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BASIC THEORY

Unit Structure :

1.1  Introduction.

1.2 Ordinary Differential Equations.

1.3 First Order ODE.

1.4  Existence and Uniqueness of Solutions (Scalar Case).
1.5  Ilustrative Examples.

1.6  Exercises.

1.1 INTRODUCTION

As we already know, a differential equation - DE - is an equation
relating the following three items :

e A function of one or more variables (the function being real valued or
vector values).

e The independent variables of the function.

e A finite number of derivatives of the function.

The highest order of derivatives of the function appearing in the
equation is the order of the differential equation.

Usually, the function in a differential equation is an unknown
function; it is an are observable quantity of a real process and therefore we
are interested in knowing the function. We use results and techniques of
mathematical analysis along with our geometric intuition and tease the
function out of the differential equation. We then speak of having solved
the differential equation.

Depending on the nature of the function (in which a differential
equation is set) we classify the differential equations in the following two

types :

1) A function X:l1— R"of a single real variable (say) t ranging in an
open interval I gives rise to the succession of derivatives :
0 2 k
x=|d| x & axX dX |
dt dt dt dt
Now a differential equation in the function X t is therefore an
equation of the type :
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dX d*X  d*X|_

Flt, X —,
dt ' dt? dt

Such an equation is said to be an ordinary differential equation. Thus
an ordinary differential equation is a differential equation in which the
constituent function X :t— X(t)is a function of a single real variable.

We often use the acronym ODE in place of the full term : ordinary
differential equation.

I1) On the other hand, there are differential equations in a function
u:x—u x of areal multivariable x= X X,.....X. Wwhich ranges in

n

an open subset {2 of R". Such a function u=u x gives rise to mixed
partial derivatives :

ou

_11§|§n!
ox.

2

j1<i, j<n
OX,0X;
D% := i i i u
ox, ) | 0x, )
for various multi-indices o= o, v, ..., With o, €Z"i= 0,1, 2,... , the

mixed partial derivative D“u having the order |o 1=, 4+, +...+ .

Now a differential equation in such a function u=u x of a multi -

variable Xx= x_.....x, ranging in an open subset ) of R"is an equation of
the type :

u o
Ox O O,
its order being m. Equation (2) is said to be a partial differential equation

in U(x)because it involves the mixed partial derivatives of u. We use the
acronym PDE for this type of differential equations.

Flx u DUl <m|=0 ......... (2)

There is more about the setting of a differential equation : In a
mathematical problem, a differential equation is accompanied by auxiliary
data. A solution of a differential equation is required to satisfy this auxiliary
data. To be more specific we are given a subset of the domain of a
prospective solution and some of its derivatives of the solution at the points
of this subset.
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In case of the ODE, the auxiliary data is said to consist of initial
conditions. An initial value problem consists of finding the solution of the
ODE which satisfies the accompanying initial conditions. Often, the pair
consisting of (a) an ordinary differential equation and (b) the initial
conditions is referred as the initial value problem -1\VP-,

Often the initial conditions are given at the end points of an interval
which are then called the boundary conditions. Also, the resulting initial
value problem is called a boundary value problem.

In the case of a partial differential equation, the accompanying
auxiliary data is called the Cauchy data for PDE. The Cauchy problem
for a given PDE consists of finding the solution of the PDE which satisfies
the requirements of the given Cauchy data.

We will explain more about these terms initial conditions, Cauchy
data etc. - at later stages.

Partial differential equations, being more intricate mathematical
objects are studied by using the concepts and results of the ordinary
differential equations. Therefore, a basic course on differential equations
begins with a treatment of ordinary differential equations. In our treatment
of the subject also, we will develop enough theory of ODE and then apply it
to the partial differential equations.

Therefore, back to the theory of ODE.

1.2 ORDINARY DIFFERENTIAL EQUATIONS

To begin with, we reorganize the form (1) of the ODE in the
following manner. Unraveling it, we separate the top order derivative and
express it as a function of the remain variable quantities, namely,

k-1
t, X(t), dd>t(’ ..... ddtk‘i(’ that is we form the  equation
d“X dX d**x
e f[t,X, = ] ........................ 3)

We regard the equation (3) as the standard form of an ODE (of
course, the ODE has order = k.) Note that the function X :t+— X(t)is a
vector valued function of the real variable t and as such it is a curve in R".
Each X(t) has n components : X(t)= X,(t), X,(t),...., X, (t) and
therefore all the derivative of it has n components :

d[X(t)[[d] Xl(t)’[%] X, (1), ... [d],xn(t)

for 1</<k.

dt’ dt dt
Consequently, the function f appearing on the right hand side of (3) has n
components : f= f,f, .., f ~each f being a real valued function.

n

3
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Consequently the DE (3) is actually the following system of ODE in the
functions :
tl—= X, t,t|= X, t, ..., t|= X, t

d*X, dX  d*'X )]
= f|t, X, — ...
dt* 1[ dt =7 dt*?
k k—1
O, ([ OX 07X
dt dt T odtt L (4)
k k—1
O X0 g fex, 9%, 4 X
dt dt ' dt

At this stage, we become more specific about the features of the
ODE (3) (or equivalently about the system (4).)

Let | be an open internal and let €2 denote an open subset of R". We
consider the open sets

(there being k —1 copies of R" in the above Cartesian product). This set is
being designated to accommodate the variable quantities :

d“?x

dx
t,X(t),E t Py

Clearly, the function f appearing on the right hand side of (3) must
have this set as its domain of definition.

Choosing t,€1,x, €2 and w,w,..w, , in R", we form the initial
condition t,,X,, W;,W,...w, , . Now, the initial value problem for the ODE
(3) is the following pair :

= f|t, X,
dt* dt dt*?

oy Xgs Wiyerenne W, ,

d“x [ dX d“X]

By a solution of the initial value problem (5) we mean an (at least) k
times continuously differentiable function (= curve in )

X :J —€2, J being an open interval with t, €J < I, which satisfies
the following two items :
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k k-1
e The differential equation : de(t): f th © d f_l(t) for all
t dt dt
teld
e The initial conditions :
dX d“*'X t,
X tO :XO,E tO :Wl"""W:Wk—l
Remarks :

)

Though the independent variable t of the function X(t) in the ODE (1)
is stipulated to range in the interval I, we expect the solution t+— X(t)
of the initial value problems (4) to be defined only on a sub-internal J
of I (with t; €J ). Indeed, we come across concrete cases of the IVP in

which a solution exists only on a sub-inter J of | and therefore, we
grant this concession : a solution need be defined only on a sub-
interval J of I.

I1) Often, the initial conditions are expressed more explicitly in terms of
o d“'X t,
the equatlons . X tO :XO,E tO :Wl"""vzwkfl'
An  important special case of the ODE (3) is
k 2 k—1
di(:fx,dx,d)z(,dk_)l( ..................... (6)
t dt ~ dt dt
in which the function f is independent of the variable
t: f:OxR"x...xR" —R", In this case we say that the ODE (6) is
autonomous.
Returning to the initial value problem (5), there are two questions :
e Does the initial value problem (5) admit a solution at all?
e |fitdoes is the solution unique?
Clearly, because f is the main ingredient of the ODE, the answer to
both of there questions naturally depends on the properties of f, especially
on its behaviour around the initial condition t,,X,, W,......w,_, (i.e. how if

varies continuously, differentially etc. around t,,X;, W,,....,w,_, Following

two examples illustrate that answers to both the questions are (in general) in
the negative :

Let f :IR — R be the function :
f x=—1 x<0

=4+1 x>0
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For this function we consider the (first order autonomous case of) the

initial value problem : (L—):: f(X), x(0)=0.

We contend that this initial value problem has no solution.

For, if there was a solution X:J—R with 0&J, then
%(O):f(O):l>O implies that the solution te X(t) is strictly

monotonic increasing in a neighborhood —,8 of O.

On the other hand, (jj—)t(:—l(< 0)=f()forall te —5,0 implies

that t+— X (t)=—tis strictly monotonic decreasing in —56,0 . Thus, if the

solution of the above IVP exists then it is strictly monotonic increasing as
well as strictly monotonic decreasing. This prevents a solution!

e Now let g:R — IR be the function
g x =0 x<0
1
=x¥ x>0
For this g, we consider the autonomous initial value problem.

d—X:gx, X 0=0
dt

Clearly, one solution of it is the function
%
2] 2 t>0

X0 = [3
0 t<0

Another solution of the same IVP is the function X,(t)=0. Thus,

the IVP has at least two distinct solutions. (In fact it has an infinitude of
solutions. For each ¢ > 0, the functions : t — ¢ X,(t) is a solutions)

Of course, an VP should admit a unique solution! In the following
sections we will concentrate our attention on first order ODE and for such
ODE we will introduce a condition - f being locally Lipschitz - which will
guarantees both - existence and uniqueness of the solution.

Above, we have been discussing ODE of arbitrary order
neN:= 1,2,3,.... and the IVP associated with them. But there is a

simplifying aspect of the ODE! Higher order ODE can be studied entirely in
terms of first order ODE. (This point will be explained in detail in the last
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part of chapter 2). Therefore, for the time-being we will focus our interest
on first order ODE only.

1.3 FIRST ORDER ODE

We begin some more generalities related to first order ODE. As in
the preceding part, | denoted an open interval and (2, an open subset of R".

We consider a function :

fiIxQ—-R" ... (7)

X XY oo (8)

dt

Note that for each t € | held fixed the map :

ft,—:Q—=R";x—f t,x is a vector field on ). Interpreting “t”

as the time variable we call the function (7) a time dependant vector field on
1. And, often, we call a solution X :J — € of the ODE (8), an integral
curve of the vector field f.

An initial condition for the ODE (8) consists of a pair t,, X, with

t, €1, X, €Q2and the associated initial value problem is :

%:f(t,X), Xty =Xy evereerernnnenn 9).

Finally, recall that a solution of (9) is an (at least) once continuously
differentiable curve

X:J—Q

(J being an open interval with t, € J Cl ) satisfying :
dX(t)

e f(t, X (t)) forall tel and the initial condition X t, =X,.

In the context of the IVP (9) we consider yet another equation the
following integral equation in an unknown function X:J—

X(t):x0+ff(s, X(s))ds ted .. (10).

Following result relates solutions of the IVP (9) and those of the
integral equation (10) :
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Proposition 1 :

A continuously differentiable curve X :J — (2

(J being an open subinterval of | with t, € J) is a solution of the IVP
(9) if and only if it satisfies the integral equation (10).
Proof : (1) - First suppose that the curve X :J — (2 satisfies the integral
equation (10). Putting t=t, in (10) we get :

ty
Xtozxw+ff®JQQﬂh
ty
=X, +0
:XO

Thus X satisfies the initial condition.

Next, differentiating (10) we get

dX t d |

——=0+— ] f(s, X(s))ds
=0+ [ £(5.X(5)

ty

= f(t, X(1)

by fundamental theorem of integral calculus.

Above, we have verified that a solution t+— x t of the integral
equation (1) is also a solution of the IVP (9). Conversely suppose, t—Xx t ,
teJ isasolution of the IVP (9). Integrating the identify.

dx

— t=f(txt)ted
m (tx()

We get :

Xt —xt, :fiXsds

! ds

t
:ff(r,x s ds
f

And therefore :

t
xt—%:ff&XsdQ
t0
Thus we have :

t
X t :x0+ff(s,x s ds
f
For all teJ proving that a solution of the IVVP (9) is also a solution of the
integral equation (10).




Chapter 1 : Basic Theory

1.4 EXISTENCE AND UNIQUENESS OF SOLUTIONS
(SCALAR CASE)

In this section, we consider the scalar case, (i.e. a single differential
equation) of the initial value problem. Now {2 will be an open subset of R
which, without loss of generality will be taken to be an open internal, we
write J for ). Thus we have on function

f:lxJ—R
Along with t, €1, x, €J giving rise to the scalar case of the initial value
problem :

dx B
T FX) X)) =Xy ceeereininiininnnen, (11)

Following property of f ensures both, existence and uniqueness of
the solution of (11).

Definition 1 : fis locally lipschitz on J, uniformly in t €| if the following
two conditions are satisfied.

a) fiscontinuouson I xJ.
b) For eacht, €1, x, € Jthere exist finite numbers & >0, K > 0satisfying

the following :
i) t,—0t+0 <I, x,—&x,+08 <J and
i) [f t,x —f(t,y)|<K|x—y| holds for all te t,—5,t,+5 and for all

pairs X, y in X, —0, X, +9 .

Remark : An autonomous ODE arises from a function f :J — R which is

independent of the time variable t< 1. For such a function, the condition
(b) in the definition takes the following simpler from : for each x,€J,

there exist 6 <0, K > Osatisfying :
) X, —98, % +06 <J and
i) [f x — f(y)|<K|x—y| forallx, yinJ.

Also note that this condition implies continuity of f at every x, €J

and therefore there is no separate mention of condition (a) in the definition
of local Lipschitz property of sucha f:J —R.

Following proposition describes a broad class of functions with the
locally Lipschitz property :
Proposition 2 : If f:1xJ—Ris continuously differentiable on its
domain, then it has the locally Lipschitz property.
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Proof : Let t,,X, €1 xJ be arbitrary. Using openness of | xJ, choose
0>0 such that t,—o,t,+06 x X, —8 %, +8 <1 xJ.

Now, the function g—fis continuous on | xJ and therefore it is
X

bounded on the compact subset t, —§,t,+98 x X, —9, X, +06 . We consider
any constant k > 0 with the property.

of
— (t,X
‘ax( )

<K forall te t,—d,t,+06 andforall x& x, —&,x,+9 .

Finally let te t,—9,t,+06 X, yin X,—0,X,+0 be arbitrary. By
the mean value theorem of differential calculus, we have :

Fty — ft)=(y—x 2 2
OX

for some z between x and y. Therefore,

fty —f(t,x[< y—xﬂ(t,z) <K|y—Xx|
OX

(Since t,z ety —8,t,+06 x X, —8x,+9 and  therefore

f
% (t,Z‘ < K. This proves the locally Lipschitz property of f.

Theorem 1 (Emil Picard) : If f:l1xJ—Ris locally Lipschitz then for
any t, €1, X, €J, the initial value problem.

df
poie f(t,x), x,)=Xx

has a solution x: t, —8,t,+6 — J for some 6> 0.

Proof : Choose &>0 such that t,—&,t,+0 <I, x,—9,%,+& <J and
there exists K >0 for which |f t,x — f(t,y)|<K|x—y| holds for all
ty—8,t, -+ X X, —8,% +5 . We choose M > 0 such that |f t,x |<M for
allte t,—8,t,+06, Xx& X, —06,%, +9 .

Using the constants 6 >0, K > 0, M > 0, chosen above, we choose

L .1 %
one more constant 7 satisfying 0 <m < min {E M}

We define a sequence of functions :
X : t,—mty, +n — R,k e€Z+ recursively as follows :

10
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X (1) =X

X (1) =X, +jf(s X,) ds

xz(t):x0+ff(sx1(s))ds

t
X = Yo + f f(sx, (5))ds

f

The sequence x,:keZ" of functions has the following two
properties :

a) X ()€ x,—8,%x,+06 foreach tet, —8,t,+9o
MK [t
(k +1)!

b) X ) —x (1)<

Both these properties are derived using principle of mathematical
induction and the locally Lipschitz property of f. Using property (b) we

deduce that the sequence x, :k €Z™ is uniformly canchy on t, —m,t,+m

For if tet,—mt,+n,keZ, peN, then
k+p—1
X = X ()= D [X;,2(t) = %;(t)] and therefore
i—k

k+p-1

X ® =% O] < D [Xa® — X, 0]

it
SMK—H) 1KJ+.|t_t0|
K= ((J+D!
Jond
M5
K j>k Jl
M Kn '’
Ki=% ]!

