
T.Y.B.Sc. (IT)
SEMESTER - V

SOFTWARE TESTING

© UNIVERSITY OF MUMBAI

ipin Enterprises

Tantia Jogani Industrial Estate, Unit No. 2,

Ground Floor, Sitaram Mill Compound,

J.R. Boricha Marg, Mumbai - 400 011

Published by : Director
Institute of Distance and Open Learning ,
University of Mumbai,
Vidyanagari, Mumbai - 400 098.

September 2021, Print - I

Programme Co-ordinator : Shri Mandar Bhanushe
Head, Faculty of Science and Technology,
IDOL, University of Mumbai, Mumbai

Course Co-ordinator : Mr. Sumedh Shejole
Asst. Professor, B.Sc. I.T.
IDOL, University of Mumbai, Mumbai

Course Writers : Ms. Seema Vishwakarma
Assistant Professor,
Vidyalankar School of Information Technology,
Wadala, Mumbai,

: Mrs. MadhaviAmondhkar
Assistant Professor,
Vidyalankar School of Information Technology,
Wadala, Mumbai,

DTP Composed and : Mumbai University Press
Printed by Vidyanagari, Santacruz (E), Mumbai - 400098

Prof. Suhas Pednekar
Vice-Chancellor,
University of Mumbai,

Prof. Ravindra D. Kulkarni Prof. Prakash Mahanwar
Pro Vice-Chancellor, Director,
University of Mumbai, IDOL, University of Mumbai,

CONTENTS

Unit No. Title Page No.

1. Introduction 01

2. Software Quality 14

3. Functional Testing 22

4. Decision Table 31

5. Path Testing 36

6. Dataflow Testing 46

7. Object Oriented Testing Part - I 52

8. Object Oriented Testing Part - I 58

9. Levels of Testing - II 62

10. Testing Process - I 69

11. Testing Process - II 75



T.Y.B.SC (INFORMATION TECHNOLOGY)
SEMESTER – V

SOFTWARE TESTING

Unit-I
Introduction to quality, software quality, fundamentals of software testing,
VV model of testing.

Unit-II
Functional Testing: Boundary value Testing, Equivalence class testing,
Decision Table based testing, Retrospection.

Unit-III
Structural Testing: Path Testing, Data Flow Testing, Retrospection

Unit-IV
Levels of Testing, Integration Testing, System Testing, Interaction Testing

Unit-V
Object Oriented Testing: Issues, Class Testing, Object Oriented
Integration Testing, Object Oriented System Testing

Unit-VI
Testing Process: Planning, Metrics and Reports, Quantitative and
Qualitative Analysis, Improvements.

Books :
Software Testing Principles, Techniques and Tools, M.G. Limaye, TMH,
(Unit- I and VI)
Software Testing A Craftman’s Approach, Second Edition, Paul C.
Jorgensen, CRC Press. (Unit-II to V)

References:

Software testing by Yogesh Singh. Cambridge University Press, 2012

Introduction to Software Testing, Paul Ammann, Jeff Offutt, Cambridge
University Press.

Managing the Testing Process: Practical Tools and Techniques for
Managing Hardware and Software Testing, Rex Black, Wiley.

Software Testing, Second Edition, Ron Patton, SAMS

Software Testing, Perry, Wiley India.

Software testing by Sandeep Desai, Abhishek Srivastava. (PHI) EEE
edition.

Term Work:
Assignments: Should contain at least 6 assignments (one per unit)
covering the Syllabus.

Practical:

1. Prepare a small project and submit SRS, design, coding and test plan.

2. Study of any one of the testing tools. (e.g win runner, test direct, etc)

3. MANUAL TESTING for the project

a. Walkthrough

b. Whitebox Testing

c. Blackbox Testing

d. Unit Testing

e. Integration Testing

4. Functional Testing

a. Boundary value Testing

b. Equivalence class testing

c. Decision Table based testing

d. Cause-effect graphs

5. Structural Testing

a. Path testing

b. Data-flow testing

6. Regression Testing (use VTEST tool) using automated testing for
website.

7. AUTOMATED TESTING for websites

a. Load Testing (use WAPT)

b. Performance Testing (use WAPT)

8. Implement the process Object oriented testing

9. For automated testing, design the test plan and test cases for
integration testing on the given case.

10. For automated testing, design the test plan for unit testing.



1

1
INTRODUCTION

Unit Structure :

1.0 Introduction

1.1 What is Quality?

1.1.1 Factors of Quality

1.2 Customers View of Quality

1.3 Suppliers View of Quality

1.3.1 Expectations

1.4 Financial Aspects of Quality

1 .5 Organisation Culture

1 .5.1 Difference between Quality culture in Q & Quality Culture in q

1.6 Software Development Model

1.6.1 List of Software Development model

1.6.1.1 Waterfall Development model

1.6.1.2 Iterative Development model

1.6.1.3 Incremental Development model

1.6.1.4 Spiral Development model

1.6.1.5 Prototyping Development model

1.6.1.6 Rapid Application Development model

1.6.1.7 Agile Development model

1.6.1.8 Maintenance Development model

1.7 Questions

1.8 Further Reading

1.0 INTRODUCTION

In early days, Product quality was governed by the Humans
skills which used to differ from person to person as the process of creating
that product differs. Every product was considered as a separate project &
every instance of the manufacturing process let to products of different
quality attributes. Due to increase in demand, product specialization &
mass production came into picture which leaded to technological
development.

In the new era, where mass production needs specialized domain
knowledge & manufacturing skills for product creation in huge
quantities. The market is growing day by day, and to sustain it is

2

important to maintain the individual product identity in terms of quality.
There are one or more similar products exists in the market which fulfils
similar needs. They may differ from one another to some extent based on
their cost, delivery schedule to acquire it, features & functionalities. They
are called as attributes of quality of a product.

1.1 WHAT IS QUALITY?

For us quality means, an idea to shortlist a product or select the best
from the given range of similar products. We may not aware of the complete
idea behind choosing a product over the other. This is the major issue faced
by the people working in quality field even today as it is very difficult to
decide what contributes customer loyalty or first-time sale and subsequent
repeat sale. The term „quality‟ may differ from person to person. For
some people quality means a defect-less product, some might think it as a
product which matches his/her expectations, matches his/her concept of cost
& delivery schedule along with the services offered. In short, we can
say ‘Quality Is fitness for use’.

1.1.1 Factors of Quality or Core components of Quality

1. Quality is based on Customer Satisfaction:
a. The effect of quality product delivered & used by a customer, on his

satisfaction and delight is the most important factor in determining
whether quality has been achieved or not.

b. It talks about the ability of a product or service to satisfy a customer by
fulfilling his/her needs.

2. The organisation must define Quality parameters before it can be
achieved:

a. It is difficult for the manufacturer to achieve the quality of product
without knowing what customer is looking for.

b. So, each organisation should decide some parameters through which
they can achieve quality. Following are the parameters the organisation
should look for,

c. Define: Defining the product in terms of features, functionalities,
attributes & characteristics of a product.

d. Measure: The quantitative measures must be defined as an attribute of
quality of a product. Measurement also gives a gap between what is
expected by a customer & what is delivered to him when the product is
sold.

e. Monitor: There must be a mechanism used by the manufacturer to
monitor the development, testing and delivering of a product process.

f. Control: Control gives the ability to provide desired results & avoid the
undesired things going to a customer.

3

g. Improve: Continuous improvement are necessary to maintain ongoing
customer satisfaction & overcome the possible competition.

3. Management must lead the organisation through improvement
efforts:

a. Quality must be taken into consideration to achieve the customer
satisfaction.

b. Management should decide on the vision, mission, policies, objectives,
goals etc. to improve the Quality improvement program.

c. And the same must be followed by the employees which is called as
cultural change brought in by management.

4. Continuous process:

a. Earlier it was expected that the customer should inspect the product and
report to the manufacturer for any kind of defects.

b. Further it is the responsibility of the manufacturer to work on the defects
and bear the cost of fixing those defects.

c. This added to further loss to the manufacturer as well as the right of
getting a good product is withdrawn form customer.

d. For improving the quality and to have a win-win situation for both
manufacturer & customer, quality must be produced at the first time and
must be improved continuously.

1.2 CUSTOMERS VIEW QUALITY

When customer pays some cost to get a product, he/she expects of
getting a better product at a defined schedule, cost & with adequate service
along with required features & functionalities. He finds value of the
product in all such acquisitions.

1.2.1 Following are the factors affecting the Customers view towards
quality:

1. Delivering a right product:
The product delivered to the Customer must satisfy all their needs

and expectations. Even during the requirements gathering phase of Software
Development Lifecycle (SDLC), business analyst or system designer must
consider views of the customer to decide the validity of the product
requirements.

2. DtisLyi\L C 1&XVUr’sPNUUIVL
A product may or may not be the best product as per the given

constraints & requirements by the customer from the manufacturer’s point
of view. But the basic concept is, “product must be capable of satisfying

4

customer needs”. They may be part of processes for doing requirement
analysis and selection of approach for designing based on decision
analysis & resolution which comes under product development and
delivery.

3. Meeting Customer Expectations:
A customer has two types of expectations – expressed

expectations and implied expectations. Expressed expectations are
documented and given formally whereas implied expectations are those
which are neither documented nor forms a part of requirement
specifications. It is the duty of Developing Organisation to note as many
implied expectations as possible to expressed definitions.

4. Treating every Customer with Integrity, Courtesy, and
Respect: We should remember that the customer is the owner of the
requirements and Organisation must understand that Customer understands
what is required by him/her. The major responsibility of the Developing
Organisation lies in fulfilling these requirements. Manufacturer cannot
push his requirements on the customer. Customer queries over calls or
mails must be clarified timely and with courtesy. The information thus
provided should be accurate. Organisation must understand the Customer
is the purpose of the business.

1.3 SUPPLIER’S VIEW OF QUALITY:

Supplier’s needs must be satisfied by producing a product &
selling it to Customer. The needs can vary from profitability, reputation in
the market, customer satisfaction etc.

1 .3.1 These expectations can be fulfilled in following ways,

1. Doing the Right Things:
Supplier is intended to do things right for the first time. Repetition

of work, waste, scrap etc. involves more cost. Changes in the requirements
phase causes rework of design, development, testing etc. This adds to the
cost of development but if the budget remains the same then it‟ s a huge loss
to the company.

2. Doing it the Right way:
Every supplier has their own strategy or process to develop a

product. Sometimes, Customer may impose their development process to
manufacture a product. The development organisation should capable
enough of accommodating the new process to produce the product as
required by the customer. The process definition must be the outcome of
quality standards or models or business models.

5

3. Doing it Right the First time:
Doing right things at the first time may avoid frustration, scrap,

rework etc. & improve profitability, reduce cost & improve customer
satisfaction for the supplier. Doing right things at the first time improves
performance, productivity & efficiency of a manufacturing process.

4. Doing it on Time:
The resources required to develop a product are scarce and

involves cost. The value of money changes with time. If the customer is
expected to pay on each milestone, the producer must deliver milestones
on time to realise money on time.

1.4 FINANCIAL ASPECT OF QUALITY

Earlier, people believed more price of a product represents
better quality as it involves more inspection, testing, sorting etc. and
ensures that only good parts are supplied to the customer. The sales price
was defined as,

Sales Price=Cost of manufacturing + Cost of Quality + Profit

If we consider the monopoly way of life, this approach may be
considered good since the price is decided by the manufacturer depending
upon three factors described above. If any product enjoys higher
profitability, more number of producers would enter competition.

Thus, in a competitive environment, the equation changes to,

Prof it=Sales Price- [Cost of manufacturing + Cost of Quality]
1. Cost of Manufacturing: It is a cost required for developing the

right product by right method at the first time. All the money
involved in resources like material, people, licenses etc., forms a cost
of manufacturing. The cost of manufacturing remains constant over the
time span for the given technology & it has a direct relationship with
the efforts.

2. Cost of Quality:

a. Cost of Prevention: An organisation may define processes, guidelines,
standards of development, testing so they also impart training
programs to all the people involved in development & testing. This may
represent cost of Prevention. For example, creation & use of formats,
templates, various process models & standards etc.

b. Cost of Appraisal: An organisation may perform various levels of reviews
and testing to appraise the quality of the product and the process
followed for developing the product.

c. Cost of Failure: Cost of failure starts when a defect or violation is
detected at any stage of development including post-delivery efforts

6

spent on defect fixing. For example, any extent of rework, retesting,
sorting, scrapping, regression testing, late payments, sales under
concession etc.

1.5 ORGANISATION CULTURE

Organisation culture is based on their philosophy of existence,
management perception & employee involvement in defining future.
Quality improvements are required to bring in the change in Organisation
culture. „Q‟ organisations are more quality conscious than „q‟

organisations. The difference between both is elaborated with the following
table,

1 .5.1 Difference between Quality culture in Q & Quality Culture in q :

Quality Culture is „Q‟ Quality Culture is „q‟

1. Organisations under this
category listens to Customer
to understand their
requirements.

1.
Organisations under this
category assumes that they know
the customer requirements.

2. They are into finding the
cost of Quality & also
behind minimising the cost
of failure.

2. They overlook cost of poor
quality & hidden factory effect.

3. Doing things right for the first
time & which is the motto of
their success.

3. Doing things again and again
to make it right, is their way of
working.

4. It concentrates on
continuous/continual process
improvement to eliminate
waste & get better output.

4. They work on finding & fixing
the problem when it is found.

5. They take ownership of
processes & defects at all
levels.

5.
They try to assign responsibility
of defects to someone else.

6. They demonstrate leadership
& commitment to quality &
customer satisfaction.

6. They believe in assigning
responsibility for quality to
others.

1.6 SOFTWARE DEVELOPMENT MODEL

It defines how the software is being built. It is also called as
Software Development Life Cycle (SDLC). There are many approaches
used for software development.

