997.

o The IRIX 6.5 version, i.e., the fifth SGI UNIX generation, Free BSD

3.0 version, and Sun Solaris 7 OS was released in 1998.

o The Caldera System agreement with professional services division

and SCO server software division was released in 2000.

o Linus Torvalds published the Linux version 2.4 source code in 2001.

o Microsoft filed the Trademark collection against Lindows.com in

2001.

o Lindows name was modified to Linspire in 2004.

o The first publication of Ubuntu was published in 2004.

o The openSUSE project started a free distribution from the community

of Novell In 2005.

o Oracle published its Red Hat distribution in 2006.

 3

Linux o Dell begun laptop distribution with Ubuntu which was pre-installed

on it in 2007.

o Linux kernel version 3.0 was released in 2011.

o Linux-based android of Google insisted 75% of the market share of

the Smartphone, based on the number of phones exported in 2013.

o Ubuntu insisted on 20000000+ users in 2014.

1.2.2 Philosophy:

All operating systems have some philosophy. When Unix was being

developed in the late 1960s and early 1970s, the inventors were intent

upon building an operating system that was significantly different from the

operating systems that ante ceded. The idea of Unix was markedly

different from that of other operating systems. And the Linux philosophy

is relatively naturally deduced directly from the Unix philosophy.

1.2.3 Community:

A distribution is largely driven by its inventor and communities. Some

develop and fund their distributions on a levy base, Debian being a well-

known illustration. Others maintain a community interpretation of their

commercial distributions.

Numerous Internet communities also give

support to Linux users. Utmost distributions and free software / open-

source projects have IRC chatrooms or newsgroups. Online forums are

another means for support, with notable exempli cations

being LinuxQuestions.org and the various distribution specific support and

community forums, such as ones for Ubuntu, Fedora, and Gentoo. Linux

distributions host mailing lists: commonly there will be a specific topic

such as usage or development for a given list.

1.2.4 Distributions:

Other operating systems like Microsoft combine each bit of coding

internally and release it as a single package. You have to choose from one

of the interpretations they offer.But Linux is different from them.

Different parts include kernel, shell utilities, X server, system

environment, graphical programs, etc. If you want, you can access the

codes of all these parts and assemble them yourself. But its not an easy

task seeking a lot of time and all the parts has to be assembled correctly.

Linux Distributions List:

Approximately an average of six hundred Linux distributors providing

different features.

1) Ubuntu:

 Came into Existence in 2004

 Used as Graphical Linux without the use of command line.

 4

Introduction

 Well known distribution

 Lot of pre-installed apps

 Easy to use

2) Linux Mint:

 Based on Ubuntu

 Uses repository software.

 Media codec and proprietary software are included

 It uses cinnamon and desktop instead of Ubuntu's unity desktop

environment

3) Debian:

 Came into existence in 1993.

 Most Stable Linux distribution.

 User Friendly.

 Every release is based on the name of the movie Toy Story.

4) Red Hat Enterprise / CentOS:

 Commercial Linux distributor.

 Red hat uses trademark law to prevent their software from being

redistributed.

 CentOS is a community project that uses red hat enterprise Linux

code

 It is a free version of RHEL

5) Fedora:

 Mainly focuses on free software.

 Used ‘upstream’ software

 Less stable

Choosing a Linux Distro

Distribution Why To Use

Ubuntu It works like Mac OS and easy to use.

Linux mint It works like windows and should be use by newcomers.

 5

Linux
Debian It provides stability but not recommended to a new user.

Fedora If you want to use red hat and latest software.

Red hat

enterprise

To be used commercially.

CentOS If you want to use red hat but without its trademark.

OpenSUSE It works same as Fedora but slightly older and more stable.

Arch Linux It is not for the beginners because every package has to be

installed by yourself.

1.3 HOW IS THE LINUX OPERATING SYSTEM USED?

Every version of the Linux OS manages hardware resources, launches, and

handles applications, and provides some form of user interface.

The Linux OS can be found in many different settings, supporting many

different use cases. Linux is used in the following ways:

 Server OS: web servers, database servers, file servers, email servers

and any other type of shared server. Designed to support high-volume

and multithreading applications, Linux is well-suited for all types of

server applications.

 Desktop OS: for personal productivity computing. It is an OS and

freely available.

 Headless server OS: for systems that do not require a graphical user

interface (GUI) or directly connected terminal and keyboard.

Headless systems are often used for remotely managed networking

server and other devices.

 Embedded device or appliance OS: needs less computing function.

It is used as as embedded OS for a variety of application like

including household appliances, automotive entertainment systems

and network file system appliances.

 Network OS: for routers, switches, domain name system servers,

home networking devices and more. For example, Cisco that uses the

Linux kernel.

 Software development OS: for enterprise software development.

Although many development tools have been ported to Windows or

other OSes, Linux is home to some of the most widely used open-

source software development tools. For example, git for distributed

source control; vim and emacs for source code editing; and compilers

and interpreters for almost every programming language.

 6

Introduction

 Cloud OS: for cloud instances like Linux for cloud servers, desktops

and other services.

1.4 HOW THE LINUX OPERATING SYSTEM WORKS

The Linux OS follows a modular design that’s the key to its numerous

variations and distributions. All Linux distributions are based on Linux

kernel, but they can differ depending on factors such as:

 Kernel version: configured with more recent versions, to incorporate

newer features or with older versions to be more stable.

 Kernel modules: This is software that can be loaded and unloaded

into the kernel to extend functionality without rebooting. Kernel

modules are often used to support:

o device drivers, which use code that controls how attached devices

operate.

o file system drivers, which use code that controls how the kernel works

with different file systems; and

o system calls, which use code that controls how programs request

services from the kernel.

 Configuration options: It is compiled with configuration options set

to include only device or file system drivers are used for some

specialized distributions; for example, compiling a kernel for a

wireless device without any wired network device drivers.

The Linux kernel is the one thing that all systems running Linux have in

common. Linux works by:

 Loading and booting a Linux kernel.

 Kernel manages all system input and output. The system is initialized,

and processes can be started.

 As system processes are started, the system can be used for processes

that include network server functions, commands entered interactively

via command line, desktop applications or any application or

program.

When using Linux with a desktop environment as a GUI, Linux works

much an equivalent as any GUI-based OS. Applications and other

resources are often opened by clicking on icons, and files are

often moved, copied or deleted employing a mouse or trackpad

1.5 LINUX KERNEL VS DISTRIBUTION

When we discuss Linux Operating Systems, we

actually mention Whole OS or the Linux Distribution, not just the

Kernel. Technically Linux is that the Kernel of the OS. A kernel is that

 7

Linux the core a part of any OS which basically handles Hardware. once

we use Linux kernel and add other important things just like the shell,

Various Libraries, GUI and other programs like Multimedia Apps etc.

Then we refer those systems as a Linux Distribution

which generally are often considered as complete OS. there's there are

dozens of Linux distributions available but few of them which are very

fashionable and widely used round the world.

1.6 WHY LEARN LINUX?

Since Linux has many advantages and features to use it,

Some of them are as follows:

 1. Free: Linux is License Free software.

2. Security (Virus Free with inbuilt Firewall protection): The

security aspect of Linux is much stronger; Inbuilt Firewall protection

is available hence Linux is not prone to viruses.

3. OpenSource: Linux is a opensource software hence source code is

open & easily available on internet.

4. Customizable: It is Customized with different types of hardware and

software

5. Flexibility: Linux is a flexible freeware operating system.

6. Cost: It is mostly free to obtain.

7. Linux is versatile: You can use Linux on virtually anything you

develop

8. Linux is a community: You can work with other Linux developers to

share knowledge and learnings

9. Linux is very stable: Linux systems rarely crash, and when they do,

the whole system normally does not go down.

1.6.1 Importance of Linux in software ecosystem:

o GUI (Graphical User Interface)

o Multitasking: No of programs running at same time.

o Multiuser: Several users on the same machine at the same time

o Multiplatform: Number of processors at a time. runs on many

different CPUs, not just Intel.

o Multiprocessor: Kernel supports multiple independently thread of a

single process or multiple process.

o Multithreading: Has native kernel support for multiple independent

threads of control within a single process memory space.

 8

Introduction

o Linux runs in a protected mode on 386 machines. It has memory

protection between processes so that that one program can’t bring

whole system down.

o It supports virtual memory using paging i.e., separate partition or file

in file system created.

o Dynamically linked shared libraries & static libraries.

o It is an open-source software hence all source code is available

including the kernel and all drivers.

o Multiple virtual consoles

o Linux has different filesystem depending upon file system like

FAT32, VFAT, NTFS or NFS, ext3, ext4, swap (RAM)

o It supports Network connectivity

o It supports Network Servers like It supports TCP/IP Networking

including FTP, Telnet, NFS, etc.

o It has Hardware Support

o Firewall Protection inbuilt available so that no outsider introducer can

attack on our System.

o It has its Own K-office Introduction to Linux 13

o Linux supports NetWare client and server with static Routing &

Dynamic Routing with the help of DHCP.

o Linux supports ‘Samba Server’ for connectivity of windows & Linux

file sharing.

o It Supports different Time Servers with send mail facility.

o It supports ftp & http services with Apache web server.

1.6.2 web servers:

o Economical: Linux is an open-source operating system, Its all

versions are available with lower price other than web servers., hence

Linux web servers are the best to choose for web hosting services.

o Flexibility: Linux provides a flexible hosting environment with

plenty of high-performance applications.

o High Up time: high up time decides how long a web server functions

well. Linux servers have high up-time because of its robust

performance and reliable.

o Stability and Performance: If hosting package includes Linux based

server, then performance is good of web servers. This operating

system is the most stable and doesn’t slow down over time or freeze

 9

Linux up. Linux web servers don’t experience memory leaks and the up

times are often much better than other servers.

o Inexpensive Hosting: Linux is an open-source operating system,

which means it’s free to use.

o Multitasking: Linux server can run multiple programs

simultaneously and its enables programs to run continuously in the

background while user works with some other programs. Hence Linux

web servers to have multitasking capabilities.

1.6.3 Supercomputers:

 Customization: Linux open-source nature make source code available

to modify code or make customization of code with supercomputer

administration. Hence custom server implantation is possible.

 Less overhead, i.e., way faster: Linux does not require extra software

to update or upgrade.

 No need for reboots.

 10,000 times more stable: Linux with supercomputers is more stable.

 Easier to automate with scripts.

 Easier backup facility available of Linux servers with

supercomputers.

1.6.4 Mobile:

 Google’s Android developers modified the Linux kernel and created

Android operating system which is based on Linux kernel (core of

operating system).

 powered by the Linux kernel, which can be found on a wide range of

devices.

 Android is an open-source operating system which allows developers

to access unlocked hardware and develop new programs as they wish.

 Android manages processes and different Apps to keep minimum

power consumption.

1.6.5 Servers:

Linux servers are very powerful of their outstanding characteristics like

security, stability, and flexibility. These Linux servers has in built web

servers and business applications which supports network administration

and web and database management services.

 10

Introduction

Following are the Key features of Linux servers:

 High Level Security: Since security is main concern hence Linux

servers provides high level of security with the help of firewall

protection and powerful system administration and file access system

to provide authorization.

 Ease of administration: Linux servers are easily administrated. They

can be controlled and managed remotely. It reduces cost because no

additional software setup for the administration is required.

 Supports multiple applications: Linux servers supports many software

applications because of its inbuilt technical strength.

 Customization is easy.

 Reliable: These servers are very reliable as they offer consistent

services without any failures.

1.7 PROS AND CONS OF LINUX

Some advantages of using Linux include:

 Open-source software

 Licensing cost is Nil.

 Reliability.

 Backward compatibility

 Many choices of distributions.

Some disadvantages of using Linux include:

 Lack of established standard.

 Support costs: Most enterprise Linux distributors like SUSE and Red

Hat offer support contracts. Depending on the circumstances, these

license fees can reduce savings significantly.

 Proprietary software. Desktop productivity software like Microsoft

Office cannot be used on Linux desktops, and other proprietary

software may be unavailable for Linux platforms.

 Unsupported hardware.

 Steep learning curve. Many users struggle to learn to use the Linux

desktop or Linux-based applications.

In some cases, the same Linux attribute can be either an advantage or

disadvantage. For example, having many options for customizing the

Linux OS is advantageous for manufacturers looking for an embedded OS,

but it is a disadvantage for enterprises that want a desktop OS that can be

used by a wide range of end users.

 11

Linux
1.8 LET US SUM UP

Linux is an open-source operating system. As it is open source, it is

special and different from other operating systems, which means that you

can customize it by editing source code. It provides programming as well

as a graphical user interface. Linux is built by Linux Torvalds because

he wanted to create a free operating system kernel that anyone can use.

Linux is a collection of operating systems that are based on Linux kernel.

The first version of Linux was released in the year 1991. The Linux

system is most commonly used for servers; however, it is available in

desktop versions as well.

Ubuntu, Devian, and Fedora are some popular Linux distributions. Also,

we have SUSE Linux Enterprise Server (SLES) and RedHat

Enterprise Linux for the commercial distribution of Linux. As it is open

source, we can modify the source code and make variations in the

operating system.

1.11 UNIT END QUESTIONS

1. Define what are different operating systems in market. Explain Linux

operating System in detail.

2. Explain features of Linux in detail.

3. Explain features of Linux in detail with different Linux distributions.

4. Explain Linux Architecture with neat diagram.

5. What is Linux? Define History of Linux.

6. Explain about Philosophy of Linux.

7. What is Linux Community and state the names of Linux communities.

8. Explain Linux Terminology.

9. Explain Linux different Distributions in detail.

10. Explain Linux kernel vs different distribution.

11. Define different reasons Why we learn Linux.

12. Explain Importance of Linux in software ecosystem 1.

13. Explain importance of Linux in web servers.

14. Explain importance of Linux in Supercomputers.

15. Explain importance of Linux in Mobile.

16. Explain importance of Linux servers.

 12

Introduction

1.9 LIST OF REFERENCES

1. The Linux Programming Interface: A Linux and UNIX System

Programming Handbook 1st Edition by Michael Kerrisk.

2. How Linux Works, 2nd Edition: What Every Superuser Should

Know Second Edition by Brian Ward.

3. The Linux Command Line: A Complete Introduction 1st Editionby by

William E. Shotts Jr.

4. Fundamentals of Linux by Pelz Oliver.

1.10 BIBLIOGRAPHY

1. Linux Command Line and Shell Scripting Bible, 3rd Edition by

Richard Blum

2. Linux: The Complete Reference, Sixth Edition by Richard Petersen

3. How Linux Works, 2nd Edition: What Every Superuser Should

Know Second Edition by Brian Ward

4. The Linux Command Line: A Complete Introduction 1st Edition

by by William E. Shotts Jr.

5. Fundamentals of Linux by Pelz Oliver

6. https://www.javatpoint.com/linux-distributions

7. https://searchdatacenter.techtarget.com/definition/Linux-operating-

system

8. https://opensource.com/resources/linux

9. https://www.linuxfoundation.org/tools/participating-in-open-source-

communities/

10. https://www.tutorialspoint.com/operating_system/os_linux.htm

https://www.javatpoint.com/linux-distributions
https://searchdatacenter.techtarget.com/definition/Linux-operating-system
https://searchdatacenter.techtarget.com/definition/Linux-operating-system
https://opensource.com/resources/linux
https://www.linuxfoundation.org/tools/participating-in-open-source-communities/
https://www.linuxfoundation.org/tools/participating-in-open-source-communities/
https://www.tutorialspoint.com/operating_system/os_linux.htm

 13

2
INSTALLATION

Unit Structure

2.1 Introduction

2.2 Download the Linux distribution of your choice

2.3 Boot into the Live CD or Live USB

2.4 Try out the Linux distribution before installing

2.5 Start the installation process

2.6 Create a username and password

2.7 Set up the partition

2.8 Boot into Linux

2.9 Check your hardware

2.10 Start using Linux

2.11 Linux Structure

2.11.1 Linux operating system

2.11.2 Architecture of Linux system

2.12 Unit End Questions

2.13 List of References

2.14 Bibliography

2.0 INTRODUCTION

Linux is the foundation of thousands of open-source operating systems

designed to replace Windows and Mac OS. It is free to download and

install on any computer. Because it is open source, there are a variety of

different interpretation, or distributions, available developed by different

groups. Follow the guidelines for installing any version of Linux.

 14

Installation

2.2 DOWNLOAD THE LINUX DISTRIBUTION OF

YOUR CHOICE.

Still, consider trying a featherlight and easy to use distribution, similar as

Ubuntu or Linux Mint. Linux distributions (known as "distros") are

generally available for free to download in ISO format. You can find the

ISO for the distribution of your choice at the distribution’s website. This

format needs to be burned to a CD or USB stick before you can use it to

install Linux. This will produce a Live CD or Live USB.

 A Live CD or Live USB is a fragment that you can boot into, and

frequently contains a interpretation of the operating system that can be

run directly from the CD or USB stick.

 Install an image burning program or use your system’s built-in burning

tool if you are using Windows 7, 8, or Mac OS X. Pen Drive Linux and

UNetBootin are two popular tools for burning ISO files to USB sticks.

2.3 BOOT INTO THE LIVE CD OR LIVE USB

Utmost computers are set to boot into the hard drive first, which means

you’ll need to change some settings to boot from your recently burned CD

or USB. Start by rebooting the computer.

 Once the computer reboots, press the key used to enter the menu. The

key for your system will be displayed on the same screen as the

manufacturer’s logo. Typical keys include F12, F2, or Del.

 For Windows 8 users,

 hold the Shift key and click restart.

 15

Linux This will load the Advanced Start-up Options, where you can boot from

CD.

 For Windows 10 users,

 go to advanced boot and then "Restart Now."

 Once you're in the boot menu,

 select CD or USB.

Once you’ve changed the settings, save and exit the BIOS setup or boot

menu.

2.4 TRY OUT THE LINUX DISTRIBUTION BEFORE

INSTALLING

Live CDs and USBs can launch a "live environment", giving you the

capability to test it out before making the switch. It is not possible to

create files but can navigate around the interface.

 16

Installation

2.5 START THE INSTALLATION PROCESS.

If you are trying distro, then it can be launched from the application on the

desktop. If it is not distro, we can start the installation from the boot menu.

2.6 CREATE A USERNAME AND PASSWORD

We need to create login information to install Linux:

 17

Linux
2.7 SET UP THE PARTITION

Linux needs to be installed on a separate partition from any other OS on

your computer if you intend binary booting Linux with another OS. A

partition is a portion of the hard drive that is formatted specifically for that

operating system.

Ubuntu will set a partition automatically and Linux installation require at

least 20 GB

 If partitions are not given by installation process, then check the

formatted as EX4. If the copy of Linux you are installing is the only

operating system on the computer, you will most likely have to

manually set your partition size.

2.8 BOOT INTO LINUX

After installation, computer will be rebooted. We can see a new screen.

“GNU GRUB” is a boot loader and handles Linux installation.

 If you install multiple distros on your computer, they will all be listed

here.

 18

Installation

2.9 CHECK YOUR HARDWARE

Utmost H/W should work out of the box with your Linux distro, though

you may need to download some additional drivers to get everything

working.

 Some hardware requires proprietary drivers to work correctly in

Linux. This is most common with graphics cards.

 In Ubuntu, we can download proprietary drivers through the System

Settings menu.

 Select the Additional Drivers option, and then select the graphics

driver from the list. Other distros have specific methods for obtaining

extra drivers.

 You can find other drivers from this list as well, such as Wi-Fi

drivers.

2.10 START USING LINUX

If installation is complete and verified if all H/W is working properly then

we are ready to start using Linux. Many popular programs can be installed

from their respective repositories.

2.11 LINUX STRUCTURE

Let's first start with the basic knowledge of the Linux operating system.

 19

Linux 2.11.1 Linux operating system:

An OS can be defined as an interface between the computer hardware and

the user. OS is a group of software that handles the resources of the

computer and provides basic services for computer programs.

It is an essential component of system software. The objective is to

provide a platform for the user to run any program efficiently. Linux is

one of the famous versions of the UNIX OS. It is coming under free open

source.

2.11.2 Architecture of Linux system:

Fig 1. Architecture of Linux System

The Linux operating system's architecture mainly contains some of the

components: the Kernel, System Library, Hardware layer,

System, and Shell utility.

1. Kernel: - The kernel is one of the core section of an operating system.

It is responsible for each of the major actions of the Linux OS. This

operating system contains distinct types of modules and cooperates with

underlying hardware directly. The kernel facilitates required abstraction

for hiding details of low-level hardware or application programs to the

system. There are some of the important kernel types which are mentioned

below:

o Monolithic Kernel

o Micro kernels

o Exo kernels

o Hybrid kernels

 20

Installation

2. System Libraries: These libraries can be specified as some special

functions. These are applied for implementing the operating system's

functionality and don't need code access rights of the modules of kernel.

3. System Utility Programs: It is responsible for doing specialized level

and individual activities.

4. Hardware layer: Linux operating system contains a hardware layer

that consists of several peripheral devices like CPU, HDD, and RAM.

5. Shell: It is an interface among the kernel and user. It can afford the

services of kernel. It can take commands through the user and runs the

functions of the kernel. The shell is available in distinct types of OSes.

These operating systems are categorized into two different types, which

are the graphical shells and command-line shells.

The graphical line shells facilitate the graphical user interface, while the

command line shells facilitate the command line interface. Thus, both of

these shells implement operations. However, the graphical user interface

shells work slower as compared to the command-line interface shells.

There are a few types of these shells which are categorized as follows:

o Korn shell

o Bourne shell

o C shell

o POSIX shell

2.12 UNIT END QUESTIONS

1. How to Download the Linux distribution of your choice.

2. How to create a username and password.

3. How to set up the partition.

4. Briefly explain Linux structure

5. Short notes on Architecture of linux sytem

2.13 LIST OF REFERENCES

1. The Linux Programming Interface: A Linux and UNIX System

Programming Handbook 1st Edition by Michael Kerrisk

2. How Linux Works, 2nd Edition: What Every Superuser Should

Know Second Edition by Brian Ward

3. The Linux Command Line: A Complete Introduction 1st Editionby by

William E. Shotts Jr.

 21

Linux 4. Fundamentals of Linux by Pelz Oliver.

2.14 BIBLIOGRAPHY

1. Linux Command Line and Shell Scripting Bible, 3rd Edition by

Richard Blum.

2. Linux: The Complete Reference, Sixth Edition by Richard Petersen.

3. How Linux Works, 2nd Edition: What Every Superuser Should

Know Second Edition by Brian Ward.

4. The Linux Command Line: A Complete Introduction 1st Edition

by by William E. Shotts Jr.

5. Fundamentals of Linux by Pelz Oliver.

 22

3
LINUX STRUCTURE

Unit Structure

3.1 Introduction

3.2 What is Linux File System?

3.3 Linux File System Structure

3.4 Types of Linux File System

3.4.1 Ext, Ext2, Ext3 and Ext4 file system

 3.4.2 JFS File System

 3.4.3 ReiserFS File System

 3.4.4 XFS File System

 3.4.5 Btrfs File System

 3.4.6 Swap File System

3.5 Linux Boot Process

 3.5.1 BIOS

 3.5.2 MBR

3.5.3 GRUB

3.5.4 Kernel

 3.5.5 Init

 3.5.6 Runlevel programs

3.6 Shutdown

3.7 Very basic instructions to Linux Process

 3.7.1 List processes

 3.7.2 Verbose list (processes)

 3.7.3 Kill by PID

 3.7.4 Kill by name/keyword

 3.7.5 List background jobs and resume background jobs

 3.7.6 Bring the most recent job to the foreground

 3.7.7 Bring a specific job to the foreground

3.8 Packaging Systems

 3.8.1 High and low-level package tools

3.9 Graphical Vs Command line

3.10 Unit End Questions

3.11 List of References

3.12 Bibliography

 23

Linux
3.1 INTRODUCTION

A Linux file system is a structured collection of files, which may be in a

disk drive or a partition. Mostly a partition is a segment of memory and

contains some data. Our system may contain various partitions of the

memory. Generally, every partition contains a file system. Some reasons

for maintaining the file system are given below.

o Primarily the computer saves data to the RAM storage; it may lose the

data if it gets turned off.

o Data storage is preferred on hard drives as compared to standard

RAM as RAM costs more than disk space.

File system contains the following sections:

o The root directory (/)

o A specific data storage format (EXT3, EXT4, BTRFS, XFS and so

on)

o A partition or logical volume having a particular file system.

3.2 WHAT IS THE LINUX FILE SYSTEM?

Linux file system is generally a built-in layer of a Linux operating system

which is used to handle the storage. Usually, it manages name of the file,

size of the file, date of creation and much more about a file.

3 Basic File Types are:

 Ordinary Files: Contains data, text, or program instructions.

 Directories: Directories are equivalent to folders.

 Special Files: Provides access to H/W

3.3 LINUX FILE SYSTEM STRUCTURE

It has a hierarchal file structure which contains:

 a root directory and

 its subdirectories.

 Linux file system contains two-part file system software

implementation architecture

 24

Linux Structure

Fig 1. Linux File System Architecture

To interact with file system, Application Programming Interface is

required. API facilitates algorithm for arranging files on a file system and

facilitates tasks such as creating, deleting, and copying the files. Linux

virtual file system provides a single set of commands for the kernel. It

requires the specific system driver to give an interface to the file system.

1.4 TYPES OF LINUX FILE SYSTEM

Linux operating system installation offers many file systems like Ext,

Ext2, Ext3, Ext4, JFS, ReiserFS, XFS, btrfs, and swap.

Fig 2. Types of Linux File System

Let's understand each of these file systems in detail:

 25

Linux 3.4.1 Ext, Ext2, Ext3 and Ext4 file system:

Ext1 stands for Extended File System. It was primarily developed

for MINIX OS. Due to some limitations, this file system no longer used.

Ext2 is managing 2 terabytes of data.

Ext3 is developed through Ext2; it is an upgraded version of Ext2 and

contains backward compatibility. The major drawback of Ext3 is that it

does not support servers because this file system does not support file

recovery and disk snapshot.

Ext4 file system is the fastest file system and compatible. It is the default

file system in linux distribution.

3.4.2 JFS File System:

JFS stands for Journaled File System, and it is developed by IBM for

AIX Unix. It is an alternative to the Ext file system. It can also be used in

place of Ext4, where stability is needed with few resources. It is a handy

file system when CPU power is limited.

3.4.3 ReiserFS File System:

ReiserFS is an alternative to the Ext3 file system. It has improved

performance and advanced features. In the earlier time, the ReiserFS was

used as the default file system in SUSE Linux. This file system

dynamically supports the file extension, but it has some drawbacks in

performance.

3.4.4 XFS File System:

XFS file system was considered as high-speed JFS, which is developed for

parallel I/O processing. NASA still using this file system with its high

storage server (300+ Terabyte server).

3.4.5 Btrfs File System:

Btrfs stands for the B tree file system. It is used for fault tolerance, repair

system, fun administration, extensive storage configuration, and more. It is

not a good suit for the production system.

3.4.6 Swap File System:

The swap file system is used for memory paging in Linux operating

system during the system hibernation. A system that never goes in

hibernate state is required to have swap space equal to its RAM size.

 26

Linux Structure

3.5 LINUX BOOT PROCESS

The following are the 6 high level stages of a typical Linux boot process.

 3.5.1 BIOS:

 BIOS stands for Basic Input/Output System.

 Performs some system integrity checks.

 Searches, loads, and executes the boot loader program.

 It looks for boot loader in floppy, cd-rom, or hard drive. You can

press a key (typically F12 of F2, but it depends on your system)

during the BIOS startup to change the boot sequence.

 Once the boot loader program is detected and loaded into the memory,

BIOS gives the control to it.

 So, in simple terms BIOS loads and executes the MBR boot loader.

3.5.2. MBR:

 MBR stands for Master Boot Record.

 It is located in the 1st sector of the bootable disk. Typically, /dev/hda,

or /dev/sda

 27

Linux
 MBR is less than 512 bytes in size. This has three components 1)

primary boot loader info in 1st 446 bytes 2) partition table info in next

64 bytes 3) mbr validation check in last 2 bytes.

 It contains information about GRUB (or LILO in old systems).

 So, in simple terms MBR loads and executes the GRUB boot loader.

3.5.3 GRUB

 GRUB stands for Grand Unified Bootloader.

 If you have multiple kernel images installed on your system, you can

choose which one to be executed.

 GRUB displays a splash screen, waits for few seconds, if you don‟t

enter anything, it loads the default kernel image as specified in the

grub configuration file.

 GRUB has the knowledge of the filesystem (the older Linux loader

LILO didn‟t understand filesystem).

 Grub configuration file is /boot/grub/grub.conf (/etc/grub.conf is a

link to this). The following is sample grub.conf of CentOS.

#boot=/dev/sda

default=0

timeout=5

splashimage=(hd0,0)/boot/grub/splash.xpm.gz

hiddenmenu

title CentOS (2.6.18-194.el5PAE)

 root (hd0,0)

 kernel /boot/vmlinuz-2.6.18-194.el5PAE ro root=LABEL=/

 initrd /boot/initrd-2.6.18-194.el5PAE.img

 As you notice from the above info, it contains kernel and initrd image.

