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Unit Structure 

1.0     Objective 

1.1     Introduction 

1.2     Review of Functions 

1.3     Increasing and Decreasing Functions 

1.4     Stationary Points 

1.5     Maximum and Minimum Problems. 

1.6     Graphing Polynomials 

1.7     Newton’s Method 

1.8 Summary 

1.9 Exercise 

1.10   References 

1.0     OBJECTIVE: - 

 Derive the Newton-Raphson method formula, 

 Develop the algorithm of the Newton-Raphson method, 

 Use the Newton-Raphson method to solve a nonlinear equation. 

 Discuss the drawbacks of the Newton-Raphson method. 

 Understanding of Mathematical concepts like limit, continuity, 
derivative, integration of functions 

1.1 INTRODUCTION: - 

The course is designed to have a grasp of important concepts of Calculus 
in a scientific way. It covers topics from as basic as definition of functions 
to partial derivatives of functions in a gradual and logical way. The learner 
is expected to solve as many examples as possible to get a compete clarity 
and understanding of the topics covered. 
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1.2 REVIEW OF FUNCTIONS: - 

Definitions Let ƒ be a function with domain D. Then ƒ has an absolute 
maximum value on D at a point c  

If ƒ(x) ≤  ƒ(c) for all x in D and an absolute minimum value on D at c if 
ƒ(x) ≥ ƒ(c) for all x in D. 

Maximum and minimum values are called extreme values of the function 
ƒ. Absolute maxima or minima are also referred to as global maxima or 
minima. 

Theorem 1—The Extreme Value Theorem If ƒ is continuous on a closed 
interval [a, b].  Then ƒ attains both an absolute maximum value M and an 
absolute minimum value m in [a, b] . That is, there are numbers  

 and  in [a, b] with ƒ( ) = m, ƒ( ) = M, and m ≤ ƒ(x) ≤ M for every 
other x in [a, b] The proof of the Extreme Value Theorem requires a 
detailed knowledge of the real number system (see Appendix 7) and we 
will not give it here. Figure 4.3 illustrates possible locations for the 
absolute extrema of a continuous function on a closed interval [a, b] . As 
we observed for the function y = cos x, it is possible that an absolute 
minimum (or absolute maximum) may occur at two or more different 
points of the interval 

1.3 INCREASING AND DECREASING FUNCTIONS: - 

Let f be some function defined on an interval. 

Definition 

The function f is increasing over this interval if, for all points x1 and x2 in 
the interval, 

 

This means that the value of the function at a larger number is greater than 
or equal to the value of the function at a smaller number. 

The graph on the left shows a differentiable function. The graph on the 
right shows a piecewise-defined continuous function. Both these functions 
are increasing. 
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The function f is decreasing over this interval if, for all points x1 and x2 in 
the interval, 

 
 
The following graph shows an example of a decreasing function 

 

Note that a function that is constant on the interval is both increasing and 
decreasing over this interval. If we want to exclude such cases, then we 
omit the equality component in our definition, and we add the word 
strictly: 

• A function is strictly increasing if x1< x2 implies f (x1)  <  f (x2). 

• A function is strictly decreasing if x1< x2 implies f (x1) > f (x2). 

We will use the following results. These results refer to intervals where 
the function is differentiable. Issues such as endpoints have to be treated 
separately. 

• If   for all x in the interval, then the function f is strictly 
increasing. 
• If  for all x in the interval, then the function f is strictly 
decreasing. 
• If  for all x in the interval, then the function f is constant.  
 

1.4 STATIONARY POINTS: - 

Definitions 

Let f be a differentiable function. 

• A stationary point of f is a number x such that . 
 
• The point c is a maximum point of the function f if and only if 

 f (c) ≥ f(x), for all x in the domain of f . The value f (c) of the function at 
c is called the maximum value of the function. 
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• The point c is a minimum point of the function f if and only if  

f (c) ≤ f (x), for all x in the domain of f . The value f (c) of the function at 
c is called the minimum value of the function. 

1.5 MAXIMUM AND MINIMUM PROBLEMS: - 

• The point c is a local maximum point of the function f if there exists an 

interval (a, b) with c ϵ (a,b) such that f (c) ≥ f (x), for all x ϵ (a,b). 

• The point c is a local minimum point of the function f if there exists an 

interval (a, b) with c ϵ (a,b) such that f (c) ≤ f (x), for all x ϵ (a,b). 

These are sometimes called relative maximum and relative minimum 
points. Local maxima and minima are often referred to as turning points 

The following diagram shows the graph of y = f (x), where f is a 
differentiable function. It appears from the diagram that the tangents to the 
graph at the points which are local maxima or minima are horizontal. That 
is, at a local maximum or minimum point c, we have f (c) = 0, and hence 
each local maximum or minimum point is a stationary point 

 

1.6 GRAPHING POLYNOMIALS: - 

In the last module, we looked at the long-term behavior of polynomials.  
After studying that module, you should be able to recognize that 

polynomials like 4 3 2( ) 3 63 27 486f x x x x x      and 
4 3 2( ) 12 27 270 648g x x x x x      have similar long-term behavior.  

Since they are both 4th degree polynomials with a positive leading 
coefficient, we know that their graphs must have arrows pointing up at the 
extreme left- and right-sides (i.e., the outputs of both functions increases 
without bound as the inputs increase without bound and as the inputs 
decrease without bound).  See Figure 1 below. 
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Figure 1: ( )y f x  and ( )y g x  

Although the functions 4 3 2( ) 3 63 27 486f x x x x x      and 
4 3 2( ) 12 27 270 648g x x x x x      have similar long-run behavior, 

they are not identical functions!  Let’s study the short-run behavior of 
their graphs to see how these functions differ.  The short-run behavior of 
the graph of a function concerns graphical features that occur when the 
input values aren’t very large.  (It’s hard to specify what “not large” means 
since it will be different for each function, but we’ll for particular 
graphical features rather than look within a particular interval, so we don’t 
need to worry about being more specific.) 

Clearly, 0x   isn’t a large  x-value, so the  y-intercept will be part of the 

short-run behavior of a polynomial function’s graph.  (Notice that the  y-
coordinate of the  y-intercept of a polynomial function is its the constant 
term.) 

The  y-intercept of 4 3 2( ) 3 63 27 486f x x x x x      is  0, 486 .  

The y-intercept of 4 3 2( ) 12 27 270 648g x x x x x      is  0, 648 .  

Zeros (or roots) are another important part of the short-run behavior of 
the graph of a polynomial function.  To find the roots of a polynomial 
function, we can write it in factored form: 

4 3 2( ) 3 63 27 486

( 3)( 3)( 6)( 9)

f x x x x x

x x x x

    

    
 

Each factor of  f  gives rise to a root, since when each factor equals zero, 
the output for the function is zero.  To find the roots, determine which 
numbers make the factors equal to zero. 
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3 3
3 3
6 6
9 9

x x
x x
x x
x x



   
  
   
  

FACTOR ROOT

 

In order to graph  f,  we can plot its roots and  y-intercept; see Figure 2 
below. 

 

 

Figure 2 

Now we can connect these points – making sure that our graph has the 
correct long-run behavior – to complete the graph of 

4 3 2( ) 3 63 27 486f x x x x x     ; see Figure 3. 

 

 

Figure 3:  The graph of ( )y f x . 

Now let’s factor  g  to determine its roots: 

4 3 2

2

( ) 12 27 270 648

( 3) ( 6)( 12)

g x x x x x

x x x

    

   
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3 3
6 6

12 12

x x
x x
x x



   
  
  

FACTOR ROOT

 

Since the root 3x    is associated with a squared (or “double”) factor, it 

is often called a double root or a root of multiplicity two. 

In order to graph  g,  we can plot its roots and  y-intercept; see Figure 4.  
(The orange point at 3x    is a root of multiplicity two.) 

 

Figure 4 

Now we can connect these points – making sure that our graph has the 
correct long-run behavior – to complete the graph of 

4 3 2( ) 12 27 270 648g x x x x x      (see Figure 5).  Notice that the 

only way to connect the points without using additional roots or incorrect 
long-run behavior is to have the graph “bounce” of the double root at 

3.x     (Try it yourself!) 

 

Figure 5:  The graph of ( )y g x . 

EXAMPLE: Write an algebraic rule for the polynomial function  p  
graphed Figure 6.  Note that the graph passes through the point ( 3, 18).  
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Figure 6:  The graph of ( )y p x . 

SOLUTION: 

Since there are roots at 4x   , 2x   , 0x  , and 3x  , we know that  

p  has form 

( ) ( 3)( 4)( 2)p x k x x x x      

where  k  is a constant.  To find  k  we can use the point ( 3, 18).  

 

( 3, 18) ( 3) 18 ( 3)( 3 3)( 3 4)( 3 2)

18 ( 3)( 6)(1)( 1)

18 18

1

p k

k

k

k

            

     

  

  

 

Therefore, ( ) ( 3)( 4)( 2).p x x x x x      

EXAMPLE: Write an algebraic rule for the polynomial function  w  
graphed in Figure 7.  Note that the  y-intercept of  w  
is (0, 12).  

 

 

Figure 7:  The graph of ( )y w x . 

