
SUBJECT CODE : USIT 301

NETWORK SECURITY

T.Y.B.SC.(IT)
SEMESTER-V (CBCS)

ipin Enterprises
Tantia Jogani Industrial Estate, Unit No. 2,
Ground Floor, Sitaram Mill Compound,
J.R. Boricha Marg, Mumbai - 400 011

Published by : Director
Institute of Distance and Open Learning ,
University of Mumbai,
Vidyanagari, Mumbai - 400 098.

DTP Composed : Varda Offset and Typesetters
Andheri (W), Mumbai - 400 053.Pace Computronics

"Samridhi" Paranjpe 'B' Scheme, Vile Parle (E), Mumbai - 57.
Printed by :

Programe Co-ordinator : Mandar L. Bhanushe
Head, Faculty of Science and Technology,
IDOL, University of Mumbai – 400098.

Course Co-ordinator : Sumedh Pandit Shejole,
Assistant Professor,
B.Sc.(Information Technology),
Institute of Distance & Open Learning,
University of Mumbai- 400098.

Course Writers : Sujata Rizal
Assistant Professor
Kotian S.M.Shetty College Powai

: Priya Jadhav
Assistant Professor
N.G.Acharya & D.K.Marathe College

: Prashant Londhe
Assistant Professor
Gogate-Jogalekar College, Ratnagiri

: Geeta Sahu
Assistant Professor
VSIT

 September 2021, Print I

© UNIVERSITY OF MUMBAI

Prof. Prakash Mahanwar
Director

IDOL, University of Mumbai.

Prof. Suhas Pednekar
Vice Chancellor

University of Mumbai, Mumbai.

Prof. Ravindra D. Kulkarni
Pro Vice-Chancellor,
University of Mumbai.

UNIT I
1. Cryptography 1

UNIT II

2. Signature schemes 80

3. Hash functions 93

4. Key distribution and key agreement 109

UNIT III

5. Network security 126

UNIT IV

6. Authentication applications 137

UNIT V

7. Ip security 155

CONTENTS
Chapter No. Title Page No

Syllabus

M. Sc (Information Technology) Semester – I
Paper I; SUBJECT: Network Security Course Code:

USIT301
Periods per week Lecture 5
1 Period is 50 minutes TW/Tutorial/Practical 3

Hours Marks
Evaluation System Theory Examination 2 60

TW/Tutorial/Practical - 40

Unit Details Lectures
I Cryptography: Introduction: Some Simple

Cryptosystems, The Shift Cipher, The Substitution
Cipher, The Affine Cipher, The Vigenere Cipher, The
Hill Cipher, The Permutation Cipher, Stream Ciphers,
Cryptanalysis, Cryptanalysis of the Affine Cipher,
Cryptanalysis of the Substitution Cipher, Cryptanalysis
of the Vigenere Cipher, Cryptanalysis of the LFSR-
based Stream Cipher. Shannon’s Theory, Perfect
Secrecy, Entropy, Huffman Encodings and Entropy,
Properties of Entropy, Spurious Keys and Unicity
Distance The Data Encryption Standard, Description of
DES, An Example of DES Encryption, The DES
Controversy, DES in Practice, DES Modes of
Operation, A Time-memory Trade-off, Differential
Cryptanalysis, An Attack on a 3-round DES, An Attack
on a 6-round DES. Introduction to Public-key
Cryptography, More Number Theory, The Euclidean
Algorithm, The Chinese Remainder Theorem, Other
Useful Facts, The RSA Cryptosystem, Implementing
RSA, Probabilistic Primality Testing, Attacks On RSA,
The Decryption Exponent, Partial Information
Concerning Plaintext Bits, The Rabin Cryptosystem,
Factoring Algorithms, The p - 1 Method, Dixon’s
Algorithm and the Quadratic Sieve, Factoring
Algorithms in Practice

12

II Signature Schemes : Introduction, The ElGamal
Signature Scheme, The Digital Signature Standard,
One-time Signatures, Undeniable Signatures, Fail-stop
Signatures
Hash Functions
Signatures and Hash Functions, Collision-free Hash

Functions The Birthday Attack, A Discrete Log Hash
Function, Extending Hash Functions, Hash Functions
from Cryptosystems, The MD4 Hash Function,
Timestamping.
Key Distribution and Key Agreement
Introduction, Key Predistribution, Blom’s Scheme,

12

Diffie-Hellman Key Predistribution, Kerberos, Diffie-
Hellman Key Exchange, The Station-to-station
Protocol, MTI Key Agreement Protocols, Key
Agreement Using Self-certifying Keys.

III Security Trends, The OSI Security Architecture,
Security Attacks, Security Services, Security
Mechanisms, A Model for Network Security

12

IV Authentication Applications: Kerberos, X.509
Authentication Service, Public-Key Infrastructure,
Recommended Reading and Web Sites, Key Terms,
Review Questions, and Problems, A Kerberos
Encryption Techniques, Electronic Mail Security, Pretty
Good Privacy, S/MIME, Key Terms, Review
Questions, and Problems, A Data Compression Using
Zip, Radix-64 Conversion, PGP Random Number
Generation

12

V IP Security: IP Security Overview, IP Security
Architecture, Authentication Header, Encapsulating
Security Payload, Combining Security Associations,
Key Management, Recommended Reading and Web
Site, Key Terms,
Web Security: Web Security Considerations, Secure
Socket Layer and Transport Layer, Security, Secure
Electronic Transaction.

12

VI Intruders: Intrusion Detection, Password Management,
Recommended Reading and Web Sites.
Malicious Software: Viruses and Related Threats,
Virus Countermeasures, Distributed Denial of Service
Attacks.
Firewalls: Firewall Design Principles, Trusted Systems,
Common Criteria for Information Technology Security
Evaluation.

Books and References:
Books:

Cryptography: Theory and Practice, Douglas Stinson, CRC Press,
CRC Press LLC (Unit I and II)
Cryptography and Network Security Principles and Practices, Fourth
Edition, William Stallings, PHI(Pearson), (Unit: III-VI)

References:
Information Security and cyber laws, Saurabh Sharma, student series,
Vikas publication. Encryption, Ankit Fadia and J. Bhattacharjee, Vikas
publication
Term Work:

Assignments: Should contain at least 6 assignments (one per unit)
covering the Syllabus.

Practical List:
1 Substitution Techniques
a Write a program to perform substitution ciphers to encrypt the plain

text to Caesar cipher and to decrypt it back to plain text.
b Write a program to perform substitution ciphers to encrypt the plain

text to Modified Caesar cipher and to decrypt it back to plain text.
c Write a program to perform substitution ciphers to encrypt the plain

text to homophonic cipher and to decrypt it back to plain text.
d Write a program to perform substitution ciphers to encrypt the plain

text to monoalphabetic cipher and to decrypt it back to plain text.
e Write a program to perform substitution ciphers to encrypt the plain

text to homophonic cipher and to decrypt it back to plain text.
f Write a program to perform substitution ciphers to encrypt the plain

text to polyalphabetic cipher and to decrypt it back to plain text.
2 Transposition Ciphers:
a Write a program to perform transposition ciphers to encrypt the plain

text to cipher and to decrypt it back to plain text using rail fence
technique.

b Write a program to perform transposition ciphers to encrypt the plain
text to cipher and to decrypt it back to plain text using Simple
Columnar technique.

c Write a program to perform transposition ciphers to encrypt the plain
text to cipher and to decrypt it back to plain text using Columnar with
multiple rounds.

D Write a program to encrypt a plain text to a cipher text and decrypt it
back to plain text using vernam cipher as the transposition technique

3 Write a program to generate Symmetric Keys for the following Cipher
algorithms DES, AES, Blowfish, TripleDES, HmacMD5 and
HmacSHA1.

4 Write a program to generate assymmetric Keys for the following
Cipher algorithms a) DSA (Digital Signature Algorithm), b) DH
(DiffieHellman), c) RSA.

5 Write a program to encrypt input string by using SecretKey of the
following algorithms, and then decrypt the encrypted string and
compare the decrypted string with the input string. Use the following
algorithms for encryption and decryption:
a. DES
b. BlowFish
c. IDEA
d. Triple DES

6 Write a program to encrypt input string by using SecretKey of the
following algorithms, and then decrypt the encrypted string and
compare the decrypted string with the input string. Use the following
algorithms for encryption and decryption:
a. RSA
b. AES
c. DSA

7 Implement following HashFunctions: RSHash, JSHash, BKDRHash,
SDBMHash, DJBHash

8 Write a program to encrypt the given string by using RC4 , MD5,
algorithms.

9 Write a program for creating, exporting and validating Digital
Certificate.

10 Create a permission that controls access to pages of a book. The
permission name consists of a book id, a colon, and a set of allowable
pages.

1

UNIT I

1
CRYPTOGRAPHY

Unit structure
1.0 Encryption

1.1 Cryptosystems

1.2 Caesar's cipher technique

1.3 Simple Replacement Encryption

1.4 Affine Cryptography

1.5 Vigenere encryption

1.6 Hill Encryption

1.7 Encryption transposition

1.8 Stream encryption

1.9 Encryption

1.10 Implementing Affine Cryptography

1.11 Monoalphabetic and polyalphabetic cryptography

1.12 Cryptoanalysis of the Vigenere cipher

1.13 Linear Feedback Shift Register Flow Ciphers (LFSR)

1.14 Shannon's theory

1.15 Cryptographic Security Services

1.16 Huffmanman Code

1.17 Distance of uniqueness
1.18 The data encryption standard

1.19 DES encryption example

1.20 Operating mode OFF

1.21 Differential cryptanalysis

1.22 3-round DES differential cryptanalysis

1.23 Public Key Cryptography

1.24 The Euclidean algorithm

1.25 Chinese remainder theorem

1.26 RSA algorithm

1.27 Attacks on RSA

1.28 Rabin Cryptosystem

1.0 ENCRYPTION

● Encryption provides secure communications in the presence of
malicious third parties known as adversaries. Encryption uses an
algorithm and a key to transform input (i.e. plain text) into encrypted

2

output (i.e. ciphertext). A given algorithm will always transform the
same plaintext into the same ciphertext if the same key is used.

● The algorithms are considered safe if an attacker cannot determine any
properties of the plaintext or key given the ciphertext. An attacker
should not be able to determine anything about a key given a large
number of plaintext / ciphertext combinations that used the key.

What is the difference between symmetric and asymmetric
cryptocurrency?:

● With symmetric encryption, the same key is used for both encryption
and decryption. A sender and a recipient must already have a shared
key that they both know. Key distribution is a complicated issue and
was the impetus for the development of asymmetric cryptography.

● With asymmetric encryption, two different keys are used for
encryption and decryption. Each user in an asymmetric cryptosystem
has a public key and a private key. The private key is always kept
secret, but the public key can be freely distributed.

● Data encrypted with a public key can only be decrypted with the
corresponding private key. Hence, sending a message to John requires
encrypting the message with John's public key. Only John can decrypt
the message, as only John has his private key. Data encrypted with a
private key can only be decrypted with the corresponding public key.
Likewise, Jane could digitally sign a message with her private key, and
anyone with Jane's public key could decrypt the signed message and
verify that Jane sent it.

● Symmetric is generally very fast and ideal for encrypting large
amounts of data (for example, an entire disk partition or database).
Asymmetric is much slower and can only encrypt data smaller than the
key size (typically 2048 bits or less). Therefore, asymmetric
encryption is generally used to encrypt symmetric encryption keys
which are then used to encrypt much larger chunks of data. For digital
signatures, asymmetric encryption is typically used to encrypt message
hashes rather than entire messages.

● A cryptosystem provides cryptographic key management, including
key generation, exchange, storage, use, revocation, and replacement.

What problems does cryptocurrencies solve?:

● A secure system must provide various guarantees, such as
confidentiality, integrity and availability of data, as well as
authenticity and non-repudiation. When used correctly, encryption
helps provide these guarantees. Encryption can ensure the
confidentiality and integrity of both data in transit and data at rest. You
can also authenticate senders and recipients against each other and
protect yourself from repudiation.

● Software systems typically have multiple endpoints, typically multiple
clients and one or more back-end servers. These client / server

3

communications occur over networks that cannot be trusted.
Communication takes place over open public networks such as the
Internet or private networks that can be compromised by external
attackers or malicious users.

● Communications that cross untrusted networks can be protected. There
are two main types of attacks that an opponent can attempt to perform
on a network. Passive attacks involve an attacker who simply
intercepts a network segment and attempts to read sensitive
information while traveling. Passive attacks can be online (where an
attacker reads traffic in real time) or offline (where an attacker simply
captures traffic in real time and sees it later, perhaps after spending
some time at decrypt it). Active attacks involve an attacker posing as a
client or server,

● The confidentiality and integrity protocols provided by cryptographic
protocols such as SSL / TLS can protect communications from
malicious eavesdropping and tampering. Authenticity protections
ensure that users are actually communicating with systems as intended.
For example, are you sending your online banking password to your
bank or someone else?

● It can also be used to protect data at rest. Data on a removable disk or
in a database can be encrypted to prevent the disclosure of confidential
data if physical media is lost or stolen. Furthermore, it can also provide
integrity protection of inactive data to detect malicious tampering.

What are the principles?:

● The most important principle to keep in mind is that you should never
attempt to design your own cryptosystem. The brightest
cryptographers in the world (including Phil Zimmerman and Ron
Rivest) systematically create ciphers with serioussecurity flawsin
them. For a cryptosystem to be considered "secure", it must face
careful scrutiny bysecurity community. Never trust security through
obscurity or the fact that attackers may not be aware of your system.
Remember that bad guys and determined attackers will try to attack
your system.

● The only things that should be "secret" when it comes to a secure
cryptographic system are the keys themselves. Make sure you take the
appropriate steps to protect the keys used by your systems. Never store
clear-text encryption keys along with the data they protect. It's like
closing the front door and putting the key under the doormat. It is the
first place an attacker will look at. Here are three common ways to
protect keys (from least secure to most secure):

1. Store keys in a file system and protect them with robust access
control lists (ACLs). Remember to adhere to the principle of least
privilege.

2. Encrypt your data encryption keys (DEK) with a second key
encryption key (KEK). The KEK must be generated using

4

Password Based Encryption (PBE). A password known to a
minimum number of administrators can be used to generate a key
using an algorithm such as bcrypt, scrypt, or PBKDF2 and used to
start the cryptographic system. This eliminates the need to store the
erase key anywhere.

3. A Hardware Security Module (HSM) is a tamper-proof hardware
device that can be used to securely store keys. The code can make
API calls to an HSM to provide keys when needed or to perform
data decryption in the HSM itself.

1.1 CRYPTOSYSTEMS

A cryptosystem is an implementation of cryptographic techniques
and the infrastructure that accompanies them to provide information
security services. A cryptographic system is also known as an encryption
system.

Let's analyze a simple cryptosystem model that provides confidentiality to
the information transmitted. This basic model is shown in the following
illustration:

The illustration shows a sender who wants to transfer some
confidential data to a recipient in such a way that any interlocutor or
interception on the communication channel cannot extract the data.
The goal of this simple cryptographic system is that at the end of the
process, only the sender and recipient know the plaintext.

Components of a cryptosystem:

The various components of a basic cryptosystem are as follows:

● Plain text. These are the data to be protected during transmission.

● Encryption algorithm. It is a mathematical process that produces
ciphertext for any plaintext and encryption key. It is a cryptographic

5

algorithm that accepts plain text and an encryption key as input and
produces encrypted text.

● Encrypted text. It is the encrypted version of the plaintext produced by
the encryption algorithm that uses a specific encryption key. The
ciphertext is not protected. Scrolls in public channels. It can be
intercepted or compromised by anyone with access to the
communication channel.

● The decryption algorithm is a mathematical process that produces a
unique plaintext for any ciphertext and decryption key. It is a
cryptographic algorithm that accepts a ciphertext and a decryption key
as input and generates plain text. The decryption algorithm basically
reverses the encryption algorithm and is therefore closely related to it.

● Encryption key. It is a value known to the sender. The sender enters
the encryption key into the encryption algorithm along with the
plaintext to compute the ciphertext.

● Decryption key. It is a value known to the recipient. The decryption
key is related to the encryption key, but it is not always identical to it.
The recipient enters the decryption key into the decryption algorithm
along with the ciphertext to calculate the plaintext.

For a given cryptographic system, a collection of all possible
decryption keys is called the key space.

An interceptor (an attacker) is an unauthorized entity that attempts
to determine plain text. You can view the ciphertext and learn about the
decryption algorithm. However, you should never know the decryption
key.

Types of cryptosystems:

Basically, there are two types of cryptosystems based on the way
encryption-decryption is performed on the system:

● Symmetric key encryption

● Asymmetric key encryption

The main difference between these cryptographic systems is the
relationship between the encryption and the decryption key. Logically, in
any cryptographic system, both keys are closely associated. It is
practically impossible to decrypt the ciphertext with the key that is not
related to the encryption key.

Symmetric key encryption:

The encryption process in which the same keys are used to encrypt
and decrypt information is known as symmetric key encryption.

6

The study of symmetric cryptosystems is known as symmetric
cryptography. Symmetric cryptosystems are sometimes also called secret
key cryptosystems.

Some known examples of symmetric key encryption methods are:
Digital Encryption Standard (DES), Triple-DES (3DES), IDEA, and
BLOWFISH.

Before 1970, all cryptographic systems used symmetric key
cryptography. Even today, its relevance is very high and it is widely used
in many cryptographic systems. This encryption is highly unlikely to
disappear as it has some advantages over asymmetric key encryption.

The most important features of the cryptosystem based on symmetric key
cryptography are:

● People who use symmetric key cryptography must share a common
key before exchanging information.

● It is recommended to change the keys regularly to avoid any attack on
the system.

● A robust mechanism is needed for key exchange between
communicating parties. Since the keys have to be changed regularly,
this mechanism becomes expensive and cumbersome.

● In a group of n people, to allow communication between any two
people, the number of keys required for the group is n × (n - 1) / 2.

● The key length (number of bits) in this encryption is shorter and
therefore the encryption-decryption process is faster than asymmetric
key encryption.

● The processing power of a computer system required to run a
symmetric algorithm is less.

Challenge of the symmetric key cryptography system:

There are two restrictive challenges in using symmetric key cryptography.

7

● Establishment of the key: Before any communication, both the sender
and the recipient must agree on a secret symmetric key. Requires a
secure key creation mechanism.

● Trust issue: Since the sender and recipient use the same symmetric
key, there is an implicit requirement that the sender and recipient
"trust" each other. For example, it may happen that the recipient has
lost the key of an attacker and the sender is not informed.

These two challenges are very restrictive for modern
communication. Today, people need to exchange information with
unknown and unreliable parties. For example, the communication between
online sellers and customers. These limitations of symmetric key
cryptography have led to asymmetric key cryptographic schemes.

Asymmetric key encryption:

The encryption process in which different keys are used to encrypt
and decrypt information is known as asymmetric key cryptography.
Although the keys are different, they are mathematically related and
therefore it is possible to recover the plaintext by decrypting the
ciphertext. The process is shown in the following figure:

Asymmetric key cryptography was invented in the 20th century to
overcome the need for a secret pre-shared key between communicating
people. The most important features of this encryption scheme are as
follows:

● All users of this system must have a different key pair, private key,
and public key. These keys are mathematically related: when one key
is used for encryption, the other can decrypt the ciphertext back to its
original plaintext.

8

● It requires you to put the public key in a public repository and the
private key as a well-kept secret. Therefore, this encryption scheme is
also called public key cryptography.

● Although the user's public and private keys are related, it is not
computationally possible to find each other. This is one of the
strengths of this scheme.

● When Host1 needs to send data to Host2, it obtains Host2's public key
from the repository, encrypts the data, and transmits.

● Host2 uses your private key to extract plain text.

● The length of the keys (number of bits) in this encryption is large and
therefore the encryption-decryption process is slower than symmetric
key encryption.

● The processing power of a computer system required to run an
asymmetric algorithm is greater.

Symmetric cryptosystems are a natural concept. Conversely,
public-key cryptosystems are rather difficult to understand.

You may be thinking, how can the encryption key and the
decryption key be "related" and yet is it impossible to determine the
decryption key from the encryption key? The answer is in the
mathematical concepts. It is possible to design a cryptosystem whose keys
have this property. The concept of public key cryptography is relatively
new. Fewer public key algorithms are known than symmetric algorithms.

Challenge of the public key cryptographic system:

Public-key cryptographic systems have a significant challenge: the
user must trust that the public key they are using in communications with
a person is actually that person's public key and has not been forged by
malicious third parties.

This is typically accomplished through a public key infrastructure
(PKI) made up of a trusted third party. The third party securely manages
and guarantees the authenticity of the public keys. When the third party is
asked to provide the public key for any communicating person X, they
rely on them to provide the correct public key.

The third party is satisfied with the user's identity through the
attestation process, notarization, or some other process: whether X is the
only, or globally unique, X. The most common method of making verified
public keys available is to embed them in a certificate digitally signed by a
trusted third party.

9

Relationship between encryption schemes:

Here is a summary of the basic key properties of two types of
cryptosystems:

Symmetric
cryptosystems

Public key
cryptosystems

Relationship between
the keys

Same Different, but
mathematically related

Encryption key Symmetrical Public
Decryption key Symmetrical Private

Due to the advantages and disadvantages of both systems, symmetric key
and public key cryptographic systems are often used together in practical
information security systems.

Kerckhoff's principle for the cryptosystem:

In the 19th century, a Dutch cryptographer A. Kerckhoff provided
the requirements for a good cryptographic system. Kerckhoff said that a
cryptographic system should be secure even if everything about the
system, except the key, is in the public domain. The six design principles
defined by Kerckhoff for the cryptosystem are:

● The cryptosystem should be practically indestructible, if not
mathematically.

● The fall of the cryptosystem into the hands of an intruder must not
involve any compromise of the system, avoiding inconvenience for the
user.

● The key must be easily communicable, memorable and modifiable.

● The ciphertext must be transmissible by telegraph, an insecure
channel.

● The encryption device and documents must be portable and managed
by one person.

● Finally, the system must be easy to use, requiring no mental effort or
knowledge of a long set of rules to follow.

The second rule is known today as the Kerckhoff principle. It is
applied practically in all contemporary encryption algorithms such as
DES, AES, etc. These public algorithms are considered completely safe.
The security of the encrypted message depends solely on the security of
the secret encryption key.

Keeping algorithms secret can be a significant barrier to
cryptanalysis. However, keeping algorithms secret is only possible if they
are used in a strictly limited circle.

10

In the modern era, cryptocurrencies must satisfy internet-connected
users. In such cases, the use of a secret algorithm is not feasible, so
Kerckhoff's principles have become essential guidelines for algorithm
design in modern cryptography.

1.2 CAESAR'S CIPHER TECHNIQUE

Caesar encryption is the simplest and oldest encryption method.
The Caesar encryption method is based on single-alphabet encryption and
is also called turn-based encryption or additive encryption. Julius Caesar
used turn-based cryptography (additive cryptography) to communicate
with his officers. For this reason, the turn-based cipher technique is called
Caesar cipher. The Caesar cipher is a kind of substitution (substitution)
cipher, in which all letters in the plaintext are replaced by another letter.
Let's take an example to understand Caesar's cipher, suppose we pass with
1, then A will be replaced by B, B will be replaced by C, C will be
replaced by D, D will be replaced by C and this process continues. until all
plain text is finished.

Caesar ciphers are a weak encryption method. It can be easily
hacked. It means that the message encrypted with this method can be
easily decrypted.

Plain text: It is a simple message written by the user.

Encrypted text: It is an encrypted message after applying some
technique.

The encryption formula is:
In (x) = (x + n) mod 26
The decryption formula is:
Dn (x) = (xi - n) mod 26
However, if the value (Dn) becomes negative (-ve), in this case we will
add 26 to the negative value. Where is it,
E indicates encryption
D indicates decryption
x indicates the value of the letters
n denotes the key value (exchange value)

Example 1 Use Caesar encryption to encrypt and decrypt the
"JAVATPOINT" message and the key value (offset) for this message is 3.

11

Encryption:

We apply encryption formulas by character, in alphabetical order.
The encryption formula is: En (x) = (x + n) mod 26

Plain text: J → 09 It is: (09 + 3) mod 26 Ciphertext: 12 → M
Plain text: A → 00 It is: (00 + 3) mod 26 Ciphertext: 3 → D
Plain text: V → 21 It is: (21 + 3) mod 26 Ciphertext: 24 → Y
Plain text: A → 00 It is: (00 + 3) mod 26 Ciphertext: 3 → D
Plain text: V → 19 It is: (19 + 3) mod 26 Ciphertext: 22 → W.
Plain text: P → 15 It is: (15 + 3) mod 26 Ciphertext: 18 → S
Plain text: O → 14 It is: (14 + 3) mod 26 Ciphertext: 17 → R
Plain text: I → 08 It is: (08 + 3) mod 26 Ciphertext: 11 → L
Plain text: N → 13 It is: (13 + 3) mod 26 Ciphertext: 16 → Q
Plain text: V → 19 It is: (19 + 3) mod 26 Ciphertext: 22 → W.

The encrypted message is "MDYDWSRLQW". Note that Caesar's
cipher is mono-alphabetic, so the same plain text letters are encrypted as
the same letters. For example, "JAVATPOINT" has "A", encrypted with
"D".

Decoded:

We apply decryption formulas by character, in alphabetical order.
The decryption formula is: Dn (x) = (xi - n) mod 26

However, if the value (Dn) becomes negative (-ve), in this case we will
add 26 to the negative value.

Ciphertext: M → 12 Dn: (12-3) mod 26 Plain text: 09 → J

Ciphertext: D → 03 Dn: (03 - 3) mod 26 Plain text: 0 → A

Ciphertext: Y → 24 Dn: (24-3) mod 26 Plain text: 21 → V

Plain text: A → 00 It is: (00 + 3) mod 26 Ciphertext: 3 → D

Plain text: V → 19 It is: (19 + 3) mod 26 Ciphertext: 22 → W.

Plain text: P → 15 It is: (15 + 3) mod 26 Ciphertext: 18 → S

Plain text: O → 14 It is: (14 + 3) mod 26 Ciphertext: 17 → R

Plain text: I → 08 It is: (08 + 3) mod 26 Ciphertext: 11 → L

Plain text: N → 13 It is: (13 + 3) mod 26 Ciphertext: 16 → Q

Plain text: V → 19 It is: (19 + 3) mod 26 Ciphertext: 22 → W.

The decrypted message is "JAVATPOINT".

Example: 2 It uses Caesar's cipher to encrypt and decrypt the "HELLO"
message and the key (modification) value for this message is 15.

Encryption:

12

We apply encryption formulas by character, in alphabetical order.
The encryption formula is: En (x) = (x + n) mod 26

Plain text: H → 07 It is: (07 + 15) mod 26
mod

Ciphertext: 22 → W.

Plain text: E → 04 It is: (04 + 15) mod 26
mod

Ciphertext: 19 → T

Plain text: L → 11 It is: (11 + 15) mod 26 Ciphertext: 00 → LA

Plain text: L → 11 It is: (11 + 15) mod 26 Ciphertext: 00 → LA

Plain text: O → 14 It is: (14 + 15) mod 26 Ciphertext: 03 → D

Note that Caesar's cipher is mono-alphabetic, so the same plain text letters
are encrypted as the same letters. For example, "HELLO" has "L",
encrypted by "A".

The encrypted message for this plaintext is "WTAAD".

Decoded:

We apply decryption formulas by character, in alphabetical order.
The decryption formula is: Dn (x) = (xi - n) mod 26

Ciphertext: W → 22 Dn: (22-15) mod 26 Plain text: 07 → H.

Ciphertext: T → 19 DN: (19-15) mod 26 Plain text: 04 → E

Ciphertext: A → 00 Dn: (00-15) mod 26 Plain text: 11 → L

Ciphertext: A → 00 Dn: (00-15) mod 26 Plain text: 11 → L

Ciphertext: D → 03 Dn: (03-15) mod 26 Normal text: 14 → O

The decrypted message is "HELLO".

Note: If in any case the value (Dn) becomes negative (-ve), in this case we
will add 26 to the negative value. Like, the third letter of the ciphertext.

Dn = (00-15) mod 26

= -15

The value of dn is negative, so 26 will be added to it.

= -15 + 26

= 11
Advantages of Caesar encryption:

Its advantages are as follows:
How to find yet another highest salary in SQL

1. It is very easy to implement.

2. This method is the simplest encryption method.

13

3. Only a short key is used in the whole process.

4. If a system does not use complex coding techniques, this is the best
way to do it.

5. It requires only a few computing resources.

Disadvantages of Caesar encryption:

Its disadvantages are as follows: -

1. It can be easily hacked. It means that the message encrypted with this
method can be easily decrypted.

2. Provides very little security.

3. By looking at the pattern of the letters on it, the entire message can be
decrypted.

1.3 SIMPLE REPLACEMENT ENCRYPTION

The simple substitution cipher is the most widely used cipher and
includes an algorithm to substitute each plaintext character for each
ciphertext character. In this process, the alphabets are confused with
respect to Caesar's encryption algorithm.

Example:

Keys for simple surrogate encryption typically consist of 26 letters.
An example of a key is the simple alphabet: abcdefghijklmnopqrstuvwxyz
encrypted alphabet: phqgiumeaylnofdxjkrcvstzwb

An example of encryption using the above key is:

plain text: defend the east wall of the castle

ciphertext: giifg cei iprc tpnn du cei qprcni

The following code shows a program to implement simple substitution
cryptography:

import random, sys

LETTERS = 'ABCDEFGHHIJKLMNOPQRSTUVWXYZ'

main def ():

message = ''

if len (sys.argv)> 1:

with open (sys.argv [1], 'r') as f:

message = read ()

the rest:

14

message = raw_input ("Enter your message:")

mode = raw_input ("E to encrypt, D to decrypt:")

key = ''

while checkKey (key) is False:

key = raw_input ("Enter 26 ALPHA keys (leave blank for random key):")

if key == '':

key = getRandomKey ()

if checkKey (key) is False:

print ("There is an error in the key or symbol set.")

translate = translateMessage (message, key, mode)

print ('Using key:% s'% (key))

if len (sys.argv)> 1:

fileOut = 'enc.' + sys.argv [1]

with open (fileOut, 'w') as f:

f.write (translated)

print ('Success! File written to:% s'% (fileOut))

else: print ('Result:' + translated)

Save the key in the list, sort it, convert it again, compare it with the
alphabet.

def checkKey (key):

keyString = '' .join (sorted (list (key)))

return keyString == LETTERS

def translateMessage (message, key, mode):

translated = ''

charsA = LETTERS

charactersB = key

If the decryption mode is detected, swap A and B

if mode == 'D':

charsA, charsB = charsB, charsA

for the symbol in the message:

if symbol.upper () in charsA:

symIndex = charsA.find (symbol.upper ())

15

if symbol.isupper ():

translated + = charsB [symIndex] .upper ()

the rest:

translated + = charsB [symIndex] .lower ()

the rest:

translated + = symbol

back translated

def getRandomKey ():

randomList = list (LETTERS)

random.shuffle (random list)

return '' .join (random list)

if __name__ == '__main__':

main()

Production:

You can see the following output when you implement the above code:

1.4 AFFINE CRYPTOGRAPHY

Affine Cipher is the combination of the Multiplicative Cipher and
Caesar Cipher algorithm. The basic implementation of affine cryptography
is as shown in the following image:

16

In this chapter we will implement affine cryptography by creating
its corresponding class which includes two basic functions for encryption
and decryption.

Code:

You can use the following code to implement affine encryption:
Affine class (object):

DEATH = 128

KEY = (7, 3, 55)

def __init __ (me):

To approve

def encryptChar (self, char):

K1, K2, kI = self.KEY

return chr ((K1 * ord (char) + K2)% self.DIE)

def encrypt (self, string):

return "" .join (map (self.encryptChar, string))

def decryptChar (self, char):

K1, K2, KI = self.KEY

return chr (KI * (ord (char) - K2)% self.DIE)

def decrypt (self, string):

return "" .join (map (self.decryptChar, string))

related = Affine ()

print affine.encrypt ("Affine encryption")

affine.decrypt print ('* 18? FMT')

Production:
You can see the following output when you implement an affine cipher:

The output shows the encrypted message for the Affine Cipher plain text
message and the decrypted message for the message sent as input abcdefg.

1.5 VIGENERE ENCRYPTION

Strong encryption is an algorithm used to encrypt and decrypt text.
Vigorous cipher is an alphabetic text encryption algorithm that uses a
series of interconnected Caesar ciphers. It is based on the letters of a

17

keyword. It is an example of a polyalphabetic substitution cipher. This
algorithm is easy to understand and implement. This algorithm was first
described in 1553 by Giovan Battista Bellaso. Use a Vigenere table or a
Vigenere square for text encryption and decryption. The table in effect is
also called a straight table.

Two methods perform encryption in effect.

Method 1:

When a valid table is provided, encryption and decryption are performed
using the valid table (array 26 * 26) in this method.

Example: the plain text is "JAVATPOINT" and the key is "BEST".

To generate a new key, the given key is repeated in a circular
fashion, as long as the length of the plaintext is not equal to the new key.

Encryption:

The first letter of the plaintext is combined with the first letter of
the key. The plaintext column "J" and key row "B" intersect the alphabet
for "K" in the current table, so the first letter of the ciphertext is "K".