 So, in simple terms GRUB just loads and executes Kernel and initrd

images.

3.5.4 Kernel:

 Mounts the root file system as specified in the “root=” in grub.conf

 Kernel executes the /sbin/init program

 Since init was the 1st program to be executed by Linux Kernel, it has

the process id (PID) of 1. Do a „ps -ef | grep init‟ and check the pid.

 initrd stands for Initial RAM Disk.

 initrd is used by kernel as temporary root file system until kernel is

booted and the real root file system is mounted. It also contains

 28

Linux Structure

necessary drivers compiled inside, which helps it to access the hard

drive partitions, and other hardware.

3.5.5 Init:

 Looks at the /etc/inittab file to decide the Linux run level.

 Following are the available run levels

 0 – halt

 1 – Single user mode

 2 – Multiuser, without NFS

 3 – Full multiuser mode

 4 – unused

 5 – X11

 6 – reboot

 Init identifies the default initlevel from /etc/inittab and uses that to

load all appropriate program.

 Execute „grep initdefault /etc/inittab‟ on your system to identify the

default run level

 If you want to get into trouble, you can set the default run level to 0 or

6. Since you know what 0 and 6 means, probably you might not do

that.

 Typically you would set the default run level to either 3 or 5.

3.5.6. Runlevel programs

 When the Linux system is booting up, you might see various services

getting started. For example, it might say “starting sendmail …. OK”.

Those are the runlevel programs, executed from the run level

directory as defined by your run level.

 Depending on your default init level setting, the system will execute

the programs from one of the following directories.

 Run level 0 – /etc/rc.d/rc0.d/

 Run level 1 – /etc/rc.d/rc1.d/

 Run level 2 – /etc/rc.d/rc2.d/

 Run level 3 – /etc/rc.d/rc3.d/

 Run level 4 – /etc/rc.d/rc4.d/

 Run level 5 – /etc/rc.d/rc5.d/

 29

Linux
 Run level 6 – /etc/rc.d/rc6.d/

 Please note that there are also symbolic links available for these

directory under /etc directly. So, /etc/rc0.d is linked to /etc/rc.d/rc0.d.

 Under the /etc/rc.d/rc*.d/ directories, you would see programs that

start with S and K.

 Programs starts with S are used during startup. S for startup.

 Programs starts with K are used during shutdown. K for kill.

 There are numbers right next to S and K in the program names. Those

are the sequence number in which the programs should be started or

killed.

 For example, S12syslog is to start the syslog deamon, which has the

sequence number of 12. S80sendmail is to start the sendmail daemon,

which has the sequence number of 80. So, syslog program will be

started before sendmail.

3.6 SHUTDOWN

The shutdown command brings down system in a secure way. All the

logged-in users are notified about the system shutdown.

Signal SIGTERM notifies all the processes that the system is going down,

so that processes can be saved and exit properly.

Command shutdown signals the init process to change the runlevel.

Runlevel 0 halts the system

Runlevel 6 reboots the system

Runlevel 1 is default state.

Five minutes before shutdown sequence starts, file /etc/nologin is created

when shutdown is scheduled for future which does not allow new user

logins.

If by any reason, command shutdown is stopped before signalling init, this

file is removed. It is also removed to change runlevel before signalling

init.

To run shutdown command root user access is required.

3.7 VERY BASIC INSTRUCTIONS TO LINUX PROCESS

Anytime you run a program, you have created a process.

3.7.1 List processes:

To display currently active processes, use the ps command:

[tcarrigan@client ~]$ ps

 30

Linux Structure

 PID TTY TIME CMD

 2648 pts/0 00:00:00 bash

 3293 pts/0 00:00:00 sleep

 3300 pts/0 00:00:00 ps

Here you will get information about the active processes on your system.

You will want to pay attention to the PID (unique process ID),

the TIME (amount of time that the process has been running), and

the CMD (the command executed to launch the process).

3.7.2 Verbose list (processes):

To see an incredibly detailed list of processes, you can use the ps

aux command.

 a - all users

 u - shows the user/owner

 x - displays processes not executed in the terminal (making the output

rather long)

You can see the command here (output edited for length):

[tcarrigan@client ~]$ ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START

 TIME COMMAND

tcarrig+ 3293 0.0 0.0 215292 520 pts/0 T 13:41 0:00 sleep 500

root 3380 0.0 0.0 0 0 ? I 13:45 0:00 [kworker/1:1-

mm_percpu_wq]

root 3381 0.0 0.0 0 0 ? I 13:45 0:00 [kworker/1:3]

root 3398 0.0 0.0 0 0 ? I 13:46 0:00 [kworker/3:2-

ata_sff]

root 3481 0.0 0.0 0 0 ? I 13:50 0:00 [kworker/u8:2-

flush-253:0]

root 3482 0.0 0.0 0 0 ? I 13:50 0:00 [kworker/0:1-

events]

root 3483 0.0 0.0 0 0 ? I 13:50 0:00 [kworker/0:2]

root 3508 0.0 0.0 0 0 ? I 13:51 0:00 [kworker/3:0-

ata_sff]

root 3511 0.0 0.0 18892 7732 ? S 13:52 0:00 systemd-

userwork

root 3512 0.0 0.0 18892 7656 ? S 13:52 0:00 systemd-

userwork

 31

Linux root 3513 0.0 0.0 18892 7656 ? S 13:52 0:00 systemd-

userwork

root 3566 0.4 0.0 432792 8024 ? Ssl 13:54 0:00

/usr/libexec/fprintd

tcarrig+ 3598 0.0 0.0 228208 3948 pts/0 R+ 13:54 0:00 ps aux

3.7.3. Kill by PID:

Inevitably, a process will get hung, and you will need to kill it. The more

time you spend at the CLI, the more likely it is you will need

the kill command. The most accurate way to identify a process is by

process ID (PID).

Use the following syntax:

[tcarrigan@client ~]$ kill PID

This command sends the SIGTERM signal. However, if you are dealing

with a stuck process, add the -9 option.

[tcarrigan@client ~]$ ps

 PID TTY TIME CMD

 2648 pts/0 00:00:00 bash

 3293 pts/0 00:00:00 sleep

 4684 pts/0 00:00:00 sleep

 40527 pts/0 00:00:00 sleep

 40540 pts/0 00:00:00 ps

[tcarrigan@client ~]$ sudo kill -9 3293

[sudo] password for tcarrigan:

[1] Killed sleep 500

3.7.4 Kill by name/keyword:

Use the killall command to kill a process by name. This command will

kill all processes with the keyword/name that you specify.

The syntax is:

[tcarrigan@client ~]$ killall sleep

This would kill all sleep processes active on the system (the -9 option

works here as well). Here is an example:

[tcarrigan@client ~]$ ps

 32

Linux Structure

 PID TTY TIME CMD

 2648 pts/0 00:00:00 bash

 4684 pts/0 00:00:00 sleep

 40527 pts/0 00:00:00 sleep

 40540 pts/0 00:00:00 ps

[tcarrigan@client ~]$ killall -9 sleep

[2]- Killed sleep 500

[3]+ Killed sleep 500

These next two commands go hand in hand. They allow you to

move/manage background commands.

3.7.5 List background jobs and resume background jobs:

To list and manage background jobs, we will use the bg command. I

started a new sleep 500 process and then stopped it, sending it to the

background. Thus we see it listed when running bg below:

[tcarrigan@client ~]$ bg

[1]+ sleep 500 &

3.7.6 Bring the most recent job to the foreground:

To do this, we are going to use the fg command. This brings the most

recently run job/process to the foreground. The following example is a

continuation of the above command. The sleep 500 process that is in the

background is now active in the background. Let's bring it into the light...

[tcarrigan@client ~]$ fg

sleep 500

This command brings us to our final command in this list.

3.7.7 Bring a specific job to the foreground:

Use the fg command again, but select a specific job to bring to the

foreground (instead of the most recent). To do this, we are just going to

add the job/process name to the command.

[tcarrigan@client ~]$ fg XXXample

This brings job XXXample to the foreground.

3.8 PACKAGING SYSTEMS

Almost all the software that is installed on a modern Linux system will be

found on the Internet. It can either be provided by the distribution vendor

 33

Linux through central repositories (which can contain several thousands of

packages, each of which has been specifically built, tested, and maintained

for the distribution) or be available in source code that can be downloaded

and installed manually.

Because different distribution families use different packaging systems

(Debian: *.deb / CentOS: *.rpm / openSUSE: *.rpm built specially for

openSUSE), a package intended for one distribution will not be

compatible with another distribution. However, most distributions are

likely to fall into one of the three distribution families covered by the

LFCS certification.

3.8.1 High and low-level package tools:

In order to perform the task of package management effectively, you need

to be aware that you will have two types of available utilities: low-

level tools (which handle in the backend the actual installation, upgrade,

and removal of package files), and high-level tools (which are in charge of

ensuring that the tasks of dependency resolution and metadata searching -

”data about the data”- are performed).

DISTRIBUTION
LOW-LEVEL

TOOL

HIGH-LEVEL

TOOL

 Debian and derivatives Dpkg apt-get / aptitude

 CentOS Rpm yum

 openSUSE Rpm zypper

Let us see the descrption of the low-level and high-level tools.

dpkg is a low-level package manager for Debian-based systems. It can

install, remove, provide information about and build *.deb packages but it

can‟t automatically download and install their corresponding

dependencies.

apt-get is a high-level package manager for Debian and derivatives, and

provides a simple way to retrieve and install packages, including

dependency resolution, from multiple sources using the command line.

Unlike dpkg, apt-get does not work directly with *.deb files, but with the

package proper name.

aptitude is another high-level package manager for Debian-based

systems, and can be used to perform management tasks (installing,

upgrading, and removing packages, also handling dependency resolution

automatically) in a fast and easy way. It provides the same functionality as

apt-get and additional ones, such as offering access to several versions of a

package.

rpm is the package management system used by Linux Standard Base

(LSB)-compliant distributions for low-level handling of packages. Just

 34

Linux Structure

like dpkg, it can query, install, verify, upgrade, and remove packages, and

is more frequently used by Fedora-based distributions, such as RHEL and

CentOS.

yum adds the functionality of automatic updates and package management

with dependency management to RPM-based systems. As a high-level

tool, like apt-get or aptitude, yum works with repositories.

3.9 GRAPHICAL VS COMMAND LINE

CLI is that the word form used for Command Line Interface. CLI

permits users to put in writing commands associate degree exceedingly

in terminal or console window to interact with an operating system. CLI

is a platform or medium wherever users answer a visible prompt by

writing a command and get the response from system, for this users have

to be compelled to kind command or train of command for performing

the task. CLI is suitable for the pricey computing wherever input

exactitude is that the priority.

GUI stands for Graphical User Interface. GUI permits users to use the

graphics to interact with an operating system. In graphical user interface,

menus are provided such as : windows, scrollbars, buttons, wizards,

painting pictures, alternative icons etc. It‟s intuitive, simple to find out and

reduces psychological feature load. In GUI, the information is shown or

presented to the user in any form such as: plain text, videos, images, etc.

Let‟s see that the difference between GUI and CLI:

S.NO. CLI GUI

1. CLI is difficult to use. Whereas it is easy to use.

2. It consumes low memory. While consumes more memory.

3. In CLI we can obtain high

precision.

While in it, low precision is

obtained.

4. CLI is faster than GUI. The speed of GUI is slower than

CLI.

5. CLI operating system needs

only keyboard.

While GUI operating system

need both mouse and keyboard.

6. CLI‟s appearance can not be

modified or changed.

While it‟s appearance can be

modified or changed.

7. In CLI, input is entered only

at command prompt.

While in GUI, input can be

entered anywhere on the screen.

8. In CLI, the information is

shown or presented to the

user in plain text and files

While in GUI, the information is

shown or presented to the user in

any form such as: plain text,

videos, images, etc.

9. In CLI, there are no menus

provided.

While in GUI, menus are

provided.

10. There are no graphics in

CLI.

While in GUI, graphics are used.

11. CLI do not use any pointing

devices.

While it uses pointing devices

for selecting and choosing items.

 35

Linux 12. In CLI, spelling mistakes

and typing errors are not

avoided.

Whereas in GUI, spelling

mistakes and typing errors are

avoided.

3.10 UNIT END QUESTIONS

1. What is Linux File System?

2. Briefly explain Linux File System Structure

3. Explain various types of Linux File System

4. Explain Linux Boot Process

5. Briefly explain about Packaging systems

6. Write difference between CUI and GUI

3.11 LIST OF REFERENCES

1. The Linux Programming Interface: A Linux and UNIX System

Programming Handbook 1st Edition by Michael Kerrisk

2. How Linux Works, 2nd Edition: What Every Superuser Should

Know Second Edition by Brian Ward

3. The Linux Command Line: A Complete Introduction 1st Editionby by

William E. Shotts Jr.

4. Fundamentals of Linux by Pelz Oliver

3.12 BIBLIOGRAPHY

1. Linux Command Line and Shell Scripting Bible, 3rd Edition by

Richard Blum

2. Linux: The Complete Reference, Sixth Edition by Richard Petersen

3. How Linux Works, 2nd Edition: What Every Superuser Should

Know Second Edition by Brian Ward

4. The Linux Command Line: A Complete Introduction 1st Edition

by by William E. Shotts Jr.

5. Fundamentals of Linux by Pelz Oliver

 36

UNIT II

4
GRAPHICAL DESKTOP

Unit Structure

4.1 Graphical Desktop

4.2 Session Management

4.3 Basic Desktop Operations

4.4 Network Management

4.5 Installing and Updating Software

4.6 Text editors: gedit, vi, vim, emacs, Graphics editors

4.7 Multimedia applications

4.1 GRAPHICAL DESKTOP

The Linux Desktop Environment:

In the early days of Linux simple text interface to the Linux operating

system was available. This text interface allowed administrators to start

programs, control program operations, and move files around on the

system.

But now due to Microsoft Windows awareness the Linux graphical

desktops are introduced.

The X Windows System:

X windows is designed for flexibility and there are various ways you can

configure it. on X windows you can run most of the different video cards

available & different graphics cards. The X Windows software is the core

element in presenting graphics. It provides an graphics operations.

To run X-windows, the X free 86 server for appropriate system video card

has to be installed and configuration information provided about your

monitor, mouse and keyboard. This information resides in the

configuration file called /etc/xF86 config. The file uses technical

information that is best generated by an X-windows.

There are two basic elements that control your video environment — the

video card in your PC and your monitor. The X Windows software is a

low-level program that works directly with the video card and monitor in

the PC, and controls how Linux applications can present fancy windows

and graphics on your computer.

 37

Linux In the Linux world, there are only two software packages that can

implement it.

The XFree86 software package is the older of the two, and for a long time

was the only X Windows package available for Linux. As its name

implies, it‘s a free open source version of the X Windows software.

A new package called X.org has come onto the Linux scene. It too

provides an open source software implementation of the X Windows

system. Both packages work the same way, controlling how Linux uses

your video card to display content on your monitor. To do that, they have

to be configured for your specific system. During installation it

automatically happens.

The core X Windows software produces a graphical display environment,

but nothing else. There is no desktop environment allowing users to

manipulate files or launch programs. To do that, you need a desktop

environment on top of the X Windows system software.

The KDE Desktop:

The K Desktop Environment (KDE) was first released in 1996 as an open

source project to produce a graphical desktop similar to the Microsoft

Windows environment. The KDE desktop incorporates all of the features

you are probably familiar with if you are a Windows user.

The KDE desktop allows you to place both application and file icons on

the desktop area. If you single-click an application icon, the Linux system

starts the application. If you single-click on a file icon, the KDE desktop

attempts to determine what application to start to handle the file.

The bar at the bottom of the desktop is called the Panel. The Panel consists

of four parts:

 The K menu: Similarly to the Windows Start menu, the K menu

contains links to start installed applications.

 Program shortcuts: These are quick links to start applications

directly from the Panel.

 The taskbar: The taskbar shows icons for applications currently

running on the desktop.

 Applets: These are small applications that have an icon in the Panel

that often can change depending on information from the application.

 38

Graphical Desktop

KDE Applications:

KDE Applications

Application Description

amaroK Audio file player

digiKam Digital camera software

K3b CD-burning software

Kaffeine Video player

Koffice E-mail client

Konqueror File and Web browser

Kontact Personal information manager

Kopete Instant messaging client

Application Description:

All of the Panel features are similar to what you would find in Windows.

Besides the desktop features, the KDE project has produced a wide area of

applications that run in the KDE environment.

The GNOME Desktop:

The GNU Network Object Model Environment (GNOME) is another

popular Linux desktop environment.

First released in 1999, GNOME has become the default desktop

environment for many Linux distributions (the most popular being Red

Hat Linux).

While GNOME choose to depart from the standard Microsoft Windows

look-and-feel, it incorporates many features that most Windows users are

comfortable with:

 39

Linux  A desktop area for icons.

 Two panel areas.

 Drag-and-drop capabilities.

GNOME developers have also produced a host of graphical applications

that integrate with the GNOME desktop. As you can see, there are also

quite a few applications available for the GNOME desktop. Besides all of

these applications, most Linux distributions that use the GNOME desktop

also incorporate the KDE libraries, allowing you to run KDE applications

on your GNOME desktop.

Figure shows the standard GNOME desktop used in the Fedora Linux

distribution.

Other Desktops:

The downside to a graphical desktop environment is that they require a

fair amount of system resources to operate properly. In the early days of

Linux, a hallmark and selling feature of Linux was its ability to operate on

older, less powerful PCs that the newer Microsoft desktop products

couldn‘t run on. However, with the popularity of KDE and GNOME

desktops, this hallmark has changed, as it takes just as much memory to

run a KDE or GNOME desktop as the latest Microsoft desktop

environment.

4.2 SESSION MANAGEMENT

The screen or GNU screen is a terminal multiplexer. Using this, you can

run any number of console-based-applications, interactive command

shells, course-based applications, etc. When screen is called, it creates a

single window with a shell in it (or the specified command) and then gets

out of your way so that you can use the program as you normally would.

Then, at any time, you can create new (full-screen) windows with other

 40

Graphical Desktop

programs in them (including more shells), kill the current window, view a

list of the active windows, copy text between windows, switch between

windows, etc.

Screen manages a session consisting of one or more windows each

containing a shell or other program. Furthermore, screen can divide a

terminal display into multiple regions, each displaying the contents of a

window. All windows run their programs completely independent of each

other. Programs continue to run when their window is currently not visible

and even when the whole screen session is detached from the user's

terminal. This is practical to prevent involuntary ssh timeout session.

1. Screen:

screen

You can start a new window within the screen and also gives a name to

the window, for example aloft. It creates a session with identified by that

name. The name can be used to reattach at a later stage.

OnlyFans founder resigns from CEO position

screen -S aloft

Note that you can do all your work as you are in the normal CLI

environment.

2. List all the screen processes:

As we are able to start new windows within the screen, it is possible to

display the currently opened screens including those running in the

background. It will list all the existing screen sessions.

screen -ls

There is a screen on:

 10437.aloft (Attached)

1 Socket in /var/run/screen/S-root.

3. Main command of screen:

Ctrl-a followed by c: create a new windows

Ctrl-a followed by w: display the list of all the windows currently opened

Ctrl-a followed by A: rename the current windows. The name will appear

when you will list the list of windows opened with Ctrl-a followed by w.

Ctrl-a followed by n: go to the next windows

Ctrl-a followed by p: go to the previous windows

Ctrl-a followed by Ctrl-a: back to the last windows used.

 41

Linux Ctrl-a followed by a number from 0 to X: go the windows n° X.

Ctrl-a followed by ": choose the windows into which to move on.

Ctrl-a followed by k: close the current windows (kill)

4. Show screen parameter:

You can list all screen's parameters for help. To do this, type Ctrl-

a followed by the character ?. It will display a list of all the commands.

5. Detaching session:

The best advantage of the screen command is the possibility to detach a

screen session. You can start a screen session on one computer at the

office, detach the session from the local terminal, go home, log into our

office computer remotely and reattach the screen session to our home

computer's terminal. During the intervening time, all jobs on your office

computer have continued to execute. This function is used to prevent the

lost of data which occur suddenly during dropped ssh connection.

To good understand what we are talking about, let us take an example. We

launch an installation process.

Now we will detach the screen with Ctrl-a followed by d. We can check

with the command below.

 42

Graphical Desktop

screen -ls

There is a screen on:

 12449.win (Detached)

1 Socket in /var/run/screen/S-root.

It is possible to detach screen with screen -d command followed by the

screen id or its name. It means that you will need to open another windows

or console to detach the session if the current console have a process in

progress. You first need to list current attached screen.

screen -ls

There is a screen on:

 13686.win200 (Attached)

1 Socket in /var/run/screen/S-root.

Now on a new terminal, enter the command below.

screen -d 13686

or you can use the name

screen -d win200

You will have an output as below which indicates that the screen was

detached.

[remote detached from 13686.win200]

6. Split windows:

To have a global view of your work, you can need to split your windows

instead of having multiple windows. Ctrl-a followed by S or | split your

screen horizontally or vertically. It is possible to repeat the operation with

no limit. To move another windows, use Ctrl-a followed by Tab.

 43

Linux

When the cursor is on the bottom windows, you can create a new window

(Ctrl-a followed by c) or call an existing window (Ctrl-a followed by a

number).

To close a splitted windows, use Ctrl-a followed by X (Note that it is the

uppercase character).

7. Reconnect to a disconnected ssh session:

When you first log in,

run screen to start a screen session. You get another shell, run commands

in that.

screen -S remote_session

When you have finished, detach the screen session then logout to the ssh

[detached from 20995.remote_session]

You can list all the screen session first

screen -ls

There are screens on:

20995.remote_session (Detached)

14331.daby (Attached)

 44

Graphical Desktop

14134.mom (Detached)

3 Sockets in /var/run/screen/S-root.

Reconnect to your screen session and continue your work

screen -d -r remote_ression

The screen command is most used for ssh session because it helps to

continue your work after a disconnection without losing the current

processes in progress.

8. Scroll up in screen windows:

Since screen takes over managing your remote programs, you can't use

your terminal emulator's scroll features while running screen. You must

use the Screen commands to access the scrollback buffer.

Use Ctrl-a followed by escape

Press the Up and Down arrow keys or the PgUp and PgDn keys to scroll

through previous output.

You can see where is my cursor on the screenshot. Each virtual terminal

has its own scrollback buffer.

9 See the owner of each screen session:

The screen -ls or screen -list commands only show you your own screen

sessions even for root. As far as I know that's as good as it gets for screen

itself.

If you want to see which screen sessions have been started by which users

look in each users directory in /var/run/screen/.

 45

Linux
4.3 BASIC DESKTOP OPERATIONS

Desktop Browser Screen Layout

The Desktop Browser screen consists of a "[File] menu", "ribbon",

"windows", and "bars". Documents and folders can be searched on a

separate Search Screen.

[File] menu

Ribbon

Windows

Bars

Search Screen

[File] menu

The [File] menu contains the functions relating to Desktop Browser, such

as printing and scanning, and items regarding the configuration of all of

Desktop.

Ribbon:

The ribbon includes tabs with commands for performing operations on and

editing documents stored in libraries and commands for sending and

receiving faxes and printing materials.

Commands are grouped by function and located on tabs. You can switch

the displayed commands by clicking the tabs.

The following tabs are displayed on the ribbon of Desktop Browser by

default.

[Home]

[Fax]

[Print Meeting Materials]

 46

Graphical Desktop

You can also click the following areas of the Navigation Window to

display commands related to the area on a tab.

My Tray: Displays the [Edit] tab of the My Tray tool.

Checkout Folder: Displays the [Operations] tab of the document

management tool.

Document Server Library: Displays the [Operations] tab of the document

management tool.

Recycle Bin: Displays the [Manage] tab of the Recycle Bin tool.

NOTE:

You can hide or display the ribbon by clicking (Hide the Ribbon)/

(Display the Ribbon). For information on hiding/displaying the ribbon, see

the following.

Displaying/Hiding Ribbons

If you click (Open Manual), this manual is displayed.

When you use a wheel mouse, you can switch the tabs displayed on the

ribbon by rolling the wheel while above the ribbon.

Ribbons can be customized. For more information, see the following.

Customizing Ribbons

For information on the Navigation Window, see the following.

Navigation Window

 47

Linux Windows

Areas of the Desktop Browser screen mainly used for displaying content

are called "windows".

This section describes the "windows" of Desktop Browser.

Navigation Window

File List View Window

Preview Window

Properties Window

You can resize Desktop Browser screen and other windows by

dragging with the mouse.

Navigation Window

The Navigation Window is used to organize multiple libraries and list

the folder structure inside libraries. It also enables you to list saved

search conditions.

The following content is displayed on the Navigation Window of

Desktop Browser.

[Libraries] tab: Displays a tree view of libraries, checkout folders, and

My Tray folders.

[Search Conditions] tab: Displays the saved search conditions.

https://oip.manual.canon/USRM2-7423-00-DS-enUV/contents/01_01_003-dt-basic-struc-func_br-lyaout_br.html#010_010_0003_09
https://oip.manual.canon/USRM2-7423-00-DS-enUV/contents/01_01_003-dt-basic-struc-func_br-lyaout_br.html#010_010_0003_06
https://oip.manual.canon/USRM2-7423-00-DS-enUV/contents/01_01_003-dt-basic-struc-func_br-lyaout_br.html#010_010_0003_07
https://oip.manual.canon/USRM2-7423-00-DS-enUV/contents/01_01_003-dt-basic-struc-func_br-lyaout_br.html#010_010_0003_08

 48

Graphical Desktop

File List View Window:

The File List View Window displays the content of the libraries and

folders selected on the Navigation Window. You can change the File List

View Window to the list view or thumbnail view.

You can also add memos to documents on the File List View Window.

NOTE

The list view can be displayed in ascending or descending order.

The thumbnail view can be changed to [Large Thumbnail], [Medium

Thumbnail], and [Small Thumbnail].

You can return the File List View Window to the previous display

with (Back), or move forward with (Forward) on the address

bar. For information on the address bar, see the following.

Address Bar

For more information on how to switch the display format of the File

List View Window, see the following.

Selecting from the File List View Window

Preview Window:

The Preview Window displays a preview of the document selected on the

File List View Window.

https://oip.manual.canon/USRM2-7423-00-DS-enUV/contents/01_01_003-dt-basic-struc-func_br-lyaout_br.html#010_010_0003_10
https://oip.manual.canon/USRM2-7423-00-DS-enUV/contents/03_03_015-dt-mng_doc-basic_fol_doc-sele-flvw.html#030_030_0015_00

 49

Linux

NOTE

You can switch between displaying/hiding the Preview Window. For more

information, see the following.

Displaying/Hiding the Preview Window

For information on operating the Preview Window, see the following.

Displaying Documents in the Preview Window

Properties Window:

The Properties Window displays the information (properties) of the

document or folder selected on the Navigation Window or File List View

Window.

https://oip.manual.canon/USRM2-7423-00-DS-enUV/contents/01_01_015-dt-basic-struc-func_br-lyaout_br-dis_prevw.html#010_010_0015_00
https://oip.manual.canon/USRM2-7423-00-DS-enUV/contents/03_03_023-dt-mng_doc-basic_fol_doc-prev-dis_doc.html#030_030_0023_00

 50

Graphical Desktop

NOTE

You can switch between displaying/hiding the Properties Window. For

more information, see the following.

Displaying/Hiding the Properties Window

Bars

Areas of the Desktop Browser screen mainly used for operations and with

items arranged horizontally or vertically are called "bars".

This section describes the "bars" of Desktop Browser.

Address Bar

Simple Search Bar

Toolbar

Output Bar

Status Bar

Address Bar

The address bar shows the path of a selected library, My Tray, or folder.

You can also click (Back), (Forward), (Up), (Refresh),

or (Go) on the address bar to switch the view of the File List View

Window.

https://oip.manual.canon/USRM2-7423-00-DS-enUV/contents/01_01_016-dt-basic-struc-func_br-lyaout_br-dis_propw.html#010_010_0016_00
https://oip.manual.canon/USRM2-7423-00-DS-enUV/contents/01_01_003-dt-basic-struc-func_br-lyaout_br.html#010_010_0003_10
https://oip.manual.canon/USRM2-7423-00-DS-enUV/contents/01_01_003-dt-basic-struc-func_br-lyaout_br.html#010_010_0003_11
https://oip.manual.canon/USRM2-7423-00-DS-enUV/contents/01_01_003-dt-basic-struc-func_br-lyaout_br.html#010_010_0003_12
https://oip.manual.canon/USRM2-7423-00-DS-enUV/contents/01_01_003-dt-basic-struc-func_br-lyaout_br.html#010_010_0003_14
https://oip.manual.canon/USRM2-7423-00-DS-enUV/contents/01_01_003-dt-basic-struc-func_br-lyaout_br.html#010_010_0003_15

 51

Linux
NOTE

By clicking (Refresh), the File List View Window display is updated.

If you select the address bar, (Refresh) changes to (Go). If you

click (Go), the screen moves to the location entered in the address bar.

Simple Search Bar:

The simple search bar provides the bar for entering a keyword(s) and

performing a simple search.

Toolbar:

The toolbar enables you to set frequently used ribbon commands on the

toolbar.