1.6.1 Following is the list of different models used for Software
development,

7

1. Waterfall Development Model

2. Iterative Development Model

3. Incremental Development Model

4. Spiral Development Model

5. Prototyping Development Model

6. Rapid Application Development Model (RAD)

7. Agile Development Model

8. Maintenance Development Approach/Model

1.6.1.1 Waterfall Development Model:

a. It is the simplest of all.

b. Though it is always desirable to use waterfall model but it is not always
feasible to use it.

c. It has a natural timeline where tasks are executed in a sequential
fashion.

d. We start at the top of the waterfall with a feasibility study and flow
down through the various project tasks finishing with implementation
into the live environment.

e. Design flows through into development, which in turn flows into build,
and finally on into test.

f. Typical waterfall model looks like this,

8

g. Arrows in waterfall model are unidirectional.
h. It assumes that the requirements are finalised and conveyed to the

development team in one go.
i. These requirements are converted to High Level & Low-Level designs

and are implemented using coding.
j. Code is integrated, tested and final output is deployed at Customer’s

premises. Furthermore, maintenance takes place.

1.6.1.2 Iterative Development Model:

a. It is more practical as compared to waterfall model.

b. Not all life cycles are sequential.

c. There are also iterative or incremental life cycles where, instead of one
large development time line from beginning to end, we cycle
through several smaller self-contained life cycle phases for the same
project.

d. It does not assume that the requirements are finalised in one go.

e. Changes may have cascading effects where one change may initiate a
chain of reaction of changes.

f. Limitations are: It takes many cycles of waterfall model. Due to number
of changes the design becomes fragile.

9

1.6.1.3 Incremental Development Model:

a. This model is suitable for huge systems, where these systems are divided
in small subsystems and development takes place.

b. Further, these sub systems can be developed using waterfall model or
iterative development model.

c. These subsystems may be connected to each other externally, either
directly or indirectly.

d. A directly interconnected system allows the subsystems to talk with
each other while indirectly interconnected system has some
interconnecting application between two subsystems.

Limitations of the Incremental model are, system developed by different
vendors has an issue of integration as parameter passing between different
systems may be difficult. When a system is incremented with new
subsystems, it changes the architecture of that system.

1.6.1.4 Spiral Development Model:

a. It assumes that customer requirements are obtained in multiple iterations
& development also works in iterations.

b. First some functionalities are added, then product is created and released
to customer.

c. By looking at the first iteration of implementation, the customer may add
another chunk of requirements to the existing one.

10

d. Further, additional requirements tend to increase the size of the software
spiral.

e. Limitations are as follows, Spiral model represents requirement
induction as the software is being developed. Sometimes, it may lead
to refactoring & changes in approach where initial structures become
non-usable. It also needs huge regression testing.

1.6.1.5 Prototyping Development Model:

a. It has a top-bottom approach of development. It is also called as „Reverse
Integration Process.

b. Major challenge in software development is to of procuring and
understanding the customer requirements for the product.

c. Prototyping is one of the solutions for it.

d. In prototyping, initially a prototype model is created just like a
cardboard model and it is shown to the Customer for further feedback.

e. This gives an idea to the customer of this product is going to be and can
expect given set of requirements.

f. It helps the development team to understand the look & feel of the
project. g. Limitations are as follows, Customer might feel by looking
at the prototype that the system is ready and may pressurise the
development team to deliver it immediately.

1.6.1.6 Rapid Application Development Model (RAD):

a. Rapid Application Development doesn’t mean developing the software
product rapidly.

b. It means that, during the first meeting of requirements gathering,
development team gets only few requirements say about 5 to 6.

c. Development team designs the system, code it, test it and deploy it at the
customers place.

d. Once the product is released customer gets the better understanding of
his/her expectations.

11

e. Though the process is like Spiral model but it’s different.

f. Limitations are as follows, change in approach & refactoring are the
major constraints of RAD. It also involves huge cycles of retesting and
regression testing.

1.6.1.7 Agile Development Model:

a. They are used widely these days due to their dynamic nature & easy
adaptability to the situation.

b. User can keep on adding the requirements at any stage of development
lifecycle and subsequently development team has accepted those
changes.

c. It gives complete freedom to the user to add requirements at any stage of
development.

d. The focus is to provide a working software rather than achieving
requirements definition.

e. Agile involves many development methodologies. Some of them are
as follows,
a. Scrum
b. Extreme Programming
c. Feature driven Development
d. Test Driven Development

f. Following are the principles on which Agile works,

a. Individuals & interactions are more important for „fitness of use.

b. Releasing „working software at each stage rather than focussing on
customer deliverables.

c. To deliver working software, customer collaboration is utmost
important.

d. Quick response to the changes required by the customer at any
point of time is the key to success for Agile.

1.6.1.8 Maintenance Development Approach/Model:

a) Major cost of development or may be amount of success of the software
development lies in Maintenance phase.

b) New functionalities may be required due to changing business needs.
c. Maintenance activities forms 4 different groups,

c) Bug fixing: Defects present in the current software are fixed using
retesting & regression testing.

d) Enhancement: New functionalities are added as per the business needs
or change in user requirements.

e) Porting: Old software is brought into new software. This process involves
only change in code and not a change in functionalities.

f) Reengineering: Change in the logic or algorithm, due to changes in the
Business environment.

12

1.7 SOFTWARE QUALITY CONTROL APPROACH

As organisations shifts from „q‟ to „Q‟ , a product is subjected to
heavy inspection, rework, sorting, scrapping etc. to ensure that no defects
are present in final deliverables to the customer.

„Q‟ organisations concentrate on defect prevention through process
improvements. It targets for first-time right. Following diagram shows an
improvement process where focus of quality changes gradually,

1. Quality Control:

a. This is the oldest approach in engineering, where the product is tested
until all the defects are fixed.

b. This process includes rework, defect fixing, scrap, rework, segregation
etc.

c. All the „q organisation follows this approach, and thinks the product is
good if it has no defects which goes to the extent of quality
improvement until the product delivery has been made & it is
delivered to the customer.

2. Quality Assurance Approach:

a. It is the next stage of improvement of Quality control where the focus
shifts from testing & fixing the defects to first-time right.

b. An organisation becomes a learning organisation as it shifts its
approach from „Quality Control to „Quality Assurance.

c. They also involve „root cause analysis to shift their focus from
corrections to corrective actions.

3. Quality Management Approach:

a. There are 3 kinds of systems in the Universe, they are

i) Completely closed Systems: It represents that nothing can enter

13

inside the system and nothing can go out of the system.

ii) Completely Open Systems: It represents a direct influence of
universe on the system & vice-versa.

iii) Systems with semipermeable boundaries: They are
the realities as Completely Closed system or completely
open systems doesn‟ t exist. Systems with semipermeable boundaries are
the realities, which allow the system to get impacted from
external changes & also have some effects on external
environment.

b. Organisations try to assess the impact of the changes on the system &
try to adapt to the changes in the environment to get the benefits.

c. They are highly matured when they implement Quality Management
as a management approach.

d. Organisation starts working on defect prevention mechanism for
continuous improvement plans.

e. Organisation defines methods, processes & techniques for future
technologies & training programs for process improvements.

f. It also involves mentoring, coaching, & guiding people to do better
work to achieve organisational objectives.

1.8 QUESTIONS:

1. What are the factors of Quality?

2. Define Quality. Define Customer‟ s view of Quality.

3. Differentiate between „Q‟ organisation & „q‟ organisation.

4. Differentiate between Software Quality Assurance and Software Quality
Control.

5. Describe any one Software development model.

1.9 FURTHER READ

1. Software Testing Principles, Techniques and Tools, M.G. Limaye,
TMH

2. Software testing by Yogesh Singh. Cambridge University Press, 2012
3. Introduction to Software Testing, Paul Ammann, Jeff Off utt, Cambridge

University Press.
4. Managing the Testing Process: Practical Tools and Techniques for

Managing Hardware and Software Testing, Rex Black, Wiley




14

2

SOFTWARE QUALITY

Unit Structure :

2.1 Software Quality Control

2.1.1 Software Quality Management

2.1.2 Total Quality Management

2.1.2.1 Quality Principles

2.1.3 Relationship between Quality & Productivity

2.2 Software Defects

2.2.1 Software Testing

2.2.2 Principles

2.2.3 Challenges

2.2.4 Verification

2.2.5 Validation

2.2.6 Approaches to Testing

2.2.7 Big Bang Approach

2.2.8 VV Model

2.3 Questions

2.4 Further Reading

2.1 SOFTWARE QUALITY CONTROL

2.1.1 Software Quality Management:
1. Correction: This is the stage where defect is found and is corrected at

the same time.
2. Corrective actions: Every defect raised needs be solved using some

root cause analysis. Root-cause analysis is initiated to remove root
causes so that these kinds of errors does not occur in future.

3. Preventive actions: Since root cause of the problems, other potential
weak areas are identified. Preventive action means that there are
potential weak areas where defect has not been found till that point, but
there exists a probability of finding defect.

2.1.2 Total Quality Management:
This principle intends to view internal and external customers as

well as internal and external suppliers for each process, project and for
entire organisation. Each supplier eventually becomes a customer at some
moment and vice versa. If one can take of his/her customer with an
intention to satisfy him, it may result into customer satisfaction &

15

continual improvement for the organisation.

Dr Edward Deming implemented quality management system
driven by ‘Total Quality Management’ and ‘Continual Improvement’ in
Japanese environment. It resulted into repetitive, cost effective processes
with an intention to satisfy customer requirements and achieve customer
satisfaction.

2.2.1 Quality principles of ‘Total Quality Management’:

1. Develop constancy of purpose of definition & Deployment of
various initiatives: Suppliers & organisation must have an
intent to become competitive in the world, to stay in business & to
provide jobs to the people & welfare of the society.

2. Adapting to new philosophy of managing people/stakeholders by building
confidence and relationships: Management must adopt to the new
philosophies of doing work & getting the work done from its people and
suppliers.

3. Declare freedom from mass inspection of incoming/produced output: It
was believed that one must check everything to ensure that no defect
goes to customer.

4. Stop awarding of lowest price tag contracts to suppliers: Organisations
must end the practice of comparing unit purchase price as a criterion of
awarding contracts.

5. Improve every process used for development and testing of product:
Every process of planning, production & service to the customer & other
support processes constantly.

6. Institutionalise training across the organisation for all people: It must
institute modern methods of training, self-study etc.,

7. Institutionalise leadership throughout organisation at each level: An
organisation must adopt and institute leadership at all levels’ with the
aim of helping people to do their jobs in a better way.

8. Drive out fear of failure from employees: An organisation must
encourage effective two-way communication and other means to drive
out fear of failure from the minds of all the employees.

16

9. Break down barriers between functions/departments: People in different
areas must work as a team to tackle problems that may be
encountered with products and customer satisfaction.

10. Eliminate exhortations by numbers, goals, targets: The organisation
shall have methods to demonstrate that the targets can be achieved
with smart work.

11. Eliminate arbitrary numerical targets which are not supported by
processes: Eliminate work standards that prescribe quotas for the work
force and numerical goals for managers to be achieved.

12. Permit pride of workmanship for employees: Remove the barriers that
take away the pride of workmanship for workers and management.

13. Encourage Education of new skills and techniques: Advances in
competitive position will have their roots in knowledge gained by
people during such trai ni ngs.

14. Top management commitment and action to improve continually: It is
not sufficient that the top management commits for quality and
productivity, but employees must also see and perceive their
commitment.

2.2.3 Relationship between Quality & Productivity:

Many people feel that more inspection cycles mean finding more
defects, fixing defects mean better quality which ultimately gives good
quality product. If the processes of development & testing are good, a bad
product will not be manufactured in the first place. Thus, quality must
improve productivity by reducing wastage.

1. Improvement in Quality directly leads to improved Productivity: All
products are the outcome of processes, and good processes must be
capable of producing good product at the first instance.

2. The hidden factory producing scrap, rework, sorting, repair and
customer complaint is closed: Problems in products can be linked to
faulty development processes.

3. Effective way of improving productivity by improving processes:
Productivity improvement means improving several good parts
produces per unit time and not the part produced per unit time.

4. Quality improvements lead to cost reduction: Quality improves
productivity, efficiency and reduces scrap, rework etc.

5. Employee involvement in quality improvement: Management leadership
and employee contribution can make an organisation quality
conscious while lack of either of the two can create major problems.

6. Proper communication between management & employees is essential:
There are huge losses in communication and distortions leading to
miscommunication & wrong interpretation.

17

7. Employees participate and contribute in improvement process: Every
employee needs to play a part in implementation of ‘Total Quality
Management’ in respective areas of working.

8. Employees share responsibility for innovation & quality improvement:
Management provides support, guidance, leadership etc., and employees
contribute their part to convert organisations into performing teams.

2.2 SOFTWARE DEFECTS

After taking so much of precautions while defining &
implementing the processes, doing verification and validation of each
artefact during SDLC, yet nobody can claim that the product is free of any
defects.

Factors responsible for its success/failure:
1) Miscommunication between different entities such as requirements

understanding which leads to defects.
2) Development team is confident about their capabilities and is not ready to

accept the mistake.
3) Requirement changes are dynamic.
4) Technologies are responsible for introducing few defects.
5) Customer may not be aware of all requirements.

Testing is defined as ‘execution of a work product with intent to find
a defect’. The primary role of testing is not to demonstrate the correctness
of software product, but to expose hidden defects so that they can be fixed.
This approach assumes that any amount of testing cannot show that
software product is defect free. If there is no defect found during testing, it
can only show that the scenario & test cases used for testing did not
discover any defect.

2.2.1 Principles of Software Testing
The basic principles of Software Testing are as follows:

1. Define the expected output or result for each test case executed, to
understand if expected & actual output matches or not. Any mismatches
may indicate possible defects. Defects can be in the product or test
case or test plan.

