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Course Outcomes

1. Students will understand the concept of Modelling Random Experiments, Classical
probability spaces, -fields generated by a family of sets, -field of Borel sets, Limit
superior and limit inferior for a sequence of events.

2. Students will be able to know about probability measure, Continuity of probabili-
ties, First Borel-Cantelli lemma, Discussion of Lebesgue measure on -field of Borel
subsets of assuming its existence, Discussion of Lebesgue integral for non-negative
Borel functions assuming its construction.

3. Students will be able to earn knowledge of discrete and absolutely continuous prob-
ability measures, conditional probability, total probability formula, Bayes formula.

4. Students will learn distribution of a random variable, distribution function of a
random variable, Bernoulli, Binomial, Poisson and Normal distributions,

5. Students will be able to understand Chebyshev inequality, Weak law of large num-
bers, Convergence of random variables, Kolmogorov strong law of large numbers,
Central limit theorem and Application of Probability Theory.

Unit I. Probability basics (15 Lectures)
Modelling Random Experiments: Introduction to probability, probability space, events.
Classical probability spaces: uniform probability measure, fields, finite fields, finitely
additive probability, Inclusion-exclusion principle, σ-fields, σ-fields generated by a family
of sets, σ-field of Borel sets, Limit superior and limit inferior for a sequence of events.

Unit II. Probability measure (15 Lectures)
Probability measure, Continuity of probabilities, First Borel-Cantelli lemma, Discussion
of Lebesgue measure on σ-field of Borel subsets of assuming its existence, Discussion of
Lebesgue integral for non-negative Borel functions assuming its construction. Discrete
and absolutely continuous probability measures, conditional probability, total probability
formula, Bayes formula, Independent events.

Unit III. Random variables (15 Lectures)
Random variables, simple random variables, discrete and absolutely continuous random
variables, distribution of a random variable, distribution function of a random variable,
Bernoulli, Binomial, Poisson and Normal distributions, Independent random variables,
Expectation and variance of random variables both discrete and absolutely continuous.
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Unit IV. Limit Theorems (15 Lectures)
Conditional expectations and their properties, characteristic functions, examples, Higher
moments examples, Chebyshev inequality, Weak law of large numbers, Convergence of
random variables, Kolmogorov strong law of large numbers (statement only), Central
limit theorem (statement only).

Recommended Text Books

1. M. Capinski, Tomasz Zastawniak: Probability Through Problems.

2. J. F. Rosenthal: A First Look at Rigorous Probability Theory, World Scientic.

3. Kai Lai Chung, Farid AitSahlia: Elementary Probability Theory, Springer Verlag.

4. Ross, Sheldon M. A first course in probability(8th Ed), Pearson.





1 
BASICS OF PROBABILITY 

Unit Structure 

1.0  Objectives 

1.1  Introduction 

1.2  Some Terminologies and notations 

1.3  Different Approaches of Probability 

1.4  Chapter End Exercises 

1.0 Objectives 

After going through this chapter you will learn 

 What is random experiment? How it forms the basis for the probability   

 Notion of sample space and its types 

 Various types of events 

 Operations of the events and the laws these operations obey. 

 Mathematical and Statistical definition of probability and their limitations. 

1.1 Introduction 

In basic sciences we usually come across deterministic experiments whose results 
are not uncertain. Theory of probability is based on Statistical or random 
experiments. These experiments have peculiar features 

Definition 1.1. Random Experiment: A non deterministic experiment is called as 
a random experiment if 

1. It is not known in advance, what will be the result of a performance of trial 
of such experiment. 

2. It is possible to list out all possible of this experiment outcomes prior to 
conduct it. 

3. Under identical conditions, it w possible to repeat such experiment as many 
times as one wishes. 

1
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Definition 1.2. Sample space: Collection of all possible outcomes of a random 
experiment is known as sample space 

Sample space is denoted by . And an element of  by  

1. Each  represents a single outcome of the experiment. 

2. Number of elements of  are called sample points, and total number of 
sample points are denoted by #  

3. Number of elements of  may be finite, or it may have one one 
correspondence with the , or with .  

4. Depending on its nature  is called as finite, countable or uncountable. 

Example 1.1.   

1. A roulette wheel with pointer fixed at the center is spinned. When it comes to 
rest, the angle made by pointer with positive direction is noted. This 
experiment is random. Since we do not know before spinning where the 
pointer would rest. But it may make angle any where between (O, 3600) thus 

here sample space 00,360  It is subset of . It w uncountable 

2. A coin is tossed until it turns up head. Number of tosses before we get head 
are noted. This is a random experiment. The corresponding sample space 

0,1,2,3  has one one correspondence with the , so it is countable 

3. A gambler enters a casino with initial capital  C  .If his policy is to 
continuing to bet for a unit stake until, either his fortune reaches to  C  
or his funds are exhausted . Gambler s fortune after any game is though 
uncertain we can list it out. The sample space of this random experiment is 

0,1,2,3 ,C  . Here sample space is finite. 

1.2 Some Terminologies and notations 

Event: Any subset of  is termed as an event. Thus corresponding to random 
experiment a phenomenon may or may not be observed as a result of a random 
experiment is called as an event. 

Note: Event is made up of one or many outcomes Outcomes which entails 
happening of the event is said to be favorable to the event. An event is generally 
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denoted by alphabets. Number of sample points in an event “ A ” is denoted by 
# A  . 

Algebra of events: Since events are sets algebraic operations on sets work for the 
events. 

 Union of two events: A and B are two events of  ,then their union is an 
event representing occurrence of (at least one of them) A or B or both and 
denoted by A B  

 Thus, A B { : A  or B  or  A and 13 both} 

 Intersection of two events: A and B are two events of  ,then their 
Intersection is an event representing simultaneous occurrence of A and B both 
and denoted by A B   

 Thus, A B { : A  and B } 

 Complement of an event: Non occurrence of an event is its complementary 
event. Complement of an event is denoted by A. It contains  that are not 

in A. Thus , A { :  does not belong to A } 

 Relative complementarity: Out of the two events occurrence of exactly one 
event is relative complement of the other. In particular if an event A occurs 
but B does not, it is relative complement of B relative to A. It is denoted by 
A B  or A B .This event contains all sample points of A that are not in B. 
Similarly B A  or B A  represents an event that contains all sample points 
of 13 that are not in A. Thus , A B { :  A and  does not belong to 
13 }  

 Finite Union and Countable Union: 1 2, , , nA A A  be the events of the sample 

space 1

n
ii

AU is called as finite union of the events. 

 If n  we have 1 ii AU  which is called as countable union of the events 

 Finite intersection and Countable intersection: 1 2, , , nA A A  be the events of 

the sample space 
1i

n
iA  is called as finite intersection of the events  

 If n  we have 
1 ii
A  which is called as countable intersection of the 

events 
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Laws of Operations: Union and intersection are the set operations, they obey 
following laws. 

 Commutative law i) A B B A  and ii) A B B A  

 Reflexive law i) A A A  and ii) A A A  

 Associative law i) A B C A B C   

ii) A B C A B C  

 Distributive law i) A B C A B A C   

ii) A 13 C A B A C  

 De Morgan’s Law i) A B A B  . ii) A B A B  

Impossible event: An event corresponding to an empty set. 

Certain event: An event corresponding to .  

Mutually Exclusive Event: When occurrence of one event excludes the 
occurrence of the other for all choices of it then the two events are called as 
Mutually exclusive events. Alternately, when the two events do not occur 
simultaneously then the two events are called as Mutually exclusive events. Here 

.A B  

Exhaustive events: The two events are said to be Exhaustive events if they 
together form the sample space Alternately when all sample points are included in 
them they are called Exhaustive events. Here AUB  

Equally likely events: If we have no reason to expect any of the events in 
preference to the others, we call the events as Equally likely events. 

Indicator function: Indicator function of an event denoted by AI  and defined 

as 

1
0A

A
I

A
   (1.1) 

Partition of sample space: 1 2, , , nA A A  be the events of the sample space such 

that they are Mutually exclusive and Exhaustive then are said to form (finite) 
partition of the sample space. 
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So, if 1 2, , nA A A  are forming partition of a sample space, for every 1,2,i j n

; i jA A  And 
1

n
ii A  

Note: Concepts of Mutually Exclusive Event and Exhaustive events and hence for 
partition can be generalized for countable events 1 2, ,A A   

Example 1.2. 1 2 3 4 5, , , ,e e e e e . If 1 3 5, ,A e e e  , and 1 2 3 4, , ,B e e e e  . 

Answer the following (i) Are A, B mutually exclusive? (ii) Are A, B exhaustive9. 

(iii) 2 4,IfC e e . find A B C  and A B  

Solution: (i) Since 1 3,A B e e  which is non null, so A, B are not mutually 

exclusive. (ii) A B  , so ,A B  are exhaustive. 

(iii) A B C  and A B C  

1.3 Different Approaches of Probability 

Definition 1.3. Classical or Mathematical definition (Leplace): If a random 
experiment is conducted results into N mutually exclusive, exhaustive and equally 
likely outcomes, M of which are favorable to the occurrence of the event A , then 

probability of an event A is defined as the ratio M
N

, and denoted by P A  

#
#

A MP A
N

 

This definition has limitations 

1  It is not applicable when outcomes are not equally likely. 

2  We may not always come across a random experiment that results into a finite 
number of outcomes. 

3  Even if outcomes are finite, can not be enumerated or the number favorable 
to the event of interest may not be possible to count. 
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Definition 1.4. Empirical or Statistical definition (Von Mises):If a random 
experiment is conducted N times, out of which M times it results into outcomes 

favorable to an event A, then the limiting value of the ratio M
N

 is called probability 

of A. 

lim
n

MP A
N

 

This definition also has limitations. 

1  This definition gives a stabilized value of the relative frequency, and 
overcomes to some extent the drawbacks of classical approach 

2  This definition also has some limitations first is, it may not be possible to 
repeat the experiment under identical conditions large number of times ,due 
to budgeted time and cost. 

3  In repeatation of the experiment large number of times conditions no more 
remain identical. 

4  Since it is based on concept of limit, drawbacks of limit are there with the 
definition also. However it it works satisfactorily and is widely used 

Example 1.3. 

What is the probability that a positive integer selected at random from the set of 
positive integers not exceeding 100 is divisible by (i) 5, (ii)5 or 3 (iii)5 and 3 .? 

Solution: 1,2, ,100  so, # 100  

(i) Let A be an event that no. is divisible by 5, so A , 5,10 ,100  

 so, # 20A  

# 20 0.2
# 100

A
P A  

(ii)  Let B be an event that no. is divisible by 3, so 3,6, ,99B  

 so, # 33B  

# 33 0.33
# 100

B
P B  
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(iii)  Let C be an event that no. is divisible by 5 or 3, C A B  
 so, # 13 47A  

# 47 0.47
# 100

C
P C  

(iv) Let D  be an event that no. is divisible by 5 and 3, D A B  
 so, # 6A B  

# 6 0.06
# 100

D
P D  

Example 1.4. What is the probability that in a random arrangement of alphabets 
of word (“REGULATIONS  

(i) All vowels are together. (ii)No two vowels are together ? 

Solution: Since there are 11 letters in the word, they can be arranged in 11! 
distinct ways so, # 11!  

Let A  be an event that the random arrangement has all vowels together. 
Since the 5 vowels is one group to be kept together and remaining 6 
consonants, which is random arrangement of 7 entities in all can be done in 
7! ways. In the group of 5 vowels the random arrangement can be done 5!. 
ways. so, # 7! 5!A X  

# 7!5! .01515
# 11!

A
P A  

(ii) Let B be an event that the random arrangement no to vowels together. The 
consonants can be arranged as * * * * * **C C C C C C  , where C stands for 
consonants. 5 vowels can be arranged a t 7, * positions in 7

5P  ways and 6 

consonants in 6! ways, all such random arrangements 57 6!P X  ways so, 

7! 6!#
2!
XB  

1

# 7!6! .04545
# 11!2

B
P B  

Example 1.5. From a pack of well shuffled 52 cards four cards are selected  
without replacing the selected card. Jack, queen, king or ace cards are treated as 
honor card. a) What is the probability that are there are i) all honor cards ii) More 
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honor cards 9. b) What will be these probabilities if cards are drawn with 
replacement? 

Solution:  

a) Since there are 52 cards in the pack of cards,4 can be selected without 
replacement in 52

4C  distinct ways so, 52
4# C  

i) Let A be an event that the random selection has 4 honor cards. Since there 
are in all 4 4X  honour cards, 16

4# A C  

4

4

# 16 0.0067
# 52

A CP A
C

 

ii)  Let B be an event that the random selection has more , that is 4 or 3 honor 
cards. 

16 36 16
4 1 3#  21980B C C C  

# 21980 0.08119
# 270725

B
P B  

b) 4 cards can be selected with replacement in 452  ways so, 4# 52  

i)   Let C be an event that the random selection has 4 honor cards. 4# 16C  

4

4

# 16 0.00896
# 52

C
P C  

ii)  Let D be an event that the random selection has more ) that is 4 or 3 honor 
cards. 

4 3# 16 36 16 212992D X  

# 212992 0.02913
# 7311616

D
P D  

Example 1.6. In a party of 22 people, find the probability that (i) All have different 
birtday (ii) Two persons have sme bithday (iii) 11 persons have birtday in same 
month. 

Solution: We assume that none of them have birthday on 29th February. 
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(i)  Since all 22 people can have any of 365 days as their bithday in 22365  ways. 
Thus 22# 365  

 A be the event that all have different birhday, 365
22# A P  

 Hence 0.5243P A  

(ii)  B be the event that two have same birthday and remaining 20 have different 
birhday, Any 2 out of 22 can be chosen to have same birthday in 222C  ways, 

and remaining 21 different birthdays can be chosen from 365 days in 22365P  

ways. 
365 22

21 2# B P C  

 Hence 0.352P B  

(iii)  C be the event that 11 have birhday in same month and remaining 11 in 
different months. 

 Now 22# 12  

 And 12 22
11 11# C P C  

 Hence 0.000011P C  

The notion of probability is given modern approach which is based on measure 
theory. For this it is necessary to introduce class of sets of  

In next chapter we will discuss various classes of sets. 

1.4 Chapter End Exercises 

1. Cards are to be prepared bearing a four digit number formed by choosing 
digits among 1, 4, 5, 6 and 8. ind the probability that a randomly chosen 
cards among them bear (i) An even number (ii) A number divisible by 4 (iii)A 
number has all four digits same. 

2. A sample of 50 people surveyed for their blood group. If 22 people have ‘A’ 
blood group, 5 have ‘B’ blood group, 21 have ‘O’ blood group and 2 have 
‘AB’ blood group. Find the probability that a randomly chosen person has  
(i) Either ‘A’ or  ‘13’ blood group (ii)Neither ‘A’ nor ‘B’ blood group. 

3. A roulette wheel has 40 spaces numbered from 1 to 40. Find the probability 
of getting (i) number greater than 25(ii) An odd number (iii) A prime number. 
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4. A, B, C forms a partition. If the event A is twice as likely as B ,and event C 
is thrice as likely as A . Find their respective probabilities. 

5. What is the probability that in a random arrangement of alphabets of word 
“CHILDREN  

(i) All vowels are together. 

(ii) No two vowels are together? 

6. A committee of 5 is to be formed from among a coordinator, chairperson, five 
research guides and three research students. What is the probability that 
committee (i) Do not have coordinator and chairperson. (ii) All research 
guides (iii) None of the students 

7. 9 people are randomly seated at a round table. What is the probability that a 
particular couple sit next to each other? 

8. In a box there are 10 bulbs out of which 4 are not working. An electrician 
selects 3 bulbs from that box at random what is the probability that at least 
one of the bulb is working? 