SOLUTION: 

Since there are roots at 3x   , 1x   , 1x  , and 3x  , and since the 

graph bounces off the  x-axis at 1x   , this is a root of multiplicity two 

(i.e., a double-root).  Thus, we know that  w  has form 

2( ) ( 3)( 1) ( 1)( 3)w x k x x x x       
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where  k  is a constant.  To find  k  we can use the fact that the  y-intercept 
of  w  is (0, 12) : 

2

2

12 4
9 3

(0, 12) (0) 12 (0 3)(0 1) (0 1)(0 3)

12 (3)(1) ( 1)( 3)

12 9

f k

k

k

k

       

    

 

  

 

Thus, 24
3

( ) ( 3)( 1) ( 1)( 3)w x x x x x     . 

EXAMPLE: Write an algebraic rule for the polynomial function  h  
graphed in Figure 8.  Note that the  y-intercept of  h  is (0, 13) . 

 

Figure 8:  The graph of ( )y h x . 

SOLUTION: 

Notice that the graph of ( )y h x  does not have roots at integer values.  

But there are some “nice” points on the graph of ( )y h x  along the 

horizontal line 5y  .  If we treat this line as the  x-axis  (i.e., imagine that 

the graph of  h  is shifted down  5  units) then the graph would have roots 
4x  , 1x  , and 4x   .  So to find a rule for  h  we can create a 

function that has these three roots and then shift it up 5 units: 

( ) ( 4)( 1)( 4) 5h x k x x x       

To find  k  we can use the  y-intercept (0, 13) : 

1
2

(0) 13 (0 4)(0 1)(0 4) 5

13 ( 4)( 1)(4) 5

(0, 13)

13 16 5

8 16

h k

k

k

k

k

      

    







 





 

Therefore, an algebraic rule for  h  is 1
2

( ) ( 4)( 1)( 4) 5h x x x x     . 
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Properties of Polynomial Functions 

■ The graph of a polynomial is a smooth unbroken curve.  (By 
“smooth” we mean that the graph does not have any sharp corners 
as turning points.) 

■ The graph of a polynomial always exhibits the characteristic that as 

x  gets very large, y  gets very large. 

■ If  p  is a polynomial of degree  n, then the polynomial equation 
( ) 0p x   has at mostn distinct solutions; that is,  p  has at most  n  

zeros.  This is equivalent to saying that the graph of ( )y p x  

crosses the  x-axis at most  n  times.  Thus a polynomial of degree 
five can have at most five  x-intercepts. 

■ The graph of a polynomial function of degree  n  can have at 
most 1n   turning points  (see Key Point below).  For example, the 
graph of a polynomial of degree five can have at most four turning 
points. In particular, the graph of a quadratic (2nd degree) 
polynomial function always has exactly one turning point – its 
vertex.  

EXAMPLE: What is the minimum possible degree of the polynomial 
function in Figure 9? 

 

Figure 9 

SOLUTION: 

The polynomial function graphed in Figure 9 has four zeros and five 
turning points.  The properties of polynomials tell us that a polynomial 
function with four zeros must have a degree of at least four.  These 
properties also tell us that if a polynomial has degree  n  then it can have at 
most 1n  turning points.  In other words the degree of a polynomial must 
be at least one more than the number of turning points.  Since this graph 
has four turning points, the degree of the polynomial must be at least six. 

Keep in mind that although a 6th degree polynomial may have as many as 
six real zeros, it need not have that many.  The graph in Figure 9 only has 
four real zeros. 
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Concavity 

There are four graphs in Figure 10 (below).  The first two graphs (a and b) 
have different shapes, but they are both increasing on the interval ( 2, 1) .  

The second two graphs (c and d) also have different shapes, but they are 
both decreasing on the interval ( 2, 1) . 

 

 

a 

 

 

b 

 

 

c 

 

 

d 

 

Figure 10 

As the first graph (a) rises, it bends or curves upward; but as the second 
graph (b) rises, it bends or curves downward.  Similarly, the third graph 
(c) is falling and curved upward, whereas the fourth graph (d) is falling 
and curved downward.  A graph the curves upward (like the graphs a and 
c) is called concave up; a graph that curves downward (like the graphs b 
and d) is called concave down.  It might help to remember thata parabola 
that opens upward is concave up and a parabola that opens downward is 
concave down. 

The graph in Figure 11 is always increasing, concave down on the interval 
( , 1) , and concave up on the interval (1, ) .  At the point (1, 1)  the 

concavity changes from concave up to concave down.  Such a point is 
called a point of inflection. 
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Figure 11:  An inflection point occurs at (1, 1) . 

The polynomial 3 2 2y x x x    is graphed in Figure 12; the graph 

appears to have an inflection point at 1
3

x   . 

 

 

Figure 12: An inflection point occurs at 1
3

x   . 

EXAMPLE: Use the graph in Figure 13  to find … 

a. the approximate intervals where the graph of  f  is increasing. 

b. the approximate intervals where the graph of  f  is decreasing. 

c. the approximate intervals where the graph of  f  is concave up. 

d. the approximate intervals where the graph of  f  is concave down. 

e. the number of inflection points on the graph of  f. 

 

 

Figure 13:  The graph of ( )y f x . 
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SOLUTION: 

a. The approximate intervals where the graph of  f  is increasing are 
( , 4.5)   and (0, 4.5) . 

b. The approximate intervals where the graph of  f  is decreasing are 
( 4.5, 0)  and (4.5, ) . 

1.7 NEWTON’S METHOD: - 

Methods such as the bisection method and the false position method of 
finding roots of a nonlinear equation 0)( xf  require bracketing of the 

root by two guesses.  Such methods are called bracketing methods.  These 
methods are always convergent since they are based on reducing the 
interval between the two guesses so as to zero in on the root of the 
equation. 

In the Newton-Raphson method, the root is not bracketed.  In fact, only 
one initial guess of the root is needed to get the iterative process started to 
find the root of an equation.  The method hence falls in the category of 
open methods.  Convergence in open methods is not guaranteed but if the 
method does converge, it does so much faster than the bracketing 
methods. 

The Newton-Raphson method is based on the principle that if the initial 
guess of the root of 0)( xf  is at ix , then if one draws the tangent to the 

curve at )( ixf , the point 1ix  where the tangent crosses the x -axis is an 

improved estimate of the root (Figure 1). 

Using the definition of the slope of a function, at ixx   

  θ = xf i tan  

 

1

0





ii

i

xx

xf
 = , 

which gives 

 
 i

i
ii

xf

xf
 = xx


1        (1) 

Equation (1) is called the Newton-Raphson formula for solving nonlinear 

equations of the form   0xf .  So starting with an initial guess, ix , one 

can find the next guess, 1ix , by using Equation (1).  One can repeat this 

process until one finds the root within a desirable tolerance. 

Algorithm 

The steps of the Newton-Raphson method to find the root of an equation 

  0xf   are 
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1. Evaluate  xf   symbolically 

2. Use an initial guess of the root, ix , to estimate the new value of the 

root, 1ix , as 

 
 i

i
ii

xf

xf
 = xx


1  

3. Find the absolute relative approximate error a  as 

010
1

1 







i

ii
a

x

 xx
 =  

4. Compare the absolute relative approximate error with the pre-specified 

relative error tolerance, s .  If a > s , then go to Step 2, else stop the 

algorithm.  Also, check if the number of iterations has exceeded the 
maximum number of iterations allowed.  If so, one needs to terminate 
the algorithm and notify the user. 

 

    Figure 1  Geometrical illustration of the Newton-Raphson method. 

Example 1 

You are working for ‘DOWN THE TOILET COMPANY’ that makes 
floats for ABC commodes.  The floating ball has a specific gravity of 0.6 
and has a radius of 5.5 cm.  You are asked to find the depth to which the 
ball is submerged when floating in water. 

 

f (x) 

f 
(x ) 

f (xi+1) 

    xi+2     xi+1     xi 
    x 

θ 

[xi,  f(xi)] 
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                                          Figure 2   Floating ball problem. 

The equation that gives the depth x  in meters to which the ball is 
submerged under water is given by 

010993.3165.0 423  xx  

Use the Newton-Raphson method of finding roots of equations to find  

a) the depth x  to which the ball is submerged under water. Conduct three 
iterations to estimate the root of the above equation.   

b) the absolute relative approximate error at the end of each iteration, and  

c) the number of significant digits at least correct at the end of each 
iteration. 

Solution 

  423 10993.31650  x.xxf  

  x.xxf 3303 2   

Let us assume the initial guess of the root of   0xf  is ..x m 0500    

This is a reasonable guess (discuss why 0x  and m 11.0x  are not 
good choices) as the extreme values of the depth x  would be 0 and the 
diameter (0.11 m) of the ball.   

Iteration 1  

The estimate of the root is 

 
 0

0
01

xf

xf
xx


  

   
   0503300503

10993.30501650050
050

2

423

...

...
.







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3

4

109

10118.1
050








 .  

 01242.0050  .  

062420.  

The absolute relative approximate error a  at the end of Iteration 1 is 

100
1

01 



x

xx
a  

19.90% 

100
062420

050062420







.

..

 

The number of significant digits at least correct is 0, as you need an 
absolute relative approximate error of 5% or less for at least one 
significant digit to be correct in your result. 

Iteration 2 

The estimate of the root is 

 
 1

1
12

xf

xf
xx


  

   
   0624203300624203

10993.30624201650062420
062420

2

423

...

...
.








 

3

7

1090973.8

10977813
062420










.
.  

 5104646.4062420  .  

062380.  

The absolute relative approximate error a  at the end of Iteration 2 is 

100
2

12 



x

xx
a  

100
062380

062420062380





.