2. Developers must not test their own programs. No defects can be found in
such type of testing as approach-related defects will be difficult to find.
Development teams must not test their own products.

3. Inspect the results of each test completely and carefully. It would help
in root cause analysis and can be used to find weak processes. This
will help in building right processes and improving their capability.

4. Include test cases for invalid or unexpected conditions which are feasible
during production.

18

5. Test the program to see if it does what it is supposed to do or not.

6. Avoid disposable test cases unless the program itself is disposable.
Reusability of test case is important for regression.

2.2.2 Challenges of Software Testing
Testing is a challenging job. Challenges are different on different

fronts. Major challenges faced by the testing team are as follows:

1. Requirements are not clear: Requirements are not clearly mentioned,
sometimes they are incomplete, inconsistent, immeasurable and
untestable. All these create problems in defining the test cases and test
scenarios.

2. Wrong documentation: Requirements may be wrongly documented by
the Business Analyst and wrongly interpreted by System Analyst. They
should understand the workflow thoroughly from the customer.

3. Code logic: It may be difficult to capture, often testers are not able to
understand the code due to lack of technical knowledge.

4. Error handling: It may be difficult to capture. There are many
combinations of errors, and various error messages & controls are
required.

2.2.3 Verification: It is a disciplined approach to evaluate whether a
software product fulfils the requirements or conditions imposed on them
by the standards or processes. It is done to ensure that the processes and
procedures defined by the customer and/or organisation for development &
testing.

Following are the techniques of Verification:

1. Self-Review: It may not be considered as an official way of review,
because it assumes that everybody does a self-check before giving
work product for further verification.

2. Peer Review: It is the most informal type of review where an
author & a peer are involved. Review records are maintained.

3. Walkthrough: It is a semi-formal type of review as it involves larger
teams along with the author reviewing a work product.

4. Inspection: It is a formal review where people external to the team
may be involved as inspectors. They are the ‘Subject Matter
Experts’ who review the work product.

5. Audit: It is a formal review based on samples. Audits are conducted
by the auditors who may or may not be the experts in the given work
product.

2.2.4 Validation: It is used to evaluate whether the final built software
product fulfils its specific intended use. It is also called as ‘Dynamic
Testing’. It must be done by the independent users, functional experts, and
black box testers to ensure independence of testing from development

19

activities. It helps in analysing whether the software product meets the
requirements as specified in requirement statement.
Following are the levels of validation:
1. Unit Testing
2. Integration Testing
3. Interface Testing
4. System Testing
5. Cause & Effect Graphing
6. Path Expression & Regular Expression

2.2.2 Approaches to Testing
There are many approaches to software testing defined by the

experts in software quality and testing. They differ as per the customer
requirements, type of the system etc.,

1. Big-Bang Approach:

a. It means testing the software after the development work is completed.

b. It is also called as ‘System Testing’ or final testing which is
done just before the release.

c. This is the last part of software development as per waterfall model.

d. It emphasised on black box testing to ensure the requirements
as defined and documented in requirement specifications and design
specifications are met successfully.

e. In case of Big-Bang approach, software is tested before delivery using
the executable or final product.

f. It may not be able to detect all the defects as all possibilities cannot be
tested.

g. Sometimes, defects found may not be fixed correctly as analysis and
defect fixing can be a problem.

VV Model:

Fig. shows VV Model (Verification & Validation Model)

20

‘V model’ is also termed as ‘Validation Model’ or ‘Test Model’ as it
mainly considers only validation activities associated with software
development which are popularly known as ‘Testing Activities’.

‘VV Model’ talks about verification & validation activities associated
with software development during entire life cycle.

1. Requirements:

a. Requirement Verification: It is done through inspection of requirement

specification document using checklist, standards or guidelines.

Experts in domain, customer representative, and other stakeholders

may be involved in conducting such an inspection.

b. Requirement Validation: It takes place at two or more stages during
software development. The first stage of validation involves writing
complete use cases by referring to requirement statement. The second
stage is system testing. It also done by having ‘Review’.

2. Design:

a. Design Verification: It may be walkthrough of design document
by design experts, team members and stakeholders of the project.
Project team along with architect/designer may walkthrough the design
to find the completeness & give documents.

b. Design Validation: It can happen at two or more stages during software
development life cycle. The first stage of validation happens when data
flow diagrams can be created by referring to the design document. The
second stage includes integration testing and interface testing.

3. Coding:
a. Code verification: As coding is done, it undergoes a code review. Peer

review helps in identification of errors with respect to coding standards,
indenting standards, commenting standards, and variable declaration
issues.

b. Code validation: It happens through unit testing where individual units
are tested separately. The developer may have to write special
programs so that individual units can be tested.

2.3 QUESTIONS

1. What are the factors of Quality?

2. What is defect? Why defect arises?

3. What are the principles of Software Testing?

4. Define Testing. Why is it necessary?

5. Explain VV Model for testing with a diagram.

21

6. Explain the Big-Bang approach of testing. 7. State the methods
or techniques of Verification.

2.4 FURTHER READ

1. Software Testing Principles, Techniques and Tools, M.G. Limaye,
TMH

2. Software testing by Yogesh Singh. Cambridge University Press, 2012

3. Introduction to Software Testing, Paul Ammann, Jeff Off utt, Cambridge
University Press.

4. Managing the Testing Process: Practical Tools and Techniques for
Managing Hardware and Software Testing, Rex Black, Wiley





22

3

FUNCTIONAL TESTING

Unit Structure

3.0 Objectives

3.1 Functional Testing

3.1.1 Advantages of functional testing

3.1.2 Disadvantage of functional testing

3.2 Boundary Value Analysis

3.2.1 Limitations of Boundary Value

3.3 Robustness Testing

3.4 Worst Case Testing

3.5 Equivalence Class Testing

3.5.1 Weak Normal Equivalence Class Testing

3.5.2 Strong Normal Equivalence Class Testing

3.5.3 Weak Robust Equivalence Class Testing

3.5.4 Weak Robust Equivalence Class Testing

3.0 OBJECTIVES

After completing this chapter, you will be able to:
 Understand the concept of Functional testing.
 Understand the concept of Boundary value analysis and

Equivalence partition.
 Importance and benefits of different testing techniques

3.1 FUNCTIONAL TESTING

Testing based on an analysis of the specification of the
functionality of a component or system.

Functional testing includes all kind of tests which verify a system's
input–output behavior.

To design functional test cases the black box testing methods are
used, and the test bases are the functional requirements. Functional
requirements specify the behavior of the system; they describe "what" the
system must be able to do.

23

Characteristics of functionality, according to [ISO 9126], are
suitability, accuracy, interoperability, and security.

Testing functionality can be done from two perspectives:
requirements-based business-process-based.

Requirements-based testing uses a specification of the functional
requirements for the system as the basis for designing tests.

The table of contents of the requirements specification are used as
an initial test inventory or list of items to test (or not to test). The
requirements are prioritize based on risk criteria which can be used to
prioritize the test cases.

This will ensure that the most important and most critical tests are
included in the testing effort.

Business-process-based testing uses knowledge of the business
processes.

Business processes describe the scenarios involved in the day-to-day
business use of the system.

For example, a personnel and payroll system may have a business
employee joins or leaves the company.

Use cases originate from object-oriented development.

They also take the business processes as a starting point, although
they start from tasks to be performed by users.

Use cases are a very useful basis for test cases from a business perspective

3.1.1: Advantages of functional testing
Functional testing is an essential step in analysing the

performance of a software before it is delivered to the end user.

The shortcomings which can lead to serious consequences can be
realized before the software is placed in the real world for use. To
check if the system meets the compliance requirement and regulatory
guidelines

3.1.2: Disadvantage of functional testing
Functional testing focuses on the input and output behaviour of the

systems.

It doesn’t includes other performance issues that aren’t directly
related to its functions.

24

It doesn’t include functionality to detect logical errors in software.
Possibility of redundant testing.

3.2 BOUNDARY VALUE ANALYSIS

The BVA depends on the concept that errors tend to occur near the
extremities of the input variables.

Strongly typed languages like Ada and Pascal is not suitable for Boundary
value testing as it requires associated data types.

COBOL, Fortran and C is ideal for BVA since they are weakly typed
language

Boundary value analysis (BVA) is based on testing at the boundaries
between partitions.

Range checking is an example of using the boundary value analysis
technique.

BVA concentrated more on the boundary of the input space to identify the
test cases

Most of the programs can be viewed as a function F

The input variables of F will have some possibly boundaries where a,b and
c,d are the range of x1 and x2 respectively:

a ≤ x1≤ b
c ≤ x2≤ d

The basic idea for BVA is to use input variable values at their minimum,
just above minimum, a nominal value, just below their maximum, ad their
maximum
(min, min+, nom, max-, max)

A commercially available tool called as T for BVA

3.2.1 Limitations of Boundary Value
Boundary Value Analysis works efficiently only when the Program

to be tested is a “function of several independent variables that represent
bounded physical quantities” [1].

25

When the required conditions are met BVA works without the problem but
when they are not deficiencies in the output can be noticed.

For example the date generator problem would need more attention towards
the end of February or on leap years because same test cases would be
applied on all months.

The Boundary Value Analysis cannot take into consideration the nature of
a function or the dependencies between its variables. This lack of
understanding for the variable nature means that BVA can be seen as
quite rudimentary

3.3 ROBUSTNESS TESTING

Robustness testing can be seen as an extension of Boundary Value Analysis.

The idea behind Robustness testing is to test for variables that lie in the
legitimate input range and variables that fall just outside this input
domain.

Two more values for each variable (min-, max+) are added such that it fall
just outside of input range

In addition to 5 testing values (min, min+, nom, max-, max), two more
values (min-, max+) are added to fall just outside of the input range

3.4 ROBUSTNESS TESTING

Robustness testing can be seen as an extension of Boundary Value
Analysis. The idea behind Robustness testing is to test for
variables that lie in the legitimate input range and variables that
fall just outside this input domain. Two more values for each variable
(min-, max+) are added such that it fall just outside of input range

In addition to 5 testing values (min, min+, nom, max-, max), two
more values (min-, max+) are added to fall just outside of the input
range

26

3.5 WORST CASE TESTING

Worst cast testing is based on the assumption that if more than one variable
has an extreme value.

To generate test cases consider the original 5-tuple set (min, min+, nom,
max-, max) and perform the Cartesian product of these values.

EXAMPLE
Consider a program to classify a triangle. Its inputs is a triple of
positive integers (say x, y, z) and the data type for input parameters ensures
that these will be integers greater than 0 and less than or equal to 100. The
program output may be one of the following words:

[Scalene; Isosceles; Equilateral; Not a triangle]
Design the Boundary value test cases.
Standard boundary value min =1
min+ = 2
nom = 50
max- = 99
max = 100

Boundary Value Analysis Test Cases
Case x y z Expected Output
1 50 50 1 Isosceles
2 50 50 2 Isosceles
3 50 50 50 Equilateral
4 50 50 99 Isosceles
5 50 50 100 Not a triangle
6 50 1 50 Isosceles
7 50 2 50 Isosceles
8 50 99 50 Isosceles
9 50 100 50 Not a triangle
10 1 50 50 Isosceles
11 2 50 50 Isosceles
12 99 50 50 Isosceles
13 100 50 50 Not a triangle

27

3.6 EQUIVALENCE CLASS TESTING

Equivalence class testing is based on creating partitions. It
removes the redundancy gaps that appears in the boundary value analysis
Input or output data is grouped or partitioned into sets of data that is
expected to behave similarly using an Equivalence relation. An equivalence
relation describes how data is going to be processed when it enters a
function.

The equivalence class testing requires to test only one condition
from each partition. This is because all the conditions in one partition will
be treated in the same way by the software.

If one condition in a partition works, then all the conditions in that
partition will work, and so there is little point in testing any of these others.

Conversely, if one of the conditions in a partition does not work,
then we assume that none of the conditions in that partition will work so
again there is little point in testing any more in that partition Consider a
function of two variables x1 ,x2 having the following boundaries and
intervals within the boundaries:

a ≤ x1≤ d with interval [a,b)[b,c)[c,d) c ≤ x2≤ d with interval [e,f)[f,g)
where closed and open intervals are denoted by square and round parentheses

3.6.1 WEAK NORMAL EQUIVALENCE CLASS TESTING
Weak equivalence class testing is based on the single fault assumption.
It states that the testing is accomplished by using only one variable from
each equivalence partition

3.6.2 STRONG NORMAL EQUIVALENCE CLASS TESTING
Strong equivalence class testing is based on the multiple fault

assumption. The assumption is based on the cartesian product equivalence
partitions therefore strong equivalence class testing tests every combination
of elements formed as a result of the Cartesian product of the Equivalence
relation

28

3.6.3 WEAK ROBUST EQUIVALENCE CLASS TESTING
Weak Robust equivalence class testing is also known as the

traditional equivalence class testing. The weak part refers to the single fault
assumption and robust refers to the consideration of invalid values. Test
case will have one invalid value and the remaining values will all be valid
from each partition. Problems with weak robust equivalence class testing is
that the expected output for the invalid input is not specified

3.6.4 STRONG ROBUST EQUIVALENCE CLASS TESTING The
strong part refers to the multiple fault assumption and robust refers to the
consideration of invalid values. This form of Equivalence Class testing
produces test cases for all valid and invalid elements of the Cartesian
product of all the equivalence classes.

The main problem with strong robust equivalence is the massive
redundancy.

