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BASIC THEORY 
 

 

Unit Structure : 

 

1.1 Introduction. 

1.2 Ordinary Differential Equations. 

1.3 First Order ODE. 

1.4 Existence and Uniqueness of Solutions (Scalar Case). 

1.5 Illustrative Examples. 

1.6 Exercises. 

 

1.1 INTRODUCTION  

 

 As we already know, a differential equation - DE - is an equation 

relating the following three items : 

 

 A function of one or more variables (the function being real valued or 

vector values). 

 The independent variables of the function. 

 A finite number of derivatives of the function.  

 

  The highest order of derivatives of the function appearing in the 

equation is the order of the differential equation.  

 

  Usually, the function in a differential equation is an unknown 

function; it is an are observable quantity of a real process and therefore we 

are interested in knowing the function. We use results and techniques of 

mathematical analysis along with our geometric intuition and tease the 

function out of the differential equation. We then speak of having solved 

the differential equation.  

 

  Depending on the nature of the function (in which a differential 

equation is set) we classify the differential equations in the following two 

types : 

 

I) A function 
nX : I of a single real variable (say) t ranging in an 

open interval I gives rise to the succession of derivatives : 
0 2 k

2 k

d dX d X d X
X X, , , ... .....

dt dt dt dt
 

 Now a differential equation in the function X t  is therefore an 

equation of the type : 

___________________________________________________________________________________________________________________________________________________

1



 
2

2
, , , .... 0

k

k

dX d X d X
F t X

dt dt dt
 ………………. (1) 

 

 Such an equation is said to be an ordinary differential equation. Thus 

an ordinary differential equation is a differential equation in which the 

constituent function : ( )X t X t is a function of a single real variable.  

 

 We often use the acronym ODE in place of the full term : ordinary 

differential equation.  

 

II) On the other hand, there are differential equations in a function 

:u x u x  of a real multivariable 1 2..... nx x x x  which ranges in 

an open subset  of n . Such a function u u x gives rise to mixed 

partial derivatives : 

 

 

1 2

2

1 2

,1 ,

1 ,

: ....

n

i

i j

n

u
i n

x

u
j i j n

x x

D u u
x x x

 

for various multi-indices 1 2 .... n  with 0,1, 2, ... ,i i  the 

mixed partial derivative D u  having the order 1 2: ... n .  

 

 Now a differential equation in such a function u u x of a multi - 

variable 1..... nx x x  ranging in an open subset   of n is an equation of 

the type : 

 

 
2

, , , .... : 0
i i j

u u
F x u D u m

x x x
 ……… (2) 

its order being m. Equation (2) is said to be a partial differential equation 

in ( )u x because it involves the mixed partial derivatives of u. We use the 

acronym PDE for this type of differential equations.  

 

 There is more about the setting of a differential equation : In a 

mathematical problem, a differential equation is accompanied by auxiliary 

data. A solution of a differential equation is required to satisfy this auxiliary 

data. To be more specific we are given a subset of the domain of a 

prospective solution and some of its derivatives of the solution at the points 

of this subset.  
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 In case of the ODE, the auxiliary data is said to consist of initial 

conditions. An initial value problem consists of finding the solution of the 

ODE which satisfies the accompanying initial conditions. Often, the pair 

consisting of (a) an ordinary differential equation and (b) the initial 

conditions is referred as the initial value problem -IVP-.  

 

 Often the initial conditions are given at the end points of an interval 

which are then called the boundary conditions. Also, the resulting initial 

value problem is called a boundary value problem.  

 

 In the case of a partial differential equation, the accompanying 

auxiliary data is called the Cauchy data for PDE. The Cauchy problem 

for a given PDE consists of finding the solution of the PDE which satisfies 

the requirements of the given Cauchy data. 

 

 We will explain more about these terms initial conditions, Cauchy 

data etc. - at later stages.  

  

 Partial differential equations, being more intricate mathematical 

objects are studied by using the concepts and results of the ordinary 

differential equations. Therefore, a basic course on differential equations 

begins with a treatment of ordinary differential equations. In our treatment 

of the subject also, we will develop enough theory of ODE and then apply it 

to the partial differential equations.  

 

 Therefore, back to the theory of ODE.  

 

1.2 ORDINARY DIFFERENTIAL EQUATIONS  

 

 To begin with, we reorganize the form (1) of the ODE in the 

following manner. Unraveling it, we separate the top order derivative and 

express it as a function of the remain variable quantities, namely, 
1

1
, ( ), , ..... ,

k

k

dX d X
t X t

dt dt
 that is we form the equation 

1

1
, , ,

k k

k k

d X dX d x
f t X

dt dt dt
 …………………… (3) 

 

 We regard the equation (3) as the standard form of an ODE (of 

course, the ODE has order = k.) Note that the function : ( )X t X t is a 

vector valued function of the real variable t and as such it is a curve in n . 

Each ( )X t  has n components : 1 2( ) ( ), ( ), .... , ( )nX t X t X t X t  and 

therefore all the derivative of it has n components : 

 1 2

( )
( ), ( ), ..... ( )n

d X t d d d
X t X t X t

dt dt dt dt
 for 1 k . 

Consequently, the function f appearing on the right hand side of (3) has n 

components : 1 2, , ... , nf f f f  each if being a real valued function. 
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Consequently the DE (3) is actually the following system of ODE in the 

functions :  

1 2, , .... ,t X t t X t nt X t  

1

1
1 1

1

2
2 1

1

1

, , , ...,

, , , ...,

, , , ...,

k k

k k

k k

k k

k k

n
nk k

d X dX d X
f t X

dt dt dt

d X dX d X
f t X

dt dt dt

d X dX d X
f t X

dt dt dt

……………… (4) 

 

 At this stage, we become more specific about the features of the 

ODE (3) (or equivalently about the system (4).) 

 

 Let I be an open internal and let  denote an open subset of n . We 

consider the open sets  

 

......n nI  

 

(there being 1k  copies of n  in the above Cartesian product). This set is 

being designated to accommodate the variable quantities : 

 

 

1

1
, ( ), ,

k

k

dx d x
t X t t

dt dt
. 

 

 Clearly, the function f appearing on the right hand side of (3) must 

have this set as its domain of definition. 

 

 Choosing 0 0,t I x  and 1 2 1, ... kw w w  in n , we form the initial 

condition 0 0 1 2 1, , , ... kt x w w w . Now, the initial value problem for the ODE 

(3) is the following pair :  

 

 

1

1

0 0 1 1

, , , ....

, , ,......

k k

k k

k

d X dX d X
f t X

dt dt dt

t x w w

……………. (5) 

 

 By a solution of the initial value problem (5) we mean an (at least) k 

times continuously differentiable function (= curve in )  

 

 :X J , J being an open interval with 0t J I , which satisfies 

the following two items : 
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 The differential equation : 
1

1

( ) ( ) ( )
...

k k

k k

d X t dX t d X t
f t

dt dt dt
 for all 

t J  

 The initial conditions :  
1

0

0 0 0 1 11
, , ....,

k

kk

d X tdX
x t x t w w

dt dt
 

 

Remarks :  

 

(I) Though the independent variable t of the function X(t) in the ODE (1) 

is stipulated to range in the interval I, we expect the solution ( )t X t

of the initial value problems (4) to be defined only on a sub-internal J 

of I (with 0t J ). Indeed, we come across concrete cases of the IVP in 

which a solution exists only on a sub-inter J of I and therefore, we 

grant this concession : a solution need be defined only on a sub-

interval J of I. 

 

II) Often, the initial conditions are expressed more explicitly in terms of 

the equations : 

1

0

0 0 0 1 11
, , ....,

k

kk

d X tdX
x t x t w w

dt dt
. 

 

 An important special case of the ODE (3) is 
2 1

2 1
, ,

k k

k k

d X dX d X d X
f X

dt dt dt dt
 ………………… (6) 

 

in which the function f is independent of the variable 

: : ....n n nt f . In this case we say that the ODE (6) is 

autonomous.  
 

 Returning to the initial value problem (5), there are two questions : 
 

 Does the initial value problem (5) admit a solution at all? 

 If it does is the solution unique? 

 

Clearly, because f is the main ingredient of the ODE, the answer to 

both of there questions naturally depends on the properties of f, especially 

on its behaviour around the initial condition 0 0 1 1, , ,....... kt x w w (i.e. how if 

varies continuously, differentially etc. around 0 0 1 1, , ,...., kt x w w  Following 

two examples illustrate that answers to both the questions are (in general) in 

the negative : 

 

 Let :f  be the function : 

  
1 0

1 0

f x x

x
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 For this function we consider the (first order autonomous case of) the 

initial value problem : ( ), ( ) 0
dX

f X x o
dt

. 

 

 We contend that this initial value problem has no solution.  

 

 For, if there was a solution :X J  with 0 J , then 

(0) (0) 1
dX

f
dt

 implies that the solution ( )t X t  is strictly 

monotonic increasing in a neighborhood ,  of O. 

 

 On the other hand, 1( 0) ( )
dX

f t
dt

for all , 0t  implies 

that ( )t X t t is strictly monotonic decreasing in , 0 . Thus, if the 

solution of the above IVP exists then it is strictly monotonic increasing as 

well as strictly monotonic decreasing. This prevents a solution! 

 

 Now let :g be the function  

      1

3

0 0

0

g x x

x x

 

For this g, we consider the autonomous initial value problem.  

 

, 0 0
dX

g X X
dt

 

 

Clearly, one solution of it is the function  
3

2 3
2

1

2
0

( ) 3

0 0

t t
X t

t

 

 

 Another solution of the same IVP is the function 0( ) 0X t . Thus, 

the IVP has at least two distinct solutions. (In fact it has an infinitude of 

solutions. For each c > 0, the functions : 1( )t c X t is a solutions) 

 

 Of course, an IVP should admit a unique solution! In the following 

sections we will concentrate our attention on first order ODE and for such 

ODE we will introduce a condition - f being locally Lipschitz - which will 

guarantees both - existence and uniqueness of the solution.  

 

 Above, we have been discussing ODE of arbitrary order 

: 1,2,3,....n and the IVP associated with them. But there is a 

simplifying aspect of the ODE! Higher order ODE can be studied entirely in 

terms of first order ODE. (This point will be explained in detail in the last 
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part of chapter 2). Therefore, for the time-being we will focus our interest 

on first order ODE only.  

 

1.3 FIRST ORDER ODE 

 

 We begin some more generalities related to first order ODE. As in 

the preceding part, I denoted an open interval and , an open subset of n .  

 

 We consider a function : 

 

 : nf I  ……………….. (7)  

 

giving rise to the first order ODE : 

  

 ( , )
dX

f t X
dt

 ……………………(8) 

 

 Note that for each t I  held fixed the map : 

 

 , : ; ,nf t x f t x is a vector field on . Interpreting “t” 

as the time variable we call the function (7) a time dependant vector field on 

. And, often, we call a solution :X J  of the ODE (8), an integral 

curve of the vector field f. 

 An initial condition for the ODE (8) consists of a pair 0 0,t x  with 

0t I , 0x and the associated initial value problem is : 

 

 
0 0( , ),

dX
f t X x t x

dt
……………….. (9). 

 

 Finally, recall that a solution of (9) is an (at least) once continuously 

differentiable curve  

 

:X J  

 

 (J being an open interval with 0t J CI ) satisfying : 

( )
( , ( ))

dX t
f t X t

dt
 for all t I  and the initial condition 0 0X t x .  

 

 In the context of the IVP (9) we consider yet another equation the 

following integral equation in an unknown function :X J  : 

0

0( ) ( , ( ))

t

t

X t x f s x s ds t J  …………………. (10). 

 

 Following result relates solutions of the IVP (9) and those of the 

integral equation (10) : 
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Proposition 1 :  

A continuously differentiable curve :X J   

(J being an open subinterval of I with 
0t J ) is a solution of the IVP 

(9) if and only if it satisfies the integral equation (10).  

Proof : (I) - First suppose that the curve :X J  satisfies the integral 

equation (10). Putting 
0t t  in (10) we get : 

 

 

0

0

0 0

0

0

( , ( ))

t

t

X t x f s X s ds

x

x

 

 

 Thus X satisfies the initial condition.  

 Next, differentiating (10) we get  

 
0

0 ( , ( ))

( , ( ))

t

t

dX t d
f s X s ds

dt dt

f t X t

 

 

by fundamental theorem of integral calculus.  

 Above, we have verified that a solution t x t  of the integral 

equation (1) is also a solution of the IVP (9). Conversely suppose, t x t , 

t J  is a solution of the IVP (9). Integrating the identify.  

 

 ( ( )
dx

t f t x t t J
dt

 

 

 We get : 

 

 
0

0

0

( ,

t

t

t

t

d
x t x t X s ds

ds

f r x s ds

 

And therefore : 
 

 

0

0 ( , )

t

t

x t x f s X s ds  

Thus we have : 

 

0

0 ( ,

t

t

x t x f s X s ds  

For all t J proving that a solution of the IVP (9) is also a solution of the 

integral equation (10). 
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1.4 EXISTENCE AND UNIQUENESS OF SOLUTIONS 

(SCALAR CASE) 

 

 In this section, we consider the scalar case, (i.e. a single differential 

equation) of the initial value problem. Now  will be an open subset of 

which, without loss of generality will be taken to be an open internal, we 

write J for . Thus we have on function 
 

 :f I J   

Along with 
0t I , 

0x J  giving rise to the scalar case of the initial value 

problem :  
 

 
0 0( , ) ( )

dX
f t x x t x

dt
 …………………… (11) 

 

 Following property of f ensures both, existence and uniqueness of 

the solution of (11).  

 

Definition 1 :  f is locally lipschitz on J, uniformly in t I  if the following 

two conditions are satisfied.  
 

a) f is continuous on I J .  

b) For each 0t I , 0x J there exist finite numbers 0, 0K satisfying 

the following : 

i) 0 0 0 0, , ,t t I x x J  and  

ii) , ( , )f t x f t y K x y  holds for all 0 0,t t t and for all 

pairs x, y in 0 0,x x . 
 

Remark : An autonomous ODE arises from a function :f J  which is 

independent of the time variable t I . For such a function, the condition 

(b) in the definition takes the following simpler from : for each 0x J , 

there exist 0, 0K satisfying :  

 i) 0 0,x x J  and  

 ii) ( )f x f y K x y  for all x, y in J. 

 

 Also note that this condition implies continuity of f at every 0x J

and therefore there is no separate mention of condition (a) in the definition 

of local Lipschitz property of such a :f J .  
 

 Following proposition describes a broad class of functions with the 

locally Lipschitz property : 

Proposition 2 :  If :f I J is continuously differentiable on its 

domain, then it has the locally Lipschitz property.  
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Proof : Let 0 0,t x I J  be arbitrary. Using openness of I J , choose 

0  such that 0 0 0 0, ,t t x x I J .  

 Now, the function 
f

x
is continuous on I J  and therefore it is 

bounded on the compact subset 0 0 0 0, ,t t x x . We consider 

any constant k > 0 with the property.  
 

 ( , )
f

t x K
x

 for all 0 0,t t t  and for all 0 0,x x x .  

 

 Finally let 0 0,t t t  x, y in 0 0,x x  be arbitrary. By 

the mean value theorem of differential calculus, we have :  
 

 , ( , ) ( ) ,
f

f t y f t x y x t
x

 

for some z between x and y. Therefore,  
 

 , ( , ) ( , )
f

f t y f t x y x t z K y x
x

 

 

 (Since 0 0 0 0, , ,t z t t x x  and therefore 

( ,
f

t K
x

. This proves the locally Lipschitz property of f. 

 

Theorem 1 (Emil Picard) : If :f I J is locally Lipschitz then for 

any 0t I , 0x J , the initial value problem.  
 

 
0 0( , ), ( )

df
f t x x t x

dx
  

has a solution 0 0: ,x t t J  for some 0 .  
 

Proof : Choose 0  such that 0 0 0 0, , ,t t I x x J  and 

there exists 0K  for which , ( , )f t x f t y K x y  holds for all 

0 0 0 0, ,t t x x . We choose M > 0 such that  ,f t x M for 

all 0 0,t t t , 0 0,x x x .  
 

 Using the constants 0 , K > 0, M > 0, chosen above, we choose 

one more constant satisfying 
1

0 min ,
K M

. 

