F.Y.B.&c.
(COMPUTER SCIENCE)
SEMESTER - | (CBCS)

COMPUTER
ORGANIZATIONAND
DESIGN

SUBJECT CODE : USCS101

© UNIVERSITY OF MUMBAI

Pro Vice-Chancdllor,
University of Mumbai,

Prof. Suhas Pednekar
Vice-Chancellor,
University of Mumbai,

Prof. RavindraD. Kulkar ni Prof. Prakash M ahanwar

Director,
IDOL, University of Mumbai,

CourseCo-ordinator

Course Writers

Programme Co-ordinator : Shri Mandar Bhanushe
Head, Faculty of Science and Technology,

IDOL, University of Mumbai, Mumbai

: Mr. Sumedh Shejole
Asst. Professor,
IDOL, University of Mumbai, Mumbai

: Ms. PriyaJadhav
Asst. Professor,

N. G Acharyaand D. K. Marathe College

Mumbai

. Ms. Aarti Sahitya
K.J.Somaiyalstituteof Engineeringand
Information Technol ogy,, Sion, Mumbai

December 2021, Print - |

Published by Director
Ingtitute of Distance and Open Learning,
University of Mumbai,
Vidyanagari, Mumbai - 400 098.
DTP Composed and Mumbai University Press
Printed by Vidyanagari, Santacruz (E), Mumbai - 400098

CONTENTS

Unit No. Title Page No.
Unit - |
1. Computer AbstractionsAnd Technology 01
2. LogicCircuitsAnd Functions 15
Unit- 11
3. Ingtruction Set Architectures 62
Unit - 111
4.1 BasicProcessor Unit 102
4.2 BasicInput/Output 121

o
o
o
o

Syllabus
F.Y.B.Sc. (C9)
Semester | (CBCYS)
Computer Organization and Design

Obj ectives.
To understand the structure and operation of modern processors
and their instruction sets

Expected L earning Outcomes:
1) To learn about how computer systems work and underlying principles
2) To understand the basics of digital electronics needed for computers

3) To understand the basics of instruction set architecture for reduced and
complex instruction sets

4) To understand the basics of processor structure and operation

5) To understand how data is transferred between the processor and 1/0
devices

Unit | :

Computer Abstractions and Technology: Basic structure and operation
of a computer, functional units and their interaction. Representation of
numbers and characters.

Logic circuitsand functions:

Combinational circuits and functions. Basic logic gates and
functions, truth tables; logic circuits and functions. Minimization with
Karnaugh maps. Synthesis of logic functions with and-or-not gates, nand
gates, nor gates. Fan-in and fan-out requirements; tristate buffers. Half
adder, full adder, ripple carry adder.

(Flip flops) Gated S-R and D latches, edge-triggered D latch. Shift
registers and registers. Decoders, multiplexers.

Sequentia circuits and functions: State diagram and state table;
finite state machines and their synthesis.

Unit 11
Instruction set architectures:

Memory organization, addressing and operations; word size, big-
endian and little-endian arrangements. Instructions, sequencing.
Instruction sets for RISC and CISC (examples Altera NIOS |1 and Free
scale Cold Fire). Operand addressing modes; pointers; indexing for arrays.
Machine language, assembly language, assembler directives. Function
calls, processor runtime stack, stack frame. Types of machine instructions:
arithmetic, logic, shift, etc. Instruction sets, RISC and CISC examples.

Unit I11
Basic Processor Unit:

Main components of a processor: registers and register files, ALU,
control unit, instruction fetch unit, interfaces to instruction and data
memories. Datapath. Instruction fetch and execute; executing
arithmetic/logic, memory access and branch instructions; hardwired and
micro programmed control for RISC and CISC.

Basic1/0:
Accessing /O devices, data transfers between processor and 1/0

devices. Interrupts and exceptions: interrupt requests and processing.

Text books:
1. Carl Hamacher et a., Computer Organization and Embedded Systems,

6 ed., McGraw-Hill 2012

Additional References:

1. Patterson and Hennessy, Computer Organization and Design, Morgan
Kaufmann, ARM Edition, 2011

2. R P Jain, Modern Digital Electronics, Tata McGraw Hill Education Pvt.
Ltd. , 4th Edition, 2010

COMPUTER ABSTRACTIONSAND
TECHNOLOGY

Unit Structure

1.0 Objectives

1.1 Introduction

12 Functional units and their interaction

1.3 Basic structure and operation

14 Representation of Numbers and Characters
1.4.1 Number representation
1.4.2 Character Representation
1.4.3 Number system
1.4.4 Conversion of Number System
1.4.5 Conversion from Binary to other system
1.4.6 Conversion from other to Binary System
1.4.7 Two's Complement Number System

15 Let us Sum Up

1.6 List of References

1.7 Unit End Exercises

1.0 OBJECTIVES

In this chapter you will learn about:
> A brief history of computer devel opment
» Thedifferent types of computers
» Thebasic structure of acomputer and its operation
» Number and character representations

1.1INTRODUCTION

The computer organization is the function and designs of various
units of digital computers that store and process information. It also deals
with input units of computer which receive information from external
sources and the output units which send computed results to external
destinations. The input, storage, processing and output operations are
governed by alist of instructions that constitute a program.

Computer hardware consists of electronic circuits, magnetic and

optica storage devices, displays, electromechanica devices, and
communication facilities. Computer architecture encompasses the

1

specification of an instruction set and the functional behavior of the
hardware units that implement the instructions.

1.2FUNCTIONAL UNITSAND THEIR INTERACTION

Input ALU

/0O Memory Processor

Output Control Unit

Fig a : Functional units of computer

Figure above shows the functional units of the computer. A
computer consists of five functionally independent main parts input,
memory, arithmetic logic unit (ALU), and output and control unit.

Input device accepts the coded information as source program i.e.
high level language. This is either stored in the memory or immediately
used by the processor to perform the desired operations. The program
stored in the memory determines the processing steps. Basicaly the
computer converts one source program to an object program. i.e. into
machine language.

Finally the results are sent to the outside world through output
device. All of these actions are coordinated by the control unit.

Input unit:

The source program/high level language program/coded
information/simply data is fed to a computer through input devices
keyboard is a most common type. Whenever a key is pressed, one
corresponding word or number is translated into its equivalent binary code
over acable & fed either to memory or processor.

Examples of input devices:
Keyboard, Joysticks, trackballs, mouse, scanners etc are other input
devices.

Memory unit:
Its function isto store programs and data. It is basically to two types

1. Primary memory:

Is the one exclusively associated with the processor and operates at
the electronics speeds, programs must be stored in this memory while they
are being executed. The memory contains a large number of
semiconductor storage cells. Each capable of storing one bit of

2

information. These are processed in a group of fixed sized memory unit
caled as‘word'.

2. Secondary memory:
Is used where large amounts of data & programs have to be stored,
particularly information that is accessed infrequently.

Examples. -Magnetic disks & tapes, optical disks (ie CD-ROM’s),
floppies etc.

Arithmetic logic unit (ALU):

Most of the computer operators are executed in ALU of the
processor like addition, subtraction, division, multiplication, etc. The
operands are brought into the ALU from memory and stored in high speed
storage elements called register. Then according to the instructions the
operation is performed in the required sequence. The control and the ALU
are many times faster than other devices connected to a computer system.
This enables a single processor to control a number of external devices
such as key boards, displays, magnetic and optical disks, sensors and other
mechanical controllers.

Output unit:

These actually are the counterparts of input unit. Its basic function
isto send the processed results to the outside world.

Examples:-Printer, speakers, monitor etc

Control unit:

It effectively is the nerve center that sends signals to other units
and senses their states. The actual timing signals that govern the transfer
of data between input unit, processor, memory and output unit are
generated by the control unit.

1.3 BASIC STRUCTURE AND OPERATION

Computer is a fast electronic calculating machine which accepts
digital input, processes it according to the internally stored instructions
(Programs) and produces the result on the output device. The internal
operation of the computer can be as depicted in the following diagram

1. Retrieve the next
instruction from
memory (as indicated
by the program
counter) and then
increment the
program counter.

2. Decode the bit pattern
in the instruction register.

Execute

3. Perform the action
requested by the
instruetion in the
instruction register.

Basic operation of an instruction
An Instruction consists of two parts, an Operation code and
operand/s as shown below:
Opcode operand
Let ustake an instruction
ADD LOCA, RO

Step to executeinstruction
1. Fetch the instruction from main memory into the processor

2. Fetch the operand at location LOCA from main memory into the
processor Register R1

3. Add the content of Register R1 and the contents of register RO
Store the result (sum) in RO.

The following diagram shows how the memory and the processor
are connected. As shown in the diagram, in addition to the ALU and the
control circuitry, the processor contains a number of registers used for
severa different purposes. The instruction register holds the instruction
that is currently being executed. The program counter keeps track of the
execution of the program. It contains the memory address of the next
instruction to be fetched and executed. There are n general purpose
registers Ry to Rn.; which can be used by the programmers while writing
the programs.

MAIN MEMORY H

_\LILIJQ.\.\IHIE“ f)ul;a[]—%iisi ("ontrol .Ihl.a
| MAR | MDR CONTROL
UNIT
‘ PC _. RO{Accum) G
RL |p
| IR - AL
Rn-1

The interaction between the processor and the memory and the
direction of flow of information is as shown in the diagram below:

| MAIN MEMORY)

|/ \ j . Dt

- MAR | AI)IL Cperand l

Address of an Instruction
[nstruction

o |

Control

ALU

R |~
1.4 REPRESENTATION OF NUMBERS AND
CHARACTERS

1.4.1 Number representation

a) Integer representation

The binary numbers used in digital computers must be represented
by using binary storage devices such as Flip-Flops (FF). Each device
represent one bit. The most direct number system representation for binary
valued storage devices is an integer representation system. Simply writing
the value or states of the flip-flops gives the number in integer form.

For example, a 6-bit FF register could store binary numbers
ranging from 000000 to 111111 (O to 63 in decimal). Since digital
computers handle +ve as well as —ve numbers, some means is required for
representing the sign of the number (+ or -). This is usually done by
placing another bit called sign bit to the left of the magnitude bits. A0’ in
sign bit position represent a +ve number while a ‘1’ in sign bit position
represent a—ve number.

a. Unsigned I nteger
Simply writing the values of the number in binary form gives the
magnitude of the number in the Unsigned Integer form.

b. Signed Integer
0 in the leftmost bit represents positive and 1 in the sign bit represents
negative.
+27
Lo [1 1 [o 1 1 |

?

Sign bit

[1 [1 1 0 1 1

?

Sign bit

The above example explains representation of +27 and -27 in sign-
magnitude representation

Sign magnitude numbers are used only when we do not add or
subtract the data. They are used in analog to digital conversions. They
have limited use as they require complicated arithmetic circuits.

b)Fixed point and Floating point r epresentation:

A read number or floating point number has integer part and
fractional part separated by adecimal.

It iseither positive or negative. e.g. 0.345, -121.37 etc.

Fixed Point Representation:

One method of representing real numbers would be to assume a
fixed position for the decima point. eg. in a 8-bit fixed point
representation, where 1 bit is used for sign (+ve or —ve) and 5 bits are used
for integral part and two bits are used for fractional part:

Lo 1 1 1 o o E P

Sign Assumed binary point
Figure: Representation of fixed point number in memory

The above diagram represents binary number +11100.11

Largest positive number which can be stored is 11111.11 while smallest
positive number which can be stored is 00000.01. This range is quite
inadequate even for simple arithmetic calculations. To increase the range
we use floating point representation.

Floating Point Representation:

In floating point representation, the number is represented as a
combination of a mantissa (m), and an exponent (e). In such a
representation it is possible to float a decimal point within number towards
left or right side.

For example: 53436.256 = 5343.6256 x 10"

= 534.36256 x 10
=53.436256 x 10°
=5.3436256 x 10*and so on

= 534362.56 x 10

= 5343625.6 x 10°
=53436256.0 x 10° and so on
6

Representation of floating point number in computer memory (with four
digit mantissa) Let us assume we have hypothetical 8 digit computer out
of which four digits are used for mantissa and two digits are used for
exponent with aprovision of sign of mantissaand sign of exponent.

Implied decimal point

Mantissa
Sign of Sign of Exponent
DAantissa exponent

1.4.2 Character Representation
In computer memory, character are "encoded” (or "represented")
using a chosen "character encoding schemes”.

For example, in ASCII:
e Code numbers 65D (41H) to 90D (5AH) represents 'A' to 'Z',

respectively.

e Code numbers 97D (61H) to 122D (7AH) represents 'a to 'z,
respectively.

e« Code numbers 48D (30H) to 57D (39H) represents '0' to '9,
respectively.

It isimportant to note that the representation scheme must be known
before a binary pattern can be interpreted.

For E.g., the 8-bit pattern "0100 0010B" could represent anything
under the sun known only to the person encoded it.

The most commonly-used character encoding schemes are: 7-bit
ASCIl (ISO/IEC 646) and 8-bit Latin-x (ISO/IEC 8859-x) for western
European characters, and Unicode (ISO/IEC 10646) for
internationalization (i18n).

A 7-bit encoding scheme (such as ASCII) can represent 128
characters and symbols. An 8-bit character encoding scheme (such as
Latin-x) can represent 256 characters and symbols, whereas a 16-bit
encoding scheme (such as Unicode UCS-2) can represents 65,536
characters and symbols.

In this representation some symbols are non graphic and some are
graphics means some cannot be printed or displayed, for example “line
feed”, “null”, “escape’ etc. and some are printed which includes alphabets,
digits, punctuation mark and other symbols etc.

For example the ASCII code table

ASCII Table

ASCH | pex | symbel ASCH | Hex | Symbol ASCHl | Hex | Symbol
o 0 NUL 3z 20 (space) 48 30 0
1 1 SOH 33 21 | 49 31 1
o 2 STX 34 22 " 50 32 2
3 3 ETX as 23 # 51 33 3
4 4 EOT 36 24] 52 34 4
5 5 ENG 37 25 Yo 53 35 B
5 & ACK 38 26 & 54 36 =]
7 7 BEL ag 27 ||7 55 37 T
a 8 BS 40 28 (56 38 8
g 9 TAB 41 29 1] 57 39 9
10 A LFE 42 2A - 58 3A 3
11 B VT 43 2B + 59 3B :
12 c FF 44 2C ; 60 3c =
13 D CR 45 2D 61 3D -
14 E 30 46 2E 62 3E >
15 E =1 47 2F 63 3F ?
ASCII Table (Cont.)

ASCI Hex Symbol AsCl Hex Symbol ASCI Hex Symbol
64 40 @ 80 50 P EE) 60 3
65 41 A 81 51 Q a7 61 a
(=15} 42 B 82 52 R o8 62 =]
67 43 c 83 53 s 99 63 c
68 44 D 84 54 T 100 64 d
69 45 E 85 55 u 101 65 a
70 48 F 86 56 W 102 66 1
i | 47 (<] a7 57 w 103 67 a
72 48 H 88 58 X 104 68 h
73 49 1 89 59 ¥ 105 69 i
74 VY J 20 54 Fd 06 6A i
75 4B K o1 58 [107 (1= 13
76 4C L a2 s5C 108 6C |
i 4D A a3 5D 1 109 6D m
78 4E M 24 SE ” 110 BE n
79 4F =] 95 5F 111 B8F o

1.4.3 Number system

The technique to represent and work with numbers is called
number system. Decima number system is the most common number
system. Other popular number systems include binary number system,
octal number system, hexadecima number system, etc.

1. Decimal Number System

It consists of total 10 digits to represent number given as
0,1,2,34,5,6,7,8,9.

Thus the base of the number system is 10. Value of any digit in the

decima number will be decided depending on its position.

For

example take a number 2,345. Here value of 2 is 2000. As its position

isthousand positions. The above number can be expressed as
2*1000+3* 100+4* 10+5* 1=2,345

Thus in above representation the power of 10 increases from 0 to 3
from right to left.

2. Binary Number system:
It consists of only two digits to represent i.e. 0 and 1. So the base of
the number system is 2. Base is aso cdled as radix. The value of

8

each hit is depends on the position of the bit. So position plays role of
power to the base to decide value of bit.

3. Octal Number System:
It consists of 8 digits starting from O up to 7. So base or radix of
number systemis 8.

4. Hexadecimal Number System
It consists of 16 symbols first ten digits starting from O up to 9 and
remaining 6 symbols A,B,CD,E,F. So base or radix of number
systemis 16.

Number System Relationship

HEXADECIMAL DECIMAL OCTAL BINARY
0 0 0 0000
1 1 1 0001
2 2 2 0010
3 3 3 0011
4 4 4 0100
5 5 5 0101
6 6 6 0110
7 7 7 0111
8 8 10 1000
9 9 1 1001
A 10 12 1010
B 11 13 1011
c 12 14 1100
D 13 15 1101
E 14 16 1110
F 15 17 111

1.4.4 Conversion of Number System

Conversions Related to Decimal System
Two types of conversions

1. Conversion from any Radix r to Decimal
Steps to follow
() Note down given number
(b) Write down weights for different positions.

(c) Multiply each digit in given number with corresponding weight to
obtain product numbers.

(d) Add all the product numbers to get the decimal equivalent.

For example (Binary to Decimal)
10100011= (1 x 2"y + (0% 2%) + (1 x 2°) + (0 x 2% + (0 x 2%) + (0 x 29) +
(1x2Y) +(1x2)
=128+0+32+0+0+0+2+1
=163
Therefore, binary number (10100011), = (163)10 decimal number

Similarly for other radix take the power of the respective radix and
obtain the equivalent number

2. Conversion from Decimal to Other System

Number in any other radix can be converted to decimal steps to be
followed is as follows

(a) Divideinteger part of given decima by the base, note the reminder

(b) Continue to divide the quotient by the base (r) until there is nothing
left, keeping track of reminders from each step. (Select the quotient
such that the remainder is always less than the base)

(c) List reminder valuesin reverse order to the equivalent.
For example take the following example

Find Binary equivalent of Decimal number 35

2 == 1 LSD
2 18 o
g z 2 ! x>
-‘5:: 2 4 o E
2 2 o %
2 Fi i
o MsSD
Quotient

MSD - Most significant digit
LSB - Least significant digit

Thus the (35)10= (101001),

In the same steps we can obtain decimal number from any radix. The
divisor will be changed by the radix.

3. Fractional part conversion:
Steps to convert decimal to any other radix
1. Multiply given fractional decimal number by the base
2. Record carry intheresult i.e. integer part
3. Multiply fractional part by radix
4. Repesat step 2 and 3 up to end
5. First carry will be treated as MSD and last will be treated as LSD

10

Following figure shows the example of same

Ex.2.23: Convert 0.95 decimal number to its binary equivalent

Sol.: Fraction Radix Result Recorded Carries

095 x 2 = 19 = 09 witha carry of 1 MSD
09 x 2 = 18 = 0.8 witha carry of 1

0.8 x 2 = 1.6 = 0.6 witha carry of 1

0.6 x 2 = 1.2 = 0.2 withacarry of 1

0.2 x 2 = 04 = 04 witha carry of 0

0.4 x 2 = 08 = 08 withacarry of 0

0.8 x 2 = 1.6 = 0.6 witha carry of 1 LsD

In this case, 0.8 is repeated and if we multiply further, we will get repeated sequence. If
we stop here, we get 7 binary digits, . 1111001. This answer is an approximate answer. To
get more accurate answer we have to continue multiplying by 2 until we have as many
digits as necessary for our application.

In case of mixed part i.e. integer and fraction part number we have
to separate out the integer part and fractional part and carry out the
conversion process mentioned in above procedures. Following figure
shows the example.

Ex. 2.27 : Convert decimal number 35.45 to octal number.

Sol. :
Step1: Separate the integer part and the fraction part.
Integer part : 35, fractional part : 0.45

Step 2: Find equivalent octal number for integer part

4
8)35 R
—-32
03 — LSD Q R
0 8 3 LSD
8) 4 =
=0] 4 4 MSD
4 —_—
0

MSD

. Octal equivalent of integer part = (43),
Step 3: Find equivalent octal number for fractional part

Fraction Radix Result Recorded Carries
0.45 x 8 = 36 = 06 withacarryof 3 MSD
0.6 x 8 = 48 = 08 withacarryof 4
0.8 x 8 = 64 = 04 withacarryof 6
0.4 x 8 = 32 = 02 withacarryof 3
0.2 x 8 =16 = 06 withacarryof 1 LSD

The octal equivalent number is (43.34631);. This number is an approximation of
decimal 35.45, because we have terminated the conversion of fractional part after 5 digits.

1.45 Conversion from Binary to other system

1 Binary to Octal Conversion
Stepsto follow
a. Mark 3-bit from LSB to make Group of 3 bits
b. Convert each group into its equivalent octal number
11

Usethetable

Octd Binary
Number | Equivalent

N[OOI~ WNIFLO
PR RPRPOOOOo
[l allellell JJl o llelle
R O|IFRIOFRr Ok IO

Example: Convert (111011011), into its equivalent octal
Solution : Given number is 111011011
Grouping 111 011 011
Starting from LSB group 1 =011 =3
Group2=011=3
Group 3=111=7
So equivalent no is (733)g

2 BinarytoHex Conversion
Stepsto follow
a Mark 4-bit from LSB to make Group of 4 bits
b. Convert each group into its equivalent hex equivalent.
Example: Convert (111011011), into its equivalent hex.
Solution : Given number =111011011
Grouping = 000111011011 (3 extra zeros added to L SB)
Starting from LSB Group 1 =1011 =B
Group2=1101=D
Group3=0001=1
So equivalent no is (1DB)4

1.4.6 Conversion from other to Binary System

1 Octal toBinary Conversion
Steps to follow
a.Convert each octal digit into its equivalent binary using 3 bit
b.Write the binary equivalent bitsin order to obtain binary no.
For example : Convert (765)s number in equivalent binary
Solution : binary equivalent of 5=101
binary equivalent of 6=110
binary equivaent of 7=111
so binary equivaent will be (111110101),

12

2 Octal toHex Conversion
Steps to follow
a. Convert each hex digit into its equivalent binary using 3-bit
b. Write the binary equivalent bitsin order to obtain binary no.
For example : Convert (732)13 number in equivalent binary
Solution : binary equivalent of 7=111
binary equivalent of 3=011
binary equivalent of 1=001
so binary equivaent will be (111 011 001),

c. Convert the binary to hexadecimal using group of 4
111011001 = 0001 1101 1001
=1D9

1.4.7 Two's Complement Number System
This scheme is most popularly used for number representation.

2's complement of binary number can be obtained by adding 1 to LSB of
1's complement of that number.

S0 2's complement = 1's complement+1

Representation of Positive and Negative Numbersusing 2's
Complement

Positive numbers in 2's complement is same as that of signed number
representation. E.g.(+5) is represented as 0101 in 2's complement form.

Negative numbers are 2's complement of corresponding positive numbers.
E.g. (-6) isrepresented in 2’'s complement form as follows

Number given = -6
Binary equivaent of 6is=0110

Thefigurelists the 4 bit representation of signed number.
13

1.5LET USSUM UP

Thus, we have studied the basic concepts about the structure of
computers and their operation. Machine instructions and programs have
been described briefly. The addition and
Subtraction of binary numbers has been explained.

1.6 LIST OF REFERENCES

» Carl Hamacher et a., Computer Organization and Embedded
Systems, 6 ed., McGraw-Hill 2012

» Patterson and Hennessy, Computer Organization and Design,
Morgan Kaufmann, ARM Edition, 2011

» R P Jain, Modern Digital Electronics, Tata McGraw Hill Education
Pvt. Ltd. , 4th Edition, 2010

1.7UNIT END EXERCISES

1) Write a note on computer number system.
2) Explain basic functional units of computer.