 52

Graphical Desktop

NOTE

For information on the ribbon commands that can be set as buttons on the

toolbar, see the following.

Lists of Ribbon Commands/Toolbars

The toolbar can be customized. For more information, see the following.

Customizing Toolbars

Output Bar:

The output bar enables you to configure settings for linkage with

applications and devices and use them. You can also use it for specifying

shared folders and circulating documents.

NOTE

The output bar can be customized. For more information, see the

following.

Changing the Color of Output Bar Buttons

Status Bar:

The status bar displays the number of files selected on the File List View

Window. If no files are selected, the status bar displays the total number of

folders and files displayed on the File List View Window.

https://oip.manual.canon/USRM2-7423-00-DS-enUV/contents/01_03_004-dt-basic-cstm-list_ribbon_tb.html#010_030_0004_00
https://oip.manual.canon/USRM2-7423-00-DS-enUV/contents/01_03_013-dt-basic-cstm-tb.html#010_030_0013_00
https://oip.manual.canon/USRM2-7423-00-DS-enUV/contents/03_01_051-dt-mng_doc-prep-cstm_opb.html#030_010_0051_03

 53

Linux

Search Screen

The Search Screen displays the results of searching from the simple search

bar.

The Search Screen also provides the items for configuring detailed search

conditions, performing a search, and saving search conditions.

 54

Graphical Desktop

NOTE

To display the Search Screen always in front of the Desktop Browser

screen, click (Display in Front of Browser) to make it . Click it

again to cancel.

For information on searching for documents and folders in Desktop

Browser, see the following.

Searching for Documents/Folders

4.4 Network Management

4.4.1 TCP/IP Basics:

Remote Access with Linux: Remote Access with Linux can be performed

using TCP/IP or UUCP network protocols.

TCP / IP Remote Access operations: the TCP / IP remote commands

allow you to log in remotely to accounts on other system. You can also

copy files and execute linux commands on those systems. You can also

obtain information about other systems, such as who is currently logged

on. However, for your remote commands to work on a remote system, you

must first given access by that remote system. To provide such a access by

that remote system needs to have a .rhosts file that lists your system name

and login name. The various TCP / IP commands are as follows: All the

commands are preceded by alphabet r.

$ rwho: It displays all the users currently logged into the network

$ ruptime: It displays information about each system on your network.

The information shows how each system has been performing, whether a

system is up or down, how long, it has been up or down, the no of users on

the system etc.

$ ping: The ping command detects whether or not a system is up and

running. It takes the name of the system which you want to check as

argument.

Eg $ ping violet.

Output: violet is alive.

$ ping garnet

Output: no answer from garnet

Remote Access Permissions (rhosts): To control the access to our system

(from other users who are using TCP/IP) we use rhosts file. To achieve

communication between you and others the rhosts file on both system

(yours and others) should have each others system name and login name.

The rhosts file which is located in users home directory is a simple way to

https://oip.manual.canon/USRM2-7423-00-DS-enUV/contents/03_03_051-dt-mng_doc-basic_fol_doc-srch.html#030_030_0051_00

 55

Linux allow people access to your account without giving out your password. To

deny access to a user, simply delete the user‘s system name and login

name from your rhosts file

$ cat .rhosts

Output: garnet chris

 Violet Robert

Remote Login: It is quite possible that we have no of account on different

systems in a network. If sitting on one system if we want to log into our

account on other system on a network then it can be done with rlogin

command. rlogin command takes system name as argument. $ rlogin

violet

As soon as we execute the rlogin command we are immediately prompted

for the password. During executing this command we have passed only the

system name but not the login name. This is because rlogin command

assumes that the login name on your local system is same as that login

name on the remote system.(login name on local system means the login

name of current system on which you are currently working). But suppose

that you are having different login name on remote system then we use the

following command.

$ rlogin system-name – l login-name: (-l option is used to specify the

login name on remote system is different from the current system).

$ rlogin violet – l robert: (The user logs into the system violet using login

name robert).

Remote file copy (rcp): The rcp command is used to copy files to and

from remote and local systems. rcp is a file transfer utility that operates

like the cp command but across the network. The rcp command requires

that the remote system have your local system name and login name in its

.rhosts file. The syntax is as follows:

$ rcp system-name:source file system-name:copy-file.

When copying to remote system, the copy file will be a remote file and

will require the remote system‘s name. If the source file is one which is

present on your own system then it will not require the system name. For

e.g.

$ rcp abc violet:xyz . The file abc since it is present on your own system

it will not require the system name, only file name is sufficient. The file

abc is copied from the current system to violet system and named as xyz.

$ rcp violet:pqr jkl . The file pqr from violet system is copied to current

system and named as jkl.

Copying directories: The rcp command with –r option will copy the

complete directories to or from the remote systems.

 56

Graphical Desktop

$ rcp –r source-directory remote-system-name:copy-directory

$ rcp –r vijay violet:vijay1 (vijay directory from current system is

copied to directory vijay1 on violet system)

$ rcp –r violet:manoj manoj1 (manoj directory from violet system is

copied to directory manoj1 on current system)

$ rcp –r violet:*.c . (All files with .c extension is copied from violet

system to current directory on current or local system (.))

$ rcp –r abc violet:\ . (Directory abc is copied from current system to

current directory of violet system).

The asterisk i.e. * and the dot are special shell characters which are

evaluated by your local system (because you executing the shell

command), not by the remote system. If you want that the special

characters to be evaluated by the remove system, you must quote it (by

using backward slash).

Remote Execution: Some times we need to execute a shell script on

remote system, for which we use rsh command. The rsh command will

execute a command or shell script on remote system and display the

results on your system. Your system name and login name must, of

course, be in the remote system‘s .rhosts file. The syntax of the command

is

$ rsh remote-system-name Linux-command

$ rsh violet ls /home/robert (listing all the contents of robert directory on

violet system)

$ rsh violet ls /home/robert > xyz (all the contents from robert directory

on violet system is redirected to xyz file on local or current system)

$ rsh violet ls /home/robert ‘ >’ xyz (If we use the quotes for redirection

operator then it becomes the part of Linux command evaluated on the

remote system. The working of the above command is same as that of

earlier command but the only difference is that the file xyz is formed on

remote system instead of current system)

The same is true with all the Linux commands. For e.g. with pipes

$ rsh violet ls /home/robert | lpr (piped to local or current printer)

$ rsh violet ls /home/robert ‘|’ lpr (piped to remote system‘s printer)

 TCP/IP commands:

(1) You can find out who is logged in, get information about a user an

another system.

$ rwho

 57

Linux violet Rebert: tty I sept 10 10:34

garnet cris: tty 2 sept 10 29:22

(2) The ruptime command displays information about each system on

your network

$ ruptime

Violet up 11+04:10 8 users load 1:20 1:10 1:00 ruptime shows

whether a system is up or down, the number of users on the system,

and the average load on the system for the last 5, 10 and 15 minutes.

(3) The ping command detects whether or not a system is up and running.

The ping command takes as its argument the name of the system you

want to check.

$ ping violet  system number or name

violet is a line

(4) It is possible that you could have accounts on different systems in

your network. You can perform such a remote login using the rlogin

command takes as its argument a system name.

$ rlogin system-name -1 login name

For example, the user logs into a system called violet using the login name

Robert

$ rlogin violet -1 robert

password

The option –1 allows you to enter a different login name for the account

on the remote system. Because most people use rlogin to access accounts

they have on other systems with their own login name.

(5) To copy files to and from remote and local system, use the rcp

command that operates like the Cp command but across a network

connection to a remote system. The rcp command begins with the

keyword rcp and has its arguments the source file and copy file

names.

$ rcp system-names : source-file system-name : copy file

When copying to a remote systems, the copy file will be a remote file and

require the remote system name. The source file is one on your own

system and does not require a system name. For e.g. The user copies the

file whether from his own system to the remote system violet and renames

the file Monday.

$ rcp whether violet : Monday

 58

Graphical Desktop

In the next example, the user copies the file Wednesday from the remote

system violet to his own system and renames the file today.

$ rcp violet : Wednesday today.

(6) At times, you may need to execute a single command on a remote

system. The rsh command will execute a linux command on another

system and display the results on your own.

The rsh command takes two general arguments, a system name and a

Linux command.

The syntax is as follows:

$ rsh remote-system-name Linux-command

In the next example, the rsh command executes an IS command on the

remote system. Violet to list the files in the /home/Robert directory on

violet.

$ rsh violet ls/more/Robert

 or

$ rsh violet Is/more/Robert> my files

This example shows you the list of files on the remote system and sends

them to standard output to local system.

4.4.2 Resolving Ip Addresses:

(1) TCP/IP Network Addresses:

TCP/IP address is organized into four segments consisting of numbers

separated by periods. This is called the IP address. Part of this address is

used for network address, and the other part is used to identify a particular

host in the network. The network address identifies the network that a

particular host is a part of. Usually, the network part of the address takes

up the first three segments and the host takes the last segment. Altogether

this forms a unique address with which to identify any computer on a

TCP/IP network. For example, in the IP address 199.35.209.72, the

network part is 199.35.209 and the host part is 72. The host is a part of a

network whose own address is 199.35.209.0.

The IP address of the host, or host address is only one of several addresses

you will need in order to connect the host to a network in addition, you

will need a network address, or a network mask or netmask. If you

provided them at that time, they will all be automatically entered into the

appropriate configuration files.

 59

Linux (2) Network Address:

You can easily figure out the network address using your host address. It

is a network part of your host address; with the host part set to 0.50 the

network address for the host address 199.35.209.72 is 199.35.209.0

Therefore system device the network address form the host address using

the netmask.

(3) Broadcast Address:

The broadcast address allows a system to send the same message to all

systems on your network at once. As with the network address, you can

easily figure it out using your host address; it has the host part of your

address set to 255. The network part remains untouched. So the broadcast

address for the host address 199.35.209.72 is 199.35.209.255. (You

combine the network part with 255 in the host part.)

(4) Gateway Address:

Some networks will have a computer designated as the gateway to other

networks. Every connection to and from the network to other networks

passes through this gateway computer. If you are on this type of network,

you will have to provide the gateway address. If your network does not

have a gateway or you use a stand-alone system or dial into an Internet

Service Provider, you do not need a gateway address.

Usually a gateway address has the same network part of a hostname, with

the host part set to 1. The gateway address for the host address

199.35.209.72 may be 199.35.209.1.

(5) Nameserver Addresses:

Many networks, including the internet, have computers that operate as

domain nameservers to translate the domain names of networks and hosts

into IP addresses. This makes your computer identifiable on a network,

using just your domain name rather than your IP address. You can also use

the domain names of other system to reference them, so you don‘t have to

know their IP addresses. You do, however have to know the IP addresses

of any domain nameservers for your network.

Even if you are using an internet service provider, you will have to know

the address of the domain nameservers that your ISP operates for the

internet.

(6) Netmask:

The netmask is used to derive the address of the network you are

connected to. The netmask is determined using your host address as a

template. All the numbers in the network part of your host address are set

to 255, and the host part is set to 0. This, then is your netmask. So the

netmask for the host address is 199.35.209.72 is 255.255.0. The network

part 199.35.209, has been set to 255.255.255 and the host part, 72 has

 60

Graphical Desktop

been set to 0. Systems can then use your netmask to derive your network

address from your host address. They can determine what part of your host

address makes up your network address and what those numbers are.

(7) TCP/IP Configuration Files:

A set of configuration files in the /etc directory, are used to set up and

manage your TCP/IP network. They specify such network information as

host and domain names, IP addresses, and interface options. It is in these

files that the IP address and domain names of other Internet hosts that you

want you access are entered. If you configured your network during

installation, you will already find that information in these files. The

netcfg program on your desktop and netconfig program on your command

line both provide an easy interface for entering the configuration data for

these files.

File Function

/etc/hosts Associates hostnames with IP addresses

/etc/networks
Associates domain names with network

addresses

/etc/rc.d/init.d/inct
Contain commands to configure your

network interface when you boot up

/etc/HOSTNAME Holds the hostname of your system

/etc/host.conf Resolves options

/etc/resolu.conf Contains list of domain nameservers

(8) Identifying Hostnames: /etc/hosts:

Without the unique IP address that the TCP/IP network uses to identify

computers, a particular computer could not be located. Since IP addresses

are difficult to use or remember, domain names are used instead. For each

IP address there is a domain name. When you use a domain name to

reference a computer on the network, your system translates it into its

associated IP address. This address can then be used by your network to

locate that computer.

The responsibility for associating domain names and IP addresses has

been taken over by domain nameservers. However, the hosts file is still

used to hold the domain names an IP addresses of frequently accessed

hosts. Your system will always check your hosts file for the IP address of

a domain name before taking the added step of accessing a nameserver.

The format of a domain name entry in the hosts file is the IP address

followed by the domain name, separated by a space. You will already find

an entry in your hosts file for ―localhost‖ with the IP address 127.0.0.1.

Localhost is a special identification used by your computer to enables

users on you‘re your system to communicate locally with each other. The

IP address 127.0.0.1 is a special reserved address used by every computer

for this purpose. It identifies what is technically referred to as a loopback

device.

 61

Linux (9) Network Name: /etc/networks:

The /etc/networks file holds the domain names and IP addresses of

networks that you are connected to, not to domain names of particular

computers. Every IP address consists of a network part and a host part.

The network part is the network address you will find in the networks file.

You will always have an entry in this file for the network portion on your

computer‘s IP address. This is the network address of the network, your

computer is connected to.

/etc/HOSTNAME:

The /etc/HOSTNAME file holds your system‘s hostname. To change your

hostname, you change this entry. The netcfg program allows you to

change your hostname and will place the new name in /etc/HOSTNAME.

Instead of displaying this file to find your hostname, you can use the

hostname command.

$ hostname

turtle.trek.com

(1) Network Interfaces and Routes: ifconfig and route:

Your connection to a network is made by your system through a particular

hardware interface such as an Ethernet card or a modem. Data passing

through this interface is then routed to your network. The ifconfig

command configures your network interfaces and the route command will

route them accordingly.

Every time you start your system, the network interfaces and their routes

have to be established. You can have this done automatically for you when

you boot up by placing the ifconfig and route commands for each interface

in the /etc/rc.d/init.d/inet initialization fle, which is executed whenever

you start your system.

Ifconfig:

The ifconfig command takes as its arguments the name of an interface and

an IP address as well as options. Ifconfig then assigns the IP address to the

interface. Your system now knows that there is such an interface and that

it references a particular IP address. In addition, you can specify whether

the IP address is a host of network address. You can use a domain name

for the IP address, provided the domain name is listed along with its IP

address in the /etc/hosts file. The syntax for the ifconfig command is as

follows.

ifconfig interface – host – net – flag address options.

The host – net – flag can be either – host or – net to indicate a host or

network IP address.

In the next example, the ifconfig command configures an Ethernet

interface.

 62

Graphical Desktop

ifconfig etho 204.32.168.56

The ifconfig command can have several options, which set different

features of the interface, such as the maximum number of bytes. It can

transfer (mtu) or the broadcast address. The up and down option activate

and deactivate the interface.

The ifconfig command is very useful for checking on the status of an

interface if you enter the ifconfig command along with the name of the

interface, information about that interface is displayed

if config etho

Routing:

A packet that is part of transmission takes a certain route to reach its

destination. On a large network, packets are transmitted from one

computer to another until the destination computer is reached. The route

determines where the process starts and what computer your system needs

to send the packet to in order for it to reach its destination. On small

network routing may be static, that is, the route from one system to

another is fixed. One system knows how to reach another, moving through

fixed paths. However, on larger networks and on the Internet, routing is

dynamic. Your system knows the first computer to send its packet off to,

and then that computer takes it from there, passing it on to another that

then determines where to pass it on to. For dynamic routing, your system

needs to know very little. Static routing however can become very

complex, since you have to keep track of all the network connections.

Your routes are listed in your routing table in the /proc/net/route file. To

display the routing table, enter route with no arguments.

route

kernel routing table:

Destination Gateway Fenmas

k

flag

s

metri

c

Ref Use Ifac

e

Loopback * 255.0.0

.0

U 0 0 12 Lo

Pongol.train.c

om

255.255.25

5.0

U 0 0 0 0 etho

The different fields are listed in the following table:

Field Description

Destination Description IP address of the route

Gateway
IP address or hostname of the gateway the route

uses * indicates no gateway is used.

Genmask The network for the route

Flags
Type of route: U = up, H = host, G = Gateway, D =

dynamic, M = modifies.

 63

Linux Metric Metric cost of route

Ref Number of routes that depend on this one

Window TCP window for Ax.25 networks.

Use Number of times used

Iface Type of interface this route uses

You should have at least one entry in the routing table for the loopback

interface. If not, you will have to route the loopback interface using the

route command. The IP address for an interface has to be added to the

routing table before you can use that interface. You add an address with

the route command and the add option.

Route add address:

The next example adds the IP address for the loopback interface to the

routing table.

route add 127.0.0.1

If your system is connected to a network, there should be at least one entry

in your routing table that specifies the default route. This is the route taken

by a message packet when not other route entry leads to its destination.

The destination for a default route is the keyword default.

Monitoring Your Network: Ping and Netstat:

With the ping program, you can check to see if you can actually access

another host on your network. Ping will send a request to the host for a

reply. The host then sends a reply back, and it is displayed on your screen.

Ping will continually send such a request until you stop it with a break

command, a Ctrl+C. you will see one reply after another scroll by on your

screen until you stop the program. If ping can not access a host, it will

issue a message saying that the host is unreachable.

The netstat program provides real-time information on the status of your

network connections, as well as network status and the routing table.

The netstat command with no options will list the network connections on

your system. First, active TCP connections are listed and then the active

domain sockets. The domain sockets contain processes used to set up

communications between your system and other systems. The various

fields are described in the following table.

Field Description

Proto Protocol used for the connection: TCP, UDP

Recu-Q Bytes received but not yet used by the system

Send-Q
Bytes sent to remote system, but not yet confirmed as

received.

Local

Address
Local hostname and port number

Foreign

Address

Remote hostname and port number assigned to a

connection, port number can be connection type, such

 64

Graphical Desktop

as telnet or ftp.

(State) State of connection to remote host

ESTABLISHD, connection established

SYN_SENT, trying to make connection

SYN_REC, connection being created

Fin_WAIT1, connection shutting down

CLOSED, connection closed

LISTEN, listening for remote connection

UNKNOWN, unknown state

Domain socket:

Proto protocol for socket, usually unix

RefCnt number of processes currently in socket

Flag

Type Mode Socket is access

State

State of the socket

FREE, Socket is not used

LISTENING, waiting for connection

UNCONNECTED, no current connection

CONNECTING, trying to make connection

CONNECTED, currently connected

DISCONNECTING, closing a connection

Path Path name used by processes to access socket

You can use netstat with the –r option to display the routing table, and

netstat with the –i option displays the us are for the different network

interfaces. The following table explains the coded information.

netstat –i

kernel interface table:

Iface Mtu met Rx-

OK

Rx-

ERR

Rx-

DRP

Rx-

OUR

Tx-

OK

Tx-

ERR

Tx-

DRP

Tx-

OVR

flags

LO 2000 0 0 0 0 0 58 0 0 0 BLRU

MTU Maximum number of bytes for one transmission

RX-OK Packets received with no errors

RX-ERR Packets received with errors

RX-DRP Packets dropped

RX-

OVR
Packet overrun errors

TX-OK Packets sent with no errors

TX-ERR Packets sent with errors

TX-DRP Packets dropped in transmission

TX-OVR Packets dropped in transmission with overrun errors.

 65

Linux Flags Interface Characteristics

 A Receives packets for multicast addresses

 B Receives broadcasts

 D Debugging is on

 I Loopback interface

 M Promiscuous mode

 N No trailers processed on packets

 O Address resolution protocol is off

 P Point-to-point interface

 R Interface is running

 U Interface is activated, up

Domain Name Service (DNS):

Each computer connected to a TCP/IP network such as the Internet is

identified by its own IP address. An IP address is a set of four numbers

specifying the location of a network and of a host (a computer) within that

network. IP addresses are difficult to remember, so a domain name version

of each IP address is also used to identify a host. A domain name consists

of two ports, the host name and the domain. The host name is the

computer‘s specific name, and the domain identifies the network that the

computer is a part of. The combination of a hostname domain and

extension forms a unique name by which a computer can be referenced.

The domain can, in turn, be split into further sub-domains.

As you know, a computer on a network can still only be identified by its

IP address, even if it has a domain name. You can use a domain name to

reference a computer on a network, but this involves using the domain

name to look up the corresponding IP address in a database. The network

then uses the IP address, not the domain name, to access the computer.

As networks become larger, it becomes impractical and, in the case of the

Internet impossible for each computer to maintain its own list of all the

domain names and IP addresses. To provide the service of translating

domain addresses to IP addresses databases of domain names were

developed and placed on their own servers. To find the IP addresses of a

domain name, a query is sent to a name server that then looks up the IP

address for you and sends it back. In a large network there can be several

name servers covering different parts of the network. If a nameserver

cannot find a particular IP address, it will send the query on to another

name server that is more likely to have it. Nameservers can also provide

information such as the company name and street address of a computer or

even the person maintaining it.

Nameservers are queried by resolvers. These are programs specially

designed o obtain addresses from nameservers.

4.4.3 Telnet:

What is Telnet? Telnet is a user command and an underlying TCP/IP

protocol for accessing remote computers. Through Telnet, an

 66

Graphical Desktop

administrator or another user can access someone else's computer

remotely. On the Web, HTTP and FTP protocols allow you to request

specific files from remote computers, but not to actually be logged on as a

user of that computer. With Telnet, you log on as a regular user with

whatever privileges you may have been granted to the specific application

and data on that computer.If you have an account on a host in local

network, you can use telnet with the hostname or IP address as argument:

$ telnet 192.168.35.12

Connected to 192.168.35.12

Login:

Now user can enter the Login name at this prompt and then the password

to gain access to the remote machine. After login you can work on any

command at remote location.

telnet> !ls –l

4.4.4 FTP:

ftp command can also be used with or without arguments.

ftp ip-address

After establishing a connection with the destination, ftp prompts for the

username and password. The local username is prompted as default and if

pressed enter, the system would have logged in as default. Termination of

ftp is done in two stages. Firstly one has to disconnect from the remote

machine with close and then quit ftp either with bye or quit. ftp has all the

basic facilities needed to handle files and directories On the remote

machine like pwd, ls, cd, mkdir, rmdir, chmod. User can delete single file

with delete and multiple files with mdelete or rename a file(rename).

Transferring files:

For the purpose of transfer files can be seen as belonging to two types-

ascii and binary. All executables, graphics, word processing and

multimedia files belong to binary type. Uploading of files is done with put

for single file and for multiple files mput. For downloading get for single

file and mget for multiple files.

ftp displays the ftp> prompt when used without argument. Then

connection can be established with open command.

ftp works in two stages. First it makes a connection with a remote

machine. This is done by invoking ftp with the hostname or later with the

open command. After the connection has been established, ftp asks for the

username and password. To login after this user command is used along

with the username.

 67

Linux Anonymous ftp:

On the internet there are several sites which offer trial and public domain

software for downloading. Where a separate account is not there for every

user. These sites offer a special user account ―anonymous‖ that has to be

used for logging in. these sites are known as anonymous ftp sites. User can

only download files from an anonymous site.

4.5 INSTALLING AND UPDATING SOFTWARE

Most people are surprised to see that they have a running, usable computer

after installing Linux; most distributions contain ample support for video

and network cards, monitors and other external devices, so there is usually

no need to install extra drivers. Also common tools such as office suites,

web browsers, E-mail and other network client programs are included in

the main distributions. Even so, an initial installation might not meet your

requirements.

If you just can't find what you need, maybe it is not installed on your

system. It may also be that you have the required software, but it does not

do what it is supposed to do. Remember that Linux moves fast, and

software improves on a daily basis. Don't waste your time troubleshooting

problems that might already be resolved.

You can update your system or add packages to it at any time you want.

Most software comes in packages. Extra software may be found on your

installation CDs or on the Internet. The website of your Linux distribution

is a good place to start looking for additional software and contains

instructions about how to install it on your type of Linux, see Appendix A.

Always read the documentation that comes with new software, and any

installation guidelines the package might contain. All software comes with

a README file, which you are very strongly advised to read.

4.5.1. What is RPM?

RPM, the RedHat Package Manager, is a powerful package manager that

you can use to install, update and remove packages. It allows you to

search for packages and keeps track of the files that come with each

package. A system is built-in so that you can verify the authenticity of

packages downloaded from the Internet. Advanced users can build their

own packages with RPM.

An RPM package consists of an archive of files and meta-data used to

install and erase the archive files. The meta-data includes helper scripts,

file attributes, and descriptive information about the package. Packages

come in two varieties: binary packages, used to encapsulate software to be

installed, and source packages, containing the source code and recipe

necessary to produce binary packages.

 68

Graphical Desktop

Types of RPM Packages:

RPM packages come in two categories: source and binary.

A source RPM can always be recognized because the filename ends with

the string ―.src.rpm―. In a source RPM are not only the original program

source code files but scripts that allow the code to be recompiled

automatically, to be installed automatically, and to be removed

automatically. There are no end-user executable files in a source RPM.

Usually, only developers are interested in a source RPM.

A binary RPM contains the end-user compoments of an RPM. Binary

RPM filenames identify the host architecture for the contents. For

example, the binary RPM file:

bash-3.1-16.1.x86_64.rpm

It contains files only usable on a 64-bit Intel X86 architecture CPU. Other

common architecture values include ―i386‖ for 32-bit Intel hosts. Some

binary RPM‘s may be installed on any CPU architecture because their

files will work on any host; an example of these ―.noarch.rpm‖ packages is

the ―tzdata‖ RPM which contains information about world timezones. To

update your system with the latest version of a package, you will need the

most recent binary RPM for it.

RPM Naming Scheme:

Each RPM package is contained in a single file. The filename has several

fields to fully identify the contents of the package. While the RPM tools

themselves do not rely upon the filename itself, you should understand the

filename convention to help you identify or download the proper package.

Here is an example RPM filename:

bash-3.1-16.1.x86_64.rpm

This RPM is for the BASH shell (―/bin/bash‖). The filename is composed

of several parts:

[name]-[version]-[release].[arch].rpm

Where,

[name] is the name of the program or package. The [name] is usually

assigned by the program‘s author. In our example, the developers decided

to name their product ―bash‖ for reasons that seemed amusing to them.

version] identifies which edition of the software this RPM contains. The

[version] number is assigned by the program‘s author. Using the number

allows one to determine which version of the author‘s sources were used

to generate the RPM.

[release] provides the edition number of the RPM file itself and not the

version of the author‘s source files. An updated RPM may be issued to

supply a patched version of the author‘s original software. The patch need

 69

Linux not have come from the original developer, so the RPM [release] gets

incremented instead of the [version].

[arch] describes the contents of the RPM and tells whether this file

contains the product source (a ―.src.rpm‖), architecture-independent files

(a ―.noarch.rpm‖), or files which may only be installed on a particular host

type (a ―.sh.rpm‖ will work only on a STRONGHOLD embedded

processor).

Installing and Removing Files

Note: Usually only one or of an RPM may be installed at once.

Later versions are usually installed using the ―-U‖ (update) RPM function

instead of the ―-i‖ RPM function. Common exceptions to the only-one

RPM rule are the kernel RPM‘s. A system commonly has several versions

of kernels installed; RPM has a list of which RPM‘s may have multiple

versions installed. To delete one version when several are installed, you

must fully-specify the package name and version.

On the x86_64 architecture, it is common to have both the 32-bit ―.i386‖

and the 64-bit ―.x86_64‖ RPM packages installed tosupport both 32-bit

and 64-bit applications. Normally, RPM does not display the architecture

of a package on a query but you can manually display it.

Installation and Removal:

rpm -i --install (install new RPM; error if already installed)

rpm -U --upgrade (delete existing RPM, if any; install new)

rpm -F --freshen (update RPM only if package already installed)

rpm -e --erase (remove, delete, expunge)

Common Options

Output: -v (verbose – file name), -h (hash)

Preconditions: –nodeps, –replacefiles, –force (BE CAREFUL HERE !!!)

Relocating: –excludepath, –prefix, –relocate, –badreloc, –root

URL Support: ftp, http

Examples:

rpm -ivh binutils-2.11.90.0.8-12.i386.rpm

rpm -Uvh finger-0.17-9-i386.rpm

rpm -Fvh ftp://updates.redhat.com/current/i386/*.rpm

rpm -e diffutils

rpm -e kernel-enterprise-2.4.9-e.12

 70

Graphical Desktop

Hint: Never, ever, use the ―-U‖ option to install a new kernel RPM. The ―-

U‖ update function first deletes the current RPM from the system and then

attempts to install the new RPM. Any problem that prevents the new RPM

from installing will leave the system unbootable. This is not what you

want, so always use the ―-i‖ switch to install a kernel RPM.