9. 1,2, ,50  A denote number divisible by 5, B denotes number up to 

30 ,C is number greater than 25 and D is number less than or equal to 4. 
Answer the following  

(i) Which events are exhaustive? 

(ii) Which events are mutually exclusive?  

(iii) Give a pair of events which is mutually exclusive but not exhaustive. 

(iv) Give a pair of events which is not mutually exclusive but exhaustive. 

(v) Give a pair of events which is neither mutually exclusive nor 
exhaustive. 

10. A pair of fair dice is thrown what is the probability that the sum of the 
numbers on faces of the dice is (i) 6, 7 or 8. (ii) Divisible by 5.(iii)a prime 
number? 

11. What is the probability that in a group of 25 people (i) all have different 
birtdays (ii)11 have birhday in different month and 14 in the same month? 

12. Five letters are to be kept in five self addressed envelopes. What is the 
probability that (i) All goes to correct envelope(ii)none of them goes to 
correct envelope? 
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13. The coefficients a,b,c of the quadratic equation 2 0ax bx c , are obtained 
by throwing a die thrice. Find the probability that equation has real roots. 

14. What is the probability that there are 53 Thursdays and 53 Fridays in a leap 
year? 

15. A sequence of 10 bits is randomly generated. What is the probability that  
(i) atleast one of these bits is 0? (ii) a sequence has equal number of 0 and 1. 

16. The odds against an event A are 3: 5, the odds in favor of an event 13 are 7: 
5, What are the probabilities of the events? 

17. In a group of 12 persons what is the probability that (i) each of them have 
different birthday (ii) each of them have birthday in different calendar month? 

18. A, B, C are mutually exclusive. 1 3x 1 4xP A ,P B
2 3

and 

1 xP C
6

 . (i)Show that the range for x is, 1 1
4 3

x  (ii) are they 

exhaustive? 

19. Express A B C  as union of three events. 
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FIELDS AND SIGMA FIELDS  

Unit Structure 

2.0 Objectives 

2.1 Class of Sets 

2.2  Field 

2.3  field and Borel  field  

2.4  Limit of sequence of events  

2.5  Chapter End Exercises 

2.0  Objectives 

After going through this chapter you will learn 

 A class of sets and variouus closure properties that it may follow.  

 Concept of field and its properties. 

 Sigma field and its properties. 

 Borel Sigma field, minimal Sigma field. 

 Limit superior and limit inferior of sequence of events. 

2.1 Class of Sets 

Before introducing modern approach of probability, we need to define some terms 
from measure theory. Subsequent sections are also explaining their role in 
probability theory.  

A collection of subsets of  is termed as Class of subsets of  .It plays an 
important role in measure theory. They have some closure properties with respect 
to different set operations. 

A  be the class of subsets of .  

12
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Complement: A is said to be closed under the complement, if for any set A A  , 
A  is A  

Union: A  is said to be closed under the union if for any sets A, ,B A A B  is 
A  Intersection : A  is said to be closed under the intersection if for any sets A  , 

,B A A B  is A  

Finite Union and Countable Union : A  is said to be closed under the finite union 
if for any sets 1 2,A A  , ..., .nA A  , 1

n
i iA  is A  .Further if n  and if we have 

1Ui iA  is ,A A  is said to be closed under countable unions 

Finite intersection and Countable intersection: A  is said to be closed under the 
finite intersection if for any sets 1 2,A A  , ..., . ,nA A  

1
n
i iA  is A  .Further if n  and if we have 1i iA  is ,A A  is said to be 

closed under countable intersection. Note: Closure property for countable operation 
implies closed for finite operation 

2.2 Field 

Definition 2.1. Field : 

A class  of subsets of a non empty set  is called a field on  if 

1. .  

2. It is closed under complement. 

3. It is closed under finite Union 

Notationally 

A class  of subsets of a non empty set  is called a field on  if 

1.  

2. for any set A ,  .A  

3. for any sets 1 2,A A  , ... , 1. , n
n i iA A  

Following points we should keep, in mind regarding field. 

 Closure for complement and finite Union implies closure for 
intersection.So,field is closed under finite intersections. 

 ,  is a field. 
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 Power set P  ,which is set of all subsets of  is a field. 

 For any A , , , , isA A  smallest field containing A.  

 For any sets A,B  A B ,hence A .B  

 1  and 2  are two fields on , then 1 2n  is a field. 

 Field is also called as an Algebra. 

Example 2.1. 1,2,3  , 1 , , 1 , 2,3  and 2 , , 2 , 2,3  are 

two fields on . Is union of these two fields is a )ifield  

Solution: 1 2 { , , 1 , {2}, {2, 3}}  

let 1 21,2 1 2 UA  

1 2f  is not a field. 

Example 2.2.  { A  such that A  is finite} . Is  a field? 

Solution: No, if  is infinite then,  does not belong to  and hence  cannot 
be a field. 

Example 2.3. Complete the following class to obtain a field. Given 0,1  and 

1,1, 0,
2

 

Solution: Add 1 1 10,1 , ,1 , 0, U 1 , 0,1 , ,1
2 2 2

 in  to make it a field 

2.3  field and Borel  field 

Definition 2.2.  field: A class C  of subsets of a non empty set  is called a 
 field on  if 

1.  .C  

2.  It is closed under complement. 

3.  It is closed under countable Unions. 
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Notationally 

A class C  of subsets of a non empty set  is called a   field on  if 

1.  C  

2.  for any set A C  , .A C  

3.  for any sets 1 2,A A  , ..., . C  , then 1i iA C  

 Field which is closed under countable unions is a field. 

 Like fields the intersection of arbitrary   fields is also   field 
but their union is not a field 

 Power set P  ,which is collection of all subsets of  is ao . field. 

 Given a class of sets consisting all countable and complements of 
countable sets is a  field 

Example 2.4. A class C  of subsets A  of  such that either A  or its complement 
is finite. Is C  is I a  field pd II  a field  9. 

Solution:  

(I) C  { |A A  is finite or  is finite} 

Note that i C  is closed under complementation, since either of A  or  is 

finite (ii) If ,AB C  both finite then A B  is finite 

If A  is finite B  is infinite A B  is infinite. But A B A B  .Since  is 

finite  is infinite 

BA  finite, hence A U  B. Similarly, we can check the case when both A  
and B  are infinite. 

Thus, For any ,A B C , A B  is also C . So C  is a field 

(II) But if iA  are finite 1i iA  does not belong to .C  

 C  is not closed for countable unions, hence cannot be 0 field. 

Definition 2.3. Minimal field  : A class C  of subsets of  is called a minimal 

 field on  , if it is the smallest 0 field  containing C  
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 Minimal  field can be generated by taking intersection of all the  
fields containing C  

 If A is family of subsets of  , and n |AC C A C  ,which is intersection 

of all 0  fields containing A then AC  is a minimal  field. 

 If A itself is a  field, then AC A  

Hence onwards we term the pair ,C  as a sample space 

In theory of probability  IR has specific features and sample space (IR, B ) 
plays vital role. 

Definition 2.4. Borel  field: Let C  is the class of all open intervals , x  

where x , a minimal field  generated by C  is called as Borel   field, 

and denoted by .B  

Borel   field has following features. 

1. It is clear that [ ,x ) is complement of , x  but it does not belong to 

C  .Thus C  is not closed under complement C  is also not closed under 
countable intersections, as 

 1
1 , ,n x x
n

 . But B  is closed under complements as well as 

countable unions or intersections. 

 Hence  contains all intervals of the type[ ,x ) 

2. 1
1, ,nx x
n

 .So B  contains all intervals of the type ( , x ] 

3. ,x  is complement of ( , x ]. Thus B  contains all intervals of the type 

,x  . 4. , , ,a b b a  , where a b . So  contains all 

intervals of the type ,a b  . And contains even intervals of the type [ ,a b ), 

( ,a b ] for  all a,b .  

Note that sets of B  are called as borel sets. 
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2.4 Limit of sequence of events 

In this chapter the concept of limit of a sequence of events is introduced. 

Definition 2.5. Limit Superior: nA  be the sequence of events of space ,C . 

Limit superior of nA  is an event which contains all points of  that belong to nA  

for infinitely many n  and it is denoted by lim  sup n nA or limA  , termed as limit 

superior of nA  

 lim  sup nA  iff for each n 1  there exists an integer m n  such that 

mA  for all m n  

 Thus 1lim  sup nn m n mA  

 It can be clearly seen that lim  sup nA C  

 lim .0n nA A i  , where i.o  infinitely often. 

Definition 2.6. Limit Inferior: nA  be the sequence of events of space ,C  . 

Limit inferior of nA  is an event which contains all points of  that belongs to nA  

but for finite values of n . and it is denoted by lim  inf n nA or limA  , termed as limit 

inferior of nA  

 lim  inf nA  iff there exists some n 1  such that mA  for all m n   

 Thus 1lim  inf n n m n mA A  

 It can be clearly seen that limin nA C  

 lim  inf lim  sup n nA subseteq A  

 If lim nA  exists, lim lim  inf lim  sup n n nA A A  . 

Definition 2.7. nA  be the sequence of events of space ,C  such that 

1 2A A  , then nA  is called as expanding or increasing sequence and 

1lim n n nA A  

Definition 2.2. nA  be the sequence of events of space ,C  such that 

1 2A A  , then nA  is called as contracting or decreasing sequence and 

1lim n n nA A  



18

SET THEORY AND LOGIC & ELEMENTRY PROBABILITY THEORY

Remark 2.1. nA  be the sequence of events of space , n m n mC then i C A  

is decreasing sequence. nC C , where 1 lim  sup n n nC c A  (ii) n m mB A  

is increasing sequence. nB B , where 1 lim  inf n n nB B A  

Remark 2.2. nA  be the sequence of events of space ,C  then m n mA  is also 

called as m n mSup A , and m n mA  is also called as m n mInf A  . 

2.5 Chapter End Exercises 

1.  is a field .If ,A B  then show that A B  and A B  are also events off 

2. 1,2,3,4 .  

Which of the following classes is a field on ? 

(i) 1 , 1,4 , 2,3  

(ii) 2 , , 2 , 3 , 2,3 , 1,4 , 1,2,4 , 1,3,4 . 

3. Complete the following class to obtain a field. Given 0,1  and (i) 

1 1, 0,1 , 0, , ,1
2 2

 (ii) 1 1 2 2{ , 0,1 , 0, , 1) 0, , ,1 }
2 2 3 3

 

4. A class C  of subsets A of  such that either A or its complement is 
countable. Is C  is a field? 

5. A, ,CB  forms partition of  , obtain a smallest field containing ,13,A C  

6. Show that following are the Borel sets. 

 (i) , iia b a  (iii) Any finite set (iv)Any countable set (v) A set of rational 

numbers(v) A set of natural numbers 

7. C is field on 0,1 such that 1 1,
, 1

C
n n

for n = 1,2,....Show that 

following are the events of C. (i) 1( ,1]
n

 ( ii ) ( 10, ]
n

 

8. 
1,3,5,
2,4,6n

A n
A

B n
 

 Find lim  inf nA  , 7lim  sup lA  and show that lim nA  does not exists. 
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9. Prove that (i) lim n n n nA B limA limB , (ii) limn nlimA A , (iii) 

lim n nA B  

 n nlimA limB  

10. Are the above results true for lim  inf? 

11. If nA A  then n  
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3 
PROBABILITY MEASURE AND  

LEBESGUE MEASURE 

Unit Structure 

3.0 Objectives 

3.1  Probability Measure 

3.2  Lebesgue Measure and integral 

3.3  Discrete and absolutely continuous probability measures 

3.4 Chapter End Exercises 

3.0 Objectives 

After going through this chapter you will learn 

 A function defined on sample space called as probability measure.  

 Types of probability measure ,discrete and continuous. 

 Lebesgue measure and Lebesgue integral. 

 Properties of probability function 

 Probability of limit of sequence of events. 

3.1 Probability Measure 

The modern approach of probability is based on measure theory. Following 
definition is due to Kolmogorov (1933) 

Definition 3.1. Axiomatic definition of probability: C  be the Cf  field associated 
with the sample space . A function .P  defined on C  to 0,1  is called as 
probability measure or simply probability if it satisfies following axioms. 

1. 0P A  for all .A C  

2.  1P  

3.  1 2,A A  , ... is sequence of mutually exclusive events of C  then 

 1 1i i iiP A P A      (3.1) 

20



21

Chapter 3: Probability Measure and Lebesgue Measure

 Axioms are respectively called as non negativity, normality and countable 
additivity.  

 In this definition probabilities have been already assigned to the events, by 
some methods or by past information. 

 The triplet , ,C P  is called as a probability space 

 Depending on  different types of probability space are decided. 

 If  is finite or countable(at most countable)probability space is discrete. 

 If  has one one correspondence with IR probability space is continuous. 

Properties of the Probability function. 

Complement  

1P A P A  

Proof: 

A A  

A and A are mutually exclusive events So 

P P A P A  

…by countable additivity axiom 

L. H. S 1….. by normality axiom 

R.H. S P A P A  Hence 

 1P A P A  

  1P A P A  

Monotone A and B are C  such thatA A B  then P A P B  

Proof: 

B A B A  

Since A and  B A  are mutually exclusive, so by countable additivity axiom 

 AP B P A P B  

So, P A P B  as 0P B A  
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Substantivity A and B are C  such thatA B . Then P B A P B P A  

Proof: From the above proof 

P B P A P B A  

Thus 

P B A P B A P B F A  

Similarly we can say that 
A and B are C  such that B A  Then P A B P A P B  

Continuity lim
n nA A  ,then lim

n nP A P A  

Theorem 3.1. ji A  is expanding or increasing sequence of events of space 

,C  then 

1lim n n nn
P A P A      (3.2) 

(ii) jA  is the contracting or decreasing sequence events of space ,C  then 

1lim n n nn
P A P A      (3.3) 

Proof: i jA  be the sequence of increasing events, so 1 2A A . Let 

1nj j j jB A A B  are mutually exclusive. 

So 1
n

n j jA B  

1 1j j j jA B      (3.4) 

By 9.4  

1 1j j j jP A P B  

 
1 jj
P B  By countable additivity 

 
1

lim n
jjn

P B  By definition of sum of series 

 1lim n
j jn

P B  By finite additivity 

 lim nn
P A  By definition of nA  

1lim n n nn
P A P A  

ii jA  be the sequence of decreasing events, so 1 2A A  . hence j  be the 

sequence of increasing events, so 1  2   Applying result in (i) to j  

1  lim  j n
P j P n    (3.5) 
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 11 L.H.Sj jP A  by De Morgan’s law 

 1 lim 1 R.H.Snn
P A  By complementation 

1 lim nn
P A  

1lim nn n nn
P A P A  

Theorem 3.2. The continuity property of probability. 

lim nn
A A , then lim limn nn n

P A P A P A    (3.6) 

Proof: 1 1lim  inf nn m m n m n nA A B  

were 

n m n mB A  

These snB  are increasing events 1n nB B  say 

using (3.2) 

1lim n n nn
P B P B P B  

1 1lim  sup n m n m n nA P C  

where 

n m n mC A  

These snC  are decreasing events 1n nc Csay  

using (3.3) 

1lim n n nn
P C P C P C  

Now consider, 
Um n m n m n mA A A   (3.7) 

Bn  An  Cn    

By monotone property of P  

n n nP B P A P C  

taking limits 
lim lim limn n nn n n

P B P A P C  

So, 
lim rn

P B P A P C  

But, lim nA A  

lim lim  inf lim  sup n nA A A B A C  
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implies 
P B P A P C    

lim limn nn n
P A P A P A   (3.8) 

Example 3.1. Which of the following are Probability functions? 

(i) 1,2,3 , , C  is field  on . A function P  

defined on space ,C  as 

1
2iP i    

for i  
Solution: a) 

1

1 1
2ii

P    

b)  

0P A  for all A C    

)c Let  us define mutually exclusive events, iA i  we can verify countable 

additivity. 

