University of Mumbai

No. AAMS(UG)/ 172 of 2021-22

CIRCULAR:-

Attention of the Principals of the Affiliated Colleges and Directors of the Recognized Institutions in Faculty of Science & Technology is invited to this office circular No. UG/116 of 2016-17 dated 25th October, 2016 relating to the revised syllabus as per the (CBCS) for the F.Y.B. Sc. Biotechnology (Sem. I & II).

They are hereby informed that the recommendations made by the Ad-hoc Board of Studies in Biotechnology at its online meeting held on 16th July, 2021 and subsequently passed by the Board of Deans at its online meeting held on 23rd September, 2021 vide item No. 6.4 (R) have been accepted by the Academic Council at its meeting held on 10th November, 2021 vide item No. 6.3(R) and that in accordance therewith, the revised syllabus as per the (CBCS) for the F.Y.B.Sc. Bio-technology (USBT) (Sem.- I & II) accordingly has been brought into force with effect from the academic year 2022-23. (The same is available on the University's website www.mu.ac.in).

MUMBAI - 400 032 1st peb, 2002 (Sudhir S. Puranik) REGISTRAR

1st feb, 2022

The Principals of the Affiliated Colleges and Directors of the Recognized Institutions in Faculty of Science & Technology.

A.C/6.3(R) /10/11/2021

No. AAMS(UG) 172-A of 2022

Copy forwarded with Compliments for information to:-

- 1) The Dean, Faculty of Science & Technology,
- 2) The Chairman, Ad-hoc Board of Studies in Biotechnology,
- 3) The Director, Board of Examinations and Evaluation,
- 4) The Director, Board of Students Development,
- 5) The Director, Department of Information & Communication Technology,

6) The Co-ordinator, MKCL.

(Sudhir S. Puranik) REGISTRAR

Copy to :-

- 1. The Deputy Registrar, Academic Authorities Meetings and Services (AAMS),
- 2. The Deputy Registrar, College Affiliations & Development Department (CAD),
- 3. The Deputy Registrar, (Admissions, Enrolment, Eligibility and Migration Department (AEM),
- 4. The Deputy Registrar, Research Administration & Promotion Cell (RAPC),
- 5. The Deputy Registrar, Executive Authorities Section (EA),
- 6. The Deputy Registrar, PRO, Fort, (Publication Section),
- 7. The Deputy Registrar, (Special Cell),
- 8. The Deputy Registrar, Fort/ Vidyanagari Administration Department (FAD) (VAD), Record Section,
- 9. The Director, Institute of Distance and Open Learning (IDOL Admin), Vidyanagari,

They are requested to treat this as action taken report on the concerned resolution adopted by the Academic Council referred to in the above circular and that on separate Action Taken Report will be sent in this connection.

- 1. P.A to Hon'ble Vice-Chancellor,
- 2. P.A Pro-Vice-Chancellor,
- 3. P.A to Registrar,
- 4. All Deans of all Faculties,
- 5. P.A to Finance & Account Officers, (F.& A.O),
- 6. P.A to Director, Board of Examinations and Evaluation,
- 7. P.A to Director, Innovation, Incubation and Linkages,
- 8. P.A to Director, Board of Lifelong Learning and Extension (BLLE),
- 9. The Director, Dept. of Information and Communication Technology (DICT) (CCF & UCC), Vidyanagari,
- 10. The Director of Board of Student Development,
- 11. The Director, Department of Students Walfare (DSD),
- 12. All Deputy Registrar, Examination House,
- 13. The Deputy Registrars, Finance & Accounts Section,
- 14. The Assistant Registrar, Administrative sub-Campus Thane,
- 15. The Assistant Registrar, School of Engg. & Applied Sciences, Kalyan,
- 16. The Assistant Registrar, Ratnagiri sub-centre, Ratnagiri,
- 17. The Assistant Registrar, Constituent Colleges Unit,
- 18. BUCTU,
- 19. The Receptionist,
- 20. The Telephone Operator,
- 21. The Secretary MUASA

for information.

UNIVERSITY OF MUMBAI

Revised Syllabus for Program-F.Y.B.Sc. Biotechnology (USBT) (Sem. I & II)

(Choice Based Credit System)

With effect from the academic year 2022-2023

AC	
Item No.	

UNIVERSITY OF MUMBAI

Syllabus for Approval

Sr. No.	Heading	Particulars
1	Title of the Course	F.Y.B.Sc.Biotechnology (USBT)
2	Eligibility for Admission	HSC (Science) with Physics, Chemistry, Mathematics and Biology. If the student has not opted for Mathematics in HSC, then he/she will have to complete 15 hours Bridge course in Mathematics
3	Passing Marks	40 %
4	Ordinances / Regulations (if any)	
5	No. of Years / Semesters	03 Years/Six semesters
6	Level	Certificate/Diploma/UG/PG (Strike out which is not applicable)
7	Pattern	Semester/ Yearly (Strike out which is not applicable)
8	Status	Revised/ New (Strike out which is not applicable)
9	To be implemented from Academic Year	From Academic Year: 2022-2023

Date: Signature:

Name: Dr. Anuradha Majumdar

Dean, Science and Technology

Dr. Archana Rath

Chairperson Ad-hoc BoS in Biotechnology

Preamble:

Twenty First Century is known as the Century of Biotechnology. Biotechnology is one of the youngest branches of Life Science, which has expanded and established as an advanced interdisciplinary applied science in last few years. Biotechnology at the core envisages the comprehensive study of Life and the Interdisciplinary potential of Biotechnology has led to a unique status for Biotechnology in Research and Industry.

The socio-economic potential of Biotechnology is well established which has almost become synonymous with modern development. Biotechnology has its applications in almost every field touching practically every human activity. The applied aspect of Biotechnology is now getting established with its applications in Industry, Agriculture, Health and Environment, Biotechnology is the lead science expanding exponentially.

Biotechnology demands a trained, skilled human resource to establish the Industry and Research sectors. The field is novel and still expanding which demands inputs in Infrastructure and Technology. The global and local focus is on developing new technological applications is fast growing. Biotechnology sector in Research and Industry is expanding which is set to augur the next major revolution in the world.

The demand for trained workforce in Biotechnology is ever growing in Fundamental Research and Industry Sector. Academic and Research Sectors also require interdisciplinary trained manpower to further the Biotechnology Revolution.

The need of the hour is to design appropriate syllabi which keeps pace with changing times and technology with emphasizes on applications while elucidating technology in depth. The present syllabi are revised anticipating the future needs of Biotechnology Sector with more emphasis on imparting hands-on skills. The main thrust is laid on making syllabus compatible with developments in Education, Research and Industrial sectors. The Theory and Practical course in new restructured course will lead to impart skill-set essentials to further Biotechnology Sector.

The revised syllabus combines basic principles of Physical, Chemical and Biological sciences in light of advancements in technology. The curriculum aims to impart basic knowledge with emphasis on its applications to make the students industry ready.