—0as k — oo.
j
This last observation is true because » —
j>k J

IS convergent,

km

converging t, e™". Note that in the inequalities :

11



MATHEMATICS

Kn '’ _ .
%o (©) = X (1) g% Zk T: the right hand sides are independent
12 -

of t and therefore |x, (t)—x, (t)| = Ouniformly on t,—v,t,+n as

k — 0o, p being arbitrary. This completes the proof of our claim that the
sequence X, :ke€Z' of functions is uniformly Cauchy on t, —m,t,+ 7 .

Using this last mentioned property of the sequence x, :keZ" we
define a function.

Xity—mtp+m — X, —8 X, +9
by putting X t =|!im X (t),t € t,—m,t, +n . The function x, thus defined,

is the uniform limit of the sequence X, :k €N . Therefore we have :

X t :klim X, (t)

t
X+ [ (s,%4(s)ds

ty

= lim
k —o0

t
:%+£mff@&49w
ty
t
=%+ [ lim f(s,%_4(s) ds
t

t
=%+ [ (s, limx_,(s)ds

b
t
:%+ff@ﬂ9%
fy

All the above equations being valid because of the uniform
convergence of of x, tg x on t, —m,t, +m .

Finally, the identity :

t
X t :xo+ff(s, X(s)ds,te t, —m,t,+n derived above has the
t
following two consequences.
1) Differentiation of the identity implies :

12
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dt dt

ax(v) _ d

X, + f (s, x(s))ds

d t
=O+E{f(s,x(s))ds
= f(t, x(t)

by fundamental theorem of integral calculus.

2) X t, :x0+]f(s, x(s))ds

o
=X, +0
:Xo

We have now verified that the function
X:t,—m,t,+n — X, —9, X, +0 <J isasolution of the given initial value
problem.

Remark : The above theorem there proves that the functions x, constructed
above are approximate solutions of the initial value problem (11).

The sequence x, :k €Z' is called Picard’s scheme of approximate
solutions of the initial value problem.

In the next chapter, we will generalize this result (the scalar case) so
as to become applicable to a system of first order ODE. We will also prove
that any two solutions of the initial value problem (11) agree on the overlap
of their domains.

1.5 ILLUSTRATIVE EXAMPLES

Example 1 : Obtain Picard’s scheme of approximate solutions of the initial

value problem : %: X, X(2) =3 and thereby obtain the solution of it.

Solution : This DE is an autonomous ODE with f t,x =X,t,=2 and
X, = 3. Therefore the approximate solutions are as follows :

13
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X, (t)=3
><1(t):3+f3ds:3+3(t—2)

3(t—2)?
21

xz(t):3+fs+3(s—2) ds=3+3(t—2)+

xk(t):3+ﬂ3+%(s—2)+%(s—2)2+..+%(s—2)k ds

3 3 3
=3+—(t—-2)+—(t—2)°+... t—2)<
Tl Aty At (+1§ )

Therefore, the solution of the IVP is
Xt =Ilimx, t

k—o0

3 3 ) 3 k
34 -2+ Z (= ot S (D) ]

= lim
k—oc
t—z "
=3 =3e?
2

Example 2 : Obtain approximate solution (to within t”) of the initial value
problem :

ax )
—=xt+t°, x(0)=2
m (0)

Solution : Here, f t,x =xt+t*,t,=0,x,=2.

Therefore, x,(t)=2

X (1) =2+ f(zs +5%)ds

t 4
S
xz(t):2+f(25+s3+Z+sz)ds
0

Using this observation, we get :

14
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we get

xz(t):0+tfmax S, %(s) ds

t<2

0 2
2
v t<2
2
= t—2
2+f(r+2)2ds t<?2
0
2
£ t<2
_]2
t—2)% (t—-2)° .
+2+2 t—22+2( + if  t>2
(t=2) 2 3.2 -
. t ift<2
Again, note that max t, x,(t) = . and consequently,
X, () ift>2
2
% t<2
SO=17 o0y stz 2t-2¢ 26-2)
2+ + + + t>2
1! 2! 3! 4!
Using principle of mathematical induction, we get
t2
X (t)=— t<2
W=7 t<
2(t—2) 2(t—2)° 2(t—2)¢ 2(t—2)
g A 22 22 22
1! 2! k! (k+1)!
B k
Noting that —0 as k — oo forevery t € R we get :

t2

X t :klim X (t)=12

2et72

ift<2

ift>2

15
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1.6 EXERCISES

Obtain solutions to within t° of the following initial value problems :

dx 1
1 — =t+x x(0)=0 foritl< =
) " (0) >
2) %:x2 x(0) =1

dx )
3 = x(0)=0
2) %:% x(1) =1
5) %:th+x—x3, x(0)=0
6) %—kxt:%, X(0) =2

d
7) d—)t(zg+x3, x(0) =1

16



SYSTEMS OF FIRST ORDER ODE

Unit Structure :

2.1  Introduction.

2.2  Existence and Uniqueness of Solutions.
2.3 Uniqueness of a Solution.

2.4 The Autonomous ODE.

2.5  Solved Examples.

2.6 Higher Order ODE.

2.7  Exercises.

2.1 INTRODUCTION

Basic concepts related to differential equations such as systems of
first order ordinary differential equations, the initial value problem
associated with such a system, a local solutions of the initial value problem
etc. were introduced in the first unit. At the end of the unit, we proved a
result regarding the solution of a single first order ODE.

We will extend the results of a single ODE to a system of first order
ODE and prove both, existence and uniqueness of solutions of an initial
value problem associated with a system of first order ODE. We will then
derive some simple results giving information about the nature of solution
of such an initial value problem.

We will conclude the chapter by explaining how a system of higher
order ODE can be reduced to a system of first order ODE. We can then
invoke the existence / uniqueness theorems and apply them to the first order
ODE and get some information about the solutions of the higher order
ODE.

2.2 EXISTENCE AND UNIQUENESS OF SOLUTIONS

We will use the same notations which were introduced in Unit 1.

Let Qbe an open subset of R", | an open interval and let
f 11 xQQ—R" be a time dependent vector field having components:
fof, e f I xQ—R

The vector field gives rise to the first order ODE :

17
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T _ftx
dt

.. (D)
which when written in terms of its components becomes the following
system of first order ODE :

d
d_)il: fl(t’ Xl’ """ ! Xn)

o,

= B X X)

(2

Between the expressions (1) and (2) the compact form (1) is more
convenient and therefore we will use it throughout this chapter, bearing in
mind that it is the same as the system (2).

Recall, given t, €I, x, €Q2we have the initial value problem :

ax

prie f(t, X), X(t,) =X,
..(3)
a solution of which is a continuously differentiable curve X :J —Q
dX(t)

satisfying T: f(t, X(t) for all tel, X(t,)=x,. (J being an open
interval with t, € J C1).

Now, towards the existence / uniqueness of solution of (3) we
introduce the locally Lipschitz property of f:

Definition :
The vector field f has the locally Lipschitz property if it satisfies
the following two conditions :

a) f is continuous on its domain and
b) For t, €1, x, €S2, there exist two constants 6 >0, K >0 such that

) t,—8,t,+8 CI,B X,,0 < and
i) [ tx —f(ty)|<K|x—y| forall te t,—8t +5 and for all
X, yin B x,90 .

Remark :
We will also consider vector fields f :€2— R" as a special case of

f: I xQ—R" inwhich f t,x isindependent of t: f(t,x)= f(x). Recall

18



Chapter 2 : Systmes of First Order ODE

such vector field give rise to the autonomous ODE : %: f (x). Now, the

definition of locally Lipschitz property for such f:QQ—R" takes the
following simpler form : For any x, €2, there exist 6 >0, K >0such that

B X, <Qand |f x — f(y)|<K[x—y] forallx,y, B x,,5 .

Note that the above condition implies continuity of f at every
X, €§2and as such there is no separate mention of continuity on f.

Now we have the following result :

Proposition 1: If f:1xQ—R" is continuously differentiable on its
domain, then it has the locally Lipschitz property.

The proof of this proposition is on lines similar to that of Proposition 2 of
Unit 1.

Theorem 1: (Local Existence of solutions) : If f:IxQ—R"has the
locally Lipschitz property then the initial value problem :

%: f(t, x), x(t;) = X, has a solution X: t, —o,t;+06 — €.

Proof : We give here a sketchy proof. (To fill up all the details that are left
here, consult the proof of Theorem 1 in unit 1)

For t, €1, x, €€2 choose b > 0 such that

t,—b,t,+b CI,B x,,b CQand choose K>0 such that
[f tx —f(ty)|<K]|x—y]| holding for all te t,—b,t, +b and for all x, y
in B Xo,0 .

Using the fact that continuous functions are bounded on compact
subsets of their domains, we choose a constant M > 0 such that

Hf t x HgM holds for all te t,—b,t, +b and forall xeB x,,b .
: o .11 b
We choose one more constant & which satisfying 0 <& < min ML

Now, we define the sequence of maps x, : t,—b,t, +b —R" recursively
by putting :
X (=X,

t
X0 =%+ [ f(s%)ds
t0

X, (t) =X, +] f(s X, (s))ds
o

19
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t
t) = f(sX d
X2 (1) =X, +Lt[ (s X, (s))ds foreach te t,—b,t, +b .

About the sequence x, :k€Z" we have the following :

a)  x(t)eB x,,b foreachte t,—b,t,+b.

MK
b) ka+1(t)—xk(t)H§(k+l)! te t,—b,t,+b ,k>0
C) X, :k€Z" is uniformly Cauchy on t,—b,t,+b (verification of

these properties is left for the reader). We consider the uniform limit of the
sequence X: t,—98,t, +8 — B X,,b C2 which is given by

X t :klim x({t) tet,—bt,+b

t
x0+ff(s, X, ,(S)ds

f

Thus, x(t) = klimr

t t
:x0+|!Lr§off(s,xk(s)ds :x0+f lim £(s,x(s) ds
to )

t t
:xo+ff(s,klimxk(s)ds:xOJrff(s, x(s) ds
to to
Thus the function t — x(t) satisfying the integral equation :

t
x(t):x0+ff(s, x(s)ds forall te t,—b,t, +b .

t

Finally the validity of this integral equation has the following two
implications :

1)
1) X(to):x0+ff(s,x(s)ds =X, +0=X,

f

dx d |
2) E:O+E[f(s,x(s))ds — f(t, X (1))

This now proves that the curve X : t, —96,t, +8 — (2, thus obtained
is a solution of the initial value problem.

20



Chapter 2 : Systmes of First Order ODE

2.3 UNIQUENESS OF A SOLUTION

We prove an inequality which will lead us to the uniqueness of the
solutions :

Proposition 2 : (Gronwall’s Inequality) : Let
f:a,b— 000 g:a,b— 0cc be continuous functions and

A >0, a constant satisfying

t
ft §A+ff s g s dsforall te a,b . Then

t
gsds

ft<Ae: forall te a,b .
t
Proof : First we assume A > 0 and put h t :A+ff s g s ds for all

te a,b .Then ht >0forall te a,b and
ht =f(t)-g(t)

<h(t)-g(t)
h' t
that is, ng(t)for all te a,b . Integrating this inequality over a,t
t
h(t)
forte a,b weget log|—=|< s ds.
ot oo 1) <)

Nothing that h a = A, we get the desired inequality in this case.
Now suppose A = 0. Then for each neN we have :

t
ft §£+ff s gs ds,forallt €[a,b)
n a

Applying the above argument to A= 1 we get
n

t
fgsds
ftglea
n

for every te a,b and for every neN. Holding t fixed and taking limit of

the last inequality as n — oo we get
t

1 fgsds
ft <=0.ed
n
t
fgsds

= Ae?d

Now we prove the following essential uniqueness result of the solution :
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Proposition 3 : Let x:J —¢€), y:J—Qbe two solutions of the initial

value problem :

dx
e f(t,x) x(t,)=X,.

then x(t)=y(t)forall tJ N J.

Proof : Recall that both x and y, being solutions of the initial value
problem, satisfy the integral equations on their domain intervals :

t
X(®) =%+ [ f(s,x(s))ds
%

t
YO =%+ [ f(s y(s)ds
t

t
Therefore x(t)—y(t):f[f s,X(s) — f s, y(s) |ds which implies
t

t
Ix(t)— y(t)| <0+ f [t s.x(s) — f s,y(9) |
%

t
§0+fK||x(s)—y(s)|| for all t>t,.
ty

Applying Gronwalls result with A =0, we get

0<|[x(t) — y(t)| <0 forall t<t,.

This gives the desired equality x(t) =y(t) forall teJ(J.

Towards the uniqueness of the solution of the initial value problem
(3), we consider all the solutions of the initial value problem (3). Let the
totality of them be denoted by :  x, :J, —Q:Xx&A the solutions x, being

thus indexed by a suitable indexing set A .

Above we have verified that any two solutions, say x, and x, are
equal on the overlap J, (1J, of their domains. Therefore, we patch

together all the solutions to get a maximal solution is the solution defined
on the largest open interval. It is obtained as follows.

Let J=U{J,:A2eA}clearly Jis an open sub internal of I with
X, € J and all the solutions x, patch up to get a solution x:J — Q of the
initial value problem (3).
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Because, we consider all the solutions of (3) we get that J is the
largest open internal on which the solution of (3) is defined. We summarize
all this discussion in the following theorem.

Theorem 2 : (Uniqueness of the solution) :
The initial value problem (3) has a unique (maximal) solution defined on
the largest open sub-interval J.

Clearly the solution is unique because it is defined on the largest and
hence unique internal J.

From now onwards we will consider this unique solution defined on
the maximal interval.

2.4 THE AUTONOMOUS ODE

We note a few simple properties of the autonomous ODE :

dx
—=f(x
o (x)
determined by a locally Lipschitz and hence continuous vector field
f:Q->R".

Now if x:J —>Qis a solution of this autonomous ODE then

¥= f(x(t)) tel and continuity of f and differentiability of x(t) and

hence its continuity together implies that %(t) Is continuous and thus the

curve x:J — Qis continuously differential on I. This argument also gives
the following result. If f:Q —R" is ktimes continuously differentiable

then the solution x:J — € is k + 1 times continuously differentiable on its
domain interval.

Note that a solution of an autonomous ODE may not be defined for
all teR: We consider the initial value problem.

dax
— =x5,x(0) =1.
o (0)

Clearly its solution is x(t) = 1_1t which is defined on (—«,1)only and
not on the whole of R.