1 1i i i iP A P A    (3.9) 

By a) ,b)and c) Pis Probability function.  

0,ii  , Borel field B  defined on .A  function F  

defined on space , B  as, for any I  

x

I
P I e dx      (3.10) 

Solution: a) 
0

1x
xP e d  

b) 0P A  for all A B  

) , 1ic A i i  we can verify countable additivity 

. 
1

1 Ui

x
i i xP A e d     (3.11) 

iA s  are mutually exclusive. From the properties of integrals, 

1
1 1

i x
x ii i

f e d P A    (3.12) 

By a) ,b), c) P is Probability function.  
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(iii) ,  , field  C  defined on  A function P  defined 

on space ,C  as, for any I C  

0 ,1
1 1
2

I
P I

I
 

 Solution: a ) 

1

1 1
2

P  

P  is not a Probability function. 

Theorem 3.3. Borel Catelli lemma 

If iP A  then lim .0 0n nP A P A i  

Proof: 

 1lim   n n m n mP A P A  

                  m n mP A  

         asmm n
P A  events need not be mutually exclusive 

If iP A  , then mP A  tends to zero as n  Hence the proof. 

Remark 3.1. Other half of the above result is stated as follows. But it needs 
independent events. 

For iA  are independent events of the sample space, If iP A  then 

lim .0 1n nP A P A i  

3.2 Lebesgue Measure and integral 

Definition 3.2. Lebesgue Measure A function  defined on space , B  is called 

as Lebesgue Measure if it satisfies following 
1. ,a b b a   

2. 0  

3. iE s  are mutually exclusive intervals of B  then, 

1 ? 1Xi i tE E  
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Example 3.2. Find Lebesgue Measure for following sets.  

(i) 
1 1,
2 6

(ii) 1 1,
3 2

(iii) 2 7,
3 9

(iv) 1 ,: 1,2,.}n
n

(v) 1{ : }
2nx x n forn  

Solution: 

(i) 1 1 1 1 1,
9 6 6 9 18

 

Similarly (ii)  1
9

(iii) 1
9

 (iv)
i 1

1 1{ : n 1,2,...} 0
n n

  

(v) n

1x n
2

implies n n

1 1n x n
2 2

 

x lies in mutually exclusive intervals of length n 1

1
2

 

 n

1x : x n
2

for n n
i 0

1 1n n ,n 2
2 2

 

Remark 3.2.  

 If 0,1  then P  is Probability measure.  

  is actually an extended measure. It is  finite measure, 

 Since 1(lim( ,x x x
n

]) 

1 1lim , limx x x
n n

 

by continuity 

Thus 0x  

 From above ( ,a b ] ,a b b a  

 The sets whose  measure is zero is called as  null set. 

Definition 3.3. .f  is a function defined on  is a  called as Borel function if 

inverse image is a Borel set. 

Definition 3.4. Lebesgue integral: Lebesgue integral is a mapping on non-negative 
burel function f  which satisfy following, 

1 0,fd  

2 AI d A  for any A  
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3 f g d fd gd  and cfd c fd . Where 0c  

4 lim nf d fd  if lim nf x f x  for any x  

 For any nonnegative piecewise continuous function f  

,

b

a bJ fd f x dx F b F a
,   (3.13) 

 Where P  is antiderivative of f .  

 P  is nondecreasing function with F F  is finite. 

 If we divide F  by F F  we get probability measure. 

 We will revisit this function in next chapters. 

3.3 Discrete and absolutely continuous probability measures 

Definition 3.5. Density function: A non-negative Borel function f  : [0, ) is 
called as a density if 

1fd          (3.14) 

Theorem 3.4. If f  is a density then P  satisfying 

A
P A fd          (3.15) 

is a probability measure on Borel subsets A  of  

proof: Since f  is a density on  

1P fd       (3.16) 

Now consider 1 2,A A  be mutually exclusive Borel sets. Let 1 t
n

n iB A  and 

1i iB A  Since I I
nB Bf f  By monotone convergence of Lebesgue measure 

I I
n

n
n B BB B

P B fd f d f d fd P B   (3.17) 

Thus P  is countably additive, hence it is Probability measure. 

Example 3.3. Find the constant k  if following are the density functions. 

(i) 2,3If x k x  
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(ii) 2 ; 0xf x ke x  

Solution:(i) The density is 0  outside [ 2, 3] and on [ 2, 3] it is 1 

. 
3

2
1 5 1f x dx k dx k     (3.18) 

                       1
5

k  

(ii) The density is 0  outside 0,  and on 0,  it 2xsf x ke  

. 2

0
1

2
x kf x dx k e dx      (3.19) 

     2k  

Definition 3.6. Absolutely Continuous Probability Measure: 

P  is a probability measure on Borel subsets A  of  is said to be Absolutely 
Continuous probability Measure, if there exists a density f  such that 

A
P A fd          (3.20) 

Definition 3.7. Dirac Measure: 

Let  be at most countable arbitrary set,  be the family of subsets of . A 
measure w  on  defined as 

1
0

A
A

A
      (3.21) 

is called as Dirac Measure concentrated at w  

Definition 3.8.  be at most countable arbitrary set )  be the family of subsets 
 A  Dirac measure on  say  A probability measure P  defined as 

1 k kk
P A        (3.22) 

such that 0k  and 

    
1

1k
k

 

is said to be discrete probability measure. 

Remark 3.3. Dirac Measure is a probability measure. 

  is largest set with measure O, and its every subset has also measure 

0 . Smallest set with measure 1 is w  
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 For 1 2,  , 
1 2

1P A A A  is a probability measure. 

Where 0 1.  

 Sometimes we come across measures which are neither discrete nor 
absolutely continuous. Following theorem is for such mixed probability 
measures. 

Theorem 3.5. 1P  , and 2P  are the two probability measures, 

1 21P A P A P A  is a probability measure. Where 0 1.  

Proof: 

1. 1 21 1P P P  ,as both 1P  and 2P  are probability 

measures. 

2. 1 21 0P A P A P A  as 0, 1,2.iP A i  

3. nA  be the countable sequence of mutually exclusive events. I3y  countable 

additivity of 1P  and 2P  , 

 1 1 1 2 1  1n n n n n nP A P A P A  

 1 21 1
 1n nn n

P A P A  

 
1

 nn
P A  

This shows that P A  is a probability measure. 

Remark 3.4. Generalization of above result can be stated as : ,iP s  are the 

probability measures, i iP A P A  is a probability measure. Where 

0 1i  and 1i  

Example 3.4. Find the P A  if following are the density functions and F  is 

absolutely Continuous probability measure . .w r t  it and (0,2A ]. 

(i) 3,3
1 I
6

f x x  . (ii) ) 0xf x e x  

Solution:(i) 
2

0

1 10,2 1
6 3

P dx  

(ii) 
2

0
0,2 0.8647xP e dx  



30

SET THEORY AND LOGIC & ELEMENTRY PROBABILITY THEORY

Example 3.5. Define P  by 1 2 3
1 3 1
8 8 2

P A A A P A ,  

3P  has density 3,3
1 I
6

f x x  Compute 2,3  . 

Solution: 1 22,3 1, 2,3 1 , and 

3

3 2

1 1 1 3 1 72,3 1 2,3 .
6 6 8 8 12 12

P dx P  

3.4 Chapter End Exercises 

1. Find the constant k  if following are the density functions. 

(i) 
5, 5

If x k x  

(ii) 3;0 1f x kx x  

2. Find the P A  , if following are the density functions and P  is absolutely 

Continuous probability measure w.r. t  it. A ( 1,0.5 ]. 

(i) 1,4
1 I
4

f x x  

(ii) 6 1 ;0 1f x x x x  

3. ,   field C  defined on  .A function P  defined on space 

 ,C  as , for any I C  

 
1
0

Iisfinite
P I

Iisinfinite
 

4. Find Lebesgue Measure for following sets , 0,1 , (, 1 2,
8 5

]. 

5. Show that Dirac Measure is a probability measure. 

6. Define Paneity 1 2 3
1 1 1
4 4 2

A A A P A  

 3P has density 22 xf x e Compute P 1,3 ).  
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7. Define P  by 1 2 3
1 3 1
8 8 2

P A A P A P A  , 2P  has density 

1,1
1 I
2

f x x  and 3P has density 2;0 1f x x x .Compute P 0,1 . 

8. If 0nP A A  as n  then show that nP A P A  . 

9. Show that n n 1P A B C P P P  . 

10. If A and B  implies C  then show that P  P P  . 

 



4 
CONDITIONAL PROBABILITY AND 

INDEPENDENCE 

Unit Structure 

4.0  Objectives 

4.1 Conditional Probability and multiplication theorem  

4.2 Independence of the events 

4.3  Bayes’ Theorem 

4.4 Chapter End Exercises 

4.0 Objectives 

After going through this chapter, you will learn 

 Conditional probability and its role in finding probability of simultaneous 
occurrence of events. 

 Notion of independence of events and its consequences 

 Total probability theorem. 

 Bayes  theorem and its use to land posterior probabilities. 

4.1 Conditional Probability and multiplication theorem 

Let 13 be arbitrary set of  . Let A  be the class of events of .  

|BA B A A A  

We can easily verify that BA  is a field. And , BB A  is a measurable space. P  

measure on this space is not a probability as 1,P B  

let BP  is defined as 

B B
P A B

P A
P

    (4.1) 

32
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BP  is called as conditional probability measure or simply conditional probability of 

an event A  

Theorem 4.1. B  be arbitrary set of  A  be the class of events of 
. |BA B A A A  

B

P A B
P A

P B
  (4.2) 

BP  is a probability measure on , BB A  

proof: 

1. 0BP A  for all A A  

2. 1BP B  

3. 1 2,A A  be mutually exclusive sets of BA  

 

From above it is clear that BP  is a probability measure on , BB A  

Remark 4.1. Conditional probability is denoted by /P A B and  called as 

conditional probability of an event A given event B  has occurred Thus it is 
necessary to have 0P B  

 / 1P A A  

 / 1P A  

 / /P A B P B A  

  From the definition of conditional probability, it follows that 

 /P A B P B P A B  

which is also known as a Multiplication theorem on probability. 

  For three events Multiplication theorem on probability is stated as 

 1 2 3 1 2 3 2 3 3/ /P A A A P A A A P A A P A  
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The conditional probability is not defined when probability of given event is zero. 

The conditional probability leads to another concept related with events, known as 
independence. 

Example 4.1. Show that 

/ / / /P A B C P A C P B C P A B C  

Solution: 

/
P A B C

P A B C
P C

 

.. By definition of conditional prob. 
P A c B C

P C
 

.. By Distributive law 
P A C P C P AB C B

P C
 

.. By Addition theorem on probability. 

BP A C P C
C
CP A B

P C P C P
 

/ / /P A C P B C P A B C  

By definition of conditional prob. 

Example 4.2. Probability that it rains today is 0.4) probability that it will rain 
tomorrow is is 0.5, probability that it will rain tomorrow and rains today is 0.3. 
Given that it has rained today, what is the probability that it will rain tomorrow.? 

Solution: Let 
P A P  (it rains today) 0.4  

P B P  ( it will rain tomorrow) 0.5  

P A B P  ( it  will rain tomorrow and rains today) 0.3 

Required probability is 

/ 0.6
P A B

P A B
P B
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Example 4.3 

A box contains cards numbered 1 to 25. A card bearing even number was drawn, 
but the number was not known. What /s  the probability that it is card bearing 
number divisible by 5 ? 

Solution: 1,2,3 25 , 

P B P  ( even  no. card) 12
25

 

P A P  ( card  with no. divisible by 5) 5
25

 

P A B P  ( An  even no. divisible by 5) 2
25

 

Required probability is 

2/
12

P A B
P A B

P B
 

4.2 Independence of the events 

The occurrence and nonoccurrence of the event, when does not depend on 
occurrence and nonoccurrence of the other event the two events are said to be 
independent. Since occurrence and nonoccurrence of the event is measured in terms 
of probability. Instead of only independence we say stochastic independence or 
independence in probability sense. Let us first define independence of two events. 
we will later call it as pair wise independence 

Definition 4.1. Independence of the events: Let , ,A P  be a probability space. 

invents A  and B  of this space are said to be stochastically independent or 
independent in probability sense if and only if P A B P A P B  

 Above definition works for any pair of events even when either P A  or 

P B  is equal to zero. 

 Property of independence is reflexive. 

 If A and B  are independent then conditional probability and unconditional 
probabilities are same. That means if A is independent of B /P A B P A  

and /P B A P B  
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Theorem 4.2. If events A  and B  are independent so are(i) A  and B ii B  and A  

(iii) A  and .B  

proof: (i) Consider 

P A B P A P A B  

Since A and B are independent 

P A B P A P B  

Consider 

P A B P A P A B  

P A P A P B P A P B  

Thus 

P A B P A P B  

So, A and B  are independent. Similarly we can prove (ii) 

(iii) Consider 

P A B P A B  

....By De Morgan’s law 

1P A B P A B  

1 1P A P B P A B P A P B P A P B  

.......since A and I3  are independent 

Thus 

[1 1P A B P A P B  

P A P B  

So, A  and B  are independent. 

Definition 4.2. , 1tA i n  events are mutually or completely independent if and 

only if for every sub collection 

 1 2
1

n n
k

k i
i

P A A A P A  

for 2k n  
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Remark 4.2. If the above condition holds for 2k  we say that events are pairwise 
independent. There are such 2nC  pairs, and those many conditions have to be 

checked. And for n  events, to be completely independent, there are 2 1n n . 
conditions have to be checked. 

Remark 4.3. If , ,A B C  are three events  

 They are pairwise independent if 

1. P A B P A P B  

2. P A C P A P C  

3. P B C P B P C  

 They are completely independent if 

1. P A B P A P B  

2. P A C P A P C  

3. P B C P B P C  And 

4. P A B C P A P B P C  

4.3 Bayes’ Theorem 

It is possible to find probability of an event if conditional probabilities of such event 
given various situations. The situations need to be exhaustive and non-overlapping 

Example 4.4. An urn contains 5 white and 7 black balls.3 balls are drawn in 
succession. What is the probability that all are white’? If ball are drawn (i) with 
replacement (ii) Without replacement. 

Solution: Let iA  be the event that thi  drawn ball is white, 1,2,3i . (i) When balls 

are drawn Without replacement, events are not independent. Using multiplication 
theorem, Required prob. 1 2 3P A A A  

 1 2 1 3 1 2
5 4 3 1/ /

12 11 10 22
P A P A A P A A A  

(ii) When balls are drawn with replacement, events are independent 

 
3

1 2 3 1 2 3
5

12
P A A A P A P A P A  
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Example 4.5. A problem is given to three students whose chances of solving the 
problem are 0.2,0.3  and 0.5 respectively. If all of them solve the problem 
independently, find the probability that (i) None of them solves it. (ii) the problem 
is solved by exactly two students 

(iii) the problem is solved. 

Solution: Let iA  be the event that , 1,2,3thi i . student solves the problem 

1, 2,3.i (i) P  ( None  of them solves it ) 1 2 3P A A A  

Since they solve the problem independently, iA  are independent, so are iA  

1 2 3 0.8 0.7 0.5 0.28P A P A P A  

(ii) P  ( the  problem is solved by exactly two students) 

1 2 3 1 2 3 1 2 3

0.2 0.7 0.5 0.8 0.3 0.5 0.8 0.7 0.5 0.47

P A A A P A A A P A A A  

(iii) P (the problem is solved) 1 P  ( None  of them solves it ) 0.72  

Example 4.6. 1,1,1 1,2,1 1,1,2 2,1,1 , A : first no. is 1, B: second no. 1is

, C:third no. is 1, examine whether , ,A B C  are completely independent?. 

