B.SC.(IT)
SEMESTER-V PAPER-1V (CBCYS)

TYIT ADVANCED JAVA

© UNIVERSITY OF MUMBAI

Prof. SuhasPednekar
ViceChancdllor
Universty of Mumbai, Mumbal.

Prof. RavindraD. Kulkarni Prof. Prakash Mahanwar
ProVice-Chancdllor, Director
University of Mumbai. IDOL, University of Mumbai.

ProgrameCo-ordinator

CourseCo-ordinator

CourseWriters

: Mandar L. Bhanushe

Head, Faculty of Scienceand Technology,
IDOL, University of Mumbai — 400098.

: Sumedh Pandit Sheole,

Assigtant Professor,

B.Sc.(Information Technol ogy),
Institute of Distance& Open Learning,
University of Mumbai- 400098.

: Dr. RakheeYadav

Assistant Professor
S. K. Somaiya College of Arts, Scienceand Commerce

: Mr.Milind Thorat

Assistant Professor
K. J. Somaiyalngtitute of Engineering and Information Technology

: M's. Rohini Desai

Assistant Professor
Vidyaankar School of Information Technology

: Ms.Aarti Sahitya

Assistant Professor
K. J. Somaiyalngtitute of Engineeringand Information Technology

September 2021, Print |

Printed by

Published by : Director
Ingtitute of Distance and Open Learning,
University of Mumbai,
Vidyanagari, Mumbai - 400 098.

DTP Composed : Univeristy Press

Ingtitute of Distance and Open Learning

CONTENTS

Chapter No. Title Page No
UNIT I

1 Swings 1
UNIT I

2. Introduction To Servlets 17
UNIT 1

3. JavaDatabase Connectivity 35

4. JavaServer Pages-1 53

5. JavaServer Pages-2 70
UNIT IV

6. JavaServer Faces 86

7. Enterprise JavaBean (Ejb) 106
UNITV

8. HibernateAnd Struts 121

9. Struts 131
UNIT VI

10. Websarvices, Javamail And Jndi 146

kkkk*k

SYLLABUS

CLASS: B. Sc (Information technology) | Semester-V
Paper 1V; SUBJECT: Advanced Java
Periods per week Lecture | 5

1 Period is50 minutes

TW/Tutorial/Practical | 3

\ Hours | Marks

Evaluation System Theory Examination | 2 60

TW/Tutorial/Practical | - 40

Unit-I

Swing: Event Handling, JFrames, Lists, Tables, Trees, Text
Components, Progress Indicators, Component Organizers

Unit-I1

Introduction to serviets: Need for dynamic content, java
servlet technology, why servlets?

Servlet APl and Lifecycle: servlet API, servlietConfig
interface, ServletRequest and ServietResponse Interfaces,
GenericServlet Class. ServletlnputStream And
ServletOutputStreamClasses,RequestDispatcher
Interface,HttpServliet Class, HttpServietRequest and
HttpServietResponse Interfaces, HttpSession Interface,
Servlet Lifecycle.

Working with servlets: organization of a web application,
creating a web application(using netbeans), creating a
servlet, compiling and building the web application

Unit-111

JDBC: Design of JDBC, JDBC configuration, Executing
SQL statement, Query Execution, Scrollable and updatable
result sets, row sets, metadata, Transaction.

JSP: Introduction, disadvantages, JSP v/s Servlets,
Lifecycle of JSP, Comments, JSP documents, JSP elements,
Action elements, implicit objects, scope, characterquoting
conventions, unified expression language.

Unit-1V

Java server Faces:

Need of MVC , what is JSF?, components of JSF, JSF as an
application, JSF lifecycle, JSF configuration, JSF web
applications (login form, JSF pages)

EJB: Enterprise bean architecture, Benefits of enterprise
bean, types of beans, Accessing beans, packaging beans,
creating web applications, creating enterprise bean, creating
web client, creating JSP file, building and running web
application.

Unit-V

HIBERNATE: Introduction, Writing the application,
application development approach, creating database and
tables in MySQL, creating a web application, Adding the
required library files, creating a java bean class, creating
hibernate configuration and mapping file, adding a mapping
resource, creating JSPs.

STRUTS: Introduction, Struts framework core components,
installing and setting up struts, getting started with struts.

Unit-VI | WEB Services: SOAP, Building aweb services using JAX-
WS, Building web service.

JAVAMAIL: Mail Protocols, Components of the Javamail
API, JAVAMAIL API, Starting with API.

JNDI: NAMING Service, Directory service, JINDI,

Resources and JNDI,
Books:
Java EE 6 for Beginners, Sharanam Shah, Vaishali Shah, SPD (Unit 11 to
V1) Core Java Vol. Il — Advanced Features, Cay S. Horstmans, Gary

Coronell, Eight Edition, Pearson (Unit | and I11) Java Complete Reference,
Herbert Schildt, Seventh Edition,TMH. (Unit 1)

References:

Java EE Project using EJB 3, JPA and struts 2 for beginners, Shah, SPD
Java Programming A practica Approach, C Xavier, McGraw Hill Java
Server Faces A practical Approach for beginners, B M Harwani, Eastern
Economy Edition (PHI). Advanced Java Technology, Savaliya,
Dreamtech.

Term Work:

Assignments. Should contain at least 6 assignments (one per unit)
covering the Syllabus.

Practicals

1. Write ajava program to present a set of choices for a user to select
Stationary products and display the price of Product after Selection
fromthelist.

2. Write a java progran to demonstrate typical Editable Table,
describing employee details for a software company.

3. Write a java program using Split pane to demonstrate a screen
divided in two parts, one part contains the names of Planets and
another Displays the image of planet. When user selects the planet
name form Left screen, appropriate image of planet displayed in right
screen.

4. Develop Simple Servlet Question Answer Application to demonstrate
use of HttpServletRequest and HttpServletResponse interfaces.

5. Develop Servlet Application of Basic Calculator (+,-,*, /, %) using
ServletlnputStream and ServletOutputStream.

6. Develop aJSP Application to accept Registration Details form user
and Store it into the database table.

7. Develop a JSP Application to Authenticate User Login as per the
registration details. If login success the forward user to Index Page
otherwise show login failure Message.

Develop aweb application to add items in the inventory using JSF.
Develop a Room Reservation System Application Using Enterprise
Java Beans.

© ©

10. Develop a Hibernate application to store Feedback of Website Visitor
in MySQL Database.

11. a. Develop a simple Struts Application to Demonstrate 3 page
Website of Teaching Classes which passes values from every page to
another.

b. Develop a simple Struts Application to Demonstrate E-mail Validator.

%k %k %k k x

UNIT |

SWINGS

Unit Structure
1.0 Event Handling
1.1 JFrames
12 Lists
1.3 Tables
1.4 Trees
1.5 Text Components
1.6 Progress Indicators
1.7 Component Organizers
References
Unit End Questions

1.0 EVENT HANDLING

Event handling is fundamental to Java programming because it is
integral to the creation of applets and other types of GUI-based programs.
any program that uses a graphical user interface, such as a Java application
written for Windows, is event driven. Thus, you cannot write these types
of programs without a solid command of event handling. Events are
supported by a number of packages, including java.util, java.awt, and
java.awt.event. When a user interacts with a GUI-based software, the
majority of events to which your programme will reply are created. There
are severa types of events, including those generated by the mouse, the
keyboard, and various GUI controls, such as a push button, scroll bar, or
check box. It then examines the main event classes and interfaces used by
the AWT and develops severa examples that demonstrate the
fundamentals of event processing. The modern approach to handling
events is based on the delegation event model, which defines standard and
consistent mechanisms to generate and process events. Its concept is quite
simple: a source generates an event and sends it to one or more listeners.
Swing components do respond to user input and the events generated by
those interactions need to be handled. Events can adso be generated in
ways not directly related to user input. For example, an event is generated
when atimer goes off. Whatever the case, event handling is alarge part of
any Swing-based application.

1.1 SWINGS

The AWT defines a basic set of controls, windows, and dialog
boxes that support a usable, but limited graphical interface. One reason for
the limited nature of the AWT is that it trandates its various visua
components into their corresponding, platform-specific equivalents, or
peers. This means that the look and feel of a component is defined by the
platform, not by Java. Because the AWT components use native code
resources, they are referred to as heavyweight. The use of native peers led
to severa problems. First, because of variations between operating
systems, a component might look, or even act, differently on different
platforms. This potential variability threatened the overarching philosophy
of Java: write once, run anywhere. Second, the look and feel of each
component was fixed (because it is defined by the platform) and could not
be (easily) changed. Third, the use of heavyweight components caused
some frustrating restrictions.

1.2 JFRAME

JFrame is the top-level container that is commonly used for Swing
applications. JLabel is the Swing component that creates a label, which is
a component that displays information. The label is Swing’s simplest
component because it is passive. That is, a label does not respond to user
input. It just displays output. The program uses a JFrame container to hold
an instance of aJLabel. The label displays a short text message.

A simple java program for JFrame:

import javax.swing.*;

class SwingDemo {

SwingDemo() {

/I Create a new JFrame container.

