T.Y. B.Sc. (IT)
SEMESTER - VI

PROJECT MANAGEMENT

© UNIVERSITY OF MUMBAI

Prof. Suhas Pednekar
Vice-Chancellor,
University of Mumbai

Prof. Ravindra D. Kulkarni Prof. Prakash Mahanwar

Pro Vice-Chancellor,
University of Mumbai

Director,
IDOL, University of Mumbai

Programme Co-ordinator :

Shri Mandar Bhanushe

Head, Faculty of Science and Technology
IDOL, University of Mumbai, Mumbai

: Ms. Gouri Sawant
Asst. Professor, B.Sc. IT,
IDOL, University of Mumbai, Mumbai

Course Co-ordinator

Course Writers : Mr Sumedh Shejole

Asst. Professor,
IDOL, University of Mumbai, Mumbai

: Ms Sujata Rizal Kotian
Asst. Professor,
S.M.Shetty College Powai, Mumbai

: Ms Aarti sahitya
Asst. Professor,
Kjsieit, Mumbai
December 2021, Print - 1
Published by : Director
Institute of Distance and Open Learning,,
University of Mumbai, Vidyanagari, Mumbai -400 098.
DTP Composed : Mumbai University Press
Printed by Vidyanagari, Santacruz (E), Mumbai - 400 098

CONTENTS

Unit No. Title Page No.
Unit-1

1. Conventional Software Management 01

2. Evolution of Software Economics 24
Unit- 11

3. Theold way and the new 58

4. Lifecycle phases 69

5. Attifacts of the process &9

6. Model based software architectures 105
Unit - 111

7. Process Workflows 109

8. Process Control Points 120

9. Tterative Process Planning 140
Unit - IV

10. Organizations and Responsibilities of the project 152

11. Process automation 170
Unit-V

12. Project Control and Process instrumentation 187

13. Tailoring the Process 206
Unit- VI

14. Future Software Project Management 222

O % % %
0‘0 0’0 0’0 0‘0

T.Y.B.Sc.IT SEMESTER - VI
Project Management

SYLLABUS

Unit-1

Conventional Software Management : The waterfall model,
conventional software Management performance.

Evolution of Software Economics : Software Economics,
pragmatic software cost estimation.

Improving Software Economics : Reducing Software
product size, improving software processes,

Achieving required quality, peer inspections.

Unit-11

The old way and the new : The principles of conventional
software Engineering, principles of modern software
management, transitioning to an iterative process.

Life cycle phases : Engineering and production stages,
inception, Elaboration, construction, transition phases.
Artifacts of the process : The artifact sets, Management
artifacts, Engineering artifacts, programmatic artifacts.

Model based software architectures : A Management]
perspective and technical perspective.

Unit-11I

Work Flows of the process : Software process workflows,
Iteration workflows, Checkpoints of the process : Major
mile stones, Minor Milestones, Periodic status assessments.

Iterative Process Planning : Work breakdown structures,

planning guidelines, cost and schedule estimating, Iteration|
planning process, Pragmatic planning.

Unit-IV

Project Organizations and Responsibilities: Line-of-
Business Organizations, Project

Unit-V

Project Control and Process instrumentation: The seven core
Metrics, Management indicators, quality indicators, life
cycle expectations, pragmatic Software Metrics, Metrics

Unit-VI

Future Software Project Management: Modern Project
Profiles, Next generation Software economics, modern|
process transitions.

O 00 o0 0,
0‘0 0’0 0’0 0’0

CONVENTIONAL SOFTWARE
MANAGEMENT

Unit Structure
1.1 Introduction
1.2 Conventional Software Management
1.3 Waterfall Model
1.3.1 Preliminary Investigation
1.3.1.1 Problem Identification
1.3.1.2 Project Feasibility Study
1.3.2 System Analysis
1.3.3 Software Design
1.3.4 Coding
1.3.5 Testing
1.3.6 System Implementation
1.3.7 Maintenance
1.4 Historical Perspective
1.4.1 System Changes
1.5 Software Development Plan
1.5.1 Protracted Integration and Late Design Breakage
1.5.2 Late Risk Revolution
1.5.3 Requirements Driven Functional Decomposition
1.5.4 Adversarial Stakeholders Relationships
1.5.5 Focus on documents and review meetings
1.6 Conventional Software Management performance

1.7 Review Questions

Project Management

1.1 INTRODUCTION

Software management is a process through which a software is managed
throughout its development process.

The software management also called as software project management
(SPM) deals with managing the critical aspects right from start of the
planning of the project to deployment and maintenance.

SPM manages the following aspects of software development; Version
tracking, developing, testing, integration, configuring, installing, and
distributing

In short, SPM is about managing:

software engineering work encouraging the stakeholder interaction in the
early SDLC stages so as to avoid paying attention to the technical tools
and methods used in the process planning the product objectives and
scope, cost

SPM specially focuses on four P’s:

[y

People
2. Product
3. Process
4

. Project

12 CONVENTIONAL SOFTWARE MANAGEMENT

As per the analysis of the software engineering industries of mid 1990s, it
yielded that the Software Development was highly unpredictable because:

e Only about 10% of software projects were delivered successfully in
time, in budget, and meeting the user requirements.

* The management discipline acted more as a discriminator in success or
failure or when in case of technology advances.

* The level of software scrap and rework was indicated to be at an
immature level process. The reasons behind this analyzation may either be
bad theory or bad practice orboth.

1.3 THE WATERFALL MODEL

We have already learnt about waterfall modelin‘s of ware engineering’
subject. A brief overview of this model is shown in Fig.1.3.1;

Preliminary

investigation [

3

I System analysis

[Systermn design I—\
b

[Coding —}\\,

3
[Systemn testing I\
t System |mp:E(-zmen1ationJ\

I Systerm maintenancea I

)

Fig. 1.3.1: Waterfall model

The detail description about the working of this model is not necessary,
here. Therefore, we will only see the various perspectives of the ‘waterfall
model’ in earlier days (historical perspective) and how it is updated
nowadays. This linear waterfall model was first proposed by ‘Winston
Royce’. It suggests systematic sequential approach for software
development. It is the oldest paradigm for software engineering i.e. it is
the oldest software development life cycle.

1.3.1 Preliminary Investigation:

Preliminary investigation means total inspection of the existing system i.e.
clear understanding of the system. Its basic task is to find out real problem
of the system with causes and complexity of the problem. Its secondary
but very important task is to find out all possible solutions to solve that
problem and according to that which solution is feasible for the system in
terms of technology, cost, operational. Its last task is to mention all
benefits can be expected after problem is solved.

So, this phase is divided into three main goals as follows:
¢ Problem identification

e Possible and feasible problem solution i.e., Feasibility study.
Expected benefits after the problems are solved.

1.3.1.1 Problem Identification (Problem Analysis):

It requires to completely investigate the environment of the system.
Generally it requires studying two environments - Internal environment
and external environment, which are listed below:

Conventional Software
Management

Project Management

Sr. No. | Internal Environment | External Environment

h

| Company Management Customers

J Employees of all departments | Management consultant

| . SR N] el s = = o
| Internal auditors External auditors

Data Processing department Government Policies

Financial Reports Competitions

There are normally seven types of problems encountered in the system:

Problem of Reliability: If system may not work properly or same
procedures give different (i.e., unreliable)result.

Problem of Validity: Reports contain misleading information.

Problem of Economy: System is costly to maintain. Problem of
Accuracy: Reports have many errors. Problem of Timeliness: Every
work requires large time.

Problem of Capacity: Capacity of the system is inadequate.

Problem of Throughput: System does not produce expected results,
or we can say system has more capacity but it accomplishes very less
work as compared to capacity. The main advantageof waterfall model
is, it exactly pins points the problem. So, it is very useful in setting all
goals of the system as well as used to decide system boundaries.

1.3.1.2 Project Feasibility Study:

Feasibility study is essential to evaluate cost and benefit of the proposed
system. This is very important step because on the basis of this; system
decision is taken on whether to proceed or to postpone the project or to
cancel the project.

Need of Feasibility Study:

It determines the potential of existing system.

It finds or defines all problems of existing system. It determines all
goals of the system.

It finds all possible solutions of the problems of existing system. We
can call it as proposed system.

It finds technology required to solve these problems.

It determines really which solution is easy for operational from the
point of view of customer and employees such that it requires very less
time with 100% accuracy.

It determines what hardware and software is required to obtain
solution of each problem or proposed system.

e [t determines cost requirements of the complete proposed system in
terms of cost of hardware required, software required, designing new
system, implementation and training, proposed maintenance cost.

e It avoids costly repairs, crash implementation of new system.

e It chooses such system which is easy for customer to understand and
use so that no special training is required to train the customer. It may
give some training to employees of the system.

Method:
Steering committee:

This committee conducts detailed study. This committee first studies
existing system and identifies all problems and looks into three types of
feasibility study. Those are given below:

Technical feasibility Operational feasibility Economical feasibility
Organizational feasibility Cultural feasibility

Technical Feasibility:

e The committee first finds out technical feasibility of the existing
system. It involves following steps:

e [t determines available hardware.

e [t determines available computer with configuration. It determines
available software.

e [t determines operating time of available system that is computer,
hardware software.

After that it finds out technical feasibility required for the proposed
system. It involves following steps:

e It mentions new hardware requirements of proposed system.

e It mentions computer with new configuration requirement of proposed
system. It mentions new software requirements of proposed system.

e It mentions new operating time of available system that is computer,
hardware, software. It mentions old as well as new facilities which will
be provided by the proposed system.

e [t mentions all benefits of the system.

Operational Feasibility:

It is also called as behavioral feasibility. It finds out whether the new
technology or proposed system will be suitable using three type of
aspects; that are human, organizational and political aspects. It involves
following steps:

Conventional Software
Management

Project Management

It finds out whether there is any direct-indirect resistance from the user
of this system or not?

It finds whether the operation of proposed system is easy or not as
compare to existing system.

It finds out whether the user or customer of the system requires extra
training or not?

If it requires any retraining then it is accepted by user as well as
customer or not?

It finds if any job reconstruction is required or not?
It finds if this reconstruction of the job is accepted in organization?

It also finds if it is acceptable then what should be the skill sets of
thatjob.

Watches the feelings of the customers as well asusers.

It should provide right and accurate information to user or customers
at right place as well as at righttime.

Economical Feasibility:

Here, steering committee finds total cost and all benefits as well as
expected savings of the proposed system.

There are two types of costs - onetime cost and recurring costs. One
time cost involves following:

© 0N W

Feasibility study cost.

Cost converting existing system to proposed system.

Cost to remolding architecture of the office, machineries, roomsetc.
Cost of hardware’s.

Cost of Operating system software.

Cost of Application software.

Technical experts consulting costs.

Cost of training.

Cost of Documentation preparation

Recurring cost involves following:

SANN AN o e

Cost involves in purchase or rental of equipment.

Cost of phones and mobiles Communication equipment.
Cost of Personnel search, hiring, staffing.

Cost of Salaries of employee’s.

Cost of supplier’s.

Cost of maintenance of equipment.

Organizational Feasibility:

This demonstrates the management capability and availability, employee
involvement, and their commitment. This shows the management and
organizational structure of the project, ensuring that the system structure is
as described in the requirement analysis or SRS and is well suited to the
type of operation undertaken.

Some organizational risks impacting new system:

e Low level of computer competency among employees Perceived
shifting of organizational power

e Fear of employment loss due to increased automation Reversal of
long-standing work procedures

e One way to overcome these risks: training sessions.

Cultural Feasibility:

e It deals with the compatibility of the proposed new project with the
cultural environment of the project.

e In labor-intensive projects, planned functions must be integrated with
the local cultural practices and beliefs.

Example: Religious beliefs may influence what an individual is willing to
do or not do.

Example: An enterprise’s own culture can clash with the results of the
project.

In these conditions, the project’s alternatives reevaluated for their impact
on the local and general culture.

1.32 System Analysis:

This phase is about complete understanding of all important facts of the
business based on the preliminary investigation. It involves following
activities:

1. It is the study of all components of the system as well as inter relation
between all components of the system and relation between
components and environment.

It determines what is to be done in the organization.
It finds the procedures of how to do that.

What is the input data?

A R

What is the procedure through which inputs are to be converted into
output?

6. When should the transactions occur on the data?

Conventional Software
Management

Project Management

7. When problems arise, determine the solutions to solve it and what are
the reasons behind those problems.

Methodology of System Analysis:
1. Identifying the system boundary

2. Understanding the role and interrelationship of elements with other
elements of the same system.

The above two methodologies generate:

The capability to analyze and compare various alternatives regarding
components and system functioning and system objectives.

Need /Advantages of System Analysis:
e Provides greater understanding of the complex structures

e [t acts as a tradeoff between functional requirements of subsystems to
the total system

e It helps in understanding and comparing the functional impacts of
subsystems to the total system

e It helps in achieving the inter-compatibility and unity of purpose of
sub systems helps in discovering means to design systems

e Helps in placing each subsystem in its proper place and context, so
that the system as a whole may achieve its objectives with minimum
available resources.

Objectives of System Analysis:
1. Define the system.
2. Divide the system into smaller parts.

3. Finds all nature, function and inter-relationship of various parts of the
systems.

If the system is not analyzed properly then there may be problem in the
Preliminary investigation phase.

1.3.3 Software Design:

The main objective of this phase is to design proposed system using all
information collected during preliminary investigation and directed by the
system analyst. This is a challenging phase and includes following steps:

Design of all types of inputs of proposed system.
Design of all types of outputs of proposed system.
Design of the procedures which convert input to output.

A

Design of the flow of information.

5. Design of the information which is required to store within a files and
data bases Volumes.

Design of collection of inputs using forms (Manual forms).
Design in terms of program specification i.e., logical design.
It determines the hardware cost, hardware capability.

A 4

It determines the speed of software.

10. It determines error rates, and other performance characteristics are also
specified.

11. It also considers the changes to be made in the organizational structure
of the firm in design.

12. This phase also designs standards for testing, documentation.

Generally traditional tools are used for the designing of the procedures
that are as follows:

Flowcharts Algorithms

IPO (i.e., Input Processing and output) and HIPO (Hierarchy of IPO)
charts Decision tables

Data Flow Diagrams

1. If system design phase is facing problem during the design, then first
go back to the system analysis phase and redesign the system but if
problem is not solved then go for preliminary investigation.

2. If System design phase produces all expected results, then it goes to
next phase.

1.34 Coding:

This phase is just implementing the design in to programming language
that means it actually develops the proposed system. It involves the
following steps:

1. Tt first of all, finds out the best suitable programming language that is
suitable for the design as well as also suitable in the organization.

2. It accepts design and break system modules into smaller programs.

3. It develops or writes program for each part in selected programming
language.

4. Prepares documentation that means add necessary comment lines
wherever necessary within a program.

5. Now it combines all small programs together and builds one big
program.

6. If any problem occurs during the coding phase, then waterfall model
tries to solve it by repeating system design phase:

Conventional Software
Management

Project Management

10

e [f that problem does not get solved then waterfall model repeats system
analysis phase and system design phase.

e If that problem does not get solved then waterfall model repeats from
first phase i.e., preliminary phase through system analysis phase and
system design phase.

7. If coding phase produces all expected results, then it goes to next
phase.

1.3.5 Testing:

This phase includes the testing of the code or programs developed by the
coding phase. This includes following steps:

1. First of all, it finds out all possible expected results (i.e. output data)
for the set of input data.

2. It also checks the validity of the input data as well as checks expected
output data.

3. It finds out all wrong results and immediately tries to correct it by
repeating coding phase.

4. It finds the speed of functions using special codes.

b

It determines whether each program can perform the intended tasks or
not?

It checks result by test data.
It checks the logic of the individual programs.

It checks interfaces between various programs.

A

It checks quality of code in terms of speed and space.

10. It checks whether system has produced correct and desired results
which lead to designated goals.

11. If testing finds out that the system does not produce expected result
then this problem is solved by repeating the previous phases as needed.

12. If testing phase finds out that the system produces all expected results
then it goes to next phase.

1.3.6 System Implementation:

System Implementation is not creative process but it is somewhat difficult task.
This phase has two parts- implementation and evaluation of the system.

Implementation:
There are two ways of implementation. Those are as follows:

1. Implement proposed system with existing old system and find out
performance of the both systems and slowly replace new system with
older one.

2. Totally replace old system with proposed new system.

Risk factor of second type of implementation is more as compare to first
one. Second step needs strict evaluation.

Both types of implementations consist of following steps:
1. It prepares site for new proposed system.

2. Itinstalls required hardware within a system.

3. Itinstalls required software in a system.

4. Tt installs a developed code i.e., programs in a system.

5. It prepares training program for user of the proposed system as well as
customers of the system.

6. It prepares user manual which includes all the steps which give
guidance to user.

7. It gives training to all types of users of proposed system.
8. Observe the system when users of system are using it.

9. If users are facing any problems regarding the new system, it tries to
find out exact phase from where root cause of the problem starts, and
accordingly starts waterfall model.

Evaluation:

Evaluation is nothing but feedback for the system. It is very essential
check point of the system which is the process of verifying the capability
of a system. It continuously evaluates and checks whether proposed
system is meeting the objectives or not. It includes:

1. Development Evaluation:
It checks whether the system is developed within time.

It checks whether the system is developed within the budget. System is
passed by development methods and tools.

2. Operational Evaluation:
e It checks response time of proposed system.
e It checks whether it is really easy to use or not?

e It checks accuracy of computations (It is seen in testing also). It checks
storage capacity.

e It checks reliability.

e It checks functioning of the existing system. Collects necessary
feedback from users.

Conventional Software
Management

11

Project Management

12

e It finds all benefits of the proposed system.

e C(Collects information of attitude of different persons regarding
proposed system. It evaluates cost, time and effort taken for the overall
project.

1.3.7 Maintenance:
Maintenance is the process in which it finds out essential changes (i.e.

new trends) of the market or business to correct some errors and tries to
implement it in the existing system.

There are usually three types of maintenance, that are:
1. Correction:

e Sometimes, proposed system has few types of errors; and it is the duty
of software engineer to correct it as soon as it is encountered by the
user. Generally, there are four types of errors, that are as follows:

e Minor changes in the processing logic. Errors detected during the
processing. Revisions of the formats for data inputs. Revisions of the
formats of the reports.

e These errors can be corrected by repeating waterfall model from
coding phase through testing, implementation and maintenance.

2. Adaptation:

Sometimes, our proposed system is executable on Windows environment,
but somebody wants to run it in LINUX environment, or some other
operating system. Then we are required to design our proposed system
from third phase that is from System Design phase.

3. Enhancement:

Because of new technology and business competition, organization needs to
imply or to add new functions or additional capabilities to the proposed system.

After some time, people think that some techniques may be used in the
system so some additional features can also be added into it. Sometimes,
new hardware is required to add some extra features. For enhancement it
may repeat whole system or may repeat it from design phase or sometimes
from coding phase.

Advantages of Waterfall Model:
1. It defines very first software development process.

2. The product of waterfall model always defines all constraints of the
organization.

3. It always produces a good quality product in terms of space and time.

Drawbacks of the Waterfall Model are as follows: Conventional Software
. . Management
1. Real products rarely follow this sequential flow.

2. Because of iteration, changes can cause confusion as the project team
proceeds

3. It is very difficult for customer to state all the requirements in onetime.

b

Many projects face this uncertainty at beginning only, so it is very
difficult to design next phases.

5. Time span required for each phase could not be specified.
6. Naturally project requires more time.

7. Project becomes lengthy also.

8. Customer should have patience.

It tries to solve time consumption in early stages.

1.4 HISTORICAL PERSPECTIVE

1. In earlier days, developers gave more importance to the two most
essential steps i.e., ‘analyses’ and ‘coding’. These two steps were
interpreted as the two most important steps at that time.

2. So as to manage and control the activities of the software development
process, the developers introduced various ‘overhead’ steps such as the
system requirements definition, software requirements definition, program
design, and testing. All these steps supported in enhancing the analysis
and coding steps.”

3. The conventional basic waterfall model is risky and failure prone. This
is because as the testing phase occurs at the end of the development life
cycle, and as a result, the changes identified are likely to be so
troublesome to implement right from the software requirements on which
the design is based.

141 Suggested Changes

1. Earlier, “Program design comes first”.

e Mostly, Designing was done between SRS and analysis phases.
Program designer first checks the storage, timing, and data.

e During the Analysis phase, the Designer imposes timing and
operational constraints so as to cross-check the consequences.

e The software development design process is always built by the
program designers, and not by the analysts. The program designers
define and allot various data processing modes (such as allocating
functions, designing databases, interfacing, processing modes (such as
the i/0 processors), operating procedures (such as the one entering into
a branch even when it is wrong.

13

Project Management

14

Training is given to the staff until they learn and use the software

Now;“Architecture comes first” is given importance and comes first
rather than program design.

That means, nowadays, the basic ARCHITECTURE comes FIRST.

It includes the elaboration of architecture by distributing the system
into components, and representing these components in a layered
architecture.

For example, the Rational Unified process (RUP) includes use-case
driven, architecture-centric, iterative development process.

These architectures are THEN designed and developed in
parallel with planning and requirements definition.

Earlier;*“Program design comes first” then, document these Designs

In earlier days of software development, the Development required
huge amounts of documentation i.e. everything had to be represented
using manuals.

These manuals are called as User manuals. These included operational
manuals, software maintenance manuals, staff user manuals, test
manuals and etc.

Maintaining such a huge amount of documentation becomes really
troublesome.

It was MUST for each designer to communicate with various
stakeholders such as interface designers, managers, customers, testers,
developers so as to finalize the designs and prepare the manuals.

Now, “Document the Design first”, then derive the actual designs

Nowadays, ‘artifacts’ are given primary importance. These models
(documentation / artifacts) are derived from the developed
architecture, analysis report, captured requirements, and these models
(documentation / artifacts) are then used in deriving a design solution.

These documentation /artifacts include Use Cases, static models such
as class diagrams, state diagrams, activity diagrams, dynamic models
such as sequence and collaboration diagrams, domain models,
glossaries, supplementary specifications (such as constraints,
operational environmental constraints, distribution constraints, etc.)

Modem designing tools and notations, and new methods produce self-
documenting artifacts from development activities. For example,
Rational Rose is a very popular design tool that produces the self-
documenting artifacts and program code from the developed model.

Therefore, we can say that, Visual modeling provides significant
documentation.

Earlier; “Do it twice” THEN, document these Designs

It is sometimes very confusing when we do the same program twice
i.e., the first version of the program may contain some errors or say,
some loop holes, so we make changes in it and derive it’s second
version. But, later on, keeping track of the most recent version of these
programs become troublesome.

Version 1 has major problems and therefore, alternatives are addressed
— for example, the changes are done in ‘big cookies’ such as
communications, user interfaces, data models, hardware/software
platforms, operational or any other constraints. Therefore, there is a
need to track the correct version of the program and also, if needed the
first version is thrown away sometimes.

Then version 2 is called as the refinement of version 1 which includes
the implementation of major requirements.

Now; “Architecture -first Development” THEN, derive the actual designs

This approach is the base to architecture-first development. This is known
as ‘Initial engineering’ which forms the basis for Iterative development
and also helps in addressing the risks.

4.

3.

4.

Earlier; “Plan, Control, and Monitor Testing”

Testing phase utilizes the greatest number of project resources which
includes manpower, computation time, ultimately cost and schedule.

Therefore, it involves greatest risks also in terms of cost and schedule.

The testing phase occurs in the last of software development and this
last phase is reached when any other changes or any alternatives are
least available and expenses are at a maximum.

This phase involves:

Employing a team of test specialists and these specialists not involved
in the original design and development of the software product.

Employing visual inspections to detect the obvious errors. These
inspections include the procedure of code reviews, technical reviews
and interfaces.

Testing every logical path

Final check out on the customer’s computer.

Now; “Plan, Control, and Monitor Testing”

Conventional Software
Management

15

Project Management

16

* The 1st and 4th testing activities are still validi.e.;

1. Employing a team of test specialists and these specialists not involved

in the original design and development of the software product.

4. Final checkout on the customer’s computer.

e But the 2nd and 3rd activities differ from the earlier perspectives;

2.

Software inspections - are conducted by automated tools but they are
assisted by the code analyzers, optimizing compilers, static and
dynamic analyzers.

Testing every path - This is practically impossible. It is especially very
difficult with distributed systems and reusable components and there
are even many other factors that need to be tested.

. Earlier; “Involvement of the Customers”.

Itinvolvescustomers’participationinrequirements’definition,inprelimin
arysoftwarereview, and also in preliminary program design.

Now, “Involvement of the Customers”

It involves the customers also and all other stakeholders also. This
involvement is necessary for the overall project success.

It demonstrates the increments, the customer feedback, making
favorable changes, cyclic and iterative activities that yield in an
evolving software.

Involvement of customers helps in addressing the risks in very initial
phases of software development.

1.5 THE SOFTWARE DEVELOPMENT PLAN

If you observe the Old Versions of Software Development Plan, you
will see that the success rate is less than 20%.

The old versions of software development plan define:
Precise requirements

Precise plan to deliver and deploy the system constrained by specific
time and budget. Executes and tracks to plan

Initial project situation
(reused, legacy assels, Planned Stockholder
detailed plans with [

path satisfaction

defined scope)

Fig. 1.5.1 : Old Version of Software Development

Conventional Software
. o . Management
e In practice, these activities of software development plan didn’t help
much in increasing the success rate.

e Projects are not delivered on-time, not within planned budget, and
rarely met the user requirements.

e Projects that are developed using Conventional waterfall process often
faced following symptoms:

1. Protracted integration and late design breakage
Late risk resolution

Requirements-driven functional decomposition

El T

Adversarial stakeholder relationships
5. Focus on documents and review meetings

1.5.1 Protracted (Prolonged/Late) Integration and Late Design
Breakage

e The activities that are carried out in conventional waterfall process are
listed down in a sequential manner: Requirements - Design - Code -
Integration—

[ntegration begins
(late integration result
in late changét

design mode)

pment progress

evel

— - Flanned Actual
Project schedule target completion
date date
Fig. 1.5.2

The integration of components very late in the SDLC, then it results in late
changes in the designed models. This is known as late design i.e. coming
back to design phase when you are at the last phases of the life cycle. This
late designing causes the breakages in the developed product.

* The late integration test and designing also increases the
expenditures of the software project.

17

Project Management

18

Table 1.5.1: Expenditures per activity for a Conventional Software
Project

Activity Cost
Management 5%
Requirements 5%
Design 10%
Code and unit test 30%
Integration and Test 40%
Deployment 5%
Environment 5%

l'otal 100% |
e Lot of time is spent on finalizing the software design and then after
spending so much of time on designs and after perfecting them to their
satisfaction, then the task of coding is started.

Generally, the requirements are noted down in English, designs are
drawn using flowcharts, detailed designing is doneinpal, and
implementations are basically done in Fortran, Cobol, or C.

The problems of* Water fall model-late integration’ that effect the
software performance are

Only unit testing is performed from the start of coding but all other
tests could be performed only ‘at the end’ of the SDLC phases,

Thus, the late integration and testing phase consumes 40% of life-
cycle resources: which will not if we start the integration of
components and testing at the right time.

1.52 Late Risk Resolution

Focuses on early prepared paper artifacts.

Actual risks and issues are still unknown and difficult to detect and
understand.

The below figure shows a sample risk profile for projects that follow
waterfall model. It involves four different periods of risk exposure;

High| Requirements Design and ' Integration ' Testing
phase | code phase | phase i phase
© | i i
=3
o
=1
o
>
©
Il
i Period of Period of Period of)
risk detection | risk elaboration | risk resolution paricd of
i ' risk control and management
Low
® ©) ® @

>

Four periods of risk exposure

Fig 1.5.3 : Four Different Periods Of Risk Exposure

Difficult to identify and resolve the risks right during the requirement
gathering because this is the initial phase of SDLC and in this phase,
many key items are still not fully understood.

Even in the design phase, where we are clear enough with the software
requirements and have better understood them, then also it is still
difficult to analyze and finalize the objectives.

During the coding phase, some of the risks are resolved, but more than
that, especially at the time of integration, many of the risks become
quite clear and accordingly changes are made to the artifacts and
reduction in expenditures can be achieved.

Even if we achieve success in reducing the expenditures, it often
results in extending the scheduled dates of delivering the product.

This may also hamper the quality a little bit due to frequent changes
and extensibility, or in the process of maintainability. Thus, it
ultimately results in the loss of original design and integrity.

1.53 Requirements-driven Functional Decomposition

e From the traditional perspective, the software development processes
have been interpreted as requirements-driven as shown in the below
Fig.1.5.4.

e Developers must focus on gathering and writing complete, clear,
precise, consistent, necessary, and feasible user requirements. But this
case was rarely observed.

e Very often, it is seen that too much time is spent on treating all
requirements (such as the requirements that are normally listed in.
condition-action tables, decision-logic tables, flowcharts, or plain text)
equally rather than spending more time on critical ones.

Conventional Software
Management

19

Project Management

20

ayslem Software Software Software
requirements requirements components units

! F F,

F,

w00~ 000

Fig, 1.5.4 : Component Organization interpreted from A Requirements-Driven Approach

* Muchofthebrainpowerandtimeiswastedonthe‘lessimportant’requirements
.Thatmeans, in traditional way of development, prioritizing of
requirements was given least importance.

e Also, much time is spent on documentation i.e., documenting the
features (traceability, testability, etc.) of the software which were later
made obsolete as the requirements and designs subsequently evolve.

e Also, there is a false assumption in conventional software development
that all the requirements can be implemented as ‘functions’ in the coding
phase and this as sumption leads to the decomposition of these
functions.

e This conversion of requirements into functions and then leading to
decomposition of Functions into sub-functions, etc. has become the basis
for contracts and work distribution, while ignoring the major
architectural-driven approaches that are threaded throughout the
functions and that surpass every individual function such as the security;
authentication; persistency; and performance.

1.5.4 Adversarial Stakeholder Relationships
e First of all, there is a need to decide ‘who are stakeholders?

e Lot of misunderstandings occur between the stakeholders about the
matter written in the documentation because of the English jargons.

e Requirements are only documented on papers but in actual practice,
they are not really modeled.

e Universally-agreed notations are rarely used, no common notations, no
GUIs. Subjective reviews and different stakeholder opinions are not
given enough value.

Few common events that take place in contractual software are:

1. Contractor prepared a draft that constitutes of contract-deliverable
document that involves intermediate artifacts and delivered it to the
customer for approval. This is usually done after interviews,
questionnaires, and meetings.

2. Customer was ought to give feedback within 15-30days.

3. Contractor incorporated this feedback and submitted within 15-30
days. This is interpreted as the final version for approval.

Observation:

e Huge
paperworksuchthatitbecame‘intolerable’andoftensomeofthedocumentat
ionwas under-read or un-read.

e Tense contractor/customer relationships

e Mutual distrust which was the basis for much of the problems.
e [t was often seen that, once approved is rendered obsolete later.
1.55 Focuson Documents and Review Meetings

It is a documentation-intensive approach i.e., focusing much on
documentation.

But in this procedure, little attention is given on producing credible
increments of the desired products.

e It follows the Big bang approach i.e. all FDs are delivered at once. That
means, all Design Specifications are made ‘OK”’ at once.

e Milestones are decided and passed over to all stakeholders via review
meetings. These meetings may be technical or managerial.

e Lot of energy is spent on producing paper documentation to show
progress versus efforts and to address the real risk issues and also the
integration issues. These issues can be such as;

o Stakeholders did not go through design.

o Verylowvaluetothestakeholders’opinionsinthemeetingsbuthavetopayhi
ghcostsontravel and accommodations.

e Many issues could have been avoided during early life-cycle phases
rather that caused serious problems in later life cycle phases.

Typical Software product design Reviews:
1. Big briefing to a diverse audience

e Only very small percentage of audience understands the software
programming and development.

Conventional Software
Management

21

Project Management

22

* Briefings and documents represent few of the important assets and risks
of that particular complex software.

2. A compliant design

But there is no tangible proof of compliance with unclear requirements is
of little value.

3. Requirement Coverage

Only few are the real design drivers, but many are presented as to be real
Dealing with all requirements diverts the focus on critical drivers.

4. A design is considered ‘innocent until proven guilty’

The design errors are not detected in the early phases are exposed in the
later life cycle.

1.6 CONVENTIONAL SOFTWARE MANAGEMENT
PERFORMANCE

Most of the conventional software development generally describe the
fundamental economic relationships that are derived from years of
practice.

Basic Software Economics:

1. Detecting and fixing the software bugs after the delivery to customer
costs 100 times more than finding and fixing the problem in early
design phases.

2. You can compress i.e., minimize the software development schedules
up to 25% but no more. Addition of staff requires more management
overhead and training of the new staff.

Some compression is sometimes proved to be troublesome to add new
people.

3. For every penny, you spend on software development, you will spend
the double on maintenance.

Successful products have much higher ratios of “maintenance to
development”.

A good development organization will most likely NOT spend this
kind of extra money on maintenance.

4. Software development and maintenance costs are primarily the results
of number of source lines of code.

e Component-based development weakens this by increasing the reuse but
not in common use in the past.

5. Variations among stakeholders and especially variations in staff results
in the biggest differences of software productivity.

Development organization must always try to hire good people.

Build the ‘team concept.” With no “I” in ‘team”, and there must be an
implicit “we.”
6. Overall ratio of software to hardware costs is growing.

e Impacting these figures is the ever-increasing demand for functionality
and attending the complexity.

7. Only about 15% of software development efforts are devoted to actual
coding.

e And, this 15% is only for the programming. And near about, some
65% - 70% of the overall total life cycle expenses are based on
maintenance.

8. Software systems and products generally cost 3 times as much per
SLOC (Source Lines of Code) as individual software programs.

Software-system products i.e., system of systems costs nine times as
much. The more software you build, the more expensive it is per
source line.

9. Walkthroughs detect 60% of the errors.

Walkthroughs are good for catching errors, but they require deep
analysis to catch significant shortcomings.

Major problems such as performance and resource contention are also
not caught.

10. 80% of the contribution is from 20% of the contributors i.e., 80/20 rule
applies to many things.

Review Questions
Q.1 What is software project management?

Q.2 What was the historical perspective of conventional software
development?

Q.3 Suggest the changes in earlier and ‘new’ version of software
development.

Q. 4 What are the problems faced due to late risk resolution?
Q. 5 Write a note on typical software development reviews?

Q.6 Write in brief about conventional software management
performance.

Q.7 What is Late design breakage?

Q. 8 What do you mean by software economics?

O o% % °
0’0 0’0 0’0 0’0

Conventional Software
Management

23

24

EVOLUTION OF SOFTWARE
ECONOMICS

Unit Structure
2.1 Software Cost Estimation
2.2 Software Economics
2.3 Pragmatic Software Cost Estimation
2.4 Cocomomodel
2.5 Reducing Software Productsize
2.6 Improving Software Process
2.7 Improving Automation
2.8 Peerinspections
Syllabus:

Evolution of Software Economics: Software Economics, Pragmatic
Software Cost Estimation.

Improving Software Economics: Reducing Software Product size,
improving soft ware process, improving team effectiveness, improving
automation, achieving required quality, peer inspections

2.1 SOFTWARE COST ESTIMATION

e Planning and estimating are iterative processes which continue
throughout the course of a project.

e Software costs often dominate computer system costs. The costs of
software on a PC are often greater than the hardware cost.

e Software costs more to maintain than it does to develop. For systems
with a long life, maintenance costs may be several times development
costs.

e Software engineering is concerned with cost-effective software
development.

Costs of Software Engineering:

The total cost required in developing a software product can be
categorized as below;

2.1.1 60% of development costs
2.1.2 40% are testing costs.

But these costs differ depending on the type of the project being
developed and the required system attributes such as the performance,
reliability, flexibility, security andso on.

The required cost in various phases also depends on the development
model (either prototyping or spiral or waterfall or any other model) that is
used.

Cost Estimation:

e Is the art of approximating the probable cost of something based on
information available at the time?

e Leads to a better understanding of the problem.

e Improves management insight into resource allocation problems.
Provides an objective baseline to measure progress.

e The reliability of cost estimates varies over time. The closer you get to
the actual completion of a project; the estimate becomes more
accurate.

Cost estimating problems occur most often because of the:
Inability to accurately size a software project,

Inability to accurately specify a software development and support
environment, Improper assessment of staffing levels and skills, and

Lack of well-defined requirements for the specific software activity being
estimated

Four types of cost estimates represent various levels of reliability:

Conceptual Estimate:Often inaccurate because there are too many
unknowns.

Preliminary Estimate: Used to develop initial budget, more precise.
Detailed Estimate: Serves as a basis for daily project control.
Definitive Estimate: Accuracy should be within 10% of final cost.
Cost Estimations are constructed based on the following tasks:

e o [dentifying the purpose and scope of the new system-new software
development, software reuse, COTS integration,etc.

e Choosing an estimate type - Conceptual, preliminary, detailed, or
definitive type estimates. Identifying system performance and/or
technical goals.

Conventional Software
Management

25

Project Management

26

e Laying out a program schedule. Collecting, evaluating, and verifying
data.

e Choosing, applying, cross-checking estimating methods to develop the
cost estimate. Performing risk and sensitivity analysis

e Providing full documentation.

2.1.1 SoftwareCostEstimationProcess

Software Cost Estimation process comprises of 4 main steps:
Step 1: Estimate the size of the development product

Size of the software may depend upon: lines of code, inputs, outputs,
functions, transactions, features of the module andetc.

Step 2: Estimate the effort in person-hours

e The effort of various Project tasks expressed in person-hours is
influenced by various factors such as:

e Experience/Capability of the Team members technical resources
e Familiarity with the Development Tools and Technology Platform
Step 3: Estimate the schedule in calendar months.

The Project Planners work closely with the Technical Leads, Project
Manager and other stakeholders and create a Project schedule. Tight
Schedules may impact the Cost needed to develop the Application.

Step 4: Estimate the project cost in dollars (or other currency).

Based on the above information the project effort is expressed in dollars or
any other currency.

2.1.2 Cost Estimation Techniques
1. Expert Opinion:

Also called as Delphi method, proposed by Dr. Barry Boehm is useful in
assessing differences between past projects and new ones for which no
historical precedent exists.

Advantages:

Little or no historical data needed. Suitable for new or unique projects.
Disadvantages:

e Very subjective.

e Experts may do partiality

¢ Qualification of experts may be questioned.

L

Analogy: Conventional Software
Management

Estimates costs by comparing proposed programs with similar,
previously completed programs for which historical data isavailable.

Actual costs of similar existing system are adjusted for complexity,
technical, or physical differences to derive new costestimates

Analogies are used early in a program cycle when there is insufficient
actual cost data to use as a detailedapproach

Compares similarities and differences

Good choice for a new system that is derived from an existing
subsystem.

Advantages:

Inexpensive Easily changed

Based on actual experience (of the analogous system)

Disadvantages:

3.

VerySubjective
Large amount of uncertainty
Truly similar projects must exist and can be hard to find

Must have detailed technical knowledge of program and analogous
system

Parametric:

Utilizes statistical techniques. Can be used prior to development.

Advantages:

Can be excellent predictors when implemented correctly Once created,
CERs are fast and simple to use

Easily changed

Useful early on in a program Objective

Disadvantages:

Often lack of data on software intensive systems for statistically
significant CER Does not provide access to subtle changes

Top level; lower level may be not visible

Need to be properly validated and relevant to system

27

Project Management

28

4. Engineering:
e Also referred to as bottoms up or detailed method.

e Start at the component level and estimate the effort required for each
component. Add these efforts to reach a final estimate.

e Future costs for a system are predicted with a great deal of accuracy
from historical costs of that system.

e Involves examining separate work segments in detail. Estimate is built
up from the lowest level of system costs. Includes all components and
functions.

e (an be used during development and production.
Advantages:

e Objective

e Reduced uncertainty

Disadvantages:

¢ Expensive

¢ Time Consuming Not useful early on

e May leave out software integration efforts

S. Actual:

e Decides future costs on recent historical costs of same system.
e Used later in development or production.

e Costs are calibrated to actual development or production productivity
for your organization

Advantages:

e Most accurate

e Most objective of the five methodologies
Disadvantages:

e Data not available early Time consuming

e Lab our intensive to collect all the data necessary
Choice of methodology depends upon:

e Type of system - software, hardware, etc.

e Phase of program - Development, Production, Support

e Available data - Historical data points from earlier system versions or
similar system or technical parameters of system.

2.1.3 Cost EstimationParameters

Various models (such as COCOMO, Costar etc.) are available for
estimating the cost of software development.

All these cost estimating models can be represented on the basis of five
basic parameters:

1. Size: The size of the proposed software product is weighed in terms of
components i.e., ultimately in terms of the number of source code
instructions or the number of functions required in developing the
proposed product.

2. Process: The process includes the phases and activities carried out in
each phase. So whatever process used to produce the proposed product is
measured on the ability of the Target process to avoid unnecessary
activities such as rework, bureaucratic delays, communications overhead
and such other overhead activities which may delay the delivery of
theproduct.

3. Personnel: This deals with the capabilities and experience of software
engineering personnel (team members) in the field of computer science
issues and the applications domain issues of theproject. Italsodepends
uponthe personnel’s’ familiarity with the Development Tools and
Technology Platform.

4. Environment: The environment constitutes of the tools and
techniques that are required to develop efficient software and also to
automate theprocess.

5. Quality: The required quality of the proposed product depends upon
the features, performance, reliability, and adaptability of thesoftware.