HTML tutorial:

Similarly, the second letter of the plaintext is combined with the
second letter of the key. Plain text column "A" and key row "E" intersect
the alphabet for "E" in the current table, so the second letter of the
ciphertext is "E".

18

This process continues continuously until the plaintext is finished.

Encrypted text = KENTUTGBOX

decoded

Decryption is done using the row of keys in the current table. First,
select the key letter row, find the position of the ciphertext letter in that
row, and then select the corresponding ciphertext column label as plain
text.

For example, in the key line there is "B" and the ciphertext is "K"
and this letter of the ciphertext appears in the column "J", which means
that the first letter of the plaintext is "J".

The next in the key line is "E" and the ciphertext is "E" and this
ciphertext letter appears in the "A" column, which means the second
plaintext letter is "A".

This process continues continuously until the end of the ciphertext.

Plain text = JAVATPOINT

Method 2:

When the actual table is not provided, encryption and decryption
are performed by Vigenar's algebraic formula in this method (converting
letters (AZ) to numbers (0-25)).

The cryptographic formula is,
Ei = (Pi + Ki) mod 26
The decryption formula is,
Di = (Ei - Ki) mod 26
If in any case the value (Di) becomes negative (-ve), in this case, we will
add 26 to the negative value.

Where is it,
E indicates encryption.
D indicates decryption.
P indicates normal text.
K indicates the key.

19

Note: "i" indicates the offset of the i-th number of letters, as shown
in the following table.

Example: the plain text is "JAVATPOINT" and the key is "BEST".
Encryption: Ei = (Pi + Ki) mod 26

Plain
text

J FOR V. FO
R

T. P. OR I Nor
th

T.

Plain
text
value
(P)

0
9

00 twent
y-one

00 19 fifte
en

14 0
8

13 19

Key B
.

mys
elf

S. T. B. mys
elf

S. T
.

B. mys
elf

Key
value
(K)

0
1

04 18 19 01 04 18 1
9

01 04

Ciphert
ext
value
(E)

1
0

04 13 19 twen
ty

19 06 0
1

14 2. 3

Encrypt
ed text

K
.

mys
elf

Nort
h

T. OR T. GRA
M

B
.

OR X

decoded: Di = (Ei - Ki) mod 26

If in any case the value (Di) becomes negative (-ve), in this case, we will
add 26 to the negative value. Come, the third letter of the ciphertext;

N = 13 and S = 18

Di = (Ei - Ki) mod 26

Di = (13 - 18) mod 26

Di = -5 mod 26

Di = (-5 + 26) mod 26

Di = 21

Encrypt
ed text

K
.

mys
elf

Nort
h

T. OR T. GRA
M

B
.

OR X

Ciphert
ext
value
(E)

1
0

04 13 19 twen
ty

19 06 0
1

14 2. 3

Key B mys S. T. B. mys S. T B. mys

20

. elf elf . elf
Key
value
(K)

0
1

04 18 19 01 04 18 1
9

01 04

Plain
text
value
(P)

0
9

00 twent
y-one

00 19 fifte
en

14 0
8

13 19

Plain
text

J FOR V. FO
R

T. P. OR I Nor
th

T.

1.6 HILL ENCRYPTION

The Hill cipher is a polygraph replacement cipher based on linear
algebra. Each letter is represented by a modulo number 26. The simple
pattern A = 0, B = 1,…, Z = 25 is often used, but this is not an essential
feature of the cipher. To encrypt a message, each block of n letters
(considered as a vector of n components) is multiplied by an invertible n ×
n matrix, against modulo 26. To decrypt the message, each block is
multiplied by the inverse of the matrix used for cryptography.

The matrix used for the encryption is the encryption key, and must
be chosen randomly from the set of n × n invertible matrices (modulo 26).

Examples:

Input: Plain text: ACT

Key: GYBNQKURP

Output: Ciphertext: POH

Input: Plain text: GFG

Legend: HILLMAGIC

Output: Ciphertext: SWK

Encryption:

We need to encrypt the 'ACT' message (n = 3). The key is
"GYBNQKURP" which can be written as an nxn array:

The 'ACT' message is written as a vector:

21

The encrypted vector is given as:

which matches the ciphertext of 'POH'

decoded

To decrypt the message, we convert the ciphertext back to a vector,
then simply multiply by the inverse matrix of the key matrix
(IFKVIVVMI in letters). The inverse of the matrix used in the previous
example is:

For the ciphertext above 'POH':

which returns 'ACT'.

1.7 ENCRYPTION TRANSPOSITION

Transposition Cipher is a cryptographic algorithm in which the
order of plain text alphabets is rearranged to form a ciphertext. Actual
plain text alphabets are not included in this process.

Example:

A simple example of a transposition cipher is the columnar
transposition cipher, in which each character in plain text is written
horizontally with a specified alphabetic width. The encryption is written
vertically, which creates a completely different ciphertext.

22

Consider the simple hello world text and apply the simple columnar
transposition technique as shown below

Plain text characters are placed horizontally and the ciphertext is
created in vertical format as: holewdlo lr. Now the recipient must use the
same table to decrypt the ciphertext into plain text.

Code:

The following program code demonstrates the basic implementation of the
column transposition technique:

def split_len (seq, length):

return [seq [i: i + length] for i in the interval (0, len (seq), length)]

def encoding (key, plain text):

order = {

int (val): num for num, val in enumerate (key)

}
ciphertext = ''

for the sorted index (order.keys ()):

per part in split_len (plain text, len (key)):

proof: ciphertext + = part [order [index]]

except IndexError:

Follow

return the ciphertext

print (encoding ('3214', 'HELLO'))

Explanation:

● Using the split_len () function, we can split plain text characters,
which can be placed in column or row format.

● The encryption method helps to create the ciphertext with a key that
specifies the number of columns and prints the ciphertext by reading
the characters in each column.

Production:

The program code for the basic implementation of the column
transposition technique provides the following output:

23

Note: Cryptoanalysts have observed a significant improvement in
cryptographic security when the transposition technique is performed.
They also noted that re-encoding the ciphertext using the same
transposition cipher creates greater security.

1.8 STREAM ENCRYPTION

Difference between block encryption and stream encryption:

Both block and stream encryption are the encryption methods used
primarily to directly convert plain text to encrypted text and belong to the
symmetric key cryptography family.

Below are the important differences between Block Cipher and Stream
Cipher.

No sir. Key Block
encryption

Stream
encryption

1 Definition Block Cipher is
the type of
encryption
where the
plaintext
conversion is
done by taking
your block at a
time.

On the other
hand, Stream
Cipher is the
type of
encryption
where the
plaintext
conversion is
done by taking
one byte of the
plaintext at a
time.

Two Bit conversion Since Block
Cipher accepts
blocks at a time,
relatively more
bits are
converted than
Stream Cipher,
specifically 64
bits or more can
be converted at
a time.

On the other
hand, in the
case of Stream
Cipher, a
maximum of 8
bits can be
converted at a
time.

3 Start Block Cipher
uses the
principle of
confusion and

On the other
hand, Stream
Cipher only
uses the

24

diffusion for the
conversion
required for
encryption.

confusion
principle for
conversion.

4 Algorithm For clear text
encryption,
Block Cipher
uses Electronic
Code Book
(ECB) and
Cipher Block
Chaining (CBC)
algorithm.

Stream Cipher
uses the CFB
(Cipher
Feedback) and
OFB (Output
Feedback)
algorithm
instead.

5 decoded A combination
of multiple bits is
encrypted in the
case of Block
Cipher, so
reverse
encryption or
decryption is
relatively
complex
compared to
Stream Cipher.

On the other
hand, Stream
Cipher uses
XOR for
encryption
which can be
easily restored
in plain text.

6 Implementation The main
implementation
of Block Cipher
is Feistel
Cipher.

On the other
hand, the main
implementation
of Stream
Cipher is
Vernam Cipher.

1.9 ENCRYPTION

Humans of all ages had two intrinsic needs: (a) to communicate
and share information and (b) to communicate selectively. These two
needs gave rise to the art of encoding messages in such a way that only
designated persons could access the information. Unauthorized persons
cannot extract any information, even if the encrypted messages fall into
their hands.

The art and science of hiding messages to introduce secrecy into
information security is recognized as cryptography.

The word "cryptography" was coined by combining two Greek
words, "Krypto" which means hidden and "graphene" which means
writing.

History of cryptography:
The art of cryptography is considered born along with the art of

writing. With the evolution of civilizations, human beings have organized

25

themselves into tribes, groups and kingdoms. This has led to the
emergence of ideas such as power, battles, supremacy and politics. These
ideas have further fueled people's natural need to secretly communicate
with selective recipients, which in turn has also ensured the continued
evolution of cryptocurrencies.

The roots of cryptography lie in the Roman and Egyptian civilizations.

Hieroglyph - the oldest cryptographic technique:

The earliest known evidence of cryptography dates back to the use
of "hieroglyphs". About 4,000 years ago, the Egyptians communicated
using messages written in hieroglyphics. This code was the secret known
only to scribes who used to transmit messages on behalf of kings. Below is
one of these hieroglyphs.

Later, scholars switched to the use of simple mono-alphabetic
substitution ciphers in the period between 500 and 600 BC. This involved
replacing the message alphabets with other alphabets with some secret
rule. This rule has become a key to recovering the message from the
unreadable message.

The previous Roman encryption method, popularly known as the
Caesar exchange cipher, is based on the exchange of the letters of a
message with an agreed number (three was a common choice), the
recipient of this message exchanges the letters with the same number. and
get the original message.

Steganography:

Steganography is similar but adds another dimension to
cryptography. In this method, people not only want to protect the secrecy
of information by hiding it, but they also want to make sure that
unauthorized people do not get evidence of the information. For example,
invisible watermarks.

26

In steganography, an unintended recipient or intruder is unaware
that the observed data contains hidden information. In encryption, an
intruder is usually aware that the data is being communicated, because he
can see the encrypted / encrypted message.

Evolution of cryptography:

During and after the European Renaissance, various Italian and papal
states led the rapid proliferation of cryptographic techniques. At this time,
various analysis and attack techniques have been studied to crack the
secret codes.

● Improved coding techniques, such as Vigenere Coding, originated in
the 15th century, with letters moving in the message with several
different points rather than moving them the same number of places.

● Only after the 19th century did cryptography evolve from ad hoc
approaches to cryptography to the more sophisticated art and science
of information security.

● In the early 20th century, the invention of mechanical and
electromechanical machines, such as the Enigma rotor machine,
provided more advanced and efficient means of encoding information.

● During the WWII period, both cryptography and cryptanalysis became
overly mathematical.

With advances in this field, government organizations, military
units and some corporate houses have begun to adopt the applications of
cryptography. They used cryptography to protect their secrets from others.
Now, the advent of computers and the Internet has put effective encryption
within the reach of ordinary people.

Modern cryptography:

Modern cryptography is the cornerstone of cyber and
communications security. Its basis is based on various concepts of
mathematics, such as number theory, computational complexity theory
and probability theory.

27

Features of modern cryptography:

There are three main characteristics that separate modern cryptocurrencies
from the classic approach.

classic cryptography Modern cryptography
Directly manipulate traditional
characters - letters and digits.

It works on binary bit streams.

It is mainly based on "safety
through the dark". The techniques
used for encryption were kept
secret and only the parties
involved in the communication
were aware of them.

It relies on publicly known
mathematical algorithms to encode
information. The secret is obtained
through a secret key which is used as
a seed for the algorithms. The
computational difficulty of the
algorithms, the absence of a secret
key, etc., make it impossible for an
attacker to obtain the original
information even if he knows the
algorithm used for the encryption.

Requires the entire cryptographic
system to communicate
confidentially.

Modern cryptography requires that
parties interested in secure
communication have only the secret
key.

Cryptographic context:
Cryptology, the study of cryptosystems, can be divided into two branches:

● Encryption

● Cryptoanalysis

What is encryption?:

Cryptography is the art and science of creating a cryptographic
system that can provide information security.

Encryption deals with the effective protection of digital data. It
refers to the design of mechanisms based on mathematical algorithms that
provide fundamental services for information security. You can think of
cryptography as creating a large set of tools that contains different
techniques in security applications.

28

What is cryptanalysis?:

The art and science of decrypting ciphertext is known as
cryptanalysis.

Cryptography is the twin branch of cryptography, and the two
coexist. The cryptographic process outputs the ciphertext for transmission
or storage. It involves studying cryptographic mechanisms with the
intention of breaking them. Cryptography is also used when designing
new cryptographic techniques to test their security strengths.

Note: Cryptography refers to the design of cryptographic systems, while
cryptanalysis studies the violation of cryptographic systems.

Cryptographic Security Services:

The primary purpose of using cryptography is to provide the
following four basic services for information security. Let's now take a
look at the possible goals that cryptocurrencies intend to achieve.

Confidentiality:

Confidentiality is the fundamental security service provided by
cryptography. It is a security service that keeps the information of an
unauthorized person. Sometimes it is called privacy or secrecy.
Confidentiality can be achieved through a number of means, from physical
protection to the use of mathematical algorithms for data encryption.

Data integrity:

It is a security service that takes care of identifying any data
alteration. Data can be changed intentionally or accidentally by an
unauthorized entity. The integrity service confirms whether or not the data
is intact since it was last created, transmitted or stored by an authorized
user.

Data integrity cannot prevent data from being altered, but it does
provide a means of detecting if data has been tampered with in an
unauthorized manner.

Authentication:

Authentication provides sender identification. Confirms to the
recipient that the received data was sent only by an identified and verified
sender.

29

The authentication service has two variants:

● Message authentication identifies the sender of the message regardless
of the router or system that sent the message.

● Entity authentication is the assurance that data has been received from
a specific entity, such as a particular website.

In addition to the originator, authentication can also provide
security on other data-related parameters, such as creation / transmission
date and time.

I do not repudiate:

It is a security service that ensures that an entity cannot refuse
ownership of a previous commitment or action. It is a guarantee that the
original creator of the data cannot deny the creation or transmission of
such data to a recipient or to a third party.

Non-repudiation is a property that is most desirable in situations
where the possibility of a data exchange dispute exists. For example, once
an order has been placed electronically, a buyer cannot reject the purchase
order if the non-repudiation service has been enabled in this transaction.

Cryptographic primitives:

Cryptographic primitives are nothing more than cryptographic tools and
techniques that can be selectively used to provide a desired set of security
services.

● Encryption

● Hash functions

● Message Authentication Codes (MAC)

● Digital signatures

The following table shows the primitives that can create a particular
security service on their own.

Note: Cryptographic primitives are closely related and are often combined
to obtain a desired set of security services from a cryptosystem.

30

Cryptosystems:

A cryptosystem is an implementation of cryptographic techniques
and the infrastructure that accompanies them to provide information
security services. A cryptographic system is also known as an encryption
system.

Let's analyze a simple cryptosystem model that provides
confidentiality to the information transmitted. This basic model is shown
in the following illustration:

The illustration shows a sender who wants to transfer some
confidential data to a recipient in such a way that any interlocutor or
interception on the communication channel cannot extract the data.

The goal of this simple cryptographic system is that at the end of
the process, only the sender and recipient know the plaintext.

Components of a cryptosystem:

The various components of a basic cryptosystem are as follows:

● Plain text. These are the data to be protected during transmission.

● Encryption algorithm. It is a mathematical process that produces
ciphertext for any plaintext and encryption key. It is a cryptographic
algorithm that accepts plain text and an encryption key as input and
produces encrypted text.

● Encrypted text. It is the encrypted version of the plaintext produced by
the encryption algorithm that uses a specific encryption key. The
ciphertext is not protected. Scrolls in public channels. It can be
intercepted or compromised by anyone with access to the
communication channel.

● The decryption algorithm is a mathematical process that produces a
unique plaintext for any ciphertext and decryption key. It is a
cryptographic algorithm that accepts a ciphertext and a decryption key

31

as input and generates plain text. The decryption algorithm basically
reverses the encryption algorithm and is therefore closely related to it.

● Encryption key. It is a value known to the sender. The sender enters
the encryption key into the encryption algorithm along with the
plaintext to compute the ciphertext.

● Decryption key. It is a value known to the recipient. The decryption
key is related to the encryption key, but it is not always identical to it.
The recipient enters the decryption key into the decryption algorithm
along with the ciphertext to calculate the plaintext.

For a given cryptographic system, a collection of all possible
decryption keys is called the key space.

An interceptor (an attacker) is an unauthorized entity that attempts to
determine plain text. You can view the ciphertext and learn about the
decryption algorithm. However, you should never know the decryption
key.

Types of cryptosystems:

Basically, there are two types of cryptosystems based on the way
encryption-decryption is performed on the system:

● Symmetric key encryption

● Asymmetric key encryption

The main difference between these cryptographic systems is the
relationship between the encryption and the decryption key. Logically, in
any cryptographic system, both keys are closely associated. It is
practically impossible to decrypt the ciphertext with the key that is not
related to the encryption key.

Symmetric key encryption:

The encryption process in which the same keys are used to encrypt
and decrypt information is known as symmetric key encryption.

The study of symmetric cryptosystems is known as symmetric
cryptography. Symmetric cryptosystems are sometimes also called secret
key cryptosystems.

Some known examples of symmetric key encryption methods are:
Digital Encryption Standard (DES), Triple-DES (3DES), IDEA, and
BLOWFISH.

32

Before 1970, all cryptographic systems used symmetric key
cryptography. Even today, its relevance is very high and it is widely used
in many cryptographic systems. This encryption is highly unlikely to
disappear as it has some advantages over asymmetric key encryption.

The most important features of the cryptosystem based on symmetric key
cryptography are:

● People who use symmetric key cryptography must share a common
key before exchanging information.

● It is recommended to change the keys regularly to avoid any attack on
the system.

● A robust mechanism is needed for key exchange between
communicating parties. Since the keys have to be changed regularly,
this mechanism becomes expensive and cumbersome.

● In a group of n people, to allow communication between any two
people, the number of keys required for the group is n × (n - 1) / 2.

● The key length (number of bits) in this encryption is shorter and
therefore the encryption-decryption process is faster than asymmetric
key encryption.

● The processing power of a computer system required to run a
symmetric algorithm is less.

Challenge of the symmetric key cryptography system:

There are two restrictive challenges in using symmetric key cryptography.

● Establishment of the key: Before any communication, both the
sender and the recipient must agree on a secret symmetric key.
Requires a secure key creation mechanism.

● Trust issue: Since the sender and recipient use the same symmetric
key, there is an implicit requirement that the sender and recipient
"trust" each other. For example, it may happen that the recipient has
lost the key of an attacker and the sender is not informed.

These two challenges are very restrictive for modern communication.
Today, people need to exchange information with unknown and unreliable

33

parties. For example, the communication between online sellers and
customers. These limitations of symmetric key cryptography have led to
asymmetric key cryptographic schemes.

Asymmetric key encryption:

The encryption process in which different keys are used to encrypt
and decrypt information is known as asymmetric key cryptography.
Although the keys are different, they are mathematically related and
therefore it is possible to recover the plaintext by decrypting the
ciphertext. The process is shown in the following figure:

Asymmetric key cryptography was invented in the 20th century to
overcome the need for secret keys previously shared between
communicating people. The most important features of this encryption
scheme are as follows:

● All users of this system must have a different key pair, private key,
and public key. These keys are mathematically related: when one key
is used for encryption, the other can decrypt the ciphertext back to its
original plaintext.

● It requires you to put the public key in a public repository and the
private key as a well-kept secret. Therefore, this encryption scheme is
also called public key cryptography.

● Although the user's public and private keys are related, it is not
computationally possible to find each other. This is one of the
strengths of this scheme.

● When Host1 needs to send data to Host2, it obtains Host2's public key
from the repository, encrypts the data, and transmits.

● Host2 uses your private key to extract plain text.

● The length of the keys (number of bits) in this encryption is large and
therefore the encryption-decryption process is slower than symmetric
key encryption.

34

● The processing power of a computer system required to run an
asymmetric algorithm is greater.

Symmetric cryptosystems are a natural concept. Conversely, public-
key cryptosystems are rather difficult to understand.

You may be thinking, how can the encryption key and the decryption
key be "related" and yet is it impossible to determine the decryption key
from the encryption key? The answer is in the mathematical concepts. It is
possible to design a cryptosystem whose keys have this property. The
concept of public key cryptography is relatively new. Fewer public key
algorithms are known than symmetric algorithms.

Challenge of the public key cryptographic system:

Public-key cryptographic systems have a significant challenge: the
user must trust that the public key they are using in communications with
a person is actually that person's public key and has not been forged by
malicious third parties.

This is typically accomplished through a public key infrastructure
(PKI) made up of a trusted third party. The third party securely manages
and guarantees the authenticity of the public keys. When the third party is
asked to provide the public key for any communicating person X, they
rely on them to provide the correct public key.

The third party is satisfied with the user's identity through the
attestation process, notarization, or some other process: whether X is the
only, or globally unique, X. The most common method of making verified
public keys available is to embed them in a certificate digitally signed by a
trusted third party.

Relationship between encryption schemes:

Here is a summary of the basic key properties of two types of
cryptosystems:

Symmetric
cryptosystems

Public key
cryptosystems

Relationship
between the keys

Same Different, but
mathematically related

Encryption key Symmetrical Public
Decryption key Symmetrical Private

Due to the advantages and disadvantages of both systems,
symmetric key and public key cryptographic systems are often used
together in practical information security systems.

35

Kerckhoff's principle for the cryptosystem:

In the 19th century, a Dutch cryptographer A. Kerckhoff provided
the requirements for a good cryptographic system. Kerckhoff said that a
cryptographic system should be secure even if everything about the
system, except the key, is in the public domain. The six design principles
defined by Kerckhoff for the cryptosystem are:

● The cryptosystem should be practically indestructible, if not
mathematically.

● The fall of the cryptosystem into the hands of an intruder must not
involve any compromise of the system, avoiding inconvenience for the
user.

● The key must be easily communicable, memorable and modifiable.

● The ciphertext must be transmissible by telegraph, an insecure
channel.

● The encryption device and documents must be portable and managed
by one person.

● Finally, the system must be easy to use, requiring no mental effort or
knowledge of a long set of rules to follow.

The second rule is known today as the Kerckhoff principle. It is
applied practically in all contemporary encryption algorithms such as
DES, AES, etc. These public algorithms are considered completely safe.
The security of the encrypted message depends solely on the security of
the secret encryption key.

Keeping algorithms secret can be a significant barrier to
cryptanalysis. However, keeping algorithms secret is only possible if they
are used in a strictly limited circle.

In the modern era, cryptocurrencies must satisfy internet-connected
users. In such cases, the use of a secret algorithm is not feasible, so
Kerckhoff's principles have become essential guidelines for algorithm
design in modern cryptography.

Attacks on the cryptosystem:

In today's era, not just business, but almost every aspect of human
life is information-driven. Therefore, it has become imperative to protect
useful information from malicious activities such as attacks. Let's consider
the types of attacks that information is often subjected to.

Attacks are generally classified according to the action taken by
the attacker. An attack, therefore, can be passive or active.

36

Passive attacks:

The main goal of a passive attack is to gain unauthorized access to
information. For example, actions such as interception and interception on
the communication channel can be considered passive attacks.

These actions are passive in nature, as they do not affect
information or disturb the communication channel. A passive attack is
often seen as information theft. The only difference between physical asset
theft and information theft is that data theft still leaves the owner in
possession of that data. Passive information attack is therefore more
dangerous than property theft, as information theft can go unnoticed by the
owner.

Active attacks:

An active attack involves modifying information in some way by
executing a process on the information. For example,

● Change information in an unauthorized way.

● Initiate an unintended or unauthorized transmission of information.

● Alteration of authentication data, such as the sender name or
timestamp associated with the information

● Unauthorized deletion of data.

● Denial of access to information for legitimate users (denial of service).

37

Cryptography provides many tools and techniques for implementing
cryptographic systems that can prevent most of the attacks described
above.

Hypothesis of the attacker:

Let's take a look at the prevailing environment around
cryptosystems, followed by the types of attacks used to breach these
systems:

Environment around the cryptosystem:

When considering possible attacks on the cryptosystem, it is
necessary to understand the environment of the cryptosystem. The
assumptions of the attacker and the knowledge of the environment
determine his abilities.

In cryptography, the following three assumptions are made about
the security environment and the attacker's capabilities.

Details of the encryption scheme:

The design of a cryptographic system is based on the following two
cryptographic algorithms:

● Public algorithms: with this option all the details of the algorithm are
in the public domain, known to all.

● Proprietary Algorithms: The details of the algorithm are known only
to system designers and users.

In the case of proprietary algorithms, security is guaranteed by
obscurity. Private algorithms may not be the most powerful as they are
developed in-house and may not be thoroughly researched to identify
weaknesses.

Secondly, they only allow communication between closed groups.
Therefore, they are not suitable for modern communication where people
communicate with a large number of known or unknown entities. Also,

38

according to Kerckhoff's principle, it is preferable that the algorithm be
public with the strength of the encryption in the key.

Therefore, the first assumption about the security environment is that
the attacker knows the encryption algorithm.

Availability of the ciphertext:

We know that once the plaintext is encrypted into ciphertext, it is
placed on an insecure public channel (e.g. email) for transmission.
Therefore, the attacker can obviously assume that he has access to the
ciphertext generated by the cryptosystem.

Availability of plain and encrypted text:

This hypothesis is not as obvious as the others. However, there could be
situations where an attacker could gain access to the plaintext and the
corresponding ciphertext. Some of these possible circumstances are:

● The attacker tricks the sender to convert the plaintext of his choice and
gets the ciphertext.

● The recipient may inadvertently disclose the plaintext to the attacker.
The attacker has access to the corresponding ciphertext collected from
the open channel.

● In a public key cryptographic system, the cryptographic key is in the
open domain and is known to any potential attacker. With this key it is
possible to generate pairs of plaintext and corresponding ciphertext.

Cryptographic attacks:

The basic intention of an attacker is to crack a cryptographic
system and find the plaintext of the ciphertext. To get the plaintext, the
attacker only needs to find out the secret decryption key, as the algorithm
is already in the public domain.

Therefore, apply the utmost effort to find out the secret key used in
the cryptosystem. Once the attacker can determine the key, the attacked
system is considered broken or compromised.

Based on the methodology used, attacks on cryptographic systems are
classified as follows:

● Ciphertext Only (COA) Attacks: In this method, the attacker has
access to a series of encrypted texts. You do not have access to the
corresponding plaintext. The COA is said to be successful when the
corresponding plaintext can be determined from a given set of
ciphertext. Occasionally, the encryption key can be determined by this
attack. Modern cryptographic systems are protected from attacks based
only on ciphertext.

39

● Known plain text attack (KPA): In this method, the attacker knows
the plaintext of some parts of the ciphertext. The task is to decrypt the
rest of the ciphertext using this information. This can be done by
determining the key or by some other method. The best example of
this attack is linear cryptanalysis against block ciphers.

● Chosen plain text attack (CPA): In this method, the attacker has
encrypted the text of his choice. Then you have the ciphertext-
plaintext pair of your choice. This simplifies the task of determining
the encryption key. An example of this attack is differential
cryptanalysis applied against block ciphers and hash functions. RSA, a
popular public key cryptographic system, is also vulnerable to chosen
plaintext attacks.

● Attack dictionary: This attack has many variations, all of which
involve compiling a 'dictionary'. In the simplest method of this attack,
the attacker constructs a ciphertext dictionary and the corresponding
plaintext that he has learned over time. In the future, when an attacker
obtains the ciphertext, they refer to the dictionary to find the
corresponding plaintext.

● Brute Force Attack (BFA): In this method, the attacker tries to
determine the key by trying all possible keys. If the key is 8 bits long,
the number of possible keys is 28 = 256. The attacker knows the
ciphertext and the algorithm, now he tries all 256 keys one by one to
decrypt them. The time to complete the attack would be very long if
the key is long.

● Birthday Attack: This attack is a variation of the brute force
technique. It is used against the cryptographic hash function. When
students in a class are asked about their birthdays, the answer is one of
365 possible dates. Suppose the first student's date of birth is August 3.
So, to find the next student whose birthday is August 3, we need to ask
1.25 * √365 ≈ 25 students. Likewise, if the hash function produces 64-
bit hash values, the possible hash values are 1.8x1019. By repeatedly
evaluating the function for different inputs, the same output is
expected to be obtained after approximately 5.1x109 random inputs. If
the attacker can find two different entries that give the same hash
value,

● Medium Attack Man (MIM): The targets of this attack are mostly
public-key cryptographic systems where key exchange occurs before
communication takes place.

○ Host A wants to communicate with host B, so it requests B's public
key.

○ An attacker intercepts this request and sends his public key instead.

○ Therefore, any host A sends to host B, the attacker can read.

○ To maintain communication, the attacker re-encrypts the data after
reading it with his public key and sends it to B.

40

○ The attacker sends his public key as A's public key for B to take as
if he were taking it from A.

● Side channel connection (SCA): This type of attack is not against any
particular algorithm or cryptographic system. Instead, it is launched to
exploit the weakness in the physical implementation of the
cryptosystem.

● Time Attacks: They take advantage of the fact that different
calculations take different times to be calculated in the processor. By
measuring these times it is possible to know a particular calculation
that the processor is making. For example, if encryption takes longer,
it indicates that the secret key is long.

● Power analysis attacks: These attacks are similar to time attacks,
except that the amount of power consumption is used to gain insight
into the nature of the underlying calculations.

● Failure Analysis Attacks: In these attacks, errors are induced in the
cryptosystem and the attacker studies the resulting output to obtain
useful information.

Practicality of attack:

The attacks on cryptographic systems described here are highly
academic, as most of them come from the academic community. Indeed,
many academic attacks involve unrealistic assumptions about the
attacker's environment and abilities. For example, in a chosen ciphertext
attack, the attacker requests an impractical number of deliberately chosen
plaintext-text pairs. It may not be entirely practical.

However, the fact that there is an attack should be cause for
concern, especially if the attacking technique has the potential to improve.

1.10 IMPLEMENTING AFFINE CRYPTOGRAPHY

Affine cipher is a type of mono-alphabetic substitution cipher, in
which each letter of an alphabet is mapped to its numerical equivalent,
encrypted using a simple mathematical function, and converted back into a
letter. The formula used means that each letter is encrypted into another
letter and vice versa, which means that the encryption is essentially a
standard replacement encryption with a rule governing which letter goes to
which.

The whole process is based on working in modulo m (the length of
the alphabet used). In affine cipher, the letters of an alphabet of size m are
first assigned to integers in the range 0… m-1.

The "key" for affine encryption is composed of 2 numbers, we will
call them a and b. The following discussion assumes the use of a 26-

41

character alphabet (m = 26). a must be chosen to be a relative prime m
(that is, a must have no factors in common with m).

Encryption:

Use modular arithmetic to transform the integer that each plaintext
letter corresponds to into another integer that matches a ciphertext letter.
The encryption function for a single letter is
E (x) = (ax + b) mod m

module m: size of the alphabet

a and b: encryption key.

a must be chosen so that a and m are coprime.

decoded

When decrypting the ciphertext, you need to perform the opposite
(or reverse) functions on the ciphertext to recover the plaintext. Again, the
first step is to convert each letter in the ciphertext to its integer values. The
decryption function is

D (x) = a ^ -1 (x - b) mod m

a ^ -1: inverse modular multiplicative of a modulo of my, satisfies the
equation

1 = aa ^ -1 mod m.

To find a multiplicative inverse:

We need to find a number x such that:

If we find the number x such that the equation is true, then x is the
inverse of a, and we call it a ^ -1. The easiest way to solve this equation is
to look up each of the numbers 1 through 25 and see which one satisfies
the equation.

[g, x, d] = gcd (a, m); % we can ignore ged, we don't need them
x = mod (x, m);

If you now multiply x and ay reduce the result (mod 26), you will
get the answer 1. Remember, this is only the definition of an inverse, that
is, if a * x = 1 (mod 26), then x is an inverse of a (ya is inverse of x)

Example:

42

1.11 MONOALPHABETIC AND POLYALPHABETIC
CRYPTOGRAPHY

The monoalphabetic cipher is a substitution cipher in which, for a
given key, the cipher alphabet of each simple alphabet is fixed during the
encryption process. For example, if 'A' is encrypted as 'D', for any number
of occurrences in that plain text, 'A' will always be encrypted as 'D'.

All the substitution ciphers we discussed earlier in this chapter are
mono-alphabetic; these ciphers are very susceptible to cryptanalysis.

The polyalphabetic cipher is a substitution cipher in which the
ciphered alphabet of the simple alphabet can be different at different
points during the encryption process. The next two examples, playfair and
Vigenere Cipher, are polyalphabetic ciphers.

Playfair encryption:

In this scheme, pairs of letters are encrypted, rather than single
letters, as is the case with simple surrogate encryption.

In playfair encryption, a key table is initially created. The key table
is a 5 × 5 alphabet grid that serves as a key to encrypt the plaintext. Each
of the 25 alphabets must be unique and one letter of the alphabet (usually
J) is omitted from the table, as we only need 25 alphabets instead of 26. If
the plaintext contains J, it is replaced by I.