JFramejfrm = new JFrame("' A Simple Swing Application");
Il Givethe frame aninitial size.

jfrm.setSize(275, 100);

/I Terminate the program when the user closes the application.
jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
/I Create atext-based |abel

JLabeljlab = new JLabel (" Swing means powerful GUIS.");
// Add the label to the content pane.

jfrm.add(jlab);

// Display the frame.

jfrm.setVisible(true);

}

public static void main(String args[]) {

/I Create the frame on the event dispatching thread.
SwinguUtilities.invokelL ater(new Runnable() {
public void run() {

new SwingDemo();

}

9k

}

}

Theconstructor is where most of the action of the program occurs. It
begins by creating a JFrame, using thisline of code:

JFramejfrm = new JFrame(" A Simple Swing Application”);

This creates a container called jfrm that defines a rectangular window
complete with a titlebar; close, minimize, maximize, and restore buttons;
and a system menu. Thus, it creates astandard, top-level window. The title
of the window is passed to the constructor. Next, the window is sized
using this statement:

Jfrm.setSize(275, 100);

The setSize() method (which is inherited by JFrame from the AWT class
Component) setsthe dimensions of the window, which are specified in
pixels. Its general formis shown here:

void setSize(int width, int height)

In this example, the width of the window is set to 275 and the
height is set to 100.By default, when atop-level window is closed (such as
when the user clicks the closebox), the window is removed from the
screen, but the application is not terminated. Whilethis default behavior is
useful in some sdituations, it is not what is needed for most
applications.Instead, you will usualy want the entire application to
terminate when its top-levelwindow is closed. There are a couple of ways
to achieve this. The easiest way is to callsetDefaultCloseOperation(), as
the program does:

jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

After this call executes, closing the window causes the entire application
to terminate. The general form of setDefaultCloseOperation() is shown
here:

void setDefaultCloseOperation(int what)

The value passed in what determines what happens when the window is
closed. There aresevera other options in addition to
JFrame.EXIT_ON_CLOSE. They are shown here:

JFrame.DISPOSE_ON_CLOSE
JFrame.HIDE_ON_CLOSE
JFrame.DO_NOTHING_ON_CLOSE

Their names reflect their actions. These constants are declared in
WindowConstants, which is an interface declared in javax.swing that is
implemented by JFrame. The next line of code creates a Swing JLabel
component:

JLabeljlab = new JLabel (" Swing means powerful GUIS.");

JLabel isthe simplest and easi est-to-use component because it does
not accept user input. It ssimply displays information, which can consist of
text, anicon, or a combination of the two.The label created by the program
contains only text, which is passed to its constructor.The next line of code
adds the label to the content pane of the frame:

jfrm.add(jlab);

1.2.1 JFrame constructors:

1. JFrame() — JFrame() is a JFrame class constructor which creates a
new Frame. By default, it remainsinvisible.

2. JFrame(String title, GraphicsConfigurationgc) — This constructor
creates a JFrame in the specified graphical configuration & with the
specified title asin parameter.

3. JFrame(GraphicsConfigurationgc) — This constructor creates a
JFrame in the specified graphical configuration as it is in the
parameter.

4. JFrame(String title) — This constructor creates a JFrame with the
specified title as in parameter.

1.2.2 JFrame M ethods:

JFrame class provides some methods which play an important role in
working with JFrame.

1. AccessibleContextgetAccessibleContext() — This method gets the
accessible context that remains associated with the JFrame.

2. Container getContentPane()

JFrame’scontentPane object.

3. Component getGlassPane() -

object for JFrame.

4. int getDefaultCloseOperation() — When the user clicks on the close

— This method creates

This method creates the glassPane

button on this Frame then this method returns the operation.

5. JMenuBargetJMenuBar() — Menubar set created at the Frame by

using this method.

6. JLayeredPanegetL ayeredPang() — LayeredPane object is returned by

this method.

7. JRootPanegetRootPane() — The rootPane object is returned by this

method.

1.3LISTS

List in Java provides the facility to maintain the ordered collection.
It contains the index-based methods to insert, update, delete and search the
elements. It can have the duplicate elements also. We can aso store the
null elementsinthelist.The List interface is found in the java.util package
and inherits the Collection interface. It is a factory of Listlterator
interface. Through the Listlterator, we can iterate the list in forward and
backward directions. The implementation classes of List interface are
ArrayList, LinkedList, Stack and Vector. The ArrayList and LinkedList

are widely used in Java programming. The syntax is given as
publicinterface List<E>extends Collection<E>

1.3.1List Methods:

M ethod

Description

void add(int index, E element)

It is used to insert the specified
element at the specified position in a
list.

booleanadd(E €)

It is used to append the specified
element at the end of alist.

booleanaddAll(Collection<?
extends E> c)

It is used to append al of the
elements in the specified collection
totheend of alist.

booleanaddAll(int
Collection<? extends E> c)

index,

It is used to append al the elements
in the specified collection, starting at
the specified position of thelist.

void clear() It is used to remove al of the
elements from thislist.

bool eanequal s(Object 0) It is used to compare the specified
object with the elements of alist.

int hashcode() It is used to return the hash code

valuefor alist.

Eget(int index)

It is used to fetch the element from
the particular position of thelist.

5

bool eani sEmpty()

It returns true if the list is empty,
otherwise false.

int lastindexOf (Object 0)

It is used to return the index in this
list of the last occurrence of the
specified element, or -1 if the list
does not contain this €l ement.

Object[] toArray()

It is used to return an array
containing all of the elements in this
list in the correct order.

<T>T]] toArray(T[] @)

It is used to return an array
containing all of the elements in this
list in the correct order.

bool eancontai ns(Object 0)

It returns true if the list contains the
specified element

booleancontainsAll(Collection<?>

0)

It returns true if the list contains al
the specified element

int indexOf (Object 0)

It is used to return the index in this
list of the first occurrence of the
specified element, or -1 if the List
does not contain this €l ement.

E remove(int index)

It is used to remove the eement
present at the specified position in
thelist.

bool eanremove(Object 0)

It is used to remove the first
occurrence of the specified element.

booleanremoveAll(Collection<?> ¢)

It is used to remove all the e ements
from the list.

void replaceAll(UnaryOperator<E>
operator)

It is used to replace dl the elements
from the list with the specified
element.

void retainAll(Collection<?> c)

It is used to retain al the elementsin
the list that are present in the
specified collection.

E set(int index, E element)

It is used to replace the specified
element in the list, present at the
specified position.

void sort(Comparator<? super E> ¢)

It is used to sort the eements of the
liss on the basis of specified
comparator.

Example:
import java.util.*;
public class ListExamplel{

public static void main(String args[]){

/[Creating aList

List<String> list=new ArrayList<String>();

//Adding elementsin the List
list.add("Mango");
list.add("Apple");
list.add("Banana");

list.add(" Grapes");
/Iterating the List element using for-each loop
for (String fruit:list)
System.out.printIn(fruit);
}
}

14TABLE

JTable is a component that displays rows and columns of data. Y ou can
drag the cursor on column boundaries to resize columns. You can also drag a
column to a new position. Depending on its configuration, it is also possible to
select arow, column, or cell within the table, and to change the datawithin a cell.
JTable is a sophisticated component that offers many more options and features
than can be discussed here. (It is perhaps Swing’s most complicated component.)
However, in its default configuration, JTable still offers substantial functionality
that is easy to use—especialy if you simply want to use the table to present data
in a tabular format. The brief overview presented here will give you a genera
understanding of this powerful component. Like JTree, JTable has many classes
and interfaces associated with it. These are packaged in javax.swing.table. JTable
supplies several constructors. The one used here is JTable(Object data]][1,
Object colHeadq]) Here, data is a two-dimensional array of the information to
be presented, and colHeads is a one-dimensional array with the column headings.
JTable relies on three models. The first is the table model, which is defined by
the TableModel interface. This model defines those things related to displaying
datain a two-dimensional format. The second is the table column model, which
is represented by TableColumnModel. JTable is defined in terms of columns, and
it is TableColumnModel that specifies the characteristics of a column. These two
models are packaged in javax.swing.table. A JTable can generate several different
events. The two most fundamental to a table’s operation are ListSelectionEvent
and TableModeEvent. A ListSelectionEvent is generated when the user selects
something in the table. By default, JTable allows you to select one or more
complete rows, but you can change this behavior to alow one or more columns,
or one or more individual cells to be selected. A TableModelEvent is fired when
that table’s data changes in some way.

Constructors:
Constructor Description
JTable() Creates atable with empty cells.
JTable(Object[][] rows, Object[] | Creates atable with the specified data.
columns)

Program for JTable:

import java.awt.*;

import javax.swing.*;

/*

<applet code="JTableDemao" width=400 hei ght=200>
</applet>

*/

public class JTableDemo extends JApplet {
public void init() {

try {

SwinguUtilities.invokeAndWait(

new Runnable() {

public void run() {

makeGUI();

}

}

);

} catch (Exception exc) {

System.out.printIn("Can't create because of " + exc);
}

}
private void makeGUI() {

/I Initialize column headings.
String[] colHeads = { "Name", "Extension”, "ID#" };
/I Initialize data.
Object[][] data = {
{ "Gail", "4567", "865" },
{ "Ken", "7566", "555" },
{ "Viviane", "5634", "587" },
{ "Mélanie", "7345", "922" },
{ "Anne", "1237","333" },
{ "John", "5656", "314" },
{ "Matt", "5672","217" },
{ "Claire", "6741", "444" },
{ "Erwin", "9023", "519" },
{ "Ellen", "1134","532" },
{ "Jennifer", "5689", "112" },
{ "Ed", "9030", "133" },
{ "Helen", "6751", "145" }
b
Il Create the table.
JTable table = new JTable(data, colHeads);
// Add the table to a scroll pane.
JScrollPanegjsp = new JScrol | Pane(table);
// Add the scroll pane to the content pane.
add(jsp);
}
}

1.5 TREES

A treeisacomponent that presents a hierarchical view of data. The
user has the ability to expand or collapse individua subtrees in this
display. Trees areimplemented in Swing by the JTree class.