..
 

 %07160.  

The maximum value of m  for which m
a

 2105.0  is 2.844.  Hence, 

the number of significant digits at least correct in the answer is 2. 
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Iteration 3 

The estimate of the root is 

 
 2

2
23

xf

xf
xx


  

   
   0623803300623803

10993.30623801650062380
062380

2

423

...

...
.








 

3

11

1091171.8

1044.4
062380








 .  

  9109822.4062380  .  

 062380.  

The absolute relative approximate error a  at the end of Iteration 3 is 

100
062380

062380062380





.

..
a  

0  

The number of significant digits at least correct is 4, as only 4 significant 
digits are carried through in all the calculations. 

Drawbacks of the Newton-Raphson Method 

1. Divergence at inflection points 

 If the selection of the initial guess or an iterated value of the root turns out 
to be close to the inflection point (see the definition in the appendix of this 

chapter) of the function  xf  in the equation   0xf , Newton-Raphson 

method may start diverging away from the root.  It may then start 
converging back to the root.  For example, to find the root of the equation 

    0512.01
3

 xxf  

the Newton-Raphson method reduces to 

2

33

1
)1(3

512.0)1(






i

i
ii

x

x
 = xx  

Starting with an initial guess of 0.50 x , Table 1 shows the iterated 

values of the root of the equation.  As you can observe, the root starts to 
diverge at Iteration 6 because the previous estimate of 0.92589 is close to 

the inflection point of 1x  (the value of  xf '  is zero at the inflection 

point). Eventually, after 12 more iterations the root converges to the exact 
value of 2.0x . 
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Table 1 Divergence near inflection point. 

Iteration 

Number 
ix  

0 5.0000 

1 3.6560 

2 2.7465 

3 2.1084 

4 1.6000 

5 0.92589 

6 –30.119 

7 –19.746 

8 –12.831 

9 –8.2217 

10 –5.1498 

11 –3.1044 

12 –1.7464 

13 –0.85356 

14 –0.28538 

15 0.039784 

16 0.17475 

17 0.19924 

18 0.2 
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Figure 3   Divergence at inflection point for     01
3
 xxf . 

2. Division by zero 

For the equation  

  01042030 623  .x.xxf  

the Newton-Raphson method reduces to  

ii

ii
ii

xx

.x.x
 = xx

06.03

1042030
2

623

1







  

For 00 x  or 02.00 x , division by zero occurs (Figure 4).  For an initial 

guess close to 0.02 such as 01999.00 x , one may avoid division by zero, 

but then the denominator in the formula is a small number.  For this case, 
as given in Table 2, even after 9 iterations, the Newton-Raphson method 
does not converge. 
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Table 2   Division by near zero in Newton-Raphson method. 

Iteration  

Number 
ix  )( ixf  %a  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 0.019990 

–2.6480 

–1.7620 

–1.1714 

–0.77765 

–0.51518 

–0.34025 

–0.22369 

–0.14608 

–0.094490 

-6101.60000  

18.778 

 –5.5638 

 –1.6485 

 –0.48842 

 –0.14470 

 –0.042862 

 –0.012692 

 –0.0037553 

 –0.0011091 

 

100.75 

 50.282 

 50.422 

 50.632 

 50.946 

 51.413 

 52.107 

 53.127 

 54.602 

-1.00E-05

-7.50E-06

-5.00E-06

-2.50E-06

0.00E+00

2.50E-06

5.00E-06

7.50E-06

1.00E-05

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

x

f(x)

0.02

 

         Figure 4   Pitfall of division by zero or a near zero number. 

 

3. Oscillations near local maximum and minimum 

Results obtained from the Newton-Raphson method may oscillate about 
the local maximum or minimum without converging on a root but 
converging on the local maximum or minimum. Eventually, it may lead to 
division by a number close to zero and may diverge. 

 

 



 

 

Derivatives and Its 
Application 

21 

For example, for 

  022  xxf  

 the equation has no real roots (Figure 5 and Table 3). 

-1

0

1

2

3

4

5

6

-2 -1 0 1 2 3

f(x)

x

 3

 4

 2

 1

 -1.75  -0.3040 0.5 3.142

 

Figure 5   Oscillations around local minima for   22  xxf . 

Table 3   Oscillations near local maxima and minima in Newton-Raphson 
method. 

Iteration  

Number 
ix  )( ixf  %a  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

–1.0000 

  0.5 

–1.75 

–0.30357 

 3.1423 

 1.2529 

–0.17166 

 5.7395 

 2.6955  

 0.97678 

3.00 

2.25 

5.063  

2.092 

11.874 

3.570 

2.029 

34.942 

9.266 

2.954  

300.00 

128.571 

 476.47 

109.66 

150.80 

829.88 

102.99 

112.93 

175.96 
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4. Root jumping 

In some case where the function )(xf  is oscillating and has a number of 

roots, one may choose an initial guess close to a root.  However, the 
guesses may jump and converge to some other root.  For example for 
solving the equation 0sin x  if you choose  539822.74.20  x  as an 

initial guess, it converges to the root of 0x  as shown in Table 4 and 
Figure 6.  However, one may have chosen this as an initial guess to 
converge to 283185362 .x   . 

 Table 4   Root jumping in Newton-Raphson method. 

Iteration  

Number 
ix  )( ixf  %a  

0 

1 

2 

3 

4 

5 

 7.539822 

 4.462 

 0.5499 

–0.06307 

410376.8   

131095861.1   

 0.951 

–0.969 

  0.5226 

–0.06303 

510375.8   

131095861.1   

 

68.973 

711.44 

971.91 

41054.7   

101028.4   

 

-1.5

-1

-0.5

0

0.5

1

1.5

-2 0 2 4 6 8 10

x

f(x)

 -0.06307 0.5499 4.461  7.539822

 

Figure 6   Root jumping from intended location of root for   0sin  xxf . 
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Appendix A. What is an inflection point? 

For a function  xf , the point where the concavity changes from up-to-

down or down-to-up is called its inflection point.  For example, for the 

function    31 xxf , the concavity changes at 1x  (see Figure 3), 

and hence (1,0) is an inflection point.    

An inflection points MAY exist at a point where 0)(  xf  and where 

)('' xf  does not exist.  The reason we say that it MAY exist is because if 

0)(  xf , it only makes it a possible inflection point.  For example, for 

16)( 4  xxf , 0)0( f , but the concavity does not change at 0x . 

Hence the point (0, –16) is not an inflection point of 16)( 4  xxf . 

For    31 xxf , )(xf  changes sign at 1x  ( 0)(  xf  for 1x , and 

0)(  xf  for 1x ), and thus brings up the Inflection Point Theorem for a 

function )(xf  that states the following. 

“If )(' cf  exists and )(cf   changes sign at cx  , then the point ))(,( cfc  

is an inflection point of the graph of f .” 

Newton-Raphson method can also be derived from Taylor series.  For a 

general function  xf , the Taylor series is 

      iiiii xxxfxfxf   11 + 
    

2

1
!2

ii
i xx

xf"
 

As an approximation, taking only the first two terms of the right hand side, 

      iiiii xxxfxfxf   11  

and we are seeking a point where   ,xf 0  that is, if we assume 

  ,xf i 01   

    iiii xxxfxf  10  

which gives 

 
 i

i
ii

xf'

xf
xx 1  

This is the same Newton-Raphson method formula series as derived 
previously using the geometric method. 
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a. It appears that the graph of  f  is concave up on the interval ( 2, 2) . 

b. It appears that the graph of  f  is concave down on the intervals 
( , 2)   and (2, ) . 

c. As we move from left to right, the graph changes from concave down 
to concave up and then back to concave down.  Each change occurs at 
an inflection point, so the graph of  f  has two inflection points. 

EXAMPLE:Suppose  p  is a polynomial function that satisfies the 
following conditions:  The graph of  p  has exactly three turning points : 
( 2.5, 5)  , (0, 2) , (2.5, 5)  and the graph of  p  has exactly two 

inflection points:  ( 1, 0)  and (1, 0).   Sketch a graph of  p  based upon 

this information.  How many real zeros does  p  have? 

SOLUTION: 

Let’s start by plotting the given points; see Figure 14. 

 

Figure 14 

There is only one way to connect the points to create a polynomial 
function without adding turning points or inflection points; see Figure 15.  
You should verify this for yourself. 

 

Figure 15:  The graph of ( )y p x . 

Since it has four  x-intercepts,  p  has four real zeros. 
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1.8 SUMMARY: - 

This chapter is mainly focusing on basic concepts in derivatives. 

1.9 EXERCISE: - 

 The accompanying figure shows some level curves of an unspecified 
function f(x, y). Which of the three vectors shown in the figure is most 

likely to be ∇f ? Explain 

1.10     REFERENCES: - 

 Calculus: Early transcendental (10th Edition): Howard Anton, Irl 
Bivens, Stephen Davis, John Wiley & sons, 2012. 