Queries (Packages and/or Information):

Use a query for information about installed packages. You may query

against all installed packages, or a single installed package. You may also

find out which RPM supplies a particular file.

rpm -q [packages] [information]

rpm -qa (all installed packages)

rpm -q package_name

rpm -qf (filename)

rpm -qp (package filename)

Information

default (package name)

-i: general information

-l: file list

Examples:

rpm -qa

rpm -q kernel -i (information)

rpm -q kernel -l (files contained in package)

rpm -q kernel --requires (prereqs)

rpm -q kernel --provides (capabilities provided by package)

rpm -q kernel --scripts (scripts run during installation and removal)

rpm -q kernel --changelog (revision history)

rpm -q kernel -queryformat format (rpm --querytags for list of options)

Queries – Verification (Files):

The RPM database contains many attributes about each and every file

installed by an RPM. You may verify the current status of the file against

the information cataloged by RPM when the package was installed.

rpm -V package_name

 71

Linux # rpm -Va (verify all)

rpm -Vf (filename)

rpm -Vp (package filename)

4.6 TEXT EDITORS

4.6.1 Gedit

4.6.2 Vi

4.6.3 Vim

4.6.4 Emacs

4.6.5 Graphics editors

4.6.1 Gedit:

gedit is a full-featured text editor for the GNOME desktop environment.

You can use it to prepare simple notes and documents, or you can use

some of its advanced features, making it your own software development

environment.

Once gedit launches, you can start writing right away. To save your text,

just click the Save icon in the gedit toolbar.

 72

Graphical Desktop

Tab-related Shortcut keys:

Shortcut keys for working with files:

 73

Linux Shortcut keys for editing files:

Replace text in gedit:

Open the Replace tool by clicking Menu button ▸ Find and Replace… or

press Ctrl+H.

Enter the text that you wish to replace into the Find field.

Enter the new, replacement text into the Replace with field.

Once you have entered the original and replacement text, you can add

extra parameters to the search. You can also choose what you want to

replace:

To replace only the next match, click Replace.

To replace all occurrences of the searched-for text, click Replace All.

Print Preview:

Prior to printing your document, you can preview how the printed

document will look by using Print Preview. To preview the document:

Select File ▸ Print Preview. Alternatively, you can press Shift+Ctrl+P.

Printing To Paper:

You can print your documents to paper using a local or remote printer. To

print a file:

Select File ▸ Print ▸ General.

 74

Graphical Desktop

Select the desired printer from the list of printers available.

You can preview the file using Print Preview and once you are satisfied

with the settings, click Print to send the file to printer.

Printing To File:

You can also use gedit to print to a file. To print your document to file of a

different format:

Select File ▸ Print ▸ Print to File.

Printing is enabled for the following file formats, you may select from:

Portable Document Format (.pdf)

PostScript (.ps)

Scalable Vector Graphic (.svg)

To print the document to file, click Print

Search for text:

The Find tool can help you find specific sequences of text within in your

file.

Finding text

Open the search window by clicking Menu Button ▸ Find… or pressing

Ctrl+F. This will move your cursor to the start of the search window.

Type the text you wish to search for in the search window.

As you type, gedit will begin highlighting the portions of text that match

what you have entered.

To scroll through the search results, do any of the following:

Click on the up or down facing arrows next to the search window.

Press the up arrow or down arrow keys on your keyboard.

Press Ctrl+G or Ctrl+Shift+G.

To close the search window, press either Esc or Enter. Pressing Esc will

return the cursor to where it was before you began your search. Pressing

Enter will return the cursor to the current position in the search results.

Undo a recent action:

If you make a mistake while using gedit, you can undo it by pressing

Ctrl+Z.

 75

Linux Create a new file:

The easiest way to create a new file in gedit, is to click the Create a new

document button on the left side of the toolbar, or press Ctrl+T.

Any one of these actions will create a new file in the gedit window. If you

have other files open in gedit, the new file that you create will appear as a

new tab to the right of those files.

Open a file or set of files:

To open a file in gedit, click the Open button, or press Ctrl+O.

This will cause the Open dialog to appear. Use your mouse or keyboard to

select the file that you wish to open, and then click Open. The file that

you've selected will open in a new tab.

To close the Open dialog without opening a file, click Cancel.

Save a file:

To save a file in gedit, click on the Save button on the right side of the

toolbar or just press Ctrl+S.

If you are saving a new file, a dialog will appear, and you can select a

name for the file, as well as the directory where you would like the file to

be saved.

Reopen a recently-used file:

By default, gedit provides easy access to five of your most recently-used

files. Here is how you can open a recently-used file:

Click the Open button.

gedit will display a list of the five most-recently used files.

Select the desired file, and it will open in a new tab.

Ref : https://help.gnome.org/

4.6.2 vi/vim Editor:

In the Linux family, the VI editor is the most popular and classic text

editor. Here are some of the reasons why it is such a popular editor.

1) It's included in practically every Linux distribution.

2) It is compatible with a variety of systems and distributions.

3) It is user-friendly. Hence, millions of Linux users love it and use it for

their editing needs

Nowadays, there are advanced versions of the vi editor available, and the

most popular one is VIM which is Vi Improved.

https://help.gnome.org/

 76

Graphical Desktop

Modes of vi editor:

They are divided into three main parts:

Command Mode:

Insert Mode:

Escape Mode:

1. Command Mode:

Command Mode is the first screen of VI editor. It is case sensitive. Any

character that is typed during this mode is treated as a command. These

are character are not visible on the window. We can cut, copy, paste or

delete a piece of text or even move through the file in this mode

[ESC] used to enter the Command Mode from another mode (Insert

Mode)

2. Insert Mode:

We can easily move from Command mode à Insert mode by pressing ‗i‘ or

‗Insert‘ key from the keyboard. Characters typed in this mode is treated as

input and add text to your file

Pressing ESC will take you from Insert Mode -> Command Mode

3. Escape Mode

Press [:] to move to the escape mode. This mode is used to save the files &

execution of the commands

1. Open/ Create a File:

This will create a file with the name ‗filename‘ or open the file with the

name ‗filename‘ if already exists.

vi Filename

 77

Linux 2. Moving out of a file:

:q Quit out of a file

:q! Quit the file without saving the changes

:w Save the content of the editor

:wq Save the changes and quit the editor (*Combing the commands: q &:

w)

ZZ In command mode, this works similar to wq

3. Rename a File:

:w newFileName – This will rename the file that you are currently

working into ‗new filename‘. A command is used in Escape Mode.

4. Move within a file:

To move around in a file without actually editing the content of a file we

must be in the Command mode and keep the below commands handy.

h Moves the cursor left one character position

l Moves the cursor right one character position

k Moves the cursor one line up

j Moves the cursor one line down.

Cursor Movement Keys:

5. Inserting or Adding Text

Following is the command used to put the editor in the insert mode. Once

the ESC is pressed it will take the editor back to command mode.

i Insert text before the cursor

I Insert at the beginning of the current line

a Append after the cursor

A Append at the end of the current line

 78

Graphical Desktop

o Open & places the text in a new line below the current line

O Open & places the text in a new line above the current line

6. Searching the Text:

Similar to the find & replace command in windows editor we have certain

Search & replace command available in the VI editor as well.

/string Search the mentioned ‗String‘ in the forward direction

?string Search the mentioned ‗String‘ in the backward direction

n Move to the next available position of the searched string

N Move to the next available position of the searched string in the

opposite direction

Cutting & Pasting Text:

These commands allow you to copy and paste the text

yy Copy (yank, cut) the current line into the buffer

Nyy or yNy Copy ‗N‘ lines along with the current line into the buffer

p Paste / Put the lines in the buffer into the text after the current line

4.1.6.3 Emacs:

GUI text editors and coding environments and are not used to a primarily

text-based program, running commands in the editor itself, and/or using

large amounts of keyboard shortcuts.

List of shortcuts

C-h C-h : help

C-g : quit

C-x b : switch buffers

C-x right : right-cycle through buffers

C-x left : left-cycle through buffers

C-x k : kill buffer

C-x 0 : close the active window

C-x 1 : close all windows except the active window

C-x 2 : split the active window vertically into two horizontal windows

C-x 3 : split the active window horizontally into two vertical windows

C-x o : change active window to next window

 79

Linux C-x C-f : open file

C-x C-s : save file

C-x C-w : save file as

C-space : set region mark

C-w : kill region

C-k : kill region between point and end of current line

M-w : kill region without deleting

C-y : yank region from kill ring

M-y : move to previous item in the kill ring

M-Y : move to next item in the kill ring

C-_ : undo

C-s : search forwards

C-r : search backwards

M-% : query replace (‗space‘ to replace, ‗n‘ to skip, ‗!‘ to replace all)

M-q : wrap text

C-left : move one word left

C-right : move one word right

C-up : move one paragraph up

C-down : move one paragraph down

home : move to the beginning of the line

end : move to the end of the line

page up : move up a page

page down : move down a page

M- : move to end of buffer

Opening Emacs:

When you first open Emacs, you will see a window that looks something

like this.

 80

Graphical Desktop

4.7 MULTIMEDIA APPLICATIONS

1) Miro Media Player:

Miro is one of the best multimedia player for Internet TV for Linux

Desktop. It was developed by the Participatory Culture Foundation. It

plays almost all audio and video formats.

Features:

Remembers last played position

Supports all major video formats including MPEG, DivX, AVI,

Quicktime, WMV, FLV etc.

 81

Linux Also support Bit torrent file download.

2) VLC Media Player

VLC is a popular media player in Windows and also made available for

Linux Desktop Environment like Ubuntu too. It is a free and open source

multimedia player that supports most video formats.

Features:

Remembers last played position

Supports all major video formats including MPEG, DivX, AVI,

Quicktime, WMV, FLV etc.

Also support Bit torrent file download

3) UMPlayer:

UMPlayer stands for Universal Media Player as it can play all kinds of

media formats and also platform independent. The user interface is

aesthetically pleasing, simple and easy to use. It is licensed under the

GNU license and is free to download. You can also watch YouTube

videos on the UMPlayer.

 82

Graphical Desktop

Features:

Search and play YouTube Videos

Supports almost 270 media formats including AC3, AVI, WMV, Mp4,

MPEG, XVID etc.,

You can also record YouTube Videos using UMPlayer

Skinnable Interface

Remember media position

Localization support

4) DigiKam:

DigiKam is an advanced photo editing and management software

available for all major operating systems including Linux, Windows and

Mac OS. The people behind the creation of DigiKam are real professional

photographers who saw the need to developing an application that can

enable them to view, edit and organize their pictures and also tag and

share them with other people through social media.

 83

5
COMMAND LINE

Unit Structure

5.1 Command Line

5.2 Shell

5.3 Basic Commands

5.4 General Purpose Utilities

5.5 Installing Software

5.6 User management

5.7 Environment variables

5.8 Command aliases

5.9 Summary

5.10 Unit End Questions

5.11 List of References

5.1 COMMAND LINE

Once you start a terminal it will log in Linux console, you get access to the

shell (command line interface) CLI prompt. The prompt is your gateway

to the shell. This is the place where you enter shell commands.

The default prompt symbol for the bash shell is the dollar sign ($)

indicates the normal user & # sign indicates the Root user of the Linux.

This symbol indicates that the shell is waiting for you to enter text.

However, you can change the format of the prompt used by your shell. On

my Fedora Linux system, the bash shell prompt looks like this:

rich@1[~]$

On my Fedora Linux system, it looks like this:

[rich@testbox ~]$

You can change the prompt by ps1 & ps2 command. You can configure

the prompt to provide basic information about your environment. The first

example above shows three pieces of information in the prompt:

 The username that started the shell Like rich.

 The current virtual console number Like @1.

 The current directory (the tilde sign (~) is shorthand for the home

directory) i.e. Absoulte path of Home.

 84

Command Line

Directory:

In this example: [rich@testbox ~]$ it provides similar information, except

that it uses the hostname (Like testbox) instead of the virtual console

number.

There are two environment variables that control the format of the

command line prompt:

 PS1: Controls the format of the default command line prompt

 PS2: Controls the format of the second-tier command line prompt.

The shell uses the default PS1 prompt for initial data entry into the shell. If

you enter a command that requires additional information, the shell

displays the second-tier prompt specified by the PS2 environment

variable.

ps2 variable holds the secondary prompt symbol which is used for

commands that takes several lines to complete.

The default secondary prompt is „>‟

The PS1 & P2s2 variables contains primary & secondary prompt symbols

PS1 has defaults symbol value is $, you can change the prompt symbol by

assigning a new set of character to the PS1 variable.

 $ PS1 = “Hello>” <Enter>

 Hello> new prompt

i.e. prompt will change to Hello>.

There should not be blank space before & after „=‟ symbol. The new

prompt should be closed within (” “) double quotes.

$ psl = “”

Primary symbol prompt change to  new prompt.

You are having specific prompt codes specified for primary symbol.

Example 2:

$psl = “\w>”

~> cd/user/doc

/usr/doc>

~ (tilde) sign will indicate current working directory absolute path

Example 3:

$ psl = “\t\!”

This will display time & current history no. followed by

 85

Linux ps2:

Ps2 is a Secondary prompt it appears when 1st prompt value of the

command is incomplete by pressing ctr +Z to exit command$ echo “This

is incomplete command (Enter)

You can change the secondary prompt

 $ ps2 = „^‟

 $ ps2 will change to „^‟

 $ ps2 = “@”

 $ echo”

 @

 @

To display the current settings for your prompts, use the echo command:

rich@1[~]$ echo $PS1

It displays the current primary prompt of the system.

(Eg. \u@\l[\W]\$)

rich@1[~]$ echo $PS2

It displays the secondary prompt of the system. (Eg. >)

rich@1[~]$

The shell uses special characters to signify elements within the command

line prompt. Following:

List shows the special characters that you can use in the prompt string.

Bash Shell Prompt Characters:

Character Description

\a The bell character

\d Current date in the format ‘‘Day Month Date’’

\e The ASCII escape character

\h The local hostname

\H The fully qualified domain hostname

\j The number of jobs currently managed by the
shell

\l The basename of the shell’s terminal device
name

\n The ASCII newline character

\r The ASCII carriage return

\s The name of the shell ie. Shell currently active

\t The current time in 24-hour HH:MM:SS format

 86

Command Line

\T The current time in 12-hour HH:MM:SS format

\@ The current time in 12-hour am/pm format

\u The username of the current user

\v The version of the bash shell

\V The release level of the bash shell

\w The current working directory

\W The basename of the current working directory

\! The bash shell history number of this
command ie. Current history number.

\# The command number of this command

\$ Use a dollar ($) sign if a normal user, or a
pound sign (#) if the root user

\nnn The character corresponding to the octal value
nnn

\\ A backslash

\[Begins a control code sequence

\] Ends a control code sequence

Notice that all of the special prompt characters begin with a backslash (\).

The prompt contained both prompt characters and a normal character. You

can create any combination of prompt characters in your prompt. To create

a new prompt, just assign a new string to the PS1 variable:

[rich@testbox ~]$ PS1="[\t][\u]\$ "

[14:40:32][rich]$

This new shell prompt now shows the current time(\t), along with the

username(\u), along with that $ sign indicates the normal user. The new

PS1 definition only lasts for the duration of the shell session. When you

start a new shell, the default shell prompt definition is reloaded.

5.2 SHELL

The GNU/Linux shell is a special interactive utility.It is a program started

after you log on to the LINUX. It provides a command line interface or

shell between user & LINUX kernel. Hence it is called as fundamental

interface to O.S “Kernel”. The core of the shell is the command prompt.

The command prompt is the interactive part of the shell.

Typed „cmds are interpreted by the shell & send to the kernel which in

turns open, closes, reads or writes files. The shell runs like any other

program under the LINUX system. A shell is simply a macro processor

that executes commands that you enter at the command prompt. A Linux

shell is understood to be both a command interpreter and a programming

language. You can enter the commands at the command prompt (#) and

the shell will run them. If you have several commands that you need to

run, you can put them in a special text file called a script file and the shell

will run it also.

 87

Linux There are quite a few Linux shells available to use on a Linux system.

Different shells have different characteristics, some being more useful for

creating scripts and some being more useful for managing processes. The

default shell used in all Linux distributions is the bash shell. The bash

shell was developed by the GNU project as a replacement for the standard

Unix shell, called the Bourne shell (after its creator).

Linux Shells:

There are no. of shells available for linux:

1. Bash shell (Bourne again shell)

2. C shell

3. Korn shell

4. Restricted shell

5. Bourne shell

6. Tcsh shell

7. A shell

8. Z shell

9. PDKSH shell (public domain kom shell)

There are various shell available for LINUX system:

1. Bourne shell:

a. It is fastest unix command processor available & it is available on all

the unix sys.

b. It is most widely used shell at present for UNIX sys.

c. The executable file name is „sh‟ & it is installed as /bin/sh. It is

developed by AT&T.

2. C shell:

 This is another and processor developed by William joy it gets it‟s

name from its programming language in syntax.

 This C shell is not compatible with bourne shell.

 The C shell was developed to provide a programming interface

similar to C programming language.

 The name of executable file is esh.

3. Korn shell or ksh shell:

 It was developed by David korn. It is also a product of AT&T.

 It contains the best feature of both the above shell i.e. C shell &

Bourne shell.

 88

Command Line

 The executable file name is ksh.

 This is a public domain distribution for Red Hat called pdksh.

 The korn shell language is an interactive, complete, high level

programming language that can be used to write shell scripts and

programs.

 It is useful for writing applications with the development time being

less than most other programming languages.

 Ksh is called command line completion that means when you are

typing a command at the command line ksh will attempt to guess what

you are typing and type it for you.

 A programming shell compatible with the Bourne shell but supporting

advanced programming features like associative arrays and floating-

point arithmetic

4. Restricted shell:

When you want use of O.S. to have limited access to LINUX serve to

restricted shell is used & it is typically used for guest users who are not

part of system &insurance installation where users must be restricted to

work only in their own limited environment. These are called rsh shells.

5. Bash shell:

Bash is known as Bourne again shell. It was written by Stephen

Bourne. It is an enhancement of Bourne shell since bourne shell is

default shell of Unix which is already registerd hence Linux O.S legally

can‟t use bourne shell of Unix. Hence this bourne shell is newly created

with modification in bourne shell of Unix hence it is called as bourne

again shell. It is a default shell of most Linux system. The Bash shell is

executed as /bin/bash.

A simple, lightweight shell that runs in low-memory environments.

6. Tcsh:

Tcsh stands for Tom‟s C shell. Also known as Tc shell. It is

enhancement of C shell. The symbolic link available for Tcsh shell on

Linux is csh. You can execute Tcsh shell by typing either csh or tcsh.

At cmd prompt. The C & Tc shell are not compatible with bourne

shell.

A shell that incorporates elements from the C programming language

into shell scripts

7. A shell:

The A shell (ash) was developed by “Kenneth alnquist”. It is light

weight bourne shell. It is usually suitable for computers that have very

limited memory. This is a light weight Bourne compatible shell.

 89

Linux 8. Z shell:

The Z shell can be executed by zsh. It has best features of Tesh set

shell. Also it has features of korn shell& having large no. of utilities &

extensive documentation. It is designed for interactive use with a

powerful scripting language. An advanced shell that incorporates

features from bash, tcsh, and korn, providing advanced programming

features, shared history files, and themed prompts.

5.3 BASIC COMMANDS

File Management becomes easy if you know the right basic command

in Linux. Following commands are the basic commands in linux.

ls
Lists all files and directories in the present

working directory

ls – R Lists files in sub-directories as well

ls – a Lists hidden files as well

ls – al
Lists files and directories with detailed

information like permissions, size, owner, etc.

cat > filename Creates a new file

cat filename Displays the file content

cat file1 file2 > file3
Joins two files (file1, file2) and stores the

output in a new file (file3)

mv file “new file

path”
Moves the files to the new location

mv filename

new_file_name
Renames the file to a new filename

sudo
Allows regular users to run programs with the

security privileges of the superuser or root

rm filename Deletes a file

wc Word Count

touch Create blank files.

 90

Command Line

5.4 GENERAL PURPOSE UTILITIES

Along with controlling hardware devices, operating system needs utilities

to perform standard functions, such as controlling files and programs.

The GNU organization (GNU stands for GNU‟s not UNIX) developed a

complete set of Unix utilities, but had no kernel system to run them on.

Linux is developed by thousand of programmers hence GNU public

licensed s/w provides a programming development tools, editors & work

processors. Once Linux is installed you can start creating your own

program. Hence Linux is distributed freely under GNU i.e. general public

license (GPL) specified by free S/W foundation hence called as freeware.

These utilities were developed under a software philosophy called open

source software (OSS). Since it is an open source S/W hence source code

for application is freely distributed along with application over the internet

& easy to downward, upgrade & share. The concept of OSS allows

programmers to develop software and then release it to the world with no

licensing fees attached. Anyone can use the software, modify it, or

incorporate it into his or her own system without having to pay a license

fee.

The core GNU Utilities:

The GNU project was mainly designed for Unix system administrators to

have a Unix-like environment available. The core bundle of utilities

supplied for Linux systems is called the coreutils package.

The GNU coreutils package consists of three parts:

 Utilities for handling files

 Utilities for manipulating text

 Utilities for managing processes

These three main groups of utilities each contain several utility programs

that are invaluable to the Linux system administrator and programmer.

5.5 INSTALLING SOFTWARE

Instructions how to install new software in Linux: as this point is

exceptionally challenging and called-for among former Windows users.

The most common methods are below:

Installing RPM packages

Installing DEB packages

Installing from tarballs (esp. Source code)

 91

Linux Firstly, any Linux user should be aware of such thing as software

repositories. Repository is storage for packages (both source and binary)

accessible via Internet to install any required software on your computer.

You can easily select which to use or even create your own one: the list of

connected repositories is stored here by default (examples for the most

popular utilities):

– YUM: in files repo in the directory /etc/yum.repos.d/;

– APT: in file /etc/apt/sources.list and in the files in the directory

/etc/apt/source.list.d/.

#1) Redhat RPM is common for Linux free software package management

tool developed by Red Hat. This method is popular because users don‟t

need to compile the code by themselves. The software is ready to be

installed and you can find a brief instruction below.

As for RPM, user needs to perform the extraction of files by already

defined options (such as destination, name etc.) which are hidden within

the responsible utilities (rpm, yum). Installing RPM packages is fairly

straight forward. To install such software package, you can run the

following command: rpm -i RPMPackage.rpm.

An alternative tool here is yum: the main difference is automatic upgrades

and package management (including necessary dependencies). YUM is

analog for APT (DEB packages) and manage repositories. Example: yum

install RPMPackage.rpm; yum update RPMPackage.rpm; yum remove

RPMPackage.rpm.

#2) Debian packages are almost the same as RPM but for usage in Debian

GNU/Linux systems. Obviously, the extension of such packages are *.deb.

To install such packages (whether source or binary) use APT (Advance

Packaging Tool). This is package management system for Debian and also

includes a lot of different tools. So, installing new software will be quite

simple as well: just run the command apt-get install DEBPackage.deb. Just

for understanding the common flow, here is an example: apt-get update

DEBPackage.deb; apt-get remove DEBPackage.deb.

#3) Tarballs is so-called archives distributed with the following extensions

“.tar.gz”, “.tar.bz2”, or “.zip” (there are even more regarding the type of

compression and archivers). Originally tarballs are used for programs

which are not compiled, i.e. they are presented as source code. That‟s why

there significant differences how to install software this way. The main

idea here: if you cannot find your program in the repositories, just

download the source code from any open source program website and then

install it according simple instruction below.

To extract data form such tarballs we should use the corresponding

commands. Some variants are below:

 for files ending in .tar.gz, run: tar -zxvf <TarBallName>,

 92

Command Line

 for files ending in .tar.bz2, run: tar -jxvf <TarBallName>,

 for files ending in .zip, run: unzip <TarBallName>.

As you got the point that the program has not been prepared for

installation one should perform the preparation procedure called pre-

installation configuration. Just run ./configure and your system will be

checked for any necessary libraries or configurations required.

To fulfill test of your system, preparation of the package and make

installation instructions for the next step apply the following command

make.

To install the program from source code after preparation phase run make

install. Though, according to Linux forums, checkinstall is strongly

recommended here due to the problem with further updates of installed

software if using make install.

5.6 USER MANAGEMENT

The /etc/passwd file:

/etc/passwd: all information except the password encryption is stored in

/etc/passwd. This file contains the password once. The encryption itself is

stored in /etc/shadow. There are 7 fields area present in the file and the

fields and their description is as follows:

 username – the name with which user logs in.

 password – no longer stores the password encryption but contains an

x.

 UID- the use‟s numerical identification. No 2 users should have the

same UID.

 GID- the user‟s numerical group identification. This number is also

the third field in the /etc/group.

 Comment- user details.

 Home directory- the dir where the user ends up on logging in. the

variable HOME is set by the login program by reading this field.

 Login shell – the first program executed after logging in. this is

usually the shell. Login also set the variable shell by reading this

entry, and also fork-execs the shell process.

For every line in /etc/passwd, there‟s a corresponding entry in

/etc/shadow. The relevant line in this file could look something like this:

Oracle:sdfsdfsdfsd:12032::::::::

The password encryption is shown in the second field.

 93

Linux /dev:

Devices are also files. One can open a device, read and write to it and then

close it like any other file. The functions for doing all this is built into the

kernel for each and every device of the system. The same device can often

be accessed with several different filenames. All device files are stored in

/dev or in its subdirectories. The device files can be grouped into mainly

depending on the first char of the permission field. It does have the

following dirs., cdrom, default floppy drive, first hard disk, printer, tape

drive and terminal.

There are two kinds of devices exist block devices and char devices. For

both these types of devices, the device file exist in the /dev dir.

$ cat /etc/passwd

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:/sbin/nologin

daemon:x:2:2:daemon:/sbin:/sbin/nologin

adm:x:3:4:adm:/var/adm:/sbin/nologin

lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin

sync:x:5:0:sync:/sbin:/bin/sync

shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown

mail:x:8:12:mail:/var/spool/mail:/sbin/nologin

uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin

Understanding Linux File Permissions:

The root user account is the administrator for the Linux system and is

always assigned UID 0. The Linux system creates lots of user accounts for

various functions that aren‟t actual users. These are called system

accounts. A system account is a special account that services running on

the system use to gain access to resources on the system. All services that

run in background mode need to be logged in to the Linux system under a

system user account.

These services often just logged in using the root user account if an

unauthorized person broke into one of these services, he instantly gained

access to the system as the root user. To prevent this, now just about every

service that runs in background on a Linux server has its own user account

to log in with.

You probably noticed that the /etc/passwd file contains lots more than just

the login name and UID for the user. The fields of the /etc/passwd file

contain the following information:

 The login username.

 94

Command Line

 The password for the user.

 The numerical UID of the user account.

 The numerical group ID (GID) of the user account.

 A text description of the user account (called the comment field).

 The location of the HOME directory for the user.

 The default shell for the user.

The password field in the /etc/passwd file is set to an x. This doesn‟t mean

that all of the user accounts have the same password. In the old days of

Linux, the /etc/passed file contained an encrypted version of the user‟s

password. However, since lots of programs need to access the /etc/passwd

file for user information, this became somewhat of a security problem.

Now, most Linux systems hold user passwords in a separate file (called

the shadow file, located at /etc/shadow). Only special programs (such as

the login program) are allowed access to this file.

The /etc/shadow file:

The /etc/shadow file provides more control over how the Linux system

manages passwords.

Only the root or admin user has access to the /etc/shadow file, making it

more secure than the /etc/passwd file.

The /etc/shadow file contains one record for each user account on the

system. A record looks like this:

rich:1.FfcK0ns$f1UgiyHQ25wrB/hykCn020:11627:0:99999:7:::

There are nine fields in each /etc/shadow file record:

(1) The login name corresponding to the login name in the /etc/passwd

file.

(2) The encrypted password.

(3) The number of days since January 1, 1970 that the password was last

changed.

(4) The minimum number of days before the password can be changed.

(5) The number of days before the password must be changed.

(6) The number of days before password expiration that the user is

warned to change the password.

(7) The number of days after a password expires before the account will

be disabled.

 95

Linux (8) The date (stored as the number of days since January 1, 1970) since

the user account was disabled.

(9) A field reserved for future use.

Using the shadow password system, it can control how often a user must

change his or her password, and when to disable the account if the

password hasn‟t been changed.

Adding a new user:

The primary tool used to add new users to your Linux system is useradd.

This command provides an easy way to create a new user account and set

up the user‟s HOME directory structure all at once. The useradd command

uses a combination of system default values and command line parameters

to define a user account. To see the system default values used on your

Linux distribution, enter the useradd command with the -D parameter:

/usr/sbin/useradd -D

GROUP=100

HOME=/home

INACTIVE=-1

EXPIRE=

SHELL=/bin/bash

SKEL=/etc/skel

CREATE_MAIL_SPOOL=yes

/usr/sbin directory, which may not be in your PATH environment

variable. The -D parameter shows what defaults the useradd command

uses if you don‟t specify them in the command line when creating a new

user account.

This example shows the following default values:

(1) The new user will be added to a common group with group ID 100.

(2) The new user will have a HOME account created in the directory

/home/loginname.

(3) The account will not be disabled when the password expires.

(4) The new account will not be set to expire at a set date.

(5) The new account will use the bash shell as the default shell.

(6) The system will copy the contents of the /etc/skel directory to the

user‟s HOME directory.