- Dr. Anuradha Majumdar (Dean, Science and Technology)
- Dr. Shivram Garje (Associate Dean, Science)
- Dr. Archana Rath (Chairperson, Ad Hoc BOS in Biotechnology)
- Dr. Tara Menon (Member)
- Dr. Deepali Karkhanis (Member)
- Dr. Sneha Panvalkar (Member)
- Dr. Seema Kokitkar (Member)
- Dr. Jayaprada R. Chunduri (Member)
- Dr. Bhupendra Pushkar (Member)
- Dr. Rajesh C. Patil (Member)
- Dr. Varsha K. Mane (Member)

F.Y.B.Sc. Biotechnology (USBT) Course Structure Semester I

Course code	Course Type	Title	Credits	Nos of Lectures /week
USBT101	Core Subject	Fundamentals of biotechnology-I	2	3
USBT102	Core Subject	Microbiology-I	2	3
USBT103	Core Subject	Basic Chemistry-I	2	3
USBT104	Core Subject	Biochemistry: Concept of Biomolecules-I	2	3
USBT105	Core Subject	Genetics	2	3
USBT106	Core Subject	Molecular biology-I	2	3
USBT107	Ability enhancement course	Ability enhancement course - Communication skills	2	3
USBTP101	Core Subject practicals	Practicals of USBT101 & USBT102	2	3
USBTP102	Core Subject practicals	Practicals of USBT103 & USBT104	2	3
USBTP103	Core Subject practicals	Practicals of USBT105 & USBT106	2	3
	TOTAL		20	

F.Y.B.Sc. Biotechnology (USBT) Course Structure Semester II

Course code	Course Type	Title	Credits	Nos of Lectures /week
USBT101	Core Subject	Fundamentals of Biotechnology- II	2	3
USBT102	Core Subject	Cell biology and Microbiology-II	2	3
USBT103	Core Subject	Basic Chemistry-II	2	3
USBT104	Core Subject	Biochemistry: Concept of Biomolecules-II and Basic analytical techniques	2	3
USBT105	Core Subject	Physiology and Immunology	2	3
USBT106	Core Subject	Basic Computers and Biostatistics	2	3
USBT107	Ability enhancement course	Ability enhancement course - Sustainable development and Environmental biotechnology	2	3
USBTP101	Core Subject practicals	Practicals of USBT201 & USBT202	2	3
USBTP102	Core Subject practicals	Practicals of USBT203 & USBT204	2	3
USBTP103	Core Subject practicals	Practicals of USBT205 & USBT206	2	3
	TOTAL		20	

Teaching pattern:

One (01) Credit would be of thirty to forty (30-40) learning hours; of this, more than fifty per cent of the time will be spent on classroom instructions including practical as prescribed by the University. Rest of the time spent invested for assignments, projects, journal writing, case studies, library work, industrial visits, attending seminars/workshops, preparations for examinations etc. would be considered as notional hours. The present syllabus considers (45 Lectures as classroom teaching and 15 lectures as Notional hours/ paper). Each lecture duration would be for 48 min. The names of the reference books provided in the syllabus are for guidance purpose only. Students and faculty are encouraged to explore additional reference books, online lectures, videos, science journals for latest/ additional information.

EVALUATION SCHEME

The performance of the learners shall be evaluated into TWO Parts.

- 1. Internal Assessment with 25 marks
- 2. Semester End Examinations with 75 marks.

Practical Training will have Practical Examination for 100 marks per practical paper at the end of Semester. The allocation of marks for the Internal Assessment and Semester End Examinations are as follows: -

For Core subjects:

- A. Internal Exam-25 Marks
 - i. Test/Assignment/Project/Presentation—20 Marks
 - ii. Activities and Attendance 5 Marks
- B. Semester End Examination 75 Marks
- C. Practical Examination 300 marks (100 marks x 3 core practical papers)

For Ability Enhancement Course:

- A. Internal Exam-25 Marks
 - i. Assignment/Project/Presentation 20 Marks
 - ii. Activities and Attendance 5 Marks
- B. Semester End Examination- 75 Marks

SEMESTER I

Course Code	Title	Credits	No of lectures
USBT101	Fundamentals of biotechnology-1	02	

Course Objectives:

To familiarize the students with the potential and different applications of biotechnology

Learning Outcomes:

- Develop an understanding of developments in various fields of Biotechnology
- Be able to relate to applications and benefits of Biotechnology in the fields of agriculture, livestock, human health and environment
- Discuss the basics of fermentation

Unit I-	What is biotochnology?	15
	What is biotechnology?	15
Introduction and	Biotechnology –an interdisciplinary biological science;	
scope of	Biotechnology – definition; History & Introduction to	
biotechnology	Biotechnology;	
	Traditional and Modern Biotechnology; Scope and	
	importance of biotechnology;	
	World of Biotechnology-	
	Pharmaceutical Biotechnology, Plant Biotechnology,	
	Industrial Biotechnology, Marine Biotechnology, Animal	
	Biotechnology, Medical biotechnology, Environmental	
	Biotechnology.	
	Biotechnology in India –	
	Bio-business in India, booming biotech market, success story	
	of biotech market, policy initiatives; and global trends;	
	Biotechnology research in India;	
	Potential of modern biotechnology;	
	Achievement of biotechnology; Prevention of misuse of	
	biotechnology; Biotechnology Institutions in India (Public	
	and Private Sector); Public Perception of Biotechnology.	
	Case study: Serum Institute of India and its products	
	case study. Set and institute of india and its products	
Unit II-	Applications of biotechnology: -	
Applications of	Agriculture:	15
biotechnology	GM fruits- GM papaya, GM tomato,	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Insect resistant transgenic plants – Bt cotton, Bt brinjal,	
	Modifications in nutrient quality – starch, oilseed protein,	
	golden rice	
	Livestock:	
	Growth, disease resistance, product quality,	
	pharmaceuticals and nutritional supplements, industrial	
	applications	
	аррисанона	

	Human welfare: Cloned genes for production of -Insulin; recombinant vaccine for Hepatitis B virus. Molecular farming, Edible vaccines and their advantages Environment- Pollution abatement through GMOs Bioethics Case study: Genetically modified microbes for bioremediation of oil spills in marine environment		
Unit III- Fermentation technology	Introduction to fermentation processes: Microbial biomass, Microbial enzymes, Microbial metabolites, recombinant products, transformation processes. Development of fermentation Industry Component parts of fermentation process Screening: Definition, Primary screening and its methods, Secondary screening and its methods Fermenter design: Definition of a fermenter, aerated stirred tank batch fermenter-Typical design, Construction materials used, aeration and agitation Basic introduction to process parameters: Temperature control, Foam production and control pH measurement and control, CO2 and O2 control Fermentation medium: Basic requirements of industrial media, Criteria for use of raw materials in media, Examples of raw materials used, Growth factors, Water, Carbohydrate sources, Protein sources Product: A typical process of Ethanol production and Antibiotic production		15
References	 Dubey, R. C. (1993). A textbook of Biotechnology. S. C. Dubey, R. C. (2014). Advanced biotechnology. S. Char Singh, B. D., & Singh, B. D. (2007). Biotechnology Kalyani publishers. Stanbury, P. F., Whitaker, A., & Hall, S. J. (2 fermentation technology. Elsevier. Casida, L. E. (1968). Industrial microbiology. Industria Okafor, N., & Okeke, B. C. (2017). Modern industria biotechnology. CRC Press. 	nd Publish expanding (013). Printle	ing. g horizons. nciples of ology.

Course Code	Title	Credits	No of lectures
USBT102	Microbiology-1	02	

To build firm foundation in microbiology, sterilization techniques and staining.

Learning Outcomes:

- Develop an understanding of cultivation of microorganisms.
- Develop skills towards use of microscopy and staining techniques
- Understand the role of sterilization and disinfection in the field of microbiology

Unit I- Introduction to microbiology	Fundamentals, History and Evolution of Microbiology: Discovery of Microorganisms, Conflict over spontaneous generation. Role of microorganisms in disease Classification: The place of Microorganisms in the living world, Classification Whittaker's five kingdom classification, Introduction to Bergey's Manual, Groups of Microorganisms, Applications of microbiology in various fields Nutrition, Cultivation and Maintenance of microorganisms: Nutritional categories of microorganisms, Design and Types of Culture Media, methods of isolation.	15
Unit II- Sterilization techniques	Introduction: Definition and concept of Sterilization and Disinfection. Types and Applications: Dry Heat, Steam under pressure Gases, Radiation and Filtration Chemical Agents and their Mode of Action: Aldehydes, Halogens, Quaternary Ammonium Compounds, Phenol and Phenolic Compounds, Heavy Metals, Alcohol, Dyes, and Detergents. Disinfectant: Ideal Disinfectant. Examples of Disinfectants and Evaluation of Disinfectant	15
Unit III- Microscopy and stains	Simple and Compound Microscope: General principles of optics; various parts and their functions - objectives – numerical aperture, resolving power, depth of focus, working distance, aberrations; oculars; condensers. Dark Field Microscope; Phase Contrast Microscope and Fluorescent Microscope, TEM, SEM Applications of microscopes Stains and Staining Solutions- Definition of Dye and Chromogen; acidic and basic dyes; functions and types of chromophore and auxochrome groups. Theories to explain staining. Definition and function of stain; mordant, intensifiers and fixative.	15

	Natural and Synthetic Dyes. Simple Staining, Differential Staining – Gram staining and Acid Fast Staining with specific examples
References	 Prescott, L. M. (2002). Microbiology 5th Edition. Pelczar., Microbiology. (1993). India: McGraw-Hill Education. Ananthanarayan, R., Paniker, C. J. (2006). Ananthanarayan and Paniker's Textbook of Microbiology. India: Orient Longman. Salle, A. J., & Salle, A. J. (1954). Fundamental principles of bacteriology McGraw-Hill. Frobisher M. Fundamentals of Microbiology (9th Ed)

Course Code	Title	Credits	No of lectures
USBT103	Basic Chemistry-1	02	

To acquaint the students with basic concepts of Chemistry like nomenclature, chemical bonds, titrimetric, gravimetry, stereochemistry etc.