 


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2 
INTEGRATION AND ITS APPLICATIONS 

Unit Structure 

2.0      Objective 

2.1      Introduction 

2.2      An overview of the area problem 

2.3      The indefinite integral anti derivatives 

2.4      The indefinite integral 

2.5      Area between two curves 

2.6      Length of A plane curve 

2.7      Simpson’s rule 

2.8    Summary 

2.9    Exercise 

2.10    References 

2.0     OBJECTIVE 

 Derive the Simpson’s method formula, 

 Develop the algorithm of the Simpson’s method, 

2.1     INTRODUCTION 

In this chapter we will begin with an overview of the problem of finding 
areas—we will discuss what the term “area” means, and we will outline 
two approaches to defining and calculating areas. Following this 
overview, we will discuss the Fundamental Theorem of Calculus, which is 
the theorem that relates the problems of finding tangent lines and areas, 
and we will discuss techniques for calculating areas. We will then use the 
ideas in this chapter to define the average value of a function, to continue 
our study of rectilinear motion, and to examine some consequences of the 
chain rule in integral calculus. We conclude the chapter by studying 
functions defined by integrals, with a focus on the natural logarithm 
function. 

2.2   AN OVERVIEW OF THE AREA PROBLEM 

Formulas for the areas of polygons, such as squares, rectangles, 
triangles, and trapezoids, were well known in many early civilizations. 
However, the problem of finding formulas for regions with curved 
boundaries (a circle being the simplest example) caused difficulties 
for early mathematicians. 
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The first real progress in dealing with the general area problem was 
made by the Greek Mathematician Archimedes, who obtained areas of 
regions bounded by circular arcs, parabolas, spirals, and various other 
curves using an ingenious procedure that was later called the method 
of exhaustion. The method, when applied to a circle, consists of 
inscribing a succession of regular polygons in the circle and allowing 
the number of sides to increase indefinitely (Figure 5.1.1). As the 
number of Sides increases, the polygons tend to “exhaust” the region 
inside the circle, and the areas of the polygons become better and 
better approximations of the exact area of the circle. 

To see how this works numerically, let  denote the area of a regular 
n-sided polygon inscribed in a circle of radius 1. Table 5.1.1 shows the 
values of A(n) for various choices of n. Note that for large values of n 
the area A(n) appears to be close to π (square units), 

 

as one would expect. This suggests that for a circle of radius 1, the method 
of exhaustion is equivalent to an equation of the form  

 
Since Greek mathematicians were suspicious of the concept of “infinity,” 
they avoided its use in mathematical arguments. As a result, computation 
of area using the method of exhaustion was a very cumbersome procedure. 
It remained for Newton and Leibniz to obtain a general method for finding 
areas that explicitly used the notion of a limit. We will discuss their 
method in the context of the following problem 

THE RECTANGLE METHOD FOR FINDING AREAS 

One approach to the area problem is to use Archimedes’ method of 
exhaustion in the following way: 

• Divide the interval [a, b]inton equal subintervals, and over each 
subinterval construct a rectangle that extends from the x-axis to any point 
on the curve y = f(x) that is above the subinterval; the particular point does 
not matter—it can be above the center, above an endpoint, or above any 
other point in the subinterval. In Figure 5.1.3y = f(x)it is above the center. 

• For each n, the total area of the rectangles can be viewed as an 
approximation to the exact area under the curve over the interval [a, b]. 
Moreover, it is evident intuitively that as n increases these approximations 
will get better and better and will approach the exact area as a limit 
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(Figure 5.1.4). That is, if A denotes the exact area under the curve and An 
denotes the approximation to A using n rectangles, then 

 

We will call this the rectangle method for computing A 

to illustrate this idea, we will use the rectangle method to approximate the 
area under the curve y = x2 over the interval [0, 1] (Figure 5.1.5). We will 
begin by dividing the interval [0, 1] into nequal subintervals, from which it 
follows that each subinterval has length 1/n; the endpoints of the 
subintervals occur at, 

0  , , ,  

(Figure 5.1.6). We want to construct a rectangle over each of these 
subintervals whose height is the value of the function f(x) = x2 at some 
point in the subinterval. To be specific, let us use the right endpoints, in 
which case the heights of our rectangles will be 

 

and since each rectangle has a base of width 1/n, the total area Anof the n 
rectangles will be 

 
For example, if n = 4, then the total area of the four approximating 
rectangles would be 

 

Table 5.1.2 shows the result of evaluating (1) on a computer for some 
increasingly large values of n. These computations suggest that the exact 
area is close to 1 3. Later in this chapter we will prove that this area is 
exactly 1 3 by showing that  

 

2.3  THE INDEFINITE INTEGRAL ANTIDERIVATIVES:  

THE INDEFINITE INTEGRALANTIDERIVATIVES 

Definition:  A function F is called an ant derivative of a function f on a 
given open interval if  

 for all x in the interval. 

For example, the function F(x) = is an ant derivative of f(x) = x2    on the 
interval (-∞, +∞) because for each x in this interval.  
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However, F(x) =  is not the only ant derivative of f on this interval. If 

we add any constant C to , then the function G(x) = + C is also an 
ant derivative of f on (−∞, +∞), since 

 

In general, once any single antiderivative is known, other antiderivatives 
can be obtained by adding constants to the known antiderivative. Thus, 

 

are all ant derivatives of f(x) = x2. 

2.4     THE INDEFINITE INTEGRAL: - 

The process of finding antiderivatives is called ant differentiation or 
integration. Thus, if 

 

then integrating (or ant differentiating) the function f(x) produces an ant 
derivative of the form F (x) + C. To emphasize this process, Equation (1) 
is recast using integral notation, 

 

then integrating (or ant differentiating) the function f(x) produces an ant 
derivative of the form F (x) + C. To emphasize this process, Equation (1) 
is recast using integral notation, 

 

Note that if we differentiate an ant derivative of f(x), we obtain f(x) back 
again. Thus, 

 

The expression ∫ f(x) dx is called an indefinite integral. The adjective 
“indefinite” emphasizes that the result of ant differentiation is a “generic” 
function, described only up to a constant term. The “elongated s” that 
appears on the left side of (2) is called an integral sign,∗ the function f(x) 
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is called the integrand, and the constant C is called the constant of 
integration. Equation (2) should be read as:The integral of f(x) with respect 
to x is equal to F (x) plus a constant. 

THE DEFINITION OF AREA AS A LIMIT; SIGMA NOTATION 

SIGMA NOTATION 

To simplify our computations, we will begin by discussing a useful 
notation for expressing lengthy sums in a compact form. This notation is 
called sigma notation or summation notation because it uses the uppercase 

Greek letter Ʃ (sigma) to denote various kinds of sums. To illustrate how 

this notation works, consider the sum 

12+22+32+42+52 

in which each term is of the form k2 , where k is one of the integers from 1 to 5. In 
sigma notation this sum can be written as, 

 

Which is read “the summation of k2, where k runs from 1 to 5.” The notation tells us 
to form the sum of the terms that result when we substitute successive integers for 
k in the expression k2, starting with k = 1 and ending with k = 5. 

More generally, if f(k) is a function of k, and if m and n are integers such that m ≤ n, 
then 

 

Denotes the sum of the terms that result when we substitute successive 
integers for k, starting with k = m and ending with k = n 

THE DEFINITE INTEGRAL 

A function f is said to be integrable on a finite closed interval [a, b] if the 
limit 

 

exists and does not depend on the choice of partitions or on the choice of 

the points  in the subintervals. When this is the case we denote the limit 
by the symbol 
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Which is called the definite integral of f from a to b. The numbers a and b 
are called the lower limit of integration and the upper limit of integration, 
respectively, and f(x) is called the integrand 

2.5     AREA BETWEEN TWO CURVES: - 

Suppose that f and g are continuous functions on an interval [a, b] and  

f(x) ≥ g(x) for a ≤ x ≤ b [This means that the curve y = f(x) lies above the 
curve y = g(x) and that the two can touch but not cross.] Find the area A of 
the region bounded above by y = f(x), below by y = g(x), and on the sides 
by the lines x = a and x = b  

 

To solve this problem, we divide the interval [a, b] into n subintervals, 
which has the effect of subdividing the region into n strips (Figure 6.1.3b). 
If we assume that the width of the kth strip is  ∆xk, then the area of the 
strip can be approximated by the area of a rectangle of width ∆xk and 

height f( ) − g( ), where  is a point in the kth subinterval. Adding 
these approximations yields the following Riemann sum that approximates 
the area A: 

 

Taking the limit as n increases and the widths of all the subintervals 
approach zero yields the following definite integral for the area A between 
the curves: 

 

Area Formula :  If f and g are continuous functions on the interval [a, b], 
and if f(x) ≥ g(x) for all x in [a, b], then the area of the region bounded 
above by y = f(x), below by y = g(x), on the left by the line x = a, and on 
the right by the line x = b is  
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Example 1 Find the area of the region bounded above by y = x + 6, 
bounded below by y = x2, and bounded on the sides by the lines x = 0 and 
x = 2. 

Solution. The region and a cross section are shown in Figure 6.1.4. The 
cross section extends from g(x) = x2  on the bottom to f(x) = x + 6 on the 
top. If the cross section is moved through the region, then its leftmost 
position will be x = 0 and its rightmost position will be x = 2. Thus, from 
(1) 

 

It is possible that the upper and lower boundaries of a region may intersect 
at one or both endpoints, in which case the sides of the region will be 
points, rather than vertical line segments (Figure 6.1.5). When that occurs 
you will have to determine the points of intersection to obtain the limits of 
integration. 