Testers use a specification which tells them what the expected
outputs should be when entering test cases into a system. More often, the
specification will not identify expected outputs for invalid test cases. This
means that testers have to spend excessive time defining expected outputs
for invalid test cases

29

EXAMPLE
Consider a program to classify a triangle. Its inputs is a triple of

positive integers (say x, y, z) and the data type for input parameters ensures
that these will be integers greater than 0 and less than or equal to 100.
The program output may be one of the following words:

[Scalene; Isosceles; Equilateral; Not a triangle]

Design the Equivalence class test cases.

Four possible outputs: Not a Triangle, Isosceles, Equilateral, Scalene
Equivalence partitions

R1 = {x, y, z : 0 .. 100 | equilateral_triangle (<x,y,z>) }
R2 = {x, y, z : 0 .. 100 | isoceles_triangle (<x,y,z>) }
R3 = {x, y, z : 0 .. 100 | scalene_triangle (<x,y,z>) }
R4 = {x, y, z : 0 .. 100 | not_a_triangle (<x,y,z>) }

Condition for triangle : sum of two sides should be greater than the third
side.

Weak Normal Test Cases
Test case x y z

Expected output

1 40 40 40 Equilateral
2 40 40 50 Isosceles
3 50 40 30 Scalene
4 20 10 50 Not a triangle

Weak Robust Test Cases
Test case x y z Expected

output
1 -1 5 5 Invalid range
2 5 -1 5 Invalid range
3 5 5 -1 Invalid range
4 201 5 5 Invalid range
5 5 201 5 Invalid range

6 5 5 201 Invalid range

3.7 QUESTIONS

1. Explain equivalence class testing. How does weak normal differ from
strong normal form of equivalence class testing?

2. What is functional Testing? Explain its advantages and disadvantages.

3. Differentiate between strong equivalence class testing and weak
equivalence class testing.

30

4. What is boundary value testing? List all the limitations of boundary
value testing.

3.8 FUTHER READING

 6PItwZDU HLI tinHVWLCrJLI D n’UDIWprPDch by
Paul C Jorgensen

 Software Testing by Yogesh Singh University Press 2012
 http://www.cs.swan.ac.uk/
 http://softwaretestingfundamentals.com/functionaltesting/
 https://dzone.com/articles/what-is-functional-testingtypes-tips-

limitations




























31

4


DECISION TABLE

Unit Structure

4.0 Objectives

4.1 Decision Table

4.1.1 Advantages of Decision base testing

4.1.2 Decision Table creation using triangle problem

4.2 Retrospective on Functional testing

4.2.1 Test Efforts

4.2.2 Test Efficiency

4.2.3 Test Effectiveness

4.0 OBJECTIVES

After completing this chapter, you will be able to:
 Understand the concept of Decision based testing.
 Retrospect functional testing.

4.1 DECISION TABLE – BASED TESTING

The techniques of equivalence partitioning and boundary value
analysis are often applied to specific situations or inputs.

A decision table is a good way to deal with combinations of things
(e.g. inputs).

This technique is sometimes also referred to as a 'cause-effect' table.

If different combinations of inputs result in different actions being
taken, this can be more difficult to show using equivalence partitioning and
boundary value analysis, which tend to be more focused on the user
interface.

Decision tables – based testing is more focused on business logic
or business rules

Decision tables provide a systematic way of stating complex
business rules, which is useful for developers as well as for testers.

32

4.1.1: Advantages of Decision based testing
Decision tables can be used in test design whether or not they are

used in specifications, as they help testers explore the effects of combinations
of different inputs and other software states that must correctly implement
business rules.

Helping the developers do a better job can also lead to better
relationships with them Decision tables aid the systematic selection of
effective test cases and can have the beneficial side-effect of finding
problems and ambiguities in the specification.

It is a technique that works well in conjunction with equivalence
partitioning.

COMPONENT OF DECISION – BASED TESTING:
Stub portion: the left most column
Entry: the right most column
Condition: noted by c‟ s

Action: noted by a‟ s, a column in the entry portion is the rule

Thus there are condition stubs, condition entries, action stubs and action
entries.

A column in the entry portion is called rule, Rules indicate which actions

In figure given the inputs in this given table derive the outputs
depending on what conditions these inputs meet. The table consist of „Dont
care entries‟ normally viewed as being false values which dont require the
value to define the output. Tables using binary conditions are known as
limited entry decision tables and the one using multiple conditions are
known as extended entry decision tables.

Condition Rule 1 Rule 2 Rule 3 Rule 4
Condition1 T T F F
Condition1 T F T F

Action1   ☓ ☓

Action2 ☓   

4.1.2 Decision table creation using Triangle Problem Decision
table stub conditions and the type of decision table are important while
creating a Decision table. Limited Entry decision tables are easier to create
than extended entry tables. Step One – List All Stub Conditions Three
inputs are taken

Conditional checks are performed to calculate if its a triangle

If so then what type of triangle it is.

33

The first condition must check whether all 3 sides constitute a
triangle, no other checks to be performed if the answer is false. Then
the remainder of the conditions will check whether the sides of the
triangles are equal or not. As there are only three sides to a triangle means
that we have three conditions when checking all of the sides.

So the condition stubs for the table would be:
 a, b, c form a triangle?
 a = b?
 a = c?
 a = c?

Step Two – Calculate the Number of Possible Combinations (Rules)

Use the following formula:
Number of Rules = 2Number of Condition Stubs
Number of Rules = 24 = 16
So there are 16 possible combinations in the decision table.
Step Three – Place all of the Combinations into the Table

C1: a,b,c forms a triangle? N Y Y Y Y Y Y Y Y

C2: a=b? - Y Y Y Y N N N N

C3: a=c? - Y Y N N Y Y N N

C4: b=c?   X X X X X X X

Step Four – Check Covered Combinations

Precautionary step to check for errors and redundant and inconsistent rules.

Step Five – Fill the Table with the Actions

For the final step of creating a decision table fill the Action Stub and Entry
sections of the table.

After completing the decision table and adding the actions.

Each action stub is exercised once, the “impossible” action is also added
into the table

34

C1: a,b,c forms a
triangle?

N V V V V V V V V

C2: a=b? - V V V V N N N N

C3: a=c? - V V N N V V N N

C4: b=c? - V N V N V N V N

A1: Not a triangle X

4.2 RETROSPECTIVE ON FUNCTIONAL TESTING

Retrospective means “looking back or dealing with past events or
situations”.

Basic purpose of retrospective is to find out: What went well, What
didn’t went well, Improvement Areas Retrospective of function Testing is
useful if there is an important issue that the tester need to understand
correctly, or if the test cases has behaved in a way that the tester cannot
understand.

4.2.1 Test efforts
Boundary value technique have no recognition of data or logical

dependencies. It is very mechanical in the way it generate test cases,
because of this they are very easy to automate

The equivalence class techniques pay attention to data dependencies and
to the function itself

More thought process is required to identify the equivalence class after that
the process is also mechanical

The decision table technique is the most sophisticated because it required to
concentrate on both data and logical dependencies

x

x x x

x

x xx

A2: Scalene

A4: Isosceles

A6: Equilateral

A8: Impossible

35

4.2.2 Testing efficiency
The intuitive notion is that a set of test cases is right that is there is

no gaps and no redundancy

When several test cases with same purpose is considered, redundancy
is observed Detecting gaps are harder if only functional testing been used
The best method will be to perform two methods of testing. In general
more sophisticated methods will help to recognise gap with respect to the
specification

4.2.3 Testing effectiveness
The easy choice is to be dogmatic: mandate a method, use

generate test cases and then run the test cases. This is an absolute method and
conformity is measurable

There exist twin possibilities of gaps of untested functionality and
redundant tests

4.3 QUESTIONS

1. A rectangle program accepts four integers as lengths for four sides
of length from 1 to 100, inclusively. The output of the program is to
determine whether the inputted numbers can form a rectangle, square
or neither of these. Create a decision table for the above problem with
any five rules. Provide a test case for each given rule.With the help of
an illustrative example, explain how decision table can be used for
testing.

2. Explain decision tables with an example.
3. Discuss the advantages and disadvantages of decision table
4. What is retrospection? Explain with reference to functional testing.

4.4 FUTHER READING

 6PItwZDU HLI tinHVWLCrJLI D n’UDIWprPDch by
Paul C Jorgensen

 Software Testing by Yogesh Singh University Press 2012
 http://www.cs.swan.ac.uk/
 http://softwaretestingfundamentals.com/functionaltesting/
 https://dzone.com/articles/what-is-functional-testingtypes-tips-

limitations



36

5

PATH TESTING

Unit Structure :

5.0 Objectives

5.1 Introduction

5.2 Definition

5.3 Program graph construction

5.3.1 Unstructured Graph

5.4 DD-Path

5.5 Test Coverage Metrics

5.5.1 Metric-Based Testing

5.5.2 Test Coverage Analyzers

5.6 Basic Path Testing

5.6.1 McCabe’s Basic Path Method

5.7 Essential Complexity

5.8 Questions

5.9 Further Reading

5.0 OBJECTIVES

After completing this chapter, you will be able to:
 Understand the concept of path testing.
 Understand the concept of coverage metrics for testing.

5.1 Introduction

The characteristics of structural programming method is that, it is
based on source code of the program and not on the specification Path
testing is a structural testing method that involves using the source
code of a program to attempt to find every possible executable
path.

The idea is to test each individual path in as many ways as possible
in order to maximise the coverage of each test case.

This gives the best possible chance of discovering all faults within a
piece of code.

37

The fact that path testing is based upon the source code of a
program means that it is a white box testing method.

5.2 DEFINITION

Program graph is a directed graph in which nodes are statement
fragments and edges represent flow of control

5.3 PROGRAM GRAPH CONSTRUCTION

 Program graphs are a graphical representation of a program’s
source code.

 The nodes of the program graph represent the statement fragments of
the code, and the edges represent the program’s flow of control.

 Figure 1.1 shows pseudocode for a simple program that simply
subtracts two integers and outputs the result to the terminal.

 The number subtracted depends on which is the larger of the two; this
stops a negative number from being output.

1. Program ‘Simple Subtraction’
2. Input (x, y)
3. Output (x)
4. Output (y)
5. If x > y then DO
6. x – y = z
7. Else y – x = z
8. EndIf
9. Output (z)
10. Output “End Program´

Figure 1.1 Pseudocode for the simple subtraction program.

The construction of a program graph for this simple code is a basic task.

Each line number is used to enumerate the relevant nodes of the graph.

It is not necessary to include basic declarations and module titles in the
program graph, and so line 1 of the pseudocode in Figure 1.1 will be
ignored.

For a path to be executable it must start at line 2 of the pseudocode,
and end at line 10. These nodes are known as source and sink node
respectively.

The importance of the program graph is that program executions
correspond to paths from source to the sink nodes

38

It depicts the relationship between the test case and the part of the
program it exercises.

The figure 1.2 is the graph of the simple program

Starting at the source node and ending at the sink node, there exist
two possible paths.

The first path would be the result of the If-Then clause being taken,
and the second would be the result of the Else clause being taken. Nodes 2
through to 4 and nodes 9 to 10 are sequences. This means that these
nodes represent simple statements such as variable declarations,
expressions or basic input/output commands. Nodes 5 through to 8 are a
representation of an if then-else construct,

5.3.1 Unstructured Graph
Program graph would be much more complex to test, solely because

if it is unstructured.

The reason behind this lack of structure is due to the program graph
containing a loop construct in which there exists internal branching.

As a result, if the loop from node G to node A had 18
r e p e t i t i o n s , i t w o u l d s e e t h e n u m b e r o f distinct possible
execution paths rise to 4.77 trillion [Jorgensen, 2002].

This demonstrates how an unstructured program can lead to
difficulties in even finding every possible path, while testing each path
would be an infeasible task.

39

5.4 DD-Path

The best known form of structural testing is based on
construct known as decision to decision path

The reason that program graphs play such an important role in structural
testing is because it forms the basis of a number of testing methods,
including one based on a construct known as decision-to-decision paths
(DD-Paths).

The idea is to use DD-Paths to create a condensation graph of a piece of
software’s program graph, in which a number of constructs are collapsed
into single nodes known as DD-Paths.

DD-Paths are chains of nodes in a directed graph that adhere to certain
definitions.

Each chain can be broken down into a different type of DD-Path, the
result of which ends up as being a graph of DD-Paths. The length of a
chain corresponds to the number of edges that the chain contains.

The definitions of each different type of DD-Path that a chain can be
reduced to are given as follows:
Type 1: A single node with an in-degree = 0.
Type 2: A single node with an out-degree = 0.
Type 3: A single node with in-degree >= 2 or out-degree >= 2. Type 4: A
single node with in-degree = 1 and out-degree = 1. Type 5: The chain is of
a maximal length >=1.

All programs must have an entry and an exit and so every program graph

40

must have a source and sink node.

Type 1 and Type 2 are needed to provide us with the capability of defining
these key nodes as initial and final DD-Paths.

Type 3 deals with slightly more complex structured constructs that often
appear in a program graph such as If-Then-Else statements and Case
statements.

Type 4 allows for basic nodes such as expressions and
declarations to be defined as DD-Paths.

Type 5 is used to take chains of these nodes and condense them into a
single node. The definition of a Type 5 DD-Path must examine the
maximal length of the chain.

The differences in the program graph of Figure 1.1 and its DD-Path graph
of figure 1.4 can be easily identified.

The source and sink nodes of the graph have been replaced by the words
‘first’ and ‘last’ in order to identify the nodes that conform to Type 1 and
Type 2 DD-Paths.

Perhaps more interestingly, there exists one less node. This is due to the
fact that nodes 3 and 4 in the original program graph were a chain of
maximal length >=1, and so they have been condensed into a single
node in the DD-Path graph

41

There also exist similarities between the two graphs. Node 7 remains
unchanged while the If-Then-Else construct is still visible. Nodes 3 and 6
obey the Type 3 definition, while nodes 4 and 6 are simply chains of length
1 and so are defined as Type 4 DD-Paths.