Learning Outcomes:

- Develop an understanding of chemical bonds.
- Develop skills towards use of titrimetric and gravimetric analysis
- Be able to differentiate between chiral and achiral molecules and different enantiomers

Unit I- Nomenclature and Chemical	Classification and Systematic Nomenclature of organic compounds (few examples) Chemical Bonds:	15
bonds	Types and transition between the main types of bonding. Ionic Bond :	
	Nature of Ionic Bond, factors influencing the formation of	
	Ionic Bond. Structure of NaCl and CsCl. Covalent Bond:	
	Nature of Covalent Bond, Types of covalent bond (Polar and Coordinate covalent bonds). Structure of CH ₄ , NH ₃ , H ₂ O,	
	Shapes of BeCl ₂ , BF ₃ .	
	Hydrogen Bond: Theory of Hydrogen Bonding and Types of Hydrogen Bonding (with examples of RCOOH, ROH, Salicylaldehyde, Amides and Polyamides).	

Unit II- Titrimetric and gravimetry	Titration, Titrant, Titrand, End Point, Equivalence Point, Titration Error, Indicator, Primary and Secondary Standards, Characteristics and examples. Types of Titrations – Acid –Base, Redox. Precipitation, Complexometric Titration. Acid – Base Titration - Strong Acid Vs Strong Base. Theoretical aspects of Titration Curve and End Point Evaluation. Theory of Acid –Base Indicators, Choice and Suitability of Indicators. Gravimetric Analysis: Solubility and Precipitation, Factors affecting Solubility, Nucleation, Particle Size, Crystal Growth, Colloidal State, Ageing/Digestion of Precipitate. Co-Precipitation and Post-Precipitation. Washing, Drying and Ignition of Precipitate.		15
Unit III- Stereochemistry	Isomerism: Types of Isomerism: Constitutional Isomerism (Chain, Position and Functional) and Stereoisomerism, Chirality. Geometric Isomerism and Optical Isomerism: Enantiomers, Diastereomers, and Racemic mixtures Cis-Trans, Threo, Erythro and Meso isomers. Diastereomerism (Cis-Trans Isomerism) in Alkenes and Cycloalkanes (3 and 4 membered ring) Conformation: Conformations of Ethane. Difference between Configuration and Conformation. Configuration: Asymmetric Carbon Atom, Stereogenic/ Chiral Centers, Chirality Representation of Configuration by —Flying Wedge Formula Projection formulae: Fischer, Newman and Sawhorse. The Interconversion of the Formulae.		15
References	 Bahl, B. S., & Bahl, A. (2017). A textbook of organic Publishing. Lee, J. D. (2008). Concise inorganic chemistry. John Wiley of Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (of analytical chemistry. Cengage learning. Vogel, A. I., & Jeffery, G. H. (1989). Vogel's textbook of analysis. Wiley. Mosher, M. (1992). Organic Chemistry. (Morrison, Rob Robert Neilson). 	& Sons. (2013). Fun quantitative	damentals e chemical

Course Code	Title	Credits	No of lectures
USBT104	Biochemistry: Concept of Biomolecules-I	02	

To acquaint the students with different concepts of biomolecules

Learning Outcomes:

- Develop skills towards preparation of standard solutions in the laboratory.
- Understand the role of buffers
- Discuss the basics of carbohydrate and lipid biochemistry.

Discuss	the basics of carbonydrate and lipid blochemistry.	
Unit I- Water, Standard solutions and Buffers	Structure, Properties and functions: Water Preparation of standard Solutions: Concept and significance of Chemical and Biological solutions. Normality, Molarity, Molality, Mole fraction, Mole concept, Solubility, Weight ratio, Volume ratio, Weight to Volume ratio, ppb, ppm, millimoles, milliequivalents (Numericals expected). Primary and Secondary Standards: Preparation of Standard Solutions, Principle of Volumetric Analysis. Concept of pH: Buffer solutions –Concept of Buffers, Derivation of Henderson -Hasselbach equation for Acidic and Basic buffers. Buffering capacity Biological buffers: Significance of biological buffers. pH of body fluids like blood and saliva. Blood buffer systems: E.g.: Carbonate, Acetate and Phosphate buffers.Protein buffers (Introduction) Significance of TRIS buffers (Introduction)	15
Unit II- Basics of Carbohydrate Chemistry	Carbohydrates: Introduction, definition and general formula. Classification of carbohydrates: Monosaccharides: Two Families of Monosaccharides. Aldo series and keto series; (Triose - Glyceraldehyde and Dihydroxyacetone, Tetrose-Erythrose and Erythrulose, Pentose-Xylose, Xylulose, Ribose, Ribulose, Hexose- Glucose, Galactose, Mannose, Heptose-sedoheptose and Sedoheptulose (structures to be taught) Concept of Enantiomers, Mutarotation, Anomeric carbon and Epimers of glucose. Biologically important Derivatives of Hexoses: Glucosamine, Gluconic acid, uronic acid, NAGA, NAMA Chemical reactions of monosaccharides Concept of glycosidic bond. Disaccharides: Maltose, Lactose, Sucrose, Cellobiose (structures to be taught, biological significance, structure and bond type) Polysaccharides: Homopolysaccharides and Heteropolysaccharides; Structural	15

	and Storage Polysaccharides. E.g., of polysaccharides -: starch (amylose and amylopectin), Glycogen, Peptidoglycan, Cellulose, chitin (structure and bond type) Examples of Reducing and nonreducing carbohydrates. Industrial applications of carbohydrates: Fermentation, Pharmaceutical and Food industry.		
Unit III- Basics of Lipid Chemistry	Introduction to Lipid Chemistry: Definition and Biological functions of fats and Lipids. Definition of Fatty acids. Classification of Fatty acids: Saturated Fatty Acids: C2- C20 (Examples with trivial name, Biochemical names and Structures) Unsaturated Fatty Acids: Definition of MUFA and PUFA. C16- C20. Palmitolic, Oleic, Linoleic, Lenolenic, Arachidonic acid (Structures expected) Storage Lipids: AcylGlycerols (Simple and Mixed) Mono, Di and Triacylglycerols. (Structures expected) Properties of Triacylglycerols: Hydrolysis, Saponification, Antioxidant, Rancidity, Acid number, RM number, Action of lipase. Structural lipids: Phosphatidic acid and Membrane Phospholipids E.g.: Phosphatidylethanolamine, Phosphatidylserine, Phosphatidylcholine, Cardiolipin Action of Phospholipase Steroids: Definition and functions Eg: Cholesterol		15
References	 Cox, M. M., & Nelson, D. L. (2008). Lehninger principles of New York: Wh Freeman. Conn, E., & Stumpf, P. (2009). Outlines of biochemistry. John Satyanarayana U. and Chakrapani U. (2007). Biochemistry. 3 Allied (P) Ltd. Mu, P., & Plummer, D. T. (2001). Introduction to practic McGraw-Hill Education. 	Wiley & S rd Edition.	ons. Books and

Course Code	Title	Credits	No of lectures
USBT105	Genetics	2	

To provide insight to students on fundamental concepts of mendelian genetics, microbial genetics and population genetics