 

 We define a sequence of functions :  

 0 0: ,kx t t k  recursively as follows : 
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0

0

0

0 0

1 0 0

2 0 1

1( ) 0

( )

( ) ( )

( ) ( ( ))

( ( ))

t

t

t

t

t

k t k

t

x t x

x t x f s x ds

x t x f s x s ds

x x f s x s ds

 

 

 The sequence :kx k of functions has the following two 

properties : 

 

a) 0 0( ) ,kx t x x  for each 0 0,t t t  

b) 

1

0

1( ) ( )
( 1)!

kk

k k

MK t t
x t x t

k
 

 

 Both these properties are derived using principle of mathematical 

induction and the locally Lipschitz property of f. Using property (b) we 

deduce that the sequence :kx k is uniformly canchy on 0 0,t t

. For if 0 0, , ,tt t t k p , then 

1

1( ) ( ) ( ) ( )
k p

k p k j j

j k

x t x t x t x t  and therefore  

 

 

1

1

111
0

( ) ( ) ( ) ( )

( 1)!

!

k p

k p k j j

j k

jjk p

j k

j j

j k

x t x t x t x t

K t tM

K j

M K

K j

 

       

                                       
!

j

j k

KM

K j
 

 

 0  as k . 
 

 This last observation is true because 
!

j

j k

K

j
is convergent, 

converging 0

kt e . Note that in the inequalities : 
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 ( ) ( )
!

j

k p k

j k

KM
x t x t

K j
 the right hand sides are independent 

of t and therefore ( ) ( )k p kx t x t uniformly on 0 0,t t  as 

k , p being arbitrary. This completes the proof of our claim that the 

sequence : t

kx k of functions is uniformly Cauchy on 0 0,t t .  

 

 

 Using this last mentioned property of the sequence :kx k  we 

define a function.  
 

 0 0 0 0: , ,x t t x x  

by putting 0 0lim ( ), ,k
k

x t x t t t t . The function x, thus defined, 

is the uniform limit of the sequence :kx k . Therefore we have : 
 

 

0

0

0 1

0 1

lim ( )

lim ( , ( )

lim ( , ( )

k
k

t

k
k

t

t

k
k

t

x t x t

x f s x s ds

x f s x s ds

 

         
0

0

0 1

0 1

lim ( , ( )

( , lim ( )

t

k
k

t

t

k
k

t

x f s x s ds

x f s x s ds

 

          

0

0 ( , ( )

t

t

x f s x s ds  

 All the above equations being valid because of the uniform 

convergence of of 0kx t x  on 0 0,t t . 
 

 Finally, the identity :  

 

0

0 0 0( , ( ) , ,

t

t

x t x f s x s ds t t t  derived above has the 

following two consequences.  

1) Differentiation of the identity implies : 

MATHEMATICS___________________________________________________________________________________________________________________________________________________

___________________________________________________________________________________________________________________________________________________

12



 

0

0

0

( )
( , ( ))

0 ( , ( ))

( , ( )

t

t

t

t

dx t d
x f s x s ds

dt dt

d
f s x s ds

ds

f t x t

  

 

by fundamental theorem of integral calculus.  
 

2) 
0

0

0 0 ( , ( ))

t

t

x t x f s x s ds  

          
0

0

0x

x
 

 

 We have now verified that the function 

0 0 0 0: , ,x t t x x J  is a solution of the given initial value 

problem.  
 

Remark : The above theorem there proves that the functions kx constructed 

above are approximate solutions of the initial value problem (11). 
 

 The sequence : t

kx k  is called Picard’s scheme of approximate 

solutions of the initial value problem.  
 

 In the next chapter, we will generalize this result (the scalar case) so 

as to become applicable to a system of first order ODE. We will also prove 

that any two solutions of the initial value problem (11) agree on the overlap 

of their domains.  

 

1.5 ILLUSTRATIVE EXAMPLES  

 

Example 1 : Obtain Picard’s scheme of approximate solutions of the initial 

value problem : , (2) 3
dx

x x
dt

 and thereby obtain the  solution of it.  

 

Solution : This DE is an autonomous ODE with 0, , 2f t x x t  and 

0 3x . Therefore the approximate solutions are as follows : 
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0

1

2

2

2

2

2

2

2

( ) 3

( ) 3 3 3 3 ( 2)

3( 2)
( ) 3 3 3 ( 2) 3 3 ( 2)

2!

3 3 3
( ) 3 3 ( 2) ( 2) .. ( 2)

1! 2! !

3 3
3 ( 2) ( 2) ....

1! 2!

t

t

t

k

k

x t

x t ds t

t
x t s ds t

x t s s s ds
k

t t 13
( 2)

1

kt
k

 

 

 Therefore, the solution of the IVP is  

 
2

( 2)

0

lim

3 3 3
lim 3 ( 2) ( 2) ( 2)

1! 2! !

3 3
!

k
k

k

k

k

t

k

x t x t

t t t
k

t z
e

k

 

 

Example 2 : Obtain approximate solution (to within 
7t ) of the initial value 

problem : 

 

 2 , (0) 2
dx

xt t x
dt

 

 

Solution : Here, 
2

0 0, , 0, 2f t x xt t t x . 
 

Therefore, 0( ) 2x t  

                  

2

1

0

2 3

4
3 2

2

0

( ) 2 (2 )

2
2 3

( ) 2 (2 )
4

t

t

x t s s ds

t t

s
x t s s s ds

 

 

Using this observation, we get : 
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2 1

0

0

2 2

0 2

2

2

2

0

( ) 0 max , ( )

2

, 2
2

2
2

2 ( 2) 2

t

t

t

t

x t s x s ds

sds t

s
sds ds t

t
t

r ds t

2

2 3
2

2
2

( 2) ( 2)
2 2 ( 2) 2 if 2

2 3.2

t
t

t t
t t  

 Again, note that 
2

2

if 2
max , ( )

( ) if 2

t t
t x t

x t t
 and consequently, 

we get  
2

3 2 3 4

2
2

( )
2( 2) 2( 2) 2( 2) 2( 2)

2 2
1! 2! 3! 4!

t
t

x t
t t t t

t

 

 

 Using principle of mathematical induction, we get  

 

2

2 1

( ) 2
2

2( 2) 2( 2) 2( 2) 2( 2)
2 2 ... 2

1! 2! ! ( 1)!

k

k k

t
x t t

t t t t
t

k k

 

 

 Noting that 
2

0
!

k
t

k
 as k  for every t  we get : 

 

2

2

2
lim ( ) 2

2 2

k
k

t

t
if t

x t x t

e if t
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1.6 EXERCISES 

 

 Obtain solutions to within 
5t of the following initial value problems : 

 

1) 2 1
(0) 0 1 1

2

dx
t x x for t

dt
 

2) 2 (0) 1
dx

x x
dt

 

3) 21 (0) 0
dx

x x
dt

 

4) 
3

(1) 1
dx x

x
dt t

 

5) 3, (0) 0
dx

tx x x x
dt

 

6) , (0)
dx t

xt x
dt x

 

7) 3 (0) 1
2

dx x
x x

dt
 

 
 

 
 

 

 
 



 

MATHEMATICS___________________________________________________________________________________________________________________________________________________

___________________________________________________________________________________________________________________________________________________

16



2 
 

 

SYSTEMS OF FIRST ORDER ODE 
 

 

Unit Structure : 

 

2.1 Introduction.  

2.2 Existence and Uniqueness of Solutions. 

2.3 Uniqueness of a Solution. 

2.4 The Autonomous ODE. 

2.5 Solved Examples. 

2.6 Higher Order ODE. 

2.7 Exercises.  

 

2.1 INTRODUCTION 

 

 Basic concepts related to differential equations such as systems of 

first order ordinary differential equations, the initial value problem 

associated with such a system, a local solutions of the initial value problem 

etc. were introduced in the first unit. At the end of the unit, we proved a 

result regarding the solution of a single first order ODE.   
 

 We will extend the results of a single ODE to a system of first order 

ODE and prove both, existence and uniqueness of solutions of an initial 

value problem associated with a system of first order ODE. We will then 

derive some simple results giving information about the nature of solution 

of such an initial value problem.  
 

 We will conclude the chapter by explaining how a system of higher 

order ODE can be reduced to a system of first order ODE. We can then 

invoke the existence / uniqueness theorems and apply them to the first order 

ODE and get some information about the solutions of the higher order 

ODE.  

 

2.2 EXISTENCE AND UNIQUENESS OF SOLUTIONS  

 

 We will use the same notations which were introduced in Unit 1.  
 

 Let be an open subset of
n
, I an open interval and let 

: nf I  be a time dependent vector field having components:  

1 2, ,...., :nf f f I  
 

The vector field gives rise to the first order ODE : 

__________________________________________________________________________________________ 
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    ,
dx

f t X
dt

     

 … (1) 

which when written in terms of its components becomes the following 

system of first order ODE : 
 

 

1
1 1

2
2 1

1

( , , ...... , )

( , , ...... , )

( , , ...... , )

n

n

n
n n

dx
f t X X

dt

dx
f t X X

dt

dx
f t X X

dt      

 

... (2) 
 

 Between the expressions (1) and (2) the compact form (1) is more 

convenient and therefore we will use it throughout this chapter, bearing in 

mind that it is the same as the system (2).  
 

 Recall, given 0 0,t I x we have the initial value problem : 
 

 0 0( , ), ( )
dx

f t X X t x
dt

       

 … (3) 
 

a solution of which is a continuously differentiable curve :X J  

satisfying 
( )

( , ( )
dX t

f t X t
dt

 for all 0 0, ( )t I X t x . (J being an open 

interval with 0t J I ). 
 

 Now, towards the existence / uniqueness of solution of (3) we 

introduce the locally Lipschitz property of f: 

 

Definition :  
The vector field f has the locally Lipschitz property if it satisfies 

the following two conditions : 

 

a) f is continuous on its domain and  

b) For 0 0,t I x , there exist two constants 0, 0K  such that  

 i) 0 0 0, , ,t t I B x  and  

 ii) ( )f t x f t y K x y  for all 0 0,t t t and for all 

x, y in 0 ,B x . 
 

Remark :  

We will also consider vector fields : nf  as a special case of 

: nf I  in which ,f t x  is independent of : ( , ) ( )t f t x f x . Recall 

__________________________________________________________________________________________ 
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such vector field give rise to the autonomous ODE : ( )
dx

f x
dt

. Now, the 

definition of locally Lipschitz property for such : nf  takes the 

following simpler form : For any 0x , there exist 0, 0K such that 

0 ,B x  and ( )f x f y K x y  for all x, y, 
0 ,B x . 

 

 Note that the above condition implies continuity of f at every 

0x and as such there is no separate mention of continuity on f.  
 

 Now we have the following result : 
 

Proposition 1: If : nf I  is continuously differentiable on its 

domain, then it has the locally Lipschitz property.  
 

The proof of this proposition is on lines similar to that of Proposition 2 of 

Unit 1.  

 

Theorem 1: (Local Existence of solutions) : If : nf I has the 

locally Lipschitz property then the initial value problem :  
 

 0 0( , ), ( )
dx

f t x x t x
dt

 has a solution 0 0: ,X t t .  

 

Proof : We give here a sketchy proof. (To fill up all the details that are left 

here, consult the proof of Theorem 1 in unit 1) 

 

 For 
0 0,t I x  choose b > 0 such that 

          0 0 0, , ,t b t b I B x b and choose 0K  such that 

( )f t x f t y K x y  holding for all 0 0,t t b t b and for all x, y 

in 0 ,B x b . 
 

 Using the fact that continuous functions are bounded on compact 

subsets of their domains, we choose a constant M > 0 such that 

f t x M holds for all 
0 0,t t b t b  and for all 0 ,x B x b .  

 

We choose one more constant  which satisfying 
1

0 min ,
b

k M
. 

Now, we define the sequence of maps 0 0: , n

kx t b t b  recursively 

by putting : 

0 0( )x t x  

0

1 0 0( ) ( )

t

t

x t x f s x ds  

0

2 0 1( ) ( ( ))

t

t

x t x f s X s ds  

 
__________________________________________________________________________________________ 
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0

01( ) ( ( ))

t

k

t

kx t x f s X s ds

       

for each 
0 0,t t b t b . 

 

About the sequence :kx k we have the following : 

a) 0( ) ,kx t B x b for each 
0 0,t t b t b . 

b) 1( ) ( )
( 1)!

k

k k

MK
x t x t

k
  0 0, 0t t b t b k  

c) :kx k is uniformly Cauchy on 
0 0,t b t b  (verification of 

these properties is left for the reader). We consider the uniform limit of the 

sequence 0 0 0: , ,x t t B x b  which is given by  
 

0 0lim ( ) ,k
k

x t x t t t b t b  

Thus, 

0

0 1( ) lim ( , ( )

t

k
k

t

x t x f s x s ds  

                  

0

0 lim ( , ( )

t

k
k

t

x f s x s ds    

0

0 lim ( , ( )

t

k
k

t

x f s x s ds  

        

0 0

0 0( , lim ( ) ( , ( )

t t

k
k

t t

x f s x s ds x f s x s ds  

 Thus the function ( )t x t satisfying the integral equation : 
 

 

0

0( ) ( , ( )

t

t

x t x f s x s ds

 

for all 0 0,t t b t b . 

 

Finally the validity of this integral equation has the following two 

implications : 
 

1) 
0

0

00( ) ( , ( )

t

t

X t x f s x s ds  0 00x x    

 

2) 

0

0 ( , ( ))

t

t

dx d
f s x s ds

dt dt
 ( , ( ))f t X t  

 

 This now proves that the curve 0 0: , ,X t t  thus obtained 

is a solution of the initial value problem.  
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2.3 UNIQUENESS OF A SOLUTION  

 
 We prove an inequality which will lead us to the uniqueness of the 

solutions : 
 

Proposition 2 : (Gronwall’s Inequality) : Let 

 : , 0f a b : , 0g a b  be continuous functions and 

0A , a constant satisfying  
t

a

f t A f s g s ds

 

for all ,t a b . Then  

.

t

a

g s ds

f t A e  for all ,t a b . 

Proof : First we assume A > 0 and put 

t

a

h t A f s g s ds  for all 

,t a b . Then 0h t for all ,t a b  and  

( ) ( )

( ) ( )

h t f t g t

h t g t
 

that is, ( )
( )

h t
g t

h t
for all ,t a b . Integrating this inequality over ,a t  

for ,t a b  we get 
( )

log
( )

a

t
h t

g s ds
h a

.  

 

 Nothing that h a A , we get the desired inequality in this case. 

Now suppose A = 0. Then for each n  we have : 
 

 
1

t

a

f t f s g s ds
n

, for all t [ , )a b  

Applying the above argument to
1

A
n

, we get  

1
a

g s ds

t

f t e
n  

for every ,t a b  and for every n . Holding t fixed and taking limit of 

the last inequality as n  we get  

1
g s ds

g s ds

t

a

t

a

f t e
n

A e

 

 

Now we prove the following essential uniqueness result of the solution : 
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Proposition 3 : Let : , :x J y J be two solutions of the initial 

value problem :  

0 0( , ) ( )
dx

f t x x t x
dt

. 

 

 then ( ) ( )x t y t for all t J J . 
 

Proof : Recall that both x and y, being solutions of the initial value 

problem, satisfy the integral equations on their domain intervals : 
 

 
0

0

0

0

( ) ( , ( ))

( ) ( , ( ))

t

t

t

t

x t x f s x s ds

y t x f s y s ds

 

 Therefore 

0

( ) ( ) , ( ) , ( )

t

t

x t y t f s x s f s y s ds  which implies 

: 

0

( ) ( ) 0 , ( ) , ( )

t

t

x t y t f s x s f s y s  

                    

0

0 ( ) ( )

t

t

K x s y s  for all 0t t .  

Applying Gronwalls result with A = 0, we get   

 

0 ( ) ( ) 0x t y t  for all 0t t . 

 

This gives the desired equality ( ) ( )x t y t  for all t J J .  

 

 Towards the uniqueness of the solution of the initial value problem 

(3), we consider all the solutions of the initial value problem (3). Let the 

totality of them be denoted by : : :x J  the solutions x  being 

thus indexed by a suitable indexing set . 
 