 96

Command Line

(7) The system will create a file in the mail directory for the user account

to receive mail.

The next-to-the-last value is interesting. The useradd command allows an

administrator to create a default HOME directory configuration, then uses

that as a template to create the new user‟s HOME directory. This allows

you to place default files for the system in every new user‟s HOME

directory automatically. On my Linux system, the /etc/skel directory has

the following files:

ls -al /etc/skel

total 48

drwxr-xr-x 2 root root 4096 2001-11-01 00:23 .

drwxr-xr-x 107 root root 12288 2007-09-20 16:53

..

-rw-r--r-- 1 root root 33 2007-02-12 10:18

.bash_logout

-rw-r--r-- 1 root root 176 2007-02-12 10:18

.bash_profile

-rw-r--r-- 1 root root 124 2007-02-12 10:18

.bashrc

The useradd command created the new HOME directory, using the files in

the /etc/skel directory.

Useradd Parameter Description:

-c comment Add text to the new user‟s comment field.

-d home_dir Specify a different name for the home directory other than the

login name.

-e expire_date Specify a date, in YYYY-MM-DD format, when the

account will expire.

-f inactive_days Specify the number of days after a password expires

when the account will be disabled. A value of 0 disables the account as

soon as the password expires; a value of -1 disables this feature.

-g initial_group Specify the group name or GID of the user‟s login group.

-G group. . . Specify one or more supplementary groups the user belongs

to.

-k Copy the /etc/skel directory contents into the user‟s HOME directory

(must use -m as well).

-m Create the user‟s HOME directory.

 97

Linux -M Don‟t create a user‟s HOME directory (used if the default setting is to

create one).

-n Create a new group using the same name as the user‟s login name.

-r Create a system account

-p passwd Specify a default password for the user account.

-s shell Specify the default login shell.

-u uid Specify a unique UID for the account.

Removing a user:

If you want to remove a user from the system, the userdel command is

what you need. By default, the userdel command only removes the user

information from the /etc/passwd file.

It doesn‟t remove any files the account owns on the system.

If you use the -r parameter, userdel will remove the user‟s HOME

directory, along with the user‟s mail directory. However, there may still be

other files owned by the deleted user account on the system. This can be a

problem in some environments.

Here‟s an example of using the userdel command to remove an existing

user account:

/usr/sbin/userdel -r test

ls -al /home/test

ls: cannot access /home/test: No such file or

directory

User Account Modification Utilities:

Command Description:

Usermod Edits user account fields, as well as specifying primary and

secondary group membership passwd Changes the password for an

existing user chpasswd Reads a file of login name and password pairs, and

updates the passwords chage Changes the password‟s expiration date chfn

Changes the user account‟s comment information chsh Changes the user

account‟s default shell Each of these utilities provides a specific function

for changing information about user accounts.

The following sections describe each of these utilities.

usermod:

The usermod command is the most robust of the user account modification

utilities. It provides options for changing most of the fields in the

/etc/passwd file. To do that you just need to use the command line

 98

Command Line

parameter that corresponds to the value you want to change. The

parameters are mostly the same as the useradd parameters (such as -c to

change the comment field, -e to change the expiration date, and -g to

change the default login group). However, there are a couple of additional

parameters that might come in handy:

 -l to change the login name of the user account

 -L to lock the account so the user can‟t log in

 -p to change the password for the account

 -U to unlock the account so that the user can log in

The -L parameter is especially handy. Use this to lock an account so that a

user can‟t log in without having to remove the account and the user‟s data.

To return the account to normal, just use the -U parameter.

passwd and chpasswd:

A quick way to change just the password for a user is the passwd

command:

passwd test

Changing password for user test.

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated successfully.

If you just use the passwd command by itself, it‟ll change your own

password. Any user in the system can change their own password, but

only the root user can change someone else‟s password.

The -e option is a handy way to force a user to change the password on the

next log in. This allows you to set the user‟s password to a simple value,

then force them to change it to something harder that they can remember.

If you ever need to do a mass password change for lots of users on the

system, the

chpasswd:

The chpasswd command reads a list of login name and password pairs

(separated by a colon) from the standard input, and automatically encrypts

the password and sets it for the user account.

 99

Linux chsh, chfn, and chage:

The chsh, chfn, and chage utilities are specialized for specific functions.

The chsh commandallows you to quickly change the default login shell for

a user. You must use the full pathname for the shell, and not just the shell

name:

chsh -s /bin/csh test

Changing shell for test.

Shell changed.

The chfn command provides a standard method for storing information in

the comments field in the /etc/passwd file. Instead of just inserting random

text, such as names, nicknames, or even just leaving the comment field

blank, the chfn command uses specific information used in the Unix finger

command to store information in the comment field. The finger command

allows you to easily find information about people on your Linux system:

finger rich

Login: rich Name: Rich Blum

Directory: /home/rich Shell: /bin/bash

On since Thu Sep 20 18:03 (EDT) on pts/0 from 192.168.1.2

No mail.

No Plan.

If you use the chfn command with no parameters, it queries you for the

appropriate values to enter in to the comment field:

chfn test:

Changing finger information for test.

Name []: Ima Test

Office []: Director of Technology

Office Phone []: (123)555-1234

Home Phone []: (123)555-9876

Finger information changed.

finger test:

Login: test Name: Ima Test

 100

Command Line

Directory: /home/test Shell: /bin/csh

Office: Director of Technology Office Phone: (123)555-1234

Home Phone: (123)555-9876

Never logged in.

No mail.

No Plan.

If you now look at the entry in the /etc/passwd file, it looks like this:

grep test /etc/passwd:

test:x:504:504:Ima Test,Director of

Technology,(123)555-

1234,(123)555-9876:/home/test:/bin/csh

All of the finger information is neatly stored away in the /etc/passwd file

entry.

Finally, the chage command helps us manage the password aging process

for user accounts.

There are several parameters to set individual values, shown in Table 6-4.

The chage date values can be expressed using one of two methods:

 A date in YYYY-MM-DD format

 A numerical value representing the number of days since January 1,

1970

One neat feature of the chage command is that it allows you to set an

expiration date for an account. Using this feature, you can create

temporary user accounts that automatically expire on a set date, without

your having to remember to delete them! Expired accounts are similar to

locked accounts. The account still exists, but the user can‟t log in with it.

The change Command Parameters:

Parameter Description:

 d Set the number of days since the password was last changed.

 E Set the date the password will expire.

 I Set the number of days of inactivity after the password expires to

lock the account.

 101

Linux  m Set the minimum number of days between password changes.

 W Set the number of days before the password expires that a warning

message appears.

5.7 ENVIRONMENT VARIABLES

The bash shell uses a feature called environment variables to store

information about the shell session and the working environment (thus the

name environment variables).

This feature also allows you to store data in memory that can be easily

accessed by any program or script running from the shell.

There are two types of environment variables in the bash shell:

(1) Global Variables.

(2) Local Variables.

(1) Global Environment Variables:

Global environment variables are visible from the shell session, and any

child processes that the shell spawns. Local variables are only available in

the shell that creates them. This makes global environment variables

useful in applications that spawn child processes that require information

from the parent process.

To display the value of an individual environment variable, use the echo

command. When referencing an environment variable, you must place a

dollar sign before the environment variable name:

$ echo $HOME

/home/rich

Global environment variables are also available to child processes running

under the current shell session:

$ bash

$ echo $HOME

/home/rich

(2) Local Environment Variables:

Local environment variables, as their name implies, can be seen only in

the local process in which they are defined.

Set} example

 102

Command Line

5.7.1 Setting Environment Variables:

Once you start a bash shell (or spawn a shell script), you‟re allowed to

create local variables that are visible within your shell process. You can

assign either a numeric or a string value to an environment variable by

assigning the variable to a value using the equal sign:

$ test=testing

$ echo $test

testing

If you need to assign a string value that contains spaces, you‟ll need to use

a single quotation mark to delineate the beginning and the end of the

string:

$ test=testing a long string

-bash: a: command not found

$ test=’testing a long string’

$ echo $test testing a long string

Note: It’s extremely important that there are no spaces between the

environment variable name, the equal sign, and the value. If you put any

spaces in the assignment, the bash shell interprets the value as a

separate command:

$ test2 = test

-bash: test2: command not found

Once you set a local environment variable, it‟s available for use anywhere

within your shell process. However, if you spawn another shell, it‟s not

available in the child shell:

$ bash

$ echo $test

$ exit

exit

$ echo $test

testing a long string

$

The test environment variable is not available in the child shell (it contains

a blank value)

 103

Linux Similarly, if you set a local environment variable in a child process, once

you leave the child process the local environment variable is no longer

available:

$ bash

$ test=testing

$ echo $test

testing

$ exit

exit

$ echo $test

Setting Global Environment Variables:

Global environment variables are visible from any child processes created

by the process that sets the global environment variable. The method used

to create a global environment variable is to create a local environment

variable, then export it to the global environment.

This is done by using the export command:

$ echo $test

testing a long string

$ export test

$ bash

$ echo $test

testing a long string

$

After exporting the local environment variable test, I started a new shell

process and viewed the value of the test environment variable. This time,

the environment variable kept its value, as the export command made it

global.

5.7.2 Removing Environment Variables:

If you can create a new environment variable, it makes sense that you can

also remove an existing environment variable. This is done by using the

unset command:

$ echo $test

testing

$ unset test

 104

Command Line

$ echo $test

Note: When referencing the environment variable in the unset command,

remember not to use the dollar sign.

If you‟re in a child process and unset a global environment variable, it

only applies to the child process. The global environment variable is still

available in the parent process:

$ test=testing

$ export test

$ bash

$ echo $test

testing

$ unset test

$ echo $test

$ exit

exit

$ echo $test

testing

$

5.7.3 Default Shell Environment Variables:

Table shows the environment variables the bash shell provides that are

compatible with the original Unix Bourne shell.

Variable Description

CDPATH A colon-separated list of directories used as a

search path for the cd command.

HOME The current user‟s home directory.

IFS A list of characters that separate fields used by the

shell to split text strings.

MAILPATH A colon-separated list of multiple filenames for the

current user‟s mailbox. The

OPTARG The value of the last option argument processed by

the getopts command.

PATH A colon-separated list of directories where the shell

looks for commands.

PS1 The primary shell command line interface prompt

string.

PS2 The secondary shell command line interface

prompt string.

 105

Linux MAIL The filename for the current user‟s mailbox. The

bash shell checks this file

For new

mail.

bash shell checks each file in this list for new mail.

OPTIND The index value of the last option argument

processed by the getopts command

5.7.4 Setting the PATH Environment Variables:

The most important environment variable in this list is the PATH

environment variable.

When you enter a command in the shell command line interface (CLI), the

shell must search the system to find the program. The PATH environment

variable defines the directories it searches looking for commands. On my

Linux system, the PATH environment variable looks like this:

$ echo $PATH

/usr/kerberos/bin:/usr/lib/ccache:/usr/local/bin:

/bin:/usr/bin:/home/rich/bin

This shows that there are six directories where the shell looks for

commands. Each directory in the PATH is separated by a colon. There‟s

nothing at the end of the PATH variable indicating the end of the directory

listing.

PATH environment variable without having to rebuild it from scratch. The

individual directories listed in the PATH are separated by a colon. All you

need to do is reference the original PATH value, and add any new

directories to the string.

This looks something like this:

$ echo $PATH

/usr/kerberos/bin:/usr/lib/ccache:/usr/local/bin:

/bin:/usr/bin:/home

/rich/bin

$ PATH=$PATH:/home/rich/test

$ echo $PATH

/usr/kerberos/bin:/usr/lib/ccache:/usr/local/bin:

/bin:/usr/bin:/home

/rich/bin:/home/rich/test

$ myprog

The factorial of 5 is 120.

 106

Command Line

5.7.5 Locating System Environment Variables:

The Linux system uses environment variables to identify itself in

programs and scripts. This provides a convenient way to obtain system

information for your programs. The trick is in how these environment

variables are set.

By default bash checks several files for commands. These files are called

startup files. The startup files bash processes depend on the method use to

start the bash shell.

There are three ways of starting a bash shell:

(1) Default login shell at login time.

(2) Interactive shell that is not the login shell.

(3) Non-interactive shell to run a script.

(1) Default Login Shell at Login Time:

Linux system, the bash shell starts as a login shell. The login shell looks

for four different startup files to process commands from. The order in

which the bash shell processes the files is:

 /etc/profile

 $HOME/.bash profile

 $HOME/.bash login

 $HOME/.profile

The /etc/profile file is the main default startup file for the bash shell.

Whenever you log in to the Linux system, bash executes the commands in

the /etc/profile startup file.

The remaining three startup files are all used for the same function to

provide a user-specific startup file for defining user-specific environment

variables.

(2) Interactive Shell that is not the Login Shell:

If you start a bash shell without logging into a system (such as if you just

type bash at a CLI prompt), you start what‟s called an interactive shell.

The interactive shell doesn‟t act like the login shell, but it still provides a

CLI prompt for you to enter commands.

If bash is started as an interactive shell, it doesn‟t process the /etc/profile

file. Instead, it checks for the .bashrc file in the user‟s HOME directory.

The .bashrc file does two things.

First, it checks for a common bashrc file in the /etc directory.

 107

Linux Second, it provides a place for the user to enter personal aliases and

private script functions.

The common/etc/bashrc startup file is run by everyone on the system who

starts an interactive shell session.

(3) Non-interactive Shell:

The last type of shell is a non-interactive shell. This is the shell that the

system starts to execute a shell script.

This is different in that there isn‟t a CLI prompt to worry about. However,

there may still be specific startup commands you want to run each time

you start a script on your system.

To accommodate that situation, the bash shell provides the BASH ENV

environment variable. When the shell starts a non-interactive shell

process, it checks this environment variable for the name of a startup file

to execute.

If one is present, the shell executes the commands in the file.

5.7.6 Variable Arrays:

Feature of environment variables is that they can be used as arrays. An

array is a variable that can hold multiple values. Values can be referenced

either individually or as a whole for the entire array.

To set multiple values for an environment variable, just list them in

parentheses, with each value separated by a space:

$ mytest=(one two three four five)

$ echo $mytest

one

$

Only the first value in the array appears. To reference an individual array

element, you must use a numerical index value, which represents its place

in the array. The numeric value is enclosed in square brackets:

$ echo ${mytest[2]} three

Note: Environment variable arrays start with an index value of zero.

To display an entire array variable use the asterisk wildcard character as

the index value:

$ echo ${mytest[*]}

one two three four five

$

 108

Command Line

Change the value of an individual index position:

$ mytest[2]=seven

$ echo ${mytest[*]}

one two seven four five

$

use the unset command to remove an individual value within the array

$ unset mytest[2]

$ echo ${mytest[*]}

one two four five

$

$ echo ${mytest[2]}

$ echo ${mytest[3]}

four

This example uses the unset command to remove the value at index value

2. When you display the array, it appears that the other index values just

dropped down one. However, if you specifically display the data at index

value 2, you‟ll see that that location is empty.

Remove the entire array just by using the array name in the unset

command:

$ unset mytest

$ echo ${mytest[*]}

5.8 USING COMMAND ALIASES

A command alias allows you to create an alias name for common

commands (along with their parameters) to help keep your typing to a

minimum.

To see a list of the active aliases, use the alias command with the -p

parameter:

$ alias -p

alias l.=’ls -d .* --color=tty’

alias ll=’ls -l --color=tty’

alias ls=’ls --color=tty’

alias vi=’vim’

 109

Linux alias which=’alias | /usr/bin/which --tty-only --

readalias--

show-dot --show-tilde’

use an alias to override the standard ls command. It automatically provides

the --color parameter, indicating that the terminal supports color mode

listings.

Using the alias command:

[rich@testbox ~]$ alias li=’ls -il’

[rich@testbox ~]$ li

total 989292

360621 drwxrwxr-x 2 rich rich 4096 2007-08-24

22:04 4rich

301871 drwxr-xr-x 4 rich rich 4096 2007-09-18

08:38 Desktop

301875 drwxr-xr-x 2 rich rich 4096 2001-11-01

01:10 Documents

301872 drwxr-xr-x 2 rich rich 4096 2001-11-01

04:06 Download

Once you define an alias value, you can use it at any time in your shell,

including in shell scripts.

Command aliases act like local environment variables. They‟re only valid

for the shell process in which they‟re defined:

$ alias li=’ls -il’

$ bash

$ li

bash: li: command not found

5.9 SUMMARY

This chapter consist of different types of shell in command line, How to

install rpm packages with the help of yum, different files when we create a

user, command with options, how to change password of the user using

passwd , different types of environment variables.

5.10 UNIT END QUESTIONS

1. Write a short note on following

Bash shell (Bourne again shell)

 110

Command Line

C shell

Korn shell

Restricted shell

Bourne shell

Tcsh shell

A shell

Z shell

2. How many GNU coreutils package are available? Explain any one of

them.

3. Differentiate rpm and yum.

4. Write the contain of /etc/passwd file.

5. Describe/etc/shadow file

6. Describe useradd Parameter

7. How to change password of the particular user.

8. Explain types of environment variables in the bash shell.

9. Explain how to setup and removing Environment Variables.

10. Describe default Shell Environment Variables.

11. How COMMAND ALIASES used in command line

5.11 LIST OF REFERENCES

1) Unix Concepts and Applications by Sumitabha Das.

2) Official Ubuntu Book, 8th Edition, by Matthew Helmke & Elizabeth K.

Joseph with Jose Antonio Rey and Philips Ballew, Prentice Hall

 111

6
LINUX DOCUMENTATION

Unit Structure

6.0 Objectives

6.1 Linux Documentation

6.2 Man pages, GNU info,

6.3 Help command,

6.4 More documentation sources

6.5 File Operations

6.6 Filesystem

6.7 Filesystem architecture

6.8 File types

6.9 File attributes

6.10 Working with files

6.11 Backup, compression

6.12 Summary

6.13 Unit End Questions

6.0 OBJECTIVES

In this chapter In this chapter you will learn about:

 Linux Documentation man pages, GNU info help command

 More documentation sources, File Operations, Filesystem, Filesystem

 Architecture, File types, File attributes, Working with

 Files, Backup and compression

6.1 LINUX DOCUMENTATION

if you are new to LINUX operating system and having trouble dealing

with the command-line utilities provided by LINUX then you really need

to know first of all about the help command which as its name says help

you to learn about any built-in command.

help command as told before just displays information about shell built-in

commands. Here‟s the syntax for it:

// syntax for help command

$help [-dms] [pattern ...]

The pattern specified in the syntax above refers to the command about

which you would like to know and if it is matched with any shell built-in

command then help give details about it and if it is not matched

 112

Linux Documentation then help prints the list of help topics for your convenience. And the d, m

and s here are options that you can use with the help command.

$help help

help: help [-dms] [pattern...]

 Display information about builtin commands.

 Displays brief summaries of builtin commands. If PATTERN IS

 specified, gives detailed help on all commands matching PATTERN,

 otherwise the list of help topics is printed.

 Options:

-d output short description for each topic

-m display usage in pseudo-manpage format

-s output only a short usage synopsis for each topic matching

6.2 MAN PAGES, GNU INFO

GNU Info accepts several options to control the initial node being viewed,

and to specify which directories to search for Info files. Here is a template

showing an invocation of GNU Info from the shell:

info [option]... [menu-item...]

The program accepts the following options:

--apropos=string

Specify a string to search in every index of every Info file installed on

your system. Info looks up the named string in all the indices it can find,

prints the results to standard output, and then exits. If you are not sure

which Info file explains certain issues, this option is your friend. Note that

if your system has a lot of Info files installed, searching all of them might

take some time.

6.3 HELP COMMAND

$help help

help: help [-dms] [pattern...]

Display information about builtin commands.

Options for help command

-d

 113

Linux option: It is used when you just want to get an overview about any shell

built-in command i.e it only gives short description.

-m option: It displays usage in pseudo-manpage format.

-s option: It just displays only a short usage synopsis for each topic

matching.

6.4 MORE DOCUMENTATION SOURCES

The commercial Linux distributions-for example, Red Hat, SuSE,

Mandrake, Xandros, and Linspire-supply excellent user manuals. Every

major Linux distribution provides a feast of online resources. Search

engines, user mailing lists, Usenet, and all sorts of Linux web sites also

supply a wealth of help and information.

6.5 FILE OPERATIONS

The most basic feature of the shell is the ability to see what files are

available on the system. The list command (ls) is the tool that helps do

that.

Basic listing:

The ls command at its most basic form displays the files and directories

located in your current directory:

$ ls

4rich Desktop Download Music Pictures store store.zip test backup

Documents Drivers myprog Public store.sql Templates Videos.

$

Notice that the ls command produces the listing in alphabetical order (in

columns rather than rows). If you‟re using a terminal emulator that

supports color, the ls command may also show different types of entries in

different colors. The LS COLORS environment variable controls this

feature. Different Linux distributions set this environment variable

depending on the capabilities of the terminal emulator.

If you don‟t have a color terminal emulator, you can use the -F parameter

with the ls command to easily distinguish files from directories. Using the

-F parameter produces the following output:

$ ls -F

4rich/ Documents/ Music/ Public/ store.zip Videos/

backup.zip Download/ myprog* store/ Templates/

Desktop/ Drivers/ Pictures/ store.sql test

$

 114

Linux Documentation The -F parameter now flags the directories with a forward slash, to help

identify them in the listing. Similarly, it flags executable files with an

asterisk, to help you find the files that can be run on the system easier.

The basic ls command can be somewhat misleading. It shows the files and

directories contained in the current directory, but not necessarily all of

them. Linux often uses hidden files to store configuration information. In

Linux, hidden files are files with filenames that start with a period.

These files don‟t appear in the default ls listing (thus they are called

hidden).

To display hidden files along with normal files and directories, use the -a

parameter.

Displaying File Information with different ls options:

(1) $ ls : This ls command is shortened form of list &
lists the file in your directory. It works as‟ dir‟
command in Dos.

(2) $ ls – l : This command will give listing of files in long
format with all permission i.e. reading, writing,
& executing with users & group info of life.

(3) $ ls–al : This command will give listing of file with all
info along with all hidden files in long format.

(4) $ ls -c : Sort by time of last modification.

(5) $ ls -d : Directory List directory entries instead of
contents, and don‟t dereference symbolic links.

(6) $ ls -F : Classify Append file-type indicator to entries.

(7) $ ls -g : List full file information except for the file‟s
owner.

(8) $ ls -G : No-group In long listing don‟t display group
names.

(9) $ ls -n : Numeric-uid-gid Show numeric userid and
groupid instead of names.

(10) $ ls -o : In long listing don‟t display owner names.

(11) $ ls -r : Reverse Reverse the sorting order when
displaying files and directories.

(12) $ ls -u : Display file last access time instead of last
modification time.

(13) $ ls -v : sort=version Sort the output by file version.

(14) $ ls – m : It lists all the files separated by commas.

(15) $ ls – Y : It sorts the file name in columns horizontally.

(16) $ ls – A : It lists all the files & directories without two
directories 1). 2) ..

(17) $ ls – C : It sorts the file in column vertically.

(18) $ ls – F : It identifies directories links & executable files.

(19) $ ls – s : It sorts file by size.

(20) $ ls –
color

: It use color for identification.

 115

Linux There are different wildcard characters and Regular Expression

supported by ls command.

The ls command recognizes standard wildcard characters and uses them to

match patterns within the filter:

 A question mark (?) to represent one character.

 An asterisk (*) to represent zero or more characters.

The question mark can be used to replace exactly one character anywhere

in the filter string.

For example:

$ ls -l mypro?

-rw-rw-r-- 1 rich rich 0 2007-09-03 16:38 myprob

-rwxr--r-- 1 rich rich 30 2007-08-23 21:42 myprog

$

The filter mypro? matched two files in the directory. Similarly, the

asterisk can be used to match

zero or more characters:

$ ls -l myprob*

-rw-rw-r-- 1 rich rich 0 2007-09-03 16:38 myprob

-rw-rw-r-- 1 rich rich 0 2007-09-03 16:40 myproblem

$

The asterisk matches zero characters in the myprob file, but it matches

three characters in the myproblem file.

This is a powerful feature to use when searching for files when you‟re not

quite sure of the filenames.

Ls supports the regular expressions Like the range of characters is

specified by [].

Following are some of examples of using Wild card chracters & Regular

expressions:

1. $ ls doc *: This command will give listing of files starting

with Doc.

2. $ ls * day: This command gives listing of all files ending

with day.

3. $ ls * .c: Listing of all files having extension „.c‟

4. $ ls doc ?: This command gives listing of all files having

 116

Linux Documentation starting 3 characters as doc & followed by one

single unknown character.

5. $ ls *.[co] : It displays the files having extension either c or

o main.c arg.c main.o

6. $ ls doc[1A]: You can specify a set of characters as a range,

rather than listing them one by one. The

filename begining with doc followed by 1 or A.

7. $ ls doc[1-3]: It displays the files begin with pattern doc &

ending in character 1 through 3.

Output of ls –l is as shown below:

$ $ ls –l

File
type

File
permission

No.
of

links

Owner
group

Other Size
in

byte

Date &
time last
modified

file
name

– rwxrwxrwx 2 ABC
other

“ 660
4096

2007-08-
24 15:34

abc.doc

 d wxrwxrwx 3 XYZ
ABC

“ 1250 “

 d wxrwxrwx 1 ABC
other

“ 950 “ xyz

The file type (such as directory (d), Ordinary file (-), character device (c),

or block device (b)

The permissions for the file:

(1) Read  With this permission user can read the data or file, user can

not write into it.

(2) Write  With this permission user can write the data or file.

(3) Execute  With this permission user can execute the application.

The number of hard links to the file (Links of the file in same directory)

The username of the owner of the file.

The group name of the group the file belongs to.

The size of the file in bytes.

The time the file was modified last.

The file or directory namePart I.

The Linsux is divided into 3 groups owner, group and others.

 117

Linux 1) Owner:

It is the user who creates a particulars file called as owner of that file. The

owner is a person who has all rights on the files created by him and also

decides the rights of other user associated to that file. The owner group is

abbrivated as „u‟

2) Group:

In a typical software development one large project is divided among

different members of a team. So software developers requires that file

belonging their project should not accessible to other users hence they will

apply right to group users. It is abbreviated as „g‟

3) Others:

All the users that are neither owner nor engaged to with a group is called

as other normally guest user Abbrivated d as „o‟.

The Linux Command Line:

The -R parameter is another command ls parameter to use. It shows files

that are contained within directories in the current directory. If more

number of directories are available then this can be quite a long listing.

Here‟s a simple example of what the -R parameter produces:

$ ls -F -R

.:

file1 test1/ test2/

./test1:

myprog1* myprog2*

./test2:

GURE 3-3

Notice that first, the -R parameter shows the contents of the current

directory, which is a file (file1) and two directories (test1 and test2).

Following that, it traverses each of the two directories, showing if any files

are contained within each directory. The test1 directory shows two files

(myprog1 and myprog2), while the test2 directory doesn‟t contain any

files. If there had been further subdirectories within the test1 or test2

directories, the -R parameter would have continued to traverse those as

well. As you can see, for large directory structures this can become quite a

large output listing.

The complete parameter list

The ls command uses two types of command line parameters:

 Single-letter parameters.

 Full-word (long) parameters.

 118

Linux Documentation The single-letter parameters are always preceded by a single dash. Full-

word parameters are more descriptive and are preceded by a double dash.

Many parameters have both a single-letter and full-word version, while

some have only one type. These are some of parameters that are used with

ls command.

Single

Letter

Full Word Description

O In long listing don‟t display owner names.

R Reverse the sorting order when displaying files and

directories.

R Recursive List subdirectory contents recursively.

S Size Print the block size of each file.

S sort=size Sort the output by file size.

T sort=time Sort the output by file modification time.

U Display file last access time instead of last

modification time.

U sort=none Don‟t sort the output listing.

V sort=version Sort the output by file version.

X List entries by line instead of columns.

X sort=extension Sort the output by file extension

You can use more than one parameter at a time if you want to. A common

combination to use is the -a parameter to list all files, the -i parameter to

list the inode for each file, the -l parameter to produce a long listing, and

the -s parameter to list the block size of the files. The inode of a file or

directory is a unique identification number the kernel assigns to each

object in the filesystem. Combining all of these parameters creates the

easy-to-remember -sail parameter:

$ ls -sail

total 2360

301860 8 drwx------ 36 rich rich 4096 2007-09-03 15:12 .

65473 8 drwxr-xr-x 6 root root 4096 2007-07-29 14:20 ..

360621 8 drwxrwxr-x 2 rich rich 4096 2007-08-24 22:04 4rich

301862 8 -rw-r--r-- 1 rich rich 124 2007-02-12 10:18 .bashrc

361443 8 drwxrwxr-x 4 rich rich 4096 2007-07-26 20:31 .ccache

301879 8 drwxr-xr-x 3 rich rich 4096 2007-07-26 18:25 .config

301871 8 drwxr-xr-x 3 rich rich 4096 2007-08-31 22:24 Desktop

301870 8 -rw------- 1 rich rich 26 2001-11-01 04:06 .dmrc

301872 8 drwxr-xr-x 2 rich rich 4096 2001-11-01 04:06 Download

 119

Linux 360207 8 drwxrwxr-x 2 rich rich 4096 2007-07-26 18:25 Drivers

301882 8 drwx------ 5 rich rich 4096 2007-09-02 23:40 .gconf

301883 8 drwx------ 2 rich rich 4096 2007-09-02 23:43 .gconfd

360338 8 drwx------ 3 rich rich 4096 2007-08-06 23:06 .gftp

File Handling:

The bash shell provides lots of commands for manipulating files on the

Linux filesystem. This section walks you through the basic commands you

will need to work with files from the CLI (command level interface) for

all your file-handling needs.