14

2

LOGIC CIRCUITSAND FUNCTIONS

Unit Structure
20 Objectives
2.1 Introduction
2.2 Study of Basic logic gates
2.3 Lawsof Boolean algebra
2.3.1 Simplification using Boolean algebra
2.3.2 Sum of Product (SOP) Form
2.3.2 Product of Sums (POS) Form
2.3.3 Canonical Form (Standard SOP and POS Form)
2.3.4 Minterms
2.3.5 Max terms
24 K-Map
2.4.1 Minimization with Karnaugh Maps and advantages of K-map
2.4.2 Grouping of K-map variables
25 Combinational Circuits
2.5.1 Design Half Adder Circuit
2.5.2 Design Full Adder
2.5.3 Design Full adder using two half adder.
2.5.4 Ripple Carry Adder
2.5.5 Tristate Buffer
2.5.6 Fan In and Fan Out
26 Multiplexer
2.7 De-multiplexer
2.8 Decoder
29 Encoder
210 Sequential Circuit
211 FHipFop
211.1 SR HipFop
2.11.2 Master Slave JK Flip Flop
2.11.3 Delay Flip Flop / D Flip Flop
2.11.4Toggle Flip Flop/ T Hip Flop
212 State Diagrams and State Tables
213 LetusSumup
2.14 List of References
2.15 Unit End Exercises

15

2.00BJECTIVES

In this chapter you will learn about:
» Machineinstructions and program execution
» Addressing methods for accessing register and memory operands

» Assembly language for representing machine instructions, data,
and programs

» Stacks and subroutines

2.1INTRODUCTION

Logic gates are the basic building block of digital electronics. A
gate is an electronic device which is used to compute a function on a two
valued signal.

Combinational circuitsare defined as the time independent
circuits which do not depends upon previous inputs to generate any output
are termed as combinational circuits. Sequential circuits are that which
are dependent on clock cycles and depends on present as well as past
inputs to generate any output.

A multiplexer isacircuit that accepts many input but give only one
output. A demultiplexer function exactly in the reverse of a multiplexer,
that is a demultiplexer accepts only one input and gives many outputs.
Generally multiplexer and demultiplexer are used together, because of the
communication systems are bi directional.

2.2STUDY OF BASIC LOGIC GATES

Logic gates are the basic building blocks of any digital system. It is
an electronic circuit having one or more than one input and only one
output. The relationship between the input and the output is based on
certain logic. Based on this, logic gates are named as AND gate, OR gate,
NOT gate etc. All the gates have graphical symbol, mathematical
equation, truth table which describes the behavior of the each gate.

Classification of logic gates
1. Basic Gates
a) NOT (Inverter) gate

i. Symbol :

A—{>o—v

Here input to gate is one named as A. and one output Y

16

ii. Equation:

Y=A4

So the value at input will be inverted at output as shownin

truth table.

iii. Truthtable:
Input Output
A Y:E
0 1
1 0
b) OR gate
i. Symbol:

B‘

Here A and B aretwo inputsand Y is one output, the output
of the OR gateis HIGH when at least one input is HIGH

ii. Equation:
Y=A+B
iii. Truth table
Input Output
A B Y
0 0 0
0 1 1
1 0 1
1 1 1

The truth table shows that the output of OR gateis high at least one
input is high.

c) AND gate
i. Symbol :

e
Y
5 —
Here A and B aretwo inputsand Y is an output
terminal .Equation:

Y=AB
ii. Truthtable
Input Output

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

The truth table shows that AND gate output will be high only when
both the inputs are high. Otherwise the output islow

2. Universal gates

A universal gate is a gate which can implement any Boolean
function without need to use any other gate type. The NAND and NOR
gates are universal gates. In practice, this is advantageous since NAND
and NOR gates are economical and easier to fabricate and are the basic
gatesused in al IC digital logic families.

1. NAND gate:
i. Symbol :

_}
Y
B

Here A and B aretwo inputsand Y is one output.

ii. Equation :
Y:ﬁ
iii. Truthtable:
Input Output

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

The truth table shows that NAND gate output will be high when at
least one of the inputsislow.

2. NOR gate:
i. Symbol :

Here A and B aretwo inputsand Y is one output.

ii. Equation:
Y:m
iii. Truthtable:
Input Output
A B Y
0 0 1
0 1 0
1 0 0
1 1 0

The truth table shows that output of NOR gate output will behigh
when al the inputs are [ow.

18

3. Exclusivegates:

There are two types of exclusives gates present as stated and
explained below:

a. ExclusveOR (EX-OR)
i. Symbol :

il

Here A and B aretwo inputsand Y is one output.

Equation :
Y=A& B
ii. Truthtable:
Input Output
A B Y
0 0 0
0 1 1
1 0 1
1 1 0

The truth table shows that EX-OR gate output will be high when

odd numbers of inputs are low. When even number of inputs are high then
output is low.

b. Exclusve NOR
i. Symbol :

el

Here A and B aretwo inputsand Y is one output.

ii. Equation :
Y=A&GRE
iii. Truth table:
Input Output

A B Y
0 0 1
0 1 0
1 0 0
1 1 1

The truth table shows that EX-OR gate output will be high when

even numbers of inputs are low. When even number of inputs are high
then output islow.

NOR and NAND as Universal Gate.
NOR is OR gate with inverter
NAND is AND gate with inverter

19

Logic Gates using only NAND Gates

NAND Gate Symbol NOT Gate
" A D)_’é {Inverter)
Q E
B o—
AND Gate Buffes
AR AB AB A |)E}
E O—-

r Exclusive-OR

i A OR Gate Ag | D,—l_ Q

O_E}L s 80[:}’{3]—}
“TDJ} '

B Exclusive-NOR

B

e LD,;;
e iD2S - O

Thus ALL other logic gate functions can be created using only NAND gates makingita

universal logic gate.

Logic Gates using only NOR Gates

NOR Gate Symbol NOT Gate
% A x (Inverter)
Q=4A+B
B
OR Gate i

b -]
=
r

Exclusive-OR
AND Gate N SR

= MAND Gate

AB

Thus ALL other logic gate functions can be created using only NOR gates making it alsoa

universal logic gate.

20

Logic Gates using only NOR Gates

NOR Gate Symbol NOT Gate

A A A (Inverter)
Q=A+B
B

Buffer

A S A+B *w
B

Exclusive-OR

NAND Gate

Exclusive-NOR

A.B

Thus ALL other logic gate functions can be created using only NOR gates making it also a

universal logic gate.

2.3LAWSOF BOOLEAN ALGEBRA

1. The basic Laws of Boolean Algebra can be stated as follows:

1. Commutative Law states that the interchanging of the order of
operands in a Boolean equation does not change its result. For
example:

1. ORoperator > A+B=B+A
2. AND operator - A.B=B.A

2. Associative Law of multiplication states that the AND operation
are done on two or more than two variables. For example:
A.B.C)=(A.B).C

3. Distributive Law states that the multiplication of two variables and
adding the result with a variable will result in the same value as
multiplication of addition of the variable with individual variables.
For example:

A+B.C=(A+B).(A+C).

4. Annulment law:
A.0=0
A+1=1

5. ldentity law:
Al=A
A+0=A

21

6. |dempotent law:

A+A=A
AA=A

7. Complement law:

A+A=1

A.A=0

8. Double negation law:
A=A

9. Absorption law:
A.(A+B) =A
A+AB=A

DeMorgan’'sLaw:

De Morgan's Law is adso known as De Morgan's theorem, works
depending on the concept of Duality. Duality states that interchanging the
operators and variables in afunction, such as replacing O with 1 and 1 with
0, AND operator with OR operator and OR operator with AND operator.

De Morgan stated 2 theorems, which will help us in solving the
algebraic problemsin digital electronics. The De Morgan's statements are:

1. "The negation of a conjunction is the digunction of the negations”,
which means that the complement of the product of 2 variables is
equal to the sum of the complements of individual variables.

For example,
A-B=A+B

2. "The negation of digunction is the conjunction of the negations”,
which means that complement of the sum of two variablesis equal
to the product of the complement of each variable.

For example,
A+B=A-B

o

2

2.3.1 Simplification using Boolean algebra

Let us consider an example of a Boolean function:

AB+A (B+C) + B (B+C)
The logic diagram for the Boolean function AB+A (B+C) + B (B+C) can
be represented as:

A L 4

AB + A (B+C) + (B+C)

B AF:D——n
C ——

R VR Y

22

We will simplify this Boolean function on the basis of rules given
by Boolean algebra.

AB + A (B+C) + B (B+C)

AB + AB + AC + BB + BC {Didtributive law; A (B+C) =

AB+AC, B (B+C) = BB+BC}

AB+AB+AC+B+BC {Idempotent law; BB = B}

AB+AC+B+BC {Idempotent law; AB+AB = AB}
AB + AC+B {Absorption law; B+BC = B}
B+AC {Absorption law; AB+B = B}

Hence, the ssimplified Boolean function will be B + AC.

The logic diagram for Boolean function B + AC can be represented as:

B

B + AC
A

G —

Boolean Function Representation

The use of switching devices like transistors give rise to a specia
case of the Boolean algebra called as switching algebra. In switching
algebra, all the variables assume one of the two values which are 0 and 1.

In Boolean algebra, 0 is used to represent the ‘open’ state or ‘false’
state of logic gate. Similarly, 1 is used to represent the ‘closed’ state or
‘true’ state of logic gate.

A Boolean expression is an expression which consists of variables,
constants (0-false and 1-true) and logical operators which results in true or
fase.

A Boolean function is an agebraic form of Boolean expression. A
Boolean function of n-variables is represented by f(x1, x2, x3....xn). By
using Boolean laws and theorems, we can ssimplify the Boolean functions
of digita circuits. A brief note of different ways of representing a Boolean
function isasfollows.

e Sum-of-Products (SOP) Form
e Product-of-sums (POS) form
e Canonical forms

There are two types of canonical forms:
e Sum-of-min terms or Canonical SOP
¢ Product-of- max terms or Canonical POS

Boolean functions can be represented by using NAND gates and also
by using K-map (Karnaugh map) method. We can standardize the Boolean
expressions by using by two standard forms.

23

SOP form — Sum Of Products form
POS form — Product Of Sums form

Standardization of Boolean equations will make the
implementation, evolution and simplification easier and more systemétic.

2.3.2 Sum of Product (SOP) Form

The sum-of-products (SOP) form is a method (or form) of
simplifying the Boolean expressions of logic gates. In this SOP form of
Boolean function representation, the variables are operated by AND
(product) to form a product term and all these product terms are ORed
(summed or added) together to get the final function.

A sum-of-products form can be formed by adding (or summing)
two or more product terms using a Boolean addition operation. Here the
product terms are defined by using the AND operation and the sum term is
defined by using OR operation.

The sum-of-products form is also called as Digunctive Normal
Form as the product terms are ORed together and Disjunction operation is
logical OR. Sum-of-products form is also called as Standard SOP.

SOP form representation is most suitable to use them in FPGA
(Field Programmable Gate Arrays).

Examples

F(A,B,C,D,E)=AB + ABC + CDE
F(A,B,C,D,E)=(AB) +ABC+CDE

SOP form can be obtained by
e Writing an AND term for each input combination, which produces
HIGH output.

e Writing the input variables if the valueis 1, and write the
complement of the variableif itsvalueisO.

e ORthe AND termsto obtain the output function.

Ex: Boolean expression for majority function F= A’'BC+ AB'C + ABC*
+ ABC

24

Truth table;

ol el el el =1 E=H H=H == -3
—l=lolaol—=]|~|lolo|d
o b= il E=1 i E=1 il B=H I}
—l=l=lol—=lolo|o |

Now write the input variables combination with high output. F= AB + BC
+AC.

Checking

By Idempotence law, we know that

(JABC + ABC)] + ABC) = (ABC + ABC) = ABC

Now the function F=A’BC+ AB'C+ ABC' + ABC
=A'BC+AB'C+ABC' +([ABC + ABC)] + ABC)
=(ABC+ABC*) + (ABC+AB'C) + (ABC + A’BC)
=AB(C+C")+A(B+B)C+(A+A’)BC

=AB +BC+AC.

2.3.2 Product of Sums (POS) Form

The product of sums form is a method (or form) of simplifying the
Boolean expressions of logic gates. In this POS form, all the variables are
ORed, i.e. written as sums to form sum terms.

All these sum terms are ANDed (multiplied) together to get the
product-of-sum form. This form is exactly opposite to the SOP form. So
this can also be said as “Dua of SOP form”.

Here the sum terms are defined by using the OR operation and the
product term is defined by using AND operation. When two or more sum
terms are multiplied by a Boolean OR operation, the resultant output
expression will be in the form of product-of-sums form or POS form.

The product-of-sums form is also called as Conjunctive Normal
Form as the sum terms are ANDed together and Conjunction operation is
logical AND. Product-of-sums form is also called as Standard POS.

Examples
F(A,B,CD,E)=(A+B).(A+B +C).(C+D)
F(AB,CDE=(A+B) .(C+D+E)

25

POS form can be obtained by

e Writing an OR term for each input combination, which produces
LOW output.

o Writing the input variables if the value is 0, and write the
complement of the variableif itsvalueis 1.

e AND the OR terms to obtain the output function.

Ex: Boolean expression for mgjority functionF=(A+B+C)(A+B+C
“Y(A+B +C)(A’+B+C)
A

=l=|lolol~|~|lolo|@d

o =1 1 =1 0 E=0 IS k=1 I
=l=l=|lo|l—~|loclo|lo|HM

=== D)D) D

Now write the input variables combination with high output. F=AB + BC
+ AC.

Checking

By Idempotence law, we know that

[A+B+C)(A+B+C)](A+B+C)=[(A+B+C)](A+B+C)=(A

+B+C)

Now the function

F=(A+B)(B+C)(A+C)

=(A+B+C)(A+B+C")(A+B'+C)(A’+B+C)

=[A+B+C)(A+B+C)](A+B+C)(A+B+C')(A+B +C) (A’

+B+C)

=[A+B+C)(A+B+C')][(A+B+C)(A’+B+C)][(A+B+C) (A
+ B’ + C)]

[A+B)+(C.C)][(B+C)+(A.A)][(A+C)+(B.B")]

[A+B)+0[B+C)+0][(A+C)+0=(A+B)(B+C) (A +C)

2.3.3 Canonical Form (Standard SOP and POS Form)

Any Boolean function that is expressed as a sum of minterms or as
aproduct of max termsis said to bein its“canonical form”.

It mainly involves in two Boolean terms, “minterms’ and
“maxterms’.

When the SOP form of a Boolean expression isin canonica form,
then each of its product term is called * minterm’. So, the canonical form of

26

sum of products function is also known as “minterm canonical form” or
Sum-of-minterms or standard canonical SOP form.

Similarly, when the POS form of a Boolean expression is in
canonical form, then each of its sum term is called ‘max term’. So, the
canonical form of product of sums function is aso known as “maxterm
canonical form or Product-of sum or standard canonical POS form”.

2.3.4Minterms

A min term is defined as the product term of n variables, in which
each of the n variables will appear once either in its complemented or un-
complemented form. The min term is denoted as mi wherei isin the range
of 0<i<2n.

A variable is in complemented form, if its value is assigned to O,
and the variable is un-complimented form, if its value is assigned to 1.

For a2-variable (x and y) Boolean function, the possible minterms are:
X'y, X'y, xy and xy.

For a3-variable (x, y and z) Boolean function, the possible minterms are:
X'y7Z,XyzXxyz,xX'yz,xy'z,xy'z,xyz and xXyz.

e 1 —Minterms= minterms for which the function F = 1.
e 0 —Minterms = minterms for which the function F = 0.

Any Boolean function can be expressed as the sum (OR) of its 1-
min terms. The representation of the equation will be
o F(list of variables) = X(list of 1-min term indices)
ExX:F(X,y,2=2(3,5/6,7)

The inverse of the function can be expressed as a sum (OR) of its
0- min terms. The representation of the equation will be
o F(list of variables) = Z(list of O-min term indices)
Ex:F (x,¥,2) =2 (0,1, 2,4)

Examples of canonical form of sum of products expressions (min term
canonical form):

i) Z=XY +XZ'

) F=XYZ'+X'YZ+X'YZ'+ XY'Z+XYZ

In standard SOP form, the maximum possible product terms for n
number of variables are given by 2». So, for 2 variable equations, the
product terms are 22 = 4. Similarly, for 3 variable equations, the product
terms are 23 = 8.

27

2.3.5Max terms

A max term is defined as the product of n variables, within the
range of 0 <i < 2n The max term is denoted as Mi. In max term, each
variable is complimented, if its value is assigned to 1, and each variable is
un-complimented if its value is assigned to O.

For a2-variable (x and y) Boolean function, the possible max terms are:
X+y,X+y, X +yandx +y.

For a 3-variable (x, y and z) Boolean function, the possible
maxterms are:
X+y+2Z,X+y+Z X+y +z,Xx+y +7Z, X +y+z2,X +y+272,X +y
+zandx +y +7.

¢ 1—Max terms = max terms for which the function F= 1.
¢ 0 —max terms = max terms for which the function F = 0.

Any Boolean function can be expressed the product (AND) of its 0
— max terms. The representation of the equation will be
o F(list of variables) = IT (list of 0-max term indices)
Ex:F(x,y,z)=11(0, 1,2, 4)

The inverse of the function can be expressed as a product (AND)
of its 1 —max terms. The representation of the equation will be
e F(list of variables) = IT (list of 1-max term indices)
Ex:F (x,y,2)=11(3,5,6,7)

Examples of canonical form of product of sums expressions (max
term canonical form):
LZ=(X+Y)(X+Y"
iF=X"+Y+Z)(X'"+Y+2)(X"+Y'+2Z)

In standard POS form, the maximum possible sum terms for n
number of variables are given by 2». So, for 2 variable equations, the sum
termsare 2° = 4.

Similarly, for 3 variable equations, the sum terms are 2° = 8.

Table for 22 min terms and 2% max terms

The below table will make you understand about the representation
of the mean terms and max terms of 3 variables.

28

Variables Min terms Max terms

A B C m M,

0 0] ABC=m0 A+B+C=M20
0 0 1 A'B'C=m1l A+B+C'=M1
0 1 0 A'BC'=m2 A+B' +C=M2
0 1 1 A'BC=m3 A+B' +C'=M3
1 0 0 AB' C=m4 A'+B+C=M14
1 0 1 AB'C=mS?5 A'+-B+C'=MS35
1 1 0 ABC=m6 A'+B'+C=M6
1 1 1 ABC=m7 A'+B' +C'=M7

2.4 K-MAP

Karnaugh Map or K-map is introduced by a telecom engineer,
Maurice Karnaugh at Bell labs in 1953, as a refined technique of ‘ Edward
Veitch’'s Veitch diagram’ and it is a method to simplify or reduce the
complexities of a Boolean expression.

Karnaugh map method or K-map method is the pictoria
representation of the Boolean equations and Boolean manipulations are
used to reduce the complexity in solving them. These can be considered as
aspecia or extended version of the ‘ Truth table'.

Karnaugh map can be explained as “An array containing 2% cellsin
a grid like format, where k is the number of variables in the Boolean
expression that is to be reduced or optimized”. As it is evaluated from the
truth table method, each cell in the K-map will represent a single row of
the truth table and a cell is represented by a square.

The cells in the k-map are arranged in such a way that there are
conjunctions, which differ in a single variable, are assigned in adjacent
rows. The K-map method supports the elimination of potential race
conditions and permits the rapid identification.

By using Karnaugh map technique, we can reduce the Boolean
expression containing any number of variables, such as 2-variable Boolean
expression, 3-variable Boolean expression, 4-variable Boolean expression
and even 7-variable Boolean expressions, which are complex to solve by
using regular Boolean theorems and laws.

2.4.1 Minimization with Karnaugh M aps and advantages of K-map

e K-maps are used to convert the truth table of a Boolean equation
into minimized SOP form.

o Easy and simple basic rules for the simplification.

e The K-map method is faster and more efficient than other
simplification technigques of Boolean algebra.

29

o All rows in the K-map are represented by using a square shaped
cells, in which each square in that will represent a minterm.

e It iseasy to convert a truth table to k-map and k-map to Sum of
Products form equation.

2.4.2 Grouping of K-map variables (SOP case)

e There are some rules to follow while we are grouping the variables
in K-maps. They are

e Thesguarethat contains ‘1’ should be taken in simplifying, at least
once.

e The sguare that contains ‘1’ can be considered as many times as
the grouping is possible with it.

e Group shouldn’t include any zeros (0).
e A group should be the as large as possible.

e Groups can be horizontal or vertical. Grouping of variables in
diagona manner is not allowed.

2- cube j

X
(‘|
>4 l‘\._ i /J
; 4- cube J
i

L

e If the square containing ‘1’ has no possibility to be placed in a
group, then it should be added to the final expression.

e Groups can overlap.

e The number of squares in a group must be equal to powers of 2,
suchasl, 2, 4, 8 etc.

30

e Groups can wrap around. As the K-map is considered as spherical
or folded, the squares at the corners (which are at the end of the
column or row) should be considered as they adjacent squares.

e The grouping of K-map variables can be done in many ways, so
they obtained simplified equation need not to be unique always.

e The Boolean equation must be in must be in canonica form, in
order to draw a K-map.

1 1

2 variable K-maps
There are 4 cells (22)in the 2-variable k-map. It will look like (see
below image)

X b

The possible min terms with 2 variables (A and B) are A.B, A.B’,
A’.B and A’.B’. The conjunctions of the variables (A, B) and (A’, B) are
represented in the cells of the top row and (A, B’) and (A’, B’) in cells of
the bottom row. The following table shows the positions of all the possible
outputs of 2-variable Boolean function on a K-map.

A B Possible Outputs | Location on K-map
0 0 AR 0
0 1 A'B 1
1 0 AR 2
1 1 AB 3

31

A general representation of a2 variable K-map plot is shown below.
B

0 1
A
o 1
0 AB” A'B
1 AB" - AB

When we are simplifying a Boolean equation using Karnaugh map,
we represent the each cell of K-map containing the conjunction term with
1. After that, we group the adjacent cells with possible sizesas 2 or 4. In
case of larger k-maps, we can group the variables in larger sizes like 8 or
16.

The groups of variables should be in rectangular shape, that means
the groups must be formed by combining adjacent cells either vertically or
horizontally. Diagonal shaped or L-shaped groups are not allowed. The
following example demonstrates a K-map simplification of a 2-variable
Boolean equation.

Example

Simplify the given 2-variable Boolean equation by using K-map.
F=XY +X Y +XY’

First, let’s construct the truth table for the given equation,

X ¥ F
0 0 0
0 1 1
1 0 1
1 1 1
We put 1 at the output terms given in equation.
x’ X
¥ 1
Y 6 ‘U

In this K-map, we can create 2 groups by following the rules for
grouping, oneis by combining (X', Y) and (X', Y’) terms and the other is
by combining (X, Y’) and (X, Y") terms. Here the lower right cell is used
in both groups. After grouping the variables, the next step is determining
the minimized expression.

By reducing each group, we obtain a conjunction of the minimized
expression such as by taking out the common terms from two groups, i.e.
X’ and Y. So the reduced equation will be X* +Y".

3variable K-maps

For a 3-variable Boolean function, there is a possibility of 8 output
min terms. The genera representation of al the min terms using 3-
variables is shown below.

32

A B C Output Function Location on K-map
0 0 0 A’B’C’ 0
0 0 1 A'B'C 1
0 1 0 A'BC’ 2
(4] 1 1 A’BC 3
1 0 0 AB'C’ 4
1 0 1 AB’C 5
1 1 0 ABC’ 6
1 1 1 ABC 7

A typical plot of a 3-variable K-map is shown below. It can be
observed that the positions of columns 10 and 11 are interchanged so that
there is only change in one variable across adjacent cells. This
modification will allow in minimizing the logic.

BC
00
A 01 11 10
4] 1 3)
0 ATBC ATBC ATBC ABC
4 5 7 6
1 ABCT ABC ABC ABCT

Up to 8 cells can be grouped in case of a 3-variable K-map with
other possibilities being 1,2 and 4.

Example

Simplify the given 3-variable Boolean equation by using k-map.
F=X'YZ+X Y Z+XYZ +X' Y Z +XYZ+XY' Z
First, let’s construct the truth table for the given equation,

RIRRROOICIOX
RIRQ|OF RIOIOXK

H|O|R|O/R|O[R O|N
O|R|H[B|r|O|R|kr|m

We put 1 at the output terms given in equation.

There are 8 cells (2°) in the 3-variable k-map. It will look like (see
below image).