 Above we have verified that any two solutions, say 
1

x and 
2

x are 

equal on the overlap 
1 2

J J of their domains. Therefore, we patch 

together all the solutions to get a maximal solution is the solution defined 

on the largest open interval. It is obtained as follows.  
 

 Let  :J U J   clearly J is an open sub internal of I with 

0x J and all the solutions x  
patch up to get a solution :x J   of the 

initial value problem (3).  
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 Because, we consider all the solutions of (3) we get that J is the 

largest open internal on which the solution of (3) is defined. We summarize 

all this discussion in the following theorem.  
 

Theorem 2 : (Uniqueness of the solution) :  
The initial value problem (3) has a unique (maximal) solution defined on 

the largest open sub-interval J.  
 

 Clearly the solution is unique because it is defined on the largest and 

hence unique internal J.  
 

 From now onwards we will consider this unique solution defined on 

the maximal interval.  

 

2.4 THE AUTONOMOUS ODE 

 

 We note a few simple properties of the autonomous ODE : 
 

( )
dx

f x
dt

  

determined by a locally Lipschitz and hence continuous vector field 

: nf  .  
 

 Now if :x J  is a solution of this autonomous ODE then 
( )

( ( ))
dx t

f x t
dt

  t I  and continuity of f and differentiability of x(t) and 

hence its continuity together implies that ( )
dx

t
dt

is continuous and thus the 

curve :x J  is continuously differential on I. This argument also gives 

the following result. If : nf   is k times continuously differentiable 

then the solution :x J  is k + 1 times continuously differentiable on its 

domain interval.  
 

 Note that a solution of an autonomous ODE may not be defined for 

all t : We consider the initial value problem.  
 

 
2 , (0) 1

dx
x x

dt
  . 

 Clearly its solution is 
1

( )
1

x t
t




 which is defined on  ,1 only and 

not on the whole of .  
 

 It is a result that if the vector field f is compactly supported, then the 

solution of the initial value problem (3) is defined for all t . (We do not 

prove this result here). 
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2.5 SOLVED EXAMPLES  
 

[Note : Recall, if :[ , ] ng a b  is an integrable (vector valued) functions 

with components  1 2, ,..., ng g g  then  
b

a

g x dx   

1 2( ) , ( ) ,...., ( ) ,

b b b

n

a a a

g x dx g x dx g x dx
 
 
 
   . Equivalently written in the columnal 

form, we have : 
 

 
b

a

g x dx 

 

 

 

1

2

     

b

a

b

a

b

n

a

g x dx

g x dx

g x dx

 
 
 
 
 
 
 
 
 
 
  







 

We will use these notations in this article. 

Example 1 : Obtain approximate solutions (upto 3t ) of the following initial 

value problem : 

2 3     (0) 1

        (0) 2

dx
x y x

dt

dy
t y y

dt

  

  

 

Solution : 

 We have : 0 ( ) 1,x t   0 ( ) 2y t   

  1 0 0

0

( ) 1 2. ( ) 3 ( )

t

x t x s y s ds  
0

1 8

t

ds   = 8t + 1 

  
0

1 0( ) 2 ( )

t

y t s y s ds    

          
2

2 2 2 2
2

t

s

t
s ds t       

Thus 
1

2

1

8 1
( )

( ) 2 2
2

t
x t

t
y t t

 
        

  

. 

Next  2 1 1

0

( ) 1 2 ( ) 3 ( )

t

x t x s y s ds  
2

0

3
1 8 2 2

2

t

s s ds
 

      
  

       
3

211 8 1
3

t
t t     

 2 1

0

( ) 2 ( )

t

y t s y s ds  
2

0

2 3 2
2

t
s

s ds
 

    
 
  

          
3 2 33 3

2 2 2 2
3.2 2 6 2

t t t
t t         

__________________________________________________________________________________________ 
                                                                                                 24

MATHEMATICS_________________________________________________________________________________



 

Thus, 

3
2

2

3 2
2

11 8 1
( ) 3

( ) 3
2 2

6 2

t
t t

x t

y t t t
t

 
    

   
  

       

and so on. 

 

Example 2 : Obtain approximate solution upto 5t  : 

 

2     (0) 1

        (0) 2

dx
tx t y x

dt

dy
xy t y

dt

  

  

 

Solution : We have  0 0( ) 1, ( ) 2x t y t   

 

 

2 3
2

1

0

2

1

0

2
( ) 1 2 1

2 3

( ) 2 2 2 2
2

t

t

t t
x t s s

t
y t s ds t

       

     





 

Thus, 

3 2

1

2
1

2
1

3 2( )

( )
2 2

2

t t

x t

y t t
t

  
   

         
   
   

 

Next 2

2 1 1

0

( ) 1 ( ) ( )

t

x t x s s y s ds    
3 4

0

5 2
1

2 3

t
s s

s ds
 

    
 
  

       
2 4 55 2

1
2 8 15

t t t
     

  2 1 1

0

( ) 2 ( ) ( )

t

y t x s y s s ds    

          

5 4 3 2

0

6 5 4 3
2

19 7
2 2 2

3 12 3 2

19 7
2 2

18 60 12 6

t
s s s s

s ds

t t t t
t t

 
       

 

      



 and so on

 

 

Example 3 : Obtain approximate solutions (upto 3t ) : 

 2

2     (1) 1

3    (1) 2

          (1) 3

dx
y t x

dt

dy
z t y

dt

dz
xz z

dt

  

  

 

 

 

 

__________________________________________________________________________________________ 
                                                                                                 25

__________________________________________________________________________________Chapter 2 : Systmes of First Order ODE



Solution : We have  :

0

0

0

( ) 1

( ) 2

3( )

x t

y t

z t

   
   


   
      

 

  
2

1

1

1
( ) 1 4 1 4 4

2 2

t
t

x t s ds t         
2 9

4
2 2

t
t    

  
3 3

2

1

1

1 22
( ) 2 3 2 9 9 9

3 3 3 3

t
t t

y t s ds t t            

 
1

1

( ) 3 3 3 3 3 3

t

z t ds t t       

Thus,                           

2

1 3

1

1

9
4

3 2
( )

22
( ) 9

3 3
( )

3

t
t

x t
t

y t t

z t
t

 
  

  
       
   
 
 
 

 

 
3

2

1

2 44
( ) 2 8

3 3

t
s

x t s s ds
 

     
 
  

          

4 2

4 2

9 44 1 9 44
2

6 2 3 6 2 3

9 44
8

6 2 3

t t t

t t t

      

   

 

 

  2

2

1

( ) 2 9

t

y t s s ds   

                    

2 3

2 3

9 9 1
2

2 3 2 3

9 17

2 3 6

t t

t t

    

  

 

 

    2 1 1

1

( ) 3

t

z t x s z s ds    

         

2

1

4 2
3

4 2
3

9
3 4 (3 )

2 2

3 27 3 27
3 4 4

2.4 4 2.8 4

3 27 41
4

8 4 16

t
s

s s ds

t t
t

t t
t

 
    

 

      

   


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Thus, 

4 2

2 3 2

2

4 22
3

9 44
8

6 2 3
( )

9 17
( )

3 2 6
( )

3 27 41
4

8 4 16

t t t

x t
t t

y t

z t
t t

t

 
   

  
  

    
   
 

   
 

 

 

2.6 HIGHER ORDER ODE 

 

 As mentioned earlier, we associate a first order ODE with a order k 

ODE and try to get information about the solutions of the higher order ODE 

in terms of those of the associated first order ODE. In particular, we are 

interested in a condition on the function 
1

( , , ... )
k

k

dx d x
f f t X

dt dt



  which will 

ensure existence and uniqueness of the initial value problem for the higher 

order ODE. In this article we explain the theory.  
 

 To begin with, we consider the ODE :  

 
1

1
( , , ... )

k k

k k

d x dx d x
f t x

dt dt dt






      

 

… (4) 

Together with the initial condition : 
 

      
1

0 0 0 1 0 11
, ...

k

kk

dx d x
x t x t w t w

dt dt




   . 

 

We introduce a new variable  1 2, ,...., ky y y y  where 1y  ranges in   and 

2 ky y  ranging in n . Next we define : ....n n nkF I      

 

by putting 1( , ) ( , ,..., ....)nF t y F t y y  2 3, ,.... , ( , )Ky y y f t y  

 

 Now, the given initial value problem for the order k ODE give rise to 

the following initial value problem in the first order ODE. 
 

                                       ( , )
dy

F t y
dt


     

 
… (5) 

 

the initial condition for it being    0 0 1 1, ,...., ky t x w w  .  

 

Clearly the above first order ODE is actually the following system of 

first order ODE : 
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1
2

2
3

1 2

       

( , )

( , , ..... )

k

k

k

dy
y

dt

dy
y

dt

dy
f t y

dt

f t y y y


 











     

 

... (5*) 
 

 Note that taking 
1y x  the system (5) reduces to the given order k 

ODE (4).  
 

This shows that the solutions of the order k ODE (4) can be studied in terms 

of the solutions of the first order ODE(5). Note that if f (of the ODE (4)) is 

continuously differentiable on its domain, namely the set .....n nI     

then F is continuously differentiable on its own domain, consequently the 

existence and uniqueness result for the first order ODE applies to the initial 

value problem : 

0 0 1 1

( , )

( ) ( , .... )k

dy
F t y

dt

y t x w w 





 

The solution of which giving the solution of the above initial value problem 

: 

 

 
1

1
, , ...

k k

k

d x dx d x
f t x

dt dt dt
 

 

 
1

0 0 0 1 0 11
, ...

k

kk

dx d x
x t x t w t w

dt dt
. 

 

 We summarize this observation in the following : 
 

Theorem 3 :  If the function : ....n n nf I  is continuously 

differentiable on its domain of definition then the initial value problem.  

 

1

1

1

0 0 0 1 0 11

, , .... ,

, , .... ,

k k

k k

k

kk

d x dx d x
f t x

dt dt dt

dx d x
x t x t w t w

dt dt

 

has a unique solution.  

 

Illustrative Examples : 

These examples explain how we obtain a system of first order ODE from a 

given higher order ODE.  
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1) The second order ODE : 
2

2
,

d x
k x k

dt
being a given constant, gives rise 

to the system: 

 
x yd

y kxdt
  

Moreover the initial condition 0 0 0 0,
dx

x t x t y
dt

 gives the initial 

condition 
0 0

00

x t x

yy t
 for the (reduced) first order system.  

 

2) The initial value problem : 

 

3 2
2 5

3 2

2

2

4
3

0 1, 0 2, 0 3

d x d x dx
t t x t

dt dt dt

dx d x
x

dt dt

 

reduces to the following system of first order ODE along with the initial 

conditions.  

 

2 5

, 0 1

, 0 2

4 3 , (0) 3

dx
y x

dt

dy
z y

dt

dz
z ty t x t z

dt

 

3) The third order system of ODE :
3

3 .

x x yd

y x ydt
 

is equivalent to the following system of first order ODE in 

1 2 3 4 5 6, , , , ,z z z z z z z  

31

2 4

3 5

4 6

5 1 2

6 2.i

zz

z z

z zd

z zdt

z z z

z z z

 

which is obtained by putting 

 
2 2

1 2 3 4 5 62 2
, ,

dx dy d x d y
z x z y z z z z

dt dt dt dt
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2.7 EXERCISES 

 

1) Prove : A continuously differentiable 2 2:f has the locally 

Lipschitz property.  

2) Given a continuous, 2 2  matrix valued function 
2:A M  let 

the time dependent vector field 2 2:f  be given by 

, ( )f t x A t x  for all 2,t x  prove that f is locally Lipschitz.  

3) Give an example of a 2 2:f  which is continuous but not locally 

Lipschtiz.  

4) Obtain approximate solutions of the following initial value problems.  
 

a) 
2 1 2

dx
x y x x

dt
 

 
2 1 3

dy
xy y y

dt
 

b) 
22 0 2

dx
x y x

dt
 

 3 4 0 3
dy

y x y
dt

 

c) 
1

, 0 2
dx

x
dt y

 

 
1

0 3
dy

y
dt x

 

4) 
3

4 , 0 1
dx dy

x x
dt dt

 

 
2

, 0 2
dy dx

y y
dt dt

 

 

 

 

 

 


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3 
 

 

LINEAR SYSTEMS OF ODE (I) 
 

 

Unit Structure : 

 

3.1 Introduction  

3.2 The Exponential of a Linear Endomorphism 

3.3  Properties of the Exponential 

3.4 Exercise  

 

3.1 INTRODUCTION 

 

 We now consider following system of first order ordinary differential 

equations in the function  

: ( )x t x t  1 2, ( ), ( ), ..., ( ) :nx t x t x t  

1
11 1 12 2 1

2
21 1 22 2 2

1 1 2 2

....

....

....

n n

n n

n
n n nn n

dx
a x a x a x

dt

dx
a x a x a x

dt

dx
a x a x a x

dt

    … (1) 

where the coefficients ija appearing on the right hand sides of the system (1) 

are all constant real numbers. (The case in which ( ),ij ija a t t will be 

discussed in the next chapter). Writing X t  in the columnal form : 

1

2

( )

( )

( )n

x t

x t
X t

x t

 

and collecting the coefficients ija in a matrix A, that is 1 ,ijA a i j n , we 

rewrite the system (1) in the matrix form : 

.
dX

A X
dt
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For a given vector nw  with 

1

2

n

w

w
w

w

 we form the initial condition 

0X w . Thus, we now have the initial value problem :  

                . , (0)
dX

A X X w
dt

         … (2) 

 

Later on, we will consider an arbitrary 0t and the initial value problem : 

                0. , ( )
dX

A X X t w
dt

            … ( 2 ) 

obtained by bringing 0t in place of t = 0. The solution of this more general 

2IVP  is easily obtained from the solution of (2). Therefore, we treat the 

particular case (2) in detail first.  

 

 Here we are taking .f X A X in our model differential equation 

dX
f X

dt
(the first order, autonomous case) treating the matrix ijA a  as 

a linear transformation (= linear endomorphism) of n , its action on a vector 
nx  being given by  

 

11 12 1 1

21 22 2 2

1 2

, , ....

, , ....
.

...................

, , ....

n

n

nn n nn

a a a x

a a a x
A x

xa a a

11 1 12 2 1

21 1 22 2 2

1 1 2 2

....

....

.................................

....

n n

n n n

n n nn n

a x a x a x

a x a x a x

a x a x a x

. 

 

where 

1

2 n

n

x

x
X

x

. 

Thus in our treatment, the symbol A is made to play a double rule : (i) A as the 

n n  matrix and (ii) A as a linear transformation (= linear transformation) of 
n .  

 

 Note that when n = 1, the system (1) reduces to the single differential 

equation 
dx

a x
dt

. 
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The solution of the initial value problem ,
dx

a x
dt

 (0)X w w in this 

one-dimensional case (i.e. n = 1) is the familiar function : ,tat we t . 

Recall :  

 
2 2 3 3

1
1! 2! 3!

ta ta t a t a
e  

 

 The comparison between the on - dimensional initial value problem and 

its n-dimensional case suggests that we expect the solution of the IVP(2) to be 

a curve of the form  

 

 : , ( ) . ...... (**)n tAX t X t e w  where tAe  is an n n  matrix 

which has the power series expansion : 

 
2 2 3 3

........
1! 2! 3!

tA t A t A
I  

suggested by (*) above. To carry forward the analogy, we call Ae , the 

exponential of A. We will define the new quantity Ae  first. (Replacing A by tA 

for t , will then yield tAe ). Once this is  accomplished, we will verify that 

the curve : ( ) tAX t X t e w is indeed the solution of the initial value problem 

(2).  

 

3.2 THE EXPONENTIAL OF A LINEAR ENDOMORPHISM 

 

 Let : n nA  be a linear endomorphism having its matrix ija , we 

choose a finite constant C satisfying the inequality :  

( )A x C x  

for all nx  (e.g. 
3

2 max :1 ,ijC n a i j n  will do the job). Note that 

the above inequality implies : 

 

 k kA x C x  and 
kk k kt A x t C x  for every  nx , every 

t  and every k . In particular for the vector field : n nf  given 

by . , nf x A x x , we have :  

 

( ) ( )f x f y A x A y

A x y

C x y
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for any x, y, in n . In other words the vector field f(x)=Ax has the Lipschitz 

property. Consequently the initial value problem (2) has a unique solution.  