It is a result that if the vector field f is compactly supported, then the
solution of the initial value problem (3) is defined for all teR. (We do not
prove this result here).
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2.5 SOLVED EXAMPLES

[Note : Recall, if g:[a,b] >R"is an integrable (vector valued) functions

b
with components(g,, ... d,) then [a(x)ax=

b b b
Ugl(x)dx,jgz(x)dx,....,jgn(x)dx,J. Equivalently written in the columnal

form, we have :

{gl(x)dx
| o0
Egn(x)dx

We will use these notations in this article.
Example 1 : Obtain approximate solutions (upto t*) of the following initial
value problem :

dx

—=2X+3 x(0) =1

o y x(0)

dy

= =t+ 0)=2

ot y vy
Solution :

We have : x,(t) =1, y,(t)=2

t t
X, () =1+ [[2.%(5) +3y,(s)]ds =1+ [8ds=8t+1

t
V() =2+ [[s+ yo(s)]ds

2

t
t
=2 2)ds=2+2t+—
+!(s+)s - +2

8t+1
Thus {Xl(t)}z

t? -
y, (1) E+2t+2

t t
Next x,(t) =1+I[2xl(s) +3y,(s)]ds :1+I[8+2x23+gsz}ds
0 0
3

=%+11t2 +8t+1

t t 2
y,(t) =2+I[s+ y;(s)]ds :2+I{%+3s+2}ds
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Chapter 2 : Systmes of First Order ODE

t? )
—+11t°+8t+1
X, (t) 3
yz(t)}: 5o and so on.

Thus[
—+—+2t+2
6 2

Example 2 : Obtain approximate solution upto t° :

dx )
— =tx+t x(0)=1
o y 0)

dy

— =Xy -+t 0)=2

il y(0)
Solution : We have x,(t) =1, y,(t)=2

X, (t) :1+Jt'[s+232]:1+§+2—;3
0

t 2
yl(t)=2+_[[2+s]ds=2+2t+%
0

28 t?
[?+E+1J
Thus, {Xl(ﬂ: ,
%) (%+2t+2}

; L 5s®  2s*
_ 2 _
Next x,(t) —1+£[xl(s)+s yy(s) |ds _1+£[s+7+?}ds

t> 5t* 2t°
=l+—+—+—
2 8 15

t
Yo(t) =2+ [[x,(5)y,(s) +s]ds
0
t] &5 4 3 2
=2+ s—+195 +7i+s—+25+2 ds
113712 3 2
o1 7t

P — 7 2t
18 60 12 6 and SO on

=2+

Example 3 : Obtain approximate solutions (upto t*) :

dx

—=2y+t x()=1
” y @)
dy 2

—~ =37+t N=2
pm y@®)
dz

— =Xz zD)=3
” @
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X (1) |=|1
Solution : We have :| y,(t) |=| 2
z,(t) |=| 3
t 2 1t 9
xl(t):1+I(4+s)ds=1+4t+——4—— =—4+4t-=
) 2 2 2 2
‘ ) t* 1t 22
t)=2+|(3+s°)ds=2+9t+—-9-—==—+9t——
%) !( ) 3 3 3 3

t
7,(t) =3+ [3ds =3+3t—3=3t
1

2
% +4t - %
X (t) ¢ ”n
Thus, t +0t-—
y,(D) [= 3 3
Zl(t) 3t

X, () =2+ j(—+85——+sjds

o’ 44t 1 9 44

:2+—+———————+
6 2 3 6 2 3

_tL et aa g

6 2 3

y,(t) = 2j(9s+32)ds
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t* ot? 44t
et 3 °
% o2 17
Thus, |y, () |=| =+ —-=—
O 3 2 6
2 4 2
3t e 27041
B 4 16

2.6 HIGHER ORDER ODE

As mentioned earlier, we associate a first order ODE with a order k

ODE and try to get information about the solutions of the higher order ODE

in terms of those of the associated first order ODE. In particular, we are
k-1

interested in a condition on the function f = f(t,x,z—:...%) which will

ensure existence and uniqueness of the initial value problem for the higher

order ODE. In this article we explain the theory.

To begin with, we consider the ODE :

d*x dx d*x
—=f(,x,—...———
dt" ( dt dtk—l)
)

Together with the initial condition :

dx d“'x
x(t) = Xo’a(to) = Wl'"W(tO) =W, .

We introduce a new variable y=(y,V,,...,Y,) Where y, ranges in Q and
y,...y, rangingin R". Next we define F:1xQxR"x...xR" —R™

by putting F(t,y) = F(t, Y1, Vo) = (Yas Yoo Vs T (1Y)

Now, the given initial value problem for the order k ODE give rise to
the following initial value problem in the first order ODE.

dy
2 _F,
it (t,y)

.. (5
the initial condition for it being y(t,) =(X;, Wi, ..., W, ).

Clearly the above first order ODE is actually the following system of
first order ODE :
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. Y,

dy, _

s

dy,

¢ = f(t,

" (t.y)
=f(t, Y, Y, Vi)

o (5%)

Note that taking y, =x the system (5) reduces to the given order k
ODE (4).

This shows that the solutions of the order k ODE (4) can be studied in terms
of the solutions of the first order ODE(5). Note that if f (of the ODE (4)) is
continuously differentiable on its domain, namely the set I xQxR"x.....xR"
then F is continuously differentiable on its own domain, consequently the
existence and uniqueness result for the first order ODE applies to the initial
value problem :

dy
= F t,
at (t,y)

y(te) = (Xo, Wy W y)
The solution of which giving the solution of the above initial value problem

d“x dx d“*'x
— = f t, X,—...?
dt dt dt
dx d“*x
X tO :XO,E tO :W]_F tO :kal'

We summarize this observation in the following :

Theorem 3 : If the function f: 1 xQxR"x....R"—R" is continuously
differentiable on its domain of definition then the initial value problem.

d“x [ dx dk‘lx]

T X— ooy ——
dt* dt dt ™
dx d**x
X tO :XO,E tO :Wl,....,F tO :Wk—l

has a unique solution.

Ilustrative Examples :
These examples explain how we obtain a system of first order ODE from a

given higher order ODE.
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2

1) The second order ODE : %: k X, k being a given constant, gives rise

to the system:

dx_[y
dt|y| |kx
Moreover the initial condition X t, :XO,% t, =Y, gives the initial

condition for the (reduced) first order system.

X t, _[Xo

yt, Yo

2) The initial value problem :
d®x  4d°x dx

— o+ 3t — -t x =t
dt*  dt? dt
2
x0=1%0-29%0_3
dt dt

reduces to the following system of first order ODE along with the initial
conditions.

dx

—=Yy,x0=1

at

dy

—=2,y0=2

a oY

%:—42—3ty—t2x+t5, 2(0)=3
$Ix| [x

3) ThethirdordersystemofODE:d—3 _[xry

dt> |yl |xy

iIs equivalent to the following system of first order ODE in
1= 2,,2,,25,2,,25, Z

Zl- Z3
Z2 Z4
d|Z o Z;
dt|z,| |z,
Z5 Zl + Z2
Zg| |Z.7,
which is obtained by putting
Z,=X12,=Y 23:% z4:ﬂ zS:d—ZX z :d—zy
’ ’ dt dt di2 °  dt?
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2.7 EXERCISES

1)

2)

3)

4)

b)

4)

Prove : A continuously differentiable f:R* —R?has the locally
Lipschitz property.

Given a continuous, 2x2 matrix valued function A:R—M, R let
the time dependent vector field f:RxR*—R* be given by
f t,x =A(t) x forall t € R, x € R* prove that f is locally Lipschitz.

Give an example of a f :R> —R? which is continuous but not locally
Lipschtiz.
Obtain approximate solutions of the following initial value problems.

%:xzyjtx x1=2

dt

dy 2

— =Xy + 1=3
at y +y Yy

ax

— =2x+Yy* x0 =2
dt y

dy

— =3y +4x 0 =3
at y y
"1,

dad vy

dy 1

== 0 =3

dt X y
%:Siijx, X0 =-1
dt dt

dy 2k o,
dt dt

O &% % &%
¥ 00 00 00
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LINEAR SYSTEMS OF ODE (1)

Unit Structure :

3.1 Introduction

3.2 The Exponential of a Linear Endomorphism
3.3 Properties of the Exponential

3.4  Exercise

3.1 INTRODUCTION

We now consider following system of first order ordinary differential
equations in the function

Xt X() = X, ), %, (), ., X, ()

dx,

dt =ayX +apX, + ..+ X,

dx,

E: azlxl + a22X2 +....+a2nxn | N (1)

dx,
E: a‘nlxl + anZXZ + ot annxn

where the coefficients a; appearing on the right hand sides of the system (1)
are all constant real numbers. (The case in which a; =a;(t),t€Rwill be

discussed in the next chapter). Writing X t in the columnal form :
(1)

X ¢ =[O

X, (1)
and collecting the coefficients a; in a matrix A, that is A:[aij ]lg L j<n,we
rewrite the system (1) in the matrix form :

d_x:Ax
dt
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=

we form the initial condition

.=

For a given vector weR" with w=

X 0 =w. Thus, we now have the initial value problem :

dX B
E_AX,X(O)_W .. (2

Later on, we will consider an arbitrary t, € R and the initial value problem :
%:A.x, X (t) = w ()

obtained by bringing t,in place of t = 0. The solution of this more general
IVP 2" is easily obtained from the solution of (2). Therefore, we treat the
particular case (2) in detail first.

Here we are taking f X = AXin our model differential equation

Z—T = f X (the first order, autonomous case) treating the matrix A:[aij} as

a linear transformation (= linear endomorphism) of R", its action on a vector
x € R" being given by

By 8y, By |[X ] (80X A A%, + @y X, ]

Ayyy Aoy e @y || X X +a,X, +....a, X
Ax—| 292 on || 72| _ | Y™ 2272 2n%n | RN

where X =| “|eR".

X

Thus in our treatment, the symbol A is made to play a double rule : (i) A as the
nxn matrix and (ii) A as a linear transformation (= linear transformation) of

R".

Note that when n = 1, the system (1) reduces to the single differential

. dx
equation —=ax.
dt
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The solution of the initial value problem (;—)t(:ax, X(0)=w weR in this

one-dimensional case (i.e. n = 1) is the familiar function : t—we® teR.
Recall :
ta t’a® t%a’
ta __ a
e TR TR

The comparison between the on - dimensional initial value problem and
its n-dimensional case suggests that we expect the solution of the IVP(2) to be
a curve of the form

X:R—R" t— X({t)=e"w.....(**) where e” is an nxn matrix
which has the power series expansion :

| +t,_A+t2A2 +t3A3

1 2! 3!
suggested by (*) above. To carry forward the analogy, we call e, the
exponential of A. We will define the new quantity e” first. (Replacing A by tA
for te R, will then yield €*). Once this is accomplished, we will verify that
the curve X :t+— X (t) =e"w is indeed the solution of the initial value problem

).

3.2 THE EXPONENTIAL OF A LINEAR ENDOMORPHISM

Let A:R" —IR" be a linear endomorphism having its matrix [aij}, we

choose a finite constant C satisfying the inequality :
[AC)<C]x]

for all xeR" (e.g. C:n% max ‘aij‘:lgi, J<n will do the job). Note that

the above inequality implies :

HAk X Hng||x|| and Ht"Ak X H§|t|k C“||x| for every xeR", every
teR and every ke Z". In particular for the vector field f:R" — R" given
by f x =Ax,xeR", we have :

[t x —tw]=[Ax - AW

=[Ax=y]
<Clx-yl
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for any x, y, in R". In other words the vector field f(x)=Ax has the Lipschitz
property. Consequently the initial value problem (2) has a unique solution.

Next, we define a map B:R"—R" as follows : Let xeR" be
arbitrary. Then we have :

ool 0] )

]+

1! 2! 3l
I L e
<[|x]|+ TRRRCTRRE
= e |< oo

This shows that the infinite sum :
AX) | A(x) | A%(x)
1! * 2! * 3! *

X+

converges absolutely. We put :

A | A0

B(X)=x+ ol

Thus the map B; expressed in terms of A, is given by
o Ay A
BARETRECTRCTR S
Note that each power A“ is a linear transformation of R"and this

implies the linearlity of B. in fact, forany a, b in R, any x,yin R", we have
2

B(ax+by):(ax+by)+1—p;(ax+by)+%(ax+by) + ...

:ax+by+%A(x)+%A(y)+%A2(x)+%A2(y)+....
AX) | A (x) Aly) | A(Y)
1! * 2! * 1! * 2!
=aB(x)+bB(y)

—alx+

We adapt the notation e* for B. occasionally we use the notation exp(A) for
A(x)  A*(x

i! : * 2(! )+
Thus, each linear endomorphism A of R" gives rise to the linear
endomorphism e”*. Moreover, if t is any real number then tA is also a linear
endomorphism and it gives rise to the exponential e” given by :

e”. Thus exp(A)(X)=e*(X)=x+—AZ+—L ... for every xeR".
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Chapter 3 : Linear Systems of ODE (I)

etA_I+%+t2A2+t3A3
o 2t 3
it being a linear endomorphism of R" where
272 33
e x =y A TAG) TAG)
1 2! 3!

for every xe R" .

Having defined the exponential e”, we obtain the solution of the IVP(2) in
terms of the exponentiation. Consider the map

X:R"—R"
given by x t =e”(w)
2 p2
:w+tASN)+ ! AZI(W)+.... teR

Because the infinite series defining each X(t) converges absolutely we
get that t— X(t) is differentiable and the derivative Z—)t((t) is obtained by

termwise differentiation of the infinite series defining X(t). Thus we have
dX (t A tA? t2A°
M) _o, AW W) AW

at T T ol S T
272 3 A3
=A W+tA(W)+t A (W)+t A (W)+ .....
1! 2! 3!
= A x(t)
dX (t)

Thus, we have : =A x(t) for every teRR. Moreover we have :

X(0)=W+0+0...=w.

This completes the proof that the map X :R — R" given by x t =e(w) isa
solution of the IVP(2). We summarize this observation in the following.

Theorem 1: The map X :R — R"given by x t =e"(w) is the solution of the
initial value problem %: A X, X(0)=w. The proof of the following is self
evident :

Corollary : The curve X:R—R" given by x t =e"™*(w)for all teR is

the solution of the initial value problem : % =AX, X(t,) =w.
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3.3 PROPERTIES OF THE EXPONENTIAL

Following few properties help us sum the infinite series defining e* and get
the matrix of it.

_>\1
. : X,
I) If Aisadiagonal matrix, say A=
>\n_
.>\1k
>\k
then we have A* = 2
>\k
and therefore
2
1 >\1 >\l
1 1 X 1 £2
A = 2 - 2
= MY MY
1 An| 22
32
TN+ + .
2
1 2!
Mo NN
1+F+E+§+....
o
J— e>\2
g™
a — cosb, —sinb
1) If A= thene® =e? | .
b sinb cosh

Proof : Let x=a+1ib so that a=Re(X\),b=1,(»\) and
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|Re X —1h(N)
1,00 Re )
Rex —I,(\)|Re X —I,(\
Moreover, A? = m() m(M)
I.(\) ReXx [[I,(0) ReX

[Re X Re X —I,(\)— 1,0\, —2Re X 1,(\)
2Re X\ 1,(\),Re X Re X —1,(\) — I, (\)

Re X2 —1.(\%)
I,(\%)  Re X\?
Re K —1_(\9)]
In general A¥ = holding for every ke Z*.
1, () Re X
Consequently :
2
S T LA S
1 2!
2 2
_ll 0%1 Re X —I,(V] 1ReA" ~In(N) )
0 1, 1I,(\) ReX 2! |m(>\2) Re \2
2 2 3
Re X\ ReAX O R R
- [Re 1 + T + 51 +...] — T + 2 + 3 -]
2
['”“(x)+lmx +o] Rel+ “Re X +—Re X +
T 21 T 1 21 -
2 2
Re x ReX ) A
_[Re1+ ottt O I ]
N 2 2
N, N L Re
0+ 1, 1!+Im o + o] [Re1+Rel!+Re T + oo ]_
ne 14 REX Re \° N X2
2 2
\ A \ A
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N N
| (1+x+x2+ ) Re(1+x+x2+ )
m E E s i E s
Re e® —1I, e
|, &8 Ree
B e?cosb —e?sinb
e?sinb  e?cosb

cosb —sinb
sinb  cosb

:ea

IIDIf A and B are linear endomorphisms of R" with the property
AoB=BoA, then e*B —e”oeB —eBoe?.
Proof :
The classical binomial theorem applies to the powers A+ B K kez" :
K . .
A+B " = Z[k]AJB"J .