 File:

(1) The file is container for storing information.

(2) A file‟s size is not stored in the file, nor even it‟s name. All file

attributes are kept in a separate area of the hard disk, not directly to

humans, but only to the kernel.

(3) UNIX treats directories and devices as file as well. A directory is

simply a folder where you store filenames and other directories. All

physical devices like the hard disk, memory, CD-ROM, printer and

modem are treated as files.

 Creating files:

(1) Using cat to create a file:

 Cat is also useful for creating a file.

 Enter the command cat, followed by the > (the right chevron)

character and the filename(for e.g. kiran):

$ cat > kiran

A > symbol following the command means that the output goes to the

filename following it. Cat used in this way represents a rudimentary

editor.

[Ctrl-d]

$ _ prompt returns

 $ cat >file1:

This command is used to create a new file known as file1.

To save this file ctrl +d option is used, ctrl+d indicate end of file mark ie

eof mark.

To interrupt in between ctrl + z is used.

 120

Linux Documentation This command defines that redirect the contents from standard output ie.

Console to the newly created file named as file1.

 When the command line is terminated with [Enter], the prompt

vanishes. cat now waits to take input from the user. Enter the three

lines, each followed by [Enter]. Finally press [Ctrl+d] to signify the

end of input to the system. This is the eof character used by UNIX

systems and is shown in the sty output.

 When this character is entered, the system understand that no further

text input will be made.

 The file is written and the prompt returned.

 cat is a versatile command. It can be used to create, display,

concatenate and append to files.

 $ cat kiran >> new:

This command is used to redirect the contents of file kiran to the

standard output and redirect these contents for appending (adding)

into file new. ie. kiran contents will be appended into the new. if new

is not created first then it will create the file new and redirect the

contents of kiran to new and if it is already created then it will append

the contents of kiran to new.

 $ cat < chirag >newfile:

This command is used to redirect the contents of file chirag to the

standard output and redirect these contents to the file newfile. ie.

chirag contents will be redirected (overwritten) to the newfile.

(2) Using touch command to create a file:

Every once in a while you will run into a situation where you need to

create an empty file. Sometimes applications expect a log file to be

present before they can write to it. In these situations, you can use the

touch command to easily create an empty file:

$ touch test1

$ ls -il test1

1954793 -rw-r--r-- 1 rich rich 0 Sep 1 09:35 test1

$

The Linux Command Line:

The touch command creates the new file you specify, and assigns your

username as the file owner. Since I used the -il parameters for the ls

command, the first entry in the listing shows the inode number assigned to

the file. Every file on the Linux system has a unique inode number.

Notice that the file size is zero, since the touch command just created an

empty file. The touch command can also be used to change the access and

modification times on an existing file without changing the file contents:

 121

Linux $ touch test1

$ ls -l test1

-rw-r--r-- 1 rich rich 0 Sep 1 09:37 test1

$

The modification time of test1 is now updated from the original time. If

you want to change only the access time, use the -a parameter. To change

only the modification time, use the –m parameter. By default touch uses

the current time. You can specify the time by using the –t parameter with a

specific timestamp:

$ touch -t 200812251200 test1

$ ls -l test1

-rw-r--r-- 1 rich rich 0 Dec 25 2008 test1

$

Now the modification time for the file is set to a date significantly in the

future from the current time.

Copying files:

Copying files and directories from one location in the filesystem to

another is a common practice for system administrators. The cp command

provides this feature.

In it‟s most basic form, the cp command uses two parameters: the source

object and the destination object:

cp source destination

When both the source and destination parameters are filenames, the cp

command copies the source file to a new file with the filename specified

as the destination. The new file acts like a brand new file, with an updated

file creation and last modified times:

$ cp kiran newfile

$ ls -il

total 0

1954793 -rw-r--r-- 1 rich rich 0 Dec 25 2008 kiran

1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 newfile

$

The new file newfile shows a different inode number, indicating that it‟s a

completely new file.

 122

Linux Documentation You‟ll also notice that the modification time for the newfile file shows the

time that it was created.

cp: Copying a file:

(1) The cp (copy) command copies a file or a group of files. It creates an

exact image of the file on disk with a different name

(2) The syntax requires at least two filenames to be specified in the

command line.

(3) When both are ordinary files, the first id copied to the second:

 cp chap01 unit1

(4) If the destination file(unit1)doesn‟t exist, it will first be created

before copying takes place.

(5) If not, it will simply be overwritten without any warning from the

system.

(6) If there is only one file to be copied, the destination can be either an

ordinary or directory.

(7) You then have the option of choosing your destination filename.

(8) The following example shows two ways of copying a file to the

progs directory:

 cp chap01 progs/unit1

 chap01 copied to unit1 under progs

(9) cp is often used with the shorthand notation, . (dot), to signify the

current directory as the destination.

(10) For instance, to copy the file .profile from /home/chirag to your

current directory, you can use either of the two commands:

 cp /home/chirag/.profile.profile Destination is a file

 cp/home/chirag/.profile. Destination is the current directory

(11) cp can also be used to copy more than one file with a single

invocation of the command.

In that case, the last filename must be a directory:

 You have already seen how the UNIX system uses the * to frame a

pattern for matching more than one filename.

 If there were only three filenames in the current directory having the

common string chap, you can compress the above sequence using the

* as a suffix to chap:

cp chap* progs Copies all files beginning with chap.

 123

Linux cp Options:

(a) Interactive copying (-i) the –i(interactive) option warns the user

before overwriting the destination file. If unit1 exists, cp prompts for

a response:

 $ cp –i chap01 unit1

(b) cp: overwrite unit1 (yes/no)? y

 A y at this prompt overwrites the file, any other responses leaves it

uncopied.

Copying directory structures (-R) Many UNIX commands are capable of

recursive behavior. This means that the command can descend a directory

and examine all files in its subdirectories. The cp –R command behaves

recurvely to copy an entire directory structure.

cp –R progs newprogs newprogs must not exist

(3) Basic bash Shell Commands 3:

If the destination file already exists, the cp command will prompt you to

answer whether or not you want to overwrite it:

$ cp test1 test2

cp: overwrite `test2‟? y

$

If you don‟t answer y, the file copy will not proceed. You can also copy a

file to an existing directory:

$ cp test1 dir1

$ ls -il dir1

total 0

1954887 -rw-r--r-- 1 rich rich 0 Sep 6 09:42 test1

$

The new file is now under the dir1 directory, using the same filename as

the original. These examples all used relative pathnames, but you can just

as easily use the absolute pathname for both the source and destination

objects.

To copy a file to the current directory you‟re in, you can use the dot

symbol:

$ cp /home/rich/dir1/test1 .

cp: overwrite `./test1‟?

Use the -p parameter to preserve the file access or modification times of

the original file for the copied file.

 124

Linux Documentation $ cp -p test1 test3

$ ls -il

total 4

1954886 drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dir1/

1954793 -rw-r--r-- 1 rich rich 0 Dec 25 2008 test1

1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test2

1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2008 test3

$

Now, even though the test3 file is a completely new file, it has the same

timestamps as the original test1 file.

The-R parameter is extremely powerful. It allows you to recursively copy

the contents of an entire directory in one command:

$ cp -R dir1 dir2

$ ls -l

total 8

The Linux Command Line:

drwxr-xr-x 2 rich rich 4096 Sep 6 09:42 dir1/

drwxr-xr-x 2 rich rich 4096 Sep 6 09:45 dir2/

-rw-r--r-- 1 rich rich 0 Dec 25 2008 test1

-rw-r--r-- 1 rich rich 0 Sep 6 09:39 test2

-rw-r--r-- 1 rich rich 0 Dec 25 2008 test3

$

Now dir2 is a complete copy of dir1. You can also use wildcard characters

in your cp commands:

$ cp -f test* dir2

$ ls -al dir2

total 12

drwxr-xr-x 2 rich rich 4096 Sep 6 10:55 ./

drwxr-xr-x 4 rich rich 4096 Sep 6 10:46 ../

-rw-r--r-- 1 rich rich 0 Dec 25 2008 test1

-rw-r--r-- 1 rich rich 0 Sep 6 10:55 test2

 125

Linux -rw-r--r-- 1 rich rich 0 Dec 25 2008 test3

$

TABLE 3-6

The cp Command Parameters:

Parameter Description:

-a Archive files by preserving their attributes.

-b Create a backup of each existing destination file instead of

overwriting it.

-d Preserve

-f Force the overwriting of existing destination files without prompting.

-i Prompt before overwriting destination files.

-l Create a file link instead of copying the files.

-p Preserve file attributes if possible.

-r Copy files recursively.

-R Copy directories recursively.

-s Create a symbolic link instead of copying the file.

-S Override the backup feature.

-u Copy the source file only if it has a newer date and time than the

destination (update).

-v Verbose mode, explaining what‟s happening.

-x Restrict the copy to the current filestytem.

Some Examples of cp command:

E.g. $ cp kiran /home/root/mydoc/kiran

copies Kiran file from current directory into specified path

E.g. $ cp file* /tmp

(copies multiple files to /tmp directory)

E.g. $ cp –i file1 file2

 (copies file while copying it will prompt for coping)

 cp : overwrite „file2‟ ? y

E.g. $ cp –bi file1 file2

 126

Linux Documentation (copies file while copying it will prompt for coping and creates the backup

file)

cp: overwrite „file2‟ ? y

 $ ls file*

 file2 file2~

 ~ This sign shows the backup file of file2.

(4) Linking files:

If you need to maintain two (or more) copies of the same file on the

system, instead of having separate physical copies, you can use one

physical copy and multiple virtual copies, called links. A link is a

placeholder in a directory that points to the real location of the file.

ln: This command is used to link a file

Links  In linux you can use links to give the same file with two entirely

different names or to pretend that the file is in one location in the file

system and in actual stored in an entirely different location.

Linking is useful when you have two different programs that look for the

same file in different places. So you need to make sure that the file is in

both locations.

There are two types of links:

(1) Hard Link.

(2) Soft Link.

(1) Hard Link:

A hard link is just another name for an existing file. The two files share

the same inode, so in reality they are same file.

This is different from a copy, where there are two separate files with

separate inodes, taking up different blocks on the hard disk. The hard link

is to be performed in the same directory in which you are currently logged

in.

The inode is a special file that tells the kernel which blocks on the hard

disk holds the file because the hard link to a file is actually the same as the

original (target) file, you can‟t tell which is the original file and which is

the hard link.

You can create Hard Link by the given command:

In command takes the two argument original file and new file name.

 127

Linux $ ln originalfile linkfile:

The link file should not be created first.

$ ln old new:

To check whether a link file is created properly or not

$ ls –I old new

old

new

since first field displays the inode number and second field display the

name of the file. If the inode number of both the file is same then it is sure

that both files are linked.

it will create a file new which is link file of the original file old.

$ ln today tom1

$ ln today tom2

$ ls –l today tom1

file type file

permissions

no. of

links

owner group other size file

name

– rwx

rwx

rwx

 2 ABC xyz “ 660 today

– rwx

rwx

rwx 2

 2 ABC xyz “ 660 tom1

Long listing format shows the number of links for the file today and tom1

as 2.

You can only create a hard link between files on the same physical

medium. You can’t create a hard link between files under separate

mount points. In that case, you’ll have to use a soft link.

Symbol Link:

A symbol link is different from a hard link in that it is special file type that

contains the name of the original file some what link a shortcut in

windows.

Symbolic link is also called as symlink.

A symbolic link file is created that contains a pointer to the original, target

file.

To create a symbolic link

 128

Linux Documentation $ ln –s original lnfile

$ ln –s abc.doc /kk/xy.doc

It will create symbolic link of abc.doc in the specified directory to a file

xy.doc. In this xy.doc should be created first. The linking can identified by

red blinking on the path of abc.doc when ls–l ie. long lisitng is to be

shown. The symbolic link is identified by file type field of ls–l option

which is indicated by l (l in lower case).

The inode number of symbolic link files are not same.

Symbol Link to a directory 

You can create a symbolic link to current directory to specified directory.

$ ln –s /home/chris/letter gifts

$ cd gifts

$ pwd

/home/chris/letter

If you want to display the name of symbolic link cwd variable is used.

cwd is a special system variable names of directory which is symbolic

link.

$ pwd

/home/chris/letter

$ cwd

/home/chris/gifts

Difference between Hard Link and Symbolic Link:

Symbolic Link Hard Link

It contains/hold the pathname of

the file to which it is linking.

In hard link the linking is not

possible in other directory the

linking is performed in current

root path only

It can be created by ln with –s

option.

It is created directly by ln

command.

Symbolic link can be created

from one directory to other

directory.

Hard links can not be created

from one file system to other

file system in other directory.

Command is $ ln – s abc

/home/xyz/veg

Command is $ ln abc xyz

The symbolic link is identified

by l in file type field of long

listing format.

The Hard link is identified by

number of links option in ls –l

option.

In symbolic link the inode In Hard link the inode number

 129

Linux number of original file and

linked file is not same.

of original file and linked file

is same. You can see the inode

number by a command

ls –i original linkfile

Renaming files:

In the Linux world, renaming files is called moving. The mv command is

available to move both files and directories to another location:

$ mv test2 test6

$ ls -il test*

1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test1

1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2008 test3

1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test4

1954891 lrwxrwxrwx 1 rich rich 5 Sep 1 09:56 test5 -> test1

1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test6

$

Notice that moving the file changed the filename but kept the same inode

number and the timestamp value. Moving a file with soft links is a

problem:

$ mv test1 test8

$ ls -il test*

total 16

1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2008 test3

1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test4

1954891 lrwxrwxrwx 1 rich rich 5 Sep 1 09:56 test5 -> test1

1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test6

1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test8

[rich@test2 clsc]$ mv test8 test1

The test4 file that uses a hard link still uses the same inode number, which

is perfectly fine.

However, the test5 file now points to an invalid file, and it is no longer a

valid link.

You can also use the mv command to move directories:

 130

Linux Documentation $ mv dir2 dir4

 The mv command renames (moves) files. It has two distinct

functions:

 It renames a file (or directory).

 It moves a group of files to a different directory.

 If the destination doesn‟t exist, it will be created. For the above

example, mv simply replaces the filename in the existing directory

entry with the new name.

 Like cp, a group of files can be moved to a directory. The following

command moves three files to the progs directory:

mv chap01 chap02 chap03 progs

 There‟s a –i option available with mv also, and behaves exactly like in

cp.

Deleting files:

rm: Deleting Files

In Linux if you want to delete existing files. Whether it‟s to clean up a

filesystem or to remove a software package, there‟s always opportunities

to delete files.

Deleting is called removing. The command to remove files in the bash

shell is rm.

(1) The rm(remove) command deletes one or more files.

(2) The following command deletes three files:

rm chap01 chap02 chap03

rm chap* could be dangerous to use!

(3) A file once deleted can‟t be recovered. rm won‟t normally remove a

directory, but it can remove files from one.

(4) You may sometimes need to delete all files in a directory as part of a

cleanup operation

The *, when used by itself, represents all files, you can then use rm like

this:

$ rm * All file gone!

$ _

 131

Linux

rm options:

 Interactive deletion (-i): Like in cp, the –i(interactive) option makes

the command ask the user for confirmation before removing each file:

$ rm –i chap01 chap02 chap03

rm: remove chap01 (yes/no)? ?y

rm: remove chap02 (yes/no)? ?n

rm: remove chap03 (yes/no)? [enter]

No response – file is not deleted.

A y removes the file, any other response leaves the file undeleted.

 Recursive deletion (-r or -R): With the –r (or -R) option, rm

performs a tree walk – a thorough recursive search for all

subdirectories and files within these subdirectories. At each stage, it

deletes everything it finds. rm won‟t normally remove directories, but

when used with this option, it will. Therefore, when you issue the

command

rm -r * Behaves partially like rmdir

 Forcing removal (-f) rm prompts for removal if a file is write-

protected: The –f option overrides this minor protection and forces

removal. When you combine with the –r option, it could be the most

risky thing to do:

rm -rf * Deletes everything in the current directory and below

The basic form of the rm command is pretty simple:

$ rm -i test2

rm: remove `test2‟? y

$ ls -l

total 16

drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dir1/

drwxr-xr-x 2 rich rich 4096 Sep 1 09:45 dir2/

-rw-r--r-- 2 rich rich 6 Sep 1 09:51 test1

-rw-r--r-- 1 rich rich 0 Dec 25 2008 test3

-rw-r--r-- 2 rich rich 6 Sep 1 09:51 test4

lrwxrwxrwx 1 rich rich 5 Sep 1 09:56 test5 -> test1

 132

Linux Documentation $

Notice that the command prompts you to make sure that you‟re serious

about removing the file.

Once you remove a file it‟s gone forever. Now, here‟s an interesting tidbit

about deleting a file that has links to it:

$ rm test1

$ ls -l

total 12

drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dir1/

drwxr-xr-x 2 rich rich 4096 Sep 1 09:45 dir2/

-rw-r--r-- 1 rich rich 0 Dec 25 2008 test3

-rw-r--r-- 1 rich rich 6 Sep 1 09:51 test4

lrwxrwxrwx 1 rich rich 5 Sep 1 09:56 test5 -> test1

$ cat test4

hello

$ cat test5

cat: test5: No such file or directory

$

I removed the test1 file, which had both a hard link with the test4 file and

a soft link with the test5 file. Noticed what happened. Both of the linked

files still appear, even though the test1 file is now gone (although on my

color terminal the test5 filename now appears in red). When I look at the

contents of the test4 file that was a hard link, it still shows the contents of

the file.

When I look at the contents of the test5 file that was a soft link, bash

indicates that it doesn‟t exist any more.

Directory Handling:

 Creating Directories:

(1) mkdir command is used to create a new directory.

Syntax is mkdir <dir-name>.

The command is followed by the names of the directories to be

created.

 133

Linux Example: mkdir Kiran

Kiran directory is created in the current root path.

(2) Directories and subdirectories are created with the mkdir (make

directory) command.

(3) You can create a number of subdirectories with one mkdir command:

mkdir kiran chirag abc

(4) The system creates a new directory and assigns it a new inode

number.

(5) The following command creates a directory tree:

mkdir college college/kiran college/chirag

Creates the directory tree:

This creates three subdirectories–college and two subdirectories under

college. The order of specifying the arguments is important; you obviously

can‟t create a subdirectory before creation of it‟s parent directory for

instance, you can‟t enter

$mkdir college/chirag college/kiran college

mkdir: failed to make directory “college/chirag”; No such file or directory

mkdir: failed to make directory “college/kiran”; No such file or directory

Note that even though the system failed to create the two subdirectories,

kiran and chirag, it has still created the college directory.

(6) Sometimes, the system refuses to create a directory:

$ mkdir malcalm

mkdir: failed to make directory “malcalm”; Permission denied

This can happen due to these reasons:

The directory malcalm may already exist.

There may be an ordinary file by that name in the current directory.

The permissions set for the current directory don‟t permit the creation of

files and directories by the users.

Deleting Directories:

The basic command for removing a directory is rmdir:

Syntax : rmdir <dir-name>

$ rmdir Kiran

 134

Linux Documentation Removes the directory Kiran.

The following Rules are to be followed while removing or deleting a

directory.

(1) The rmdir (remove directory) command removes directories. You

simply have to do this to remove the directory pis:

 rmdir college directory must be empty

 The rmdir command only works for removing empty directories.

(2) like mkdir, rmdir can also create and delete more than one directory

 in one shot.

(3) For instance, the directories and subdirectories that they were just

created with mkdir can be removed by using rmdir with a reversed set

of argument:

rmdir college/kiran college/chirag college

(4) The following directory sequence used by mkdir is invalid in rmdir:

$ rmdir college college/kiran college/chirag

rmdir: directory “college”: Directory not empty

(5) This error message leads to two important rules that you should:

Remember when deleting directories:

(a) You can‟t delete a directory with rmdir unless it is empty. In this case,

the college directory couldn‟t be removed because of the existence of

the subdirectories, Kiran and chirag, under it.

(b) You can‟t remove a subdirectory unless you are placed in a directory

which is hierarchically above the one you have chosen to remove.

(6) To illustrate the second cardinal rule, try removing the kiran directory

by executing the command from the same directory itself:

$cd kiran

$ pwd

/home/user/college/kiran

$rmdir /home/user/college/kiran

rmdir: directory “/home/user/college/kiran”: Directory does not exist.

(7) To remove the directory, you must position yourself in the directory

above Kiran (i.e. You should be out of that directory), i.e., move to

college directory, and then remove it from there:

 135

Linux $ cd /home/user/college

$ pwd

/home/user/college

$ rmdir kiran

The mkdir and rmdir commands work only in directories owned by the

user.

Viewing File Contents:

We can view the contents of the file and how to view or how to peek

inside of them. There are several commands available for taking a look

inside files without having to pull out an editor.

 Viewing file statistics:

ls command with –l option is used to provide lots of useful information

about files in the long listing format. There‟s still some more information

that you can‟t see in the ls command.

The stat command provides a complete rundown of the status of a file on

the filesystem:

$ stat kiran

File: "kiran"

Size: 6 Blocks: 8 Regular File

Device: 306h/774d Inode: 1954891 Links: 2

Access: (0644/-rw-r--r--) Uid: (501/ rich) Gid: (501/ rich)

Access: Sat Sep 1 12:10:25 2009

Modify: Sat Sep 1 12:11:17 2010

Change: Sat Sep 1 12:16:42 2010

$

The results from the stat command show just about everything you‟d want

to know about the file being examined, even down the major and minor

device numbers of the device where the file is being stored.

 Viewing the file type:

Stat command produces all status of the file, there‟s still one piece of

information missing – the file type. Before you want to view the contents

of the file, it‟s needed to know what type of file it is, i.e. To identify

whether it is binary or octal or text or ascii or device or ordinary or link

file or shell script file or it is directory. For that file command is used. It

 136

Linux Documentation has the ability to peek inside of a file and determine just what kind of file

it is:

$ file test1

test1: ASCII text

$ file myscript

myscript: Bourne shell script text executable

$ file myprog

myprog: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),

dynamically linked (uses shared libs), not stripped

$ file Monday reports

monday: text

reports: directory

$ file today mydata

today: Ascii text

mydata: empty

The file command classifies files into three categories:

 Text files: Files that contain printable characters.

 Executable files: Files that you can run on the system.

 Data files: Files that contain nonprintable binary characters, but that

you can‟t run on the system.

The linux file commands helps you to determine for what a file is used. It

examines a few lines of files & tries to determine classification for it. The

file command is used to display the type of file.

The file cmd looks for a special keybwords or special numbers in those

first few lines only but it is not fully accurate. Hence OD‟ cmd is used to

examine the entire file byte by byte „OD‟ is the „octal dump‟ which

performs the dump of a file & it prints every bite in its octal

representation.

File <filename> [directory name]

File OD: it prints the contents of file byte by byte either in octal character

or a decimal or hexadecimal.

Options Descriptions

-c It O/Ps the character of byte value.

 137

Linux -d It O/Ps a decimal form of byte value.

-x It O/Ps hexadecimal form of byte value.

-o It O/Ps octal form of byte value.

 Viewing the whole file:

If you have a large text file on your hands, you may want to be able to see

what‟s inside of it.

There are three different commands in Linux to view the files contents.

 The cat command:

The cat command is a used for displaying all of the data inside a text file:

$ cat test1

hello

This is a test file.

That we‟ll use to test the cat command.

$

Contents of the text file will be displayed, there are a few parameters you

can use with the cat command. The -n parameter numbers all of the lines

for us:

$ cat -n test1

1 hello

2

3 This is a test file.

4

5

6 That we‟ll use to test the cat command.

$

when you‟re examining scripts. If you just want to number the lines that

have text in them, the -b parameter is for you:

$ cat -b test1

1 hello

2 This is a test file.

3 That we‟ll use to test the cat command.

$

 138

Linux Documentation art I

If you need to compress multiple blank lines into a single blank line, use

the -s parameter:

$ cat -s test1

hello

This is a test file.

That we‟ll use to test the cat command.

$

if you don‟t want tab characters to appear, use the -T parameter:

$ cat -T test1

hello

This is a test file.

That we‟ll use to^Itest the cat command.

$

The -T parameter replaces any tabs in the text with the ^I character

combination.

Using the more command to display a text file

For large files, the cat command is not advisable. The text in the file will

just quickly scroll off of the monitor without stopping more command will

this problem.

 The More Command:

The more command displays a text file, but stops after it displays each

page of data. At the bottom of the screen the more command displays a tag

showing that you‟re still in the more application and how far along in the

text file you are. Like – more – This is the prompt for the more command

more command is also called as PAGING OUTPUT.

 The man command displays its output a page at a time. This is

possible because it sends its output to a pager program. UNIX offers

the more pager (originally from Berkeley) which has today replaced

pg, the original pager of UNIX. Linux also offers more but less is its

standard pager.

 To view the file chap01, enter the command with the filename:

 more chap01 Press q to exit

 139

Linux  You‟ll see the contents of chap01 on the screen, one page at a time. At

the bottom of the screen, you‟ll also see the filename and percentage

of the file that has been viewed:

– more – (17%)

 more has a couple of internal commands that don‟t show up on the

screen when you invoke them.q, the command used to exit more, is an

internal command.

Navigation:

Irrespective of version, more uses the spacebar to scroll forward a page at

a time. You can scroll by small and large increments of lines or screens.

To move forward one page, use f or the spacebar And to move back one

page, use b

The Repeat Features:

 The Repeat factor: Many navigation commands in more, including f

and b, use a repeat factor. This is the term used in vi to prefix a

number to vi internal command use of the repeat factor as a command

prefix simply repeats the command that many times.

 This means you can use 10f for scrolling forward by 10 pages and

30b for scrolling back 30 pages just remember that the commands

themselves are not displayed on the screen – even for a moment.

 Repeating the last command () more has a repeat command, the dot

(same command used by vi), that repeats the last command you used.

If you scroll forward with 10f, you can scroll another 10 pages by

simply pressing a dot.

Searching for a Pattern:

You can perform a search for a pattern with / command followed by the

string. For instance, to look for the first while loop in your programs,

you‟ll have to enter this:

/while Press [enter]also

You can repeat this search for viewing the next while loop section by

pressing n, and you can do that repeatedly until you have scanned the

entire file. Move back with b (using a repeat factor, if necessary) to arrive

at the first page.

The more Command Options Option Description:

H Display a help menu.

 spacebar Display the next screen of text from the file.

z Display the next screen of text from the file.

 ENTER Display one more line of text from the file.

 140

Linux Documentation d Display a half-screen (11 lines) of text from the file.

q Exit the program.

s Skip forward one line of text.

f Skip forward one screen of text.

b Skip backward one screen of text.

 /expression Search for the text expression in the file.

n Search for the next occurrence of the last specified expression.

_ Go to the first occurrence of the specified expression.

! cmd Execute a shell command.

v Start up the vi editor at the current line.

 CTRL-L Redraw the screen at the current location in the file.

= Display the current line number in the file.

 Repeat the previous command.

 The Less Command:

Less command is actually a play on words and is an advanced version of

the more command (the less command uses the phrase „„less is more‟‟).

(a) It provides several features for scrolling both forward and backward

through a text file

(b) It provides some advanced searching capabilities.

(c) The less command is used to display the contents of a file before it

finishes reading the entire file. This is a drawback for both the cat and

more commands when using extremely large files.

(d) The less command operates much the same as the more command,

displaying one screen of text from a file at a time. Kj

(e) Less command provides additional information in its prompt, showing

the total number of lines in the file, and the range of lines currently

displayed.

(f) The less command supports the same command set as the more

command, plus lots more options. 3

(g) The less command recognizes the up and down arrow keys, as well as

the page up and page down keys. This gives you full control when

viewing a file.

 141

Linux

Internal commands of more and less:

More Less Action

Spacebar or f Spacebar or f or z One page forward

20f - 20 pages forward

B B One page backward

15b - 15 pages back

[Enter] J or [Enter] One line forward

- K One line back

- P or 1g Beginning of file

- G End of file

/pat /pat Searches forward for

expression pat

N N Repeats search forward

- ?pat Searches back for expression

pat

.(a dot) - Repeats last command

V V Starts up vi editor

!cmd !cmd Executes UNIX command

cmd

Q Q Quit

H H View Help

 Viewing parts of a file:

If we want to view the contents which are located right at top or at bottom

of a file. Head & Tail command is used to achieve this.

Head:

Displays the first ten lines of a file, unless otherwise stated.

Syntax:

head [-number | -n number] filename

-number The number of the you want to display.

-n number The number of the you want to display.

filename The file that you want to display the x amount of

lines of.

Examples:

head-15 myfile.txt: Would display the first fifteen lines of myfile.txt.