 

 Next, we define a map : n nB  as follows : Let nx  be 

arbitrary. Then we have :  
2 3( ) ( )( )

.......
1! 2! 3!

A x A xA x
x      

      

2

.......
1! 2!

C

C x C x
x

e x

 

 

This shows that the infinite sum : 

 
2 3( ) ( ) ( )

1! 2! 3!

A x A x A x
x  

 

converges absolutely. We put : 
 

2( ) ( )
( )

1! 2!

A x A x
B x x  

 

Thus the map B; expressed in terms of A, is given by  
2 3

1! 2! 3!

A A A
B I  

 

 Note that each power kA  is a linear transformation of n and this 

implies the linearlity of B. in fact, for any a, b in , any x, y in n , we have  

 

2

2 2

( ) ( ) ( ) ( ) .....
1! 2!

( ) ( ) ( ) ( ) ....
1! 2! 2! 2!

A A
B ax by ax by ax by ax by

a b a b
ax by A x A y A x A y

            

2 2( ) ( ) ( ) ( )
........ ........

1! 2! 1! 2!

A x A x A y A y
a x b y  

( ) ( )a B x b B y  

 

We adapt the notation Ae  for B. occasionally we use the notation exp(A) for 

Ae . Thus 
2( ) ( )

exp( ) ( ) ( ) .....
1! 2!

A A x A x
A x e x x  for every nx . 

Thus, each linear endomorphism A of n  gives rise to the linear 

endomorphism 
Ae . Moreover, if t is any real number then tA is also a linear 

endomorphism and it gives rise to the exponential 
tAe  given by :  
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2 2 3 3

.....
1! 2! 3!

tA tA t A t A
e I  

it being a linear endomorphism of n  where  
2 2 3 3( ) ( ) ( )

.....
1! 2! 3!

tA tA x t A x t A x
e x x  

for every nx  . 

 

Having defined the exponential Ae , we obtain the solution of the IVP(2) in 

terms of the exponentiation. Consider the map 

: n nX  

given by ( )tAx t e w   

        
2 2( ) ( )

....
1! 2!

tA w t A w
w t  

 Because the infinite series defining each X(t) converges absolutely we 

get that ( )t X t  is differentiable and the derivative ( )
dX

t
dt

 is obtained by 

termwise differentiation of the infinite series defining X(t). Thus we have  
2 2 3

2 2 3 3

( ) ( ) ( ) ( )
0 .......

1! 1! 2!

( ) ( ) ( )
.....

1! 2! 3!

( )

dX t A w tA w t A w

dt

tA w t A w t A w
A w

A x t

 

Thus, we have : 
( )

( )
dX t

A x t
dt

 for every t . Moreover we have : 

(0) 0 0.....X w w .  

 

This completes the proof that the map : nX  given by ( )tax t e w  is a 

solution of the IVP(2). We summarize this observation in the following.  

 

Theorem 1 : The map : nX given by ( )tax t e w  is the solution of the 

initial value problem . , (0)
dX

A X X w
dt

. The proof of the following is self 

evident :  

 

Corollary : The curve : nX  given by 0 ( )
t t A

x t e w for all t  is 

the solution of the initial value problem : 0. , ( )
dx

A X x t w
dt

. 
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3.3 PROPERTIES OF THE EXPONENTIAL  

 

Following few properties help us sum the infinite series defining Ae  and get 

the matrix of it.  

I) If A is a diagonal matrix, say 

1

2

n

A   

then we have 

1

2

k

k

k

k

n

A   

and therefore  

 
2
11

2
2 2

2

1

1 1 1

1! 2!

1

A

n
n

e  

     

2
1

1

2
2 2

2 3

1 ....
2

1 ....
1! 2!

1 ....
1! 2! 3!

n n n

 

     

1

2

n

e

e

e

 

 

II) If 
a b

A
b a

 then
cos , sin

sin cos

A a b b
e e

b b
. 

 

Proof : Let a ib  so that Re( ), ( )ma b I  and  
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Re ( )

( ) Re

m

m

I
A

I
 

Moreover, 2 Re ( ) Re ( )

( ) Re ( ) Re

m m

m m

I I
A

I I
 

                       2 2

2 2

Re Re ( ) ( ), 2Re ( )

2Re ( ), Re Re ( ) ( )

Re ( )

( ) Re

m m m

m m m

m

m

I I I

I I I

I

I

 

In general 
Re ( )

( ) Re

k k
m

k

k k
m

I
A

I
 holding for every k . 

Consequently : 

 

2

2 2

2 2

....
1! 2!

Re ( )Re ( )1 0 1 1
....

( ) Re0 1 1! 2! ( ) Re

A

m
m

m
m

A A
e I

II

I I

 

   

2 2 3

2

2

ReRe ( )
Re 1 ....] ]

1! 2! 1! 2! 3!

( ) 1 1
.......] Re 1 Re Re ]

1! 2! 1! 2!

m mm

mm

I II

II

 

  

2 2

2 2

ReRe ( )
Re 1 ....] 0 .......]

1! 2! 1! 2!

( )
0 .......] Re 1 Re Re .......]

1! 2! 1! 2!

m m

m m

I I

I I

 

2 2

2 2

ReRe
Re 1 ....] 1 ...]

1 2! 1! 2!

( ) ( )
(1) ...] Re 1 Re 1 Re 1 ...]

1! 2! 1! 2!

m m m

m m m

I I I

I I I
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2 2

2 2

Re(1 ...) 1 ...)
1! 2! 1! 2!

1 ...) Re 1 ...)
1! 2! 1! 2!

m

m

I

I

 

 

Re

Re

cos sin

sin cos

cos sin

sin cos

m

m

a a

a a

a

e I e

I e e

e b e b

e b e b

b b
e

b b

 

 

III) If A and B are linear endomorphisms of n  with the property 

A B B A , then A B A B B Ae e e e e .  

Proof :  

The classical binomial theorem applies to the powers ;
k

A B k  :  

0

K
K j k j

j
J

A B k A B . 

Therefore 

0

1

!

mA B

m

e A B
m

0

0 0

1 !

! !( )!

k m k

m k

m
B

m k m k
 

         

0 0
! ( )!

k m k

m k

A B

k m k
0

! !

k

m k m

A B

k e
 

          
0 0 0 0

! ! ! !

k k

k k

A B

A B A B

k e k e

e e

 

It can be proved on similar lines that A B B Ae e e  

 

 

IV) Let A aI B  where a is a real number and B is a strictly upper 

triangular n n  matrix.  
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12 1

23 2

1 1

0

0

0

n

n

n n

b b

b b

b

 

So that 0nB  and aI B B aI . Then we have 

 
2 1

...
1! 2! ( 1)!

A a
nB B B

e e I
n

. 

 

V) Let : n nA  be any linear transformation and let : n nB  be 

an invertible linear transformation. Then 
1 1B A B Ae B e B . 

Proof : For each k  we have 1 1
k

kBAB B A B  and therefore :  

 

 

1 2
1 1

1 1 2 1

2
1

1

1 1
....

1! 2!

1 1
.....

1! 2!

....
1! 2!

B A B

A

e I B A B B AB

B I B B AB B A B

A A
B I B

B e B

 

 

VI) We recollect here a few elementary facts of linear algebra culminating 

in a formula relating two sets of coordinates on n . These results will be used 

in a conjunction with (IV) above to solve systems of linear ODE.  

 

 Let a linear transformation : n nA have all real and distinct eigen-

values 1 2, .... n  with respective eigen-vectors 

1 2, .... : 1n i i if f f A f f i n . Now, i  are all distinct implies that the 

set 1 2, .... nf f f  is a vector basis of n . Thus we have two vector bases of n  

now :  

i) The standard vector basis 1 2, .... ne e e with 0, ....0,1, 0....0ie  and  

ii) The 1 2, .... nf f f consisting of the eigen-vectors of A.  
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 Let the linear transformation : n nB be given by 

1i iB e f i n . Clearly B is invertible. Putting 

1

n

j ij i

i

f b e  we get the 

matrix ijb  it is the matrix of the linear map B (with respect to the standard 

basis 1, .... ne e  of n ). 

 

 Now we note that the linear transformation 1B A B  has the set 

1, .... ne e  as its eigen vectors with the respective eigen-values, , ....i n . 

Consequently the matrix of 1B A B  with respect to the standard basis 

1, .... ne e is diagonalized.  

 

 

1

21

n

B A B . 

 

 Let 1 2, .... ny y y be the coordinates on n  determined by the vector 

basis 1 2, .... nf f f . As usual, 1 2, .... nx x x are the Cartesian coordinates of 

n - they are the coordinates determined by the standard basis 1, .... ne e n . 

Now we have : 

 

1 1
1

n n

y x

B

y x

. 

 

 Where 
1B  is the matrix 

1

ijb  

Examples :  

 

 In this section we use the theory developed in the preceding sections to 

solve linear systems of differential equations.  

 

 

Example 1 : 

a) Solve the following IVP.  
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2 (0) 1

2 2 (0) 2

2 (0) 3

dx
x y z x

dt

dy
y z y

dt

dz
z z

dt

 

 

b) The same system of differential equations but take the initial conditions 

: 1 1, (1) 2, (1) 3x y z . 

 

Solution :  

a) We rewrite the IVP in the form : 

 

2 1 1 (0) 1

0 2 2 (0) 2

0 0 2 (0) 3

x x x
d

y y y
dt

z z z

 

 

We have : 

2 1 1 0 1 1

0 2 2 2 0 0 2

0 0 2 0 0 0

I  

 

Next, note that 

2
0 1 1 0 0 2

0 0 2 0 0 0

0 0 0 0 0 0

 and  

 

0 1 1 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0

k

 for all 3k . 

 

Therefore, we have  

 

 
2

2

2 1 1 0 1 1 0 0 2

exp 0 2 2 0 0 2 0 0 0
2

0 0 2 0 0 0 0 0 0

t t
t e I t  

                                       

2

2

1

0 1 2

0 0 1

t

t t t

e t  

According to the Theorem 1 we have : 
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22

2 2

1 1 5 31

0 1 2 2 2 6

0 0 1 3 3

t t

x t t tt t t

y t e t e t

z t

 

 

That is 2 21 5 3tx t e t t  

             

2

2

2 6t

t

y t e t

z t e
 

 

To get the solution of (b) we apply the corollary to the Theorem 1 which 

suggests that the variable t in above is to be replaced by t – 1 this gives the 

solution of (b). 

 

22 1

2 1 2

1 5 1 3 1

3 1

t

t

x t e t t

e t t

 

2 1

2 1 2

2 1

2 6 1

6 4

t

t

t

y t e t

e t

z t e

 

 

Example 2 : Solve  

 

5 2 , (0) 2

2 5 , (0) 3

dx
x y x

dt

dy
x y y

dt

 

Solution : We have : 

 
5 2 (0) 2

2 5 (0) 3

x x xd

y y ydt
 

 

According to property (II) of Section 3.3, we have  

 
5 2 2

exp
2 5 3

x t
t

y t
 5 cos2 , sin 2 2

sin 2 , cos2 3

t t t
e

t t
 

Therefore 
5 2cos2 3sin 2tx t e t t  

       
5 2sin 2 3cos2ty t e t t  

 

 

Example 3 :  Solve 
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3 , (0) 1

4 , (0) 2

3 , (0)

dx
x z x

dt

dy
y y

dt

dz
z z z

dt

  

 

Solution : Because the middle equation is independent of x, z,  we solve it 

(taking into account the initial condition on it). This gives 42 ty t e . 

 

 Next, we deal with the coupled pair of the remaining equation and the 

initial conditions on them : 

 

 
1 3 (0) 1

3 1 (0) 4

x x xd

z z zdt
 

 

This gives the solution : 

 

 
cos( 3 ) sin( 3 ) 1

e
sin ( 3 ) cos( 3 ) 4

t
x t t t

t ty t
 

           

cos3 , sin3 1

sin3 , cos3 4

cos3 4 sin3

sin3 4 cos3

t

t

t t
e

t t

t t
e

t t

 

 

That is cos3 4 sin3tx t e t t  

  4cos3 sin3tz t e t t . 

 Putting together all of them, we get  

 cos3 4 sin3tx t e t t  

 
4ty t e  

 4cos3 sin3tz t e t t  

 

3.4 EXERCISES 
 

1) Compute the exponential of each of the matrixes.  

 (i)                 (ii)                      (iii) 
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3 0 0

0 2 0

0 0 5

           

1 0 0

0 4 2

0 0 4

            

3 0 0

1 3 0

0 1 3

 

 

2) Obtain the matrix for ,tbe t for the B given below.  

 (i)                                  (ii) 

 

3 0 0 0

0 3 0 0

0 0 2 4

0 0 4 2

B             

2 0 0

3 2 0

1 0 2

B  

 

3) Solve the following initial value problems.  

i) 3 4 1 2
dx

x y x
dt

 

 4 3 1 3
dy

x y y
dt

 

 3 1 4
dz

yz z
dt

 

ii) 4 3 2 1 2
dx

x y z x
dt

 

 4 1 5
dy

y z y
dt

 

 4 1 6
dz

z z
dt

 

iii) 3 2 1 4
dx

x y x
dt

 

 2 3 1 3
dy

x y y
dt

 

 

4) Solve the initial value problem : 

 

1 1 1

2 2 2

33 3

44 4

(0) 12 2 0 0

(0) 12 2 0 0

(0) 10 0 0 2

(0) 10 0 1 2

x x x

x x xd

xx xdt

xx x

 

 


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4 
 

LINEAR DIFFERENTIAL EQUATIONS 
 

Unit structure : 

 
4.1 Objectives 

4.2 Introduction 

4.3 The Second Order Homogeneous Equation 

4.3.1 Homogeneous Equations with Constant Coefficients 

4.3.2 Initial Value Problem for Second Order Equations 

4.4 Linear Dependence and Independence of Solutions 

4.4.1 Wronskian, a formula for the Wronskian 

4.4.2  Abel’s Identity 

4.5 The Second Order Nonhomogeneous Equations 

4.6 The Homogeneous Equations of order   

4.7 Initial Value Problem for      Order Equations 

4.8 The Nonhomogeneous Equations of Order   

4.9 Exercise 

4.10 Summary 

 

4.1  OBJECTIVES 

 

The learner will be able to: 

 solve homogeneous and non-homogeneous second order differential 

equations. 

 check linear dependence and linear independence of set of functions.  

 learn definition of Wronskian and apply Wronskian to check linear 

dependence of set of functions.  

 prove Abel’s Identity and solve homogeneous and non-homogeneous 

    order differential equations. 

 

4.2  INTRODUCTION 

 

A second order linear differential equation has the general form  

 ( )
   

   
  ( )

  

  
  ( )   ( )     (     ) 

where       and   are continuous functions.  

There are two types of second order linear differential equation: 

(a) Homogeneous linear equations: If in (     ),  ( )    then the 

differential equation is called Homogeneous linear differential equation. 

(b) Non-homogeneous linear equations: If in (     ),  ( )    then the 

differential equation is called Non-homogeneous linear differential 

equation. 
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4.3 THE SECOND ORDER HOMOGENEOUS EQUATION 

 

Consider the homogeneous equation of the form 

 ( )
   

   
  ( )

  

  
  ( )       (   ) 

We say that   ( ) is a solution of (   ) if it satisfies (   ) that is  

 ( )
    ( )

   
  ( )

   ( )

  
  ( )  ( )    

Theorem 4.3: If   ( ) and   ( ) are two solutions of the linear 

homogeneous equation (   ) and if    and    are any constants, then  

  ( )      ( )      ( ) 

is also a solution of (   ). 

Proof. Since   ( ) and   ( ) are two solutions of (   ), we have 

 ( )
    ( )

   
  ( )

   ( )

  
  ( )  ( )    

 and  

 ( )
    ( )

   
  ( )

   ( )

  
  ( )  ( )    

Consider 

 ( )
    ( )

   
  ( )

   ( )

  
  ( )  ( )

  ( )
  (    ( )      ( ))

   

  ( )
 (    ( )      ( ))

  
  ( )(    ( )      ( )) 

                           

  ( ) [  

    ( )

   
   

    ( )

   
]

  ( ) [  

   ( )

  
   

   ( )

  
]   ( ),    ( )      ( )- 

             [ ( )
    ( )

   
  ( )

   ( )

  
  ( )  ( )]

   [ ( )
    ( )

   
  ( )

   ( )

  
  ( )  ( )]  

            

Thus     ( )      ( ) is also a solution of (   ). 