J

O o o0 |
Therefore ™8 = Ei A+B ™ = Zi ZL AKBMK

I
NgE
z|
3
=
)
gt
z|
@ |

A+B _ B A

It can be proved on similar lines that e e oe

IV) Let A=al +B where a is a real number and B is a strictly upper
triangular nxn matrix.
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0 b.LZ bln
0 by by,
bn—ln—l
O J
So that B" =0 andal - B=Boal . Then we have
2 n—1
A a B B B
e =e" |l +—+—+..+
1 2 (n—1)!

V)  Let A:R" —R" be any linear transformation and let B:R" — R" be
an invertible linear transformation. Then eB°A°B" —Bo e” 0B L.

k
Proof : For each k € ZT we have BAB™! —=Bo AXoB™! and therefore :

1 2
gBoAB :|+%BOAOB—1+% BoAB™ 1 ..

:BoloBl+%BoABl+i'BoAzoBl—|— .....
2
=Bo |+A+A——+—.... oB7 1
1 21
—BoefoB!

VI)  We recollect here a few elementary facts of linear algebra culminating

in a formula relating two sets of coordinates on R". These results will be used
in a conjunction with (1) above to solve systems of linear ODE.

Let a linear transformation A:R" — R"have all real and distinct eigen-
values A Npeee Ny with respective eigen-vectors

fi, i B0 A F =N 1<i<n. Now, X\; are all distinct implies that the
set fy, f,... f, isavector basis of R". Thus we have two vector bases of R"

now :
1) The standard vector basis e, e,....e, with ¢ = 0,...0,1,0....0 and

i) The f;, f,.... f, consisting of the eigen-vectors of A.
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Let the linear transformation B:R" —R"be given by
n

B e =fi1<i<n. Clearly B is invertible. Putting f; = "b;e; we get the
i=1

matrix [bij] it is the matrix of the linear map B (with respect to the standard

basis e,...e, of R").

Now we note that the linear transformation B™*o AoB has the set
e,....e, as its eigen vectors with the respective eigen-values, \;,....\,.

Consequently the matrix of B loAoB with respect to the standard basis
e, ....6, Is diagonalized.

A
A2

[B—le B

|

Let VY, Y.y, be the coordinates on R" determined by the vector
basis f;, f,.... f, . As usual, X, X,....X, are the Cartesian coordinates of

R"- they are the coordinates determined by the standard basis e,....e, R".

Now we have :

Yn Xn
Where [B_l] is the matrix [bij ]_1
Examples :

In this section we use the theory developed in the preceding sections to
solve linear systems of differential equations.

Example 1:
a) Solve the following IVP.
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%—2x+ y+z2
dt

dy
—=2y+2z
a Y
dz

— =22
dt

x(0)=1

y(0)=2

2(0) =3

b) The same system of differential equations but take the initial conditions

,0 0 2

0 0O

x1=1yQD=22z2Q0)=3.
Solution :
a) We rewrite the I\VVP in the form :
g X| (2 1 1fx x(0) 1
ay:O 2 2|y, y(0)|= |2
z 0 0 2|z z(0) 3
2 1 1 011
Wehave: [0 2 2|=21+|0 0 2
0 0 2 0 0O
01 1° o 0 2
Next, notethat |0 0 2| =|0 0 O] and
000 0 0O
011 (000
0 0 2/ =|0 0 O forall k>3.
0 0O 0 0O
Therefore, we have
2 11 011
explt/0 2 2||=e? |1 +1t|0 02+%00 0
0 0 2 0 0O
1t t+t?
=e?l0 1 2t
00 1

According to the Theorem 1 we have :
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X t 1 t t+t?|1 1+ 5t + 3t?
ytl=e?l0 1 2t ||2|=e®|2+6t
7t 00 1 |3 3

Thatis x t —e?' 145t 4 3t2
yt =e? 246t

7t =3e%
To get the solution of (b) we apply the corollary to the Theorem 1 which
suggests that the variable t in above is to be replaced by t — 1 this gives the

solution of (b).

X t :eZt—l

[1+5t—1 +3t—12}
—e?tt [:at2 —t—1]
yt=e'""[2+6t-1]
—e?' l6t” — 4|

7t =302t

Example 2 : Solve

%zSX—Zy, x(0)=2

Z—)t/:ZX+5y, y(0)=3
Solution : We have :

d x| 5 —2[x x(O):H

dt|y| |2 5|y y(0) 3

According to property (I1) of Section 3.3, we have
Xt 5 -2|]|2 oot cos2t, —sin2t
yt 2 5|)[3)  |sin2t, cos2t

Therefore x t =e>' 2cos2t —3sin2t

3

| ;
—exp|t
y t =e>' 2sin2t + 3cos2t

Example 3 : Solve
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%:x+3z, x(0)=1

dt

dy

—L =4y, 0)=2
i y(0)
dz

—=-3z+12, 2(0)=4
m (0)

Solution : Because the middle equation is independent of x, z, we solve it
(taking into account the initial condition on it). This gives y t = 2e™,

Next, we deal with the coupled pair of the remaining equation and the
initial conditions on them :
B 1
|4

cos(—3t) —sin(—3t) ||1
sin (—3t) cos(—3t)H4}

’

¢| cos3t+4 sin3t
|—sin3t+4 cos3t

1 3
-3 1

a
dt

X X x(0)

z(0)

Z yA

This gives the solution :

Xt

yt

— gt

(| cos3t, sin3t
|—sin3t, cos3t

Thatis x t —e' cos3t +4sinat

zt =e' 4cos3t—sin3t .
Putting together all of them, we get
x t =e' cos3t+4sin3t

y t =2e%

zt =e' 4c0s3t —sin3t

3.4 EXERCISES

1) Compute the exponential of each of the matrixes.

(i) (ii) (iii)
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2)

3)

i)

4)

3 00 1 00 3 00
0 20 0 4 2 1 30
0 0 5 0 0 4 01 3

Obtain the matrix for e',t € Rfor the B given below.

Ol (i)
30 0 O
2 00
0 3 0
B= B=3 2 0
0 0 2 4
1 0 2
0 0 —4 2
Solve the following initial value problems.
dx
—=3x+4y x1=2
dt d
dy
— =—4x+3 1=3
at y 'y
dz
—=yz+3 21 =4
)
%:4X+3y+22 x1=2
dt
dy
—=4y+z 1=5
at y y
%:42 z1=6
dt
dx
—=3x+2y x1 =4
dt d
dy
—— =—-2X+3 1=3
at y 'y

Solve the initial value problem :
X1 -2 -2 0 0 - Xq Xl(O):l
d X2 2 —2 0 O X2 X2 (O) - l

dt X3 O 0 O —2 X3 X3(0):1
X [0 0 1 2]x|x(0)=1

O o% <% %
P 00 00 00
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A

LINEAR DIFFERENTIAL EQUATIONS

Unit structure :

4.1  Objectives

4.2  Introduction

4.3  The Second Order Homogeneous Equation

4.3.1 Homogeneous Equations with Constant Coefficients
4.3.2 Initial Value Problem for Second Order Equations
4.4  Linear Dependence and Independence of Solutions
4.4.1 Wronskian, a formula for the Wronskian

4.4.2 Abel’s Identity

4.5  The Second Order Nonhomogeneous Equations
4.6  The Homogeneous Equations of order n

4.7  Initial Value Problem for n* Order Equations

4.8  The Nonhomogeneous Equations of Order n

4.9  Exercise

410 Summary

4.1 OBJECTIVES

The learner will be able to:

¢ solve homogeneous and non-homogeneous second order differential
equations.

e check linear dependence and linear independence of set of functions.

e |earn definition of Wronskian and apply Wronskian to check linear
dependence of set of functions.

e prove Abel’s Identity and solve homogeneous and non-homogeneous
nt" order differential equations.

4.2 INTRODUCTION

A second order linear differential equation has the general form
2

P(x) % + Q(x) Z_ic] +R(x)y=6G(x) ————(4.2.1)
where P, Q, R and G are continuous functions.
There are two types of second order linear differential equation:
(@) Homogeneous linear equations: If in (4.2.1), G(x) =0 then the
differential equation is called Homogeneous linear differential equation.
(b) Non-homogeneous linear equations: If in (4.2.1), G(x) # 0 then the
differential equation is called Non-homogeneous linear differential
equation.
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4.3 THE SECOND ORDER HOMOGENEOUS EQUATION

Consider the homogeneous equation of the form
2

d d
p(x)d—xZ + Q(x)% +R(X)y =0 — — — —(43)

We say that y*(x) is a solution of (4.3) if it satisfies (4.3) that is

P LD 4 0 D 4 reay ) =0

Theorem 4.3: |If yl(x) and yz(x) are two solutions of the linear
homogeneous equation (4.3) and if ¢; and ¢, are any constants, then

Y (x) = c1y1(x) + ¢, (x)
is also a solution of (4.3).

Proof. Since y; (x) and y,(x) are two solutions of (4.3), we have

P() yl(") +0 2 4 Gy, = 0
and
P() yZ(") 00 22 4 Ry, (0 = 0
Consider
d2 * d *
P 1000 L2 4 R0y )
d2(c,y, (0) + ¢y, ())
=P(.X') 1)1 dxz 22
+ 0o LD 4 6y 1y, + o ()
= P(x) [cl L (x) +c dz;];gx)
d d
Q0 )[ yl(") ro = ;f‘)] + Ry () + €23,(0)
= [P( )y—l(") o )+R(x)y1<x)]
‘e, [P() N o P )+R(x)y1(x)]
=0

Thus ¢, y;(x) + ¢, y,(x) is also a solution of (4.3).

Remark 4.3: If y;(x) and y,(x) are two linearly independent solutions of
(4.3) and P(x) is never 0 then the general solution is given by c¢;y, (x) +
c, ¥, (x) where c; and c, are arbitary constants.

4.3.1 HOMOGENEOUS EQUATIONS WITH CONSTANT
COEFFICIENTS

The equation of the form
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2Ly Ay
T2 tB Ty =0-—-—-—(431)
where A, B and C are constants and A # 0 is called homogeneous equations
with constant coefficients.
Let y = e** then substituting vy in (4.3.1) we get
e (ak? + bk +¢c) =0

As ek* = 0 we get that y = e** is the solution of (4.3.1) if k is the root of

ak? + bk +c=0————(4.3.2)
The equation (4.3.2) is called the auxiliary equation (or characteristic
equation) of (4.3.1). The equation (4.3.2) is an algebraic equation in k
whose solution can be found using the formula.

_—b+\/b2—4ac _—b—\/bz—4ac
1= ) 2 - .
2a 2a

Depending on the sign of Vb2 — 4ac we have the following cases:

Case (i): b2 — 4ac > 0

In this case the equation (4.3.2) has two real and distinct roots k; and k,
and the general solution of (4.3.1) is given by y = c,e** + ¢, ek2*,

Case (ii): b2 —4ac =0

In this case the equation (4.3.2) has only one distinct real root say k and the
general solution of (4.3.1) is given by y = ¢;e** + ¢;xe**.

Case (iii): b2 —4ac <0

In this case the equation (4.3.2) has two complex roots say k;, = a + ib and
k, =a—ib and the general solution of (4.3.1) is given by y =
e (c; cos bx + ¢, sin bx).

Example 4.3.1.1. Solve the equation

y'+y' —6y=0
Solution. Here the auxiliary equation is givenas k> + k — 6 = 0
Thus, we have two distinct real roots k, = 2,k, = —3. Hence the general
solution of the given equation is

y =ce?* +ce”
Example 4.3.1.2. Solve the equation

4y" +12y"'+9y =0

Solution. Here the auxiliary equation is given as 4k + 12k + 9 = 0
Thus, we have (2k + 3)? = 0 which gives only one real root k = —%.

Hence the general solution of the given equation is
3 3

3x

y =ce 2° +cyxe 2"

Example 4.3.1.3. Solve the equation
y'—6y'+13y =0
Solution. Here the auxiliary equation is given as k? — 6k + 13 = 0 which
has no real roots. The complex roots of the auxiliary equation are given by
k,=3+2i, k,=3-2i
and the general solution is given by
y = e3*(c, cos 2x + ¢, sin 2x).
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432 INITIAL VALUE PROBLEM FOR SECOND ORDER
EQUATIONS

An initial value problem for second order equation (4.2.1) is to find a
solution of the equation which also satisfies the initial condition y(x,) = y,
and y'(x,) = y, Where y, and y, are given constants.
For example, to find the solution of the initial value problem y” +y' —
6y = 0 with y(0) = 1 and y'(0) = 0, we first find the root of the auxiliary
equation k* + k — 6 = 0. From example (4.3.1.1) we know that the general
solution is given by

y = e?* + ce™3*
To satisfy the initial condition, we need

y(0)=c;+c, =0
and

y'(0) =2¢;, —3¢c, =0

which gives c; =§ and c, =§. Hence the solution of the initial value

problem is given by

y =_er+§e—3x
Theorem 4.3.2[Uniqueness Theorem]: If P(x) and Q(x) are continuous
functions on an open interval I containing x,, then the equation

y'+ Py +Q(x)y = R(x)
with initial condition y(x,) = y, and y'(x,) = y; has a unique solution.
Proof. Let y and y* be any two solutions of the equation y" + P(x)y’ +
Q(x)y = R(x) with initial conditions y(x,) =y, and y'(x,) = y,;. Let
m=1y—y*. Then

m"”" +Plx)m'+ Q(x)m =0
and m(x,) =m'(x,) =0
Consider, E(x) =m2(x) + (m'(x))". Then E(x) >0 and E(x,) = 0.
Differentiating E (x) we get

E'(x) = 2m(x)m’(x) + 2m’(x)m"" (x)
= 2m/(x)[m(x) + m" (x)]
= 2m'(x)[m(x) — P(x)m’(x) — Q(x)m(x)]
= —2P() ((m'®)") + 2mE@m' @1 - Q)]

By Cauchy-Schwartz inequality,

mG)m' (D[ - QeI] < (1 + 1D (m2() + (m'())°)
Thus,

E'(x) < —2P(x) ((m'(0))") + 201 + 1)) (m? () + (m' (1))

= (1+1Q@DM* () + (1 + Q)| + 21P@) ) (m' ()
Let K > 1 + max,¢{|Q(x)| + 2|P(x)|}. Then
E'(x) < KE(x)
Claim: E(x) = 0forall x € I
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Suppose, there exist some x; € I such that E(x;) > 0 with x; > x,. Then
d
a(e—’“fE(x)) =e **(E'(x) —KE(x)) <0

Thus, e ®*E(x) is a decreasing function and hence e X¥*1E(x,) <
e X% [E(x,) = 0. This implies that E(x;) < 0 which is a contradiction.
Thus, we get E(x) = 0 for all x € I which implies that m(x) = 0.