Tail Command:

 142

Linux Documentation Delivers the last part of the file.

Syntax:

tail [+ number] [-l] [-b] [-c] [-r] [-f] [-c number |-n number] [file].

+number

-number

This option is only recognized if it is specified

first. COUNT is a decimal number optionally

followed by a size letter (`b', `k', `m') as in `-c',

or `l' to mean count by lines, or other option

letters (`cfqv').

-l Units of lines.

-b Units of blocks.

-c Units of bytes.

-r Reverse. Copies lines from the specified starting

point in the file in reverse order. The default for

r is to print the entire file in reverse order.

-f Follow. If the input-file is not a pipe, the

program will not terminate after the line of the

input-file has been copied, but will enter an

endless loop, wherein it sleeps for a second and

then attempts to read and copy further records

from the input-file. Thus it may be used to

monitor the growth of a file that is being written

by some other process.

-c number The number option-argument must be a decimal

integer whose sign affects the location in the

file, measured in bytes, to begin the copying:

+ Copying starts relative to the
beginning of the file.

- Copying starts relative to the
end of the file.

none Copying starts relative to the
end of the file.

The origin for counting is 1; that is, -c+1

represents the first byte of the file, -c-1 the last.

-n number Equivalent to -c number, except the starting

location in the file is measured in lines instead

of bytes. The origin for counting is 1; that is, -

n+1 represents the first line of the file, -n-1 the

last.

File Name of the file you wish to display

Examples:

tail myfile.txt

 143

Linux The above example would list the last 10 (default) lines of the file

myfile.txt.

tail myfile.txt -n 100

The above example would list the last 100 lines in the file myfile.txt.

6.6 FILE SYSTEM

As you can see from the shell prompt, when you start a shell session you

are usually placed in your home directory. Most often, you will want to

break out of your home directory and want to explore other areas in the

Linux system.

The Linux filesystem OR The File structure:

The linux file organizes into tree structure format connected set of

directories each directory contains either files or directories.

Directory perform 2 main functions:

1) A directory hold files.

2) Directory connects to other directories like a branch in a tree which

can be connected to other branches also

Files and directories are shown in the tree structure format.

/Root

/dev /bin /home

/Kiran /Chirag /Angela

/Report / Letter
The tree can be shown by root at the top. Extending down from the root

are the branches. Each branch grows out of other branch but it can have

many lower branches it can said to be parent child structure. In the same

way each directory is a subdirectory of one other directory i.e. each

directory is a child of parent directory. Root is identified by a forward

slash (/), within the root directory number of system directories are built,

root directory also contain home directory which contains the info of all

users in the system and each user home directory i.e. Chirag in turn

contains the directory which the user has made for his use.

The Full Linux file structure.

 144

Linux Documentation /(Root)

L
S

C
h
m

o
d

C
P

to
m

A
B

C

U
s
e
r

3

C
a
t

/Sbin /bin /boot /dev /etc /var /usr /lib

s
p
o
o
l

s
b
in

b
in

m
a
n

lib

Reports Letters

Home Directories:

When you log on to system you are placed within home directory. The

name given to this directory by system is the same as your login name.

You can crate files in home directory also you can create more directories.

You can change to these directories and stores file in them. Same is true

for users on the system i.e. each and every users will have his own

directory identified by login name and user in turn can create their own

directories and subdirectories.

Path Name:

The full name of the directory to identify that directory is the path name.

The hierarchically nested relationship among directories forms path and

these path can be used to identify and reference any directory or file. A

path exist from „/‟ i.e. root directly to home directory.

/root

dev bin home

robert ABC

reports Letters

FILE

Pathname:
/home/rober

Pathname:
/home/ABC/reports

Pathname:
/home/ABC/letter/file

 145

Linux While writing the pathname by listing of each directory the pathname is

separated by „/‟. When we are writing any path starts with “/” indicate root

directory receiving directory name

Root Directory Home Directory
Home Directory

(users)
Users Directory

E.g. /home/abc/letters

Traversing Directories:

The change directory command (cd) is what you‟ll use to move your shell

session to another directory in the Linux filesystem.

The format of the cd command is:

cd destination

The cd command may take a single parameter, destination, which specifies

the directory name you want to go to. If you don‟t specify a destination on

the cd command, it will take you to your home directory.

The destination parameter, though, can be expressed using two different

methods:

 An absolute filepath

 A relative filepath

Pathnames are of two types:

(1) Absolute path.

(2) Relative path.

Absolute path is complete pathname of a directory or file always begins

with root directory. The absolute filepath defines exactly where the

directory is in the virtual directory structure, starting at the root of the

virtual directory. Sort of like a full name for a directory.

E.g: /usr/lib/apache

(1) If the first character of a pathname is / , the file‟s location must be

determined with respect to root (the first /). Such a pathname is called

an absolute pathname.

(2) When you have more than one / in a pathname, for each such / , you

have to descend one level in the file system.

Relative Pathnames:

You would have noted that in a previous example, we didn‟t use an

absolute pathname to move the directory progs.

 146

Linux Documentation Relative pathname begins from your working directory working directory

is the one you are currently in. Relative filepaths allow you to specify a

destination filepath relative to your current location, without having to

start at the root. A relative filepath doesn‟t start with a forward slash,

indicating the root directory. Instead, a relative filepath starts with either a

directory name (if you‟re traversing to a directory under your current

directory), or a special character indicating a relative location to your

current directory location. The two special characters used for this are:

 The dot (.) to represent the current directory.

 The double dot (..) to represent the parent directory.

The double dot character is extremely handy when trying to traverse a

directory hierarchy. For example, if you are in the Documents directory

under your home directory and need to go to your Desktop directory, also

under your home directory, you can do this:

rich@1[Documents]$ cd ../Desktop

rich@1[Desktop]$

/root

mark robert chirs

Manday ThankYou

F2 Abc

dev bin home

reports Letters weather

Absoulte Pathname:
/home/chirs/reports/monday

Absoulte Pathname:
[@root/chirs]/reports/monday

Sometimes the absolute path could be complex hence to refer absolute

path. You can use a special character tilde „  „ which represents absolute

path name of your home directory. Suppose currently you are in „thank

you‟ directory and you want to see contents of „abc‟ file by using absolute

path, so you can write $ cat ~ / abc. Hence tilde (~) will give you absolute

path as „/home/chris/letters/thankyou‟, Same way if you are in chris

directory & you want to see contents of file F2 of Monday directory. So

you can use tilde sign (~) before using it check you absolute path by

command „pwd‟ which display the present working directory. Hence we

 147

Linux can write $ cat ~/reports/Monday/F2. So it displays the contents of F2

Where tilde (~) indicates the path /home/chris.

6.7 FILESYSTEM ARCHITECTURE

The root directory that begins with linux file structure contains several

system directories. The system directory contains files and programs used

to run and maintain the system. Many directories contains other sub

directories with programs for executing specific features of LINUX

e.g. /usr/bin

Contains various LINUX commands that user executes such as cp – for

copy and mv – for renaming or moving to other directory & the directory

/bin holds interfaces with different system devices such as printer or the

terminal also consist of the executable file for the commands.

 Directory Function
(1) Root „/ ‟ It begin file system structure call the root,

The root of the virtual directory.
(2) /home Contains users home directory.
(3) /bin The binary directory holds all standard

commands and utility programs (like Vi
editor), also executable files for the
commands.

(4) /usr Holds those files & commands used by the
system. This directory breaks down into
several sub directories. The user-installed
software directory.

(5) /usr/sbin Holds system administration commands with
its executable files.

(6) /usr/lib It holds libraries for programming language
(7) /usr/doc Holds linux documentations.
(8) /usr/man Holds online manual man files i.e. Help files.
(9) /usr/spool Holds spool files such as those generated for

printing jobs, waiting printing jobs will be
stored in spool directory.

(10) /sbin Holds system administration command for
booting of system. The system binary
directory, where many GNU admin-level
utilities are stored.

(11) /var It holds the file that vary. Hence this
directory has information about different
utilities of linux e.g. /val/log. – directory
contains files that stores operating system log
files or error reports file. The variable
directory, for files that change frequently,
such as log files.

(12) /dev Holds file interfaces for devices such as
terminal and printers. It stores the device files
for input and output hardware devices.

(13) /etc Holds system configuration files and any
other system files. This stores operating
system related data which users and operating
system needs to refer such as password file.

 148

Linux Documentation (14) /tmp The temporary directory, where temporary
work files can be created and destroyed.

(15) /mnt The mount directory, another common place
for mount points used for removable media.

(16) /Lib The library directory, where system and
application library files are stored.

(17) /boot The boot directory, where boot files are
stored.

6.9 FILE ATTRIBUTES

You can decode the cryptic file permissions you‟ve seen when using the ls

command. Here we will specify how to decipher the permissions.

Using File Permission Symbols:

The ls command displays the file permissions for files, directories, and

devices on the Linux system:

$ ls -l

total 68

-rw-rw-r-- 1 rich rich 50 2007-09-13 07:49

file1.gz

-rw-rw-r-- 1 rich rich 23 2007-09-13 07:50 file2

-rwxrwxr-x 1 rich rich 4882 2007-09-18 13:58

myprog

-rw-rw-r-- 1 rich rich 237 2007-09-18 13:58

myprog.c

drwxrwxr-x 2 rich rich 4096 2007-09-03 15:12

test1

drwxrwxr-x 2 rich rich 4096 2007-09-03 15:12

test2

$

The first field in the output listing is a code that describes the permissions

for the files and directories.

The first character in the field defines the type of the object, These are the

different options of file types.

 for files

 d for directories

 l for links

 c for character devices

 149

Linux  b for block devices

 n for network devices

After that, there are three sets of three characters. Each set of three

characters defines an access permission triplet:

 r for read permission for the object

 w for write permission for the object

 x for execute permission for the object

If a permission is denied, a dash appears in the location. The three sets

relate the three levels of security for the object:

 The owner of the object

 The group that owns the object

 Everyone else on the system

FI-rwxrwxr-x 1 rich rich 4882 2007-09-18 13:58 myprog

The file myprog has the following sets of permissions:

 rwx for the file owner (set to the login name rich)

 rwx for the file group owner (set to the group name rich)

 r-x for everyone else on the system

These permissions indicate that the user login name rich can read, write,

and execute the file (considered full permissions). Likewise, members in

the group rich can also read, write, and execute the file. However, anyone

else not in the rich group can only read and execute the file; the w is

replaced with a dash, indicating that write permissions are not assigned to

this security level.

Default File Permissions:

The umask command sets the default permissions for any file or directory

you create:

$ touch newfile

$ ls -al newfile

-rw-r--r-- 1 rich rich 0 Sep 20 19:16 newfile

$

The touch command created the file using the default permissions

assigned to my user account. The umask command shows and sets the

default permissions:

$ umask

 150

Linux Documentation 0022

$

Unfortunately, the umask command setting isn‟t overtly clear, and trying

to understand exactly how it works makes things even muddier. The first

digit represents a special security feature called the sticky bit. The next

three digits represent the octal values of the umask for a file or directory.

To understand how umask works, you first need to understand octal mode

security settings. Octal mode security settings take the three rwx

permission values and convert them into a 3-bit binary value, represented

by a single octal value. In the binary representation, each position is a

binary bit. Thus, if the read permission is the only permission set, the

value becomes r--, relating to a binary value of 100, indicating the octal

value of 4.

Octal mode takes the octal permissions and lists three of them in order for

the three security levels (user, group, and everyone). Thus, the octal mode

value 664 represents read and write permissions for the user and group,

but read-only permission for everyone else.

The permission for a file is broken into three parts. Each group represents

a category and contains three slots representing the read, write and execute

permissions of the file.

The first group (rwx) has all three permissions. The file is readable, write

able and executable by the owner.

The second group (r-x) has a hyphen in the middle slot, which indicates

the absence of write permission by the group user of the file.

The third group (r--) has the write and execute bit absent. The file

permissions are also categorized for the kinds of user ie it can be other/

guest user.

6.10 WORKING WITH FILES

The chmod command is used for changing the permissions of a file.

Permissions can be changed by two ways:

(1) Binary Masking Method (Absolute Permission Method):

In this method binary 1 or 0 is assigned to the permissions

1  Assigning (Granting permission)

0  Removing (Revoking permission)

Syntax for Binary Masking:

Chmod Binary Number filename

Owner Group Other

111 101 001

 151

Linux 7 5 1

Chmod 751 hello.txt

7 indicate (111) Owner has all three permissions (Read, Write,

Execute)

5 indicate (101) Group user has Read & Execute Permission.

1 indicate (001) Other or Guest User has Only Execute Permission.

2) Symbolic Masking Method (Relative Method of changing

permissions):

In this method symbols (Abbreviations) are used for assigning &

Removing Permissions:

r  Read

w  Write

x  Execute

g  group

o  Other

u  Owner

a  All users

+  Assinging a permission (plus sign)

-  Removing a permission. (minus sign)

Syntax:

chmod category operation permission filenames

category can be user, group or other

operation can be assign or remove

permission can be read, write and execute

Example:

Chmod g+rw hello.txt

Chmod a-wx xyz.txt

6.11 BACKUP, COMPRESSION

Compressing Data:

The zip utility allows you to easily compress large files (both text and

executable) into smaller files that take up less space.

 152

Linux Documentation Linux contains several file compression utilities. While this may sound

great, it often leads to confusion and chaos when trying to download files.

Lists the file compression utilities available for Linux.

The compress file compression utility is not often found on Linux systems.

If you download a file with a .Z extension, you can usually install the

compress package (called ncompress in many Linux distributions) and

then uncompress the file with the uncompress command.

The gzip command compresses every file in the directory that matches the

wildcard pattern.

The zip utility:

The zip utility is compatible with the popular PKZIP package created by

Phil Katz for MS-DOS and Windows. There are four utilities in the Linux

zip package:

 zip creates a compressed file containing listed files and directories.

 zipcloak creates an encrypted compress file containing listed files and

directories.

 zipnote extracts the comments from a zip file.

 zipsplit splits a zip file into smaller files of a set size (used for

copying large zip files to floppy disks).

unzip extracts files and directories from a compressed zip file.

zip [-options] [-b path] [-t mmddyyyy] [-n suffixes] [zipfile list]

[-xi list]

The default action is to add or replace zipfile entries from list, which can

include the special name - to compress standard input.

If zipfile and list are omitted, zip compresses stdin to stdout.

-f freshen: only changed files -u update: only changed or new files.

-d delete entries in zipfile -m move into zipfile (delete files).

-r recurse into directories -j junk directory names.

-0 store only -l convert LF to CR LF.

-1 compress faster -9 compress better.

-q quiet operation -v verbose operation.

-c add one-line comments -z add zipfile comment.

-@ read names from stdin -o make file as old as latest entry.

 153

Linux -x exclude the following names -i include only the following names.

-F fix zipfile (-FF try harder) -D do not add directory entries.

-A adjust self-extracting exe -J junk zipfile prefix (unzipsfx).

-T test zipfile integrity -X eXclude eXtra file attributes.

-y store symbolic links as the link instead of the referenced file.

-R PKZIP recursion (see manual).

-e encrypt -n don�ft compress these suffixes.

$

The power of the zip utility is its ability to compress entire directories of

files into a single compressed file. This makes it ideal for archiving entire

directory structures:

$ zip -r testzip test

adding: test/ (stored 0%)

adding: test/test1/ (stored 0%)

adding: test/test1/myprog2 (stored 0%)

adding: test/test1/myprog1 (stored 0%)

adding: test/myprog.c (deflated 39%)

adding: test/file3 (deflated 2%)

adding: test/file4 (stored 0%)

adding: test/test2/ (stored 0%)

adding: test/file1.gz (stored 0%)

adding: test/file2 (deflated 4%)

adding: test/myprog.gz (stored 0%)

$

This example creates the zip file named testzip.zip, and recurses through

the directory test,

Adding each file and directory found to the zip file. Notice from the output

that not all of the files stored in the zip file could be compressed. The zip

utility automatically determines the best compression type to use for each

individual file.

When you use the recursion feature in the zip command, files are stored in

the same.

 154

Linux Documentation Directory structure in the zip file. Files contained in subdirectories are

stored in the zip.

File within the same subdirectories. You must be careful when extracting

the files, the unzip command will rebuild the entire directory structure in

the new location.

File Compression:

If you are transferring the file across a N/W to save transmission time.

You can effectively reduce the size by creating a compressed copy of it.

Anytime you need file again decompress it.

$ gzip mydata

$ mydata.gz drip1

To compress a gzip file

$ gzip –d mydata.gz

To decompress a gzip

$ gunzip mydata.gz

$ ls

$ gzip 0-cmydata preface>mufiles.gz sends compressed version of a file to

standard o/p each file listed is separately compressed extension will be gz.

-h displays help help listing

-l file list

$ gzip -l myfiles.gz

-r dir name

-v file list

-num

You can also zip with bzipz (Burrows-wheeler block sorting text

compression algorithm)

The file created with extension .bzz bzip command compresses file in

block & enables you to specify their size.

$ bzipz mydata

$ ls

mydata bzz

zip also created zip files:

 155

Linux $ zip mydata

$ zip –r reports

$ ls

$ unzip mydata.zip

mydata.zip

Archiving (tar):

The tar command is used to store backup transport & archive files. A tar

file can be made on tape drive or on local hard disk. tar command serves

many file together in a single tape or disk archive & can single tape or

disk archive & can restore individual file from the archive i.e. tar file is a

single file that contains the contents of many file also store file attributes

like file access permission the user, group, size time. The files in tar file

are called the members of that archive.

The tar utility creates archive for files & directories with tar you can

archive specific files, update them in the archive & add new files as you

want to that archive. You can even archive entire directories with all their

files & subdirectories all of which can be restored from archive.

The tar utility was originally designed to create archives on tapes.

The term tar stands for tap archive, also you can create archives on any

device such as floppy disk or you can create an archive file to hold the

archive (for devices archiving is not possible in DOS only for files it is

possible)

The tar utility is ideal for making backups of your files or combining

several files into a single file for transmission across a N/W.

On Linux, tar is used to create archives on devices of files.

You can direct tar to archive files to a specific device or a file by using ’f ’

option with the name of device or file.

The syntax for the tar command with f option

$ tar option f archive name tar Directory & file name

When creating a file for a tar archive, the file name is usually given the

extension .tar

If directory name is specified for archive then all its subdirectories &

included files are in archive.

To create an archive use c option along with f option or file.

c creates on archive on a file or device

 156

Linux Documentation

$ tar cvf myarch.tar mydir:

v verbose mode which means that it displays detailed comments as the

operation proceeds like verification.

c creating a new archive file i.e. tar file display each file name is it

archive for verifying

f file i.e. specify the name of tar file or location where it is to be created.

In this example the directory mydir & its all subdirectories are saved in the

fie myarch.tar

 myarch.tar  name of archive to be created .

 mydir  directory to be archived.

 Mydir

 Mymeeting Party Reports

 Weather Monday Friday

$ tar cvf myarch.tar mydir

mydir/

mydir/reports/

mydir/reports/weather

mydir/reports/Monday

mydir/reports/Friday

mydir/mymeeting

mydir/party

Command Execution

tar options : Back up files to tape device or

archive file

tar option archive

name file list

: Backs up file to specific file or

device specified as archive name,

filelist, can be filenm or directory

Options:

c : creates a new archive

 157

Linux t : lists the names of files in an archive

r : append file to an archive

u : Update an archive with new & changed files,

adds only those files modified ֶ they were

archived or files not already present in archive

w : waits for a confirmation from the user before

archiving each file

x : extracts files from an archive

m : created a multiple volume archive that may be

stored on several floppy drives

f archive –

nm

: saves the tape archives to the file archive name

instead of the default tape device, when in this

option gives an archive name, the f option

saves the tar archive in file of that name which

is specified as archive name

f device –nm : Saves a tar archive to a device such as floppy

disk or tape /dev/fdo is the device name For

your floppy disk the default devices is held in

/etc/default/tar file

v : Displays each filename an it is archived

z : Compresses or decompresses archived files

using g zip

The user can extract the directories from the tape using X option. The xf

option extracts file from an archive file or device. The tar extension

operation generates all subdirectories.

xf option directs for to extract all the files & subdirectories form the tar

files.

myarch.tar

$ tar xvf myarch.tar

$ tar xvf myarch.tar

pathname denotes the relative pathnames. The above command creates the

root directory under the current directory if it does not already exist.

mydir/

mydir/reports

mydir/reports/weather

mydir/reports/Monday

mydir/reports/Friday

mydir/mymeeting

mydir/party

 158

Linux Documentation You can use r option to add files to an already created archive. The r
option appends the files to the archive

$ tar rvf myarch.tar mydocs:

The user appends the files in the myarch.tar archive. Here the directory
mydocs & its files are added to the myarch.tar archive.

If you want to do change or update to the previously created archived, you

can use u option to instruct tar to update the archive with an modified file.

The tar command compares the time of the last update for each archive

file with those in users directory & copies into the archive any files that

have been changed since they were last archived.

Any newly created files in these directories are also added to the archive

suppose mydir directory you have added two or 3 files & you want to

update that in tar.

$ tar uvf myarch.tar mydir

mydir/

mydir/gifts

To see tar archive file stored in archive tar without option

$ gzip mydata

$ gunzip mydata

Since tar files are capable of preserving files info. & directory structure tar

is commonly used to perform full & incremented backups of disks.

Whenever any file corrupt the chances of recovering it are higher if it is

uncompressed tar file as well as you cannot update compressed file.

$ tar –cvf trial.tar /root/test/* tar;

Removing leading „/‟ from absolute path names in archieve

root/test/a out

root/test/m.c.

tar file will not store the leading slash (/) it removes the slash while

retrieving a file as the tar file does not store the absolute filename, it

restores the file with relation to your current directory & prevents

accidental overwriting of original data.

If you want absolute path to be stored use –p (capital P) option

-tar - -absolute -paths -paths -cvf trial.tar/root/test/*

Or

 159

Linux # -tar -p -cvf trial.tar/root/test/*

Storing the absolute pathnames we can created archive filename will long

names also instead of using only single character # tar –c –v -f

trial.tar/root/user/

tar --create - - verbose - - file = trial.tar/root/user/*

Deleting files form an Archive:

use -delete option

tar - - delete –f trial.tar tmp

tar -tvf trial.tar

a.txt

m.c.

tmp will be deleted

Concatenating Tar.Archives

tar –Af trial.tar script.tar

The above command adds all contents of script.tar archive to the trial.tar

archive. To backup the files to a specific device, specify the device as the

archive for a floppy disk, you can specify the floppy drive. Be sure use

Blank floppy otherwise any data previously placed on it will be erased by

this operation.

The user created an archive on floppy disk in the /dev/fdo device device &

copies into floppy disk all the files which all in mydir directory.

 $ tar cf /dev/fdo mydir:

To extract the backed up files on the hard disk in a device

$ tar xf /dev/fdo

If the files you are archiving take up more space than would be available

on a device such as floppy disk, you can create a for archive that uses the

multiple labels. The m option instruct for to prompt you for a new storage

component when the current one is filled when archiving to a floppy drive

with m option tar prompts you to put in a new floppy disk when one

becomes full. You can then save your tar archive on several floppy disks.

$ tar cmf /dev/fdo mydirect

To unpack the multiple disk archive i.e. to take the multiple floppy disk

data form floppy to hard disk.

Place the 1
st
 one in the floppy drive, & then issue the following tar

command using both the x & m options. You are then prompted to put in

the other floppy drive as they are needed.

 160

Linux Documentation $ tar xmf /dev/fdo

The tar operation does not perform compression on archived files. if you

want to compress the archive files you can instruct tar to involve the gzip

utility to compress them with the lower case z option tar first uses gzip to

compress file before archiving them. The same z option involves gzip to

decompress them when extracting files.

$ tar czf myarch.tar.gz mydir

Normally an archive is created for transferring several files at one as one

tar file to shorten transmission time the archive should be as emall as

possible extention of zip files i.e. tar.gz

To view the contents of the compressed tar file

tar tufz trial.tar.gz

gzip myarch.tar

$ ls

$ myarch.targz

6.12 SUMMARY

In this chapter we learn documentation and types of

compression utilities and file system architecture

6.13 UNIT END QUESTIONS

1. Write a short note on man pages, GNU info help command.

2. Write different file operation used in linux.

3. Write a short note on Filesystem.

4. Describe Filesystem architecture.

5. Describe different file system.

6. Write different file attributes

7. Explain 1. Backup 2.Compression

List Of References:

1) Unix Concepts and Applications by Sumitabha Das.

2) Official Ubuntu Book, 8th Edition, by Matthew Helmke & Elizabeth K.

Joseph with Jose Antonio Rey and Philips Ballew, Prentice Hall

 161

UNIT III

7
SECURITY

Unit Structure

7.0 Objectives

7.1 Introduction

7.2 Understanding Linux Security

7.3 Uses of root

7.4 Sudo command

7.5 Working with passwords

7.6 Bypassing user authentication

7.7 Understanding ssh

7.7 Let Us Sum Up

7.8 Unit End Questions

7.9 List of References

7.0 OBJECTIVES

In this chapter you will learn about:

 Basic of linux security under the use of sudo command and password

policies. Also the ssh-secure shell uses will enhance the linux

security.

7.1 INTRODUCTION

This chapter introduces linux security measures regarding network criteria

by using ssh command features. The password policies which are

modified by using user management command. The sudo command which

are helping to manage all linux security and password policies.

7.2 UNDERSTANDING LINUX SECURITY

 Security is a set of appropriate procedures to protect your data,

account against risks.

 Risks for Linux users are compromised account, system compromise,

infrastructure related issues, not good user and system administration.

 One important task is to understand why we need to secure a system.

 Linux being treated as highly secure operating system, it has some

security flaws.

 162

Security  Causes of security problem in linux are local security, root security,

file system security.

 Security system is in two parts:

o Authentication: Responsible for ensuring that a user requesting access

to the system is really the user with the account.

o Access Control: Responsible for controlling which resources each

account has access to and what kind of access is permitted.

Security Requirements:

 Authorization: Allowing authorized user to access data

 Authenticity: Verifying them.

 Confidentiality: Personal information not been compromised.

 Integrity: Data not been changed or modified.

 Availability: Ensure that data is available.

Linux Security Systems and Tools:

 Reason for Linux is less vulnerable to attack is in Linux file system

model. Files are handled differently in a Linux system. One way is

that each file on the system has the concept of permission built in.

These permissions separate who can use the file and how.

 Most of the files on a Linux system belong by default to „root‟, or the

system administrator account. Within this category, no non-root user

can write to system files, and some programs which are risky security-

wise can additionally be restricted so that only root can run them.

 The user access levels also apply to any program that the user runs.

That is even if a user downloads and runs a malicious program, that

program inherits the user‟s permissions and so cannot do anything

that the user themselves could not do.

 Each file has the system‟s file type identifier embedded in the file

itself instead of relying in an extension. Thus executables do not

necessarily have “.exe” at the end, and plain text files do not need

“.txt” at the end. Thus one cannot fools the system by making an

executable file with a “.pdf” extension, since even if the user naively

double-clicks on the PDF file to open it for reading the system will

know that it‟s really an executable program and refuse to run it.

Firewalls:

 Firewalls are network packet filters that are capable of blocking

unwanted network traffic, while passing through allowed traffic.

 163

Linux  A firewall uses a set of rules which determines which traffic is

allowed to pass and in which direction. These are normally used to

separate internal networks from external ones.

 Firewalls are often the first line defense against crackers and internet

worms, which can be blocked by denying the means of network

ingress.

7.3 USES OF ROOT

 Root is username or account who has access to all commands and

files referred to as root user or superuser.

 In Linux system two people can change the permission of a file or

directory.

o The owner of file

o The root user

 Root user is a superuser who can do anything on the system to

maintain the system.

 It‟s actually a directory represented by “/”.

 It has number of sub directories such as bin,dev,home,lib etc.

 It has write permission i.e to modify files.

 Root user can start up or shut down the system and change operating

mode such as single user mode.

 It can add or remove users, file systems, back up and restore files.

 Create new process or kill process if required for running of system.

 Any user account‟s password can be change

 Setting of system date and clock.

 Communicate with concurrent user.

 Set the limitations to the user account like creating number of files,

disk space allowed to user.

 Schedule services using cron.

 Configuration of networking services FTP, SSH etc.

7.4 SUDO COMMAND

 Its “superuser do” which allows user with proper permission to

execute a command as another user.

 164

Security  In Ubuntu Linux by default root account is not configured

 Linux sudo command is used to give permission to any particular

command such as when user tries to install,remove and change piece

of software that user wants to execute.

 During installation of Ubuntu a default user is created and default user

is set up with sudo permission

 Sudo requires that users authenticate with a password.

 By default it is user‟s password not the root password.

Attribute Description

-v Prints version number and exist

-l List will print out the commands allowed the user on the

current host

-h Help prints a usage message and exist.

-b Background runs the given command in background

-K Sure kill removes the user‟s timestamp entirely

-u User option to run the specified command as a user other

than root

-s Shell option runs the shell specified

-e Edit option indicates that instead of running a command

user wish to edit one or more files.