JTree(Object obj[])
JTree(Vector v)
JTree(TreeNodetn)

In the first form, the tree is constructed from the elements in the
array obj. The second form constructs the tree from the elements of vector
v. Inthe third form, the tree whose root nodeis specified by tn specifiesthe
tree. Although JTree is packaged in javax.swing, its support classes and
interfaces are packaged in javax.swing.tree. This is because the number
of classes and interfaces neededto support JTree is quite large. JTree relies
on two models: TreeModel and TreeSelectionModel. A JTree generates a
variety of events, but three relate specificaly to trees
TreeExpansionEvent, TreeSelectionEvent, and TreeModelEvent.
TreeExpansionEvent events occur when a nodeis expanded or collapsed.
A TreeSelectionEvent is generated when the user selects ordeselects a
node within the tree. A TreeModelEvent is fired when the data or structure
of thetree changes. The listeners for these events are
TreeExpansionListener, TreeSelectionListener, and TreeModelListener,
respectively. The tree event classes and listener interfaces are packaged in
javax.swing.event.The event handled by the sample program shown in
this section is TreeSelectionEvent. To listen for this event, implement
TreeSelectionListener. It defines only one method, called valueChanged(
), which receives the TreeSelectionEvent object. You can obtain the path
to the selected object by calling getPath(), shown here, on the event
object.

TreePathgetPath()

It returns a TreePath object that describes the path to the changed
node. The TreePath classencapsulates information about a path to a
particular node in a tree. The TreeNode interface declares methods that
obtain information about a tree node. The MutableTreeNode interface
extends TreeNode. It declares methods that can insert and remove child
nodes or change the parent node. The DefaultMutableTreeNode class
implements the MutableTreeNode interface. It represents a node in atree.
One of its constructors is shown here:

DefaultMutabl eTreeNode(Object obj)

Here, obj is the object to be enclosed in this tree node. The new
tree node doesn’t have a parent or children. To create a hierarchy of tree
nodes, the add() method of DefaultMutableTreeNode canbe used. Its
signature is shown here:

void add(MutableTreeNode child)

Here, child is a mutable tree node that is to be added as a child to
the current node. JTree does not provide any scrolling capabilities of its
own. Instead, a JTree is typically placed within a JScrollPane. This way, a
large tree can be scrolled through a smaller viewport. Theprogram creates
a DefaultMutableTreeNode instance labeled “Options.” This is the
topnode of the tree hierarchy. Additional tree nodes are then created, and
the add() method is called to connect these nodes to the tree. A reference
to the top node in the tree is provided as the argument to the JTree
constructor. The tree is then provided as the argument to the JScrollPane
constructor. This scroll pane is then added to the content pane. Next, a
label is created and added to the content pane. The tree selection is
displayed in this label. To receive selection events from the tree, a
TreeSelectionListener is registered for the tree. Inside the valueChanged()
method, the path to the current selection is obtained and displayed.

// Demonstrate JTree.

import java.awt.*;

import javax.swing.event.*;

import javax.swing.*;

import javax.swing.tree.*;

/*

<applet code="JTreeDemao" width=400 hei ght=200>
</applet>

*/

public class JTreeDemo extends JApplet {
JTreetree,

JLabeljlab;

public void init() {

try {

SwinguUtilities.invokeAndWait(

new Runnable() {

public void run() {

makeGUI();

}

}

)i

} catch (Exception exc) {

System.out.printIn("Can't create because of " + exc);

}

}
private void makeGUI() {

/I Create top node of tree.
DefaultMutableTreeNode top = new
DefaultMutableTreeNode(" Options');

10

I/ Create subtree of "A".

DefaultMutableTreeNode a = new DefaultMutableTreeNode("A");
top.add(a);

DefaultMutableTreeNode al = new DefaultMutableTreeNode("A1");
a.add(al);

DefaultMutableTreeNode a2 = new DefaultMutableTreeNode("A2");
a.add(a2);

I/ Create subtree of "B".

DefaultMutableTreeNode b = new DefaultMutableTreeNode("B");
top.add(b);

DefaultMutableTreeNode bl = new DefaultMutableTreeNode("B1");
b.add(bl);

DefaultMutableTreeNode b2 = new DefaultMutableTreeNode("B2");
b.add(b2);

DefaultMutableTreeNode b3 = new DefaultMutableTreeNode("B3");
b.add(b3);

Il Create the tree.

tree = new JTree(top);

// Add the tree to a scroll pane.

JScrollPanegjsp = new JScroll Pane(tree);

/I Add the scroll pane to the content pane.

add(jsp);

// Add the label to the content pane.

jlab = new JLabel();

add(jlab, BorderLayout.SOUTH);

// Handle tree selection events.

tree.addTreeSel ectionListener(new TreeSelectionListener() {

public void valueChanged(TreeSel ectionEventtse) {
jlab.setText("Selection is" + tse.getPath());

}
b;
}
}

1.6 TEXT COMPONENTS

It generates text events when the user enters a character. The plain
text components (text field, password field, and text area) are the easiest
and most commonly used components. In a few lines of code, you can
easily create, configure, and use a plain text component in your program.
The components that can display styled text (editor pane and text pane)
typically require more effort to use. Most programmers using editor pane

11

or text pane need to build a user interface that lets the user manipulate the
text styles. Also, getting the content from a styled text component
typically requires more code than a simple call to getText. Yet, as the
diagram shows, both plain and styled text components inherit from
JTextComponent. This abstract base class provides a highly-configurable
and powerful foundation for text manipulation. JTextComponent provides
these customizable features for al of its descendants.

JTextComponent

JTextField JTextArea JEditorPane

JPasswordField JTextPane

Figure: Text components
1.6.1 JTextField:

JTextField is the simplest Swing text component. It is aso
probably its most widely used text component. JTextField alows you to
edit one line of text. It is derived from JTextComponent, which provides
the basic functionality common to Swing text components. JTextField
uses the Document interface for its model.

Three of JTextField’s constructors are shown here:
JTextFed(int cols)

JTextField(String str, int cols)

JTextFeld(String str)

Here, str is the string to be initialy presented, and cols is the
number of columns in the text field. JTextField generates events in
response to user interaction. For example, an ActionEvent is fired when
the user presses ENTER. To obtain the text currently in the text field, call
getText(). It creates a JTextField and adds it to the content pane. When
the user presses ENTER, an action event is generated. This is handled by
displaying the text in the status window.

/l Demonstrate JTextField.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
<applet code="JTextFieldDemao" width=300 height=50>
</applet>
*/
public class JTextFieldDemo extends JApplet {
12

JTextFiddjtf;

public void init() {

try {
SwingUtilities.invokeAndWait(
new Runnable() {

public void run() {

makeGUI();

}

}

)i

} catch (Exception exc) {

System.out.printin("Can't create because of " + exc);

}

}
private void makeGUI() {

/I Change to flow layout.

setLayout(new FlowLayout());

// Add text field to content pane.

jtf = new JTextField(15);

add(jtf);

jtf.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae) {
/I Show text when user presses ENTER.
showStatus(jtf.getText());

}

b

}

}

1.6.2 JPasswordFidd:

The object of a JPasswordField class is a text component specialized for
password entry. It allows the editing of a single line of text. It inherits
JTextField class.

public class JPasswordField extends JTextField

Constructors.

JPasswordField(): Constructs a new JPasswordField, with a default
document, null starting text string, and O column width.

JPasswordField(int columns): Constructs a new empty JPasswordField
with the specified number of columns.

JPasswordField(String text): Constructs a new JPasswordField
initialized with the specified text.

13

JPasswordField(String text, int columns): Construct a new
JPasswordField initialized with the specified text and columns.

import javax.swing.*;
public class PasswordFieldExample {
public static void main(String[] args) {
JFrame f=new JFrame("' Password Field Example");
JPasswordField vaue = new JPasswordField();
JLabel [1=new JLabel (" Password:");
|1.setBounds(20,100, 80,30);
value.setBounds(100,100,100,30);
f.add(value); f.add(l1);
f.setSize(300,300);
f.setLayout(null);
f.setVisible(true);
}
}

1.6.3 JTextArea:

The object of a JTextArea classis a multi line region that displays
text. It allows the editing of multiple line text. It inherits JTextComponent
class.

public class JTextArea extends JTextComponent

Constructors:

JTextArea(): Creates atext areathat displays no text initialy.
JTextArea(String s): Creates a text area that displays specified text
initially.

JTextArea(int row, int column): Creates a text area with the specified
number of rows and columns that displays no text initially.

JTextArea(String s, int row, int column): Creates a text area with the
specified number of rows and columns that displays specified text.