Sender and recipient decide on a particular key, let's say "tutorial".
In a key table, the first characters (left to right) in the table are the
sentence, excluding duplicate letters. The rest of the table will be filled
with the remaining letters of the alphabet, in natural order. The key table
appears to be:

43

Playfair encryption process:

● First, a plain text message is divided into two-letter pairs
(digraphs). If the number of letters is odd, a Z is added to the last letter.
Suppose we want to encrypt the "hide money" message. It will be written
as −HI DE MO NE YZ

● The encryption rules are:

○ If both letters are in the same column, take the letter below each (go
back to the top if it is below)

● "H" and "I" are in the same column, so take the letter below them to
replace them. HI → QCI If both letters are in the same row, take the
letter to the right of each (returning to the left if it is further to the
right)
"D" and "E" are in the same row, so take the letter to the right of them
to replace them. DE → EFI If neither of the above two rules are true,
form a rectangle with the two letters and take the letters at the opposite
horizontal corner of the rectangle.

Using these rules, the result of "hide money" encryption with the "tutorial"
key would be:

QC EF NU MF ZV

Cracking Playfair's encryption is as simple as doing the same
process in reverse. The recipient has the same key and can create the same
key table, then decrypt any message created with that key.

Security value:

It is also a surrogate cipher and is difficult to crack compared to
simple surrogate cipher. As in the case of the surrogate cipher,

44

cryptanalysis is also possible in the Playfair cipher, however it would be
against 625 possible pairs of letters (25x25 alphabets) instead of 26
different possible alphabets.

Playfair's encryption was mainly used to protect important, but not
critical, secrets, as it is quick to use and requires no special equipment.

1.12 CRYPTOANALYSIS OF THE VIGENERE CIPHER

This encryption scheme uses a text string (such as a word) as a
key, which is then used to make a number of changes to the plain text.

For example, suppose the key is "period". Each alphabet on the key is
converted to its respective numerical value: In this case,

p → 16, o → 15, i → 9, n → 14 and t → 20.
Therefore, the key is: 16 15 9 14 20.

Vigenere encryption process:

● The sender and recipient decide on a key. Saying "point" is the key.
The numeric representation of this key is '16 15 9 14 20 '.

● The sender wants to encrypt the message, for example "attack from the
southeast". You will arrange the plain text and number keys as
follows:

● Now change each plaintext alphabet to the number written below to
create a ciphertext as shown below:

● Here, each plain text character has been changed by a different amount
and that amount is determined by the key. The key must be less than or
equal to the size of the message.

● For decryption, the recipient uses the same key and changes the
received ciphertext in reverse order to get the plaintext.

45

Security value:

Vigenere Cipher was designed by modifying the standard Caesar
cryptography to reduce the effectiveness of cryptanalysis on ciphertext
and make a cryptosystem more robust. It is significantly more secure than
regular Caesar encryption.

Throughout history, it has been used regularly to protect sensitive
political and military information. It became known as indestructible
cryptography due to the difficulty it represented for cryptanalysis.

Variants of Vigenere encryption:

There are two special cases of Vigenere encryption:

● The keyword length is the same as for a plain text message. This case
is called Vernam Cipher. It is more secure than typical Vigenere
encryption.

● Vigenere cryptography becomes a cryptosystem with perfect secrecy,
which is called One-Time Notepad.

One-time pillow:

Circumstances are ...

● The length of the keyword is equal to the length of the normal text.

● The keyword is a randomly generated string of alphabets.

● The keyword is used only once.

Security value:

Let's compare a Shift cipher with a one-time pad.

Exchange encryption - easy to crack

In the case of Shift encryption, the entire message could have
shifted between 1 and 25. This is a very small size and very easy to use by
brute force. However, now that each character has their own individual
change between 1 and 26, the possible keys grow exponentially for the
message.

Disposable pad - impossible to break:

Suppose you encrypt the name "period" with a single-use notepad.
It is a 5 letter text. To decrypt the ciphertext by brute force, you need to
test all the key possibilities and perform the calculation for (26 x 26 x 26 x
26 x 26) = 265 = 11881376 times. This is for a message with 5 alphabets.
Therefore, for a longer message, the calculation grows exponentially with

46

each additional alphabet. This makes it computationally impossible to
break ciphertext by brute force.

1.13 LINEAR FEEDBACK SHIFT REGISTER FLOW
CIPHERS (LFSR)

● A linear feedback shift register (LFSR) is a type of digital circuit that
has several storage areas, each of which can contain 1 bit, linked in a
chain. The output of each storage area is connected to the input of the
next storage area in the chain, resulting in a circuit that shifts the data
stored in it one position to the right each time the circuit is executed.
How storage areas are connected varies from circuit to circuit, and
each setting will change the pattern in which bits move from one
storage area to another.

● LFSRs have many important uses in digital communication, not just
cryptography. They are used in TV broadcast signals, data transfer via
USB cable, and GPS navigation. LFSR circuits are still used to encrypt
GSM cell phone signals, despite serious security concerns.

LFSR stream encryption:

We encrypt the C3P message (abbreviated from C3P0) using a 4-bit LFSR
with seed 0110 and definition:

b4 ← b′1 + b′2 + b′4
b4 ← b1 ′ + b2 ′ + b4 ′

The first step is to convert the ASCII string to binary:

Plain ASCII text: C3P

plain text binary: 01000011 00110011 01010000

Then, it calculates the output stream of the LFSR so that there are as many
bits as are needed for the message. In this case 24.

B.
4
b4

B.
3
b3

B.
Two
b2

B.
1
b1

0 1 1 0

1 0 1 1

1 1 0 1

47

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0

1 0 1 1

48

1 1 0 1

Looking at the far right column, you get the bitstream:

01101101 10110110 11011011

Performing XOR encryption on these key streams:

01000011 00110011 01010000

01101101 10110110 11011011

00101110 10000101 10001011

01000011 00110011 01010000 01101101 10110110

1101101100101110 10000101 10001011

Which once converted to Base64 produces LoWL

To decrypt an LFSR stream cipher, you must bitwise subtract the
key stream from the ciphertext binary stream. Fortunately, bitwise
subtraction is identical to bitwise addition, so you just need to use the
XOR operation again.

Base64 ciphertext: LoWL

binary ciphertext: 001011 101000 010110 001011

Using the same binary keystream: 011011 011011 011011 011011

001011 101000 010110 001011

011011 011011 011011 011011

010000 110011 001101 010000

001011 101000 010110 001011 011011 011011 011011

011011010000 110011 001101 010000

Which is converted back to plain ASCII text: C3P

1.14 SHANNON'S THEORY

Information is the source of a communication system, be it analog
or digital. Information theory is a mathematical approach to the study of
information encoding along with the quantification, storage and
communication of information.

Conditions of occurrence of events:

If we consider an event, there are three conditions of occurrence.

● If the event has not occurred, there is a condition of uncertainty.

● If the event has just occurred, there is a surprise condition.

49

● If the event occurred some time ago, there is a condition to have some
information.

Therefore, these three occur at different times. The difference in these
conditions helps us to have a knowledge of the probabilities of occurrence
of events.

Entropy:

When we look at the probabilities of an event occurring, whether it
is surprising or uncertain, it means we are trying to get an idea of the
average content of information from the source of the event.

Entropy can be defined as a measure of the average information
content per character symbol. Claude Shannon, the "father of information
theory", gave you a formula like

$$ H = - \ sum_ {i} p_i \ log_ {b} p_i $$

Where $ p_i $ is the probability that character number i of a given
stream of characters will occur and b is the basis of the algorithm used.
Hence, this is also called Shannon entropy.

The amount of uncertainty that remains on the channel input after
observing the channel output is called conditional entropy. It is denoted by
$ H (x \ arrowvert y) $

Discreet character with no memory:

A source from which data is output at successive intervals, which
is independent of previous values, can be called a discrete and memoryless
source.

This source is discrete since it is not considered for a continuous
time interval, but in discrete time intervals. This character has no memory,
as it is always up to date, regardless of previous values.

Source encoding:

According to the definition, "Given a memoryless discrete entropy
source $ H (\ delta) $, the average code length $ \ bar {L} $ for any source
encoding is limited to $ \ bar {L} \ geq H (\ delta) $ ".

In simpler words, the code word (eg the Morse code for the word
QUEUE is -.- ..-. ..-.) Is always greater than or equal to the source code
(QUEUE in the example). This means that the symbols in the code are
greater than or equal to the alphabets in the source code.

50

Channel coding:

Coding the channels in a communication system introduces
redundancy with a control, to improve the reliability of the system. Source
coding reduces redundancy to improve system efficiency.

Channel coding consists of two action parts.

● Mapping the incoming data stream to a channel input stream.

● Invert the mapping of the channel's output sequence to an output data
sequence.

The ultimate goal is to minimize the overall effect of channel noise.
Mapping is done by the transmitter, with the help of an encoder, while
reverse mapping is done by the receiver via a decoder.

1.15 CRYPTOGRAPHIC SECURITY SERVICES

The primary purpose of using cryptography is to provide the
following four basic services for information security. Let's now take a
look at the possible goals that cryptocurrencies intend to achieve.

Confidentiality:
● Confidentiality is the fundamental security service provided by

cryptography. It is a security service that keeps the information of an
unauthorized person. Sometimes it is called privacy or secrecy.

● Confidentiality can be achieved through a number of means, from
physical protection to the use of mathematical algorithms for data
encryption.

Data integrity:

● It is a security service that takes care of identifying any data alteration.
Data can be changed intentionally or accidentally by an unauthorized
entity. The integrity service confirms whether or not the data is intact
since it was last created, transmitted or stored by an authorized user.

● Data integrity cannot prevent data from being altered, but it does
provide a means of detecting if data has been tampered with in an
unauthorized manner.

Authentication:

Authentication provides sender identification. Confirms to the
recipient that the received data was sent only by an identified and verified
sender.

The authentication service has two variants:

51

● Message authentication identifies the sender of the message regardless
of the router or system that sent the message.

● Entity authentication is the assurance that data has been received from
a specific entity, such as a particular website.

In addition to the originator, authentication can also provide
security on other data-related parameters, such as creation / transmission
date and time.

I do not repudiate:

● It is a security service that ensures that an entity cannot refuse
ownership of a previous commitment or action. It is a guarantee that
the original creator of the data cannot deny the creation or
transmission of such data to a recipient or to a third party.

● Non-repudiation is a property that is most desirable in situations where
the possibility of a data exchange dispute exists. For example, once an
order has been placed electronically, a buyer cannot reject the
purchase order if the non-repudiation service has been enabled in this
transaction.

Cryptographic primitives:

Cryptographic primitives are nothing more than cryptographic tools and
techniques that can be selectively used to provide a desired set of security
services.

● Encryption

● Hash functions

● Message Authentication Codes (MAC)

● Digital signatures

The following table shows the primitives that can create a particular
security service on their own.

Note: Cryptographic primitives are closely related and are often combined
to obtain a desired set of security services from a cryptosystem.

52

1.16 HUFFMANMAN CODE

● A Huffman code is defined as a particular type of optimal prefix code
commonly used for lossless data compression.

● The process of finding or implementing such code proceeds through
Huffman coding, an algorithm developed by David A. Huffman when
he was a Sc.D. student at MIT and published in 1952 in the article "A
method for the construction of minimum redundancy codes".

● The output of the Huffman algorithm can be viewed as a variable-
length code page to encode a source symbol (such as a character in a
file). The algorithm creates this table from the estimated probability or
frequency of occurrence (weight) for each possible value of the source
symbol. As with other entropy encoding methods, more common
symbols are generally represented by implementing fewer bits than
less common symbols. Huffman's method can be implemented
efficiently, finding a code in linear time with respect to the number of
input weights if these weights are sorted.

Entropy:

● In information theory, Shannon's source coding theorem (or silent
coding theorem) is able to establish the limits to possible data
compression and the operational meaning of Shannon's entropy.

● The source code theorem shows that (at the limit, since the length of a
data stream of independent and identically distributed random
variables (iid) tends to infinity) it is not possible to compress the data
in such a way that the code rate (number of bits averages per symbol)
is less than the Shannon entropy of the source, with virtually no
certainty that the information will be lost. However, it is possible to
obtain the code rate arbitrarily close to Shannon's entropy, with
negligible probability of loss.

● Information entropy is defined as the average rate at which
information is produced from a stochastic data source.

Calculate the entropy of a random variable:

We can also calculate how much information there is in a random
variable.

For example, if we wanted to compute information for a random
variable X with probability distribution p, this could be written as a
function H (); for example: H (X)

In fact, the calculation of the information of a random variable is
similar to the calculation of the information of the probability distribution
of the events of the random variable.

53

The computation of the information of a random variable is called
"information entropy", "Shannon entropy" or simply "entropy".

It is related to the idea of entropy in physics by analogy, in the
sense that both refer to the uncertainty of the term.

The intuition of entropy is that it is defined as the average number
of bits needed to represent or transmit an event extracted from the
probability distribution of the random variable.

The Shannon entropy of a distribution is defined as the expected
amount of information in an event extracted from that distribution.
Provides a lower limit on the number of bits needed on average to encode
symbols extracted from a P distribution.

Entropy can be calculated for a random variable X with k in K
discrete states as follows

H (X) = -sum (each k in K p (k) * log (p (k)))

This means the negative of the sum of the probability of each event
multiplied by the logarithm of the probability of each event.

For information, the log () function implements base-2 and the
units are bits. Instead, a natural logarithm can be implemented.

The lowest entropy is calculated for a random variable that has a
single event with a probability of 1.0, a certainty. The greatest entropy for
a random variable will be possible if all events occur with the same
probability.

1.17 DISTANCE OF UNIQUENESS

● Distance of uniqueness is a property of a given encryption algorithm.
It answers the question "if we performed a brute force attack, how
much ciphertext would we need to make sure our solution is the real
one?" The answer depends on the redundancy of English. Let's hope a
short example sheds light on the problem:

● Let's say, for example, that we are given a message to decrypt:
FJKFPO, and we know that it is encrypted with a surrogate cipher.
Can we understand it? The answer is "not really". We can find many
English words that fit the pattern, sure, but we'll never know what the
real original plaintext was. For example, all of the following English
fragments are legitimately decrypted from the ciphertext above and we
have no idea which is correct:

that means

from your

railway station

54

into you

our

the top

both

Oxford

what in?

the one of

and many others. The longer the ciphertext, the less possible decryption.
We want to know, how long does a piece of ciphertext have to last before
it has a single possible decryption? This minimum length is given by the
distance of uniqueness.

Redundancy:

The replacement cipher has a 26-letter key. The total number of
keys is the number of ways we can mix 26 letters or 26! (factorial), this is
a large number of possible keys. The amount of information it carries,
measured in bits, is given by the logarithm to base 2:

or about 88 bits. The amount of information (per letter) contained in a 26-

letter alphabet is bit. The actual amount of information
carried by English turns out to be around 1.5 bits per character. This
means that English redundancy is approximately 4.7 - 1.5 = 3.2 bits per
character.

Distance of uniqueness:

● The distance of uniqueness is the ratio of the number of bits needed to
express the key divided by the redundancy of English in bits per
character. In the case of the replacement figure above, this is 88.28 /
3.2 = 27.6. This means that a minimum of 28 characters are required to
ensure that a particular decryption is unique. Different ciphers have
different unique distances, a greater unique distance generally
indicates more secure encryption.

● The calculation of the distance of uniqueness is based on the fact that
all keys are equally probable. If the key for an encryption is an English
word, this severely limits the number of possible keys. Consequently,
the Unicity distance will be less.

Fake keys:

Definition:

If you know that plain text is taken from a "natural" language, then
knowing the ciphertext discards a certain subset of keys. Of the possible

55

remaining keys, only one is correct. The remaining possible but incorrect
keys are called false keys.

Example:
A decryption of the turnaround cipher:

Ciphertext = WNAJW

Decryption with E - RIVER

Decryption with W - ARENA

E or W is the correct key. The other is a fake password.

1.18 THE DATA ENCRYPTION STANDARD

The Data Encryption Standard (DES) is a symmetric key block
cipher published by the National Institute of Standards and Technology
(NIST).

DES is an implementation of a Feistel cipher. Uses 16 round
Feistel frame. The block size is 64 bits. Although the key length is 64 bits,
DES has an effective key length of 56 bits, as the encryption algorithm
does not use 8 of the key's 64 bits (it works only as a verification bit). The
general structure of DES is shown in the following illustration:

Since DES relies on Feistel encryption, all that is needed to specify DES
is:

● Round feature

● Key times

● Any additional processing: initial and final permutation

56

Initial and final permutation:

The initial and final permutations are straight permutation boxes
(P-boxes) that are inverse of each other. They have no cryptographic
meaning in DES. The initial and final permutations are shown below:

Round feature:

The heart of this cipher is the DES function, f. The DES function
applies a 48-bit key to the rightmost 32 bits to produce 32-bit output.

● Expansion permutation box: Since the correct input is 32 bits and
the round key is 48 bits, we must first expand the correct input to 48 bits.
The permutation logic is represented graphically in the following
illustration:

57

● The graphed permutation logic is generally described as a table in the
DES specification illustrated as shown:

● XOR (bleach). - After the expansion permutation, DES performs the
XOR operation on the expanded right section and round key. The
round key is used only in this operation.

● Spare boxes. - The S-boxes do the actual mixing (confusion). DES
uses 8 S boxes, each with a 6-bit input and a 4-bit output. Please refer
to the illustration below:

● The S-box rule is illustrated below:

● There are a total of eight S-box tables. The output of the eight S-boxes
is then combined into a 32-bit section.

● Forward permutation: The 32-bit output from the S-boxes is then
subjected to forward permutation using the rule shown in the figure
below:

58

Key generation:

The circular key generator creates sixteen 48-bit keys from a 56-bit
encryption key. The key generation process is described in the following
figure:

The logic for parity reduction, offset and compression P-box is provided in
the DES description.

DES analysis:

DES satisfies the two desired properties of block cryptography. These two
properties make the encryption very strong.

● Avalanche effect: A small change in the plaintext results in a large
change in the ciphertext.

● Integrity: Each bit of ciphertext depends on many bits of plain text.

In recent years, cryptanalysis has found some weaknesses in DES
when the selected keys are weak keys. These keys should be avoided.

DES proved to be a very well designed block cipher. There have
been no significant cryptanalytic attacks on DES, aside from the
exhaustive key search.

59

1.19 DES ENCRYPTION EXAMPLE

DES is a block cipher and encrypts data in blocks of 64 bits each,
which means that 64 bits of plain text go as input to DES, which produces
64 bits of ciphertext. The same algorithm and key are used for encryption
and decryption, with minor differences. The key length is 56 bits. The
basic idea is shown in the figure.

We said that DES uses a 56-bit key. In reality, the initial key
consists of 64 bits. However, even before the DES process begins, every
eighth bit of the key is discarded to produce a 56-bit key. That is, bit
positions 8, 16, 24, 32, 40, 48, 56 and 64 are discarded.

Therefore, discarding every eighth bit of the key produces a 56-bit
key from the original 64-bit key.

DES is based on the two fundamental attributes of cryptography:
substitution (also called confusion) and transposition (also called
diffusion). DES is made up of 16 steps, each of which is called a round.

Each round performs the substitution and transposition steps. Let's now
take a look at the general DES steps.

1. In the first step, the 64-bit plain text block is passed to an initial
permutation (IP) function.

2. The initial permutation performed in plain text.

60

3. The initial permutation (IP) then produces two halves of the permuted
block; Says Left Plain Text (LPT) and Right Plain Text (RPT).

4. Now each LPT and RPT goes through 16 encryption cycles.

5. Eventually, LPT and RPT are rejoined and a final permutation (FP) is
performed on the combined block

6. The result of this process produces 64-bit ciphertext.

Initial Permutation (IP):

As we noted, the initial permutation (IP) occurs only once and
occurs before the first round. Suggest how the PI transposition should
proceed, as shown in the figure.

For example, it says the IP replaces the first bit of the original
plaintext block with bit 58 of the original plaintext, the second bit with bit
50 of the original plaintext block, and so on.

This is nothing more than juggling the bit positions of the original
text block. The same rule applies to all the other bit positions shown in the
figure.

As we noted after the IP was done, the resulting 64-bit permuted
text block is split into two halves. Each half block consists of 32 bits, and
each of the 16 rounds, in turn, consists of the general level steps described
in the figure.

61

Step 1: key transformation:

We noticed that the initial 64-bit key is transformed into a 56-bit
key by discarding every eighth bit of the initial key. Therefore, a 56-bit
key is available for each. From this 56-bit key, a different 48-bit subkey is
generated during each round by a process called key transformation. To do
this, the 56-bit key is divided into two halves, each of 28 bits. These
halves move circularly to the left in one or two positions, depending on the
round.

For example, if lap number 1, 2, 9 or 16 is changed only in
position for the other laps, the circular change is made in two positions.

The number of key bits shifted per round is shown in the figure.

After an appropriate shift, 48 of the 56 bits are selected. To select
48 bits out of 56, the table shows in the following figure. For example,
after the move, bit number 14 moves to the first position, bit 17 moves to
the second position, and so on. If we look closely at the table, we will
realize that it only contains 48-bit positions. Bit number 18 is discarded
(we won't find it in the table), like 7 others, to reduce a 56-bit key to a 48-
bit key. Since the key transformation process involves both permutation
and selection of a 48-bit subset of the original 56-bit key, it is called
Compression Permutation.

62

Because of this compression permutation technique, a different
subset of key bits are used in each round. This makes DES not easy to
crack.

Step 2: permutation of expansion:

Remember that after the initial permutation, we had two 32-bit
plain text areas called Left Plain Text (LPT) and Right Plain Text (RPT).
During diffusion permutation, the RPT expands from 32 bits to 48 bits.
The bits are permuted and are therefore called diffuse permutation. This
happens when the 32-bit RPT is divided into 8 blocks and each block
consists of 4 bits. Then each 4-bit block from the previous step is
expanded to a corresponding 6-bit block, that is, per 4-bit block, another 2
bits are added.

This process involves expanding and permuting the input bit while
creating the output. The key transformation process compresses the key
from 56 bits to 48 bits. Then the expansion permutation process expands
the RPT from 32 bits to 48 bits. Now the 48-bit key is XOR with 48-bit
RPT and the resulting output is given to the next step, which is the
replacement of the S-Box.

1.20 OPERATING MODE OFF

Data encryption experts using DES can choose from five different
operating modes.

● Electronic Code Book (ECB). Each 64-bit block is independently
encrypted and decrypted

63

● Cipher Block Chaining (CBC). Each 64-bit block depends on the
previous one and uses an initialization vector (IV)

● Cryptography Feedback (CFB). The ciphertext above becomes the
input to the cipher algorithm, producing a pseudo-random output,
which in turn is XORed with plaintext, building the following
ciphertext unit

● Output feedback (OFB). Like CFB, except the cryptographic algorithm
input is the DES output above

● Counter (CTR). Each block of plaintext is XORed with an encrypted
counter. Then the counter is incremented for each subsequent block.

1.21 DIFFERENTIAL CRYPTANALYSIS

● Differential cryptanalysis preceded linear cryptanalysis and was
initially designed in 1990 as an attack on DES. Differential
cryptanalysis is similar to linear cryptanalysis; Differential
cryptanalysis aims to map bitwise differences in inputs to differences
in output in order to decode the action of the encryption algorithm.
Again, the goal is to approximate the encryption algorithm by trying to
find a maximum likelihood estimator of the true encryption action by
altering the plaintext or (looking at a different plaintext) and analyzing
the impact of the changes in the plaintext over the resulting ciphertext.
Differential cryptanalysis is therefore a chosen plaintext attack.

● The description of differential cryptanalysis is analogous to that of
linear cryptanalysis and is essentially the same as applying linear
cryptanalysis to input differences rather than to input and output bits
directly.

1.22 3-ROUND DES DIFFERENTIAL CRYPTANALYSIS

Description of 3 round DES 3:

DES is a Feistel network. Encryption is performed using F-Boxes
which receive subkeys generated in the primary key. The following
diagram omits the start and end permutations and the left-to-right swap on
the output.

L0 R0

| / |

| / [f] - Key1

| / |

+ ------ +

/ |

L1 R1

| / |

64

| / [f] - Key2

| / |

+ ------ +

/ |

L2 R2

| / |

| / [f] - 3 key

| / |

+ ------ +

/ |

L3 R3

Principles of differential cryptanalysis:

There are several ideas intertwined in differential cryptanalysis.

● One is that following the xor difference of two inputs (called the
differential) allows a deeper insight into the DES calculation, first
canceling the effect of Li's xor sum on f (Ri, Keyi), and again
canceling the xor sum of the key inside the F-Box.

● A second is that the round key is limited by knowledge of the
differential input and differential output of the F box.

● Third (although we don't use it here), there is an imbalance in the
frequency of the F-Box's differential outputs which allows for
probabilistic tracking of the differentials when attacking more than
three rounds.

3-round DES attack (mini-des):

The last stage is attached. Note that R2, the input of the last box F,
is available on the output, like L3. If we knew L2, the output of the last F-
Box would be known, as R3 + L2, and we could start forcing Key3 to
open. We do not know about L2 as this would require knowledge of R1
and therefore knowledge of the output of the first F-Box. However, if we
give two inputs (L0, R0) and (L0 ', R0') and also R0 = R0 ', then we know
L2 + L2',

L2 + L2 '= R1 + R1' = (L0 + f (R0)) + (L0 '+ f (R0')) = L0 + L0 '

So we know the differential output of the F box from the third round, as
well as its differential input.

R2 + R2 '= L3 + L3'.

Given the differential input and output to an S-Box (when plotting
the inputs and outputs to the F-Box via the E and P functions within the F-
Box, again we use the xor jump property of the differentials), we get a List
the possible input pairs: input pairs X and X 'such that X + X' is equal to

65

the differential input and f (X) + f (X ') is equal to the differential output.
Then we compute the keys that transform X and X 'into R2 and R2'.

1.23 PUBLIC KEY CRYPTOGRAPHY

● Unlike symmetric key cryptography, we have not found a
historical use of public key cryptography. It is a relatively new concept.

● Symmetric cryptography was suitable for organizations such as
governments, the military, and large financial corporations involved in
classified communication.

● With the spread of more insecure computer networks in recent
decades, there has been a genuine need to use cryptocurrencies on a larger
scale. The symmetric key was found to be impractical due to the
challenges it faced in key management. This gave rise to public key
cryptosystems.

The encryption and decryption process is shown in the figure below:

The most important properties of the public key cryptographic scheme are:

● Different keys are used for encryption and decryption. This is a
property that sets this scheme differently from a symmetric encryption
scheme.

● Each recipient has a unique decryption key, usually known as a private
key.

● The recipient must publish an encryption key, called a public key.

● In this scheme, some guarantee of the authenticity of a public key is
needed to avoid forgery by an adversary as a recipient. Typically, this
type of cryptosystem involves a trusted third party certifying that a
particular public key belongs only to a specific person or entity.

66

● The encryption algorithm is complex enough to prevent an attacker
from inferring the plaintext from the ciphertext and (public) encryption
key.

● Although the public and private keys are mathematically related, it is
not possible to calculate the private key from the public key. In fact,
the smart part of any public key cryptographic system is designing a
relationship between two keys.

There are three types of public key cryptographic schemes. We discuss
them in the following sections.

RSA cryptographic system:

This cryptosystem is one of the early systems. It remains the most
used cryptosystem even today. The system was invented by three scholars
Ron Rivest, Adi Shamir and Len Adleman and is therefore called the RSA
cryptosystem.

We will analyze two aspects of the RSA cryptosystem, first, the
generation of a key pair and, second, the encryption-decryption
algorithms.

Generation of RSA key pairs:

Each person or party wishing to participate in the cryptographic
communication must generate a key pair, i.e. public key and private key.
The process followed in key generation is described below:

● Generate RSA form (n)

○ Pick two large prime numbers, eg q.

○ Compute n = p * q. For strong, indestructible encryption, let n be a
large number, usually a minimum of 512 bits.

● Find the derived number (e)

○ The number e must be greater than 1 and less than (p - 1) (q - 1).

○ There should be no common factor for ey (p - 1) (q - 1) except 1.

In other words, two numbers and y (p - 1) (q - 1) are coprime.

● Form the public key
○ The pair of numbers (n, e) constitutes the RSA public key and is

made public.
○ Interestingly, although n is part of the public key, the difficulty of

factoring a large prime number ensures that an attacker cannot find
the two primes (p & q) used to obtain n in finite time. This is the
strength of RSA.

● Generate the private key

○ The private key d is computed from p, q and e. For n and e given,
there is a unique number d.

67

○ The number d is the inverse of e modulo (p - 1) (q - 1). This means
that d is the smaller number of (p - 1) (q - 1) such that multiplied
by e equals 1 modulo (p - 1) (q - 1).

○ This relationship is mathematically written as follows:

ed = 1 mod (p - 1) (q - 1)

The extended Euclidean algorithm takes p, q and e as input and gives d as
output.

Example:

Below is an example of generating an RSA key pair. (For ease of
understanding, the primes p & q taken here are small values. In practice,
these values are very high).

● Let p = 7 and q = 13 be two prime numbers, so modulo n = pq = 7 x 13
= 91.

● Select e = 5, which is a valid choice since there is no number that is a
common factor of 5 and (p - 1) (q - 1) = 6 × 12 = 72, except 1.

● The pair of numbers (n, e) = (91, 5) constitutes the public key and can
be made available to anyone we wish to be able to send us encrypted
messages.

● Enter p = 7, q = 13, and e = 5 in the extended Euclidean algorithm.
The output will be d = 29.

● Verify that the calculated d is correct by calculating -

de = 29 × 5 = 145 = 1 mod 72

● Therefore, the public key is (91, 5) and the private key is (91, 29).

Encryption and decryption:

Once the key pair has been generated, the encryption and
decryption process is relatively straightforward and computationally
straightforward.

Interestingly, RSA does not operate directly on bit strings as is the
case with symmetric key cryptography. Work in numbers module no.
Therefore, it is necessary to represent the plaintext as a series of numbers
less than n.

RSA encryption:

● Suppose the sender wants to send a text message to someone whose
public key is (n, e).

● The sender then renders the plaintext as a series of numbers less than
n.

68

● To encrypt the first plaintext P, which is a modulo number n. The
encryption process is a simple mathematical step like:

C = Pe form no

● In other words, the ciphertext C is equal to the plaintext P multiplied
by itself and times and then reduced modulo n. This means that C is
also a number less than n.

● Returning to our example of generating keys with plaintext P = 10, we
get the ciphertext C -
C = 105 mod 91

RSA decryption:

● The RSA decryption process is also very simple. Suppose the recipient
of a public key pair (n, e) received a ciphertext C.

● The recipient raises C to the power of his private key d. The result
modulo n will be the plain text P.

Plain text = Cd mod n

● Returning to our numerical example, the ciphertext C = 82 would be
decrypted at number 10 using the private key 29 -

Plain text = 8229 mod 91 = 10

RSA analysis:

RSA security depends on the strengths of two independent
functions. The RSA cryptosystem is the strong point of the most
widespread public key cryptosystem of which it is based on the practical
difficulty of factoring very large numbers.

● Encryption function: it is considered a one-way function to convert
plain text to ciphertext and can only be canceled with the knowledge
of the private key d.

● Key Generation: The difficulty of determining a private key from an
RSA public key is equivalent to module n factoring. Therefore, an
attacker cannot use knowledge of an RSA public key to determine an
RSA private key unless they are able to factor n. It is also a one-way
function, switching from p & q values to modulo n is easy but
reversing is not possible.

If either of these two functions are found to be non-unidirectional,
RSA will break. In fact, if you develop a technique to factor efficiently,
RSA will no longer be safe.

The strength of RSA encryption is drastically reduced against
attacks if the number p and q are not large primes and / or the chosen
public key e is a small number.

69

ElGamal Cryptosystem:

Along with RSA, other public key cryptosystems are proposed.
Many of them are based on different versions of the discrete logarithm
problem.

The ElGamal cryptosystem, called Elliptic Curve Variant, is based
on the discrete logarithm problem. It draws strength from the assumption
that discrete logarithms cannot be found in a practical time frame for a
given number, while the inverse operation of the power can be calculated
efficiently.

Let's take a look at a simple version of ElGamal that works with
modulo p numbers. In the case of the variants of the elliptic curve, it is
based on quite different number systems.

Generation of the ElGamal key pair:

Each user of the ElGamal cryptosystem generates the key pair as follows:

● Choice of a great prize p. Generally a prime number with a length
between 1024 and 2048 bits is chosen.

● Choice of a generator element g.

○ This number must be between 1 and p - 1, but it cannot be a
number.

○ It is a generator of the multiplicative group of integers modulo p.
This means that for every integer m coprimo ap, there exists an
integer k such that gk = a mod n. For example, 3 is the generator of
group 5 (Z5 = {1, 2, 3, 4}).

North 3n 3n mod 5
1 3 3
Two 9 4
3 27 Two
4 81 1

● Choice of private key. The private key x is any number greater than 1
and less than p - 1.

● Calculate part of the public key. The value y is calculated from the
parameters p, g and from the private key x as follows:y = gx mod p

● Get an audiencekey. The public key of ElGamal consists of the three
parameters (p, g, y), for example suppose that p = 17 and that g = 6 (it
can be confirmed that 6 is a generator of the group Z17). The private
key x can be any number greater than 1 and less than 71, so we choose
x = 5. The y value is calculated as follows:
y = 65 mod 17 = 7

● Therefore, the private key is 62 and the public key is (17, 6, 7).