 

2.6    LENGTH OF A PLANE CURVE: - 

Our first objective is to define what we mean by the length (also called the 
arc length) of a plane curve y = f(x) over an interval [a, b] (Figure 6.4.1). 
Once that is done we will be able to focus on the problem of computing 
arc lengths. To avoid some complications that would otherwise occur, we 
will impose the requirement that f’ be continuous on [a, b], in which case 
we will say that y = f(x) is a smooth curve on [a, b] or that f is a smooth 
function on [a, b]. Thus, we will be concerned with the following problem. 

arc length problem Suppose that y = f(x) is a smooth curve on the interval 
[a, b]. Define and find a formula for the arc length L of the curve y = f(x) 
over the interval [a, b]. 

To define the arc length of a curve we start by breaking the curve into 
small segments. Then we approximate the curve segments by line 
segments and add the lengths of the line segments to form a Riemann sum. 
Figure 6.4.2 illustrates how such line segments tend to become better and 
better approximations to a curve as the number of segments increases. As 
the number of segments increases, the corresponding Riemann sums 
approach a definite integral whose value we will take to be the arc length 
L of the curve. To implement our idea for solving Problem 6.4.1, divide 
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the interval [a, b] into n subintervals by inserting points x1, x2, . . . , xn−1 

between a = x0 and b = xn. As shown in Figure 6.4.3a, let P0, P1, . . . ,Pn be 
the points on the curve with x-coordinates a = x0, 

 

x1, x2, . . . , xn−1, b = xn and join these points with straight line segments. 
These line segments form a polygonal path that we can regard as an 
approximation to the curve y = f(x). 

As indicated in Figure 6.4.3b, the length Lk of the kth line segment in the 
polygonal path is 

 

If we now add the lengths of these line segments, we obtain the following 
approximation to the length L of the curve 

 

To put this in the form of a Riemann sum we will apply the Mean-Value 

Theorem (4.8.2). This theorem implies that there is a point between xk-1 
and xksuch that 
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and hence we can rewrite (2) as 

 

Thus, taking the limit as n increases and the widths of all the subintervals 
approach zero yields the following integral that defines the arc length L: 

 

In summary, we have the following definition. 

definition If y = f(x) is a smooth curve on the interval [a, b], then the arc 
length L of this curve over [a, b] is defined as 

 

This result provides both a definition and a formula for computing arc lengths. 
Where convenient, (3) can also be expressed as 

 

Moreover, for a curve expressed in the form x = g(y), where gis 
continuous on [c, d], the arc length L from y = c to y = d can be expressed 
as 

 

2.7     SIMPSON’s RULE: - 

SIMPSON’s RULE 

MODELING WITH DIFFERENTIAL EQUATIONS 

A function y = y(x) is a solution of a differential equation on an open 
interval if the equation is satisfied identically on the interval when y and 
its derivatives are substituted into the equation. For example, y = e2x is a 
solution of the differential equation 
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on the interval (−∞, +∞), since substituting y and its derivative into the left 
side of this equation yields 

 

for all real values of x. However, this is not the only solution on (−∞, +∞), 
for example, the function 

 

is also a solution for every real value of the constant C, since 

 

After developing some techniques for solving equations such as (1), we 
will be able to show that all solutions of (1) on (−∞, +∞), can be obtained 
by substituting values for the constant C in (2). On a given interval, a 
solution of a differential equation from which all solutions on that interval 
can be derived by substituting values for arbitrary constants is called a 
general solution of the equation on the interval. Thus (2) is a general 
solution of (1) on the interval (−∞, +∞), 

The graph of a solution of a differential equation is called an integral 
curve for the equation, so the general solution of a differential equation 
produces a family of integral curves corresponding to the different 
possible choices for the arbitrary constants. For example, Figure 8.1.1 
shows some integral curves for (1), which were obtained by assigning 
values to the arbitrary constant in (2) 
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Separation of Variables 

Step 1. Separate the variables in (1) by rewriting the equation in the 
differential form 

h(y) dy = g(x) dx 

Step 2. Integrate both sides of the equation in Step 1 (the left side with 
respect to y and the right side with respect to x): 

∫  h(y) dy = ∫   g(x) dx 

Step 3. If H(y) is any antiderivative of h(y) and G(x) is any antiderivative 
of g(x),then the equation 

H(y) = G(x) + C 

will generally define a family of solutions implicitly. In some cases it may 
bepossible to solve this equation explicitly for y. 

SLOPE FIELDS 

In Section 5.2 we introduced the concept of a slope field in the context of 
differential equations of the form y = f(x); the same principles apply to 
differential equations of the form 

y’ = f(x, y) 

To see why this is so, let us review the basic idea. If we interpret y as the 
slope of a tangent line, then the differential equation states that at each 
point (x, y) on an integral curve, the slope of the tangent line is equal to 
the value of f at that point (Figure 8.3.1). For example, y’= y – x 

A geometric description of the set of integral curves can be obtained by 
choosing a rectangular grid of points in the xy-plane, calculating the 
slopes of the tangent lines to the integral curves at the gridpoints, and 
drawing small segments of the tangent lines through those points. The 
resulting picture is called a slope field or a direction field for the 
differential equation because it shows the “slope” or “direction” of the 
integral curves at the gridpoints. 

The more grid points that are used, the better the description of the integral 
curves. For example, Figure 8.3.2 shows two slope fields for (1)—the first 
was obtained by hand calculation using the 49 gridpoints shown in the  
companying table, and the second, which gives a clearer picture of the 
integral curves, was obtained using 625 gridpoints and a CAS 

Euler’s Method 

To approximate the solution of the initial-value problem 

, y(x0) = y0 
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Proceed as follows: 

Step 1. Choose a nonzero number                                                 x to serve 
as an increment or step size along thex-axis, and let 

x1 = x0 + ∆ x, x2 = x1 + ∆ x, x3 = x2 + ∆x, . . . 

Step 2. Compute successively 

y1 = y0 + f(x0, y0)∆x 

y2 = y1 + f(x1, y1)∆x 

y3 = y2 + f(x2, y2)∆x 

yn+1 = yn + f(xn, yn)∆x 

The numbers y1, y2, y3, . . . in these equations are the approximations of 
y(x1),y(x2), y(x3), 

The Method of Integrating Factors 

Step 1. Calculate the integrating factor 

μ =  

Since any μ will suffice, we can take the constant of integration to be zero 
in this step. 

Step 2. Multiply both sides of (3) by μ and express the result as 

 (μy) = μq(x) 

Step 3. Integrate both sides of the equation obtained in Step 2 and then 
solve for y. Be sure to include a constant of integration in this step. 

2.8     SUMMARY: - 

This chapter basically focuses on intergration and application 

2.9     EXERCISES: - 

 The area A(x) under the graph of f and over the interval[a, x] is given. 
Find the function f and the value of a 

2.10     REFERENCES - 

 Calculus: Early transcendental (10th Edition): Howard Anton, Irl 
Bivens, Stephen Davis, John Wiley & sons, 2012. 

 

 
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3 
PARTIAL DERIVATIVES AND ITS 

APPLICATIONS 

Unit Structure 

3.0     Objective 

3.1     Introduction 

3.2     Functions 

3.3     Limits and Continuity 

3.4     Partial Derivatives 

3.5     Differentiability, Differentials and Local Linearity 

3.6     Chain Rules 

3.7     Directional Derivatives and the Gradient 

3.8     Maxima and Minima 

3.9     Summary 

3.10     Exercise 

3.11   References 

3.0     OBJECTIVE 

 Understanding of Mathematical concepts like limit, continuity, 
derivative, integration of functions. 

 Ability to appreciate real world applications which uses these 
concepts. 

 Skill to formulate a problem through Mathematical modeling and 
simulation 

3.1 INTRODUCTION 

In this chapter we will extend many of the basic concepts of calculus to 
functions of two or more variables, commonly called functions of several 
variables. We will begin by discussing limits and continuity for functions 
of two and three variables, then we will define derivatives of such 
functions, and then we will use these derivatives to study tangent planes, 
rates of change, slopes of surfaces, and maximization and minimization 
problems. Although many of the basic ideas that we developed for 
functions of one variable will carry over in a natural way, functions of 
several variables are intrinsically more complicated than functions of one 
variable, so we will need to develop new tools and new ideas to deal with 
such functions. 
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3.2 FUNCTIONS 

Definition A function f of two variables, x and y, is a rule that assigns a 
unique real number f(x, y) to each point (x, y) in some set D in the xy-
plane. 

13.1.2 definition A function f of three variables, x, y, and z, is a rule that 
assigns a unique real number f(x, y, z) to each point (x, y, z) in some set D 
in three dimensional space. 

Example 1 Let f(x, y) =  + ln(x2 − y). Find f(e, 0) and sketch the 
natural domain of f 

3.3 LIMITS AND CONTINUITY: - 

Continuity can fail in the following ways: 

 The limit fails to exist.  In some texts, this is called an essential 
discontinuity.  Any of the examples in the section on limits apply here. 

 The limit exists, but the function isn't defined at the point.  
sin x

y
x

  at 

x = 0 is an example. 

 The limit exists and the function is defined at the point, but the 
function output is different from the limit. The function 

 
sin

 for 0

2       for 0

x
x

f x x

x




 
 

 is an example. 

The latter two cases (where the limit exists as x approaches the point in 
question) are called removable discontinuities. 

To understand these last three points we need to start taking a look at the 
concept of limit more precisely.  What does it really mean when we say 
that a function f  is continuous at x = c if the values of f(x) approach f(c) as 
x approaches c?  What does it mean to approach c?  How close to c does x 
to get? 

The concept of limit is the underpinning of calculus. 
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The informal definition or notation is Llim
cx




if the values of f(x) approach 

L as x approaches c. 