Learning Outcomes:

- Develop an understanding of fundamental concepts of mendelian genetics
- Discuss the different processes in microbial genetics and their role in mapping genes
- Understand the relevance of population genetics

Unit I- Genetics fundamentals	Introduction to genetic and sub-disciplines of genetics: Transmission genetics, Molecular genetics, Population genetics and Quantitative genetics. Basic Terminologies in genetics Mendelian Genetics: Monohybrid Crosses and Mendel's Principle of Segregation. Representing crosses with a Branch Diagram. Confirming the principle of Segregation: The use of Test crosses. Dihybrid crosses and Mendel's Principle of Independent Assortment. Extensions of and Deviations from Mendelian Genetic Principles: Multiple Alleles - ABO Blood groups Modifications of Dominance Relationships: Incomplete Dominance and Codominance. Essential Genes and Lethal Alleles. Effects of the environment on Gene expression. Gene Interactions and Modified Mendelian Ratios: Epistatic and non-epistatic interactions. Mendelian Genetics in Humans: Pedigree Analysis. Examples of Human Genetic Traits	15
Unit II- Microbial genetics	Genetic analysis in Bacteria: Prototrophs, Auxotrophs. Genetic Mapping in Bacteria by Conjugation: Discovery of Conjugation in <i>E.coli</i> . The sex factor F, High-Frequency Recombination Strains of <i>E.coli</i> . F' Factors. Using conjugation to map bacterial genes- Interrupted-mating Genetic mapping in bacteria by Transformation Genetic mapping in Bacteria by Transduction: Bacteriophages - Lytic and Lysogenic pathway. Transduction Mapping of Bacterial Chromosomes - Generalized Transduction and Specialized Transduction.	15
Unit III- Population genetics	Genetic Structure of Populations: Genotypic Frequencies and Allelic Frequencies, Hardy- Weinberg Law and its Assumptions, Genetic Variations in Populations. Forces responsible for change in gene frequencies in population: Natural Selection., Genetic Drift, Migration, Speciation Role of Population Genetics in Conservation Biology	15
References	 Russell, P. J., & Gordey, K. (2002). IGenetics ,San Francisco Cummings. Verma, P. S., & Agarwal, V. K. (2004). Cell Biology, Genetics, Molecum 	

- Evolution and Ecology: Evolution and Ecology. S. Chand Publishing.
- 3. Simmons, M. J., & Snustad, D. P. (2006). Principles of genetics. John Wiley & Sons.
- 4. Russell, P. J. (2000). Fundamentals of genetics. Longman Publishing Group.
- 5. Karp, G. (2009). Cell and molecular biology: concepts and experiments. John Wiley & Sons.
- 6. Strickberger M., Genetics. (1995). Australia: Deakin University.

Course Code	Title	Credits	No of lectures
USBT106	Molecular biology-I	02	

To build a firm foundation of molecular biology

Learning Outcomes:

- Develop an understanding of structure and organization of the hereditary material
- Discuss the different processes involved in replication of DNA
- Understand the relevance of physical, chemical and biological factors in mutations

Chromosome Nucleotide and Nucleoside, Structure of nucleotides. Structure, Structure of DNA. DNA double helix – Watson and Crick's	
structure. Structure of DNA, DNA double helix – Watson and Crick's	
composition and Model. Structure of RNA. Types of RNA.	
packing Organization of DNA in chromosome:	
Viral and Prokaryotic Chromosomes.	
Eukaryotic Chromosomes.	
Histone and Non-histone proteins.	
Nucleosome Structure.	
Packaging of DNA into chromosomes.	
Euchromatin and Heterochromatin.	
Centromeres and Telomeres	
Chromosome Banding Techniques.	
Karyotype and Idiogram	
Unit II- Models of DNA Replication	15
DNA replication Evidence of Semi-conservative DNA replication- Messelhson	
and Stahl's experiment	
DNA Polymerases and its role,	
DNA Replication in Prokaryotes:	
E.coli Chromosome Replication,	
Semi-discontinuous replication	
Bidirectional Replication of Circular DNA molecules.	
Rolling Circle Replication,	

	DNA Replication in Eukaryotes Enzymes and proteins involved in DNA replication	
Unit III- Mutation and repair	Definition and concept of Mutations: Classification of mutations Types of Point Mutations, Types of Spontaneous and induced mutations Mutagenesis and types of Mutagens. (Examples of Physical, Chemical and Biological Mutagens) DNA repair: Photoreversal, Base Excision Repair, Nucleotide Excision Repair, Mismatch Repair, SOS Repair.	15
References	 Satyanarayana U. and Chakrapani U. (2007). Biochemistry. 3rd Edition. Books and Allied (P) Ltd. Russell, P. J., & Gordey, K. (2002). IGenetics ,San Francisco: Benjamin Cummings. Simmons, M. J., & Snustad, D. P. (2006). Principles of genetics. John Wiley & Sons. Russell, P. J. (2000). Fundamentals of genetics. Longman Publishing Group. Karp, G. (2009). Cell and molecular biology: concepts and experiments. John Wiley & Sons. Strickberger M., Genetics. (1995). Australia: Deakin University 	

Course Code	Title	Credits	No of lectures
USBT107	Ability Enhancement Course-Communication skills	02	

To acquaint the students with different aspects of communication skills.

Learning Outcomes:

- Develop an understanding of communication skills required to excel in real work environment and corporate life.
- Gain insight into technical and non-technical qualities in career planning
- Learn about Leadership, team building, decision making and stress management

Unit I-	Essentials of Grammar: Parts of speech, Articles, Modals,	15
Academic	Sentences and their types., Punctuation marks	
skills	Employment Communication: Introduction, Resume, Curriculum	
	Vitae, Scannable Resume, Developing an Impressive Resume,	
	Formats of Resume, Job Application or Cover Letter. Email Writing	
	Professional Presentation : Nature of Oral Presentation, planning a	
	Presentation, Preparing the Presentation, Delivering the Presentation	

		1	
	Job Interviews: Introduction, Importance of Resume, Definition of Interview, Background Information, Types of Interviews, Preparatory Steps for Job Interviews, Interview Skill Tips, Changes in the Interview Process, FAQ During Interviews Group Discussion: Introduction, Ambience/Seating Arrangement for Group Discussion, Importance of Group Discussions, Difference between Group Discussion, Panel Discussion and Debate, Traits, Types of Group Discussions, topic based and Case based Group Discussion, Individual Traits		
Unit II- Soft skills	Introduction to Soft Skills and Hard Skills Personality Development: Knowing Yourself, Positive Thinking, Johari's Window, Communication Skills, Non-verbal Communication, Physical Fitness Emotional Intelligence: Meaning and Definition, Need for Emotional Intelligence, Intelligence Quotient versus Emotional Intelligence Quotient, Components of Emotional Intelligence, Competencies of Emotional Intelligence, Skills to Develop Emotional Intelligence Etiquette and Mannerism: Introduction, Professional Etiquette, Technology Etiquette Communication Today: Significance of Communication, GSC's 3M Model of Communication, Vitality of the Communication Process, Virtues of Listening, Fundamentals of Good Listening, Nature of Non-Verbal Communication, Need for Intercultural Communication, Communicating Digital World		15
Unit III- Professional skills	Creativity at Workplace: Introduction, Current Workplaces, Creativity, Motivation, Nurturing Hobbies at Work, The Six Thinking Hat Method Ethical Values: Ethics and Society, Theories of Ethics, Correlation between Values and behavior, Nurturing Ethics, Importance of Work Ethics, Problems in the Absence of Work Ethics Capacity Building: Need and Importance of Capacity Building Elements of Capacity Building Zones of Learning Ideas for Learning Strategies for Capacity Building Leadership and Team Building: Leader and Leadership, Leadership Traits, Culture and Leadership, Leadership Styles and Trends, Team Building, Types of Teams Decision Making and Negotiation: Introduction to Decision Making, Steps for Decision Making, Decision Making Techniques, Negotiation Fundamentals, Negotiation Styles, Major Negotiation Concepts Stress and Time Management: Stress, Sources of Stress, Ways to Cope with Stress		15
References	 Kumar, Sanjay, and Lata, Pushp. Communication Skills, Second I University Press, 2015. Chauhan, G. S., Sharma, S. (2016). Soft Skills: An Intergrated A Personality. India: Wiley. Mitra, B. K. (2011). Personality development and soft skills University Press. 	pproach to	o Maximise

- 4. Guffey, M. E., & Loewy, D. (2012). Essentials of business communication. Cengage Learning.
- 5. Rao, M. S. (2010). Soft skills-enhancing employability: connecting campus with corporate. IK International Pvt Ltd.
- 6. Sherfield, R. M. (2009). Cornerstone: Developing Soft Skills. Pearson Education India.