The above described five parameters (size, process, personnel,
environment and quality) can be related with each other so as to calculate
the estimated cost for the proposed software development:

Process

Effort/Cost = (Personnel) (Environment) (Quality) (Size)

2.2 SOFTWARE ECONOMICS

The most important aspects of software economics according to that
represented in today’s software cost models is the “relationship between
effort and size”. This relationship represents a diseconomy of scale.

This diseconomy of the software development is because the process
exponent is greater than 1.0 i.e., the more software (that means, the more
function units) you build, the more expensive it is per unit code.

Conventional Software
Management

29

Project Management

30

2.2.1 Three Generations of Software Economics:

¢ The below figure demonstrates how the technology, tools, component
development and processes evolved and enhanced through the three
generations of software economy. 1. Con

¢ The estimated level of quality and personnel (person capabilities per
hour) are, considered to be constant.

¢ The ordinate of the graph represents the software unit costs interpreted
by an organization.

Target objective: improved ROI

Cost

Software
ROI

Software size

- 1960s - 1970s

- Diseconomy of scale

- 1980s - 1990s - 2000 and on
- Waterfall model - Process impovement - Nlerative development
- Functional design - Encapsulation-based - Component-based

- Diseconomy of scale

= Returm on investment

Corresponding environment,

Conventional

‘alza,-nd process technologies

Transition Modem practices
Environments/tools: ! Environments/tools: Environments/tools:
Customn i Off-the-shelf, separate | Off-the-shelf, integrated
Size: : Size: § Size:
100% custorn H 30% component-based i| 70% component-based
: 70% custom ¥ 30% custom
Process: .i Process: :. Process:
Ad hoc : Repeatable : Managed/measured
Typical project performance i Unpredictable Predictable
predictably bad ! t
i 1
Always: : Infrequently: 3 Usually:
Over budget i Over budgst ‘. Over budget

Qver schedule

Over schedule

Over schedule

Fig. 2.2.1: Three Generations of Software Economics

1. Conventional (Craftsmanship):

¢ From 1960 to 1970, the conventional software development process was

referred toas craftsmanship such as the Waterfall model.

¢ In this particular period, software development companies made use of

tools, processes and components built in primitive languages.

But the quality was not as expected.

That means, project performance was highly as expected and that too in
the estimated cost and schedule.

Main features: Conventional Software
Management

Custom processes and tools Functional design

Custom environment (100%)

Drawbacks:

Diseconomy of scale

Built in primitive languages Ad Hoc Process

Always over budget and over schedule

Transition (Software Engineering):

¢ From 1980 to 1990, the conventional software development process was
called as software engineering.

¢ In this particular period, the software development companies used
frequently repeatable processes and off-the-shelf tools, and lot of
custom components developed in high level programming languages
such as Java and.Net.

¢ That means some of the components also included commercial products
such as Networking and graphical user interfaces, operating systems
like Windows and Linux, database systems like Oracle and SQLServer.

¢ Main features:

o maturity and creativity

o research-intensive

o Process improvement

o Encapsulation-based

o Built in higher-level languages

o Repeatable process

o Off-the-shelf environment (70% custom and 30%component-based)
¢ Drawbacks:

o Diseconomy ofscale

o Infrequently on budget and onschedule

3. Modern practices (software production):

e Since 2000, the software development process is referred to as
software production.

31

Project Management

32

Now a days, software development companies make use of managed
and measured processes, integrated environments such as automated
tools and technologies like the Rational Rose tool that we use for
drawing UML diagrams, more of off-shelf components and few
custom components.

Main features:

Off-the-shelf environment (70% component-based and 30%custom)

o production-intensive

o automation

o economies ofscale

o Iterativedevelopment

o Component-based

O

o Process -managed/measured

o Usually on budget and onschedule

Throughout each of these three software economic generations, the main
focus was on the corresponding growth of technologies. For example,
consider the process advances that cannot be used successfully without the
involvement of new component technologies and the enhanced tool
automation.The development organizations are constantly achieving better
economies of scale as shown in every successive generation with very
large projects, long-lasting software products, and business cases

Achieving ROI across a line of business

Investment in common architecture,)
process, and environment for all rFelirglise S?cond Ntlh
line-of-business systems s b
Software
Cost/unit
Line-of-business life cycle: Successive systems
Achieving ROl across a project with muitiple iterations
Investment in robust architecture, mature First Second Nth
iterative process, and process automation iteration iteration iteration

Cost/unit

Software
ROI

Project life cycle: Successive iterations

Achieving ROI across a life cycle of product releases

Investment in product architecturs, life-cycle
release process, and process automation

First
release

Second
release

Nth
release

Cost/unit

Software
ROI

Product life cycle: Successive releases

Fig. 2.2.2 : ROl in various Business Domains

comprising of multiple similar projects.The figure below gives an
overview of how the return on investment (ROI) can be achieved through
continuous efforts across the life cycles of various business domains.

2.3 PRAGMATIC SOFTWARE COST ESTIMATION

e Major issue of software cost estimation is the inability of developing
well-documented case studies in the projects that use iterative
development approach (also called as Rational Unified Process (RUP)).

¢ Software development companies don’t have aclearidea abouts of tware
metrics and measures which means that the data storage and retrieval
process is not clear in terms of data consistency and the actual quality
attributes of the projects don't match with planned attributes.

e [t is easy to collect related set of data within one particular organization
but it is difficult to collect the related data from different companies
following different development processes, different programming
languages and different domains.

¢ Developers and customers always had an argument on software cost
estimation models and tools.

Three most common topics of their argument are:
1. Selection of Cost Estimation Model

e There are various cost estimation models (COCOMO, COSTXPERT,
CHECKPOINT, SLIM, ESTIMACS, Knowledge Plan, SEER,
SOFTCOST, Costar, REVIC, Price-S, Pro QMS etc.) that are based on
statistically derived cost estimating relationships (CERs) and various
estimating methodologies.

2. Whether to measures oft ware sizeon the basis of lines of code
(LOC) or function points?

¢ Most of the cost estimation models are bottom-up i.e., substantiating a
target cost rather than top-down 1i.e., estimating the ‘should’ cost.

¢ The below figure depicts predominant cost estimation practices where:
o First, project manager defines the target cost of thesoftware.

o Later, he manipulates the parameters and does the sizing until the
target cost is justified.

¢ The target cost is defined so as:

o to win the proposal,

o to solicit the customer funding,

o to attain the internal corporate funding, or

o to achieve some other goal.

Conventional Software
Management

33

Project Management

34

¢ The process described in this figure forces the software project manager

to check the risks associated in achieving the target costs and also
discuss this problem with other stakeholders.

Software manager,

software architecture manager, =
software development manager, N "This project must cost TX
" \ .
software assessment manager | to win this business
= ;L |
. 1
\ |
=

i Cost modelers Ry, My
& : - | i v

| Risks, option, | J justify that cost.”
| trade-offs 4

alternatives I~

Cost estimate

Fig. 2.3.1 : Predominant Cost Estimation Process

3. Factors that lead to good cost estimation

Good software cost estimation may be based on the following attributes:

The cost is estimated collectively by the project manager, architectural
team, development team, and test team.

The estimated cost is acknowledged and supported by all stakeholders.
The cost estimation is based on some well-defined model.

The cost estimation is based on the databases of similar type of project
experiences that use similar methodologies, similar technologies, and
similar environment with similar type of stakeholders.

¢ The key risk areas are detected and accordingly the probability of
success isdetermined.

24 COCOMOMODEL

COnstructiveCOstMOdel (COCOMO) is one of the earliest cost
models widely used by the cost estimating community.

COCOMO was originally published in Software Engineering
Economics by Dr. Barry Boehm in 1981.

COCOMO is a regression-based model that considers various
historical programs software size andmultipliers.

COCOMO’s most fundamental calculation is the use of the Effort
Equation to estimate the number of Person-Months required in
developing aproject.

COCOMO stands for COnstructiveCOstMOdel. It is the oldest cost
estimation model that is popularly used in the process of
costestimation.

e (COCOMO was first published by Dr. Barry Boehm in1981.

e COCOMO model estimates the cost by considering the size and other
quality aspects of the similar type of historical (previously developed)
programs.

¢ COCOMO calculates Efforts i.e., it estimates the number of Person-
Months required in developing a project.

Number of person months * loaded lab our rate = Estimated Cost

e Most of the other estimates (requirements, maintenance, etc.) are
derived from this quantity. COCOMO requires as input the project’s
estimated size in Source Lines of Code (SLOC).

e Initial version published in 1981 was COCOMO-81 and then, through
various instantiations came COCOMO 2.

e (COCOMO 81 was developed with the assumption that a waterfall
process would be used and that all software would be developed from
scratch.

e Since then, there have been many changes in software engineering
practice and COCOMO 2 is designed to accommodate different
approaches to software development.

The COCOMO model is based on the relationships between the two
formulas:

¢ Formulae 1: Development effort is based on system size. MM =
a.KDSIb where,

MM is the effort measured in Man per Moths

KDSI is the number of Source Instructions Delivered in a Kilo
(thousands).

¢ Formulae 2: Effort (MM) and Development Time. TDEV = c¢.MMd
where,

TDEYV is the development time.

In both the above formulas, we have used the coefficients a, b, ¢ and d
which are dependent upon the ‘modeofdevelopment’.According to
Boehm, the mode of development canbe classified into following 3
distinct modes:

1. Organic mode of development - talks about the projects that involve
small development teams whose team members are familiar with the
project and work to achieve stable environments. This category
includes the projects like the payroll systems.

2. Semi-detached mode of development - talks about the projects that
involve mixture of experienced team members in the project. This
category includes the projects like the interactive banking system.

Conventional Software
Management

35

Project Management

36

3. Embedded mode of development - talks about the complex projects

that are developed under tight constraints with innovations in it and
have a high volatility of requirements. This category includes the
projects like the nuclear reactor control systems.

Drawbacks:

It is difficult to accurately estimate the KDSI in early phases of the
project when most effort estimates are still not decided yet.

Easily thrown misclassification of the development mode.

Its success largely depends on tuning the model to the needs of the
organization and this is done based upon the historical data which is
not always available.

Advantages:

COCOMO is transparent that means we can se it working.

Allows the estimator to analyse the different factors that affect the
project costs.

241 COCOMO 2 Model

COCOMO 2 constitutes of sub-models so as to produce in detail
software estimates. The sub models are listed as follows;

Application composition model. It is applied when software is being
developed from existing parts.

Early design model. It is applied when system requirements are
gathered and concluded but design has not yet started,

Reuse model. It is applied when software is being developed using the
reusable components so as to compute the effort of integrating these
components,

Post-architecture model. It is applied when once the system
architecture has been designed and when more system information is
gathered. Multipliers reflect the capability of the developers, the non-
functional requirements, the familiarity with the development
platform, etc.

P e syste 5
No. of Application Based on | Application Used for d;?fggiu-fq::wb
Points composition model fie - pec using
scripting, DB or
. Initial effort based
“unc Based on e
Egm?l Function Early design model Lsed for » on system requirement
22 and design options
Efforts to integrate
No. of Lines of Code Based on _ S Used for | reusable components or
reused or generated < = automatically generated
code
No. of Lines of Source| Based on | Post-architecture Used for |i¥elopment etfort
Ciado i based on system
. specification

Fig. 2.4.1 : Use of COCOMO2 Model

Product attributes describe the required characteristics of the software
product being developed.

Computer attributes describe the constraints imposed on the software
product by the hardware platform. Personnel attributes describe the
experiences and capabilities (of the project development team members)
that are taken into account. Project attributes describe particular
characteristics of the project. Estimating the calendar time required to
complete a project and when staff will be required using a COCOMO 2
formula TDEV =3 "' (p m)(0-33+0-2*<b-101»

¢ PM is the effort computation and B is the exponent (B is 1 for the early
prototyping model). This computation predicts the nominal schedule for
the project.

® The time required is independent of the number of people working on
the project. Improving Software Economics,the software economics
canbe improved by using a‘balanced’ approach as the key. The Five Key
parameters that can help in improving the software economics are;

Reducing the product size (Number of Lines of Code) and complexity of
the software

1. Improving the software development process
2. Using more-skilled personnel i.e., improving the team effectiveness.

3. Creating better environment by improving the automation with more
appropriate tools and technologies.

4. Achieving required quality by peer inspections

Conventional Software
Management

37

Project Management

38

Table 2.4.1 : Trends on which the Five Key Parameters depend

Five Key parameters that Trends
effect the Cost Model

Size: describes abstraction | High level programming Languages (C++, Java, VB,

and component based Object Oriented Methods and Visual modeling (analysis,

development technologies design and programming)
Reusability
Commercial Exponents
Packages

Process: involves methods | Iterative Development
and techniques Process Maturity Models such as CMM
Architecture-first development

Personnel: describes the | Training to develop the personnel skills
effectiveness of the | Team work

development team Win-win culture

Environment: involves | Integrated tools such as compiler, editors, and debuggers.
automated tools and | Hardware performance -

technologies. Automated coding, documentation, testing and analyses.

Quality: describes the | Hardware platform performance
Performance, reliability, | Peer inspections
accuracy issues

Statistical quality control

2.5 REDUCING SOFTWARE PRODUCTSIZE

The more the number of lines of code, the larger becomes the size of the

product; larger the size of the product, more expensive becomes the
product and these expenses are measured ‘per line’.

The most proper way of improving the affordability and ROI (return on

investment) is to develop a product that achieves the design goals with
minimum number of LOC (Lines of Code) i.e., minimum amount of
source code.

Parameters that affect the size complications are:

Use of Component-based development i.e., breaking up the software
product into simple modules and these modules are coded separately
and after complete coding is over, all these modules are then integrated
together. This decomposition of the product first and then later
integration raises complications in the code.

Automatic code generation - Various design tools generate automatic
code along with the modeling of the designs. Such tools sometimes
generate lot of unwanted code.

Graphical User Interface (GUI) builders include the code that is needed
to build an easy to access user interface. In such process, more lines of
code are included in the program.

4th Generation Languages (4GLs) make use of classes, structures,
dynamic memory allocations and many such new concepts that
increase the complexity of the code.

¢ Object Oriented (OO) Modeling Languages used for analysis, design Conventional Software
and modeling also increases the complexity of the software. Management

2.5.1 ReducingSoftwareProductSize-Languages
UFP (Universal Function Points):
e These points are language independent.

e The basic units of the UFP are external user inputs, external outputs,
internal logical data groups, external data interfaces, and external
inquiries. SLOC (Source Lines of Code) m metrics:

e These metrics are useful estimators when a solution is formulated and
programming language is known.

Table 2.5.1: Various Comparisons of Function points to lines of code
based upon the programming language used.

Language SLOC per UFP

Assembly 320

G 128

Language SLOC per UFP
Fortran 77 105
Cobol 85 9]
Ada 83 71
C++ 56
Ada 935 55
Java 55
Visual Basic 35

Advantages:

e Use of higher-level programming languagesre duces the size; thus, the
‘level of abstraction” also changes allowing more focus on
architecture.

39

Project Management

40

e There duced size make siteasier to understand, reuse, maintain and
import the packages of classes and objects.

e But these higher-level abstractions often use high storages and
communication bandwidths.

2.5.2 Reducing Software Product size-OO Methods and Visual
Modelling

¢ OO (Object Oriented) technology reduces the size of the program. How
the use of OO methodology helps in reducing the size can be summarized
asbelow;

Benefits of using OO methodology:

¢ An OO methodology improves the team work and interpersonal
communications by improving the understanding between the end users
and developers of the system. This ultimately increases the productivity
andquality.

¢ OOSE (OO software Engineering) is achieved using the OO modeling
languages like UML and the configurable processes like RUP (Rational
Unified Process) which involves iterative development.

¢ OO methodology supports continuous integration of subsystems,
classes, interfaces thus, increasing the chances of early detection of risks
and incremental corrections without hampering the stability of the
development process.

¢ OO methodology allows ‘Architecture first approach’ in which
integration is an early and continuous life-cycle activity that brings
stability in development, allows development and configuration of
components in parallel.

¢ OO architecture creates a clear separation between the unrelated
elements of a system, and includes firewalls that prevent a change in one
part of the system that may be caused due to the errors in other part of
the system thus, rending the structure of the entire architecture.

2.5.3 ReducingSoftwareProductSize-Reusability

e The ‘reusability’ is most lyimplemented with stored functions and sub
programs. There are many forms of reuse:

¢ Reuse of Old stuff such as data descriptions, document, and a
collection of similar-old artifacts, designs, and architectures.

Reuse of Functions, classes from any phases of software development

Reuse of Common architectures such as common processes, and
common environments. Such reuse is very common during huge
project development.

¢ Differences in OS platforms and HAV environments such as the
middleware, and also the GUI Builders have hampered the reuse
potentiality.

Examples: Common Microsoft platforms, Linux MACs resulting from
distributed applications.

1 Project solution:

¥N and months Manyl-proj_ect
— solution: Operating
~ — with high va T
2 Project solution:—‘ investment, C
g8 50% more cost and | commercial products
100% more time ! o
?"_ I

5 Prolec! solution;
k 5% more cost and

150 © more time

.Jum!n_—w of projects using reusable components

Fig. 2.5.1 : Graph showing the Development cost in the projects using Reusable Components

The main reason for Reuse is ‘lack’ of money.

e Costs needed to build reusable and configure reusable components.
Reuse is implemented across many projects if they are similar.

e Few commercial organizations sell commercial components
encouraging the Reusability.

2.5.4 Reducing Software Product Size-Commercial Components

Main advantage of using Commercial components is that it saves custom
development efforts Commercial components usually need tailoring i.e.
they need finishing before they are used.

Commercial components have an impact on quality, cost, supportability,
and the architecture.

Conventional Software
Management

41

Project Management

42

Table 2.5.2 : Pros and cons of Commercial Components v/s Custom Software

Approach Pros (Advantages) Cons (Disadvantages)
Commercial Predictable costs Needs frequent upgrades and
Components largely used and is a matured | maintenance

technology Charges Up-front license fees
Available now a days Charges Recurring maintenance
supports organizations fees
Hardware and Software | Highly Depends on vendor
independence Run-time efficiency is little bit
Rich in functionalities less
Lot of functionality constraints
Integration is always needed at
each step
Inclusion of Unnecessary
features that consume extra
resources
mostly, inadequate reliability
and stability
Multiple vendor incompatibility
Custom Freedom of making changes Unpredictable development Cost
Development Provides smaller and simpler | Unpredictable availability date
implementations Undefined maintenance model
Provides better performance Often immature and easily
Control on development and | breakable
enhancement Single-platform dependency
Consumes expert resources

2.5.5 ReducingSoftwareProduct size-Packages

¢ Various elements (use cases; classes, other model elements) of analysis model
are categorized into packages that are given a representative name.

Fig. 2.5.2 : Packages

Example: Student class, Book class, Librarian class.

¢ Package is a model element that can contain other model elements - use
case models, classes, objects, subsystems, components, other model
elements and packages.

e The Components help to model the physical aspect of an Object-
Oriented software system representing the relationship between various
components.

Conventional Software
Management

Design model Implementation model
]
Oi <<subsystem>> Component
Component Name Name
Component Component
interface interface

e A component diagram contains components and dependencies. The
dependencies between the components show how changes made to
one component may affect the other components in the system.
Dependencies in a component diagram are represented by a dashed
line between two or more components.

The component diagram contains:

e Components are denoted by rectangle with two smaller rectangles
protruding from its left side. They represent the subsystems in the
design model.

¢ Dependencies are denoted by dashed lines between two or more
components. They represent how changes made to one component may
affect other components of the system.

Example: Component Diagram for Library Management System

Librarian Fine system

b h

Borrowing system

Fig. 2.5.3 : Component Diagram for LMS

The above diagram shows 3 main components of the library management
system in which the first component (Librarian) manage seach student’s
profile and also who manages library items (issuing and returning).

43

Project Management

44

Second component (Fine system) manages fines applied to the student
who exceed the borrowing period. Third component (Borrowing system)
manages all borrowing items.

2.6 IMPROVING SOFTWARE PROCESS

= It involves understanding the existing processes and introducing
changes in it so as to improve the product quality, reduce costs and
accelerate schedules.

= Process improvement work focuses mostly on defect reduction and
improving the development process.

« Process improve mentisacyclic activity as shown in the below figure:

Change)
2 .

Me asureme m
. /

{ Analys

\\ /1/

Fig. 2.6.1 : Process Improvement Cycle
It involves three principal stages:

1. Process measurement:

Attributes of the current process and product are measured. These form a
baseline for assessing the improvements.

2. Process analysis:

e The current process is assessed and bottlenecks and weaknesses are
identified. Process models that describe the system process are usually
developed during this stage.

e [t is about studying the existing processes to understand the
relationships between different parts of the process and to analyze i.e.
compare them with other processes.

3. Process change:

Changes to the process that have been identified during the analysis are
introduced.

2.6.1 Need of Process Improvement:

e SPI framework defines the characteristics of an effective software
process in an effective manner.

e SPI framework is used to assess existing organizational approach of Conventional Software
software development against those characteristics. Management

e SPI framework defines a meaningful strategy for improvement.

e SPI framework transforms the existing approach of software
development into more focused, more repeatable and more reliable
process.

e o SPI framework assesses the maturity of an organization's software
development process and identifies its maturity level.

Software
process

Identify changes Examined by

/) @&

Defines improvement approach

e

Identifies maturity of

Improvement
strategy

Capability
determination

Fig. 2.6.2 : Key Elements of SPI Framework and their Interrelationship

2.6.2 Objectives of Software Process Improvement (SPI):

e To enhancecon currency activities-Fewactivities of aproject are done
inparallel others in sequential. But if the parallel activities are carried
out, this will reduce the cost and schedule. To minimize the overhead
and instead use these efforts towards production activities.

e Few activities are overhead and others are production activities

e The Overhead activities include project planning, progress monitoring,
risk management, configuration and version control, quality control,
component integration, testing, rework, personnel training, etc.

e ¢ The Production activities include the project itself that composes of
requirements elicitation, modeling, analysis, and design and
implementation activities.

e To eliminate the late rework and fixing.
Advantages:
A good-quality process reduces:

e The required efforts and ultimately reduces the required schedule The
required Project time schedule but, yet with improved quality. The
three main improvements are:

e Improves efficiency of each step in the process

45

Project Management

Attributes Meta-process Macro-process Micro-process
Metrics Project predictability | Predictability of | Predictability of budget
‘ Revenue. market | budget and schedule and schedule
|
share | Major milestone | Major milestone
success progress
| [: i i
‘ | Project scrap and | Release and iteration
| ! rework scrap and rework
Concerns Bureaucracy v/s | Quality v/s financial | Content v/s Schedule
standardization performance
| Time scales 6 to 12 months 1 to many years | 1 to 6 months

e Eliminates some of the overhead steps in the process which yields
improved ROI. Carries out same number of steps but makes use of
concurrency wherever possible

Table 2.6.1: Three levels of Processes and their Attributes

L B .
|)
Attributes Meta-process Macro-process | Micro-process
i !
Subject Line of business Project | Tterations
Objectives Line-of-business profitability Resource management
! ‘ ;
| Profitability Risk management Risk resolution
| Competitiveness Project budget and | Milestone budget,
schedule | schedule
\ Project quality ‘ quality
\ - .
‘ _—
| Audience | Acquisition of | Software project | Subproject managers
authorities, customers | managers Software engineers
| . . . i
| Organizational Software engineers
lL management |

2.6.3 CMMIProcessiImprovementFramework

¢ Capability Maturity Model (CMM) is a maturity model applied within
the context of SP I framework.

CMM is a specific approach taken for quality assurance.

The CMMI (Capability Maturity Model Integration) is used to implement
Quality Assurance in an organization.

¢ The CMMI describes an evolutionary improvement path from an adhoc,
immature process to a mature, disciplined process which describe the
key elements of an effective software process.

e The CMMI includes key practices for planning, engineering, and
managing the software development and maintenance which helps in
improving the ability of organizations to meet goals for the cost,
schedule, functionality, and product quality.

46

¢ The CMMI helps in judging the maturity of an organization's software
development process and compares it to the state of practice of the
industry.

¢ The CMMI categorizes five levels of process maturity:

Level 1: Initial: An adhoc software process is used where only few of the
processes are defined and where the project accomplishment success
depends upon individual team member’s efforts.

Level 2: Repeatable: A project management process is derived to track
the utilized cost, schedule, and efforts. This same process is used again
and again to develop the projects of similar applications so as to repeat the
success achieved in the earlier projects.

Level 3: Defined: Both the activities i.e. project management and
software engineering are well documented and integrated.

Level 4: Managed: It includes better understanding and planning of
software process and product quality.

Level5: Optimize:The developing organization’s focusison continuous
software process improvement (SPI) which is achieved by continuous
process feedback and by incorporating innovative ideas and technologies
in project development.

¢ At this level, the entire organization focuses on continuous Quantitative
feedback from previous projects which is used to improve the project
management.

¢ The software process at this level can be characterized as continuously
improving the process performance of their projects.

¢ Improvement is done both by incremental enhancements in the existing
process and by innovations using new technologies and methods.

These levels are decomposed into several key process areas.

¢ Process Change Management: To identify the causes of defects and
prevent them from re- occurring.

Conventional Software
Management

47

Project Management

48

[Optimizing (5)

Process change management
technology change management
defect prevention

<
r Managed (4)

Software quality management
quantitative process management

[Defined (3)

:(Peer reviews, Intergroup coordination
software product engineering, Integrated
software management, training program |~
organization process definition
organization process focus

(Repeatable (2)

of Software consignation management
software quality assurance

software subcontract management
software project tracking and oversight

software project planning
l Initial (1) ' requirement management)

Fig. 2.6.3 : CMMI and Key Process Areas

e Technology Change Management: To identify beneficial new
technologies and incorporate them in an orderly manner.

¢ Defect Prevention:To continuously improve the process in order to
improve the quality productivity and thus decrease development
schedule andcost.

The Process Area Activities performed include:

A software process improvement program is established which motivates
the members of the organization to improve the processes of the
organization. The group responsible for the organization's software
process activities controls the software process improvement activities
also. The organization develops and maintains the plan for improving the
software process according to the documentedprocedure. The software
process improvement activities are performed corresponding to the
software process improvement plan. Members of the organization
participate in teams to improve software process for assigned process
areas. The software process improvements are installed to determine their
benefits and effectiveness before they are introduced into normal practice.
Records of software process improvement activities are maintained.
Software engineers receive feedback depending on the status and results
of the software process improvement activities on an event-driven basis.

Drawbacks of CMM:

The CMM does not describe how to create an effective software
development organization. The traits it measures are practically very hard
to implement in an organization.

2.6.4 Improving TeamEffectiveness

It has been observed that poor personnel yield poor productivity. But on
the contrary, it is also impossible to manage a team with all stars in it.
There are always disputes in such a great team because everyone thinks
that he is more intelligent than the other. Managing the team is the key to
improve the team effectiveness. Best pragmatic approaches to improve the
team effectiveness are:

¢ Balance:A project development team must constitute highly talented
people in key positions and less talented in other positions. It is easy
enough to manage such a balanced team.

¢ Coverage:A project development team constitutes of strong skill people
in key positions.

Boehm’s Principles (Recommendations) in order to improve the team ’s
effectiveness:

o Principle of top talent: use talented and less number of people i.e.
‘use better and fewer people’.

o Principle of job matching (skills and motivations) : Individuals in
the development team must have a vision of promotion right from the
programmer to project manager or to architect or to designer. All
individuals in a team don’t have same skill sets - Great programmers
are not necessarily great managers and conversely,

o PrinciplesofCareerProgression:

i. An organization does best in the long run by helping its staff to self-
actualize.

ii. Organization training greatly contributes in improving the
productivity.

iii. Posting for new jobs must depend upon their skills and previous work
area.

iv. Organization should focus on the factors that are the prime motivators
such as increments, bonus andetc.

o Principleofteambalance:
i. Select people who will complement and go with one another.

ii. It represents the balance of: raw skills (intelligence, objectivity,
creativity, analytical thinking)

Conventional Software
Management

49

Project Management

50

iii. Psychological makeup (leaders and followers; risk takers, visionaries
andnitpickers)

o Principle ofPhase-out:

Disrupt team balance, horribly de-motivating.

Availing a nonconformist in the team doesn’t benefit anyone.
Overall team guidance:

e A culture of teamwork is necessary where people complement one
another and go with each other.

e Balanced Teamwork

e Strong and ‘knowledgeable’ leader (Project Manager) is essential:
Required Project Manager Skills:

Hiring skills. Selecting right person for the right job.

Customer-interface skill. Avoiding adversarial relationships among
stake-holders is must for success.

¢ Decision-making skill. Consider diverse opinions and make nopartiality
e Team-building skill. Keep the teamtogether.

e Recognize individual needs and excellentperformers Nurture the
newcomers

e Facilitate contributions from everyone and make every individual feel
that he is important.

Selling skill. A successful project manager must:

o Sell the stakeholders based on decisions and priorities,

o sell candidates on job positions,

o sell changes to the status quo in the face of resistance, and
o sell achievements against objectives.

o Practically, selling requires continuous negotiation, compromises, and
patience.

Problems faced while achieving Team Effectiveness:

¢ [t may not be possible to appoint the ideal people to work on a project
because:

o Project budget may not allow for the use of highly-paidstaft;

o Staff with the appropriate experience may not be available;

o An organization may wish to develop employee skills on a software Conventional Software

project. Management

Managers have to work within constraints especially when there are
shortages of trained staff. The number of people working on a project
varies depending on the phase of the project.

As more people work on the project, the more total effort is required.

Number of staff required can’t be estimated by dividing the development
time by the required schedule.

2.7 IMPROVING AUTOMATION

The environment that is used means the tools and technologies that are
used have a drastic impact on productivity and effort and thus,
ultimately has an impact on schedule and cost also.

Large number softools are available in the markets that are required
for supporting a process.

But...

Make careful selection of the right combination of tools and recognize
the tools that are important for process automation. Highly integrated
tools facilitate proper management of the process

A prime motivation for the staff is to train them to work with the
modem tools and learn about the environment.

Yields robust and integrated development process

Hires talented and right people and equips them with modern tools.

2.7.1 Problems Faced while Improving Automation:

While buying tools, be careful of tool vendor claims.

Prior to using the tools, they must be integrated into the development
environment.

The table below represents the General Quality improvements
realizable with a modern process.

51

Project Management

52

Table 2.7.1 :

General Quality Improvements with a Modern Process

Quality Driver

Conventional Process

Modern Iterative Processes

Requirements
misunderstanding

Misunderstandings are
discovered late

Misunderstandings are
discovered and resolved early

Development risk

Risks are Unknown until late

Risks are detected and resolved
early

Commercial
com pDﬂCﬂlH

Mostly unavailable

Available but the tradeoffs
must be resolved early in the
life cycle

Change
management

Late in life cycle; chaotic and
nasty

Early in life cycle; straight-
forward and benign

Design errors

Such errors are discovered

Any type of errors are resolved

late early

Automation Mostly error-prone manual | Mostly automated and error-
procedures free artifacts

Resource adequacy Unpredictable Predictable

Schedule Unpredictable Tunable to quality,

performance, and technology

Target performance Paper-based analysis or | Executing prototypes, early
separate simulation feedbacks, quantitative
understanding

Software process | Document-based managed, measured, and tool-
rigor supported

o Key practices that improve overall software quality:

o Focus on requirements driving the process - it addresses the critical
use cases early in the life cycle and traceability late in the life cycle,
focuses on requirement completeness.

o Use metrics and indicators to measure the progress and quality of the
architecture as it evolves from a high-level prototype to a fully
compliant product

o Use integrated life-cycle environment that facilitates early and
continuous configuration and change control, fast design methods,
document automation, and regression test automation.

o Use visual modeling and Higher-Level Language (HLL) that supports
architectural control, abstraction, design reuse, reliable programming,
andself-documentation.

o Early and Continuous insight into performance issues through
demonstration-based evaluations.

Performance issues:

Be careful with commercial and custom-built components Performance
analysis can degrade as we progress through our process.

2.8 PEERINSPECTIONS Conventional Software

Management

e Conducting peer Inspections is a very old way of verifying the results.

e [t is suitable and good in cases where there is a need to nurture less-
experienced team members.

e It is also useful in catching the real bad errors early in the life cycle
phases. Inspections can be applied at various phases during a
development life cycle:

» Requirement Specification

High-Level Design

STATIC VERIFICATION
software inspections

Formal Specification

Detailed Design

DYNAMIC VERIFICATION
Program Testing

Program/Code

Fig 2.8.1: Software Inspection applied at any phase v/s Program Testing applied
only at coding phase

¢ Inspections for transitioning the engineering info from one artifact set to
another so as to assess the consistency, feasibility, understandability,
and technology constraints involved in the engineering artifacts.

Example:

1. Analysis classes will transit into design classes which will then
become the part of packages or components. In doing so, if any desired
functionalities are lost then they are traced and re- included.

2. Inspections for demonstrating major milestones. This forces the
artifact assessment against tangible criteria for relevant usecases.

3. Inspections of the Environment tools
4. Life-cycle testing provides insight into requirements compliance.

5. Inspections manage the changes and studies about how change
requests can impact both quality and progress goals.

Inspection pre-conditions:
e A precise specification must be available.

e Team members must be familiar with the organization standards.
Syntactically correct code or other system representations must be
available. An error checklist should be prepared.

e Management must accept that inspection will increase costs early in
the software process. Management should not use inspections for staff
appraisal i.e. finding out who makes mistakes.

53

Project Management

54

Inspection Process:

Planning

I ——

Overview Follow-up

I X

Individual
@reparatiog l Rework '
Inspection
meeting

Fig. 2.8.2 : Inspection process

Step 1:Planning:

e Selection of the review team which must include not more than five
people. Decide who will be the moderator and what his responsibility.

e Preparing the package (work product and supporting documents) that
is to be distributed among the team members for their self-study.

Step 2:Overview:

e o All team members individually review the work product

e They answer the checklist according to the given guidelines and
e They note down the issues that they find in a self-preparation log
Step 3: Preparation:

e FEach reviewer studies the project individually.

e He notes down the issues that he has come across while studying the
project. He decides how to put up these issues and makes a note of it.

Step 4: Inspection Meeting:

e The reviewer reads line by line of the product Participants can raise
any type of issue at any line Discussions are done to identify if any
defect

e Scribe records all the decisions made in the meeting
e Scribe gives the list of detected defects (and issues) to the developer

e If there are only few defects, then the work product is accepted b; else
it is sent for making changes in it and to undergo another review.

e The meeting does not propose any solutions, but if there are nay
suggestions, then they are recorded and given to the developer.

A summarized report of the meeting (in our language we say it as
MOM i.e., minutes of meeting) is prepared which helps in effective
evaluation of the product.

Step 5 &6: Rework and Follow Up:

Author fixes the detected defects by making modifications in it. Once
the errors are fixed, author gets it OKed by the moderator.

Re-inspection on fixed errors may or may not be required depending
upon the criticality of the problem ..

Once the rework is completed and addressed satisfactorily, the
collected data is submitted.

Inspection Roles:

Author (Owner) of the The programmer or designer responsible for producing the
Code: program or document. Responsible for fixing defects

discovered during the inspection process.

Inspector Finds errors, omissions and inconsistencies in programs

and documents. May also identify broader issues that are
outside the scope of the inspection team.

Reader Presents the code or document at an inspection meeting.
Scribe Records the results of the inspection meeting.
Chairman or Moderator Manages the process and facilitates the inspection. Reports

process results to the Chief moderator.

Chief Moderator Responsible for inspection process improvements,

checklist updating, standards development etc.

Advantages:

The goal of this method is to detect ail faults, violations, and other
side-effects. This method finds out more and more number of defects

by:

A complete preparation (studying the documents) is done by authors
and other reviewers before conducting inspection.

As a group of people are involved in the inspection procedure,
multiple diverse views are enlisted.

Every person of the inspection team is assigned a specific role.

The reader in the inspection reads out the document sequentially in a
structured manner so that all the points and all the code is inspected
thoroughly.

Conventional Software
Management

55

Project Management

56

Disadvantages:

Needs lot of time as it first involves some special time for preparations
also prior to conducting formal meetings.

Logistics and scheduling always is a point for issue since these tasks
constitute of lot of people. Checking every line of code is not possible
every time even though it ensures the correctness of the logic, avoids
the side-effects and appropriately handles the errors.

Inspection Issues:

Ensure that complex and critical components are really inspected and
verified by the primary stakeholders.

It is difficult to really look at all artifacts.
Inspecting too many artifacts will increase the cost.
Mostly, many of the artifacts don’t deserve any scrutiny.

Most inspections end up looking at style and simple semantic issues
rather than inspecting real issues.

Usually, most of the quality fact or sandother important features of
the project such as system, performance, concurrency, distribution, etc.
canbe discovered through following activities:

Analysis and prototyping.

Constructing design models will help in tracing the missing
requirements and architectural constraints.

Transitioning the current state of the designs into an executable
implementation

[llustrating the current implementation strengths and weaknesses in
context of critical subsets of use cases and scenarios.

Incorporating the user feedbacks into the models, use cases,
implementations, and plans.

Review Questions

Q. 1 What is software economics and list out different cost estimation

models.

Q. 2 Describe the cost estimation process.

Q. 3 Write short notes on cost estimation techniques.

Q. 4 List and describe the cost estimation parameters.

Q. 5 What is cost estimation and explain COCOMO model.
Q. 6 Explain the three generations of software economics.

Q.7 What are the various way of reducing the software product size.
Explain in brief.

Q. 8 What is the need of improving the software process.

Q. 9 What are the benefits of improving team effectiveness and how to
improve it.

Q. 10 How to achieve required quality?

o
2
o
<

Conventional Software
Management

57

58

Unit 11

THE OLD WAY AND THE NEW

Unit Structure

3.1 Introduction

3.2 Oldway: Beginning of the Software

3.3 The Principles of Conventional Software Engineering
34 Principles of Modern Software Management

3.5 Transitioning to an Iterativeprocess

Syllabus:

The principles of conventional software engineering, Principles of modern
software management, Transitioning to an iterative process

3.1 INTRODUCTION

As we know, every product in the market grows and gets updated every
day. Each and every part of the product renews and re-polishes every
minute.

Most of the organizations generate the new version of the older product by
making various additional advanced changes in it. If we consider the
example of the mobile company, one mobile comes in this one month, and
the next generated advanced mobile comes soon in the next month.
Following is the example of the Samsung mobile company which
launched ‘Wave I’ in 2010 which was later upgraded with
additionalvarieties(suchasenlargedsize)andcameupinthemarketas‘Wavell’.

1 : Upgradation Versions: Samsung’s Wave Il and Wa

e Many years ago, in case of software companies, they can make naming
to their upgraded version with ‘x’ suffixtoit, even they can not know
the meaning of the ‘x’. Forexample:lx, 2x and soon.

e There are many parameters, by which software industry can improve
the software economic development;

1. Require andMeet:

Initially, whatever matter was available with the developers, only by using
that, the software product was generated. But now as per customer
requirements and for his easy handling, the software market meets his
requirements by meeting him.

2. Easy handling

It is seen that today’s customer can easily handle the overall software
product by which earlier traditional workloads on him became very less.
Automation came in picture by which customer can take more relaxation
by putting his workload on the automatic planners.

3) Team Building

Many departments can handle different units of each different phase. So
software project is able to achieve its goals by using different ‘thinking’ -
‘planning’ and most importantly ‘cooperating’.

4) Reduce in Size of Software 0 Product

As the new technologies arrived in market various compressed techniques
are there in the market. Even the size of the product is much lesser which
can be compatible for the customer’s point of view.

3.2 OLDWAY: BEGINNING OF THE SOFTWARE

Fig. 3.2.1 : Old way for travelling

Conventional Software
Management

59

Project Management

60

See the above picture in which a tempo travels on the road which is full of
rocks and water. Tempo is heavily occupied with some containers and
driver has overburden to drive the tempo till his destination.

If we compare the above example with software, it follows conventional
Software project Matrix (SPM), and it includes the Waterfall models and
Software Management performance which having various difficulties
towards the achieve software goals.

Fig. 3.2.2 : Comparison between old way and new way

As differentiation in above both figures, we make some points as
= Old roads are fullo frocks whilene ware smoot plane.

< Old roads are having water and hence sleepy are a while new roads
having provision of the water circulation.

= New roads having in dicators to destination which cannot in older
roads.

= Various provisions such as street lights, road divider are available with
the new roads.

= Obviously, driver chooses the new way fortravelling.

3.3 THE PRINCIPLES OF CONVENTIONAL
SOFTWARE ENGINEERING

Following are the principles of the conventional software engineering,
which are applicable to software development life cycle phases which
encompasses of the software.

1. Focus onQuality:

Qualitative software always achieve the goods goal son the customer side.
The teams involvedin the designing the software are always have some
goals. Team is made up of several members, which can have different
quality aspects. The software can be made qualitative by making use of
the qualities of each of those members in parallel way. If the lack of
skilled members is used in the making of the software, then it might
degrade the software quality. In that case hiring the skilled quality team

members are essential. Involving customer is another necessary, since
finally he is user of the software. What is right and what is wrong is
considered by his point of viewisveryes sential. Like wise, the team can
inspect the project the goes in smooth handling or not? The prototype used
for that are place better or not? Project has simplified design or not? These
are some questions which gives the high-quality software.

2. RoleoftheCustomer:

End user of the software is always the customer who handle and usage the
software product. When the customer can interact earlier with the software
product, he judges what the problems before and after software product.
He thinks on points;

e Time duration are reduced or not? Cost usages are reduced or not?
e How automation comes in picture?

e What kind of relaxation he has after software is in his hands? Which
situation is better, current or earlier?

e Is the workload being really minimize? And so on

Answers of the all above questions are put by customer if and only if
when he plays the software earlier.