DD-Path graph presents testers with all possible linear code sequences.
Test cases can be set up to execute each of these sequences, i.e all paths
within the DD-Path graph of the program can be tested. As a result, DD-
Paths can be used as a test coverage metric

5.5 TEST COVERAGE METRICS

Functional testing has the problem of gaps. This is to say that functional
methods such as boundary value testing only checks maximum, minimum
and nominal values, thus leaving areas of code untested for faults.

Structural testing methods attempt to prevent this by having a number of
different test coverage metrics which shows the tester degree to which a
program has been tested.

Structured Test Coverage Metrics
C0 Every Statement
C1 Every DD path(predicate outcome)
C1p Every predicate to each outcome
C2 C1 coverage + loop coverage
Cd C1 coverage +every dependent pair of DD path
CMCC Multiple condition coverage
Cik Every program path that contains upto k repetition of a

loop
Cstat Statistically significant fraction of path
C∞ All possible execution path

5.5.1 Metric-Based Testing
DD-Path Testing
When every DD-path is traversed (the C1 metric), each predicate outcome has
been executed; this amounts to traversing every edge in the DD-path graph.
For if–then and if–then–else statements, this means that both the true and
the false branches are covered (C1 p coverage).

Dependent Pairs of DD-Paths
Identification of dependencies must be made at the code level.. The most
common dependency among pairs of DD-paths is the define/reference relationship,
in which a variable is defined (receives a value) in one DD-path and is
referenced in another DD-path. The importance of these dependencies is that
they are closely related to the problem of infeasible paths.

Multiple Condition Coverage

42

Instead of simply traversing such predicates to their true and false
outcomes, investigating the different ways that each outcome can occur.

One possibility is to make a decision table; a compound condition
of three simple conditions will have eight rules yielding eight test cases.

Another possibility is to reprogram compound predicates into nested simple
if–then–else logic, which will result in more DD-paths to cover.

Multiple condition coverage assures that this complexity is not swept under
the DD-path coverage

Loop Coverage
Loop coverage has been the highly fault prone portion of source code.
Concatenated loops are simply a sequence of disjoint loops while
nested loops are on contained in another. Loop testing involves a
decision and both outcomes of the decisions are supposed to be tested.
While traversing the loop and while exiting or entering the loop. Once the
loop has been tested, the tester condenses it to single node. If loops are
nested, the process is repeated starting with the innermost loop and
working outward.

5.5.2 Test Coverage Analyzers
Coverage analyzers are a class of test tools that offer automated

support for this approach to testing management. The tester runs a set of
test cases on a program that has been instrumented by the coverage
analyzer. This information is used for generating reports.

5.6 BASIC PATH TESTING

The basis is always define in terms of vector space, which is a set of
element as well as operations that corresponds to multiplication and
addition defined for the vectors.

The basis of a vector space contains a set of vectors that are independent
of one another, and have a spanning property; this means that everything
within the vector space can be expressed in terms of the elements within
the basis.

5.6.1 McCabe’s Basic Path Method
In the 1970’s, Thomas McCabe came up with the idea of using a

vector space to carry out path testing. What McCabe noticed was that if a
basis could be provided for a program graph, this basis could be subjected
to rigorous testing; if proven to be without fault, it could be assumed that
those paths expressed in terms of that basis are also correct.

The method devised by McCabe to carry out basis path testing has
four steps. These are:

43

1. Compute the program graph.
2. Calculate the cyclomatic complexity.
3. Select a basis set of paths.
4. Generate test cases for each of these paths
Figure given below shows an example taken from [McCabe, 1982]. This is
a commonly used example, as it demonstrates how the basis of a graph
containing a loop is computed.

It should be noted that the graph is strongly connected; that is, there
exists an edge from the sink node to the source node.

OF\CDEOHsJStro6Qly \onJO\tOF GroQraF QEEGh

The cyclomatic complexity of a strongly connected graph is provided by the
formula V(G) = e – n + p.

The number of edges is represented by e, the number of nodes by n and
the number of connected areas by p. If we apply this formula to the graph
given, the number of linearly independent circuits is:
= 11 – 7 + 1 = 5

An independent path is any path through the software that introduces at
least one new set of processing statements or a new condition [Pressman,
2001].

To find these paths, McCabe developed a procedure known as the baseline
method [McCabe, 1996].

The procedure works by starting at the source node. From here, the leftmost
path is followed until the sink node is reached.

This provides us with the path A, B, C, G. We then repeatedly retrace
this path from the source node, but change our decisions at every node with
out-degree >= 2, starting with the decision node lowest in the path.

For example, the next path would be A, B, C, B, C, G, as the decision at
node C would be ‘flipped’.

44

The third path would then be A, B, E, F, G, as the next lowest decision
node is B. Two important points should be made here.

Firstly, if there is a loop, it only has to be traversed once, or else the basis
will contain redundant paths.

Secondly, it is possible for there to be more than one basis; the property of
uniqueness is one not required.

The five linearly independent paths of our graph are as follows:
Path 1: A, B, C, G.
Path 2: A, B, C, B, C, G. Path 3: A, B, E, F, G. Path 4: A, D, E, F, G.
Path 5: A, D, F, G.

5.7 ESSENTIAL COMPLEXITY

When carrying out his work on the basis path testing method, McCabe
developed the notion of what is now known as essential complexity.

This is the term given for using the cyclomatic complexity to
produce a condensation graph;the result is a graph that can be used to
assist in both programming and the testing procedure.

The concept behind essential complexity is that the program graph of a
piece of software is traversed until a structured programming construct is
discovered;

Once located, the structured programming construct is collapsed into a
single node and the graph traversal continues.

The desired outcome of this procedure is to end up with a graph of V(G)
= 1, that is, a program made up of one node. This will mean that the entire
program is composed of structured programming constructs. If a graph
cannot be reduced to one in which there is a cyclomatic complexity of 1,
then it means that the program must contain an unstructured programming
construct.

45

OFcFDbeHX JStru6turedJFonXtruHtX

5.8 QUESTIONS

1. Write short note on metric based testing
2. What is basic path testing? Explain Mc’Cabe cyclomatic complexity
3. Explain DD path and DD path graph
4. Write short note on DU path test coverage metric
5. Write short note on Path testing coverage metrics

5.9 FUTHER READING

 6PItwZDU HLI tinHVWLCrJLI D n’UDIWprPDch by
Paul C Jorgensen

 Software Testing by Yogesh Singh University Press 2012
 http://www.cs.swan.ac.uk/
 http://softwaretestingfundamentals.com/functional-testing/
 https://dzone.com/articles/what-is-functional-testing-typestips-

limitations



46

6

DATAFLOW TESTING

Unit Structure

6.0 Objectives
6.1 Introduction
6.2 Define/Use testing
6.3 Slice based testing
6.4 Questions
6.5 Further Reading

6.0 OBJECTIVES

After completing this chapter, you will be able to:
 Understand the concept of Data and Information.
 Differentiate between the Analog Verses digital Signals.
 Deal with the different number system in arithmetic.
 Understand the number system conversions.
 Solve the Arithmetic examples based on Binary arithmetic.

6.1 INTRODUCTION

Data flow testing can be considered to be a form of structural
testing: in contrast to functional testing, where the program can be tested
without any knowledge of its internal structures, structural testing
techniques require the tester to have access to details of the programs
structure. Data flow testing focuses on the variables used within a
program.

Variables are defined and used at different points within the
program; data flow testing allows the tester to chart the changing values of
variables within the program. It does this by utilising the concept of a
program graph: in this respect, it is closely related to path testing, however
the paths are selected on variables.

Variables have been seen as the main areas where a program can
be tested structurally. Early methods of data testing involved static
analysis: the compiler produces a list of lines at which variables are defined
or used.

The term static analysis refers to the fact that the tester does not
have to run the program to analyse it.

47

Static analysis allows the tester, according to Jorgensen, to focus on
three “define/reference anomalies” [1]:
“A variable that is defined but never used (referenced).
A variable that is used but never defined.
A variable that is defined twice before it is used.”

6.2 DEFINE/USE TESTING

Define/Use testing uses paths of the program graph, linked to
particular nodes of the graph that relate to variables, to generate test cases.

The term “Define/Use” refers to the two main aspects of a
variable: it is either defined (a value is assigned to it) or used (the value
assigned to the variable is used elsewhere – maybe when defining another
variable).

Define/use testing is meant for use with structured programs. The
program is referred to as P, and its graph as G(P). The program graph
has single entry and exit nodes, and there are no edges from a node to
itself.

The set of variables within the program is called V, and the set of all
the paths within the program graph P(G) is PATHS(P).

Defining nodes, referred to as DEF(v, n): Node n in the program graph of
P is a defining node of a variable v in the set V if and only if at n, v is
defined. For example, with respect to a variable x, nodes containing
statements such as “input x” and “x = 2” would both be defining nodes.

Usage nodes, referred to as USE(v, n): Node n in the program graph of P is
a usage node of a variable v in the set V if and only if at n, v is used. For
example, with respect to a variable x, nodes containing statements such as
“print x” and “a = 2 + x” would both be usage nodes.

Usage nodes can be split into a number of types. The two major types of
usage node are:
 P-use: predicate use – the variable is used when making a decision (e.g.

if b > 6).
 C-use: computation use – the variable is used in a computation (for

example, b = 3 + d – with respect to the variable d).

Definition-use (du) paths: A path in the set of all paths in P(G) is a du-
path for some variable v (in the set V of all variables in the program) if and
only if there exist DEF(v, m) and USE(v, n) nodes such that m is the first
node of the path, and n is the last node.

48

Example
The source code, written in pseudocode, for a program which has been
written to perform the task

1 program Example()

2 var staff Discount, totalPrice, finalPrice, discount, price

3 staff Discount = 0.1

4 total Price = 0

5 input(price)

6 while(price != -1) do

7 totalPrice = totalPrice -i- price

8 input(price)

9 od

10 print("Total price: " -i- totalPrice)

11 if(totalPrice > 15.00) then

12 discount = (staff Discount * totalPrice) -i- 0.50

13 else

14 discount = staff Discount * totalPrice

15 fi

16 print("Discount: " -i- discount)

17 finalPrice = totalPrice – discount

18 print("Final price: " -i- finalPrice) 19 endprogram

Program graph for the code

49

The defining and usage nodes for the variable totalPrice
 Defining nodes:
– DEF(price, 5)
– DEF(price, 8)
 Usage nodes:
– USE(price, 6)
– USE(price, 7)

Therefore, there are four du-paths:


5,

5,

6>
6,
9,
9,

7>
6>
6, 7>

All of these paths are definition-clear, so they are all dc-paths

6.3 SLICED BASED TESTING

Part of the utility and versatility of program slices is due to the
natural, intuitively clear intent of the concept.

Program slice is a set of program statements that contributes to, or affects the
value of, a variable at some point in a program. This notion of slice
corresponds to other disciplines as well.

A program P that has a program graph G(P) and a set of program variables
V.

Definition:
Given a program P and a set V of variables in P, a slice on the variable set
V at statement n, written S(V, n), is the set of all statement fragments in
P that contribute to the values of variables in V at node n.

Program slices use the notation S(V, n), where S indicates that it is a
program slice, V is the set of variables of the slice and n refers to the
statement number (i.e. the node number with respect to the program graph)
of the slice.

So, for example, with respect to the price variable given in the example in
section 2, the following are slices for each use of the variable:

 S(price,
5) =

{5}

 S(price, {5, 6, 8, 9}
 S(price, {5, 6, 8, 9}

 S(price, {8}

50

To generate the slice S(price, 7), the following steps were taken:

 Lines 1 to 4 have no bearing on the value of the variable at line 7 (and
,for that matter, for no other variable at any point), so they are not
added to the slice.

 Line 5 contains a defining node of the variable price that can affect the
value at line 7, so 5 is added to the slice.

 Line 6 can affect the value of the variable as it can affect the flow of
control of the program. Therefore, 6 is added to the slice. Line 7
is not added to the slice, as it cannot affect the value of the variable at
line 7 in any way.

 Line 8 is added to the slice – even though it comes after line 7 in the
program listing. This is because of the loop: after the first iteration
of the loop, line 8 will be executed before the next execution of line 7.
The program graph in figure 1 shows this in a clear way.

 Line 9 signifies the end of the loop structure. This affects the flow of
control (as shown in figure 1, the flow of control goes back to node
6).This indirectly affects the value of price at line 7, as the value
stored in the variable will have almost certainly been changed at line 8.
Therefore, 9 is added to the slice.

 No other line of the program can be executed before line 7, and so
cannot affect the value of the variable at that point. Therefore, no
other line is added to the slice.

He program slice, as already mentioned, allows the programmer to
focus specifically on the code that is relevant to a particular variable at a
certain point. However, the program slice concept also allows the
programmer to generate a lattice of slices: that is, a graph showing the
subset relationship between the different slices. For instance, looking at the
previous example for the variable price, the slices S(price, 5) and
S(price, 8) are subsets of S(price,7) With respect to a program as a
whole, certain variables may be related to the values of other variables: for
instance, a variable that contains a value that is to be returned at the end of
the execution may use the values of other variables in the program. For
instance, in the main example in this document, the final Price variable
uses the total Price variable, which itself uses the price variable. The final
Price variable also uses the discount variable, which uses the staff Discount
and total Price variables – and so on.