For example user wants to update the operating system by passing

command:

apt-get update

7.5 WORKING WITH PASSWORDS

Password and authentication are important concepts when working in

Linux environment

Rules for Good Password:

 Choose different password: If you have a fear that your password has

been hacked them immediately change it.

 Choose uncommon password: Don‟t choose common names of your

friends, relatives, pets etc.

 Use mixture characters: Use characters, numbers and special

characters in mixed form.

 Length of password: Minimum characters should be of 6 in length

 Don‟t keep password written anywhere.

 165

Linux Password Security:

 As password is an important issue if at the time of login when we

enter user ID and password and if is accurate then login successes

otherwise it fails.

 It is important for users to secure passwords and it should be

unguessable.

 Recently Linux distribution includes passwd programs that do not

allow to set easily guessable passwords.

 It has one store area where password information is stored i.e.

/etc/passwd

 Linux file system is case-sensitive

 No person can regenerate original password string from the encryptd

string, thus password is secured.

7.6 BYPASSING USER AUTHENTICATION

 Most of the system require access to private information

 It is possible to bypass authentication measure by tempering with

request and tricking the application into thinking that we are already

authenticated.

 In authentication mechanism we ask a user name and password at

login and password at login page, then allow authorized users

unrestricted access to other web pages without any further checking.

 The problem is if users go directly to configuration pages, bypassing

authentication.

 For e.g. One user to run a command as another user without supplying

a password

 The solution to this is use sudo nopasswd tag. Which indicates to sudo

that no password is needed for authentication.

7.7 UNDERSTANDING SSH

 ssh means secure shell was created to provide the best security when

we are accessing another computer remotely.

 ssh provides better authentication facility, secure file transfer.

 ssh encrypts any communication between the remote user and a

system on your network.

 Two implementation of ssh are ssh1 which uses original ssh protocol

and ssh2 uses rewritten version of ssh protocol.

 Openssh is version supplied with Linux distributions.

 166

Security ssh Working:

 When you connect through ssh, you are in shell session, a text based

interface where we can interact with server.

 In ssh session, any commands that we type in local terminal are sent

through an encrypted ssh tunnel and executed on server.

 The ssh connection is implemented by client server model where

remote machine must be running a piece machine must be running a

pience of software for connection to be established.

 The user‟s computer has a ssh client.

ssh Encryption and authentication:

 ssh secures connections by authenticating users and encrypting

transmissions.

 ssh first authenticates particular host,verifies it if is valid ssh host for

srcure communication.

Encryption:

 Public key encryption in ssh authentication uses two keys: public key

and private key.

 Public key is used to encrypt data and private ey to decrypt it.

 For eg. When host sends data to a user on another system, the host

encrypts the authentication data with public key previously received

from that user.

 Data can be decrypted by user‟s private key.

Authentication:

 ssh authentication is first carried out with the host and then with users.

 When a remote user receives the encrypted challenge, that user

decrypts the challenge with its private key.

 The remote user first encrypts a session identifier using its private

key.

 The encrypted session identifier is then decrypted by the account

using the remote user‟s public key.

ssh Tools:

 sssh is implemented on Linux systems with openSSH.

 OpenSSH packages include general openSSH package, openSSH

server and openSSH clients.

 167

Linux  The following are the tools:

Application Description

Sshs ssh client

Sshd ssh server

Scp ssh copy command client

Sftp ssh ftp client

sftp-server ssh ftp server

ssh-keygen utility for generating keys

slogin remote login

ssh-agent ssh authentication agent

7.7 LET US SUM UP

Thus, we have studied the basic concepts of security and linux command

which is used to modify security measures. The uses of sudo command

and password policies are explained in chapter.

7.8 UNIT END QUESTIONS

1) What are the uses of root user in Linux system? Give the purpose of

sudo command.

2) Write any five privileges of administrator.

7.9 LIST OF REFERENCES

1) Unix Concepts and Applications by Sumitabha Das.

2) Official Ubuntu Book, 8th Edition, by Matthew Helmke & Elizabeth

K. Joseph with Jose Antonio Rey and Philips Ballew, Prentice Hall.

 168

8
NETWORKING

Unit Structure

8.0 Objectives

8.1 Introduction

8.2 Basic introduction to Networking

8.3 Network protocols

8.4 Transferring files

8.5 Networking GUI.

8.6 LET US SUM UP

8.7 Unit End Questions

8.8 List of References

8.0 OBJECTIVES

In this chapter you will learn about:

 Basic networking concepts and networking protocol.

 Transferring files through FTP, TELNET etc.

 Networking GUI.

8.1 INTRODUCTION

This chapter introduces network concept through OSI layers and

protocols. The transferring files can be done by protocols like FTP,

TELNET etc. The interface for users provided by network command.

8.2 BASIC INTRODUCTION TO NETWORKING

 All pieces of hardware and software programs speak different

languages.

 For communication between two computers we need a special

program in operating system that performs this function

 There are 7 layers of communication protocols which is known as

OSI(Open system Interconnection) links.

Goals of Computer Network:

 Sharing of Resources: Resources are been shared. For e.g. one

printer is shared by different nodes of computers.

 169

Linux
 8.3 NETWORK PROTOCOLS

 Protocols are set of rules used for communication.

 Different types of Network Protocols are as follows:

o HTTP (Hypertext transfer protocol)

o FTP (File transfer protocol)

o TCP/IP

o UDP

o ICMP

o Mail Protocols POP3 and SMTP

 HTTP (Hypertext Transfer Protocol):

o HTTP has separate client and server components.

o Client request the server for a document and server respond by

sending it.

o The protocol is also stateless in that each connection is unaware of the

other.

o Life cycle of connection using http is.

 The client contacts the source and opens a connection at port number

80.

 Client request the web server for some service. The request may

consist of request header followed by data sent by the client.

 Server now sends a response which has response header, followed by

data.

 Server waits for more requests and finally closes the connection.

 FTP (File Transfer Protocol):

o FTP command is used to transfer files between hosts.

o Like telnet, ftp can also be involved with or without the address

o FTP is simple and convenient protocol.

o FTP hostname by default will connect you to system, you must have a

login id to be able to transfer the files.

o ASCII and Binary files can be transferred.

o FTP establishes two types of connections:

 170

Networking

 Data transfer: It transfer data from one place to another.

 Control transfer: It transfers control to another system and also

control activities of remote machine.

 FTP command uses various options:

Tag Description

-p Use passive mode for data transfer

-i Interactive prompting during multiple file transfer

-e Disables command editing and history support

-d Enabling debugging

 TCP/IP:

o TCP (Transmission Control Protocol) and IP (Internet Protocol)

are two different procedures that are often linked together. When

information is sent over the Internet, it is generally broken up into

smaller pieces or “packets”

o The use of packets facilitates speedy transmission since different parts

of message can be sent by different routes and then reassembled at the

destination.

o TCP is the means for creating the packets, putting them back together

in the correct order at the end, and checking to make sure that no

packets got lost in transmission. If necessary, TCP will request that a

packet be resent.

o Internet Protocol(IP) is the method used to route information to the

proper address. Every computer on the Internet has to have its own

unique address known as the IP address. Every packet sent will

contain an IP address showing where it is supposed to go.

 UDP:

o This protocol is used together with IP when small amounts of

information are involved.

o It is simpler than TCP and lacks the flow-control and error-recovery

functions of TCP. Thus it uses fewer system resources.

 ICMP:

o A different type of protocol is Internet Control Message Protocol

(ICMP).

o It defines a small number of messages used for diagnostic and

management purposes.

o It is also used by ping and traceroute.

 171

Linux

 Mail Protocols POP3 and SMTP:

o Email has its set of protocols and there are a diversity of it, both for

sending mail and for receiving mail.

o The most common protocol for receiving mail is Post Office Protocol

(POP) which is now in version 3 called POP3.

o Both SMTP and POP3 use TCP for managing the transmission and

delivery of mail across the Internet.

o The most common protocol for sending mail is Simple Mail Transfer

Protocol (SMTP).

o For reading mail there is Interactive Mail Access Protocol (IMAP).

 IP Address:

o Every host in the network has an address has an address called IP

address, used by other machines to communicate with it.

o It’s a series of four dots delimited numbers.

o The maximum value of each octect is 255.

o It uses Internet Protocol for communication. For example:

211.162.0.1

o TCP/IP application can address a host by its hostname as well as its IP

address:

 telnet abc

 ftp 211.162.0.1

o The network administrator makes the IP address unique in all

connected networks.

 DNS (Domain Name System)

o It is a distributed system which has three key concepts.

 A hierarchical organization of hostnames

 A distributed database for mapping

 Authorities at individual level

o Host belongs to domains which further belong to sub domain.

o Root at the top signified by. (dot)

o There are number of top level domains as shown in below fig 8.1

 172

Networking

Fig 8.1 Internet Domain Hierarchy

o In the hierarchy related to these dot-separated strings, in is above net

which is in turn above vsnl represents fully qualifies domain name.

o BIND (Berkeley Internet Name Domain) maintains the DNS-related

software that runs under Linux.

o Below table shows various internet domains:

Domain

Name

Significance

Int International organization

Edu Educational Institution

Gov Government

Com Commercial organization

Net Networking organization

In India

Biz Business

 Browsers:

o Browsers are the most used applications as it’s important to choose

stable browser that suits all your needs.

o Browsers can be light weight, command line, free to cross platform

and extremely extensible one.

o Best browsers in Linux are Firefox, chrome, opera, Pale Moon.

o It’s a HTTP client which accepts a URL from URL window and gets

the resource from the server.

8.4 TRANSFERRING FILES

 Files that can be transferred are ASCII (text) and binary.

 Executable, graphics, word processing are binary types.

 173

Linux

 Uploading-put commands sends signal file i.e abc.gif to remote

machine. We can copy multiple files with mput.mput behaves

interactively and has confirmation for every file which has to be

transferred.

 Downloading-To download use get and mget commands.

 ssh (Secure shell):

o ssh, or secure shell is a protocol used to securely log onto remote

systems.

o It is the most common way to access remote Linux and Unix-Like

servers.

o For Example command is:

ssh remote_host

o The remote_host is the IP address or domain name that we are trying

to connect. This command assumes that your username on the remote

system is the same as your username on your local system.

 telnet:

o telnet is terminal network.

o Popular client server application process for terminal services.

o telnet use in time sharing system.

o Responsible for establishing connection to the remote system.

o It provides two types of login:

1) Local Login

2) Remote Login

1) Local Login:

a. Many terminal users are connected to one CPU.

b. CPU allocates time slot to each terminal.

 174

Networking

2) Remote Login:

a. Used as client server system

b. User logins from remote places so that remote terminal can access

application program of another machine.

c. Server can communicate with one or more client.

d. Whenever client needs services it runs, request for the services and

use it.

 Ping (Packet Internet Groper):

o Ping command is used for checking the network and also to test

connectivity between two nodes.

o It uses ICMP(Internet Control Message Protocol) to communicate to

other devices.

o Pinging a host does not require server process to run at other end.

o Ping command sends the ICMP ECHO_REQUEST packets to

network host.

 175

Linux

o PING (packet Internet Groper) command is the best way to check

connectivity between two nodes in Local Area Network(LAN) or

Wide Area Network(WAN).

o Host name or IP address can be used along with ping command. Ping

uses the ICMP protocols mandatory.

o ECHO_REQUEST datagram to evoke an ICMP ECHO_RESPONSE

from a host or gateway.

Example:

1) Ping the host to see if it’s alive.

2) Increase ping Time Interval

Wait for 5 seconds before sending the next packet.

$ping –I 5 google.com

3) Send N packets and stop

$ping –c 4 google.com

4) Timeout –w

Ping –w option specifies the deadline to terminate the ping output. This

specifies the total number of seconds the ping command should send

packets to the remote host.

The following example will ping for 5 seconds. i.e ping command will exit

after 5 seconds irrespective of how many packets are sent or reciv

$ping –w 5 localhost

 Traceroute:

o Prints the route that packets take to a network host.

o Attempts to trace the route an IP packet would follow to some intenet

host with time to live then listening for an ICMP “time exceeded”

reply from a gateway.

traceroute command uses various options:

Tag Description

-help Display a help message and exit

-d Enable socket level debugging

-f Specifies with what TTL to start

-v Print version information and exit

-e Show ICMP extensions

$traceroute google.com

 176

Networking

 Route:

o Route command is used to show manipulate the IP routing table.

o Primarily used to setup route to specific host or network through

interface

route command uses various options:

Tag Description

-A Use the specified address family

-F Operate on kernel’s forwarding Information base

routing table

-C Operate on kernel routing cache

-n Shows numerical addresses

-net Target is network

-del Delete route

-add Add a new route

 Hostname:

o Hostname command shows or sets system hostname

o To display the system’s DNS name

o Hostname is usually set at system startup by reading the contents of

file which contains hostname.

o For example/etc/hostname

Hostname command uses various options:

Tag Options

-a Displays the alias name of the host

-b Always set a hostname

-d Displays the name of the DNS domain

-F Read the hostname from the specified file

-i Display the network address of the host name

-f Display the FQDN (Fully Qualified Domain Name)

-s Display the short host name

-h Print a help message and exit

8.5 NETWORKING GUI

 The network manager service dynamically detects and configures

network connections.

 177

Linux

 Network manager does not have its own graphical user interface.

 In Ubuntu the graphical configuration tool to configure network

interfaces is called network-admin

 System should include the network-manager-gnome package that is

able to run Network Manager’s GUI connection editor.

8.6 LET US SUM UP

Thus, we have studied the basic concepts of network and linux command

which is used to perform communication among user over internet. The

uses of network protocol and commands are explained in chapter.

8.7 UNIT END QUESTIONS

1) Write a note on FTP.

2) What is the purpose of commands:- ssh, ping, hostname, telnet, route.

Give suitable example.

3) Define network protocol. Explain in detail HTTP.

8.8 LIST OF REFERENCES

1) Unix Concepts and Applications by Sumitabha Das.

2) Official Ubuntu Book, 8th Edition, by Matthew Helmke & Elizabeth

K. Joseph with Jose Antonio Rey and Philips Ballew, Prentice Hall

 178

9
BASIC SHELL SCRIPTING

Unit Structure

9.0 Objectives

9.1 Introduction

9.2 Features and capabilities,

9.3 Syntax

9.4 Modifying files

9.5 Sed

9.6 awk command

9.7 File manipulation utilities

9.8 Dealing with large files and Text

9.9 String manipulation

9.10 Boolean expressions

9.11 File tests

9.12 Case

9.13 Debugging

9.14 Regular expressions

9.15 Let Us Sum Up

9.16 Unit End Questions

9.17 List of References

9.0 OBJECTIVES

In this chapter you will learn about:

 Basic of shell scripting through environment variables, conditional,

looping statements and commands.

9.1 INTRODUCTION

This chapter introduces shell scripting through variables, commands,

conditional and looping statements. The sed and awk commands are

supporting for file manipulation for analyzing data.

9.2 FEATURES AND CAPABILITIES

 A shell script is defined as it plain text file with a set of Linux

command, flow of control and Input Outptut facilities. And it is

created by using any text editor like vi, emac etc.

 Shell script allows use of variable, file and directory management

features and it interpreted directly.

 179

Linux

 Shell script provides many features like loop, construct, array,

functions, logic with other utilities etc.

 Shell script allows reading input and parsing the command line.

 Shell supports advanced features such as Functions and Arrays,

regular expressions.

 Easy to use and understand.

 It is much quicker than programming in any other languages.

9.3 SYNTAX

Following is syntax basic structure of shell script:

#!/bin/bash (Shebang)

#(comments)

chmod +x scriptfilename (make script executable)

echo “ “ (to print message of variables contains)

./scriptfilename.sh (execute script)

Where,

#!/bin/bash:-It define which shell will be used to run the shell script.

#comments:-By using „#‟ symbol you can pass the comments.

chmod +x scriptfilename.sh:-It define file is executable and tell to Linux

that file is executable.

./scriptfilename.sh:-It define execute the script

Examples,

1) To check your current shell use following command as

echo $SHELL

Here dollar sign ($) stands for a shell variable

2) #!/bin/bash

 180

Basic Shell Scripting

#we learn shell scripting

echo “This is my first program by using shell script”

Output:

Constructs:

Construct shell script you can use text editor such as vi or cat command.

vi command:

First type following vi command and rest of text as:

 181

Linux

Output:

We learn basic shell scripting, following are screen snaps for creating first

shell script program.

cat command:

First type following cat command and rest of text as:

When you finished your writing script press CTRL+D to save and then by

using chmod command give executable permission to file.

For execute file give command as ./demofile2.sh

Sometimes arguments are specified with shell procedure ten they are

assigned to special variable or propositional parameters.

1) $1,$2,$3 The positional parameters.

 182

Basic Shell Scripting

2) $* The complete set of positional parameters as single string.

3) $# The number of arguments specified in command line.

4) $0 Name of executed command.

5) $? Exit status of the last command

6) $! PID of last command

Example:

When you finished your script press CTRL+D to save and By using

chmod command give executable permission to file.

Here we pass optional parameters as ashwini and 18889 as shown above.

9.4 MODIFYING FILES

Consider a file studentinfo.txt which is already created and contains

information of student like Roll.No, Name, Class and PH.No. etc if you

want to add some text in studentinfor.txt file then it is modify by using vi

editor following key for modify the file.

Name of Key Use of Key

h It is used to move left one character

l It is used to move right one character

k It is used to move up one character

J It is used to move down one character

Also for modifying file you sed command which modify each line of line

and replace specified parts of the line.

 183

Linux

9.5 SED

“sed” means stream editor. Sed command allows:

1) Performing basic text transformations on an input stream.

2) To modify each line of a file

3) To replace specified parts of the line.

Example

Consider a file file.txt

If the file name “file.txt” and you want to change all occurrences of

VASHI to PAREL to the modified file to “file.txt then use the following

command.

Command:

Output:

sed is also frequently used to filter lines in a file or stream.

Example:

If you only want see the lines containing “SA” you could use:

 184

Basic Shell Scripting

Output:

Replacing or substituting string:

sed command is mostly used to replace the text in a file. The below simple

sed command replaces the word “UNIX” with “LINUX” in the file.

Output:

Here the “s” specifies the substitution operation. The “/” are delimiters.

The “Unix” is the search pattern and the “Linux” is the replacement string.

9.6 AWK COMMAND

This command is used for processing or analyzing text files, in particular

data files that are organized by lines (rows) and columns.

Syntax:

awk „pattern {action}‟ input-filename > output-filename

This command is worked as taking each line of the input file. And if the

line contains the pattern then apply the action to the line and write the

resulting line to the output-file.

If the pattern is omitted, the action is applied to all line.

 185

Linux

Examples:

1) $awk „{print $1}‟ file.txt > outputfie.txt:

This statement takes the element of the 1
st
 column of each line and writes

it as a line in the output file “outputfile.txt”. As shown above

2) $awk „{print $2,$3}” file.txt > opfile.txt:

 186

Basic Shell Scripting

In this command we pass the second, third column, with $2,$3. By default

columns are assumed to be separated by spaces or tabs, comma.

You can use regular expression as condition.

3) $awk „/15/{print $2}‟ file.txt:

Here regular expression is string between the two slashes („/‟). In this case

string “15”. It indicates that if a line contains the string “15”, the system

prints out the element at the 2
nd

 column of that line.

4) If the table elements are numbers awk can run calculations on them

as in this example:

$cat awkfile.txt:

$awk „{print ($1 * $2) + $4}‟ awkfile.txt:

9.7 FILE MANIPULATION UTILITIES

1. tac:

This command is used for file manipulation tac command is used for print

file in reverse (liat line first). That is this command prints the file in

reverse order with the last line first.

 187

Linux

Syntax: tac filename.txt

Example: consider a file file.txt

Command:

By using tac command file.txt display print in reverse.

2. rev:

This command is used for reverse the characters in every line. Difference

between tac command and rev command is-

rev command reverse each character of the line

tac command reverse each line of the file.

Syntax: rev filename.txt

Example: Consider a file file.txt

 188

Basic Shell Scripting

Command:

By using rev command file.txt display reverse the characters in every line.

3. paste:

This command is used for merge file lines that means. This command

paste the line1 of file1, line1 of file2,.. line1 of fileN. It will repeat the

same for all lines. Each file‟s line is separated by tab.

Syntax: $paste filename1.txt filename2.txt filename3.txt

Example 1:

Consider a two file pastefile1.txt and pastefile2.txt are shown combined by

using cat commands:

 189

Linux

Example 2:

Let us consider a file with the sample contents as below:

i) Join all lines in a file:

-s option of paste joins all the lines in a file. Since no delimiter is

specified. Default delimiter tab is used to separate the columns.

ii) Merge a file by pasting the data into 2 columns using colon

separator:

iii) Join all lines using the comma delimiter:

4. join:

This command is used for join lines of two files which is based on a

common field, this can specify by using field.

Syntax: $join –t‟:‟ -1 N -2 N file1 file2

Where,

-t‟:‟ – it indicates that field separator

-1 N – it indicate that Nth field in 1
st
 file

-2 N – it indicate that Nth field in 2
nd

 file

file1 file2 – it indicate that files name that should be joined

 190

Basic Shell Scripting

Example: Consider two file joinfile.txt and joinfile1.txt

Now by using join command you join this two file joinfile.txt joinfile1.txt

Command:

Output:

9.8 DEALING WITH LARGE FILES AND TEXT

To view and manipulate large log files use the following command

1. To Display Specific Lines of a file use sed command:

Here to view specific lines you have to use line numbers.

Syntax: $sed –n –e Xp –e Yp FILENAME

Where,

Sed print all the lines by default

-n output

-e Command to be executed

Xp Print line number X

Yp Print line number Y

FILENAME name of the file

Example:

1. $sed –n –e 50p –e 100p –e 100p /var/log/file:

i) Here print the lines 50,100,1000 from the file.

 191

Linux

ii) You can view the content of var/log/file from line number 100 to

300:

Syntax: sed –n M, Np FILENAME

Where,

M Starting line number

N Ending line number

$sed –n 100,300p /var/log/file

2. To display First N Lines of a file use head Command:

To displays only first 20 lines of /var/log/file

Syntax: head –n N FILENAME

$head –n 20 /var/log/file

3. Ignore last N lines of file use head command:

To shows how to ignore the last N lines, and display only the remaining

lines from the top of file.

To display all the lines of the /var/log/file except the last 50 lines.

Syntax: head –n N FILENAME

$head –n -50 /var/log/file

4. Display last N lines of the file use tail command

To displays only last 30 lines of /var/log/file.

Syntax: tail –n N FILENAME

$tail –n 30 /var/log/messages

9.9 STRING MANIPULATION

We know that when you use $(dollar sign) followed by variable name it

indicates that variable with its values which is known as parameter

expansion.

1. String:

This command is used to get the length of the given variable in your shell

script.

 192

Basic Shell Scripting

Syntax: $(#string)

Example:

Output:

2. Position:

This command is used to extract a substring from a string. Character

substring from $sting starting from $position

Syntax: $(string:position)

 $(string:position:length)

Example:

Output:

Where, First variable returns the substring from 6
th

 position.

Second variable returns the 6 characters starting from 16
th

 position.

 193

Linux

3. Substring for shortest match:

To match shortest substring use following command:

Syntax:

1) ${string#substring}:

- deletes the shortest match of $substring from front of $string

2) ${string%substring}:

% - deletes the shortest match of $substring from back of $string

Example:

Output:

Here first echo statement substring is „*‟ matches the substring starts with

dot and # strips from the front of the string, so it strips the substring is

“substrings”

Second echo statement substring „*‟ matches the substring starts with dot,

and % strips from back of the string, so it deletes the substring „.txt‟

4. Substring for longest match:

To match longest $substring use following command

Syntax:

1) ${string##substring}

- deletes the longest match of $substring from front of $string.

2) ${string%%substring}

%% - deletes the longest match of $substring from back of $string

 194

Basic Shell Scripting

Example:

Output:

Here first echo statement ##* match for „*‟ longest match which matches

„file.substrings‟ so after striping it returns remaining txt.

Second echo statement %%* match for „*‟ longest match which matches

„subtrings.txt‟ so after striping it returns „file‟.

9.10 BOOLEAN EXPRESSIONS

Following are Boolean operators used in shell script:

Name of

operator

operator Use

logical

negation

! operator Display result as a true condition into

false and vice versa

logical OR -o operator Display if one of the operands is true then

condition should be true

logical AND -a operator Display if both the operands are true then

condition should be true otherwise it

should be false.

Example:

1) [!false] return it is true

2) [$a –lt 20 –o $b –gt 100] return it is true

3) [$a –lt 20 –a $b –gt 100] return it is false

Whete „lt‟ means less than and „gt‟ means greater than.

 195

Linux

Output:

9.11 FILE TESTS

When you are using files in shell script, to do some file tests on your file

before using it.

File test allow:

1) Checking for existence of your file.

2) Your file is readable, writable or executable.

3) Type of the file.

File test is done by if clause.

Syntax:

if [-option filename to be test]

then,

else

fi

 196

Basic Shell Scripting

Following are some file test operators:

File test

operator

name

Use

a It returns true if the file exists

c It returns true if the file exists and is a character special file

d It returns true if the file exists and is a directory

e It returns true if the file exists

f It returns true if the file exists and is a regular file

p It returns true if the file exists and is a regular file

r It returns true if the file exists and is readable

s It returns true is the file exists and has a size greater than zero

t It returns true if file descriptor is open and refers to a terminal

w It returns true if the file exists and is writable

x It returns true if the file exists and is executable

Example:

1. Shell script checks for existence of a regular file.

Output:

2. All the file test operators:

Consider a variable name is „file‟ which holds an existing file name as

“/var/www/test/linux/test.sh” whose size is 100 bytes and has read, write

and execute permission off-

 197

Linux

Output:

Here read, write and execute permission off-hence output is obtained with

every else statements.

9.12 CASE

 198

Basic Shell Scripting

Case statement is similar to switch statement used in C. By using case

statement user can test simple values for integers and characters and

testing can be done by string pattern that can contains wild card char

actors (special characters)

Syntax:

Case expression in

pattern1)

Statement to be executed if pattern1 matches

;;

Pattern2)

Statement to be executed if pattern2 matches

;;

esac

case required at least one pattern

Finally case statements expand the expression and try to it against each

pattern. Here expression is compared against every pattern until match is

found and then the statements following the pattern matching is executed.

When statement part is executed until;; (double semicolon) which

indicates that program flow should jump to the end of the entire case

statement. If there is no match, exit status of case is zero.

Example:

Once finished save it and exit.

For run above shell script use chmod com

mand as shown in below.

Command:

 199

Linux

Output:

9.13 DEBUGGING

We know that with the x-option, run the entire script in debug mode.

Each command with its arguments is printed to standard output after the

commands have been expanded but before they are executed.

-x option is used to debug a shell script

Run the shell script using –x option

For e.g. $ -x scriptname.sh

Following are debugging options used for turn on or off with set

command.

set –x: it display command and their arguments as they are executed

set –v: it display shell input lines as they are read.

9.14 REGULAR EXPRESSIONS

Regular expressions are special characters. It is used for search data,

matching patterns grep command is used to search for a specific string in a

file.

Following are some basic regular expressions symbols:

 200

Basic Shell Scripting

1) It is used to replaces any character

2) ^ It is used for matches start of string

3) $ It is used for matches end of string

4) * It is used for matches up zero or more times the preceding character.

5) \ It is used for Represent special characters

6) () It is used for Groups regular expressions.

7) ? It is used for Matches up exactly one character

8) \+ It is used for Matches one or more occurrence of the previous

character

9) \? It is used for Marches zero or one occurrence of the previous

character.

Examples:

1. Search for matches start of-

$ls –l | grep ^ -

2. Search for content that STARTS with „d‟

$ls –l | grp ^ d

3. Search for content containing letter „r‟

$cat test.sh | grep r

 201

Linux

4. Search for content that STARTS with „e‟

$cat test.sh | grep ^e

5. Select only those line that end with „e‟

$cat test.sh | grep e$

 202

Basic Shell Scripting

6. Filter out all lines that contain character „o‟

$cat test.sh | grep o

7. Searching for all characters „v‟

$cat test.sh | grep v

 203

Linux

8. Filter out lines where character „a‟ proceeds characters „r‟

$cat test.sh | grep “a\+r”

9.15 LET US SUM UP

Thus, we have studied the basic concepts shell scripting. Test cases,

conditional, looping statements have been described briefly. The

debugging also explained.

9.16 UNIT END QUESTIONS

1) Give the purpose of HOME, PS2, PS1, SHELL, USER shell

variables.

2) Define regular expression. What is the purpose of the following

regular expression characters:- ^ , $, * , ?

3) Write a shell script to read a month number from the user and display

corresponding month name

4) List any three features of awk. Give its general syntax. Explain it with

two different examples

5) Write a shell script to accept 2 numbers from user and one operator.

Based on the operator entered perform addition, subtraction,

multiplication and division.

9.17 LIST OF REFERENCES

1) Unix Concepts and Applications by Sumitabha Das.

2) Official Ubuntu Book, 8th Edition, by Matthew Helmke & Elizabeth K.

Joseph with Jose Antonio Rey and Philips Ballew, Prentice Hall.

 204

Basic Shell Scripting