Remark 4.3: If   ( ) and   ( ) are two linearly independent solutions of 

(   ) and  ( ) is never   then the general solution is given by     ( )  
    ( ) where    and    are arbitary constants. 

 

4.3.1 HOMOGENEOUS EQUATIONS WITH CONSTANT 

COEFFICIENTS 

 

 The equation of the form  
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         (     ) 

where     and   are constants and     is called homogeneous equations 

with constant coefficients. 

Let       then substituting   in (     ) we get 

   (        )    

As       we get that       is the solution of (     ) if   is the root of  

              (     ) 

The equation (     ) is called the auxiliary equation (or characteristic 

equation) of (     ). The equation (     ) is an algebraic equation in   

whose solution can be found using the formula. 

   
   √      

  
       

   √      

  
  

Depending on the sign of √       we have the following cases: 

Case (i):          

In this case the equation (     ) has two real and distinct roots    and    

and the general solution of (     ) is given by      
       

   . 

Case (ii):          

In this case the equation (     ) has only one distinct real root say   and the 

general solution of (     ) is given by      
         . 

Case (iii):          

In this case the equation (     ) has two complex roots say         and 

        and the general solution of (     ) is given by   
   (               ). 

 

Example 4.3.1.1. Solve the equation  

            

Solution. Here the auxiliary equation is given as          

Thus, we have two distinct real roots           . Hence the general 

solution of the given equation is  

     
      

    
Example 4.3.1.2. Solve the equation  

               

Solution. Here the auxiliary equation is given as             

Thus, we have (    )    which gives only one real root    
 

 
. 

Hence the general solution of the given equation is  

     
 

 
 
       

 
 
 
 

 

Example 4.3.1.3. Solve the equation  

              

Solution. Here the auxiliary equation is given as            which 

has no real roots. The complex roots of the auxiliary equation are given by  

                    
and the general solution is given by  

     (               )  
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4.3.2  INITIAL VALUE PROBLEM FOR SECOND ORDER 

EQUATIONS 

 

An initial value problem for second order equation (     ) is to find a 

solution of the equation which also satisfies the initial condition  (  )     

and   (  )     where    and    are given constants. 

For example, to find the solution of the initial value problem        
     with  ( )    and   ( )   , we first find the root of the auxiliary 

equation         . From example (4.3.1.1) we know that the general 

solution is given by 

     
      

    
To satisfy the initial condition, we need 

 ( )          
and  

  ( )            

which gives    
 

 
 and    

 

 
  Hence the solution of the initial value 

problem is given by 

  
 

 
    

 

 
     

 

Theorem 4.3.2[Uniqueness Theorem]: If  ( ) and  ( ) are continuous 

functions on an open interval   containing   , then the equation  

     ( )    ( )   ( ) 

with initial condition  (  )     and   (  )     has a unique solution. 

Proof. Let   and    be any two solutions of the equation      ( )   
 ( )   ( ) with initial conditions  (  )     and   (  )    . Let 

      . Then  

     ( )    ( )    

and  (  )    (  )    

Consider,  ( )    ( )  (  ( ))
 
  Then  ( )    and  (  )   . 

Differentiating  ( ) we get 

  ( )    ( )  ( )     ( )   ( ) 

    ( ), ( )     ( )- 
    ( ), ( )   ( )  ( )   ( ) ( )- 

    ( ) .(  ( ))
 
/    ( )  ( ),   ( )- 

By Cauchy-Schwartz inequality,  

 ( )  ( ),   ( )-  (  | ( )|) .  ( )  (  ( ))
 
/ 

Thus, 

  ( )     ( ) .(  ( ))
 
/   (  | ( )|) .  ( )  (  ( ))

 
/ 

 (  | ( )|)  ( )  (  | ( )|   | ( )|)(  ( ))
 
 

Let           *| ( )|   | ( )|+. Then 

  ( )    ( ) 

Claim:  ( )    for all     

_________________________________________________________________________________ 
                                                                 48

MATHEMATICS
_________________________________________________________________________________________



Suppose, there exist some      such that  (  )    with        Then 
 

  
(     ( ))      (  ( )    ( ))    

Thus,      ( ) is a decreasing function and hence       (  )  
      (  )   . This implies that  (  )    which is a contradiction.  

Thus, we get  ( )    for all     which implies that  ( )     
 

4.4 LINEAR DEPENDENCE AND INDEPENDENCE OF 

SOLUTIONS 

 

A set of solutions *          + of a differential equation is linearly 

independent on an interval   if and only if the only values of the scalars 

           such that  

    ( )      ( )        ( )               

are               
A set which is not linearly independent is called a linearly dependent set. 

 

4.4.1  WRONSKIAN, A FORMULA FOR THE WRONSKIAN 

 

Let            be functions in     ( ) where   is an interval. Then 

Wronskian of these functions is defined by 

 ,          -( )  ||

  ( )   ( )    ( )

  
 ( )   

 ( )    
 ( )

    

  
(   )

( )   
(   )

( )    
(   )

( )

|| 

For example, if   ( )       and   ( )       on (    ) then  

 ,     -( )  |
        
         

|     

Theorem 4.4.1: Let            be functions in     ( ) where   is an 

interval. If  ,          - is non-zero at some point      then 

*          + is linearly independent on    
Proof. Consider            such that 

    ( )      ( )        ( )    

for all    .  

Differentiating     times, we get the system of equation 

    ( )      ( )        ( )     
    

 ( )      
 ( )        

 ( )     
  

    
   ( )      

   ( )        
   ( )    

where the unknowns are             The determinant of the coefficients of 

this system is the Wronskian of the functions           . We know that if 

the determinant of the coefficients of a homogeneous system is non-zero, 

then the system has a unique solution. 

Thus if  ,          -(  )    then the homogeneous system has a 

unique solution which is               
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4.4.2 ABEL’S IDENTITY 

 

Let   ( ) and   ( ) be two solutions of      ( )    ( )   . Then 

the Wronskian is given by   ( )  
 ( )    

 ( )  ( )  Then  

  ( )    ( )  
  ( )    

  ( )  ( ) 

Since    and    are solutions of the given equation, we have  

  
  ( )    ( )  

 ( )   ( )  ( ) 
and  

  
  ( )    ( )  

 ( )   ( )  ( ) 

Substituting this in   ( ) we get 

  ( )    ( ) ( ) 
That is the Wronskian satisfies the first order linear equation  

  ( )   ( ) ( )    
which on solving gives 

 ( )   (  ) 
∫  ( )  
 
   

This formula is known as the Abel’s Identity. 

 

4.5 THE SECOND ORDER NONHOMOGENEOUS 

EQUATIONS 

 

Theorem 4.5.1: If   ( ) is any solution of  ( )     ( )    ( )  

 ( ). Then   ( )    ( )    ( ) is the general solution of   ( )    

 ( )    ( )   ( ) where   ( ) is the general solution of  ( )    
 ( )    ( )   . 

Proof. Consider 

 ( )      ( )     ( )  

  ( ) .  
  ( )    

  ( )/   ( ) .  
 ( )    

 ( )/

  ( ) .  ( )    ( )/ 

 ( ( )  
  ( )   ( )  

 ( )   ( )  ( ))

 . ( )  
  ( )   ( )  

 ( )   ( )  ( )/ 

    ( ) 

  ( ) 

Thus,   ( ) is the solution of  ( )     ( )    ( )     Here   ( ) 

is called the complementary function. 

Remark: Thus, to solve a non-homogeneous differential equation, we just 

need to find the particular solution   ( )  
The following table gives a list of particular solutions for some familiar 

 ( ). 

 ( )   ( ) 
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Example 4.5.1.1: Solve the equation  

                 

Solution. We first find   ( )  Consider the auxiliary equation  

          
(   )(   )    

Hence the complementary function is       
       

  . 

Now, from the above table the particular solution is   ( )           

where the constants     and   are to be determined. 

Consider 

  
      

           (     )  (        )        

Then comparing the coefficients of powers of   we get 

     
(     )    

(        )    

which on solving gives            
  

 
  Hence the general solution 

of the given equation is 

     
       

   (       
  

 
) 

 

4.6 THE HOMOGENEOUS EQUATIONS OF ORDER   

 

A linear differential equation of order   is an equation of the form  

  ( ) ( )      ( ) (   )      ( )     ( )      (   ) 

is called a Homogeneous Equation of order  . 

Remarks: 

1. If   is a solution to ( ) then    is also a solution to (   ). 

2. If   and   are the solutions to ( ) then         is also a solution 

to (   ). 

3. If            are the solutions to (   ) then             
     is also a solution to (   ). 

 

Example 4.6.1: Find the general solution of                      
Solution. Here the auxiliary equation is given by 

               

whose roots are given by                 . Thus, the general 

solution is given by 

     
      

      
    

where          are arbitrary constants. 

 

4.7 INITIAL VALUE PROBLEM FOR      ORDER 

EQUATIONS 

 

An initial value problem for     order equation (   ) is to find a solution of 

the equation which also satisfies the initial condition  (  )    ,   (  )  

      (   )(  )       where              are given constants. 
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Example 4.7.1:  Find the solution of the initial value problem           
          with  ( )       ( )     and    ( )     . 

Solution. Here, the general solution is given by 

     
      

      
    

Now, we use the initial conditions to determine the constants           
Thus we get 

            

               

                

which on solving gives     
 

 
          

 

 
  Hence the solution to 

the initial value problem is  

   
 

 
        

 

 
     

 

 

4.8 THE NONHOMOGENEOUS EQUATIONS OF ORDER   

 

General form of the     order non-homogeneous equation is given by 

  ( ) ( )      ( ) (   )      ( )     ( )   ( )    (   ) 

where  ( ) is a given function.  

Similar to second order non-homogeneous, the general solutions of (   ) is 

also given as 

        

where    is the general solution of corresponding homogeneous equation 

and    is the particular solution of (   ). 

Example 4.8.1: Solve                               

Solution. Here the general solution of                       is 

given by  

      
      

      
    

 

Now for  ( )              we consider a trial function similar to the 

structure of  ( ) as  

             
       

Substituting this to the given non-homogeneous equation, we get 

(             )  (          )       
        

             
On comparing the coefficients, we get 

(             )    
(          )    

          

        
which on solving gives 

    
  

 
                   

Hence the general solution is 

     
      

      
    ( 

  

 
              ) 
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4.9   EXERCISE 

 

1. Solve                   

2. Solve                     

3. Solve                     

4. Solve                                    

5. Solve  ( )                    

6. Solve the initial value problem:  ( )                     
                  ( )       ( )       ( )        ( )  
   

 

4.10   SUMMARY 

In this unit, solving homogeneous and non-homogeneous second order 

differential equations are discussed. Linear dependence and linear 

independence of set of functions is discussed. Definition of Wronskian and 

applications of Wronskian to check linear dependence of set of functions is 

discussed. Abel’s Identity is discussed and methods to solve homogeneous 

and non-homogeneous     order differential equations are also discussed in 

this unit. 
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5 
 
 

LINEAR SYSTEMS OF ODE (II) 
 
 
Unit Structure : 
 
5.1 Introduction  
5.2 The Initial Value Problem  
5.3  The solution of the Homogeneous Equation 
5.4  The Inhomogeneous Equation  
 
5.1 INTRODUCTION  
 
 We consider a generalization of the type of systems studied in the 
preceding chapter. The new systems to be studied will be inhomogeneous, 
linear, first order systems with time dependant coefficients.  
 
 Throughout the chapter, I denotes an open interval. We consider a 
family of continuous functions : 
 

: , 1 ,

: , 1

a I i j nij

u I i ni

 

 
 This family gives rise to the following system of non-homogeneous 
ODE : 
 

 

1
11 1 1 1

2
21 1 2 2

1 1

( ) ...... ( ) ( )

( ) ...... ( ) ( )

( ) ...... ( ) ( )

n n

n n

n
n nn n n

dX
a t X a t X u t

dt

dX
a t X a t X u t

dt

dX
a t X a t X u t

dt

  … (1) 

 
 We also consider the same system but without the ( ) :iu t  
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1
11 1 1

2
21 1 2

1 1

( ) ...... ( )

( ) ...... ( )

( ) ...... ( )

n n

n n

n
n nn n

dX
a t X a t X

dt

dX
a t X a t X

dt

dX
a t X a t X

dt

    …(2) 

We call (2) the homogeneous part of the system (1).  
 
 Our method of obtaining solutions of (1) consists of obtaining (i) a 
particular solution of the inhomogeneous system (1), then (ii) obtain the space 
of all solutions of the homogeneous system (2) and then combine (i) and (ii) to 
get all the solutions of the system (1).  
 
 We use the following abridged notations to which the operations of 
linear algebra will be applicable.  
 
 For each , ( )t I A t is the n n matrix ( ) , ( )ija t u t  denotes the column 

1( )

( )n

u t

u t

 and as usual ( )X t  is the column 
1( )

( )n

x t

x t

. 

 
 In terms of these notations the systems (1) and (2) take the following 
compact forms : 
 

 ( ) ( )dx
A t X u t

dt
       … (1) 

 

 ( )dx
A t X

dt
, the homogenous part of the above  … (2) 

 
5.2 THE INITIAL VALUE PROBLEM  
 
 Given 0 0, nt I x , we consider the IVP : 
 

 0 0( ) ( ) ... ( )dx
A t X u t X t x

dt
    … (3) 

 

 Note that the vector field : n nf I given by 
( , ) ( ) ( )f t x A t x y t  is locally Lipschitz : 
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Justification : Let 0 0, nt I x be arbitrary. Choose 0  such that 

0 0,t t I . Now the map : nA I  being continuous on its 
domain I, is bounded one the compact interval  0 0,t t t  and for any x, 
y in 0,B x  we get.  
 

 
, ( , ) ( ) ( ) ( ) ( )

( ) ( )
f t x f t y A t x u t A t y u t

A t x y
 and therefore 

 

 

, ,

( ) .

f t x f t y A t x y

A t x y

K x y

 

For all 0 0,t t t and for all x, y in 0,B x . 
 

 Therefore, the basic existence and uniqueness results are applicable. The 
IVP (3) has a unique solution defined on the largest open sub-interval ,  of 
I. We prove that ,  = I.  
 

Proposition 1 :   
The solution of the IVP (3) is defined on the whole of I.  

 

Proof :  
 

(Sketchy, by contradiction method). Assume the contradictory : 
, C I , say,  right hand end point of I, so that 0,t I . 

 

 Now, being the solution of the IVP (3) the curve : , nX  
satisfies the integral equation : 

 
0 0

0( ) ( ) ( ) ( )
t t

t t

X t x A s X s ds u s ds  

 

Using continuity of the maps : , : n
nA I M u I  we get a finite 

constant M such that ( ) , ( )A s M u s M  for all 0,s t  and therefore, 
we have :  

 

0 0

0( ) ( ) ( )
t t

t t

X t x A s X s ds u s ds  
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0

0 ( )
t

t

x M X s ds M . 

By Gronwall’s lemma, we get : 
 

0( ) Mx t x M e  for all 0,t t . Thus, the set 

0( ) : ,X t t t  is a bounded subset of n  and therefore, the limit lim ( )
t

X t  

exists. We call it ny .  
 
Having arrived at the point y in n , we consider the initial value 

problem : 
 

( ) ( )dx
A t X u t X y

dt
. 

 

Let : , 0nX  be a solution of this IVP. Clearly the 
two solutions : 

 

: , , : ,n nX X  agree on the overlap and 

therefore, they patch up to give a solution : : , nX  which 
contradicts the assumed maximality of the interval , . Therefore, we must 
have : right hand end point of I. Similar reasoning leades us to left 
hand end point of I and therefore ,I . 

 

Thus, every solution of (2) whatever be the initial condition is defined 
on the whole of . 
 
5.3 THE SOLUTION OF THE HOMOGENEOUS EQUATION  
 
 We consider the set of all the solutions of the homogeneous equation 
(2). Let the set be denoted by V.  
 

Proposition 2 : The set V has the structure of a n dimensional vector space.  

Proof : Let a, b in , X, Y, in V be arbitrary. We prove that aX bY also is 
in V : 
 

 
( )

d dX dY
aX bY a b

dt dt dt

a A t X b A t Y

 

                                  ( )A t aX bY         because ( )A t is linear.  
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 Thus, ( )d
aX bY A t aX bY

dt
        i.e. aX bY V .  