44 LINEAR DEPENDENCE AND INDEPENDENCE OF
SOLUTIONS

A set of solutions {fi, fs, -, fn} of a differential equation is linearly
independent on an interval I if and only if the only values of the scalars
C1,Cy, +++, €, SUCH that

cifi(x) + cofo(x) + -+ cpfu(x) =0, VxE€EI
arec;, =¢c, =-=c¢, =0.
A set which is not linearly independent is called a linearly dependent set.

4.4.1 WRONSKIAN, AFORMULA FOR THE WRONSKIAN

Let £,/ -, f, be functions in €™ 1(I) where I is an interval. Then
Wronskian of these functions is defined by

Wity foo Sl = | 190 O GO
A €N A€o B AU €
For example, if f;(x) = sinx and fz.(x) = cos x on (—oo, c0) then
WIA I =[S0 <02 |

Theorem 4.4.1: Let fi,f5, -, f,, be functions in C*~1(I) where I is an
interval. If WIf,,f, -, f,] IS non-zero at some point x, € [ then
{f1, f2, ==+, fo} 1s linearly independent on 1.
Proof. Consider c;, c,, -*+, ¢, such that

cfi(x) + o) + -+ fy(x) =0
forall x € I.
Differentiating n — 1 times, we get the system of equation

c1fi(x) + 2 f,(x) + -+ e fu(x) = 0,

cfi () +cfa (X)) + -+ cpfa(x) =0,

aff ) +eaff ) eyt (X) =0
where the unknowns are ¢y, c,, **+, ¢c,. The determinant of the coefficients of
this system is the Wronskian of the functions f;, f5, -, f,- We know that if
the determinant of the coefficients of a homogeneous system is non-zero,
then the system has a unique solution.
Thus if WIf, fs -, ful(xe) # 0 then the homogeneous system has a
unique solution whichisc;, = ¢, = =¢, = 0.
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4.4.2 ABEL’S IDENTITY

Let y;(x) and y,(x) be two solutions of y"" + P(x)y' + Q(x)y = 0. Then
the Wronskian is given by y; (x)y;(x) — y1 (x)y,(x). Then

W' (x) = y1(x)y; (x) — y1' (X)y, (x)
Since y, and y, are solutions of the given equation, we have

y1 (x) = =P(x)y1(x) — Q(x)y1(x)

vz (x) = =P(x)y3(x) — Q(x)y2 (x)
Substituting this in W' (x) we get
W'(x) = —P(x)W (x)
That is the Wronskian satisfies the first order linear equation
W'(x)+P(x)W(x) =0

and

which on solving gives

W (x) = W (xy)elxo @

This formula is known as the Abel’s Identity.

45 THE SECOND ORDER NONHOMOGENEOUS
EQUATIONS

Theorem 4.5.1: If y,(x) is any solution of P(x)y" + Q(x)y' + R(x)y =
S(x). Then y*(x) = y.(x) + y,(x) is the general solution of P(x)y" +
Q(x)y" + R(x)y = S(x) where y.(x) is the general solution of P(x)y" +
Q(x)y" + R(x)y = 0.
Proof. Consider
P(x)y™" +Q(x)y™" + R(x)y”
= P() (3 () + 35 ) + Q) (700 + 35 ()
+ R@) (500 + 3, (@)
= (PO () + Q()ye(x) + R(x)y(x))
+ (P)yy (00 + Q@)Y (0 + R(x)y, ()
=0+ Sx)
= S(x)
Thus, y*(x) is the solution of P(x)y"” + Q(x)y' + R(x)y = 0. Here y.(x)
is called the complementary function.
Remark: Thus, to solve a non-homogeneous differential equation, we just
need to find the particular solution y, (x).

The following table gives a list of particular solutions for some familiar
S(x).

S(x) Y (X)
keax Ceax
k0+k1x+"'+knxn CO+C1X+'"+Cnxn
k cos ax C cosax + D sinax
k sin ax C cosax + D sinax
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Example 4.5.1.1: Solve the equation
y"' +3y" +2y =4x*+1
Solution. We first find y,.(x). Consider the auxiliary equation
k*+3k+2=0
k+2)(k+1) =0
Hence the complementary function is y, = C;e % + C,e™™*.
Now, from the above table the particular solution is y,(x) = Ax*+Bx+C
where the constants A, B and C are to be determined.
Consider
Yy +3yy + 2y, = 2Ax* + (6A+ 2B)x + A+ 3B +20) = 4x* + 1
Then comparing the coefficients of powers of x we get
2A =4
(6A+2B) =0
(2A+3B+20)=1
which on solving gives A = 2,B = —6,C = 175 Hence the general solution

of the given equation is

— —-2x -X 2 _ 1_5
y==Ce “*+ (e +|2x 6x+2

4.6 THE HOMOGENEOUS EQUATIONS OF ORDER n

A linear differential equation of order n is an equation of the form

P,()y™ + P ()y® ™ + -+ PL(x)y' + Po(x)y = 0 — — — (4.6)
Is called a Homogeneous Equation of order n.
Remarks:

1. If fisasolution to (A) then Cf is also a solution to (4.6).

2. If f and g are the solutions to (A4) then C,f + C,f is also a solution
to (4.6).

3. If fi,fo, -, fx are the solutions to (4.6) then C,f; + C.f; + -+
Cif 1s also a solution to (4.6).

Example 4.6.1: Find the general solution of y""' + 4y" — 7y’ — 10y = 0.
Solution. Here the auxiliary equation is given by
k3®+4k*—7k—-10=0
whose roots are given by k; = —-1,k, = 2,k; = —5. Thus, the general
solution is given by
y =Ce ™+ C,e?* + C;e™>*
where C;, C,, C5 are arbitrary constants.

47 INITIAL VALUE PROBLEM FOR n'* ORDER
EQUATIONS

An initial value problem for nt* order equation (4.6) is to find a solution of
the equation which also satisfies the initial condition y(x,) = v,, y'(x,) =
vy, ¥y D (x,) = y,_, Where y,, y4, -+, ¥, are given constants.
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Example 4.7.1: Find the solution of the initial value problem y'’ + 4y"" —
7y" — 10y = 0 with y(0) = —3,y'(0) = 12 and y"'(0) = —36.
Solution. Here, the general solution is given by
y = Ce ™+ C,e?* + Cze™>*
Now, we use the initial conditions to determine the constants C;, C,, Cs.
Thus we get
Ci+C,+C;=-3

—C, +2C, —5C; =12

C, +4C, + 25C; = —36
which on solving gives C; = _S’CZ =1,C; = —z. Hence the solution to
the initial value problem is

5 3
— -X 2x —5x
y > e + e - —2 e

4.8 THE NONHOMOGENEOUS EQUATIONS OF ORDER n

General form of the nt"* order non-homogeneous equation is given by
P, ()y™ + Py ()y ™Y 4+ P (0)y' + Py(X)y = f(x) — — — (4.8)
where f(x) is a given function.
Similar to second order non-homogeneous, the general solutions of (4.8) is
also given as
Y=Yct+ W

where y,. is the general solution of corresponding homogeneous equation
and y, is the particular solution of (4.8).
Example 4.8.1: Solve y"" + 4y"" — 7y’ — 10y = 100x? — 64e3*
Solution. Here the general solution of y"' +4y" —7y"'—10y =0 is
given by

Ve = Cie ™ + C,e?* + Cze75*

Now for f(x) = 100x? — 64e3* we consider a trial function similar to the
structure of f(x) as
yp = Ag + Ajx + A;x? 4+ Be®*
Substituting this to the given non-homogeneous equation, we get
(=104, — 7A; + 84,) + (=104, — 144,)x — 104,x? + 32Be?*
= 100x?% — 64e3*
On comparing the coefficients, we get
(=104, — 74, +84,) =0
(—104, — 144,) =0

—104, = 100
32B = —64
which on solving gives
89
Ay = —?,Al = 14,4, = —-10,B = -2

Hence the general solution is
89
y=Ce ™+ Ce?* + Cze7* + (—? + 14x — 10x? — 2e3x)
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49 EXERCISE
1. Solvey"" +4y" —y"' —4y =0
2. Solvey"" +4y" —3y"' =18y =0
3. Solvey”" +6y" +12y"+8y =0
4. Solvey"" —5y" —y' + 5y = 10x — 63e~2* 4+ 29sin 2x
5. Solve y® + 8y" + 16y = 64x sin 2x
6. Solve the initial value problem: y® + 2y — 2y’ —y = 24xe™* +
24e* — 8sinx,with y(0) = —2,y'(0) =0,y"(0) = 6,y"'(0) =
10
410 SUMMARY

In this unit, solving homogeneous and non-homogeneous second order
differential equations are discussed. Linear dependence and linear
independence of set of functions is discussed. Definition of Wronskian and
applications of Wronskian to check linear dependence of set of functions is
discussed. Abel’s Identity is discussed and methods to solve homogeneous
and non-homogeneous n‘"* order differential equations are also discussed in
this unit.
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S

LINEAR SYSTEMS OF ODE (II)

Unit Structure :

5.1 Introduction

5.2 The Initial Value Problem

53 The solution of the Homogeneous Equation
54 The Inhomogeneous Equation

5.1 INTRODUCTION

We consider a generalization of the type of systems studied in the
preceding chapter. The new systems to be studied will be inhomogeneous,
linear, first order systems with time dependant coefficients.

Throughout the chapter, | denotes an open interval. We consider a
family of continuous functions :

This family gives rise to the following system of non-homogeneous
ODE :

dX
d_tlzall(t)xl + . +a.1n(t)xn +U1(t)
dX,
T—azl(t)xl‘}_ ...... +a2n(t)xn+u2(t) (1)
dX
d'[n =anOX; +...... + app (DX, + Uy (1)

We also consider the same system but without the u;(t):
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dX

d_tlza“(t)x1+ ...... +a, (D)X,

dX,

—==a, (OX, +...... ay, (1) X

o= 8 OX et (X, | ..
dX

dtn — anl(t)xl + ...... + ann(t)xn

We call (2) the homogeneous part of the system (1).

Our method of obtaining solutions of (1) consists of obtaining (i) a
particular solution of the inhomogeneous system (1), then (ii) obtain the space
of all solutions of the homogeneous system (2) and then combine (i) and (i1) to
get all the solutions of the system (1).

We use the following abridged notations to which the operations of
linear algebra will be applicable.

For each tel, A(t)is the nXxnmatrix [aij (t)], u(t) denotes the column

Uy (t) X (1)
: | and as usual X(t) is the column | :
u,(t) Xn (1)

In terms of these notations the systems (1) and (2) take the following
compact forms :

dx
— = A(t) X +u(t) .. (1)
dt
dx
Py = A(t) X, the homogenous part of the above ... (2)

5.2 THE INITIAL VALUE PROBLEM

Given ty €1, X, € R", we consider the IVP :

dx
T =AD X U X () =% .0
Note that the vector field f:IxR" —R"given by

f(t,x)= A(t)X+ y(t) is locally Lipschitz :
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Justification : Let tycl,x,€R"be arbitrary. Choose §>0 such that
ty—90,tp +6 C 1. Now the map A:1 —M, R being continuous on its
domain I, is bounded one the compact interval te t, —9,t; +06 and for any x,

yin B Xy,0 we get.

ft,x — f(t,y)=A®t)X+u(t)— At) y —u(t)
— A) (X—Y)

and therefore

[ftx —fty|=[|At x—y]|
<JAaol] x-y|
<Ky
Forall te t, —,t, +6 and forallx, yin B Xy,0 .

Therefore, the basic existence and uniqueness results are applicable. The
IVP (3) has a unique solution defined on the largest open sub-interval «,3 of

I. We prove that «,3 =1

Proposition 1 :
The solution of the IVP (3) is defined on the whole of I.

Proof :

(Sketchy, by contradiction method). Assume the contradictory :
o, C 1, say, B < right hand end point of I, so that t),,3 C1.

Now, being the solution of the IVP (3) the curve X: o, —R"
satisfies the integral equation :

t t
X(t):x0+fA(s)X(s)ds+fu(s)ds
t t

0 0

Using continuity of the maps A:1 —M, R ,u:1 —R" we get a finite
constant M such that ||A(S)||§ M, u(s)||§ M for all s€ ty),3 and therefore,

we have :

t t
IX@I<l]+ [A®) X($)]ds+ [[u s |ds
t t

0 0
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t
<ol + [ MIX ] ds +Mp.
tO

By Gronwall’s lemma, we get :

X< %] +MB eM® for all  tety, . Thus, the set

X(t):te [tO,B is a bounded subset of R" and therefore, the limit liné X (1)
t—

exists. We call it y e R".

Having arrived at the point y in R", we consider the initial value
problem :

dx

—=Alt) X +ut) X B =y.

dt

Let X: B3—m,8+m —R" >0 be asolution of this IVP. Clearly the

two solutions :

X:oB —-R" X:B-=mB+n —R" agree on the overlap and
therefore, they patch up to give a solution : X: a,B+m —R" which

contradicts the assumed maximality of the interval «,3 . Therefore, we must
have : 3 =right hand end point of I. Similar reasoning leades us to o =left
hand end point of I and therefore | = «,(3 .

Thus, every solution of (2) whatever be the initial condition is defined
on the whole of R .

5.3 THE SOLUTION OF THE HOMOGENEOUS EQUATION

We consider the set of all the solutions of the homogeneous equation
(2). Let the set be denoted by V.

Proposition 2 : The set V has the structure of a n dimensional vector space.
Proof : Leta, bin R, X, Y, in V be arbitrary. We prove that aX +bY also is
nV:

d dX . dY

— aX +bY =a— +bh—

a 0 at
—aAt X+bA®)Y

= A(t) aX +hbY because A(t)is linear.
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Thus, % aX +bY = A(t) aX +bY i.e. aX +bY €V.

This shows that V is a real vector space. Actually V is isomorphic with

R", the brief explanation of which is as follows.

Choose t, € | arbitrarily and hold it fix. For each x € R"we consider
the unique solution of the initial value problem :

dx
—=A() X, X(t))=X.
” (t) (to)

We denote the unique solution of it by X, where we have attached the
suffix X to the solution X, to indicate the dependence of the solution on the
initial condition.

Now, we have an association rule X+— X,associating the unique

X, € X with each x € R". In other words, we have the map :

R" —V; x— X, .. (4)
(Which associates each x € R", the element X, of V). It is easy to show that
this map is an isomorphism. First the linearity of the map : Leta,bin R, X,y
in R" be arbitrary. We consider the two curves :
1 —-R".

aXy +bXy 1 —R" and X o .y,

It is clear that both are solutions of the IVP with the same initial
condition ax + by and therefore by the uniqueness of the solution, we get the
desired equality.

Clearly X, =0 implies Xx=0. The implies that the linear map (4) is
injective. Finally, let X be any element of V. Let X t; =X,. Then
X = XXO showing that the map (4) is a surjective map.

We have explained now that the map (3) is linear, it is injective and

surjective as well. Therefore (4) is a linear isomorphism between V and R",
i.e. V is indeed n-dimensional real vector space.