Methods:

void setRows(int rows): It is used to set specified number of rows.

void setColumns(int cols): It is used to set specified number of columns.
void setFont(Font f): It is used to set the specified font.

void insert(String s, int position): It is used to insert the specified text on
the specified position.

void append(String 9): It is used to append the given text to the end of the
document.

import javax.swing.*;

14

public class TextAreaExample
{
TextAreaExample(){
JFrame f= new JFrame();
JTextArea area=new JTextArea("Welcome to javatpoint");
area.setBounds(10,30, 200,200);
f.add(area);
f.setSize(300,300);
f.setLayout(null);
f.setVisible(true);
}
public static void main(String argg])
{
new TextAreaExample();

H

1.7 PROGRESSINDICATORS

A JProgressBar is a Swing component that indicates progress. A
ProgressMonitor is a diadog box that contains a progress bar. A
ProgressMonitorl nputStream displays a progress monitor dialog box while
the stream is read. JProgressBar is already discussed in previous section.

Progress Monitors:

A progress bar is a simple component that can be placed inside a
window. In contrast, a ProgressMonitor is a complete dialog box that
contains a progress bar. The dialog box contains a Cancel button. If you
click it, the monitor dialog box is closed. In addition, your program can
query whether the user has canceled the dialog box and terminate the
monitored action. (Note that the class name does not start witha"J".)

O ProgressMonitorTest X
B s

u'i"r Waiting for Simulated Activity

Y omm

Cancel

™

~J

(TR TR VR VY

w

Figure: Progress Monitors

1.8 COMPONENT ORGANISER

The study of advanced Swing features comes to a close with a look
at components that aid in the organisation of other components. These
include the split pane, which divides an area into many pieces with
adjustable bounds, the tabbed pane, which allows a user to flip among
multiple panels using tab dividers, and the desktop pane, which can be
used to implement apps.

Split Panes:

Split panes divide a component into two pieces separated by an
adjustable boundary. A frame with two split pan with a text area on the
bottom and another split pane on top, the outer pane is split vertically. A
list on the left and a label with an image on the right make up that pane,
which is split horizontally. We construct a split pane by specifying the
orientation, one of JSplitPane. HORIZONTAL_SPLIT or
JSplitPane.VERTICAL_SPLIT, followed by the two components. For
example,

JSplitPaneinnerPane = new
JSplitPane(JSplitPane. HORIZONTAL SPLIT planetList, planetlmage);

That's al you have to do. If you like, you can add "one-touch
expand" icons to the splitter bar. We see those icons in the top pane inthe
Metal look and feel, they are small triangles. If you click one of them, the
splitter moves al the way in the direction to which the triangle is pointing,
expanding one of the panes completely.

i nner Pane. set OneTouchExpandabl e(true);
TabbedPane:

Tabbed panes are a familiar user interface device to break up a
complex dialog box into subsets of related options. We can aso use tabs to
let a user flip through a set of documents or images. To create a tabbed
pane, you first construct a JT abbedPane object, then you add tabs to it.

JTabbedPanetabbedPane = new JT abbedPane(); tabbedPane.addTab(title,
icon, component);

The last parameter of the addTab method has type Component. To add
multiple components into the same tab, you first pack them up in a
container, such as a JPanel. The icon is optional; for example, the addTab
method does not require an icon:

tabbedPane.addTab(title, component);

We can also add atab in the middle of the tab collection with the insertTab
method:

16

tabbedPane.insertTab(title, icon, component, tooltip, index);

To remove a tab from the tab collection, use
tabPane.removeTabAt(index);

When we add a new tab to the tab collection, it is not automatically
displayed. We must select it with the setSelectedindex method. For
example, here is how you show atab that you just added to the end:

tabbedPane.set Sel ectedI ndex(tabbedPane.get TabCount() - 1);

If we have alot of tabs, then they can take up quite a bit of space.
Starting with JDK 1.4, we can display the tabs in scrolling mode, in which
only one row of tabs is displayed, together with a set of arrow buttons that
allow the user to scroll through the tab set.

We set the tab layout to wrapped or scrolling mode by calling
tabbedPane.set TablL ayoutPolicy(JTabbedPane WRAP_TAB_LAYOUT);

REFERENCES

Java Complete Reference, Herbert Schildt, Seventh Edition, Tata McGraw
Hill. (Unit | Chapter 20,21,22)

https://www.javatpoint.com/

UNIT END QUESTIONS

1. What is Servlets?
2. Explain Text components.
3. Explain Progress Bar in detail.

*kk*k*

17

UNIT 11

INTRODUCTION TO SERVLETS

Unit Structure

2.0 Need for dynamic content

2.1 Java Servlet Technology

2.2 Why Servlets?

2.3 Servlet API

24 Servlet and ServletConfig interface

2.5 ServletRequest Interface

2.6 ServletResponse Interface

2.7 Generic Servlet class

2.8 ServletlnputStream class

2.9 ServletOutputStream class

2.10 RequestDispatcher Interface

2.11 HttpServlet Class

2.12 HittpServletRequest interface

2.13 HttpServletResponse Interface

2.14 HttpSession Interface

2.15 Servlet Lifecycle

2.16 Organization of aweb application

2.17 Creating aweb application (using Netbeans)
Unit End Questions
References

2.0NEED FOR DYNAMIC CONTENT

In order to understand the advantages of servlets, you must have a
basic understanding of how web browsers and servers cooperate to
provide content to a user. Consider a request for a static web page. A user
enters a Uniform Resource Locator (URL) into a browser. The browser
generates an HTTP request to the appropriate web server. The web server
maps this request to a specific file. That file is returned in an HTTP
response to the browser. The HTTP header in the response indicates the
type of the content. The Multipurpose Internet Mail Extensions (MIME)
are used for this purpose. For example, ordinary ASCII text has a MIME
type of text/plain. The Hypertext Markup Language (HTML) source code
of a web page has a MIME type of text/html. Now consider dynamic
content. Assume that an online store uses a database to store information

18

about its business. This would include items for sale, prices, availability,
orders, and so forth. It wishes to make this information accessible to
customers via web pages. The contents of those web pages must be
dynamically generated to reflect the latest information in the database. In
the early days of the Web, a server could dynamically construct a page by
creating a separate process to handle each client request. The process
would open connections to one or more databases in order to obtain the
necessary information. It communicated with the web server via an
interface known as the Common Gateway Interface (CGI). CGI alowed
the separate process to read data from the HTTP request and write data to
the HTTP response. A variety of different languages were used to build
CGlI programs. These included C, C++, and Perl. However, CGI suffered
serious performance problems. It was expensive in terms of processor and
memory resources to create a separate process for each client request. It
was also expensive to open and close database connections for each client
request. In addition, the CGI programs were not platform-independent.
Therefore, other techniques were introduced. Among these are servlets.

Servlets offer several advantages in comparison with CGI. First,
performance is significantly better. Servlets execute within the address
space of a web server. It is not necessary to create a separate process to
handle each client request. Second, servlets are platform-independent
because they are written in Java. Third, the Java security manager on the
server enforces a set of restrictions to protect the resources on a server
machine. Finally, the full functionality of the Java class libraries is
availableto aservlet

2.1 JAVA SERVLET TECHNOLOGY

Java Servlets are programs that run on a Web or Application server
and act as a middle layer between a request coming from a Web browser
or other HTTP client and databases or applications on the HTTP server.
Using Servlets, you can collect input from users through web page forms,
present records from a database or another source, and create web pages
dynamically. Java Servlets often serve the same purpose as programs
implemented using the Common Gateway Interface (CGI). But Servlets
offer several advantages in comparison with the CGl.

2.2WHY SERVLETS?

There are many advantages of Servlet over CGIl. The web
container creates threads for handling the multiple requests to the Servlet.
Threads have many benefits over the Processes such as they share a
common memory area, lightweight, cost of communication between the
threads are low. The advantages of Servlet are as follows:

1. Better performance: because it creates a thread for each request, not
process.

19

2. Portability: because it uses Javalanguage.

Robust: VM manages Servlets, so we don't need to worry about the
memory leak, garbage collection, etc.

4. Secure: becauseit usesjavalanguage.

2.3 SERVLET API

Two packages contain the classes and interfaces that are required
to build servlets. These are javax.servlet and javax.servlet.http. They
constitute the Servliet API. Keep in mind that these packages are not part
of the Java core packages. Instead, they are standard extensions provided
by Tomcat. Therefore, they are not included with Java SE 6. The Servlet
API has been in a process of ongoing development and enhancement. The
current servlet specification is version 2.4, and that is the one used in this
book. However, because changes happen fast in the world of Java, you
will want to check for any additions or aterations. The javax.servlet
package contains a number of interfaces and classes that establish the
framework in which servlets operate. The following table summarizes the
core interfaces that are provided in this package. The most significant of
these is Servlet. All servlets must implement this interface or extend a
class that implements the interface. The ServletRequest and
ServletResponse interfaces are also very important.

Interface Description
Servlet Declares life cycle methods for a serviet.
ServletConfig Allows servlets to get initialization parameters.

ServletContext Enables servlets to log events and access information about their
environment.

SeruretRequest Used to read data from a client request.

ServletResponse Used to write data to a client response.

Figure 2.1: Interfaces provided by javax.servlet package

Class Description

GenericServiet Implements the Servlet and ServletConfig interfaces.
ServletinputStream Provides an input stream for reading requests from a client.
ServletOutputStream Provides an output stream for writing responses to a client.
ServletException Indicates a servlet error occurred.

UnavailableException Indicates a servlet is unavailable.