The largest group size will be 8 but we can aso form the groups of
size 4 and size 2, by possibility. In the 3 variable Karnaugh map, we
consider the left most column of the k-map as the adjacent column of
rightmost column. So the size 4 group is formed as shown below.

). 4 X
- = >
z 1 ‘ [|
z| 1 J |\ 1
I M —
Y Y" Y

33

And in both the terms, we have ‘Y’ in common. So the group of
size 4 is reduced as the conjunction Y. To consume every cell which has 1
init, we group the rest of cellsto form size 2 group, as shown below.
X x'

z 1 q 1

2z 1 1 1

Y ¥ Y
The 2 size group has no common variables, so they are written

with their variables and its conjugates. So the reduced equation will be X

Z'+Y' + X' Z. Inthisequation, no further minimization is possible.

4 variable K-maps

There are 16 possible min terms in case of a 4-variable Boolean
function. The general representation of minterms using 4 variables is
shown below.

Output K-map
A B C D function location
0 0 0 Q A BPYEX D 0
0 0 0 1 ABC'D 1
0 8] 1 0 A'B'CD° 2
0 0 1 1 A'B’CD 3
0 1 0 0 A’BC’D? 4
0 1 0 1 A'BC'D 5
0 1 1 4] A'BCD’ 6
0 1 1 1 A’BCD i
1 0 0 4] ABC PP 8
1 0 0 1 AB' C'D 9
1 0 1 0] AB' CD’ 10
1 0 1 1 AB' CD 11
1 1 0] 0] ABC D’ 12
1 1 0 1 ABC'D 13
1 1 1 a ABCD’ 14
1 1 1 1 ABCD 15

A typical 4-variable K-map plot is shown below. It can be
observed that both the columns and rows of 10 and 11 are interchanged.

cD =
Wi 0o 01 10

0 1 3 !

00| A'B"C'D* | A°B°C°D A'B°CD AR CD

4 3 <) &

0L | aA"BC D ATBC D ATBCD ATBCD”

12 13 15 14

11| ABC D ABC D ABCD ABCD-

5 o 11 10

10| AB CD” AB C'D AB CD AB CD-

The possible number of cells that can be grouped together are 1, 2,
4, 8 and 16.

34

Example

Simplify the given 4-variable Boolean equation by using k-map. F
W, X,Y,2)=(1,5,12,13)
Sol: F(W, X,Y,2Z)=(1,5, 12, 13)

Yz
wix__ 00 01 11 10

By preparing k-map, we can minimize the given Boolean equation as
F=WY' Z+W'Y’' Z

2.5 COMBINATIONAL CIRCUITS

A digital logic circuit is defined as the one in which voltages are
assumed to be having a finite number of distinct value. Types of digital
logic circuits are combinational logic circuits and sequential logic circuits.
These are the basic circuits used in most of the digital electronic devices
like computers, cal culators, mobile phones.

Digita logic circuits are often known as switching circuits,
because in digita circuits the voltage levels are assumed to be switched
from one value to another value instantaneously. These circuits are termed
aslogic circuits, astheir operation obeys a definite set of logic rules.

Classification of logical circuits:
Combinational Circuit :

e Combinational digital logic circuits are basically made up of
digital logic gates like AND gate, OR gate, NOT gate and
universal gates (NAND gate and NOR gate).

e All these gates are combined together to form a complicated
switching circuit. The logic gates are building blocks of
combinational logic circuits. In a combinational logic circuit, the
output at any instant of time depends only on present input at that
particular instant of time and combinationa circuits do not have
any memory devices.

e Encoders and Decoders are examples of combinational circuit. A
decoder converts the binary coded data at its present input into a
number of different output lines. Other examples of combinational
switching circuits are half adder and full adder, encoder, decoder,
multiplexer, de-multiplexer, code converter etc.

35

e Combinational circuits are used in microprocessor and
microcontroller for designing the hardware and software
components of a computer.

Classification of combinational digital logic circuits

Combinational digital logic circuits are classified into three major
parts — arithmetic or logical functions, data transmission and code
converter.

The following chart will elaborate the further classifications of
combinational digital logic circuit.

(Combinational Logic Circuit]

¢ I 3

| Arthmetic & ‘ Data Code

Logical Functions Transmission Converters

l

l

'

Adders Multiplexers Binary
Subtractors Demultiplexers BCD
Comparitors Encoders 7-segment
PLD's Decoders

Application of combinational circuit:
Adder:

An Adder is adevice that can add two binary digits. It is atype of
digital circuit that performs the operation of additions of two numbers.
Itis mainly designed for the addition of binary number, but they can be
used in various other applications like binary code decimal, address
decoding, table index calculation, etc. There are two types of Adder. One
is Half Adder, and another one is known as Full Adder. The detail
explanation of the two types of the adder are as follows

2.5.1 Design Half Adder Circuit

There are two inputs and two outputs in a Half Adder. Inputs are
named as A and B, and the outputs are named as Sum (S) and Carry (C).
Half adder, is designed to add two one bit number with the help of logic
gates. The binary addition as shown below.

0+0=0

0+1=1

1+0=1

1+1=10

36

Here the output “1” of “10” becomes the carry-out. SUM is the
normal output and the CARRY isthe carry-out.

Block diagram of half adder
i Sum
Half Adder
B Carry
I nputs Outputs

RRlolo >
R OO (0
olr|lkrlo |n
RlOoolo |O

From above truth table we know that we have two k-maps one for
Sum and other for Carry

1. K-Map for Sumisas shown below

A\B o 1

o o 1
1 (8]
1
S=A'B+AB’

Circuit diagram for this output is EX-OR gate as shown below

D

2 Input EX-OR

2. K-Map for Carry is as shown below

2™ i =] (8] 1
(8] o

O

1 o u

From kmap we get the output as
C=A.B Thelogic diagram for the sameis

37

A
} CARRY
B

2 Input AND

If A and B are binary inputs to the half adder, then the logic
function to calculate sum Sis Ex — OR of A and B and logic function to
calculate carry C is AND of A and B. Combining these two, the logical
circuit to implement the combinational circuit of Half Adder is shown

below.
A o—q
Sum
B e—

XOR

uz

AND

Half Adder Logic Diagram

Limitation of Half Adder-

o Half adders have no scope of adding the carry bit resulting from the
addition of previous bits.Thisis amaor drawback of half adders.

e Thisisbecausereal time scenarios involve adding the multiple number
of bits which can not be accomplished using half adders.

2.5.2 Design Full Adder

Full Adder-

o Full Adder isacombinational logic circuit.

e It is used for the purpose of adding two single bit numbers with a
carry.

e Thus, full adder has the ability to perform the addition of three bits.

o Full adder contains 3 inputs and 2 outputs (sum and carry) as shown

Step 1: Identify the input and output variables-
o Input varigbles=A, B, Ci,(either O or 1)
e Output variables =S, Coyt (Where S = Sum and Co: = Carry out)

Step 2 : Truth table for the full adder:

I nputs Outputs
A B Cin S C
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0

1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Step-03:

Draw K-maps using the above truth table and determine the
simplified Boolean expr essions-

For S:

s=AcBPC,

For C;.*

| [|
1 1 1
i - !

Cout = AB + BC;, + C;,A

Step-04: Draw thelogic diagram.

The implementation of full adder using 1 XOR gate, 3 AND gatesand 1
OR gateisasgiven

T T =
T A
T 1T
T

Full Adder Logic Diagram

2.5.3 Design Full adder using two half adder.

The full adder can be constructed using two half adder. As shown
in the figure below.

39

C.QY'ﬂd

Figureb: Circuit diagram of full adder using two half adder

The proof of how the two half adder is working as full adder for output
sum and carry.
Sum

L& EBESB®C

Carry =AB + (L ® B). C
BB+ (A. B+ A. B). C
AB + A. BC + A. B
B (R+A.C) +A. B. C
+
B

td
]

B [(a+ B) (2
BB + AC + A. B.
BB + C (B + A. B)

AB + C [(B+ 2) (B + B)]
BB + BC + AC

254 RippleCarry Adder

e Ripple Carry Adder isacombinational logic circuit.

e Itisused for the purpose of adding two n-bit binary numbers.

e It requires n full adders in its circuit for adding two n-bit binary
numbers.

e Itisalso known asn-bit parallel adder.

4-bit Ripple Carry Adder -

4-hit ripple carry adder is used for the purpose of adding two 4-bit
binary numbers.

In Mathematics, any two 4-bit binary numbers AzAA1Aq and

B3B2B1By are added as shown below-

40

olololeole

+

Adding two 4-bit Numbers

Using ripple carry adder, this addition is carried out as shown by the
following logic diagram-

A A A A A A

C3 | Full Adder | S2_| Full Adder | C1 | Full Adder [0 | Full Adder [Cin

‘ D) c) B) A
S3 S2 S1 So

4-hit Ripple Carry Adder

As shown-
e Ripple Carry Adder worksin different stages.

o Each full adder takesthe carry-in asinput and produces carry-out and
sum bit as output.

e Thecarry-out produced by afull adder serves as carry-in for its
adjacent most significant full adder.

e When carry-in becomes available to the full adder, it activates the full
adder.

o After full adder becomes activated, it comes into operation.

Working Of 4-bit Ripple Carry Adder-

Let-
e Thetwo 4-bit numbers are 0101 (A3A2A1A,) and 1010 (B3B2B1By).
e These numbers are to be added using a 4-bit ripple carry adder.

4-bit Ripple Carry Adder carries out the addition as explained in the
following stages-

41

Stage-01:
e When Cj, isfed asinput to the full Adder A, it activates the full
adder A.
e Thenatfull adder A, Aoc=1,Bp=0, Cjr=0.
Full adder A computes the sum bit and carry bit as-

Calculation of SO—
S0=A0¢ B0 Cin
SO=120e0
V=1

Calculation of CO—
CO0=A0BO@ BOCin® CinAO
C0=1090.020.1
C0=090090
Cco=0

Stage-02:

e When Cyisfed asinput to the full adder B, it activates the full
adder B.
e Thenatfull adder B,A1=0,B1=1,Cy=0.

Full adder B computes the sum bit and carry bit as-

Cadlculation of S1—
S1=Ale Ble CO
S1=0@1e0
Si=1

Cadculation of C1—
Cl=A1Bl1le B1COe COAl
Cl1=0.1#21.020.0
Cl=0e090

Ci=0

Stage-03:
e When C; isfed asinput to the full adder C, it activates the full
adder C.
e Thenatfull adder C,A>2=1,B,=0,C;=0.

Full adder C computes the sum bit and carry bit as-

Calculation of S2—
S2=A29e B2eC1
S2=1e0e0
2=1

42

Calculation of C2—
C2=A2B2% B2Cle ClA2
C2=10#0.090.1
C2=0e090

C2=0

Stage-04:
e« When C,isfed asinput to the full adder D, it activates the full
adder D.
e Thenatfull adder D, A3=0,B3=1,C,=0.

Full adder D computes the sum bit and carry bit as-

Calculation of Sz—
S3=A3e B3eC2
S3=0@1e0
S3=1

Calculation of C3—
C3=A3B3@ B3C2® C2A3
C3=0191.020.0
C3=09090

C3=0

Thusfinaly,
e Output Sum = 555 = 1111
e Output Carry =C3=0

Disadvantages of Ripple Carry Adder -

e Ripple Carry Adder does not allow to use all the full adders
simultaneously.

o Each full adder has to necessarily wait until the carry bit becomes
available from its adjacent full adder.

e Thisincreases the propagation time.
e Dueto thisreason, ripple carry adder becomes extremely slow.

e Thisisconsidered to be the biggest disadvantage of using ripple carry
adder.

255 Tristate Buffer

Introduction

Before we talk about tri-state buffers, let’s talk about an inverter.
You can read about inverters in the notes about Logic Gates. However,
we'll repesat it here for completeness. An inverter is called a NOT gate,
and it looks like:

43

*

bubble means ""Tnot™"

x—|>céz=\x

The inverter is a triangle, followed by a circle/bubble. That circle
sometimes appears by itself, and means negation. What if we remove the
circle? What kind of gate would we have? We' d have a buffer

there’s no bubble

x—l}'/z=x

You might think that a buffer is useless. After dl, the output is
exactly the same as the input. What’s the point of such a gate? The answer
is a practical issue from rea circuits. As you may know, logic gates
process 0's and 1's. O's andl’'s are redly electric current at certain
voltages. If there isn't enough current, it's hard to measure the voltage.
The current can decrease if the fan out islarge. Here's an example:

D1

D2

D3

D4

The"fan out” isthe number of devices that an output is attached to.
Thus, the AND gate above is attached to the inputs of four other devices.
It has a fan out of 4.1f the current coming out of the AND gate is i, then
assuming each of the four devices gets equal current, then each device gets
i / 4 of the current. However, if we put in a buffer:

D1

D2

D3

D4

Then the current can be "boosted" back to the origina strength.
Thus, a buffer (like al logic gates) is an active device. It requires
additional inputs to power the gate, and provide it voltage and current.
You might wonder "Do | really need to know this? Isn’t this just EE
stuff?" That's true, it is. The point of the discussion was to motivate the
existence of aplain buffer. Tri-state buffer: It's a Valve A buffer’s output
is defined as

44

z = X. Thus, if the input, x is 0, the output, z is 0. If the input, X is
1, the output, z is 1. It's a common misconception to think that O is
nothing, while 1 is something. In both cases, they’re something. If you
read the discussion in What's a Wire, you'll see that a wire either
transmits a 0, a 1, or "Z", which is really what’s nothing. It's useful to
think of awire as apipe and 0 as "red kool aid" and 1 as "green kool aid"
and "Z" as"no kool aid". A tri-state buffer is a useful device that allows us
to control when current passes through the device, and when it doesn’t.
Here are two diagrams of the tri-state buffer.

c C

X Z X z

tri-state buffer with tri-state buffer with
active high control active low control

A tri-state buffer has two inputs: a data input x and a control input
c. The control input acts like a valve. When the control input is active, the
output is the input. That is, it behaves just like a norma buffer. The
"valve" is open. When the control input is not active, the output is "Z".
The "valve" is open, and no electrica current flows through. Thus, even if
x is 0 or 1, that value does not flow through. Here's a truth table
describing the behavior of a active-high tri-state buffer.

c x z
1] 1] Zz
0 1 z
1 0 0
1 1 1

In this case, when the output is Z, that means it’s high impedance,
neither O, nor 1, i.e, no current. As usua, the condensed truth table is
more enlightening.

C A
0 z
1 x

Asyou can see, when ¢ = 1 the valve is open, and z = x. When ¢ =
0 the valveis closed, and z = Z (e.g., high impedance/no current).Active-
low tri-state buffers Some tri-state buffers are active low. In an active-low

45

tri-state buffer, ¢ = 0 turns open the valve, while ¢ = 1turns it off. Here's
the condensed truth table for an active-low tri-state buffer.

c z
0 x
1 A

As you can see, when ¢ = 0 the valve is open, and z = x. When ¢ =
1 thevaveis closed, and z = Z (e.g., high impedance/no current). Thus, it
has the opposite behavior of atri-state buffer.

Why Tri-State Buffers?

We've had a long discussion about what a tri-state buffer is, but
not about what such a device is good for.A common way for many devices
to communicate with one another is on a bus, andthat a bus should only
have one device writing to it, although it can have many devices reading
from it. Since many devices always produce output (such as registers) and
these devices are hooked to a bus, we need away to control what gets on
the bus, and what doesn’'t. A tri state buffer is good for that. Here's an
example:

Bus
g
Ly 32
32 32 |
s
=
32 32
p
<2
32 32
pd

2.5.6 Fan In and Fan Out

Fan In and Fan Out are the characteristics of digital IC. Digital
IC s are complete functional network.

Fanin:

The term fan in is defined as maximum number of inputs that a
logic gate can accept. If number of input exceeds, the output will be
undefined or incorrect. It is specified by manufacturer and is provided in
the data sheet. e.g. for 2 input OR gate fanin =2

Fan-out:

The fan out term is defined as the maximum number of inputs
(load) that can be connected to the output of a gate without degrading the
normal operation. Fan Out is caculated from the amount of current
available in the output of a gate and the amount of current needed in each
input of the connecting gate. It is specified maximum load may cause a
malfunction because the circuit will not be able to supply the demand
power.

46

For Eg :If output of an X-OR gate is connected to 3 other external
gate without degrading output performance of the IC then Fan Out =3,

26 MULTIPLEXER

Multiplexer means many to one. A multiplexer (MUX) is a
combinational circuit which is often used when the information from
many sources must be transmitted over long distances and it is less
expensive to multiplex data onto asingle wire for transmission.

Multiplexer can be considered as multi-position or rotary switch as
shown infig. 1. There are n — inputs and one output. The switch position is
controlled by the selector lines. The select inputs decide which input is
connected to the output.

Select Inputs

i igﬂ@:mmi

——— - -
¢
data INPULS e ————— e — [
|1
mm_é—-———_-. | output
?
el . o e e -
| MUX

Figurel: Multiplexer as multi-position or rotary switch

The basic operation of multiplexer is controlled by a selector lines
that routes one of many input signals to the output. Fig.1 shows the logic
symbol of general symbol of multiplexer.

m-control f data select lines

i

¥ i

n g 1 output
input - A 0 O INVILIU A e
lines H

Multiplexer are aso called as DATA Selector or router because it
accepts several data inputs and alows only one of them to get through to
the output a a time. The basic multiplexer has n input lines and single
output line. It also has m — select or control lines. The relation between
number of select lines and number of data inputs are

2™=n

47

As multiplexer selects one out of many, it is often called as 2" to 1
line converter.

Types of Multiplexer

S

o S S

(=]

<
O O U ©
N &)

D
1

Figure-3(a) : Logic symbolsof 2to 1 and 4 to 1 multiplexers
S S S S

Figure-3(b) : Logic symbolsof 8to 1 and 16 to 1 multiplexers

Similarly we can extend the ideato 8 to 1 multiplexer and 16 to 1
multiplexer as shown in Fig. 3(b). For example 8 to 1 multiplexer with 8
inputs namely DO, D1,... D7, 3 select line S2, S1, So are the select line
and Y asthe single output. Similarly, the 16 to 1 multiplexer has 16 inputs
DO, D1, ... D15, 4 select input S3,S2, S1 and SO and Y as the output.

2.7 DE-MULTIPLEXER

De-multiplexer has a single input and n output lines. De-
multiplexer can be visualized as reverse multi-position switch. The select
lines permit input data from single line to be switched to any one of the
many output lines as shown in fig.

Select Inputs

- ——— m——
1 data]
Input ——ipn - e = ey h output

Fig: Multi-position switch as De-multiplexer

48

Thus the de-multiplexer takes one data input source and selectively
distributes it to 1 of N output channels just like multi-position switch. It
also has ‘m’ select lines for selecting the desired output for the input data
as shown in fig. The mathematical relation between select lines and ‘n’
output are:

2"=n

m-control / data select lines

1|

1-input s
e N Output

i

Figure: Logic symbol of basic de-multiplexer

As a de-multiplexer takes data from one input line and distributes
over a 2m output ling, hence it is often referred to as 1 to 2" line
converter. There are four basic types de-multiplexers. 1 to
2demultiplexer, 1 to 4 de-multiplexer, 1 to 8 de-multiplexer and 1 to 16
de-multiplexer as shown in fig. . Number of select lines decides this
classification.

INPUL e

Input

o Yig

Fig: Typesof Demux

2.8 DECODER

In digital electronics, a decoder can take the form of a multiple-
input, multiple-output logic circuit that converts coded inputs into coded
outputs, where the input and output codes are different e.g. n-to-2" ,
binary-coded decimal decoders. Decoding is necessary in applications
such as data multiplexing, 7 segment display and memory address

49

decoding. The example decoder circuit would be an AND gate because the
output of an AND gate is "High" (1) only when al its inputs are "High."
Such output is called as "active High output”. If instead of AND gate, the
NAND gate is connected the output will be "Low" (0) only when all its
inputs are "High". Such output is called as "active low output”. A dlightly
more complex decoder would be the n-to-2n type binary decoders. These
types of decoders are combinational circuits that convert binary
information from 'n' coded inputs to a maximum of 2" unique outputs. In
case the 'n" bit coded information has unused bit combinations, the decoder
may have less than 2" outputs. 2-to-4 decoder, 3-to-8 decoder or 4-to-16
decoder are other examples. The input to a decoder is parallel binary
number and it is used to detect the presence of a particular binary number
at the input. The output indicates presence or absence of specific number
at the decoder input.

Let us suppose that a logic network has 2 inputs S1 and SO. They
will giveriseto 4 states S1, S1', SO, SO'. The truth table for this decoder is
shown below:

=1 | =So E oo 1 o= Oz
[a] [a]]] (=]
[oy 1 1 L] o L]
5] 1 1 (=] 1] (=]
1 [=] 1 [w] (W] 1 [a]
1 1 1 (=] o] 1

Table 1: Truth Table of 2:4 decoder

} r:.-l I:‘
T D—t:) ¢

=1 E FO

Fig 1: Logic Diagram of 2:4 decodear

2-4 i

[E— S'I DEC 1 3 .01

_1-02

E 3 F———> 03
l

Fig 2: Representation of 2:4 decoder

50

For any input combination only one of the outputs is low and all
others are high. The low value at the output represents the state of the
input.

Decoder expansion

We can combine two or more small decoders with enable inputs to
form alarger decoder e.g. 3-to-8-line decoder constructed from two 2-to-
4-line decoders. Decoder with enable input can function as de-multiplexer.

2.9 DECODER

It uses all AND gates, and therefore, the outputs are active- high.
For active- low outputs, NAND gates are used. It has 3 input lines and 8
output lines. It is aso called as binary to octal decoder it takes a 3-bit
binary input code and activates one of the 8(octal) outputs corresponding
to that code. The truth tableis as follows:

X2 | Xl | Xe|Z7 | Ze | &5 | Ea | &3 | L2 Z1 | Lo

] o]] 0 0 0 0 0 0 1

o] o 1] Q0 0 8]] 0 1]

et
{5
ok
{4
o
[
o
L4
o
(]
o

[
ok
[
ok
[
o
Q
o
&
o
L]

Table 2: Truth Table of 3:8 decoder

Z&

=7

o
Bz,
S) S
=)—
D,

Fig 2: Logic Diagram of 2:8 decoder

51

2.10 ENCODER

An encoder is a device, circuit, transducer, software program,
algorithm or person that converts information from one format or code to
another. The purpose of encoder is standardization, speed, secrecy,
security, or saving space by shrinking size. Encoders are combinational
logic circuits and they are exactly opposite of decoders. They accept one
or more inputs and generate a multi bit output code.

Encoders perform exactly reverse operation than decoder. An
encoder has M input and N output lines. Out of M input lines only one is
activated at a time and produces equivalent code on output N lines. If a
device output code has fewer bits than the input code has, the device is
usually called an encoder.

Octal to binary encoder

Octal-to-Binary take 8 inputs and provides 3 outputs, thus doing
the opposite of what the 3-t0-8 decoder does. At any one time, only one
input line has a value of 1. The figure below shows the truth table of an
Octal-to-binary encoder.

I0 | 11 | 12| I3 | 14 | I5 | 16| OI7 | W2 | W1 | %o
| 0 0 0 0 0 0 0 8] 8] 0
0 1 0 0 0 2] 0 0 0 0 1
0 4] 1 0 0 4] 0 0 0 1 0
0 4] 0 1 0 8] 0 £ 0 1 1
0 8] 0 0 1 4] 0 B] 1 §] 8]
0 4] 0 0 4] 1 0 8] 1 0 1
0 8] 0 0 4] 8] 1 8] 1 1 8]
0 0 0 0 0 0 0 1 1 1 1

Table 3: Truth Table of aoctal to binary encoder
o

I1 L % T2
1
I= _I
I=
) -D_Yl

I

Is -~ L 1 Fae
" " ! |

I

Fig 4: Logic Dnagram of octal to binary encoder

52

2.11 SEQUENTIAL CIRCUIT

Sequential circuit

A Sequentia digital logic circuit is different from combinational
logic circuits. In sequentia circuit the output of the logic device is not
only dependent on the present inputs to the device, but aso on past inputs.
In other words output of a sequential logic circuit depends on present input
as well as present state of the circuit. So the sequentia circuits have
memory devicesin order to store the past outputs. In fact sequential digital
logic circuits are nothing but combinational circuit with memory. These
types of digital logic circuits are designed using finite state machine.