We will look for trends in the values of f(x) as x gets closer to c but x  c. 

Example 1:  







 




sin
lim

0
  (Use radians.) 

 

  

 

 

 

It appears from the graph that as   approaches 0 from either side that the 

value of 


sin
 appears to approach __________.  The actual value of 



sin
 when  = 0 is __________. 

Therefore the limits exists but the function is not continuous at  = 
0.While it appears that  approaches 0 from either side that the value of 

1
0


 




sin
lim  we are still very vague about what we mean by words like 

“approach” and “close”. 

Here is the formal definition of limit: 

We define  xflim
cx

to be the number L (if one exists) such that for every 

positive number  (epsilon) > 0 (as small as we want), there is a positive 

number   (delta) > 0 (sufficiently small) such that if  cx  and 

cx   then   L)x(f  . 

The following figure will help us with what this definition means: 
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When we say “f(x)” is close to L” we measure closeness by the distance 

between f(x) and L.    L)x(f  = Distance between f(x) and L. 

When we say “as close to L as we want,” we use the  (the Greek letter 

epsilon) to specify how close.  

We write  L)x(f to indicate that we want the distance between f(x) 

and L to be less than  .   

Similarly, we interpret “x is sufficiently close to c” as specifying a 

distance between x and c:  cx , where   (the Greek letter delta) tells 

us how close x should be to c.   

If L)x(flim
cx




, then we know that no matter how narrow the horizontal 

band determined by  , there is always a  which makes the graph stay 
within that band for   cxc . 

Basically what we are trying to do is can we guarantee that the inputs 
(sufficiently close to the value we are approaching but not equal to the 
value) will make the outputs as close to L as we want. 

We will use a graphic illustration to help make sense of this so lets go 

back to 


sin
)x(f  .  

How close should   be to 0 )?( 0  in order to make 


sin
 within 

0.01 of 1?   0010  .  

First, set the y-range to go from ymin = 0.99 to ymax = 1.01.  (0.99 < y < 
1.01) 

Making sure that the graph does not leave the window through the top or 
bottom (meaning it goes below 0.99 or above 1.01), change the   range 
symmetrically. 

Example 2  Use the definition of limit to show that the 62
3




xlim
x

 

We must show how, given any  > 0, that we can find a  >0 such that 

             If  3x  and 3x , then  62x . 

Since 3262  xx  the to get  62x  would require that 

 32 x  or 
2

3


x . 

Since dcx    then  
2


  . 
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One- and Two-Sided Limits 

When we write )x(flim
x 2

 we mean that the number f(x) approaches as x 

approaches 2 from both sides.  This is a Two-Sided Limit. 

If we want x to approach 2 only through values greater than 2 (like 2.1, 
2.01, 2.003), we write )x(flim

x 2
.  This is called a right-hand limit.  

(Similar to the concept of right difference quotient) 

If we want x to approach 2 only through values less than 2 (like 1.9, 1.99, 
1.994), we write )x(flim

x 2
.  This is called a left-hand limit.  (Similar to 

the concept of left difference quotient) 

Right-hand limits and left-hand limits are examples of One-Sided Limits. 

If both the left-hand and right-hand limits are equal, then it can be proved 
that )x(flim

x 2
 exists. 

Whenever there is no number L that L)x(flim
cx




, we say )x(flim
cx

does 

not exist. 

*Limits have to be a number and it has to be unique for that function. 

Examples of Limits That Do Not Exist 

1) Right – Hand Limit and Left-Hand Limit are different. 

The one-sided limits exist but are different.  At any integer, for example, 
the greatest integer function doesn't have a limit.  Functions with split 
definitions can fall in this category at the point where the split occurs.   

For example, with 














 2

2

2 x

x
lim
x

,  

 
2

1 for 1

 for 1

x x
f x

x x

 
 


,  

1
lim
x

f x


 doesn't exist.   

Each of the following functions fails to have a limit at x = 0:  

 
x

g x
x

  

and  
1

arctanh x
x

 
  

 
. 

2) The function does not approach any finite number L as cx  . 

      The outputs grow without bound as the inputs approaches the point 
from either one side   
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 or the other, or both.  For example,  









 20

1

x
lim
x

,  

2

lim tan
x

x




,  

and 
0

lim ln
x

x


 

don't exist because in each case, the outputs from the function 
grow without bound. 

3) The function does not settle down on a single value but oscillates 
madly. 

The function outputs fail to settle down on a single value, instead 
oscillating madly.   

A typical example is 







 x

sinlim
x

1
0

. 

3.4 PARTIAL DERIVATIVES 

 Given a certain multidimensional function, ),,,( tzyxA , a partial 

derivative at a specific point defines the local rate of change of that 
function in a particular direction.  For the4-dimensional variable, 

),,,( tzyxA , the partial derivatives are expressed as 

   
x

tzyxAtzyxxA

x

A

tzy
x

tzy


















,,,,,,
lim

constant ,,
0      

,,

= slope of A in the x 

direction 

   
y

tzyxAtzyyxA

y

A

tzx
y

tzx


















,,,,,,
lim

constant ,,
0      

,,

= slope of A in the y 

direction 

   
z

tzyxAtzzyxA

z

A

tyx
z

tyx


















,,,,,,
lim

constant ,,
0      

,,

= slope of A in the z 

direction 

   
t

tzyxAttzyxA

t

A

zyx
t

zyx


















,,,,,,
lim

constant ,,
0      

,,

= the local time rate of 

change of A 
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The subscripts on the brackets indicate that those dimensions are held 
constant.   

Notice that the definition of a partial derivative of a multi-variable 
function is the same as derivatives of functions of a single variable, but 
with the other variables of the function being held constant.  Whenever 
you see the “backward-six” notation for the derivative, you should think 
about what variable you are operating on, as indicated in the denominator 
of the expression, while holding the other variables constant.    

It is common convention that the directions being held constant are 
implied and not explicitely written with subscripts. 

2. Higher order partial derivatives 

 We can apply the partial derivative multiple times on a scalar 

function or vector.  For example, given a multivariable function,  yxf , , 

there are four possible second order partial derivatives: 

xy

f

x

f

yyx

f

y

f

xy

f

y

f

yx

f

x

f

x 

















































































 22

2

2

2

2

       ;        ;        ;

 

 The last two partial derivatives, 
yx

f



2

 and 
xy

f



2

 are called “mixed 

derivatives.” An important theorem of multi-variable calculus is the 
mixed derivative theorem.  The proof is beyond the scope of this course 
and only the results are stated. 

Mixed derivative Theorem:   If a function  yxf ,  is continous and 

smooth to second order, then the order of operation of the partial 

derivatives does not matter.  In other words:  
xy

f

yx

f








 22

 for a continous 

and smooth (to second order) function  yxf ,  

Example:  For the function    yxxyyxf 22 exp,  , show 
xy

f

yx

f








 22

 

Answer Provided: 

          yxyxxyyxxxy
x

yxxy
yxy

f

xyx

f 222222
2

exp12exp2exp 










































  

           yxyxxyyxxyy
y

yxxy
xyx

f

yxy

f 222222
2

exp12exp2exp 










































  

We can see that the order of operation of the partial derivative on a 
continous and smooth scalar function does not matter. 
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3. Del operator: 

The del operator is a linear combination of spatial partial derivatives. In 
rectangular coordinates,  it is expressed as  

z
k

y
j

x
i
















^^^

      (1) 

Notice the second equality above is missing the vector arrow.    is 
always a vector operator and thus it is common convention to just leave 
off the vector arrow. 

The analysis of the del operator on various objects such as scalar functions 
or vectors can be rather complex.  In rectangular coordinates, however, the 
rules we learned about in chapter 2 on “multiplying” vectors  apply to the 
del operator as well.  It is important to notice however that the order is 
extremely important in the use of equation (1).  The del operator acts on 
all objects to the right of it.  It is cruicial to note that the del operator is 
not commutative when applied to scalars or vectors! You only apply 
del operators on what is to the right in the term  and never on the 
objects to the left. 

4.  Gradient Operator 

Applying the gradient operator, 


, on a scalar function  zyx ,,  , 

simply requires scalar multiplication.   The gradient of   yields the 

following: 

 k
z

j
y

i
xz

k
y

j
x

i ˆˆˆˆˆˆ










































 (2) 

Notice that equation (2) is a linear combination of vector components and 
basis vectors.  In other words the gradient of a scalar yields a vector.  You 
will be tested on the application leading to equation (2) as well as the 

fact that the result of 


 is a vector.  Since the gradient of a scalar 

function is a vector, it obeys all the rules that we learned about in                  
chapter 2.   

Example:   For scalar function xyz  show that 

   xx    

Example – Given a velocity vector 
^^^

kwjviuu   and the gradient of a 

scalar function,    as defined in equation (2), expand out u  in 

rectangular coordinates: 
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Answer provided:   Using equation (10) from chapter 2,  

z
w

y
v

x
uk

z
j

y
i

x
kwjviuu

















































 ˆˆˆ

^^^

 

We took the dot product of the vector u  with the vector  .  We could 

have just as well taken the dot product of the vector u  with the operator 




 and then applied that on the scalar function  : 

 
z

w
y

v
x

u
z

w
y

v
x

uk
z

j
y

i
x

kwjviuu







































































 ˆˆˆ

^^^

.In other words,      uu .  This equality is only relavent when we 

are operating on a scalar.   