Course Code	Title	Credits	Notional hours
USBTP101	Practicals of USBT101 and USBT102	2	45

- 1. Assignment on any one branch of Biotechnology.
- 2. Analyse a case-study and write a report on any one recent application of Biotechnology (Not older than past 5 years)
- 3. Field visit/ Virtual visit (website) of National/ International research institutes for research in biotechnology and have a group discussion during the lab session.
- 4. Study of Microscope Compound Microscope (Including Handling and storage), Dark Field Microscope, Phase Contrast Microscope, Fluorescent Microscope, TEM, SEM. (Including ray diagrams)
- 5. Monochrome staining using any suitable material. (Bacteria/Plant/Animal tissue)
- 6. Differential staining Gram staining, Acid fast staining, Romanowsky staining.
- 7. Special staining cell wall, capsule, spores, negative staining.
- 8. Fungal staining wet mount (Lactophenol cotton blue/Methylene Blue)
- 9. Preparation of media- Nutrient broth and Agar, MacConkey Agar, Sabouraud's Agar
- 10. Sterilization of Laboratory Glassware and Media using Autoclave and Hot air oven
- 11. Isolation techniques: T-streak, polygon method
- 12. Colony Characteristics of Microorganisms.
- 13. Use of Bergey's manual to help identify any one isolate
- 14. Isolation of Yeasts from natural environment.
- 15. Study of morphology and colony characteristics of yeasts
- 16. Fermentation of Sugarcane juice using yeast.
- 17. Estimation of sugars by Cole's ferricyanide method.
- 18. Estimation of Alcohol by dichromate method
- 19. Screening of antibiotic producers from soil by Crowded plate method.
- 20. Screening of antibiotic producers from soil by Wilkins Overlay method.

Course Code	Title	Credits	Notional hours
USBTP102	Practicals of USBT103 and USBT104	2	45

1. Safety in Chemistry Laboratory: Dress code, Dos and Don't, First Aid

- 2. Preparation of Normal, Molar, Molal, Percent solution
- 3. Preparation of solution PPM and PPB
- 4. Demonstration of pH meter and digital Balance
- 5. Preparation of Acetate buffer pH 4.6, Carbonate buffer pH 6.8, Tris buffer pH 8.3
- 6. Structures of Aldo series and Keto series of Monosaccharides, disaccharides and Polysaccharides
- 7. Qualitative tests for carbohydrates; Molisch test, Benedict's test, Iodine test, Osazone formation
- 8. Estimation of carbohydrates by Lane-Eynon method
- 9. Qualitative tests for lipids.
- 10. Iodine value of Oil
- 11. Determine the rate constant for the saponification reaction between ethyl acetate and NaOH by back titration method
- 12. Determination of Acetic acid in Vinegar by Titrimetric Method.
- 13. Determination of the amount of Fe (II) present in the given solution Titrimetrically.
- 14. Determination of amount of NaHCO₃ + Na₂CO₃ in the given solid mixture Titrimetrically.
- 15. Determination of the amount of Mg (II) present in the given solution complexometrically.
- 16. Determination of percent composition of BaSO₄ and NH₄Cl in the given mixture Gravimetrically.
- 17. Practice problems on nomenclature of organic compounds (Identify organic compounds based on formulae or draw formulae from names).
- 18. Construct a detailed flowchart for classification of organic compounds.
- 19. Characterization of Organic Compounds any three organic compounds
- 20. Assignment Practice problems on stereochemistry (Identifying stereoisomers, conformations of specific compounds, chirality and symmetry elements; drawing stereoisomers; locating and naming stereogenic centers).

Course Code	Title	Credits	Notional hours
USBTP103	Practicals of USBT105 and USBT106	2	45

- 1. Study of mitosis from suitable plant material
- 2. Study of meiosis from suitable plant material/Permanent slides/Photographs
- 3. Study of mitosis using pre-treated root tips of *Allium cepa* to study the effect of mutagens- chemical (colchicine/ PDB) on mitosis
- 4. Study the effect of UV radiation as a mutagenic agent
- 5. Extraction of DNA from plant material.
- 6. Qualitative analysis of DNA
- 7. Identification of types of point mutations from given DNA sequences
- 8. Isolation of antibiotic/ dye resistant mutants using replica plate technique.
- 9. Demonstration of Ames test for mutagenicity.
- 10. Study of Karyotype Normal male and female
- 11. Barr body identification in cells of Buccal smear.
- 12. Problems based on Mendelian Genetics, its modifications and gene interactions.
- 13. Construction of pedigree charts and analysis of Human genetic traits using Pedigree analysis.
- 14. Preparation of competent cells and demonstration of Bacterial transformation and mapping
- 15. Demonstration of Bacterial Conjugation and interrupted mating-based mapping

- 16. Demonstration of transduction and mapping
- 17. Study of Watson and Crick model of DNA using micrographs/ Schematic representations.
- 18. Study of Semiconservative replication of DNA through micrographs/ Schematic representation.
- 19. Conduct a survey on observable genetic traits and compare those inventories with other students in groups. (Blood group, tongue rolling, earlobe attachment, PTC tasting etc.)
- 20. Study of blood groups ABO in humans

SEMESTER II

Course Code	Title	Credits	No of lectures
USBT201	Fundamentals of Biotechnology-II	02	

Course Objectives:

To acquaint students with the applications of biotechnology in the field of food, medicine and fermentation

Learning Outcomes:

- Develop an understanding of the application of biotechnology in the food industry.
- Gain insight into details of genetic engineering.
- Discuss tools and techniques used in medical biotechnology

Unit I-	Introduction to food biotechnology:	15
Food	History of microorganisms in food science and key	
Biotechnology	developments, Applications of biotechnology in	
	fermented food products	
	Introduction to Unit Operations and Processes:	
	Basic unit operations, food processing & packaging	
	(canning & bottling), Production of cultures	
	Fermented food products:	
	Bread, Vinegar, Sauerkraut, Single Cell Protein (SCP),	
	Probiotics	
	Food spoilage, food deterioration, food contamination	
	and Food Adulteration	
	Methods of food preservation	
	Indicators of Food Microbial Quality & Safety:	
	HACCP, FSSAI & FDA	

Unit II- Medical biotechnology	Introduction to Medical Biotechnology and its applications Vaccines Types of vaccines General vaccine production Large scale production of vaccine Trends in Vaccines Research Issues related to vaccine research Synthetic peptides as vaccine Antibody Production Gene therapy Organ transplant cloning Stem cells -Sources and applications	15
Unit III-Genetic engineering	What is Genetic engineering: Definition and developments What is gene cloning? Strategy for cloning How to clone a gene? How to construct rDNA? Source DNA [insert], Isolation of DNA from bacterial cell, Introducing insert into cloning vector Enzymes in genetic engineering: Restriction endonuclease; DNA ligase; Enzymes to modify ends of DNA molecules - exonuclease; endonuclease; S1 nuclease; alkaline phosphatase; polynucleotide kinase; DNA polymerase and klenow fragment; reverse transcriptase; terminal deoxynucleotidyl transferase Vectors: Role as agents of transfer Features of plasmid vectors, Plasmid vectors - pBR322, pUC BAC Plant virus vectors and Animal virus vectors Shuttle vector; Expression vector Host cells: E. coli; Bacillus subtilis; Saccharomyces cerevisiae; Xenopus oocytes; Mammalian fertilized egg cell Introducing vector into host: Prokaryote Eukaryote Identification of recombinant clones.	15
References	 Frazier, W. C., & Westhoff, D. C. (1983). Food microl. Lee, B. H. (2014). Fundamentals of food biotechnolog Jay, J. M., Loessner, M. J., & Golden, D. A. (2008). I Springer Science & Business Media. Woolverton, C. J., Sherwood, L., Willey, J. (2014). India: McGraw-Hill Education. Patel, A. H. (1984). Industrial Microbiology. Macmilla 6. Khan, F. A. (2011). Biotechnology fundamentals. CRO 	y. John Wiley & Sons. Modern food microbiology.). Prescott's Microbiology. an India.