70

Encryption and decryption:

Generating an ElGamal key pair is relatively simpler than the
equivalent process for RSA. But encryption and decryption are a little
more complex than RSA.

ElGamal encryption:

Suppose the sender wants to send plaintext to someone whose ElGamal
public key is (p, g, y), then -

● The sender represents the plaintext as a series of modulo numbers p.

● To encrypt the first plaintext P, which is represented as a modulo
number p. The encryption process for obtaining ciphertext C is as
follows:

○ Randomly generate a number k;

○ Calculate two values C1 and C2, where -

C1 = gk mod p

C2 = (P * yk) mod p

● Send ciphertext C, which consists of two separate values (C1, C2),
sent together.

● Referring to our ElGamal key generation example above, the plaintext
P = 13 is encrypted as follows:

○ Randomly generate a number, let's say k = 10

○ Calculate the two values C1 and C2, where -
C1 = 610 mod 17

C2 = (13 * 710) modulo 17 = 9

● Send the ciphertext C = (C1, C2) = (15, 9).

ElGamal decryption

● To decrypt the ciphertext (C1, C2) using the private key x, follow the
following two steps:

○ Find the modular inverse of (C1) x modulo p, which is (C1) -x,
usually called the decryption factor.

○ Get the plain text using the following formula:
C2 × (C1) -x mod p = plain text

● In our example, to decrypt the ciphertext C = (C1, C2) = (15, 9) using
the private key x = 5, the decryption factor is 15-5 mod 17 = 9

● Extract plain text P = (9 × 9) mod 17 = 13.

71

ElGamal analysis:

In ElGamalsystem, each user has a private key x. and has three
components of the public key: main module p, generator g and public Y =
gx mod p. ElGamal's strength is based on the difficulty of discrete
logarithm problems.

The size of the security key is generally> 1024 bits. Keys of 2048
bits in length are also used today. On the processing speed front, Elgamal
is quite slow, mainly used for key authentication protocols. Due to the
higher processing efficiency, ElGamal's elliptical curve variants are
becoming more and more popular.

Elliptic Curve Encryption (ECC):

● Elliptic Curve Cryptography (ECC) is a term used to describe a set of
cryptographic tools and protocols whose security is based on special
versions of the discrete logarithm problem. Does not use form
numbers p.

● ECC is based on sets of numbers associated with mathematical objects
called elliptic curves. There are rules for adding and calculating
multiples of these numbers, as well as for numbers modulo p.

● ECC includes variations of many cryptographic schemes that were
initially designed for modular numbers such as ElGamal encryption
and digital signature algorithm.

● The discrete logarithm problem is thought to be much more difficult
when applied to points on an elliptical curve. This requires modifying
the modulo numbers pa at points on an elliptical curve. An equivalent
level of security can also be obtained with shorter keys if variants
based on elliptic curves are used.

Shorter keys have two advantages:

● Ease of key management

● Efficient processing

These advantages make the variants of cryptographic schemes
based on elliptic curves very attractive for applications where processing
resources are limited.

RSA and ElGamal schemes: a comparison:

Let's briefly compare the RSA and ElGamal schemes in various aspects.

RSA El Gamal
It is more efficient for encryption. It is more efficient for decryption.
It is less efficient for decryption. It is more efficient for decryption.
For a particular level of security, Very short keys are required for

72

long keys are required in RSA. the same level of security.
It is widely accepted and used. It is new and not very popular in

the market.

1.24 THE EUCLIDEAN ALGORITHM

The Euclidean algorithm for finding the GCD (A, B) is as follows:

 If A = 0, then GCD (A, B) = B, since GCD (0, B) = B, and we can
stop.

 If B = 0, then GCD (A, B) = A, since GCD (A, 0) = A, and we can
stop.

 Write A as a remainder quotient (A = B Q + R)

 Find MCD (B, R) using the Euclidean algorithm since MCD (A, B) =
MCD (B, R)

Example:

Find the GCF of 270 and 192

 A = 270, B = 192

 At 0

 YES 0

 Use long division to find that 270/192 = 1 with a remainder of 78. We
can write this as: 270 = 192 * 1 +78

Find GCD (192.78), since GCD (270.192) = GCD (192.78)

 A = 192, B = 78

 At 0

 YES 0

 Use long division to find 192/78 = 2 with a remainder of 36. We can
write this as:

 192 = 78 * 2 + 36

Find MCD (78.36), since MCD (192.78) = MCD (78.36)

● A = 78, B = 36

● At 0

● YES 0

● Use long division to find that 78/36 = 2 with a remainder of 6. We can
write this as:

● 78 = 36 * 2 + 6

73

Find GCD (36.6), since GCD (78.36) = GCD (36.6)
A = 36, B = 6

● At 0

● YES 0

● Use long division to find 36/6 = 6 with a remainder of 0. We can write
this as:

● 36 = 6 * 6 + 0

Find GCF (6.0), since GCF (36.6) = GCF (6.0)

● A = 6, B = 0

● At 0

● B = 0, GCD (6.0) = 6

So we showed:

MCD (270.192) = MCD (192.78) = MCD (78.36) = MCD (36.6) = MCD
(6.0) = 6

MCD (270.192) = 6

1.25 CHINESE REMAINDER THEOREM

We are given two matrices num [0..k-1] and rem [0..k-1]. In num
[0..k-1], each pair is coprime (LCD for each pair is 1). We must find a
minimum positive number x such that:

x% num [0] = rem [0],

x% num [1] = rem [1],

.......................

x% num [k-1] = rem [k-1]

Basically, we are given k numbers which are coprime pairs and we
are given the remainders of these numbers when an unknown number x is
divided by them. We need to find the smallest possible value of x that
produces residual data.

Examples:
Input: num [] = {5, 7}, rem [] = {1, 3}

Departure: 31

Explanation:

31 is the smallest number such that:

(1) When we divide it by 5, we get the remainder 1.

(2) When we divide it by 7, we get the remainder 3.

74

Input: num [] = {3, 4, 5}, rem [] = {2, 3, 1}

Departure: 11

Explanation:

11 is the smallest number such that:

(1) When we divide it by 3, we get the remainder 2.

(2) When we divide it by 4, we get the remainder 3.

(3) When we divide it by 5, we get the remainder 1.

Moreover, the Chinese theorem states that there is always an x that
satisfies the given congruences.

Let num [0], num [1],… num [k-1] positive integers coprime in
pairs. Then, for any given sequence of integers rem [0], rem [1], ... rem [k-
1], there exists an integer x which solves the following system of
simultaneous congruences.

The first part is clear that there is an x. The second part basically
states that all solutions (including the least) produce the same residue
when dividing the by-products of n [0], num [1], .. num [k-1]. In the
example above, the product is 3 * 4 * 5 = 60. And 11 is a solution, other
solutions are 71, 131, .. and so on. All these solutions produce the same
remainder when divided by 60, i.e. they are of the form 11 + m * 60 where
m> = 0.

A naive approach to finding x is to start with 1 and increase it one
by one and see if dividing it with elements given in num [] yields the
corresponding residuals in rem []. Once we find an x, we return it.

1.26 RSA ALGORITHM

The RSA algorithm is a public key cryptography technique and is
considered the most secure form of cryptography. It was invented by
Rivest, Shamir and Adleman in 1978 and therefore called the RSA
algorithm.

75

Algorithm:

The RSA algorithm has the following characteristics:

● The RSA algorithm is a popular enhancement to a finite field on
integers, including prime numbers.

● The integers used by this method are large enough to be difficult to
solve.

● There are two sets of keys in this algorithm: private key and public
key.

You will need to follow the steps below to work on the RSA algorithm:

Step 1: Create the RSA form:

The initial procedure starts with selecting two prime numbers,
namely p and q, and then calculates their product N, as shown:
N = p * q

Here, let N be the large number specified.

Step 2: derivative number (e):

Treat the number e as a derived number that must be greater than 1
and less than (p-1) and (q-1). The main condition will be that there must
be no common factor of (p-1) and (q-1) except 1

Step 3: public key:

The specified pair of numbers n and e constitutes the RSA public
key and is made public.

Step 4: private key:

The private key d is calculated from the numbers p, q, and e. The
mathematical relationship between the numbers is as follows:

ed = 1 mod (p-1) (q-1)

The above formula is the basic formula for the extended Euclidean
algorithm, which accepts p and q as input parameters.

Cryptographic formula:

Consider a sender sending the plain text message to someone
whose public key is (n, e). To encrypt the plain text message in the
specified scenario, use the following syntax:
C = Pe form no

76

Decryption formula

The decryption process is very simple and includes analysis for
computation in a systematic approach. Considering that receiver C has the
private key d, the modulus of the result will be calculated as:

Plain text = Cd mod n

1.27 ATTACKS ON RSA

Below is the list of some possible attacks on the RSA algorithm:

1. Plain text attack:
Plain text attacks fall into three categories

● Short message attack: In this type of attack, the attacker is assumed
to know some blocks of the plain text message. If an attacker is aware
of blocks of plaintext, they could try to encrypt the blocks of plaintext
using the information and try to convert it to ciphertext. To avoid a
short message attack, we can use filler bits for encryption.

● Attack of the cyclist: In the cyclist's attack, the reverse process is
performed. An attacker assumes that the ciphertext consists of some
permutation operations. If the assumption of the attacker turns out to
be true, you can try the reverse process to get the plaintext from the
ciphertext.

● Attack with invisible message:In some rare cases, some of the
ciphertext turns out to be the same as the plaintext, i.e. the original
text. This means that plain text is not hidden. This type of attack is
called a non-hidden message attack.

2. Cryptographic attack chosen:

In this type of attack, the attacker can find the plaintext from the
ciphertext using the extended Euclidean algorithm.

3. Factoring attack:

In factoring attack, the attacker impersonates the owners of the
keys and, with the help of the stolen cryptographic data, decrypts the
confidential data, bypassing the security of the system. This attack occurs
on an RSA cryptographic library used to generate the RSA key. In this
way, attackers can have the private keys of various security tokens, smart
cards, motherboard chipsets by having the public key of a target.

1.28 RABIN CRYPTOSYSTEM

Rabin cryptosystemis a public key cryptosystem invented by
Michael Rabin. It uses asymmetric key cryptography to communicate
between two parties and encrypt the message.

77

The security of the Rabin cryptosystem is linked to the difficulty of
factoring. It has the advantage over the others that the problem on which it
is based has proved to be as difficult as factoring whole numbers. It also
has the disadvantage that each output of the Rabin function can be
generated from any of the four possible inputs. If each output is ciphertext,
additional decryption complexity is required to identify which of the four
possible inputs was true plaintext.

Steps into the Rabin cryptosystem
Key generation
1. Generates two very large prime numbers, p and q, which satisfy the
condition p ≠ q → p ≡ q ≡ 3 (mod 4) For example: p = 139 and q = 191

2. Calculate the value of nn = pq

3. Publish n as a public key and save p and q as a private key

Encryption

1.Get public key #
2. Convert the message to ASCII value. Then convert it to binary and
expand the binary value with itself and change the binary value back to
decimal m.
3. Code with the formula: C = m2 mod n

4. Send C to the recipient.

decoded

1 Accept C from the sender.

2. Specify a and b with Euclidean GCD extended such that, ap + bq = 1

3. Calculate res using the following formula: r = C (p + 1) / 4 mod ps = C
(q + 1) / 4 mod q

4. Now calculate X and Y using the following formula: X = (apr + bqs)
mod pY = (apr - bqs) mod q

5. The four roots are, m1 = X, m2 = -X, m3 = Y, m4 = -Y Now convert
them to binary and divide them all in half.

6. Determine how the left and right halves are equal. Keep that binary in
the middle and convert it to m decimal. Get the ASCII character for
the decimal value m. The resulting character provides the correct
message sent by the sender.

1.28 QUADRATIC SIEVE

The Dixon method has its drawback, we have to look for numbers
that are B-soft. Here we will try to create these numbers a.

78

Quadratic residual:

of x can be defined as the remainder that remains after squaring a
number (0 <k <x) modulo x.

Example : Quadratic residual of x = 17, k will pass from 0 <k <17

1² = 1 module 17

2² = 4 module 17

3² = 9 mod 17

4² = 16 mod 17

5² = 8 mod 17

6² = 2 mod 17

7² = 15 mod 17

8² = 13 mod 17

9² = 13 mod 17

10² = 15 mod 17
Hence, the set of quadratic residuals is {1, 2, 4, 8, 9, 13, 15, 16}

The point to note is that we will only have to iterate x / 2, since
after the quadratic values are all the same value in reverse order.

11 = 11 mod 17 can be written as 11 = -6 mod 17

Using the same fact here

11² = (-6) ² mod 17 = 2 mod 17, which is equivalent to 6² mod 17

Back to our problem: we choose a random ay and then we want a² -N to be
B-Smooth for a set of prime numbers.

a² -N = 0 (mod p), this is a quadratic residual equation and we found for
which primes p is N a quadratic residue? we know a and we know n, but
we don't know p. This can be calculated using Euler's criteria.

N ^ (p-1) / 2 mod p = 1 then p has a factor in N; otherwise no.

So for n = 90283 we can calculate B = {2, 3, 7, 17, 23, 29, 37, 41, 53}

Note that p = 5 is not on the whole, we can quickly verify this fact

90283 ^ (5–1) / 2 = 90283² mod 5 = 4 or 9028³² mod 5 = -1 and therefore
5 is not in the factor set.

90283 ^ (53–1) / 2 mod 53 = 1 and therefore 53 is in the set

We have now created a

We are trying to find the first number of N such that it is the prime factor
of the base B chosen above

(X + N) ² -N = 0 (mod p)

The above equation can be solved using Shanks Tonelli's algorithm for
odd prime. For p = 2, X can be 0 or 1 (remember your mod 2). Let me
explain in some detail

79

(X + N) ² -N = 0 (mod 2)

N is odd, so (X + N) ² should also be odd [remember that odd -even is
even and how much is 0 mod 2]

Now, because (X + N) ² is odd, X + N is odd [remember that odd * odd is
odd]

For X + N to be odd, if N is odd, then X = 0

An easy way to remember is

N = odd therefore X = 0
N = even then X = 1
If N is even, the above rule is reversed.

Example: 90283 since it is odd X = 0 that is a = √90283 = 301
b = 90283–301² = 318 which has 2 as a prime factor.

So we start from 301 and all 2p, 3p (303, 305) will have 2 as prime factor.

For all other prime numbers, we can use Shanks Tonelli's algorithms to
calculate the starting point of those prime numbers and then skip 2p, 3p.

Example: 90283 and we know from Euler's criterion that 3 is one of its
prime factors

(X + N) ² -N = 0 (mod 3) => X will be 0 and 1

301²-90283 = 318 which has 3 as a prime factor

302²-90283 = 921 which also has 3 as a prime factor.

We see 2p i.e. 6 i.e. 301 + 6

307² - 90283 = 3966, this is also 3 as a prime factor

308²-90283 = 4581, which also has 3 as a prime factor

80

UNIT-II

2

SIGNATURE SCHEMES

Unit Structure

2.0 Objectives

2.1 Introduction

2.2 The ElGamal Signature Scheme

2.3 The Digital Signature Standard

2.4 One-time Signatures

2.5 Undeniable Signatures

2.6 Fail-stop Signatures

2.7 LET US SUM UP

2.8 List of References

2.9 Unit End Exercises

2.0 OBJECTIVES

In this chapter you will learn about:

 ElGamal Signature scheme

 Digital signature standard

 What is One-time signature?

 Undeniable and Fail-stop signature

2.1 INTRODUCTION

A “conventional” handwritten signature attached to a document is
used to specify the person responsible for it. A signature is used in
everyday situations such as writing a letter, withdrawing money from a
bank, signing a contract, etc. A signature scheme is a method of signing a
message stored in electronic form.

As such, a signed message can be transmitted over a computer
network. In this chapter, we will study several signature schemes, but first
we discuss some fundamental differences between conventional and
digital signatures. First is the question of signing a document. With a
conventional signature, a signature is part of the physical document being
signed. However, a digital signature is not attached physically to the
message that is signed, so the algorithm that is used must somehow “bind”
the signature to the message.

81

Second is the question of verification. A conventional signature is
verified by comparing it to other, authentic signatures. For example, if
someone signs a credit card purchase (which is not so common nowadays,
given the prevalence of chipand- pin technologies), the salesperson is
supposed to compare the signature on the sales slip to the signature on the
back of the credit card in order to verify the signature. Of course, this is
not a very secure method as it is relatively easy to forge someone else’s
signature. Digital signatures, on the other hand, can be verified using a
publicly known verification algorithm. Thus, “anyone” can verify a digital
signature.

2.2 THE ELGAMAL SIGNATURE SCHEME

In this section, we present the ElGamal Signature Scheme, which
was described in a 1985 paper. A modification of this scheme has been
adopted as the Digital Signature Algorithm (or DSA) by the National
Institute of Standards and Technology. The DSA also incorporates some
ideas used in a scheme known as the Schnorr Signature Scheme. All of
these schemes are designed specifically for the purpose of signatures, as
opposed to the RSA Cryptosystem, which can be used both as a public-
key cryptosystem and a signature scheme.

Let p be a prime such that the discrete log problem in p is intractable

and let *p  be a primitive element Let 1*, *p p pP A      and

define

  , , : (mod) .ap a p     

The values p,  and  are the public key, and a is the private key.

For P = (p,  , a, ) and for the (secret) random number 1 *pk   define

(,),sig   
Where

modk p 
And

   1
mod 1

k
x a p    

For 1, , ,px   1, , * ,p px and     define 1, , ,px   define

  , , (mod)x
kver x true p       

ElGamal Signature Scheme The ElGamal Signature Scheme is
randomized (recall that the ElGamal Publickey Cryptosystem is also
randomized). This means that there are many valid signatures for any
given message, and the verification algorithm must be able to accept any
of these valid signatures as authentic. The description of the ElGamal
Signature Scheme is given as Cryptosystem. We begin with a couple of
preliminary observations. An ElGamal signature consists of two

82

components, which are denoted g and d. The first component, g, is
obtained by raising a to a random power modulo p; it does not depend on
the message (namely, x) that is being signed. The second component, d,
depends on the message x as well as the private key a. Verifying the
signature is accomplished by checking that a certain congruence holds
modulo p; this congruence does not involve the private key, of course. We
now show that, if the signature was constructed correctly, then the
verification will succeed. This follows easily from the following
congruencies:

(mod)a k p      
(mod)x p

Where we use the fact that
(mod 1)a k x p   

Actually, it is probably less mysterious to begin with the verification
equation, and then derive the corresponding signing function. Suppose we
start with the congruence

(mod)x p   
Then we make the substitutions

(mod)k p 

And
(mod)a p 

but we do not substitute for g in the exponent of (8.1).We obtain the
following:

(mod)x a k p   

Now, a is a primitive element modulo p; so this congruence is true if and
only if the exponents are congruent modulo p - 1, i.e., if and only if

(mod 1)x k p   

Given x, a, g, and k, this congruence can be solved for d, yielding
the formula used in the signing function of Cryptosystem.

Alice computes a signature using both the private key, a, and the
secret random number, k (which is used to sign one message, x). The
verification can be accomplished using only public information. Let’s do a
small example to illustrate the arithmetic.

Example 2.1

Suppose we take p=467, 2,  a=127; then
moda p 

1272 mod 467

83

= 132
Suppose Alice wants to sign the message x = 100 and she chooses the
random value k=213(note that gcd(213,466)=1 and 213-1mod 466=431).
Then

2132 mod 467 29  
And

 100 127 29 431mod 466 51    
Any one can verify signature (29,51) by checking that

29 51132 29 189(mod 467)
And

1002 189(mod 467)
Hence, the signature is valid

2.3 THE DIGITAL SIGNATURE STANDARD

The Digital Signature Standard (or DSS) is a modification of the
ElGamal Signature Scheme. It was published in the Federal Register on
May 19, 1994 and adopted as a standard on December 1, 1994 (however,
it was first proposed in August, 1991). First, we want to motivate the
changes that are made to ElGamal, and then we will describe how they
are accomplished.

In many situations, a message might be encrypted and decrypted
only once, so it suffices to use any cryptosystem which is known to be
secure at the time the message is encrypted. On the other hand, a signed
message could function as a legal document such as a contract or will, so
it is very likely that it would be necessary to verify a signature many years
after the message is signed. So it is important to take even more
precautions regarding the security of a signature scheme as opposed to a
cryptosystem.

Since the ElGamal Scheme is no more secure than the Discrete
Logarithm problem, this necessitates the use of a large modulus p.
Certainly p should have at least 512 bits, and many people would argue
that the length of p should be 1024 bits in order to provide security into
the foreseeable future.

However, even a 512 bit modulus leads to a signature having 1024
bits. For potential applications, many of which involve the use of smart
cards, a shorter signature is desirable. DSS modifies the ElGamal Scheme
in an ingenious way so that a 160-bit message is signed using a 320-bit
signature, but the computations are done using a 512-bit modulus p. The
way that this done is to work in a subgroup of size 2 . The assumed
security of the scheme is based on the belief that finding discrete
algorithms in this specified subgroup of is secure.

84

The first change we make is to change the “-” to a “+” in the
definition of δ, so

   1 mod 1x a k p    

This changes the verification condition to the following:

 modx p   

If gcd(x + aγ, p - 1) = 1, then mod (p - 1) exists, and we can modify
condition (6.1), producing the following:

 1 1 modx p     

Now here is the major innovation in the DSS. We suppose that q is a
160-bit prime such that q | (p - 1), and α is a qth root of 1 modulo p. (It is easy to
construct such an a: Let be a primitive element of , and define

   1
0 mod

qp p   . Then β and γ will also be qth roots of 1. Hence, any

exponents of α, β and γ can be reduced modulo q without affecting verification
condition (6.2). The tricky point is that g appears as an exponent on the left side
of (6.2), and again — but not as an exponent — on the right side of (6.2). So if g
is reduced modulo q, then we must also reduce the entire left side of (6.2)
modulo q in order to perform the verification. Observe that (6.1) will not work if
the extra reductions modulo q are done. The complete description of the DSS.

Notice that is necessary that 0  (mod q) since the value mod q is
needed to verify the signature (this is analogous to the requirement that gcd(δ, p-
1) = 1 when we modified (6.1) to obtain (6.2)). If Bob computes a value d º 0
(mod q) in the signing algorithm, he should reject it and construct a new
signature with a new random k. We should point out that this is not likely to
cause a problem in practice: The probability that (mod q) is likely to be on
the order of 2 , so for all intents and purposes it will almost never happen.
Here is a small example to illustrate

Example 2.2:

Suppose we take q = 101 and p = 78q +1=7879.3 is a primitive element in

7879 , so we can take
783 mod 7879 170  

Suppose a=75; then
mod 7879 4567a  

Now, Suppose bob wants to sign the message x=22 and he chooses the
random value k=50, so

1 mod101 99k  
Then

 50170 mod 7879 mod101 

2518mod101
94

85

And

 22 75 94 99mod101   
97

The signature (94, 97) on the message 22 is verified by the following
computations

1 197 mod101 25   
1 22 25mod101 45e   

2 94 25mod101 27e   

 45 27170 4567 mod 7879 mod101 2518mod101 94. 

When the DSS was proposed in 1991, there were several criticisms
put forward. One complaint was that the selection process by NIST was
not public. The standard was developed by the National Security Agency
(NSA) without the input of U. S. industry. Regardless of the merits of the
resulting scheme, many people resented the “closed-door” approach.

Of the technical criticisms put forward, the most serious was that
the size of the modulus p was fixed at 512 bits. Many people would prefer
that the modulus size not be fixed, so that larger modulus sizes could be
used if desired. In response to these comments, NIST altered the
description of the standard so that a variety of modulus sizes are allowed,
namely, any modulus size divisible by 64, in the range from 512 to 1024
bits.

2.4 ONE-TIME SIGNATURES

In this section, we describe a conceptually simple way to construct
a one-time signature scheme from any one-way function. The term “one-
time” means that only one message can be signed. (The signature can be
verified an arbitrary number of times, of course.) The description of the
scheme, known as the Lamport Signature Scheme.

Informally, this is how the system works. A message to be signed
is a binary k-tuple. Each bit is signed individually: the value zi,j
corresponds to the ith bit of the message having the value j (j = 0, 1). Each
zi,j is the image of yi,j under the one-way function f. The ith bit of the
message is signed using the preimage yi,j of the zi,j corresponding to the
ith bit of the message. The verification consists simply of checking that
each element in the signature is the preimage of the appropriate public key
element. We illustrate the scheme by considering one possible
implementation using the exponentiation function f (x) = mod p,
where is a primitive element modulo p.

Example 2.3

7879 is prime and 3 is primitive element in 7879 Define

86

  3 mod 7879xf x 

Suppose Bob wishes to sign a message of three bits, and he chooses the
six (secret) random numbers

1,0 5831y 

1,1 735y 

2,0 803y 

2,1 2467y 

3,0 4285y 

3,1 6449y 
Then he computes the images of the y ‘s under the function f

1,0 2009z 

1,1 3810Z 

2,0 4672Z 

2,1 4721Z 

3,0 268Z 

3,1 5731y 

These z’s are published. Now, suppose Bob wants to sign the message

 1,1,0X 

The signature for x is

 1,1 2,1 3,0, , 735,2467,4285y y y 

To verify this signature, it suffices to compute the following:

7353 mod7879 3810
24673 mod7879 4721
42853 mod7879 268

Hence, the signature is valid.

Oscar cannot forge a signature because he is unable to invert the
one-way function f to obtain the secret y’s. However, the signature scheme
can be used to sign only one message. For, given signatures for two
different messages, it is (usually) an easy matter for Oscar to construct
signatures for further messages (different from the first two).

For example, suppose the messages (0, 1, 1) and (1, 0, 1) are both
signed using the same scheme. The message (0, 1, 1) would have as its
signature the triple (y1,0, y2,1, y3,1), and the message (1, 0, 1) would be
signed with (y1,1, y2,0, y3,1). Given these two signatures, Oscar can

87

manufacture signatures for the messages (1, 1, 1) (namely, (y1,1, y2,1,
y3,1)) and (0, 0, 1) (namely, (y1,0, y2,0, y3,1)). Even though this scheme
is quite elegant, it is not of great practical use due to the size of the
signatures it produces.

For example, if we use the modular exponentiation function, as in
the example above, then a secure implementation would require that p be
at least 512 bits in length. This means that each bit of the message is
signed using 512 bits. Consequently, the signature is 512 times as long as
the message. We now look at a modification due to Bos and Chaum that
allows the signatures to be made somewhat shorter, with no loss of
security. In the Lamport Scheme, the reason that Oscar cannot forge a
signature on a (second) message, given a signature on one message, is that
the y’s corresponding to one message are never a subset of the y’s
corresponding to another (distinct) message.

Suppose we have a set B of subsets of a set B such that 2B B
only if B1= B2, for all B1, 2B B Then B is said to satisfy the Sperner

property. Given a set B of even cardinality 2n, it is known that the
maximum size of a set B of subsets of B having the Sperner property is

2n

n

 
 
 

. This can easily be obtained by taking all the n-subsets of B: clearly

no n-subset is contained in another n-subset.

Now suppose we want to sign a k-bit message, as before, and we choose n

large enough so that
2

2k n

n

 
  
 

2.5 UNDENIABLE SIGNATURES

Undeniable signatures were introduced by Chaum and van
Antwerpen in 1989. They have several novel features. Primary among
these is that a signature cannot be verified without the cooperation of the
signer, Bob. This protects Bob against the possibility that documents
signed by him are duplicated and distributed electronically without his
approval. The verification will be accomplished by means of a challenge-
and-response protocol.

But if Bob’s cooperation is required to verify a signature, what is
to prevent Bob from disavowing a signature he made at an earlier time?
Bob might claim that a valid signature is a forgery, and either refuse to
verify it, or carry out the protocol in such a way that the signature will not
be verified. To prevent this from happening, an undeniable signature
scheme incorporates a disavowal protocol by which Bob can prove that a
signature is a forgery.

88

Thus, Bob will be able to prove in court that a given forged
signature is in fact a forgery. (If he refuses to take part in the disavowal
protocol, this would be regarded as evidence that the signature is, in fact,
genuine.) Thus, an undeniable signature scheme consists of three
components: a signing algorithm, a verification protocol, and a disavowal
protocol. First, we present the signing algorithm and verification protocol
of the Chaum-van Antwerpen Undeniable Signature Scheme

Let p=2q+1 be a prime such that q is prime and the discrete log
problem in *p is intractable, Let *p  be an element of order q. Let

1 1a q   and define a  mod p. Let G denote the multiplicative

subgroup of *p of order q (G consists of quadratic residues modulo p).

Let *p G    and define

    , , , : modap a p     

The values p, and  are the public key, and a is the private key.

For  , , ,p a   and x G , define

   , , ,a
ky sig x x p a   mod p.

For , ,x y G verification is done be executing the following
protocol:

1) Bob chooses 1, 2e e at random, 1, 2 qe e 

2) Bob computes 1, 2e ec y  mod p and sents it to Allice

3) Alice computes 21mod ea qd c  mod p and sends it to Bob

4) Bob accepts y as a valid signature if and only if

 1 2 mod .e ed x p

Chaum-van Antwerpen Signature Scheme:

We should explain the roles of p and q in this scheme. The scheme
lives in ; however, we need to be able to do computations in a
multiplicative subgroup G of of prime order. In particular, we need to
be able to compute inverses modulo |G|, which is why |G| should be prime.
It is convenient to take p = 2q + 1 where q is prime. In this way, the
subgroup G is as large as possible, which is desirable since messages and
signatures are both elements of G.

We first prove that Alice will accept a valid signature. In the
following computations, all exponents are to be reduced modulo q. First,
observe that

 1

modad c p




 1 1
1 2 mode a e ay p
 



89

Since

 moda p 
We have that

 1

moda p 



Similarly

 moday x p
Implies that

 1

moday x p



Hence

 1 2 mode ed x p
As desired

Here is a small example.

Example 2.4:

Suppose we take p = 467. Since 2 is a primitive element, 2 = 4 is a
generator of G, the quadratic residues modulo 467. So we can take = 4.
Suppose a = 101; then

mod 467 449a  

Bob will sign the message x = 119 with the signature

101119 mod 467 129y  

Now, suppose Alice wants to verify the signature y. Suppose she chooses
the random values e1= 38, e2= 397. She will compute c = 13, whereupon
Bob will respond with d = 9. Alice checks the response by verifying that

 38 397119 4 9 mod 467

Hence, Alice accepts the signature as valid.

We next prove that Bob cannot fool Alice into accepting a
fradulent signature as valid, except with a very small probability. This
result does not depend on any computational assumptions, i.e., the security
is unconditional.

2.6 FAIL-STOP SIGNATURES

A fail-stop signature scheme provides enhanced security against
the possibility that a very powerful adversary might be able to forge a
signature. In the event that Oscar is able to forge Bob’s signature on a

90

message, Bob will (with high probability) subsequently be able to prove
that Oscar’s signature is a forgery.

In this section, we describe a fail-stop signature scheme
constructed by van Heyst and Pedersen in 1992. This is a one-time scheme
(only one message can be signed with a given key). The system consists of
signing and verification algorithms, as well as a “proof of forgery”
algorithm. The description of the signing and verification algorithms of
the van Heyst and Pedersen Fail-stop Signature Scheme.

Let p=2q+1 be a prime such that q isa prime and the discrete log
problem in p is intractable. Let *p be an element of order q. Let

01 1a q   and define 0a  mod p. The values p,q, , ,  and a0 are
chosen by a central (trusted) authority. p,q, , ,and  are public and will be
regarded as fixed. The value of a0 is kept secret from everyone (even
Alice).

Let qP  and q qA    A key has the form

 1, 2, 1, 2, 1, 2,k a a b b 

Where 1 2 1 2, , , , qa a b b 
1 2

1, moda a p   and 1 2
2, modb b p  

 1 2,,  is a public key and  1 2 1 2, , ,a a b b is a private key

For  1, 2, 1, 2, 1, 2,k a a b b  and qx define

   1, 2 ,ksig x y y

Where

1, 1 1 mody a xb q  and 2, 2 2 mody a xb q 

For  1, 2, ,q qy y y    We have,

   1 2
1 2, mody yxverk x y true p     

It is straightforward to see that a signature produced by Bob will
satisfy the verification condition, so let’s turn to the security aspects of
this scheme and how the fail-stop property works. First we establish some
important facts relating to the keys of the scheme. We begin with a
definition. Two keys (1, 2, a1, a2, b1, b2) and are said to be equivalent if
and . It is easy to see that there are exactly q2 keys in any equivalence
class.

We establish several lemmas. LEMMA 6.4
Suppose k and k` are equivalent key and suppose that  ,kver x y true

then  ` ,
k

ver x y true

Proof suppose  1 2 1 2 1 2, , , , ,k a a b b  and  `
1 2 1 2 1 2, , ' , ' , ' , 'k a a b b  where

91

'1 2 1 2'`
1 mod mod

aa a ap p     
And

1 2 1 2' '`
2 mod modb b b bp p     

Suppose x is signed using k producing the signature y= (y1,y2) where

1 1 1 mody xb q  ,

2 2 2 mody xb q  ,

Now suppose we verify y using k`:

 1 2 1 1 2 2' ' ' '` mody y a xb a xb p    

 1 2 1 2' ' ' ' mod
xa a b b p   

 1 2 mod .x p 

Thus, y will also be verified using K.