Figure 2.2:Cor e classes of javax.servlet package

24 SERVLET AND SERVLETCONFIG INTERFACE

All servlets must implement the Servlet interface. It declares the
init(), service(), and destroy() methods that are called by the server
during the life cycle of a servlet. A method is aso provided that allows a
servlet to obtain any initialization parameters. The init(), service(), and
destroy() methods are the life cycle methods of the servlet. These are
invoked by the server. The getServietConfig() method is caled by the

20

servlet to obtain initialization parameters. A servlet developer overrides
the getServietinfo() method to provide a string with useful information
(for example, author, version, date, copyright). This method is also

invoked by the server.

The ServletConfig

interface dlows a servlet to obtain

configuration data when it is loaded. The methods declared by this
interface are summarized here:

'Method
ServletContext getServietContext()
String getnitParameter(String param)

| Enumeration getinitParameterNames(

.String getServietName()

Description
Returns the context for this serviet.

Returns the value of the initialization parameter
named param.

) |Returns an enumeration of all initialization parameter
names.

Returns the name of the invoking serviet.

Table 2.3: ServletConfig interface methods

2.5 SERVLETREQUEST INTERFACE

The ServlietRequest

interfface enables a servlet to obtain

information about a client request. Severa of its methods are summarized

in Table 2.4.

Method

Object getAttribute(String attn)
String getCharacterEncoding()
int getContentLength()

String getContentType()

ServletinputStream getinputStream()
throws I0Exception

String getParameter(String pname)
Enumeration getParameterNames()
String[] getParameterValues(String name)

String getProtocol()

BufferedReader getReader()
throws I0Exception

String getRemoteAddr()
String getRemoteHost()
String getScheme()

String getServerName()
int getServerPort()

Description
|Returns the value of the attribute named attr.
Returns the character encoding of the reguest.

Returns the size of the request, The value -1 is returned if the

size is unavailable.

Returns the type of the request. A null value is returned if the

type cannot be determined.

Returns a ServletinputStream that can be used to read binary
data from the request. An lllegalStateException is thrown if

_getReadert) has already been invoked for this request.
Returns the value of the parameter named pname.

Returns an enumeration of the parameter names for this request.
Returns an array containing values associated with the parameter '

specified by name.
Returns a description of the protocol.

Returns a buffered reader that can be used to read text from the
request. An lllegalStateException is thrown if getinputStream()

has already been invoked for this request.
Returns the string equivalent of the client IP address.
Returns the string equivalent of the client host name.

Returns the transmission scheme of the URL used for the request

(for example, “http”, “ftp”).
Returns the name of the server.

Returns the port number.

Table 2.4: ServletRequest interface methods

21

2.6 SERVLETRESPONSE INTERFACE

The ServletResponse interface enables a serviet to formulate a response
for aclient. Several of its methods are summarized in Table 2.5.

|Method Description

iString getCharacterEncoding() | Returns the character encoding for the response.

| ServietOutputStream Returns a ServletOutputStream that can be used to write binary data to the
getOutputStream() response. An lllegalStateException is thrown if getWriter() has already

| throws I0Exception been invoked for this request.

| PrintWriter getWriter() Returns a PrintWriter that can be used to write character data to the
throws I0Exception response. An lllegalStateException is thrown if getOutputStream()

| has already been invoked for this request.

é\.roid setContentLength(int size) | Sets the content length for the response to size.
E\.roid setContentType(String type) |Sets the content type for the response to type.

Table 2.5: ServletResponse | nterface methods

2.7 GENERICSERVLET CLASS

The GenericServlet class provides implementations of the basic
life cycle methods for a serviet. GenericServlet implements the Servlet
and ServletConfig interfaces. In addition, a method to append a string to
the server log file is available. The signatures of this method are shown
here: void log(String s) void log(String s, Throwable €) Here, s is the
string to be appended to the log, and e is an exception that occurred.A
generic serviet is a protocol independent Serviet that should aways
override the service() method to handle the client request. The service()
method accepts two arguments ServletRequest object and ServletResponse
object. The request object tells the servlet about the request made by client
while the response object is used to return a response back to the client.
How Generic Servlet works?

Generic Servet

Client Server

Thread
4 Service()

Figure2.1: Generic Servlet

22

2.8 SERVLETINPUTSTREAM CLASS

The ServletinputStream class extends InputStream. It is
implemented by the servlet container and provides an input stream that a
servlet developer can use to read the data from a client request. It defines
the default constructor. In addition, a method is provided to read bytes
from the stream. It is shown here: int readLine(byte]]| buffer, int offset, int
size) throws IOException Here, buffer is the array into which size bytes
are placed starting at offset. The method returns the actual number of
bytes read or -1 if an end-of-stream condition is encountered.

29 SERVLETOUTPUTSTREAM CLASS

The ServletOutputStream class extends OutputStream. It is
implemented by the servlet container and provides an output stream that a
servlet developer can use to write data to a client response. A default
constructor is defined. It also defines the print() and println() methods,
which output data to the stream.

2.10 REQUESTDISPATCHER INTERFACE:

The RequestDispatcher interface provides the facility of
dispatching the request to another resource it may be html, servlet or jsp.
This interface can also be used to include the content of another resource
also. It isone of the way of servlet collaboration.

There are two methods defined in the RequestDispatcher interface.

2.10.1 Methods of RequestDispatcher interface:
The RequestDispatcher interface provides two methods. They are:

1. public void forward(ServlietRequestrequest,ServietResponse
response)throws ServletException,java.io.l OException: Forwards
a request from a servlet to another resource (servlet, JSP file, or
HTML file) on the server.

2. public void include(ServletRequestrequest,ServietResponse
response)throws ServletException,java.io.l OException: Includes
the content of a resource (servlet, JSP page, or HTML file) in the
response.

23

3) Responde is generated

4) Response issent back to the browser

Figure 2.2: forward() method

Aswe see in the above figure, response of second servlet is sent to
the client. Response of the first servlet is not displayed to the user.

include() method 2) include(-.-)
%’“‘“

4) final Regsponse
is generpted

3)Response of
Serviet2 Is included in
servietl response

Client

5) Final respa
sent back to
client

Figure 2.3: include() method

As you can see in the above figure, response of second servlet is
included in the response of the first servlet that is being sent to the client.

211 HTTPSERVLET CLASS

The HttpServlet class extends GenericServlet. It is commonly used
when developing servlets that receive and process HTTP requests. The
methods of the HttpServlet class are summarized in Table 2.6

Method Description
void doDelete(HttpServietRequest req, Handles an HTTP DELETE request.
HttpServietResponse res)
throws |OException, ServietException |
void doGet{HttpServietRequest regq, Handies an HTTP GET request.
HttpServietResponse res)
throws |0Exception, ServietException
void doHead(HttpServietRequest reg, Handles an HTTP HEAD request.
HttpServietResponse res)
throws I0Exception,
ServietException

void doOptions(HttpServietRequest req, -Handle-s. an HTTP OPTIONS request.
HttpServietResponse res)
throws |OException, ServietException

void doPost(HttpServietRequest req. Handles an HTTP POST request.
HttpServietResponse res)
throws |0Exception, ServietException

void doPut{HttpServietRequest req, Handies an HTTP PUT request.
HttpServietResponse res)
throws I0Exception, ServietException

void doTrace(HttpServietRequest req, .Handles an HTTP TRACE request.
HttpServietResponse res)
throws |0Exception, ServietException

24

long

Returns the time (in milliseconds since midnight, January 1,

getLastModified(HttpServietRequest req) | 1970, GMT) when the requested resource was last modified.

void service(HttpServietRequest req,
HttpServietResponse res)
throws |OException, ServietException

| Called by the server when an HTTP request arrives for this
serviet. The arguments provide access to the HTTP request and
response, respectively.

Table 2.6: HttpServlet class methods

212 HTTPSERVLETREQUEST

The HttpServietRequest interface enables a servlet to obtain
information about a client request. Severa of its methods are shown in

Table2.7

Method

String getAuthType()

Cookie[] getCookies()

long getDateHeader(String field)
String getHeader(String field)
.Enu.fn-ération getHeadérNamés{)
int getintHeader(String field)
String getMethod()

String getPathinfo()

String getPathTranslated()

String getQueryString()

String getRemoteUser()

String getRequestedSessionld()
String getRequestURI()
.StringBuffer getRequestURL()
String getServletPath()
HttpSession getSession()

boolean

boolean

Description
Returns authentication scheme.
Returns an array of the cookies in this request.

-Relurns the value of the header field named field.

Returns the int equivalent of the header field named field.
Returns the HTTP method for this request.

and before a query string of the URL.
path.

Returns any query string in the URL.
Returns the name of the user who issued this request.

-Relurns the URI.

Returns that part of the URL that identifies the serviet.

one is created and then returned.
HttpSession getSession(boolean new)

| Returns true if a cookie contains the session ID. Otherwise, returns
isRequestedSessionldFromCookie() false.

isRequestedSessionldFromURL() false.

boolean isRequestedSessionldValid()

Returns the value of the date header field named field.

Returns an enumeration of the header names.

Returns any path information that is located after the servlet path

Returns any path information that is located after the servlet path
and before a query string of the URL after translating it to a real

Returns the ID of the session.

Returns the URL.

Returns the session for this request. If a session does not exist,

If new is true and no session exists, creates and returns a session
for this request. Otherwise, returns the existing session for this
request.

Returns true if the URL contains the session |D. Otherwise, returns

Returns true if the requested session ID is valid in the current
session context.