Solution: 
0.5, 0.25

0.25 , ,

P A P B P C P A B P B C P A C P A B

P A B P A P P A C P A P C P B C P B P CB
 

so , ,A B C  are pairwise independent. But 0.25 0.125P A B P A P C P B , 

hence they are not completely independent. 

Theorem 4.3. Theorem of total probability: 1 2, ,. nA A A  are forming partition of a 

, Let B  be another event, B  then we can find probability of B  by following 
relation 

1
/n

i ii
P B P B A P A    (4.5) 
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proof: 1 2,A A , . nA  are forming partition of a sample space, for every 1,2i j , ... 

n ; i jA A  And 1
n
i iA  

B  

P B P B  

1
n
i iP B P B A  

Since siA  forms partition 

1Un
i iP B A  

...... By distributive law. 

1

n
ii

P B A  . 

By finite additivity of Probability function 

1
/n

i ii
P B A P A  

.. ... By multiplication theorem. Hence 

1
/n

i ii
P B P B A P A  

 Though the theorem is proved for finite partition, it is also true for countable 
partition. 

 At least two siA  are should have nonzero probability. 

 If B is an effect and siA  are different causes P B  summarizes chance of the 

effect due to all possible causes. 

Example 4.7. Screws are manufactured by two machines A  and B. Chances of 
producing defective screws are by machine A  and B  are 04r  and 01r  

respectively. For a large consignment A produced 070r  and B  produced 030r  

screws. What is the probability that a randomly selected screw from this 
consignment is defective? 

Solution: Let A  be the event that screws are manufactured by two machines A  and 
B  be the event that screws are manufactured by machines B. D  be the event that 
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defective screws are manufactured. Given 0.7P A , 0.3P B , 

/ 0.04P D A , / 0.01P D B . By Theorem of total probability 

/ / .031P D P A P D A P B P D B  

Example 4.8. A ball is selected at random a box containing 3 white 7 black balls. 
If a ball selected is white it is removed and then second ball is drawn. If the first 
ball is black it is put back with 2 additional black balls and then second ball is 
drawn. What is the probability that second drawn ball is white ? 

Solution: Let WA  be the event that ball drawn at the first draw is white BA  be the 

event that ball drawn at the first draw is black. D  be the event that ball drawn at 

the second draw is white Given 20.3, 0.7, /
9W B WP A P A P D A , 

3/
12BP D A . By total probability theorem, 

 / / 0.2417W W B BP D P A P D A P A P D A  

Theorem 4.4. Bayes’ Theorem : 1 2, ,. nA A A  are forming partition of a , Let B  

be another event, B  then we can find probability of B  by following relation 

( /
/

/
j j

j
i i

P B A P A
P A B

P B A P A
   (4.6) 

proof: 

 / j
j

P A B
P A B

P B
 

By multiplication theorem. 

And using P B  from total probability theorem the proof of theorem follows. 

 This theorem is useful for posterior analysis of cause and effect. 

 Given iP A , which are prior probabilities of the thi  cause.Where as 

/iP A B  are posterior probability of the cause iA  given that I3  is effect 

observed. 

Example 4.9. Three people , ,X Y Z  have been nominated for the Manager s 

post. The chances for getting elected for them are 0 . 4, 0.35 and 0.25 respectively. 
If X  will be selected the probability that he will introduce Bonus scheme is 0.6 the 
respective chances in respect of Y  and Z  are 0.3 and 0.4 respectively. If it w  
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known that Bonus scheme has been introduced, what is the probability that X  is 
selected as a Manager? 

Solution: Let B  be the event that bonus scheme is introduced. , ,X Y Z  denotes 

respectively that , ,X Y Z  are elected. Thus given 0.4P X ,, 

0.35, 0.25, / 0.6, / 0.3, / 0.4P Y P Z P B X P B Y P B Z  By Bayes 

Theorem, 

/
/

/ / /
P B X P X

P X B
P B X P X P B Y P Y P B Z P Z

 

0.4 0.6 0.5275
0.4 0.6 0.25 0.3 0.35 0.4

 

Example 4.10. 1%  of the population suffer from a dreadful disease. A suspected 
person undergoes a test. However the test making correct diagnosis 90% of times. 
Find the probability that person who has really caught by that disease given that 
the test resulted positive? Solution: Let 1A  be the event that person was really 

caught by that disease 

2A  be the event that person was healthy 

D  be the event that person got the test positive 

1/ 0.9P D A , 2 1 2/ 0.1, 0.01, 0.99P D A A A  

1 1 2 2/ / 0.108P D P A P D A P A P D A  

Required Probability is 

1 1
1

1 1 2 2

( /
/ 0.08333

( / ( /
P A P D A

P A D
P A P D A P D A P A

 

4.4 Chapter End Exercises 

1. What is the probability that(i)husband, wife and daughter have same birthday 
(ii)two children have birthday in March? 

2. 4 soldiers A,B,C and D  fire at a target .Their chances of hitting the target are 
0.4,0.3,0.75, and 0.6 respectively. They fire simultaneously. What is the 
chance that(i) the target is not hit? (ii) the target is hit by exactly one of them. 

3. If A, ,CB  are independent show that, (i) A, B C  are independent(ii)A, 

B C  are independent(iii) A , B C  are independent 
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4. 1,2,3,4 , A 1,2  List all ]3 such that A, B  are independent. 

5. If /P A B P A  then /P A B P A , and vice versa. 

6. Show that 

 
n

/
1

P A P A B
P A B

P B
 

 , 0P B ,hence prove n 1P A B P A P B  

7. Examine for pairwise and mutual independence of events K,R , and S  
which are respectively getting of a king, red and spade card in a random draw 
from a well shuffled pack of 52 cards. 

8. Urn A contains numbers 1 to 10 and B  contains numbers 6 to 15. An urn is 
selected at random and from it a number is drawn at random. What is the 
probability of urn 3l  was selected, if the number drawn is less than 7. 

9. In a population of 55 % males and 45% females, 4% of the males and 1% of 
females are colorblind. ind  the probability a randomly selected person is 
colorblind person 7. 

10. A man is equally likely to drive by one of the three routes A,B,and C  from 
his home to office.The chances of being late to the office are 0.2, 
0.4,0.3 ,provided he has chosen the routes A,B,c  respectively.If he was late 

on riday what is the prob. that he has chosen route C ? 

 



5 
RANDOM VARIABLE AND ITS 

DISTRIBUTION FUNCTION 

Unit Structure 

5.0  Objectives 

5.1 Random Variable 

5.2  Distribution unction 

5.3  Discrete random variable and its p.m.f  

5.4  Continuous random variable and its p.d.f  

5.5  Chapter End Exercises 

5.0 Objectives 

After going through this chapter you will learn 

 A real valued function defined on sample space,known as random variable  

 Discrete and continuous r.v 

 Distribution function of a r.v and its association with probability measure.  

 Properties of Distribution function 

 Probability mass function of a r.v.  

 Probability density function of a r.v.  

5.1 Random Variable 

Definition 5.1. Random Variable ,C  be a measurable space. A real valued 

function X  defined on this space is called as a random variable if every inverse 
image is a Borel set. That s  for all BB  we have 

 1 |X B X w B C  

 Random variable is abbreviated by ‘ r.v ’ 

 X is a r.v iff for each , .x X x C  

 X  :  .Further : X B  is an event or it is .C  

43
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 In chapter 2 we have seen that all intervals semi  open,semi  closed,single 

tones are B  .That is B may be ,a  or [ ,a ) etc.,so 

,{ },{ },{ },x a X b a X b a X b a X b  are all  hence are 

events. 

Example 5.1. Show that Indicator function is a . .r v  

Solution: Indicator function is defined for a A  

1
0A

A
I

A
    (5.1) 

AI  is a .r v  on ,C  iff .A C  

Example 5.2. Consider ,C  be a sample space, where {HH , HT.TH, }TT  

If X w  Number of heads in ,C  is sigma field, Is X  a .r v  ? 

Solution: If X  Number of heads in  then 2, ( [X HH X fi T ) 

1, 1, 0X TH X I T  

1

0
0 1

,
, , 1 2

2

x
TT x

X x
HT TH HH x

x

 (5.2) 

All 1X  are events, so X  is a . .r v  

Example 5.3. If X  is a .r v  are following functions .r v ? (i) aX b (ii) 1
X

 

Solution: If X  is a . :r v X x C  

Case : 0,I a b  then : x bX C
a

 

{ : }aX b x C  

Case II: 0,a b  then as a complement of : x bX C
a

 

: , 0x bX a C
a

 

{  : }aX x b C  



45

Chapter 5: Random Variable and its Distribution Function

: aX b x C  

Case III: 0a  

 
0

: :
0

x b
aX b x X x b

x b
  (5.3) 

Thus aX b  is a . .r v  

(ii) Let 

 1 1 1 1, 0}U{ , 0 U , 0x x X x X x X
X X X X

 

{ 0} 0
1{ , 0}U{ , 0}1: ,0

1 1U , 0}

X x
when x positive

X x X X X
w x x

X
X X X when xis negative

x x

  

All events are C  So, 1 x
X

 is an event, hence 1
X

 is ar. v  

Example 5.4. 1,2,3,4 , , , 1 2,3,4C  

Is 1X  is a random variable with respect to ,C  ?  

Solution: inverse image of : 3 2X C  

So 1X  is not a random variable. 

5.2 Distribution Function 

Define a probability measure XP  by XP P X B ,this is a mapping XP  : 

0,1 .  is a sigma field of borel sets. We define a point function P  associated 

with probability space , ,C P  

Definition 5.2. Distribution Function of a random variable: A mapping XF  : 



46

SET THEORY AND LOGIC & ELEMENTRY PROBABILITY THEORY

IR 0,1  defined by :XF P X x  is called as a distribution 

function XF x  of X. 

Example 5.5. One of the numbers 2, ... 1, 2 is chosen at random by throwing a pair 
of dice and adding the numbers shown on the two faces. You win $9 in case 2,3, 11 
or 12 comes out or lose $ 10 if the outcome is 7, otherwise you do not lose or win 
anything. Find [ 0]P X  and [ 0]P X  

: , : , 1,2,3,4,5,6a b a b XSolution  :  define as 

 
9  2,3,11,12

( , 10  7
0  4,5,6,8,9,10

if a b
X v X a b if a b

if a b
 (5.4) 

1 1[ 0] : 9 1,1 , 1,2 , 2,1 , 6,5 5,6 6,6 [ 0] : 7
6 6

P X X P P X X

 
Example 5.6. 1X  for ( , 2A X  for , 2B X  otherwise. 

B  are /dis oint . Find .d f  of X. 1 1,
3 2

P A P B  

Solution: x  is .r v , inverse image must be an event, 

 1

0 2
2 1

,
1 2

2

x
B x

X x
A x

x

 

. Xd fF x  of X , then ( ,X XF x P x ]  

 

0 2
1 2 1
2,

1 1 5 1 2
2 3 6

1 2

X

x

P B x
F x P x

P A P B x

P x

 

 We can establish suitable correspondence between P  and F as 
( ,X XF P x ] 

 [ ] X XP a X b F b F a  

Distribution function (d.f) has following properties. 
 XF x  is non negative for all x  
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 proof: We can easily verify this as XF P X x ,and P  is a probability 

measure. 

 XF x  is Monotonically non decreasing. 

 proof: Let 1 2,x x  such that 1 2x x  

 1 2, ,x x  

 Using monotone property of 1 2P, , ,X XP x P x  

 1 2X XF x F x  

 XF x  is right continuous. 

proof: consider a sequence xnx  such that 1 2 nx x x , and events 

( ,n nB x x ] now as nB  are decreasing events as seen in chapter 1, 

nn n nB B , and using continuity property of P  

 0 lim lim lim , limn n n X n Xn n n n
P P B P B P x x F x F x  

This implies right continuity, 

lim X n Xn
F x F x       (5.5) 

(i) lim 0.X XF x F  

 (ii) lim 1.XF  

proof: (i)Let 1 2 nx x x , and events ( ,n nB x ] now as nB  are decreasing 

events as seen in chapter 1, nn n nB B , and using continuity property of P  

0 P P  ( lim nn
B ) lim lim ( ,n nn n

P B P x ]   (5.6) 

 0 lim X r Xn
F x F  

lim 0X n Xn
F x F     (5.7) 

(ii)Let 1 2 nx x x , and events ( ,n nB x ] now as nB  are increasing events as 

seen in chapter 1, Un n nB B , and using continuity property of P  
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1 Un nP P B P ( lim
n nB ) lim nn

P B   (5.8) 

1 lim , limn X n Xn n
P x F x F  

But 0XF  

lim 1X nn
F x       (5.9) 

Theorem 5.1. Every .d f  is a .d f  of some . .r v  

Remark 5.1. If X  is a .r v  on ,CP  with :XF P X x  is associated 

. .d f  

By above theorem for every r.v we associate a d.f.on some prob. space.Thus given 
a r.v there exists a d.f and conversely. 

Example 5.7. 1. Write .d f  of the following . .r v s  

(i) X C , for all C  is constant  

(ii) X  is no. heads in tossing two coins. 

: , 0X Xi F x P X x P xSolution  i f x C  

, 1X XF x P X x P x  i f x C  

(ii) X No . of heads, , , ,HH HT TH TT  10
4

P X ) 1P X

1 1, 2
2 4

P X  

 
)

0 , 0 ;
1 ) 0 1
4
3 , 1 2 ;
4

1 2 .

X

x

x
F x P X x

x

x

 

5.3 Discrete random variable and its p.m.f 

Definition 5.3. Discrete random variable: A random variable X  is called as 
discrete if there exist an at most countable set D  such that 1P X D  

 Set D  contains countable points iX x .They have non negative 

mass .They are called as jump points or the point of increase of d.f.As seen 
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before in chapter 1, iX x . And : iX x  is an event.We can 

assign :X iP X x  denoted by ip x  such that (i) 0ip x  and 

1ip x  

  X is a discrete random variable if and only if isXP  a discrete probability 
measure. 

 The distribution function of a discrete r.v is a step function.As 

X XP X x F x F x  this jump at x.Where limX XF x F x h  

 Random variable has its characteristic probability law. or  discrete r.v it is 
also called as probability ass function (p.m.f) 

 For X  discrete, i ( ) X XP a X b F b F a  

 ii ( ) X XP a X b F b F a P X b  

 iii X XP a X b F b F a P X a  

 iv ( ) X XP a X b F b F a P X a P X b  

Definition 5.4. Probability mass function: A collection ip x  which is 

representing iP X x  satisfying (i) 0ip x  and 1ip x  is called as 

probability mass function . .p m f  of a discrete random variable .X  

Example 5.8. Let X  be no. of tosses of a coin up to and including the toss showing 
head first time. (i) Write . .p m f  of X  hence find P  [ X  is even]. (ii) Also write 

.d f  of .X  

Solution: (i) Let P  be the chance of showing head. 1 p q ) is chance of 
showing tail.  

P X x P  { 1x  tosses are tail, thx  toss is head} 1xpq ; for 1,2x  

P  [ X is  even] e e
: Ui ev n i ev n

P w x even P x i P x i  

P  [ X  is even] 1 3 5 2
1

i

i
p q q q pq q  
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Using infinite geometric series with common ratio 2q  

P  [ X  is even] 21 1
pq q

q q
 

(ii) .d f  of X  is 

7
1

1n l
X x

F x P X x p x q  

0 1
1 1; 1,2,  X n

x
F x P X x

q n x n n
 

5.4 Continuous random variable and its p.d.f 

Definition 5.5. Continuous random variable : Reject  random variable X  is 

defined on ,CP  with . Xd f F  is said to be continuous if F  is absolutely 

continuous. 

 is absolutely continuous if there exists a density Xf  : 0,1X  defined as 

, ,
b

X Xa
P X a b P a b f x dx    (5.10) 

For every a,b  This function f  is called as probability density function 
(p.d.f)of a continuous r.v X 

Definition 5.6. Probability density function: If f is . .p d f  of a continuous .r vX  
with .d f F , it satisfies 
1. 0f  

2. 1Xf x dx  

3. ,
b

X X Xa
P X a b f x dx F b F a  

 For P  absolutely continuous and f  continuous for all x  then 

XdFf x
dx

     (5.11) 

 For continuous r.v XF  is continuous, right as well as left. 