- 7. Nicholl, D. S. T. (2002). An Introduction to Genetic Engineering (Studies in Biology). India: Cambridge University Press.
- 8. Brown, T. A. (2013). Gene Cloning and DNA Analysis: An Introduction. Germany: Wiley.
- 9. Genetic Engineering: Principles and Practice. (n.d.). India: McGraw-Hill Education.
- 10. A Textbook of Biotechnology by R C Dubey 4th Ed
- 11. Dubey, R. C. (2014). Advanced biotechnology. S. Chand Publishing

Course Code	Title	Credits	No of lectures
USBT202	Cell biology and Microbiology-II	02	

To build a firm foundation of concepts related to cell biology and microbiology

Learning Outcomes:

- Discuss the ultrastructure, function and location of organelles in prokaryotic and eukaryotic cells.
- Develop an understanding of microbial growth and enumeration
- Gain insight in to the basics of virology

Unit I-	Ultrastructure of Prokaryotic Cell:	15
Ultrastructur	Concept of Cell shape, size and arrangement	
e of	Bacterial structures external to cell wall: Flagella,	
prokaryotic	Pilli, Fimbriae, Capsule, Slime Layer, Sheath	
and	Cell Wall (Gram Positive and Negative)	
eukaryotic	Structures internal to cell wall:	
cell	Cell Membrane, nucleoid, Cytoplasm and cytoplasmic	
	inclusion bodies and vacuoles, Genetic Material spores	
	and cysts	
	Ultrastructure of Eukaryotic Cell:	
	Cell wall; Plasma membrane, Cytoplasmic Matrix,	
	Nucleus –Nuclear Structure, nuclear envelope,	
	nucleoplasm, Nucleolus; cytoplasmic structures –	
	cytoplasmic inclusions, cytoplasmic organelles -	
	Endoplasmic Reticulum; Golgi Apparatus;	
	Mitochondria; Chloroplasts; Ribosomes; Lysosome -	
	Endocytosis, Phagocytosis, Autophagy; Peroxisomes.	
	External Cell Coverings:	
	Cilia and Flagella	
	Comparison of Prokaryotic and Eukaryotic Cells	

Unit II- Microbiology	Microbial Growth Definition of Growth Mathematical and expression of growth Growth curve Measurement of growth Efficiency of growth yield Synchronous growth Effect of nutrient on growth rate Continuous Culture of microorganisms Chemostat and Turbidostat Enumeration of Microorganisms- Direct and Indirect Methods Preservation and Maintenance of cultures		15
Unit III- Virology	Introduction to virology: Historical perspective, General Characteristics of Viruses: Host Range Viral Structure- Nucleic Acid, Capsid and Envelope General Morphology- Helical, Polyhedral, Enveloped, Complex. Taxonomy of Viruses Viral Multiplication: Multiplication of Bacteriophages and Animal Viruses Isolation, Cultivation, and Identification of Viruses: Growing Bacteriophages and animal viruses in the Laboratory, Viral Identification Case studies- TMV, Influenza COVID-19 (Self learning)		15
References	 Pelczar., Microbiology. (1993). India: McGraw-Hill Education. Verma, P. S., & Agarwal, V. K. (2004). Cell Biology, Genetics, Molecular Biology, Evolution and Ecology: Evolution and Ecology. S. Chand Publishing. Dubey, R. C. (2014). Advanced biotechnology. S. Chand Publishing Cooper, G. M., Hausman, R. E., & Hausman, R. E. (2007). The cell: a molecular approach (Vol. 4). Washington, DC: ASM press. Stanier, R. Y. (1987). General Microbiology. Hong Kong: Macmillan. Funke, B. R., Case, C. L., Tortora, G. J. (2013). Microbiology: An Introduction. United Kingdom: Pearson. Woolverton, C. J., Sherwood, L., Willey, J. (2014). Prescott's Microbiology. India: McGraw-Hill Education 		

Course Code	Title	Credits	No of lectures
USBT203	Basic Chemistry-II	02	

To acquaint the students with some core aspects of physical chemistry

Learning Outcomes:

- Develop an understanding of thermodynamics
- Learn about reaction kinetics and order of reaction

Gain insig	Gain insight in to the details of oxidation and reduction reactions			
Unit I- Thermodynami cs	Thermodynamics: System, Surrounding, Boundaries Sign Conventions, State Functions, Internal Energy and Enthalpy: Significance, examples, (Numericals expected.) Laws of Thermodynamics and its Limitations: Mathematical expression. Qualitative discussion of Carnot Cycle for ideal Gas and Mechanical Efficiency. Laws of Thermodynamics as applied to Biochemical Systems. Concept of Entropy, Entropy for Isobaric, Isochoric and Isothermal Processes.		15	
Unit II- Chemical Kinetics	Reaction Kinetics: Rate of Reaction, Rate Constant, Measurement of Reaction Rates Order & Molecularity of Reaction, Integrated Rate Equation of First and Second order reactions (with equal initial concentration of reactants). (Numericals expected) Determination of Order of Reaction: a) Integration Method b) Graphical Method c) Ostwald's Isolation Method d) Half Time Method. (Numericals expected).		15	
Unit III- Oxidation Reduction reactions	Principles of Oxidation & Reduction Reactions: Oxidising and Reducing Agents Oxidation Number, Rules to assign Oxidation Numbers with examples Ions like Oxalate, Permanganate and Dichromate. Balancing Redox Reactions: Ion Electron Method Oxidation, Reduction, Addition and Substitution & Elimination Reactions.		15	
References	 Rao, C. N. R. (1973). University General Chemistry Chemical Science. India: Macmillan India Limited. Chang, R. (2000). Physical Chemistry for the Consciences. United Kingdom: University Science Books. Lee, J.D., Concise Inorganic Chemistry, 5TH ED. (20 Limited. Bajpai, D. N. (2001). Advanced Physical Chemistry. In Singh, A. K., Singh, N. B., Das, S. S. (2009). Physical II. India: New Age International. 	Chemical 08). India:	and Biological Wiley India Pvt. nd, Limited.	

Course Code	Title	Credits	No of
			lectures

USBT204	Biochemistry: Concept of Biomolecules-II and Basic analytical techniques	02
Course Objectiv	es: bundation on the fundamentals of biochemistry and analytical	l tachniquas
Learning Outco	· · · · · · · · · · · · · · · · · · ·	rtechniques
U	course the student will:	
- T		, •

- Learn about fundamental structures and functions of amino acids & proteins.
- Develop an understanding of protein biochemistry and enzymology.
- Develop skills towards the principle, working and applications of different analytical techniques.