1. Quality Software: Various parameters are there by which software
maintains its quality. For example, we had taken in above point,
which is involvement of customer in the quality consideration of the
software. Other parameters are simple design, taking time to time
inspection and appoint quality personals.

2. Finding the Problem: As the old way is fully depends upon the
requirement and the model (water fall model) which we use din the
old way is also called as ‘Requirement-Driven Model’.But also
defining the problem before the collecting and writing the
requirement is very essential since most cases solution as per
requirements are there but might be that solution can be in longer
way. Since whatever alternative solutions are the re that are also
comes into the picture. And this is done only when‘exact problem is
front of the software team’.

3. Model Designing: When architecture can design the building, before
to that he makes plan and afterword he follows that plan for make
successful construction. The same process here in the software
modeling that means project has some rules and regulation that are
binds with some corporate culture. Ready to accept the riskfactors.

4. Solution with alternatives way:When wediscuss about the ways
there are lots of ways from source to destination and traveler always
thinks that which way is fruitful for him. Here the meaning of the
fruitful is that safety, short distance, less costly etc. Likewise in case
of the software designing, it cannot bind with state forward way it has
some alternative. That entire alternative must be proven at the time of
writingalgorithms.

Conventional Software
Management

61

Project Management

62

10.

11.

12,

13.

14

Various Languages for different functionality: There are so many
solutions available today which converts the complex and difficult
task to easier way. Various different principles are used to solve such
complex problem. But user has satisfied is the lastmotive.

Closerto real world problems:Whenever all the real problems are
satisfied then and then onlyreal-world problems are solved. This is
done by minimizing intellectual distance.

Right best than Rapid: Rapid solution is always happy to customer.
He thinks how his work rapidly goes on. But parallel to that it is also
check that the job done is right way ornot.

CodeChecking: Software testing is more concern about the users at is
faction More sophisticated way is that inspecting the overall design
and codes for finding the errors withinit.

Managementv/sTechnology: Aswecomp are management and
technology, technology requires the lots of resources then and then
only it goes smoothly, best technology cannot compensate for poor
management. But the quality of good manager is handling to poor
management also in efficient way for producing the best results. Best
manager handles his overall team to motivate the job. In other words,
the best management is always better than best technology.

Human resources are Success key: The skilled work is not judged
based on the proper and sufficient tools, technology desire language
and the process which is used. It is based on the skillful person who
knows the exact solution for the problem. This is not happened with
the unskilled person or we can say that wrong person even if we
provide him best technology, proper tool etc.

Curiosity handling: Whatever happening is might be correct, the
answer may be appropriate, but if we cannot handle the processing
very careful as per the environment which is not beneficial.

Responsibility Handling: As leader taking initiative in the
managerial work is the most important task for the Management, like
that at the time of the software designing, coding engineer must be
taking initiative in taking the responsibility.

Know the Customer Satisfaction: The final product is handling by
the customer. He is the end user of the product. What is actual his
need, is very essential fact in case of the designing that product.
When customer makes confirm with that product then and then only
product designer has made success. In this case at the initial stage, it
is important to that customer understand the customer priorities. The
late delivery of product is might be good thing but the earlier delivery
of product with wrong or less functionality is always wrong.

Innovations are always welcome: As per user requirements product
are done, is ok with the user satisfaction. But word happy is more

15.

16.

17.

fruitful as compare with word satisfied. Whatever more functionality
with new innovations is provided to the customer he is wants that
much performance via the product.

Change becomesslowly: The new innovations are not directly
accepted by the customer. If the product is new brand with variety of
innovation the customer has thought he is in risk to accept that
product. He doesn’t know about that product, whether that productis
really good or not. So, there must be follow some basic facts which are
customer previously known. Afterword new applications or algorithms
may be produce with that only. Since new things may not be easy at
the firsttime.

Design for change: As we renew our house, when there is function in
house. As we feed of that renovation like that the architectures,
components and specification techniques must be change within the
software.

Essentiality of Documentation: Suppose one of the civil engineers
complete the work of the bridge on the other road and after finishing
the work he said that “I done bridge, now I see by paperwork that
bridge has really good condition with that much columns”. This is
funny statement (Too much risky) since paperwork as drawing,
checking is essential before to building that bridge. The height of that
bridge might be passing down the truck.

Fig. 3.3.1: Problematic bridge for large vehicles

Conventional Software
Management

63

Project Management

64

18.

19.

20.

21.

22.

23.

24,

25.

26.

Same to that, designing completed without documentation is not the
proper work at all.

Tools for its practical: Byusing software project customer has
comfort in his work is a fact. Like if we are use Microsoft Power
Point for mock presentation then it is reliable, we will use word for
typing the book.

Ticks-less always better: At the time of self-learning tricky
programming is very essential for logic building. Some of the
programmers are love to make tricky programming. But at the
customer point of view, tricks are not better even if it is better for
programmer or designer to do smart logical programming with less
trickycodes.

Encapsulation: Encapsulation is the wrapping the several materials
in single unit. By using that information to be hidden in simple way.

Coupling and Cohesion: What kind of maintain ability and a
daptability, in heritsin software measured by the coupling and
cohesion.

McCabe complexity measure: Even thought here are many number
of metrics available to track and report the inherent complexity of
software, but none of them is as intuitive and easy to use as Tom
McCabe’s. There fore, use of McCabe complex ityme as ure is
insisted.

Test by Others: Asweknow customer is enduser of the software,
heputshisre quirements in front of the software engineer. Software
engineer afterword makes a plan for designs and developing. Once
software completes then it is essential to test it to various different
reasons. If we design and develop the software then we cannot test
its own since software developers cannot test their own developed
software. The reason is end user can handle software, whatever
problems he faces earlier is minimize or not, is cannot judge by the
software developer, since that testing is must done by the other
person.

Findout Cause of the error: The bug which is either small or large,
removing that is very essential. When we think about the thought
‘prevention is better than cure’, software logic is same to that, errors
finding is most important task since, when we analyze them and
prevent them it is cost effective method. When error is detected then
and then only it is fixed, since this is analyzing method.

Software’s entropyincreases: Any software system that under goes
continuous changes in it will surely grow in complexity and becomes
more and more unorganized and abundant.

No relation between People and Time: If we consider the people,
who are engaging in the completion of working then they are not

27.

depends on the time parameter. For example, if three people can
finish the software development in one month, that cannot indicate
that, they have ready 12 projects in one year. In other words, we say
that, time and people are notinterchangeable.

Expertexcellence: We can produce good jobs (products) from our
team. What ever final success is totally depending on our expertise
team. Since here when we have more expectation from our employee
then and then only our employee makes betterwork.

3.4

PRINCIPLES OF MODERN SOFTWARE
MANAGEMENT

As per Davis format there are 10 principles of the modem management.
These principles are placed in priority-wise as below;

1.

Architecture First Approach: The design architecture primarily and
the lifecycle plan. Afterword resources should be finalized for full
scaledevelopment.

Builditerative lifecycle process: In the latest software industry it is
not possible that fixed whole problem, as per that problem generate
designs whole, make entire software and finally test it that means
whole in proper sequence. In the iterative process problems can be
rectify previously and give proper solution for that. Most of the risks
are known earlier, which is useful for increasing predictability and
use to avoid expense of repetitive work.

Component Based Development: Ascustom development is possible
rat her than human generated source code then it is possible to move
on line of code generation to component-based code generation. Since
component consists of executable format predefine source code.

Change Management Environment: Changeine very factisessential,
it is giving the dynamiciterative model. If we use different - different
peoples or teams for the same job then that is workflow follows the
change management environment.

Round Trip Engineering: Automation in every sector of software is
very essential since without to that automation bookkeeping,
changing, designing, documentation, coding and finally testing is
difficult. In iterative process change liberty is essential. These are the
top 5 principles in software management. Following figure depict it in
brief idea.

Conventional Software
Management

65

Project Management

66

Architecture first approach & Central design

Production and test after design and integration

lerative lile cyde process Risk managemant
Increasing function, performunce and guality contred nsk
Component based development B Tachnolagy
Object onented methods rigorous notation visual modeling
Change management environment - Contralling

Meircs, trends | process mstrumentation

Round trip enginearing X Automation

Complementary tools, mtegrated environments

Fig. 3.4.1: Principles of software management

(i) Model Based notation

Develop design artifacts using model-based notations. This makes the
reviewing easy compared to the inspection process.

(i) Objective Quality Control

The quality can be controlled by assessing the progress. Once the
assessment is over, it is integrated with the development process.

(iii) Demonstration based Approach

This approach is used to assess intermediate artifacts. This approach is
generally applied to early prototypes, baseline architectures, and early
releases.

(ivy Evolvinglevelsofdetails

Using these evolving levels of details, the intermediate releases are
planned so as to allow early and continuous releases. And these releases
are accompanied with corresponding use-cases and scenarios.

(v) ConfigurableProcess

A configurable process is adopted that is economical and is scalable across
a wide range of projects.

3.5 TRANSITIONING TO AN ITERATIVEPROCESS

First of all, we have a question i.e., why waterfall model (which is
traditional model in the software engineering) is no longer used? The
answer is that, in waterfall model, each phase depends on the previous
phase. It indicates that, the output of one phase is input for the next
consistent phase. The latest modern processes depend upon the initial
version of the system. E.g., Spiral, Increments, Generations, Release.

Drawbacks of the Waterfall Model are as follows:

1. Real products rarely follow this sequentialflow.

2. It is very difficult for customer to state all the requirements in
onetime.

w

Many projects face this requirement uncertainty at beginning itself
and so it is very difficult to design nextphases.

4. Time span required for each phase could not bespecified.
5. Naturally project requires moretime.

6. Project becomes lengthy also.
7

. Customer should have patience.
Iterative Process:

e It can also be called as Incremental Process Model and the basic idea
is that the software is developed in increments, where each increment
adds some functional capability to the system until the full system
isimplemented.

e In iterative enhancement, extensions and design modifications in the
project can be made at each step.
Need of Iterative Process:

e The iterative life cycle model removes the limitations of the waterfall
model and tries to combine the benefits of both prototyping and the
waterfallmodel.

e The iterative process models combine the elements of waterfall
models applied in iterativefashion.

1. It adapts all the phases of waterfallmodel.

N

It accepts linearprocess.

Conventional Software
Management

67

Project Management

68

3. It tries to solve one by one problems of the customer, or it
accomplishes one by one requirement of the user, which is called as
incrementaliterations.

4. Generally, first increment is nothing but core product of thecustomer.

5. As time grows, it is incremented from one requirement to next
requirement or simultaneously it performs both the requirements (i.e.,
old requirement as well as starts new requirements)

Advantages of Iterative Process:

1. Allows early development of initial versions.

2. Risk areas are addressed early in project life cycle phases.
3. Several iterations are developed.

Examples: Incremental model, Rapid Application Development model
(RAD), Spiral model

1. It can result in better testing, since testing each increment is likely to
be easierthan testing entire system like in the waterfall model.

2. Asinpro to typing, the increment provides feedback to the client,
which is useful for determining the final requirements of the system.

Review Questions

Q. 1 Discuss the parameter which are used for economic development.
Q. 2 How conventional software model focuses on Quality?

Q. 3 Explain Role of customer in conventional software engineering.
Q. 4 Explain S principles of modern software management?

Q. 5 What are drawbacks of waterfall model?

Q. 6 Why iterative process is needful? What are its advantages.

LIFE CYCLE PHASES

Unit Structure

4.1 Software Process

4.2 Generic Process Model

4.3 Personal and Team Processmodels
4.4 Prescriptive Processmodels
4.5 Life Cycle Phases

4.6 Inception

4.7 Elaboration

4.8 Construction

4.9 Transition

Syllabus:

Engineering and Production Stages, Inception, Elaboration, Construction,
transition Phases

4.1 SOFTWARE PROCESS

A software process identifies a set of activities that are applicable to the
development of any software project, regardless of their size or
complexity. A software process is a collection of work activities, actions
and tasks that are to be performed when some software project is to be
developed.

Software process can be categorized into:

1. Generic Process model - represents a framework activity populated by a
set of software engineering activities.

4. Personal and Team Process models - This model helps in creating a
software that best fits either the personal needs of the user or that
meets the broader needs of a team.

3. Prescriptive Process models - provides an ordered structure and an
effective roadmap to software engineering work.

69

Project Management

70

4.2 GENERIC PROCESS MODEL

This model defines a set of umbrella activities which are also a must for
any software engineering process as shown in the below figure.

A Software I‘Im\ 55 Frs “"(.“r”‘ll\.

‘ | Umbrella Aetivities
[| Software Project Tracking and Control, Risk Management
‘ | Software Quality Assurance, Formal Technical Reviews, Measuremet,
|
I
|

Soft vare Configuration Manzagement, Reusability Management. Work
| | Produet Preparation & Production

-

S |
Framework Activities !
Communication, Planning, Modeling, Construction, Deployment

\ SE Actions - encompasses few t.u.l.s |

| | | Work Task, Work Products, Quality Assurance, { |
4| | Project Milestones |

| | -------- —_— ‘
L

Fig 4.2.1: A Software Process

f__'_'__:: =

Again, each framework activity contains a set of software engineering
activities which is a collection of tasks that develops a major software
product.

4.2.1 Framework Activities

First, we take a look at the generic process framework activities that are
must for the development of any software project:

e Communication: The main cause of communication is requirement
gathering. This activity establishes sufficient interaction or collaboration
between the developer and the customer for gathering the requirements
and knowing the expectations of thecustomer.

Example: we can explain the work task regarding the communication
activity of a simple projectas listed below:

o Making the list of the end-users, software engineers and support
people for theproject.

o Inviting all of them for an informalmeeting,

o Ask each end-user to make a list of features and functionsrequired,
o Discuss these requirements and prepare a finalist,

o Arrange the requirements according to their priority,

o Note the areas of uncertainty.

e Planning: This activity defines the software development process to
be conducted. It describsall the needed technical tasks, possible risks, the
resources that are required, the work product to be produced and the
schedule to work out the whole process. This activity plans the work,
identifies the resources, tasks and sets the schedule.

e Modeling: This activity creates a model (blueprint) which clearly
describes the software requirements and the design that will achieve these
requirements. This is helpful to both customer and the developer
respectively, to understand what he wants from the software and how he
can develop it. Modeling is composed of two main activities-analysis
(requirements gathering, elaboration, negotiation, specification and
validation) and design (data design, interface design and each module
leveldesign).

e Construction: This activity includes code generation either manually
or using automated tools and then testing the code to correct the errors if
any.

« Deployment: The software (as a complete product or in a partial
stage) is delivered to the customer who then checks the product and
provides feedback on evaluation. The framework activities are applied on
every project but the degree of tasks depend on the:

o Type of the project
o Characteristics of the project

o Agreement of the project team on common views.

4.2.2 Process Iteration and Activities

The above framework activities discussed in sec 4.2.1 occur in an
organized pattern with respect to sequence and time. This work flow
pattern of the activities is termed as ‘Process Flow'

1. Linear Process Flow: Executes the five framework activities in a
sequence starting with ‘communication’andendingwith‘deployment’.

: 1 1 o
| Communication |—v-| Planning Modeling]—-i Censtruction]—

Fig. 4.2.2: Linear Process Flow

2. Iterative Process Flow: Repeats one or more of the five framework
activities before proceeding to thenext.

Life Cycle Phases

. R

Fig. 4.2.3: Iterative Process Flow

| Communic .|1|-::n—|—p-l Planning |—+I Modeling I—hl_l:.-'_-n:q'.:(:1||_'-r' }—‘-l Deployment
-t - — —

71

Project Management

72

3. Evolutionary process Flow: Executes
activitiesina “circular/cyclic“manner.

Planning

S
Begin » Communication

Deployment

Fig. 4.2.4: Evolutionary Process Flow

the five frame

Madaling

Con

VElruction

work

4. Parallel Process Flow: At a time, executes one or more activities i.e.
one or more of the five framework activities are executed in parallel with
the other. Say, modelling of one module is executed parallel to the

construction of another module.

Communication

Planning

w

Modaling

Construction

Deployment

Fig. 4.2.5: Parallel Process Flow

4.2.3 Umbrella Activities

Now, we look at the Umbrella activities that are applicable throughout
the software process:

= Software Project Tracking and Control: Software teamassesses the
progress of the project plantime to time and takes necessary action to
maintain the schedule. Thus, software team tracks and controls the
projectschedule.

= Risk Management: Software team assesses the risks that may affect
the out come of the projectorsay the quality of the product.

- Software Quality Assurance: Software team defines and conducts
the activities needed to preserve the quality of the software product.

= Formal Technical Reviews: Software team assesses the technical
efforts to find and remove the errors before they are forwarded to the
nextaction.

= Measurement: Just the coincidence is the four P’sof Software
Engineering: Project (the taskat hand), Process (the manner it is done),
Product (the object produced) and People (by whom it is done).
Software team collects all the project, process and product measures so
that it can be used in combination with all other framework and
umbrella activities.

= Software Configuration Management: Software team takes essential
steps to manage theaf fects of changes made throughout the
softwareprocess.

= Reusability Management: Software team defines criteria for work
product reuse and establishes mechanisms to achieve reusable
components.

= Work Product Preparation and Production: Encompasses the
activities required to create work products such as models, documents,
logs, and forms and lists.

4.3 PERSONAL AND TEAM PROCESSMODELS

» The whole process of developing aproduct through out the project is
handled by the people working on it.

* The software process can either be personal or teambuilt.

* Some small hardware or software products can be developed by
individuals (personals), but the scale and complexity of modem systems is
such, and the demand for short schedules is so great, that it is no longer
possible for one person to do most engineering jobs. Systems development
is a team activity, and the efficiency of the team largely decides the
quality of theengineering.

Life Cycle Phases

73

Project Management

74

4.3.1 Personal Software Process(PSP)

= The PSP provide sengineers with adisciplined personal frame work for
doing software work.

 This personal frame work of PSP model consists of five
mainactivities:

1. Planning:

This activity isolates and defines the requirements and based on these,
develops the size and resource estimates and also identifies the probable
defects. All these metrics are recorded on worksheets, first they are
analyzed and then finally the development tasks are identified and the
project schedule is created.

2. Highleveldesign:

This activity identifies the external specifications needed to construct each
component and accordingly the design is created. And when there is
uncertainly, the prototypes are built.

3. Highleveldesignview:

This activity performs the verification methods to find and remove the
errors in the coding or design.

4, Development:

Every module (component) design is reviewed in detail. Accordingly, the
corresponding code is also generated, reviewed, compiled and tested so as
to achieve ‘zero-defect’ product.

5. Postmortem:

All the four activities described above are controlled, tracked and recorded
time to time properly on the worksheets. Using the information collected
from the above activities, the effectiveness and the quality of the software
development process is determined. This information helps insuggesting
any changes in the process, if required, so as to improve the software
quality.

The PSP helps software engineers to:

e manage the quality of their project

e make commitments they can meet

e improve their estimating and planning skills

e reduce the defects in their work and ultimately in their product. This is
achieved through a rigorous assessment of all activities done by the
software engineer.

The goal of PSP is to help developers produce quality and zero-defect
products on time. For example; Motorola division in Florida achieved
zero defects in over 18 projects through implementing PSP technique.

The PSP is a prerequisite for an organization i.e. planning to
introduceTSP.

The PSP can be applied to many parts of the software development
process such as:

¢ small-program development
e requirement definition

e document writing

e systems tests

e systems maintenance

e enhancement of large software systems

4.3.2 Team Software Process(TSP)

The common definition for a team:

A team consists of at least two people.
The members are working toward a common goal.

Each person has a specific assigned role which avoids conflict between
the team members, avoids duplicate work and time wastage.

Completion of the mission requires some form of dependency among
the group members. Each team member depends to some degree on the
performance of the other members. Interdependence improves
individual performance because the members can help and support
each other.

The goal of TSP is to build “self-directed” project team that organizes
itself to produce high quality software. The objectives of TSP are to:

Build self-directed teams that plan and track their work, establish goals
and own their processes and plans. These can be pure software teams
or integrated product teams of 3 to about 20 engineers.

Provide a simple process framework based on the PSP.

Show managers how to coach and motivate their teams to sustain peak
performance. Use modest, well-defined problems.

Develop products in several cycles.

Establish standard measures for quality and performance. Provide
detailed role definitions.

Use role and team evaluations. Require process discipline.

Life Cycle Phases

75

Project Management

76

¢ Provide guidance on teamwork problems.

e First version of the TSP process was developed in 1996 by Watts
Humphrey. His objective was to provide an operational process to help
engineers consistently do quality work.

TSP helps the engineers to:

» ensure quality software products

» create secure software products

* improve process management in an organization

Each project is launched using a sequence of tasks that enables the team to
establish a solid basis for starting the project. The TSP launch process
includes below tasks:

 establish product and project goals

» define and assigning team roles

* assess risks

* develop the quality plan and set quality targets

* plan for needed support facilities

» produce an overall development strategy

* make a development plan for the entire project

* make detailed plans for each team member for the next phase

* merge the individual plans into a team plan

» rebalance the team workload to achieve a minimum overall schedule

+ Assess project risks and assign tracking responsibility for each key
risk.

+ After the launch, the TSP provides a defined process framework for
managing, tracking and reporting the team's progress.

4.4 PRESCRIPTIVE PROCESSMODELS

Definition: Prescriptive models define a discrete set of activities and
actions to accomplish all tasks of the software with milestones, which is
used to develop the software. These Process models may not be perfect
but they give very good guidance in software development process.

Uses

It is used by

1. Software engineer.

2. Manager.

3. All employees who play important role to develop the software.

Importance Life Cycle Phases
This model is important because,

1. It provides stability

2. It provides control for well organization activity.

3. Itis also referred as rigorous model.

Steps

This model takes following steps:

1. This process guides software team.

2. It generates frame work activities to organize into a process flow.
3. Process flow may be linear or incremental or evolutionary.

4. The terminology of each model is different.

Work product

The work product is the programs, documents and data that produce a
sequence of activities as well as task defined by the system.

Ensure

This mechanism determines the maturity of the software using quality,
timeliness and long-term validity of the product.

The best indicators are the users who use the product and judge the
efficiency.

The prescriptive model also called as a conventional process model. In
short...

1. It describes a unique set of frame work activities.

2. It should populate framework activities to set a software engineering
action.

3. These actions are used to create work product to accomplish to meet
development goal.

4. Tt finds out- the nature of project, whether is suitable for the people
using it, whether itis suitable for the environment, where it is
implemented.

5. Framework activities are communication, planning, modeling,
construction, and deployment.

6. It prescribes a set of process elements, framework activities, software
engineering actions tasks, work products quality assurance, change
control mechanism of each project.

Examples: The various prescriptive (conventional process) models are
waterfall model, incremental model, rapid application development model,
prototyping model and spiral model.

77

Project Management

78

4.5

LIFE CYCLE PHASES

Mostly, all software development process overemphasizes either on:
1) research and development or on ii) production.

But, characteristic of a successful software development process is
achieved by a proper separation between 1) '"research and
development" ii) activities and "production"activities.

Projects developed under the conventional process have a very precise
project milestone when there is a transition from a research step to a
production step. The initial phases focus on achieving functionality
and the later phases focus on achieving a product that can be delivered
to the customer, with special attention on the product “robustness,
performance, and finish.

Similarly, the modern software development process must be defined
to support the following in-order to achieve successful software
development process:

Designing the plans, requirements, and architecture, together with
well-defined clear and precise points,

Managing the risks and measuring the objectives to achieve quality.

Developing the system capabilities by increasing the system
functionalities.

4.5.1 Engineering and ProductionStages

To achieve higher returns on investment, there is a need to adopt such a
software manufacturing process which is driven by technological
improvements in process automation and component- based development.

The two particular stages of the life cycle are:

1.

The engineering stages are less predictable and have smaller teams
involved in design and synthesis activities. It focuses on risk
reduction, prototyping, establishing architectural baseline, analysis,
design, and planning.

The production stages are more predictable and have larger teams
involved in construction, testing, and deployment activities.

Table 4.5.1: Two
Production

Life-Cycle Aspect

Stages of the Life Cycle -

Engineering and

Focus of Engineering Stage

| . H = .
| Risk reduction

| Schedule, technical feasibility

i Products

Activities

[.
| Architecture baseline

Analysis, design, planning

Assessment

Demonstration, inspection, analysis

| Focus of Production
Stage

Cost

Product release baselines

Implementation, testing

Testing

Economics

Resolving diseconomies of scale

Management

| Exploiting economies of

| scale

| Planning

|l Operations

Engineering stage is carried out in two distinct phases - inception and
elaboration Similarly, Production stage is also carried out in two distinct
phases - construction and transition.

All these four phases of the life-cycle process are loosely mapped into a
conceptual framework of the spiral model as shown below;

| Engineering Stage

Engineering Stage E

[|
| Inception IEIdt:L]FH!I-’.}I'I

G{un:“tm'.:t'r::-n[Transition i

| | Ao RN
|/?"-$" (f {\"\l i f \\I \
\SE)) 69 175t M H
; \‘_‘{:_ij Q_\‘“if?_f TR]
| T | g2
| ldea i Architecture ;Beta rl:i[la‘.‘;U.‘;; Froducts

Fig. 4.5.1: Four Phases of a Life Cycle Process

These life cycle phases are very widely practiced and adopted in the

industries.

4.5.2 Features of Life Cycle Phases:

* The most important feature/idea is Iterative Development. Iterative
Development is sequentially expanding and refining a system through
multiple iterations, using feedback and adaptation.

» Each phase has iterations, each having the purpose of producing an
executable piece of software. The duration of iteration may vary from

phase tophase.

Life Cycle Phases

79

Project Management

| teration | | teration | [Meration |
GG

Fig. 4.5.2: Four phases of Iterations

« It is a lightweight process addressing the needs of small projects -to
more comprehensive process addressing the needs of large projects.

e It helps in early and continuous documentation of the most urgent and
the most probable risks by proper planning and keeping a follow up.
This helps in mitigating the risks at early phases of software
development.

< It also uses visualization methods such as an UML to build models so
as to understand the complexity of the system.

« [talsousesuse-casesastestcaseswhichallowsend-
userdocumentationandhelpsindesigning.

4.5.3 Advantages of Life Cycle Phases:
It emphasizes on addressing very early high risks areas.

It does not assume a fixed set of firm requirements at the inception of the
project, but allows refining the requirements as the project evolves.

It does not put a strong focus on documents.
The main focus remains the software product itself, and its quality.
4.5.4 Drawbacks of Life Cycle Phases:

It fails to provide any clear implementation guidelines, leaves the tailoring
entirely to the user.

4.6 INCEPTION

Inception means start i.e.; this is the point where the project is proposed.
Goal of Inception:

* To achieve concurrency among the stakeholders of the system on the
objectives decided for the project.

Objectives of Inception Phase: It constitutes of Business modelling i.e.

80

Define the problem: The objectives of the project are stated, so that
the needs (requirements) of every stakeholder are considered.

Define the scope of the system: The Scope and boundary conditions,
acceptance criteria and some requirements are established such as
what is and is not expected to be in the product. External entities
(actors) with which the system will interact are identified and the
nature of the interaction is defined on a high-level by identifying all
use cases. It also includes identifying the business case i.e. identifying
the success criteria, risk assessments and estimation of the resources
needed and a phase plan showing dates of major milestones.

Separate the vital use cases of the system and the main scenarios of
the operation that may drive the major design trade-offs.

Demonstrate at least one candidate-architecture against some of the
primary scenarios.

Estimate the cost and schedule needed for the entire project.

Estimate the potential risks i.e. the sources that may cause
unpredictable problems.

Initiating the Project: And then, you can start working on the project.

Activities in Inception Phase:

To define the project scope: The scope of the project is defined in the
SRS (Software Requirement Specification). This also defines the
problem and derives the acceptance criteria for the proposed product.

To develop the architecture: The SRS must reveal the feasibility of at
least one candidate- architecture and also must define an initial
baseline of decisions so that the required expenditures (cost),
schedule needed for development and delivery, and required
resources can be estimated.

To plan and prepare a business case : This involves the evaluation of
the alternatives proposed for risk management, staffing, iteration
plans, cost,/and schedule/profitability.

Evaluation Criteria:

Do all stakeholders agree on the defined scope and cost and schedule
estimates?

Are requirements precise, clear and understood as defined in the use
cases?

Are the cost and schedule estimates, priorities, risks, and development
processes realistic?

Life Cycle Phases

81

Project Management

82

Does the depth of an architecture prototype define the preceding
criteria? i.e., does it provide a vehicle for understanding the scope and
assessing the efforts of the development group in solving particular
technical problem.

Does actual resource expenditure match approximately with planned
expenditures?

Feasibility Study in Inception Phase:

(]

A new project is started when a new business need is identified or a
new service is discovered. Stake holders of the business (business
managers, marketing people, and product managers) define a business
case for the idea, try to identify the breadth and depth of the market, do
a rough feasibility analysis, and identify the project scope. All this
information is enough to discuss with the software engineer to start a
project.

The feasibility study made by stakeholders can be as below which
decides whether or not the proposed system is useful. The study
checks:

Will the system add to organizational benefits?

Can the system be engineered using current technology and within
budget?

Can the system be integrated with other systems that are used?

Interviewing the Customers and Users in Inception Phase:

At project Inception time, software engineers ask some questions to the
people in the organization based on the information collected:

What if the system wasn’t implemented?
What are current process problems?
How will the proposed system help?
What will be the integration problems?
Is new technology needed?

What facilities must be supported by the proposed system?

The need of these questions is to find:

o

The effectiveness of collaboration between the customer and
developer,

Basic understanding of the problem,
Who will use the solution?

The desired nature of thesolution.

Inception Outcome:

Vision document

Initial use-case study (10%-20%complete)
Initial business case

Initial risk assessment

Project plan

Stakeholders decide whether to commence a full scale project ornot.

4.7 ELABORATION

Elaboration means refinement (careful development). This phase is the
end of "engineering” stage.

In this phase, an executable architecture prototype is developed in one
or more iterations depending upon the scope, size, &risk.

Elaboration is about creating an analysis model that defines the
informational, functional and behavioral aspects of theproblem.

The main task is to describe the problem in a way that establishes a
firm base for designing a model.

Elaboration focuses on expanding the information (i.e. obtained from
inception and elicitation) and then developing a refined technical model of
software functions, features and constraints (i.e. restrictions or limitations).
This process is composed of various modelling and refinement tasks.

Different models may be produced during this activity depending on
the relationships and collaboration between the various business
domain entities.

From the designed model, it would be easy to judge if the efficiency of
workflow of the system is as it has been imagined.

Goal of Elaboration Phase:

This phase gives you a mile wide and inch deep view i.e., little bit
deeper view of the system.

Detailed analysis of the problem resulting in the definition of an
architectural foundation for the project. It constitutes of requirements,
analysis and design phases.

This phase ensures that:

* the architecture, the requirements, and the plans are defined and
there is no change now;

« the risks are traced and fixed;

Life Cycle Phases

83

Project Management

84

 the schedule for completion of development is predicted within an

acceptance criterion.

Objectives:

baselining an architecture as rapidly as practical
baselining a vision
baselining a sound plan for the construction phase

Representing that the baseline architecture supports the vision at a
reasonable cost in a reasonable time

Activities in Elaboration Phase:

Detailing the vision.
Detailing the process and infrastructure.
Detailing the architecture and defining the required components.

Eliminate the highest risk elements of the project.

Evaluation Criteria:

Is the defined visions table?
Is the defined architectures table?
Are the major risk elements eliminated from the process?

Is the construction phase plan reliable and are the required estimations
done?

Do all stakeholders agree that the current vision can be achieved by
following the current plan for developing the complete system in
context of the current architecture?

Does actual resource expenditure match approximately with planned
expenditures.

Elaboration Outcome:

Use-case model will be 80%complete.

Additional requirements capturing the non-functional requirements
and requirements not associated with a specific use-case are identified.

Description of the Software Architecture.
An executable architectural prototype is developed.
A revised risk list and revised business case is developed.

A development plan of the whole project. This defines the iterations
and evaluation criteria needed for each iteration and also the process
i.e. to beused.

4.8 CONSTRUCTION Life Cycle Phases

Construction means to build i.e., it is a manufacturing process. Aim of
Construction Phase: It constitutes of implementation i.e. detailed design
and construction of source code.

Objectives of Construction Phase:

* To minimize the software development cost by reducing the required
number of resources and avoiding the unnecessaryrework.

* To achieve enough software quality as fast aspossible.

* To keep track of program versions (such as the alpha, beta, and other
test releases) as fast as possible.

Activities in Construction phase:

* Emphasizes on managing resources and controlling operations to
optimize costs, schedules and quality. This phase is broken into
severaliterations.

* In this phase, all the remaining components and the remaining
application features are integrated into one application and then all the
features are thoroughly tested after the integration.

» Assessing the product releases against acceptance criteria of thevision
Construction Outcome:

* An executable product that is ready to put in the hands of the endusers.
* The software product integrated on the adequate platform.

* A usermanual.

» Description of the currentrelease.

» This is considered as a betarelease.

Evaluation Criteria:

» Is the product baseline stable enough so as to be deployed on the
userside?

* Are the stakeholders ready for transition of the product on to the
userside?

* Does actual resource expenditure match approximately with
plannedexpenditures?

85

Project Management

86

4.9 TRANSITION

Transition means delivery. The transition phase is the phase where the
product is put in the hands of its end users. This phase is entered when the
product is mature enough to be deployed on the enduser’s site.

Goal of Transition Phase:

It constitutes of deployment i.e., delivery of the system to the user
community. It involves issues of marketing, packaging, installing,
configuring, supporting the usercommunity, making corrections, etc.

Activities in Transition Phase:

* Deliver the software product to the usercommunity.

» Issue newreleases

» Correcting problems (ifany)

* Finish the features that werepostponed

» Perform beta-testing to validate new system against userexpectations

* The system might run in parallel with a legacy system that it
isreplacing

* Training of usermaintainers
* Roll-out the product to marketing, distribution, and salesteam

Objectives:

» Achieving user self-supportability

» Achieving stakeholders® agreement that deployment is complete
andconsistent.

The transition phase ends when the deployment of the product achieves
the complete positive agreement of the customers and users.

Evaluation Criteria:
* Is the customer and user satisfied?

* Are actual resource expenditures versus planned expenditures
acceptable?

* Does actual resource expenditure match approximately with planned
expenditures?

Transition Qutcome:

+ Matured enough product that can be deployable on user “ssite.

4.9.1 Six Best Practices Life Cycle Phases
Life Cycle Stages is built on the “Six Best Practices” :

1. Develop iteratively:

» Software must be developed in small increments and short iterations.

* An iterative process breaks a development cycle into a sequence o f 4
phases each of which includes a series ofiterations.

2. Manage requirements:

» It allows accommodating requirement changes in system development
strategy.

* Those requirements that change over time and those requirements that
have greater impact on project goals are identified.

» It is a continuous process to identify requirements.
* Managing requirements include:

o Elicit, organize (according to the priority), and document the required
functionalities and constraints,

o Evaluate the impact of change sand
o Track and document the decisions.
3. Use component architecture:

» The process focuses on early development and design of independent
executable modules, prior to committing for full-scale development.

» Components that are most likely to change and components that can
be re-used are identified and built.

4. Model visually:

* Models must be built using visualization methods like that of the
UML, to understand the complexity of the system.

* This helps you to understand the different aspects of your software
and see how the different elements of the system communicate with
each other.

* Maintains uniformity between design and its implementation.

* Promotes unambiguous communication between developer and end-
user.

5. Verify quality:

* Quality of the software is maintained by its frequent testing.

87

Project Management

88

Testing is done to remove defects at early stages, thus reducing the
cost at later stages. In particular, high risk areas are tested more
thoroughly.

The software released at the end of every iteration is tested and
verified.

Test cases are created based on use cases (and its scenario).
Decisions are made on real test results.
Control changes:

Any changes to requirements must be managed and their effect on
software should be tracked.

All change control goes through the convener of the CCB (Change
Control Board).

Members of CCB can be representatives from different areas, say: test
designer, project manager, system analyst or stakeholders.

Review Questions

Q.1
Q.2
Q.3

Define the software process.
List out the Software Process Framework Activities.

List out the Software Process Umbrella Activities.

Q. 4 List out the different life cycle stages and what happens in those

stages.

Q. 5 Describe the four phase in the Life cycle

Q.6 Explain generic view of process.

Q. 7 Explain PSP and TSP.

Q.8

State the six best practices followed in the life cycle stages.

O O O O
AXEX R X X g

ARTIFACTS OF THE PROCESS

Unit Structure

5.1 The Artifactsets

5.2 ManagementArtifacts
5.3 Engineering Artifacts
5.4 Pragmati Cartifacts
Syllabus:

Artifacts of the process: The artifact sets, Management artifacts,
Engineering artifacts, programmatic artifacts.

5.5 THE ARTIFACTSETS

To manage the complete development process of a software system, there
is a need to collect and organize the distinct sets of information. These
organized distinct sets are known as artifact sets. Artifacts involve the
cohesive information that is generally developed and reviewed as a single
entity.

The information used in our Life-cycle model that we have studied till
now can be organized in to sets called as software artifacts. It can be
organized into five distinct artifact sets that are partitioned as follows:

1. Management set (ad hoc textualformats),

2. Requirements set (organized text and models describing
theproblem),

3. Design set (models of the solutionspace),
4. Implementation set (programming and associated source files),and

5. Deployment set (machine-process able languages and
associatedfiles).

89

Project Management

90

Englnearng set

Requirements sat Dasign set Implementation sat Deploymeant sat

|

| 1. Vision documant

2.Requirements
model(s)

1. Dasign model(s)

2 Tast model

32 Software 2. Associatad
architecture | compile-tima
dascription | files

1. Source code
baselines exsoutable
basalines

2. Associated
run-tima files

3. Component 3 Usar manual
exacutables

1. Integrated product

Managemant sat

Planning artifacts Operational artifacts

1. Work breakdown structure 5. Release descriptions
2. Business case 8. Status assessments
3. Releasa specifications 7. Software change order database
4. Software development plan 8. Deployment documents
9. Environment

Fig. 5.1.1: Five Distinct Artifact Sets

5.5.1 Management Set

+ The,managementset involvestheartifacts(informationset)associatedwith
processplanning andexecution.

» These artifacts use ad hoc notations, text, and graphics, or any other
type of representations that are required to attain the "contracts" such
as that of:

o Among the project development team (such as the project managers,
architects, developers, testers, marketers, andadministrators),

O Among the stake holders (such as financing authority, users, software
project manager, organization manager, regulatory agency), and

o Between the project development team and stakeholders.

« Artifactsdescribedinthis,managementset canalsoincludetheworkbreakd
ownstructurefortracking :

o The activities andschedule

The financial mechanisms such as expenditures and profit expectations,
The release specifications such as project scope, plan and objectives

The software development plan such as tracking of project process at any
instance,

The status assessments that may include the snapshots of project
progress at anyinstance.

The software change orders i.e. tracking the versions of changed
software modules.

The deployment documents such as the cutover plan and the
trainingcourse

The hardware and software environment that include software
tools,process automation, and documentation.

Artifacts of the ,Management set' are evaluated, assessed,analyzedand
measuredbasedon the:

Stakeholderreview

Changes analyzed between the current version of the artifact
corresponding to its previous versions

Major milestone of the balance described among all artifacts and
specially the accuracy of the business case and visionartifacts.

5.5.2 Engineering Set

The ,.engineering set” includes four types of sets :

l.
2
3.
4

1.

Requirements set,
Design set,
Implementation setand

Deployment set.

Requirements Set:

“Requirement set” artifacts are evaluated, assessed, analyzed and
measured based on the :

Consistency of the release specifications of the “managementset’
Consistency between the vision and the requirementsmodels

Consistency, completeness and the semantic balance between information in
the “design”, “implementation,” and ,,deployment sets“ derived from the
mappings against these sets.

Changes analyzed between the current version of the artifact
corresponding to its previous versions (scrap, rework, and
defectlimitations)

Review of other qualityfactors

Life Cycle Phases

91

Project Management

92

2.

(0]

Design Set:

The models in the ,design set” are engineered using the UML
notations. These design models are essential for achieving the solution.

The “designset’ consists of varied level so fabstraction that represent
the components of the product solution such as the ,Class
diagram'represents the components identities, attributes, static
relationships, dynamic interactions andetc.

“Design set” artifacts are evaluated,assessed,analyzed and measured
based onthe: The internal consistency and quality of the designmodel

The consistency with the requirementsmodels

Translation of artifacts from design set into the implementation and
deploymentsets

The consistency, completeness and the semantic balance between
information in thesesets

Changes analyzed between the current version of the artifacts in
design model corresponding to its previous versions (scrap, rework,
and defectlimitations)

Review of other qualityfactors

ImplementationSet:

The implementationset contains the source code i.e. the programming
languagenotations that describe the implementation pattern of the
components such as their interface or the dependency relationships
andetc.

29

“Implementation set” artifacts are written in human-readable
formatswhich are evaluated, assessed, analyzed and measured based on
the:

Consistency with the designmodels

Translation of artifacts from implementation set into the deployment
set notations such as compilation and linking so as to evaluate the
consistency and completeness among artifactsets,

Executable files assessed against the relevant evaluation criteria. This
assessment is done through inspection, analysis, demonstration,
ortesting,

Execution of test cases that compare expected results with the
actualoutcome.

changes analyzed between the current version of the artifacts in design
model corresponding to its previous versions (scrap, rework, and
defect eliminations)

Review of other qualityfactors.