We consider a vector basis  X; X, ..... X, of the solution space V. We
call it a fundamental system of solutions of the homogeneous ODE (2).
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Clearly for each tel, the vectors X;(t), X5(1),...., X,,(t), are linearly

independent vectors of R". Putting them along the columns of a Nxn maxtrix,
we denote the resulting nxn matrix by W (t) thus :

W)= X (1) X,(1) Xn(®)| or if the vector X;(t) has the

coordinates : X0 = X0, X (0)seeees Xpj (1) then
W (t) =x; (O]:1<i, j<n.

We call the resulting map W:l — M, R a fundamental matrix of

solutions of the homogeneous part (2). Note that for each tel,W(t) is an
invertible matrix. Here is a simple example :

We consider the 2 dimensional case in which the 2x2 matrix A(t) is

-3
the constant matrix A(t) = l3 5 for all t € R. It gives rise to the system of

homogeneous ODE :

%:2X—3y
dt *
g . ()
—X:3x+2y
dt
_ 5t |cOs 3t ot |—sin3t
Putting X,(t)=e , XH(t)=e ,LteR, we get the
sin 3t cos 3t

fundamental system X;,X, of solution space of (*) and the resulting

ot | cos 3t,—sin 3t

fundamental matrix W : R — M, (IR) given by W(t)=e for

sin3t, cos2t
all teR.

5.4 THE INHOMOGENEOUS EQUATION

We now consider the inhomogeneous ODE (1) and its solution space.
To begin with, we have the following result relating the solutions of the two
equations (1) and (2).

Proposition 3 : Let Y : 1 — R"be a solution of the inhomogeneous system (1).
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a) If X:1 —R" is a solution of the homogeneous system (2) then X +Y is a
solution of the inhomogeneous system (2).

b) Then the solution of the (inhomogeneous) initial value problem :
dx
P A(t) X +u(t), X(ty) =X

t
1s given by X (1))=Y (t) +W (1) fW(S)_1 u(s)ds foralltel.
tO
The proof of the theorem is a straight forward application of the
fundamental theorem of integral calculus (applied to integration of vector
valued functions).

t
Proof :(a) We have X t, =Y t, +W t, [W s ~'u(s)ds
tO
t
=X +W t, 0 sincef* ds=0
t

0

=X
(b) First note that
d - d . . .
EW t % Xl:(t) Xz;(t) Xn:(t)
_1dX(t)  dX, (1) dX, (1)
S| dt dt dt
= [ADX,() ADX, (1) A X (1)
=AM | X1 X, Xn (1)
= A(t)W (1)

Now, we have :
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ix(t)zi

t
~1
- YO +W® f W(s) 'u(s)ds

t

_d d t -1 d t -1
_av(t)+aW(t){W(s) u(s)ds+W(t)E{W(s) u(s)

t
= A1) Y (t) + AW (1). fw—l(s) u(s) ds +W )W ' (t) u(t)
t

.

= A |Y () +W (D) f W (s)"'u(s)ds| + u(t)
to

= A(t) X () + u(t).

Thus 2 Et(t) —a(t) X (t)+u(t) all te 1 and X (t,)=X,.

Illustrative Example :
(We do not solve the example completely we indicate only a few steps leaving further
details for the reader to settle.)

Solve :

dx

—=2x—-3y+2 x(0)=1
ot y 0)
3—¥=3x+2y+t y(0)=2

Solution (Incomplete) :

We have : W (t) = 2t cos3t —sin3t]

sin3t  cos3t |

cos3t —sin3t][1
_2

And Y (t)=e*

sin3t cos3t
cos3t — 2 sin3t
sin3t+ 2 cos3t

_ eZt

There fore
2
S

cos3t —sin 3t cos3t —sin3t cos3s  sin3s

sin 3t + cos 3t

X (t)y=e*" 2 ds.

sin3t  cos3t —sin3s cos3s

t
fe—zs
0
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2
—sin3s cos3s||S

cos3t — 2 sin 3t cos3t —sin3t cos3Ss  sin3s

sin 3t + 2 cos 3t
cos3t — 2 sin 3t
sin 3t + 2 cos 3t

2t 2t

sin 3t cos3t

t
fe—zs
0

cos3t —sin3t||*

__ A2t —2t

sin 3t cos3t||**

t

where in the last column, * = J‘e—zs (2cos3s+ s sin3s)ds
0
{0

and ** = fe_zs(s cos3s —2sin3s)ds

5.5 HIGHER ORDER ODE

As usual, I denotes an open interval, for a natural number n, we consider a single
ODE.

dn dn 1 dn72
dt n 1()d n—1 +a2(t) dtn_2

in an unknown function X:l — IR the coefficients a,,a,,...,a, , b being smooth

+..+a,(t)yx=bt) ...(5

functions on |. Equation (5) is linear because the left hand side of it is a linear

dx d"x
combination of X, E, S Again, if b =0 then we say that the equation (5) is
t

homogeneous.

Recall the initial valve problem for (5) is the following. Given to
€1, Xy, X ... X, all constant real numbers, find a n times continuously differentiable

function X:J — R, J being an open interval with t; €J C | such that the
following two requirements are satisfied :

n n— 1
(1) dd?[(rft) 1()d ()—i— Aa,(t)x({)=Db(t) forallte]

. dx d" I (t
and (i) X(ty) =X, ,E(to): X mdtTEO): Xp_1.

We will reduce the ODE (5) to a linear system of first order ODE and get
information of solutions of the former in terms of those of the reduced system.
Towards this aim, we consider the following object.
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dx S
dt
Y=| |, ) A=
nf
dx +1
dt"!| —ay(t) —a, (1)
[0
(i) u(t)=|.
b()]

In the matrix A(t) in (ii) their being zeros at all the vacant places, including
the main diagonal, and the + 1 entries being just above the main diagonal and parallel
to it. Now, we consider the system

d—X:A(t)x+u(t) .. (5)
dt
Along with its homogeneous part : 2—); = A(t) x ... (6)

Note that the given (order n) ODE (5) is equivalent to the first order system
(5') while the homogeneous part of (5) is equivalent to (6). We recall the results of
the preceding sections obtained for the linear systems, now applicable to (5') which
we transcribe them so as to become applicable to the equation (5).

Thus we consider a fundamental system Y,,...,Y,, of the solution space of

(6). This system yields functions X;, X,,.... X, :| — R such that

X X, Xn
dx, dx, dx,
dt dt dt
Y, =| : Yo= 1 e Y, =] :
lel d ”*lxz d nf1xn
dtnfl dtnfl dtn—l

Now, we have the following important facts :

() Y,....Y, are linearly independent solutions of (6) implies X;...X, are

solutions of the homogeneous part of (5). Moreover any solution x of the
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homogeneous part of (5) is expressible as a linear combination of the functions
X| Xy oo X
X=CX +CX, + +Cp, X,

(2) The solutions X ... X, (of the homogeneous part of (5) are linearly independent
over L.

diX +dy%, +...+d, X, =0
implies d, =d, =...=d,, =0.

This proves the following important :

Proposition 4 : The solution space of the homogeneous part of (5) is a n-dimensional
real vector space.
Now, given any set f; ... f,:1 — R of n times continuously differentiable functions,

we associate with it the function :

W=W(f..f):1->R

if
LI/

given by : W(t) =det
® o

forall t& |

The function W is called the Wronskian of the family {f,... f,}.

Note that when the functions X;....X, | — Rform a vector berries of the
solution space the matrix :

W =W(X ..x,): 1 >R

given by W(t) = det for all t €1 is the fundamental matrix of the

g
4 (t)

homogenous part (6) of (5")

5.6 A SOLUTION OF THE NON-HOMOGENEOUS EQUATION

Suppose, a fundamental system {X; ...... X, } of solutions of the homogeneous

equation (6) is found. We discuss a method — attributed to Lagrange-which yields a
solution of the non-homogeneous ODE (5).

d!
Recall, W(t) stands for the fundamental matrix with its (ij)th entry i X; (1)

For each i, 1<i<n, we consider the n X n matrix denoted by Wij(t) obtained from
W(t) by replacing its jth column by the column

64



MATHEMATICS

0

b
(t) ]
We adopt the notations : D(t) for det(W(t)) and Dj(t) for det(W; (t)).

Now, to obtain the desired solution we consider a function X:| — R which is in the
form

X(1) =V, (D)X, (1) + Vo (DX, (D T4V, (D) X, ()= > v (D)X (1),
j=1

where V;:1 —R (1< j<n) are unknown functions which are required to satisfy

a number of identities.

These identities will determine the functions V; which in turn specify the X which

will be the desired solution. Now differentiating X(t). We get
- = V. — + — 2 X.
dt Jz_:l I dt JZ_:I dt

The first requirement on the V; is :

S —o 0
—X; = ... (1
— dt '
So that we are left with
dx n de
—=> V,— L
dt > I gt ®)

i=1

Now differentiating (*) above, we get
2 n 2y, n _ .
H: ZVJ d Xj +Zdidi
dt’ dt’ dt dt

=1 =

The second requirement on the V; is

N dv; dx; .
——=0 ... (i1)
=1 dt dt
d2X n dzx
Leaving us with —- = ZV- ! ()
dt> 4= dt?

Continuing this procedure we get analogous identities, the requirement on V j at the

last stage being :
0 dv; d"'x;

ZE o =h.

=1
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Thus, we have the following two strings of identities :

n
X:Z:IVJ- XJ n dVJ
1= Z—tXJ :O
dx zn:V de j=1
2 ;=L
i v 0
(1) o dt dt LI
d% _ < v d"x; :
dt" ) dt” 0 dv; d"x;
—1—2J —p(t)
Zdv d"x; o dt o dt”
dt dt"
Multiplying the equations in (I) by a,, a, - 1,...., @, 1 and adding we get
d"x d"'x
+a;(t) +...+a, ()x+a,(t)=h(t)

dt" dt"!
thus showing that the function X(t) is a solution of the inhomogeneous equation.
On the other hand, using the simultaneous equations in (ii), we get :

Dy

dt  D(t)

and therefore V;(t) = f L))ds ,1<j<n

This leads us to the des1red solution
n
X => v;®)x;t), tel.
j=1
EXERCISES :

(1) Prove that each solution of the inhomogeneous equation (5) is defined on I.
(2) Prove : If a solution X:| — R of the homogeneous equation (6) vanishes at same
to €1, then Xx=0

(3) Solve : 3—1(:5X—|—3 x(0) =1

3—{:3x+2y+t y(0)=2

(4) Solve : i—T:—X+3y+4t X(0)=1
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d
d—¥:3x+y+4 y(0)=1

(5) Same D. E as above but x(1)=1, y(1)=1.
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6

METHOD OF POWER SERIES

Unit Structure
6.1 Introduction.
6.2 Power Series. (A Quick Review).
6.3  Method Of Power Series.
6.4 Illustrative Examples.
6.5  Legendre Equation, Legendre Polynomials.
6.6  Frobaneous Method.

Exercises.

6.1 INTRODUCTION

In this chapter, we study a type of second order ODE (scalar case) which
gives solutions in the form of absolutely convergent power series. These ODE
contain in their form, functions (e.g. the coefficient functions) which are analytic
in sense that they admit absolutely convergent power series expansions. Naturally
the method of solving such DE makes use of techniques and properties of
absolutely convergent power series. Therefore we call this method the method of
power series.

The reader will realize that this method applies not only to second order
linear ODE, it actually is applicable to a wider class of ODE of any order.

Recall, at the elementary level we could solve simple DE in terms of
elementary function such as the polynomials, the logarithm function, the
exponential functions, the trigonometric functions and so on. But soon we find
that things start going the opposite way : Differential equations generate new
functions as their solutions. Such functions are called special functions. Most of
these functions are in the form of power series and as such are obtained by the
methods of power series. There is a more powerful method which is called
Frobaneous method. We discuss briefly this method also. Using this method we
introduce two special functions : (i) the Legendre polynomials and (ii) the Bessel
functions. We derive some of their properties.

We begin our treatment of special functions by recalling basic facts of
power series.
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6.2 POWER SERIES (A QUICK REVIEW)

A power series is an infinite sum of the type:

do + al(t — to) + az(t — t0)2 + o + ak(t — to)k + o
=Yrezra(t— t)F (1)
where ag, a, ap, .......... s AKy eeeennnns are real constants. It is absolutely convergent

if there exists a r > 0 such that

lag|r® < o
keIt

The lub of all r > 0 satisfying the above inequality is the radius of convergence of
the power series (1), we denote it by R. If (1) is absolutely convergent with R as
its radius of convergence, it follows that for each

te (to — R, to + R) the infinite sum

ap(t — to)¥
keZt

converges, giving rise the function :
Fito—-R, o+ R) — R, (2)

where

() = ) aut— to)"
keZt

foreacht e (to— R, tp + R).

The function (2) is the sum function of the (absolutely convergent) power
series (1). It is a basic result that the sum function (2) is infinitely differentiable on

its domain and the k™ derivative (keZ") is obtained by differentiating the infinite
series termwise. In particular we have :

k

d
() feo) =kt a
Consequently the power series (1) becomes

)= %(i)k FEo) v, (3)

dt
An important implication of (3) is the following result :

If the functions
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f :(to -R, tp+ R) ——>R

g:(th—R, tp+R) —R

admit the power series expansions :

() = ) alt— to)
keZt

g® = ) b(t— s
ket

then we have the following basic fact :
f(t) = 9(t)
if and only if ax = by for all k eZ" that is, if and only if
4 k
(£) fe) =(£) 9t

holds for all k eZ*

We make use of this basic result in what is to follow in this chapter.

6.3 METHOD OF POWER SERIES.

We consider a second order ODE of the type :

dZx
dt?

+P(t)§+-@(t)x =0........

where the coefficient functions P(t) and Q(t) admit absolutely convergent power

series expansions on an interval (-R, R) :

P(t) = dy + alt + aztz + ﬂ,3'['3 + aee 4 aktk + e
Q(t) = b{l + b1t+ bztz + b3t3 + e + bktk + vae

} e (5)

Recall, according to the theory of linear second order homogeneous ODE
discussed in Unit4, the solution space of the ODE (4) is a two dimensional vector

space.

Now, because the functions P(t), Q(t) admit absolutely convergent power
series expansions - we call such functions analytic — we expect a solution of (4)

also to be analytic :

We prove below the following two results :
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(a) Indeed, a solution t 1—— X (t) of (4) has a power series expansion (6)
and obtain the constants ¢y, k > 2 in terms of the constants ay, by, K, | in

Z" (The constants co, c1, will play the role of the arbitrary constants in
the solution of the second order ODE (4).)

(b) The infinite series (6) is absolutely convergent in the interval (-
R, R).