Table 2.7: HttpServletRequest

2.13HTTPSERVLETRESPONSE INTERFACES

Method

void addCookie(Cookie cookie)

String encodeURL(String urf)

boolcan containsHecader(String ficld)

String encodeRedirectURL(String url)

| Description
Adds cookie to the HTTP response.

Recturns true if the HTTP responsc header contains a ficld
named feld.

Determines if the session ID must be encoded in the URL
identified as url. If so, returns the modified version of url.
Otherwise, returns url. All URLs generated by a serviet should
be processed by this method.

Determines if the session ID must be encoded in the URL
identified as url. If so, returns the modified version of url.
Otherwise, returns url. All URLs passed to sendRedirect()
should be processed by this method.

Table 2.8(a): HttpServletResponse interface methods

25

Method Description

void sendError(int c) Sends the error code c to the client.
throws IOException

void sendError(int ¢, String s) Sends the error code ¢ and message s to the client.
throws |OException

void sendRedirect(String ur) Redirects the client to url.
throws |0Exception

void setDateHeader(String field, long msec) Adds field to the header with date value equal to msec
(milliseconds since midnight, January 1, 1970, GMT).

void setHeader(String field, String value) Adds field to the header with value equal to value.
void setintHeader(String field, int value) Adds field to the header with value equal to value.
void setStatus(int code) Sets the status code for this response to code.

Table 2.8(b): HttpServletResponse inter face methods

2.1AHTTPSESSION INTERFACE

The HttpSession interface enables a servlet to read and write the
state information that is associated with an HTTP session. Severa of its
methods are summarized in Table 2.9. All of these methods throw an
[llegal StateException if the session has aready been invalidated.

Method Description

Object getAttribute(String attr) Returns the value associated with the name passed in attr. Returns
null if attris not found.

Enumeration getAttributeNames() Returns an enumeration of the attribute rames associated with the
session.

long getCreationTime() Returns the time (in milliseconds since midnight, January 1, 1970,
GMT) when this session was created.

String getld() Returns the session ID.

long getLastAccessedTime() Returns the time (in milliseconds since midnight, January 1, 1970,
GMT) when the client last made a request for this session.

void invalidate({) Invalidates this session and removes it from the context.

boolean isNew() Returns true if the server created the session and it has not yet

been accessed by the client.
void removeAttribute(String attr) Removes the attribute specified by attr from the session.

void setAttribute(String att, Object val) |Associates the value passed in val with the attribute name passed
in attr.

Table 2.9: HttpSession methods

215 SERVLET LIFECYCLE

Three methods are central to the life cycle of a servlet. These are
init(), service(), and destroy(). They are implemented by every serviet
and are invoked at specific times by the server. Let us consider a typical
user scenario to understand when these methods are called. First, assume
that a user enters a Uniform Resource Locator (URL) to a web browser.
The browser then generates an HTTP request for this URL. Thisrequest is
then sent to the appropriate server. Second, this HTTP request is received
by the web server. The server maps this request to a particular servlet. The
servlet is dynamically retrieved and loaded into the address space of the
server. Third, the server invokes the init() method of the servlet. This
method is invoked only when the servlet is first loaded into memory. It is
possible to pass initialization parameters to the servlet so it may configure

26

itself. Fourth, the server invokes the service() method of the servlet. This
method is called to process the HTTP request. You will see that it is
possible for the servlet to read data that has been provided in the HTTP
request. It may also formulate an HTTP response for the client. The servlet
remains in the server’s address space and is available to process any other
HTTP requests received from clients. The service() method is called for
each HTTP request. Finally, the server may decide to unload the serviet
from its memory. The algorithms by which this determination is made are
specific to each server. The server calls the destroy() method to relinquish
any resources such as file handles that are alocated for the servlet.
Important data may be saved to a persistent store. The memory alocated
for the servlet and its objects can then be garbage collected.

2.16 ORGANIZATION OF A WEB APPLICATION

Before we see how the serviet works, let’s get familiar with these three
terms.

Web Server: it can handle HTTP Requests send by clients and responds
the request with an HT TP Response.

Web Application(webapp): | would refer this as webapp in this guide.
Basically, the project is your web application, it is the collection of
servlets.

Web Container: Also known as Servlet Container and Servlet Engine. It
is a part of Web Server that interacts with Servlets. This is the main
component of Web Server that manages the life cycle of Servlets.

2.17 CREATING A WEB APPLICATION (USING
NETBEANS)

To create a servlet application in Netbeans IDE, you will need to follow
the following (simple) steps:

1. Open Netbeans IDE, Select File ->New Project

27

@ Dynanmic File Uploading - NetBeans IDE 7.0.1

[File] Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help

¥ New Project.. Ctrl+ Shift+N
%9 NewFile.. \ Ctri+N
(&8 Open Project... Ctrl+Shifts 0

Open Recent Project

Close Project (Dynamic File Uploading)
Open File...
Open Recent File

Project Group
Project Properties (Dynamic File Uploading)

Import Project

Save Ctrl+S

B P EB-GB-

 # [indexbackipg % |

2. Select Java Web -> Web Application, then click on Next.

© New Project

Web Application

4§ Web Free-Form Appication

Existing Sources

Description:

Creates an empty Web application in a standard IDE project. A standard project uses an
IDE-generated build script to build, run, and debug your project.

28

3. Give aname to your project and click on Next.

) New Web Application)
Steps Name and Location
2 Name and Location e -
3: Frsgwwsmuns Project Location: | C:\isers\Abhist\Documents'y i [Brovee... |

Project Folder: C:\Users\Abhijit\Documents\NetBeansProjects First

[Use Dedicated Folder for Storng Libranes
Libraries Folder: | | Browse... |

Different users and projects can share the same compdation libranes
(see Help for detais).

[¥] Set as Main Project

(<o [(Dot>]) o | [l] (e]

4. and then, Click Finish

[© New Web Appication)
Steps ServerandSettings
1. Choose Project : P v
3 ol Add to Enterprise Applcation: | <Hone >]
— Sever s Senver 31 iv)

Java EE Version: JavaEE 6 Web v

ContextPath: fFirst

|| Enable Contexts and Dependency Injection

P e
[<o |[next> {| Fnsh |) cancel |[hep |
R —

29

5. The complete directory structure required for the Servliet Application
will be created automatically by the IDE.

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help

PGS DE | T E D EBR-G-

: Projects an

It

eeeeCee®

-&-&-8-8-8-8-8-8

First
/7 o[} webpages Project Directory is
) wes-ne created
= [}y Source Packages

N = =] <default package >

= g Lbraries

6. To create a Servlet, open-Source Package, right click on default
packages -> New -> Servlet.

© First - NetBeans IDE 7.0.1 — 1
File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help

FEES DCE T8 DB G-

: Projects as=
1 esheenamdemo

4 () Cobenerar

G oo
GG e

@ () Dt

4 SrweResneadag
L et

4 () Femiess

=-@ Frst
=1l Web Pages

» BCserviet..
Ctri+F | (B JSP...

' Folder...
Ctri+ X ud "

CtrleC @ Java Class...

... | W Cascading Style Sheet...

~

30

7. GiveaNameto your Servlet classfile.

Steps Name and Location

1. Choose File Type ChuNmnClnySeMet
2. Name and Location)

Project: First]
Location: Source Packages v
g | -]

Created Fie: | C:\Users\Abhijt\Documents\NetBeansProjects First\src\java|MySer

R, Awm:ltammmmd:m‘rdﬂmdanhh
. default package.

L Choose Fie Type Register the Serviet with the application by giving the Serviet an internal
2. Name and Location name (Servlet Name). Then specify patterns that identify the URLs that
3. Configure Serviet invoke the Serviet. Separate multiple patterns with commas.

Add information to deployment descriptor (web.xmi) >

This will add serviet Cossteume: [MiSeriet |
information in web.xmil Serviet Name: /” helo ™]
file, you dont have write it = = =

of your own URL Pauun&)(= [/el g Change serviet name

Initialization Parameters: here
Edt.. |
[Delete
&

31

8. Now, your Servlet class is ready, and you just need to change the
method definitions and you will good to go.

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Ht

1T @ D> EB-C

PGS DE

9. Write some code inside your Servlet class.

Eweeiema 5]

 Projects @ % ||| Myservietjava |
S —— A|@..|rqle,,5-\|.«,?{bc
[—— =
| Commentirstem 2 import java.io.*;
5 thee 3 | import javax.servlet.*;
@® @ B, q import javax.servlet.http
B e <
B eessendag € public class MyServlet =x
[eman 7
=-@ Frst oyt protected void doGet (Ht
& llp WebPages 9] throws Servle
| EJ[.L WEB-INF 10 response.setConten
i m web.xmi 11 PrintWriter out =
& [y Source Packages 12 try {
= 3 33
‘ 14 out.println(”
d 15
@ [‘@.& 1€ } finally {
t.cl -
& 31 i; } out.close()
&l Configuration Fies 10| L N
-[@) manIFEST.MF 20)
web.xml
| - @_“ 21

2] import
3 import
4 import
5

€ public

BE-8-AeS@Petauon ud
1

java.io.*;
javax.ssrviac.*;
javax.servlet.http.*;

class MyServlet extends HttpServiet |

throws ServletException, IOException {

protected void doGet (HrtpServiectRequest request, HttpServietResponse response

response.setContentType ({"text/html;charser=UTF-8");