X X XF x F x F x  Where limX XF x F x h  
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 From above it is clear that 0P X x  for continuous r.v 

 For X  continuous, ( ) ( ) ( )P a X b P a X b P a X b P a X b  

 X XF b F a  

Example 5.9. Coin is tossed. If it shows head you pay .2Rs . If it show tail you spin 
a wheel which gives the amount to you, distributed with uniform prob. between 

.0Rs  to 10 you gain or loss is a random variable. Find the distribution function 
and use it to compute the probability that you will win at least 5. 

1: 2
2

P XSolution  and for 10,10 ,
10

f x , so 
10X
xF x  

 

0 2
1 0 10 2 0

0 2,1
1 10.

X

x

F x x x
x

x

 

P  [ X  is at least 5 ] 11 5 .
2

F  

Example 5.10. A .r X  has . .p d f  

2 100

0

k x
f x x

otherwise
 

Find [50 200]i k ii P X  (iii) M  such that 1[ ]
2

P X M   

Solution: (i) 1Xf x dx  So, 

00

1
1002i

[ |
100

k kdx k x
x

 

1
100

k , gives 100k  

(ii) 

200

2150

100 1[50 200]
3

P X dx
x

 

iii M  such that 1[ ]
2

P X M  so 
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2100

100 1
2

M
dx

x
 

gives 200M  

5.5 Chapter End Exercises 

1. Find the smallest   field on  .Let X f c  is a random variable 

on  
 2, 1,0,1,2  

2. Two dice are rolled. Let r.v X be the larger of the two numbers shown. 
Compute 

 2,4XP  . 

3. 0,1  and C  is a   field of borel sets in  

 Is(i) 1( : ii
2

X v X w w  is a random variable on  w.r.t C  

4. A r.X has p.d.f . ind  its d.f . Hence [ 0.5]P X  

 
1 1 0
1 0 1
0 otherwise

x x
f x x x  

5. A r.X has d.f , find its p.d.f 

 

0 0

0 1
2
1 1 2
2

3 2 3
2
1 3

X

x
x x

F x x

x x

x

 

6. ff X is a r.v are following functions 2r.v? i ii iiiX X X  

 

 



6 
SOME SPECIAL RANDOM VARIABLES AND 

THEIR DISTRIBUTIONS 

Unit Structure 

6.0 Objectives 

6.1 Bernoulli and Binomial distribution 

6.2  Poisson distribution 

6.3  Normal Distribution 

6.4 Chapter End Exercises 

6.0 Objectives 

After going through this chapter you will learn 

 Bernoulli and Binomial distribution and their properties.  

 Poisson distribution its relation with Binomial distribution  

 Normal distribution and its applications. 

6.1 Bernoulli and Binomial distribution 

In this chapter we will come across some typical r.v s  and their distributions. In 
real life situation we come across many experiments which result into only two 
mutually exclusive outcomes. Generally the outcome of interest is called as 
Success’ and other as Failure .We assign a positive probability p  to 
success and 1 p  to failure. 

Definition 6.1. Bernoulli . : .r v Ar vX  assuming values 1 and 0  with probabilities 
‘p  and 1 p  is called as Bernoulli .r v  

 Thus Bernoulli r.v is same indicator function AI  with A  as success. 

 The probability law of Bernoulli is also written as 
11 0,1xxP X x p p x  

 Hence onward we denote 1 p  by q .Note that 1p q  

53
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Example 6.1. 1. An indicator function AI  is a Bernoulli .r v , if we assign 

probability P A p  and 1P A p  

When the trial of a Bernoulli experiment is repeated independently finite number 
of times say n  times, it gives rise to Binomial situation. If we count total 
number of successes in such n  trials it is Binomial r.v .The probability law for 

Binomial r.v has thn  term of binomial expansion of np q  

Definition 6.2. Binomial distribution: A .r vX  assuming values 0,1,2 n  is said 
to follow Binomial distribution if its . .p m f  is given by [ 1P X x  

0,1, ;0 1, 1
0

n xx
xnC p q x n p p q

otherwise
  (6.1) 

 The notation ,X B n p  is used for showing X follows Binomial 

distribution with parameters n  and p.  

 Bernoulli r.v is particular case of Binomial with n 1. And Binomial arises 
from sum of n  independent Bernoulli r.v.s. 

 The Binomial probabilities can be evaluated by the following recurrence 
relation, starting from 0 nP X q  And then using recursive formula, 

1
1

n x pP X x P X x
x q

    (6.2) 

This is forward formula. We can also start from P X n  and use the equation as 

a backward formula. 

 A r.v counting number of successes in n  bernoulli trials follows 13(n,p) and 
counting number of failures n X Y  say, in n  bernoulli trials follows 
B(n,q). 

 We can easily verify that 0,1 1P X n , hence Binomial is a discrete 

r.v.  

Example 6.2. 

,X B n p  and if y , ,n x Y B n q , then show that 

n r n r
X Y rP X r P Y n r C p q  

 



55

Chapter 6: Some Special Random variables and their Distributions

Solution: 
n r n r

X rP X r C p q  

n n r r
Y n rP Y n r C q p  

But n
n r rnC C  

,so  
n r n r

X Y rP X r P Y n r C p q  

Head is thrice as likely as tail for a coin. It is flipped 4 times (i) Write . .p m f  of  X, 

representing number of heads observed in this experiment. ii find  probability of 

getting 3 or 4 heads. 

: 3Solution P H P T , so 3
4

P H p ,tossing coin once is a Bernoulli trial. 

X  counting number of heads observed in tossing such bais coin 4 times. i X  

follows 34,
4

B n p  

P X x  

4 3 1 0,1,2,3,4
4 4

0

x n x

xC x

otherwise
  (6.3) 

Required 3 1 2Prob P X P X  

4 3 2 21 1 3 1 32 4 6 0.9198
4 4 4 4 4

P X  

So, 3 0.08016P X  

Example 6.3. It is found that 060r  of the health care victims are senior citizens . If 

a random sample of 10 victims is taken, what is the probability of getting exactly 3 
senior citizens in this sample , 

Solution: X  is number of victims who are senior citizens in this sample. X  
follows 10 3 7

310, 0.6 3 0.6 0.4 0.04247B n p P X C  

Example 6.4. X  follows 6,B n p  such that 2 4P X P X  Find p. 
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Solution: 2 4P X P X  

4 26 2 6 4
2 4C p q C p q  

2 2p q  means 1
2

p q  

Example 6.5. X  follows ,B n p , Y  follows ,B m p , If ,X Y  are independent. 

Find the probability distribution of X Y . Solution: Consider P X Y k , for 

0,1k , ... m n  

 0  U ,n
xP X Y k P X x Y k x  

0
 ,n

x
P X x Y k x     (6.4) 

 
0

n

x
P X x P Y k x  Since . .r v s  are independent 

0
 n n x m k xx k x

x xx
C p q C p q     (6.5) 

0
 n m n km k

x k xx
C C p q     (6.6) 

0
 n m n km k

kx
C p q     (6.7) 

Thus X Y  follows ,B n m p  . 

6.2 Poisson distribution 

Now let us introduce another commonly used discrete r.v . Many a times we come 
across a r.v counting number of occurrences in a fixed duration of time. or  
example, Number of deaths due to Maleria per month in Mumbai, Number of 
accidents per hour on a express highway. Thc number of defects in cloth per square 
metor is similar occasion where Poisson distribution is appropriate 

Definition 6.3. Poisson distribution: A discrete .r vX  assuming values 0,1,2  is 
said to follow Poisson distribution if its . .p m f  is given by 

; 0,1, ; 0
!

0

xe xP X x x
otherwise

  (6.8) 
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 The notation X  is used for showing X follows Poisson distribution 

with parameter  

 The Poisson probabilities can be evaluated by the following recurrence 
relation,starting from 0P X e  And then using recursive formula, 

1
1

P X x P X x
x

      (6.9) 

all probabilities can be evaluated. Tables are also available for various values of  

 We can easily verify that 0,1 1P X , hence Poisson is a discrete 

r.v.  

 In Binomial situation if number of successes are very large and the chance of 
success is very small, but average number np  is fixed say  then, 
Binomial probabilities tends to Poisson as n  becomes very large 

Theorem 6.1. Poisson as a limiting distribution of Binomial ,X B n p , then if 

p  is very small and n  becomes very large, but np  remains constant  then 

Binomial probabilities tends to Poisson probabilities 

lim 0,1
!

x
n xx

xn

enC p q x
x

, ...   (6.10) 

Proof:  ,X B n p , so n xn x
xP X x C p q  

By putting p
n

 

! 1 1
! !

x n xn
x n x n n n

 

1

1 2 1!lim  =
! ! !

x x

xr

n n n n xn
x n x x n x

 

lim 1 1
n x

n
e

n n
 

Hence 

lim 0,1
!

x
n n xx

xn

eC p q x
x

, ... .  (6.11) 
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Limiting distribution of Binomial is Poisson. 
Example 6.6. A sales firm receives on an average three toll free calls per hour. 
For any given hour find the probability that firm receives i At  most three calls. 

ii At  least three calls 

Solution: X No . of toll free calls a firm receives 3X  

(i) required prob 

 3

0
3 0.6472

!

x

x

eP X
x

 

(ii) required prob 

 
3

3 1 2 1 0.5768 0.4232
!

x

x

eP X P X
x

 

Example 6.7. A .r vX , such that 4 5P X P x . Find  Solution: As 

4 5 .P X P x  
4 5

4! 5!
e e  

So, 5  
Example 6.8. A safety device in laboratory is set to activate an alarm, if it register 
5 or more radio active particles within one second. If the back ground radiation is 
such that, the no of particles reaching the device has the poison distribution with 
parameter 0.5  flow likely is it that alarm will be activated within a given one 
second period? 
Solution: Let X  be number of particles reaching safety device within a  one sec. 
period . 0.5X  The alarm will be activate if 5X  

5P x  

5
0.112

!

x

x

e
x

 

Example 6.9. 1 1X  and an independent 2 2.r vX  

Show that 1 2 1 2X X  . 

Solution: Consider P X Y k , for 0,1k , ...  

0 1 2 1 20
U , ,x x

P X Y k P X x X k x P X x X k x  

1 20x
P X x P X k x  Since .r vs  are independent 

1 21 2
1 2 1 2

0 0! ! !

x k x k

x x

e e e
x k x k

 

Thus 1 2 1 2X X  . 
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Example 6.10. 2%  students are left handed. In a class of 200 students find the 
probability that exactly 5 are left handed. 

Solution: X  is no. of left handed in 200, .02p  and 200n  thus X  has 
( 200,B n p  . 02)  . Using Poisson as a limiting distribution of Binomial, 

4X np  

4 5

5 0.1563
5!

eP x  

6.3 Normal Distribution 

Definition 6.4. Normal Distribution: A continuous .r v  is said to follow Normal 
distribution if its . .p d f  is given by 

2
1z

; 0
2

xe
f x x    (6.12) 

 The notation 2,0X N  is used to show that X follows normal 

distribution with parameters  and 2  

 Normal distribution is applicable to wide range of situations in real life. 

  Mean of X and 20  Variance of X 

 When 0  and 2 1  it is called as standard normal distribution. The 

tables for P X x  are available for this distribution. 

 Since any 2,X N  its linear combination Y aX b  also has 

Normal distribution with parameters a b  and 2 2a  

 If 2,X N  then XZ  has standard normal distribution. 

 We denote by z P Z z  as d.f of 0,1N  . 

 2
1 1 1,X N  and 2

2 2 2,X N ,if 1 2,X X  are independent r.vs,then 

 2 2
1 2 1 1 2 1,X X N  
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Example 6.11. The score of the test are normally distributed with 
100, 15N  . Find the probability that score is below 112. 

Solution: Score is denoted by , 100, 15X X N  

112 100[ 112 ] 0.8 0.7881
15

P X P Z  

, By normal tables. Since XZ  has standard normal distribution. 

Example 6.12. 2
1 4,1.5X N  and 2

2 2,2X N , if 1 2,X X  are independent 

.r vs , then find 1 2 1P X X  

Solution. 21 1 1
,X N  and 22 2 2

,0X N , if 1 2,X X  are independent 

r.v.s., then  

1 2 1 2

1 2

(2, 2.25 4 ) , . .

1 21 1 ( 0.4) 0.4 0.6554
25

X X N asX X areindependenat r v s

P X X P Z
 

6.4 Chapter End Exercises 

1. In order to qualify police academy, candidates must have score in top 10%in 
the general ability test. If the test scores 200, 20X N , find the 

lowest possible score to qualify. 

2. 2
1 10,2.5X N  and 2

2 12,2X N ,if 1 2,X X  are independent 

r.vs,then,find mean and variance of 1 2X X  

3. On an average 0.2% of the screws are defective. ind  the probability that in 
a random sample of such 200 screws we get exactly 3 defective screws. 

4. X  . ind  if 
4 3.
3 8

P X
P X

 

5. X follows 5,B n p  . Find p  if 
4 3.
3 8

P X
P X

 

6. A video tape on an average one defect every 1000 feet.What is the probability 
of atleast one defect in 3000 feet? 
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7. 3% of all the cars fail emission inspection. ind  the probability that in a 
sample of 90 cars three will fail.Use(i) Binomial distribution (ii)Poisson 
approximation to Binomial. 

8. If a student randomly guesses at five multiple choice questions, find the 
probability of getting three or more correct answers .There are four possible 
options for each question. 

9. 10, 3 .X N  Find the probability that 

 (i) X  is less than 13 but X is greater than 7. ii 2 3Y X ,then Y 26. 

 2iii 100 iv 8.X X  

10. iX  follows 5,
3
iB n  . where 1,2. ii  Write p.m f  of 1 2X X  

 (ii) Find 1 2 3P X X  

 

 



7 
TWO-DIMENSIONAL R.V.S 

Unit Structure 

7.0 Objectives 

7.1 Probability Distributions of two-dimensional discrete r.v.s 

7.2  Probability Distributions of two dimensional continuous r.v. s   

7.3  Conditional Probability distributions 

7.4  Independence of r.v.s 

7.5  Chapter End Exercises 

7.0 Objectives 

After going through this chapter, you will learn 

 Two dimensionaldiscrete r.v.s and its Joint Probability mass function. 

 Two-dimensional continuous r.v.s and its joint Probability density function. 

 From joint probability function of two-dimensional r.v.s finding marginal 
Probability laws. 

 The conditional distributions of the r.v.s. 

 Notion of independence of r.v.s and its consequences. 

7.1 Probability Distributions of two-dimensional discrete r.v.s 

The notion of r.v can be extended to multivariate case .In particular if X and Y  are 

two r.v.s. defined on same probability spacc , ,,C P  then ,X Y B C , for 

any borel set B  in 2  .Note that this Borel set is a 0  field generated by rectangles 
, ,a b X c d  The mapping ,X Y  : 2,C  is a two dimensional r.v. 