Block diagram of sequential circuit
S

| Combinational ‘
Inputs —— 1 Segesrnend Output
logic circuit |

3

' Memory
element

— '

Clock

212 FLIP FLOP

Flip flop is a sequential circuit which generally samples its inputs
and changes its outputs only at particular instants of time and not
continuously. Flip flop is said to be edge sensitive or edge triggered rather
than being level triggered like latches.

2.12.1 SR Flip Flop

It is basically S-R latch using NAND gates with an additiona
enable input. It is aso caled as level triggered SR-FF. For this, circuit in
output will take place if and only if the enable input (E) is made active. In
short this circuit will operate as an S-R latch if E = 1 but there is no
change in the output if E = 0.

53

Block Diagram

Inputs CLK. —™ Outputs
S E L .
Circuit Diagram
5
{5et)
E Outputs
(Enable)
= '
{Reset) -
Truth Table
Inputs Outputs
— Comments
E 5 R Qe | Qe
1 0 0 Q. Q. No change
¢ 0 1 0 1 Rset
1 1 a 1 0} Set
1 1 1 X X Indeterminate
Operation
S.N. Condition Operation
1 S=R=0: Nochange

$=0,R=1,E=1

$5=1,R=0,E=1

If 5 = R = 0 then output of NAND gates 3 and 4 are forced to
become 1.

Hence R’ and 5’ both will be equal to 1. Since 5" and R’ are
the input of the basic 5-R latch using NAND gates, there will
be no change in the state of outputs.

Since 5 =0, output of NAND-3 ie R' =1 and E = 1 the output
of NAND-4i.e. S'=0.

Hence Qp+¢ = 0 and Qg+4 bar = 1. This is reset condition.

Output of NAND-3 i.e. R' = 0 and output of NAND-4 ie. 5" =1.

Hence output of S-R NAND latch is Qn+q = 1 and Qp+q bar=0.
This is the reset condition.

As5=1 R=1andE =1, the output of NAND gates 3 and 4
bothareDie 5=R' =0.

Hence the Race condition will occur in the basic NAND latch

2.12.2 Master Slave JK Flip Flop

Master slave JK FF is a cascade of two SR FF with feedback
from the output of second to input of first. Master is a positive level
triggered. But due to the presence of the inverter in the clock line, the
slave will respond to the negative level. Hence when the clock = 1
(positive level) the master is active and the dlave is inactive. Whereas

when clock = 0 (low level
Truth Table

) the lave is active and master isinactive.

Inputs Outputs
Comments
Ea o] K | Q| Qs
1 0 0 Q. | O No change
1 8] 1 8] 1 Rset
1 i (4] i o Set
3 | A 1| a3 | @ | Toggle

Circuit Diagram

L
N

Outputs

Operation

ISN.| Condition |

Operation

J=K=0(No
change)

When clock = 0, the slave becomes active and
master isinactive. But sincethe Sand R inputs
have not changed, the slave outputs will aso
remain unchanged. Therefore outputs will not
changeif J=K =0.

J=0and K =1
(Reset)

Clock = 1 — Master active, slaveinactive.
Therefore outputs of the master become Q; =0
and Q, bar = 1. That meansS=0and R =1.
Clock = 0 — Slave active, master inactive.
Therefore outputs of the dave become Q = 0 and
Qbar=1.

Again clock = 1 — Master active, slave inactive.
Therefore even with the changed outputs Q = 0
and Q bar = 1 fed back to master, its output will
beQl=0and Q1 bar = 1. That means S= 0 and

55

R=1.
Hence with clock = 0 and slave becoming active
the outputs of slave will remain Q =0 and Q bar
= 1. Thus we get a stable output from the Master
save.

(Set)

J=1landK =0

Clock = 1 — Master active, slave inactive.
Therefore outputs of the master become Q; =1
and Q, bar = 0. That means S=1 and R =0.
Clock = 0 — Slave active, master inactive.
Therefore outputs of the dave become Q = 1 and
Qbar =0.

Again clock = 1 — then it can be shown that the
outputs of the slave are stabilizedto Q=1 and Q
bar = 0.

4 |J=K =1(Toggle)

Clock = 1 — Master active, slave inactive.
Outputs of master will toggle. So Sand R also
will be inverted.

Clock = 0 — Slave active, master inactive.
Outputs of slave will toggle.

These changed output are returned back to the
master inputs. But since clock = 0, the master is
till inactive. So it does not respond to these
changed outputs. This avoids the multiple
toggling which leads to the race around
condition. The master slave flip flop will avoid
the race around condition.

2.12.3 Delay Flip Flop / D Flip Flop

Delay Flip Flop or D Hip Hop is the simple gated S-R latch with a
NAND inverter connected between S and R inputs. It has only one input.
The input data is appearing at the output after some time. Due to this data
delay between i/p and o/p, it is called delay flip flop. S and R will be the
complements of each other due to NAND inverter. HenceS=R=0o0r S=
R =1, these input condition will never appear. This problem is avoided by
SR =00 and SR = 1 conditions.

Inputs

CLK

Block Diagram

Cutputs

56

Circuit Diagram

S
D
./
] = Qutputs
R
Truth Table
Inputs Outputs
= Comments
E D Qs | Qe
1 0 4] I Rset
1 1 1 |0 Set
Operation
ISN.| Condition || Operation
1 |E=0 |Latch is disabled. Hence no change in outpui.
E=1andD IfE=1and D=0thenS=0and R =1. Hence
2 |C 6 irrespective of the present state, the next state is Qs
B = 0 and Q.+ bar = 1. Thisisthe reset condition.
IfE=1landD=1,thenS=1and R =0. Thiswill set
3 E =1and D (thelatch and Qn+1 = 1 and Qn+1 bar = O irrespective of
=1 the present state.

2.12.4ToggleFlip Flop / T Flip Flop

Toggle flip flop is basically a XK flip flop with J and K terminals
permanently connected together. It has only input denoted by T as shown
in the Symbol Diagram. The symbol for positive edge triggered T flip flop
is shown in the Block Diagram.

Symbol Diagram

Inputs Outputs
CLK I —

57

Block Diagram

Inputs =< CLK *E Outputs
K Qa——
Truth Table
Inputs Outputs
Comments
E | T | @G| Qs
1 0 Q | q No change
1 1 Q- | @ | Toggle
Operation
ISN.| Condition || Operation |
1 Ig 0,J=K The output Q and Q bar won't change
> T =1,J =K |Output will toggle corresponding to every leading
=1 edge of clock signal.

2.13 STATE DIAGRAMSAND STATE TABLES

State table:

State diagrams are used to give an abstract description of the
behavior of a system. This behavior is analyzed and represented by a
series of events that can occur in one or more possible states. Hereby
"each diagram usualy represents objects of a single class and tracks the
different states of its objects through the system.

Fundamental to the synthesis of sequential circuits is the concept
of interna states. At the start of a design the total number of states
required is determined. This is achieved by drawing a state diagram,
which shows the internal states and the transitions between them.

State diagram representation:

All states are stable (steady) and transitions from one state to
another are caused by input (or clock) pulses. Each internal state is
represented in the state diagram by a circle containing an arbitrary number
or letter ; transitions are shown by arrows labeled with the particular input
causing the change of state. In the case of pulse outputs the transition
arrows are also labeled with the output associated with the input pulse.
Thiswill be made clear by examples given below.

As asimple example, consider a basic counter circuit that is driven
by clock pulses (x) and counts in the following decimal sequence:
0,1,2,3,0,1,2,3,0,1,2, etc.

58

It follows that there are four unique states yielding the following
state diagram:

Input clock pulse
o/p=0 X o/p=1
© e
X X
4 3
o/p=3 X o/p=2

The corresponding state table is derived directly from the above:

Present | Next o/p
State | State (afier application of clock pulse)| Z,Z,
@ 2 00
@) 3 01
©) 4 10
@ 1 11

It follows that since there are 4 unique states then two flip-flops are
required in the design. Each flip-flop output can take on the value O or 1,
giving four possible combinations. It should be pointed out at the outset
that once the state diagram and corresponding state table are derived from
the given gpecification, the design procedure that follows is relatively
straightforward.

State Diagrams and State Table Examples
Example

In acircuit having input pulses x; and X, the output z is said to be a
pulse occurring with the first x, pulse immediately following an x; pulse.

il
£

State Table: Alternatively:
Present | Next State Present | Next State
State | x; X3 State X1 X2
2/0 1/0 2 1
200 1/ 2 1.Z

59

Example state table and state diagram for SR flip flop

Name/ Characteristic State Diagram/ Excitation Table
Symbol (Truth) Table Characteristic Equations
§R=10
SR Q Ohet § R
SR Q Qne.\'r SR=000r 01 0 0 0 X
000 0 001 10
T frves | L 0 01
=pik 010 0 S L
=R 0 011 0 §R=01
100 1
101 1
110 X Coe =0+
111 SR =
Name / Characteristic State Diagram / Excitation Table
Svmmbol (Truth) Table Characteristic Equations
SR g O Onext S R
S R QO QOnex SR=00 or 01 0 0 0 x
000 0 0 1 10
—5 o
0.8 1 1 1 0 0 1
—p ik 010 0 SR=00 or 10 1 1 % 0
—R o101 1 0 SR=01
100 1
i 0 | 1
1 1 * Oner =S+R'Q
111 = o =0
JK ette O Onet J K
J K O Onex TE=00 or 01 0 0 0 x
o o 000 0 0 1 1 x
04 : 1 0 ® 1
—petr 010 0 TK=00 or 10 1 I x 0
-1 ¢eFj0o1 1 0 JK=01 or 11
100 1 s o ,
101 1 Opee =JK'Q +JK" + JKQ
110 1 =JK'O+JK'Q+JK'Q +JKQ'
111 0 =K'QU'+J) + JQ'(K'+K)
=K'Q+JQ"
D oal O Onex D
=0 0 0 0
—p o | D_O Onext ‘ 0 1 1
=1 0 x 0 1 0 0
b Clk . e D=1 q 1 1
i D=0
Oney =D
T=
T ¥ : O Onex T
I Q Onext J 0 0 0
dr o]0 0 o ‘ 0o 1 1
| 0 1 1 1 0 1
& Clk i 0] T=0 1 1 0
o' 1 1 0 T=1
Coe; =TO'+TO=TBQ

60

214 LET USSUM UP

Thus, we have studied basic concepts of logic gates, truth table and
logic circuits functions and categories of combinational circuit and
Sequentia circuit, K-map and minimization of k-map. Also you learned
what is multiplexer and demultiplexer as well.

2.15L1ST OF REFERENCES

» Cal Hamacher et al., Computer Organization and Embedded
Systems, 6 ed., McGraw-Hill 2012

» Patterson and Hennessy, Computer Organization and Design,
Morgan Kaufmann, ARM Edition, 2011

» R P Jain, Modern Digital Electronics, Tata McGraw Hill Education
Pvt. Ltd. , 4th Edition, 2010

2.16 UNIT END EXERCISES

1) Explain the concept of universal gate.

2) Design and explain full adder circuit

3) Compare multiplexer and De-multiplexer

4) Draw the circuit for half-adder using k-map reduction technique.
5) Explain tristate buffer.

61

3

INSTRUCTION SET ARCHITECTURES

Unit Structure

3.0 Objectives
3.1 Introduction
3.2 Memory Locations and Addresses
3.2.1 Byte Addressability
3.2.2 Big-Endian and Little-Endian Assignments
3.2.3 Word Alignment
3.3 Memory Operations
3.4 Instructions and Instruction Sequencing
3.4.1 Register Transfer Notation
3.4.2 Assembly-Language Notation
3.4.3 RISC and CISC Instruction Sets
3.4.4 Introduction to RISC Instruction Sets
3.4.5 Instruction Execution and Straight-Line Sequencing
3.4.6 Branching
3.4.7 Generating Memory Addresses
3.5 Addressing Modes
3.5.1 Implementation of Variables and Constants
3.5.2 Indirection and Pointers
3.5.3 Indexing and Arrays
3.6 Assembly Language
3.6.1 Assembler Directives
3.7 Stacks
3.8 Subroutines
3.8.1 Subroutine Nesting and the Processor Stack
3.8.2 Parameter Passing
3.8.3 The Stack Frame
3.9 Types of machine instruction
3.9.1 Logica Instruction
3.9.2 Shift and Rotate
3.9.3 Multiplication and Division
3.10 CISC Instruction Set
3.10.1 Additional Addressing Modes
3.10.2 Relative Mode
3.11 CISC and RISC Styles

62

3.12 Let us Sum up
3.13 List of References
3.14 Unit End Exercises

3.00BJECTIVES

In this chapter you will learn about:
» Machineinstructions and program execution
» Addressing methods for accessing register and memory operands
» Assembly language for representing machine instructions, data,
and programs
» Stacks and subroutines

3.1 INTRODUCTION

Programs and the data that processor operate are held in the main
memory of the computer during execution, and the data with high storage
requirement is stored in the secondary memories such as floppy disk, etc.
In this chapter, we discuss how thisvita part of the computer operates.

The dominant architecture in the PC market, was the Intel 1A-32,
belongs to the complex instruction set computing (CISC) design. The
CISC instruction set architecture is too complex in nature and developers
develop it very complex so to use with higher level languages which
supports complex data structures

For variety of reasons, in the early 1980’ s designers started looking
at simple Instruction set architectures, as these 1SAs tend to produce
instruction sets with less number of instructions known as Reduced
Instruction Set Computer(RISC)

3.2MEMORY LOCATIONS AND ADDRESSES

The memory consists of many millions of storage cells, each of
which can store a bit of information having the value O or 1. Because a
single hit represents a very small amount of information, bits are seldom
handled individually. The usual approach is to deal with them in groups of
fixed size. For this purpose, the memory is organized so that a group of n
bits can be stored or retrieved in asingle, basic operation. Each group of n
bitsis referred to asaword of information, and n is called the word length.
The memory of a computer can be schematically represented as a
collection of words, as shown in Figure 3.1.

63

| #—————— nhils ————————=|

— s= First word

——= Spcond weord

— jth wosd

— = Last word

Fig 3.1 Memory words

Modern computers have word lengths that typically range from 16
to 64 bits. If the word length of a computer is 32 bits, a single word can
store a 32-bit signed number or four ASCIlI-encoded characters, each
occupying 8 bits, as shown in Figure 3.2. A unit of 8 bitsis called a byte.
Machine instructions may require one or more words for their
representation. We will discuss how machine instructions are encoded into
memory words in a later section, after we have described instructions at
the assembly-language level.

| 32 bits -|

[o] o] [o:]%]

1— Sign bit: by = 0 of positive numbers
by; = 1 for negative numbers

(a) A signad integer

8 bits 8 hits B bits & biis
W W W W
ASCH ASCH ARCI ASCII
character characler character character

(b} Four characters
Fig 3.2 Examples of encoded information in a 32- bit word

Accessing the memory to store or retrieve a single item of
information, either a word or a byte, requires distinct names or addresses

64

for each location. It is customary to use numbers from O to 2k — 1, for
some suitable value of k, as the addresses of successive locations in the
memory. Thus, the memory can have up to 2k addressable locations. The
2k addresses constitute the address space of the computer.

For example, a 24-bit address generates an address space of 2%
(16,777,216) locations. This number is usualy written as 16M (16 mega),
where 1M is the number 2%° (1,048,576). A 32-bit address creates an
address space of 2% or 4G (4 giga) locations, where 1G is 2%°. Other
notational conventions that are commonly used are K (kilo) for the
number 2*° (1,024), and T (tera) for thenumber 2%,

3.2.1 Byte Addressability

There are three basic information quantities to deal with: bit, byte,
and word. A byte is always 8 bits, but the word length typically ranges
from 16 to 64 bits. It is impractical to assign distinct addresses to
individual bit locations in the memory. The most practical assignment isto
have successive addresses refer to successive byte locations in the
memory. Thisis the assignment used in most modern computers. The term
byte-addressable memory is used for this assignment. Byte locations have
addresses 0, 1, 2,Thus, if the word length of the machine is 32 bits,
successive words are located at addresses O, 4, 8, . . . ,with each word
consisting of four bytes.

3.2.2 Big-Endian and Little-Endian Assignments

There are two ways that byte addresses can be assigned across
words, as shown in Figure 3.3. The name big-endian is used when lower
byte addresses are used for the more significant bytes (the leftmost bytes)
of the word. The name little-endian is used for the opposite ordering,
where the lower byte addresses are used for the less significant bytes (the
rightmost bytes) of the word.

The words “more significant” and “less significant” are used in
relation to the weights (powers of 2) assigned to bits when the word
represents a number. Both little-endian and big-endian assignments are
used in commercial machines. In both cases, byte addresses 0, 4, 8, . . .
,are taken as the addresses of successive words in the memory of a
computer with a 32-bit word length.

These are the addresses used when accessing the memory to store
or retrieve aword. In addition to specifying the address ordering of bytes
within aword, it is also necessary to specify the labeling of bits within a
byte or aword. The most common convention, and the one we will usein
this book, is shown in Figure 3.2a. It is the most natura ordering for the
encoding of numerical data. The same ordering is also used for labeling
bits within abyte, that is, b7, b6, . . ., b0, from left to right

65

Word
address Byte address Byte address

0 | 2 3 0 3 2 | 0

4 4 5 6 7 4 7 f 5 3

{a) Big-endian assignmeant (b} Little-endian assignment

Fig 3.3 Byte and word addressing
3.2.3Word Alignment

In the case of a 32-bit word length, natura word boundaries occur
at addresses 0, 4, 8, . . . ,as shown in Figure 3.3. We say that the word
locations have aligned addresses if they begin at a byte address that is a
multiple of the number of bytesin aword. For practical reasons associated
with manipulating binary-coded addresses, the number of bytesin a word
is a power of 2. Hence, if the word length is 16 (2 bytes), aligned words
begin at byte addresses 0, 2, 4, . . . ,and for aword length of 64 (23 bytes),
aligned words begin at byte addresses 0, 8, 16, . .

3.3MEMORY OPERATIONS

Both program instructions and data operands are stored in the
memory. To execute an instruction, the processor control circuits must
cause the word (or words) containing the instruction to be transferred from
the memory to the processor. Operands and results must also be moved
between the memory and the processor. Thus, two basic operations
involving the memory are needed, namely, Read and Write.

The Read operation transfers a copy of the contents of a specific
memory location to the processor. The memory contents remain
unchanged. To start a Read operation, the processor sends the address of
the desired location to the memory and requests that its contents be read.
The memory reads the data stored at that address and sends them to the
processor.

The Write operation transfers an item of information from the
processor to a specific memory location, overwriting the former contents
of that location. To initiate a Write operation, the processor sends the
address of the desired location to the memory, together with the data to be
written into that location. The memory then uses the address and data to
perform the write.

66

3.4 INSTRUCTIONS AND INSTRUCTION
SEQUENCING

The tasks carried out by a computer program consist of a sequence of
small steps, such as adding two numbers, testing for a particular condition,
reading a character from the keyboard, or sending a character to be
displayed on a display screen. A computer must have instructions capable
of performing four types of operations:

Data transfers between the memory and the processor registers
Arithmetic and logic operations on data

Program sequencing and control

I/O transfers

3.4.1 Register Transfer Notation

The transfer of information from one location in a computer to
another it is an possible locations that may be involved in such transfers
are memory locations, processor registers, or registers in the 1/0
subsystem. Most of the time, we identify such locations symbolically with
convenient names.

For example, names that represent the addresses of memory
locations may be LOC, PLACE, A, or VAR2. Predefined names for the
processor registers may be RO or R5. Registers in the I/0O subsystem may
be identified by names such as DATAIN or UTSTATUS. To describe the
transfer of information, the contents of any location are denoted by placing
square brackets around its name. Thus, the expression means that the
contents of memory location LOC are transferred into processor register
R2.

R2 « [LOC]

As another example, consider the operation that adds the contents
of registers R2 and R3, and places their sum into register R4. This action
isindicated as

R4 «— [R2] + [R3]

This type of notation is known as Register Transfer Notation
(RTN). Note that the right hand side of an RTN expression always denotes
avalue, and the left-hand side is the name of alocation where the valueis
to be placed, overwriting the old contents of that location.

In computer jargon, the words “transfer” and “move’ are
commonly used to mean “copy.” Transferring data from a source location
A to a destination location B means that the contents of location A are
read and then written into location B. In this operation, only the contents
of the destination will change. The contents of the source will stay the
same.

67

3.4.2 Assembly-L anguage Notation

Another type of notation to represent machine instructions and
programs is the Assembly-language notation.

For example, a generic instruction that causes the transfer
described above, from memory location LOC to processor register R2, is
specified by the statement

Load R2 LOC

The contents of LOC are unchanged by the execution of this
instruction, but the old contentsof register R2 are overwritten. The name
Load is appropriate for this instruction, because the contents read from a
memory location are loaded into a processor register.

The second example of adding two numbers contained in processor
registers R2 and R3 and placing their sum in R4 can be specified by the
assembly-language statement

Add R4, R2 R3

In this case, registers R2 and R3 hold the source operands, while
R4 is the destination.

An instruction specifies an operation to be performed and the
operands involved. In the above examples, we used the English words
Load and Add to denote the required operations. In the assembly-language
instructions of actua (commercial) processors, such operations are defined
by using mnemonics, which are typically abbreviations of the words
describing the operations.

For example, the operation Load may be written as LD, while the
operation Store, which transfers a word from a processor register to the
memory, may be written as STR or ST. Assembly languages for different
processors often use different mnemonics for a given operation. To avoid
the need for details of a particular assembly language at this early stage,
we will continue the presentation in this chapter by using English words
rather than processor-specific mnemonics.

3.4.3 RISC and CI SC I nstruction Sets

One of the most important characteristics that distinguish different
computers is the nature of their instructions. There are two fundamentally
different approaches in the design of instruction sets for modern
computers. One popular approach is based on the premise that higher
performance can be achieved if each instruction occupies exactly one
word in memory, and al operands needed to execute a given arithmetic or
logic operation specified by an instruction are aready in processor
registers. This approach is conducive to an implementation of the
processing unit in which the various operations needed to process a
sequence of instructions are performed in “pipelined” fashion to overlap
activity and reduce total execution time of a program.

68

The restriction that each instruction must fit into a single word
reduces the complexity and the number of different types of instructions
that may be included in the instruction set of a computer. Such computers
are caled Reduced Instruction Set Computers (RISC). An alternative to
the RISC approach is to make use of more complex instructions which
may span more than one word of memory, and which may specify more
complicated operations.

This approach was prevalent prior to the introduction of the RISC
approach in the 1970s. Although the use of complex instructions was not
originadly identified by any particular label, computers based on this idea
have been subsequently called Complex Instruction Set Computers
(CISC).

3.4.4 Introduction to RISC Instruction Sets

Two key characteristics of RISC instruction sets are:
e Eachinstruction fitsin asingle word.
e A load/store architecture is used, in which

— Memory operands are accessed only using Load and Store
instructions.

— All operands involved in an arithmetic or logic operation must
either be in processor registers, or one of the operands may be
given explicitly within the instruction word.

At the start of execution of a program, al instructions and data
used in the program are stored in the memory of a computer. Processor
registers do not contain valid operands at that time. If operands are
expected to be in processor registers before they can be used by an
instruction, then it is necessary to first bring these operands into the
registers. This task is done by Load instructions which copy the contents
of amemory location into a processor register. Load instructions are of the
form

Load destination, spurce

or more specifically
Load processor_register, memory_ location

The memory location can be specified in several ways. The term
addressing modes is used to refer to the different ways in which this may
be accomplished. Let us now consider a typical arithmetic operation. The
operation of adding two numbers is a fundamental capability in any
computer. The statement in a high-level language program instructs the
computer to add the current values of the two variables called A and B,
and to assign the sum to athird variable, C.