Therefore, the slices of the total Price and discount variables are a
subset of the slice of the final Price variable at lines 17 and 18, as they both
contribute to the value. This subset relationship „ripples down‟ to the other
variables, according to the use-relationship described. This is shown
visually in the following example:

51

 S(staff Discount, 3) = {3}
 S(total Price, 4) = {4}
 S(totalPrice, 7) = {4, 5, 6, 7, 8}

 S(totalPrice, 11) =
{4, 5,
 S(discount, 12) =
{3, 4,
 S(discount, 14) =

6,
5,
5,
5,

7,
6,
6,
6,

8
}
7,
7,
7,

8,
8,
8,

11,
13,
11,

12}
14}
12, 13, 14, 17}

6.4 QUESTIONS

1. Write short note on Data flow testing and how to find DD path?
2. Explain the significance of dataflow testing
3. Explain DD path and DD path graph
4. Why and how the dataflow testing is carried out?
5. Explain Slice based testing

6.5 FUTHER READING

 Sof tware te&tiILSJS Daf &UDI’&SPDQroa1 Sb y
Paul CJorgensen

 Software Testing by Yogesh Singh University Press 2012
 http://www.cs.swan.ac.uk/
 http://softwaretestingfundamentals.com/functional-testing/
 https://dzone.com/articles/what-is-functional-testing-typestips-

limitations



52

7
OBJECT ORIENTED TESTING PART 1

Unit Structure

7.0 Objectives
7.1 Units for Object Oriented Testing
7.2 Implications of Composition and Encapsulation
7.3 Implications of Inheritance
7.4 Levels of Object Oriented Testing
7.5 GUI Testing
7.6 Class Testing
7 .7 Questions
7.8 Further Reading

7.0 OBJECTIVES

After completing this chapter, you will be able to:
 Understand the concept of Object oriented testing.
 Differentiate between the levels of testing .
 Understand the concept of class testing and GUI testing.

7.1 UNITS FOR OBJECT ORIENTED TESTING

Definition:
A unit is a smallest software component that can be complied and

executed.

A unit is a software component that would never be assigned to
more than one designer to develop.

An object oriented unit is a work of one person which likely ends
up as a subset of a class operation

7.2 IMPLICATIONS OF COMPOSITION AND
ENCAPSULATION

Is the central design strategy in object oriented
software development? With the goal of reuse, composition creates the
need for very string unit testing.

53

Encapsulation:
Has potential to resolve this concern but only if the units are highly

cohesive and very loosely coupled

7.3 IMPLICATIONS OF INHERITANCE

Inheritance is one of the foundations of the object orientated
paradigm, the basics for this idea is one class is able to inherit the
functionality of another class.

This gives rise to the ideas of a superclass as well as a subclass, where
a superclass refers to the class which another class is inheriting from,
and where this inheriting class a subclass A flattened class is an
original class expanded to include all the attributes and operations it
inherits Unit testing on flattened class solves the problem of inheritance.
Flattened class will not be the part of final system so some uncertainty
remains.

Figure 7.3.1 shows a UML inheritance diagram of Simple Automated
Teller Machine (SATM) system; Both checking and savings accounts have
account numbers and balances, and these can be accessed and changed.
Checking accounts have a per-check processing charge that must be
deducted from the account balance. Savings accounts draw interest that
must be calculated and posted on some periodic basis.

If the checking Account and savings Account classes did not
flatten, the access to the balance attributes would not have been possible,
and we would not be able to access or change the balances. This is
clearly unacceptable for unit testing. The “flattened” checking
Account and savings Account classes is shown in the next figure 1 .3.1.
These are clearly stand-alone units that are sensible to test.

Figure 7.3.1 UML inheritance

54

Figure 7.3.2 Flattened classes

7.4 LEVELS OF OBJECT ORIENTED TESTING

If individual operations are or methods are considered to be units,
there are four levels : operations/method, class, integration and system
testing.

Method
In this level the individual methods are tested to ensure that they

are working as they are intended to by the specification.

Although the intended testing is just for one method, it may be that
other methods and variables may have to be included in the testing, to
facilitate the testing of current method.

This might be the case for instance if you are testing a method that
calls one or more other methods within the same class,

This then brings up the need for stub, which are replacements for
the real methods/variables which are often static in nature and
simply return values that are known to be true by the tester. This
then negates any problems with the testing of a method which calls
untested methods, but of course then puts more of the burden on a
detailed specification and the accuracy of the stub methods created by
the tester.

Class Level
Class is tested as a whole, with each of the methods being tested

to ensure when a class is instantiated that the methods work correctly
with the given inputs.

Other classes might also be include during the testing of a class,
since classes are dependent upon another class. It also requires stub
classes.

55

Integration level
The focus of the testing at this level is in finding errors in classes.

Faults which are caused during communication between different classes
are identified. It also ensure that there is a minimum chance of these
faults in system testing.

One of the main aims is to find errors that can only be found when
dealing with the application as a whole. Another aim of system
testing is to ensure that the application that has finally been
developed have all the functionality required as per the
specification from the view point of a potential end user, which essentially
comes down to the question whether the application is finished and can be
handed over to the end user

7.5 GUI TESTING

Graphical user interface has become closely associated with object
oriented software. GUI is an event driven system which are vulnerable
to the problem of an infinite number of event sequences

7.6 Class Testing

7.6.1 Method as Units

A method is equivalent to a procedure. Unit testing of
procedural code requires stuns and driver test program to supply test
cases and record results.

7.6.2 Classes as Units:

Treating a class as a unit solves the intra class integration problem,
but it creates other problems. One has to do with various views of a class.
In the static view, a class exists as source code. This is fine with code
reading. The problem with the static view is that inheritance is
ignored, but this can be fixed by fully flattened classes. The second
view is the compile-time view because this is when the inheritance
actually “occurs.” The third view is the execution-time view, when
objects of classes are instantiated. Testing really occurs with the third
view

7.6.3 Pseudo code for Windshield Wiper Class

When a dial or lever event occurs, the corresponding sense method
sends an (internal) message to the set Wiper Speed method, which, in
turn, sets its corresponding state variable wiper Speed. Windshield Wiper
class has three attributes, get and set operations for each variable, and
methods that sense the four physical events on the lever and dial devices.

56

Class windshield Wiper private wiper Speed private lever Position
private dial Position windshield Wiper (wiper Speed, lever Position,
dial Position) get Wiper Speed () set Wiper Speed () get Lever Position ()
set Lever Position () get Dial Position () set Dial Position () sense Lever Up
() sense Lever Down () sense Dial Up (), sense Dial Down ()

End class windshield Wiper

Unit Testing for Windshield Wiper Class
Part of the difficulty with the class-as-unit choice is that there

are levels of unit testing. In the example, it makes sense to proceed in a
bottom–up order beginning with the get/set methods for the state variables
(these are only present in case another class needs them). The dial and
lever sense methods are all quite similar; pseudocode for the sense Lever
Up method is given next sense Lever Up ()

Case leverPosition Of

Case 1: Off

leverPosition = Int

Case dialPosition Of

Case 1:1

wiperSpeed = 6 Case 2:2

wiperSpeed = 12 Case 3:3

w i p e r S p e e d = 2 0 EndCase ‘dialPosition

Case 2:Int

leverPosition = Low

wiperSpeed = 30 Case 3: Low

leverPosition = High

wiperSpeed = 60 Case 4: High

(impossible; error condition)

EndCase ‘leverPosition

End enseLeverUp

7.7 QUESTIONS

1. What are the different levels of Object Oriented Testing
2. What is class testing? Explain the process
3. Compare conventional and Object Oriented testing
4. Explain classes as unit with respect to Object Oriented Testing
5. What is the significance of performance testing with respect to Object

Oriented System Testing
6. Explain how UML supports Object Oriented Integration Testing

57

7.8 FUTHER READING

 SoItwZDU HLI tinHVWLCrJLI D n’UDIWprPDch by
Paul C Jorgensen

 Software Testing by Yogesh Singh University Press 2012

 http://www.cs.swan.ac.uk/

 http://softwaretestingfundamentals.com/functional-testing/

 https://dzone.com/articles/what-is-functional-testing-typestips-
limitations



58

8

OBJECT ORIENTED TESTING PART - II

Unit Structure :

8.0 Objectives

8.1 Object Oriented Integration Testing

8 2 UML Support of Integration Testing

8.3 MM-Paths for Object-Oriented Software

8.4 Object Oriented Testing

8.5 Question

8.6 Further Reading

8.0 OBJECTIVES

After completing this chapter, you will be able to:

 Understand the concept of Data and Information.

 Differentiate between the Analog Verses digital Signals.

 Deal with the different number system in arithmetic.

 Understand the number system conversions.

 Solve the Arithmetic examples based on Binary arithmetic.

8.1 OBJECT-ORIENTED INTEGRATION TESTING

If the operation/method choice is taken, two levels of integration are
required: one to integrate operations into a full class, and one to integrate
the class with other classes. This should not be dismissed. The
whole reason for the operation-as-unit choice is that the classes are
very large, and several designers were involved.

Turning to the more common class-as-unit choice, once the unit
testing is complete, two steps must occur: (1) if flattened classes were used,
the original class hierarchy must be restored, and (2) if test methods were
added, they must be removed.

8.2 UML SUPPORT FOR INTEGRATION TESTING

In UM L-defined, object-oriented software, collaboration and
sequence diagrams are the basis for integration testing.

59

Once this level is defined, integration-level details are added. A
collaboration diagram shows the message traffic among classes. A
collaboration diagram is very analogous to the Call Graph. Collaboration
diagram supports both the pairwise and neighborhood approaches
to integration testing.

With pairwise integration, a unit (class) is tested in terms of
separate “adjacent” classes that either send messages to or receive
messages from the class being integrated. To the extent that the class
sends/receives messages from other classes, the other classes must be
expressed as stubs.

Collaboration diagram for o-o calendar
One drawback to basing object-oriented integration testing on

collaboration diagrams is that, at the class level, the behavior model of
choice in UML is the State Chart.

Neighborhood integration raises some very interesting questions
from graph theory. Using the (undirected) graph in Figure 15.9, the
neighborhood of Date is the entire graph, while the neighborhood of test It
is just Date. Mathematicians have identified various “centers” of a linear
graph. One of them, for example, is the ultra center, which minimizes the
maximum distances to the other nodes in the graph. In terms of an
integration order, we might picture the circular ripples caused by tossing a
stone in calm water. We start with the ultra center and the neighborhood of
nodes one edge away, then add the nodes two edges away, and so on.
Neighborhood integration of classes will certainly reduce the stub effort, but
this will be at the expense of diagnostic precision.

If a test case fails, we will have to look at more classes to find the fault.

60

8.3 MM-PATHS FOR OBJECT-ORIENTED
SOFTWARE

An object-oriented MM-path is a sequence of method executions
linked by messages. An MM-path starts with a method and ends when it
reaches a method that does not issue any messages of its own; this is the
point of message quiescence

MM Paths can be very useful for testing as they provide a detail
outline of how a program will execute when a given method is called,
this precisely greatly improves the efficiency of a tester or developer in
finding a Bug if one should occur during the test. However care must be
taken when selecting the paths themselves to ensure that all messages are
covered i.e. all lines of code are executed at least once.

MM Paths do not require stub files, however if a method was called
that contained hundreds of other method calls the advantage of
precision would be lost and more time would need to be taken for a Bug to
be found.

Another disadvantage of this approach is that the paths themselves
although easy for a tester to see for a single test, manual or even automated
selection of MM Paths for the whole program could be quite
computationally expensive especially for larger programs

8.4 OBJECT ORIENTED SYSTEM TESTING

System testing is (or should be) independent of system
implementation. A system tester does not really need to know if the
implementation is in procedural or object-oriented code.

UML can be used for generating test cases.
Consist of several levels of use cases including high level,

essential, expanded essential, Real. Each use case defines a scenario,
which describes the functional requirement of system. Complete GUI
design is tested with controls

8.5 QUESTIONS

1. What are the different levels of Object Oriented Testing

2. What is class testing? Explain the process

3. Compare conventional and Object Oriented testing

4. Explain classes as unit with respect to Object Oriented Testing

5. What is the significance of performance testing with respect to Object
Oriented System Testing

6. Explain how UML supports Object Oriented Integration Testing

61

8.6 FUTHER READING

 6PItwZDU HLI tinHVWLCrJLI D n’UDIWprPDch by
Paul C Jorgensen

 Software Testing by Yogesh Singh University Press 2012
 http://www.cs.swan.ac.uk/
 http://softwaretestingfundamentals.com/functional-testing/
 https://dzone.com/articles/what-is-functional-testing-typestips-

limitations



62

9

LEVELS OF TESTING - II

Unit Structure :

9.1 Integration Testing

9.1.1 Top-Down Approach

9.1.2 Bottom-Up Approach

9.1.3 Modified Top-down Approach

9.2 Big-Bang Approach

9.3 Acceptance Testing

9.4 System Testing

9.5 Thread

9.6 Regression

9.7 Questions

9.8 Further Reading

9.1 INTEGRATION TESTING

Integration Testing involves integration of units to make a
module/integration of modules to make a system integration of system with
environmental variables if required to create a real-life application.

It may start at module level, where different units and components
come together to form a module and go till system level. If module is self-
executable, it may be taken for testing by testers. If it needs stubs and
drivers, it is tested by developers.

Fig. shows Integration Testing View

There are different approaches of Integration Testing depending upon how
the system is integrated. Following are the different approaches:

63

9.1.1. Top-Down Testing:
In top-down testing approach, the top level of the application is

tested first and then it goes downward till it reaches the final component
of the system. All top-level components called by tested components are
combined one by one and tested in the process. Drivers may not be required
as we go downward as earlier phase will act as driver for latter phase
while one may have to design stubs to take care of lower-level
components which are not available at that time.

Top-level components are the user interfaces which are created first to
elicit user requirements or creation of prototype. Agile approaches like
prototyping, formal proof of concept, and test-driven development use this
approach for testing.

Advantages of Top-Down Approach:
1. Feasibility of an entire program can be determined easily at an early

stage as the top most layer is made first.
2. Top-down approach can detect major flaws in system designing by

taking inputs from the user.
3. Many times, this approach does not need drivers as the top layers are

available first which can work as drivers.