=

Deployment Set:
The “deployment set” contains:
Userdeliverables

Machine languagenotations
Executable softwareproduct
Buildscripts

Installation scriptsand

Executable target specific data that is required for using the product in
its targetenvironment.

Deployment sets are evaluated, assessed, analyzed and measured
based onthe:

Tests conducted against the user requirements and quality attributes
so as to evaluate the consistency, completeness and the semantic
balance between the artifacts in the twosets,

Tests conducted on the partitioning, replication, and allocation strategies
described in the mapping components of the ,,Implementation setagainst the
physical resourcesof the,deployment system' such as that of
theplatformtype, number, and network topology,

o changes analyzed between the current version of the artifacts in design

(]

model corresponding to its previous versions (scrap, rework, and
defect eliminations)

Review of other qualityfactors

Each artifact set described above has a prime development focus matching
with any one of the phases of the life cycle.

Requirements set is the focus of the inceptionphase;

Design set is the focus of the elaboration phase;
Implementation set is the focus of the construction phase;and
Deployment set is the focus of the transitionphase.

The other set i.e., the ,,Management set' takes a check on the balance
roles. This set also evolves across the life cycle but at a fairly
constantlevel.

Life Cycle Phases

93

Project Management

94

Inception Elaboration ! Construction Transition

fanagament I f I I]

;':"(|Ll rements m

Fig. 5.1.2

Mostly, almost all the software development tools map closely to one of
the five artifact sets.

2.

Management set: scheduling, workflow, error tracking, version
control, documenting, deriving spreadsheets, resource management
and presentation tools

Requirements set: requirements management tools
Design set: design modeling tools

Implementation set: compilers, debuggers, code analyzers, test
coverage analysis tools, and test management tools

Deployment set: test coverage analysis and test automation tools,
network management tools, commercial components (like the OS,
GUI, RDBMS, Networks, Middleware), and the installation tools.

Advantages of Deployment Set over other sets (Deployment set v/s
other sets):

This differentiation is important because the structure of information
delivered to the user is very different from the structure of the source r
code information.

The implementation set consists of the source code whereas the
deployment set consists of executable code.

The quality achieved in the deployment set is really not that attained
in the design and implementation sets because the deployment set
consists of:

Dynamically reconfigurable parameters include any type of run-time
parameters, buffer sizes, color palettes, number of servers, number of
simultaneous clients, and databasefiles.

(0]

Impact of compiler and linker optimizations includes space
optimization versus speed optimization.

Performance issues in case of any type of allocation strategies such as
centralized v/s distributed, primary v/s shadow threads, dynamic
load balancing, hot backup v/s checkpoint/rollback)

Virtual machine constraints such as file descriptors, garbage
collection, heap size, maximum record size, and disk filerotations,

Issues in Process-level concurrency such as the deadlock and
raceconditions,

Impact of varied Operating systems or any other platform differences
on the performance or behavior of the softwareproduct.

5.5.3 Artifact Evolution over the Life Cycle Phases

Each phase of development life cycle focuses on a particular artifact set.
But at the end of each phase, the overall system state will have covered all
the artifact sets as shown in the below Fig.

Engineenng stage Production stage
|"Il_&:|_:[i\1ﬂ Elabomtion Construction { Transition
algls |t 216|5|¢t 2I&1E]¢E 218|6|5
[=|= |4 = =|l=1% === 2 R E=]
Eli|=|E 218 |3|E AHEE glgla|E
EIX]= = Bl =~ | = - =
g£19]5|8 g1215|3 3 §|2 A E
ey = B 5 E s =3 = ¥4 3 -
= g = 3| B g T -ﬂ-- T 0 5
@ 5|2 & o @ o @
1 T %
(i El o == I E
= = | =
r Management ‘ | Management J I Management | i Management J

Fig. 5.1.3

The inception phase mostly focusesontheuser’ srequirements with a
secondary preference oninitial deployment view.

The elaboration phase goes in greater depth in requirements, much
more depth in the design set, and further works on implementation and
deploymentissues.

The construction phase mostly focuses on design andimplementation.

The transition phase focuses on achieving the consistency and
completeness of the deployment set in context of othersets.

5.5.4 Test Artifacts

The test artifacts are developed simultaneously along with the product
since from the inception phase through the deployment phase. That

Life Cycle Phases

95

Project Management

96

means, testing is a complete-lifecycle activity that is conducted
ineachande very phase of the life cycle. That means,

testingisstartedearly inthe development life cycle and it is NOT a late
life-cycleactivity .

* The test artifacts are communicated and developed within the same
artifact sets as that of the developed product.

» The test artifacts are implemented in programmable and
repeatableformats.

* The test artifacts are documented in a similar manner as any software
product isdocumented.

» The test artifact developers/engineers use same tools, techniques, and
training as that of the software developers/engineers use while
developing theproduct.

« Test artifact sets” are veryproject-specific.

Example :

Consider a software system which performs seismic data processing for
the purpose of oil exploration. This project has three fundamental
subcomponents:

1. A sensor to capture raw seismic data in realtime

2. A technical operation to convert the raw data into an organized
database and manage queries to thisdatabase

3. A display subsystem that allows workstation operators to examine
seismic data in human- readable form. Such a software system
derives the following testartifacts:

Management set:

The release specifications describe the objectives, evaluation criteria, and
results of an intermediate milestone. These artifacts work as test plans and
test results among internal project teams. The changes (defects,
enhancements, requirements” ambiguities) in the software and the
entry/exit criteria associated with it are again tested.

Requirements set:

The use cases associated with the system involves the operational
concepts of the system, acceptance test cases, expected functionalities of
the system and its quality attributes. The requirement set is also called as
,Test Artifactbecause it is the base for all the assessment activities
throughout the lifecycle.

Design set:

It includes the test models for non-deliverable components which are used
to test the product. These components include design set artifacts that are a
seismic event simulation for attaining realistic sensor data, a ,,virtual
operator” that will support the unattended and afterhours test cases. It also
includes the instrumentation suites needed for early demonstration of
resource usage, the response time, test case drivers for the whole system
and for the standalone components.

Implementation set:

This artifact set includes the source code representations useful for testing
the components and also the test drivers provide the equivalent test
procedures and test scripts. This source code may also include human-
readable data files representing explicit test source files. The output files
of these test drivers provide the equivalent test reports.

Deployment set:

This artifact set provides the executable versions of test components, test
drivers, and datafiles.

5.6 ManagementArtifacts

e The management set consists of various artifacts that describe the
intermediate results and the associated information that is required:

e To document the product/process legacy, To maintain the product,
e To improve the product, and To improve the process.
e Business Case Artifact:

e This artifact gives all the information that is required to decide
whether the project is worth investing in ornot.

e It describes the expected cost, expected technical and management
plans, and backup data necessary to face the risks and realism of
theplans.

e The main objective is to transform the vision into economic terms
which can help the organization to make an accurate assessment of
ROI (Return onlnvestment).

e The financial forecasts are updated step by step with more accurate
forecasts as the life cycle progresses.

Life Cycle Phases

97

Project Management

(n
(In

(1Imn

(Iv)

Context (domain, market, scope)

Technical approach

(a) Feature set achievement plan

(b) Quality achievement plan

(c) Engineering trade-off and technical risks
Management approach

(a) Schedule and schedule risk assessment
(b) Objective measures of success
Evolutionary appendixes

(2) Financial forecast
(1) Cost forecast
(2) Revenue estimate
(3) Bases of estimates

Fig. 5.2.1: Outline of a Business Case Software Development Plan
Artifact:

The software development plan (SDP) gives in detail description of the
processframework. Two main objectives of a SDP are:

1.

2.

Periodic updatingand

Understandine and accentance bv managers andnractitioners.

(D
(L1)]

(LX)

(Iv)

(v)

(vi)

(vii)

Context {sc-:n-[;e;, ;bjeclj ves)
Software development process
(a) Project primitives
(1y Life-cycle phases
(2) Artifacts
(3) Workflows
(4) Checkpoints
(b) Major milestone scope and content
(c) Process improvement procedures
Software engineering envirenment
(a} Process automation (hardware and software resource configuration)
(b} Resource allocation procedures (sharing across organizations, security
access)
Software change management
(a) Configuration control board plan and procedures
(b) Software change order definitions and procedures
(c) Configuration baseline definitions and procedures

Software assessment

(a) Metrics collection and reporting procedures.

(b) Risk management procedures (risk identification, tracking, and resolution)
{c) Status assessment plant

(d) Acceptance test plan

Standards and procedures

(a) Standards and procedures for technical artifacts
Evolutionary appendixes
(a) Minor milestone scope and content

(b) Human resource (organization, staffing plan, training plan)

98

Fig. 5.2.2 : Outline of a Software Development Plan

Work Breakdown Structure :

Work breakdown structure (WBS) is a base for budgeting and cost
estimation used to monitor and control the project's financial performance.
The project manager must have an insight into project costs and
expenditure. The WBS is a serious project planning constraint.

Software Change Order Database :

Managing and tracking the changes is one of the important activities in
an iterative development process.

As the iterative development process provides a ,.greater change
freedom", a project can be iterated again and again to achieve more
and more productivity.

This flexibility of making greater changes in the project ultimately
increases the number of iterations and thus increases the content and
also the quality of the software product and that too within a given
schedule.

The flexibility of making changes is achieved in practice through
automation and using the today's iterative development environments
which involve a phase for ,,change management”. Because without
automation, the organizational processes that depend on manual
change management techniques face lot of major inefficiencies.

Release Specifications :

This artifact includes the scope, plan, and objective evaluation criteria
for each release and all these details are derived from the vision
statement as well as from many other sources such as from the
analysis, risk management concerns, architectural considerations,
implementation constraints, and quality thresholds.

All these artifacts of the Release specification evolve and get updated
along with the process, thus, achieving greater fidelity and maturity in
understanding the requirements.

() Iteration content
(I1) Measurable objectives
(a) Evaluation criteria
(b) Follow through approach
(III) Demonstration plan
(a) Schedule of activities
(b) Team responsibilities
(IV) Operations scenarios (use cases demonstrated)
(a) Demonstration procedures
(b) _ Traceability to vision and business case

Fig. 5.2.3 : Outline of a Release Specification Release Descriptions :

Life Cycle Phases

929

Project Management

100

It describes the results of each release that includes the performance
details against each of the evaluation criteria in the corresponding
release specification.

Release descriptions also describe the evaluation criteria for the
configuration baseline and also provide substantiation i.e. a thorough
demonstration, testing, inspection, and analysis of each criterion that
has been addressed asrequired.

(h Context
(a) Release baseline content
(b) Release metrics
(IT) Release notes
(a) Release-specific constraints or limitations -
(IIT) Assessment results
(a) Substantiation of passed evolution criteria
(b} Follow-up plans for failed evaluation criteria
(¢} Recommendations for next release
(IV) Outstanding issues
(a) Action items
(b) Post-mortem summary of lesson learned

Fig. 5.2.4 : Outline of a Release Description

Status Assessments :

These artifacts provide periodic snapshots of the project status that
includes the project manager's risk assessment, and the quality and
management indicators.

It also includes a review of resources, staffing, financial data (cost and
revenue), top ten risks, technical progress, major milestone plans and
results, and scope of the project.

Environment :

Mostly, all the modem approaches define the development and
maintenance environment as a first-class artifact of the process.

A development environment is said to be robust and integrated if it
supports automation of the development process.

Such an environment includes requirements management, visual
modeling, document automation, programming tools, automated
regression testing, and continuous and integrated change and
configuration management, and also a feature and defect tracking tool.

Deployment:

This artifact includes several document subsets for transitioning the
product into operational status.

» If the system is delivered to a separate maintenance organization, then
in such cases, the deployment artifacts must include the computer
system operations” manuals, software installation manuals, plans and
procedures, site surveys, andetc.

 If the software product is used for commercial purpose, the
deployment artifacts must include marketing plans, sales rollout kits,
and training courses.

Management of Artifact Sequences :

Each phase of the life cycle produces new artifacts and also updates the
previously developed artifacts to incorporate the changes done and
describes the further depth and breadth of the solution.

[} Informal version
A\ Controlled baseline

Inception Elaboration Construction Transition

Tteration | Ieration | Iteration] Iteration | teration | Iteration| Tteration
1 2 a 4 5 8 7

Management set
1. Work breakdown structure &
2. Business case L‘\h

A A A A

3. Release specifications

4. Sottware development plan

>b>D b P
> P> bbb

5. Release descriptions A A ﬂ &
6. Status assessments AAANAAAAADNAAAANAA

7. Software change order data & &

BB D> P

8. Deployment documents
9. Environment

Requirements set
1. Vision document

2. Requirements model(s)

Design set
1. Design model(s)

2. Test model

e >

3. Architecture description

Implementation set
1. Source code baselines

2 Associated compile-time files
3. Component executables

Deployment set

1. Integrated product-executable
baselines

> > BPP
B> b BPBPb
A -

2. Associated run-time files

> b BPPBE BB PP PD
> > B> B> DB PP

3. User manual

Fig. 5.2.5 : Artifact Sequences across a typical life cycle

Life Cycle Phases

101

Project Management

102

5.7 ENGINEERINGARTIFACTS

This set of artifacts is derived from the thorough engineering notations
such as of UML notations, programming languages, or executable
machine codes. This Engineering artifact set can be categorized into three
kinds which are specially intended to give a more general review.

These are :

1. Vision document

2. Architectural description
3. Software user manual

1. Vision Document:

* This document provides a complete vision about the proposed
software system that is under development and. It is the base that supports
the contract between the funding authority and the development
organization.

* This document involves changes progressively as understanding
evolves out of the requirements, architecture, plans, and technology. A
good vision document should change slowly at each and every phase of
the lifecycle.

(I) Feature set description

(a) Precedence and priority
(II) Quality attributes and ranges
(III} Required constraints

{a) External interfaces
(IV) Evolutionary appendixes

(a) Use cases
(1) Primary scenarios
(2) Acceptance criteria and tolerances

i

i{b) Desired freedoms (potential change scenarios)

Fig. 5.3.1 : Outline of a vision Document
2. ArchitectureDescription

» This artifact provides an organized architectural view of the software
that is under development.

* These descriptions are derived from the design model which includes
the views of the design, implementation, and deployment sets that

helps in understanding how the operational concept of the
requirements set are derived.

The depth and breadth of the architecture description varies from
project to project based upon various factors.

(I) Architecture overview

(a) Objectives

(b} Constraints

{c) Freedoms
(II) Architecture views

(a) Design view

(b) Constraints

{c) Component view

(d) Deployment view
(IIT) Architectural interactions

(a) Operational concept under primary scenarios
(b) Operational concept under secondary scenarios
(c) Operational concept under anomalous conditions
(IV) Architecture performance
(V) Rationale, trade-offs, and other substantiation

Fig. 5.3.2 : Outline of a Architecture Description

3.

Software UserManual

The manual provides the user with the references that are required to
support the delivered software.

The user manual includes the installation procedures, usage guidance,
operational constraints, and a user interface details.

This manual must be developed in early phases of the life cycle since
it is a required mechanism for communicating and stabilizing the user
requirements.

The user manual is written by the members of the test team who
understand the user's perspective more clearly than the development
teamdocs.

5.8 PRAGMATICARTIFACTS

People are interested in reviewing the Artifacts but they don't
understand the language of the artifact because they do not have any
knowledge of the engineering language in which the artifact is written
and they don’t even care to learn it. It is very common among the
software managers, quality assurance specialists, or an auditing

Life Cycle Phases

103

Project Management

authority who say "I do know much about the UML notations and nor
I'm going to learn UML, but I can review the design models of this
software, so give me the software description in the form of flowcharts
or text so that I can understand."

People are interested in reviewing the artifacts but don't have any access to
the tools because it is very of ten seen that the development organization are
not fully tooledandthes take holders (other than the development
organization) rarely have any capability to review the engineering artifacts
on-line. Ultimately, the development organizations are forced to exchange
the paper documents instead of on-line documents. Standardized formats
constructed using UML notations, spread-sheets, Visual Basic, C++,
visualization tools, and using the web designing are rapidly becoming
economically feasible for all stakeholders to exchange information
electronically.

Human-readable engineering artifacts use rigorous notations that are
complete, consistent, and used in a self-documenting manner. It is
constructed using properly spelled English words so as to allow easy
identification, easy readability and easy understanding. Acronyms and
abbreviations must be used only where they are acceptable in place of
the component'susage.

A good documentation is self-defining and that getsused.

Paper is tangible whereas, electronic artifacts are so easy to change.
On-line and Web-based artifacts can be changed more easily and are
viewed with more skepticism because of their inherent volatility.

Review Questions

Q . 1 Give an overview of the artifact set.

Q . 2 Write short notes on :

(a)
(b)
(©

Management artifacts
Engineering artifacts

Pragmatic artifacts

Q. 3 Write short notes on Test Artifacts

Q. 4 List out the different types of management artifacts and give their

brief outline.

Q. 5 List out the different types of engineering artifacts and give their

104

brief outline.

o
<
o2
2

MODEL BASED SOFTWARE
ARCHITECTURE

Unit Structure

6.1 Introduction

6.2 Architecture: Managementperspective
6.3 Architecture: Technical Perspective
Syllabus :

A Management perspective and Technical perspective.

6.1 INTRODUCTION

Definition of Software Architecture: If we consider the complex software
system which shows the overall problem by central design is known as
Software architecture. It has many dimensions in case of complexities. We
can measure or prove that by any logical relation of physics or
mathematics.

It is note that without depends on any prove theory software architecture
based on the experimentation. We can say this is fundamental reason of
the transitioning to an iterative process. Old conventional software process
produces the less powerful systems. Architecture comes First are includes

* Simpler

* Requires informal representations
* Requires single computers

» Requires single program system

» Various mapped objects

* Objects implementation
Model: Independent abstraction of a system is known as model.

View : Model which abstract specific, relevant perspective is known as
view.

6.2 ARCHITECTURE: MANAGEMENTPERSPECTIVE

Architecture is most critical and technical product of the software project,
which includes parameters infrastructure, control and data interface. All
these parameters coordinates each other and makes huge system. If there

105

Project Management

106

are lots of languages available in the communication media and
management team members having different literacy then lots of
communication problems are generated which are never solved. If the
team members have good in inter project communication then and then
software architecture must be accurate and exact.

There are three different aspect of Management Perspective;

1.

Architecture
It is design of the software system
Intangible concept

All types of engineering which is useful to fulfill bill of material is part
of it.

Problems of whatever purchase and sale of the components are solved
since custom components are elaborate. Cost of unit component and
it’s as sembling and construction cost is tobe determined.

Baseline of Architecture

It is tangible artifacts
They are satisfying the all stakeholders

All stakeholders are the primary vision which includes the function
and quality

The vision set the business parameters which includes o Cost
Profits
Time
Technology
Peoples
Description of Architecture
Well manner subset of information

It includes the text and graphics which gives the complete information
about the model

It communicates about the intangible information for tangible artifacts.

If system changes then the architecture should be change. The number of
views and its level should be change. For example of raw boat and jet
boat, both are boats but is run through human interface and another is
automatic.

Model Based Software
Architecture

Fig. 6.2.1: Architecture of raw boat and jet boat Importance of
Software Architecture

1. Get stable software architecture, which is fixes the milestone. By
using those milestones problems like purchasing and selling are
resolved.

2. Gets basis of the trades off balancing between problem and its
solution space.

3. Encapsulates the communications between individual, various
teams, stakeholders and organizations.

4. Project unsuccessful or failure reasons : Dull Architecture and
immature process

5. Requirements are understandable in the mature process and
architecture should be previously demonstrated.

6. Two important facts 1) Architecture Development and 2) Process
Definition

6.3 ARCHITECTURE: TECHNICAL PERSPECTIVE

We look towards Software via various different aspects which are stated
below;

» Structure of software system

* Behavior

* Guides lines patterns about elements
* Collaboration

* Compositions

The all over information given in design model and architecture view is
abstraction of design model. Real system involves the four views of the
design model;

107

Project Management Table 6.3.1: Design model“s four view

Design Express structure and function of the design model.
Important for every system

Process Express concurrency and contro] thread between other views

Add as per complexity |

Components | Express implementation set structure

| Add as per complexity

Deployment | Express structure of deployment set

| Add as per complexity :

—

Following figure illustrates artifacts of the design set which includes
above various views and architecture description (captures electronically
and maintains on printed format). Engineering models and views are
defined with collection of the Unified Modelling Language diagrams such
as use case diagram which describes how system critical.

]

Requirements Design Implementation Deployment

e Depending upon complexity system has various
Q \) madel or single model which is combination of all
S /

—

- /"F—_"'\ ——

5 e S T

T \
Deployment
Model

Model Model

Pwv—sssJ Component \\

Fig. 6.3.1 : Architecture, organized and abstracted view into design
model

)
i

| Use Case
Model

o | r——
[-_._._—4‘: —_—

Review Questions

Q. 1 What is Software architecture ?

Q. 2 Explain three aspects of management perspective.

Q. 3 Why software architecture is important ?

Q. 4 Explain Software architecture in technical perspective.

O O, O O
0® 09 0,0 00

108

Unit 111

PROCESS WORKFLOWS

Unit structure

7.0 Objectives

7.1 Software Process Workflows

7.2 Key principles of modern software engineering
7.3 Iteration workflows

7.4 Artifacts set

7.5 Summary

7.6 Bibliography

7.7 End of unit exercises

7.0 OBJECTIVES

After reviewing this unit, you will be able to summarize the project
management workflow with new techniques along with the objectives to
be achieved during the process.

7.1 SOFTWARE PROCESS WORKFLOWS

Before moving on to software process workflows in software project
management, let's first clarify these two terms: workflow and software
process workflows.

1. Workflow -
In general, workflow refers to the series of sequential activities that are
performed to achieve a certain goal. Each step of the workflow is
defined by three parameters, namely input, transformation, and output.
In the workflow process, a series of actions are performed to achieve a
business result.

2. Software Process Workflows -

The software process is the set of related activities that are carried out
to obtain a software product as a result and there the workflows of the
software process guide software developments in a linear fashion by
performing a series of sequential activities.

109

Project Management

110

I

Fig7.1 - Iteration workflow

There are 7 main software process workflows in software project
management:

1. Management workflow: Some of the essential steps to control the
process are performed in the management workflow. Artifacts include the
software development plan (SDP), business case, vision, etc., ensuring
mutually beneficial conditions for stakeholders in terms of software
project development, execution and implementation.

2. Environment workflow: Automate the process to coordinate and
integrate tools and people with the process through the workflow, which in
terms of reducing human errors and enabling faster development with
faster resource allocation and problem response. Evolution of the
maintenance environment to maintain and update the software.

3. Requirements workflow: Analyze the problem space to identify /
understand problems and find a solution. Evolution of requirements
artifacts, such as use cases, requirements, and design documents /
specifications that help describe the function, architecture and design of
the software.

4. Design workflow: Software modeling is done to express software
design, where software modeling will take care of the entire software
design. Evolution of architectural and design artefacts.

5. Implementation workflow - In this workflow, the implementation of
designs and architectures is done by programming the components.
Artifacts are developed along with this plant and distribution.

6. Evaluation workflow: Evaluate the trends of the process. Product
quality assessment is performed here by analyzing product quality
attributes and managing product defects.

7. Implementation workflow: In this workflow, the process of delivering
the end products to the user is performed or the application / software
product is prepared to run and operate in a specific environment.

Copyright © 1998 by Addison-Wesley

[Inception - Elaboration . Construction Transition

Management | I ! T e o o (o |]

Environment w

Requirements r_‘,_'_]'_L

Design W
Implementation ,—,_|—7—!_—’_|—'—}—\
Assessment .—1—{_1_1_[_]'—]—\

Deployment

Fig 7.2 Levels of activity in the phases of the life cycle

7.2 KEY PRINCIPLES OF MODERN SOFTWARE

ENGINEERING

There are some modern principles for software development. By following
these modern principles we can develop effective software that meets all
customer needs. To develop the right software, you need to follow the

following 10 software development principles:

Architecture first approach

lterative life cycle process
Component Based Approach
Change Management system
Round Trip Engineering
Model Based Evolution
Objective Quality Control
Evolving levels of details

Establish a configurable process

Demonstration Based Approach

Fig 7.2 Approaches to software development

These are explained below.

1. First approach to architecture: In this approach, the main goal is to
build a solid architecture for our software. All ambiguities and flaws
are spotted during the very mundane phase. Furthermore, we can make
all decisions regarding software design that will improve the

productivity of our software.

Process Workflows

111

Project Management

112

10.

Life cycle iterative process: In an iterative life cycle process, we
repeat the process over and over to eliminate risk factors. In an
iterative lifecycle, we have mainly four steps: requirements gathering,
design, implementation, and testing. All of these steps are repeated
over and over until the risk factor is mitigated. The iterative life cycle
process is important to alleviate the risk at an early stage by repeating
the above-mentioned steps over and over again.

Component-based approach: The component-based approach is a
widely used and successful approach where we reuse previously
defined functions for software development. We reuse the part of the
code in the form of components. Component-based user interface
development optimizes the design process and requirements and is
therefore one of the important principles of modern software.

Change management system: Change management is the process
responsible for managing all changes. The main goal of change
management is to improve the quality of the software by making the
necessary changes. All implemented changes are then tested and
certified.

Round trip engineering: In roundtrip design, code generation and
reverse engineering occur simultaneously in a dynamic environment.
Both components are integrated so that developers can easily work on
both. In round-trip engineering, the main character is the automatic
updating of artifacts.

Model-based evolution: Model-based evolution is an important
principle of software development. A model-based approach supports
the evolution of graphics and textual notions.

Objective quality control: The goal of quality control is to improve
the quality of our software. It includes a quality management plan,
quality metrics, quality checklist, quality baseline, and quality
improvement measures.

Evolution of the levels of detail: Schedule interim releases in use
case groups with changing levels of detail. We need to plan for an
incremental deployment where we have an evolving level of use cases,
architecture and details.

Establish a configurable process: Establish a configurable process
that is economically scalable. A single process is not suitable for all
development, so we need to use a configurable process that can handle
multiple applications.

Proof-based approach: In this approach, we mainly focus on
demonstration. It helps to increase the productivity and quality of our
software by providing a clear description of the problem domain, the
approaches used and the solution.

7.3 ITERATION WORKFLOW

1. Planning of the iterations it is generally a process to be adapted as
the project develops through changes to plans. Plans are simply
modified based on feedback from the monitoring process, some
changes in project assumptions, risks, and changes in scope, budget or
schedule. It is very important to include the team in the planning
process. Basically, planning is generally concerned with explaining
and defining the actual sequence of interim results. It is an event where
each of the team members identifies what part of the team's pending
work they can commit to doing during a subsequent iteration.

2. TIteration planning is generally the process of discussing and planning
the next cycle, stage, or iteration of a software application under
development. An evolutionarily developed plan is very essential
because there are always adjustments to developed content and
planning as a first assumption that simply evolves under well
understood project circumstances.

To achieve economies of scale and greater returns on investment, we need
to move to a software production process driven by technology
improvements in process automation and component-based development.
Two stages of the life cycle are:

1. The design phase, led by less predictable but smaller teams that conduct
design and synthesis activities

2. The production phase, led by more predictable but larger teams
conducting construction, testing and distribution.

The transition between engineering and manufacturing is a crucial event
for the various stakeholders. The production plan has been agreed and the
understanding of the problem and solution is good enough to allow all
interested parties to make a firm commitment to move production forward.
The engineering phase is divided into two distinct phases, start up and
development, and the production phase in construction and transition.
These four stages of the life cycle process are loosely mapped to the
conceptual structure of the spiral model:

1. INITIAL PHASE: The primary objective of the initial phase is to
reach agreement among stakeholders on the objectives of the project
life cycle.

> MAIN OBJECTIVES

*Management of software projects

e Establish project software scope and boundary conditions, including
an operational concept, acceptance criteria, and a clear
understanding of what is and is not intended to be in the product

e Discriminate critical system use cases and key operational scenarios
that will lead to major design tradeoffs.

Process Workflows

113

Project Management

114

e Demonstrate at least one candidate architecture against some of the
main scenarios

e Estimated cost and schedule for the entire project (including detailed
estimates for the development phase) Estimation of potential risks
(sources of unpredictability)

> ESSENTIAL ACTIVITIES

e Formulation of the scope of the project. The information repository
must be sufficient to define the problem space and derive
acceptance criteria for the final product.

e Synthesizing the architecture. Sufficient information repository is
created to demonstrate the feasibility of at least one candidate
architecture and an initial baseline of manufacturing / purchasing
decisions so that cost, time and resource estimates can be derived.

e Planning and preparation of a business case. Alternatives are
evaluated for risk management, personnel, iteration plans, and cost
/ planning / profitability trade-offs.

PRIMARY EVALUATION CRITERIA

e Do all stakeholders agree with the scope definition, cost estimates
and timelines?

e Are the requirements understood, how does it demonstrate the
fidelity of critical use cases?

e Are the cost estimates and timelines, priorities, risks and
development processes credible?

e Does the depth and breadth of an architectural prototype
demonstrate the above criteria? (The main value of prototyping the
candidate architecture is to provide a vehicle for understanding the
scope and assessing the credibility of the development group in
solving the particular technical problem.)

e Are actual resource expenditures acceptable compared to planned
expenditures?

PREPARATION PHASE: At the end of this phase, the "engineering"
is considered complete. The development phase activities should
ensure that the architecture, requirements and plans are sufficiently
stable and that the risks are sufficiently mitigated so that the cost and
timing for completion of the development can be predicted within an
acceptable range. During the build phase, an executable architecture
prototype is created in one or more iterations, depending on scope,
size, and risk.

> MAIN OBJECTIVES Process Workflows

e Base the architecture as fast as possible (create a configuration-
managed snapshot where all changes are simplified, tracked and
maintained)

e Basing the vision

e [Establish a high-fidelity plan for the construction phase
Demonstrate that the core architecture will support the vision at a
reasonable cost in a reasonable time

> ESSENTIAL ACTIVITIES

e Create the vision.

e Management of software projects

® Process and infrastructure development.

e Prepare the architecture and select the components.

> PRIMARY EVALUATION CRITERIA

e s the vision stable?
e [s the architecture stable?

e Does the executable demonstration show that major risk elements
have been credibly addressed and resolved?

e [s the construction phase plan sufficiently faithful and supported
by a credible estimate basis?

e Do all stakeholders agree that the current vision can be fulfilled if
the current development plan of the whole system is executed in
the context of the current architecture?

e Are actual resource expenditures acceptable compared to planned
expenditures?

3. CONSTRUCTION PHASE: During the construction phase, all
remaining components and functionality of the application are
integrated into the application and all functionality is thoroughly
tested. The newly developed software integrates where needed. The
construction phase represents a production process, in which emphasis
is placed on resource management and control of operations to
optimize costs, time and quality.

> MAIN OBJECTIVES

e Minimize development costs by optimizing resources and avoiding
waste and unnecessary rework

o Get the right quality as fast as possible
115

Project Management

116

e Get useful versions (alpha, beta and other trial versions) as fast as
possible

> ESSENTIAL ACTIVITIES

e Management, control and optimization of resource processes

e Complete the development and testing of components according to
the evaluation criteria.

e Evaluation of the product launch against the vision acceptance
criteria.

> PRIMARY EVALUATION CRITERIA

e s this product baseline mature enough to be deployed to the user
community? (Existing defects are not an obstacle to achieving the
purpose of the next version.)

e [s the baseline for this product stable enough to be distributed to
the user community? (The pending changes are not an obstacle to
achieving the purpose of the next version.)

e Are stakeholders ready to move to the user community?

e Are actual resource expenditures acceptable compared to planned
expenditures?

4. TRANSITION PHASE: The transition phase is initiated when a

baseline is mature enough to be implemented in the end user's domain.
Typically this requires that a usable subset of the system with
acceptable quality levels and user documentation has been achieved
for the switch to the user to produce positive results. This phase could
include managing the software project one of the following activities:

1. Beta testing to validate the new system against user expectations

2. Beta testing and parallel operation in relation to a legacy system it is
replacing.

3. Conversion of operational databases

4. Training of users and maintainers The transition phase ends when
the baseline of the implementation has reached the complete
vision.

MAIN OBJECTIVES

e Achieve user self-sufficiency

e Reach stakeholder agreement that implementation baselines are
complete and consistent with vision assessment criteria.

e Get the baselines of the final product in the fastest and cheapest way
that is practical.

> ESSENTIAL ACTIVITIES

e Synchronization and integration of concurrent build increments
across consistent distribution baselines

commercial
of sales

e Implementation specific engineering (cutting,
packaging and manufacturing, development
implementation Kkits, training of staff in the field)

e Evaluation of implementation baselines against the comprehensive
view and acceptance criteria in the requirements set.

> EVALUATION CRITERIA

o [s the user satisfied?

e Are actual resource expenditures acceptable compared to planned
expenditures?

7.4 ARTIFACT SET

The artifact is highly associated and related to specific development
methods or processes. The methods or processes can be project plans,
business cases, or risk assessments. In general, various collections and
collections of detailed information are organized and incorporated into
artifact sets. A set generally represents a complete aspect of the system.
This is done simply to develop and establish a complete software system
in a manageable way.

Software lifecycle artifacts are generally organized and divided into two
sets, namely the management set and the engineering set. These sets are
further subdivided or partitioned based on the underlying language of the
set. These artifact sets are shown below in the diagram:

' Engineering Sets

Requirements Set Design Set Implementation Set Deployment Set

1. Integrated Product
executable baselines

1. Source code baselines

2. Associated compile-
time files

3. Component Executable

1. Vision Document
2. Requirements
models

1. Design Models

2. Test Model
3. Software Architecture
Description

2. Associated rum-time
files
3. User manual

Management Set

Planning Artifacts Operational Artifacts

1. Work breakdown structure
2. Business Case

3. Release Specifications

4. Software Development Plan

5. Release Descriptions

6. Status Assessments

7. Software change order database
8. Deployment documents

9. Environment

Fig 7.3 Overview of artifact sets

Process Workflows

117

Project Management

118

1. Engineering set:

In this set, the main mechanism or method for forming an idea regarding
the evolutionary quality of these artifact sets in the transition of
information from one set to another. This set is divided into four separate
sets which include the requirement set, the design set, the implementation
set, and the implementation set.

1. Requirement set - This set is the primary design context used simply
to evaluate the other three artifact sets in the design set and the basis
for test cases. The artifacts in this set are evaluated, verified, and
measured using a combination of the following:

O Analysis of the consistency between vision models and current needs.

O Analysis of consistency with the complementary specifications of the
management system.

o Consistency analysis between requirements models.

2. Design Set - Tools used in visual modeling tools. To design the design
model, Unified Modeling Language (UML) notations are used. This
set simply contains many different levels of abstractions. The design
model typically includes all structural and behavioral data or
information to determine the BOM. These assembly artifacts mainly
include test models, design models, software architecture descriptions.

3. Distribution set - The tools used are debuggers, compilers, code
analyzers, test management tools. This set generally contains source
code such as the component implementation, its form, interfaces, and
executables required for independent component testing.

4. Development set - The tools used are network administration tools,
test coverage and test automation tools, etc. To simply use the final
result or product in the environment where it should be used, this set
usually contains executable software, build scripts, ML annotations,
installation scripts.

2. Management set:

This set generally acquires artifacts that are simply associated with
planning and execution or the running process. These artifacts generally
use ad hoc notation. It also includes text, graphics or any representation
required or necessary to simply acquire the "contracts" between all project
staff (such as project developers, project management, etc.), between
different stakeholders (such as the user , the project manager, etc.)), and
also between stakeholders and project staff.

This set includes various artifacts such as work breakdown structure,
business case, software development plan, distribution, environment. The
artifacts in this set are evaluated, verified, and measured using a
combination of the following:

® Review of relevant stakeholders.

® Analyze the alterations or changes between the current version of
the artifact and previous versions.

® Demonstrations of major milestones relating to the balance
between all artifacts and, in particular or specifically, the accuracy
of the business case and vision artifacts.

7.6 SUMMARY

1.

Most process descriptions use sequences of activities in representation
format.

2. Sequence-oriented process descriptions are easy to understand,
represent, plan and execute.

3. Software projects are not sequential activities. Software projects
include many teams progressing on many artifacts that need to be
synchronized, contrasted, homogenized, merged and integrated.

4. The complexity of management arises from the distributed nature of
the software process and subordinate workflows.

5. Sequentially from the conventional process model, the main problem
arises as the details of each step must be completed and frozen before
the next one begins.

6. In this process, important engineering decisions would be slowed
down or stopped altogether. The intention here is to explicitly
recognize the continuum of activities at all stages.

7.7 BIBLIOGRAPHY

1. Project Management Basic Manual: Mantel Jr., Meredith, Shafer,
Sutton with Gopalan (Wiley India Edition)

2. Project Management - TYBSCIT -Semester 6 - Divya Shetty - Sheth
Publications.

3. https://www.geeksforgeeks.org/

7.8 EXERCISES AT THE END OF THE CHAPTER

1. Explain the software process workflow with the diagram.

2. What are the key principles of modern software engineering?
3.Explain iteration workflows with diagrams.

4.Explain the artifact sets with their phases.

O O 0, O
AX S XS XS X4

Process Workflows

119

120

PROCESS CONTROL POINTS

Unit structure

8.0 Objectives

8.1 introduction

8.2 Planning and analysis of control points
8.3 Introduction to milestones

8.4 Important milestones

8.5 Minor milestones

8.6 Periodic assessment of the condition
8.7 Summary

8.8 Bibliography

8.9 End-of-unit exercises

8.0 OBJECTIVES

This chapter will help us understand the process checkpoints required
during the planning period. We will also focus on major milestones, minor
milestones and periodic status assessment.

8.1 INTRODUCTION

In software development, all system-level events take place at the end of
each development phase. These checkpoints provide visibility into
milestones in the lifecycle, as well as problems and problems throughout
the system. These checkpoints generally provide the following:

® Simply synchronize management and engineering perspectives.
® [t also verifies that all the steps have been fulfilled or not.

® [t provides a basis for analysis and evaluation in order to determine
if a project is progressing as planned and also to make the correct
correction and action as required.

e [t also identifies essential risks, problems or problems and
intolerable conditions.

® Throughout the entire life cycle, it performs a comprehensive
assessment.

In general, three sequences of project checkpoints are used to synchronize
stakeholder expectations throughout the lifecycle.

Assessments

Milestones

Inception Elaboration Construction Transition
Iteration 1 Iteration 2 ‘ Iteration 3 Iteration 4 ‘ Iteration 5 ‘ Iteration 6 Iteration 7
Initial
Life-Cycle Life-Cycle Operational Product
Objectives Architecture Capability Release
Milestone Milestone Milestone Milestone

A A A A

Strategic focus on global concerns of the whole software project

ANA AN AN ANV ANVAN

Tactical focus on local concerns of the current iteration

ARGV ARG ARG R IR G GG O

Periodic synchronization of stakeholder expectations

Major

Minor

Milestones

Status

A Typical Sequence of Life-Cycle Checkpoints for a Relatively Large Project

Figure 8.4

These three types of joint management reviews are described below:

1.

Important milestones - Major milestones are system-wide events that
occur at the end of each development stage. These milestones can be
used in various process models, including conventional waterfall
models. They typically help provide visibility into system-wide
problems. They also help synchronize management and engineering
perspectives. It helps to verify that the goal or objective of each stage
has been successfully achieved or not. They are used to obtain the
competition of all those who are interested in the current state of the
project. These milestones are very essential to confirm and ensure that
understanding of requirements, life cycle plans and product form,
function and quality are at balanced levels of detail.

Minor milestones - Minor milestones are also called micro
milestones. They are simply monitoring points that project managers
generally use to track activities every day. Minor milestones are sprint-
focused events that are held to review the data or content of a sprint in
detail and also to authorize work that has been continued. They
typically divide the time spent between major stages into short time
intervals. This is done to give us confidence in achieving important
milestones. Early iterations focus simply on analysis and design, while
subsequent iterations focus more on completeness, consistency,
usability, and change management.

State Ratings - State assessments generally provide mechanisms for
addressing, communicating, and resolving problems or problems
related to project, technical, and management risks. Its main goal is to
ensure that all expectations of all parties are synchronized and

Process Control Points

121

Project Management

122

consistent. They are carried out to direct and verify the progress and
quality indicators, guaranteeing continuous attention to the dynamics
of the project. It also maintains communication between all interested
parties. It also provides the management with frequent and regular
information on the progress made.

8.2 PLANNING AND ANALYSIS OF CONTROL POINTS

For full benefit and impact, checkpoints should be identified based on
specific project phases and if necessary to ensure timely advancement of
project objectives and results. Checkpoints should be structured to answer
one main question: are you ready for the next stage? If the answer is yes,
the project continues. If the answer is no, other actions must be taken, to
include progress with corrective / compensatory actions, suspension of the
project or total cancellation.

ILLUSTRATION OF THE CONTROL POINTS MANAGEMENT
PROCESS

To illustrate the use of control points, we can use a project structure
organized in five (5) phases, as follows:

e Phase 1: requirements. Define the technical and commercial
requirements of the project.

e Phase 2: planning. Design the technical results.
e Phase 3: development. Develop and test the technical solution.

e Phase 4: implementation. Implement and support the implementation
of technical results.

e Step 5: closing. To transfer the project and the final results from the
project state to the operational state.

Continuing with this illustration, the following checkpoint "decision tree"
marks the way through the progression process.