C=A4+B

69

When the program containing this statement is compiled, the three
variables, A, B, and C, are assigned to distinct locations in the memory.
For simplicity, we will refer to the addresses of these locations as A, B,
and C, respectively. The contents of these locations represent the val ues of
the three variables.

C «— [A] + [B]

Hence, the above high-level language statement requires the action
to take place in the computer. To carry out this action, the contents of
memory locations A and B are fetched from the memory and transferred
into the processor where their sum is computed. This result is then sent
back to the memory and stored in location C.

The required action can be accomplished by a sequence of simple
machine instructions. We choose to use registers R2, R3, and R4 to
perform the task with four instructions:

Load RZ, A
Load R3. B
Add R4, RZ, R3
Store R4, C

It Add is a three-operand, or a three-address, instruction of the
form

Add destination. sourcel. source?

The Storeinstruction is of theform
Store source, destination

where the source is a processor register and the destination is a memory
location. Observe that in the Store instruction the source and destination
are specified in the reverse order from the Load instruction; this is a
commonly used convention.

Note that we can accomplish the desired addition by using only
two registers, R2 and R3, if one of the source registersis also used as the
destination for the result. In this case the addition would be performed as

Add R3 R2Z R3
and the last instruction would become

Store R3,C
3.4.5 Instruction Execution and Straight-Line Sequencing

In the preceding subsection, we used the task C = A + B,
implemented as C—[A] + [B], as an example. Figure 3.4 shows a possible
program segment for this task as it appears in the memory of a computer.
We assume that the word length is 32 bits and the memory is byte-
addressable. The four instructions of the program are in successive word
locations, starting at location i. Since each instruction is 4 bytes long, the
second, third, and fourth instructions are at addressesi + 4,1 + 8, and i +

70

12. For simplicity, we assume that a desired memory address can be
directly specified in Load and Store instructions, athough this is not
possibleif afull 32-bit addressisinvolved.

Address Conlents
Begin execution here —e= | Lood RI A
i+4 Load R3 B 4-instruction
program
i+8 Add R4, RI.R3 SERMETE
i+ 12 Store R4, C
A —
B Data for
the program
C e —

A program for C—[A] + [B]

Let us consider how this program is executed. The processor
contains a register called the program counter (PC), which holds the
address of the next instruction to be executed. To begin executing a
program, the address of its first instruction (i in our example) must be
placed into the PC.

Then, the processor control circuits use the information in the PC
to fetch and execute instructions, one at a time, in the order of increasing
addresses. Thisis caled straight-line sequencing. During the execution of
each instruction, the PC is incremented by 4 to point to the next
instruction.

Thus, after the Store instruction at location i + 12 is executed, the
PC contains the valuei + 16, which is the address of the first instruction of
the next program segment. Executing a given instruction is a two-phase
procedure. In the first phase, caled instruction fetch, the instruction is
fetched from the memory location whose addressisin the PC.

This instruction is placed in the instruction register (IR) in the
processor. At the start of the second phase, called instruction execute, the
instruction in IR is examined to determine which operation is to be
performed. The specified operation is then performed by the processor.

71

This involves a small number of steps such as fetching operands
from the memory or from processor registers, performing an arithmetic or
logic operation, and storing the result in the destination location. At some
point during this two-phase procedure, the contents of the PC are
advanced to point to the next instruction. When the execute phase of an
instruction is completed, the PC contains the address of the next
instruction, and a new instruction fetch phase can begin.

3.4.6 Branching

Consider the task of adding a list of n numbers. The program
outlined in Figure 3.5 is a generalization of the program in Figure 3.4. The
addresses of the memory locations containing the n numbers are
symbolicaly given as NUM1, NUM2, ... ,NUMnN, and separate Load and
Add instructions are used to add each number to the contents of register
R2. After all the numbers have been added, the result is placed in memory
location SUM.

Instead of using a long list of Load and Add instructions, as in
Figure 3.5, it is possible to implement a program loop in which the
instructions read the next number in the list and add it to the current sum.
To add all numbers, the loop has to be executed as many times as there are
numbers in the list. Figure 3.6 shows the structure of the desired program.
The body of the loop is a straight-line sequence of instructions executed
repeatedly. It starts at location LOOP and ends at the instruction
Branch_if_[R2]>0. During each pass through this loop, the address of the
next list entry is determined, and that entry is loaded into R5 and added to
R3. The address of an operand can be specified in various ways, as will be
described in Section 2.4. For now, we concentrate on how to create and
control a program loop.

Assume that the number of entries in the list, n, is stored in
memory location N, as shown. Register R2 is used as a counter to
determine the number of times the loop is executed. Hence, the contents of
location N are loaded into register R2 at the beginning of the program.

Bubtract ER2Z RZ2 #I1

Then, within the body of the loop, the instruction reduces the
contents of R2 by 1 each time through the loop. (We will explain the
significance of the number sign ‘# in Section 3.4.1.) Execution of the
loop is repeated as long as the contents of R2 are greater than zero.

72

i Load R NUMI
i+4 Load B3, NUM2
i+8 Add R2, R2, R3
i+ 12 Load B3, MUM3
i+ 16 Add R2 R2, R3
i+8n-12 Load R3. NUMR
i+8n -8 Add R2. R2. R3
i+ 8n—4 Store R2. 5UM
EUM

MNUMI

NUMZ

NUM=

fig. 3.5 A program for odding n numbers

We now introduce branch instructions. This type of instruction
loads a new address into the program counter. As a result, the processor
fetches and executes the instruction at this new address, called the branch
target, instead of the instruction at the location that follows the branch
instruction in sequential address order. A conditional branch instruction
causes a branch only if a specified condition is satisfied. If the condition is
not satisfied, the PC is incremented in the norma way, and the next
instruction in sequential address order isfetched and executed.

Branch_if [R2]=0 LOOP

In the program in Figure 3.6, the instruction is a conditional branch
instruction that causes a branch to location LOOP if the contents of
register R2 are greater than zero. This means that the loop is repeated as
long as there are entries in the list that are yet to be added to R3. At the
end of the nth pass through the loop, the Subtract instruction produces a
value of zero in R2, and, hence, branching does not occur. Instead, the
Storeinstruction is fetched and executed. It moves the final result from R3
into memory location SUM.

73

Load R N

Clear R3

Loae Determine address of

"Next” nomber, load the
"Wext” number into RS,
Program and add it to R3

losop

Subtract RI RZ, #]

Branch_if [RI]=0 LOOP

Store R3, 5UM

UM

NUMI

NUM2

NUMn

Fig. 3.6 Using aloop to odd n numbers

The capability to test conditions and subsequently choose one of a
set of dternative ways to continue computation has many more
applications than just loop control. Such a capability is found in the
instruction sets of al computers and is fundamental to the programming of
most nontrivial tasks.

One way of implementing conditional branch instructions is to
compare the contents of two registers and then branch to the target
instruction if the comparison meets the specified requirement. For
example, the instruction that implements the action

Branch_if [R4]=[R5] LOOP
may be written in ceneric assembly language as
Branch_greater than R4, RBS5, LOOP
or using an actual mnemonic as
BGT R4, RS, LOOP

It compares the contents of registers R4 and R5, without changing
the contents of either register. Then, it causes a branch to LOOPIf the
contents of R4 are greater than the contents of R5.
3.4.7 Generating Memory Addresses

The purpose of the instruction block starting at LOOP is to add
successive numbers from the list during each pass through the loop.
Hence, the Load instruction in that block must refer to a different address

74

during each pass. How are the addresses specified? The memory operand
address cannot be given directly in a single Load instruction in the loop.
Otherwise, it would need to be modified on each pass through the loop. As
one possibility, suppose that a processor register, Ri, is used to hold the
memory address of an operand. If it is initially loaded with the address
NUM1 before the loop is entered and is then incremented by 4 on each
pass through the loop, it can provide the needed capability.

This situation, and many others like it, give rise to the need for
flexible ways to specify the address of an operand. The instruction set of a
computer typicaly provides a number of such methods, called addressing
modes. While the details differ from one computer to another, the
underlying concepts are the same.

3.5 ADDRESSING MODES

In general, a program operates on data that reside in the computer’s
memory. These data can be organized in a variety of ways that reflect the
nature of the information and how it is used. Progranmers use data
structures such as lists and arrays for organizing the data used in
computations.

Programs are normally written in a high-level language, which
enables the programmer to conveniently describe the operations to be
performed on various data structures. When trandating a high-level
language program into assembly language, the compiler generates
appropriate sequences of low-level instructions that implement the desired
operations. The different ways for specifying the locations of instruction
operands are known as addressing modes.

Table 3.1 RISC type addressing

MNuamse Assembler syntax Addressing function
Immediate #¥alue Orperand = Yalue
Register R EA=Ri

Absoluote LOC EA = LOC

Register indirect (Rl EA = [Ri]

Index X{Ri) EA=[Ri]+ X

Base with index (R Rj) EA = [Ri] + [Rf]

EA = effectve address

Valme = 3 signed number

X =index valoe
modes

In this section we present the basic addressing modes found in

RISC-style processors. A summary is provided in Table 3.1, which aso
includes the assembler syntax we will use for each mode.

75

3.5.1 Implementation of Variables and Constants

Variables are found in amost every computer program. In
assembly language, a variable is represented by alocating a register or a
memory location to hold its value. This value can be changed as needed
using appropriate instructions. The program in Figure 3.5 uses only two
addressing modes to access variables. We access an operand by specifying
the name of the register or the address of the memory location where the
operand is located. The precise definitions of these two modes are:

Register mode—The operand is the contents of a processor register; the
name of the register is given in the instruction.

Absolute mode—The operand is in a memory location; the address of this
location is given explicitly in the instruction.

Theinstruction
Add R4, R2, R3

uses the Register mode for al three operands. Registers R2 and R3 hold
the two source operands, while R4 is the destination. The Absolute mode
can represent global variablesin aprogram. A declaration such as

Integer NUM1, NUM2, SUM;

in a high-level language program will cause the compiler to allocate a
memory location to each of the variables NUM1, NUM2, and SUM.
Whenever they are referenced later in the program, the compiler can
generate assembly-language instructions that use the Absolute mode to
access these variables.

The Absolute mode is used in the instruction
Load R2, NUM1

which loads the value in the memory location NUM1 into register R2.
Constants representing data or addresses are also found in almost every
computer program. Such constants can be represented in assembly
language using the Immediate addressing mode.

I mmediate mode—The operand is given explicitly in the instruction.

For example, the instruction
Add R4, R6, 200 immediate
adds the value 200 to the contents of register R6, and places the result into
register R4. Using a subscript to denote the Immediate mode is not
appropriate in assembly languages. A common convention is to use the
number sign (#) in front of the value to indicate that this value is to be
used as an immediate operand. Hence, we write the instruction above in
the form
Add R4, R6, #200

76

In the addressing modes that follow, the instruction does not give the
operand or its address explicitly. Instead, it provides information from
which an effective address (EA) can be derived by the processor when the
instruction is executed. The effective address is then used to access the
operand.

3.5.2 Indirection and Pointers

The program in Figure 3.6 requires a capability for modifying the
address of the memory operand during each pass through the loop. A good
way to provide this capability is to use a processor register to hold the
address of the operand. The contents of the register are then changed
(incremented) during each pass to provide the address of the next number
in the list that has to be accessed. The register acts as a pointer to the list,
and we say that an item in the list is accessed indirectly by using the
address in the register. The desired capability is provided by the indirect
addressing mode.

Indirect mode—The effective address of the operand is the contents of a
register that is specified in the instruction.

Main memory

Load R2, (R5)

B Operand

Fig 3.7 Register indirect addressing

To execute the Load instruction in Figure 3.7, the processor uses
the value B, which is in register R5, as the effective address of the
operand. It requests a Read operation to fetch the contents of location B in
the memory. The value from the memory is the desired operand, which the
processor loads into register R2. Indirect addressing through a memory
location is also possible, but it isfound only in CISC-style processors.

Let us now return to the program in Figure 3.6 for adding a list of
numbers. Indirect addressing can be used to access successive numbersin
the list, resulting in the program shown in Figure 3.8. Register R4 is used
as a pointer to the numbers in the list, and the operands are accessed
indirectly through R4. The initidization section of the program loads the
counter value n from memory location N into R2.

Then, it uses the Clear instruction to clear R3 to 0. The next
instruction uses the Immediate addressing mode to place the address value
NUM1, which is the address of the first number in the list, into R4.
Observe that we cannot use the Load instruction to load the desired

77

immediate value, because the Load instruction can operate only on
memory source operands. Instead, we use the Move instruction

Move R4, #NUM1

Load R2,N Load the size of the list.

Clear R3 Initialize sum to (.

Move R4, #NUMI1 Get address of the first number.
LOOP: Load R5, (R4) Get the next number.

Add R3, R3, R5 Add this number to sum.

Add R4, R4, #4 Increment the pointer to the list,

Subtract R2, R2. #1 Decrement the counter,

Branch_if_[R2]=0 LOOP Branch back if not finished.

Store R3, SUM Store the final sum.

Fig. 3.8 Useof indirect addressingin the program of Fig 3.6

In many RISC-type processors, one general-purpose register is
dedicated to holding a constant value zero. Usually, thisis register RO. Its
contents cannot be changed by a program instruction. We will assume that
RO is used in this manner in our discussion of RISC-style processors.
Then, the above Move instruction can be implemented as

Add R4, RO, #NUM1

It is often the case that Move is provided as a pseudo instruction
for the convenience of programmers, but it is actually implemented using
the Add instruction. The first three instructions in the loop in Figure 3.8
implement the unspecified instruction block starting at LOOP in Figure
3.6. Thefirst time through the loop, the instruction

Load R5, (R4)

fetches the operand at location NUM1 and loads it into R5. The first Add
instruction adds this number to the sum in register R3. The second Add
instruction adds 4 to the contents of the pointer R4, so that it will contain
the address value NUM2 when the Load instruction is executed in the
second pass through the loop.

As another example of pointers, consider the C-language statement

A =*B;

where B isapointer variable and the ‘*’ symbol is the operator for indirect
accesses. This statement causes the contents of the memory location
pointed to by B to be loaded into memory location A. The statement may
be compiled into

Load R2, B
Load R3, (R2)
Store R3, A

78

Indirect addressing through registers is used extensively. The program in
Figure 3.8 shows the flexibility it provides.

3.5.3Indexing and Arrays

The next addressing mode we discuss provides a different kind of
flexibility for accessing operands. It is useful in dealing with lists and
arrays.

Index mode—The effective address of the operand is generated by adding
aconstant value to the contents of aregister.

For convenience, we will refer to the register used in this mode as
the index register. Typicdly, this is just a general-purpose register. We
indicate the Index mode symbolically as

X(Ri)

where X denotes a constant signed integer value contained in the
instruction and Ri is the name of the register involved. The effective
address of the operand is given by

EA = X +[Ri]

The contents of the register are not changed in the process of
generating the effective address.

Figure3.9 illustrates two ways of using the Index mode. In Figure
3.9a, the index register, R5, contains the address of a memory location,
and the value X defines an offset (also called a displacement) from this
address to the location where the operand is found. An alternative use is
illustrated in Figure 3.9b. Here, the constant X corresponds to a memory
address, and the contents of the index register define the offset to the
operand. In either case, the effective address is the sum of two values; one
is given explicitly in the instruction, and the other isheld in aregister.

The usefulness of indexed addressing, consider a simple example
involving a list of test scores for students taking a given course. Assume
that the list of scores, beginning at location LIST, is structured as shown in
Figure 3.10. A four-word memory block comprises a record that stores the
relevant information for each student. Each record consists of the student’s
identification number (ID), followed by the scores the student earned on
three tests. There are n students in the class, and the value n is stored in
location N immediately in front of thelist.

The addresses given in the figure for the student IDs and test
scores assume that the memory is byte addressable and that the word
length is 32 bits. We should note that the list in Figure 2.10 represents a
two-dimensional array having n rows and four columns. Each row

79

contains the entries for one student, and the columns give the IDs and test

Scores

—|—mm

20 = offzet

'

— 1020

T]BU{I

20 = offset

l

— 1020

Load R2, 2{R3)

1000
Operand
(a) Offset is given as a constant
Load R2. 100(MES)
20
Operand
(b} Offset is in the indax register
Fig 3.9 Indexed addressing
N n
LIST Student 1D
LIST + 4 Test 1
= Student |
LIST + & Test 2
LIST+ 12 Test 3
LIST + 16 Student 1D
Test 1
= Student 2
Test 2
Test 3

Fig. 3.10 A list of students marks
Suppose that we wish to compute the sum of all scores obtained on
each of the tests and store these three sums in memory locations SUM1,

80

R5

SUM2, and SUM3. A possible program for this task is given in Figure
3.11. In the body of the loop, the program uses the

Index addressing mode in the manner depicted in Figure 3.9a to
access each of the three scores in a student’ s record. Register R2 is used as
the index register. Before the loop is entered, R2 is set to point to the ID
location of the first student record which is the address LIST.

On the first pass through the loop, test scores of the first student
are added to the running sums held in registers R3, R4, and R5, which are
initially cleared to 0. These scores are accessed using the Index addressing
modes 4(R2), 8(R2), and 12(R2). The index register R2 is then
incremented by 16 to point to the ID location of the second student.
Register R6, initialized to contain the value n, is decremented by 1 at the
end of each pass through the loop. When the contents of R6 reach 0, al
student records have been accessed, and the loop terminates. Until then,
the conditional branch instruction transfers control back to the start of the
loop to process the next record. The last three instructions transfer the
accumulated sums from registers R3, R4, and R5, into memory locations
SUM1, SUM2, and SUM3, respectively.

Move R2 #LIST Get the address LIST.
Clear R3

Clear R4

Clear RS

Load R6, N Load the value .

LOOP: Load R7, 4{(R2) Add the mark for next student's
Add R3, R3, R7 Test 1 to the partial sum.
Load R7, 8(R2) Add the mark for that student's
Add R4 R4 R7 Test 2 to the partial sum.
Load R7,. 12{R2) Add the mark for that student's
Add R5, R5, R7 Test 3 to the partial sum.

Add R2, R2,#16 Increment the pointer.
Subtract Ra, Ro, #1 Decrement the counter.
Branch_if [R6]=0 LOOP Branch back if not finished.
Store R3, SUMI Store the total for Test 1.
Store R4, SUM2 Store the total for Test 2.
Store RS, SUM3 Store the total for Test 3.

Fig. 3.11 indexed addressing used in accessing test scoresin thelist in
Fig. 3.10

3.6 ASSEMBLY LANGUAGE

Machine instructions are represented by patterns of Os and 1s. Such
patterns are awkward to deal with when discussing or preparing programs.
Therefore, we use symbolic names to represent the patterns. So far, we
have used norma words, such as Load, Store, Add, and Branch, for the
instruction operations to represent the corresponding binary code patterns.

81

When writing programs for a specific computer, such words are
normally replaced by acronyms called mnemonics, such as LD, ST, ADD,
and BR. A shorthand notation is also useful when identifying registers,
such as R3 for register 3. Finally, symbols such as LOC may be defined as
needed to represent particular memory locations.

A complete set of such symbolic names and rules for their use
constitutes a programming language, generally referred to as an assembly
language. The set of rules for using the mnemonics and for specification
of complete instructions and programs is called the syntax of the language.
Programs written in an assembly language can be automatically translated
into a sequence of machine instructions by a program called an assembler.
The assembler program is one of a collection of utility programs that are a
part of the system software of a computer.

The assembler, like any other program, is stored as a sequence of
machine instructions in the memory of the computer. A user program is
usually entered into the computer through a keyboard and stored either in
the memory or on a magnetic disk.

At this point, the user program is simply a set of lines of
aphanumeric characters. When the assembler program is executed, it
reads the user program, anayzes it, and then generates the desired
machine language program. The latter contains patterns of Os and 1s
specifying instructions that will be executed by the computer. The user
program in its original aphanumeric text format is caled a source
program, and the assembled machine-language program is called an object

program.

The assembly language for a given computer may or may not be
case senditive, that is, it may or may not distinguish between capital and
lower-case letters. In this section, we use capital letters to denote all names
and labels in our examples to improve the readability of the text. For
example, we write a Store instruction as

ST R2, SUM

The mnemonic ST represents the binary pattern, or operation (OP)
code, for the operation performed by the instruction. The assembler
trandlates this mnemonic into the binary OP code that the computer
recognizes.

The OP-code mnemonic is followed by at least one blank space or
tab character. Then the information that specifies the operandsis given. In
the Store instruction above, the source operand is in register R2. This
information is followed by the specification of the destination operand,
separated from the source operand by a comma. The destination operand is
in the memory location that has its binary address represented by the name
SUM.

82

Since there are severa possible addressing modes for specifying
operand locations, an assembly-language instruction must indicate which
mode is being used. For example, a numerica value or a name used by
itself, such as SUM in the preceding instruction, may be used to denote the
Absolute mode. The number sign usually denotes an immediate operand.
Thus, the instruction

ADD R2, R3, #5

adds the number 5 to the contents of register R3 and puts the result into
register R2. The number sign is not the only way to denote the Immediate
addressing mode. In some assembly languages, the immediate addressing
mode isindicated in the OP-code mnemonic.

For example, the previous Add instruction may be written as
ADDI R2,R3,5

The suffix | in the mnemonic ADDI states that the second source
operand is given in the Immediate addressing mode. Indirect addressing is
usually specified by putting parentheses around the name or symbol
denoting the pointer to the operand. For example, if register R2 contains
the address of a number in the memory, then this number can be loaded
into register R3 using the instruction

LD RS, (R2)

3.6.1 Assembler Directives

In addition to providing a mechanism for representing instructions
in a program, assembly language allows the programmer to specify other
information needed to trandate the source program into the object
program. We have already mentioned that we need to assign numerical
values to any names used in a program. Suppose that the name TWENTY
is used to represent the value 20. This fact may be conveyed to the
assembler program through an egquate statement such as

TWENTY EQU 20

This statement does not denote an instruction that will be executed
when the object program is run; in fact, it will not even appear in the
object program. It simply informs the assembler that the name TWENTY
should be replaced by the value 20 wherever it appears in the program.
Such statements, called assembler directives (or commands), are used by
the assembler while it translates a source program into an object program.

83

100 Load RZ.N
104 Clear R3
108 Move R4, #NUMI
LOOP 112 Load R5. (R4
116 Add R3.R3.R5
120 Add R4, R4, #4
124 Subtract BRI R2.#1
128 Branch_if [R2]=0 LOOP
132 Store R3, 5UM
sUM 200
N 204 150
NUM1 208
NUM2 212
NUMn 504

fig. 3.12 Memory arrangement for the programin fig. 3.8

Of the object program are to be loaded in the memory starting at address
100. It is followed by the source program instructions written with the
appropriate mnemonics and syntax. Note that we use the statement

BGT R2, RO, LOOP

to represent an instruction that performs the operation
Branch_if [R2]>0 LOOP

The second ORIGIN directive tells the assembler program where in the
memory to place the data block that follows. In this case, the location
specified has the address 200. This is intended to be the location in which
the final sum will be stored. A 4-byte space for the sum is reserved by
means of the assembler directive RESERVE. The next word, at address
204, has to contain the value 150 which is the number of entriesin the list.

Memory Addressing

address or daia
label Operation information
Assembler directive ORIGIN 100
Statements that LD R2,N
generate CLR R3
maching MOV R4, #NUMI
instructions LOOP: LD RS, (R4)
ADD R3, R3, RS
ADD R4, R4, #4
SUB R2, R2,. #1
BGT R2, RO, LOOP
ST R3, 5UM
next instruction
Assembler directives ORIGIN 2040
SUM: RESERVE 4
N: DATAWORD 150
NUMI: RESERVE 610
END

Fig. 3.13 Assembly L anguage representation for the program in fig.
3.12

The DATAWORD directiveis used to inform the assembler of this
requirement. The next RESERVE directive declares that a memory block
of 600 bytes is to be reserved for data. This directive does not cause any
data to be loaded in these locations. The last statement in the source
program is the assembler directive END, which tells the assembler that
thisisthe end of the source program text.