 This shows that V is a real vector space. Actually V is isomorphic with 
n , the brief explanation of which is as follows.  

 
 Choose 0t I arbitrarily and hold it fix. For each nx we consider 
the unique solution of the initial value problem : 
 

0( ) , ( )dx
A t X X t x

dt
. 

 
 We denote the unique solution of it by xX  where we have attached the 
suffix x to the solution xX  to indicate the dependence of the solution on the 
initial condition.  
 
 Now, we have an association rule xx X associating the unique 

xX X with each nx . In other words, we have the map : 
 
                    ;n

xV x X     … (4) 

(Which associates each nx , the element xX  of V). It is easy to show that 
this map is an isomorphism. First the linearity of the map : Let a, b in , x, y 
in n  be arbitrary. We consider the two curves :  
 
 : n

x yaX bX I  and : n
ax byX I . 

 
 It is clear that both are solutions of the IVP with the same initial 
condition ax + by and therefore by the uniqueness of the solution, we get the 
desired equality.  
 
 Clearly 0xX  implies 0x . The implies that the linear map (4) is 
injective. Finally, let X be any element of V. Let 0 0X t x . Then 

0xX X showing that the map (4) is a surjective map.  
 
 We have explained now that the map (3) is linear, it is injective and 
surjective as well. Therefore (4) is a linear isomorphism between V and n , 
i.e. V is indeed n-dimensional real vector space.  
 
 We consider a vector basis 1 2 ..... nX X X of the solution space V. We 
call it a fundamental system of solutions of the homogeneous ODE (2). 
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Clearly for each t I , the vectors 1 2( ), ( ), ...., ( ),nX t X t X t  are linearly 

independent vectors of n . Putting them along the columns of a n n  maxtrix, 
we denote the resulting n n  matrix by ( )W t  thus : 
 

 1 2( ) ( ) ( ) ( )nW t X t X t X t  or if the vector ( )jX t  has the 

coordinates : 1 2( ) ( ), ( ),......, ( )j j j njX t x t x t x t  then 

( ) ( ) ;1 ,ijW t x t i j n .  
 
 We call the resulting map : nW I M  a fundamental matrix of 
solutions of the homogeneous part (2). Note that for each , ( )t I W t  is an 
invertible matrix. Here is a simple example : 
 
 We consider the 2 dimensional case in which the 2 2  matrix ( )A t  is 

the constant matrix 
2 3

( )
3 2

A t  for all t . It gives rise to the system of 

homogeneous ODE : 
 

 
2 3

3 2

dx
x y

dt

dx
x y

dt

      … (*) 

 

 Putting 2 2
1 2

cos3 sin3
( ) , ( ) ,

sin3 cos3
t tt t

X t e X t e t
t t

, we get the 

fundamental system 1 2,X X  of solution space of (*) and the resulting 

fundamental matrix 2: ( )W M  given by 2 cos3 , sin3
( )

sin3 , cos2
t t t

W t e
t t

 for 

all t .  
 

5.4 THE INHOMOGENEOUS EQUATION  
 
We now consider the inhomogeneous ODE (1) and its solution space. 

To begin with, we have the following result relating the solutions of the two 
equations (1) and (2).  
 
Proposition 3 : Let : nY I be a solution of the inhomogeneous system (1). 
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a) If : nX I  is a solution of the homogeneous system (2) then X Y  is a 

solution of the inhomogeneous system (2). 
 
b) Then the solution of the (inhomogeneous) initial value problem :  

0 0( ) ( ), ( )dx
A t X u t X t x

dt
 

 is given by 
0

1( ) ( ) ( ) ( ) ( )
t

t

X t Y t W t W s u s ds  for all t I . 

 The proof of the theorem is a straight forward application of the 
fundamental theorem of integral calculus (applied to integration of vector 
valued functions).  

Proof :(a) We have 
0

1
0 0 0 ( )

t

t

X t Y t W t W s u s ds  

                                          
0

0 0

0

0 since * 0
t

t

x W t ds

x

 

 (b) First note that  

 

1 2

1 2

( ) ( ) ( )

( )( ) ( )

n

n

d d
W t X t X t X t

dt dt

dX tdX t dX t

dt dt dt

 

 

          

1 2

1 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

n

n

A t X t A t X t A t X t

A t X t X t X t

A t W t

 

Now, we have :  
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1

0

( ) ( ) ( ) ( ) ( )
t

t

d d
X t Y t W t W s u s ds

dt dt
        

              1 1

0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )
t t

t t

d d d
Y t W t W s u s ds W t W s u s

dt dt dt
         

1 1

1

0

( ) ( ) ( ) ( ). ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

t

t

t

A t Y t A t W t W s u s ds W t W t u t

A t Y t W t W s u s ds u t

           

     

 

( ) ( ) ( ).A t x t u t       
 

Thus 
( ) ( ) ( ) ( )d X t

a t x t u t
dt

 
       all t I  and 0 0( ) .X t x    

 
Illustrative Example : 
(We do not solve the example completely we indicate only a few steps leaving further 
details for the reader to settle.) 

Solve :  

 
3 2 (0) 1

3 2 (0) 2

dx
x y x

dt

dy
x y t y

dt

        

        

 

Solution (Incomplete) : 

We have : 2 cos3 sin3
( )

sin3 cos3
t t t

W t e
t t

 
   


 

       And    2 cos3 sin3 1
( )

sin3 cos3 2
t t t

Y t e
t t

 
  


 

                        2 cos3 2 sin3
.

sin3 2 cos3
t t t

e
t t

  


  
 

 
There fore  

2 2 2

0

cos3 sin 3 cos3 sin3 cos3 sin3 2
( ) .

sin3 cos3 sin3 cos3 sin3 cos3

t

t st t t t s s
X t e e e ds

t t t t s s s

     
      

   
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2 2 2

0

cos3 2 sin3 cos3 sin3 cos3 sin3 2
sin 3 2cos 3 sin3 cos3 sin3 cos3

t

t t st t t t s s
e e e ds

t t t t s s s

     
    

    

2 2cos3 2 sin3 cos3 sin3 *
sin3 2cos3 sin3 cos3 **

tt t t t t
e e

t t t t

    
 

   
 

where in the last column, * 2

0

(2cos3 sin3 )
t

se s s s ds     

                               and **   

0
2

0

( cos3 2sin3 )
t

se s s s ds    

 
5.5 HIGHER ORDER ODE 
 
As usual, I denotes an open interval, for a natural number n, we consider a single 
ODE. 

          
1 2

1 21 2( ) ( ) ... ( ) ( )
n n n

nn n n

d x d d
a t a t a t x b t

dt dt dt
             … (5) 

in an unknown function :x I    the coefficients 1 2, , na a a   , b being smooth 
functions on I. Equation (5) is linear  because the left hand side of it is a linear 

combination of , , ... .
n

n

dx d x
x

dt dt
     Again, if b 0  then we say that the equation (5) is 

homogeneous.  
 
 Recall the initial valve problem for (5) is the following. Given to 

0 1, , ... nI x x x      all constant real numbers, find a n times continuously differentiable 
function  : ,x J  J being an open interval with 0t J I  such that the 
following two requirements are satisfied : 

(i) 
1

1 1
( ) ( )( ) .... ( ) ( ) ( )

n n

nn n

d x t d x t
a t a t x t b t

dt dt
             for all t J  

  and  (ii) 0
1

0 1 1.10 0
( )( ) , ( ) ...

n

nn

d x tdx
x t x t x x

dt dt


         


 

 
We will reduce the ODE (5) to a linear system of first order ODE and get 

information of solutions of the former in terms of those of the reduced system. 
Towards this aim, we consider the following object.  
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1

,

x

nf

n

dx

dt

Y

dx

dt

 (ii) 

1

1
1   

( )

   1
( ) ( )n

A t

a at t

 

 

(iii) 

0

( )

( )

u t

b t

 

 
In the matrix A(t) in (ii) their being zeros at all the vacant places, including 

the main diagonal, and the + 1 entries being just above the main diagonal and parallel  
to it. Now, we consider the system  

       ( ) ( )dx
A t x u t

dt
          … (5 ) 

Along with its homogeneous part : ( )dx
A t x

dt
      … (6) 

 
 Note that the given (order n) ODE (5) is equivalent to the first order system 
(5 ' ) while the homogeneous part of (5) is equivalent to (6). We recall the results of 
the preceding sections obtained for the linear systems, now applicable to (5 ' ) which 
we transcribe them so as to become applicable to the equation (5). 
 
 Thus we consider a fundamental system 1 , nY Y   of the solution space of 
(6). This system yields functions 1 2, , .... :nx x x I       such that  

1 2

1 2

1 2

1 1 1
1 2

1 1 1

, ... ... ...

n

n

n

n n n
n

n n n

xx x

dxdx dx

dt dt dt

Y Y Y

d x d x d x

dt dt dt

            

 
Now, we have the following important facts : 
 

(1) 1 , nY Y    are linearly independent solutions of (6) implies 1 ... nx x   are 
solutions of the homogeneous part of (5). Moreover any solution x of the 
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homogeneous part of (5) is expressible as a linear combination of the functions 

1 2 ... .nx x x     
   1 1 2 2 .n nx c x c x c x         
 

(2) The solutions 1 ... nx x   (of the homogeneous part of (5) are linearly independent 
over I.  
  1 1 2 2 ... 0n nd x d x d x          
implies 1 2 ... 0.nd d d        
 
This proves the following important : 
 
Proposition 4 : The solution space of the homogeneous part of (5) is a n-dimensional 
real vector space.  
Now, given any set 1 ... :nf f I       of n times continuously differentiable functions, 
we associate with it the function :  
  1 ... ) :nW W f f I          

given by : ( ) det ( )
j

j
id f

W t t
dt

   for all t I  

 

The function W is called the Wronskian of the family 1{ ... }.nf f   
 

 Note that when the functions 1 .... nx x I     form a vector berries of the 
solution space the matrix : 
  1( ... ) :nW W x x I         

given by W(t) = det ( )
j

ij

d
x t

dt
   for all t I  is the fundamental matrix of the 

homogenous part (6) of (5 ' ) 
 
 
5.6 A SOLUTION OF THE NON-HOMOGENEOUS EQUATION 
 

Suppose, a fundamental system 1{ ...... }nx x    of solutions of the homogeneous 
equation (6) is found. We discuss a method – attributed to Lagrange-which yields a 
solution of the non-homogeneous ODE (5). 
 

Recall, W(t) stands for the fundamental matrix with its (ij)th entry ( )
j

ij

d
x t

dt
  . 

 
For each i,  1 i n    , we consider the n  n matrix denoted by Wj(t) obtained from 
W(t) by replacing its jth column by the column  
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( )

0

0

tb

 

We adopt the notations : D(t) for det(W(t)) and Di(t) for det(W i (t)).  
 
Now, to obtain the desired solution we consider a function :x I    which is in the 
form 

1 1 2 2( ) ( ) ( ) ( ) ( ) . ( ) ( )n nx t v t x t v t x t t v t x t         =  
1

( ) ( )
n

j

j jv t x t , 

where : (1 )jv I j n          are unknown functions which are required to satisfy 
a number of identities.  
 
These identities will determine the functions jv  which in turn specify the x which 
will be the desired solution. Now differentiating x(t). We get  

 
1 1

j
j j

n n
j

j j

dx dvdx
v x

dt dt dt   

    

The first requirement on the jv  is : 

   
1

0
j

j
n

j

dv
x

dt 

       … (i) 

So that we are left with  

   
1

n
j

j

i

dxdx
v

dt dt 

       … (*) 

 
Now differentiating (*) above, we get  

  
2

2
1 1

2

2
j

n n
jj

j

j

j

d x dv dxd x
v

dt dtdt dt 

      

 

The second requirement on the jv  is  

   
1

0j
n

j

j

dv dx

dt dt
      … (ii) 

Leaving us with 
2

1
2

2

2

n

j

j

jd xd x
v

dt dt
      … (**) 

 

Continuing this procedure we get analogous identities, the requirement on jv  at the 
last stage being :  

   
1

1
1

.
nn

j

n
j

jdv d x
b

dt dt
   
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Thus, we have the following two strings of identities : 

1

1

1

1

( )

n

j j

j

n
j

j

j

nn n
jx

jn n
j

nn
j

n

j

j

x v x

dxdx
v

dt dt

I

d xd
v

dt dt

dv d x

dt dt

  

  

  

  



    

1

1

1

0
( )

( )

n
j

j

j

n
j j

j

nn
j j

n
j

dv
x

dt

dv dx

dt dt II

dv d x
b t

dt dt

  

  


  

 

Multiplying the equations in (I) by an, an – 1,…., 1a , 1 and adding we get 

 
1

1 11( ) ( ) ( ) ( )
n n

nn n n

d x d x
a t a t x a t b t

dt dt
          

thus showing that the function x(t) is a solution of the inhomogeneous equation.  
On the other hand, using the simultaneous equations in (ii), we get : 
 

   
( )
( )

j jdv D t

dt D t
   

and therefore 
0

( )
( )

( )

t
j

j

t

D s
v t ds j n

D s
    

This leads us to the desired solution  

  
1

( ) ( ) ( ) .
n

j j

j

x t v t x t t I
 

          

 
 
EXERCISES : 
 
(1) Prove that each solution of the inhomogeneous equation (5) is defined on I. 
(2) Prove : If a solution :x I    of the homogeneous equation (6) vanishes at same 
t0 I , then x   
 

(3) Solve : 5 3 (0) 1dx
x x

dt
         

                  3 2 (0) 2dy
x y t y

dt
          

 

(4) Solve : 3 4 (0) 1dx
x y t x

dt
          
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                  3 4 (0) 1dy
x y y

dt
          

 
(5) Same D. E as above but x(1) = 1 ,   y(1) = 1. 
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6 
 METHOD OF POWER SERIES  

 

 Unit Structure 

6.1 Introduction. 

6.2 Power Series. (A Quick Review). 

6.3 Method Of Power Series. 

6.4 Illustrative Examples. 

6.5 Legendre Equation, Legendre Polynomials. 

6.6 Frobaneous Method. 

 Exercises. 

6.1 INTRODUCTION 

In this chapter, we study a type of second order ODE (scalar case) which 

gives solutions in the form of absolutely convergent power series. These ODE 

contain in their form, functions (e.g. the coefficient functions) which are analytic 

in sense that they admit absolutely convergent power series expansions. Naturally 

the method of solving such DE makes use of techniques and properties of 

absolutely convergent power series. Therefore we call this method the method of 
power series. 

 The reader will realize that this method applies not only to second order 

linear ODE, it actually is applicable to a wider class of ODE of any order. 

 Recall, at the elementary level we could solve simple DE in terms of 

elementary function such as the polynomials, the logarithm function, the 

exponential functions, the trigonometric functions and so on. But soon we find 

that things start going the opposite way : Differential equations generate new 

functions as their solutions. Such functions are called special functions. Most of 

these functions are in the form of power series and as such are obtained by the 

methods of power series. There is a more powerful method which is called 

Frobaneous method. We discuss briefly this method also. Using this method we 

introduce two special functions : (i) the Legendre polynomials and (ii) the Bessel 

functions. We derive some of their properties. 

 We begin our treatment of special functions by recalling basic facts of 

power series. 
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6.2 POWER  SERIES  (A QUICK REVIEW) 

 A power series is an infinite sum of the type: 

a0 + a1(t – t0) + a2(t – t0)
2
 + ….. …..+ ak(t – t0)

k
 + ………. 

               =  ……………….. (1) 

where a0, a1, a2, ………., ak, ……… are real constants. It is absolutely convergent 

if there exists a r > 0 such that  

 

The lub of all r > 0 satisfying the above inequality is the radius of convergence of 

the power series (1), we denote it by R. If (1) is absolutely convergent with R as 

its radius of convergence, it follows that for each   

t (t0 – R, t0 + R) the infinite sum 

 

converges, giving rise the function : 

f :(t0 – R, t0 + R) —ℝ……………….. (2) 

where 

 

for each t  (t0 – R, t0 + R). 