PrintWriter out = response.getWriter():
cry

out.println({"<hl>Welicoms to
} finally (

out.close();
}

32

my first servilet application

in NetBeansk</hZ>");

10. Create an HTML file, right click on Web Pages-> New -> HTML
O i - Nettean: 06 701, 0

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help

EETF LG T TBOB B

|iProjects @ x| myservetsava x| _
b g eE-8-AtSEee AUl
® 1 —
i 1
1T @ 2] import java.io.*;
| & o= 3|| import javax.servlet.*;:
L @ DiecGeme 4| - import javax.servlet.http.*;
L e 5
@ @ & public class MyServlet extends HttpSer
B eandg
G () e 7
=) @ First @ protected void doGet (HctpServietRequ
‘ =N w LMl o rthromws ServletException,]
= WEB® P& Serviet... ContentType ("text /!
] , e B ssp.. out = response.get
el ff‘""-e’: . Folder..
= <de . 2l
[_—H@] NI Paste Ctrl+V @ Java Class... atln("<h2>Welcome t
el Lbranes! Local History ' ‘li, Cascading Style Sheet...
* &) ok Refresh Folder [Java Package... Lsis
&-F Gess @ JavaScript File...
. émﬁg’i Peopsthe [8 PropertiesFile..
MANIresT. M - G
5 web.mi ; [# Interceptor...
Ili,') e % XML Document..,
) cesmetussssien &3 Tag Library Descriptor...
|L" g & Web Application Listener...
® et = :
| @ @ | @ Filter...
O e G HML. S
I|§_f (5 m— | II:i JFrame Form...

11. Giveit aname. We recommend you to name it index, because browser
will aways pick up the index.html file automatically from a directory.
Index fileisread as the first page of the web application.

r al
) NewHTMLEile = ot
Steps. Name and Location
1. Choose File Type H
2. Name and Location AR dind
Project: First
Lacation: 'Web Pages »]
o

Created File: C:\Users\Abhijit\Documents WetBeansProjects Firstweb inde

12. Write some code inside your HTML file. We have created a hyperlink
to our Servlet in our HTML file.

[E) MyServietjava (@] indexchtml |
EE-#-AesfEreéades
html body hd a
'DOCTYPE html
2] <hcml>
<head>
<title></title>
</head>
<body>
<h4>Click here to go to MyServler Page</h4>
</body>
</html>

OwWwo-mn bW
(1]

=

serviet name

13. Edit web.xml file. In the web.xml file you can see, we have specified
theurl-pattern and the servlet-name, this means whenhelourl is
accessed our Servlet file will be executed.

&) MyServietjava % (] indexchtm = 55 webaml x|
General Serviets Fiters Pages References Seaurity E@.@.|I
1 <?yml version="1.0" encoding="UTF-8"2>
2[F] <web-app version="3.0" xmlns="h : o/ ¥xml/ns/qjavass”
3 xmlns:xsi="http: WUW. W3 .0
4 xsi:schemalocation="} om/ xml/ ns/javase
s http: java.sun.com/xml/ns/javase/web-app 3 0.xsd">
€
7E <servlet>
8 <serviet-name>hello</serviet-nams>
-] <gserviet-class>MyServiet</serviet-class>
10 </servlet>
11 <servist-mapping>
12 <serv]et-pnam=>hello</ssrviet-nams=>
13 <url-pattern>/hello</url-pattern>
14 + </serviet-mapping>
15 [<welcome-file-list>
16 <welcome-fi (‘- lcome-file>
17 </welcome-file-list>
18 L </web-app> Welcome page of your
19 application

14. Run your application, right click on your Project and select Run.
) First - NetBeans IDE70.1 o TS ™E -~ = = ©&

File Edit View MNavi Run Debug Profile Tearn Tools Window Help

<=1 SE - Nk

[&] MyServiet.java = |[&] index.ntml = |

: Projects o =
Lt it e -m-aersr@Beres asue |
& @ Emeil Sending T"l i et s
ITI @ gy 2 <html>
iy @ i M = .I <hsad>
i <title></title>
-] </ head>
Build _ b ig
Clean and Build r <h4>Click here to go to <a hrsf=
= Clean 3 </body>
Verify] </html>
"y Generate Javadoc p
1 Deploy
=
Debug
Profile

34

15. Click on the link created, to open your Servlet.

- — T T————| | (S)
localhost:8080/First/ * _
l C' [1 localhost:80¢ st o * [=

Click here to go to MyServlet Page

UNIT END QUESTIONS

1. Why thereis need of Servlets?
2. Explain Servlet lifecycle?
3. Explain the difference between GenericServlet and HitpServlet?

REFERENCES

Java EE 6 for Beginners, Sharanam Shah, Vaishali Shah, SPD
https://www.studytoni ght.com/servl et/creating-servl et-in-netbeans.php

*kkk*k

35

UNIT 111

JAVA DATABASE CONNECTIVITY

Unit Structure
3.0 Objective
3.1 Introduction
3.2 Designof JDBC
3.3 JDBC configuration
3.4 Executing SQL statement, Query Execution
3.5 Scrollable and updatable result sets
3.6 Row sets
3.7 Metadata
3.8 Transaction
3.9 Summary
Reference for further reading
Unit End Exercises

3.00BJECTIVE

To understand the structure of java database (JDBC)
To learn design of JDBC database
To learn how to configure JDBC with database

To understand the execution of database query and retrieval of data
from the database using JDBC.

3.1 INTRODUCTION

JDBC is a java database connectivity standard that provides the
interface for connecting from Java to relational databases. The JDBC
standard is defined by early Sun Microsystems and implemented through
the standard javasql interfaces. This permits individua providers to
implement and extend the standard with their own JDBC drivers.

JDBC stands for Java Database Connectivity, which is a standard
Java APl for database-independent connectivity between the Java
programming language and a broad range of databases.

The JDBC library includes APIs for each of the tasks commonly
associated with database usage:

36

Establish a connection to a database

Creating SQL or MySQL statements

Executing that SQL or MySQL queriesin the database
Viewing & Modifying the resulting records using resultset.

JDBC API is a Java programming API that can access any kind of
tabular data, especially data stored in a Relational Database. JDBC works
with Java on different platforms, such as Windows, Mac OS, and the
various versions of Unix/Linux.

3.3 DESIGN OF JDBC

Java language was designed to provide platform independence
from hardware/software platforms, so too JDBC has been designed to
provide some degree of database independence for java developers. JIDBC
Is designed to provide a database API for accessing relationa databases
from different vendors. JDBC developed to work with the most common
type of databases, JDBC drivers that allow the API to be used to connect
to both high-end, mainframe databases.

The relationships between the database objects are described using
a query language, the most popular of which is the Structured Query

Language (SQL).

JDBC Architecture:

Java appletor
e Client machine (GUI)

¢ HTTP, RMIL CORBA, or other calls

Application Server — hine
|Java) (business Jogic)
JDBC

i DBMS.proprietary protocol

-~

Database server

Fig. 1 JDBC Architecture

e The JDBC interface supports both two-tier and three-tier processing
models for database access but in general JDBC Architecture consists
of two layers:

e IDBC API: This provides the application-to-JDBC Manager
connection.

37

JDBC driver supports the JDBC Manager-to-Driver Connection.

The JDBC API connects with driver manager and database-specific
drivers to provide transparent connectivity to heterogeneous databases.

The JDBC driver manager ensures that the right driver is used to
access each data source. The driver manager is supporting multiple
concurrent drivers connected to multiple heterogeneous databases.

Common JDBC Components:
The JDBC API provides the following interfaces and classes:

DriverManager:

o Managesalist of database drivers.

o Matches connection requests with the proper database driver
o Establish a database Connection.

Driver:

o Handles the communications with the database server.

o DriverManager to manage objects

Connection :

o Thisinterface with all methods for contacting a database.
o Connection object represents the communication context
Statement :

o Thisinterface to submit the SQL statements to the database.

o Interfaces accept parameters in addition to executing stored
procedures.

ResultSet:

o These objects hold data retrieved from a database after execute an
SQL query using Statement objects.

o lItactsasan iterator.

SQLException:

o Thisclass handles any errors that occur in a database application.

3.4JDBC CONFIGURATION

In IDBC configuration JDBC drivers implement the defined interfaces
in the JDBC API for interacting with the database server. For example,
using JDBC drivers to enable open database connections and to interact
with databases by sending SQL or database commands then receiving
results with Java.

The Java.sgl package with JDK contains various classes with their
methods defined and their actual implementations are done in third-
party drivers. Third party vendors implement the java.sgl.driver
interface in their database driver.

38

JDBC drivers are divided into four types or levels. The different types of
jdbc drivers are:

1. Typel: IDBC-ODBC Bridge driver (Bridge)
2. Type 2: Native-APl/partly Java driver (Native)
3.

4. Type4: All Java/Native-protocol driver (Pure)

Type 3: IDBC Network-All JAVA driver (Middleware)

JDBC-ODBC Bridgedriver:

Type 1 drivers act as a "bridge" between JDBC and another database
connectivity mechanism such as ODBC. The JDBC- ODBC bridge
provides JDBC access using most standard ODBC drivers. This driver
isincluded in the Java 2 SDK within the sun.jdbc.odbc package.

In this driver the java statements are converted to a jdbc statements.
JDBC statements call the ODBC by using the JDBC-ODBC Bridge.
And finally the query is executed by the database.