 In this course, we will only take gradients of scalar functions. It is 
possible to take gradients of vectors but you obtain a 9 element matrix 

called the Dyadic product of the vector field,  xu . For example, given the 

vector 
^^^

kwjviuu  , the gradient of u  is 









































































z

w

z

v

z

u
y

w

y

v

y

u
x

w

x

v

x

u

k
z

u
j

y

u
i

x

u
u

^^^

 

You can see why we want to avoid operations like this. 

Gradient properties: magnitude 

  Equation (2) is a vector since it has a magnitude and direction.  For a 

function  zyxff ,, , the  magnitude of f  is simply found using the 

rules of chapter 2.   

222









































z

f

y

f

x

f
fff      (3) 

Gradient properties: direction 

 The direction of f  is a bit more complicated.  From the previous 

chapter we can see that the direction of  f  can be expressed by the unit 

vector,  
f

f




, but we also can interpret the direction of f  in a more 

geometric or physical way.  First we need to use the differential of f,  
which is labeled df.  A differential is an infintesimal (meaning really 
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small) change in the value of the multivariable function f and has 
components: 

dz
z

f
dy

y

f
dx

x

f
df














  

If we define the vector line element, 
^^^

kdzjdyidxd  , then we can 

see by inspection that the differential takes the simple form 

dfdf   

Now let us apply the geometric definition of the dot product df   : 

 cos dfdfdf      where   is the coplanar angle between 

the vector f  and d . 

If d  is perpendicular f  then  o90  and 0df .  In other words, d  

is along lines of constant f when it is perpendicular to f .  Alternatively, 

we find that df is a maximum when d  is parallel to f .  This means 

that df  is maximum when d  is in the same direction as f (and also 

perpendiculal to contours of constant f).  This also means that f  must 

always be in the direction that leads to the greatest df . The direction of 

f  is also called the asecendantof f.  Figure 1, on page 6, shows you a 

picture relating the direction of  f to lines of constant f. 

5:  The change of a quantity in the direction of the velocity field 
(Advection) 

We can find the change of  a scalar,  zyxf ,, ,  in an arbitrary direction, 
^

3

^

2

^

1

^

kujuiuu   where 1
2

3

2

2

2

1  uuu , by taking the dot product 

of 
^

u  with f .  The results is: 

fu
dt

df


^

    (4) 

To derive equation (4), parametrize the spatial curve, 

     
^^^

ktzjtyitx     with respect to the variable t: 

  11 u
t

x
tuxtx o 




  

  22 u
t

y
tuyty o 




  



  

 

Calculus 

48 

  33 u
t

z
tuztz o 




  

Then, using the chain rule, we obtain equation (4):  

^

uf
t

z

z

f

t

y

y

f

t

x

x

f

dt

df



























  

 Finding variations in a specific direction often occurs when we try 
to find that variation of a physical quantity in the direction of the flow 

field, u .  We usually discuss the rate of change of the scalar quantity, 

 zyxf ,,  due to variations in f along the flow field, u . This is represented 

mathematically as: 

fu
dt

df
  

The term on the right side of the equality is called the advective term and 
is one of two contributions to the total or material derivative that we will 
learn more about later in the semester. Often we are interested in 
determining if there is any variation in the direction of flow. If one 
obtain’s the result:   

0 fu  

We say that the function, f, is spatially constant along the flow field, u .  
For example, if our scalar quantity is a time-independent pressure field, 

 zyxp ,, , then the equation 0 pu , tells us that isobars are constant 

along the flow field which also means that isobar contours are everywhere 
parallel to the velocity vector field. 

I.  The gradient product rule of two scalar functions: 

  gffgfg   

II. The divergence product rule with a vector and a scalar:  

     uuu    

III.  The divergence of the gradient of a scalar – The Laplacian: 

 2  

IV. The curl of the gradient of a scalar: 

   0,0,00    

Notice the solution is the vector zero, 0 , of which each component is 
zero.  It is common notation to imply the vector symbol of the vector zero 
since the curl is always a vector result. 
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V. The divergence of the curl of a vector: 

  0 u  

Notice that this is just the scalar number 0 since the divergence always 
results in a scalar function or number.   

VI.  The cross-product product rule with a vector and a scalar: 

       uuu  

VII.  The divergence of the cross product: 

     baabba   

VIII.  The curl of the cross product of a vector: 

         abbabaabba   

IX.  the gradient of the dot product of two vectors: 

         abbaabbaba   

X:  The curl of the curl of a vector: 

  a   aa 2  

3.5 DIFFERENTIABILITY, DIFFERENTIALS AND 
LOCAL LINEARITY: - 

Definition. We say that the function y = f(x) is locally linear, or 
differentiable, at the point x = a if the limit 

 

exists.We simply say “f is locally linear” (or “differentiable”) if it’s locally 
linear at all points in a specified domain 

Continuous functions We say that a function f is continuous at a point x = 
a if • it is defined at the point, and • we can achieve changes in the output 
that are arbitrarily small by restricting changes in the input to be 
sufficiently small. This second condition can also be expressed in the 
following form (due, in essence, to Augustin Cauchy in the early 1800’s): 
Given any positive number ɛ (the proposed limit on the change in the 

output is traditionally designated by the Greek letter ɛ, pronounced 
‘epsilon’), there is always a positive number (the Greek letter ‘delta’), 
such that whenever the change in the input is less than , then the 
corresponding change in the output will be less than ɛ. A function is said 
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to be continuous on a set of real numbers if it is continuous at each point 
of the set. 

3.6  CHAIN RULES 

In this lesson, we will need to use the Power Rule for rational exponents.  
We will prove the Power Rule for rational exponents in Lesson 11.  Recall 
that we have proved the Power Rule for positive integers in Lesson 8 and 
for negative integers in Lesson 9. 

Recall:  
nmn m aa /  

Examples  Differentiate the following functions. 

 
 

1. 
3 2xy   

  3/2xy 3/1

3/1

3

2

3

2

x
xy  

 

 Answer: 3/13

2

x
y   

2. 
x

xf
1

)(   

   2/1)( xxf 2/3

2/3

2

1

2

1
)(

x
xxf  

 

 Answer: 2/32

1
)(

x
xf   

3. 
4

5 7 3
5)(

u

u
uuh   

4/1

5/7 3
5)(

u

u
uuh   =  

 4/35/7 35 uu
4/15/2

4

9
7)(  uuuh   
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=
20/520/8

4

9
7  uu  =  )928(

4

1 20/1320/5  uu  =  

4/1

20/13

4

928

u

u 
 

Answer: 4/1

20/13

4

928
)(

u

u
uh


  

4.  103)( 34 3  tttts  

 
4/34/74/1534/3 103)103()( ttttttts   

4/14/34/11

4

30

4

21

4

15
)(  tttts  =  

)1075(
4

3 34/1  ttt  = 

 4/1

3

4

)1075(3

t

tt 
 

 Answer: 4/1

3

4

)1075(3
)(

t

tt
ts


  

Theorem  (The Chain Rule)  If  f  and g are two differentiable functions 

and ))(()()()( xgfxgfxk   , then 

)())(()( xgxgfxk  . 

Proof  By definition, 
h

xkhxk
xk

h

)()(
lim)(

0





. 

COMMENT:  The Chain Rule tells us how to differentiate the 
composition of two functions  f and  g.  In this form of the Chain Rule, 
you would have to identify both functions. 

Example  Differentiate
1023 )342(  xxy  using this form of the 

Chain Rule. 

Let 
10)( xxf   and let 342)( 23  xxxg .  Then 

))(( xgf  = 
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)342( 23  xxf  = 
1023 )342(  xx .  Thus, 

))(( xgfy  . 

 10)( xxf  910)( xxf ))(( xgf   =  

)342( 23  xxf  = 

923 )342(10  xx  

 342)( 23 xxxg xxxg 86)( 2   

Thus, )())(( xgxgfy   =  )86()342(10 2923 xxxx   

Answer: )86()342(10 2923 xxxxy   

Clearly, we need a better way than this! 

Another way to state the Chain Rule:  If )(ufy  , where 

)( xgu  , then 

dx

du

du

dy

dx

dy
 . 

COMMENT:  Since in the statement above, ))(( xgf
du

dy
  and 

)( xg
dx

du
 , then this is the same statement of the Chain Rule given 

earlier.  However, in this form you only have to identify the function  g, 
which is being called u.  In the first statement of the Chain Rule given 
above, you had to identify both the functions of  f and  g. 

Example  Differentiate
1023 )342(  xxy  using this form of the 

Chain Rule. 

Let 342 23  xxu .  Then 
10uy  .  Thus, 

910u
du

dy
 =  

923 )342(10  xx . 

NOTE:  When you write the answer for the derivative 
du

dy
, you say 

910u  to 
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 yourself (silently), but you write 
923 )342(10  xx .  Since 

dx

du

du

dy

dx

dy
 , then  

)86()342(10 2923 xxxxy   since xx
dx

du
86 2  .  With 

this form of the Chain Rule, we are back to writing down the answer for 
the derivative of a function. 

Answer: )86()342(10 2923 xxxxy   

COMMENT:  The fastest way to confuse a calculus student about the 
Chain Rule is to give them a function of u.  So, let’s address this problem.  
First, we need to understand that the symbolst and T are not the same.  
Because of this, t can be used to represent one expression and T can be 
used to represent another expression.  In physics, it is very common for t 
to represent time and for T to represent temperature.  Thus, for function 

1023 )342(  xxy , that was differentiated above, we could 

have used X for the substitution variable instead of u.  That is, let 

342 23  xxX .  We will call X “big X” instead of capital X.  