=> Establishment of checkpoints for "Phase 1: Requirements"

e Have all the "requirements" activities been completed?
e Are there any open problems?
e How will these problems be solved?

e Are the established requirements sufficient to move on to the next
stage?

e If not, requirements issues must be resolved, mitigated, or eliminated
before you can progress.

=> Establish checkpoints for "Phase 2: Design" Process Control Points

e Have all the "design" activities been completed?

e Does the design meet the established requirements?
e Are there any open design problems?

e How will these problems be solved?

e Does the layout work as expected?

e [s your project ready to move on to the next stage? If not, design
issues must be solved, mitigated, or eliminated before you can
progress.

=> Establishment of checkpoints for "Phase 3: Development”

e Have all "development and test" activities been completed?
e [s the system working as expected?

e Are there any open development problems?

o How will these problems be solved?

o [s the system ready to go to the next step?

e If not, development problems must be solved, mitigated or
eliminated before progress can be made.

=> Establishment of checkpoints for "Phase 4: Implementation”

e Have all "distribution" activities been completed?
e Are there any open problems?
e How will these problems be solved?

o [s the project ready to move on to the next stage? If not, deployment
issues must be resolved, mitigated, or eliminated before progress
can be made.

=> Establishment of checkpoints for "Phase 5: Closure"

e Have all "arrest and transition" activities been completed?

e Are there any open problems?

e How will these problems be solved?

e Have all necessary "close and accept" approvals been obtained?
e Has the review of lessons learned been completed?

e Can the project be closed? If not, closure issues must be resolved,
mitigated, or eliminated before the project can be closed.
123

Project Management

124

Checkpoints can present difficult options. Each checkpoint analysis
requires an objective review of the design to date. This can be a difficult
task for the project manager and the team that has invested so much in
each project. Sometimes the checkpoints are not passed and unpopular
actions must be taken, up to and including the cancellation of the project.
But, when the feasibility of the project is in doubt, it is better to abandon
than proceed with an impractical initiative. Eventually, checkpoints can
provide a much-needed safety net to avoid wasting time and resources.

8.3 INTRODUCTION TO MILESTONES

1. A milestone is an indicator in a project that signifies a change or stage
of development. Milestones are powerful components in project
management because they show milestones and map forward
movement in your project. Project plan.

2. Milestones act as signals throughout the project, helping you stay on
the right track. Without keeping track of project milestones, you are
just monitoring activities and not necessarily following the right path
in your project.

3. Milestones can do more than just show progress - they can help you
communicate what's happening with your project. TeamGantt features
project milestones in its free project management software, so it syncs
seamlessly with all moving parts of the Gantt chart.

=> Is it a task or a milestone?

You're not building a rocket here, you're building a Project planand the
components are not that complex. That said, distinguishing between tasks
and milestones can be difficult on larger projects, or if the project you're
managing is simply not (yet) within the scope of your experience.

If you've ever been confused about what is (or isn't) a milestone in your
project plan, ask yourself these questions:

1.Is it an activity or a final result?
2. Will this affect the final deadline?

3.Is it an important moment in the project that will indicate progress
forward?

4.Does this need to be reviewed by interested parties?
5.1s it an event that affects the project?

Essentially, you want to make events more important than your project's
milestones so they can be easily viewed and mapped by the project team.
Milestones have additional importance to the activities in a plan so that the
project manager can keep track of the activities while the team and
stakeholders focus on progress forward.

=> Examples of project management milestones Process Control Points

Milestones simplify project monitoring by identifying important events,
dates, decisions and results. Below are some examples of project
milestones that you can include in your plan:

e Start and end dates of the project phases
e Key deliveries

e (Customer and stakeholder approvals

e Important meetings and presentations

e Key dates or outages that may affect planning

Let's delve a little deeper and explore 3 specific examples of how using
project milestones can benefit your projects.

Check the deadlines

e No plan is complete without a list of deadlines! The best way to make
them visible is to use the technique of milestones and deliverables of
project management. What does this mean? Make the final results of
the project milestones!

e Why do this? Well, it's no secret that not everyone wants to go through
their beautiful project plan carefully to find key dates. Most people,
including teammates, want a high-level view of key dates and events.
Milestones are great for this purpose because they are specially
mentioned, usually with a diamond, in project plans.

e While you should list the activities and efforts that lead to a project
milestone, be sure to present the milestone at the end of those activities
to indicate a delivery, or even a presentation, of the end result.

Highlight important dates

e Are there days from now until the end of your project that could affect
your project in any way? Maybe your team needs to be out of the
office for mandatory training. Maybe you are expected to attend a
board meeting.

e It is important to keep all these important events in mind when
planning a project because they could affect yours the timeline of the
project. So why not include them as project milestones so you can
keep track of them all in one place?

e In this example, the team's off-site strategic meeting has been added to
the project plan as a milestone so that work can be planned around it.

125

Project Management

126

Concept o%

Design concepts Designer o = = T .
Present concepts Projact Manager "
Provide feedback Client +] <—;I
Off-site team strat-op (full day) Designer, Projoct Mar [~] . .l s A
Revise concepts Dresigner o [(s _.“-i.
Provide feedback Chent o : "
Deliver final concept Designer, Project Mar 0 i
Approve cancept Chiant
.
Figure 8.5

Identify potential project bottlenecks

e Many projects rely on the work produced by external teams or partners
to move forward. If you're not tracking these external factors
somewhere, there's a big chance you'll forget to track.

e This is why it is important to list these deliverables as project
milestones if you are working on a project that depends on someone or
something outside of your project. Here's an example of what
customer approval might look like.

Sitemap 0% o e ———

Create v1 sitemap Designer 0 -

Present v sitemap Project Manager :

Provide feedback Client 0 h

Revise site map for v2 Designer 0 [__i'l

Approve site map Client (v} .
Figure 8.6

=> Why are milestones important?

Milestones are critical to successful project management for the following
reasons:

1.

Help Track Deadlines: Defining central milestones in the planning
phase of a project will help project managers stay up to date on all
associated deadlines.

Identify potential bottlenecks: Many projects rely on work produced
by external teams or partners. If these external factors are not tracked,
delays and compression are likely to occur.

Easily pinpoint critical dates: Using milestones makes it easier to see
the big picture and easily pinpoint important dates and events. You or
your entire team may need to be off-site for a mandatory project-
related training session.

Increase Project Visibility - Visibility can make things easier when it
comes to project management. Everyone can see where a project is and
what remains to be done.

Allocation of Time and Resources: Time and resources are critical to
completing all successful projects. Using milestones helps managers
distribute resources effectively so projects are delivered on time and
within budget.

Vendor payments often rely on milestone completion - track and
schedule payments to key vendors with milestone completion.

Stakeholder participation varies according to the milestones;
Stakeholders tend to become more involved as a milestone approaches.
Use milestones to plan when stakeholders should approach the project.

Accountability: Project teams need to see what they are responsible
for. Milestones help everyone be accountable for the role they play.

Demonstrate "success measures' - it's great to be able to measure
your success! Completing and passing all major milestones is a visible
and successful way to demonstrate the overall success of a project.

3.4 IMPORTANT MILESTONES

The four main milestones occur at the transition points between life cycle
stages. They can be used in many different process models, including the
conventional waterfall model. In an iterative model, major milestones are
used to gain competition between all stakeholders on the current state of
the project. Different stakeholders have very different concerns:

Customers: planning and budget forecasts, feasibility, risk
assessment, understanding of requirements, progress, compatibility of
the product line

Users: consistency with requirements and usage scenarios, ability to
adapt to growth, quality attributes

System architects and engineers: compatibility of the product line,
changes to requirements, analysis of trade-offs, integrity and
consistency, balance between risk, quality and usability

Developers: Sufficient details of requirements and descriptions of use
scenarios. framework for the selection or development of components,
resolution of development risks, compatibility of the product line,
adequacy of the development environment

Maintainers: adequacy of artifacts and product documentation,
comprehensibility, interoperability with existing systems, adequacy of
the maintenance environment

Others: possibly many other stakeholder perspectives such as
regulatory agencies, independent verification and validation
contractors, venture capital investors, subcontractors, partner
contractors, and sales and marketing teams

Process Control Points

127

Project Management

Table 8-1 summarizes the balance of information in the main stages.

Milestone Plans Requirements | Product
Fundamental 1. Definition of | Basic vision, | 1.
objectives of | stakeholder including Demonstration
the life cycle responsibilities | growth vectors, | of at least one
2.Low-fidelity | quality feasible
life cycle plan attributes and | architecture
3.High fidelity | Priorities 2. Initial design
creation phase 2.User case | model
plan model
Architecture 1.Hi-fi 1.Stable vision | 1.Stable design
milestone of the | construction and use case | assembly
life cycle stage plan model 2. make

2. Low-fidelity
transition plan

2. Evaluation
criteria for the

exchanges of
purchase / reuse

build version, 3 Prototypes of
initial critical
operational components
capacity
3. Draft wuser
manual
Milestone of | 1.Hi-Fidelity 1. Acceptance | 1.Stable
initial transition plan criteria for | distribution set
operational product launch | 2.Critical
capability 2. Release the | characteristics
user manual and key
capabilities

3. Objective
information on

product

qualities
Milestones of | 1 Next | 1. End of user | 1.Stable
product launch | Generation manual distribution set

Product Plan

2.Full features
3.quality of
complaints

=> Milestone of life cycle goals

The milestone of the life cycle objectives occurs at the end of the initial
phase. The goal is to present a recommendation to all interested parties on
how to proceed with the development, including a plan, estimated cost and

128

time, expected benefits and cost savings. A successfully completed Process Control Points
lifecycle goal milestone will entail authorizing all stakeholders to proceed
to the development phase.

=> Architecture milestone of the life cycle

The lifecycle architecture milestone occurs at the end of the build phase.
The main goal is to demonstrate an executable architecture to all interested
parties. The reference architecture consists of a human-readable
representation (the architecture document) and a set of configuration-
driven software components captured in the design artifacts. A
successfully completed lifecycle architecture milestone will involve
authorizing stakeholders to proceed to the construction phase.

> Engineering certificates available from Lifecycle Architecture
Milestone

1. Requirements

A. Use the appropriate template

B. Vision document (text, use case)

C. Evaluation criteria for processing (text, scenarios)

2. Architecture

A. Tree view (object models)

B. Process view (runtime layout, executable code structure if necessary)

C. Component view (subsystem layout, make / but / reuse component
identification)

D. Deployment view (target runtime layout, target executable code
structure)

E. Display of use cases (test case structure, expectation of test results)
1. Draft user manual

3. Source and executable libraries

A. Product components

B. Test the components

C. Environment and components of the instrument

> Predefined agendas for the lifecycle architecture milestone

(JPresentation agenda

I. Scope and objectives
A. Demo overview
I1. Requirements assessment
A. Project vision and use cases
B. Primary scenarios and evaluation criteria
ITI. Architecture assessment

A. Progress

1. Baseline architecture metrics (progress to date and baseline to measure
the stability, rejection and reworking of the future architecture).

129

Project Management

130

2. Baseline estimate of development metrics (to assess future progress).

3. Baseline estimate of test metrics (to assess future progress of test
equipment).

B. Quality

1. Architectural characteristics (synthesis of demonstrative capacity with
respect to evaluation criteria)

2. Performance (summary of the ability to demonstrate with respect to
evaluation criteria).

3. Architectural Risks Exposed and Resolution Plans.
4. Accessibility and trade-offs between production / purchase / reuse.
IV. Evaluation of the construction phase plan
A. Content of iteration and mapping of use cases
B. Subsequent detailed iteration plan and evaluation criteria
C. Cost of the development / execution phase of the program
D. Resource plan of the construction phase and estimation base
E. Risk management
(d Demo agenda
I. Evaluation criteria

II. Architecture subset summary
III. Demo environment summary
IV. Demo scenarios with scripts

V. Results of the evaluation criteria and monitoring elements

=> Milestone of initial operational capability

The initial operational capability milestone occurs at the end of the
construction phase. The objectives are to assess the readiness of the
software to initiate the transition to customer / user sites and to authorize
the initiation of the acceptance test. Acceptance tests can be run
incrementally across multiple iterations or can be completed completely
during the transition phase, not necessarily the completion of the build
phase.

=> Milestone of product launch

The product launch milestone occurs at the end of the transition phase.
The goal is to evaluate the completion of the software and its transition to
the support organization, if applicable. The acceptance test results are
reviewed and all open problems are resolved. The software quality metrics
are reviewed to determine if the quality is sufficient for the transition to
the support organization.

8.5 MINOR MILESTONES

For most sprints, which last from one month to six months, only two
minor milestones are needed: the sprint preparation review and the sprint
assessment review.

=> Review of iteration readiness

This informal milestone is held at the start of each iteration to review the
detailed iteration plan and evaluation criteria assigned to this iteration.

=> Review of the iteration evaluation.

This informal milestone is held at the end of each iteration to assess the
degree to which the iteration has met its objectives and met its evaluation
criteria, to review the results of the iteration, to review the results of the
qualification tests (if applicable). the iteration), to determine the amount
of rework to perform and to review the impact of the iteration results on
the plan for subsequent iterations. The format and content of these minor
steps tend to depend heavily on the project and organizational culture.

Management
‘j' Requirements
Design
‘; Implementation
Assessment
Deployment
E Iteration N—1 4
Iteration N

Iteration N+1 g

feraon N pocdinces Design Assessment "eraion N
Review Walkthrough Review

Fig. 8.7 Iteration workflow

=> Why mark a milestone in a project?

Milestones are more appropriate for those methodologies that want to
maintain strict project deadlines. It is a springboard for project planning,
helps manage stakeholder expectations and many more. Mainly, the
definition of milestones addresses four areas:

% What to complete?

As a result, small segments of a project are monitored until completion to
decide if they comply with the plan and schedule.

Process Control Points

131

Project Management

132

% What was completed?

All milestones that mark the progress of the project are recorded and
determine the next stage of a project in project planning that can be started
immediately.

% When was it completed?

Find performance effectiveness by comparing the actual completion date
of a milestone with the planned one.

** When will it be finished?

In case there are variations in the project schedule compared to milestones,
setting the milestones will help to estimate if the whole project will be
completed on schedule (realistic time frame). You can see if you need to
change your plans.

%+ What are the efforts of your teams?

Teams A and B are linked because team B cannot start work before team
A completes it. So when should Team B be ready to start? Milestone will
display each team's efforts. You will know when you have set an
important goal for team A.

% What is the sense of urgency?

When there is a set deadline, each individual will do everything in their
power to complete the task by the set date.

Aside from that, project timeline experts say milestones show progress
only on the critical path, largely ignoring non-critical project activities.

% Task, event or goal?

Distinguishing tasks, events, and milestones can be difficult on larger
projects.

® A task is a single item in a task list. It is something that must be
achieved in a particular group.

® A milestone is a goal you want to achieve for a to-do list.

® An event is associated only with your calendar, which does not require
a responsible deliverable and cannot be marked as "completed".

=> Benefits of defining project milestones

Project Plan Milestones help you track the progress of a project. It keeps a
project on track and the whole team on track. There are many benefits to
setting project milestones:

% Plan your activities

Set up a timeline to complete the key points of a project. Milestones
facilitate the planning of project activities. This will ensure that everyone

knows when the deadlines are set for the different aspects of the project. If
for some reason it appears that milestones cannot be met, appropriate
actions can be taken to get the project back on schedule to keep future
milestones on track. More importantly, if you are behind schedule, you
can easily accelerate to reach your project milestones.

% Project evaluation on the fly

As the project progresses, it can be evaluated at each stage. Without
setting milestones, project managers generally leave the project evaluation
for last. This costs him a lot. Then, with milestones, you can learn which
aspects of the project worked well and where things could be improved.
Monitoring project progress in real time from the start is important to
ensure the successful completion of the project within budget.

+ Celebrate success

As milestones are completed, this can be a celebration for the team and the
manager. With a lot going on, the celebration usually gets out of hand. As
milestones are set, to keep morale high, celebrate small successes. This
will not only recognize the efforts of your team members, but it will also
motivate them to work harder to achieve the overall goals of the project.

=> What is a milestone in the Gantt chart?

Gantt charts are widely used in companies to track a project according to
project management rules. In general, milestones are specific points in line
with the project cycle to monitor project processes. Check off any
significant activity in a project. A Gantt chart is a visual display of
planned activities over time.

You can easily mark these milestones on Gantt charts;

v The start date of the project

v What are the tasks of the project
v Who is working on each business
v/ Starting and ending an activity

v Duration of each activity

v The completion date of the project
=> Artifact test

Description:-The test refers to the explicit evaluation through the
execution of the implementation components set in a controlled scenario
with an expected and objective result.

e Whatever document-based approach is applied to software
development, it is also followed by people who test software.

Process Control Points

133

Project Management

134

Development teams created requirement documents, high-level design
documents, and detailed design documents before creating source files
or executable files.

Similarly, the test teams created system test plan documents, unit test
plan documents, and unit test procedure documents before building
any test controllers, stubs, or instrumentation.

This document-based approach caused the same problems for testing
and development activities.

One of the really tasty beliefs of a modern process is to use exactly the
same sets, notations and artifacts for the products from the testing
activities that are used for product development.

Test artifacts must be developed concurrently with the product from
start to distribution. that is, to test a full life cycle activity, not a late
life cycle activity.

Test artifacts are communicated, designed and developed within the
same artifact sets as the developed product.

Test artifacts are implemented in programmable and repeatable
formats like software programs.

Test artifacts are documented in the same way the product is
documented.

The developers of the test artifacts use the same tools, techniques and
training as the software engineers who develop the product.

Testing is only one aspect of the assessment workflow. Other aspects
include inspection, analysis and demonstration.

The success of a test can be determined by comparing the expected
result with the actual result with well-defined mathematical accuracy.

8.6 PERIODIC ASSESSMENT OF THE CONDITION

These are management reviews that are performed at regular intervals
(monthly, quarterly) to review the progress and quality of the project and
maintain open communication between all stakeholders.

The main objective of this evaluation is to synchronize the
expectations of all stakeholders and also to serve as snapshots of the
project. Also provide,

1) A mechanism for openly addressing, communicating and solving

project management problems, technical problems and risks.

2) A mechanism to disseminate information on processes, progress,

quality trends, practices and experiences to and from all interested
parties in an open forum.

3) Objective data derived directly from ongoing activities and from the
evolution of product configurations. Iterative planning of the process:

o Like software development, project planning is also an iterative
process.

e Like the software, the plan is also immaterial. Plans have an
engineering phase, during which the plan is developed, and a
production phase, where the plan is executed.

1. Interactive software development activities require ongoing attention to
manage risk and assess project status.

2. Periodic health assessments are defined as management reviews carried
out at regular intervals to indicate progress and quality indicators, paying
constant attention to the dynamics of the project and maintaining
communication between all stakeholders.

3. Periodic status reviews are periodic events in which management
regularly reviews the progress of a project in order to meet stakeholder
expectations.

4. Periodic health assessments are considered one of the critical control
points of the project, as they give particular consideration to the gradual
development of project priorities.

=> Status evaluation features:

1. The assessment of the state aims at the periodic verification of the
expectations of the interested parties.

2. State assessments are carried out by management in order to
periodically check the development of a project.

3. Deals with issues related to project status progress or status assessment.

=> The need for health assessments in the software lifecycle:

1. The main objective is to meet the expectations of interested parties in a
synchronized and coherent way.

2. Status assessments serve as regular snapshots of a healthy project that
includes risk assessment, management indicators, and quality indicators.

3. State assessment documents provide the mechanism to meet everyone's
expectations, to communicate and solve project management, technical
problems and risks.

4. Provide objective data on ongoing activities to develop product
configurations.

5. It also provides a mechanism for the widespread use of processes,
progress, quality trends, practices and experience information to all
stakeholders on an ongoing basis.

Process Control Points

135

Project Management

136

6. Health assessments require the project manager to carry out periodic
reviews and collect the data necessary to maintain the good health of
the project.

7. Typical health assessments include reviews of resources, personnel,
financials, or costs and revenues, top 10 risks, plans for important
milestones, product scope, consequences and progress technical such
as snapshots of metrics, etc.

=> Engineering artifacts

Vision _document: -The vision document provides a comprehensive
overview of the software system under development and supports the
contract between the funding authority and the development organization.
Whether the project is a massive military standard development (whose
vision might be a 300-page system specification) or a small, internally
funded commercial product (whose vision might be a two-page white
paper), every project needs of a source. stakeholders. The vision of a
project must change as the understanding of requirements, architecture,
plans and technology evolves. A good vision document should change
slowly.

I. Feature set description
A. Precedence and priority
. Quality attributes and ranges
. Required constraints
A, External imterfaces
I¥V. Evolutionary appendixes
A, Use cases
1. Primary scenarios
2. Acceptance criteria and tolerances
{ B. Desired freedoms (potential change scenarios)

Fig.8.8 Typical online view document

=> The description of the architecture: -The architecture description
provides an organized view of the software architecture under
development. It is largely drawn from the design model and includes
sufficient views of the design, implementation, and deployment sets to
understand how the operational concept of the established
requirements will be achieved. The breadth of the architectural
description will vary from project to project depending on many
factors. Architecture can be described using a subset of the design
model or as an abstraction of the design model with complementary
material or a combination of both.

-> Software User Manual: -The software user manual provides the user
with the reference documentation necessary to support the supplied
software. Although the content varies widely between application

domains, the user manual should include at a minimum installation Process Control Points
procedures, guidance and procedures for use, operational limitations,
and a description of the user interface. For software products with a
user interface, this manual should be developed early in the life cycle
because it is a necessary mechanism to communicate and stabilize an
important subset of requirements. The user manual should be written
by the test team members, who are more likely to understand the user's
point of view than the development team. If the test team is
responsible for the manual, it can be generated in parallel with
development and can soon evolve as a tangible and relevant insight
into the evaluation criteria. it also provides a necessary foundation for
test plans and test cases, and for building automated test suites.

== S

I. Architecture overview
A. Objectives
| B. Constraints
C. Freedoms
| Il. Architecture views
A, Design view
| B. Process view
C. Componant view
| 0. Deployment view
| NI Architectural interactions
A, Operational concept under primary scenarios
B. Operational concept under secondary scenarios
C. Operational concept under anomalous conditions
I¥. Architecture performance
V. Rationale, trade-offs, and other substantiation

| — —

Fig. 8.9 Typical architecture description scheme

THEME CONTENTS

—> Personal => Personnel plan vs. actual data
=> Wear, additions

-> Financial trends => Spending plan versus actual data for previous,
current and subsequent key milestones

=> Income forecasts

=> The 10 main risks | = Problem solving and criticality plans
=> Quantification (cost, time, quality) of the
exposure
=> Technical => Setting up basic schedules for important
progress milestones

137

Project Management

138

v

Software management metrics and indicators
Current trends of change
Test and quality ratings

-> Results and plan | =
of important goals

Plan, program and take risks for the next
major milestone

=> Pass / Fail results for all acceptance criteria

=> Total product

scope

=> Total disturbances of size, growth and

acceptance criteria

Table 8.2 Default content of health assessment reviews

8.7 SUMMARY

—=> Establishing a series of checkpoints during the planning period and

treating each checkpoint as if it were an actual delivery reduces the
risks of missing the final delivery date, burning people and exceeding
budget costs.

To achieve this, checkpoints are established at 4-6 month intervals, but
at significant points in the plan, where actual progress can be
measured.

With small projects, these important checkpoints can be established
about a quarter, a half and three quarters of the way through to the
final delivery date.

Three sequences of project checkpoints are used to synchronize
stakeholder expectations throughout the lifecycle, which is explained

very briefly in this chapter.

8.8 BIBLIOGRAPHY

https://www.geeksforgeeks.org/
https://www.ittoolkit.com/articles/project-checkpoints

https://www.teamgantt.com/blog/the-how-and-why-of-using-milestones-
in-your-project-plan

http://www.student.apamaravathi.in/meterials/spm/unit5.pdf
https://www.workflowmax.com/blog/general-project-milestone
http://www.pvpsiddhartha.ac.in/dep_it/lecture%20notes/SPM/unit3.pdf

https://www.proothub.com/articles/what-is-a-milestone

http://www.faadooengineers.com/online-study/post/cse/software-project- Process Control Points
management/163/evolutionary-work-breakdown-structure

http://grabcollectioncrazy.blogspot.com/2019/12/periodic-status-
assessments.html

8.9 END OF CHAPTER EXERCISE

1. Explain the life cycle of the checkpoints with the types of joint
management reviews.

2. Explain the planning and analysis of checkpoints.
3. What do you mean by Milestones? Why is it necessary?
4. Explain the main milestones.

5. What engineering elements are available in the lifecycle architecture
milestone?

6. Explain the minor steps.
7. Explain the artifacts of the test.

8. Explain periodic condition assessment with engineering artifacts.

139

140

9

ITERATIVE PROCESS PLANNING

Unit structure

9.0 Objectives

9.1 Introduction

9.2 Structure of the division of labor
9.3 Planning guidelines

9.4 The cost and program estimation process
9.5 The Iteration Planning Process
9.6 Pragmatic planning

9.7 Summary

9.8 Bibliography

9.9 End-of-unit exercises

9.0 OBJECTIVES

This chapter will help us understand the process checkpoints required
during the planning period. We will also focus on major milestones, minor
milestones and periodic status assessment. One of the objectives of the
process is to ensure that the expectations of all parties are synchronized
and consistent. Periodic health assessment provides a mechanism to
manage everyone's expectations throughout the project life cycle.

9.1 INTRODUCTION

These are management reviews that are performed at regular intervals
(monthly, quarterly) to review the progress and quality of the project and
maintain open communication between all stakeholders.

- The main objective of this evaluation is to synchronize the expectations
of all stakeholders and also to serve as snapshots of the project. Also
provide,

1) A mechanism for openly addressing, communicating and solving
project management problems, technical problems and risks.

2) A mechanism to disseminate information on processes, progress,
quality trends, practices and experiences to and from all interested
parties in an open forum.

3) Objective data derived directly from ongoing activities and from the
evolution of product configurations. Iterative planning of the process:

e Like software development, project planning is also an iterative
process.

e Like the software, the plan is also immaterial. Plans have an Iteration Process Planning
engineering phase, during which the plan is developed, and a
production phase, where the plan is executed.

9.2 WORK DISTRIBUTION STRUCTURES

e The work breakdown structure is the "architecture" of the project plan
and also an architecture for the financial plan.

e We say that a project is a success, if we keep a good structure of work
distribution and its synchronization with the framework of the process.

e A WBS is simply a hierarchy of elements that breaks down the project
plan into distinct work activities and provides:

1) A pictorial description of all significant works.
2) A clear division of tasks for the attribution of responsibilities.
3) A framework for planning, budgeting and spending monitoring.

=>Conventional WBS Issues:

Conventional functioning rupture structures commonly suffer from three
fundamental failures.

1) Conventional WBSs are prematurely structured around product design:
Management

e System requirements and design
e Subsystem 1

> Component 11: {Requirements, Design, Code, Test,
Documentation ,. . .}

> Component 1N: {Requirements, design, code, test,
documentation ,. . .}

e Subsystem M

> Component M1: {Requirements, design, code, test,
documentation ,. . .}

> Component MN: {Requirements, Design, Code, Test,
Documentation ,. . .}

e Integration and testing: {test planning, preparation of test procedure,
tests, test reports}

e Other areas of support: {configuration control, quality assurance,
system administration}

141

Project Management

142

e It is a typical CWBS which has been structured mainly around the
product architecture subsystem and then broken down into the
components of each subsystem.

e Once this structure is incorporated into the WBS and then assigned to
responsible managers with expected budgets, programs and results, a
concrete planning basis has been established which is difficult and
expensive to modify.

2) CWBS are prematurely broken down, planned and budgeted with too
little or too much detail.

3) CWBS are project specific and comparisons between projects are often
difficult or impossible

Conventional work stoppage structures often suffer from three
fundamental flaws.

1. They are prematurely structured around product design.

2. They break down, plan and anticipate prematurely with too much or too
little detail.

3. They are project specific and comparisons between projects are often
difficult or impossible.

(A Conventional work breakdown structures are prematurely structured
around product design. Figure 3.2 shows a typical conventional WBS
that has been structured primarily around the subsystems of its product
architecture and then broken down into the components of each
subsystem. A WBS is the architecture of the financial plan.

[Conventional work stoppage structures are broken down, planned and
budgeted prematurely with too much or too little detail. Large software
projects tend to be over-planned, while small projects tend to be poorly
planned. The basic problem with planning too many details in advance
is that the details don't evolve with the plan's loyalty level.

(A Conventional work-sharing structures are project-specific, and
comparisons between projects are often difficult or impossible.
Without a standard WBS structure, it is extremely difficult to compare
plans, financial data, planning data, organizational efficiencies, cost
trends, productivity trends, or quality trends across multiple projects.

9.3 EVOLUTIONARY STRUCTURE OF WORK

(A An evolving WBS should organize planning elements around the
process structure rather than the product structure. The basic
recommendation for the WBS is to organize the hierarchy as follows:

(A The first level elements of the WBS are the workflows (management,
environment, requirements, design, implementation, evaluation and
distribution).

[The second level elements are defined for each stage of the life cycle Iteration Process Planning
(initiation, elaboration, construction and transition).

(4 The third level elements are defined for the focus of the activities that
produce the artifacts of each phase.

A A default WBS consistent with the process framework (phases,
workflows, and artifacts) is shown in Figure 10-2. This recommended
structure provides an example of how elements of the process structure
can be integrated into a plan. It provides a structure for estimating
costs and schedules for each item, allocating them in a project
organization and keeping track of expenses. The structure shown is
simply meant to be a starting point. It has to be adapted to the
particularities of a project in many ways.

-> Ladder. Larger projects will have multiple layers and substructures.

=> Organizational structure. Projects that include subcontractors or
span multiple organizational entities may introduce constraints that
require different WBS allocations.

=> Degree of custom development. Depending on the nature of the
project, there can be very different emphases on requirements,
design, and implementation workflows.

=> Business context. Projects that develop commercial products to
supply to a large customer base may require much more elaborate
substructures for the implementation element.

-> Previous experience. Very few projects start with a clean slate.
Most of them are developed as new generations of a legacy system
(with a mature WBS) or in the context of existing organizational
standards (with predetermined WBS expectations).

The WBS breaks down the character of the project and assigns it to the life
cycle, budget and personnel. Reviewing a WBS provides information on
the important attributes, priorities, and structure of the project plan.
Another important attribute of a good WBS is that the design fidelity
inherent in each element is proportional to the current stage of the life
cycle and the status of the project. Figure 10-3 illustrates this idea.

Figure 9-3 Default job breakdown structure
=> A gesture
% Management of the initial phase of AA
% AAA business case development
% AAB Construction Phase Launch Specifications
% WBS specifications for the development phase of AAC
% AAD software development plan

143

Project Management

144

% Evaluation of the progress and control of the project of the initial
phase of AAE

[JAB Management of the development phase
% ABA Construction Phase Release Specifications
% Baseline WBS ABB construction phase

% Evaluation of the progress and control of the project of the
development phase of the ABC

[AManagement of the CA construction phase
% Planning the implementation phase of the ACA
% CBA Baseline WBS implementation phase

% Evaluation of the state and control of the project of the construction
phase of the ACC

[AManagement of the transition phase AD
% Planning for the next generation of ADA

% Assessment of the status and control of the project of the transition
phase of ADB

->B Environment
% Specify the BA startup phase environment
% BB Baseline of the development phase environment

% Installation and administration of the BBA development
environment

% Integration of BBB development environment and custom tools
locksmith

% BBC SCO database formulation
[BC Maintenance of the environment during construction

% Installation and administration of the BCA development
environment

% BCB SCO database maintenance
(AMaintain the DB transition phase environment

%Maintenance and administration of the BDA development
environment

% BDB SCO database maintenance

% BDC maintenance environment package and transition
=>Requirements C.

% Development of requirements for the CA start-up phase.
% CCA Vision Specifications

% CAB use case modeling

[J CB Baseline of the requirements of the development phase Iteration Process Planning
% Baseline CBA Vision

% Baseline of the CBB use case model

[AMaintain the requirements of the construction phase CC
(A Maintaining the requirements of the CC transition phase
=>Design D

(A Prototyping the DA boot phase architecture

(A Baseline of the database development phase architecture
% DBA architecture design modeling

% Planning and running of the DBB Design demo

% Description of the DBC software architecture
[AModeling of the project under construction DC

% Maintain the DCA architecture design model

% Modeling the design of DCB components

[Maintenance of the DD transition phase project

—>And Implementation

(A Prototyping of EA Startup components

(A Implementation of the EB development phase component
% EBA Critical Component Coding Demo Integration

(A Implementation of the CE construction phase component
% RCT initial release component coding and independent testing
% ECB Alpha component coding and independent testing
% ECC beta component coding and independent testing

% ECD component maintenance

AEvaluation F

% Evaluation of the initial phase of AF

% Evaluation of the FB development phase

% FBA test modeling

* Implementation of the FBB architecture test scenario

% FBC demo evaluation and release descriptions

(A Evaluation of the construction phase of the FC

% Evaluation of the initial version of the FCA and description of the
version

% FCB Alpha Version Evaluation and Version Description

% FCC Beta Version Evaluation and Version Description

145

Project Management

146

(A Evaluation of the transition phase of FD

% FDA product release assessment and release description
Distribution G

% Planning the implementation of the start-up phase of GA
% GB Planning the implementation of the elaboration phase
% Implementation of the compilation phase of the GC

> Baseline of the GCA user manual

[d Implementation of the transition phase GD

% Transition from the GDA product to the user

Elaboration

Inception

WBS Element Fidelity
Management High
Environment Moderate

Requirement High

WBS Element Fidelity
Management High
Environment High
Requirement High

Design Moderate Design High
Implementation Low Implementation = Moderate
Assessment Low [Assessment Moderate
Deployment Low ﬂ Deployment Low

il
WBS Element Fidelity WBS Element Fidelity
Management High Management High
Environment High Environment High
Requirements Low Requirements Low
Design Low Design Moderate

Implementation Moderate Implementation High
Assessment High Assessment High
Deployment High Deployment Moderate
Transition Construction
Figure 9.1

9.4 PLANNING GUIDELINES

Software projects cover a wide range of application domains. It is valuable
but risky to make specific planning recommendations independent of the
project context. Independent project planning advice is also risky. There is
a risk that guidelines will be adopted blindly without being adapted to the
specific circumstances of the project. Two simple planning guidelines
should be considered when starting or evaluating a project plan. The first

guideline, detailed in Table 10-1, prescribes a predetermined allocation of Iteration Process Planning
costs between the first level WBS elements. The second guideline,

detailed in Table 10-2, prescribes effort allocation and schedule during the

life cycle stages.

10-1 Web budgeting defaults

First Level WBS Element Default Budget
Management 10%
Environment 10%
Requirement 10%

Design 15%
Implementation 25%
Assessment 25%
Deployment 5%

Total 100 %

_Table 10-2 Default distributions of effort and schedule by phase
Domain | Inception | Elaboration | Construction | Transition
Effort 5% 20% 65% 10%
Schedule | 10% 30% 50% 10%

Figure 9.2

9.5 THE COST AND PROGRAM ESTIMATION
PROCESS

Project plans must be derived from two perspectives. The first is a
forward-looking, top-down approach. It starts with understanding the
general requirements and constraints, derives a budget and planning at the
macro level, then breaks these elements into lower-level budgets and
intermediate milestones. From this point of view, the following planning
sequence would occur:

1. The software project manager (and others) develops a characterization
of the overall size, process, environment, people and quality required
for the project.

2. A macro-level estimate of the total effort and program is developed
using a software cost estimation model.

3. The software project manager breaks down the effort estimate into a
higher-level WBS using guidelines such as those in Table 10-1.

4. At this point, the subproject managers are responsible for breaking
down each of the elements of the WBS into lower tiers using their top
tier assignment, staffing profile, and milestone dates as constraints.

The second perspective is a bottom-up approach that looks backwards. We
start with the end in mind, look at budgets and programs at the micro
level, then add all of these elements to higher-level budgets and
milestones. This approach tends to define and populate the WBS from the

147

Project Management

148

lowest levels upwards. From this point of view, the following planning
sequence would occur:

1. Lower level WBS elements are worked out in detailed tasks

2. Estimates are combined and integrated into budget and higher level
targets.

3. Comparisons are made with top-down budgets and planning milestones.

Milestone planning or budget allocation through top-down estimation
tends to exaggerate project management biases and usually results in an
overly optimistic plan. Bottom-up estimates often exaggerate the biases of
actors and result in an overly pessimistic plan.

These two planning approaches should be used together, in balance,
throughout the project life cycle. During the design phase, you will
dominate the top-down perspective because there is generally not enough
depth of understanding and stability in the detailed task sequences to make
credible bottom-up planning. During the production phase, there should be
enough prior planning experience and loyalty to master the bottom-up
planning perspective. The top-down approach should be well tuned to the
specific parameters of the project, so it should be used more as an overall
evaluation technique.

Figure 10-4 Planning balance throughout the life cyecle

.-~ Bottom up task level planning based on
metries from previous iterations

Top down project level planning based on
microanalysis from previous projects

Figure 9.3

Engineering Stage

Production Stage

Inception | Elaboration Construction | Transition
Feasibility iteration Architecture iteration Usable iteration Product
Releases

Engineering stage planning
emphasis

Production stage planning
emphasis

Macro level task estimation for
production stage artifacts

Micro level task estimation for
production stage artifacts

Micro level task estimation for
engineering artifacts

Macro level task estimation for
maintenance of engineering artifacts

Stakeholder concurrence

Stakeholder concurrence

Coarse grained variance analysis of
actual vs planned expenditures

Fine grained variance analysis of actual
vs planned expenditures

Tuning the top down project
independent planning guidelines into
project specific planning guidelines

WEBS definition and elaboration

Figure 9.4

9.6 THE ITERATION PLANNING PROCESS

Planning is concerned with defining the actual sequence of intermediate
results. An evolving build plan is important because there are always
adjustments to the content and build schedule as the initial conjectures
evolve under well understood project circumstances. Iteration is used to
indicate complete synchronization across the entire project, with a well-
orchestrated overall assessment of the entire project baseline.

=> Boot iterations.

Early prototyping activities integrate the building blocks of a candidate
architecture and provide an executable framework for creating system-
critical use cases. This framework includes enough existing components,
commercial components and custom prototypes to demonstrate a
candidate architecture and sufficient understanding of the requirements to
establish a credible software development plan, vision and business case.

=> Processing of iterations.

These iterations result in an architecture, which includes a complete
framework and infrastructure for execution. After the architecture iteration
is complete, it should be possible to demonstrate some critical use cases:

(1) initialize the architecture,

(2) insert a scenario to guide the worst-case data processing flow through
the system (for example, peak transaction throughput or peak load
scenario) and

-ation Process Planning

149

Project Management

150

(3) insert a scenario to guide the worst-case control flow through the
system (for example, orchestrate fault tolerance use cases).

=> Construction iterations.

Most projects require at least two major build iterations: an alpha version
and a beta version.

=> Transition iterations.

Most projects use a single iteration to go from beta to final product.

The general guideline is that most designs will use four to nine iterations.
The typical design would have the following six iteration profiles:

%An iteration at the beginning: an architecture prototype

*Two iterations under development: architecture prototype and
architecture reference

*Two iterations under construction: alpha and beta versions
%An iteration in transition: the product launch

A very large or unprecedented project with many stakeholders may require
an additional initial iteration and two additional iterations under
construction, for a total of nine iterations. 10.5

9.6 PRAGMATIC PLANNING

> While good planning is more dynamic in an iterative process, doing it
accurately is much easier. When performing the N iteration of any
phase, the software project manager must monitor and control a plan
started in the N - 1 iteration and must plan the N + 1 iteration.
tradeoffs on the current iteration plan and the next iteration plan based
on the objective results in the current iteration and previous iterations.
Aside from bad architectures and misunderstood requirements,
improper planning (and consequent mismanagement) is one of the
most common reasons for project failures. Conversely, the success of
any successful project can be attributed in part to good planning.

> A project plan is a definition of how the requirements of the project
will be transformed into "a product within the boundaries of the
business". It has to be realistic, it has to be current, it has to be a team
product, it has to be understood by the stakeholders and it has to be
used. Plans aren't just for managers. The more open and visible the
planning process and the results, the more ownership there will be
among the team members who need to execute it. Wrong and closed
floors cause friction. Good open plans can shape cultures and
encourage teamwork.

9.7 SUMMARY Iteration Process Planning

Planning must be continuous. Iterative planning is exactly what you think
it is, make a plan, create software and then make another plan based on
what has been learned.

This plan is a subset of the stories in the release plan that will be built in
the next iteration or sprint. There is only one iteration plan

9.8 BIBLIOGRAPHY

1. Project Management Basic Manual: Mantel Jr., Meredith, Shafer,
Sutton with Gopalan

(Wiley India Edition)

2. Project Management - TYBSCIT -Semester 6 - Divya Shetty - Sheth
Publications.

3. https://www.geeksforgeeks.org/

9.9 QUESTIONS AT THE END OF THE CHAPTER

1. Define a model-based software architecture?
2. Explain multiple process workflows?
3. Define a typical sequence of lifecycle checkpoints?