LEMMA 6.5

Suppose k is a key and y= sigk (x). Then there are exactly q keys K’
equivalent to K such that y=sigk(x).

Proof suppose 1 2,  are the public components of k. We want to determine

the number of 4-tuples (a1, a2, b1, b2) such that the following congruences
are satisfied

 1 2
1 mod .a a p  

 1 2
2 mod .b b p  

 1 1 1 mod .y a xb q 

 2 2 2 mod .y a xb q 

Since  generates G, there exist unique exponents 1 2 0, , qc c a  such that

 1
1 mod ,c p 

 2
1 mod ,c p 

And

 0 mod ,a p 
Hence, it is necessary and sufficient that the following system of

congruences be satisfied

 1 1 0 2 mod .c a a a q 

 2 1 0 2 mod .c b a b q 

 1 1 1 mod .y a xb q 

 2 2 2 mod .y a xb q 

This system can in turn be written as a matrix equation in q as follows

92

1 10

2 20

1 1

2 2

1 0 0

0 0 1

1 0 0

0 1 0

a ca

a ca

b yx

b yx

    
    
     
    
    

    

Now the coefficient matrix of this system can be seen to have rank
1 three. Clearly the rank is three since rows 1,2 and 4 are linearly
independent over q . And the rank is at most three since

1. The rank of a matrix is maximum number of linearly independent rows
it contains

 1 2 3 0 4 0,0,0,0 ,r xr r a r   

where ri denotes ith row of the matrix. Now, this system of equations has
at least one solution, obtained by using the key K. Since the rank of the
coefficient matrix is three, it follows that the dimension of the solution
space is 4 - 3 = 1, and there are exactly q solutions

2.7 LET US SUM UP

Thus, we have studied the basic concepts about the standard of
signature like Digital signature. Here some basics of ElGamal key
cryptography scheme and some fail-stop, undeniable signature has been
explained.

2.8 UNIT END EXERCISES

1. Explain the digital signature standard.

2. Write a short note on Fail-Stop Signature.

3. Write a short note on ElGamal key cryptography

4. What do you mean by Undeniable signature?

2.9 LIST OF REFERENCES

 Cryptography: Theory and Practice, Douglas Stinson, CRC Press,
CRC Press LLC

 Cryptography and Network Security Principles and Practices,
Fourth Edition, William Stallings, PHI(Pearson),

93

UNIT-II

3
HASH FUNCTIONS

Unit Structure
3.0 Objectives

3.1 Introduction

3.2 Signatures and Hash Functions

3.3 Collision-free Hash Functions

3.4 The Birthday Attack

3.5 A Discrete Log Hash Function,
3.6 Extending Hash Functions

3.7 Hash Functions from Cryptosystems

3.8 The MD4 Hash Function

3.9 Time stamping

3.10 LET US SUM UP

3.11 List of References

3.12 Unit End Exercises

3.0 OBJECTIVES

In this chapter you will learn about:

 How hash function used in cryptography?

 Some collision-free hash function

 Birthday attack

 Discrete log and extending has function

 MD4 hash function

 Time-stamping

3.1 INTRODUCTION

Cryptographic hash functions map input strings of arbitrary length
to short fixed length output strings. They were introduced in cryptology in
the 1976 seminal paper of Diffie and Hellman on public-key
cryptography. Hash functions can be used in a broad range of applications:
to compute a short unique identifier of a string (e.g. for a digital
signature), as one-way function to hide a string (e.g. for password

94

protection), to commit to a string in a protocol, for key derivation and for
entropy extraction.

Until the late 1980s, there were few hash function designs and
most proposals were broken very quickly after their introduction. The first
theoretical result is the construction of a collision-resistance hash function
based on a collision-resistant compression function, proven independently
by Damgard and Merkle in 1989. Around the same time, the first
cryptographic algorithms were proposed that are intended to be fast in
software; the hash functions MD4 and MD5 fall in this category

Cryptographic hash functions have grown to be some of the most
widely-used objects from cryptography. Hash functions are one-way: we
cannot reverse a hash value to find the original content. (Irreversible) If
we pass the same content through the same hash function then it should
produce the same output/same hash value.

3.2 SIGNATURES AND HASH FUNCTIONS

When using the DSS, a 160-bit message is signed with a 320-bit
signature. In general, we will want to sign much longer messages. A legal
document, for example, might be many megabytes in size.

A naive attempt to solve this problem would be to break a long
message into 160-bit chunks, and then to sign each chunk independently.
This is analogous to encrypting a long string of plaintext by encrypting
each plaintext character independently using the same key (e.g., ECB
mode in the DES).

But there are several problems with this approach in creating
digital signatures. First of all, for a long message, we will end up with an
enormous signature (twice as long as the original message in the case of
the DSS). Another disadvantage is that most “secure” signature schemes
are slow since they typically use complicated arithmetic operations such as
modular exponentiation. But an even more serious problem with this
approach is that the various chunks of a signed message could be
rearranged, or some of them removed, and the resulting message would
still be verified. We need to protect the integrity of the entire message, and
this cannot be accomplished by independently signing little pieces of it.

The solution to all of these problems is to use a very fast public
cryptographic hash function, which will take a message of arbitrary length
and produce a message digest of a specified size (160 bits if the DSS is to
be used). The message digest will then be signed. For the DSS, the use of
a hash function h is depicted diagrammatically.

When Bob wants to sign a message x, he first constructs the
message digest z = h(x), and then computes the signature y = sigK(z). He

95

transmits the ordered pair (x, y) over the channel. Now the verification can
be performed (by anyone) by first reconstructing the message digest z =
h(x) using the public hash function h, and then checking that verK(z, y) =
true.

 0,1 *

 ()

()k

message x x

message digest z h x z

signature y sig z y Y



 


 

Figure 3.1 Signing a message digest

3.3 COLLISION-FREE HASH FUNCTIONS

We have to be careful that the use of a hash function h does not
weaken the security of the signature scheme, for it is the message digest
that is signed, not the message. It will be necessary for h to satisfy certain
properties in order to prevent various forgeries.

The most obvious type of attack is for an opponent, Oscar, to start
with a valid signed message (x, y), where y = sig K (h(x)). (The pair (x, y)
could be any message previously signed by Bob.) Then he computes z =
h(x) and attempts to find xx such that h(x) = h(x). If Oscar can do this,
(x, y) would be a valid signed message, i.e., a forgery. In order to prevent
this type of attack, we require that h satisfy the following collision-free
property:

DEFINITION:

Let x be a message. A hash function h is weakly collision-free for x
if it is computationally infeasible to find a message xx such that h(x) =
h(x).

Another possible attack is the following: Oscar first finds two
messages x xsuch that h(x) = h(x). Oscar then gives x to Bob and
persuades him to sign the message digest h(x), obtaining y. Then (x, y) is a
valid forgery. This motivates a different collision-free property:

DEFINITION

A hash function h is strongly collision-free if it is computationally
infeasible to find messages x and xsuch that xx and h(x) = h(x).

Observe that a hash function h is strongly collision-free if and only
if it in computationally infeasible to find a message x such that h is not
weakly collision-free for x. Here is a third variety of attack. As we
mentioned in Section it is often possible with certain signature schemes to

96

forge signatures on random message digests z. Suppose Oscar computes a
signature on such a random z, and then he finds a message x such that z =
h(x). If he can do this, then (x, y) is a valid forgery. To prevent this attack,
we desire that h satisfy the same one-way property that was mentioned
previously in the context of public-key cryptosystems and the Lamport
Signature Scheme:

DEFINITION

A hash function h is one-way if, given a message digest z, it is
computationally infeasible to find a message x such that h(x) = z.

We are now going to prove that the strongly collision-free property
implies the one-way property. This is done by proving the contra positive
statement. More specifically, we will prove that an arbitrary inversion
algorithm for a hash function can be used as an oracle in a Las Vegas
probabilistic algorithm that finds collisions.

This reduction can be accomplished with a fairly weak assumption
on the relative sizes of the domain and range of the hash function. We will
assume for the time being that the hash function h : X Õ Z, where X and Z
are finite sets and |X| 2|Z|. This is a reasonable assumption: If we think
of an element of X as being encoded as a bitstring of length log2 |X| and an
element of Z as being encoded as a bitstring of length log2 |Z|, then the
message digest z = h(x) is at least one bit shorter than the message x.

(Eventually, we will be interested in the situation where the
message domain X is infinite, since we want to be able to deal with
messages of arbitrary length. Our argument also applies in this situation.)

We are assuming that we have an inversion algorithm for h. That
is, we have an algorithm A which accepts as input a message digest z Z,
and finds an element A(z) X such that h(A(z)) = z.

Suppose :h X Z is a hash function where X and Z are finite

and 2X Z . Suppose a is an inversion algorithm for h. Then there

exists a probabilistic Las Vegas algorithm which finds a collision for h
with probability at leats 1/2 .

Proof consider the algorithm presented in figure 7.2 . Clearly B is a
probabilistic algorithm of the Las Vegas type, since it either finds a
collision or returns no answer. Thus our main task is to compute the

probability of success. For any x X , define 1x x if h(x)=h(x1). It is

easy to see that  is an equivalence relation. Define

   1 1: .x x X x x  

97

Each equivalence class  x consist of the inverse image of an element of

Z, so the number of equivalence classes is at most  .z Denote the set of

equivalence classes by C.

Now suppose x is the element of X chosen step 1. For this x, there are  x
possible x1’s that could be returned in step 3.  x -1of these x1’s are
different from x and thus lead to success in step 4. (Note that the algorithm
A dose not know the representative of the equivalence class  x that was

chosen in step 1)

So, given a particular choice x X , the probability of success is

    1 / .x x

3.4 THE BIRTHDAY ATTACK

In this section, we determine a necessary security condition for
hash functions that depends only on the cardinality of the set Z
(equivalently, on the size of the message digest). This necessary condition
results from a simple method of finding collisions which is informally
known as the birthday attack. This terminology arises from the so-called
birthday paradox, which says that in a group of 23 random people, at least
two will share a birthday with probability at least 1/2. (Of course this is
not a paradox, but it is probably counter-intuitive). The reason for the
terminology “birthday attack” will become clear as we progress.

As before, let us suppose that h : X Õ Z is a hash function, X and Z
are finite, and |X| 2|Z|. Denote |X| = m and |Z| = n. It is not hard to see
that there are at least n collisions — the question is how to find them.

A very naive approach is to choose k random distinct elements
x1,...,x k X, compute zi= h(xi), 1 i k, and then determine if a collision
has taken place (by sorting the zi ’s, for example).
This process is analogous to throwing k balls randomly into n bins and
then checking to see if some bin contains at least two balls. (The k balls
correspond to the k random xi’s, and the n bins correspond to the n
possible elements of Z.)

We will compute a lower bound on the probability of finding a
collision by this method. This lower bound will depend on k and n, but not
on m. Since we are interested in a lower bound on the collision
probability, we will make the assumption that for all z Z. (This is a
reasonable assumption: if the inverse images are not approximately equal,
then the probability of finding a collision will increase.)

98

Since the inverse images are all (roughly) the same size and the
xi’s are chosen at random, the resulting zi’s can be thought of as random
(not necessarily distinct) elements of Z. But it is a simple matter to
compute the probability that k random elements z1,...,z k Z are distinct.
Consider the zi’s in the order z1,...,z k. The first choice z1 is arbitrary; the
probability that z2 z1is 1 - 1/n; the probability that z3isdistinct from z1
and z2 is 1 - 2/n, etc.

Hence, we estimate the probability of no collisions to be

1

1

1 2 1
1 1 1 1

k

i

k i

n n n n





                
      



If x is a small real number, then 1-1 xx e  This estimate is derived by
taking the first two terms of the series expansion.

2 3

1
2! 3!

x x x
e x    

Then our estimated probability of no collisions is

11 1

1 1

1
k k

n

i i

i
e

n

 

 

   
 
 

 1
2

k k

ne
 



So we estimated probability of at least one collisions to be

 1
21

k k

ne
 



If we denote this probability by then we can solve for k as an function
of n and 

 1
2 1

k k

ne c
 

  

   1
1 1

2

k k
n

n

 
 

2 1
2 1

1
k k n n 



If we ignore the term –k, then we estimate

1
2 1

1
k n n



99

If we take =5 then our estimate is

1.17 .k n

So this says that hashing just over random elements of X yields a
collision with a probability of 50%. Note that a different choice of leads
to a different constant factor, but k will still be proportional to If X is the
set of all human beings, Y is the set of 365 days in a non-leap year (i.e.,
excluding February 29), and h(x) denotes the birthday of person x, then we
are dealing with the birthday paradox. Taking n = 365 in our estimate, we
get Hence, as mentioned earlier, there will be at least one duplicated
birthday among 23 random people with probability at least 1/2.

3.5 A DISCRETE LOG HASH FUNCTION

In this section, we describe a hash function, due to Chaum, van
Heijst, and Pfitzmann, that will be secure provided a particular discrete
logarithm cannot be computed. This hash function is not fast enough to be
of practical use, but it is conceptually simple and provides a nice example
of a hash function that can be proved secure under a reasonable
computational assumption. The Chaum-van Heijst-Pfitzmann Hash
Function is presented. We now prove a theorem concerning the security
of this hash function.

THEOREM

Given one collision for the Chaum-van Heijst-Pfitzmann Hash
Function h, the discrete logarithm logcan be computed efficiently.

PROOF Suppose we are given a collision h(x1,x2)=h(x3,x4) where (x1,
x2) (x3, x4). So we have the following congruence:

PROOF Suppose we are given a collision h(x1,x2)=h(x3,x4) where (x1,
x2) (x3, x4). So we have the following congruence:

31 2 4 (mod),xx x x p   

Or

31 4 2 (mod),xx x x p  

Denote

 4 2gcd , 1 .d x x p  

Since p - 1 = 2q and q is prime, it must be the case that d
{1,2,q,p - 1}. Hence, we have four possibilities for d, which we will
consider in turn. First, suppose that d = 1. Then let

100

   1

4 2 mod 1 .y x x p
  

We have that

   4 2 mod .x x y p  

   1 3 mod .x x y p 

So we can compute the discrete logarithm as follows

    1

1

3 4 2log mod 1 .a x x x x p    

Next suppose that d=2 Since p-1=2q where q is odd we must have gcd (x4-
x2, q)=1 Let

  1

4 2 mod .y x x q
 

Now

 4 2 1x x y kq  

For some integer k, so we have

   1
4 2 modkqx x y p   

   1 mod p 

 mod p

Since

 1 modq p  
so we have

     1 34 2 modx x yx x p   

 mod p 
It follows that

   1 3log mod 1x x y p    
Or

   1 3log mod 1x x y q p     

We can easily test which of these two possibilities is the correct
one. Hence, as in the case d = 1, we have calculated the discrete logarithm
log.The next possibility is that d = q. Buts

log 

101

20 1x q  
And

40 1x q  
So

  4 21 1q x x q     

So it is impossible that gcd(x4- x2,p - 1) = q; in other words, this case does
not arise. The final possibility is that d = p - 1. This happens only if x2=
x4. But then we have and x1= x3.

 31 2 2 modxx x x p   
So

 31 modxx p 

Thus (x2, x2) = (x3, x4), a contradiction. So this case is not
possible, either. Since we have considered all possible values for d, we
conclude that the hash function h is strongly collision-free provided that it
is infeasible to compute the discrete logarithm log in . We illustrate
the result of the above theorem with an example.

Suppose P=12347(SO Q= 6173), 2 8461   Suppose we are given
the collision

 5692 144 212 4214 mod12347   
Thus

 5692 144 212 4214 mod12347   

Thus x1=5692, x2=144, x3=212 and x4=4214. Now, gcd(x4-x2, p-1)=2, so
we begin by computing

  1

4 2 mod .y x x q
 

  1
4214 144 mod 6173.

 
= 4312

Next we compute

   1 3' mod 1 .y x x y p  

 5692 212 4312mod12346 
11862

Now it is the case that   log ', ' mod 1y y q p     since
' 11862mod 2 mod12346 9998y p  

We conclude that
log ' mod(1)y q p    

102

11862 6173mod12346
= 5689

As We check, we can verify that
56892 8461(mod12347)

Hence we have determined log 

3.6 EXTENDING HASH FUNCTIONS

So far, we have considered hash functions with a finite domain.
We now study how a strongly collision free hash function with a finite
domain can be extended to a strongly collision-free hash function with an
infinite domain. This will enable us to sign messages of arbitrary length.

Suppose h :    2 2

m t  is a strongly collision-free hash function,

where m t + 1. We will use h to construct a strongly collision-free hash

function h* :  2

t
X   , where

 2
i

i m

X




 

We first consider the situation where m t + 2. We will think of
elements of X as bit-strings. |x| denotes the length of x (i.e., the number of
bits in x), and x || y denotes the concatenation of the bit-strings x and y.
Suppose |x| = n > m. We can express x as the concatenation

1 2 kx x x x

Where

1 2 1........ 1kx x x m t     

And

1kx m t d   

Where 0 2d m t    hence we have that

1

n
k

m t
     

We define h* x by algorithm presented in fig 2.4

103

3.7 HASH FUNCTIONS FROM CRYPTOSYSTEMS

So far, the methods we have described lead to hash functions that
are probably too slow to be useful in practice. Another approach is to use
an existing private-key cryptosystem to construct a hash function.

Let us suppose that (P,C,K,E,D)is a computationally secure
cryptosystem. For convenience, let us assume also that P=C=K=() ^n.
Here we should have n 128, say, in order to prevent birthday attacks.
This precludes using DES (as does the fact that the key length of DES is
different from the plaintext length).

Suppose we are given a bitstring

1 2 kx x x x

Where  2 ,1
n

ix i k   (if the number of bits in x is not a

multiplr of n, then it will be necessary to pad x in some way, such as was
done in Section 2.5. for simplicity, we will ignore this now).

The basic idea to begin with a fixed ‘initial value’ g0=iv and then
construct g1….gk in order by a rule of the form

 1,i i ig f x g 

Where f is a function that incorporates the encryption of our
cryptosystem. Finally define the message digest h(x)=gk

Several hash functions of this type have been proposed, and many
of them have been shown to be insecure (independent of whether or not
the underlying cryptosystem is secure). However, four variations of this
theme that appear to be secure are as follows:

 1i gi i ig e x x 

 1 1i gi i i ig e x x g   

 1 1i gi i i ig e x g x   

 1 1 1i gi i i i ig e x g x g     

3.8 THE MD4 HASH FUNCTION

The MD4 Hash Function was proposed in 1990 by Rivest, and a
strengthened version, called MD5, was presented in 1991. The Secure
Hash Standard (or SHS) is more complicated, but it is based on the same
underlying methods. It was published in the Federal Register on January
31, 1992, and adopted as a standard on May 11, 1993. (A proposed
revision was put forward on July 11, 1994, to correct a “technical flaw” in

104

the SHS.) All of the above hash functions are very fast, so they are
practical for signing very long messages. In this section, we will describe
MD4 in detail, and discuss some of the modifications that are employed in
MD5 and the SHS.

Given a bitstring x, we will first produce an array

     0 1 1M M M M N 

where each M[i] is a bitstring of length 32 and N 0 mod 16. We
will call each M[i] a word. M is constructed from x using the algorithm
presented. In the construction of M, we append a single 1 to x, then we
concatenate enough 0’s so that the length becomes congruent to 448
modulo 512, and finally we concatenate 64 bits that contain the binary
representation of the (original) length of x (reduced modulo 264, if
necessary). The resulting string M has length divisible by 512. So when
we break M up into 32-bit words, the resulting number of words, denoted
by N, will be divisible by 16.

Now we proceed to construct a 128-bit message digest. A high-
level description of the algorithm is presented. The message digest is
constructed as the concatenation of the four words A, B, C and D, which
we refer to as registers. The four registers are initialized in step 1. Now we
process the array M 16 words at a time. In each iteration of the loop in step
2, we first take the “next” 16 words of M and store them in an array X
(step 3). The values of the four register are then stored (step 4). Then we
perform three “rounds” of hashing. Each round consists of one operation
on each of the 16 words in X (we will describe these operations in more
detail shortly). The operations done in the three rounds produce new
values in the four registers. Finally, the four registers are updated in step 8
by adding back the values that were stored in step 4. This addition is
defined to be addition of positive integers, reduced modulo 232.

The three rounds in MD4 are different (unlike DES, say, where the
16 rounds are identical). We first describe several different operations that
are employed in these three rounds. In the following description, X and Y
denote input words, and each operation produces a word as output. Here
are the operations employed:

X Y bitwise ‘‘and ’’ of X and Y
X Y bitwise ‘‘OR’’ of X and Y
X Y bitwise ‘‘XOR’’ of X and Y
X bitwise complement of X
X Y integer addition modulo 232

X s circular left shift of s positions  0 31s 

Note that all of these operations are very fast, and the only
arithmetic operation that is used is addition modulo 232. If MD4 is actually

105

implemented, it will be necessary to take into account the underlying
architecture of the computer it is run on in order to perform addition
correctly. Suppose a1a2a3a4 are the four bytes in a word. We think of each
ai as being an integer in the range 0,...,255, represented in binary.

In a big-endian architecture (such as a Sun SPARCstation), this
word represents the integer

24 16 8
1 2 3 42 2 2a a a a  

In a little –endian architecture(such as the Intel 80xxx line), this
word represents the integer

24 16 8
4 3 2 12 2 2a a a a  

MD4 assumes a little-endian architecture. It is important that the
message digest is independent of the underlying architecture. So if we
wish to run MD4 on a big-endian computer, it will be necessary to
perform the addition operation X + Y as follows:

1. Interchange x1 and x4;x2 and x3;y1 and y4; and y2 and y3.

2. Compute Z=X+Y mod 232

3. Interchange z1 and z4; and z2 and z3.

Rounds 1, 2, and 3 of MD4 respectively use three functions f, g
and h. Each of f, g and h is a bitwise boolean function that takes three
words as input and produces a word as output. They are defined as
follows:

      , ,f X Y Z X Y X Z    

       , ,g X Y Z X Y X Z Y Z     

 , ,h X Y Z X Y Z  

The complete description of Rounds 1, 2 and 3 of MD4 was
designed to be very fast, and indeed, software implementations on Sun
SPARCstations attain speeds of 1.4 Mbytes/sec. On the other hand, it is
difficult to say something concrete about the security of a hash function
such as MD4 since it is not “based” on a well-studied problem such as
factoring or the Discrete Log problem. So, as is the case with DES,
confidence in the security of the system can only be attained over time, as
the system is studied and (one hopes) not found to be insecure.

Although MD4 has not been broken, weakened versions that omit
either the first or the third round can be broken without much difficulty.
That is, it is easy to find collisions for these two-round versions of MD4.
A strengthened version of MD4, called MD5, was proposed in 1991. MD5

106

uses four rounds instead of three, and runs about 30% slower than MD4
(about .9 Mbytes/sec on a SPARCstation).

3.9 TIME STAMPING

One difficulty with signature schemes is that a signing algorithm
may be compromised. For example, suppose that Oscar is able to
determine Bob’s secret exponent a in the DSS. Then, of course, Oscar can
forge Bob’s signature on any message he likes. But another (perhaps even
more serious) problem is that the compromise of a signing algorithm calls
in to question the authenticity of all messages signed by Bob, including
those he signed before Oscar stole the signing algorithm.

Here is yet another undesirable situation that could arise: Suppose
Bob signs a message and later wishes to disavow it. Bob might publish his
signing algorithm and then claim that his signature on the message in
question is a forgery. The reason these types of events can occur is that
there is no way to determine when a message was signed. This suggests
that we consider ways of timestamping a (signed) message. A timestamp
should provide proof that a message was signed at a particular time. Then,
if Bob’s signing algorithm is compromised, it would not invalidate any
signatures he made previously. This is similar conceptually to the way
credit cards work: if someone loses a credit card and notifies the bank that
issued it, it becomes invalid. But purchases made prior to the loss of the
card are not affected.

In this section, we will describe a few methods of timestamping.
First, we observe that Bob can produce a convincing timestamp on his
own. First, Bob obtains some “current” publicly available information
which could not have been predicted before it happened. For example,
such information might consist of all the major league baseball scores
from the previous day, or the values of all the stocks listed on the New
York Stock Exchange. Denote this information by pub.

Now, suppose Bob wants to timestamp his signature on a message
x. We assume that h is a publicly known hash function. Bob will proceed
according to the algorithm presented. Here is how the scheme works: The
presence of the information pub means that Bob could not have produced
y before the date in question. And the fact that y is published in the next
day’s newspaper proves that Bob did not compute y after the date in
question. So Bob’s signature y is bounded within a period of one day.

Also observe that Bob does not reveal the message x in this scheme
since only z is published. If necessary, Bob can prove that x was the
message he signed and timestamped simply by revealing it.

It is also straightforward to produce timestamps if there is a trusted
timestamping service available (i.e., an electronic notary public). Bob can
compute z = h(x) and y = sigK(z) and then send (z, y) to the timestamping

107

service, or TSS. The TSS will then append the date D and sign the triple
(z, y, D).

This works perfectly well provided that the signing algorithm of
the TSS remains secure and provided that the TSS cannot be bribed to
backdate timestamps. (Note also that this method establishes only that Bob
signed a message before a certain time. If Bob also wanted to establish
that he signed it after a certain date, he could incorporate some public
information pub as in the previous method.)

If it is undesirable to trust the TSS unconditionally, the security
can be increased by sequentially linking the messages that are
timestamped. In such a scheme, Bob would send an ordered triple (z, y,
ID(Bob)) to the TSS. Here z is the message digest of the message x; y is
Bob’s signature on z; and ID(Bob) is

Bob’s identifying information. The TSS will be timestamping a
sequence of triples of this form. Denote by (zn, yn, IDn) the nth triple to be
timestamped by the TSS, and let tn denote the time at which the nth
request is made.

The TSS will timestamp the nth triple using the algorithm. The
quantity Ln is “linking information” that ties the nth request to the
previous one. (L0 will be taken to be some predetermined dummy
information to get the process started.)

Now, if challenged, Bob can reveal his message xn, and then yn
can be verified. Next, the signature sn of the TSS can be verified. If
desired, then ID n-1 or ID n+1 can be requested to produce their
timestamps, (C n-1 , sn-1, IDn) and (Cn+1, sn+1, IDn+2), respectively.
The signatures of the TSS can be checked in these timestamps. Of course,
this process can be continued as far as desired, backwards and/or
forwards.

3.10 LET US SUM UP

Thus, we have studied the basic concepts about the structure
cryptographic hash function. Here, message digest generation MD4 and
MD5 and Birthday attack explained briefly. The working of time stamping
also explained.

3.11 LIST OF REFERENCES

 Cryptography: Theory and Practice, Douglas Stinson, CRC

Press, CRC Press LLC

 Cryptography and Network Security Principles and Practices,
Fourth Edition, William Stallings, PHI(Pearson),

108

3.12 UNIT END EXERCISES

1. Explain the MD4 algorithm for message digest generation.

2. What are the different cryptographic hash function criteria?

3. Explain Birthday Attack in detail.

4. Explain working of time stamping with application.

5. Describe Hash function.

109

UNIT-II

4
KEY DISTRIBUTION AND KEY AGREEMENT

Unit Structure
4.0 Objectives

4.1 Introduction

4.2 Key Predistribution

4.3 Blom’s Scheme
4.4 Diffie-Hellman Key Predistribution

4.5 Kerberos

4.6 Diffie-Hellman Key Exchange

4.7 The Station-to-station Protocol

4.8 MTI Key Agreement Protocols

4.9 Key Agreement Using Self-certifying Keys

4.10 LET US SUM UP

4.11 List of References

4.12 Unit End Exercises

4.0 OBJECTIVES

In this chapter you will learn about:

 What is key predistribution?

 Diffie-Hellman key predistribution.

 What is Kerberos?

 The station to station protocol and MIT key agreement protocol

 Key agreement using self-certifying keys

4.1 INTRODUCTION

We have observed that public-key systems have the advantage
over private-key systems that a secure channel is not needed to exchange a
secret key. But, unfortunately, most public-key systems are much slower
than private-key systems such as DES, for example. So, in practice,
private-key systems are usually used to encrypt “long” messages. But then
we come back to the problem of exchanging secret keys.

In this chapter, we discuss several approaches to the problem of
establishing secret keys. We will distinguish between key distribution and

110

key agreement. Key distribution is defined to be a mechanism whereby
one party chooses a secret key and then transmits it to another party or
parties. Key agreement denotes a protocol whereby two (or more) parties
jointly establish a secret key by communicating over a public channel. In a
key agreement scheme, the value of the key is determined as a function of
inputs provided by both parties.

As our setting, we have an insecure network of n users. In some of
our schemes, we will have a trusted authority (denoted by TA) that is
responsible for such things as verifying the identities of users, choosing
and transmitting keys to users, etc.

Since the network is insecure, we need to protect against potential
opponents. Our opponent, Oscar, might be a passive adversary, which
means that his actions are restricted to eavesdropping on messages that are
transmitted over the channel. On the other hand, we might want to guard
against the possibility that Oscar is an active adversary. An active
adversary can do various types of nasty things such as the following:

1. alter messages that he observes being transmitted over the network

2. save messages for reuse at a later time

3. attempt to masquerade as various users in the network.

The objective of an active adversary might be one of the following:

1. to fool U and V into accepting an “invalid” key as valid (an invalid
key could be an old key that has expired, or a key chosen by the
adversary, to mention two possibilities)

2. to make U or V believe that they have exchanged a key with other
when they have not.

The objective of a key distribution or key agreement protocol is
that, at the end of the protocol, the two parties involved both have
possession of the same key K, and the value of K is not known to any
other party (except possibly the TA). Certainly it is much more difficult to
design a protocol providing this type of security in the presence of an
active adversary as opposed to a passive one. We first consider the idea of
key predistribution in Section. For every pair of users {U, V}, the TA
chooses a random key KU,V= KV,U and transmits it “off-band” to U and
V over a secure channel. (That is, the transmission of keys does not take
place over the network, since the network is not secure.) This approach is
unconditionally secure, but it requires a secure channel between the TA
and every user in the network. But, of possibly even more significance is
the fact that each user must store n - 1 keys, and the TA needs to transmit
a total of () keys securely (this is sometimes called the “n2 problem”).
Even for relatively small networks, this can become prohibitively
expensive, and thus it is not really a practical solution.

111

In Section, we discuss an interesting unconditionally secure key
predistribution scheme, due to Blom, that allows a reduction in the amount
of secret information to be stored by the users in the network. We also
present in Section a computationally secure key predistribution scheme
based on the discrete logarithm problem. A more practical approach can
be described as on-line key distribution by TA. In such a scheme, the TA
acts as a key server. The TA shares a secret key K U with every user U in
the network. When U wishes to communicate with V, she requests a
session key from the TA. The TA generates a session key K and sends it in
encrypted form for U and V to decrypt. The well-known Kerberos
system, which we describe in Section 8.3, is based on this approach.

If it is impractical or undesirable to have an on-line TA, then a
common approach is to use a key agreement protocol. In a key agreement
protocol, U and V jointly choose a key by communicating over a public
channel. This remarkable idea is due to Diffie and Hellman, and
(independently) to Merkle. We describe a few of the more popular key
agreement protocols. A variation of the original protocol of Diffie and
Hellman, modified to protect against an active adversary, is presented in
Section. Two other interesting protocols are also discussed: the MTI
scheme is presented in Section and the Girault scheme is covered in
Section.

4.2 KEY PREDISTRIBUTION

In the basic method, the TA generates keys, and gives each key to
a unique pair of users in a network of n users. As mentioned above, we
require a secure channel between the TA and each user to transmit these
keys. This is a significant improvement over each pair of users
independently exchanging keys over a secure channel, since the number of
secure channels required has been reduced from to n. But if n is large, this
solution is not very practical, both in terms of the amount of information
to be transmitted securely, and in the amount of information that each user
must store securely (namely, the secret keys of the other other n - 1 users).
Thus, it is of interest to try to reduce the amount of information that needs
to be transmitted and stored, while still allowing each pair of users U and
V to be able to (independently) compute a secret key KU,V. An elegant
scheme to accomplish this, called the Blom Key Predistribution Scheme.

4.3 BLOM’S SCHEME

As above, we suppose that we have a network of n users. For
convenience, we suppose that keys are chosen from a finite field ,
where p n is prime. Let k be an integer, 1 k n - 2. The value k is the
largest size coalition against which the scheme will remain secure. In the
Blom Scheme, the TA will transmit k + 1 elements of to each user over
a secure channel (as opposed to n - 1 in the basic key predistribution

112

scheme). Each pair of users, U and V, will be able to compute a key
KU,V= KV,U , as before. The security condition is as follows: any set of
at most k users disjoint from {U, V} must be unable to determine any
information about KU,V (note that we are speaking here about
unconditional security).

We first present the special case of Blom’s scheme where k = 1.
Here, the TA will transmit two elements of to each user over a secure
channel, and any individual user W will be unable to determine any
information about KU,V if W U, V. We illustrate the Blom Scheme
with k = 1 in the following example.