Disadvantages of Top-Down Approach:
1. Units & modules are rarely tested alone before their integration. There

may be few problems in individual units/modules which may get
compensated in testing.

2. It can create a false belief that software can be coded & tested before
design is finished.

3. Stubs are to be written & tested before they can be used in integration
testing.

9.1.2. Bottom-Up Testing:
It focuses on testing the bottom part/individual units and modules,

and then goes upward by integrating tested and working units and
modules for system testing. It is a mirror image of the Top-down
approach, with the difference that stubs are replaced by driver modules that
emulate units at the next level up in the tree. In Bottom-top integration, we
start with the leaves of the decomposition tree and the test them with
specially coded drivers.

Advantages of Bottom-Top Approach:
1. Each component & unit is tested first for its correctness. If it found to be

working correctly, then only it goes for further integration.
2. It makes a system more robust since individual units are tested &

confirmed as working.
3. Incremental integration testing is useful where individual components

can be tested in integration.

Disadvantages of Bottom-Top Approach:

64

1. Top-level components are the most important but tested last, where the
pressure of delivery may cause problem of not completing testing.
There can be major problems during integration or interface testing, or
system-level functioning may be a problem.

2. Objects are combined one at a time, which may need longer time and
result into slow testing. Time required for complete testing may be
very long and thus, it may disrupt entire delivery schedule.

3. Designing and writing stubs and drivers for testing is waste of work as
they do not form a part of final system.

4. Stubs & drivers are to be written and tested before using them in
integration testing. One needs to maintain the review and test
records of stubs and drivers to ensure that they do not introduce any
defect.

5. For initial phases, one may need both stubs & drivers. As one goes on
integrating units, original stubs may be used while large number of new
drivers may be required.

9.1.3. Modified Top-Down Approach:
This approach tries to combine the better parts of both approaches.

It gives advantages of top-down approach & bottom-top approach to some
extent at a time and tries to remove disadvantages of both approaches.
Tracking and effecting changes is most important as development and
testing start at two extreme ends at a time.

Advantages of Modified Top-Down Approach:
1. Important units are tested individually, then combined to form the

modules and modules are tested before system is made.
2. The systems tested by modified approach are better in terms of

residual defects as bottom-up approach is used for critical components
and better for customer-requirement elicitation as top-down approach.

3. It also saves time as all components are not tested individually.

Disadvantages of modified Top-Down Approach:
1. Stubs & drivers are required for testing individual units before they are

integrated.
2. Definition of critical units is very important. Criticality of the unit must be

defined in design.

9.2 BIG-BANG TESTING:

This is the most commonly used approach at many places, where the
system is tested completely after development is over. There is no testing of
individual units/modules & integration sequence.

65

Advantages of Big-Bang Approach:

1. It gives a feeling that cost can be saved by limiting testing to last phase
of development. Testing is done as a last-phase of the development
lifecycle in the form of system testing. Time for writing test cases &
defining test data at unit level, integration level etc.

2. If an organization has optimized processes, this approach can be used as a
validation of development process and not a product validation. If all
levels of testing are completed and all defects are found and closed,
then system testing may act as certification testing to see if there are
any major issues still left.

3. No stub/driver is required to be designed and coded in this
approach. The cost involved is very less as it does not involve much
creation of test artifacts.

4. Big-Bang approach is very fast. It may not give adequate confidence to
users as all permutations and combinations cannot be tested in this
testing.

Disadvantages of Big-Bang Approach:

1. Problems found in this approach are hard to debug. Many times,
defects found in random testing cannot be reproduced as one may not
remember the steps followed in testing at that particular instance.

2. It is difficult to say that system interfaces are working currently and will
work in all cases.

3. Location of defects may not be found easily. In big-bang testing, even if
we can reproduce the defects, it can be very difficult to locate the
problematic areas for correcting them.

4. Interface faults may not be distinguishable from other defects.

5. Testers conduct testing based on few test cases by heuristic approach
and certify whether the system works/does not work.

9.3 ACCEPTANCE TESTING

It is considered as the final stage of testing of an application, before it
is accepted formally by a customer for operational purpose. It is done by the
customer or by somebody on behalf of the customer.

Acceptance Testing validates the following:

1. Whether user needs, as defined in the system requirement specifications,
are achieved by the system or not. It must evaluate
‘conformance to requirements’ along with ‘fitness for use’ from
customer’s perspective.

2. Whether system performance meets the expectations of customer as

66

defined/documented in system requirement statement. Performance
criteria must be defined in measurable terms to avoid any
misinterpretation in future.

3. It is a formal testing conducted, generally at the end of software
development,
to determine whether the application satisfies its acceptance criteria or
not.

Acceptance testing characteristics are given below:

1. It is the final opportunity for buyer to examine the software with respect
to expectations and to decide about acceptance/modification of software
either through enhancement, bug fixing or changing the entire business
process to match software.

2. It is conducted in production environment or simulated production
environment as defined in the contract.

3. It can be an incremental process of accepting/rejecting software through
the software development life cycle where the decision of acceptance
starts from the beginning of the development.

4. It occurs at pre-specified times as defined in software development
contract & plan, where work products are accepted by customer.

5. Formal final acceptance must occur at the end of software development
life cycle when customer decides the outcome of development
activities.

6. It consists of tests to determine whether developed system meets
predefined criteria of acceptance or not. Outcome of such
test may be acceptance/rejection of software or changes
proposed in terms of enhancements.

9.4 SYSTEM TESTING:

It represents the final testing done on a system before it is
delivered to the customer. It is done on integrated subsystems that make
up the entire system, or the final system getting delivered to the
customer. System testing validates that the entire system meets its
functional/non-functional requirements as defined by the customer in
software requirement specification. The criteria involve an entire
domain or selected parts depending upon the scope of testing.

System testing goes through the following stages:
1. Functional Testing: It intends to find whether all the functions as per

requirement definition are working or not. Any software is intended
for doing some functions which must be defined in requirement
statement.

2. User Interface Testing: Once the functionalities are finalized, the
next step is to set the user interface correct. User interface testing may

67

involve colors, navigations, spellings and fonts. Sometimes, there can be
a thin line between functional testing and user interface testing and one
may take decision depending upon the situation.

9.5 THREAD:

Threads are hard to define; in fact, some published definitions are
counterproductive, misleading, or wrong. It is possible to simply treat threads
as a primitive concept that needs no formal definition. Threads have
distinct levels.

 A Unit-level thread is usefully understood as an execution-time
path of source instructions or as a sequence of DD Paths.

 An Integration-level thread is MM path i.e. an alternating sequence
of module executions and messages.

 A System-level thread is a sequence of atomic system functions.
Because atomic system functions have port events as their
inputs & outputs, a sequence of atomic system functions have
port events as their inputs & outputs.

Unit Testing tests individual functions; integration testing examines
interactions among units; and system testing examiners interactions among
atomic system functions.

9.6 REGRESSION TESTING:

It is intended to determine whether the changed components have
introduced any error in unchanged components of the system. Regression
testing may not be considered as special testing in development projects.

Regression testing can be done at,

1. Unit level to identify that changes in the units have not affected its
intended purpose, and the other parts of the unit are working properly
even after the changes are made in some parts.

2. Module level to identify that the module behaves in a correct way after
the individual units are changed.

3. System level to identify that the system is performing all the correct
actions that it was doing previously as well as actions intended by
requirements after change is made in some parts of the system.

Important Development methodologies where regression testing is very
important:

1. Any kind of maintenance activity conducted in a system may need a
regression testing cycle.

68

2. Iterative development methodology needs huge regression testing
as there are several iterations of requirement changes followed by
design changes and changes in code.

3. Agile development needs huge cycles of regression testing.

9.8 QUESTIONS:

1. Explain the advantages and disadvantages of Bottom Up Approach.

2. Efficiency of unit testing affects the effectiveness of testing process.
Discuss. Compare the objectives of Integration and Interaction Testing.

3. Explain Acceptance Testing in detail.

4. What is retrospection? Explain retrospection with respect to Unit
Testing.

5. What are the levels of testing? Explain.

6. What is integration testing? List all the integration testing strategies.

7. Explain any one. (a) List all advantages and disadvantages of call graph
integration testing. (b) Briefly explain the concept of system testing.

8. Define the term ‘Interaction’. Discuss Taxonomy o interactions.

9. Define Threads. What are the distinct levels of Threads.

9.9 Further Read

1. Software Testing Principles, Techniques and Tools, M.G. Limaye,
TMH

2. Software testing by Yogesh Singh. Cambridge University Press, 2012.
3. Introduction to Software Testing, Paul Ammann, Jeff Offutt,

Cambridge University Press.
4. Managing the Testing Process: Practical Tools and Techniques for

Managing Hardware and Software Testing, Rex Black, Wiley







69

10

TESTING PROCESS

Unit Structure

10.0 Planning
10.1 Test Policy

10.1.1 Number Systems
10.2 Test Plan

10.2.1 Advantages of Testing Planning
10.2.2 Benefits of Test Plan

11.3 Test Cases
10.3.1 Characteristics of Good Test Case
10.3.2 How to write a Good Test Case 11.4: Test Reports
10.4.1 Types of Test Reports
10.4.2 Characteristics of Test Reports

10.0 PLANNING

It is the most important phase in project or product life cycle.
Software development, testing, deployment and maintenance are
planned activities happening in the life cycle of a software product &
they must be planned to ensure effectiveness of life cycle activities.
During test planning, we make sure we understand the goals and
objectives of the customers, stakeholders, and the project, and the risks
which testing is intended to address. This will give us what is sometimes
called the mission of testing or the test assignment. Based on this
understanding, we set the goals and objectives for the testing itself, and
derive an approach and plan for the tests, including specification of
test activities. To help us we may have organization or program test
policies and a test strategy. Test policy gives rules for testing, e.g. 'we
always review the design documents'; test strategy is the overall
high-level approach, e.g. 'system testing is carried out by an independent
team reporting to the program quality manager.

Test planning has the following major tasks:

1. Determine the scope and risks and identify the objectives of testing:
we consider what software, components, systems or other products
are in scope for testing; the business, product, project and technical risks
which need to be addressed; and whether we are testing primarily to
uncover defects, to show that the software meets requirements, to
demonstrate that the system is fit for purpose or to measure the
qualities and attributes of the software.

70

2. Determine the test approach (techniques, test items, coverage, identifying
and interfacing with the teams involved in testing, testware): we
consider how we will carry out the testing, the techniques to use, what
needs testing and how extensively (i.e. what extent of coverage).
We'll look at who needs to get involved and when (this could
include developers, users, IT infrastructure teams); we'll decide what
we are going to produce as part of the testing.

3. Implement the test policy and/or the test strategy: we mentioned
that there may be an organization or program policy and strategy for
testing. If this is the case, during our planning we must ensure that what
we plan to do adheres to the policy and strategy or we must have
agreed with stakeholders, and documented, a good reason for
diverging from it.

4. Determine the required test resources: from the planning we have
already done we can now go into detail; we decide on our team make-
up and we also set up all the supporting hardware and software we
require for the test environment.

5. Schedule test analysis and design tasks, test implementation, execution
and evaluation: we will need a schedule of all the tasks and activities, so
that we can track them and make sure we can complete the testing on
time.

6. Determine the exit criteria: we need to set criteria such as coverage
criteria that will help us track whether we are completing the test
activities correctly.

They will show us which tasks and checks we must complete for a
particular level of testing before we can say that testing is finished.

10.1 TEST POLICY

Test policy is defined at organisation level by the senior
management of the organisation. It defines the intent of senior
management with respect to testing activities which is derived from the
mission statement of the organisation and the vision of management.

The reason for this difference is as follows:
 In case of product organisation, the entire product is owned

by the organisation & it is responsible for any problem faced by final
user.

 In case of project organisation, it offers development service to
customer but does not own the product.

11.1.1 Content of the Test Policy :
It is very important that the entire organisation must know

& understand organisational policy for testing.

71

1. Introduction: It defines the background information for establishing
the testing policy in the organisation. Testing policy details the views &
opinions of senior management about testing activities in the
organisation.

2. Scope: Scope of testing policy defines the areas or circumstances
where the test policy would be applicable as well as define some
cases where it will not be applicable.

3. Testing organisation & reporting: It defines the overall structure of
testing as a function and “locating testing function” in the organisation
structure. It helps in defining roles and responsibilities of people
associated with testing activities and their relationship with
development team and other stakeholders.

4. Training: Testers need training to enhance their skills, understand
new concepts of testing and face the changing scenarios in
the technological/domain fields. Training may include domain-
related training which may help testers to identify domain-related
issues, if any.

10.2 TEST PLAN:

Test plan is a contract between test team and development
team/customer. It helps in identifying testing as an organisation in entire
project & describing the role and responsibility of testing in entire project
or product development or maintenance. It describes in detail about
testing activities, testing resources, how test scenarios and test cases will
be defined. It is not a test design specification, a collection of test cases or
a set of test procedures; in fact, most of our test plans do not address that
level of detail. The test plan also helps us manage change. During early
phases of the project, as we gather more information, we revise our plans.
As the project evolves and situations change, we adapt our plans.
Written test plans give us a baseline against which to measure such
revisions and changes. Furthermore, updating the plan at major
milestones helps keep testing aligned with project needs.

Following is the Test Plan Template:

72

10.2.1 Advantages of Test Planning:
1. Work involved in test planning and setup pays in the long term.
2. It describes the way in which testing team will show whether software

works correctly as per requirements & the acceptance criteria.
3. It addresses various levels of testing such as unit testing, module

testing, system testing, integration testing, black box testing as
well as white box testing.

4. It explains who does testing, why tests are performed, how
tests are conducted and when tests are scheduled.

5. It must contain procedures, environment and tools necessary to
implement an orderly, controlled process for test execution, defect
tracking, coordination of rework and configuration.