4. Explain the overall status of plans, requirements, and products at key
milestones.

5. Does it explain the decomposition structures of conventional and
evolutionary labor?

6. Briefly explain the balance of planning throughout the life cycle.

O O 0, O
0‘0 0’0 0‘0 0’0

151

152

Unit IV

10

ORGANIZATION AND RESPONSIBILITY

OF THE PROJECT

Unit structure

10.0 Objectives

10.1 introduction

10.2 Structure of the division of labor

10.3 Planning guidelines

10.4 The cost and program estimation process

10.5 The iteration planning process

10.6 Pragmatic planning

10.7 Summary

10.8 Bibliography

10.9 End-of-unit exercises

10.0 OBJECTIVES

1. Identifies the various functions represented in a project.

2. Analyzes and evaluates the influence of the organizational
structure on the functions of the project.

3. Design a project flowchart for various project complexity profiles.

10.1 INTRODUCTION

> Proper organization of the project team is one of the key constraints

for the success of the project. If the project does not have a well
organized and productive team, there is a greater chance that this
project will fail in the beginning because initially the team cannot get
the project done right. Without proper organization of teamwork, team
members will fail to perform a variety of specific roles and a variety of
individual / group responsibilities. Therefore, when planning a new
project, you must first take care of the best organization of the project
team through team building activities.

Organizing a project team is a typical activity of a project manager.
Proper implementation of this task requires the manager to acquire,

develop and lead a group of people who are expected to complete the
project. The organization of the project team is the responsibility of the
project manager, who undertakes to build a productive team of
professionals to ensure that the project deliverables are produced on
time, budget and specifications, and therefore the client will accept
those deliverables.

=> What is a project team?

> Before starting to organize a project team, it is essential to understand
the definition of a project team. Senior supervisory staff (executives,
project managers), as well as group leaders, must clearly understand
the definition because such understanding is necessary to establish
teamwork, maintain ongoing training, establish productive
communications, and support collaboration. Here is the definition of
the project team:

> A project team is an organized group of people who are involved in
carrying out shared / individual project tasks, as well as in achieving
shared / individual goals and objectives in order to achieve the project
and produce its results. The team is made up of full-time and part-time
human resources who should work collaboratively to produce the final
results and successfully complete the project.

A group of people becomes a team when all the people in the group are
able to meet the following conditions:

® Understand the work to be done as part of the effort.

® Planning to complete the assigned tasks

® Execute tasks within budget, schedule and quality expectations.
® Report issues, changes, risks, and quality issues to the leader

® Report the status of activities

® Be someone who can collaborate with others.

So, when looking for candidates for your project group, first make sure
that a candidate is ready to meet all conditions; if not, switch to another
candidate. If you understand this, you will have a better chance of finding
the best candidates.

=> Three conventional roles

Each team, regardless of the type, size and nature of the project, has three
roles (called "conventional"). These roles are:

® Head. A project team leader is a person who provides leadership and
guidance to the team and takes responsibility for the results of
teamwork. The role of team leader involves developing and
encouraging the team through training, leadership, motivation,

Organization and
Responsibility of the Project

153

Project Management

154

recognition, reward, and other activities that encourage or compel
team members to perform required activities.

® Member. A project team member is a person who is actually involved
in carrying out the assigned tasks. Team members have direct access to
the project and actively develop its processes. They are subordinate to
the group leader.

e Taxpayer. A project team contributor is a person or organization who
participates in teamwork but is not actually involved in carrying out
the tasks or responsibilities of the project team. Contributors help
improve the project through valuable suggestions, expert judgment and
consultations. They are not responsible for the results of the project.
Often, collaborators on the project team have an interest or concern for
the project, thus facilitating its successful completion.

When the organization of the project team is adequate, all roles are
assigned appropriately. Successful teams often work under the direction
and supervision of project managers who oversee the work of the team
leader and provide expert advice to team members. In this situation,
taxpayers work in collaboration with managers.

10.2 RESPONSIBILITIES AND DUTIES

A team can be responsible for a variety of tasks and responsibilities,
depending on the project they are involved in. A good project team
organization implies the correct definition of the responsibilities and
duties of the team when considering the specific aims and objectives of the
project. Below are several common responsibilities and duties of a project
team:

® QGain a correct understanding of the quantity and scope of the work
assigned

® Following the planned assignments
® Increase the level of detail by task and activity as needed

® Complete assigned tasks within limits of scope, quality, time and
cost.

® Inform the leader of any problems that arise.

® Communicate and collaborate proactively with other team members

=> The organization chart

> Typically, all possible roles, tasks, and responsibilities of a team are
listed in the project team's organizational chart. You can read the
definition below.

> A project team organization chart is a detailed, document-based

graphical representation of the team to outline the specific roles, duties
and responsibilities of team members and other stakeholders involved
in the project and to formally define how exactly they are expected to
collaborate with everyone. others during the project implementation
process. It is also considered as a mechanism for managing team
development processes through the design of training programs based
on the group relationships established in the table.

The team leader typically uses the organization chart to closely follow
the processes associated with team management and to record the
particular relationships between team members throughout the
implementation lifecycle. Team members use the table to explore
which roles and responsibilities have been assigned, who will share
those roles, and who will manage and direct their efforts.

Here is a small checklist of key activities for creating a project team

organization chart:

1.

Make a list of the project team. First, you need to list all the people
(and their names) who should be the participants on your project team.
You can do this after finishing interviews with team candidates.

Assign conventional roles. Now you need to think about which
individuals will take on which roles. Use the results of your interviews
to start with the leaders and then list the members and collaborators.

Get the whole team together. Use your team list with details of the
roles assigned to your people to form the team. This means that you
have to formally form the team.

Identify the stakeholders. Your team is formed, now you need to
identify the stakeholders or those people / organizations who have a
direct interest or are interested in your project. I'm the sponsor and the
client. Note that although stakeholders are not team participants, they
are added to the project team's organizational plan because they
influence the team's decisions.

Build the chart. Finally, use all the data to create the chart and show
the relationships between the team and its stakeholders. The reports
will show who reports to whom and what control mechanism is used to
guide teamwork.

> Project organization is actually a structure that simply facilitates
and motivates the coordination and implementation of project
activities.

> Its main goal is simply to create an environment that encourages
interactions between team members with a minimum number of
interruptions, overlaps and conflicts. The most important decision
of a project management team is the shape of the organizational
structure that will be necessary and essential for the project. The

Organization and
Responsibility of the Project

155

Project Management

156

organization must evolve with the work breakdown structure
(WBS) and life cycle concerns.

=> Line of business organizations:

Below is a diagram showing the roles and responsibilities of a predefined
line-of-business organization. Business line organizations must support
projects with necessary and essential infrastructures to use a common
process. Line of business simply a general term that describes and explains
products and services offered simply by a company or manufacturer.
Business software lines are generally motivated and supported by return
on investment (ROI), new business discrimination, market diversification
and profitability.

Organization

Manager
Software Engineering o - . .
Process Authority Project Review Authority
1. Process Definition 1. Project Compliance
2. Process Improvement 2. Periodic risk assessment
Software Engineering
Environment Authority LTS L
1. Process Automation 1. Project Administration
2. Engineering skill centers
3. Professional development
Project A Project B Project N
Manager Manager Manager

Default roles in a Software Line-of-Business Organization

Figure 10.1

10.3 ORGANIZATIONAL RESPONSIBILITY

® They are generally responsible for defining the process, including
maintaining the project process.

® They are also responsible for automating processes. This is an
organizational role and it is equally important for that process
definition role.

® Responsibility for the role of the organization or the role of process
automation is assumed and carried out by a single individual or several
other teams.

—> Various organizing authorities:

1. Software Engineering Processes Authority (SEPA) - It is a team
that deals with the exchange of information and the guidance of the
project both towards and from the project professionals. Project
professionals simply do the work and are generally responsible for one
or more activities in the process. SEPA is a very important and
essential role or responsibility in any organization.

2. Project Review Authority (PRA) - The project review is simply a
scheduled status meeting that occurs on a regular basis. It includes the
progress, problems and risks of the project. He is responsible for the
review of the project. The PRA generally monitors both compliance
with contractual obligations and organizational policy obligations of
the project.

3. Environmental Authority for Software Engineering (SEEA) -
SEEA is a very important role and it is very necessary to achieve ROI
for a common process. You are simply responsible for supporting and
managing a standard environment. For this reason, different tools,
techniques and training can be amortized effectively on all types of
projects.

4. Infrastructure - Organizational infrastructure is generally made up of
systems, protocols, and various processes that provide structure to an
organization, support human resources, and support the organization in
fulfilling its vision, mission, goals, and values. It can range from
mundane bureaucracies to entrenched bureaucracies. Various
components of the organizational infrastructure are project
management, engineering competence centers and professional
development.

Below is the diagram showing the roles and responsibilities of a
predefined project organization. Project organizations generally need to
assign artifacts and responsibilities to the project team simply to ensure
and confirm a balance between global (architecture) and local
(component) concerns.

Organization and
Responsibility of the Project

157

Project Management
Software
Management
Artifacts Activities
1. Business Case Customer interface, PRA interface
2. Software Development Plan Planning and Monitoring
3. Status Assessments Risk Management
Software Process Definition
Process Improvement
System Engineering Administration
Software Software Software
Architecture Development Assessment

Default Project Organization and Responsibilities

Figure 10.2
% Artifacts
* Description of the architecture
* Launch specifications
% Activities
* Demonstration planning
* Analysis, design
* Architectural prototypes
* Architecture documentation
* Coordination of demonstrations
» Component design
* Production / purchase / reuse analysis
% Artifacts
* Implementation set
* Set of requirements

* Implementation set

158

% Activities

» Component design

* Implementation of components
» Component testing

» Component maintenance

% Artifacts

* Implementation set

* OCS database

* User manual

* Version descriptions

» Atmosphere

* Implementation documents

% Activities

* Evaluation of the launches

* Testing of use cases / scenarios
* Development of test scenarios
* Change of management

* Transition to the user

* System administration

* Environment configuration

» Maintenance of the environment

» Blacksmith tools

The main features of the default organization are as follows:

* The Project management The team is an active participant, responsible
for production and management. Project management is not a spectator

sport.

* The architecture team is responsible for actual artifacts and component
integration, not just staff functions.

* The development team owns the construction and maintenance of
components. The evaluation team is separate from the development.
This structure fosters an independent quality perspective and focuses a

Organization and
Responsibility of the Project

159

Project Management

160

team on product testing and evaluation activities along with ongoing
development.

* Quality is everyone's job, integrated into all activities and checkpoints.
Each team takes responsibility for a different quality perspective.

10.4 ORGANIZATIONAL TEAMS

® Project Management Team - He is an active and very enthusiastic
participant. They are responsible for the production, development and
management of projects.

® Architecture team - They are generally responsible for actual artifacts
and even component integration. They also discover the risks of
product mismatch with stakeholder requirements and simply make
sure the solution fits a defined purpose.

® Development team - They are responsible for all the work required to
produce functioning and validated goods.

e Evaluation team -They are responsible for assessing the quality of the
final results.

=> Software management team

Most of the projects are overloaded. Schedules, costs, features, and quality
expectations are highly correlated and require continuous negotiation
between multiple stakeholders who have different goals. The software
management team has the burden of offering favorable terms to all
interested parties. In this sense, the software project he spends every day
worrying about balance. Figure 11-3 shows the focus of the software
management team's activities during the project lifecycle.

The software management team is responsible for planning the effort,
executing the plan, and adapting the plan to changes in requirements
understanding or design. To this end, the team takes over resource
management and software management.

=> Systems engineering responsibility

Financial administration. Resource commitments Quality assurance. Staff
assignments

* Plans, priorities

« Stakeholder satisfaction

* Definition of the field of application
* Risk management

* Project control

Start Processing Building Transition
Processing phase | Construction Transition Customer
Formulation of | phase planning | phase satisfaction
the planning team | Full staff Risk | planning Termination of
Baseline of the | resolution Optimization | the contract
contract Product of the | Sales support
Architecture costs | acceptance construction | Next generation

criteria plan Risk | planning

Construction management

costs

Table 10.1

% Artifacts

* Business case

* Software development plan

* Breakdown of work structure
* State assessments

» Requirements establish the scope of the project and establish operational
priorities during the project life cycle. At an abstract level, these activities
correspond to the management of the expectations of all stakeholders
throughout the life cycle of the project.

The software management team takes care of all aspects of quality. In
particular, you are responsible for achieving and maintaining a balance
between these aspects so that the overall solution is suitable for all
stakeholders and optimal for as many of them as possible.

=> Software architecture team

e The software architecture team is responsible for the architecture. This
responsibility includes the engineering required to specify a complete
bill of materials for the software and the engineering required to
achieve significant trade-offs between manufacturing and purchasing
so that all custom components are made to the extent that construction
/ assembly costs are highly predictable. Figure 11-4 shows the focus of
the software architecture team's activities during the project lifecycle.

e For any project, the skill of the software architecture team is critical. It
provides the framework for facilitating team communications, for
achieving system-wide quality, and for implementing applications.
With a good architecture team, an average development team can be
successful. If the architecture is weak, even an experienced
development team of superstar programmers will likely fail.

e In most projects, the startup and development phases will be
dominated by two separate teams: the software management team and
the software architecture team. (This distinction can also be blurred,

Organization and
Responsibility of the Project

161

Project Management

162

depending on the scale.) Software development and evaluation teams
tend to participate in support roles as they prepare for certificates.

% Artifacts

* Description of the architecture
* Set of requirements

* Launch specifications

% Software architecture

- demo

- Use case modelers

- Design Modeler performance analysts
Life cycle approach

% Responsibility

» Compensation of requirements
* Design of compensations

* Selection of components

* Initial integration

* Technical resolution of risks

Life cycle approach

Start Processing Building Transition
Architecture Architecture Maintaining the | Architecture
prototypes baseline Main | Architecture maintenance
Compendiums / | scenario Troubleshooting | Multiple
purchases Demonstration | Multiple components
Definition of the|Make / Buy | Components Troubleshooti
main scenario | Offset Baseline | Performance ng

Definition of the Optimization Performance
architectural Quality tuning Quality

evaluation criteria Improvements | improvements

Table 10.2

e When the -construction phase begins, the architecture enters
maintenance mode and must be supported by a minimum level of
effort to ensure the continuity of the engineering heritage.

e To be successful, the architecture team must include a broad enough
level of experience, including the following:

e Domain experience to produce an acceptable design view
(architecturally significant elements of the design model) and a use
case view (architecturally significant elements of the use case model)

e Expertise in software technology to produce an acceptable process

view (concurrency and control thread relationships between design
models, components and distribution), component view (distribution
assembly structure), and distribution view (assembly structure of
distribution).

The architecture team is responsible for system-level quality, which
includes attributes such as reliability, performance, and
maintainability. These attributes span multiple components and
represent the degree of integration of the components to provide an
effective solution. In this sense, the architecture team decides how to

solve most of the multicomponent design problems.

% Software development team

Figure 11-5 shows the focus of the software development team's activities

during the project lifecycle.

Software development

=> Artifacts I— Kit of components

* Implementation set
* Implementation set
Life cycle approach
—> Responsibility

» Component design

* Implementation of components

* Independent component testing

» Component maintenance

* Documentation of components

=> Life cycle approach

Start Processing Building Transition
Support for | Critical Component Design | Component
Make / Buy | Component Component maintenance
Offsets Design Critical | Implementation component
prototypes | Component Independent Test | documentation

Implementation Component

and Testing | Component

Critical Maintenance

Component

Baseline

Table 10.3

Organization and
Responsibility of the Project

163

Project Management

164

The software development team is the most specific group of applications.
In general, the software development team includes several sub-groups
dedicated to component groups that require a common set of skills.
Typical skill sets include the following:

* Business Component: Specialists with detailed knowledge of the
business components critical to a system architecture.

» Database: Specialists with experience in organizing, archiving and
retrieving data.

» Graphical User Interfaces: Specialists with experience in screen
organization, data presentation and user interaction needed to support
human input, output and control needs.

» Operating systems and networks: Specialists with experience in running
multiple software objects on a network of hardware resources, including
all the typical control problems associated with initialization,
synchronization, resource sharing, namespace management,
reconfiguration, termination and communications between subjects.

* Domain Applications: Specialists with experience in algorithms,
application development, or system-specific business rules.

The software development team is responsible for the quality of the
individual components, including development, testing and maintenance
of all components. Component testing should be built as repeatable, self-
documented software that is treated as the source code of another
operational component so that it is naturally maintained and available for
automated regression testing. The development team decides how to solve
local implementation or individual component design problems.

=> Software evaluation team

Figure 11-6 shows the focus of the software evaluation team's activities
during the project lifecycle.

There are two reasons for using an independent software evaluation team.
The first has to do with ensuring an independent quality perspective. This
often debated approach has its advantages (such as ensuring that
developer-owned biases don't taint the quality assessment) and its
disadvantages (like freeing the software development team from quality
ownership, to some extent). A more important reason to use an
independent test team is to take advantage of business competition.
Programs can be accelerated by developing software and preparing for
testing in parallel with development activities. Change management,

% Software evaluation
=> Artifacts

* Implementation Set> SCO Database »User Manual 1 Environment

m Version 1 specifications Version descriptions

m Implementation documents

Start Test Change Management Deployment Environment Support
—> Life cycle approach

—> Responsibility

> Project infrastructure

> Independent tests

* Verification of requirements
> Analysis of metrics

> Configuration control

* Change of management

> User distribution

=> Life cycle approach

Start Processing Building Transition
Infrastructu | Initial user | Infrastructure Infrastructure
re planning | manual for | Upgrades maintenance Basic
Prototyping | change Startup Test | startup Change
of primary | management of | Change management
scenarios the infrastructure | Management Implementation for
core architecture | User Guide | users Check
release test Check basic | requirements
requirements
Table 10.4

FOR modern process You should employ skill-based or use-case-based
testing (which can span many components) organized as a sequence of
builds and mechanized through two artifacts:

1. Version specification (the plan and evaluation criteria for a version)
2. Description of the publication (the results of a publication)

e FEach version may include several (possibly incomplete) components,
because integration occurs continuously. The evaluation criteria will
document what the customer can expect to see in aimportantmilest one
and version descriptions will support the test results. Final iterations
will generally be equivalent to acceptance tests and will include levels
of detail similar to levels of detail in conventional software test plans,
procedures and reports. These artifacts evolve from rather short
abstract versions in early iterations to more detailed and rigorous
documents, with detailed discussions of integrity and traceability in

Organization and
Responsibility of the Project

165

Project Management

166

later versions. Also for use case testing, test components should be
developed in a similar way to component test case development. For
example, instead of developing documents on the test procedure,

e Some component tests can be elevated to evaluation criteria and their
results are documented in the release descriptions. Many components
can only be subjected to informal component testing by the
development team, and the results are captured only within test
software created by a developer. Formal tests for many components
will then be included in the higher-level assessment criteria (typically
capacity-oriented or thread-oriented scenarios) and corresponding
version descriptions. Not all components are created equal - some
require formal component testing to verify requirements, while others
are best tested in the context of the capability test.

e The evaluation team is responsible for the quality of the reference
versions against the customer's requirements and expectations.
Therefore, the evaluation team is responsible for exposing any quality
issues that affect customer expectations, regardless of whether these
expectations are contained in the requirements or not.

10.5 ROLES AND RESPONSIBILITIES OF THE
PROJECT TEAM

Successful projects are often the result of careful planning and the talent
and collaboration of members of a project team. Projects can't go on
without each of your key team members, but it's not always clear who
those members are or what roles they hold. Here, we will describe five
roles: project manager, project team member, project sponsor, executive
sponsor, and business analyst, and describe their associated tasks.

=> Project Manager

The project manager plays an important role in the project and is
responsible for its successful completion. The manager's task is to ensure
that the project is developed within the specified time period and within
the established budget, achieving its objectives. Project managers ensure
that projects have adequate resources, while managing relationships with
contributors and stakeholders.

Tasks of the project manager:

® Develop a project plan

® Manage the results according to the plan.

® Hire project staff

® | cad and manage the project team.

® Determine the methodology used in the project.

® Establish a project schedule and determine each phase

® Assign tasks to project team members
® Provide regular updates to senior management.

=> Project team member

Project team members are the people who are actively working on one or
more phases of the project. They can be internal staff or external
consultants who work on the project full-time or part-time. The roles of
team members can vary according to each project.

Duties of project team members may include:

® Contribute to the overall objectives of the project

® Complete individual deliverables

® Bringing experience

® Collaborate with users to establish and meet business needs

® Document the process

=>Sponsor of the project

The sponsor of the project is the promoter and the internal supporter of the
project. They are usually members of top management, those who have an
interest in the outcome of the project. Project sponsors work closely with
the project manager. They legitimize the project objectives and participate
in high-level project planning. In addition, they often help resolve
conflicts and remove obstacles that occur during the project and sign the
necessary approvals to go through each stage.

Duties of the project sponsor:

® Make key business decisions for the project.
® Approve the project budget
® Ensure the availability of resources

® Communicate the objectives of the project to the whole
organization.

=>Executive sponsor

The executive sponsor is ideally a senior member of management. He or
she is the visible champion of the project with the management team and
is the final decision maker, with final approval at all stages, final results
and scope changes.

The duties of the executive sponsor generally include:
® Take ultimate responsibility for the project.
® Approve all changes to the scope of the project

® Provide additional funding for scope changes

® Approve the results of the project

Organization and
Responsibility of the Project

167

Project Management

168

=>Business analyst

The business analyst defines needs and recommends solutions to improve
an organization. When part of a project team, they ensure that the project
objectives solve existing problems or improve performance and add value
help maximize the value of project

to the organization. They can also
results.

Duties of the business analyst:

® Help define the project

® Collect requirements from business units or users.

® Document the technical and business requirements

® Verify that the project results meet the requirements.

® Test solutions to validate goals

10.6 EVOLUTION OF THE ORGANIZATION

Software Software
‘Management Management
50% 10%

\ [

Software Software Software Software Software Software
Archecture Develop A t ﬁmbﬂﬂm Development Assessment
20% 20% 10% 0% 20% 20%
Inception Elaboration 1
Software Software {}

Management j Management
10% 10%

Software Software ‘Software Software Software Software
Archecture Development || = Assessment Archecture || Development Assessment
5% 5% 50% 10% 50% 30%

Tr Construction
Figure 10.3
Inception: Elaboration:

Software management: 50%
Software Archecture: 20%
Software development: 20%
Software Assessment
(measurement/evaluation):10%

Software management: 10%
Software Archecture: 50%
Software development: 20%
Software Assessment
(measurement/evaluation):20%

Construction:

Software management: 10%
Software Archecture: 10%
Software development: 50%
Software Assessment
imeasurement/evaluation):30%

Transion:

Software management: 10%
Software Archecture: 5%
Software development: 35%
Software Assessment
{measurement/evaluation):50%

Figure 10.4

10.7 SUMMARY

The software business lines are driven by return on investment, new
business discrimination, market diversification and profitability.

e Project teams are motivated by the cost, planning and quality of
specific deliverables.

e Software professionals, in any type of organization, are motivated by
professional growth, job satisfaction and the opportunity to make a
difference.

e Projects rarely invest in technology or services that do not directly
affect costs, planning or the quality of results.

e The organization of a project is temporary.

10.8 BIBLIOGRAPHY

1. https://mymanagementguide.com/basics/project-team-organization-
project-team-definition-responssibility-and-roles-and-project-team-
organization-chart/

2. https://www.geeksforgeeks.org/project-organizations-and-their-
responssibility/

3. https://www.villanovau.com/resources/project-management/project-
team-roles-and-responssibility/

4. https://www.gristprojectmanagement.us/software-3/project-

organizations.html

10.6 QUESTIONS AT THE END OF THE CHAPTER

1. Explain the work breakdown structure.

2. What are the different roles and responsibilities in a project team?

3. What are the responsibilities of an organization for the project?

4. What equipment is included for the development of the project?

5. Explain the roles and responsibilities of the project team.

6. Explain the evolution of the organization.

O O O, O
AXEX R X X g

Organization and
Responsibility of the Project

169

170

11

PROCESS AUTOMATION

Unit structure

11.0 Objective

11.1 introduction

11.2 Process automation

11.3 The 4 phases of project management

11.4 Round trip engineering

11.5 Change management

11.6 Basic configuration

11.0 OBJECTIVE

Process automation is used to describe the automated process through
the use of computers and computer software.

Processes that have been automated require less human intervention
and less human time to run.

The process levels are explained together with their tools.

The project's environmental articles are briefly discussed along with
three distinct states and four major environmental disciplines.

11.1 INTRODUCTION

Many software development organizations focus on evolving mature
processes to improve the predictability of software management and
the performance of their software business lines (in terms of product
quality, time to market, return on investment and productivity). While
process definition and adaptation is necessary, a significant level of
process automation is also required modern software development
projects to operate profitably.

Automation needs grow with the scale of commitment. Just as the
construction process varies depending on whether you are building a
dollhouse, a single family house, or a skyscraper, the software process
varies across the spectrum from a single person. spreadsheet work on
large-scale, multi-organization catastrophic failure cost applications.
Techniques, training, timing, acceptance criteria, and levels of
automation differ significantly at opposite ends of the spectrum.

The majority organizations they are faced with the task of integrating
their environment and infrastructure for software development. This
process generally results in the selection of more or less incompatible
tools that have different information repositories, are provided by
different suppliers, work on different platforms, use different jargon
and are based on different process assumptions. Integrating such an
infrastructure proved to be much more problematic than expected.

Key points

R
L X4
R
L X4
R

L X4

*,

R
L X4

The environment must be first process artifact.

Process automation, and in particular change management, are critical
to an iterative process. If the change is too expensive, the development
organization will resist.

Round-trip engineering and integrated environments promote the
freedom of change and the effective evolution of technical artifacts.

Automation of metrics is critical to effective project control.

External stakeholders need access to environmental resources to
improve interaction with the development team and add value to the
process.

e Automating the development process and building an infrastructure
to support the various project workflows are important activities in
the design phase of the life cycle. They include selecting tools,
producing custom tools, and automating the processes needed to
execute the development plan with acceptable efficiency. The
evolution from the development environment to the maintenance
environment is also crucial to any long-term software development
project.

e To complicate matters further, it is rare to find interested parties who
treat the environment as a first-class artifact required for ongoing
product maintenance. The environment provided by process
automation is a key tangible artifact for the life cycle cost of the
system under development.

e In addition, we have introduced three levels of process. Each level
requires some degree of process automation for the corresponding
process to run efficiently:

1. Metaprocess: an organization's policies, procedures and practices for

managing a software-intensive line of business. Automation support for
this layer is called infrastructure. An infrastructure is an inventory of
favorite tools, artifact models, microprocess guidelines, macro process
guidelines, project performance repository, organizational skill set
database, and a library of previous examples of previous project plans and
results.

Organization and
Responsibility of the Project

171

Project Management

172

2. Macroprocess: the policies, procedures and practices of a project to
produce a complete software product within certain costs, deadlines and
quality constraints. Automation support for a design process is called an
environment. An environment is a specific collection of tools to produce a
specific set of artifacts governed by a specific project plan.

3. Microprocess: the policies, procedures and practices of a project team
to obtain a software process artifact. The automation support for
generating an artifact is generally called a tool. Typical tools include
requirements management, visual modeling, compilers, editors,
debuggers, change management, metrics automation, document
automation, test automation, cost estimation and workflow automation.

While the primary focus of process automation is the workflow of a
project-level environment, the infrastructure context of the project's parent
organization and the building blocks of the tool are important
prerequisites.

11.2 PROCESS AUTOMATION

Also called business process automation, it is the ability to coordinate and
integrate tools, people and processes throughout the workflow. Process
automation reduces human error, enables faster response to mission-
critical system problems, and enables more efficient resource allocation.
Sproutivity can streamline internal business workflows and bridge the gap
between action, awareness and knowledge across all departments of the
organization. Sproutivity with its experience provides a variety of tools
that make your organization 100% proactive. We develop and build
systems that can sustain themselves without effort or human resources.

Sproutivity recommends robust applications as efficiently and effortlessly
as possible with the following aspects:

e Data Acquisition: List for event collection, correlation and analysis.

e Process Automation: Develop, implement and activate a rules-based
intelligent dynamic workflow solution.

e Automation implementation: extension of an existing IT system,
suggestion of a process-specific business process automation software,
suggestions of an adaptive business process automation solution

e Two-Way Communication - Solution-based knowledge and task
distribution, communication and scalability through a variety of
interfaces, such as mail, SMS or phone calls.

e Management and control: execution with remote commands, real-time
indicators and mobile control.

=>Benefits of Business Process Automation:

e Empower local managers while maintaining corporate oversight

e Gain real-time visibility into financial, human resources and
administrative performance.

e Enforce compliance to establish processing standards across
multiple locations

e Automatically fill out a complete audit trail

e Automate accountability

e Simplify processing, regardless of the source of the document
e Reduce data entry costs and mitigate entry errors

e Save on paper storage costs and support disaster recovery

e Gives vendors visibility into payment processing

Process automation generally refers to the use of digital technology simply
to work and execute one or more processes. This is done to get or
complete the workflow or function. For an iterative process, process
automation and change management are very critical. Even if the change
will be too expensive, development will endure and not allow it. To
automate the software development process, several tools are currently
available.

Workflows Environment Tools and Process Automation
Management ‘Workflow automation, metrics automation ‘
Environment ‘ Change management, document automation ‘
Requirements ‘Requirements management‘

Design |Visua\ modeling ‘

Implementation ‘ Editor-compiler-debugger |
Assessment |Test automation, defect tracking ‘
Deployment | Defect tracking ‘

Process Organization Policy ‘
Life-Cycle Inception = Elaboration |Construction| Transition

Automation and Tool components that support the process
workflows

Figure 11.1

In the diagram above, some important tools are included and introduced
which are very necessary in the whole software process in general and
correlate very well with the process structure. Each of the software

Organization and
Responsibility of the Project

173

Project Management

174

development tools is closely related to one of the process workflows, and
each of these workflows has different automation support. Workflow
automation generally makes complicated software processes an easy way
to manage. Here you will see an environment needed to support the
process structure.

Here are some of the concerns associated with each workflow:

1.

Management:
Today, several opportunities and possibilities are available for

automating project planning and management workflow control
activities. To create planning artifacts, several tools are useful, such as
software cost estimation tools and Work Breakdown Structure (WBS)
tools. Workflow Management Software is an advanced platform that
provides flexible tools to improve the way you work efficiently.
Therefore, automation support can also improve understanding of
metrics.

Atmosphere:
Automating the development process and also developing an

infrastructure to support different project workflows are very essential
activities of the life cycle design phase. An environment that generally
provides and provides process automation is a tangible artifact that is
generally very critical to the life cycle of a system under development.
Even the top-level WBS recognizes an environment as a first-class
workflow. Integrating their software development environment and
infrastructure is one of the primary tasks of most software
organizations.

Requirements:

Requirements management is a very systematic approach to identify,
document, organize and monitor the evolving requirements of a
system. It is also responsible for establishing and maintaining an
agreement between the user or customer and the project team on
changing system requirements. If a process requires strong traceability
between requirements and design, the architecture is likely to evolve to
optimize requirements traceability and project integrity. This effect is
even more and highly effective and pronounced if process automation
tools are used. For effective requirements management,

Design:
Workflow design is actually a visual description of each step involved

in a workflow from start to finish. It typically presents each activity in
sequence and provides complete clarity on how data moves from one
activity to another. Workflow design tools simply allow us to
graphically represent the different activities involved, as well as
represent actors, timelines, data and other aspects crucial to execution.
Visual modeling is the primary support required and essential to the
design workflow. The visual model is typically used to capture design
models, render them in a human readable format, and also translate
them into source code.

S.

Implementation:

The main goal and purpose of the distribution workflow is initially to
write and test the software, relying mainly on the programming
environment (editor, compiler, debugger, etc.). On the other hand, it
should also include substantial integration along with change
management tools, visual modeling tools, and test automation tools.
This is simply necessary for the iteration to be productive. It is the
main focus of the construction phase. Implementation simply means
turning a project template into an executable one.

Evaluation and implementation:

Workflow Assessment is the first step in identifying outdated software
processes and simply replacing them with the most efficient process.
This generally combines expertise in the collection and collection of
qualitative and quantitative information, proprietary tools, and much
more. You need and need all the tools discussed along with some
additional features simply to support test automation and test
management. Defect monitoring is also a tool that supports evaluation.

11.3 THE 4 PHASES OF PROJECT MANAGEMENT

1. Initiation and planning

To start outlining a project, you need to identify the scope, deliverables,
and stakeholders. When the project is approved, a comprehensive plan is
created to fully visualize how the process will run, with associated goals
and work.

Project plans require a lot of organization. Some of the processes

include:

Establish a schedule and budget
Identification of costs, materials and human resources.
Provide training

Identification of risks, obstacles and possible bottlenecks

Effective process management can help project managers organize

themselves in five ways:

By visually capturing your processes and attaching supporting
documentation, project managers can make the most accurate recent
information available in one place that everyone can access.

Project managers and their resources can obtain information on
existing processes related to the new project, thus obtaining an
overview of who and what will be affected by the changes.

By acquiring new processes related to the project, all members of the
organization will be kept up to date, with notifications in their control
panel that will alert them of any action they need to take.

Organization and
Responsibility of the Project

175

Project Management

176

e Project-related risks can be managed and monitored on the process
management platform, giving executives the confidence that potential
threats are being monitored.

e Team members who are new to the organization or unsure of what is
expected of them can refer to the relevant processes for detailed
information they can access with all the necessary details.

2. Execution

Once the project has started, it is up to the project manager to supervise
everything. The execution processes for a project manager generally
include:

e Organize workflows and activities

e Follow-up resources

e Communicate progress to stakeholders

e Organize regular meetings with stakeholders and workers.
e Troubleshooting for budget or resource issues

To ensure that all aspects of the project are visible, project managers can
share their data-based projections of how the project is progressing, within
the relevant process maps.

Real-time and auto-generated reports can also be stored within the tool,
giving project managers the confidence that teams are viewing the latest
version of relevant reports.

3. Monitoring and control

This phase runs alongside the execution and monitors the performance of
the project.

To make sure a project runs smoothly, project managers:
e Keep track of the project budget, KPIs and SLAs

e Redeploy resources

e Monitor activities to avoid downtime

e High quality final results monitoring

e Monitor project performance

During this phase of the project, the project manager may need to make
changes to accommodate new developments as they occur.

When processes are updated and corresponding documents are centrally
stored within a process management platform, executives are confident

that all members of the organization are kept up to date during this
transition period.

Project managers can also keep up with people's suggestions for change as
teams review existing processes and recommend improvements.

In this way, everyone in the organization actively participates in the
success of the project.

4. Closing the project

When a project comes to an end, the project manager and his team will
usually assess whether it has been a success. Have you achieved the
agreed goals? Were the results of a high standard? Can the project be
considered finished?

But project management must also be lasting value, leading organizations
to better results that continue to deliver value years after the project is
completed.

It is true that analysis is critical for project managers to present to
stakeholders and indicate overall post-project success.

To close a project, the project manager:

e Take steps such as communicating with stakeholders about the closure
status of the project

e Review the success of the project in relation to the agreed scope

e Analyze team performance

e Evaluate the effectiveness with which the resources have been used.
e Redistribute any unused budgets or resources

e Provide project data and information to interested parties.

Analyzes are critical for managers to present to stakeholders and indicate
overall post-project success. Operational metrics will provide a
comprehensive overview of project success in terms of productivity,
budget and efficiency, and this information can be used to improve and
optimize future projects.

11.4 THE PROJECT ENVIRONMENT

Artifacts in the project environment evolve through three distinct states:
the prototyping environment, the development environment, and the
maintenance environment.

1. The prototyping environment includes an architecture test bed for
prototyping design architectures to evaluate trade-offs during the
startup and build phases of the life cycle. This informal setup of tools
should be able to support the following activities:

Organization and
Responsibility of the Project

177

Project Management

178

* Performance compensation and technical risk analysis

* Conduct / purchase offsets and feasibility studies for commercial
products

* Dynamic reconfiguration / fault tolerance compensation

» Analysis of the risks associated with the transition to a large-scale
implementation

* Development of test scenarios, tools and adequate instrumentation to
analyze requirements.

2. The development environment should include a full set of development
tools needed to support the various process workflows and support back
and forth engineering to the fullest extent possible.

3. The maintenance environment should normally correspond to a mature
version of the development environment. In some cases, the
maintenance environment may be a subset of the development
environment that is provided as one of the project's end products.

Moving to a mature software process presents new challenges and
opportunities for management control of competing businesses and for
assessing tangible progress and quality. The project's real-world
experience has shown that a highly integrated environment is needed to
both facilitate and apply process management control. To this end, there
are four important environmental disciplines that are critical to the
management context and the success of modern management. Iterative
development process:

1. Tools need to be integrated to maintain consistency and traceability.
Round-trip engineering is the term used to describe this key
requirement for environments that support iterative development.

2. Change management must be automated and applied to manage
multiple iterations and allow for the freedom of change. Change is the
fundamental primitive of iterative development.

3. Organizational infrastructures make it possible to derive project
environments from a common base of processes and tools. A common
infrastructure promotes project consistency, reuse of training, reuse of
lessons learned, and other strategic improvements to the organization's
met process.

4. Expanding automation support for stakeholder environments allows for
greater support for without paper more effective information exchange
and review of engineering artifacts.

% As the software industry moves towards maintaining different sets of
information for engineering artifacts, more automation support is
needed to ensure an efficient and error-free data transition from one

artifact to another. Round-trip engineering is the environmental Organization and
support needed to maintain consistency between engineering artifacts. ~ Responsibility of the Project

d

% Figure 4.2 shows some important transitions between information
repositories. The automatic translation of design models into source
code (direct and reverse engineering) is quite well established.
Automatic translation from design models to process (deployment)
models is also simplified with technologies such as ActiveX and
CORBA (Common Object Request Broker Architecture).

% Compilers and linkers have long provided the automation of source
code into executable code. As architectures begin to use heterogeneous
components, platforms and languages, the complexity of creating,
controlling, and maintaining large-scale component networks
introduces new needs for configuration control and building
management automation. However, today's environments do not
support automation to the fullest extent possible. For example, the
automated construction of test cases from use case and scenario
descriptions has yet to evolve to support anything but the most
mundane examples, such as unit test scenarios.

% The primary reason for round-trip engineering is to allow the freedom

to modify software engineering data sources. This configuration
controls all the technical aspects

Automated production -»

*Traceability links

*Advanced engineering (generation of sources from models) Reverse
engineering (generation of models from sources)

*Advanced engineering (generation of sources from models) Reverse
engineering (generation of models from sources)

Figure 11.2

Portability between platforms and network topologies

Figure 4.2. Round-trip engineering artifacts are critical to maintaining a
consistent and error-free representation of the evolving product. However,
it is not necessary to have two-way transitions in all cases. For example,

although we should be able to create test cases for defined scenarios for a
179

Project Management

180

given logical set of objects, we cannot reverse engineer objects from test
cases alone. Likewise, reverse engineering poorly constructed legacy
source code into an object-oriented design model can backfire.

Translation from one data source to another may not provide 100%
integrity. For example, translating design models into C ++ source code
can provide only the structural and declarative aspects of the source code
representation. It may be necessary to develop code components that are
specific to certain attributes or methods of the object.

11.5 CHANGE OF MANAGEMENT

Managing change is so fundamental processes as a schedule. Tracking
changes in technical artifacts is critical to understanding true trends in
technical progress and quality trends towards delivering an acceptable
final product or provisional version. On conventional processes, basic
configuration management techniques for technical artifacts were
predominantly a late life cycle activity. in amodern process—Where the
artifacts of requirements set, design and implementation are captured in
rigorous notation early in the lifecycle and evolve across multiple
generations - change management has become critical to all stages and
nearly all activities.

=> Software Change Orders

e The atomic unit of work of software that is authorized to create,
modify, or obsolete components within a configuration baseline is
called a Software Change Order (SCO). Software change orders
are a key mechanism for dividing, allocating and scheduling
software work against an established software base and for
evaluating progress and quality. The SCO example shown in
Figure 4.3 is a good starting point for describing a set of change
primitives. Shows the level of detail required to achieve the
metrics and change management rigor required for
amodernsoftware processes. By automating data entry and keeping
change logs online, you can also automate the change management
bureaucracy associated with metric reporting tasks.

e The level at which a SCO is written is always a problem. What is a
discreet change? Is it a change in a program unit or component, file
or subsystem? Is it a new feature, a bug fix, or a performance
improvement? In most designs, the atomic unit of the OCS tends to
be easily accepted. In general, a SCO should be written in a single
component so that it can be easily assigned to a single individual.
If the resolution requires two people on two different teams, two
separate SCOs must be written.

The basic fields of the SCO are title, description, metrics, resolution,
evaluation and disposition.

* Qualification. The title is suggested by the creator and finalized once
accepted by the configuration control board (CCB). This field must

include a reference to a report on an external software problem if the
change was initiated by an external person (such as a user).

* Description. The problem description includes the name of the creator,
the date of origin, the SCO identifier assigned by the CCB, and the
identifiers of the relevant version of its supporting software. The textual
description of the problem should provide as much detail as possible,
along with attached code excerpts, showing snapshots, error messages,
and any other information that can help isolate the problem or describe
the necessary change.

* Metrics. The metrics collected for each SCO are important for planning,
scheduling and evaluating quality improvement. The change categories
are Type O (Critical Error), Type 1 (Error), Type 2 (Enhancement),
Type 3 (New Feature), and Type 4 (Other), as described later in this
section. After the SCO is accepted, initial estimates are made of the
extent of the break and the effort required to resolve the problem.