A different way of associating addresses with names or labels is
illustrated in Figure 3.13. Any statement that results in instructions or data
being placed in a memory location may be given a memory address labdl.
The assembler automatically assigns the address of that location to the
label. For example, in the data block that follows the second ORIGIN
directive, we used the labels SUM, N, and NUM1. Because the first
RESERVE statement after the ORIGIN directive is given the label SUM,
the name SUM is assigned the value 200. Whenever SUM is encountered
in the program, it will be replaced with this value. Using SUM as a label
in this manner is equivalent to using the assembler directive

SUM EQU 200
Similarly, the labels N and NUM1 are assigned the values 204 and 208,
respectively, because they represent the addresses of the two word
locations immediately following the word location with address 200.

Most assembly languages require statements in a source program
to be written in the form Labd: Operation Operand(s) Comment These
four fields are separated by an appropriate delimiter, perhaps one or more
blank or tab characters. The Label is an optional name associated with the

85

memory address where the machine-language instruction produced from
the statement will be loaded. Labels may aso be associated with addresses
of data items. In Figure 3.13 there are four labels: LOOP, SUM, N, and
NUM1.

3.7 STACKS

A stack isalist of data elements, usually words, with the accessing
restriction that elements can be added or removed at one end of the list
only. Thisend is called the top of the stack, and the other end is called the
bottom. The structure is sometimes referred to as a pushdown stack.
Imagine apile of traysin acafeteria; customers pick up new trays from the
top of the pile, and clean trays are added to the pile by placing them onto
the top of the pile. Another descriptive phrase, last-in—first-out (LIFO)
stack, is also used to describe this type of storage mechanism; the last data
item placed on the stack is the first one removed when retrieval begins.
The terms push and pop are used to describe placing a new item on the
stack and removing the top item from the stack, respectively.

In modern computers, a stack is implemented by using a portion of
the main memory for this purpose. One processor register, called the stack
pointer (SP), is used to point to a particular stack structure called the
processor stack.

Data can be stored in a stack with successive elements occupying
successive memory locations. Assume that the first element is placed in
location BOTTOM, and when new elements are pushed onto the stack,
they are placed in successively lower address locations. We use a stack
that grows in the direction of decreasing memory addresses in our
discussion, because thisis a common practice.

0
Stack
pointer
register
Current
i e l top element
17
739
Stack <
Bottom
BOTTOM 43 1T clement
21

Figure 3.14: A stack of words in the memory.

86

Figure 3.14 shows an example of a stack of word data items. The stack
contains numerical values, with 43 at the bottom and—28 at the top. The
stack pointer, SP, is used to keep track of the address of the element of the
stack that is at the top at any given time. If we assume a byte-addressable
memory with a 32-bit word length, the push operation can be implemented
as
Subtract SP, SP, #4
Store Rj, (SP)
where the Subtract instruction subtracts 4 from the contents of SP and
places the result in SP. Assuming that the new item to be pushed on the
stack isin processor register Rj, the Store instruction will place this value
on the stack. These two instructions copy the word from Rj onto the top of
the stack, decrementing the stack pointer by 4 before the store (push)
operation. The pop operation can be implemented as
Load Rj, (SP)
Add SP, SP,#4

These two instructions load (pop) the top value from the stack into
register Rj and then increment the stack pointer by 4 so that it points to the
new top element. Figurel5 shows the effect of each of these operations on
the stack in Figure 14

P —= 19

78 —28

17 5P —= 17

739 739

¢ Stack
= Black

43 43

Rj 19 | Rj _28
(a) After push from Rj (b) After pop into Rj

Fig. 3.15 Effect of stock operationson the stock in fig 3.14

3.8 SUBROUTINES

In a given program, it is often necessary to perform a particular
task many times on different data values. It is prudent to implement this
task as a block of instructions that is executed each time the task has to be
performed. Such a block of instructions is usually called a subroutine. For

87

example, a subroutine may evaluate a mathematical function, or it may
sort alist of valuesinto increasing or decreasing order.

It is possible to reproduce the block of instructions that constitute a
subroutine at everyplace where it is needed in the program. However, to
save space, only one copy of this block is placed in the memory, and any
program that requires the use of the subroutine ssimply branches to its
starting location. When a program branches to a subroutine we say that it
is caling the subroutine. The instruction that performs this branch
operation is named a Call instruction.

After a subroutine has been executed, the caling program must
resume execution, continuing immediately after the instruction that called
the subroutine. The subroutine is said to return to the program that called
it, and it does so by executing a Return instruction. Since the subroutine
may be called from different places in a calling program, provision must
be made for returning to the appropriate location. The location where the
calling program resumes execution is the location pointed to by the
updated program counter (PC) while the Call instruction is being
executed. Hence, the contents of the PC must be saved by the Call
instruction to enable correct return to the calling program.

The way in which a computer makes it possible to call and return
from subroutines is referred to as its subroutine linkage method. The
simplest subroutine linkage method is to save the return address in a
specific location, which may be aregister dedicated to this function. Such
a register is called the link register. When the subroutine completes its
task, the Return instruction returns to the calling program by branching
indirectly through the link register.

The Call instruction is just a special branch instruction that
performs the following operations:

1. Storethe contents of the PC in the link register

2. Branch to the target address specified by the Call instruction.

The Return instruction is a special branch instruction that performs
the operation
e Branch to the address contained in the link register

Figure 3.16 illustrates how the PC and the link register are affected by the
Call and Return instructions.

88

Memory Memory ; :
location Calling program location Subroutine SUB

200 Call SUB _ - [000 first instruction
204 next instruction —-———

Return

PC 204

l 1

Link 204

Call Return
Fig. 3.16 subroutinelinkage using alink register

3.8.1 Subroutine Nesting and the Processor Stack

A common programming practice, called subroutine nesting, is to
have one subroutine call another. In this case, the return address of the
second call is also stored in the link register, overwriting its previous
contents. Hence, it is essential to save the contents of the link register in
some other location before calling another subroutine. Otherwise, the
return address of the first subroutine will be lost.

Subroutine nesting can be carried out to any depth. Eventually, the
last subroutine called completes its computations and returns to the
subroutine that called it. The return address needed for this first return is
the last one generated in the nested call sequence. That is, return addresses
are generated and used in a last-in—first-out order. This suggests that the
return addresses associated with subroutine calls should be pushed onto
the processor stack.

Correct sequencing of nested callsis achieved if a given subroutine
SUB1 saves there turn address currently in the link register on the stack,
accessed through the stack pointer, SP, before it calls another subroutine
SUBZ2. Then, prior to executing its own Return instruction, the subroutine
SUBL1 has to pop the saved return address from the stack and load it into
the link register.

3.8.2 Parameter Passing

When caling a subroutine, a program must provide to the
subroutine the parameters, that is, the operands or their addresses, to be

89

used in the computation. Later, the subroutine returns other parameters,
which are the results of the computation. This exchange of information
between a caling program and a subroutine is referred to as parameter
passing. Parameter passing may be accomplished in several ways. The
parameters may be placed in registers or in memory locations, where they
can be accessed by the subroutine. Alternatively, the parameters may be
placed on the processor stack.

Calling program

Load RN Parameter | is list size.
Move R4, #NUMI1 Parameter 2 is list location.
Call LISTADD Call subroutine.
Store R3, SUM Save resull

Subroutine

LISTADD: Subtract SP, 5P #4 Save the contents of
Store R5, (SP) R5 on the stack.
Clear R3 Initialize sum to 0.

LOOP: Load RS, (R4) Get the next number.
Add R3, R3. R5 Add this number to sum.
Add R4, R4 #4 Increment the pointer by 4.
Subtract R2, R2.#1 Decrement the counter.
Branch_il_[R2]=0 LOOP
Load R5. (5P) Restore the contents of RS,
Add SP. SP. #4
Return Return to calling program.

Fig. 3.17 Program of fig. 3.8 written asa subroutine
parameter s passed through registers

Passing parameters through processor registers is straightforward
and efficient. Figure 3.17 shows how the program in Figure 8 for adding a
list of numbers can be implemented as a subroutine, LISTADD, with the
parameters passed through registers. The size of the list, n, contained in
memory location N, and the address, NUM1, of the first number, are
passed through registers R2 and R4. The sum computed by the subroutine
is passed back to the calling program through register R3. The first four
instructions in Figure 17 congtitute the relevant part of the calling
program. The first two instructions load n and NUM1 into R2 and R4. The
Cdll instruction branches to the subroutine starting at location LIST ADD.
This instruction also saves the return address (i.e., the address of the Store
instruction in the caling program) in the link register. The subroutine
computes the sum and places it inR3. After the Return instruction is
executed by the subroutine, the sum in R3 is stored in memory location
SUM by the calling program.

In addition to registers R2, R3, and R4, which are used for
parameter passing, the subroutine also uses R5. Since R5 may be used in
the calling program, its contents are saved by pushing them onto the
processor stack upon entry to the subroutine and restored before returning
to the calling program.

90

Assume top of stack is at level 1 in Figure 2.19.

Move RI, #NUMI Push parameters onto stack.
Subtract 5P, 5P, 74
Store R2, (SP)
Load R2,N
Subtract SF, 5P, #4
Store R2, (8P)
Call LISTADD Call subroutine
(top of stack is at level 2).
Load R2, 4{5F) Get the resull from the stack
Store R2, SUM and save it in SUM.
Add SP, 5P, 78 Resiore top of stack

(top of stack is at level 1).

LISTADD: Sobtract SE SP.#16 Save repisters
Store R2, 12(5F)
Store R3, B(SP)
Store R4, 4(5F)
Store RS, (SP) (top of stack is at level 3).
Load R2, I16(5F) Initialize counter to n.
Load R4, 20(5P) Initialize pointer to the list
Clear R3 Initialize sum o 0.

LOOP- Load RS, (R4) Get the next number.
Addd R3, R3. RS Add this number to sum.
Add R4, R4, #4 Increment the poinier by 4.
Subtract R2, R2. &1 Decrement the counter.
Branch_if [R2]=0 LOOP
Store K3, 20(5F) Put result in the siack.
Load RS, (8P) Restore registers.
Load R4, 4(5F}
Load R3, B(3F)
Load R2, I2(SF)
Add SF, SF. #16 (top of stack is at level 2).
Return Return to calling program.

Figure 2.18 Program of Figure 2.8 writlen os a subroutine; parameters passed on the
stack.

Figure 19 shows the stack entries for this example. Assume that before the
subroutine is called, the top of the stack is a level 1. The calling program
pushes the address NUM 1and the value onto the stack and calls subroutine
LISTADD. Thetop of the stack isnow at level 2. The subroutine uses four
registers whileit is being executed. Since these registers may contain valid
data that belong to the calling program, their contents should be saved at
the beginning of the subroutine by pushing them onto the stack. The top of
the stack is now at level 3. The subroutine accesses the parameters n and
NUM1 from the stack using indexed addressing with offset values relative
to the new top of the stack (level 3). Note that it does not change the stack
pointer because valid data items are still at the top of the stack. The value
n is loaded into R2 as the initial value of the count, and the address
NUM 1lis loaded into R4, which is used as a pointer to scan the list entries.
At the end of the computation, register R3 contains the sum. Before the
subroutine returns to the calling program, the contents of R3 are inserted
into the stack, replacing the parameter NUM1, which is no longer needed.
Then the contents of the four registers used by the subroutine are restored
from the stack. Also, the stack pointer isincremented to point to the top of
the stack that existed when the subroutine was called, namely the
parameter n at level 2. After the subroutine returns, the calling program
stores the result in location SUM and lowers the top of the stack to its

91

origina level by incrementing the SP by 8.0Observe that for subroutine
LISTADD in Figure 2.18, we did not use a pair of instructions

Subtract SP, SP, #4

Store Rj, (SP)
to push the contents of each register on the stack. Since we have to save
four registers, this would require eight instructions. We needed only five
instructions by adjusting SP immediately to point to the top of stack that
will bein effect once al four registersare saved. Then, we used the
Index mode to store the contents of registers. We used the same
optimization when restoring the registers before returning from the
subroutine.

Level 3 — IR5]

[R4]

R3]

[R2]

Level 2 —

NUMI

Level | —=

Figure 2.19 Stack confents for the program in Figure 2.18

Parameter Passing by Value and by Reference

Note the nature of the two parameters, NUM1 and n, passed to the
subroutines in Figuresl?7 and 18. The purpose of the subroutinesis to add
a list of numbers. Instead of passing the actua list entries, the caling
program passes the address of the first number in the list. Thistechniqueis
called passing by reference. The second parameter is passed by value, that
is, the actual number of entries, n, is passed to the subroutine

3.8.3 The Stack Frame

Now, observe how space is used in the stack in the example in
Figures 18 and 19.During execution of the subroutine, six locations at the
top of the stack contain entries that are needed by the subroutine. These
locations constitute a private work space for the subroutine, allocated at
the time the subroutine is entered and deallocated when the subroutine
returns control to the calling program. Such spaceis called a stack frame.

If the subroutine requires more space for local memory variables,
the space for these variables can also be alocated on the stack. Figure 20
shows an example of a commonly used layout for information in a stack
frame.

In addition to the stack pointer SP, it is useful to have another
pointer register, called the frame pointer (FP), for convenient access to the
parameters passed to the subroutine and to the local memory variables
used by the subroutine. In the figure, we assume that four parameters are

92

passed to the subroutine, three local variables are used within the
subroutine, and registers R2, R3, and R4 need to be saved because they
will aso be used within the subroutine. When nested subroutines are used,
the stack frame of the calling subroutine would aso include the return
address, aswe will seein the example that follows.

P

- saved [R4
(stack pointer) e)

saved [R3]

saved [R2]

localvard

tocalvar? Slack
frame

tocalvarl > for
P called
i caved TEP subroutine

{frame pointer} mved [FE)

param]

param?

param3

parzm-

=— DId TOS

Figure 2.20 A subroutine stack frame example.

With the FP register pointing to the location just above the stored
parameters, as shown in Figure 20, we can easily access the parameters
and the local variables by using the Index addressing mode. The
parameters can be accessed by using addresses 4(FP), 8(FP),....The local
variables can be accessed by using addresses—4(FP),—8(FP),....The
contents of FP remain fixed throughout the execution of the subroutine,
unlike the stack pointer SP, which must aways point to the current top
element in the stack.

Now let us discuss how the pointers SP and FP are manipulated as
the stack frame is alocated, used, and deallocated for a particular
invocation of a subroutine. We begin by assuming that SP points to the old
top-of-stack (TOS) element in Figure 20. Before the subroutine is called,
the calling program pushes the four parameters onto the stack. Then the
Cdll instruction is executed. At this time, SP points to the last parameter
that was pushed on the stack. If the subroutine is to use the frame pointer,
it should first save the contents of FP by pushing them on the stack,
because FP is usualy a genera-purpose register and it may contain
information of use to the calling program. Then, the contents of SP, which
now points to the saved value of FP, are copied into FP.

Thus, the first three instructions executed in the subroutine are
Subtract SP, SP, #4
Store FP, (SP)
Move FP, SP

93

The Move instruction copies the contents of SP into FP. After
these instructions are executed, both SP and FP point to the saved FP
contents. Space for the three local variables is now alocated on the stack
by executing the instruction

Subtract Sk, Sk, #12

Finally, the contents of processor registers R2, R3, and R4 are
saved by pushing them onto the stack. At this point, the stack frame has
been set up as shown in Figure 2.20.The subroutine now executes its task.
When the task is completed, the subroutine pops the saved values of R4,
R3, and R2 back into those registers, deallocates the local variables from
the stack frame by executing the instruction

Add SP, Sk, #12

and pops the saved old value of FP back into FP. At this point, SP points
to the last parameter that was placed on the stack. Next, the Return
instruction is executed; transferring control back to the calling program.
The calling program is responsible for deallocating the parameters from
the stack frame, some of which may be results passed back by the
subroutine. After deallocation of the parameters, the stack pointer pointsto
the old TOS, and we are back to where we started.

3.9TYPESOF MACHINE INSTRUCTION

3.9.1 Logical Instruction

Logic operations such as AND, OR, and NOT, applied to
individual bits, are the basic building blocks of digital circuits, as
described in Appendix A. It is also useful to be able to perform logic
operations in software, which is done using instructions that apply these
operations to all bits of a word or byte independently and in parallel. For
example, the instruction

And R4, R2, R3
computes the bit-wise AND of operands in registers R2 and R3, and
leaves the result in R4.An immediate form of this instruction may be
And R4, R2, #Value
where Value is a 16-bit logic value that is extended to 32 bits by placing
zeros into the 16most-significant bit positions.

Consider the following application for this logic instruction.
Suppose that four ASCII characters are contained in the 32-bit register R2.
In some task, we wish to determine if the rightmost character is Z. If it is,
then a conditional branch to FOUND Z is to be made. which is expressed
in hexadecimal notation as 5A. The three-instruction sequence

AndR2, R2, #OxFF
MoveR3, #0x5A
Branch_if [R2]=[R3]FOUNDZ
implements the desired action. The And instruction clears al bits in the
leftmost three character positions of R2 to zero, leaving the rightmost
character unchanged. Thisis the result of using an immediate operand that
94

has eight 1s at its right end, and Os in the 24 bits to the left. The Move
instruction loads the hex value 5A into R3. Since both R2 and R3have Os
in the leftmost 24 bits, the Branch instruction compares the remaining
character at the right end of R2 with the binary representation for the
character Z, and causes a branch to FOUNDZ if there is a match.

3.9.2 Shift and Rotate

There are many applications that require the bits of an operand to
be shifted right or left some specified number of bit positions. The details
of how the shifts are performed depend on whether the operand is a signed
number or some more genera binary-coded information. For genera
operands, we use a logica shift. For a signed number, we use an
arithmetic shift, which preserves the sign of the number. Logica Shifts
Two logical shift instructions are needed, one for shifting left (LShiftL)
and another for shifting right (L Shift R). These instructions shift an
operand over a number of bit positions specified in a count operand
contained in the instruction. The genera form of a Logical-shift-left
instruction is

LShiftL Ri,Rj, count

which shifts the contents of register Rj left by a number of bit positions
given by the count operand, and places the result in register Ri, without
changing the contents of Rj. The count operand may be given as an
immediate operand, or it may be contained in a processor register. To
complete the description of the shift left operation, we need to specify the
bit values brought into the vacated positions at the right end of the
destination operand, and to determine what happens to the bits shifted out
of the left end. Vacated positions are filled with zeros. In computers that
do not use condition code flags, the bits shifted out are simply dropped. In
computers that use condition code flags, these bits are passed through the
Carry flag, C, and then dropped. Involving the C flag in shiftsis useful in
performing arithmetic operations on large numbers that occupy more than
one word. Figure 3.23ashows an example of shifting the contents of
register R3left by two bit positions. The Logical-shift-right instruction, L
Shift R, works in the same manner except that it shifts to the right. Figure
21 billustrates this operation.

95

i

I:n:l'w.ru::IT_]| [T 110 -« <01 1]
.LFI-:r[I| |||||---r.~'.||'|-::-|

(&) Logical shift left LhiftL. R3, B3, #

o —= R3 ~{c}—

hefore:

[a';;-::-..-n|:|llj
nfter: |f.] [:-UI'.Ir:-...-'_'|| m

(b) Logical shift right LShiftR A3, A3, #2

after: |||a<3n||---c3|m

{c) Arithmetic shift nght AShiftR R3, R3, #2

Figure 2.23 logical and orithmetic shift instructions.

In an arithmetic shift, the bit pattern being shifted is interpreted as
a signed number. A study of the 2's-complement binary number
representation in Figure 3.3 reveals that shifting a number one bit position
to the left is equivalent to multiplying it by 2, and shifting it to the right is
equivalent to dividing it by 2. Of course, overflow might occur on shift in
g left, and the remainder is lost when shifting right. Another important
observation is that on aright shift the sign bit must be repeated as the fill-
in bit for the vacated position as a requirement of the 2's-complement
representation for numbers. This requirement when shifting right
distinguishes arithmetic shifts from logical shifts in which the fill-in bit is
always 0. Otherwise, the two types of shifts are the same. An example of
an Arithmetic-shift-right instruction, A Shift R, is shown in Figure 21c.
The Arithmetic-shift-left is exactly the same as the Logical-shift-l€ft.
Rotate Operations In the shift operations, the bits shifted out of the
operand are lost, except for the last bit shifted out which isretained in the
Carry flag C. For situations where it is desirable to preserve all of the bits,
rotate instructions may be used instead. These are instructions that move
the bits shifted out of one end of the operand into the other end. Two
versions of both the Rotate-left and Rotate-right instructions are often

96

provided. In one version, the bits of the operand are simply rotated. In the
other version, the rotation includes the C flag. Figure21 shows the left and
right rotate operations with and without the C flag being included in the
rotation. Note that when the C flag is not included in the rotation, it still
retains the last bit shifted out of the end of the register. The OP codes
Rotate L, Rotate LC, Rotate R, and Rotate RC, denote the instructions that
perform the rotate operations.

3.9.3 Multiplication and Division

Two signed integers can be multiplied or divided by machine
instructions with the same format as we saw earlier for an Add instruction.
Theinstruction

Multiply Rk,Ri,Rj
performs the operation
Rk[Ri]*[Rj]

The product of two n-bit numbers can be as large as 2nbits.
Therefore, the answer will not necessarily fit into register Rk. A number of
instruction sets have a Multiply instruction that computes the low-order n
bits of the product and places it in register Rk, as indicated. This is
sufficient if it is known that all products in some particular application
task will fit into n bits. To accommodate the general 2n-bit product case,
some processors produce the product in two registers, usualy adjacent
registers Rk and R(k+ 1), with the high-order half being placed in register
R(k+ 1).

An instruction set may also provide a signed integer Divide instruction
Divide Rk,Ri,Rj

which performs the operation

Rk—[Rj]/[Ri]
placing the quotient in RKk. The remainder may be placed in R(k+ 1), or it
may be lost.

3.10 CISC INSTRUCTION SET

Key difference from RISC
1. We can operate directly on operands. Don’'t require to
load/store architecture
2. Instruction can of different length

Instructions in modern CISC processor typically do not use three-
address format. Most arithmetic and logic instruction user the two-address
format
Syntax of instruction
Operation destination, source
For example Add instruction of thistypeis

Add BA

97

Which performs the operation B«—[A] + [B] on memory operands.
When the sum is calculated, the result is sent to the memory and stored in
location B, replacing the original contents of this location. This means that
memory location B is both a source and a destination.

Consider again the task of adding two numbers
C=A+B
where al three operands may be in memory locations. Obviously, this
cannot be done with a single two-address instruction. The task can be
performed by using another two-address instruction that copies the
contents of one memory location into another. Such an instruction is
Move C,B

Which performs the operation C«<[B], leaving the contents of
location B unchanged. The operation C—[A]+[B] can now be performed
by the two-instruction sequence

Move C,B
Add CA

Observe that by using this sequence of instructions the contents of neither
A nor B locations are overwritten.

3.10.1 Additional Addressing Modes

Most CISC processors have all of the five basic addressing
modes—Immediate, Register, Absolute, Indirect, and Index. Three
additional addressing modes are often found in CISC processors.

Auto increment and Auto decrement Modes

These are two modes that are particularly convenient for accessing
data items in successive locations in the memory and for implementation
of stacks.

Auto increment mode-The effective address of the operand is the contents
of aregister specified in the instruction. After accessing the operand, the
contents of this register are automatically incremented to point to the next
operand in memory.

We denote the Auto increment mode by putting the specified
register in parentheses, to show that the contents of the register are used as
the effective address, followed by a plus sign to indicate that these
contents are to be incremented after the operand is accessed. Thus, the
Auto increment mode is written as (Ri)+

To access successive words in a byte-addressable memory with a
32-bit word length, the increment amount must be 4. Computers that have
the Auto increment mode automatically increment the contents of the
register by a value that corresponds to the size of the accessed operand.
Thus, the increment is 1 for byte-sized operands, 2 for 16-bit operands,

98

and 4 for32-bit operands. Since the size of the operand is usually specified
as part of the operation code of an instruction, it is sufficient to indicate
the Auto increment mode as (Ri)+.

As a companion for the Auto increment mode, another useful
mode accesses the memory locations in the reverse order:

Auto decrement mode—The contents of a register specified in the
instruction are first automatically decremented and are then used as the
effective address of the operand.