So, if the function above was 
1023 )342(  tty , then we would 

have used a “big T” for the substitution variable instead of u.  That is, let 

342 23  ttT .  If the function above was 
1023 )342(  uuy , then we would have used a “big U” for the 

substitution variable.  That is, let 342 23  uuU . 

Examples  Differentiate the following functions. 

1. 
323 )324()(  xxxxf  

Let big X  = 324 23  xxx .  Thus, 
3)()( Xbigxf  .  By 

the Power Rule and the Chain Rule, 

)()(3)( 23 XbigDXbigXbigD xx  .  In general, we have 

that )()()( 1 XbigDXbignXbigD x
nn

x  
.  Thus, 

   323 )324()( xxxxf  

)1412()324(3)( 2223  xxxxxxf  

Answer: )1412()324(3)( 2223  xxxxxxf  
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2. 
5)178(3  xy  

 Let big X  = 178 x .  Thus, 
5)(3  Xbigy .  Then 

)()(15 6 XbigDXbigy x 
.  Thus, 

   5)78(3 xy 8)78(15 6 xy  =        
6)78(120  x  

 Answer:
6)78(120  xy or

6)78(

120




x
y

 

3. 
5/32 )23()( wwwg   

 Let big W  = ww 23 2  .  Thus, 
5/3)()( Wbigwg  .  Then 

)()(
5

3
)( 5/2 WbigDWbigwg w 

.  Thus, 

            
 5/32 )23()( wwwg

 

     )26()23(
5

3
)( 5/22   wwwwg  

Answer: )26()23(
5

3
)( 5/22   wwwwg  

  or  )13()23(
5

6
)( 5/22   wwwwg  

 or  5/22 )23(5

)13(6
)(

ww

w
wg




  

4. 
435 )34(7

5
)(

ttt
ts


  

 First, we may write 
435 )34(

7

5
)(  tttts . 

Let big T  = ttt  35 34 .  Thus, 
4)(

7

5
)(  Tbigts .   
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Then 

)()(
7

20
)( 5 TbigDTbigts t 

.  Thus, 

  435 )34(
7

5
)( tttts

 

)1920()34(
7

20
)( 24535   tttttts  

Answer: )1920()34(
7

20
)( 24535   tttttts  

  or  535

24

)34(7

)1920(20
)(

ttt

tt
ts




  

5. 
15

3
)(






x
xf  

We differentiate this function in Lesson 9 using the Quotient Rule.  
Now, we will differentiate it using the Chain Rule. 

First, we may write 
1)15(3)(  xxf . 

 Let big X  = 15x .  Thus, 
1)(3)(  Xbigxf .  Then 

)()(3)( 2 XbigDXbigxf x 
.  Thus, 

  1)15(3)( xxf  

)1()15(3)( 2 xxf  =  
2)15(3 x  

Answer: 
2)15(3)(  xxf or

2)15(

3
)(




x
xf  

6. 
179

21
)(




x
xg  

First, we may write 
1)179(21)(  xxg . 

 Let big X  = 179 x .  Thus, 
1)(21)(  Xbigxg .  Then 

)()(21)( 2 XbigDXbigxg x 
.  Thus, 
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  1)179(21)( xxg   

9)179(21)( 2 xxg  =  

2)179(189  x  

Answer:

 
2)179(189)(  xxg or 2)179(

189
)(




x
xg  

7. 
2234

6
2 


tt

y  

First, we may write 
12 )2234(6  tty . 

 Let big T  = 2234 2  tt .  Thus, 
1)(6  Tbigy .  Then 

)()(6 2 TbigDTbig
dt

dy
t 

.  Thus, 

  12 )2234(6 tty  

 
)38()2234(6 22   ttt

dt

dy
 

Answer: )38()2234(6 22   ttt
dt

dy
or   

22 )2234(

)38(6






tt

t

dt

dy
 

8. 3 22 )183(10)(  zzzh  

3/22 )183(10)(  zzzh  

 Let big Z  = 1832  zz .  Thus, 
3/2)(10)( Zbigzh  .  

Then 

)()(
3

20
)( 3/1 ZbigDZbigzh z 

.  Thus, 

 3/22 )183(10)( zzzh
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)32()183(
3

20
)( 3/12   zzzzh  

Answer: )32()183(
3

20
)( 3/12   zzzzh  

  or  3/12 )183(3

)32(20
)(






zz

z
zh  

Since )3()6(1832  zzzz ,then 

3/1])3()6([3

)32(20
)(






zz

z
zh  

 

Sign of )( zh :                                  +            + 

        

               6    
2

3
           3 

NOTE:  In Lesson 14, we conclude that the function  h  is 

increasing on the interval ),3(
2

3
,6 








   and is 

decreasing on the interval 







 3,

2

3
)6,(  . There is 

a local maximum occurring when 
2

3
x  and since 

3 22 )3()6(10)(  zzzh , the local maximum is 

3

22

2

6

2

3

2

12

2

3
10

2

3


























h  =  

3

22

2

9

2

9
10 

















 =  

3

22

2

9

2

9
10 
















 =  3

4

2

9
10 








 =  3

2

9
45  =  3

8

36
45  =  

2

3645 3

.  There is a local minimum occurring when 6x  

and since 3 22 )3()6(10)(  zzzh , the local minimum 



  

 

Calculus 

58 

is 0)6( h .  There is a local minimum occurring when 

3x  and the local maximum is 0)3( h . 

9. 859)(  wwg  

This function is from Lessons 6 and 7.  In Lesson 6, we found the 

slope of the tangent line to the graph of )( wgy   at the point 

)7,4())4(,4(  g .  In Lesson 7, we use the definition of 

derivative to find the derivative of this function.  Now, we will use 
the Chain Rule to find the derivative of this function. 

2/1)859()(  wwg  

 Let big W  = 859 w .  Thus, 
2/1)()( Wbigwg  .  Then 

)()(
2

1
)( 2/1 WbigDWbigwg w 

.  Thus, 

 2/1)859()( wwg
 

9)859(
2

1
)( 2/1 wwg  =  

2/1)859(
2

9 w  

Answer:
2/1)859(

2

9
)(  wwg or

2/1)859(2

9
)(




w
wg  

10. 
523 )98()67(  xxy  

NOTE: )6()67(3)67( 23  xxDx  

xxxDx 16)98(5)98( 4252   

 Using the Product Rule, we obtain 

 

xxxxxy 16)98(5)67()98()6()67(3 423522   = 

 
423522 )98()67(80)98()67(18  xxxxx   = 
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 ])67(40)98(9[)98()67(2 2422 xxxxx    = 

 )2402808172()98()67(2 22422 xxxxx    = 

 )81280312()98()67(2 2422  xxxx   = 

 )81280312()98()67(2 2422  xxxx  

 Answer: )81280312()98()67(2 2422  xxxxy  

  or )81280312()98()67(2 2422  xxxxy  
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14. 
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15. )16()9()( 482 wwwf   

3.7   DIRECTIONAL DERIVATIVES AND THE 
GRADIENT: - 

f(x,y)  be a real-valued function with domain  D  in  R2 , and let  (a,b)  be a 
point in  D . Let  v  be a unit vector in  R2 . Then the directional derivative 
of  f  at  (a,b)  in the direction of  v , denoted by  Dvf(a,b) , is defined as 

Dv f(a,b) =   

For a real-valued function  f(x,y) , the gradient of  f , denoted by  ∇f , is 
the vector 

∇f=(∂f/∂x,∂f/∂y) 

In  R2 . For a real-valued function  f(x,y,z) , the gradient is the vector 

∇f=(∂f/∂x,∂f/∂y,∂f/∂z) 
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3.8 MAXIMA AND MINIMA 

Let f(x,y)f(x,y) be a real-valued function, and let (a,b)(a,b) be a point in 
the domain of ff. We say that ff has a local maximum  at (a,b) 
(a,b) if f(x,y)≤f(a,b)f(x,y)≤f(a,b) for all (x,y)(x,y) inside some disk of 
positive radius centered at (a,b) (a,b), i.e. there is some sufficiently 
small r>0r>0 such that f(x,y)≤f(a,b) for all (x,y) f(x,y)≤f (a,b) for all (x,y) 
 for which (x−a)2+(y−b)2<r2(x−a)2+(y−b)2<r2. 

Likewise, we say that ff has a local minimum at (a,b) if f(x,y)>f(a,b) for 
all (x,y)(a,b) if f(x,y)>f(a,b) for all (x,y) inside some disk of positive 
radius centered at (a,b)(a,b). 

If f(x,y)≤f(a,b) for all (x,y)f(x,y)≤f(a,b) for all (x,y) in the domain of ff, 
then ff has a global maximum at (a,b)(a,b). If f(x,y)≥f(a,b) for all (x,y) in 
the domain of f, then ff(x,y)≥f(a,b) for all (x,y) in the domain of f, 
then f has a global minimum at (a,b)(a,b). 

3.9 SUMMARY 

This chapter mainly covers the basic concepts of partial derivatives. 

3.10 EXERCISES 

 Find (a) the equation of the tangent line to the graph of the function 
42 )384(  xxy  at the point )81,2(  and (b) the point(s) 

on the graph at which the tangent line is horizontal. 
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