Description - Date:
Praject:
Category: {011 error. 2 enhancamart, 3 new ‘eatura, 4 other)
Inltial Exstisate Aciual Rewark Expanded
Breakage Anakysis. . Tast:
Renwrk: implament; Dooumenl:

Hesolution ELES
Software Component

Assessment

Method; {inspection, ane lysia, dermonstration, leat)

Testar __ . Platforms. |

, Date. ____

Dispositien

Stala: _ Helsasa: . Puanly_
ACEpiAnCE” Crate:
Clagore: Cate:

Figure 4.3. The primitive components of a software change order

The break element quantifies the volume of the change and the rework
element quantifies the complexity of the change. Once resolved, the actual
break is noted and the actual reprocessing effort is further processed. The
analysis element identifies the number of staff hours spent understanding
the requested change (recreating, isolating and debugging the problem if
the change is type 0 or 1; analysis and prototyping of alternative solutions
if it is type 2 or 3) . The implementation element identifies the staff hours
required to design and implement the resolution. The test element

Organization and
Responsibility of the Project

181

Project Management

182

identifies hours spent testing resolution, and the document element
identifies any effort invested in updating other artifacts, such as the
manual of the user or version description. Break quantifies the scope of
the change and can be defined in SLOC units, function points, files,
components or classes. In the case of SLOC, a source file comparison
program that quantifies the differences can provide a simple estimate of
the break. In general, the accuracy of break numbers is relatively
irrelevant. Changes between 0 and 100 lines must be accurate with the
nearest 10, changes between 100 and 1000 with the nearest 100, and so on.
the accuracy of the break numbers is relatively irrelevant. Changes
between 0 and 100 lines must be accurate with the nearest 10, changes
between 100 and 1000 with the nearest 100, and so on. the accuracy of the
break numbers is relatively irrelevant. Changes between 0 and 100 lines
must be accurate with the nearest 10, changes between 100 and 1000 with
the nearest 100, and so on.

» Resolution. This field includes the name of the person responsible for
implementing the change, the changed components, the actual metrics, and
a description of the change. Although the fidelity level of components
with which a project tracks change references can be customized, in
general, the lowest level of component references should remain roughly
at the level assigned to an individual. For example, a "component"
assigned to a computer is not a sufficiently detailed reference.

» Evaluation. This field describes the evaluation technique such as
inspection, analysis, demonstration or test. Where applicable, you should
also refer to all existing test cases and newly run test cases and you should
identify all the different test configurations, such as platforms, topologies
and compilers.

* Layout. The CCB assigns one of the following statuses to the SCO:
* Proposal: written, awaiting review by the CCB
» Accepted: CCB approved for termination

* Rejected: closed, well founded, as not a problem, duplicated, obsolete
change, solved by another SCO

» Archived: accepted but postponed to later publication

* In Progress: actively assigned and resolved by the development
organization.

* Under evaluation: resolved by the development organization; be
evaluated by a testing organization

* Closed: completely resolved, with the participation of all members of the
CCB

The CCB can also assign a priority and release identifier to guide
prioritization and organization of concurrent development activities.

11.6 BASIC CONFIGURATION

R
%

L X4

R
L X4

A configuration baseline is a named collection of software components
and supporting documentation that is subject to change management
and is updated, maintained, tested, classified, and out of date as a unit.
With complex configuration management systems, there are many
desirable project and domain specific standards.

Generally, there are two types of baselines: external product versions
and internal test versions. A configuration baseline is a collection of
named components that is treated as a unit. It is formally controlled
because it is a packaged exchange between groups. For example, the
development organization can publish a configuration baseline to the
test organization or even itself. A project can release a configuration
baseline to the user community for beta testing.

In general, three basic emission levels are required for most systems:
main, minor and interim. Each level corresponds to a numbered
identifier such as NMX, where N is the major version number, M is
the minor version number, and X is the provisional version identifier.
A major version represents a new generation of the product or project,
while a minor version represents the same base product but with
improved features, performance, or quality. Major and minor releases
are meant to be persistent and supported external product releases for a
period of time. A provisional version corresponds to a development
configuration that must be transient. The shorter its life cycle, the
better. Figure 4.

Once the software is placed on a controlled baseline, all changes are
tracked. A distinction must be made for the cause of a change. The
modification categories are as follows:

*Type 0: critical defects, which are defects that are almost always
fixed before any external release. In general, these types of
changes represent surprising aspects that impact the usability of the
software in its critical use cases.

*Type 1:an error or defect that does not affect the usefulness of the
system or that can be fixed Such errors tend to be related to
annoyances in critical use cases or serious defects in secondary use
cases that have a low probability of occurring.

*Type 2: A change that is an improvement rather than a response to a
defect. Type 3: A change that is needed to update the environment.
Type 4: Changes that are not accepted by the other categories.

*Type 3: A change required by the environment update.

*Type 4: Changes that are not accepted by the other categories.

Organization and
Responsibility of the Project

183

Project Management

184

=> Change Management - Configuration Dashboard (CCB)

A CCB is a team of people who act as decision-making authority over the
content of the configuration baselines. A CCB includes:

1. Software administrators

2. Software architecture managers
3. Software development managers
4. Software Evaluation Managers

5. Other interested parties who are integral to maintaining the controlled
software distribution system?

Infrastructure I:The organization's infrastructure provides the
organization's capital assets, including two key artifacts: politics and the
environment.

1. Organization policy:

A policy captures the standards for the project's software development
processes. The organization's policy is usually packaged as a manual that
defines life cycles and process primitives, such as

*Important milestones
*Intermediate artifacts
*Engineering repository
*Metric

%Roles and responsibilities

I Process-primitive definitions
A. Life-cycle phases (inception, elaboration, construction, transition)
B. Checkpoints (major milestones, minor milestones, status assessments)
C. Artifacts (requirements, design, implementation, deployment, management
sets)
D. Roles and responsibilities (PRA, SEPA, SEEA, project teams)
Il. Organizational software policies
Work breakdown structure
Software development plan
Baseline change management
Software metrics
Development environment
Evaluation criteria and acceptance criteria
Risk management
. Testing and assessment
lil. Waiver policy
IV. Appendixes
A. Current process assessment
B. Software process improvement plan

IPTMMOO®>

Figure 11.4

Infrastructure I1:

Environment of the organization

The environment that acquires an inventory of tools that are building
blocks from which project environments can be configured efficiently and
economically

Stakeholder environment

Many large-scale projects include people in external organizations
representing other stakeholders involved in the development process
which they may include.

% Contract supervisors of procurement agencies

% End-user technical support staff

% External maintenance companies

% Independent verification and validation contractors
% Representatives of regulatory agencies and others.

These stakeholder representatives also need to access development
resources so they can add value to the overall effort. These interested
parties will be accessible via the Internet. An online environment
accessible to external stakeholders will allow them to participate in the
process as follows. Accept and use executable increments for practical
evaluation. Use the same tools, data and online reports used by the
development organization to manage and monitor the project Avoid
excessive travel, document exchange delays, format translations, shipping
costs * and other overhead costs

Stakeholder Environment Development Environment

Electronic ‘

Ana ement Exchange l/ Management.
Artifact Releases Artifact Baselines

Workflow automation, metrics automation
Change management, document automation

p—

e Requuremenls managemenq
% [Visual modeling |
Tool Subset | Editor-compiler-debugger |

[Test automation, defect tracking |

[Defect tracking

Stakeholder Activities
» Configuration control board participation
* Tes! scenario development
* Risk management analysis
* Metrics trend analysis
» Artifact reviews, analyses, audits
* Independent alpha and bata testing

Environment Tools and Process
Automation

Figure 11.5

Organization and
Responsibility of the Project

185

Project Management

186

11.7 SUMMARY

e [t will only exist from the beginning to the end of the project. All
project team members come from different parts of the
organization.

e Everyone will have a temporary assignment to the project.

e Organizations must evolve to survive. Those who evolve most
successfully will have a competitive advantage. Without
evolution, the organization will succumb to the wave of creative
destruction of the economy.

11.8 BIBLIOGRAPHY

1. https://mymanagementguide.com/basics/project-team-organization-
project-team-definition-responssibility-and-roles-and-project-team-
organization-chart/

2. https://www.geeksforgeeks.org/project-organizations-and-their-
responssibility/

3. https://www.villanovau.com/resources/project-management/project-
team-roles-and-responssibility/

4. https://www.gristprojectmanagement.us/software-3/project-
organizations.html

11.9 QUESTIONS AT THE END OF THE CHAPTER

1. What are the three different levels of processes in process automation?
2. Explain process automation. Give the benefits.

3. What are the concerns associated with each workflow?

4. Explain the 4 phases of project management.

5. Explain the different forms of the project environment.

6. Explain change management.

7. Explain the baseline of the configuration.

Unit V

12

PROCESS CONTROL AND PROCESS

INSTRUMENTATION

Unit Structure

12.0 Objectives

12.1 Introduction

12.2 The Seven Core Metrics
12.3 Management Indicators
12.4 Quality Indicators

12.5 Life Cycle Expectations
12.6 Pragmatic Software Metrics
12.7 Metrics Automation

12.8 Summary

12.9 References
12.10 Questions

12.0 OBJECTIVES

At the end of this unit, the student will be able to

e [llustrate the need of seven core metrics required for managing project

e Differentiate between the management indicators with quality

indicators

e Explain the requirement of life cycle expectations

e Use the pragmatic software metric for developing the project

e Conclude the requirement
management

of metric automation for project

12.1 INTRODUCTION

1. The main motto of a modern software development process tackle

the central management issues of complex software is as follows

1.1 Getting the design right by focusing on the architecture first .

1.2 Managing risk through iterative development.

187

Project Management

188

1.4

1.5

1.6

1.7

1.8

7.1
7.2
7.3

Reducing the complexity with component based techniques.

Making software progress and quality tangible through proper
channel of change management.

Round-trip engineering and integrated environment should be used
to automate the overhead and book keeping activities.

One of the major issues with the conventional software process, is
that it is very difficult to manage what cannot be measured
objectively.

Software metrics instrument the activities and products of the of the
software development /integration process. Any software process
whose metrics are calculated by manual procedures and human-
intensive activities will have success for a limited period of time.

But in a modern development process, the most important software
metrics are simple and highly focused on measuring the perspectives
of the product and project when they are changing.

The progress toward project goals and the quality of software
products must be measurable throughout the software development
cycle.

Metrics values provide an important perspective for managing the
process. Metrics trends provide another.

The most useful metrics are extracted directly from the evolving
artifacts.

Objective analysis and automated data collection are crucial to the
success of any metrics program. Subjective assessments and manual
collection techniques are likely to fail.

The quality of software products and the progress made toward
project goals must be measurable throughout the software
development cycle.

The goals of software metrics are to provide the development team
and the management team with the following

An accurate assessment of progress to date.
Insight in to the quality of the evolving software product.

A basis for estimating the cost and schedule for completing the
product with increasing accuracy over time.

12.2 THE SEVEN CORE METRICS

1.

Many different metrics may be of any value in managing a modern
process. There are seven core metrics that can be used on all software
projects,

Three are management indicators and four are quality indicators,
whereas management indicators consist of a)Work and Progress(work
performed over time),b)Budgeted cost and expenditures(cost incurred
over time), c)Staffing and team dynamics(personnel changes over
time). Quality Indicators consist of a)Change traffic and
stability(change traffic over time),b)Breakage and modularity(average
breakage per change over time),c)Rework and adaptability (average
rework per change over time),d)Mean time between failures(MTBF)
and maturity(defect rate over time).

Table 1 given below describes the software metrics. Each metric has
two dimensions a static value used as an objective and the dynamic
trend used to manage the achievement of that objective.

Metrics value provide one dimension of insight, metrics trends provide
a more important perspective for managing the process.

Iterative development is about managing change, and measuring
change is the most important aspect of the metrics program.

Absolute values of productivity and quality improvement are
secondary issues until the fundamental goal of management has been
achieved: predictable cost and schedule performance for a given level
of quality.

Sr.No

Metric Purpose Objectives

1

SLOC, function
points, object points,
scenarios, test cases,
SCOs

Work and Progress | Iteration planning,
plan Vs actuals,
management

indicator

Financial
plan Vs
management
indicator

Budgeted cost and
expenditures

insight,
actuals,

Cost per month, full-
time staff per month,
percentage of budget
expended

Staffing and team
dynamics

Resource plan vs,
actuals, hiring rate,
attrition or loss rate

People per month
added, people per
month leaving

Change traffic and
stability

Iteration planning, | SCOs opened vs
management SCOs closed by type
indicator of | (0,1,2,3,4) by release
schedule /

convergence component/subsystem

Organization and
Responsibility of the Project

189

Project Management

190

Breakage and
modularity

Convergence,
software scrap,
quality indicator

Reworked SLOC per
change, by type
(0,1,2,3,4) by release
/component
subsystem

Rework and
adaptability

Convergence,
software rework,
quality

Average hours per
change, by type
(0,1,2,3,4) by release
/component
subsystem

MTBF(Mean time
between failure)
and Maturity

Test
Coverage/adequacy,
robustness for use,
quality indicator

Failure counts, test
hours until failure by
release/component
subsystem

9.1
9.2
9.3
94
9.5

10.

The seven core metrics can be used in numerous ways to help
manage projects and organizations. In an iterative development
project or an organization structured around a software line of
business, the historical values of previous iterations and projects
provide precedent data for planning subsequent iterations and
projects.

Consequently, when in an organization, the metrics is collected by
project manager in order to predict the cost, schedule or quality
performance of future work activities.

The seven core metrics are based on common sense and field
experience with both successful and unsuccessful metrics programs.
Their attributes include the following

They are simple, objective, easy to collect, easy to interpret and hard
to misinterpret.

Collection can be automated and nonintrusive

They provide for consistent assessments throughout the life cycle
and are derived from the evolving product baselines rather than from
a subjective assessment.

They are useful to both management and engineering personnel for
communicating progress and quality in a consistent format

Their fidelity improves across the life cycle.

Metrics applied to the engineering stage will be far less accurate than
those applied to the production stage. Therefore, the prescribed
metrics are tailored to the production stage, when the cost risk is
high and management value is leveraged.

12.3 MANAGEMENT INDICATORS

1. There are three fundamental sets of management metrics: technical
progress, financial status and staffing progress. By examining these
perspectives, management can generally assess whether a project is on
budget and on schedule.

2. Most managers know their resource expenditures in terms of costs and
schedule.

3. The problem is to assess how much technical progress has been made.
Conventional projects whose intermediate products were all paper
documents relied on subjective assessments of technical progress or
measured the number of documents completed.

4. The management indicators recommended here include standard
financial status based on an earned value system, objective technical
progress metrics tailored to the primary measurement criteria for each
major team of the organization and staffing metrics that provide
insight in to team dynamics.

1. Work and Progress

1. The various activities of an iterative development project can be
measured by defining a planned estimate of the work in an objective
measure, then tracking progress against that plan as shown in given

figure below.

2. Each major organizational team should have at least one primary
progress perspective that is measured against.

3. For the standard teams of project management, the default perspectives
of this metric would be as follows

1 Use case is demonstrated by Software architecture teams

2. Software development team: SLOC wunder baseline change
management, SCOs closed

3. Software assessment team: SCOs opened, test hours executed,
evaluation criteria met.

4. Software management team: milestones completed.

Organization and
Responsibility of the Project

191

Project Management

192

Release 3

100% A

Release 2

Raleisa 1

Work

Fig 1 Expected progress for a typical project with three major releases

2.

Budgeted Cost and Expenditures

1. To maintain management control, measuring cost expenditures over the

6.1

project life cycle is always necessary. With an iterative development
process, it is important to plan the near term activities in detail and
leave the long term activities as rough estimates to be refined as the
current iteration is winding down and planning for the next iteration
becomes crucial.

Tracking financial progress usually takes an organization-specific
format. One common approach to financial performance measurement
is use of an earned value system, which provides highly detailed cost
and schedule insight.

Its major weakness for software projects has traditionally been the
inability to assess the technical progress accurately.

The other core metrics provide a framework for detailed and realistic
quantifiable back up data to plan and track against, especially in the
production stage of a software project, when the cost and schedule
expenditures are highest.

Modern software processes are measured for financial performance
through an earned value approach.

The basic parameters of an earned value system, usually expressed in
units of dollars are as follows:

Expenditure plan- The planned spending profile for a project over its
planned schedule. This plan generally tracks the staffing profile for
most software projects.

6.2 Actual progress- In a healthy project, the actual progress tracks the

technical issues of the project for being complete the project according
to the planned project timeline.

6.3 Actual Cost- This calculates the total cost incurred for implementing

an healthy project.

6.4 Earned Value: The Value that represents the planned cost of the actual

progress.

6.5 Cost Variance- The difference between the actual cost and the earned Organization and
value of the project. Positive values occur when there is over budget —Responsibility of the Project
situation and negative values occur when there is under budget
situation.

6.6 Scheduled Variance- The difference between the planned schedule
cost and the actual schedule cost. Positive values signed to behind-
schedule situations and negative values signed to ahead of schedule
situations.

7. The main purpose of the other core metrics is to provide management
and engineering teams with a more objective approach for assessing
actual progress with greater accuracy, but in earned value analysis, the
actual progress of project is assessed subjectively.

8. As managers know exactly how much cost is incurred and how much
schedule they have utilized for implementing the project in order to
accurately measure the budget estimated for the underlying project.

100%

Planned progress

(currently 35%) Expenditure

Actual progress: Plan

earned value
(currently 25%)

Actual cost
expenditures
(currently 15%)

! Current time !

Progress

: I Schedule variance (currently 10% behind)
1 Cost variance (currently 10% under)

S, S
Time 100%

Fig 2 Basic parameter of an earned value system

9. To better understand some of the strengths and weaknesses of an
earned value system, can be explained through considering the
development of book. Actual progress could easily be tracked by
the current state of each chapter, weight-averaged by the number
of pages planned for that chapter. Here status of each part progress
is given in terms of percentage which in turn is nothing but an
earned value of the project.

193

Project Management

194

Sr.No Earned Value Status

1 0 to 50% Content incomplete

2 50% Author has completed first draft text
and art

3 65% Initial text baseline, initial text editing
complete

4 75% Reviewable baseline, text and art

editing complete

5 80% Updated baseline, cross chapter
consistency model

6 90% Reviewed baseline, author has
incorporated external reviewer
comments

7 100% Final edit, editor has completed a final

cleanup pass

10. The “percent complete” assessments were assigned subjectively based
on experience of writing complex documents. So by taking a weighted
average of these percentages listed above in table
,(0+50+65+75+80+90+100)/7=65 %. So overall progress of
completing a book development has done only 65% and thus 65% is
the earned value of the project.

11. This example provides a good framework for establishing an objective
basis, developing a suitable work breakdown structure and planning
with appropriate fidelity.

[98)

Staffing and Team Dynamics

1. An iterative development should start with a small team until the risks
in the requirements and architecture have been suitably resolved.

»

Depending on the overlap of iterations and other project-specific
circumstances, staffing can vary.

3. For a commercial product development, the sizes of the maintenance
and development teams may be the same.

4. When long-lived, continuously improved products are involved,
maintenance is just continuous construction of new and better releases.

5. Tracking actual versus planned staffing is a necessary and well-
understood management metric. Increase in staff can slow overall
project progress as new people consume the productive time of
existing people in coming up to speed.

Low loss of good people is a sign of success. An increase in unplanned
attrition namely, people leaving a project prematurely is one of the
most glaring indicators that a project is destined for trouble.

The causes of such attrition can vary, but they are usually personnel
dissatisfaction with management methods, lack of teamwork or
probability of failure in meeting the planned objectives.

Inception Elaboration Construction Transition
Effort: 5% Effort: 20% Effort: 65% Effort: 10%
Schedule: 10% Scheduia: 30% Schedule: 50% Schedule: 10%

Staffing

Project Schedule

Fig 3 Typical Staffing profile

12.4 QUALITY INDICATORS

The four quality indicators are based primarily on the measurement of
software change across evolving baselines of engineering data(such as
design models and source code).

1.1 Change traffic and stability

1.

Change traffic is defined as the number of software change orders
opened and closed over the life cycle. So change traffic is one specific
indicator for progress and quality.

This metric can be collected by change type, by release, by team, by
components, by subsystem and so forth.

By coupling with work and progress metrics, it provides insight in to
the stability of the software. So stability is defined as the relationship
between opened versus closed SCOs.

The primary value of this metric and an indicator of how well the
process is performing is better provided by the change traffic which
keeps tracks on schedule of the project.

Organization and
Responsibility of the Project

195

Project Management

Released Baselines

Change Traffic

Project Schedule

Fig 4 Stability expectation over a healthy project’s Life Cycle.

1.2 Breakage and Modularity

1. Breakage is defined as the average extent of change, which is the
amount of software baseline that needs rework like function points,

components, subsystem, files etc.

2. Whereas Modularity is defined as the average breakage trend over
time. For a healthy project, the trend expectation is decreasing or
stable as shown in figure below.

3. This indicator provides insight in to the malicious character of
software change. In a mature iterative development process, earlier
changes are expected to result in more scrap than later changes.

4. Breakage trends that are increasing with time clearly indicate that
product maintainability is suspect.

Breakage

Froject Schedule
Fig 5 Modularity expectation over a healthy project’s Life cycle

1.3 Rework and Adaptability

1. Rework is defined as the average cost of change, which is the effort to
analyze, resolve and retest all changes to software baselines.

2. Adaptability is defined as the rework trend over time. For a healthy
project, the trend expectation is decreasing or stable as shown in figure
below in which X axis belongs to project schedule and Y axis belongs

to Rework

196

3. Not all changes given to project are solved same time, some solved in
hours or some solved in weeks. So this metric provides insight in to
rework measurement.

4. Architectural changes in the project requires rework at earlier stage of
project whereas rework is not required in the implementation phase of
the project.

5. Rework trends that are increasing with time clearly indicate that product
maintainability is suspect.

R
Design -
Changes . .| :

Implementation |
Changes

Rework

Organization and
Responsibility of the Project

Project Schedule

Fig 6 Adaptability expectation over a healthy project’s Life cycle

1.4 MTBF (Mean Time Between Failures) is the average usage time
between software faults.

2. In rough terms, MTBF is computed by dividing the test hours by the
number of type 0 and type 1 SCOs.

3. Whereas maturity is defined as the MTBF trend over time as shown in
figure below where X axis belongs to project schedule and Y axis
belongs to MTBF.

4. Conventional testing approaches for monolithic software programs
focused on achieving complete test coverage of every line of code,
branch and so forth.

5. Systems of components are more efficiently tested by using statistical
techniques. So maturity metrics measure statistics over usage time of
component rather than product coverage.

6. Software errors can be categorized in to two types as Bohr bugs and
Heisen bugs respectively, Bohr bugs occur during coding time of the
project or when any changes are done to the component independently,
where asHeisen bug occurs during the designing of the project hence
they are called as design errors.

7. To provide adequate test coverage and resolve the statistically
significant Heisen bugs are tested using randomized usage scenarios.

197

Project Management 8. Conventional software programs typically contained only Bohr-bugs,
whereas in distributed system with numerous interoperating
components executing across a network of processors are vulnerable to
Heisen-bugs which is very hard to detect and resolve.

9. The better way to mature a software product is to test an randomized
usage scenarios early in the life cycle, to optimize coverage across the
reliability-critical components.

10. Meaningful insight in to product maturity can be gained by
maximizing test time through regression test, stress testing,
randomized statistical testing etc. This testing approach at early stage
of project life cycle could also be used for monitoring performance
improvements and measuring reliability.

MTBF

Released Baselines

Project Schedule

Fig 7 Maturity expectation over a healthy project’s lifecycle.

12.5 LIFE CYCLE EXPECTATIONS

1. The quality indicators are derived from the evolving product rather than
from the artifacts.

2. They provide insight in to the waste generated by the process. Scrap and
rework metrics are a standard measurement perspective of most
manufacturing processes.

3. They recognize the inherently dynamic nature of an iterative
development process. Rather than focus on the value, they explicitly
concentrate on the trends or changes with respect to time.

4. The combination of insight from the current value and the current trend
provides tangible indicators for management action.

5. The actual values of these metrics can vary widely across projects,
organizations and domains. The relative trends across the project
phases, however should follow the general pattern as shown in table
given below.

198

6. A mature development organization should be able to describe metrics Organization and
targets that are much more definitive and precise for its line of Responsibility of the Project
business and specific processes.

Table 1 The default pattern of life-cycle metrics evolution

METRIC INCEPTION ELABORATION CONSTRUCTION TRANSITION
Progress 5% 25% 90% 100%
Architecture 30% 0% 100% 100%
Applications <5% 20% 85% 100%
E{xpenditures - Low Moderate High High
Effort 5% 25% 90% 100%
Schedule 10% 40% 90% 100%
Staffing Small team Ramp up Steady Varying
Eiii;y Volatile Moderate " Moderate Stable
Architecture Volatile Moderate Stable Stable
Applications Volatile Volatile Moderate Stable
Modulur:ty— 50%=100% 25%=50% <25% 5%-10%
Architecture »50% =50% <15% <5%
Applications >80% >80% <25% <10%
Adaptability V.;.rying Varying Benign Benign T
Architecture Varying Moderate Benign Benign
Applications Varying Varying Moderate Benign
Marurity Prototype Fragile Usable Robust
Archirccture Prototype Usablc Robust Robust
Applications Prototype Fragile Usable Robust

12.6 PRAGMATIC SOFTWARE METRICS

1. Measuring is useful, but it doesn’t do any thing for the decision
makers. It only provides data to help them ask the right questions,
understand the context and make objective decisions.

2. Because of the highly dynamic nature of software projects, these
measures must be available at any time, tailorable to various subsets of
the evolving product and along with maintained first and second
versions of the product.

3. The basic characteristics of a good metric are as follows

3.1 Meaningful to the customer, manager and performer- If any one of
these stakeholder does not see the metric as meaningful, it will not be
used. Customers will accept metrics that are demonstrated to be
meaningful by the developer.

3.2 Demonstrates quantifiable correlation between process perturbations
and business performance- The only real organizational goals and
objectives are financial:cost reduction, revenue increase and margin
increase.

199

Project Management

200

3.3 Objective and unambiguously defined- Ambiquity is minimized
through well understood units of measurement(such as staff-month,
function point etc) which are surprisingly hard to define precisely in
the software engineering world.

3.4 Displays trends-This an important characteristic. Understanding the
change in a metric’s value with respect to time, subsequent projects,
subsequent-releases and so forth is an extremely important
perspective, especially for today’s iterative development models.

3.5 Natural by product of the process- The metric does not introduce new
artifacts or overhead activities, it is derived directly from the main-
stream engineering and management workflows.

3.6 Supported by automation- Experience has demonstrated that the most
successful metrics are those that are collected and reported by
automated tools, in part because software tools require rigorous
definitions of the data they process.

4. Metrics usually display effects, the causes require synthesis of multiple
perspectives and reasoning. For eg reasoning is still required to
interpret the following situations correctly

4.1 A low number of change requests to a software baseline may mean
that the software is mature and error-free or it may mean that the test
team is on vacation.

4.2 A software change order that has been open for a long time may mean
that the problem was simple to diagnose and the solution required
substantial rework, or it may mean that a problem was very time-
consuming to diagnose and the solution required a simple change to a
single line of code.

4.3 A large increase in personnel in a given month may cause progress to
increase proportionally if they are trained who are productive from the
outset.

12.7 METRICS AUTOMATION

1. There are many opportunities to automate the project control activities
of a software project.

2. For managing against a plan, a software project control panel (SPCP)
that maintains an online version of the status of evolving artifacts
provides a key advantage.

3. The idea is to provide a display panel that integrates data from multiple
sources to show the current status of some aspect of the project.

4. For example, The software project manager would want to see a display
with overall project values, a test manager may want to see a display
focused on metrics specific to an upcoming beta release and
development managers may be interested only in data concerning the
subsystems and components for which they are responsible. This panel
acts as a dashboard which shows the analysis of a project at one
glance.

5. The panel can support standard features such as warning lights,
thresholds, variable scales, digital formats and analog formats to
present an overview of the current situation.

6. It can also provide extensive capability for detailed situation analysis.
This automation support can improve management insight in to
progress and quality trends and improve the acceptance of metrics by
the engineering team.

7. To implement a complete SPCP, it is compulsory to define and develop
the following

7.1 Metrics primitives: Indicators, trends, comparisons and progressions

7.2 A GUIL GUI support for a software project manager role and
flexibility to support other roles.

7.3 Metrics collection agents- Data extraction from the environment tools
that maintain the engineering notations for the various artifacts sets.

7.4 Metrics data management server- Data management support for
populating the metric displays of the GUI and storing the data
extracted by the agents.

7.5 Metric definitions- Actual metrics presentations for requirement
progress(requirement set artifacts, design progress(design set artifacts),
implementation progress(implementation set artifacts), assessment
progress(deployment set artifacts) and other progress dimensions
(management artifacts).

7.6 Actors- Typically, the monitor and the administrator

8. For every role, there is a specific panel configuration and scope of data
presented. Each role performs the same general use cases, but with a
different focus.

8.1 Monitor- defines panel layouts from existing mechanisms, graphical
objects, and linkages to project data, queries data to be displayed at
different levels of abstraction.

8.2 Administrator- Installs the system, defines new mechanisms, graphical
objects and linkages handles archiving functions, defining composition

Organization and
Responsibility of the Project

201

Project Management

202

and decomposition structures for displaying multiple levels of
abstraction.

9. A panel typically contains a number of graphical object is positioned in

10.

11.

12.

13.

14.

15.

a particular geometric layout. A metric shown in a graphical object is
labelled with the metric type, the summary level, and the instance
name(such as lines of code, subsystem, serverl).

Metrics can be displayed in two modes 1)Value referring to a given
point in time 2)Graph referring to multiple and consecutive points in
time.

Metrics can be displayed with or without control values. A control
value is an existing expectation, either absolute or relative that is used
for comparison with a dynamically changing metric. For eg the plan
for a given progress metric is a control value for comparing the actuals
of that metric.

Indicators may display data in formats that are binary(such as black
and white), tertiary(such as red, yellow and green), digital (integer or
float) or some other enumerated type (for eg Sun-Sat).

A trend graph presents values over time and permits upper and lower
thresholds to be defined. Crossing a threshold could be linked to an
associated indicator to depict a noticeable state change from green to
red or vice versa.

Metric information can be summarized following a user-defined, linear
structure (for eg lines of code can be summarized by unit subsystem
and project)

Figure given below illustrates a simple example of an SPCP for a
project. In this case, the software project manager role has defined a
top-level display with four graphical objects

15.1 Project activity status- The graphical object in the upper left provides

an overview of the status of the top-level WBS elements. The seven
elements could be coded red, yellow and green to reflect the current
earned value status. For eg figure shown below are coded with white
and shades of gray). Where each color represent different indication of
project, green represent ahead of plan, yellow would indicate within
10% of plan, and red would identify elements that have a greater than
10% cost or schedule variance.

Top-Level WBS Activities

Management |_

- A%y

Environment [

+1% &

Requirements

+6% #

Design

- 5%¢

Implementation

~25%

Assessment

- 2%.4

Deployment

- 2%4

Milestone Progress

A

Plan (27)

Actuals (32) .

Technical Artifacts

Y Y)

<
<
AN AN

Req Des Imp Dep

~
/|

Action Item Progress

Open (12) .- -
Closed

Fig 8 Example SPCP display of a top-level project situation

15.2 Technical artifact status- The graphical object in the upper right
provides an overview of the status of the evolving technical artifacts.
Req light represents the assessment of current state, Des light
represent the design models, the Imp light represents the source code

baseline, and the Dep light represents the test program.

15.3 Milestone progress- The graphical object in the lower left provides a
progress assessment of the milestones achieved against plan and

provides indicators of the current value.

15.4 Action item progress- The graphical in the lower right provides a
different perspective of progress, showing the current number of

open and closed issues.

Organization and
Responsibility of the Project

203

Project Management

Trend: Comparison of a value over time against
known thresholds. Example: design model i
change traffic
3 Upper Threshold
g
I Lower Threshold
=
Time
Comparison: Comparison of N values with the .+ Metric Value 1
same units over time. Example: o
open action items vs. closed
action items
@
2
£ - Metric Value 2
2 -
& L=
= oes
Lt ' ‘ -) -
o -_ - -
.—'-—l -
Time
L Progress: Plan vs. actuals over time Expecled Value
Actual Value
z
K]
[=5
S
Q
£
Time

Fig 9 Example of the fundamental metric classes

16. The following top-level use case, which describes the basic operational
concept for an SPCP, corresponds to a monitor interacting with the

control panel.

16.1 start the SPCP- The SPCP starts and shows the most current
information that was saved when the user last used the SPCP.

16.2 Select a panel preference- The user selects from a list of previously
defined default panel preferences. The SPCP displays the preference

selected.

204

16.3 Select a value or graph metric- The user selects whether the metric
should be displayed for a given point in time or in graph as a trend.

16.4 Select to superimpose controls- The user points to a graphical object
and requests that the control value for that metric and point in time
be displayed.

16.5 Drill down to trend- The user points to a graphical object displaying a
point in time and drills down to view the trend for the metric.

16.6 Drill down to point in time- The user points to a graphical object
displaying a trend and drills down to view the values for the metric.

16.7 Drill down to lower levels of information- The user points to a
graphical object displaying a point in time and drills down to view
the next level of information.

16.8 Drill down to lower level of indicators- The user points to a graphical
object displaying an indicator and drills down to view the breakdown
of the next level of indicators.

12.8 SUMMARY

In this chapter we studied about seven core metrics The seven core
metrics can be used in numerous ways to help manage projects and
organizations. In an iterative development project or an organization
structured around a software line of business, the historical values of
previous iterations and projects provide precedent data for planning
subsequent iterations and projects.

12.9 REFERENCES

1] Software Engineering by Sommerville 8" Edition
[g g by

12.10 QUESTIONS

Q1. Describe the different dimension of Management Indicators?

Q2. MMustrate with example different dimension of Quality Indicators?

Q3. List down the name of seven core metrics?

Q4. What is life cycle expectation?

Q5. Suppose a company want to develop a dash board for sales analysis
for last 5 years. Justify your answer with metric automation?

Q6. What is pragmatic software metrics?

O o0 0, O
0‘0 0’0 0‘0 0’0

Organization and
Responsibility of the Project

205

206

13

TAILORING THE PROCESS

Unit Structure
13.0 Objectives
13.1 Introduction
13.2 Process Discriminants
1 Scale
2 Stakeholder Cohesion or Contention
3 Process Flexibility or Rigor
4 Process Maturity
5 Architectural Risk
6 Domain Experience
13.3 Example: Small-Scale project versus large-scale project
13.4 Summary

13.5 References

13.6 Questions

13.0 OBJECTIVES

At the end of this unit, a learner will be able to
e Describe the concepts of Scale as process discriminants.
o [llustrate need of process maturity for project development.

e Apply knowledge of Scale, process flexibility, Architectural Risk in
handling real time project

e Differentiate between the process for handling the small scale and
large scale projects.

13.1 INTRODUCTION

1. Software management efforts span a broad range of domains. While
there are some universal themes and techniques, it is always necessary
to tailor the process to the specific needs of the project at hand.

2. A commercial software tool developer with complete control of its
investment profile will use a very different process from that of a

software integrator on contract to automate the security system for a
nuclear power plant.

There is no doubt that a mature process and the effective software
management approaches offer much greater value to the large scale
software integrator than they do to the small scale tool developer.

Nevertheless relative to their business goals, the return on investment
realized by better software management approaches is worth while for
any software organizations.

The process framework must be configured to the specific
characteristics of the project.

The scale of the project in particular team size drives the process
configuration more than any other factor.

Other key factors include stakeholder relationships, process flexibility,
process maturity, architectural risk, and domain experience.

While specific process implementations will vary, the spirit underlying
the process is the same

13.2 PROCESS DISCRIMINANTS

I To deal with the tailoring process, the project manager see two
dimensions of the system as technical complexity and management
complexity.

2.If the project occupies with these two dimensions then the formality of

reviews, the quality control of artifacts, the priorities of concerns and
numerous other process are governed to check the technical complexity,
lower management complexity, higher management complexity and
lower technical complexity.

. A process framework is not a project specific process implementation
with a well-defined recipe for success. To achieve a success in process
implementation, judgement must be injected, and the methods,
techniques culture, formality and organization must be tailored to the
specific domain.

. The major differences among project processes is organized around six
process parameters, that is size of the project and the five parameters
that affect the process exponent and hence the economies of scale in
COCOMO 1I.

5.These are some of the critical dimensions that a software project

manager must consider when tailoring a process framework to create a
practical process implementation.

Tailoring the Process

207

Project Management

208

Higher Technical Complexity

+ Embedded, real-time, distributed, fault-tolerant
* High-performance, portable
* Unprecedented, architecture re-engineering

Tratfic Control

[E—— — ! automotive Commercial
application compilar System
Lower Higher
(Y
p—y

Management < » Management

e 4 O
5o 10 people | pooD

| 1010 12 months | l

l 3105 extemal intedaces | O r’”) O :;m" O _

| Some unknowns, risks | Embeddad - | Talecom swilch National Air

Complexity O Large-scale Complexity
'S (‘7 simulation
* Smaller scale Small scientific) — —~ * Large scale
* Informal application information Y * Contractual
+ Few stakeholders O {such as systams DOD * Many stakeholders
« “Products” . ardar aniry) m;r:aelmnl « “Projects”
sproadsheat systam

Lower Technical Complexity

* Straightforward automation, single thread
* Interactive performance, single platform
* Many precedent systems, application re-engineering

Fig 1 The two primary dimensions of process variability

Scale

. The total scale of the software application, is the single most important

factor in tailoring a software process framework to the specific needs of
a project.

. The parameters to be considered for measuring scale is, source lines of

code, number of function points, number of use cases, and number of
dollars.

. The primary measure of scale is the size of the team, from the process

tailoring point of view.

. The diseconomies of scale can have a serious impact on achievement of

the project objectives.

. Many studies indicate that most people can best manage four to seven

things at a time. For eg there are different management approaches
needed to manage a team of 1(trivial), a team of 5(small), a team of
25(moderate), a team of 125(large), a team of 625(huge) and so on.

. As team size grows, a new level of personnel management is introduced

at rougly each factor by 5. This model can be used to describe some of
the processes differences among projects of different sizes.

Trivial sized projects require almost no management
overhead(planning, communication, coordination, progress assessment,
review, administration).

Small projects comprises of 5 people in a team require very little
amount of management overhead, but team leadership will always run

behind the objective of the project. Project milestones are easily
planned, informally conducted and easily changed.

9. Moderate-sized projects comprises of 25 people in a team which require
only moderate amount of management overhead, in which dedicated
software project manager to synchronize team workflow and balance
resources. Project milestones are formally planned and conducted and
the impacts of changes are typically handled with properly. Process
maturity is valuable. An environment can have a considerable impact on
performance, but success can be achieved with certain key tools in
place.

10.Large size projects comprises of 125 people in a team which require
substantial management overhead, including a dedicated software
project manager and several subproject managers to synchronize
project-level and sub-project level workflows and to balance resources.
Project milestones are formally planned and conducted and changes to
milestone plans are expensive. Performance is highly dependent on the
skills of key personnel, especially subproject managers and team leads.

11. Project performance is dependent on average people, for two reasons.

11.1 There are numerous variety of jobs in any large project, especially in
the overhead workflows.

11.2 The probability of recruiting, maintaining and retaining a large
number of exceptional people is small.

12. Process maturity is necessary, particularly the planning and controls
aspects of managing project commitments, progress, and stakeholder
expectations.

13. Huge projects team comprises of 625 people which require substantial
management overhead, including multiple software project managers
and many subproject managers to synchronize project-level and
subproject-level workflows and to balance resources. Project
milestones are very formally planned and conducted, and changes to
milestone plans typically cause malicious replanning. Performance is
highly dependent on the skills of key personnel, especially subproject
managers and team leads.

14. Software process maturity and domain experience are mandatory to
avoid risks, and ensure synchronization of expectation across
numerous stakeholders. A mature highly integrated, common
environment across the development teams is necessary to mange
change, automate artifact production, maintain consistency among
the evolving artifacts and improve the return on investment of
common processes, common tools, common notation and common
metrics.

Tailoring the Process

209

Project Management

Higher Technical Complexity

* More domain experience required

* Longer inception and elaboration phases
« More iterations for risk management

» Less-predictable costs and schedules

r

Lower Higher
Management <4 T —" Management
Complexity Complexity

* Less emphasis on risk management

= Less process formality

= More emphasis on individual skills

= Longer production and transition phases

= More emphasis on risk management

* More process formality

= More emphasis on teamwork

« Longer inception and elaboration phases

Lower Technical Complexity

* More emphasis on existing assets

« Shorter inception and elaboration phases
= Fewer iterations
* More-predictable costs and schedules

Fig 2 Priorities for tailoring the process framework

15. Table 1 Summarizes some key differences in the process primitives for

small and large projects.

Sr.No | Process Smaller Team Larger team
Primitive
1 Life-cycle Weak boundaries | Well-defined phase
phases between phases transitions to
synchronize progress
among concurrent
activities.
2 Artifacts Focus on | Change management
technical artifacts. | of technical artifacts,
Few discrete | which may result in
baselines. Very | numerous baselines.
few management | Management artifacts
artifacts required |are important to
consider
3 Workflow More need for | Higher percentage of
effort allocation | generalists, people | specialists. More
who perform roles | people and teams
in multiple | focused on a specific
workflows workflow
4 Checkpoints Many informal | A few formal events
events for | synchronization
maintaining among teams, which
technical can take days.