Definition 7.1. Joint Probability Distribution of two dimensional . .r v s : The 
probability measure ,X YP  defined on 2  is called as Joint Probability Distribution 

of two dimensional . . ,r v s X Y  where 

62
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, ,X YP B P X Y B  for every borel set 2B     (7.1) 

Definition 7.2. Two dimensional discrete .r v . The two-dimensional random 
variable ,X Y  is called as discrete if there exist an at most countable set D  such 

that , 1X YP D  

Two r.v.s are jointly discrete if and only if they are discrete. 
 The joint probability law ,X YP  Of two dimensional discrete r.v s  satisfy 

following 
1. , , 0X YP x y  for all x,y 

2. , , 1
x Yy XP x y  

 The joint probability law ,X YP  Of two dimensional discrete r.v s  is also 

called as joint probability mass function of ,X Y  

 , ,
yX X YP x P x y  is called as Marginal p.m.f of X. 

 ,y ,
xY XP y P x y  is called as Marginal p.m.f of Y. 

  Marginal p.mfs are proper p.m.fs of one dimensional discrete r.v.s. 
Example 7.1. Given following verify which are joint probability mass function of 
joint . .p m f , if so, find the constant .K  

(i) , ,X YP x y K x y  for 1,2,3 1,2.x y  

(ii) , ,X YP x y Kxy  for 1,0,1; 1,0,1x y  

Solution: , , 0X Yi P x y  for all ,x y  if 0K  

And 

, ,X Yx y
P x y  

1,1 1,2 2,1 2,2 3,1 3,2 21 1P P P P P P K  

So, for X,YP x, y  to be proper joint p.m.f 1K
21

,  

(ii) 1, 1 0P , we can not have positive prob  for remaining pairs, if K  is 

selected negative. Which means that for no K , ,y , 0XP x y  ,y ,XP x y  is not 

proper joint . .p m f  
Example 7.2. Two cards are drawn from a pack of cards. Let X  denotes no. of 
heart cards and Y  no. of red cards. Find the joint . .p m f  of . ,r v X Y  . Hence 

P X Y  
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Solution: , 0,1,2x y . following will / . .be ointp m f  of ,X Y  

2

13 25 251,2 1 ,2
52 102

P P heart red
C

 

and so on. 
Y  X  0  1  2 P[Y = y]
 0  25

102
 

 0  0 25
102

 

 1 26
102

 
26

102
 

 0 52
102

 

 2  6
102

 
13

102
 

6
102

 
25

102
 

P[X = x] 57
102

 
39

102
 

6
102

 
 1 

And 

 25 26 6 190,0 1,1 2,2
102 34

P X Y P P P  

Example 7.3. Using the above joint . .p m f  of ,X Y   

Solution: ,y ,X XP x P x y find marginal . . .p m f s  of . . , .r v sX Y  is as 

Marginal . .p m f  of .X  

and , ,Y X YP y P x y  is Marginal . .p m f  of .Y  

X 0 1 2 
PX(x) 19

34
 13

34
 1

17
 

 

Y 0 1 2 
Py(x) 25

102
 52

102
 25

102
 

7.2 Probability Distributions of two dimensional continuous r.v.s 

Definition 7.3. Two dimensional continuous .r v . and their joint probability density 
function: The two dimensional random variable ,X Y  is called as continuous if 

there exists a function ,X Yf  : 2 0,1  



65

Chapter 7: Two-Dimensional R.V.S

satisfying 

1. , , 0X Yf x y  for all ,x y  

2. , , 1X Yf x y dxdy  

3. , ,
b d

X Ya c
f dxdy P a X b c Y d  where , ,a b c , and dare  

,y ,X Xg x f x y dy  is called as Marginal p.d.f of X. 

y ,y ,Xh y f x y dx  is called as Marginal p.d.f of Y. 

Marginal p.d.fs are proper p.m.fs of one dimensional continuous r.v.s 
Example 7.4. Given following verify which are joint probability density function 
of , )X Y  if so, find the constant .K  

(i) ,y , x y
Xf x y Ke  for 0 0.x y  

(ii) ,y ,Xf x y Kxy  for 0 1x y  

Solution: (i) , , 0X Yf x y  for all ,x y  if 0K  

And 

, ,X Yf x y dxdy  

00 0 0
. ( |x y y xKe dxdy K e e dy K  

So , for , ,X Yf x y  to be proper joint . . 1p d fK  

(ii) , , 0X Yf x y  for all ,x y  if 0K  

And 
1

, 0 0
,

y

X Yf x y dxdy  Kxydxdy  
2 41 1

0 00
. | |

2 8 8
y

y
x y KK y d K  

So,  for , ,X Yf x y  to be proper joint . . 8p d fK  

Example 7.5. For the above two joint .p d . fs find [ 0.5, y 0.5]I P X  

(II)Marginal p . .d f s  of X  and .Y  

Solution:(i) ,y , x y
Xf x y e  for 0 0.x y  

(I)  

 
0.5 0.5 20.5

0 0
[ 0.5, 0.5] 1x yP X Y e dxdy e  
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, ,X X YII g x f x y dy  is Marginal . .p d f  of .X  

Marginal . .p d f  of X. 
0

x y x
Xg x e dy e  for 0x  

, ,Y X Yh y f x y dx is Marginal . .p d f  of .Y  

Marginal . .p d f  of Y. ,0
, y

Y X Yh y f x y dx e  for 0y  

(ii) ,y , 8Xf x y xy  for 0 1x y  

(I) 
0.5

0 0
[ 0.5, y 0.5] 8

y
P X  xydxdy 

2 30.5 0.5 4
00 0

8 | 8 0.5 0.0625
2 2

yx yy dy dy  

(II) Marginal . .p d f  of X. 
1 28 4 1X x

g x xydy x x  for 0 1x   

Marginal . .p d f  of Y. 3

0
8 4

y

Yh y xydx y  for 0 1y  

Example 7.6. The joint probability density function of ,X Y  

 ,f x y
1  1, 1

4
0 

xy x y

Othrewise
 

Find 2 2[ , ]P X u Y v  
Solution: 

2 2[ , , ]P X u Y v P u X u v Y v  

1
4

u v

u v

xy dxdy uv  

7.3 Conditional Probability distributions 

Definition 7.4. Conditional Probability mass function: Let the joint probability law 
of a two dimensional discrete . ,r v X Y  be ,X YP  and the marginal . .p m f  of X  

and Y  be ,X YP x P y  respectively, then the conditional . .p m f  of X  given 

Y y  is given by 

,y
/y

y

,X
X y

P x y
P x

P y
 for all y, 0x providedP y   (7.2) 
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And the conditional . .p m f  of Y  given X x  is given by 

,
/

,X Y
Y X x

X

P x y
P y

P x
 for all y , provided 0XP x  (7.3) 

Note that conditional p.m.f s  are proper p.m.f. 

Definition 7.5. Conditional Probability density function : Let the joint probability 
law of a two dimensional continuous . . ,r v X Y  is , ,X Yf x y , and the marginal

. .p d f  of X  and Y  be ,X Yg x h y  respectively, then the conditional . .p d f  of 
X  given Y y  is given by  

,
/y

,X Y
X y

Y

f x y
g x

h y
 for all x , provided 0Yh y   (7.4) 

And the conditional . .p d f  of Y  given X x  is given by 

,
/

,X Y
Y X x

X

f x y
h y

g x
 for all y , provided g 0x x  (7.5) 

Note that conditional p.d.f s  are proper p.d.f.s 

Example 7.7. There are 4 tickets in a bowl, two are numbered 1 and other 
numbered numbers 2. Two tickets are chosen at random from the bowl. X  denotes 
the smaller of the numbers on the tickets drawn, and Y  denotes the smaller of the 
numbers on the tickets drawn. 

(i)Find the joint . .p m f . of . . ,r v X Y  

(ii)Find the conditional . .p m f  of Y  given 2X  (iii) Find the conditional . .p m f  

of X  given 2.Y  

Solution: 1,1 , 1,2 , 2,1 , 2,2  

joint p . m.f. of . . , yr v X  

Y  X 1 2  PY(y)
 1 1

4
0 1

4
 

 2  1
2

1
4

3
4

 

PX(x) 3
4

1
4

1 

The conditional . .p m f  of Y  given 2X  is given by 

,
/ 2

,
1,21

4

X Y
Y X

P x y
P y for y .   (7.6) 
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y  1  2
PY/X=2(y)  0  1 

The conditional . .p m f  of X  given 2Y  is given by 

,
/ 2

,
1,23

4

X Y
X Y

P x y
P x forx .   (7.7) 

x  1  2
PX/Y=2(x)  2

3
 1

3

Example 7.8. The joint . .p d f  of , , 8X Yf x y xy  for 0 1x y   

. . ,r v X Y  

(i)Find the conditional . .p d f  of Y  given X x  (ii) Find the conditional . .p d f  of 
X  given .Y y   

Solution: ,y , 8Xf x y xy  for 0 1x y  

Marginal . .p d f  of X. 
1 28 4 1X x

g x xydy x x  for 0 1x  

Marginal . .p d f  of 3

0
y. 8 4

y

Yh y xydx y  for 0 1y  

(i) The conditional . .p d f  of X  given Y y  is given by 

,y
/y 3 2

, 8 2 0
4

X
X y

Y

f x y xy xg x for x y
h y y y

  (7.8) 

And ii the  conditional . .p d f  of Y  given X x  is given by 

,
/ 22

, 8 2
14 1

X Y
Y X x

X

f x y xy yh y
g x xx x

 for 1x y    (7.9) 

7.4 Independence of r.v.s 

Definition 7.6. Independence of . . : ,r v s X Y  be two dimensional .r vs  they are 
said to be independent if and only if, the events X A  and Y B  are independent 
for any Borel sets ,A B  

 For the two dimensional discrete r.v s ,X Y  are independent if and only if 
the joint probability mass function is equal to the product of marginal p.m .fs 
that is 

, y,X Y XP x y P x P y  for all x,y    (7.10) 
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 For  the two dimensional continuous r.v s ,X Y  are independent if and only 

if the joint probability density is equal to the product of marginal p.d .fs that 
is 

, ,X Y X Yf x y g x h y  for all x,y    (7.11) 

 When the r.v.s are independent their conditional p.m.f. s / p.d.fs  are same as 
marginal p.m.f. s / p.d.fs  

Example 7.9.  1. Verify whether (X, Y) are independent . . .r v s  

(i) The joint . .p m f . of ,X Y  is 10,0
9

P  1 5 21,1 , 0,1 , 1,0
9 9 9

P P P   

(ii) The joint . .p d f  of , , 8X Yf x y xy  for 0 1x y   

Solution:(i)The joint . .p m f . of ,X Y  is 

Y  X O 1 YP y

0  1
9

 
2
9

1
3

 

1 5
9

 
1
9

 
2
3

 

XP x  2
3

1
3

 1 

2 10 0
3 3X YP P  

,
10,0
9X YP  

,0 0 0,0X Y X YP P P  

,X Y  are not independent. 

(ii) The joint density is , , 8X Yf x y xy for 0 1x y  Marginal . .p d f  of 
1 2. 8 4 1X x

X g x xydy x x  for 0 1x  

Marginal . .p d f  of Y. 3

0
8 4

y

Yh y xydx y  for 0 1y  

, ,X Y X Yf x y g x h y  

,X Y  are not independent. 
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7.5 Chapter End Exercises 

1. Given following verify which are joint probability mass function of ,X Y , 

if so, find the constant K. 

(i) , ,X YP x y Kx  for 1,2,3; 0,1,2.x y  

(ii) , ,X Y
xP x y K
y

 for 1,2; 1,4x y  

2. Given following verify which are joint probability density function of 
,X Y  . If so,  

(i) find the constant K. 

(ii) find marginal p.d.f of X,Y,  

(iii) Verify whether they are independent. 

(a) ,y ,Xf x y K  for ,x y  [0, 1], 

(b) , , . x y
X Yf x y e  for 0 0;. , 0x y  

3. Given following joint probability mass function of (X, y)  

(i)  Find the conditional p.m.f of Y  given X 2  

(ii)  Find the conditional p.m.f of X given Y 2.  

(iii) Also verify their independence. 

(I) 
Y  X 1 2  3  P[Y = y]

0  1
18

2
18

 
3

18
 

1
3

 

1 1
18

2
18

3
18

1
3

 

2 1
18

2
18

3
18

1
3

 

P[X = x] 1
6

 
1
3

 
1
2

 
1 

(II)  Two fair dice are tossed . X  is maximum of the number on two 
faces and Y  is sum of the number on them. 
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4. The joint p.d.f  of , , 2X Yf x y  for 0 1x y  

 r.v. ,X Y  

(ii)Find the conditional p.d.f of Y  given X x  (iii) Find the conditional p..f 
of X given Y y  

5. Find the constant K , if the joint p.m.f  of ,X Y  is given as 
11, 3 4x yP x y K  for , 1,2x y , ....Also verify whether X, Y  are 

independent. 
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8 
EXPECTATION, VARIANCE AND 

THEIR PROPERTIES 
Unit Structure 

8.0  Objectives 

8.1  Expectation of a r.v.  

8.2  Variance of a r.v.  

8.3  Characteristic function of a r.v.  

8.4  Chapter End Exercises 

8.0 Objectives 

After going through this chapter you will learn  

 The expected value of functions of r.v.s. 

 Properties of expectation. 

 Variance and its role in studying r.v 

 Characteristic function and its properties. 

8.1 Expectation of a r. v. 

Definition 8.1. Expectation: 

Case (I)Expected value of a discrete .r vX  assuming values 1 2, rx x x  and with 

. . tp m f P X x  is defined as 

1

n
i ii

B X x p x   (8.1) 

Provided the sum is convergent. 

Case (II) Expected value of a continuous .r vX  with . . .p d f f x  is defined as 

E X xf x dx   (8.2) 

Provided the integral is convergent. 

Expected value of a r.v is its average, simply called as a mean of r.v 

72
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Example 8.1. Find expectation of X  if 
(i) A .r v X  assuming values 0,1,2 , ... n  with probability proportional to n

xC  

(ii) ,X B n p   

(iii) X  

(iv) X  be no. of tosses of a coin up to and including the first toss showing heads. 

Solution:(i)A .r vX  assuming values 0,1,2 , ... n  with probability proportional to 
n

xC  

xP X x K C  

0
2 1n n

xx
K C K  

so, 2 nK  
By definition of expectation, 

0

n

x
E X xp x  

0
2 nn n

xx
x C  

As  

1
1

n n
x x

nC C
x

 

1 1
11

2 2 2
2

nn n n n
xx

nn C n  

(ii) X  

0 0 !

x

x x

eE X xp x x
x

 

1

1 1 !

x

x

e
x

 

Using 
2

1 11
1 2

e  

.E X e e  

(iii) Let X  be no. of tosses of a coin up to and including the first toss showing 
heads. Let p  be the chance of showing head. 1 p q , is chance of showing 

tail. 
1xP X x pq  
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for 1,2x  
1

1 1
x

x x
E X xp x xpq  

2
2

11 2 3
1

pp q q
pq

 

Example 8.2. Find expectation of .r v X  if 

(i) A .r vX  assuming values 0,  with . . .xp d ff x e [This is Exponential 

distribution with parameter ]  

(ii) A .r vX  assuming values , ,a b a b  real numbers, with . .p d ff x  

constant. [This  is Rectagular or Uniform distribution ] 

(iii) 2,X N  

Solution:(i) Since X  is absolutely continuous .r v  with density f x  

E X xf x dx     (8.3) 

0

xE X xe dx     (8.4) 

0 0

1|
x xe ex dx  

(ii) Since density is constant over ,a b , 

0
1

b
Kdx  

gives 1f x K
b a

 

2 2 2

|
2 2 2

b b
a

x x b a b aB X dx
b a b a b a

 (8.5) 

(iii) 
21

2

; , 0
2

x

ef x x    (8.6) 

21
2

2

x

eE X x dx        (8.7) 

Put xz  then x z  and dx dz  

21
2

 
2

z
ez dz  
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2 21 1
2 2

 
2 2

z z
e ez dz dz      (8.8) 

 0 .       (8.9) 

Since the first integral is an even function, and 
21

2
1

2

z
e dz  

Property 8.1. Properties of Expectation 
 Expectation of a function of a .r v  : If g X  is a monotonic function of a .r v  

then expected value of g X  deoted by E g X  is defined as Case (I) 

Discrete  .r v  

1

n

i i
i

E g X g x p x    (8.10) 

 Provided the sum is convergent. 