Example 4.1:

Suppose the three users are U,V AND W, p=17 and their public elements
are ru =12, rv =7 and rw=

1. Suppose that the TA chooses a=8,b=7 and c=2, so the polynomial f is

   , 8 7 2 .f x y x y xy   

The g polynomials are as follows

 gu 7 14x x 

 gv 6 4x x 

  15 9gw x x 
The three keys are thus

, 3Ku v 
KU,W = 4
KV,W =10

U would complete kUV as

  7 14 7 mod17 3gu rv    
V would complete kUV as

  6 4 12mod17 3gv ru    

We leave the computation of the other keys as an exercise for the
reader. We now prove that no one user can determine any information
about the key of two other users.

THEOREM

The Blom Scheme with k = 1 is unconditionally secure against any
individual user. PROOF Let’s suppose that user W wants to try to
compute the key

  mod .Kuv a b ru rv crurv p   

113

The values ru, rv are public but a,b and are unknown W does know the
values.

mod .aw a brw p 
And

mod .bw b crw p 

since these are the coefficients of the polynomial gW (x) that was sent to
W by the TA.

What we will do is show that the information known by W is
consistent with any possible value .l p of the key Kuv. Hence , W

cannot rule out any values for Kuv. Condsider the following matrix
equation (in .p)

1

1 0

0 1

ru rv rurv a l

rw b aw

rw c bw

    
        
    
    

The first equation represents the hypothesis that Kuv=l the second
and third equations contain the information that W knows about a, b and c
form gw(x).

The determinants of the coefficient matrix is

    2 ,rw rurv ru rv rw rw ru rw rv     

where all arithmetic is done in .p . Since r w ur r and w vr r , it follows

that the coefficient matrix has non zero determinant and hence the matrix
equation has a unique solution for a,b,c. In other words, any possible value
l of kuv…. Is consistent with the information known to W

On the other hand ,a coalition of two users, say{W,X}, will be able to
determine any key KUV where {W,X}   , ,V 0W X U   WandX

together know that
o

.aw a brw 

.bw b crw 

Xa a brx 

.bx b crx 

Thus they have four equations in three unknowns, and they can
easily compute a unique solution for a, b and c. Once they know a, b and
c, they can form the polynomial f(x, y) and compute any key they wish. It

114

is straightforward to generalize the scheme to remain secure against
coalitions of size k. The only thing that changes is step 2. The TA will use
a polynomial f(x, y) having the form

  ,
0 0

, mod
k k

i j
i j

i j

f x y a x y p
 

 

Where  , 0 ,0i j pa i k j k     and , ,i j j ia a the remainder of

the protocol is unchanged

4.4 DIFFIE-HELLMAN KEY PREDISTRIBUTION

In this section, we describe a key predistribution scheme that is a
modification of the well-known Diffie-Hellman key exchange protocol
that we will discuss a bit later, in Section 8.4. We call this the Diffie-
Hellman Key Predistribution Scheme. The scheme is computationally
secure provided a problem related to the Discrete Logarithm problem is
intractible. We will describe the scheme over , where p is prime,
though it can be implemented in any finite group in which the Discrete
Logarithm problem is intractible. We will assume that a is a primitive
element of , and that the values p and are publicly known to everyone
in the network. In this scheme, ID(U) will denote certain identification
information for each user U in the network, e.g., his or her name, e-mail
address, telephone number, or other relevant information. Also, each user
U has a secret exponent aU (where 0 a U p - 2), and a corresponding
public value

modav
Ub p

The TA will have a signature scheme with a (public) verification
algorithm ver TA and a secret signing algorithm sigTA. Finally, we will
implicitly assume that all information is hashed, using a public hash
function, before it is signed. To make the procedures easier to read, we
will not include the necessary hashing in the description of the
protocols.Certain information pertaining to a user U will be authenticated
by means of a certificate which is issue and signed by the TA. Each user U
will have a certificate

       , , , ,U TA UC U ID U b sig ID U b

where bU is formed as described above (note that the TA does not need to
know the value of aU). A certificate for a user U will be issued when U
joins the network. Certificates can be stored in a public database, or each
user can store his or her own certificate. The signature of the TA on a
certificate allows anyone in the network to verify the information it
contains. It is very easy for U and V to compute the common key

115

, mod ,U Va a
U VK P

4.5 KERBEROS

In the key predistribution methods we discussed in the previous
section, each pair of users can compute one fixed key. If the same key is
used for a long period of time, there is a danger that it might be
compromised. Thus it is often preferable to use an on-line method in
which a new session key is produced every time a pair of users want to
communicate (this property is called key freshness). If on-line key
distribution is used, there is no need for any network user to store keys to
communicate with other users (each user will share a key with the TA,
however). Session keys will be transmitted on request by the TA. It is the
responsibility of the TA to ensure key freshness. Kerberos is a popular
key serving system based on private-key cryptography. In this section, we
give an overview of the protocol for issuing session keys in Kerberos.
Each user U shares a secret DES key KU with the TA. In the most recent
version of Kerberos (version V), all messages to be transmitted are
encrypted using cipher block chaining (CBC) mode, as described in
Section.

As in Section, ID(U) will denote public identification information
for user U. When a request for a session key is sent to the TA, the TA will
generate a new random session key K. Also, the TA will record the time at
which the request is made as a timestamp, T, and specify the lifetime, L,
during which K will be valid. That is, the session key K is to be regarded
as a valid key from time T to time T + L. All this information is encrypted
and transmitted to U and (eventually) to V. Before going into more details,
we will present the protocol

The information transmitted in the protocol is illustrated in the following
diagram:

     
     

 

 K,ID V ,T,L ID U ,T

TA K,ID U ,T,L U K,ID U ,T,L

 1

V V

eku eku

ek ek

ek T 
v

We will now explain what is going on in the various steps of the
protocol. Although we have no formal proof that Kerberos is “secure”
against an active adversary, we can at least give some informal motivation
of the features of the protocol.

As mentioned above, the TA generates K, T, and L in step 2. In
step 3, this information, along with ID (V), is encrypted using the key KU

shared by U and the TA to form m1. Also, K, T, L, and ID(U) are
encrypted using the key Kv shared by V and the TA to form m2. Both these
encrypted messages are sent to U. U can use her key to decrypt m1, and
thus obtain K, T, and L. She will verify that the current time is in the

116

interval from T to T + L. She can also check that the session key K has
been issued for her desired communicant V by verifying the information
ID(V) decrypted from m1.

Next, U will relay m2 to V. As well, U will use the new session key
K to encrypt T and ID (U) and send the resulting message m3 to V. When
V receives m2 and m3 from U, he decrypts m2 to obtain T, K, L and ID(U).
Then he uses the new session key K to decrypt m3 and he verifies that T
and ID(U), as decrypted from m2 and m3, are the same.

This ensures V that the session key encrypted within m2 is the
same key that was used to encrypt m3.Then V uses K to encrypt T + 1, and
sends the result back to U as message m4.When U receives m4, she
decrypts it using K and verifies that the result is T + 1. This ensures U that
the session key K has been successfully transmitted to V, since K was
needed in order to produce the message m4.

It is important to note the different functions of the messages
transmitted in this protocol. The messages m1and m2 are used to provide
secrecy in the transmission of the session key K. On the other hand, m3

and m4 are used to provide key confirmation, that is, to enable U and V to
convince each other that they possess the same session key K. In most key
distribution schemes, session) key confirmation can be included as a
feature if it is not already present. Usually this is done in a similar fashion
as it is done in Kerberos, namely by using the new session key K to
encrypt known quantities. In Kerberos, U uses K to encrypt ID (U) and T,
which are already encrypted in m2. Similarly, V uses K to encrypt T + 1.

4.6 DIFFIE-HELLMAN KEY EXCHANGE

In this section, we describe a key predistribution scheme that is a
modification of the well-known Diffie-Hellman key exchange protocol
that we will discuss a bit later, in Section 8.4. We call this the Diffie-
Hellman Key Predistribution Scheme. The scheme is computationally
secure provided a problem related to the Discrete Logarithm problem is
intractible.

We will describe the scheme over , where p is prime, though it
can be implemented in any finite group in which the Discrete Logarithm
problem is intractible. We will assume that a is a primitive element of ,
and that the values p and are publicly known to everyone in the network.

In this scheme, ID(U) will denote certain identification information
for each user U in the network, e.g., his or her name, e-mail address,
telephone number, or other relevant information. Also, each user U has a
secret exponent aU(where 0 aU p - 2), and a corresponding public
value

mod .Ua
Ub p

117

The TA will have a signature scheme with a (public) verification
algorithm ver TA and a secret signing algorithm sig TA. Finally, we will
implicitly assume that all information is hashed, using a public hash
function, before it is signed. To make the procedures easier to read, we
will not include the necessary hashing in the description of the protocols.
Certain information pertaining to a user U will be authenticated by means
of a certificate which is issued and signed by the TA. Each user U will
have a certificate

       ID U , , , .U TA UC U b sig ID U b

where bU is formed as described above (note that the TA does not need to
know the value of aU). A certificate for a user U will be issued when U
joins the network. Certificates can be stored in a public database, or each
user can store his or her own certificate. The signature of the TA on a
certificate allows anyone in the network to verify the information it
contains. It is very easy for U and V to compute the common key

, mod .Ua av
U VK p

We illustrate the algorithm with a small example.

Example 2.2:

Suppose p=25307 and 2  are publicity known (p is prime and  is a
primitive root modulo p). Suppose U chooses aU = 3578. Then she
computes

modaU
Ub p

= 23578mod 25307

= 6113

Which is placed on her certificate. Suppose V chooses av= 19956. Then he
computers

modav
vb p

= 219956 mod 25307

= 7984,

If we do not want to use an on-line key server, then we are forced
to use a key agreement protocol to exchange secret keys. The first and best
known key agreement protocol is Diffie-Hellman Key Exchange. We
will assume that p is prime, is a primitive element of , and that the
values p and are publicly known. (Alternatively, they could be chosen
by U and communicated to V in the first step of the protocol.) Diffie-

118

Hellman Key Exchange is presented. At the end of the protocol, U and V
have computed the same key

modauavK p

This protocol is very similar to Diffie-Hellman Key
Predistribution described earlier. The difference is that the exponents’ aU

and aV of users U and V (respectively) are chosen anew each time the
protocol is run, instead of being fixed. Also, in this protocol, both U and V
are assured of key freshness, since the session key depends on both
random exponents aU and aV.

4.7 THE STATION-TO-STATION PROTOCOL

Diffie-Hellman Key Exchange is supposed to look like this:

U V

au

au





Unfortunately, the protocol is vulnerable to an active adversary
who uses an intruder-in-the-middle attack. There is an episode of The
Lucy Show in which Vivian Vance is having dinner in a restaurant with a
date, and Lucille Ball is hiding under the table. Vivian and her date decide
to hold hands under the table. Lucy, trying to avoid detection, holds hands
with each of them and they think they are holding hands with each other.

An intruder-in-the-middle attack on the Diffie-Hellman Key
Exchange protocol works in the same way. W will intercept messages
between U and V and substitute his own messages, as indicated in the
following diagram:

'

U V U V

au a V 

'a u au 

At the end of the protocol, U has actually established the secret key
'aua V with W, and V has established a secret key 'aua V with W. When

U tries to encrypt a message to send to V, W will be able to decrypt it but
V will not. (A similar situation holds if V sends a message to U.)

Clearly, it is essential for U and V to make sure that they are
exchanging messages with each other and not with W. Before exchanging
keys, U and V might carry out a separate protocol to establish each other’s
identity, for example by using one of the identification schemes. But this
offers no protection against an intruder-in-the-middle attack if W simply

119

remains inactive until after U and V have proved their identities to each
other. Hence, the key agreement protocol should itself authenticate the
participants’ identities at the same time as the key is being established.
Such a protocol will be called authenticated key agreement.

We will describe an authenticated key agreement protocol which is
a modification of Diffie-Hellman Key Exchange. The protocol assumes a
publicly known prime p and a primitive element , and it makes use of
certificates. Each user U will have a signature scheme with verification
algorithm verU and signing algorithm sigU. The TA also has a signature
scheme with public verification algorithm verTA. Each user U has a
certificates

       ID U , , , .U TA UC U ver sig ID U ver

where ID(U) is identification information for U. The authenticated
key agreement known as the Station-to-station Protocol (or STS for
short) is due to Diffie, Van Oorschot, and Wiener. The protocol is a slight
simplification; it can be used in such a way that it is conformant with the
ISO 9798-3 protocols. The information exchanged in the simplified STS
protocol (excluding certificates) is illustrated as follows

 
 

 , , V

 ,

au

aV aV au
V

aU aV
U

U sig

sig



  

 

Let’s see how this protects against an intruder-in-the-middle
attack. As before W will intercept aU and replace it with 'a U . W then

receives  ' ', ,a V av a U
vsig   from V. He would like to replace 'a U it with

'a v as before. However this means that he must also replace

 ',av a U
vsig   by  ' ,a v aU

vsig   as before. However, this means that he

must also replace  ' ,a v aU
Vsig   since he doesn’t know V’s signing

algorithm Vsig . Similarly ,W is unable to replace  ',aU a V
Usig   by

 ' ,a V aV
Vsig   because HE does not know U’s algorithm.

This is illustrated in the following diagram.

   
 

'

' ' '

'

 , , =? W , , V

 ,

U U

V V V V

V

a a

a a a aau a u
V V

aaV
U

U sig sig

sig si

 

     

   ' , =?Vaa U
Ug  

120

It is the use of signatures that thwarts the intruder in the middle
attack.

The protocol as described in 2.6 does not provide key
confirmation. How it is easy to modify so that it does by defining

  ,aV aUyv ek sigv  

In step 4 and defining

  ,aU aV
U K Uy e sig  

In step 6. (As in Kerberos, we obtain key confirmation by
encrypting a known quantity using the new session key). The resulting
protocol is known as the Station-to-station Protocol. We leave the

4.8 MTI KEY AGREEMENT PROTOCOLS

Matsumoto, Takashima, and Imai have constructed several
interesting key agreement protocols by modifying Diffie-Hellman Key
Exchange. These protocols, which we call MTI protocols, do not require
that U and V compute any signatures. They are two-pass protocols since
there are only two separate transmissions of information performed (one
from U to V and one from V to U). In contrast, the STS protocol is a
three-pass protocol.

We present one of the MTI protocols. The setting for this protocol
is the same as for Diffie-Hellman Key Predistribution. We assume a
publicly known prime p and a primitive element . Each user U has an ID
string, ID(U), a secret exponent aU(0 aU p - 2), and a corresponding
public value

mod .Ua
Ub p

The TA has a signature scheme with a (public) verification
algorithm verTA and a secret signing algorithm sigTA. Each user U will
have a certificate

       UID U , , ID U ,b ,U TAC U b sig

where bU is formed as described above

We present the MTI key agreement protocol in Figure 2.7. At the
end of the protocol U and V have both computed the same key.

mod .ruav rvauK p 

121

We give an example to illustrate this protocol

Suppose p=27803 and are publicity known. Assume U chooses the
she will compute

211315 mod 27803 21420.Ub  

Which is placed on her certificate. As well assume V chooses
aV=17555. Then he will compute

175555 mod 27803 17100.Vb  
which is placed on his certificate

Now suppose that Uchooses rU=169; then she will send the value

169
U 5 mod 27803 6268.s  

To V. Suppose that U chooses rU =169; then she will send the
value

23456
V 5 mod 27803 26759.s  

to U

Now U can complete the key

V modGU ru
UVK s by p

21131 16926759 17100 mod 27803

= 21600

And V can compute the key

, U modav ru
U V UK s b p

17555 234566268 21420 mod 27803
21600,

Thus U and V have computed the same key

The information transmitted during the protocol is depicted as follows:

 

 

 C U , mod .

U

 C V , mod

ru

rV

p

p





Let’s look at the security of the scheme. It is not too difficult to
show that the security of the MTI protocol against a passive adversary is

122

exactly the same as the Diffie-Hellman problem — see the exercises. As
with many protocols, proving security in the presence of an active
adversary is problematic. We will not attempt to prove anything in this
regard, and we limit ourselves to some informal arguments.

Here is one threat we might consider: Without the use of signatures
during the protocol, it might appear that there is no protection against an
intruder-in-the-middle attack. Indeed, it is possible that W might alter the
values that U and V send each other. We depict one typical scenario that
might arise, as follows:

   

   

'

'

 C U , C U ,

U V

 C V , C V ,

ru r u

r V rV

 

 

In this situation, U and V will compute different keys: U will
compute while V will compute

' modruav r vauK p 
' ' modr uav r vauK p 

However, neither of the key computations of U or V can be carried
out by W, since they require knowledge of the secret exponents aU and
aV , respectively. So even though U and V have computed different keys
(which will of course be useless to them), neither of these keys can be
computed by W (assuming the intractibility of the Discrete Log problem).
In other words, both U and V are assured that the other is the only user in
the network that could compute the key that they have computed. This
property is sometimes called implicit key authentication.

4.9 KEY AGREEMENT USING SELF-CERTIFYING
KEYS

In this section, we describe a method of key agreement, due to
Girault, that does not require certificates. The value of a public key and
the identity or its owner implicitly authenticate each other.

The Girault scheme combines features of RSA and discrete
logarithms. Suppose n=pq, where p=2p1+1, q=2q1+1, and p, q, p1 and q1
are all large primes. The multiplicative group *n isomorphic to

* *p q  . The maximum order of any element in *n is therefore the
least common multiple of p-1 and q-1 or 2p1q1. Let  be an element of
order 2p1q1. Then the cyclic subgroup of *n generated by  is a suitable
setting for Discrete Logarithm problem.

123

In Girault scheme, the factorization of n is known only to the TA.
The values n and  are public, but p, q, p1 and q1 are all secret. The
TAchooses a public RSA encryption exponent, which we will denote by e.
The corresponding decryption exponent, d, is secret (recall that d=e-1 mod
 (n))

Each user U has an ID string ID(U), as in previous schemes. A
user U obtains a self-certifying public key, PU , from the TA as indicated
in Figure 2.. Observe that U needs the help of the TA to produce pU. Note
also that

ID(U) mode
U Ub p n 

can be computed from pU and ID(U) using publicly available information.
The Girault Key Agreement Protocol is presented. The information
transmitted during the protocol is depicted as follows:

 

  '

 ID U , , mod n

U V

 ID V , , mod n

ru

r V

pu

pv





At the end of protocol, U and V each have computed the key
modruav rvauK n 

Here is an example of key exchange using the Girault Scheme.

Example 2.4:

Suppose p=839 and q=863. Then n=724057 and  (n)=722356.
The element  =5 has order 2p1q1=  (n)/2. Suppose the TA chooses
d=125777 as the RSA decryption exponent; then e = 84453

Suppose U has ID(U)=500021 and aU=111899. Then bU=488889
and pU= 650704. Suppose also that V has ID(V) = 50022 and aV = 123456.
Then bV = 111692 and pV= 683556.

Now, Uand Vwant to exchange a key. Suppose U chooses
rU=56381, which means that sU= 171007. Further, suppose V chooses
rV=356935, which means that sV=320688.

Then both U and V will compute the same key K=42869.

Let’s consider how the self-certifying keys guard against one
specific type of attack. Since the values bU, pU, and ID(U) are not signed
by the TA, there is no way for anyone else to verify their authenticity
directly.Suppose this information is forged by W(i.e. it is not produced in
cooperation with the TA), who wants to masquerade is forged by W (i.e.,

124

it is not produced in cooperation with the TA), who wants to masquerade
as U. If W starts with ID(U) and fake value b`U, then there is no way for
her to compute the exponent a`U corresponding b`U, if the Discrete Log
problem is intractable. Without a`U, computation cannot be performed by
W(who is pretending to be U).

Girault Key Agreement Protocol The situation is similar if W acts
as an intruder-in-the-middle. W will be able to prevent U and V from
computing a common key, but W is unable to duplicate the computations
of either U or V. Thus the scheme provides implicit key authentication, as
did the MTI protocol.

An attentive reader might wonder why U is required to supply the
value aU to the TA. Indeed, the TA can compute pU directly from bU,
without knowing aU. Actually, the important thing here is that the TA
should be convinced that U knows the value of aU before the TA
computes pU for U.

We illustrate this point by showing how the scheme can be
attacked if the TA indiscriminately issues public keys pU to users without
first checking that they possess the value aU corresponding to their bU.

Suppose W chooses a fake value a`U, and computes the
corresponding value

Here is how he can determine the corresponding public key

 ' ' ID(U) mod
d

V Up b n 
We will compute

' ' ID(U)+ID(W)W Ub b 

and then given b`W and ID(W) to the TA. Suppose the TA issues the
public key

' (' ID(W)) mod nd
W Wp b 

To W using the fact that

(' ID(W)) ' ID(U)) mod nW Ub b  

it is immediate that
' 'W Up p

'' moda U
Ub n

125

Now at some later time suppose U and V execute the protocol, and W
substitute information as follows.

   

 

' ID U , , mod n ID U , ' , mod

U W V

 ID V

ru r u
Upu P n 

 , , mod n ID V , , mod nrV rVpv pv 

Whereas V will compute the key
Uav '' 'r rva U

WK  

Now U will compute the key
Uav+rvaU' modr

WK n

W can compute a as

   ''' od
r Ua U eK sv pv ID V m n 

Thus Wand Vshare a key, but V thinks he is sharing a key
with U. So W will be able to descrypt message sent by V to U

4.10 LET US SUM UP

Thus, we have studied the basic concepts about key
predistribution. The Diffie-Hellman key exchange algorithm and Blom’s
scheme has been described briefly. The MIT key agreement and station to
station protocol has been explained.

4.11 LIST OF REFERENCES

 Cryptography: Theory and Practice, Douglas Stinson, CRC Press,

CRC Press LLC

 Cryptography and Network Security Principles and Practices,
Fourth Edition, William Stallings, PHI(Pearson)

4.12 UNIT END EXERCISES

1. What is key predistribution? Explain the concept.

2. Explain the Diffie-Hellman key exchange algorithm

3. Describe Station-to Station Protocol.

4. Write a short note on Blom’s scheme.
5. Explain MTI key agreement protocol.

126

UNIT III

5

NETWORK SECURITY

Unit Structure
5.0 Introduction,

5.1 Security Trends

5.2 The OSI Security Architecture

5.3 Security Attacks

5.4 SecurityServices

5.5 Security Mechanisms

5.6 A Model for Network Security

5.7 Summary

5.8 References and Bibliography

5.9 Exercise

5.0 INTRODUCTION

In 1994, the Internet Architecture Board (IAB) issued a report
entitled "Security in the Internet Architecture" (RFC 1636). This chapter is
going to focus on security threats and issues.

5.1 SECURITY TRENDS

The report stated the general consensus that the Internet needs
more and better security, and it identified key areas for security
mechanisms. Among these were the need to secure the network
infrastructure from unauthorized monitoring and control of network traffic
and the need to secure end-user-to-end-user traffic using authentication
and encryption mechanisms.

These concerns are fully justified. As confirmation, consider the
trends reported by the Computer Emergency Response Team (CERT)
Coordination Center (CERT/CC). Figure 1.1a shows the trend in Internet-
related vulnerabilities reported to CERT over a 10-year period. These
include security weaknesses in the operating systems of attached
computers (e.g., Windows, Linux) as well as vulnerabilities in Internet
routers and other network devices. Figure 1.1b shows the number of
security related incidents reported to CERT. These include denial of
service attacks; IP spoofing, in which intruders create packets with false IP
addresses and exploit applications that use authentication based on IP; and

127

various forms of eavesdropping and packet sniffing, in which attackers
read transmitted information, including logon information and database
contents.

5.2 THE OSI SECURITY ARCHITECTURE

To assess effectively the security needs of an organization and to
evaluate and choose various security products and policies, the manager
responsible for security needs some systematic way of defining the
requirements for security and characterizing the approaches to satisfying
those requirements. This is difficult enough in a centralized data
processing environment; with the use of local and wide area networks, the
problems are compounded.

ITU-T Recommendation X.800, Security Architecture for OSI,
defines such a systematic approach. The OSI security architecture is useful
to managers as a way of organizing the task of providing security.
Furthermore, because this architecture was developed as an international
standard, computer and communications vendors have developed security
features for their products and services that relate to this structured
definition of services and mechanisms
For our purposes, the OSI security architecture provides a useful, if
abstract, overview of many of the concepts that this book deals with. The
OSI security architecture focuses on security attacks, mechanisms, and
services. These can be defined briefly as follows:

● Security attack: Any action that compromises the security of
information owned by an organization.

● Security mechanism: A process (or a device incorporating such a
process) that is designed to detect, prevent, or recover from a security
attack.

● Security service: A processing or communication service that
enhances the security of the data processing systems and the
information transfers of an organization. The services are intended to
counter security attacks, and they make use of one or more security
mechanisms to provide the service.

5.3 SECURITY ATTACKS

A useful means of classifying security attacks, used both in X.800
and RFC 2828, is in terms of passive attacks and active attacks. A passive
attack attempts to learn or make use of information from the system but
does not affect system resources. An active attack attempts to alter system
resources or affect their operation.

128

Passive Attacks:

Passive attacks are in the nature of eavesdropping on, or
monitoring of, transmissions. The goal of the opponent is to obtain
information that is being transmitted. Two types of passive attacks are
release of message contents and traffic analysis.

The release of message contents is easily understood (Figure 1.3a).
A telephone conversation, an electronic mail message, and a transferred
file may contain sensitive or confidential information. We would like to
prevent an opponent from learning the contents of these transmissions.

A second type of passive attack, traffic analysis, is subtler (Figure
1.3b). Suppose that we had a way of masking the contents of messages or
other information traffic so that opponents, even if they captured the
message, could not extract the information from the message. The
common technique for masking contents is encryption. If we had
encryption protection in place, an opponent might still be able to observe
the pattern of these messages. The opponent could determine the location
and identity of communicating hosts and could observe the frequency and
length of messages being exchanged. This information might be useful in
guessing the nature of the communication that was taking place.

129

Passive attacks are very difficult to detect because they do not
involve any alteration of the data. Typically, the message traffic is sent
and received in an apparently normal fashion and neither the sender nor
receiver is aware that a third party has read the messages or observed the
traffic pattern.

However, it is feasible to prevent the success of these attacks,
usually by means of encryption. Thus,

Active Attacks:

Active attacks involve some modification of the data stream or the
creation of a false stream and can be subdivided into four categories:
masquerade, replay, modification of messages, and denial of service.

A masquerade takes place when one entity pretends to be a
different entity (Figure 1.4a). A masquerade attack usually includes one of
the other forms of active attack. For example, authentication sequences
can be captured and replayed after a valid authentication sequence has
taken place, thus enabling an authorized entity with few privileges to
obtain extra privileges by impersonating an entity that has those
privileges.

Modification of messages simply means that some portion of a
legitimate message is altered, or that messages are delayed or reordered, to
produce an unauthorized effect (Figure 1.4c). For example, a message
meaning "Allow John Smith to read confidential file accounts" is modified
to mean "Allow Fred Brown to read confidential file accounts."

The denial of service prevents or inhibits the normal use or
management of communications facilities (Figure 1.4d). This attack may
have a specific target; for example, an entity may suppress all messages
directed to a particular destination (e.g., the security audit service).
Another form of service denial is the disruption of an entire network,
either by disabling the network or by overloading it with messages so as to
degrade performance.

5.4 SECURITY SERVICES

X.800 defines a security service as a service provided by a protocol
layer of communicating open systems, which ensures adequate security of
the systems or of data transfers. Perhaps a clearer definition is found in
RFC 2828, which provides the following definition: a processing or
communication service that is provided by a system to give a specific kind
of protection to system resources; security services implement security
policies and are implemented by security mechanisms.

130

Authentication:

The authentication service is concerned with assuring that a
communication is authentic. In the case of a single message, such as a
warning or alarm signal, the function of the authentication service is to
assure the recipient that the message is from the source that it claims to be
from. In the case of an ongoing interaction, such as the connection of a
terminal to a host, two aspects are involved. First, at the time of
connection initiation, the service assures that the two entities are authentic,
that is, that each is the entity that it claims to be. Second, the service must
assure that the connection is not interfered with in such a way that a third
party can masquerade as one of the two legitimate parties for the purposes
of unauthorized transmission or reception.

131

Two specific authentication services are defined in X.800:

● Peer entity authentication: Provides for the corroboration of the
identity of a peer entity in an association. It is provided for use at the
establishment of, or at times during the data transfer phase of, a
connection. It attempts to provide confidence that an entity is not
performing either a masquerade or an unauthorized replay of a
previous connection.

● Data origin authentication: Provides for the corroboration of the
source of a data unit. It does not provide protection against the
duplication or modification of data units. This type of service supports
applications like electronic mail where there are no prior interactions
between the communicating entities.

Access Control:

In the context of network security, access control is the ability to
limit and control the access to host systems and applications via
communications links. To achieve this, each entity trying to gain access
must first be identified, or authenticated, so that access rights can be
tailored to the individual.

Data Confidentiality:

Confidentiality is the protection of transmitted data from passive
attacks. With respect to the content of a data transmission, several levels
of protection can be identified. The broadest service protects all user data
transmitted between two users over a period of time. For example, when a
TCP connection is set up between two systems, this broad protection
prevents the release of any user data transmitted over the TCP connection.
Narrower forms of this service can also be defined, including the
protection of a single message or even specific fields within a message.
These refinements are less useful than the broad approach and may even
be more complex and expensive to implement.

The other aspect of confidentiality is the protection of traffic flow
from analysis. This requires that an attacker not be able to observe the
source and destination, frequency, length, or other characteristics of the
traffic on a communications facility.

Data Integrity:

As with confidentiality, integrity can apply to a stream of
messages, a single message, or selected fields within a message. Again,
the most useful and straightforward approach is total stream protection.

A connection-oriented integrity service, one that deals with a
stream of messages, assures that messages are received as sent, with no

132

duplication, insertion, modification, reordering, or replays. The destruction
of data is also covered under this service. Thus, the connection-oriented
integrity service addresses both message stream modification and denial of
service. On the other hand, a connectionless integrity service, one that
deals with individual messages without regard to any larger context,
generally provides protection against message modification only.

We can make a distinction between the service with and without
recovery. Because the integrity service relates to active attacks, we are
concerned with detection rather than prevention. If a violation of integrity
is detected, then the service may simply report this violation, and some
other portion of software or human intervention is required to recover
from the violation. Alternatively, there are mechanisms available to
recover from the loss of integrity of data, as we will review subsequently.
The incorporation of automated recovery mechanisms is, in general, the
more attractive alternative.

Nonrepudiation:

Nonrepudiation prevents either sender or receiver from denying a
transmitted message. Thus, when a message is sent, the receiver can prove
that the alleged sender in fact sent the message. Similarly, when a message
is received, the sender can prove that the alleged receiver in fact received
the message.

Availability Service:

Both X.800 and RFC 2828 define availability to be the property of
a system or a system resource being accessible and usable upon demand
by an authorized system entity, according to performance specifications
for the system (i.e., a system is available if it provides services according
to the system design whenever users request them). A variety of attacks
can result in the loss of or reduction in availability. Some of these attacks
are amenable to automated countermeasures, such as authentication and
encryption, whereas others require some sort of physical action to prevent
or recover from loss of availability of elements of a distributed system.
X.800 treats availability as a property to be associated with various
security services. However, it makes sense to call out specifically an
availability service. An availability service is one that protects a system to
ensure its availability. This service addresses the security concerns raised
by denial-of-service attacks. It depends on proper management and control
of system resources and thus depends on access control service and other
security services.

5.5 SECURITY MECHANISMS

Table 1.3 lists the security mechanisms defined in X.800. As can
be seen the mechanisms are divided into those that are implemented in a

133

specific protocol layer and those that are not specific to any particular
protocol layer or security service.

These mechanisms will be covered in the appropriate places in the
book and so we do not elaborate now, except to comment on the definition
of encipherment. X.800 distinguishes between reversible encipherment
mechanisms and irreversible encipherment mechanisms. A reversible
encipherment mechanism is simply an encryption algorithm that allows
data to be encrypted and subsequently decrypted. Irreversible
encipherment mechanisms include hash algorithms and message
authentication codes, which are used in digital signature and message
authentication applications.

134

’
5.6A MODEL FOR NETWORK SECURITY

A model for much of what we will be discussing is captured, in
very general terms, in Figure 1.5. A message is to be transferred from one
party to another across some sort of internet. The two parties, who are the
principals in this transaction, must cooperate for the exchange to take
place. A logical information channel is established by defining a route
through the internet from source to destination and by the cooperative use
of communication protocols (e.g., TCP/IP) by the two principals.

Security aspects come into play when it is necessary or desirable to protect
the information transmission from an opponent who may present a threat
to confidentiality, authenticity, and so on. All the techniques for providing
security have two components:

● A security-related transformation on the information to be sent.
Examples include the encryption of the message, which scrambles the
message so that it is unreadable by the opponent, and the addition of a
code based on the contents of the message, which can be used to verify
the identity of the sender

● Some secret information shared by the two principals and, it is hoped,
unknown to the opponent. An example is an encryption key used in
conjunction with the transformation to scramble the message before
transmission and unscramble it on reception.

A trusted third party may be needed to achieve secure
transmission. For example, a third party may be responsible for
distributing the secret information to the two principals while keeping it

135

from any opponent. Or a third party may be needed to arbitrate disputes
between the two principals concerning the authenticity of a message
transmission.