Unit I-Proteins and amino acids		15
Unit II- Enzymes	Introduction to biocatalysis: Properties of Enzymes Substrate, Optimum conditions, Co-substrate, Coenzyme, Cofactors Classification and Nomenclature (one reaction per	15

	class) Mechanism of Enzyme Action, Active Sites, Enzyme Specificity, Factors affecting enzyme activity (Effect of pH, Temperature, Substrate Concentration, Enzyme concentration) Enzyme Kinetics: Derivation of Michaelis-Menten Equation, Lineweaver- Burk plot, Concept of km Types of Enzyme Inhibitions: Irreversible & Reversible (Competitive, Uncompetitive, Non-Competitive) Isoenzymes (LDH, Alkaline Phosphatase, Creatine Phosphokinase) Allosteric Modulators, Co-Factors, Zymogens, Enzyme units Enzymes as Biomarkers and diagnostic tools. (SGPT, SGOT, LDH, CPK) Industrial Applications of Enzymes		
Unit III-Basics of Analytical techniques	•		15
References	 Cox, M. M., & Nelson, D. L. (2008). Lehninger princip 5). New York: Wh Freeman. Conn, E., & Stumpf, P. (2009). Outlines of biochemistry Satyanarayana U. and Chakrapani U. (2007). Biochem and Allied (P) Ltd. Jain, J. L. (2004). Fundamentals of Biochemistry. India: Skoog, D. A., West, D. M., Holler, F. J., Crouch, S. R Analytical Chemistry. India: Brooks/Cole, Cengage Lear Principles and Techniques of Biochemistry and Molecula States: Cambridge University Press. 	. John Wilenistry. 3rd S. Chand L . (2014). Frning.	y & Sons. Edition. Books imited. undamentals of

Course Code	Title	Credits	No of lectures
USBT205	Physiology and immunology	02	

To provide an insight in to the different physiological processes of plants and animals.

Learning Outcomes

- Gain insights into the Physiological Processes of Plants and functions of plant growth regulators.
- Develop a comprehensive and deep understanding of the vital physiological processes of animals.
- Understand the concept of immunity and role of antigens and immunoglobulins in the immune system.

Unit I- Plant Physiology	Photosynthesis: Hill's Reaction and its Significance, Light Reactions, Cyclic and Non-Cyclic Photoinduced Electron Flow, Energetics of Photosynthesis, Dark Phase of Photosynthesis, Calvin Cycle, C-3, C-4, CAM pathways, Rubisco oxygenase activity Plant hormones: Auxin, Gibberellins, Cytokinins, Ethylene, Abscisic acid Introduction to Secondary Metabolites	15
Unit II- Animal Physiology	Introduction to physiology: Concept of homeostasis. Body fluids: Major types of Body fluid. Blood: Functions of blood, general properties of blood, Composition of blood. Thrombocytes or Platelets. Coagulation of blood. Theories of Coagulation. Haemolysis. Respiratory system: Phases of Respiration, Principle of gases exchange, Mechanism of breathing. Digestion and absorption: Mode of nutrition, Digestion: Digestion of foodstuffs, Digestion in humans. Absorption. Excretion: Organs of excretion. Types of excretory products. Excretion in vertebrates - Human Kidney: Structure of kidney, Structure of nephron. Function of kidney. Urine formation. Dialysis	15

Unit III- Immunology	Introduction to Immunology: Overview of Immune Systems, Innate Immunity, Mechanisms of innate immunity, Acquired Immunity, Local and Herd Immunity, Humoral and Cellular Immunity - Factors Influencing and Mechanisms of each. Antigens: Immunogenicity Versus Antigenicity, Factors That Influence Immunogenicity, Epitopes, Haptens, Superantigens Antibodies: Basic Structure of Antibodies, Antibody-Mediated Effector Functions, Antibody Classes and Biological	15
References	 Cox, M. M., & Nelson, D. L. (2008). Lehninger principles of bio New York: Wh Freeman. Verma, S. K., Verma, M. (2008). A Textbook of Plant Physiol and Biotechnology. India: S. Chand Limited. Gujral, S. K., Kochhar, S. L. (2020). Plant Physiology: Theory United States: Cambridge University Press. Rastogi, S. C. (2007). Essentials of Animal Physiology. International (P) Limited, Publishers. Reddy, B. (2014). Text Book of Animal Physiology. And Publication Sembulingam, K. (2008). Essentials of Medical Physiology. India 7. Sherwood, L. (2012). Introduction to Human Physiology. Brooks/Cole. Goldsby, U. R. A., Kuby, J., Kindt, T. J., Goldsby, R. A., Osbor D. A. (2003). Immunology. United Kingdom: W. H. Freeman. Textbook Of Microbiology (7th Edition). (2006). India: Orient Bl 10. Rao, C. V. (2017). Immunology. United Kingdom: Alpha Sci 	logy, Biochemistry and Applications. India: New Age dra Paresh, IMRF a: Juta, Limited. y. United States: rne, B. A., Marcus, lackSwan.
	Limited.	unobiology. United

Course Code	Title	Credits	No of lectures
USBT206	Basic Computers and Biostatistics	02	

To develop the students' understanding of computer and biostatistics

Learning Outcomes:

- Develop an understanding of computer networking and internet
- Develop skills to use word processing, spreadsheet, presentation software.
- Gain insights about the use of statistics in the field of biotechnology

Unit I-	Introduction to computers:		15
---------	----------------------------	--	----

Introduction to computers	Overview and functions of a computer system, Input and output devices, Storage devices. Modern computers: The workstation, The Minicomputer, Mainframe Computers, Parallel processing Computer & The Super Computer Introduction to operating systems: Operating System concept, Windows, Unix/Linux & servers Word Processing: Basic Operations, Creating and Editing documents, Formatting documents. Spreadsheet: Creating and editing workbook, Organizing and formatting worksheets; Data analysis and management; Using formulas and functions Presentation Graphics: Creating and Editing Presentations, Designing and Enhancing Presentation, Delivering Presentation, Advanced Presentation Graphics.	
Unit II-Computer networking	-	15
Unit III- Biostatistics	Introduction to Biostatistics: Definition & Importance of Statistics in Biology Variables, Types of variables (Quantitative & Qualitative) Types of Data and data visualization:	15

	<u> </u>
	Concept of Data, Sources of data, Types of data (Quantitative & Qualitative), Representation of Data and Graphs (Bar Diagrams, Pie Charts and Frequency distribution, Histogram, Polygon and Curve) Sampling strategies: Population and Sample, Significance of using samples, Sample size, Random variation, Sampling techniques (Simple random sampling, Systematic sampling, Stratified sampling, Cluster sampling, Multiphase sampling) and Non- probability sampling Types of Statistics: Introduction to Descriptive & Inferential statistics Descriptive statistics: Measures of central tendency: Mean, Mode, Median (Ungrouped & Grouped data) Measures of dispersion: Range, Variance, Standard deviation (Ungrouped & Grouped data), Coefficient of variation Measures of location: Percentiles, Interquartile range (Box-Whisker plot) Normal/Gaussian distribution, Standard normal deviate, Sampling variation, Standard error of mean
References	 Sinha, P. K., Sinha, P. (2004). Computer Fundamentals. India: BPB Publications. Goel, A. (2010). Computer Fundamentals. India: Pearson Education. Wempen, F. (2014). Computing Fundamentals: Introduction to Computers. Germany: Wiley. Tanenbaum, A. S., Wetherall, D. (2014). Computer Networks. United Kingdom: Pearson Education. Khanal, A. B. (2015). Mahajan's Methods in Biostatistics For Medical Students and Research Workers. India: Jaypee Brothers, Medical Publishers Pvt. Limited. Cross, C. L., Daniel, W. W. (2018). Biostatistics: A Foundation for Analysis in the Health Sciences. United Kingdom: Wiley. Arora, P. N., Malhan, P. K. (2009). Biostatistics. India: Himalaya Publishing House.