We denote the Auto decrement mode by putting the specified
register in parentheses, pre-ceded by a minus sign to indicate that the
contents of the register are to be decremented before being used as the
effective address. Thus, we write —(Ri)

In this mode, operands are accessed in descending address order.

The address is decremented before it is used in the Auto
decrement mode and incremented after it is used in the Auto increment
mode. The main reason for this is to make it easy to use these modes
together to implement a stack structure.Instead of needing two instructions

Subtract SP, #4

Move(SP), NEWITEM
to push anew item on the stack, we can use just one instruction

Move—(SP), NEWITEM
Similarly, instead of needing two instructions

Movel TEM, (SP)

AddSP, #4
to pop an item from the stack, we can use just

Movel TEM, (SP)+

3.10.2 Relative Mode

We have defined the Index mode by using genera-purpose
processor registers. Some computers have a version of this mode in which
the program counter, PC, is used instead of a general-purpose register.
Then, X(PC) can be used to address a memory location that is X bytes
away from the location presently pointed to by the program counter. Since
the addressed location is identified relative to the program counter, which
always identifies the current execution point in a program, the name
Relative mode is associated with this type of addressing.

Relative mode—The effective address is determined by the Index mode
using the program counter in place of the genera -purpose register Ri.

99

3.11 CISC AND RISC STYLES

RISC styleischaracterized by:
1. Simple addressing modes.
2. All instructions fitting in a single word.

3. Fewer instructions in the instruction set, as a consequence of simple
addressing modes.

4. Arithmetic and logic operations that can be performed only on
operands in processor registers.

5. Load/store architecture that does not allow direct transfers from one
memory location to another; such transfers must take place via a
processor register.

6. Simple instructions those are conducive to fast execution by the
processing unit using techniques such as pipelining.

7. Programs that tend to be larger in size, because more, but simpler
instructions are needed to perform complex tasks

CISC styleischaracterized by:
1. More complex addressing modes.

2. More complex instructions, where an instruction may span multiple
words.

3. Many instructions that implement complex tasks.

4. Arithmetic and logic operations that can be performed on memory
operands as well as operands in processor registers.

5. Transfers from one memory location to another by using a single
Move instruction.

6. Programs that tend to be smaller in size, because fewer, but more
complex instructions are needed to perform complex tasks.

Before the 1970s, all computers were of CISC type. An important
objective was to simplify the development of software by making the
hardware capable of performing fairly complex tasks, that is, to move the
complexity from the software level to the hardware level. This is
conducive to making programs simpler and shorter, which was important
when computer memory was smaller and more expensive to provide.
Today, memory is inexpensive and most computers have large amounts
of it.

RISC-style designs emerged as an attempt to achieve very high
performance by making the hardware very simple, so that instructions can
be executed very quickly in pipelined fashion. This results in moving
complexity from the hardware level to the software level. Sophisticated
compilers were developed to optimize the code consisting of simple

100

instructions. The size of the code became less important as memory
capacities increased.

While the RISC and CISC styles seem to define two significantly
different approaches, today’s processors often exhibit what may seem to
be a compromise between these approaches. For example, it is attractive to
add some non-RISC instructions to a RISC processor in order to reduce
the number of instructions executed, as long as the execution of these new
instructionsis fast.

3.12LET USSUM UP

Thus, we have studied the representation and execution of
instructions and programs at the assembly and machine level as seen by
the programmer. The discussion emphasized the basic principles of
addressing techniques and instruction sequencing. The programming
examples illustrated the basic types of operations implemented by the
instruction set of any modern computer.

3.13LIST OF REFERENCES

» Carl Hamacher et a., Computer Organization and Embedded Systems,
6 ed., McGraw-Hill 2012

» Patterson and Hennessy, Computer Organization and Design, Morgan
Kaufmann, ARM Edition, 2011

» R P Jain, Modern Digita Electronics, Tata McGraw Hill Education
Pvt. Ltd. , 4th Edition, 2010

3.14 UNIT END EXERCISES

1) Explain how memory is used to read write operations.
2) Explain Big-Endian and Little Endian Assignment.

3) Explain characteristics of RISC instruction set.

4) State and explain the ways of byte address assignment.
5) What is pointer? Explain its use in indirection operation.

101

4.1

BASIC PROCESSOR UNIT

Unit Structure
4.1.1 Objectives
4.1.2 Introduction
4.1.3 Main Components of a Processor
4.1.3.1 Registers and Registers Files
4.13.2ALU
4.1.3.3 Control Unit
4.1.3.4 Interfaces to instruction and data memories
4.1.4 Data Path

4.1.5 Instruction fetch and execute; executing arithmetic/logic, memory
access and branch instructions

4.1.6 Hardwired and micro-programmed control for RISC and CISC

4.1.1 OBJECTIVES

At the end, the learners will be able to

Describe the various components of a processor

[llustrate the concept of Datapath.

Compare and Constrast between various types of instruction
Differentiate between the RISC and CISC processor

4.1.2 INTRODUCTION

1. At a highest level, a computer consists of CPU(central processing
unit),memory and Input-output components with one or more module
of each type.

102

2. These components are interconnected in some fashion to achieve the
basi ¢ function of the computer, which is to execute programs.

3. Thus at a top level we can characterize a computer system by
describing a)The external behavior of each component, that is the data
and control signals that it exchanges with other components and b)The
interconnection structure and the contrls required to manage the use of
the interconnection structure.

4. This top-level view of structure and function is important because of
its explanatory power in understanding the nature of a computer.

5. Equaly important is its use to understand the increasingly complex
issues of performance evaluation.

6. A grasp of the top-level structure and function offers insight in to
system bottlenecks, aternate pathways, the magnitude of system
failures if a component fails and the ease of adding performance
enhancements.

7. In many cases, requirements for greater system power and fail safe
capabilities are being met by changing the design rather than merely
increasing the speed and reliability of individual components.

8. Thus, this unit focuses on major components of computer, instruction
fetch and RISC and CISC.

4.1.3MAIN COMPONENTS

1. All computer designs are based on concepts developed by john von
Neumann at the institute of Advanced studies, Princeton. Such a
design is referred to as the Von Neumann architecture and is based on
three key concepts.

1.1 Dataand instructions are stored in a single read-write memory.

1.2 The contents of this memory are addressable by location, without
regard to the type of data contained there.

1.3 Execution occurs in a sequentia fashion from one instruction to
the next.

2. Thereisasmall set of basic logic components that can be combined in
various ways to store binary data and perform arithmetic and logical
operations on that data.

3. If thereisaparticular computation to be performed, a configuration of
logic components designed specifically for that computation could be
constructed.

4. One can think of the process of connecting the various componentsin
the desired configuration as aform of programming.

103

5. The resulting “program” is in the form of hardware and is termed a
hardwired program.

6. Suppose we construct a general-purpose configuration of arithmetic
and logic functions. This set of hardware will perform various
functions on data, depending on the control signals applied to the
hardware.

7. In the original case of customized hardware, the system accepts data
and control signals and produces results.

8. But with general-purpose hardware, the system accepts data and
control signals and produces results.

9. Thus instead of rewriting the hardware for each new program, the
programmer merely needs to supply anew set of control signals.

10. At each step, some arithmetic logical operation is performed on
some data. For each step, a new set of control signals is needed.

11. Let us provide a unique code for each possible set of control signds,
and let us add to the general-purpose hardware a segment that can
accept a code and generate control signals as shown in figure given
below.

12. Programming is now much easier. Instead of rewriting the hardware
for each new program, all we need to do is provide a new sequence of
codes.

13. The two mgor components of the system, an instruction interpreter
and a module of genera-purpose arithmetic and logic functions. These
two constitute the CPU.

14. Aninput device will bring instructions and data in sequentially.

15. Operations on data may require access to more than just one element at
a time in a predetermined sequence. Thus there must be a place to
temporarily store both instructions and data. That module is called
memory or main memory to distinguish it from other periphera
devices.

16. The CPU exchanges data with memory, for this purpose a two types of
registers is required such as Memory address register(MAR) which
specifies the address in memory for the next read or write and a
memory buffer register (MBR) which contains the data to be written in
to memory or receives the data read from memory.

17. A Memory module consists of a set of locations, defined by
sequentially numbered addresses. Each location contains a binary
number that can be interpreted as either an instruction or data. An I/O
module transfers data from externa devices to CPU and memory and
vice versa. It contains internal buffers for temporarily holding these
data until they can be sent on.

104

Sequence of
arithmetic

Data ————| Results
and logic
functions
Instruction
codes >
Daty ————————»| Results

Fig 1 (Programming in Hardware) and Fig 2 (Programming in Software)

CPU Main memory

System :
bus .
Instruction

‘PC ‘ |MAR|

. e e b ==

Instruction
Instruction

‘IR ‘ |MBR|

*

— :

Data
Dhata

1/0 Module . = %

n-1

5 PC = Program counter
Buffers IR = Instruction register
MAR = Memory address register
MBR = Memory buffer register
I/O AR = Input/output address register
1/0 BR = Input/output buffer register

Fig 2 Different Components of a Computer

105

4.1.3.1 Register and Register Files

1. Computers compute. The component that performs computation is
CPU or more concretely it isthe ALU(Arithmetic logical unit) in CPU
that do the computation.

2. To compute, we need first prepared input, however ALU cannot access
memory directly, instead a set of registers are provided as a cache that
is faster but smaller than main memory.

3. Not only the General purpose registers are involved in computation,
but CPU aso has some registers in the purpose of control and
recording status.

4. Data Registers - for eg MOV AX, 1234H here this instruction explains
datais moved from address 1234H to register H & L.

5. Address registers.-To access some location of memory, we simply use
an address register to contain the address of that location, but the
actual practice is kind of much more complex. One popular addressing
method is segmented addressing. With this method, memory is divided
in to segments and each segment is of variable-length, blocks of
words. To refer to a location in such a memory system, we need to
give two pieces of information. One is the segment number and second
the location of datain that segment. That is the address consists of two
parts, segment address and the offset within the segment. For example
CPU 8086 shifts the content of CS to the left by 4 bits and then adds
up the result and the content of IP. Finally the sum is used as the
effective address.

CSIP
DS:DI
DSS

It should b made clear that segment is just a logical concept, not a
physically existing entity in memory. We may simply write to CS to
change the segment it point to.

Stack Pointers

Due to the popularity of stack in program execution, computer systems
provide registers to access memory segment in the way of accessing
stacks. For eg in 8086, we have SS:SP where SS gives the stack
segment and SP aways points to the top of the stack. Thus the
following two sets of instructions have the same effect.

106

PUSH AX
SUB Sp,2
Mov(SS:SP), AX

6. Control Registers- All the registers discussed above are related to data
access, but there are some control registers which are used for
executing instructions in the machine.

6.1 Program Counter(PC)- Contains the address of an instruction to be
fetched from memory.

6.2 Instruction Register(IR)- contains the instruction most recently
fetched. The execution of an instruction is actually to interpret the
operation code in the instruction and generate signals for ALU or other
components in CPU. For example when xy==00, ALU does
A+B==>C ad when xy=01, ALU does A-B==>C, etc.

7. Status Register- CPU aso includes registers, that contain status
information. Thy are known as Program Status word(PSW). PSW
typically contain condition codes with other status information.

7.1 Condition codes are hits set by the processor hardware as the result of
operations. For example an arithmetic operation may produce a
positive, negative, zero or overflow result. The code may subsequently
b tested as part of conditional branch operation, Lets say

CMPAX,BX
JGE Exit

Generally, the condition codes cannot b altered by explicit referece
becae they are intended for feedback regarding the execution of an
instruction and are updated automatically whenever arelated instruction is
executed. There are a number of factors that have to be taken in to
account. One is operating system support and another key factor is the
alocation of control information between registers and memory. As
registers are much faster, but due to the price reason a computer system
doesn’'t have many registers so atleast part of control information has to be
put in memory.

8. Register File- There are two set of registers called “ General Purpose’
and “ Special Purpose”.

8.1 Theorigin of the register set is simply the need to have some sort of
memory on the computer and the inability to build what we now call
“Main Memory”.

8.2 When reliable technologies such as magnetic cores, became
available for main memory, the concept of CPU registers was
retained.

8.3 Registers are now implemented as a set of flip-flops physically
located on the CPU chip. These are used because access time for
registers are two orders of magnitude faster than access times for
main memory (1 nanosecond Vs. 80 nanoseconds).

107

84 General Purpose registerss These are mostly used to store
intermediate results of computation. The count of such registers is
often a power of 2 say 2"4=16 and so on, as N bit address 2"N
items.

8.5 Special Purpose registers- These are often used by the control unit in
its execution of the program.

8.5.1 PC- The Program counter- It is also called as the Instruction
pointer(1P) which points to the memory location of the instruction to
be executed next.

8.5.2 IR(Instruction Register)- This holds the machine language version of
the instruction currently being executed.

8.5.3 MAR(Memory address register)- This holds the address of the
memory word being referenced. All execution steps begin with PC,
MAR.

8.5.4 MBR(Memory Buffer Register)- also called MDR(Memory Data
Register) which holds the data being read from memory o written to
memory.

8.5.5 PSR(Program status Register)- often called the PSW (Program status
word) contains a collection of logical bits that characterize the status
of the program executed lastly in memory.

8.5.6 PSR(Program Status Register) is actually a collection of bits that
describe the running status of the process. The PSR is generaly
divided in to two parts

ALU Result Bits: The carry—out from the last arithmetic computation.

V setif the last arithmetic operation resulted in overflow.
N setif thelast arithmetic operation gave a negative number.
Z setitthelast arithmetic operation resulted in aO.

Control Bits: Is set if interrupts are enabled. When | = 1, an 1/O device
can raise an interrupt when it is ready for a data transfer.

Priority : A multi—bit field showing the execution priority of the CPU;
e.g., a 3-hit field for priorities O through 7.This facilitates management of
I/0O devices that have different priorities associated with data transfer
rates.

Access Mode :The privilege level at which the current program is allowed
to execute. All operating systems require atleast two modes: Kernel and
User.

4.1.3.2 ALU (Arithmetic Logic Unit)

1. The heart of every computer is an Arithmetic Logic Unit(ALU). Thisis
the part of the computer which performs arithmetic operations on
numbers eg addition, substraction, etc.

108

N,

7: 0| DATA

7:0| acCa

ALU

[7:0| result

st

7 : 0] ALUCTL

Fig 3 Simple Block Diagram of ALU

2. Above figure is describing about ALU which will perform 10 functions
on 8-bit inputs. So this ALU will generate an 8bit result, one bit
carry(c), and a one bit zero-bit(Z). So ALU uses control lines for
selection of particular function among these 10 functions.

3. The following Table describes these instructions which will be
executed by ALU shown in above figure

Sr.No Mnemonic

Description

1

LOAD

(Load DATA into RESULT) DATA =>
RESULT Cisadon't care 1-> Z if RESULT
==(Q, 0-> Z otherwise

ADDA

(Add DATA to ACCA) ACCA + DATA =>
RESULT C is cary from addition 1-> Z if
RESULT == 0, 0-> Z otherwise

SUBA

(Subtract DATA from ACCA) ACCA -
DATA => RESULT C is borrow from
subtraction 1 ->Z if RESULT == 0, 0-> Z
otherwise

ANDA

(Logical AND DATA with ACCA) ACCA &
DATA => RESULT Cisadon't care 1-> Z if
RESULT ==0, 0 -> Z otherwise

ORAA

(Logicad OR DATA WITH ACCA) ACCA |
DATA => RESULT Cisadon’t care 1-> Z if
RESULT ==0, 0 -> Z otherwise

COMA

(Compliment with ACCA)
1->C1->Zif RESULT == 0, 0 Z otherwise

109

INCA

(Increment ACCA by 1) ACCA + 1 =
RESULT Cisadon't care 1l if RESULT ==
0, 0-> Z otherwise

LSRA

(Logical shift right of ACCA) Shift al bits of
ACCA one place to theright: 0 RESULT[7],
ACCA[7:1]] RESULT[6:0] ACCA[0] C1-
>Z if RESULT == 0, 0 Z otherwise

LSLA

(Logical shift left of ACCA) Shift all bits of
ACCA one place to the left: 0-> RESULT[0],
ACCA[6:0] RESULT[7:1] ACCA[7] ->C1 -
>Zif RESULT == 0, 0-> Z otherwise

10

ASRA

(Arithmetic shift right of ACCA) Shift all bits
of ACCA one place to the right: ACCA[OQ]
RESULTI[7], ACCA[7:1]->RESULTI[6:0]
ACCA[0] ->C

1 ->Zif RESULT ==0, 0-> Z otherwise

For example here we are going to see the designing of one bit ALU which

does operation like AND, OR, ADD, where 00 implies the AND
operation, 01 implies OR, and 10 implies ADD operation

Carry in
A

@

B—|@—

. J

Operation

.
4

Adder

%
00
01

Result
10

»>

Carry out

Onebit ALU

Now Same ALU can be designed for one bit substraction in which A-B
operation is performed by method of A+2's Complement of B and A+1's
Complement of B+1

110

operation

e Result

B invert Carry out
1-bit adder/subtractor

For subtraction, B invert = 1 and Carry in = 1

Onebit ALU for subtraction

4.1.3.3 Control Unit

1. A machine instruction set goes a long way towards defining the
processor.

2. But before the execution of instruction, one must know the machine
instruction set along with the effect of each opcode, addressing modes,
set of available registers and also along with the functions that the
processor has to do the execution, but this is the not the actual case as
to execute functions, also there is a requirement of external interfaces,
usually through a buses and how interrupts are handled, so to handle
all these operations altogether in an controlled manner, there is need to
for a separate unit, known as Control unit.

3. So control unit is one which is going to handle the functions like
3.1 Operation (opcodes)
3.2 Addressing Modes
3.3 Registers
3.41/0 Module interface
3.5 Memory Module Interface
3.6 Interrupts

4. Items from 3.1 to 3.3 are defined by the instruction set. Item 3.4 and 3.5
are typically defined by specifying the system bus. Item 3.6 is defined
partially by the system bus and partialy by the type of support the
processor offersto the operating system.

5. The operation of a computer, in executing a program, consists of a
sequence of instruction cycles, with one machine instruction per cycle.

6. Each instruction cycle is made up of a number of smaller units. |.e
fetch, indirect, execute and interrupt.

7. Each instructions is executed during an instruction cycle made up of
shorter sub cycles (eg fetch, indirect, execute, interrupt).

111

8. The execution of each sub cycle involves one or more shorter
operations, that is micro-operations.

Program execution
‘ Inslrucljnnc_\'rie| ‘ Instroction cycle -
Pl e N ff HH%K\H
-f"/ lf."ll h““‘m,__ﬁ
[Feten | | mnairect | | Execute | [interrupt |
T i T
i 4 \
\ / £\ / !
|lll \\

\
‘ /
Elements of a Program Execution

9. Fetch Cycle- It is the cycle which occurs at the beginning of each
instruction cycle and causes an instruction to be fetched from memory.
Four registers are involved

9.1 Memory Address Register(MAR)-It specifies the address in memory
for aread or write operation.

9.2 Memory Buffer Register(MIBR)-It contains the value to be stored in
memory or the last value read from memory.

9.3 Program Counter(PC)-Holds the address of the next instruction to be
fetched.

9.4 Instruction Register-Holds the last instruction fetched.

10. The Interrupt Cycle- At the completion of the execute cycle, atest is
made to determine whether any enabled interrupt have occurred. If
yes then the interrupt cycle occurs. For eg

t;: MBR « (PC)
ty: MAR <« 3Save_Address

PC <« Routine Address
t3z: Memory = (MER)

In the first step, the contents of the PC are transferred to the MBR,
so that they can be saved for return from the interrupt. Then the
MAR is loaded with the address at which the contents of the PC are
to be saved and the PC is loaded with the address of the start of the
interrupt-processing routine.

10. The Execute Cycle- The fetch, indirect and interrupt cycles are smple
and predictable. Each involves a small, fixed sequence of micro-
operations and in each ease, the same micro-operations are repeated
each time around. This is not true of the execute cycle, because of
the variety of opcodes there are number of different sequences of
micro-operations that can occur. For example instruction ADD R1,X
adds the contents of the location X to register R1..

112

The following sequence of micro-operation might occur

1. MAR(IR address), 2.MBR(memory), 3. R1-(R)+(MBR). These three

complete set of operation is required to complete the instruction
ADD.

12. The Instruction Cycle- Each phase of the instruction cycle can be
decomposed in to a sequence of elementary micro-operations.

¥
11 iEnterrop) ,,-"’ T] i i (fedch)

168 jevecute) | 01 inadirect
Y . ¥
Setup } \\, Huad Feich
intermag . sddress imstruction
T 1
» s ,-'II.I|' I|I b1 N "
Exeouie
1CC =1 imstruc tien ICC =10

Fig 6 Flow chart for Instruction Cycle

4.1.3.4 Interfacesto instruction and data memories

Inmidsed i IloHace K
Suegrm A FEwiornal Thevioe
L5
—H Diadu Fosdics
[t Sainz
|
'.I Stamr'Conirl Regieders Cantinl
Ralddiisis 5
Limas ™ Exlzrnal .
Device
ImiderTacs Lol
LTI:--.H: Logic Capim)

Fig 7 Block Diagram of an 1/0O Module

113

1. Module connects to the computer through a set of signal lines-system
bus.

2. Data transferred to and from the module are buffered with data
registers.

3. Status registers are useful for providing status to the signal lines and
also act as a control registers.

4. Set of control lines are used by module logic for interaction purpose.

5. To issue commands to the 1/0O Module, processor uses control signals
lines.

6. To control an device module must generate and recognize addresses for
an device.

7. The function of an 1/0 module to allow an processor to view devices.

8. 1/0 module may hide device details from the processor so that only the
processor will be incharge of performing the read ad write operations.

9. I/0 Commands- The processor issues an address, specifying 1/0
Module and device , and an I/O command. The commands are as
follows

9.1 Control- Activate a peripheral and tell it what to do.

9.2 Test- Test various status conditions associated with an |/O module ad
its peripherals.

9.3 Read- Causes the 1/O module to obtain an item of data from the
peripheral and placeit in to an internal register.

9.4 Write- Causes the 1/O module to take a unit of data from the data bus
and transmit it to the peripheral

Isspe Rend == 10 Loz Riasd U — DA
=M copiied o [som ething Hihcofamind x5 something
D module =" ele o okl 1™ e
Rewd viatus _
= [mis i
wwidnke — Pl

Mt insbreclion

izh Direel memory acoma

(bi Intarrept-driven [4)

Threetechniquesfor input of a Block of Data
114

The above figure depicts three techniques by means of which block
of data is fetched to a processor. The first technique is programmed 1/0
where processor executes an 1/O instruction by issuing command to
appropriate 1/0 module. The second technique is Interrupt-Driven 1/0
where the processor does not have to repeatedly check the I/O module
status, in order to overcomes the processor having to wait long periods of
time for I/0O modules. The third techniques is Direct Memory access which
is used to eliminate the drawback of programmed and Interrupt-Driven 1/0
as drawback is 1/0 transfer rate limited to speed that processor catest and
service devices and processor tied up managing 1/0O transfers, where as
DMA module only uses system bus when processor does not need it to
fasten the process of serving an request.

4.1.4 DATA PATH

1. The data path is the “brawn” of a processor, since it implements the
fetch-decode-execute cycle. The general discipline for data path design
isto

1) Determine the instruction classes and formatsin the |SA.

2) Design datapath components and interconnections for each
instruction class or format and

3) Compose the data path segments designed in step 2 to produce a
composite datapath.

2. Datapath comprises of following components like memory(for storing
the current instruction), Program Counter (stores the address of current
instruction) and ALU for executing the current instruction).