 Case (II) Continuous .r v  

E g X g x f x dx   (8.11) 

Provided the integral is convergent. 
 Expectation of a constant : E C C  Where C  is constant. 

 Effect of change of origin : E X A E X A  Where A  is constant. 

 Effect of change of Scale : Pi AX APi X  Where A  is constant. 

 Linearity: Combining above two we may write E AX B AE X B  
Where ,A B  are constants 

 Monotone If ,X Y E X E Y  

Example 8.3. A .r vX  has 1mean , find mean of following . .r v s , (i) ,X (ii) 2X

(iii) 3
2

X , (iv) 2
2

X  

Solution: (i) 1E X E X  (ii) 2 2 2E X E X  
(iii)  

33 1
2 2

E XXE  

(iv) 
22 1.5

2 2
B XXE  
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8.2 Variance of a r.v. 

The function of r.v rg X X , has special role in the study of a r.v 

Definition 8.2. thr  raw moment of a .r v  : thr  raw moment of a .r v X  is defined 
rasE X  and is denoted by '

r  

 We can check that for ' 1r  we get first raw moment and it is equal to mean 
'
1E X  

 thr  raw moment of a r.v X is also called as moment about zero 
 Moments can also be defined around arbitrary origin, that is rE X A  

 In particular if arbitrary origin is mean the moments are called as central 

moments So '
1E X  is called as thr  central moment. Second central 

moment is important tool in the study of r.v . and it gives the idea about 
spread or scatterness of the values of the variable. 

Example 8.4. Show that first central moment '
1 0E X  

Solution: 
' '
1 1 0E X E X  

, since '
1E X  

Example 8.5. Show that 2E X a  is minimum when a E X , hence variance 
is least mean square 
Solution: Consider 

2
2 2 0

dfij X a dE X a E X a
da da

 

when E X a , provided 
22

2 0
d E X a

da
. Thus  2

E X E X V X mean  

square deviation about mean is minimum 
Definition 8.3. Variance of a .r v . : Variance of a .r v  is its second central moment 

 [Variance of a r.v ] If X is a r.v then variance of X denoted by V(X) is defined 
as: Case (I) Discrete r.v : 

2'
11

n
i ii

V X x p x      (8.12) 

Provided the sum is convergent. 

Case (II) Continuous r.v . : 

2'
1V X X f x dx      (8.13) 



77

Chapter 8: Expectation, Variance and their Properties

Provided thc integral is convergent. 

 22V X E X E X , for computational purpose we use this formula. 

 Variance of a constant : 0V C  Where C  is constant. 

 Effect of change of origin : V X A V X  Where A is constant. 

 Effect of change of Scalc : 2V AX A V X  Where A is constant. 

 Combining above two we may write 2V AX B A V X  Where A,B  are 

constants.  

 Positive square root of variance is called as standard deviation (s.d)of the r.v.  

Example 8.6. A .r vX  has variance 4, find variance and .s d  of following . .r v s  (i) 

,X (ii) 2X , (iii) 3
2

X , (iv) 2
2

X  

Solution: 
(i) 4, . 2.V X V X s d  

(ii) 2V 2x 2 V X 16,s.d 4  

(iii) 2

X 3 V(X)V 1
2 2

 

(iv) 2

2 X V(X)V 1,s.d 1
2 2

 

Example 8.7. Find variance of following . . .r v s  
(i) X  

(ii) X  has Exponential distribution with parameter  
(iii) X  has Uniform ,a b  

Solution:(i) X so , as shown in above exercise E X  

Now consider, 
2 1E X E X X E X  

0
1

1 1 1
!

x

x
x

eE X X x x p x x x
x

 

2
2

12 2

x

x

e
x
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Using 
2

1 11
1 2

e  

2 21E X X e e  

,So  
2 21 .E X E X X E X  

22 2 2V X E X E X  

Thus X , then V X  

(ii) X  has Exponential distribution with parameter  
2 2

0

xE X x e dx      (8.14) 

2
0 20

2| 2
x xe ex x dx  

Since 

0

1xE X xe dx  

2
22

2 2
2 1 1V X Pi X E X  

(iii) Since X  has Uniform over ,a b , as seen above, 
2

b aE X  

2 3 3 3 2 2
2 |

3 2 3
b b

aa

x x b a b ab aE X dx
b a b a b a

   (8.15) 

222 2
22

3 2 12
b ab ab a b aV X E X H X  

8.3 Characteristic function of a r.v. 

A complex valued function of a r.v that is useful to study various properties of a r.v 
is known as characteristic function(ch.f). 

Definition 8.4. Characteristic function: X  be a .r v  a complex valued function 
denoted by X t  is defined as ztX

X t E e  where t  and 1i  

I) For discrete r.v : A discrete r.v X having p.m.f XP , then its ch.f is given by 

0
itx

X Xx
t P x e       (8.16) 

t  and 1i  
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II) For continuous r.v A continuous r.v X having p.d.f Xf x , then its ch. f  is 

given by 
itx

X Xt f x e dx       (8.17) 

t  and 1i  

 We can also write itx
X Xt e dF x  which includes all r.v.  

 (itX
X t E e E cos tX iE sin tX  

 e XR t E cos tX , which is real part of X t  .And 

m XI t E sin tX  is the imaginary part of X t  

Example 8.8. Find ch. f  of following . .r v s  

(i) ,X B n p   

(ii) X  has . . 0,1,2xp m fp x pq x  (Geometric distribution with parameter p) 

(iii) 2,X N  

Solution:(i) 

0

n n xx itx
X xx

t C p q e       (8.18) 

t  and 1i  

0

x nn n x it it
X xx

t C q pe q pe  (8.19) 

Using Binomial expansion. .Ch f  of ,X B n p is 
nit

X t q pe  (ii) 

0 1
x itx

X it
x

pt pq e
qe

      (8.20) 

Using geometric series with common ratio 1iqe t  

So, .Ch f  of Geometric distribution with parameter p is
1X t

pt
qe

 (iii) 
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21
2

2

x

itx
X

et e dx      (8.21) 

Put xz  then x z  and dx dz  

21
2

 
2

z
it z ee dz      

2

2 2

1
1 2
2 

2

z it
it t ee dz        (8.22) 

2 21
2 

it t
e          (8.23) 

Since 
21

2
1

2

z it
e dz  

2,X N  then its ch. 
2 21

2
it t

Xf t e  

Property 8.2. Properties of ch. f  

 0 1.X  

 1X t  for all .t  

 X X Xt t t  which is complex conjugate of X t  . 

 X t  is uniformly continuous function of .t  

 ibl
aX b Xt e (at). 

 X t  generates moments of .r v  X. The coefficient of rit  in the expansion 

of X  is thr  moment of X. We can also get it from thr  derivative of X  . 

' 1 0
r

r Xr r
d

i dt
       (8.24) 

x 2  0  2  

p(x) 4l 2l 4l

 If X  and Y  are independent . .r vsch f  of X Y  is equal to product of their 
ch. fs 

 Product of any two ch. fs is also a ch, f . Thus any power of X t  is also 

a ch, .f  
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Example 8.9. Find ch. f  of X  which is Uniform .r v  over 0,1  . Hence that of 

X. : 1Solution f x  for 0 1x  

1

0

1it
itx

X
et e dx

it
 

1it

X
et

it
 

Example 8.10. Using above result find ch. f  of X Y  if ,X Y  are . .i i d  Uniform 

0,1  .  

Solution: 1it

X Y
et t

it
 

1it

Y
et

it
 

X  and Y  are independent, X , Y are also independent, by property of ch. f  

2
1 1 2it it it it

X Y X Y
e e e et t t

it it t
 

Example 8.11. Is 2cos t  a ch. f ? 

Solution: 

2

il ile ecost  So,  
2 2

2 2
4

il il
itXe ecos t E e  

Where X  has . .p m f .  

X -2 0 2 

p(x) 1
4

 1
2

 1
4

 

 
2cos t  is a ch. .f  

Theorem 8.1. 1 2, nX X X  be the .r vs  with d . fs 
1 2
,

nX X XF F F  respectively and 

ch. fs 
1 9
,

nX X X  respectively, then for the constants 1 2, na a a  such that 

0ia , and 1,
xi X ia a  is a ch. f  of 

xi Xa F  

Following theorem characterizes the ch. f  and its density or d.f. Uniquely. 
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Theorem 8.2. Inversion theorem: X  is absolutely continuous .r v  such that 

| |X t dt  

then its . .p d f  is given by 

1
2

itx
X Xf x e t dt    (8.25) 

Example 8.12. Show that t 1e w  a .ch f . if .t isch f  of some .d fF x  

Solution: 
2 3

1
1

2! 3!t

t t
t

e
e

 

1 j jj
a t  

where a 1
!ja

j e
 with 1

j 1
a 1and j

j t t , ch. f . of j fold convolution 

of ’F x  . hence 1te is a ch.f 

Example 8.13. 
2

xef x for x  then find its ch. .f  

Solution: 

t

2

x
i x

X
et e dx  

0

20

1 1 1 1
2 2 2 1 1 1

x x
itx itxe ee dx e dx

it it t
 

t
X t e  find its . .p d f  

Solution: Since from the above example for f x e x  ch f  is 2
1

1 t
, we write 

2
1

1 2

x
itx ee dx

t
 

replace t  by y in above equation gives 

2
1

1 2

x
iyx ee dx

y
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replace x  by t in above equation and multiply by 1  gives 

2
1 1 1

1 2
tiyte e dt

y
 

By inversion theorem, te  is a ch. f  of .r v  whose density is 

2
1 1

1
f y

y
for x  This is Cauchy density. 

8.4 Chapter End Exercises 

1. Find expectation and variance of X if 
 (i) ,X B n p  

 (ii) X has Uniform over 1,1   

 (iii) p.d.f of X is 

 
1 for 1 0
1 for0 1
0 Otherwise

x x
f x x x   (8.26) 

 (iv) X has p.m.f 0,1,2xp x pq x  

2.  Find ch. f  of i X  has Poisson with parameter . (ii) 1 2X X , where 

21 1 1
,X N  and 22 2 2

,X N  are independent r.v.s. 

3. Are following ch. f ? (i) cost (ii) e XR t  (iii) k
X X kP t t p . 

(iv) 1
1 t

 

 

 

 

 



9 
THEOREMS ON EXPECTATION AND 

CONDITIONAL EXPECTATION 

Unit Structure 

9.0  Objectives 

9.1  Expectation of a function of two dimensional r.v.s 

9.2  Conditional Expectation 

9.3  Chapter End Exercises 

9.0 Objectives 

After going through this chapter you will learn 

 Expectation of a function of two dimensional r.v 

 Theorems on expectation. 

 Some inequalities based on expectations. 

 Conditional expectation and its relation with simple expectation. 

9.1 Expectation of a function of two dimensional r.v.s 

Definition 9.1. Expectation of ,Yg X  : Let the function of two dimensional 

. ,r vs X Y  be ,g X Y  its expected value denoted by ,E g X Y  is defined as 

Case (I)Discrete r v . with joint ,y. . ,X i jp m fP x y  

1 1
, , ,m n

i j i jj i
Pi g X Y g x y p x y     (9.1) 

Provided the sum is convergent. Case (II)Continuous r v  . with joint 

,y. . . ,Xp d f f x y  

, , ,Pi g X Y g x y f x y dxdy      (9.2) 

Provided the integral is convergent. 

84
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Theorem 9.1. Addition Theorem on expectation: ,X Y  be two dimensional .r vs  

then 

E X Y E X E Y    (9.3) 

Proof: We assume that the r.v.s (X, Y) are continuous with joint p.d.f. , ,X Yf x y  

and marginal p.d.f .s ,X Yg x h y  . 

,y ,X YE X x y f x y dxdy  

,y , , ,X X Yxf x y dxdy yf x y dxdy  

, , , ,X Y X Yx f x y dy dx y f x y dx dy  

 romX Yxg x dx yh y dy  the definition ,X Yg x h y  

 Pi X Pi Y  From the definition of E X  and E Y  

Hence the proof. 

Theorem 9.2. Multiplication Theorem on expectation: ,X Y  be two 

dimensional independent .r vs  then 

E XY E X E Y      (9.4) 

Proof: We assume that the r.v.s ,X Y  are continuous with joint p.d.f. , ,X Yf x y  

and marginal p.d.f .s ,X Yg x h y  . 

,y ,XE XY xyf x y dxdy  

, ,X Yxyf x y dxdy  

 YXxyg x h y dxdy  By independence of X and Y  

y Xxg x yh y dxdy  

 romE X Pi Y  the definition of XE  and E Y  

Hence the proof. 

Above theorems can be generalized for n  variables 1 2,X X , ... nX  



86

SET THEORY AND LOGIC & ELEMENTRY PROBABILITY THEORY

1 2 1 2n nE X X X E X E X E X    (9.5) 

orn  independent random variables 1 2,X X , ... nX  

1 2 1 2n nE X X X E X E X E X     (9.6) 

Example 9.1. Show that E aX bY c aE X bE Y c  

Solution: Consider continuous . . ,r v X Y  with joint ,. . . ,X Yp d f f x y , and 

marginal . . .p d f s  

,X Yg x h y  

] ,Pi aX bY c ax by c f x y dxdy  (9.7) 

 , ,X Yaxf x y dxdy  by ,y ,, ,X X Yf x y dxdy c f x y dxdy  

 ,y ,, ,X X Ya x f x y dy dx b y f x y dx dy cBy  property of joint 

. .p d f  X Ya xg x dx b yh y dy c  By the definition 9x x , Yh y  

 aE X bE Y c  By the definition of 1Xl  and [ ]E Y  

If X Y , then prove that E X E Y  

Solution: If yX , then 0X Y , and hence 0E X Y  

From the property of expectation and addition theorem, 

0E X E Y  or .E X E Y  

Example 9.2. Prove for any two . . , ,r v sX Y  
2 2 2yE X E X E Y  

[This is Cauchy Schwarz s inequality.1 

Solution: consider a function 2h a E X aY  

2 2 2 2h a E x a E Y aE XY  

22 2 0
dh a

aE Y E XY
da

 

gives 

2

pj XY
a

E Y
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And 
2

2
2 2 0

d h a
E Y

da
 

Thus h a  is minimum vjhen 2

E XY
a

E Y
 

2

2 2
2 2 22 2

E XY E XY E XY
h a E X Y fij X E Y

E Y E Y E Y
 fii XY  

2
2

2 0
E XY

E X
pj Y

 

gives 
2 2 2E XY E X E Y  

Example 9.3. Show that 

2 2

1 1E
X E X

 

Solution: Using Cauchy Schwarz s inequality for 1y
X

 

2
2

11 E X E
X

 

divide inequality by 2 0E X  to get, 

2 2

1 1B
X E X

 

Example 9.4. Show that for any two . . , ,r v sX Y  
2 2 2E X Y E X E Y  

Solution: Consider, 
2 2 22 yE X Y E X X Y  

2 2 2E X E XY E Y  

 2 2 2 22E X E X E Y E Y By  Cauchy Schwarz s inequality 

2
2 2 E X E Y  

Taking square root, 
2 2 2pj X Y B X pj Y  
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9.2 Conditional Expectation 

Definition 9.2. Conditional Expectation of X : 

Case (I) Let ,X Y  be the two dimensional discrete . /r vwith oint  probability 

mass function , ,X Y i jP x y i  1 ton, 1j tom  the conditional expected value of X  

given jY y  denoted by / y jE X y  and defined as 

1
/ /n

j i i ji
E X Y y x P X x Y y      (9.8) 

Case (II) Let ,X Y  be the two dimensional continuous .r v  with joint probability 

density function 2
, , ,X Yf x y x y  the conditional expected value of X  given 

Y y  denoted by / yE X y  and defined as 

/ /E X Y y xg X Y y dx      (9.9) 

Similarly using conditional p.m.f s or p.d.f s  of Y  given X we can define 
conditional expected value of Y. 