Course Code	Title	Credits	No of lectures
USBT207	Ability Enhancement Course- Sustainable development and Environmental biotechnology	02	

To sensitize and create awareness about Ecology, renewable energy and different Environmental Issues. **Learning Outcomes:**

- Develop an understanding of the structure and functioning of the ecosystems.
- Gain insights about the concept of pollution, climate change and sustainable development

• Unders	Understand the relevance of renewable energy sources and conservation of biodiversity			
Unit I- Ecological interactions and Biodiversity	Concept of Ecosystems: Definition and Components- Structure and function of ecosystem aspects of ecosystems Food Chain and Food Web, Ecological Pyramids (Energy, Biomass and Number) Aquatic and Terrestrial Ecosystems, Different Abiotic Factors of ecosystem and adaptations to different abiotic factors Ecological Interactions: Commensalism, Mutualism, Predation and Antibiosis, Parasitism, competition Biodiversity and its conservation: Introduction — definition: genetic, species, ecosystem diversity, biogeographic classification of India, value of biodiversity, biodiversity at global, national and local levels, India as a mega diversity nation, Hotspots of biodiversity, threats to biodiversity, conservation of biodiversity		15	
Unit II- Pollution and climate change	Environmental Pollution: Definition, Cause, effects and control measures of- Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, nuclear hazards. Role of an individual in prevention of pollution. Pollution case studies. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Sustainable development: Concept, basic principles of sustainable development, post-brundtland world, roots of sustainability, Indicators, paradigm towards new discipline-sustainability science.		15	
Unit III- Renewable sources of energy	Introduction: Renewable and Non-renewable resources. The need for a sustainable lifestyle. Energy resources: Types of energy Nonrenewable energy - Oil, coal and its environmental impacts. Renewable energy: Hydroelectric power, Solar energy, Biomass energy, Biogas, Wind power and Geothermal energy. Biogas technology: Biogas plant & types, biodigester. Biogas- composition, production and factors affecting production and uses. Biofuels: Ethanol production, Microbial hydrogen production, Biodiesel, Petrocrops.		15	

References

- 1. Verma, V. (2010). Botany. India: Ane Books Pvt Ltd.
- 2. Bharucha, E. (2005). Textbook of Environmental Studies for Undergraduate Courses. India: Universities Press (India) Pvt. Limited.
- 3. Verma, P. S. (2004). Cell Biology, Genetics, Molecular Biology: Evolution and Ecology. India: S. Chand Limited.
- 4. Khoiyangbam, R. S. (2015). Introduction to Environmental Sciences. India: Energy and Resources Institute.
- 5. Fulekar, M. H. (2010). Environmental Biotechnology. United Kingdom: CRC Press.
- 6. Scragg, A. H. (2004). Environmental Biotechnology. United Kingdom: Oxford University Press.

Course Code	Title	Credits
USBTP201	Practicals of USBT201 and USBT202	02

- 21. Assignment Write a report on a case study on any one food product developed at CFTRI.
- 22. Write a SOP on any one Food safety procedure in compliance with Good Manufacturing Practices/ Flow sheet of Unit operations for any two food products.
- 23. Microbial examination of food and detection of Pathogenic Bacteria from Food Samples
- 24. Microscopic determination of Microbial flora from Yoghurt and Lactic Acid Determination
- 25. Isolation and characterization of organisms causing Food Spoilage (Using Bergey's Manual)
- 26. Isolation and characterization of food fermenting organism from idli batter (Using Bergey's Manual)
- 27. Sauerkraut production and to analyze quality parameters during production (odour, color, pH, total acidity)
- 28. Determination of food preservative concentration (salt & sugar) using MIC.
- 29. Processing fruits for preparation and packaging of jams or jellies.
- 30. Detection of Food adulterants in food samples
- 31. Isolation of chromosomal DNA from *E. coli* and Agarose gel electrophoresis of the chromosomal DNA
- 32. Study of the structure of important
 - a. animal viruses (rhabdo, influenza, paramyxo, hepatitis and retroviruses) using electron micrographs/diagrams.
 - b. plant viruses (caulimo, gemini, tobacco ringspot, cucumber mosaic and alpha-alpha mosaic viruses) using electron micrographs/diagrams.
 - c. (φX174, T4,3) using electron micrographs/diagrams.
- 33. Isolation and enumeration of bacteriophages (PFU) from water/sewage sample using double agar layer technique.
- 34. Motility by hanging drop method/stab culture
- 35. Methods of preservation of culture
- 36. Study of Growth Curve of *E.coli*
- 37. Preparation of vaccine (Demonstration) and Sterility testing of Vaccine
- 38. Enumeration by Breed's count
- 39. Isolation and Enumeration of microorganisms- Serial dilution, Surface spread method,
- 40. Isolation and Enumeration of microorganisms- Serial dilution, Pour plate method.

Course Code	Title	Credits
USBTP202	Practicals of USBT203 and USBT204	02

- 1. To determine enthalpy of dissolution of salt like KNO₃
- 2. Determine the rate constant for hydrolysis of ester using HCl as a catalyst
- 3. Study the kinetics of reaction between Thiosulphate ion and HCl
- 4. Study reaction between potassium Persulphate and Potassium Iodide kinetically and hence to determine order of reaction
- 5. Study the reaction between NaHSO₃ and KMnO₄ and balancing the reaction in acidic, alkaline and neutral medium
- 6. Study transfer of electrons (Titration of sodium thiosulphate with potassium dichromate)

- 7. Determination of the volume strength of hydrogen peroxide solution by titration with standardised potassium permanganate solution
- 8. Determination of amount of K oxalate and oxalic acid in the given solution Titrimetrically
- 9. Tutorial: Structure of Amino acids
- 10. Titration curve of amino acid
- 11. Qualitative analysis of amino acids and proteins
- 12. Separation by Paper Chromatography
 - a. Amino acids
 - b. Sugars
- 13. Separation by Thin layer chromatography
 - a. Plants Pigments
 - b. Fatty acids
- 14. Qualitative Assay of enzyme urease, amylase, dehydrogenase, catalase and protease from Plant/Animal/Microbial source.
- 15. Enzyme Kinetics: Study of the effect of pH, Temperature on activity of Amylase
- 16. Study of Effect of Substrate Concentration on amylase enzyme activity and determination of Vmax and Km
- 17. Study of Effect of inhibitors on amylase enzyme activity
- 18. Determination of absorption maxima of CuSO4/ K2Cr2O7
- 19. Verification of Beer and Lambert's Law
- 20. Estimation of Protein by Biuret method

Course Code	Title	Credits
USBTP203	Practicals of USBT205 and USBT206	2

- 1. Study of Hill's reaction
- 2. To measure the rate of photosynthesis by Winkler's method
- 3. Effect of PGRs on seed germination
- 4. Solvent extraction of plant pigments and study the absorption spectra of pigments
- 5. Qualitative detection of plant secondary metabolites using standard tests e.g. Tests for tannins, flavonoids, alkaloids, terpenoids, saponins, steroids.
- 6. Separation of Carotenoids by thin layer chromatography
- 7. Quantitative estimation of sugars by DNSA method
- 8. Effect of different concentrations of sodium chloride on RBC and determination of the concentration isotonic to blood.
- 9. Study of human blood count (RBC and WBC) using Haemocytometer
- 10. Estimation of Haemoglobin in human blood.
- 11. Analysis of Urine.
- 12. Demonstration of Phagocytosis
- 13. Study of bacterial flora of skin (as a physical barrier in innate immunity) by swab method/Hand imprint method.
- 14. File handling: copy, rename, delete, type and Directory structure: make, rename, move directory
- 15. Word Processing:
 - a. Creating, Saving & Operating a document, Editing, Inserting, Deleting, Formatting, Moving & Copying Text.

- b. Find & Replace, Spell Checker & Grammar Checker,
- c. Document Enhancement (Borders, Shading, Header, Footer),
- d. Printing document (Page layout, Margins),
- e. Working with Graphics (Word Art), Working with Tables & Charts, Inserting Files (Pictures, Databases, Spreadsheets)

16. Spreadsheet Applications:

- a. Worksheet Basics: Entering information in a Worksheet, Saving & Opening a Worksheet, Editing, Copying & Moving data, Inserting, Deleting & Moving Columns & Rows, Clearing
- b. Using formulas in spreadsheet for simple calculations
- c. Creating graphs, pie charts etc in
- 17. Creation of Computer Presentations with graphics:
 - a. Creation of slides, changing layout and using the design tab.
 - b. Using the insert tab function for pictures, audio, video, shapes, smart art, wordart, textbox.
 - c. Assigning Transitions and animations to slides.
- 18. Searching/Surfing on the internet
- 19. Measures of central tendency: Mean, median and mode for grouped and ungrouped data (Manual and Excel)
- 20. Measures of dispersion: Standard deviation for grouped and ungrouped data: standard value for the mean and proportion (Manual and Excel)