210

consistency. No
disruption n
schedule is there
Management Informal Formal planning,
discipline planning, project | project control and
control and | organization
organization
Automation More ad hoc | Infrastructure to
discipline environment ensure a consistent
managed by | up-to-date
individuals environment
available across all
teams. Additional
tool integration to
support project
control and change
control

Stakeholder Cohesion or Contention

. The degree of cooperation and coordination among stakeholders
(buyers, developers, users, subcontractors and maintainer among others)
can significantly drive the specifics of how a process is defined.

This process parameter can range from cohesive to adversarial.
Cohesive teams have common goals, complementary skills and close
communications.

. Whereas adversarial teams have conflicting goals, competing or
incomplete skills and less-than open communication.

. A product that is funded, developed, marketed and sold by the same
organization can be set up with a common goal(for eg profitability). A
small collocated organization can be established that has a cohesive
skill base and excellent day-to-day communications among team
members.

. It is much more difficult to set up a large contractual effort without
some contention across teams. Funding authorities and users want to
minimize cost, maximize the feature set and accelerate time to market
while development contractors want to maximize profitability.

. Large teams are almost impossible to collocate and synchronizing
stakeholder expectations is challenging. All these factors tend to
degrade team cohesion and must be managed continuously.

. Table 2 summarizes the key differences in the process primitives for
varying levels of stakeholder cohesion

Tailoring the Process

211

Project Management

212

Sr.No | Process Few Stakeholders, | Multiple Stakeholders,
Primitive Cohesive teams Adversarial relationships
1 Life-Cycle Weak boundaries | Well-defined phase
Phases between phases transitions to
synchronize progress
among concurrent
activities
2 Artifacts Fewer and less | Management artifacts,
detailed paramount, especially
management the business case, vision
artifacts required and status assessment
3 Workflow effort | Less overhead in | High assessment
allocations assessment overhead to ensure
stakeholder concurrence
4 Checkpoints Many informal | 3 Or 4 formal events
events many informal technical
walkthroughs necessary
to synchronize among
stakeholder teams,
which can impede
progress for weeks
5 Management Informal planning, | Formal planning, project
discipline project control and | control and organization
organization
6 Automation Insignificant On-line stakeholder
Discipline environment necessary

3. Process Flexibility and Rigor

1.

The degree of rigor, formality and change freedom inherent in a specific
project’s “contract” which consist of vision document, business case,
and development plan, has a substantial impact on the implementation
of the project’s process.

. For very loose contracts such as building a commercial product within a

business unit of a software company(such as Microsoft application or a
Rational Software Corporation development tool), management
complexity is minimal.

. In these sorts of development processes, feature set, time to market,

budget and quality can all be freely traded off and changed with very
little overhead. For eg if a company wanted to eliminate a few features
in a product under development to capture market share from the
competition by accelerating the product release, it would be feasible to
make this decision in less than a week.

4. The entire coordination effort might involve only the development
manager, marketing manager and business unit manager coordinating
some key commitments.

. On the other hand, for a very rigorous contract, it could take many
months to authorize a change in a release schedule. For eg to avoid a
large custom development effort, it might be desirable to incorporate a
new commercial product in to the overall design of a next generation air
traffic control system.

6. This sort of change would require coordination among the development
contractor, funding agency, users, certification agencies, associate
contractors for interfacing systems and the others.

7. Large-scale catastrophic cost-of-failure systems have extensive
contractual rigor and require significantly different management
approaches.

8. Table 3 summarizes key differences in the process primitives for
varying levels of process flexibility

Sr.No | Process Flexible Process | Inflexible process

Primitive
1 Life-cycle Tolerant of | More credible basis
phases cavalier phase | required for inception
commitments phase commitments
2 Artifacts Changeable Carefully controlled
business case | changes to business case
and vision and vision
3 Workflow Insignificant Increased levels of

effort management and

allocations assessment workflows
4 Checkpoints Many informal |3 or 4 formal events
events for main- | synchronization = among
training stakeholder teams, which
technical can impede progress for
consistency days or weeks
5 Management Insignificant More fidelity required for
discipline planning and project
control
6 Automation Insignificant -
Discipline

Tailoring the Process

213

Project Management

214

4 Process Maturity
1. The process maturity level of the development organization, as defined

by the software Engineering Institute’s Capability Maturity Model is
another key driver of management complexity.

2. Managing a mature process(level 3 or higher) is far simpler than

managing a immature process(level 1 and 2). Organizations with a
mature process typically have a high level of precedent experience in
developing software and a high level of existing process collateral that
enables predictable planning and execution of the process.

This sort of collateral includes well defined methods, process
automation tools, trained personnel, planning metrics, artifact templates
and workflow templates.

4. Tailoring a mature organization’s process for a specific project is

generally a straightforward task.

. Table 4 summarizes key differences in the process primitives for
varying levels of process maturity

Sr.No [Process Mature Level 3 or 4| Level
Primitive organization Organization
1 Life-cycle Well-established criteria | -
phases for phase transitions
2 Artifacts Well-established format, | Free-form
content and production
methods
3 Workflow Well-established basis No basis
effort
allocations
4 Checkpoints Well-defined -

combination of formal
and informal events

5 Management Predictable planning | Informal planning
discipline objective status | and project control
assessments
6 Automation Requires high levels of | Little automation or
discipline automation for round-trip | disconnected
engineering, change | islands
management and process | automation
instrumentation

5. Architectural Risk Tailoring the Process

1. The degree of technical feasibility demonstrated before commitment to

full-scale production is an important dimension of defining a specific
project’s process.

2. There are many sources of architectural risk. Some of the most
important and recurring sources are system performance (resource
utilization, response time, throughput, accuracy), robustness to
change(addition of new features, incorporation of new technology,
adaption to dynamic operational conditions), and system
reliability(predictable behavior, fault tolerance).

3. The degree to which these risks can be eliminated before construction
begins can have dramatic difficulties in the process tailoring.

4. Table 5 Summarizes key differences in the process primitives for
varying levels of architectural risk

Sr.No | Process Primitive | Complete Architecture | No Architecture
Feasibility feasibility
demonstration demonstration

Life-Cycle Phases | More inception and | Fewer early
elaboration phase | iterations more
iterations construction

iterations

Artifacts Earlier breadth and |-
depth across technical
artifacts

Workflow effort | Higher level of design | Higher level of

allocations effort. Lower levels of | implementation and
implementation and | assessment to deal
assessment with increased

scrap and rework

Checkpoints More emphasis on | More emphasis on
executable briefings,
demonstrations documents and

simulations

Management - -

discipline

Automation More environment | Less environment

Discipline resources required | demand early in the
earlier in the life cycle | life cycle

215

Project Management

216

6. Domain Experience

. The development organization’s domain experience governs its ability
to converge on an acceptable architecture in a minimum number of
iterations.

. An organization that has built five generations of radar control switches
may be able to converge on an adequate baseline architecture for a new
radar application in two or three prototype release iterations.

. A skilled software organization building its first radar application may
require four or five prototype releases before converging on an adequate
baseline.

. Table 6 Summarizes the key differences in the process primitives for
varying levels of domain experience

Sr.No | Process Experienced Team Inexperienced Team
Primitive
1 Life-Cycle Shortest engineering | Longer engineering
Phases stage stage
2 Artifacts Less scrap and rework | More scrap and
in requirements and | rework in
design sets requirements and
design sets
3 Workflow effort | Lower levels of | Higher level of
allocations requirements and | requirements and
design design
4 Checkpoints - -
5 Management Less emphasis on risk | More-frequent
discipline management. Less- | status assessments
frequent status | required
assessments needed
6 Automation - -
discipline

13.3 EXAMPLE- SMALL SCALE PROJECT VERSUS

LARGE SCALE PROJECT

1. An analysis of the differences between the phases, workflows and

artifacts of two projects on opposite ends of the management
complexity spectrum show how different two software project
processes can be.

2. The following gross generalizations are intended to point out some of

the dimensions of flexibility, priority and fidelity that can change
when a process framework is applied to different applications, projects
and domains

3. Table 7 explains the differences in schedule distribution for large and

small projects across the life-cycle phases. A small commercial project
(for example a 50,000 source line visual basic windows application,
built by a team of five) may require only 1 month of inception, 2
months of elaborations, 5 months of construction and 2 months of
transition.

A large, complex project(for example a 300,000 source-line embedded
program, built by a team of 40) could require 80 months of inception,
14 months of elaboration, 20 months of construction and 8 months of
transition.

Table 7
Sr.No | Domain Engineering Production
1 Small Commercial | Having a 10% | Having 50 %
Project inception and 20 % | construction and
elaboration 20%transition
2 Large, Complex | Having 15% | Having 40%
project inception and 30% | construction and
elaboration 15% transition

5. The biggest difference is the relative time at which the life-cycle

architecture milestone occurs. This corresponds to the amount of time
spent in the engineering stage compared to the production stage. For a
small project, the split is about 30/70 for a large project, it is more like
45/55.

6. One key aspect of the differences between the two projects is the

leverage of the various process components in the success or failure of
the project. This reflect the importance of staffing or the level of
associated risk management.

The following list elaborates some of the key differences in
discriminators of success. Every process component is important
depend upon their usage while developing a project

7.1 Design is key in both domain. Good design of a commercial product is

valuable aspect in the market place and is the foundation for efficiently
creating new releases of a product. Good design of a large, complex
project is the foundation for predictable, cost efficient construction.

Tailoring the Process

217

Project Management

218

7.2 Management is key aspect for handling large projects, where the

consequences

of planning errors, resource allocation errors,

inconsistent stakeholder expectations and other out-of-balance factors
can have terrible consequences for the overall team dynamics.
Whereas management is of less important for handling a small team,
where opportunities for miscommunications are fewer and their

consequences is less significant.

7.3 Deployment plays a far greater role for a small commercial product
because there is a broad user base of diverse individuals and
environments.

Table 8 Differences in workflow priorities between small and large

prohects.
Rank | Small Commercial Project Large Complex Project
1 Design Management
2 Implementation Design
3 Deployment Requirements
4 Requirements Assessment
5 Assessment Environment
6 Management Implementation
7 Environment Deployment

8. A large, one of a kind complex project typically has a single
deployment site. Legacy systems and continuous operations may pose
several risks, but in general these problems are well understood and

have a fairly static set of objectives.

9. Another key set of differences in inherent in the implementation of the
various artifacts of the process. Table 9 provides a conceptual example
of these differences

Sr. | Artifact Small Commercial | Large Complex Project
No Project

1 Work break down | 1-page spreadsheet | Financial management

structure with 2 levels of WBS | system with 5 or 6

elements levels of WBS

elements
2 Business Case Spreadsheet and short | 3-volume proposal
memo including technical

volume, cost volume,
and related experience

3 Vision Statement 10-page concept paper | 200-page subsystem
specification
4 Development plan | 10-page plan 200-page development
plan
5 Release 3 interim release | 8 to 10 interim release
specifications and | specifications specifications
number of releases
6 Architecture 5 Critical use cases, 50 | 25 critical use cases,
description Uml diagrams, 20|200 UML diagrams,
pages of text and other | 100 pages of text, other
graphics graphics
7 Software 50,000 lines of Visual | 300,000 lines of Code
basic code
8 Release 10-page release notes 100-page summary
description
9 Deployment User training course | Transition plan and
sales rollout kit installation plan
10 | User Manual On-line help and 100- | 200-page user manual
page user manual
11 Status assessment | Quarterly project | Monthly project
reviews management reviews

Eg Case study on Small Project Cost Estimating at Percy Company

Paul graduated from college in June 1970 with a degree in industrial
engineering. He accepted a job as a manufacturing engineer in the
Manufacturing Division of Percy Company. His prime responsibility was
performing estimates for the Manufacturing Division. Each estimate was
then given to the appropriate project office for consideration. The
estimation procedure history had shown the esti-mates to be valid.

In 1975, Paul was promoted to project engineer. His prime responsibility
was the coordination of all estimates for work to be completed by all of
the divisions. For one full year Paul went by the book and did not do any
estimating except for project office personnel manager. After all, he was
now in the project management division, which contained job descriptions
including such words as “coordinating and integrating.”

In 1976, Paul was transferred to small program project management. This
was a new organization designed to perform low-cost projects. The
problem was that these projects could not withstand the expenses needed
for formal divisional cost estimates. For five projects, Paul’s estimates
were “right on the money.” But the sixth project incurred a cost overrun of
$20,000 in the Manufacturing Division. In November 1977, a meeting was
called to resolve the question of “Why did the overrun occur?” The

Tailoring the Process

219

Project Management

220

attendees included the general manager, all division managers and
directors, the project manager, and Paul. Paul now began to worry about
what he should say in his defense.

Eg Case Study on Project Planning at Payton Corporation

Payton Corporation had decided to respond to a government RFP for the
R&D phase on a new project. The statement of work specified that the
project must be completed within ninety days after go-ahead, and that the
contract would be at a fixed cost and fee.

The majority of the work would be accomplished by the development lab.
According to government regulations, the estimated cost must be based on
the average cost of the entire department, which was $19.00 per hour
(unburdened).

.Payton won the contract for a total package (cost plus fee) of $305,000.
After the first weekly labor report was analyzed, it became evident that the
development lab was spending $28.50 per hour. The project manager
decided to discuss the problem with the manager of the development lab.
Project manager :“Obviously you know why I’m here. At the rate that you
are re-spending money, we’ll overrun our budget by 50 percent.” Lab
manager: “That’s your problem, not mine. When I estimate the cost to do
a job, I submit only the hours necessary based on historical standards. The
pricing department converts the hours to dollars based on department
averages .”Project manager:*“ Well, why are we using the most expensive
people? Obviously there must be lower-salaried people capable of
performing the work.”

Lab manager: “Yes, I do have lower-salaried people, but none who can
complete the job within the two months required by the contract. I have to
use people high on the learning curve, and they’re not cheap. You should
have told the pricing department to increase the average cost for the
department.”

Project manager: “I wish I could, but government regulations forbid this.
If we were ever audited, or if this proposal were compared to other salary
structures in other proposals, we would be in deep trouble. The only legal
way to accomplish this would be to set up a new department for those
higher-paid employees working on this project. Then the average
department salary would be correct.

Unfortunately the administrative costs of setting up a temporary unit for
only two months is prohibitive. For long-duration projects, this technique
is often employed. “Why couldn’t you have increased the hours to
compensate for the increased dollars required?

Lab manager: “I have to submit labor justifications for all hours I estimate.
If T were to get audited, my job would be on the line. Remember, we had
to submit labor justification for all work as part of the proposal.

Perhaps next time management might think twice before bidding on a
short-duration project. You might try talking to the customer to get his
opinion.”

Project manager: “His response would probably be the same regardless of
whether I explained the situation to him before we submitted the proposal
or now, after we have negotiated it. There’s a good chance that I’ve just
lost my Christmas bonus.

13.4 SUMMARY

Software management efforts span a broad range of domains. While there
are some universal themes and techniques, it is always necessary to tailor
the process to the specific needs of the project at hand. A commercial
software tool developer with complete control of its investment profile
will use a very different process from that of a software integrator on
contract to automate the security system for a nuclear power plant. There
is no doubt that a mature process and effective software management
approaches offer much greater value to the large-scale software integrator
than they do to the small-scale tool developer.

13.5 REFERENCES

[1] Software Engineering by Sommerville 8™ Edition

13.6 QUESTIONS

Q1. Describe the need of scale as process discriminants ?

Q2. Illustrate the concept of Stakeholder Cohesion or Contention

Q3. Explain the concept of process flexibility or Rigor and process
maturity?

Q4. Explain the six dimension of process discriminants?

Q5. Suppose Company A wants to build small scale project and Company
B wants to build large scale project. So list the work flow priority
followed by A and workflow priority followed by B?

O o0 0, O
AX S XS XS X4

Tailoring the Process

221

222

Unit - VI

14

FUTURE SOFTWARE PROJECT
MANAGEMENT

Unit Structure

14.0 Objectives

14.1 Introduction

14.2 Modern Project profiles

14.3 Next generation software economics
14.4 Modern Process transitions

14.5 Summary

14.6 References

14.7 Questions

14.0 OBJECTIVES

At the end of this unit, the learner will be able to
e Describe the profile of modern project with its different dimension
¢ Identify the need of Next-Generation Software economies

e [llustrate the concept of modern process transitions

14.1 INTRODUCTION

I. A modern process framework exploits approaches to solve issues
having in conventional framework. These approaches are as follows

1.1 Protracted integration and late design breakage are resolved by forcing
integration in to the engineering stage. This is achieved through
continuous integration of an architecture baseline supported by
executable demonstrations of the primary scenarios

1.2 Late risk resolution is resolved by emphasizing an architecture-first
approach, in which the high-leverage elements of the systems are
elaborated early in the life cycle.

1.3 The analysis paralysis of a requirements-driven functional
decomposition is avoided by organizing lower level specifications

along the content of releases rather than along the product
decomposition.

1.4 Adversarial stakeholder relationships are avoided by providing much
more tangible and objective results throughout the life cycle

1.5 The conventional focus on documents and review meetings is replaced
by a focus on demonstrable results and well-defined sets of artifacts,
with more rigorous notations and extensive automation supporting a
paperless environment.

2. Next-generation software economies is being practiced by some
advanced software organizations.

3. A mature modern process is now where near the state of the practice for
the average software organizations.

4. The new approaches of modern process framework will improve the
accuracy and precision of software cost estimates and would
accommodate dramatic improvements in software economies of scale.

5. Successful software management is hard work. Technical
breakthroughs, process breakthroughs and new tools will make it
easier for a project to success.

6. New technological advances will be accompanied by new opportunities
for software applications, new dimensions of complexity, new avenues
of automation and new customers with different priorities.

7. Accomodating new changes will disturb many of ingrained software
management values and priorities but maintaining a balance among
requirements, designs, and plans will retain the underlying objective of
future software management activities, just as it is today.

8. Some of the important culture shifts to be prepared for in order to avoid
as many sources of friction as possible in transitioning successfully to
a modern process.

14.2 MODERN PROJECT PROFILES

1.Iterative development producesthe architecture first, allowing integration
to occur as the verification activity of the design phase and enabling
design flaws to be detected and resolved earlier in the life cycle.

2. This approach avoids the big-bang integration at the end of a project by
stressing continuous integration throughout the project.

3. Figure 1 shown below explains the differences between the progress
profile of a healthy modern project. The downstream integration
nightmare, late patches and shoe-horned software fixes are avoided. The
result is more robust and maintainable design.

Future Software Project
Management

223

Project Management 4 It inherent in an iterative development process also enables better
insight in to quality trade-offs. A recurring theme of successful iterative
development projects is a cost profile very different from that
experienced by conventional processes.

5. Conventional projects stuck in inefficient integration and late discovery
of substantial design issues, expend roughly 40% or more of their total
resources integration and test activities. Whereas modern projects with a
mature, iterative process deliver a product with only about 25% of the
total budget consumed by these activities.

Table 1 Differences in workflow cost allocations between a conventional
process and a modern process

SR.No | Software Engineering | Conventional Modern Process
Work Flows Process Expenditures
Expenditures
1 Management 5% 10%
2 Environment 5% 10%
3 Requirements 5% 10%
4 Design 10% 15%
5 Implementation 30% 25%
6 Assessment 40% 25%
7 Deployment 5% 5%
Total 100% 100%
Format Evolving management and engineering artifacts | :;?};,aet;: :::e;m.m ']
Activty | ospton | Eaboraon Consructon | Transnan | lrge-caledosin

', | continuous integration.
Product[Prototypes | Architecture l Usable Releases 1 Product Releases —l |

| lterative activities >

100% —

Modern K
Project Profile .-

o "Conventional
Project Profile

Development Progress
(% coded)

A A A

Project Schedule

Fig 1 Progress profile of a modern project

224

2. Early Risk Resolution

1.

The engineering stage of the life cycle (inception and elaboration
phases) focuses on confronting the risks and resolving them before the
big resource commitments of the production stage.

Conventional projects usually do the easy stuff first, thereby
demonstrating early progress, whereas a modern process attacks the
important 20% of the requirements, use cases, components and risks.

This is the essence of most important principle that is design the
architecture first, to get the success about the project. The effect of the
overall life-cycle philosophy on the 80/20 lessons learned over the past
30 years of software management experience provides a useful risk
management perspective.

3.1 80 % of the engineering is consumed by 20% of the requirements.
Strive to understand the driving requirements completely before
committing resources to full scale development.

3.2 80% of the software cost is consumed by 20% of the components-
Elaborate the cost-critical components first so that planning and
control of cost drivers are well understood early in the life cycle.

3.3 80 % of the errors are caused by 20% of the components-
Elaborate the reliability critical components first so that
assessment activities have enough time to achieve the necessary
level of maturity.

3.4 80% of the software scrap and rework is caused by 20% of the
changes- Elaborate the change-critical components first so that
broad-impact changes occur when the project is nimble.

3.5 80% of the resource consumption(execution time, disk space,
memory) is consumed by 20% of the components- Elaborate the
performance-critical components first so that engineering trade-
offs with reliability, changeability, and cost-effectiveness can be
resolved as early in the life cycle as possible.

3.6 80 % of the progress is made by 20% of the people- Make sure
that the initial team for planning the project and designing the
architecture is of the highest quality. An inadequate plan or
inadequate architecture will probably not succeed, even with an
expert construction team.

Future Software Project
Management

225

Project Management

226

[Inception . Elaboration . Construction — Transition >
High
Controlled Risk
Management Pericd
g
=2
71
&
»*
L
R
w
% . Conventional
2 ', Project Risk Profile
g Modern Project .
o : ; Risk Profile el
Risk Exploration : Risk Resolution -
Period - Period
Low

Project Life Cycle

Fig 2 Risk profile of a typical modern project across its life cycle

3 Evolutionary Requirements

Conventional approaches decomposed system requirements in to
subsystem requirements, subsystem requirements in to component
requirements and component requirements in to unit requirements.

2. With an early life-cycle emphasis on requirements first, design second,

then complete traceability between requirements and design
components, the natural tendency was for the design structure to
evolve in to an organization that closely paralleled the structure of the
requirement organization.

3. Most modern architectures that use commercial components, legacy

components, distributed resources and object-oriented methods are not
irrelevantly traced to the requirement they satisfy. There are now
complex relationships between requirement statements and design
elements which includes 1 to 1, many to 1, 1 to many, conditional,
time-based and state-based.

4. Top-level system requirements are retained as the vision, but lower

level requirements are captured in evaluation criteria attached to each
intermediate release. The fundamental difference from conventional
requirements management approaches in which this fidelity was
pursued far too early in the life cycle.

Software Architecture Requirements Set Artifacts
mp.ueum Ft;.‘m:ll.ﬂ"f Pfam:umr \ Software
L Vision
- —
%%%| LEI EQ% =j==]==} Document
[MECNIHSMS lﬁcﬁ.ﬁﬂﬁ"!] “ECKIN&HS ‘
lk‘;-/—%bg %{%L—\,g‘ { -_—— l
—» _Use Case Modal >
COMMON MECHANISMS
| = ‘
| e
COMMON MECHANISMS | Release
f Specifications
L Eu“' J

Fig 3 Organization of software components resulting from a modern
process

4 Team work among stakeholder

1

Many aspects of the classic development process cause stakeholder
relationships to degenerate in to mutual distrust making it difficult to
balance requirements, product features, and plans.

A more iterative process, with more effective working relationships
between stakeholders, allows trade-ffs to be based on a more objective
understanding by everyone. This process requires that customers, users
and monitors have both applications and software expertise, remain
focused on the delivery of a usable system and be willing to allow the
contractor to make a profit with good performance.

. It also requires a development organization that is focused on achieving

customer satisfaction and high product quality in a profitable manner.

The transition from the exchange of mostly paper artifacts to
demonstration of intermediate results is one of the crucial mechanisms
for promoting teamwork among stakeholders.

. The project does not move forward until the objectives of the

demonstration have been achieved. This prerequisite does not preclude
the renegotiation of objectives once the demonstration and major
milestone has achieved as per the requirements, design, plans and
technology.

. A modern iterative process that focuses on demonstrable results

requires all stakeholders to be educated in the important difference
between apparently negative results and proof of real progress.

. For eg A flaw in design is if discovered early, indicate the positive flow

of project progress, rather than a major issue.

Future Software Project
Management

227

Project Management

228

8.Table 2 describes the results of major milestones in a modern process

Sr.No | Apparent Result

Real Result

Early demonstrations expose
design issues and ambiguities
in a tangible form.

Demonstrations expose the
important assets and risks of
complex software systems early,
when they can be resolved
within the context of life cycle
goals.

The design is non
compliant(so far)

Understanding of compliance
matures from important
perspectives (architecturally
significant requirements and use
cases)

Driving requirements issues
are exposed, but detailed
requirements traceability is
lacking.

Requirements changes are
considered in balance with
design trade-offs

The design is considered
“guilty until proven innocent”

Engineering progress and issues
are a tangible for incorporation

in to the next iteration’s plans.

5. Top 10 Software Management Principles

1. The following list provides a concise, top-level description of the
features and benefits of a modern process as viewed by a software
project manager

1.1 Base the process on an architecture-first approach- Getting the
architecturally important components to be well understood and stable
before worrying about the complete breadth and depth of the artifacts
should result in scrap and rework rates remain stable over the project
life cycle.

1.2 Establish an iterative life-cycle process that confronts risk early-
Resolving the critical issues first results in a predictable construction
phase with no surprises as well as minmal exposure to sources of cost
and schedule unpredictability.

1.3 Transition design methods to emphasize component based
development- The complexity of a software effort is mostly a function
of the number of human-generated artifacts. Making the solution
smaller reduces management complexity.

1.4 Establish a change management environment — The dynamics of
iterative development, including concurrent workflows by different

teams working on shared artifacts, necessitate highly controlled Future Software Project
baselines. Management

1.5 Enhance change freedom through tools that support round-trip
engineering- Automation enables teams to append more time on
engineering and less time on overhead tasks.

1.6 Capture design artifacts in rigorous, model-based notation- An
engineering notation for design enables teams to spend complexity
control, objective assessment and automated analysis.

1.7 Instrument the process for objective quality control and progress
assessment- Progress and quality indicators are derived directly from
the evolving artifacts, providing more-meaningful insight in to trends
and correlation with requirements.

1.8 Use a demonstration-based approach to assess intermediate artifacts-
Integration occurs early and continuously throughout the life cycle.

1.9 Plan intermediate releases in groups of usage scenarios with evolving
levels of detail- Requirements, designs and plans evolve in balance.
Useful software releases are available early in the life cycle.

1.10 Establish a configurable process that is automatically scalable-
Methods, techniques, tools, and experience can be applied
straightforwardly to a broad domain, providing improved return on
investment across a line of business.

Round-trip engineering Tackling the architecture Iterative and configurable
and process instrumentation first and change processes improve risk
improve the level of automation management early management and process
and insight into objective improves the achlevable reuse across multiple
quality control. -me \ projects.
Gnst It (Persannel){Environment)(QuaIlly)(Slze)""’““‘ —‘
Evolving levels of detail Component-based
and a demonstration- development and model-
based approach improve based notation help reduce
communications ameong the overall size and
stakeholders. compexity of the solution. _}

Fig 4 Balanced application of modern principles to achieve economic
results

6. Software Management best practices

1. Many software management best practices have been captured by
various authors and industry organizations. Brown summarized the
intiative which has three components like the airline software council,

229

Project Management

230

seven different issue panels and a program manager’s panel. Each
component produced recommendations and results and reviewed the
work of the other components.

The Airline software e council was “purposely structured to include
highly successful managers of large-scale software projects,
internationally recognized authors, prominent consultants, and
executives responsible for software development at major companies.

The nine best practices are described here as follows

3.1 Formal risk management- using an iterative process that confronts
risk is more or less what this is saying.

3.2 Agreement or Interfaces- Getting the architecture baselined forces
the project to gain agreement on the various external interfaces and
the important internal interfaces, all of which are inherent in the
architecture.

3.3 Formal inspections-The assessment workflow throughout the life
cycle, along with the other engineering workflows, must balance
several different defect removal strategies.

3.4 Metric based scheduling and management- This important
principle is directly related to my model-based notation and
objective quality control principles.

3.5 Binary quality gates at the inch pebble level- Too many projects
have taken exactly this approach early in the life cycle and have
laid out a highly detailed plan at great expense. A better approach
would be to maintain fidelity of the plan commensurate with an
understanding of the requirements and the architecture.

3.6 Program wide visibility of progress versus plan- This practice
namely, open communications among project team members is
obviously necessary.

3.7 Defect tracking against quality targets- The make or break defects
and quality targets are architectural. Getting a handle on these
qualities early and tracking their trends are requirements for
success.

3.8 Configuration Management- It also recognized that automation is
important because of the volume and dynamics of modern, large-
scale projects which make manual methods cost-prohibitive and
error-prone.

3.9 People aware management accountability- This is another
management principle that seems so obvious.

14.3 NEXT GENERATION SOFTWARE ECONOMICS Future Software Project

Management

1 Next Generation Cost Models

1. Software experts hold varying opinions about software economics and
its manifestation in software cost estimation models. Source lines of
code versus function points.

2. Economy of scale versus diseconomy of scale, productivity measures
versus quality measures, Java versus C++, object oriented versus
procedure oriented, commercial components versus custom
development. All these topics represent industry debates surrounded
by high levels of bombast.

3. Accurate estimates are possible today, although honest estimates are
imprecise. It will be difficult to improve empirical estimation models
while the project data going in to these models are noisy and highly
uncorrelated, and are based on different process and technology
foundations.

4. Some of today’s popular software cost models are not well matched to
an iterative software process focused on an architecture first approach.
Despite many advances in software cost estimation tools to update
their project repository, but still many cost estimators are using
conventional process to estimate the modern project profile.

5. A next-generation software cost model should explicitly separate
architectural engineering from application production, just as an
architecture first process does. When an organization achieves a stable
architecture, the production costs should be an exponential function of
size, quality and complexity with a much more stable range of process
and personnel influence.

6. Next-generation software cost models should estimate large-scale
architectures with economy of scale.

7. In the conventional process, the minimal level of automation that
supported the overhead activities of planning, project control and
change management led to labor intensive workflows and a
diseconomy of scale. Next generation environment and infrastructures
are moving to automate and standardize many of these management
activities, thereby requiring a lower percentage of effort for overhead
activities as scale increases. The figure given below summarizes an
hypothesized cost model for an architecture first development process.

231

Project Management

232

Effort = F(T, s Sacn Quens Paren) + F(Tagps Sager Qe Page)

App' © App

Time = F(P,,, Effort,) + F(P,,, Effort

Arch® ﬂﬂD]

where: :
T = technology parameter (environment automation support)

S = scale parameter (such as use cases, function points, source lines of coda)
Q= quality parameter (such as portability, reliability, performance)

P = process parameter (such as maturity, domain experience)

Engineering Stage Production Stage

Risk resolution, low-fidelity plan
Scheduleftechnology-driven
Risk sharing contracts/funding

Low-risk, high-fidelity plan
Cost-driven
Fixed-price contracts/funding

|_ M-month production increments r_l—‘

[
|

‘ N-month design phase |

Effort, .

<1.0

‘ Pﬁpp

Team Size
Architecture: small team of software engineers
Applications: as many as needed
Large and diverse as needed
Product
Deliverable, useful function
Tested baselines
Warranted quality

Team Size
Architecture: small team of software engineers
Applications: small team of domain engineers
Small and expert as possible

Product
Executable architecture
Production plans
Requirements

Focus
Design and integration
Host development environment

Focus
Implement, test, and maintain
'I'argel technolog\,r

Phases
Inception and elaboration

Phases

|
|
|
I
|
|
|
|
1
1
I
i
|
I
I
Size/Complexity } Sire/Complexity
I
I
|
|
|
|
I
|
I
|
1
|
|
|
| Construction and transition

Fig 1 Next-generation Cost models

Reusing common processes across multiple iterations of a single
project, multiple releases of a single product, or multiple projects in an
organization also relieves many of the sources of diseconomy of scale.
While most reuse of components results in reducing the size of the
production effort, the reuse of processes tools, and experience has a
direct impact on the economies of scale.

Another important difference in this cost model is that architectures
and applications have different units of mass (scale V/s size) and are
representations of the solution space. However there are many
solutions are available for any given problem as illustrated in fig
shown below.

— T

The value proposition of a
given solution comprises
several competing
dimensions.

Solution Space

Solution N
Solution 2

Solution 1 Dimensions:
» Features, F

* Qualities, Q
= Life-cycle savings, L
= Risk, R
Units: + Schedule, S
« Number of requirerments * CGost, © -
+ Complexity of requirements
+ Number of use cases +value = EX3L —
: R+S+C
* Complexity of use cases |
J
~— 1M‘"“'"---._________._..---’/

Fig 2 Differentiating potential solutions through cost estimation

10. The value of the function points is that they are better at depicting the
overall scale of the solution, independently of the actual size and
implementing language of the final realization. A rigorous notation for
design artifacts is a necessary prerequisite to improvements in the
fidelity with which the scale of a design can be estimated.

11. Two major improvements in next-generation software cost estimation
models are as follows

1. Separation of the engineering stage from the production stage will force
estimators to differentiate between architectural scale and
implementation size.

2. Rigorous design notations such as UML will offer an opportunity to
define units of measure of scale that are most standardized and
therefore can be automated and tracked.

12. The first breakthrough would be the availability of integrated tools that
automate the transitions of information between requirements, design,
implementation and deployment elements. These tools would allow
more comprehensive round-trip engineering among the engineering
artifacts.

13. The second breakthrough would focus on collapsing today’s four set of
fundamental technical artifacts in to three sets by automating the
activities associated with human-generated source code, thereby
eliminating the need for a separate implementation set. This
technology is illustrated in fig below.

Future Software Project
Management

233

Project Management

234

—

(98]

Documents

<>
<+
<+
<+

]

Design

Requiremenis

Implementation
Deployment

Management

Conventional
Experience

|

On-line
artifacts

<>
4>

Design

Requiremeants

Implementation
Deployment

Management

Software
Engingering
Experience

Round-trip engineering

Requirements

Management

Next-Generation
Environment
Expectation

All Engineering

Engineering Separate
from Production

Modern Software economics

Engineering with
Automated Production

Fig 3 Automation of the construction process in next generation
environment

. Finding and fixing a software problem after delivery costs 100 times
more than finding and fixing the problem in early design phases-
Modern processes, component based development technologies and
architecture frameworks are explicitly targeted at improving this
relationship.

. You can compress software development schedules 25% nominal, but
no more- This metric remain valid for the engineering stage of the
lifecycle, when the intellectual content of the system is evolved.

. For every $1 you spend on development, you will spend %2 on
maintenance- It is difficult to generalize about this metric, as there are
many different maintenance models.

. Software development and maintenance costs are primarily a function
of the number of source lines of code-This metric says that the size of
the product is the primary cost driver, and the fundamental unit of size
is a line of code. The next-generation cost models should become less
sensitive to the number of source lines and more sensitive to the
discrete numbers of components and their ease of integration.

. Variatians among people account for the biggest differences in software
productivity- For any engineering venture in which intellectual
property is the real product, the dominant productivity factors will be
personnel skills, team work and motivation.

. The overall ratio of software to hardware costs is still growing. In 1955,
it was 15:85, in 1985, 85:15-The main impact of this metric on
software economics is that hardware continues to get cheaper.

7.

8.

10.

Only about 15% of software development effort is devoted to
programming- In the past 10 years there has been a noticeable shift
away from investments in languages and compilers. Modern
technology investments have transitioned in to process maturity,
automated software quality, configuration management, metrics and
other aspects of software engineering.

Software systems and products typically cost 3 times as much per
SLOC as individual software programs. Software -system products (i.e
system of systems) cost 9 times as much- This diseconomy of scale
should be greatly relieved with a modern process and modern
technologies.

Walkthroughs catch 60% of the errors- The really important
architectural issues can be exposed only through demonstration and
early testing and resolved through human scrutiny

80% of the contribution comes from 20% of the contributors- This
relationship is timeless and constitutes the background philosophy to
be applied throughout the planning and conduct of a modern software
management process.

14.4 MODERN PROCESS TRANSITIONS

Culture Shifts- Several culture shifts must be overcome to transition
successfully to a modern software management process. Many of these
indicators are derived directly from the already existed process
framework.

1.1 Lower level and mid-level managers are performers- There should be

no pure managers in an organization or suborganization with 25 or
fewer people. The need for pure manager arises only when personnel
resources exceed this level. Hand-on management skills vary, but
competent managers typically spend much of their time performing,
especially with regard to understanding the status of the project first
hand and developing plans and estimates.

1.2 Requirements and design are fluid and tangible- The conventional

process focused too much on producing documents that attempted to
describe the software product and focused too little on producing
tangible increments of the products themselves. The transition to a less
document-driven environment will be embraced by the engineering
team, it will probably be resisted by traditional contract monitors.

1.3 Ambitious demonstrations are encouraged- The purpose of early life-

cycle demonstration is to expose design flaws, not to put up a fagade.
The management team is most likely to resist this transition as it will
expose any engineering or process issues that were easy to hide using
the conventional process.

Future Software Project
Management

235

Project Management

236

1.4 Good and bad project performance is much more obvious earlier in the
life cycle- In an iterative development, success breeds success and
early failures are extremely risky to turn around. If the planning and
architecture phases are not performed adequately, all the expert
programmers and testers in the world probably will not achieve
success.

1.5 Early increments will be immature-External stakeholders such as
customers and users cannot expect initial deliveries to perform up to
specification to be complete to be fully reliable or to have end-target
levels of quality or performance. Customers and users will have
difficulty accepting the flaws of early releases, although they should
be impressed by later increments.

1.6 Artifacts are less important early more important later- It is waste of
time to worry about the details of the artifacts sets until a baseline is
achieved that is useful enough and stable enough to warrant time-
consuming analysis of these quality factors.

1.7 Real issues are surfaced and resolved systematically- Successful
projects recognize that requirements and designs evolve together, with
continuous negotiation, trade-off and bartering toward best value,
rather than blindly adhering to an ambiguous contract statement.

1.8 Quality assurance is everyone’s job not a separate discipline- Many
organizations have a separate group called quality assurance. The
software project manager or designee should assume the role of
ensuring that quality assurance is properly integrated in to the process.

1.9 Performance issues arise early in the life cycle- Early performance
issues surfaced on almost every successful project. Development
engineers will embrace the emphasis on early demonstration and the
ability to assess and evaluate performance trade-offs in subsequent
releases.

1.10 Investments in automation are necessary- As iterative development
projects require extensive automation it is important not to underinvest
in the capital environment. The investment may be opposed by
organization managers overly focused on near term financial results or
by project personnel who favor the preference of the individual project
over the global solution that serves both the project and the
organization goals.

1.11 Good software organizations should be more profitable- In the
commercial software domain, this is not an issue. This may be issue
for governmental contracts. The simple profit motive that underlies
commercial transactions and incentives efficiency is replaced by
complex contractual incentives that are usually suboptimal. For the
software industry to prosper, good contractors should be rewarded and
bad contractors should be punished. This is one area in which the
commercial domain is far more effective than the government
contracting domain.

Future Software Project

2. Denouement
Management

1. The conventional software process was characterized by following
points as illustrated below

1.1 Sequentially transitioning from requirements to design to code to
test.

1.2 Achieving 100% completeness of each artifact at each life-cycle
stage.

1.3 Treating all requirements, artifacts, components and so forth as
equals .

1.4 Achieving high fidelity traceability among all artifacts at each
stage in the life cycle.

2 A modern iterative development process framework is characterized
by the following

2.1 Continuous round-trip engineering from requirements to test at
evolving levels of abstraction.

2.2 Achieving high fidelity understanding of the drivers (the 20%) as
early as practical.

2.3 Evolving the artifacts in breadth and depth based on risk
management priorities.

2.4 Postponing completeness and consistency analysis until later in the
life cycle.

3 Figure shown below illustrates the next generation of software project
performance by depicting the development progress versus time,
where progress is defined as percent coded.

Target
Project Profile

00%

Modern o
Project Profile .-

Range of
domain-

reusable
asset

.+ Conventional
Project Profile

Development Progress
(% coded)

| A A A A

Project Schedule

Fig 4 Next-generation project performance

4 When an organization decides to make a transition, these two pieces of
conventional wisdom are usually offered by internal champions as
well as external change events 1)Pioneer any new techniques on a
small pilot program 2) Be prepared to spend more resources money
and time on your first project that makes the transition.

237

Project Management

238

5 A better way to transition to a more mature iterative development
process that supports automation technologies and modern
architectures is to take the following shot-

5.1 Ready- Analyze modern approaches and technologies. Support it
with mature environments, tools and components. Plan thoroughly

5.2 Aim- Select a critical project. Staff it with the right team of
complementary resources and demand improved results.

5.3 Fire- Execute the organizational and project-level plans with vigor
and follow-through.

14.5 SUMMARY

Next-generation software economies is being practiced by some advanced
software organizations.A mature modern process is now where near the
state of the practice for the average software organizations.The new
approaches of modern process framework will improve the accuracy and
precision of software cost estimates and would accommodate dramatic
improvements in software economies of scale.

14.6 REFERENCES

[1] Software Engineering by Sommerville 8™ Edition

14.7 QUESTIONS

Q1. Explain the dimensions of Next-generation software economies

Q2. Illustrate with example why modern process transition is necessity for
developing project

Q3. Explain the Cultural shift concept in detail?
Q4. Explain top 10 software management principles?

Q5. Describe about the software management best practices?

O O O O
AXEX R X X g