 The function (2) is the sum function of the (absolutely convergent) power 

series (1). It is a basic result that the sum function (2) is infinitely differentiable on 

its domain and the k
th

 derivative (kℤ+
) is obtained by differentiating the infinite 

series termwise. In particular we have : 

 

Consequently the power series (1) becomes 

f(t) =  ………. (3) 

An important implication of (3) is the following result : 

If the functions 
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f :(t0 – R, t0 + R) —ℝ 

g :(t0 – R, t0 + R) —ℝ 

admit the power series expansions : 

 

 

then we have the following basic fact : 

f(t)  g(t) 

if and only if ak = bk for all k ℤ+
 that is, if and only if  

 =  

holds for all k ℤ+
  

We make use of this basic result in what is to follow in this chapter.  

6.3 METHOD OF POWER SERIES. 

 We consider a second order ODE of the type : 

 ………. (4) 

where the coefficient functions P(t) and Q(t) admit absolutely convergent power 

series expansions on an interval (-R, R) : 

 

Recall, according to the theory of linear second order homogeneous ODE 

discussed in Unit4, the solution space of the ODE (4) is a two dimensional vector 

space. 

Now, because the functions P(t), Q(t) admit absolutely convergent power 

series expansions - we call such functions analytic – we expect a solution of (4) 

also to be analytic : 

x(t) = ………. (6) 

We prove below the following two results : 
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(a) Indeed, a solution t ı—  x (t) of (4) has a power series expansion (6) 

and obtain the constants ck, k ≥ 2 in terms of the constants ak, bk, k, l in 

ℤ+
 (The constants c0, c1, will play the role of the arbitrary constants in 

the solution of the second order ODE (4).) 

(b)  The infinite series (6) is absolutely convergent in the interval           (-

R, R). 

We proceed to prove these two claims. 

Differentiating the power series (6) for the solution x(t), we get 

 

 

for all t in (-R, R). Substituting these power series expansions along with 

those for P(t), Q(t) in the given DE we get : 

 

In above the coefficient of the power t
n-2

 for n ≥ 2 is : 

n(n-1)cn + a0(n-1)cn-1 + a1(n-2)cn-2 + ………. + an-2c1 + b0cn-2+ b1cn-3 + 

………. + bn-2c0 

Equating it with zero we get the following succession of equations : 

n(n-1)cn = -[a0(n-1)cn-1 + a1(n-2)cn-2 + ….. + an-2c1] 

 -[b0cn-2 + b1cn-3 + ………. + bn-2c0] ………. (*) 

for n ≥ 2. These equations show that the constants (cn : n ≥ 2) can be 

obtained recursively in terms of arbitrary constants c0, c1 and the given 

constants a0, a1, a2, ………., b0, b1, b2, ………. Thus the solution (6) is 

formally obtained. It remains only to prove that the formal series (6) is 

absolutely convergent for |t| < R and hence determines a function x: (-R, 

R) —ℝ which then becomes the solution of (2). Towards the 

justification of this claim, we have : 

n(n-1)|cn| ≤ |a0|(n-1)|cn-1| + |a1|(n-2)|cn-2| + ………. + |an-2||c1| 

        + |b0||cn-2| + |b1||cn-3| + ………. + |bn-2||c1| 

             ≤ (n-1) [|a0||cn-1| + |a1||cn-2| + ………. + |an-2||c1| + …] 

                + [|b0||cn-2| + |b1||cn-3| + ………. + |bn-2||c0|] ………. (6) 
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 Now, let a number r satisfying 0 < r < R be arbitrary chosen. Also, 

choose one more constant say S with 0 < r < S < R. By the absolute 

convergence of the two series in (5) in (-R, R) and by the choice S < r, we 

have  

 

We choose a D > 0 such that 

 

Consequently, we have |an| ≤  , |bn| ≤ for all n ℤ+
. Next, we consider 

an arbitrary m ℕ (to be fixed later) and for this m, another constant M, 

(again, larger enough but finite) so that the following inequalities hold for 

0 ≤ k ≤ m-1 : 

|ck| ≤  ………. (8) 

Substituting the estimates (7), (8) in the inequality (6) we get : 

m(m-1)|cm| ≤ (m-1)  

  +   

  = (m – 1)  

  +  

  ≤ (m-1)  

  +  

  =  

Therefore, we have  

|cm| ≤  ………. (**) 
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 At this stage we fix m. It should be so large that the expansion in 

the above last inequality (**) is ≤ 1. With this choice of m, we have |cm| ≤ 

. This inequality together with the inequalities (*) imply : 

|ck| ≤  

for0 ≤ k ≤ m. Now, application of principle of mathematical induction and 

the inequality (6) together imply that, the inequalities (8) are true for all k 

ℤ+
. This ensures that the series (6) defining the function t ı—x(t) is 

absolutely convergent for all t with |t| < r. Again, this is true for all r with 0 

< r < R and therefore the series in (6) is absolutely convergent for all t  (-

R, R). This leads us to the following : 

 Theorem 1 :The function  

x : (-R, R) —ℝ 

given by  

 

wherec0, c1 are arbitrary constants and the ck, k > 2 satisfying (*). 

 Remark :Of all the constants  in (6) the constants c2, 

c3, ………., ck, ………. are expressed in terms of the constants ak, bk, k 

ℤ+
,the last constants namely c0, c1 remaining unspecified. They are the 

two arbitrary constants of the second order ODE (4).  

6.4 ILUSTRATIVE  EXAMPLES 

(I) The DE : . Here, P(t)  0 and Q(t)  10.  

Let x(t) = c0 + c1t + c2t
2
 + ………. be a solution of the equation. Then 

we get  = 2.1c2 + 3.2c3t + 4.3c4t
2
 + ………. and therefore 2.1c2 + 

3.2c3t + 4.3c4t
2
 + ………. + 10(c0 + c1t + c2t

2
 + ……) = 0, that is : 

(10c0 + 2.1c2) + (10c1 + 3.2c3)t + (10c2 + 4.3c4)t
2
 + …………… +  

(10ck + (k+2)(k+1)ck+2)t
k
  + ………. = 0 

Therefore we get : 

10ck + (k+2)(k+1)ck+2 = 0 for k = 2, 3, ………. This gives : 

ck+2 =  for all k ℤ+
.  

This recurrence relation gives the following succession : 

c2 =  c3 =   c4 =  =   

c5 =  =  ,     c6 = =  ,       c7 =  =   

………… 
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c2k =  ………. c2k+1 = ………. 

Therefore, 

x(t) = c0 + c1t + c2t
2
 + c3t

3
 + c4t

4
 + ………. 

             = (c0+ c2t
2
 + c4t

4
  + ……….) + (c1t + c3t

3
 + c5t

5……….) 

             = c0  

                     + c1  

             = c0  

                     +  

             =  

     =  

   Where A = c0, B =  are arbitrary constants. 

(II) Solve  

Solution : Let x(t) = c0 + c1t + c2t
2
 + ………. 

Now, we have : 

 = 2.1c2 + 3.2c3t + 4.3c4t
2
+ ..... + (k + 2)(k + 1)ck+2t

k
 + ..... 

and therefore, 

 2c1t + 2.2c2t
2
 + ………. + 2kckt

k
 + ………. 

4x(t) = 4c0 + 4c1t + 4c2t
2
 + ………. + 4ckt

k
 + ………. 

Therefore, 

 (12c2 + 4c0) + (6c3 + 6c1)t + (4.3c4 + 8c2)t
2
 

+ ………. + [(k + 2)(k + 1)ck+2 + 2(k + 2)ck]t
4
 

+ ………. = 0 

Equating the coefficients of the powers of t with zero, we get  

c2=  , c3 = -c1, c4 = , ………., ck+2 =  , ………. 
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This gives the solution : 

x(t) = c0 + c1t -  ………. 

(III) We consider here a first order ODE, the solution of which is to be 

obtained following a similar procedure : 

= 5x. 

Assuming the solution to be the power series : 

x(t) = c0 + c1t + c2t
2
 + ………. + ckt

k
………. 

We get : 

 = c1 + 2c2t + 3c3t
2
 + ………. + (k + 1)ck+1t

k
 + ………. 

Substituting these power series in the given differential equations, we 

get : 

c1 + 2c2t + 3c3t
2
 + ………. + (k + 1)ck+1t

k
 + ……….    

= 5c0 + 5c1t + 5c2t
2
 + ………. + 5ckt

k
 + ……….   

Equating the coefficients, we get : 

c1 = 5c0, 2c2 = 5c1, 3c3 = 5c2, ……….,kck = 5ck-1, for all k ≥ 1 and 

therefore ck =  for all k ≥ 1. 

This gives : 

x(t) = ………. 

= c0e
5t

. 

6.5 LEGENDRE EQUATIONS, LEGENDRE POLYNOMIALS  

 For an arbitrary real number , we consider the differential equation  

(1 – t
2
)  + 2t  + ( + 1) x = 0 ………. (9) 

for |t| < 1. We rewrite it in the form 

 = 0 ………. (9') 

The two equivalent forms (9) and (9') of the differential equation are called the 

Legendre equation involvingthe parameter . It is a particular case of the ODE 

(4) in which P(t) = , Q(t) = both admitting power series solution in (-1, 

1) i.e. R = 1. According to Theorem 1 the Legendre equation has a solution given 

by an infinite power series converging absolutely in the interval (-1, 1). The 

resulting function (which depends on the parameter ) is called the Legendre 
function.  

 It can be proved that the coefficients cn, n ℤ+
 in the expansion 
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of the solution of (9) satisfy the recurrence relations : 

cn =  

for n ≥ 2. In particular, if the parameter  takes an integral value say  = m, then 

(n - 1)(n - 2) - ( + 1) = 0 for n = m + 1 and consequently, cm + 1 = 0. This further 

implies that one solution of the Legendre equation is a polynomial. Because the 

Legendre equation is a homogeneous linear differential equation, the polynomial 

solution of it is determined to within a multiplicative constant. A particular 

polynomial solution of it denoted by Pm(t) is the polynomial : 

Pm(t) =  

Pm(t) is the Legendre polynomial of degree m.  

6.6 THE  FROBANEOUS  METHOD  

 We consider a homogeneous linear second order ODE of the type : 

 ………. (10) 

Like the ODE (9) it is more general than (4) because of the coefficients t
2
 of   

and t of  . Again, the functions P(t) and Q(t) have the power series expansions : 

P(t) = a0 + a1t + a2t
2
 + ………. 

Q(t) =b0 + b1t + b2t
2
 + ………. 

both the power series being absolutely convergent in an interval (-R, R).  

It turns out that the solution is in the form of power series with t = 0 as a 

singular point of the solution. The method of getting a solution of (10) is called 

the Frobaneous method. It is explained below. 

We expect the solution of (10) to be a function of type : 

x(t) = t
s
(c0 + c1t + c2t

2
 + ……….) ………. (*) 

wheres is a real number and c0 is non-zero. We have therefore to find       s, c0, c1, 

………. 

 Assuming the series (*) to be absolutely convergent in (-R, R) we consider 

its derivatives : 

………. (**) 
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 ………. (***) 

 Substituting these power series expansions for x(t),  , in equation 

(10) we get : 

 

 0 

 Because the factor t
s
 ≠ 0, we get that the expansion within the bracket must 

be identically zero. Therefore the coefficient of each power of t in above must be 

zero. This gives the following succession of equations : 

 ………. (****) 

 We solve these equations to get the values of c0, c1, c2, ………. 

 To begin with, we consider the first equation in the set (****). Since    c0 ≠ 

0, we get  

s(s – 1) + a0s + b0 = 0 

 This equation is called the indicial equation. This equation, which is a 

quadratic equation in s, when solved it gives two values for s to be substituted in 

the solution (*). 

 We then consider arbitrary c0 ≠ 0 and using the succession of equations in 

(****) we obtain c0, c1, c2, ……….. 

 The procedure described in above is applied in the next section where we 

obtain a family of special functions called Bessel functions. 

6.7 BESSEL  FUNCTIONS  

 For any p ℤ+
we consider the ODE : 

 

theODE being called the Bessel's equation. 
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 Clearly, the indicial equation of this D.E. is : 

s(s – 1) + s – p
2
 = 0 

It gives s ± p. Therefore, one solution of the Bessel's equation, denoted by Jp(t) is 

of the form : 

Jp(t) = tp(c0 + c1t + c2t
2
 + ……….) 

where c0 is an arbitrary constant. Taking c0 = we get 

Jp(t) = t
p

 

 Substituting the power series expansion of Jp(t), , , in 

the differential equation (11) we get  

s(s – 1)c0 + (s + 1)sc1t + (s + 2)(s + 1)c2t
2
 + ………. 

+ sc0 + (s + 1)c1t + (s + 2)c2t
2
 + ……….  

- p
2
c0–p

2
c1t – p

2
c2t

2
 - p

2
c3t

3
- ………. 

= 0 

Equating coefficients of powers of t gives : 

[s(s – 1) + s – p
2
]  c0 = 0 

[(s + 1)s + s + 1 – p
2
]c1 = 0 

. 

. 

. 

[(s + n)(s + n - 1) + (s + n) – p
2
]cn + cn+2 = 0  n ≥ 2 

The first of these equations in the indicial equation giving s = ±p, the second gives 

c1 = 0 and the last equation gives cn= . Therefore the Bessel functions are 

given by 

Jp(t) =  

When s = -p, we get the relation : 

cn =  for n ≥ 2. 

 

EXERCISES : 
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 Obtain solutions in the form of power series of the following D.E.  

(i)  

(ii)  (= constant) 

(iii)  

(iv)  

(v)  

(vi)  

 

***** 
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7 
 

 
STURM – LIOUVILLE THEORY 

 
 
Unit Structure : 
 
7.1 Introduction :  
7.2 The Sturmian Boundary Value Problem : 
7.3      Vibrations of an Elastic String 
7.4 Unit End Exercises 
 
7.1 Introduction :  
  
 Recall, the initial value problem for an ordinary differential equation: 

 
1

1( , , , ... )
k k

k k

d X dX d X
f t X

dtdt dt
        

is to obtain a solution :X I     of it when the values : 

  10( ) , ( )o o

dX
X t X t v

dt
    ,….,

1

0 11

k

kk

d
t v

dt
  of the solution and its 

derivatives are prescribed at a single point to of its domain internal. A 
Boundary Value Problem (BVP), is another fundamental problem in the 
theory of ODE in which the solution of an ODE is required to satisfy a number 
of conditions at two points of its domain (the two points actually being the 
boundary points of the domain interval.) 
 
 In this chapter, we will study an important type of boundary value 
problems associated with a certain type of linear second order ODE; we call 
the BVP the “Sturm Liouille eigenvalue problem.” The resulting theory is very 
vast and makes use of results from functional analysis. Therefore, we only 
outline the theory introducing the concepts and stating the results without 
proof. We will illustrate the scope of the theory by using it to solve the 
vibrating string problem. 
 
2. The sturmain Boundary Value Problem : 
 
 In the following, I stands for the interval [a,b]. All the functions 

( )t X t  , ( )t Y t  , ( )t Z t etc appearing in the discussion are assumed to be 
defined on internals containing I. 
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We use the following notations : 
 C(I) is the vector space of all continuous functions 1: , ( )X I R C I   is 
the subspace of C(I) which are continuously differentiable on I while 2( )C I  
consist of those :X I  in C(I) which are twice continuously differentiable 
on I. 
 
 To introduce the type of boundary value problems we want to discuss, we 
consider the following data: 
 
(I) The functions p, q, r : I   with the following properties : 
 
 (i) p is continuously differentiable on I i.e. 1( )p C I  
 
 (ii) q, r are continuous on I.  
 
 (iii) p(t) > 0 for all .t I   

 
(II) Constants 1 2 1 2, , ,    with 2 2

1 2 O and 2 2
21 O  (Note that 

2 2
1 2 O  is equivalent to the property that of the pair 1 2 , at least one 

is non-zero. The other inequality also has similar interpretation). 
 
(III) Arbitrary constants  1 2, .   
Using the functions in (I) we construct the linear, second order ordinary 
differential equation : 
  ( )pX q X r          … (1) 

    i.e. , .d dX
p t t q t X t r t t I

dt dt
       

in the unknown function t X t    

The equation : PX q X         … (2) 
is the homogeneous part of it.  
 