We proceed to prove these two claims.
Differentiating the power series (6) for the solution x(t), we get

dx
E(t) = chktk_l

k=1
d?x B
F = Z k(k — l)cktk 2
k=2

for all tin (-R, R). Substituting these power series expansions along with
those for P(t), Q(t) in the given DE we get :

[Z k(k — etk 1+ (Z a;t’:) - (Z mcmtm_l) + (Z b;t’:) - (Z cmtm_l)
k=2 =0 mz=1l 1=0 mz=1
In above the coefficient of the power t"2 forn > 2 is :

n(n-1)c, + ap(n-1)cn1 + a1(N-2)Chz + ........ + an2C1 + boCpot biChz +

Equating it with zero we get the following succession of equations :
n(n-1)c, = -[ag(N-1)Cp-1 + @1(N-2)Cpz + ..... + an2C1]
-[boCn_z +biChzt e, + bn2Co] vnnnnnn. (*)

for n > 2. These equations show that the constants (¢, : n > 2) can be
obtained recursively in terms of arbitrary constants co, ¢; and the given
constants ap, ai, az, .......... , bog, by, by, ... Thus the solution (6) is
formally obtained. It remains only to prove that the formal series (6) is
absolutely convergent for |t| < R and hence determines a function x: (-R,

R) ——R which then becomes the solution of (2). Towards the
justification of this claim, we have :

n(n-1)[cn| < laol(n-1)|Cn-1| + |a1](N-2)[Cnz| + .......... + |an-2|c]
+ |bol|Ccn2| + [byflCns| + ... + |bn-2||C4]
< (n-1) [Jaol[Cn-1] + |az]lcn2| + -......... + |an-g|[ca| + ...]
+ [|bollcn2| + |ba|lCn-g| + ... + |bn-2|lCol] ---....... (6)
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Now, let a number r satisfying 0 < r < R be arbitrary chosen. Also,
choose one more constant say S with 0 < r < S < R. By the absolute
convergence of the two series in (5) in (-R, R) and by the choice S <r, we
have

Z la,IS™ < o and Z b, |S™ < oo

neft neft

We choose a D > 0 such that

Z la,|S™ = D and also Z |b,|S" = D ..........(7)

neft neft

D
Consequently, we have |a,| < -

f— n !

D .
bn| < =for all n €Z". Next, we consider
5']‘1

an arbitrary m eN (to be fixed later) and for this m, another constant M,
(again, larger enough but finite) so that the following inequalities hold for
0<k<m-1:

O <% v (8)

Substituting the estimates (7), (8) in the inequality (6) we get :

DM D DM D
m(m-1)[Cm| < (m-1) L,m_i t ottt M]
DM D DM D
+ LmJF sz bt e M]

=M1 14 Tt (%)m_l}

,J,m

e O RSSO M

,],..m

<m1)2 |1+ I+ (E)z + }

,J,m

+%r29[1+ -+ G)Z + }

T

_ M [rD(m-1)+r?D
™ m(‘m—l}(l—g}

Therefore, we have

M |rD(m-1)+ r2D
<
|Cm| - [m(‘m— 1}(1— E}l
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At this stage we fix m. It should be so large that the expansion in
the above last inequality (**) is < 1. With this choice of m, we have [cy| <

%' This inequality together with the inequalities (*) imply :
M
|ck| < &

for0 < k < m. Now, application of principle of mathematical induction and
the inequality (6) together imply that, the inequalities (8) are true for all k

eZ". This ensures that the series (6) defining the function t 1——x(t) is
absolutely convergent for all t with |t| < r. Again, this is true for all r with 0
<r <R and therefore the series in (6) is absolutely convergent for all t € (-
R, R). This leads us to the following :

Theorem 1 :The function
X:(-R,R) —>R
given by

x(t) = Z cpth
keZt

wherecy, ¢, are arbitrary constants and the c, k > 2 satisfying (*).

Remark :Of all the constants (i : k € Z*) in (6) the constants c,,
C3 vevnnnnnnn s CKy eovvennnnn are expressed in terms of the constants a, by, k

eZ" the last constants namely co, 1 remaining unspecified. They are the
two arbitrary constants of the second order ODE (4).

6.4

ILUSTRATIVE EXAMPLES

d?x

() The DE :— + 10x = 0. Here, P(t) = 0 and Q(t) = 10.

"dt?
Let X(t) = Co + Cit + Cot? + ... be a solution of the equation. Then
2
we get iT: = 2.1c, + 3.2¢cst + 4.3C4t2 + o and therefore 2.1c, +

3.2cst + 4.3c4tP + ... +10(co + Cit + Cot? +......) =0, that is :
(10co + 2.1cy) + (10c; + 3.2c3)t + (10c, + 4.3C4)t2 T +
(10 + (K+2)(K+1)Cis)th + oo =

Therefore we get :

10ck + (k+2)(k+1)cks2 =0 fork=2,3, .......... This gives :
_ —IGC;( +
Ck+2 = mfor allk eZ".

This recurrence relation gives the following succession :

—10¢g —10¢, —10¢c; _ 10%¢,
Co= C3 = Cp=—2== —=2
2 2 3 3.2 4 4.3 4l
_ —10¢5 _ 10%gg _ —10¢,_ 10%g _ —10¢5 _ —10%¢y
C=——7=—7F C=—F—=—77 Cr=—F7=—7
5.4 5! 6.5 6! 7.6 7!
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_ —10%¢, _ (-10)%g
Cok = PYTERETERRRPRPY Cok+1 = TED R TIRRRRRRREED
Therefore,

X(t) = Co + Cit + Cot? + catP +cat? + ...

= (Co+ C2t2 + C4t4 + o )+ (cit+ C3t3 + C5t5..........)
10t2 10%¢t% 103t
_Co[l Tt o T e +]
10t3 102¢3
+ Cl[f ~ 3 0 ]
10t2 10%t* 103t®
_Co[l T T o T e +]

o [ = IO, (VD) (Vi)Y
+ﬁ[ 10t - —=—+"—F—— 75—+t~

=y cosy10t + % siny 10t
J

= Acosy10t + B siny 10t
Where A =c¢y, B = % are arbitrary constants.
N

2
(1 SoIveZTZx + ZtZ—f +4x =0

Solution : Let X(t) = Co + Cit + Cot? + ..........

Now, we have :

d?x _ 2 Kk
—z = 2.1C2 + 323t + 4.3cut™ L+ (K + 2)(K + D)Cisat” + ...

and therefore,

2
ZIZTZC =201t +2.2Ct° + ... + 2kt +
4X(t) = 4o + Acit + ACot" + ... +aed+
Therefore,

z
dt? + Ztin + 4x = (12¢, + 4cp) + (6C3 + 6C1)t + (4.3c4 + 802)t2
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This gives the solution :

X(t) =co+cat - % t2— it

(1) We consider here a first order ODE, the solution of which is to be
obtained following a similar procedure :

dX
E: 5X.
Assuming the solution to be the power series :
X(t) = Co+ Cit+ CotP + ... +ad
We get :
Z—: =y + 20t + 3cat’ + ..o +(k+ Dot + oo,

Substituting these power series in the given differential equations, we

get:
C1 + 2Ct + 3C3t2 o +(k + I)Ck+1tk o
=5C + 5Cit + 5Cot° + .......... + 50t
Equating the coefficients, we get :
C1 = 5Cp, 2C2 = 5¢C1, 33 = 5Cy, ...t ,kck = BCy.q, for all k > 1 and
k
therefore cy :% forall k> 1.
This gives :
2 3
X(t)=co+ 2 2Ly GOy
= coe™,

6.5 LEGENDRE EQUATIONS, LEGENDRE POLYNOMIALS

For an arbitrary real number a, we consider the differential equation
dZx dx
L-t) z+2t +oafa+tD)x=0...... )

for [t| < 1. We rewrite it in the form

dZx 2t dx (e +1) x—
dt? (1- t2) dt (1-t2)

The two equivalent forms (9) and (9) of the differential equation are called the
Legendre equation involvingthe parameter a. It is a particular case of the ODE

(4) in which P(t) = =, Q(t) = ?ff:;both admitting power series solution in (-1,

1) i.e. R = 1. According to Theorem 1 the Legendre equation has a solution given
by an infinite power series converging absolutely in the interval (-1, 1). The
resulting function (which depends on the parameter o) is called the Legendre
function.

It can be proved that the coefficients c,, n €Z" in the expansion

x(t) = Z Cpt™

neit
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of the solution of (9) satisfy the recurrence relations :

_[n—1)n—2)—afat]en2

Cn n{n—1)

for n > 2. In particular, if the parameter o takes an integral value say o = m, then
(n-1)(n-2)-oa(c+1)=0forn=m+1and consequently, cyn+1 = 0. This further
implies that one solution of the Legendre equation is a polynomial. Because the
Legendre equation is a homogeneous linear differential equation, the polynomial
solution of it is determined to within a multiplicative constant. A particular
polynomial solution of it denoted by Py(t) is the polynomial :

-1 4™
2Mom!l g™

GV

Pm(t) =

Pm(t) is the Legendre polynomial of degree m.

6.6 THE FROBANEOUS METHOD

We consider a homogeneous linear second order ODE of the type :

z
EZZTZ Lt P(t)z_’t“ +Q(t)x=0......... (10)

2
Like the ODE (9) it is more general than (4) because of the coefficients t* of ZT;:

and t of i—f Again, the functions P(t) and Q(t) have the power series expansions :

P(t)=ag+at + a2t2 o
Q(t) =bo + bt + bot? +..........
both the power series being absolutely convergent in an interval (-R, R).

It turns out that the solution is in the form of power series witht =0 as a
singular point of the solution. The method of getting a solution of (10) is called
the Frobaneous method. It is explained below.

We expect the solution of (10) to be a function of type :
X(t) = t5(Co + Cat + Cot® + .......... ) e (*)

wheres is a real number and cg is non-zero. We have therefore to find S, Co, C1,

Assuming the series (*) to be absolutely convergent in (-R, R) we consider
its derivatives :

dX

= st eg+ it + cot? + )}

+ t° (¢, + 2¢; + 3c3t? + +++)
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2
S =s(s = D (e + eyt + et +00)
+ 2st5 ey + 2¢, +3c3t? ) [ (*¥**)

+t° (2.1c; + 3.2c5t + 4.3c4t? + )

dx  d*Xx

Substituting these power series expansions for x(t), praliiie

in equation
(10) we get :
cos(s — 1)+ cys(s + Dt + (s + 1)(s — 1)t? + -

t5- | +[ag+ art + azt?+ -] -[scg+ (s + Degt + (s + 2)ept? + -]
+ [bo + byt + byt? + ] [cg+ et + cat? 4]

I1l
o

Because the factor t° # 0, we get that the expansion within the bracket must
be identically zero. Therefore the coefficient of each power of t in above must be
zero. This gives the following succession of equations :

co(s —1) + cpags + coby =0
c15(s + 1) + cyap(s+ 1) + cpays + ciby + cobg =0

(****)

cpls+n —1D(s+n)+ (s + Dag + -+ ebg+ -
=0

We solve these equations to get the values of ¢, ¢1, Ca, ..........

To begin with, we consider the first equation in the set (****). Since o #
0, we get

s(s—1)+as+by=0

This equation is called the indicial equation. This equation, which is a
quadratic equation in s, when solved it gives two values for s to be substituted in
the solution (*).

We then consider arbitrary co # 0 and using the succession of equations in
(****) we obtain co, C1, C2, ..........

The procedure described in above is applied in the next section where we
obtain a family of special functions called Bessel functions.

6.7 BESSEL FUNCTIONS

For any p €Z*we consider the ODE :

d2x dx

fzﬁ‘l‘fa‘l‘(lj — pz)x:O

theODE being called the Bessel's equation.
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Clearly, the indicial equation of this D.E. is :
s(s—1)+s-p>=0

It gives s * p. Therefore, one solution of the Bessel's equation, denoted by Jy(t) is
of the form :

Jo() = to(Co + Cat + CotP + ... )

where ¢ is an arbitrary constant. Taking co = P

1
2P.p!

Jp(t) = tp( + Clt + Cztz + 63t3 + '“)

Substituting the power series expansion of Jy(t), %Up (1), % (J,(0), in

the differential equation (11) we get

S(s—1)Co + (5 + 1)scat + (S + 2)(s + 1)Cot? + ..........
+5Co+ (S +1)cit+ (s +2)ct? + ..

- pPco—pPeat — pPeat? - pPeat’- ...l

=0

Equating coefficients of powers of t gives :
[s(s—1)+s—p°]-co=0

[(s+1)s+s+1—p’lci=0

[s+n)(s+n-1)+(s+n)—p°Jch+Cu2=0n>2

The first of these equations in the indicial equation giving s = £p, the second gives

c1 = 0 and the last equation gives c,= @:E%. Therefore the Bessel functions are

given by

t2 tt
2(2p+2) + 2402p+2)(2p+4) T

() = 71 [1 -
When s = -p, we get the relation :

—Cp—
"= forn>2.

Cn = (-p+tn)-p

EXERCISES :
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Obtain solutions in the form of power series of the following D.E.
> S
(I) ar 2tx
(ii) t = — 3x = k (= constant)

2

(if)y>2 + 6x =0
(|v)§ — 3— +2x =0
(v) (£ — 2)— = tx
(V|)— — 4— + (4t —-2)x =0

dt?

*kkkik
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7

STURM - LIOUVILLE THEORY

Unit Structure :

7.1 Introduction :

7.2 The Sturmian Boundary Value Problem :
7.3 Vibrations of an Elastic String

7.4 Unit End Exercises

7.1 Introduction :

Recall, the initial value problem for an ordinary differential equation:

d¥ X dX  d¥'X
— =1, X, I
dtk ( dt > gt*! )
1s to obtain a solution X : | — R of it when the values :

d k—1

=] t, =V,_, of the solution and its

dX
X(to) - XO,E(tO) :Vl gesesy

derivatives are prescribed at a single point to of its domain internal. A
Boundary Value Problem (BVP), is another fundamental problem in the
theory of ODE in which the solution of an ODE is required to satisfy a number
of conditions at two points of its domain (the two points actually being the
boundary points of the domain interval.)

In this chapter, we will study an important type of boundary value
problems associated with a certain type of linear second order ODE; we call
the BVP the “Sturm Liouille eigenvalue problem.” The resulting theory is very
vast and makes use of results from functional analysis. Therefore, we only
outline the theory introducing the concepts and stating the results without
proof. We will illustrate the scope of the theory by using it to solve the
vibrating string problem.

2.  The sturmain Boundary Value Problem :

In the following, | stands for the interval [a,b]. All the functions
t— X (1), t—Y(1), t— Z(t) etc appearing in the discussion are assumed to be
defined on internals containing I.
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We use the following notations :
C(l) is the vector space of all continuous functions X :1 — R,C'(l) is

the subspace of C(I) which are continuously differentiable on | while C*(I)

consist of those X : | — R in C(I) which are twice continuously differentiable
on I.

To introduce the type of boundary value problems we want to discuss, we
consider the following data:

(I)  The functions p, ¢, r : | — R with the following properties :
(i) p is continuously differentiable on I i.e. peC'(1)

(i1) g, r are continuous on I.

(iii) p(t) > 0 for all t € l.

(II) Constants o, ,,B;,B, with o,® +a,” >0and Bf 485 >0 (Note that

oclz + oé >0 1s equivalent to the property that of the pair o, o, , at least one
1s non-zero. The other inequality also has similar interpretation).

(IIT) Arbitrary constants m;,1),.

Using the functions in (I) we construct the linear, second order ordinary
differential equation :

(pX) +g X =r (D
i.e.%[pt%—)t(t]ntqt Xt=rt.,tel.

in the unknown function t+— X t

The equation : PX' +qX =0 Q)

is the homogeneous part of it.

We require the solution function t+— X(t) of (1) to satisfy the boundary
conditions :

o X a +o,X'(@)=n,

.. (3)
B8, X b +B3,X" b =n,

Taking together the DE(1) and the boundary conditions (3) we get the pair
pX' "+ qX =r

81



Chapter 7 : Sturm-Liouville Theory

The pair (4) is said to constitute the Sturmian boundary value problem.