Definition 9.3. Conditional Expectation of Y : Case (I) Let ,X Y  be the two 

dimensional discrete .r v  with joint probability mass function , ,X Y i jP x y i  1ton, 

j  1tom the conditional expected value of Y  given iX x  denoted by 

/ iPi Y X x  and defined as 

1
/ /m

i j j ij
E Y X x y P Y y X x    (9.10) 

Case (II) Let ,X Y  be the two dimensional continuous .r v  with joint probability 

density function 2
, , ,X Yf x y x y  the conditional expected value of X  given 

Y y  denoted by /E Y X x  and defined as 

/ /E Y X x yh Y X x dy    (9.11) 

Theorem 9.3. For any two . .r v sX  and Y  

/yE E X Y y E X  

and /xE E Y X x E Y  
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Proof: Consider 

/ y /E X y xg X y dx  

Multiply both sides of above equation by h y  and itegrate with respect to y,to get 

/ /h y Pi X y dy xh y g X y dxdy  

L.H.S  becomes /yE E X y E X  and since ,y/ ,Xh y g X y f x y  R.H.S 

becomes 

, ,X Yx f x y dy dx       

 Xxg x dx  By definition of Xg x      (9.12) 

 Pi X          (9.13) 

Hence the proof. We can similarly prove /xE E Y X x E Y  

Example 9.5. Find conditional means of X  and Y  of the following . .r v  The joint 
. .p d f  of , , 8X Yf x y xy  for 0 1x y  

Solution: From 13.8  the conditional , .p d f  of X givenY yis  

/ 2
2

X Y y
xg x

y
 for 0 x y  

20

2 2/
3

y xE X y x dx y
y

 

From (13.9) the conditional . .p d f  of Ygiven X xis  

/ 2
2

1Y X x
yh y
x

 for 1x y  

2
1

2

2 12/
1 3 1x

x xyE Y x y dy
x x

 

Example 9.6. Find / 2E X Y , and / 2E Y X  if the joint . .p m f . of 

. . ,r v X Y  is as given below. 

Y  X 1 2  PY(y)

1 1
4

0 1
4

 

2 1
2

1
4

3
4

 

PX(x) 3
4

1
4

1 

Solution: The conditional . .p m f  of Y  given 2X  is given by 
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Y 1 2  
PX/Y=2(y) 0 1 3l

 
/ 2 2 : / 2 2E Y X yP Y y X  

The conditional . .p m f  of X  given 2Y  is given by 

x 1 2  
PX/Y=2(x) 2

3
1
3

 
4/ 2 / 2
3

E X Y xP X x Y  

9.3 Chapter End Exercises 

1. If X and Y  are independent then show that conditional means are same same 
as simple means. 

2. Show that 2E X E X  

3. Find conditional means of X and Y  of the following r.v.  The joint p.d.f  of 

, , 2X Yf x y  for 0 1x y  

4. Given the joint p.m.f of X,Y as 

 3,
24

x yP X x Y y  for , 1,2x y . Find conditional mean of Y  givenX 

1  and conditional mean of X given Y 1  

5. For the above problem 3 and 4,find Ei XY ,E X Y  . 

6. Two balls are drawn from an urn containing one yel of blue balls 
drawn.low,two red and three blue balls. Let X be the number of red balls, and 
Y  be the number of blue balls drawn. ind  the joint p.m.f of X, Y ,hence 

/ 2E X Y  and / 2E Y X . 

 

 



10 
LAW OF LARGE NUMBERS AND  

CENTRAL LIMIT THEOREM 

Unit Structure 

10.0  Objectives  

10.1  Chebyshev’s inequality 

10.2  Modes of Convergence 

10.3  Laws of large numbers 

10.4  Central Limit Theorem 

10.5  Chapter End Exercises 

10.0 Objectives 

After going through this chapter you will learn 

 Chebyshev s inequality and its applications 

 Various modes of convergence and their interrelations. 

 Weak law of large numbersand necessary condition for asequence to obey 
this law.  

 Strong law of large numbersand necessary condition for asequence to obey 
this law.  

 CLT : An  important theorem for finding probabilities using Normal 
approximation. 

10.1 Chebyshev’s inequality 

In this chapter we will study asymptotic behavior of the sequence of r.v.s. 

Theorem 10.1. X  is a non negative .r v  with finite mean then for any 0C  

E X
P X C

C
       (10.1) 

91



92

SET THEORY AND LOGIC & ELEMENTRY PROBABILITY THEORY

proof : 

XE X xf x dx       (10.2) 

Consider U{ }X C X C  So, 

X XX C X C
E X xf x dx xf x dx     (10.3) 

                  XX C
xf x dx  

                      XX C
Cf x  

                     CP X C  

Hence we get 

B X
P X C

C
       (10.4) 

Following inequality is directly followed from above theorem 

Theorem 10.2. Chebyshev’s inequality X  is a .r v  with mean  and variance 
2  then for any 0C  

2

2P X C
C

 

proof: X C  implies 2 2X C  

So 
2

2 2
2

(
 

E X
E X C P X C

C
 

Using above theorem for 2X  

2

V X
C

 

Hence 
2

2P X C
C

      (10.5) 

 Inequality can also be written as 
2

2[ ] 1P X C
C

     (10.6) 

we get an lower bound on the probability that r.v deviates from its mean by C  
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 If C  is replaced by (k , where 0k  then inequality reduces to give an upper 

bound 

2
1

CfP X k
k

     (10.7) 

 By complementation can also write a lower bound. 

2
1[ ] 1P X k
k

     (10.8) 

 If 2k , lower bound is 3
4

, which means that 75% of the times r.v assumes 

values in 2 , 2  

 The bounds given by Chebyshev’s inequality are theoretical and not practical, 
in the sense that the bounds are rarely attained by the r.v.  

 Inequality is useful when the information regarding probability distribution 
of r.v is not available but the mean and variance is known. 

Example 10.1. A .r vX  has mean 40 and variance 12. Find the bound for the 
probability 32 48 .P X P X  

Solution: 

32 48 40 8P X P X P X  

By Chebyshev’s inequality, 

240 8 0.1875
8

varianceP X  

Example 10.2. A unbiased coin is tossed 400 times,find the probability that number 
of heads lie between (160, 240). 

Solution: X  has 1400,
2

B  . X  has Mean 200 and Variance 100. 

So, 160 240 200 40P X P X ,By Chebyshev s inequality, with 

4k  and 10  

1200 40 1
16

P X . This gives the lower bound 0.9375 
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10.2 Modes of Convergence 

Th modes of convergence are itroduced so as to define further laws of large 
numbers. 

Definition 10.1. Convergence in Probability: ,A, P  be a probability space 

nX  is a sequence of a . .r v s  nX  is said to converge in probability to a .r vX , 

from the same space, if for any 0  

lim (| | )nn
P X X  0   (10.9) 

We say that n
PX X  

Definition 10.2. Almost Sure Convergence ,A, P  be a probability nspace X  

is a sequence of a . .r v s  nX  is said to converge almost surely to a .r vX , from the 

same space, if for any 0  

(lim | | ) 0nn
P X X      (10.10) 

We say that .a s
nX X  

Definition 10.3. Convergence in Distribution: ,A, P  be a probability space 

nX  is a sequence of a . .r v s  with . . .nd f s F  nX  is said to converge in 

distribution to a .r vX , from the same space, if there exists a .d fF  of X  such that 

nF  converges to F  at all continuity points of .F  

 Almost sure convergence implies convergence in probability. 

 Convergence in probability implies convergence in distribution. 

10.3 Laws of large numbers 

Theorem 10.3. Weak law of Large Numbers(WLLN): 1 2, nX X X  be the 

independent .r vs  with means 1 2, n  respectively and finite variances 
2 2 2
1 2, n  respectively and n iS X  for any 0 , if 

1lim ( ) 0
n

i in
n

SP
n n

     (10.11) 

We say the Weak Law of Large Numbers (WLLN) holds for the sequence of 
. . ir v s X  
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proof: Consider 

 

2

nSVar
n      

Because of independence of r.vs and by Chebyshev s Inequality .Further 
2

2 2
i

n
         (10.12) 

Taking limit as n  tends to  of both sides of inequality we get R.H. S  limit zero 
since variances are finite, finally 

lim ( ) 0in
n

SP
n n

      (10.13) 

Theorem 10.4. Khintchine s Weak law of Large Numbers(WLLN) 1 2, nX X X  

be the . . .i i dr vs  with common mean , then n iS X  for any 0 , if 

lim ( ) 0n
n

SP
n

      (10.14) 

We say the Weak Law of Large Numbers (WLLN) holds for the sequence of .r v  . 
is X  

The law can be equivalently stated using complementation as 

lim ( ) 1n
n

SP
n

      (10.15) 

 In short when WLLN holds for thc sequence if n iS P  . 

 The limiting value of chance that average values of the r.v.s becomes close to 
the mean is nearly 1,as n  approaches to  

 Assumption of finite variance is required for non identically distributed 
r.v.s.The condition for WLLN to hold for such sequence is that 

2
rV S

n
 

tends to zero as n  approaches to infinity. or  i.i.d.r.vs only existence of 
finite mean is required. 

 Above law is a weak law in the sense that there is another law which implies 
this law 
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Example 10.3. Examine whether WLLN holds for the following sequence of the 
independent . . .r v s  

1. 
12 1  
2
12 1  
2

k

k withprob
X

k withprob
 

Solution: 0kE X  and 21,k nV X Zk V S n  

2
nV S

n
 does not tend to zero as n  approaches to  . WLLN does not hold for the 

sequence 

2. 

2 1

2

12  
2

10  1
2

k
k

k

k

withprob
X

withprob
 

Solution: 0kE X  and 1,k nV X V S n  

n
2

V S
n

 tends to zero as n  approaches to , therefore WLLN holds for the 

sequence 

Theorem 10.5. Strong Law of Large Numbers(SLLN): 1 2, nX X X  be the 

independent .r vs  with means 1 2 7, l  respectively and finite variances 
2 2 2
1 2, n  respectively and n iS X  for any 0 , if 

1[lim | | ] 0
n

i in
n

SP
n n

     (10.16) 

We say that Strong Law of Large Numbers (SLLN) holds for the sequence of 
. . ir v s X  

 In short when SLLN holds for the sequence if n iS as  . 

 The average values of the r.v.s becomes close to the mean as n  approaches 
to  with very high probability.That is almost surely. 

 Assumption of finite variance is required for non identically distributed r.v.s. 
The condition for SI LN  to hold for such sequence is that 
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21
i

i

V X
i

 

 as n  approaches to infinity.This condition is known as Kolmogorov’s 
Condition.  For i.i.d.r.v.s only existence of finite mean is required. 

 Above law is a Strong law in the sense that which implies Weak law 
Example 10.4. Examine whether SLLN holds for the following sequence of the 
independent . . .r v s  

1. 
1 

2
10  1

k

k withprob
kX

withprob
k

 

Solution: 0kE X  and 
3
2

2, 4k
k

V X
V X k

k
 SLLN does not hold for the 

sequence 
2. 

12  
2
12  
2

k

k
k

withprob
X

withprob
 

Solution: 0kE X  and 2
22 ,k k

k
V X

V X
k

 SLLN holds for the 

sequence 

Weak law of large numbers gives an idea about whether the difference between 
average value of r.v.s and their mean becomes small But following theorem gives 
the limiting probability of this becomes less than small number  

10.4 Central Limit Theorem 

Central Limit Theorem is basically used to find the approximate probabilities, using 
Normal distribution.The theorem was initially proved for bernoulli r.v.s It has been 
proved by many mathematicians and statisticians, by imposing different conditions. 

Theorem 10.6. Central Limit Theorem by Lindberg Léévy(CLT): 

1 2, nX X X  be the . . .i i dr vs  with common mean  and common variance 2 , let 

n iS X  for any 0a , 
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21
2

71

1lim ( )
2

n
a x

an

S
nP a e dx

n

    (10.17) 

We say that CLT  holds for the sequence of .r v  . is X  

 This theorem is useful to find the probabilities using normal approximation. 
Normal distribution tables are available for d.f of 0,1N  for all a 0  

21
2

71

1
2

a x
a e dx       (10.18) 

 ( ) ( )
n

n

S
SnP a P a
n n

n

      (10.19) 

Now if the choice of  is arbitrary take a
n

 that is na , as n  

approaches to  the above probability becomes, 

 lim ( ) 1n
n

SP
n

   (10.20) 

 
1

n
n ii

S P  

.Thus WLLN holds CLT gives probability bound for nS
n

,where as 

WLLN gives only the limiting value. 

 If 1 2, nX X X  be the i.i. d  bernoulli r.v s  CLT becomes 

21
21lim ( )

2

n
o x

n

S p
nP a e dx

pq
n

      (10.21) 

Example 10.5. A fair coin is tossed 10, 000 independently. Find the probability 
that number of heads (i)differs by less than 1% from 5000 ii is  greater than 5100 
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Solution: nS  be the number of heads in 10, 000 independent tosses of a fair coin. 

nPi S  5000 and 2500nV S  

By CLT i  

5000
lim ( 5000 50) lim ( 1)

2500
n

nn n

S
P S P     (10.22) 

211
2

1

1 2 1 1 0.6826
2

x
e dx      (10.23) 

(ii) 

5000 5100 5000lim ( 5100) lim ( )
2500 2500

n
nn n

SP S P  (10.24) 

21
2

2
7

1 1 2 0.0228
2 r

x
e dx      (10.25) 

Example 10.6. How many independent tosses of a fair die are required for the 

probability that average number of sixes differ from 1
6

 by less than 6% to be at 

least 0.95? 

Solution. 5
36 )

n nS Sth bee
n n n

 number average of sixes in n  independent tosses of a 

fair die. nSE
n

 By CLT i  

1 5lim ( .01 ) 0.95
6 36

n
n

SP
n n

      (10.26) 

25 1.01
36 2

5.01
36

1 52 .01 1 0.95
362

x
n

n

e dx
n

   (10.27) 

2 1.96 1 1.96 1.96 0.95      (10.28) 

5,.01 1.96
36

So
n

 or it gives 
2

2
196 5 5336
36 .01

xn
x

 Toss the die at least 5336 times 

to get the result. 
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10.5 Chapter End Exercises 

1. X is a r.v assuming values l, 0,1  with probabilities 0.125, 0.75, 0.125 

respectively.Find the bounds on [ 1]P X  

2. Find K such that probability of getting hcad between 450toK  is 0.9, in 1000 
tosscs of a fair coin. 

3. 3. 0 indf x e xx  the bound on the probability [ 1 2]P X , and 

compare it with actual probability 

4. Examine whether SLI N  holds for the following sequence of the 

independent r.v.s. 

2 1
12  

2
10  1
2

k
k

k

k

withprob
X

withprob
 

5. Examine whether WI LN  holds for the following sequence of the 

independent r.v.s. 

1
2
1
2

k

k withprob
X

k withprob
 

6. Suppose a large lot contains l% defectives. By using CLT, find approximate 
probability of getting at least 20 defectives in a random sample of size 1000 
units. 

7. iX  is sequence of independent r.vs such that 0iE X  and 

1
1

00

100
1
3i ii

V X S X  approximately the [ 0.2]nP S  
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