This general model shows that there are four basic tasks in designing a
particular security service:

 Design an algorithm for performing the security-related
transformation. The algorithm should besuch that an opponent cannot
defeat its purpose.

 Generate the secret information to be used with the algorithm.

 Develop methods for the distribution and sharing of the secret
information.

 Specify a protocol to be used by the two principals that makes use of
the security algorithm and the secret information to achieve a
particular security service.

Parts One through Three of this book concentrates on the types of
security mechanisms and services that fit into the model shown in Figure
1.5. However, there are other security-related situations of interest that do
not neatly fit this model but that are considered in this book. A general
model of these other situations is illustrated by Figure 1.6, which reflects a
concern for protecting an information system from unwanted access. Most
readers are familiar with the concerns caused by the existence of hackers,
who attempt to penetrate systems that can be accessed over a network. The
hacker can be someone who, with no malign intent, simply gets
satisfaction from breaking and entering a computer system. Or, the
intruder can be a disgruntled employee who wishes to do damage, or a
criminal who seeks to exploit computer assets for financial gain (e.g.,
obtaining credit card numbers or performing illegal money transfers).

Another type of unwanted access is the placement in a computer system of
logic that exploits vulnerabilities in the system and that can affect
application programs as well as utility programs, such as editors and
compilers. Programs can present two kinds of threats:

● Information access threats intercept or modify data on behalf of users
who should not have access to that data.

● Service threats exploit service flaws in computers to inhibit use by
legitimate users.

136

Viruses and worms are two examples of software attacks. Such
attacks can be introduced into a system by means of a disk that contains
the unwanted logic concealed in otherwise useful software. They can also
be inserted into a system across a network; this latter mechanism is of
more concern in network security.

The security mechanisms needed to cope with unwanted access fall
into two broad categories (see Figure 1.6). The first category might be
termed a gatekeeper function. It includes password-based login procedures
that are designed to deny access to all but authorized users and screening
logic that is designed to detect and reject worms, viruses, and other similar
attacks. Once either an unwanted user or unwanted software gains access,
the second line of defense consists of a variety of internal controls that
monitor activity and analyze stored information in an attempt to detect the
presence of unwantedintruders.

5.7 SUMMARY

This chapter is mainly focusing on security threads. We have tried to
cover all main aspects regarding to security.

5.8 REFERENCES AND BIBLIOGRAPHY: -

 Cryptography: Theory and Practice, Douglas Stinson, CRC Press,
CRC Press LLC

 Cryptography and Network Security Principles and Practices, Fourth
Edition, William
Stallings, PHI(Pearson),

5.9 EXERCISE

1. What is the OSI security architecture?

2. What is the difference between passive and active security threats?

3. List and briefly define categories of passive and active security
attacks.

4. List and briefly define categories of security services.

5. List and briefly define categories of security mechanisms.

137

UNIT IV: NETWORKING

6
AUTHENTICATION APPLICATIONS

Unit structure
6.0 Introduction

6.1 Kerberos

6.2 X.509 Authentication Service

6.3 Public-Key Infrastructure

6.4 Kerberos Encryption Techniques

6.5 Electronic Mail Security

6.6 Pretty Good Privacy

6.7 S/MIME

6.8 A Data Compression Using Zip

6.9 Radix-64 Conversion

6.10 PGP Random Number Generation

6.11 Summary

6.12 References and Bibliography

6.13 Exercise

6.0 INTRODUCTION

Authentication Applications: Kerberos, X.509 Authentication
Service, Public-Key Infrastructure, Recommended Reading and Web
Sites, Key Terms, Review Questions, and Problems, A Kerberos
Encryption Techniques, Electronic Mail Security, Pretty Good Privacy,
S/MIME, Key Terms, Review Questions, and Problems, A Data
Compression Using Zip, Radix-64 Conversion, PGP Random Number
Generation

Kerberos is an authentication service designed for use in a distributed
environment.

● Kerberos makes use of a trusted third-part authentication service that
enables clients and servers to establish authenticated communication.

● X.509 defines the format for public-key certificates. This format is
widely used in a variety of applications.

● A public key infrastructure (PKI) is defined as the set of hardware,
software, people, policies, and procedures needed to create, manage,
store, distribute, and revoke digital certificates based on asymmetric
cryptography.

138

● Typically, PKI implementations make use of X.509 certificates

6.1 KERBEROS

Kerberos[1] is an authentication service developed as part of
Project Athena at MIT. The problem that Kerberos addresses is this:
Assume an open distributed environment in which users at workstations
wish to access services on servers distributed throughout the network. We
would like for servers to be able to restrict access to authorized users and
to be able to authenticate requests for service. In this environment, a
workstation cannot be trusted to identify its users correctly to network
services. In particular, the following three threats exist

 A user may gain access to a particular workstation and pretend to be
another user operating from that workstation.

 A user may alter the network address of a workstation so that the
requests sent from the altered workstation appear to come from the
impersonated workstation.

 A user may eavesdrop on exchanges and use a replay attack to gain
entrance to a server or to disrupt operations.

In any of these cases, an unauthorized user may be able to gain access
to services and data that he or she is not authorized to access. Rather than
building in elaborate authentication protocols at each server, Kerberos
provides a centralized authentication server whose function is to
authenticate users to servers and servers to users.

6.2 X.509 AUTHENTICATION SERVICE

ITU-T recommendation X.509 is part of the X.500 series of
recommendations that define a directory service. The directory is, in
effect, a server or distributed set of servers that maintains a database of
information about users. The information includes a mapping from user
name to network address, as well as other attributes and information about
the users.

X.509 defines a framework for the provision of authentication
services by the X.500 directory to its users. Each certificate contains the
public key of a user and is signed with the private key of a trusted
certification authority. In addition, X.509 defines alternative
authentication protocols based on the use of public-key certificates.

X.509 is an important standard because the certificate structure and
authentication protocols defined in X.509 are used in a variety of contexts.
For example, the X.509 certificate format is used in S/MIME (Chapter
15), IP Security (Chapter 16), and SSL/TLS and SET .

139

X.509 was initially issued in 1988. The standard was subsequently
revised to address some of the security concerns documented in [IANS90]
and [MITC90]; a revised recommendation was issued in 1993. A third
version was issued in 1995 and revised in 2000.

X.509 is based on the use of public-key cryptography and digital
signatures. The standard does not dictate the use of a specific algorithm
but recommends RSA. The digital signature scheme is assumed to require
the use of a hash function. Again, the standard does not dictate a specific
hash algorithm. The 1988 recommendation included the description of a
recommended hash algorithm; this algorithm has since been shown to be
insecure and was dropped from the 1993 recommendation.

Certificates:

The heart of the X.509 scheme is the public-key certificate
associated with each user. These user certificates are assumed to be
created by some trusted certification authority (CA) and placed in the
directory by the CA or by the user. The directory server itself is not
responsible for the creation of public keys or for the certification function;
it merely provides an easily accessible location for users to obtain
certificates.

Figure 14.4a shows the general format of a certificate, which includes the
following elements:

● Version: Differentiates among successive versions of the certificate
format; the default is version 1. If the Issuer Unique Identifier or
Subject Unique Identifier are present, the value must be version 2. If
one or more extensions are present, the version must be version 3.

● Serial number: An integer value, unique within the issuing CA, that
is unambiguously associated with this certificate.

● Signature algorithm identifier: The algorithm used to sign the
certificate, together with any associated parameters. Because this
information is repeated in the Signature field at the end of the
certificate, this field has little, if any, utility.

● Issuer name: X.500 name of the CA that created and signed this
certificate.

● Period of validity: Consists of two dates: the first and last on which
the certificate is valid.

● Subject name: The name of the user to whom this certificate refers.
That is, this certificate certifies the public key of the subject who holds
the corresponding private key.

● Subject's public-key information: The public key of the subject, plus
an identifier of the algorithm for which this key is to be used, together
with any associated parameters.

140

● Issuer unique identifier: An optional bit string field used to identify
uniquely the issuing CA in the event the X.500 name has been reused
for different entities.

● Subject unique identifier: An optional bit string field used to identify
uniquely the subject in the event the X.500 name has been reused for
different entities.

● Extensions: A set of one or more extension fields. Extensions were
added in version 3 and are discussed later in this section.

● Signature: Covers all of the other fields of the certificate; it contains
the hash code of the other fields, encrypted with the CA's private key.
This field includes the signature algorithm identifier.

6.3 PUBLIC-KEY INFRASTRUCTURE

RFC 2822 (Internet Security Glossary) defines public-key
infrastructure (PKI) as the set of hardware, software, people, policies, and
procedures needed to create, manage, store, distribute, and revoke digital
certificates based on asymmetric cryptography. The principal objective for
developing a PKI is to enable secure, convenient, and efficient acquisition
of public keys. The Internet Engineering Task Force

(IETF) Public Key Infrastructure X.509 (PKIX) working group has
been the driving force behind setting up a formal (and generic) model
based on X.509 that is suitable for deploying a certificate-based
architecture on the Internet. This section describes the PKIX model.

141

Figure 14.7 shows the interrelationship among the key elements of the
PKIX model. These elements are

● End entity: A generic term used to denote end users, devices (e.g.,
servers, routers), or any other entity that can be identified in the
subject field of a public key certificate. End entities typically consume
and/or support PKI-related services.

● Certification authority (CA): The issuer of certificates and (usually)
certificate revocation lists (CRLs). It may also support a variety of
administrative functions, although these are often delegated to one or
more Registration Authorities.

● Registration authority (RA): An optional component that can assume
a number of administrative functions from the CA. The RA is often
associated with the End Entity registration process, but can assist in a
number of other areas as well.

● CRL issuer: An optional component that a CA can delegate to publish
CRLs.

● Repository: A generic term used to denote any method for storing
certificates and CRLs so that they can be retrieved by End Entities.

PKIX Management Functions

142

PKIX identifies a number of management functions that potentially need
to be supported by management protocols. These are indicated in Figure
6.7 and include the following:

● Registration: This is the process whereby a user first makes itself
known to a CA (directly, or through an RA), prior to that CA issuing a
certificate or certificates for that user. Registration begins the process
of enrolling in a PKI. Registration usually involves some offline or
online procedure for mutual authentication. Typically, the end entity is
issued one or more shared secret keys used for subsequent
authentication.

Initialization: Before a client system can operate securely, it is necessary
to install key materials that have the appropriate relationship with keys
stored elsewhere in the infrastructure.

For example, the client needs to be securely initialized with the public key
and other assured information of the trusted CA(s), to be used in
validating certificate paths.

● Certification: This is the process in which a CA issues a certificate for
a user's public key, and returns that certificate to the user's client
system and/or posts that certificate in a repository.

● Key pair recovery: Key pairs can be used to support digital signature
creation and verification, encryption and decryption, or both. When a
key pair is used for encryption/decryption, it is important to provide a
mechanism to recover the necessary decryption keys when normal
access to the keying material is no longer possible, otherwise it will
not be possible to recover the encrypted data. Loss of access to the
decryption key can result from forgotten passwords/PINs, corrupted
disk drives, damage to hardware tokens, and so on. Key pair recovery
allows end entities to restore their encryption/decryption key pair
from an authorized key backup facility (typically, the CA that issued
the End Entity's certificate).

● Key pair update: All key pairs need to be updated regularly (i.e.,
replaced with a new key pair) and new certificates issued. Update is
required when the certificate lifetime expires and as a result of
certificate revocation.

● Revocation request: An authorized person advises a CA of an
abnormal situation requiring certificate revocation. Reasons for
revocation include private key compromise, change in affiliation, and
name change.

● Cross certification: Two CAs exchange information used in
establishing a cross-certificate. A cross-certificate is a certificate
issued by one CA to another CA that contains a CA signature key used
for issuing certificates.

143

6.4 THE KERBOSE ENCRYPTION TECHNIQUES

Kerberos can use a variety of cipher algorithms to protect data. A
Kerberos encryption type (also known as an enctype) is a specific
combination of a cipher algorithm with an integrity algorithm to provide
both confidentiality and integrity to data.

Enctypes in requests:

Clients make two types of requests (KDC-REQ) to the KDC: AS-
REQs and TGS-REQs. The client uses the AS-REQ to obtain initial tickets
(typically a Ticket-Granting Ticket (TGT)), and uses the TGS-REQ to
obtain service tickets.

The KDC uses three different keys when issuing a ticket to a client:

The long-term key of the service: the KDC uses this to encrypt the
actual service ticket. The KDC only uses the first long-term key in the
most recent kvno for this purpose.

The session key: the KDC randomly chooses this key and places
one copy inside the ticket and the other copy inside the encrypted part of
the reply.

The reply-encrypting key: the KDC uses this to encrypt the reply it
sends to the client. For AS replies, this is a long-term key of the client
principal. For TGS replies, this is either the session key of the
authenticating ticket, or a subsession key.

Each of these keys is of a specific enctype.

Each request type allows the client to submit a list of enctypes that
it is willing to accept. For the AS-REQ, this list affects both the session
key selection and the reply-encrypting key selection. For the TGS-REQ,
this list only affects the session key selection.

Session key selection:

The KDC chooses the session key enctype by taking the
intersection of its permitted_enctypes list, the list of long-term keys for the
most recent kvno of the service, and the client’s requested list of enctypes.

Starting in krb5-1.11, it is possible to set a string attribute on a
service principal to control what session key enctypes the KDC may issue
for service tickets for that principal. See set_string in kadmin for details.

144

Choosing enctypes for a service:

Generally, a service should have a key of the strongest enctype that
both it and the KDC support. If the KDC is running a release earlier than
krb5-1.11, it is also useful to generate an additional key for each enctype
that the service can support. The KDC will only use the first key in the list
of long-term keys for encrypting the service ticket, but the additional long-
term keys indicate the other enctypes that the service supports.

As noted above, starting with release krb5-1.11, there are
additional configuration settings that control session key enctype selection
independently of the set of long-term keys that the KDC has stored for a
service principal.

Configuration variables:

The following [libdefaults] settings in krb5.conf will affect how enctypes
are chosen.

allow_weak_crypto
defaults to false starting with krb5-1.8. When false, removes weak
enctypes from permitted_enctypes, default_tkt_enctypes, and
default_tgs_enctypes. Do not set this to true unless the use of weak
enctypes is an acceptable risk for your environment and the weak enctypes
are required for backward compatibility.

permitted_enctypes
controls the set of enctypes that a service will permit for session keys and
for ticket and authenticator encryption. The KDC and other programs that
access the Kerberos database will ignore keys of non-permitted enctypes.
Starting in release 1.18, this setting also acts as the default for
default_tkt_enctypes and defaut_tgs_enctypes.

default_tkt_enctypes
controls the default set of enctypes that the Kerberos client library requests
when making an AS-REQ. Do not set this unless required for specific
backward compatibility purposes; stale values of this setting can prevent
clients from taking advantage of new stronger enctypes when the libraries
are upgraded.

default_tgs_enctypes
controls the default set of enctypes that the Kerberos client library requests
when making a TGS-REQ. Do not set this unless required for specific
backward compatibility purposes; stale values of this setting can prevent
clients from taking advantage of new stronger enctypes when the libraries
are upgraded.

The following per-realm setting in kdc.conf affects the generation of long-
term keys.

145

supported_enctypes
controls the default set of enctype-salttype pairs that kadmind will use for
generating long-term keys, either randomly or from passwords

6.5 ELECTRONIC MAIL SECURITY

Email security is a term for describing different procedures and
techniques for protecting email accounts, content, and communication
against unauthorized access, loss or compromise. Email is often used to
spread malware, spam and phishing attacks.

6.6 PRETTY GOOD PRIVACY

PGP is a remarkable phenomenon. Largely the effort of a single person,
Phil Zimmermann, PGP provides a confidentiality and authentication
service that can be used for electronic mail and file storage applications. In
essence, Zimmermann has done the following:

 Selected the best available cryptographic algorithms as building blocks

 Integrated these algorithms into a general-purpose application that is
independent of operating system and processor and that is based on a
small set of easy-to-use commands

 Made the package and its documentation, including the source code,
freely available via the Internet, bulletin boards, and commercial
networks such as AOL (America On Line)

 Entered into an agreement with a company (Viacrypt, now Network
Associates) to provide a fully compatible, low-cost commercial
version of PGP

PGP has grown explosively and is now widely used. A number of reasons
can be cited for this growth:

 It is available free worldwide in versions that run on a variety of
platforms, including Windows,UNIX, Macintosh, and many more. In
addition, the commercial version satisfies users who want a product
that comes with vendor support.

 It is based on algorithms that have survived extensive public review
and are considered extremely secure. Specifically, the package
includes RSA, DSS, and Diffie-Hellman for public-key encryption;
CAST-128, IDEA, and 3DES for symmetric encryption; and SHA-1
for hash coding.

 It has a wide range of applicability, from corporations that wish to
select and enforce a standardized scheme for encrypting files and
messages to individuals who wish to communicate securely with
others worldwide over the Internet and other networks.

146

 It was not developed by, nor is it controlled by, any governmental or
standards organization. For those with an instinctive distrust of "the
establishment," this makes PGP attractive.

 PGP is now on an Internet standards track (RFC 3156). Nevertheless,
PGP still has an aura of an antiestablishment endeavor.

We begin with an overall look at the operation of PGP. Next, we
examine how cryptographic keys arecreated and stored. Then, we address
the vital issue of public key management.

6.7 S/MIME

S/MIME (Secure/Multipurpose Internet Mail Extension) is a
security enhancement to the MIME Internet email format standard, based
on technology from RSA Data Security. Although both PGP and S/MIME
are on an IETF standards track, it appears likely that S/MIME will emerge
as the industry standard for commercial and organizational use, while PGP
will remain the choice for personal e-mail security for many users.
S/MIME is defined in a number of documents, most importantly RFCs
3369, 3370, 3850 and 3851.

To understand S/MIME, we need first to have a general
understanding of the underlying e-mail format that it uses, namely MIME.
But to understand the significance of MIME, we need to go back to the
traditional e-mail format standard, RFC 822, which is still in common use.
Accordingly, this section first provides an introduction to these two earlier
standards and then moves on to a discussion of S/MIME.

RFC 822:

RFC 822 defines a format for text messages that are sent using
electronic mail. It has been the standard for Internet-based text mail
message and remains in common use. In the RFC 822 context, messages
are viewed as having an envelope and contents. The envelope contains
whatever information is needed to accomplish transmission and delivery.
The contents compose the object to be delivered to the recipient. The RFC
822 standard applies only to the contents. However, the content standard
includes a set of header fields that may be used by the mail system to
create the envelope, and the standard is intended to facilitate the
acquisition of such information by programs.

The overall structure of a message that conforms to RFC 822 is
very simple. A message consists of some number of header lines (the
header) followed by unrestricted text (the body). The header is separated
from the body by a blank line. Put differently, a message is ASCII text,
and all lines up to the first blank line are assumed to be header lines used
by the user agent part of the mail system.

147

A header line usually consists of a keyword, followed by a colon,
followed by the keyword's arguments; the format allows a long line to be
broken up into several lines. The most frequently used keywords are
From, To, Subject, and Date. Here is an example message:

Date: Tue, 16 Jan 1998 10:37:17 (EST)

From: "William Stallings" <ws@shore.net>

Subject: The Syntax in RFC 822

To: Smith@Other-host.com

Cc: Jones@Yet-Another-Host.com

Hello. This section begins the actual

message body, which is delimited from the

message heading by a blank line.

Multipurpose Internet Mail Extensions:

MIME is an extension to the RFC 822 framework that is intended
to address some of the problems and limitations of the use of SMTP
(Simple Mail Transfer Protocol) or some other mail transfer protocol and
RFC 822 for electronic mail. [RODR02] lists the following limitations of
the SMTP/822 scheme:

 SMTP cannot transmit executable files or other binary objects. A
number of schemes are in use for converting binary files into a text
form that can be used by SMTP mail systems, including the popular
UNIX UUencode/UUdecode scheme. However, none of these is a
standard or even a de facto standard.

 SMTP cannot transmit text data that includes national language
characters because these are represented by 8-bit codes with values of
128 decimal or higher, and SMTP is limited to 7-bit ASCII.

 SMTP servers may reject mail message over a certain size.

 SMTP gateways that translate between ASCII and the character code
EBCDIC do not use a consistent set of mappings, resulting in
translation problems.

 SMTP gateways to X.400 electronic mail networks cannot handle
nontextual data included inX.400 messages

6.8 DATA COMPRESSION USING ZIP

PGP makes use of a compression package called ZIP, written by
Jean-lup Gailly, Mark Adler, and Richard Wales. ZIP is a freeware
package written in C that runs as a utility on UNIX and some other
systems.

ZIP is functionally equivalent to PKZIP, a widely available
shareware package for Windows systemsdeveloped by PKWARE, Inc.

148

The zip algorithm is perhaps the most commonly used cross-
platformcompression technique; freeware and shareware versions are
available for Macintosh and other systemsas well as Windows and UNIX
systems.

Zip and similar algorithms stem from research by Jacob Ziv and
Abraham Lempel. In 1977, theydescribed a technique based on a sliding
window buffer that holds the most recently processed text[ZIV77]. This
algorithm is generally referred to as LZ77. A version of this algorithm is
used in the zipcompression scheme (PKZIP, gzip, zipit, etc.).

LZ77 and its variants exploit the fact that words and phrases within
a text stream (image patterns in thecase of GIF) are likely to be repeated.
When a repetition occurs, the repeated sequence can be replacedby a short
code. The compression program scans for such repetitions and develops
codes on the fly toreplace the repeated sequence. Over time, codes are
reused to capture new sequences. The algorithmmust be defined in such a
way that the decompression program is able to deduce the current
mappingbetween codes and sequences of source data.

6.9 RADIX-64 CONVERSION

Both PGP and S/MIME make use of an encoding technique
referred to as radix-64 conversion. This technique maps arbitrary binary
input into printable character output. The form of encoding has the
following relevant characteristics:

The range of the function is a character set that is universally
representable at all sites, not a specific binary encoding of that character
set. Thus, the characters themselves can be encoded into whatever form is
needed by a specific system. For example, the character "E" is represented
in an ASCII-based system as hexadecimal 45 and in an EBCDIC-based
system as hexadecimal C5.

The character set consists of 65 printable characters, one of which
is used for padding. With 26 = 64 available characters, each character can
be used to represent 6 bits of input.

No control characters are included in the set. Thus, a message
encoded in radix 64 can traverse mail-handling systems that scan the data
stream for control characters.

The hyphen character ("-")is not used. This character has
significance in the RFC 822 format and should therefore be avoided.

149

150

6.10 PGP RANDOM NUMBER GENERATION: -

PGP uses a complex and powerful scheme for generating random numbers
and pseudorandom numbers,

for a variety of purposes. PGP generates random numbers from the content
and timing of user

151

keystrokes, and pseudorandom numbers using an algorithm based on the
one in ANSI X9.17. PGP uses

these numbers for the following purposes:
[Page 480]

● True random numbers:

used to generate RSA key pairs

provide the initial seed for the pseudorandom number generator

provide additional input during pseudorandom number generation

● Pseudorandom numbers:

used to generate session keys

used to generate initialization vectors (IVs) for use with the session key in
CFB

mode encryption

True Random Numbers
PGP maintains a 256-byte buffer of random bits. Each time PGP expects a
keystroke, it records the time,

in 32-bit format, at which it starts waiting. When it receives the keystroke,
it records the time the key

was pressed and the 8-bit value of the keystroke. The time and keystroke
information are used to

generate a key, which is, in turn, used to encrypt the current value of the
random-bit buffer.

Pseudorandom Numbers
Pseudorandom number generation makes use of a 24-octet seed and
produces a 16-octet session key,

an 8-octet initialization vector, and a new seed to be used for the next
pseudorandom number

generation. The algorithm is based on the X9.17 algorithm described in
Chapter 7 (see Figure 7.14) but

uses CAST-128 instead of triple DES for encryption. The algorithm uses
the following data structures:

1.
Input

randseed.bin (24 octets): If this file is empty, it is filled with 24 true
random

octets.

message: The session key and IV that will be used to encrypt a message
are

152

themselves a function of that message. This further contributes to the
randomness

of the key and IV, and if an opponent already knows the plaintext content
of the

message, there is no apparent need for capturing the one-time session key.

2.
Output

K (24 octets): The first 16 octets, K[0..15], contain a session key, and the
last

eight octets, K[16..23], contain an IV.

randseed.bin (24 octets): A new seed value is placed in this file.

3.
Internal data structures

dtbuf (8 octets): The first 4 octets, dtbuf[0..3], are initialized with the
current

date/time value. This buffer is equivalent to the DT variable in the X12.17

algorithm.

rkey (16 octets): CAST-128 encryption key used at all stages of the
algorithm.

rseed (8 octets): Equivalent to the X12.17 Vi variable.

rbuf (8 octets): A pseudorandom number generated by the algorithm. This
buffer

is equivalent to the X12.17 Ri variable.

K' (24 octets): Temporary buffer for the new value of randseed.bin.

The algorithm consists of nine steps, G1 through G9. The first and last
steps are obfuscation steps,

intended to reduce the value of a captured randseed.bin file to an
opponent.

To summarize,

G1. [Prewash previous seed]
a. Copy randseed.bin to K[0..23].

b. Take the hash of the message (this has already been

generated if the message is being signed; otherwise the

first 4K octets of the message are used). Use the

result as a key, use a null IV, and encrypt K in CFB

mode; store result back in K.

G2. [Set initial seed]
a. Set dtbuf[0..3] to the 32-bit local time. Set

dtbuf[4..7] to all zeros. Copy rkey K[0..15]. Copy

153

rseed K[16..23].

b. Encrypt the 64-bit dtbuf using the 128-bit rkey in ECB

mode; store the result back in dtbuf.

file:///D|/1/0131873164/ch15lev1sec6.html (2 von 4) [14.10.2007
09:41:49]

Appendix 15C PGP Random Number Generation

G3. [Prepare to generate random octets] Set rcount 0 and

k 23. The loop of steps G4-G7 will be executed 24 times

(k = 23...0), once for each random octet produced and

placed in K. The variable rcount is the number of unused

random octets in rbuf. It will count down from 8 to 0

three times to generate the 24 octets.

G4. [Bytes available?] If rcount = 0 goto G5 else goto G7.

Steps G5 and G6 perform one instance of the X12.17 algorithm

to generate a new batch of eight random octets.

[Page 482]

G5. [Generate new random octets]
a. rseed rseed dtbuf

b. rbuf Erkey[rseed] in ECB mode

G6. [Generate next seed]
a.rseed rbuf dtbuf

b. rseed Erkey[rseed] in ECB mode

c. Set rcount 8

G7. [Transfer one byte at a time from rbuf to K]
a. Set rcount rcount 1

b. Generate a true random byte b, and set K[k]

rbuf[rcount] b

G8. [Done?] If k = 0 goto G9 else set k k 1 and goto G4

G9. [Postwash seed and return result]
a. Generate 24 more bytes by the method of steps G4-G7,

except do not XOR in a random byte in G7. Place the

result in buffer K'

b. Encrypt K' with key K[0..15] and IV K[16..23] in CFB

mode; store result in randseed.bin

154

c. Return

6.11SUMMARY

This chapter is guiding about security and encryption techniques and
covered almost all topics.

6.12REFERENCES AND BIBLIOGRAPHY

 Cryptography: Theory and Practice, Douglas Stinson, CRC Press,
CRC Press LLC

 Cryptography and Network Security Principles and Practices, Fourth
Edition, WilliamStallings, PHI(Pearson),

6.13 EXERCISE

1. What are the five principal services provided by PGP?

2. What is the utility of a detached signature?

3. Why does PGP generate a signature before applying compression?

4. What is R64 conversion?

5. Why is R64 conversion useful for an e-mail application?

6. Why is the segmentation and reassembly function in PGP needed?

7. How does PGP use the concept of trust?

8. What is RFC 822?

9. What is MIME?

10. What is S/MIME?

155

UNIT V

7

IP SECURITY

Unit Structure
7.1 Objective

7.2 Introduction

7.3 IP Sec Protocols: Authentication Header (AH), Encapsulation
Security Payload (ESP)

7.4 Modes of Operation of AH in IPsec

7.5 Modes of Operation of ESP in IPsec

7.6 Internet Security Protocols

7.7 SSL- Handshake Protocol, Record Protocol, Alert Protocol

7.8 Secure Hyper Text Transfer Protocol (SHTTP).

7.9 Secure Electronic Transactions (SET)

7.10 SSL versus SET

7.11 Privacy Enhanced Mail (PEM)

7.12 Pretty Good Privacy (PGP) Protocol

7.13 Secure Multipurpose Internet Mail Extensions (S/MIME)

7.14 Summary

7.15 Reference for further reading

7.16 Unit End Exercises

7.1 OBJECTIVE

The main objective is to understand various security protocols that
are used in real life transactions. The basic knowledge of the protocols
such as- TCP/IP etc and some transactions like-banking and online
transactions which are carried out in real life.

7.2 INTRODUCTION

The applications of IPSec :

(i) Secure Remode Internet Access : Using IPSec, make a local call to
our Internet Service Provider (ISP) so as to connect to our organization’s
network in a secure fashion from our home or hotel. From there, access
the corporate network facilities or access remote desktops/servers.

156

(ii) Secure Branch Office Connectivity : Rather than subscribing to an
expensive leased line for connecting its branches across cities/countries,
an organization can set up an IPSec-enabled network to securely connect
all its branches over the Internet.

(iii) Set Up Communication with Other Organizations: Just as IPSec
allows connectivity between various branches of an organization; it can
also be used to connect the networks of different organizations together in
a secure and inexpensive fashion.

Following are the main advantages of IPSec.

 IPSec is transparent to the end users. There is no need for a user
training, key issuance, or revocation.

 When IPSec is configured to work with a firewall, it becomes the only
entry-exit point for all traffic, making it extra secure.

 IPSec works at the network layer. Hence, no changes are needed to the
upper layers (application and transport).

 When IPSec is implemented in a firewall or a router, all the outgoing
and incoming traffic gets protected.

 IPSec can allow traveling staff to have secure access to the corporate
network.

 IPSec allows interconnectivity between branches/offices in a very
inexpensive manner.

7.3 IPSEC PROTOCOLS

IPSec consists of two main protocols:

These two protocols are required for the following purposes.

 The Authentication Header (AH) protocol provides authentication,
integrity, and an optional anti-replay service. The IPSec AH is a
header in an IP packet, which contains a cryptographic checksum (like
a message digest or hash) for the contents of the packet. The AH is
simply inserted between the IP header and any subsequent packet
contents. No changes are required to the data contents of the packet.
Thus, security resides completely in the contents of the AH.

 The Encapsulating Security Payload (ESP): protocol provides data
confidentiality. The ESP protocol also defines a new header to be
inserted into the IP packet. ESP processing also includes the
transformation of the protected data into an unreadable, encrypted
format. Under normal circumstances, the ESP will be inside the AH.
That is, encryption happens first and then authentication.

157

Authentication Header (AH) of IPSec.

AH Format

The Authentication Header (AH) provides support for data integrity
and authentication of IP packets. The data integrity service ensures that
data inside IP packets is not altered during the transit. The authentication
service enables an end user or a computer system to authenticate the user
or the application at the other end and decide to accept or reject packets,
accordingly. This also prevents the IP spoofing attacks. AH is based on the
MAC protocol, which means that the two communicating parties must
share a secret key to use AH.

Fig.: Authentication Header (AH) format

Table 1 : Authentication Header Field Descriptions
Field Description

Next header This 8-bit field identifies the type of header that
immediately follows the AH.

Payload
length

This 8-bit field contains the length of the AH in 32-bit
words minus 2.

Reserved This 16-bit field is reserved for future use.
Security
Parameter
Index (SPI)

This 32-bit field is used in combination with the source and
destination addresses as well as the IPSec protocol to
uniquely identify the Security Association (SA) for the
traffic to which a datagram belongs.

Sequence
number

This 32-bit field is used to prevent replay attacks.

Authenticatio
n data

This variable-length field contains the authentication data,
called as the Integrity Check Value (ICV), for the datagram.
This value is the MAC, used for authentication and integrity
purposes.

158

7.4 MODES OF OPERATION OF AH OF IPSEC

 AH transport mode: In the transport mode, the position of the
Authentication Header (AH) is between the original IP header and the
original TCP header of the IP packet.

 AH tunnel mode: In the tunnel mode, the entire original IP packet is
authenticated, and the AH is inserted between the original IP header
and a new outer IP header. The inner IP header contains the ultimate
source and destination IP addresses, whereas the outer IP header
possibly contains different IP addresses (e.g., IP addresses of the
firewalls or other security gateways).

Encapsulating Security Payload (ESP) of IPSec.
ESP Format:

The Encapsulating Security Payload (ESP) protocol provides
confidentiality and integrity of messages. ESP is based on symmetric key
cryptography techniques. ESP can be used in isolation or it can be
combined with AH. The ESP packet contains four fixed-length fields and
three variable-length fields. Figure shows the ESP format.

Fig: Encapsulating Security Payload (ESP) format

Table 1: ESP field descriptions
Field Description
Security
Parameter
Index (SPI)

This 32-bit field is used in combination with the
source and destination addresses as well as the
IPSec protocol to uniquely identify the Security
Association (SA) for the traffic to which a
datagram belongs.