In above, taking r=0,m;, =0=m, we get the homogeneous Sturmian
boundary value problem:

PX' +qX=0

uX a+a,X"a=0=3Xb +3,X"b .. (5)

In above for every X € C*(1), we put

L(X)=(pX")+q X

_ pX”—|— p’X’+qX.
Note that X € C*(1) implies that L(X) is continuous. Thus we get the map
L:C*(1)—C(l)

of the indicated vector spaces. Clearly L is linear.

Now for any X,Y in C?(1) we have
LX tYt—-—XtLY t

dX t
:ipt yi-xt. 9y
dt dt dt

for all tel. We refer to this equality as the |Lagrange Identity.| Integrating

this identity over the interval a,b, we get
b

f LX t.Yt XLy t]d
a

=pb[X'bYb-Xb.Y b]

—palX'aYa-XaVY'a o ()

Moreover, if both the functions X, Y satisfy the boundary conditions in (5) then
it follows that the R.H. S. of (*) is zero and consequently we have :

b b
fo y.Ytdt:ththdt (R
a a
We will explain more about this equality (**) at a later stage.

Here is a short list of properties of the spaces of solutions of the
boundary value problem (4) and its homogeneous part (5).

(1) A finite linear combination :
C X, +C, X, +... +C, X,
of solutions X, X,,..., X, of the B.V.P. (5) is also a solution of the BVP (5).
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(2) If X and Y are solutions of the in homogeneous BVP (5) then the
difference X — Y is a solution of the homogeneous boundary value problem (5).

(3) If X:1 —R is a solution solution of the BVP (5) and Y:I —R a
solution of the non-homogeneous B.V.P. (4) then X + Y is a solution of the
BVP (4).

(4) Finally, let Y:l1 — R be a fixed solution of the inhomogeneous BVP (4).
Then every other solution Y :1 —R of (4) can be expressed in the form
Y = X 4 Y for a unique solution X of the homogeneous BVP (5).

At this stage we describe a condition which ensures a unique solution of
the boundary value problem (4). Towards this aim, recall that the solution
space of the second order, linear homogeneous ODE (2) is a 2 dimensional
vector space and we call a basis of this vector space a fundamental system of
the ODE.

We choose a fundamental system X, X, of the ODE (2). Next, using
it and the constants oy, o, ,(3;,83,, of the boundary conditions of (5) we form
the quantity.

Ry=oX, a +a,X, a
R, =B,X; b +8,X, b
Ryy=cy Xy @ —ay X,' b
Ryy =B X, b +B, X," b

Rll R12

and we consider the determinant det which we denote by W. Now

21 Ry
we have the following result.

Theorem 1 : The boundary value problem (4) has a unique solution if and only
if W =0.
Proof :

Let X, X, be a fundamental system of solutions of the DE(2). Using

X;,X, and the variation of constants formula we choose a particular

solution Y":1 — R of the differential equation (1). Now a general solution of
(1) has the form:

Yt=Y"t4+CVY, t+CVY,t,tel o (%)
C,, C, being some constants.
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Now we consider (*) to be a solution of the BVP (6). Clearly, (*) is a solution
of BVP (6) if and only if the constants C,,C, satisfy the following

simultaneous equations:
m=RY +CR,+6R, }
M =R, +C; Ry +C, Ry
a,RY =BY b +BY"b

(%)

*/

whereRY =oY a +a,Y

(here, of course Y N being he derivative ddit ).

Clearly the equations (**) are satisfied if and only if the matrix of the
coefficients of C;,C, in (**) is non-singular, that is, if and only if:

R11 R12

W = det =0

21 R22

Here is a simple illustrative case.
The boundary value problem :

d>X

dt’

X(0)+ X' (0)=n X' ® =v
n, v being some constants.

We claim that the BVP has a unique solution.
In fact, here, we have o, =, =1, 3, =0, 3, =1,

+X=1, 0<t<m™

X, t =sint, X, t =cost isa fundamental system of solutions of the

2
homogeneous part.

X
i + X =0. Therefore, we get :

R =L R, =0=R,, while R,, =1. This gives W =1=0. giving existence
and uniqueness of the solution. In fact X t =1+ C, cost+C,sint isa

general solution of the ODE in the BVP above Now
n=X(0)+ X'(0)=C, +C,. and v= X' © =C, give

v=C, and C; =n—v Therefore the unique solution of the above B.V.P. is
X t =1+ m—v cost+ vsint.

Next, let the functions p,q:l — R, the constants oyo,,3,,3, and the
differential operator L:C* | —C | , all be as in the preceding section. In

addition let r:1 — R be a continuous function with r t >0holding for all
tel.

For a real number A we consider the linear homogeneous ODE.
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L(X)+Xr X =0 ... (6)
along with the boundary conditions :

a, X a+a, X" a=0
Thus we have the linear homogeneous boundary value problem :

pX"+p'X' "+ g+Xr X=0
X a+a,X"a=0=p3Xb+B,X"Db

which involves the real parameter X .

(7

A Value X\ of the parameter for which a non-zero solution X = X, of (7)

exists is called an |eigen —value| of the boundary value problem (7).

Sturm — Liouville eigen-value problem consists of getting the get E
consisting of all the eigen values X, the corresponding eigen-functions X

and studying the function space C(lI) in terms of the eigen functions.
X, :A€E . We will state the main theorem, proving only a part of it, and use

it to solve the vibrating string problem in the next section.
Before going further, we consider the following three concepts:
(1) The inner product <——>:C 1 xXxC | — 0,00 given by

b
<q>,\11>:f¢t Utotdtd, ¥ inC(l)
a

(2) The norm || ||:C | — 0,00 given by ||d)|| =+ <o,0>forallpeC |
(3) The uniform norm || ||OO :Cl — 0,00 given by

||d>||00:1ub‘ |o t ‘:tel .

holds forall €C I .
Now, for A € R, we consider the following two subspaces of C(I) :

(1) 'V X is the solution space of the (second order, linear, homogeneous)
ODE (6).
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(2) W X is the subspace of V X\ consisting of all the solutions of the
boundary value problem (7). If W X = 0 then we call W X the

eigen-space| of the B.V.P (7) with X as its |eigen-value.|.

We prove the following three properties of the spaces W X\ , X € R.

(I)  Each W X is a proper subspace of V. X (Thusif W X = 0 then it
is a 1-dimensional subspace of V X

an If ST are in R, with ISE-D YT and if
deW N\, ,¥eW X, then<o,¥>=0 ¢_L WUwith respect to the inner
product <, >.

(III) There is a countable subset X\, :k€Z" of real numbers such that

W X\, = 0 foreach keZ and W X =0 if X=X, forany A€ R.

We prove property (I) : choose a fundamental system X, X, of
solutions of the equation (6). Their linear dependence implies

det =(0foralltel .

/

X/t X, t

In particular we have

X;a X, a
det =0

X, a X, a

Now, if both X, X, were in W(X\), then they would satisfy the boundary
conditions. In particular, o X, a +a, X, a=0 and
oy Xy a +aoy le a =0

X;a X, a

But of +a5 >0 implies det =0 which contradicts the

X, a X, a
above stipulation of linear independence. This proves that W(\) is a proper
subspace of V. X (i.e. it is either the {0} subspace or it is one dimensional
subspace of V X\ )

Property (I1) follows by the property <L(X),Y > :<X , LY )> for all X, Y
inC ().

Property (III) is a consequence of the fact that (C (I),

||) is a separable

metric space.
Now we state without proof the main theorem.
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Theorem 2 (Sturm — Lionville) :

(1) The boundary value problem (7) has a non-zero solution only for a
countable (finite or denumerable) set of N &€R i.e. the solution spaces
W X\ are non-trivial only for a countable collection of real numbers X .

Let E= X\, X5, ..., ... be the subset of R consisting of those X\
such that W X = 0 ifandonlyif X=X, for some X\, €E. (X, are the

eigen values of the Sturm-Liouville problem and W X\, are the eigen
spaces).

(2) The set E has no limit point.

(3) Each W X\, 1isa 1 dimensional subspace of C? | . For each N €EE we

choose X, €W )\, with ||Xk||:1. Now we have W X, =R. X,
(4) If k=e,then X, L X, ie<X,, X, >=0.

(5) IfXeC’ 1 thenX t =) <X t,X, t>Xt
k

for all tel where the convergence of to infinite series to X(t) is uniform in
tel.
(6) If XeC(l)issuchthat < X,,X >=0 holds forall X, then X=0.

The proof of this theorem makes use of the properties of a compact
operator on a separable Hilbert Space and as such it is to be studied from a
suitable advanced text-book on ODE (which usually refer to text-books of
functional analysis).

We state here two more results without proof :

Theorem 3 (Sturm-Liouville Separation Theorem.)

The zeros of two linearly independent solutions of L(X) = 0 separate each
other.

Thus if X, and X, are two independent solutions of L(X) = 0, their
between two consecutive zeros of X,;is a zero of X, and between two
consecutive zeros of X, is a zero of X.

Theorem 4 (The Comparison Theorem)
Consider two eigen-value problems of Sturm Liouville with the respective date

p,d,r,o,3 and p*, q*, I’*, oc*, B* over the same interval | = [a, b].
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If p>p’, qg<q r<rinland 0<a<a <w, 0<Bf <B<m
hold with strict inequality in at least one place, then the corresponding
eigenvalues satisfy X\, > X; for all n.

In the next section, we study the dynamics of an elastic vibrating string in
which we will use the results of the Sturm-Liouville Theorem.

7.3 VIBRATIONS OF AN ELASTIC STRING

The vibrating motion of a stretched elastic string is governed by a partial
differential equation called the (one-dimensional) |waveequation| . Wave

equation is solved by a method called method of separation of variables. The
resulting analysis makes use of the Sturm Liouville theory. We will therefore
study the problem of the vibrating elastic string as an application of the Sturm-
Liouville Theory.

We first explain the PDE, the wave equation of the vibrating string.

A string of natural length L is held horizontally along the X-axis of a vertical
XOY-plane. Its ends, A, B remain tied to the points (0, 0) and (L, 0)
respectively. The string is plucked slightly and then is set in motion in such a
way that each point C of the string vibrates vertically. We study the vibrating
motion of the string as the collective vertically oscillating motion of each point
C of the string.

Therefore we consider an arbitrary point C of the string Let | A/C =X

(The real number X and the point C determine each other and therefore we may
take of “the point X instead of “the point C”.)

Let at an instant t >0, Y (1, X) be the instantaneous Yy-coordinate of the

point C (Since the oscillatory motion of C is only in the vertical direction, X-
coordinate of C remains constant.) Therefore the (oscillatory) motion of the
point C is described by the function t+— Y (t,X) and the motion of the whole

string is given by the function t,x —Y t,x t>0 0<x<1

... 9
Now, the basic equations of motion enable us to derive the equation
O 5, 0%
> =C > >0, 0<x<L ...(10)
ot OX

satisfied by the function Y(t, X). Equation (10) is the wave equation which
is satisfied by the vibrating string. In (10) c is a constant determined by the
mass of the string its elastic properties and the gravitational constant.)
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Suppose the string was plucked slighlty and released with initial velocity
(= initial velocity of each point C). so that the string executes the vibration
motion as described above. We consider two continuous functions :

f:0,L—-R, g: 0,L —R describing initial  position and initial
velocity of the string, that is :

Y O,x =f X %—I 0,x =g x ,0<x<L.

Now, we have the initial / boundary value problem for the function
tLX —Y t,X;
2 2
6\2(2026\2 t>0, 0<x<L ...(10)
ot OX
Y t,0 =0=Y t,L t>0,

Y 0,x =f X %—: 0,x =g x,0<x<L.

We want to find out the function t,x —Y t

To begin with, we consider all the solutions of the wave equation which are of
the type X(X). T(1):
Yitx=XxTt.
- o g
tL,Xx =X XTt ,?: X x,Tt (the dots indicating
X
differentiation (twice) with respect to the appropriate variable)

%Y

NOW, U
ot

Now the equation takes the form
X xTt=c2X xTt

Assuming X X =0, T t =0 fort>0,0<x<L, we get

1 t_>"<x an
2Tt X x

—:

—

This shows that the common value in (11) is independent of t, X i.e. it must be a
constant say d.
1Tt Xx
- =d ..(12
ATt X x (12)

Now if d >0 we would get Tt=c3dTt withcd >0.If d=0, we

would get T(t) = At + B for some constants a =0, B (A is not zero because,
otherwise T t =B which gives Y(t, X) = B. X(x) implying that the motion of
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the string is independent of t ie the string is station any!). On the other hand, if
d > o, we would get

Tt =Aeldt ygeVdct t>q

In either case (i.e d > 0, or d = 0) the factor T(t) becomes unbounded as t
ranges in 0,00 . This renders Y(t, X) also unbounded (ie the string stretching

limitless, another physical impossibility!). Therefore we are left with the

possibility d < 0. We put d =—X\? for \ € R. Then the above ODE (12) take
the form :

Tt=-2%Tt, X x =—X\*X X .. (13)
We consider the second equation :
X x =—X?X x, 0<x<L.

Its general solution is :
X X =XcosXX+[3sinXX «,3 being constants. This gives:

Y t,Xx =T t acoshXx+3sinxXx with the condition T t =0. Now
0=Y t,0 =x.Tt implies a=0and therefore
Y t,x =BT tsindxwith3=0,T t Z0.

But we have Y(t, L) = 0 and therefore sinA\L=0which implies that
AL=Kkm fork € Z. Therefore the parameter X\ can take the values

k= K™ kez,
L’
This shows that :

Tt=Tt :uk.cos[ kL]t+Bk51n[ﬂEL]t

and X X =X, X :Sin[% X, KeZ.

Thus, we get a sequence of solutions :
cL mcL ). | . (wL
cos t+ 3. sin t{sin|— (X
e [ K ] e [ K ] [ K ]

for k€ Z, Xy By being arbitrang constants. Now the general solution Y(t, X)

Y tx =

will be a linear combination of all of them.

Y t,x = Z o - cos[ L]t +By.s 1n[ CL]t]sin[ﬁ—L]x
7 k k k
Differentiating the infinite series partially with respect to t gives :

%\t( t, X Z[ﬁTCL] —ak.sin[ﬁTCL]t + By cos[ﬂTCL]t sin[%]x

keZ
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In particular, we have

fx:YQx:Xﬁme%x
kez k
oY . [~wL
X =— 0,X = —|X
o x =5t 0x =i T

These are nothing but the Fourier expansions of the given functions f(x), g(x),
oy, 3y being their Fourier coefficients which are calculated using the standard

trigonometric identities. Now we have the solution of the vibrating string
problem:

Ytx =)

keZ

- cos[ﬁTCL]t + By sin[TTCL]t

) [WL]
sin| — | X
k

7.4 Unit End Exercises :

Find the eigen values and the eigen functions of the following boundary value
problems :

(1) X+XX=0 X 0=0,X1=0
(2) X+XX=0 X 0 =0,X L =0 forL>0.
() X+XX=0, X 0=0 XL =0forL>0.

4 )EXT'=0 X 1=0Xe=0
(Hint: Try t=¢", reR)

(5) [eZtX] e N+1 X=0, X0 =0=X =

(Hint: Take X = eu )

(6) [t—IX] + X1t X=0,X1=0Xe =0.

oo
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