11.2.2 Benefits of Test Plan:
1. Build knowledge of stakeholders about testing: It builds essential

knowledge of all the stakeholders in planning for tests and execution
of tests.

2. Identify Stakeholders: Test plan identifies the audiences for test
plan & sources for writing a test plan, test scenarios, test cases and
defining test data.

3. Enhance Visibility: Test plan improves visibility of the
upcoming test to management, project team, customer and test team
at large.

4. Ensure Understanding: Test planning ensures complete understanding
of the test event by test planner and test team.

5. Assist in Team Building: Test planning helps in test building for test
team.

10.3 TEST CASES

Test cases are derived from the test scenario. Test case describes
each transaction and expected result of each transaction included in
test scenario. Test case definition is one of the debatable issues as
there are many views about what is meant by test cases. Test cases are
executed through test data. Test data is defined using different techniques
such as equivalence partitioning, boundary value analysis, state transition
and error guessing.

10.3.1 Characteristics of Good Test Case:
1. Accurate: Test case execution must test the application for the

criteria for which it is designed.
2. Economical: Test case must define the correct steps for testing an

application.
3. Repeatable & reusable: Test cases must be documented and used so

that they can be repeatable and reusable.
4. Traceable to requirements: Every test case defined and executed must

73

have corresponding requirement relationship through test scenarios.
5. Appropriate: Test case must be appropriate for the system under

testing.
6. Self-Standing: Test case must be independent of any tester

performing it. 7. Self-cleaning: This is an important parameter in
automation testing. Test case must clean the changes it has made in
the application, environment & other factors affecting system.

10.3.2 How to write a Good Test Case:
Test case is a very important document from validation of system

perspective. They must be written at each stage of validation starting
from unit testing till acceptance testing.

 Test case must be testable. Test cases are defined to execute the
application and it must do the task.

 Use active voice while writing the test cases so that testers knows
what is to be done and when to wait for the system to do it.

 Inform tester what will be displayed by the system on the screen &
what will be done by the system at each step.

 While writing test cases, simple conversational language is preferable
in place of use of jargons.

 Exact and consistent names of fields must be used in place of generic
names.

 Do not explain windows basics. The basic controls like combo
boxes, text boxes and radio buttons etc. must be known to testers.

 Order of test cases must follow business scenario.

10.4 TEST REPORTS

Testing reports are created at the end of test cycles. Its purpose is to
communicate about the progress achieved by test team & any impediments
faced by them to the stakeholders of the project.

10.4.1 Types of Test reports:

1. Unit Test Report: They are generated at the end of unit testing activity.
As the unit testing may happen as and when the units are completed, it
may not be a formalised test report but some informal communication
between various stakeholders.

2. Integration Test Reports: It is generated after integration testing activities
are completed, and one can say something about the software being
tested when the units are bundled together.

3. System Test Reports: There may be many cycles of system testing as
defined by project plan and test plan. System test reports are
generated when individual system testing cycle is completed.

4. Acceptance Test Reports: They are generally made in two phases –
alpha acceptance test report when testing is done at development site
and beta acceptance test report when business pilot is conducted.

74

5. Various Interim Test Reports: There are many interim test
reports as individual steps in testing are completed.

After each phase of testing, test reports are prepared & distributed
to relevant stakeholders. Test report may or may not contain a test log. If
the number of tests is very large, test report may indicate summary of
test activities and status of project and may give pointer to test log for
detailing.

10.4.2 Following are the characteristics of Test report:
a. Individual project test reports for the test phases completed or

iteration test report for the iterations completed.
b. Integration test report after integration testing is completed.
c. System test report after system testing is completed.
d. Acceptance test report prepared by project test team and customer.

Following is the template for Test Summary Report:

10.5 QUESTIONS:

1. How to write a good test case?
2. What is the purpose of test reports?
3. Explain benchmarking concept. Why it is required?
4. Differentiate between Qualitative & Quantitative data.
5. What are the phases of Test process improvement model?
6. What are the different types of efforts?

10.6 FURTHER READ

1. Software Testing Principles, Techniques and Tools, M.G. Limaye,
TMH

2. Software testing by Yogesh Singh. Cambridge University Press, 2012.
3. Introduction to Software Testing, Paul Ammann, Jeff Off utt, Cambridge

University Press.
4. Managing the Testing Process: Practical Tools and Techniques for

Managing Hardware and Software Testing, Rex Black, Wiley.



75

11

TESTING PROCESS-II

Unit Structure

11.0 Benchmarking

11.1 Qualitative & Quantitative Analysis

11.1.1 Data

11.1.2 Qualitative Data

11.1.3 Quantitative Data

11.2 Efforts

11.2.1 Estimated Efforts

11.2.2 Budgeted Efforts

11.2.3 Approved Efforts

11.2.4 Actual Efforts

11.3 Test Process

11.3.1 Need for Test Process improvement

11.0 BENCHMARKING

It talks about the reference, which may be considered as ‘The
Best’ in the given area or the field as per the opinion of some authority,
generally project / organisation’s leadership. Benchmark may be taken as
a reference when organisation is planning for improvements. For the
improvements, there are two options available.

 Invent the wheel again and again which may involve huge efforts in
definition of what is the best. It may not be able to define exact
achievable target, and people may be running behind something which
is not feasible at all.

 Use the processes followed by somebody else for
incorporating improvements, where somebody else has invented a
wheel already which can be used with little customisation.

Benchmark Partner may be either competitors or a leading
organisation which can help indirectly in improving performance of
an organisation. The targeted organisation is called a benchmarking
partner.

76

Benchmarking is used,

 To gain better understanding of oneself with respect to somebody
who is considered as best in a selected area.

 To gain awareness of definition of ‘The best’ so that one can
define the objectives clearly.

 To understand necessary improvements to close the gap between the
current level and best level expected.

11.1 QUALITATIVE & QUANTITATIVE ANALYSIS

There are two ways for continual improvement in an organisation, P-
D-C-A (Plan-Do Check-Act) and M-M-C-I (Measure-Monitor-Control-
Improve). In reality, both the names have similar approach, where one
must plan on the basis of what the current performance is, and where the
organisation wishes to react.

Data: Any measurement needs data to be collected from the
process/product. Data may represent a process attribute or product attribute
accordingly. Data may indicate the status of process or product.
Classification of data may be done under various schemes.

Some of them are as follows:

11.1.1 Qualitative Data:

a. It indicates the classes or ranges in which a attribute of a product
or process is present or not.

b. It is also called as ‘Categorial data’.

c. When the process definit ion is vague or there are no
accurate measurements or precision measuring instruments are
available, one may have to select qualitative data to understand the
process.

d. Types of Qualitative Data:

i. Nominal Data: In case of nominal data, attributes measurements
are collected without following any specific categorisation such as
class definition, class range & unit of measurement.

ii. Ordinal Data or Class Definition: The measurements can be
classified in different strata depending upon the perception of
person making such observation.

iii. Boolean Data: Sometimes data is not exactly a variable. It can
take only two forms such as present/absent, and true/false etc.

e. Advantages of Qualitative Data:

i. Data gathering is very fast as one need not measure actual
attributes. It is mainly on perception of an individual about the
situation.

77

ii. It suffices the purpose when the maturity level of audience is very
low.

iii. It does not need expertise in the area or domain under evaluation.
Since it is perception based, very high level of calibration is not
involved.

iv. It is independent of measurement process & measuring instrument.

f. Disadvantages:

i. It is perception based and may change from person to person and
instance to instance.

ii. It may not be useful for highly matured environment.

11.1.2 Quantitative Data:

a. It is the actual measurement of an attribute of a product or process,
expressed in numbers with some units of measurement.

b. It makes comparison between different entities easy, and one may be
able to map the variations in process or product easily by using
numbers.

c. When the organisational maturity improves, it shifts its measurement
practices from qualitative data to quantitative data to help in
measurement and data improvement.

d. Types of Quantitative Data:

i. Absolute data: For example, temperature, size of software, and
number of employees can be considered as absolute data.

ii. Data sets: For example, ‘days of week’ which includes all
the days from Sunday to Saturday.

iii. Relative data: For example, speed and defect density.

iv. Continuous data: For example, set of relational numbers can
take any value between -ve infinity to +ve infinity.

v. Discrete Data: For example, a set of rational numbers
completely divisible by 7.

e. Advantages:

i. It is accurate than qualitative technique as it is expressed in
numbers and units of measurement.

ii. It gives exact status of a situation or the process in terms of its
attributes.

iii. Statistical analysis of a process is possible when quantitative
analysis is used.

f. Disadvantages:

i. It needs a definition of measurement including unit of
measurement and type of instrument.

78

ii . It may need some level of automation to collect data and
conduct analysis.

iii. It may consume more time in collecting measurements from the
process and preparing data for calculations.

iv. Amount of error id dependent on the accuracy of the measuring
equipment, including human beings in terms of repeatability and
reproducibility.

11.2 EFFORTS

11.2.1 Estimated Efforts:

a. When a test manager is writing a test plan or estimating the efforts
required for testing as per the defined approach, he may be making
several assumptions about various aspects such as status of
application, number of testers, skills of testers, availability of test tools
etc.

b. These assumptions are the inputs for estimation and effect estimation
directly.

11.2.2 Budgeted Efforts:

c. Despite making a test plan, it may be possible that 10 testers with 5
years of experience are not available.

d. Test manager may have to work with, say 15 people with lesser
experience.

e. This will affect the estimated efforts significantly.

f. But this is planned arrangement, and organisation must have done
analysis before putting such team for testing.

11.2.3 Approved Efforts:

a. They are guided by market conditions & relationships between
customer and organisation.

b. Marketing may be able to sell, say 200-person days to customer,
though estimation is 100 person days.

c. This is called ‘approved effort’ which customer is going to pay for.

11.2.4 Actual Efforts:

a. These are the efforts spend in testing for the given project. It may
be any value and it is reality. Thus, we get three variances in such case as
shown below,

79

Estimated effort variance = (Actual efforts – Estimated efforts) x
100/Estimated efforts.

Budgeted effort variance = (Actual efforts – Budgeted efforts) x
100/Budgeted efforts.

Approved effort variance = (Actual efforts – Approved efforts) x
100/Approved efforts.

11.3 TEST PROCESS

There are many problems associated with testing as an activity,
typically with adhoc testing, or testing as a last stage of development or
certification approach where there are no verification activities in
previous phases.

Problems are as follows:

1. Though we decide testing must start from proposal, it rarely
happens. It is difficult to test the software completely in system
testing.

2. Testing is performed by someone who happens to be available or is
free.

3. Testing stops when delivery date of an application is reached or
when application goes into production.

4. Testing is considered as a certification activity, and if no few
defects have been found recently, then it authorises release of a
product to the user. 5. Testing is a short of time, people, resources
& expertise.

11.3.2 The need for Test Process improvement:
Testing process improvement may be needed for continual

improvement.

1. The aim of an improved test process must be to detect defects as close
as possible to their source of introduction to minimise correction
costs, and to give information about the system quality as early as
possible.

2. All activities related to testing must be adjusted to each other for
achieving an optimised strategy for developing a good product, by
detecting the defects as early as possible so that they can be fixed and
process can be improved.

3. Testing must become a highly professional task which requires special
testing skills, with functional expertise, testing methodology expertise,
and design expertise.

4. Quality of the test process must be measured and the results must be
used as an input for further test process improvement.

80

Following are the phases of Test process improvement model:

1. Process Improvement Planning (Plan Phase):

a. Understand Organisation’s as well as Business Requirements:
Before starting any improvement process, one must understand
where they are now and where they wish to reach as a part of test
process improvement model. The gap between the two states,
viz. expected state and actual state will indicate the direction
& quantum of improvement needed.

b. Conducting assessment of present situation: Once the goals to be
achieved by such process improvements are decided, one
must analyse the present situation to find where they are now.
There must be some methodology defined for such assessment
which can interpret the current level of test process and
achievement of test process in terms of achieving organisational
goals.

c. Initiate Process improvement actions: once the gap between
expected and actual stage is very clear, one knows where they wish
to reach and where they are currently. Now, a path for reaching the
target must be devised.

2. Process Improvement Action implementation (Do Phase):

a. Implementation of Action Plan Designed: Actions on paper may
look good, but one needs to implement them. There may be
lot of constraints while implementing the actions, and one may
have to address these constraints. Action plan must declare
dependencies, assumptions and risks of implementation.

3. Process Improvement Action Review (Check):

a. As defined, there must be continuous review of progress made
and actions in case of deviations. Feedback loop must be used
for monitoring and guiding progress- whether one is in the right
direction or not and whether time schedule has been monitored
correctly or not.

4. Process Improvement Action Changes (Act):

a. Learn the lessons of Implementation: As an output of check
process, there may be some variations in achievements with respect
to planned expectations from the improvement actions.

b. Gap can be removed either by changing the action plan or revising
the action effectiveness.

c. Sustain Improvements: The process improvements done initially
may have a good result for some time as people may find
something interesting that may exceed the planned actions.
There can be problems with measurements as people may
manage measures which are not real.

81

11.4 QUESTIONS

1. How to write a good test case?
2. What is the purpose of test reports?
3. Explain benchmarking concept. Why it is required?
4. Differentiate between Qualitative & Quantitative data.
5. What are the phases of Test process improvement model?
6. What are the different types of efforts?

11.5 FURTHER READ

1. Software Testing Principles, Techniques and Tools, M.G. Limaye,
TMH

2. Software testing by Yogesh Singh. Cambridge University Press, 2012.
3. Introduction to Software Testing, Paul Ammann, Jeff Off utt, Cambridge

University Press.
4. Managing the Testing Process: Practical Tools and Techniques for

Managing Hardware and Software Testing, Rex Black, Wiley.