We require the solution function ( )t X t  of (1) to satisfy the boundary 
conditions : 
 

  1 2 1

1 2 2

( )X a X a

X b X b

   


  
     … (3) 

 
Taking together the DE(1) and the boundary conditions (3) we get the pair  

             pX qX r     
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  1 2 1 1 2 2( ) ,X a X a X b X b         … (4) 
The pair (4) is said to constitute the Sturmian boundary value problem. 
 
In above, taking 1 20, 0r     we get the homogeneous Sturmian 
boundary value problem:  

    P X q X     
  1 2 1 20X a X a X b X b     … (5) 

In above for every 2( ),X C I  we put  

    
( ) ( )

.
L X pX q X

pX p X qX

    

    
 

Note that 2( )X C I  implies that L(X) is continuous. Thus we get the map  
   2: ( ) ( )L C I C I   
of the indicated vector spaces. Clearly L is linear.  
Now for any 2, in ( )X Y C I    we have                           

. .L X t Y t X t L Y t  
 

   . .
d X td dY

p t Y t X t t
dt dt dt

 
     

for all .t I  We refer to this equality as the .Lagrange Identity  Integrating 
this identity over the interval , ,a b  we get  

. ( ).
b

a
L X t Y t X t L Y t dt  

. .p b X b Y b X b Y b        

                       p a X a Y a X a Y a     … (*) 
Moreover, if both the functions X, Y satisfy the boundary conditions in (5) then 
it follows that the R.H. S. of (*) is zero and consequently we have : 

           .
b b

a a
L x y Y t dt X t L x t dt    …(**) 

We will explain more about this equality (**) at a later stage.  
 
 Here is a short list of properties of the spaces of solutions of the 
boundary value problem (4) and its homogeneous part (5). 
 
(1) A finite linear combination : 
   1 1 2 2 ... n nC X C X C X         
of solutions 1 2, , , nX X X    of the B.V.P. (5) is also a solution of the BVP (5). 
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(2) If X and Y are solutions of the in homogeneous BVP (5) then the 
difference X – Y is a solution of the homogeneous boundary value problem (5). 
 
(3) If :X I R    is a solution solution of the BVP (5) and :Y I   a 
solution of the non-homogeneous B.V.P. (4) then X + Y is a solution of the 
BVP (4). 
 
(4) Finally, let  :Y I    be a fixed solution of the inhomogeneous BVP (4). 
Then every other solution :Y I     of (4) can be expressed in the form 
Y X Y    for a unique solution X of the homogeneous BVP (5). 
 
 At this stage we describe a condition which ensures a unique solution of 
the boundary value problem (4). Towards this aim, recall that the solution 
space of the second order, linear homogeneous ODE (2) is a 2 dimensional 
vector space and we call a basis of this vector space a fundamental system of 
the ODE. 
 
 We choose a fundamental system 1 2,X X  of the ODE (2). Next, using 
it and the constants 1 2 1 2,   , of the boundary conditions of (5) we form 
the quantity. 

  

11 1 1 2 1

12 1 1 2 1

21 1 2 2 2

22 1 2 2 2

R X a X a

R X b X b

R X a X b

R X b X b

   

  

    

   

 

and we consider the determinant 11 12

21 22
det

R R

R R





 which we denote by W. Now 

we have the following result. 
 
Theorem 1 : The boundary value problem (4) has a unique solution if and only 
if  0.W   
Proof : 
 Let 1 2,X X  be a fundamental system of solutions of the DE(2). Using 

1 2X X  and the variation of constants formula we choose a particular 

solution * :Y I   of the differential equation (1). Now a general solution of 
(1) has the form: 
 *

1 1 2 2 ,Y t Y t C Y t C Y t t I           … (*) 
C1 , C2 being some constants.  
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Now we consider (*) to be a solution of the BVP (6). Clearly, (*) is a solution 
of BVP (6) if and only if the constants 1 2,C C  satisfy the following 
simultaneous equations:  

  
*

1 1 1 11 2 12
*

2 2 1 21 2 22

R Y C R c R

R C R C R

  


     
    …(**) 

where * * * * * *
1 1 2 2 2, ,R Y Y a Y a R Y Y b Y b        

(here, of course *Y  being he derivative 
*dY

dt
). 

 Clearly the equations (**) are satisfied if and only if the matrix of the 
coefficients of 1 2,C C  in (**) is non-singular, that is, if and only if: 

   11 12

21 22
det

R R
W O

R R


  


 

 
Here is a simple illustrative case. 
The boundary value problem : 

   

2

2 1 0

(0) (0)

d X
X t

dt

X X X

      

     

 

 ,  being some constants.  
We claim that the BVP has a unique solution.  
In fact, here, we have 1 2 1 , 1 0,   2 1, 

1 2sin , cosX t t X t t    is a fundamental system of solutions of the 

homogeneous part. 
2

2 0.d X
X

dt
 Therefore, we get : 

11 12 21 22, 0 while 1R R R R         . This gives 1 0.W     giving existence 
and uniqueness of the solution.  In fact 1 21 cos sinX t C t C t  is a 
general solution of the ODE in the BVP above Now 

1 2(0) (0) .X X C C     and 2X C  give 

2 1andC C     Therefore the unique solution of the above B.V.P. is 
1 sin .X t cost t   

 
 Next, let the functions , : ,p q I      the constants 1 2 1 2, ,   and the 
differential operator 2: ,L C I C I     all be as in the preceding section. In 
addition let :r I    be a continuous function with 0r t holding for all 

.t I  
 
For a real number  we consider the linear homogeneous ODE. 
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   ( )L X r X          … (6) 
along with the boundary conditions : 
 

   1 2

1 2

0

0

X a X a

X b X b

     

    
 

Thus we have the linear homogeneous boundary value problem : 
 

   
1 2 1 2

0

0

p X p X q r X

X a X a X b X b

       

  
 … (7) 

which involves the real parameter . 
 
 A Value of the parameter for which a non-zero solution X X  of (7) 
exists is called an eigen value  of the boundary value problem (7). 
 
 Sturm – Liouville eigen-value problem consists of getting the get E 
consisting of all the eigen values , the corresponding eigen-functions X  
and studying the function space C(I) in terms of the eigen functions. 

:X E . We will state the main theorem, proving only a part of it, and use 
it to solve the vibrating string problem in the next section.  
 
 Before going further, we consider the following three concepts:  
 
(1) The inner product , : 0,C I C I         given by 

, , ,
b

a

t t t dt         in C(I) 

(2) The norm : ,C I o     given by , for all C I        
(3) The uniform norm ,C I o     given by 

lub | : .t t I       

Note that if .
b

a

C r t dt , then we have C


   ……. (8) 

holds for all .C I    
Now, for , we consider the following two subspaces of C(I) : 
 
(1) V  is the solution space of the (second order, linear, homogeneous) 
ODE (6). 

_____________________________________________________________________________________ 
                                                                  85

MATHEMATICS
_______________________________________________________________________________________________



 
 
(2) W  is the subspace of V  consisting of all the solutions of the 
boundary value problem (7). If 0W    then we call W  the 

eigen- space  of the B.V.P (7) with  as its eigen- value. .  
 
We prove the following three properties of the spaces W ,     
(I) Each  W  is a proper subspace of V  (Thus if 0W    then it 
is a  1-dimensional subspace of V  
(II) If 1 2,  are in ,  with 1 2 ,  and if 

1 2, then ,W W        with respect to the inner 
product < , >. 
(III) There is a countable subset :k k  of real numbers such that 

0kW   for each k  and 0W  if k for any . 
 We prove property (I) : choose a fundamental system 1 2,X X  of 
solutions of the equation (6). Their linear dependence implies   

   det 
1 2

1 2

X t X t

X t X t


 


for all t I  .  

In particular we have  
 

   det 
1 2

1 2

0
X a X a

X a X a


 


 

 
Now, if both 1 2X X  were in W( ), then they would satisfy the boundary 

conditions. In particular, 1 1 2 2 0X a X a        and       

1 2 2 2 0X a X a       

But 2 2
1 2 o  implies det 

1 2

1 2

0
X a X a

X a X a




 which contradicts the 

above stipulation of linear independence. This proves that W( ) is a proper 
subspace of V  (i.e. it is either the {0} subspace or it is one dimensional 
subspace of V .) 
 Property (II) follows by the property ( ), , ( )L X Y X L Y  for all X, Y 
in C (I). 
 Property (III) is a consequence of the fact that (C (I), ) is a separable 
metric space. 
 Now we state without proof the main theorem.  
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Theorem 2 (Sturm – Lionville) : 
(1) The boundary value problem (7) has a non-zero solution only for a 
countable (finite or denumerable) set of  i.e. the solution spaces 
W  are non-trivial only for a countable collection of real numbers . 
 Let 1 2 kE     be the subset of  consisting of those  
such that 0 if and only if kW    for some .k E   ( k  are the 
eigen values of the Sturm-Liouville problem and  kW  are the eigen 
spaces). 
(2) The set E has no limit point.  
(3) Each kW  is a 1 dimensional subspace of 2C I . For each k E  we 
choose k kX W  with 1.kX    Now we have ..k kW X X    
(4) If , then , 0.k e k ek e X X ie X X            
 
 
 
(5) If 2X C I  then , k

k

kX t X t X t X t      

for all t I   where the convergence of to infinite series to X(t) is uniform in 
t I . 
(6) If ( ) is such that , 0kX C I X X      holds for all kX then X ≡ 0. 
 
 The proof of this theorem makes use of the properties of a compact 
operator on a separable Hilbert Space and as such it is to be studied from a 
suitable advanced text-book on ODE (which usually refer to text-books of 
functional analysis). 
 
We state here two more results without proof : 
Theorem 3 (Sturm-Liouville Separation Theorem.) 
The zeros of two linearly independent solutions of L(X) = 0 separate each 
other.  
 
 Thus if 1 2X and X   are two independent solutions of L(X) = 0, their 
between two consecutive zeros of 1X is a zero of 2X  and between two 
consecutive zeros of 2X  is a zero of 1X . 
 
Theorem 4 (The Comparison Theorem) 
Consider two eigen-value problems of Sturm Liouville with the respective date 

, , , ,p q r     and * * * * *, , , ,p q r     over the same interval I = [a, b].  
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  If *,p p   * ,q q   *r r    in I and *0 ,       *0        
hold with strict inequality in at least one place, then the corresponding 
eigenvalues satisfy *

n n   for all n. 
 
 In the next section, we study the dynamics of an elastic vibrating string in 
which we will use the results of the Sturm-Liouville Theorem. 
 
7.3 VIBRATIONS OF AN ELASTIC STRING 
  
 The vibrating motion of a stretched elastic string is governed by a partial 
differential equation called the (one-dimensional) wave equation  . Wave 
equation is solved by a method called method of separation of variables. The 
resulting analysis makes use of the Sturm Liouville theory. We will therefore 
study the problem of the vibrating elastic string as an application of the Sturm-
Liouville Theory. 
 
We first explain the PDE, the wave equation of the vibrating string. 
 
A string of natural length L is held horizontally along the X-axis of a vertical 
XOY-plane. Its ends, A, B remain tied to the points (0, 0) and (L, 0) 
respectively. The string is plucked slightly and then is set in motion in such a 
way that each point C of the string vibrates vertically. We study the vibrating 
motion of the string as the collective vertically oscillating motion of each point 
C of the string.  
 
 Therefore we consider an arbitrary point C of the string Let ,l A C x  
(The real number x and the point C determine each other and therefore we may 
take of “the point x” instead of “the point C”.) 
 
 Let at an instant ( , )t Y t x    be the instantaneous y-coordinate of the 
point C (Since the oscillatory motion of C is only in the vertical direction, x-
coordinate of C remains constant.)  Therefore the (oscillatory) motion of the 
point C is described by the function ( , )t Y t x  and the motion of the whole 
string is given by the function , , 1t x Y t x t x           
 … (9) 
 Now, the basic equations of motion enable us to derive the equation  

  
2 2

2
2 2 0 ,Y Y

c t x L
t x

              …(10) 

 satisfied by the function Y(t, x). Equation (10) is the wave equation which 
is satisfied by the vibrating string. In (10) c is a constant determined by the 
mass of the string its elastic properties and the gravitational constant.) 
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 Suppose the string was plucked slighlty and released with initial velocity 
(= initial velocity of each point C). so that the string executes the vibration 
motion as described above. We consider two continuous functions : 
 
 : 0, , : 0,f L g L        describing initial  position and initial 
velocity of the string, that is : 

 0, , 0, , 0 .Y
Y x f x x g x x L

t
           

 Now, we have the initial / boundary value problem for the function 
, , ;t x Y t x    

  
2 2

2
2 2 0, 0Y Y

c t x L
t x

              …(10) 

 ,0 0 , 0,Y t Y t L t         

  0, 0, , 0 .Y
Y x f x x g x x L

t
         

We want to find out the function ,t x Y t     
To begin with, we consider all the solutions of the wave equation which are of 
the type X(x). T(t): 
   , .Y t x X x T t   

Now, 
2 2.. ..

2 2, , ,Y Y
t x X x T t X x T t

t x
           (the dots indicating 

differentiation (twice) with respect to the appropriate variable) 
 
Now the equation takes the form  

  
.. ..

2X x T t c X x T t     
Assuming 0, 0 0, 0 ,X x T t for t x L      we get  

   

.. ..

2
1 T t X x

T t X xc
         …(11) 

 
This shows that the common value in (11) is independent of t, x i.e. it must be a 
constant say d. 

  

....

2
1 T t X x

d
T t X xc
          …(12) 

Now if 0d  we would get 
..

2 2with 0.T t c d T t c d     If 0d , we 

would get T(t) = At + B for some constants a  , B (A is not zero because, 
otherwise T t B  which gives Y(t, x) = B. X(x) implying that the motion of 
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the string is independent of t ie the string is station any!). On the other hand, if 
d > o, we would get  
  . .d ct d ctT t Ae Be t         
In either case (i.e d > 0, or d = 0) the factor T(t) becomes unbounded as t 
ranges in 0, . This renders Y(t, x) also unbounded (ie the string stretching 
limitless, another physical impossibility!). Therefore we are left with the 
possibility d < 0. We put 2 ford   . Then the above ODE (12) take 
the form : 
 

 
.. ..

2 2 2,T t c T t X x X x       .. (13) 
We consider the second equation : 

 
..

2 , 0 .X x X x x L       
Its general solution is : 
 cos sinX x x x x  ,  being constants. This gives: 

, cos sinY t x T t x x      with the condition 0T t   . Now 
0 , 0 .Y t x T t    implies 0  and therefore 

, . sin with 0,Y t x T t x T t   0.  
But we have Y(t, L) = 0 and therefore sin 0L  which implies that 

L k for k     . Therefore the parameter  can take the values 

, ,k
k k

L
    . 

This shows that : 

 . cos sink k k

cL cL
T t T t t t

k k
       

and ,k

L
X x X x Sin x k

k
     .  

Thus, we get  a sequence of solutions :  

 . cos . sin sink k k

cL cL L
Y t x t t x

k k K
         

for k  , X ,k k  being arbitrang constants. Now the general solution Y(t, x) 
will be a linear combination of all of them. 

 , . cos . sin sink k

k

cL cL L
Y t x t t x

k k k
     

Differentiating the infinite series partially with respect to t gives : 

, . sin cos sink k

k

Y CL CL CL L
t x t t x

t k k k k
        
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In particular, we have  

 
0, sin

0, sin

k

k

k

k

L
f x Y x x

k

Y L
g x x x

t k

   

 

 

These are nothing but the Fourier expansions of the given functions f(x), g(x), 
,k k  being their Fourier coefficients which are calculated using the standard 

trigonometric identities. Now we have the solution of the vibrating string 
problem: 
 

 , . cos . sin sink k

k

CL CL L
Y t x t t x

k k k
       

 
7.4 Unit End Exercises : 
 
Find the eigen values and the eigen functions of the following boundary value 
problems : 

(1) 
..

0 0 0 , 1X X X X           

(2) 
..

0 0 0, 0 0.X X X X L for L               

(3) 
..

0, 0 0 0 0.X X X X L for L              

(4) 
.

1( ) 0 1 0 0tX t X X e           

  (Hint : Try ,rt e r ) 

(5) 
..

2 2 1 0, 0 0t te X e X X X         

   (Hint: Take
t

X e u  ) 

(6) 
..

1 31 0, 1 0, 0.t X t X X X e          
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