Sequence
number

This 32-bit field is used to prevent replay attacks.

Payload data This variable-length field contains the transport
layer segment (transport mode) or IP packet

159

(tunnel mode), which is protected by encryption.
Padding This field contains the padding bits, if any. These

are used by the encryption algorithm or for
aligning the padding length field.

Padding
length

This 8-bit field specifies the number of padding
bytes in the immediately preceding field.

Next header This 8-bit field identifies the type of encapsulated
data in the payload.

Authentication
data

This variable length field contains the
authentication data, called as the Integrity Check
Value (ICV), for the datagram.

7.5 MODES OF OPERATION OF ESP

(i) ESP Transport Mode : Transport mode ESP is used to encrypt and
optionally authenticate the data carried by IP (for example, a TCP segment).
Here, the ESP is inserted into the IP packet immediately before the transport
layer header (i.e. TCP or UDP) and an ESP trailer (containing the fields
Padding, Padding length and Next header) is added after the IP packet.

The operation of the ESP transport mode as follows :

 At the sender’s end, the block of data containing the ESP trailer and
the entire transport layer segment is encrypted and the plain text of this
block is replaced with its corresponding cipher text to form the IP
packet. Authentication is appended, if selected. This packet is now
ready for transmission.

 The packet is routed to the destination. The intermediate routers need
to take a look at the IP header as well as any IP extension headers, but
not at the cipher text.

 At the receiver’s end, the IP header plus any plain text IP extension
headers are examined. The remaining portion of the packet is then
decrypted to retrieve the original plain text transport layer segment.

Fig. : ESP transport mode

160

(ii) ESP Tunnel Mode: The tunnel mode ESP encrypts an entire IP
packet. Here, the ESP header is pre-fixed to the packet and then the packet
along with the ESP trailer is encrypted. The IP header contains the
destination address as well as intermediate routing information. Therefore,
this packet cannot be transmitted as it is. Otherwise, the delivery of the
packet would be impossible. Therefore, a new IP header is added, which
contains sufficient information for routing.

Fig. 2 : ESP tunnel mode

7. 6 INTERNET SECURITY PROTOCOLS:

They are SSL and SET.

7.7 SECURE SOCKET LAYER (SSL)

Handshake Protocol of SSL.
The handshake protocol is made up of four phases. These phases are:

 Establish security capabilities.

 Server authentication and key exchange

 Client authentication and key exchange

 Finish

Phase 1: Establish Security Capabilities:

This first phase of the SSL handshake is used to initiate a logical
connection and establish the security capabilities associated with that
connection. This consists of two message, the client hello and the server
hello, as shown in figure.

161

Fig. : SSL Handshake protocol Phase 1: Establish security capabilities

As shown in the figure, the process starts with a client hello message from
the client to the server. It consists of the following parameters :

 Version: This field identifies the highest version of SSL that the client
can support. At the time of this writing, this can be 2, 3, 1.

 Random: This field is useful for the later, actual communication
between the client and the server. It contains two sub-fields :

 Session id: This is a variable-length session identifier. If this field
contains a non-zero value, it means that there is already a connection
between the client and the server.

 Cipher suite: This list contains a list of the cryptographic algorithms
supported by the client (e.g. RSA, Diffie-Hellman, etc.

 Compression method: This field contains a list of the compression
algorithms supported by the client.

The client sends the client hello message to the server and waits for the
server’s response. Accordingly, the server sends back a server hello
message to the client. The server hello message consists of the following
fields:

 Version: This field identifies the lower of the versions suggested by
the client and the highest supported by the server. For instance, if the
client had suggested version 3, but the server also supports version 3.1,
the server will select 3.

 Random: This field has the same structure as the Random field of the
client. However, the Random value generated by the server is
completely independent of the client’s Random value.

 Session id: If the session id value sent by the client was non-zero, the
server uses the same value. Otherwise, the server creates a new session
id and puts it in this field.

 Cipher suite: Contains a single cipher suite, which the server selects
from the list sent earlier by the client.

 Compression method: Contains a compression algorithm, which the
server selects from the list sent earlier by the client.

Phase 2: Server Authentication and Key Exchange:
The server initiates this second phase of SSL handshake and is the sole

sender of all the messages in this phase. The client is the sole recipient of

162

all these messages. This phase contains four steps, as shown in figure.
These steps are: Certificate, Server key exchange, Certificate request and
Server hello done.

Fig 3. : SSL Handshake protocol Phase 2: Server authentication and
key exchange

The four steps of this phase are as follows :

In the first step (certificate) : The server sends its digital certificate and
the entire chain leading upto root CA to the client. This will help the client
to authenticate the server using the server’s public key from the server’s
certificate.

The second step (Server key exchange) : Is optional. It is used only if
the server does not send its digital certificate to the client in step 1 above.

The third step (certificate request) : The server can request for the
client’s digital certificate. The client authentication in SSL is optional and
the server may not always expect the client to be authenticated.

The last step (server hello done) : Message indicates to the client that its
portion of the hello message (i.e. the server hello message) is complete.

Phase 3 : Client Authentication and Key Exchange:

The client initiates this third phase of the SSL handshake. The server is
the sole recipient of all these messages. This phase contains three steps, as
shown in figure. These steps are: Certificate, Client key exchange and
Certificate verify.

Fig : SSL Handshake protocol Phase 3: Client authentication and key
exchange

163

 The first step (certificate): is optional. This step is performed only if
the server had requested for the client’s digital certificate. If the server
has requested for the client’s certificate and if the client does not have
one, the client sends a No certificate message, instead of a Certificate
message. It then is up to the server to decide if it wants to still continue
or not.

 The second step (client key exchange): allows the client to send
information to the server, but in the opposite direction. This
information is related to the symmetric key. Here, the client creates a
48-bytes pre-master secret, and encrypts it with the server’s public key
and sends this encrypted pre-master secret to the server.

 The third step (Certificate verify): is necessary only if the server had
demanded client authentication. If this is the case, the client has
already sent its certificate to the server. However, additionally, the
client also needs to prove to the server that it is the correct and
authorized holder of the private key corresponding to the certificate.

Phase 4: Finish:

The client initiates this fourth phase of the SSL handshake, which the
server ends. This phase contains four steps, as shown in figure. The first
two messages are from the client : Change cipher specs Finished. The
server responds back with two identical messages : Change cipher specs,
Finished.

Fig. : SSL Handshake protocol Phase4: Finished

Record Protocol of SSL:
The Record Protocol:

The Record Protocol in SSL comes into picture after a successful
handshake is completed between the client and the server. That is, after the
client and the server have optionally authenticated each other and have
decided what algorithms to use for secure information exchange. This
protocol provides two services to an SSL connection, as follows:

 Confidentiality: This is achieved by using the secret key that is
defined by the handshake protocol.

164

 Integrity: The handshake protocol also defines a shared secret key
(MAC) that is used for assuring the message integrity.

Fig. : SSL record protocol
As the figure shows, the SSL record protocol takes an application message
as input. First, it fragments it into smaller blocks, optionally compresses
each block, adds MAC, encrypts it, adds a header and gives it to the
transport layer, where the TCP protocol processes it like any other TCP
block. At the receiver's end, the header of each block is removed; the
block is then decrypted, verified, decompressed, and reassembled into
application messages. Steps in more detail as follows :

(c) Fragmentation : The original application message is broken into
blocks, so that the size of each block is less than or equal to 214 bytes
(16,384 bytes).

(d) Compression : The fragmented blocks are optionally compressed. The
compression process must not result into the loss of the original data,
which means that this must be a lossless compression mechanism.

(e) Addition of MAC : Using the shared secret key established previously
in the handshake protocol, the Message Authentication Code (MAC) for
each block is calculated. This operation is similar to the HMAC algorithm.

(f) Encryption : Using the symmetric key established previously in the
handshake protocol, the output of the previous step is now encrypted. This
encryption may not increase the overall size of the block by more than
1024 bytes.

(g) Append Header : Finally, a header is added to the encrypted block.

Alert Protocol of SSL:

When either the client or the server detects an error, the
detecting party sends an alert message to the other party. If the error is
fatal, both the parties immediately close the SSL connection (which means
that the transmission from, both the end is terminated immediately). Both
the parties also destroy the session identifiers, secrets and keys associated
with this connection before it is terminated.

165

Each alert message consists of two bytes. The first byte signifies
the type of error. If it is a warning, this byte contains 1. If the error is fatal,
this byte contains 2. The second byte specifies the actual error.

7.8 SECURE HYPER TEXT TRANSFER PROTOCOL
(SHTTP)

The Secure Hyper Text Transfer Protocol (SHTTP) is a set of
security mechanisms defined for protecting the Internet traffic. This
includes the data entry forms and Internet- based transactions. SSL has
become highly successfulSHTTP has not. SHTTP works at the
application layer, and is therefore, tightly coupled with HTTP.

Fig: Positions of SHTTP and SSL in TCP/IP protocol suite

SHTTP supports both authentication and encryption of HTTP traffic
between the client and the server. The encryption and digital signature
formats used in SHTTP have origins in the PEM protocol.

The key difference between SSL and SHTTP is that SHTTP works at
the level of individual messages. It can encrypt and sign individual
messages. On the other hand, SSL does not differentiate between different
messages.

7.9 SECURE ELECTRONIC TRANSACTION (SET):

Participants.

(a) Cardholder: A cardholder is an authorized holder of a payment card
such as MasterCard or Visa that has been issued by an issuer.

(b) Merchant: A merchant is a person or an organization that wants to
sell goods or services to cardholders.

(c) Issuer: The issuer is a financial institution (such as a bank) that
provides a payment-card to a cardholder.

166

(d) Acquirer: This is a financial institution that has a relationship with
merchants for processing payment-card authorizations and payments.

(e) Payment Gateway: The payment gateway processes the payment
messages on behalf of the merchant. Specifically in SET, the payment
gateway acts as an interface-between SET and the existing card-
payment networks for payment authorizations.

(f) Certification Authority (CA): This is an authority that is trusted to
provide public key certificates to cardholders, merchants and payment
gateways. In fact, CAs are very crucial to the success of SET.

SET Processí:

(a) The Customer Opens an Account: The customer opens a credit-card
account (such as MasterCard or Visa) with a bank (issuer) that supports
electronic payment mechanisms and the SET protocol.

(b) The Customer Receives a Certificate: After the customer's identity
is verified (with the help of details such as passport, business
documents, etc.), the customer receives a digital certificate from a
CA.

(c) The Merchant Receives a Certificate: A merchant that wants to
accept a certain brand of credit cards must possess a digital
certificate.

(d) The Customer Places an Order: This is a typical shopping-cart
process wherein the customer browses the list of items available,
searches for specific items, selects one or more of them, and places
the order.

(e) The Merchant is Verified: The merchant also sends its digital
certificate to the customer. This assures the customer that he/she is
dealing with a valid merchant.

(f) The Order and Payment Details are sent: The customer sends
both the order and payment details to the merchant along with the
customer's digital certificate. The order confirms the purchase
transaction with reference to the items mentioned in the order form.

(g) The Merchant Requests Payment Authorization: The merchant
forwards the payment details sent by the customer to the payment
gateway via the acquirer (or to the acquirer if the acquirer also acts as
the payment gateway) and requests the payment gateway to authorize
the payment (i.e. ensure that the credit card is valid and that the credit
limits are not breached).

(h) The Payment Gateway Authorizes the Payment: Using the credit-
card information received from the merchant, the payment gateway
verifies the details of the customer's credit card with the help of the
issuer, and either authorizes or rejects the payment.

167

(i) The Merchant Confirms the Order: Assuming that the payment
gateway authorizes the payment, the merchant sends a confirmation
of the order to the customer.

(j) The Merchant Provides Goods or Services: The merchant now
ships the goods or provides the services as per the customer's order.

(k) The Merchant Requests Payment: The payment gateway
receives a request from the merchant for making the payment. The
payment gateway interacts with the various financial institutions
such as the issuer, acquirer and the clearing house to effect the
payment from the customer’s account to the merchant’s account.

7.10 SSL VERSUS SET

Comparison between SSL Versus SET:

Issue SSL SET
Main aim Exchange of data in an

encrypted form
E-commerce related
payment mechanism

Certification Two parties exchange
certificates

All the involved parties
must be certified by a
trusted third party

Authentication Mechanisms in place, but not
very strong

Strong mechanisms for
authenticating all the parties
involved

Risk of
merchant fraud

Possible, since customer gives
financial data to merchant

Unlikely, since customer
gives financial data to
payment gateway

Risk of
customer fraud

Possible, no mechanisms exist
if a customer refuses to pay
later

Customer has to digitally
sign payment instructions

Action in case
of customer
fraud

Merchant is liable Payment gateway is liable

Practical usage High Low at the moment,
expected to grow

7.11 PRIVACY ENHANCED MAIL (PEM) PROTOCOL.

Introduction:

The Privacy Enhanced Mail (PEM) is an email security standard. PEM
supports the three main cryptographic functions of encryption, non-
repudiation, and message integrity.

168

How PEM Works?; PEM starts with a canonical conversion, which is
followed by digital signature, then by encryption and finally, Base-64
encoding.

Step 1 (Canonical Conversion): There is a distinct possibility that the
sender and the receiver of an email message use computers that have
different architectures and operating systems. PEM transforms each email
message into an abstract, canonical representation.

Step 2 (Digital Signature): This is a typical process of digital signature. It
starts by creating a message digest of the email message using an
algorithm such as MD2 or MD5, as shown in Fig.

Fig: Message-digest creation of the original email message.
The message digest thus created is then encrypted with the sender's private
key to form the sender's digital signature. This process is shown in Fig.

Fig: Creation of the sender’s digital signature over the email message.

Step 3 (Encryption): In this step, the original email and the digital
signature are encrypted together with a symmetric key. For this, the DES
or DES-3 algorithm in CBC mode is used. This is shown in Fig.

169

Fig: Encryption in PEM

Step 4 (Base-64 Encoding): This is the last step in PEM. The Base-64
encoding (also called Radix-64 encoding or ASCII armour) process
transforms arbitrary binary input into printable character output. In this
technique, the binary input is processed in blocks of 3 octets, or 24 bits.
These 24 bits are 'considered to be made up of 4 sets, each of 6 bits. Each
such set of 6 bits is mapped into an 8-bit output character in this process.
This concept is shown in Fig.

Fig: Base-64 encoding concept

7.12 PRETTY GOOD PRIVACY (PGP) PROTOCOL.

(A)The Working of PGP :

In PGP, the sender of the message needs to include the identifiers of
the algorithm used in the message, along with the value of the keys. PGP
starts with a digital signature, which is followed by compression, then by
encryption, then by digital enveloping and finally, by Base-64 encoding.

Fig: PGP operations

Note that the receiver has to perform these four steps in the reverse
direction to retrieve the original plain text email message.

170

Step 1 (Digital Signature): This is a typical process of digital signature.
In PGP, it consists of the creation of a message digest of the email
message using the SHA-1 algorithm. The resulting message digest is then
encrypted with the sender's private key. The result is the sender's digital
signature.

Step 2 (Compression): Here, the input message as well as the digital
signature are compressed together to reduce the size of the final message
that will be transmitted. For this, the famous ZIP program is used. ZIP is
based on the Lempel-Ziv algorithm.

The Lempel-Ziv algorithm looks for repeated strings or words, and
stores them in variables. It then replaces the actual occurrence of the
repeated word or string with a pointer to the corresponding variable. For
instance, consider the following string: What is your name? My name is
Atul.

Using the Lempel-Ziv algorithm, two variables are used & also points A
& B. This is shown in Fig.

Fig: Lempel-Ziv algorithm, as used by the ZIP program

The resulting string What 1your 2? My 2 1 Atul. Is smaller
compared to the original string What is your name? My name is Atul. Of
course, the bigger the original string, the better the compression gets. The
same process works for PGP.

Step 3 (Encryption): In this step, the compressed output of step 2 (i.e. the
compressed form of the original email and the digital signature together)
are encrypted with a symmetric key. For this, generally the IDEA
algorithm in CFB mode is used.

Step 4 (Digital Enveloping): In this case, the symmetric key used for
encryption in step 3 is now encrypted with the receiver's public key. The
output of step 3 and step 4 together form a digital envelope.

171

Fig: Formation of digital envelope
Step 5 (Base-64 encoding): The output of step 4 is Base-64 is encoded
now.

7.13 SECURE MULTIPURPOSE INTERNET MAIL
EXTENSIONS (S/MIME).

The Multipurpose Internet Mail Extensions (MIME) system extends the
basic email system by permitting users to send binary files using the basic
email system. The MIME specification adds five new headers to the email
system, which describe information about the body of the message.

These headers are described as follows:

 MIME-Version : This contains the MIME version number. Currently,
it has a value of 1.1. This field is reserved for the future use, when
newer versions of MIME are expected to emerge. This field indicates
that the message conforms to RFCs 2045 and 2046.

 Content-Type: Describes the data contained in the body of the
message. The details provided are sufficient so that the receiver email
system can deal with the received email message in an appropriate
manner. The contents are specified as:

Type/Sub-type
MIME specifies 7 content types, and 15 content sub-types. Table 1 lists
these types and sub-types.

Fig: MIME headers in an email message

 Content-Transfer-Encoding: Specifies the type of transformation
that has been used to represent the body of the message. In other
words, the method used to encode the messages into zeroes and ones is
defined here. There are five content encoding methods, as shown in
Table 3.

 Content-ID: Identifies the MIME entities uniquely with reference to
multiple contexts.

 Content-Description: Used when the body is not readable (e.g.
video).

172

7.14 SUMMARY

Corporate networks can be attacked from outside or internal information
can be leaked out. Encryption cannot prevent outside attackers from
attacking a network. IPSec provides security between the transport and the
Internet layers.

 IPSec provides authentication and confidentiality services.

 IPSec can be implemented in tunnel mode or transport mode.

 In the transport mode, the IP datagram except its header is encrypted
by IPSec,

7.15 REFERENCE FOR FURTHER READING

Notes has been taken from : Introduction to Network Security by Atul
Kahate.

7.16 UNIT END EXERCISES

1. List all Applications and Advantages of IPSec.

2. Describe IPSec Protocols.

3. Draw & Explain Authentication Header (AH) of IPSec.

4. Explain Modes of Operation of AH of IPSec.

5. Draw and explain Encapsulating Security Payload (ESP) of IPSec.

6. Describe Modes of Operation of ESP.

7. Write a short note on Virtual Private Networks (VPN).

8. Describe the Handshake Protocol of SSL.

9. Explain the Alert Protocol of SSL.

10. Describe Secure Hyper Text Transfer Protocol (SHTTP).

11. List all SET Participants.

12.Explain the SET Process.

13.Compare SSL Versus SET.

14.Write a short note on Privacy Enhanced Mail (PEM) Protocol.

15.Write a short note on Pretty Good Privacy (PGP) Protocol.

16.Write a short note on Secure Multipurpose Internet Mail Extensions
(S/MIME).

173

UNIT VI

8
INTRUDERS, FIREWALL

Unit Structure
8.1 Objective

8.2 Introduction

8.3 Intruders

8.4 Virus, Worms and Trojans

8.5 Vi uses and Related Threats

8.6 Virus Countermeasures

8.7 Distributed Denial of Service Attacks

8.8 Firewalls

8.9 Firewall Design Principles

8.10 Trusted Systems and Common Criteria for Information

8.11 Technology Security Evaluation.

8.12 Password management

8.13 Summary

8.14 Reference for further reading

8.15 Unit End Exercises

8.1 OBJECTIVE

In this chapter we will study about all the different types of virus,
worms, intruders, firewall and learn about the configurations.

8.2 INTRODUCTION

In this chapter topics discussed are : virus, worms, trojans, Firewall
and its type, DDOs attack.

8.3 INTRUDERS/INTRUSION

Intruders are said to be of three types:

 Masquerader: A user who does not have the authority to use a
computer, but penetrates into a system to access a legitimate user’s
account is called as a masquerader. It is generally an external user.

 Misfeasor: There are two possible cases for an internal user to be
called as a misfeasor.
 A legitimate user, who does not have access to some

applications, data or resources accesses them.

174

 A legitimate user, who has access to some applications, data or
resources misuses these privileges.

 Clandestine user: An internal or external user who tries to work
using the privileges of a supervisor user to avoid auditing
information being captured and recorded is called as to clandestine
user.

Honeypots:

Modern intrusion detection systems make use of a novel idea,
called as honeypots. A honeypot is a trap that attracts potential attackers.
A honeypot is designed to do the following:

 Divert the attention of a potential intruder from critical systems.

 Collect information about the intruder’s actions.
 Provide encouragement to the intruder to stay on for some time,

allowing the administrators to detect this and swiftly act on it.

Honeypots are designed with two important goals in mind:

(a) Make them look like real-life systems. Put as much of real-looking
(but fabricated) information into them as possible.

(b) Do not allow legitimate users to know about or access them.

8.4 VIRUS

A virus is a piece of program code that attaches itself to
legitimate program code, and runs when the legitimate program runs. It
can then infect other programs in that computer, or programs that are in
other computers but on the same network. After deleting all the files
from the current user’s computer, the virus self-propagates by sending
its code to all users whose email addresses are stored in the current
user’s address book.

Viruses can also be triggered by specific events (e.g. a virus
could automatically execute at 12 p.m. every day). Usually viruses cause
damage to computer and network systems to the extent that they can be
repaired, assuming that the organization deploys good backup and
recovery procedures.

A virus is a computer program that attaches itself to another
legitimate program and causes damage to the computer system or to the
network.

A. Virus goes through four phases:

(a) Dormant phase: Here, the virus is idle. It gets activated based on
certain action or event (e.g. the user typing a certain key or certain date
or time is reached, etc.). This is an optional phase.

175

(b) Propagation phase: In this phase, a virus copies itself and each
copy starts creating more copies of self, thus propagating the virus.

(c) Triggering phase: A dormant virus moves into this phase when the
action/event for which it was waiting is initiated.

(d) Execution phase: This is the actual work of the virus, which could
be harmless (display some message on the screen) or destructive
(delete a file on the disk).

Viruses can be classified into the following categories:

(a) Parasitic Virus: This is the most common form of virus. Such a
virus attaches itself to executable files and keeps replicating.
Whenever the infected file is executed, the virus looks for other
executable files to attach itself and spread.

(b) Memory-resident Virus: This type of virus first attaches itself to an
area of the main memory and then infects every executable program
that is executed.

(c) Boot sector Virus: This type of virus infects the master boot record
of the disk and spreads on the disk when the operating system starts
booting the computer.

(d) Stealth Virus: This virus has intelligence built in, which prevents
anti-virus software programs from detecting it.

(e) Polymorphic Virus: A virus that keeps changing its signature (i.e.
identity) on every execution, making it very difficult to detect.

(f) Metamorphic Virus: In addition to changing its signature like a
polymorphic virus, this type of virus keeps rewriting itself every
time, making its detection even harder.

8.5 OTHER RELATED THREATS -WORM

A worm, however, does not modify a program. Instead, it
replicates itself again and again. The replication grows so much that
ultimately the computer or the network on which the worm resides,
becomes very slow, ultimately coming to a halt. Thus, the basic purpose
of a worm attack is different from that of a virus. A worm attack
attempts to make the computer or the network under attack unusable by
eating all its resources.

A worm does not perform any destructive actions, and instead,
only consumes system resources to bring it down.

Trojan horse:

A Trojan horse is a hidden piece of code, like a virus. However,
the purpose of a Trojan horse is different. Whereas the main purpose of
a virus is to make some sort of modifications to the target computer or

176

network, a Trojan horse attempts to reveal confidential information to an
attacker.

A Trojan horse could silently sit in the code for a Login screen
by attaching itself to it. When the user enters the user id and password,
the Trojan horse could capture these details, and send this information to
the attacker without the knowledge of the user who had entered the id
and password. The attacker can then merrily misuse the user id and
password to gain access to the system.

A Trojan horse allows an attacker to obtain some confidential
information about a computer or a network.

8.6 VIRUS COUNTERMEASURES

Do not allow a virus to get into the system in the first place, or block the
ability of a virus to modify any files
containing executable code or macros. The count measures are:

Detection: Once the infection has occurred, determine that it has
occurred and locate the virus.

Identification: Once detection has been achieved, identify the specific
virus that has infected a program.

Removal: Once the specific virus has been identified, remove all traces
Of the virus from the infected program and restore it to its original state.
Remove the Remove the vir
virus from all infected systems so that the virus cannot spread further.

8.7 DISTRIBUTED DENIAL OF SERVICE ATTACKS

It is a cyber attack where in which the attacker seeks to make a
system or network resource unavailable to its intended users by
temporarily disrupting services of a host connected to the network.

In a distributed denial-of-service attack (DDoS attack), the
incoming traffic flooding the victim originates from many different
sources. This effectively makes it impossible to stop the attack simply
by blocking a single source.

DDOS Stands for Distribute n a distributed denial-of-service
attack (DDoS attack), the incoming traffic flooding the victim originates
from many different sources. This effectively makes it impossible to
stop the attack simply by blocking a single source.d Denial of service
attack where multiple system attacks the victims systems. Victim PC
is loaded from the packet of data sent from Multiple location. Bots are
used to attack at the same time. They are difficult to trace.

177

8.8 FIREWALLS

At a broad level, there are two kinds of attacks:

 Most corporations have large amounts of valuable and confidential
data in their networks. Leaking of this critical information to
competitors can be a great setback.

 Apart from the danger of the insider information leaking out, there is
a great danger of the outside elements (such as viruses and worms)
entering a corporate network.

Threats from inside and outside a corporate network

Encryption of information (if implemented properly) renders its
transmission to the outside world redundant. That is, even if confidential
information flows out of a corporate network, if it is in encrypted form,
outsiders cannot make any sense of it. However, encryption does not
work in the other direction. Outside attackers can still try to break inside
a corporate network.

If implemented, it guards a corporate network by standing
between the network and the outside world. All traffic between the
network and the Internet in either direction must pass through the
firewall. The firewall decides if the traffic can be allowed to flow or
whether it must be stopped from proceeding further.

178

Fig.1:Firewall

Of course, technically, a firewall is a specialized version of a
router. Apart from the basic routing functions and rules, a router can be
configured to perform the firewall functionality, with the help of
additional software resources.

The characteristics of a good firewall implementation can be described
as follows.

 All traffic from inside to outside and vice versa, must pass through
the firewall. To achieve this, all the access to the local network must
first be physically blocked and access only via the firewall should be
permitted.

 Only the traffic authorized as per the local security policy should be
allowed to pass through.

 The firewall itself must be strong enough, so as to render attacks on
it useless.

8.9 FIREWALL DESIGN

Packet Filters:

A packet filter applies a set of rules to each packet and based on
the outcome, decides to either forward or discard the packet. It is also
called as screening router or screening filter.

Such a firewall implementation involves a router, which is
configured to filter packets going in either direction (from the local
network to the outside world and vice versa). The filtering rules are
based on a number of fields in the IP and TCP/UDP headers, such as
source and destination IP addresses, IP protocol field.

179

Packet filter

A packet filter performs the following functions:

(a) Receive each packet as it arrives.

(b) Pass the packet through a set of rules, based on the contents of the IP
and transport header fields of the packet. If there is a match with one
of the set rules, decide whether to accept or discard the packet based
on that rule.

(c) If there is no match with any rule, take the default action. The default
can be discard all packets or accept all packets.

Application Gateways:

An application gateway is also called a proxy server. This is because
it acts like a proxy and decides about the flow of application level
traffic.

Application gateway

Application gateways typically work as follows.

(i) An internal user contacts the application gateway using a TCP/IP
application, such as HTTP or TELNET.

(ii) The application gateway asks the user about the remote host with
which the user wants to set up a connection for actual
communication.

The application gateway also asks for the user id and the password
required to access the services of the application gateway.

(iii) The user provides this information to the application gateway.

(iv) The application gateway now accesses the remote host on behalf of
the user and passes the packets of the user to the remote host.

A circuit gateway, creates a new connection between itself and
the remote host. The user is not aware of this and thinks that there is a
direct connection between itself and the remote host. Also, the circuit
gateway changes the source IP address in the packets from the end

180

user’s IP address to its own. This way, the IP addresses of the computers
of the internal users are hidden from the outside world.

The SOCKS server is an example of the real-life implementation of a
circuit gateway.

Circuit-gateway operation

(v) From here onwards, the application gateway acts like a proxy of the
actual end user and delivers packets from the user to the remote host
and vice versa.

Firewall Configuration:

There are three possible configurations of firewalls.

Firewall configurations

Screened Host Firewall, Single-Homed Bastion:

In the Screened host firewall, Single-homed bastion
configuration, a firewall set up consists of two parts: a packet-filtering
router and an application gateway. Their purposes are as follows.

• The packet filter ensures that the incoming traffic (i.e. from the
Internet to the corporate network) is allowed only if it is destined for
the application gateway, by examining the destination address field
of every incoming IP packet. Similarly, it also ensures that the
outgoing traffic (i.e. from the corporate network to the Internet) is
allowed only if it is originating from the application gateway, by
examining the source address field of every outgoing IP packet.

181

Screened host firewall, Single-homed bastion

Screened Host Firewall, Dual-Homed Bastion:

Here, direct connections between the internal hosts and the
packet filter are avoided. Instead, the packet filter connects only to the
application gateway, which, in turn, has a separate connection with the
internal hosts. Therefore, now even if the packet filter is successfully
attacked, only the application gateway is visible to the attacker. The
internal hosts are protected.

Fig. 3 :Screened host firewall, Dual-homed bastion

Screened Subnet Firewall:

The Screened subnet firewall offers the highest security among
the possible firewall configurations. Here, two packet filters are used,
one between the Internet and the application gateway, as previously and
another one between the application gateway and the internal network.

Fig. 4 :Screened subnet firewall

182

8.10 TRUSTED SYSTEMS SECURITY EVALUATION
CRITERIA

The United States Department of Defense published a series of
documents to classify the security of operating systems, known as the
Trusted Systems Security Evaluation Criteria .

TCSEC was developed to meet three objectives:

 To give users a yardstick for assessing how much they can trust
computer systems for the secure processing of classified or other
sensitive information

 To guide manufacturers in what to build into their new, widely
available commercial products to satisfy trust requirements for
sensitive applications.

 To provide a basis for specifying security requirements for software
and hardware
Acquisitions Table provides a brief overview of the different
classification levels.

8.11 PASSWORDS

Passwords are the most common form of authentication. A
password is a string of alphabets, numbers, and special characters, which
is supposed to be known only to the entity (usually a person) that is
being authenticated.

Clear Text-Password Mechanism:
Its Working:

This is the simplest password-based authentication mechanism. Every
user in the system is assigned a user id and an initial password. The password
is stored in clear text in the user database against the user id on the server.
The authentication mechanism works as follows:

Step 1: Prompt for user id and password:

During authentication, the application sends a screen to the user,
prompting for the user id and password.

Prompt for user id and password.

183

Step 2:User enters user id and password:

The user enters, id and password and click onOK button. This
causes the user id and password to travel in clear text to the server.

User id and password travel in clear text to the server.

Step 3:User id and password validation:

The server consults the user database to see if this user id and
password combination exists there. This is a program that takes user id
and password, checks it against the user database, and returns the result
of the authentication.

User authenticator checks the user id and password against
the user database.

Step 4: Authentication result:

Depending on the success or failure of the validation of the user id
and the password, the user authenticator program returns an appropriate
result back to the server.

User authenticator program returns a success or failure
message to the server.

Step 5: Inform user accordingly:

Depending on the outcome (success/failure), the server sends
back an appropriate screen to the user. If the user authentication was

184

successful, the server typically sends a menu of options for the user,
which lists the actions the user can perform. If the result of the user
authentication was a failure, the server sends an error screen to the user.

Server returns a success or failure result back to the user.

Message Digests of Passwords Mechanism:

A simple technology to avoid the storage and transmission of
clear text passwords is the use of message digests.

Step 1 (Storing message digests as derived passwords in the user
database):

Rather than storing passwords. Storing message digests of the
passwords in the user database.

Step 2: User authentication:

When a user needs to be authenticated, the user enters the id and
password, as usual. Now, the user's computer computes the message
digest of the password and sends the user id and the message digest of
the password to the server for authentication.

185

User authentication involving message digest of the password.

Step 3: Server-side validation

User authenticator program validates the user id and the message digest
of the password.

The user id and the message digest of the password travel to the
server over the communication link. The server passes these values to
the user authentication program,which validates the user id and the
message digest of the password against the database and returns an
appropriate response back to the server.

8.12 SUMMARY

Intrusions are almost impossible to prevent. Hence, an attempt is
made to detect them.

186

Intruders are classified into masquerader, misfeasor and clandestine
user. A honeypot is a trap that attracts potential attackers.

8.13 UNIT END EXERCISES

1. Define virus. What are its phases.

2. Explain the Types/Categories of virus.

3. Write short note on Trojan Horse & Worms.

4. Write a short note on firewall.

5. Explain the different types of Firewalls - Packet Filters &
Application Gateway.

6. What are the types of attack in Packet Filter?

7. Write a short note on Application Gateways.

8. List and explain all Firewall Configuration.

9. What are the limitations of Firewalls?

10. List & explain types of Intruders.

11. Define Honeypots.

8.14 REFERENCE FOR FURTHER READING

 Notes has been taken from : Introduction to Network Security by
Atul Kahate.