Increment program counter

>+
_ . 4
PC Read Addr
Instruction [——»
Jetch
Instruction
Memory

I nteraction between componentsto form a basic data path
3. Types of Data Path

3.1 R Format- To implement R format instructions only the register

file and ALU | required. The ALU accepts its input from the Data

Read ports of the register file and the register file is the output of the

ALU .for example opcoderl, r2,r3 isthe R-format data path instruction
115

y

PRSI AR A

-_——a —— ——

ALU

Instruction

2

i

§

= ALU

Register File

Read Reg 1 Read

Read Reg 2 Datal

Write

Regster Read

Write Data Data2
Register
Write

op

Zero

Result

Fig 10 R-format Data Path

3.2 Load/Store Data Path- It performs the following actions in the order
given as 1) Register Access takes input from the register file, to implement
the instruction data or address fetch of the fetch-decode-execute cycle.
2) Memory Address Calculation- decodes the base address and offset,
combining them to produce the actual memory address. This step uses the
sign extender and ALU. 3) Read/Write from memory takes data or
instruction from the data memory and implements the first part of the
execute step of the fetch/decode/execute cycle. 4) Write in to Register File
puts data or instructions in to the data memory implementing the second
part of the execute step of the fetch/decode/execute cycle.

oo 3 ALL operation
ragister 1 aad MemWrite
R data 1
instruction r:(?sdtmﬂ Zor0 —>
e 0 e B I
register Read data
wrte data 2 _I _—
memory
Write
RegWrite | besizn
2 [s |2 e
* | extend
Fetch Decode Execute

Schematic diagram of L oad/Stor e data path

116

3.3 Branch/Jump Data-path performs the following actions in the order
given-

1) Register Access takes input from the register file, to implement the
instruction fetch or data fetch step of the fetch-decode-execute cycle.

2) Calculate Branch Target- It evaluates the branch condition along with it
also calculates the branch target address to be ready for the branch if it
is taken. This completes the decode step of the fetch-decode-execute
cycle.

3) Evauate Branch Condition and Jump- It determines whether or not the
branch should be taken. This effectively changes the PC to the branch
target address and completes the executes step of the fetch-decode-
execute cycle.

PC + 4 from nstruction datapath s——ei

>Aﬂd Sum Branch target
I ALU operdtion
Read .
register
Instruction | g d;??
Headt 2 =
registor To branch
Wiite Rogisters conieol loglc
register aead
Wirite data 2
dta
RegWrite|
i8 32
5 Sign 1 s

v lextend|

\/
Fetch Decode Execute

Schematic diagram of the branch instruction data path

4.1.5INSTRUCTION FETCH AND EXECUTE;
EXECUTING ARITHMETIC/LOGIC, MEMORY
ACCESS AND BRANCH INSTRUCTIONS

CPU repeatedly performs the following operations such as

1.1 Fetch- The next instruction from memory in to the instruction register.
1.2 Decode - The instruction (that is work out which it is).

1.3 Execute the instruction

2. Fetching and an Executing an instruction simply require the CPU’s
Control section to issue levels and pulses which set up pathways and
fire register transfers so that. Data is moved from memory to registers

117

and between registers, Data is passed through the ALU and Data is
stuffed back in to the memory.

3. For eg Instruction fetch MAR <- PC, MBR<-(MAR), IR<-MBR, PC+1

o Hugisters. ALLL Mumoey, st Qutside the CPU
Schematic Diagram of Fetch cycle

e

g e
PC=2 M-h MAR=2 _-J#_D

_ 5| 00000010 00001111 |
PC=3 | MAR=5 - 5
on't care
(9) |
NS 3 don't care |

Memory

fﬂ_-\‘ | 1
t\fi‘ (7 ‘s 2|00000000 00000101 N,
\ INC N 1 don't care i (fk‘:)
0 don't care :
IR(opcode) IR(address) Fars
00000001 | ooooo101 |_ -9 :
"*%H| MBR= 00000000 00000101
\, Decode
"
LDA x
So, MAR<-IR(address) :
sl vy MBR= 00000010 00001111 |
AC<-MER | ‘,/ 0
. 1)
AC=527 dec | —

Fetch and Execute of L DA X Instruction with X=5 and PC=2

4. The above figure shows how fetch and execute of LDA x is executed by
CPU and its Registers like Arithmetic logic unit.

4.1 During the fetch MAR<-PC

4.2 Addressing Location 2

4.3 Reading the memory MBR<-(MAR)

4.4 Now the MBR istransferred to the IR
118

4.5 Thelast part of the fetch is to increment the PC.

4.6 Decode then first step of execute is MAR<-IR(operand)
4.7 Now addressing location 5
4.8 Reading the memory MBR <- (MAR) again.
4.9 Now transfer to the Accumulator AC <- MBR
5. Execution of Branch Instruction-

For eg JMP X- Branch unconditionally to new location for next
instruction. The PC is dways incremented during the fetch cycle on
the assumption that the next instruction isin the next memory location.
This instruction alows an unconditional branching to a non-
consecutive instruction.

4.1.6 HARDWIRED AND MICRO-PROGRAMMED
CONTROL FOR RISC AND CISC

To execute an instruction, there are two types of control units

hardwired control unit and micro-programmed control unit.

designs.

Hardwired control unit are generally faster than micro-programmed

3. A micro-programmed control unit is a relatively simple logic circuit
that is capable of 1)Sequencing through micro-instructions and 2)
Generating control signalsto execute each micro -instructions.

4. The Following Table shows the difference between the Hardwired and
Micro-Programmed control unit

Table 1 Difference about RISC and CISC

Sr.No RISC CIsC
Hardwired control unit generates Micro-programmed control unit
: generates the control signals with
1 the control signals needed for the . - .
; N the help of micro instructions
processor using logic circuits i
stored in control memory
Hardwired control unit is faster
Wrr(])er;amr%oer;pgﬁrol L?li t z;snl(t:rrlg This is slower than the other as
2 brog . micro instructions are used for
required control signas are enerating sianals here
generated with the hep of|9 939
hardwares
Difficult to modify asthe control|Easy to modify as the
3 signals that need to be generated|modification need to be done
are hard wired only at the instruction level

119

gates

More costlier as everything has
4 to be redlized in terms of logic

Less costlier than hardwired
control as only micro instructions
are used for generating control
signals

It cannot handle

for it becomes complex

complex
5 instructions as the circuit design

It can handle

instructions

complex

Only limited

hardware implementation

number
6 instructions are used due to the

of

Control signals for many
instructions can be generated

7 of Reduced
Computers(RISC)

Used in computer that makes use
Instruction Set

Used in computer that makes use
of Complex Instruction Set
Computers(CISC)

Miscellaneous Questions

Q1. Explain the main components of a processor?

Q2. Difference between Hardwired and Micro-Programmed instructions

set?

Q3. Illustrate the concept of Data Path?
Q4. Explain the procedure for instruction fetch and execute?
Q5. Explain the Branch Instruction?

K/
%

120

4.2

BASIC INPUT/OUTPUT

Unit Structure

4.2.1 Objectives

4.2.2 Introduction

4.2.3 Accessing /0 devices

4.2.4 Datatransfers between processor and I/O devices

4.2.5 Interrupts and exceptions: interrupt requests and processing

4.2.1 OBJECTIVES

At the end of this unit, the student will be able to

e Describe about the different 1/0O devices

e Elaborate the concept of data transfer between processor and 1/0O
devices

e |llustrate the concept of Interrupts and Exceptions

4.2.2 INTRODUCTION

1. The I/O subsystem of a computer provides an efficient mode of
communication between the central system and the outside
environment. It handles all the input-output operations of the computer
system.

2. 1/0O devices that are connected to computer are called periphera
devices. These devices are designed to read information in to or out of
the memory unit upon command from the CPU and are designed to be
the part of computer system.

3. These devices are aso caled as peripherals. Below is the three types
of peripherals discussed here

3.1 Input Peripherals-Allows user input, from the outside world to the
computer. Eg Keyboard, mouse etc.

121

3.2 Output Peripherals- Allows information output, from the computer
to the outside world. Example printer,monitor etc.

3.3 Input-Output Peripherals- Allows both input(from outside world to
computer) as well as output(from computer to the outside world)
Example Touch Screen etc.

4. Interface is a shared boundary between two separate components of the
computer system which can be used to attach two or more components
to the system for communication purposes.

5. Sothere aretwo types of interface a)CPU Interface b)l/O Interface.

6. Peripherals connected to a computer need special communication links
for interfacing with CPU. In computer system, there are special
hardware components between the CPU and peripherals to control or
manage the input-output transfers.

7. These components are called input-output interface units because they
provide communication links between processor bus and peripherals.

8. They provide a method for transferring information between internal
system and input-output devices.

4.2.3 ACCESSING 1/0 DEVICES

1. Storage is only one of many types of 1/0 devices within a computer.

2. A large portion of operating system code is dedicated to managing 1/0,
both because of its importance to the reliability and performance of a
system and because of the varying nature of the devices.

3. A generd purpose computer system consists of CPUs and multiple
device controllers that are connected through a common bus.

4. Each device controller is in charge of a specific type of device
maintains two types of buffer commonly known as Local Buffer
Storage and set of specia Purpose registers.

5. Typically, operating systems have a device driver for each device
controller.

6. This device driver understands the device controller and presents a
uniform interface to the device to the rest of the operating system.

7. The following diagram (Fig 1) explains about how an device driver will
request for an particular 1/0O device. To start an 1/O operation, the

122

device driver loads the appropriate registers within the device
controller.

7.1 The device controller, in turn examines the contents of these registers
to determine what action to take.

7.2 The controller starts the transfer of data from the device to its local
buffer.

7.3 Once the transfer of datais complete, the device controller informs the
devicedriver viaan interrupt that it has finished its operation.

7.4 The device driver then returns control to the operating system. This
form of interrupt-driven 1/0 is fine for moving small amounts of data
but can produce high overhead when used for bulk data movement.

7.5 To solve this problem, Direct Memory Access (DMA) is used. After
setting up buffers, pointers and counters for the 1/0O device, the device
controller transfers an entire block of data directly to or from its own
buffer storage to memory with no interruption by the CPU.

)

o g

<~
=

\,)\, R P~ il
/ Pt . - — = -

\/

Fig 1 Working of an I/O operation

8. Single-Bus Structure- The bus enables all the devices connected to it to
exchange information. Typicaly, the bus consists of three sets of lines
used to carry address, data and control signals. Each 1/0 device is assigned
aunique set of addresses.

123

Processor Memory

Bus

110 device 1 b 1/0 device n

Fig 2 Single-Bus Structure.

9. To access the device appropriately, three data transfer techniques are
required such as memory mapped 1/0, Programmed 1/O, Interrupt
Driven and Direct Memory Access(DMA).

4.2.4 DATA TRANSFERSBETWEEN PROCESSOR AND
/O DEVICES

A. Memory Mapped 1/0

1 When I/O devices and the memory share the same address space, the
arrangement is called memory-mapped 1/O.

2. With memory-mapped /O, any machine instruction that can access
memory can be used to transfer datato or from an 1/O device.

3. Most Computer systems use memory-mapped |/O.

4. Some processors have specia IN and OUT instructions to perform 1/0
transfers. When building a computer system based on these processors,
the designer has the option of connecting 1/O devices to use the
Special /O address space or simply incorporating them as part of the
memory address space.

5. The address decoder, the data and the status registers, and the control
circuitry required to coordinate 1/0O transfers constitute the device's
Interface circuit.

124

Address lines

Bus Data lines

Control lines

Address Control Data and status
decoder circuits registers

| Input device |

Fig 31/0 Interfacefor an Input Device

. Above figure explains how processor access 1/O devices. First of all
processor places a particular address on the address lines, it is
examined by the address decoders of all devices on the bus. The
device that recognizes this address responds to the commands issued
on the control lines. The processor uses the control lines to request
either a Read or a Write operation, and the requested data are
transferred over the data lines. Intel processor uses 1/0O mapped 1/0.

. Programmed-Controlled I/0

. Consider a simple example of 1/0 operations involving a keyboard and
adisplay device in acomputer system. The four registers shown below
are used in the data transfer operations. The two flags KIRQ and
DIRQ in status register are used in conjunction with interrupts.

DATAIN

DATAOUT

STATUS DIRQ (KIRQ [SOUT| SIN
CONTROL DEN | KEN

Fig 4 Programmed-Controlled I/O for Keyboard

2. For example A Program that reads on line from the keyboard, stores it

in memory buffer and echoes it back to the display

125

Move #LINE, RO Initialize memory pointer

WAITK TestBit #0,STATUS Test SIN
Branch=0 WAITK Wait for character to be entered
Move DATAIN,R1 Read character

WAITD TestBit #1,STATUS Test SOUT
Branch=0 WAITD Wait for display to become ready
Move R1,DATAOUT Send character to display
Move R1,(RO)+ Store character and advance pointer
Compare #$0D,R1 Check if Carriage Return
Branch#0 WAITK If not, get another character
Move #30A DATAOUT Otherwise, send Line Feed
Call PROCESS Call a subroutine to process the

input line

Fig 5 Program Snippet about Keyboard Interface

3. The example described above illustrates programmed-controlled 1/O, in
which the processor repeatedly checks a status flag to achieve the
required synchronization between the processor and an input or output
device. We say that the processor polls the devices.

4. There are two other commonly used mechanisms for implementing 1/0
operations: Interrupts and Direct Memory Access.

4.1 Interrupts. Synchronization is achieved by having the I/O device send
a special signal over the bus whenever it is ready for a data transfer
operation.

4.2 Direct Memory Access: It involves having the device interface transfer
data directly to or from the memory.

C Interrupt Driven 1/0

1. To avoid the processor being not performing any useful computation, a
hardware signal called an interrupt to the processor can do it. At least
one of the bus control lines, called an interrupt-request line, is usualy
dedicated for this purpose.

2. An interrupt- service routine usually is needed and is executed when an
interrupt request isissued.

3. On the other hand, the processor must inform the device that its request
has been recognized so that it may remove its interrupt-request signal.
An interrupt-acknowledge signal serve this function.

126

Program 1 Program 2

COMPUTE routine PRINT routine
1 —]
2 —_— l
L)
Interrupt occurs . .
here -1 —_— ”
L]
i+1 — .
: I
g I —

Fig 5 Exampleof Interrupt Driven I/O

4. Treatment of an interrupt-service routine is very similar to that of
subroutine. An important departure from the similarity should be
noted. A subroutine performs a function required by the program from
which it is called. The interrupt-service routine may not have anything
in common with the program being executed at the time the interrupt
reguest is received. In fact, the two programs often belong to different
users.

5. Before executing the interrupt-service routine, any information that may
be altered during the execution of that routine must be saved. This
information must be restored before the interrupted program is
resumed.

6. The information that needs to be saved and restored typically includes
the condition code flags and the contents of any registers used by both
the interrupted program and the interrupt-service routine.

7. Saving registers also increases the delay between the time an interrupt
request is received and the start of execution of the interrupt-service
routine. The delay is called interrupt latency.

8. Typically, the processor saves only the contents of the program counter
and the processor status register. Any additional information that needs
to be saved must be saved by program instruction at the beginning of
the interrupt-service routine and restored at the end of the routine.

9. An equivalent circuit for an open-drain bus used to implement a
common interrupt-request line.

127

10
10
10

10
11

12.

13.

14.

15.

Processor

INTR C< I INTR

F—INTR‘I /L—JNTRZ s /L—INTRn

INTR=INTR1+INTR2+...+INTRn

Fig 6 Interrupt Hardwar e Design

. Handling Multiple Devices gives rise to a many questions
.1 How can the processor recognize the device requesting an interrupt?

.2 Given that different devices are likely to require different interrupt-
service routines, how can the processor obtain the starting address of
the appropriate routine in each case?

.3 Should a device be allowed to interrupt request be handled?

. Theinformation needed to determine whether a device is requesting an
interrupt is available in its status register. When a device raises an
interrupt request, it setsto one of the bitsin its status register, which is
caled IRQ bit.

The simplest way to identify the interrupting device is to have the
interrupt-service routine poll al the I/0O devices connected to the bus.
The polling scheme is easy to implement. Its main disadvantagesis the
time spent interrogating all the devices.

A device requesting an interrupt may identify itself directly to the
processor. Then, the processor can immediately start executing the
corresponding interrupt-service routine. This is called vectored
interrupts.

An interrupt request from a high-priority device should be accepted
while the processor is servicing another request from a lower-priority
device.

The processor’s priority is usually encoded in a few bits of the
processor status word. It can be changed by program instructions that
write in to the program status register(PS). These are privileged
instructions which can be executed only while the processor is running
in the supervisor mode.

128

16. The processor is in the supervisor mode only when executing
operating system routines. It switches to the user mode before
beginning to execute application program,

17. An attempt to execute a privileged instruction while in the user mode
leads to a special type of interrupt called a privilege exception.

18. An example of the implementation of a multiple-priority scheme

—‘ INTR1 INTRp
;o: Device 1 Device 2 eeoe Device p
7}
INTA1
S | S INTAp
S
o

A
1
1
1

Priority arbitration
circuit

Fig 7 Interrupt Priority arbitration circuit

19. Above figure illustrates when there is arrival of two or more request
from different devices for interrupt so priority arbitration circuit will
decide which request to servefirst.

20. To serve request more accurately priority arbitration circuit is used
with daisy chain

INTR1
L H - - — R — a

= INTA1 Device Device eee Device
o L]
o .
o INTRp ®
=]
1™
o

INTAp Device Device see Device

[}
[
1
[

Priority arbitration
circuit

Fig 7 Interrupt Priority with daisy chain

D. Direct Memory Access

1. To transfer large blocks of data at high speed, a specia control unit
may be provided between an external device and the main memory,
without continuous intervention by the processor. This approach is
called direct memory access (DMA).

129

2. DMA transfers are performed by a control circuit that is part of the 1/0
deviceinterface. We refer to this circuit asaDMA controller.

3. Since it has to transfer blocks of data, the DMA controller must
increment the memory address for successive words and keep track of
the number of transfers.

4. Although a DMA controller can transfer data without intervention by
the processor, its operation must be under the control of a program
executed by the processor.

31 30 1 0
Status and control | | | | | I
IRQJ L. Done
IE RW

Starting address I I

Word count | |
Fig 8 DMA Controller
Main
Processor memory
| System bus |

Disk/BIMA DAMA Printer Keyboard
controller controller
. . Network
Disk Disk interface

—~L__

Fig 9 DMA controller in a Computer system

5. Memory accesses by the processor and the DMA controllers are
interwoven. Request by DMA devices for using the bus are always
given higher priority than processor requests.

6. Among different DMA devices, top priority is given to high-speed
peripherals such as disk, a high-speed network interface etc.

7. Since the processor originates most memory access cycles, the DMA
controller can be said to “steal” memory cycles from the processor.
Hence, thisinterweaving techniqueis usualy called cycle stealing.

8. The DMA controller may transfer a block of data without interruption.
Thisis called block/burst mode.

9. A conflict may arise if both the processor and a DMA controller or two
DMA controller try to use the bus at the same time to access the main

130

memory. To resolve this problem, an arbitration procedure on bus is
needed.

10. The device that is allowed to initiate data transfer on the bus at any
given time is called the bus master. When the current master releases
control of the bus, another device can acquire this status.

11. Bus arbitration is the process by which the next device to become the
bus master take in to account the needs of various devices by
establishing a priority system for gaining access to the bus.

12. There are two approaches to bus arbitration- Centralized and
Distributed

13. In centralized arbitration, a single bus arbiter performs the required
arbitration.

BBSY

5 BR

[7y]

i

Q

=

o DMA DMA

BG1 Controller 1 BG2 Controller 2

BR _Li ,-’I\._\ o
BG1 x_.|l " | \L _

BG2 \ | b

PEE !
BBSY : P

- -
Processor DMA controller 2 Processor

Fig 10 Centralized Arbitration

131

14. In distributed arbitration, al devices participate in the selection of the
next bus master.

Distributed Arbitration

Assume that IDs of Aand B are 5 and 6.
Also, the code seen by both devices is 0111

& ARB1

L 4 L 2 ARBO

i .

T

¥

0 (1 |0 |1 0|1 |1 |1

Interface circuit for device A

Fig 11 Distributed Arbitration

Start-Arbitration

15. A bus protocol is the set of rules that govern the behavior of various
devices connected to the bus as to when to place information on the
bus, assert control signals, and so on.

16. In a synchronous bus, all devices derive timing information from a
common clock line. Equal spaced pulses on this line define equal time

intervals.

17. In the simplest form of a synchronous bus, each of these intervas,
constitutes a bus cycle during which one data transfer can take place.

Bus clock

Seen by master

Address and
command

Data

Seen by slave

Address and
command

Data

rﬁuM

{
\

rEllll'l'

Slave send the
Tas j"" requested data
-~

I T

t, L
Fig 12 Synchronous Bus Example
132

18. An aternative scheme for controlling data transfers on the bus is based
on the use of a handshake between the master and slave.

Address
and command i ')(
Master-ready |»
Slave-ready L—/ "‘——“l

Data K‘[&)_

_—

Bus cycle
Fig 13 Asynchronous bus example

19. The choice of a particular design involves trade-offs among factors
such as simplicity of the device interface, ability to accommodate
device interfaces that introduce different amounts of delay, tota time
required for bus transfer , ability to detect errors results from
addressing a non-existent device or from an interface malfunction.

20. Asynchronous bus- The handshake process eliminates the need for
synchronization of the sender and receiver clock, thus simplifying
timing design

21. Synchronous bus-Clock Circuitry must be designed carefully to ensure
proper synchronization and delays must be kept within strict bounds.

4.2.5 INTERRUPTSAND EXCEPTIONS: INTERRUPT
REQUESTS AND PROCESSING

1. Exceptions and interrupts are unexpected events that disrupt the
normal flow of instruction. An exception is an unexpected event from
within the processor. An interrupt is an unexpected event from outside
the processor.

2. When an exception or interrupt occurs, the hardware begins executing
code that performs an action in response to the exception. This action
may involve killing a process, outputting a error message,
communicating with an eternal device or horribly crashing the entire
computer system by initiating a “Blue screen of Death” and halting the
CPU. The instruction responsible for this action reside in the operating
system kernel and the code that performs this action is caled the
interrupt handler code.

133

3. Exception Types

Explanation

Occurs during the execution of
an add or sub instruction. If the
result of the computation is too
large or too small to hold in the
result register, the overflow
output of the ALU will become
high during the execute state.
This event triggers an exception.

Occurs when an unknown
instruction is fetched. This
exception is caused by an
instruction in the IR that has an
unknown opcode or an R-type
instruction that has an unknown
function code.

Occurs when the processor
executes a syscall instruction.
Syscdll instructions are used to
implement operating system
services(functions)

Sr.No | Exception Type
1 Arithmetic Overflow
2 Undefined instruction
3 System Call

4.

will be an output.

Interrupt Request (IRQ) Pinisthe first pin which will allow an external
device to interrupt to the processor. Since the processor don’t want to
service any externa interrupts before it is finished executing the
current instruction, we may have to make the externa device wait for
several clock cycles. Because of this, we need a way to tell the eternal
device that we have serviced this interrupt. So this problem be solved
by adding a second pin known as IACK(Interrupt acknowledge), that

CLK | 3 I

IRQ |
IACK

=)
i L

Fig 14 Timing Diagram for external interrupt

134

5. When an exception or interrupt occurs, the processor may perform the
following actions:

5.1 Move the current PC in to another register, call the EPC.
5.2 Record the reason for the exception in the cause register.

5.3 Automatically disable further interrupts or exceptions from occuring,
by left-shifting the status register.

5.4 Change control (jump) to a hardwired exception handler address.

5.5 To return from a handler, the processor may perform the following
actions:

Move the contents of the EPC register to the PC.

Re-enable interrupts and exceptions, by right-shifting the status
register.

6. When multiple types of exceptions and interrupts can occur, there must
be a mechanism in place where different handler code can be executed
for different types of events. So there are two methods to handle this
problem

6.1 Polled interrupt- The processor can branch to a certain address that
begins a sequence of instructions that check the cause of the exception
and branch to handler code for the type of exception encountered.

6.2 Vectored interrupt-The processor can branch to a different address for
each type of exception. Each exception address is separated by only
one word. A jump instruction is placed at each of these addresses that
forces the processor to jump to the handler code for each type of
exception.

Miscellaneous Questions

QL. Explain the operation of DMA

Q2. Explain the Input-operation

Q3. Illustrate about the different data transfer techniques used in CPU

Q4. Illustrate the concept of Exception and Interrupt Request

Q5. Explain the concept of Single-bus Structure

135