The Typel driver translates al JDBC calls into ODBC calls and sends
them to the ODBC driver. ODBC isageneric API.

Java Application |
JOBCAPI |

L}

JDBC - ODBC bridge |

I

ODBC Driver ‘

[==

Database

Fig. 2 Type 1. JIDBC-ODBC Bridge Driver

Native-APl/partly Java driver:

Type 2 drivers use the Java Native Interface (JNI) to make calls to a
local database library API. This driver converts the JDBC cals into a
database specific call for databases such as SQL, ORACLE etc.

This driver communicates directly with the database server. It requires
some native code to connect to the database. Type 2 drivers are usually
faster than Type 1 drivers.

Like Type 1 drivers, Type 2 drivers require native database client
libraries to be installed and configured on the client machine. The
distinctive characteristic of type 2 jdbc drivers is that Type 2 drivers
convert JDBC calls into database-specific calls i.e. this driver is
specific to aparticular database.

39

Local Computer

Java Application |==—| DB Vendor Driver
Application Code
—_—
3 Local
Type 2 — Native API DBMS
Proprietary Vendor Network
Specific Protocol Communication

1

Database Server

Fig. 3 Type 2: JDBC-Native API

All Java/Net-protocol driver:

e Type 3 drivers are pure Java drivers that use a proprietary network
protocol to communicate with JDBC middleware on the server. The
middleware then translates the network protocol to database-specific
function calls.

e Type 3 drivers are the most flexible JDBC solution because they do
not require native database libraries on the client and can connect to
many different databases on the back end. Type 3 drivers can be
deployed over the Internet without client installation.

Local Computer
J licati) —DE N
ava on |
Ape | Vendor :._
Application Code Wil
i 3
\J
Type 1 i opec | F—]
JDBC ODBC Bridge ||~ ™| Driver Local
DBMS
Proprietary Vendor Network
Specific Protocol Communication
Database Server

Fig. 4 Type 3: JDBC-Net pure Java

Native-protocol/all-Java driver:
The Type 4 uses java networking libraries to communicate directly with
the database server.

40

Java Application
JDBC Api

e

Thin/Type 4 Driver

Hative Protocol

Fig. 5 Type 4: 100% pure Java

The programming involved to establish a JDBC connection is fairly
simple. Herearethese simplefour steps:

Import JDBC Packages: Add import statements to Java program to
import required classes in Java code.

Register with JDBC Driver: This step causes the VM to load the
desired driver implementation into memory so it can fulfill JDBC
requests.

Database URL expression: This is to create a properly formatted
address that points to the database to which wish to connect.

Create Connection Object: Finally, code acall to the DriverManager
object's getConnection() method to establish actual database
connection.

Import JDBC Packages:

The Import statements tell the Java compiler where to find the
classes reference in r code and are placed at the very beginning of r
source code.

import java.sgl.* ; // for standard JDBC programs
Register JDBC Driver:

To register the JDBC driver in r program before using it.
Registering the driver is the process by which the Oracle driver's class file
is loaded into memory so it can be utilized as an implementation of the
JDBC interfaces.

Class.forName():

The most common approach to register a driver is to use Javas
Class.forName() method to dynamically load the driver's class file into

41

memory, which automatically registers it. This method is preferable
because it alows to make the driver registration configurable and portable.
The following example uses Class.forName() to register the Oracle
driver:

try
{
Class.forName("oracle.jdbc.driver.OracleDriver");
}
catch(ClassNotFoundException ex)
{
System.out.printin("Error: unable to load driver class!");
System.exit(1);
}

DriverManager.registerDriver():

The second approach can use to register a driver is to use the static
DriverManager.registerDriver() method.

The following example uses registerDriver() to register the Oracle driver:

try {
Driver myDriver = new oracle.jdbc.driver.OracleDriver();

DriverManager.registerDriver(myDriver);
}
catch(ClassNotFoundException ex) {
System.out.printin("Error: unable to load driver class!");
System.exit(1);

}

Database URL Formulation:

After loading the driver, JDBC establishes a connection using the
DriverManager.getConnection() method.

The three overloaded DriverManager.getConnection() methods:
e getConnection(String url)

e getConnection(String url, Properties prop)

e getConnection(String url, String user, String password)

Following table lists down popular JDBC driver names and database
URLSs.

RDBMS |IJDBC driver name URL format
MySQL |com.mysql.jdbc.Driver jdbc:mysql://hostname/
databaseName
ORACLE |oraclejdbc.driver.OracleDriveljdbc:oracle:thin: @hostname: p
r ort Number:databaseName

42

DB2 COM.ibm.db2.jdbc.net.DB2D |jdbc:db2:hostname: port
river Number/databaseName

Sybase com.sybase.jdbc.SybDriver |jdbc:sybase: Tds.hostname:
port Number/databaseName

Create Connection Object:

Using adatabase URL with a username and password:

e There are three forms of DriverManager.getConnection() method to
create a connection object. The most commonly used form of
getConnection() requires to pass a database URL, a username, and a
password:

host: port: databaseName value for the database portion of the URL.
Example, jdbc: oracle:thin: @amrood: 1521: EMP

e to call getConnection() method with appropriate username and
password to get a Connection object as follows:
Sring URL = "jdbc: oracle: thin: @amrood: 1521: EMP";
Sring USER = "username”;
Sring PASS = "password"
Connection conn = DriverManager.getConnection(URL, USER,
PASS);

e Using only adatabase URL:

A second form of the DriverManager.getConnection() method
requires only a database URL.:

DriverManager .getConnection(String url);

Example, String URL =
"jdbc: oracle: thin: user name/passwor d@amrood: 1521: EMP";

Connection conn = DriverManager.getConnection(URL);

import java.util.*;

String URL = "jdbc:oracle:thin: @amrood:1521:EMP";
Propertiesinfo = new Properties();

info.put("user", "username");

info.put("password", "password");

Connection conn = DriverManager.getConnection(URL);

Closing JDBC connections:

At the end of JDBC program, it is required to explicitly close al the
connections to the database to end each database session. .

To close above opened connection should call close() method as follows:
conn.close();

43

35 EXECUTING SQL STATEMENT, QUERY
EXECUTION

There are 3 objectsin JDBC
Statement Object.

PreparedStatement Object
CallableStatement Object

Statement Class:

For sending SQL Statements, JDBC uses the executeQuery (String
SQL) method of this Statement Class.

The execute (String SQL) method which will return a boolean value,
whether the same have been executed or not. This is normally used
when the statement returns more than one Result Set.

We can aso use the executeUpdate (String SQL) method, which will
return an int value, which the number of rows updated (that is inserted,
deleted, or modified).

JDBC provides two kinds of objects that can be used to execute SQL
Statements and they are PreparedStatement and CallableStatement
interfaces which are sub-interfaces of the Statement Interface. The
PreparedStatement Interface extends the Statement Interface and the
CallableStatement Interface extends the PreparedStatement interface.

PreparedStatement objects differ from the Statement objects in that the
SQL statement is pre-compiled and can have placeholders (?) for
runtime parameters values.

The PreparedStatement objects are particularly useful when a statement
will be executed many times (for example, adding new rows) since
substantial performance gains can be achieved.

Example:

import java.sgl.*;
classDBTest
{
public static void main(String[] args)

{

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbeDriver");

Connectionc =
DriverManager.getConnection("jdbc:odbc:dum’);

Statement s = c.createStatement();

s.execute(" create table DeptM aster(deptno Number, dname
Text, loc Text)");

System.out.printIn(" Table successfully created");

44

}

}

catch(SQLException €)

{ System.out.printin(" Datebase Error"+e.getM essage());

1i:atch(Exception e)

{ System.out.printin("General Error"+e.getMessage());
} }

Creating and Executing SQL statements

The commonly used SQL statements are:
1) Select

2) Insert

3) Update

4) Delete

SQL Select statement:

The SELECT statement is used to select data from atable.
Syntax: Select column_names FROM table_name;

The result from a SQL query is stored in aresultset.

The Select specifies the table columns that are retrieved.

The From clause tells from where the tabl e has been accessed.

The Where clause specifies which tables are used. The Where clauseis
optional, if not used then al the table rows will be selected.

SQL INSERT Statement:
e This statement alows to insert a single or multiple records into the

database.

e We can specify the name of the column in which we want to insert the

data.

Syntax: Insert into table_name values (valuel, value2..);

We can also specify the columns for which we want to insert data.

The UPDATE Statement:
e The Update statement is used to modify the datain the table.
e Whenever we want to update or delete a row then we use the Update

statement.

The syntax is:

45

UPDATE table name St colunm name = new value WHERE
column_name = some_name,

The Update statement has mainly three clauses.

1) UPDATE: It specifies which table column hasto be updated.
2) Set: It setsthe column in which the data has to be updated.
3) Where: It tells which tables are used.

SQL DELETE Statement:

e Thisdelete statement is used to delete rowsin atable.
Syntax: DELETE FROM table name WHERE column_name =
some_name,

Scrollable and updatable result sets:
1. scrollable ResultSets:

e These ResultSet objects will allow the usersto interact with the datain
both forward and backward directions.

e Scrollable ResultSets can be divided into following two types.
a) ScrollSensitive ResultSet:

e It is a ResultSet object, it will alow the later database
modifications.

e To represent this ResultSet object we have to use the following
constant from the ResultSet interface.

Public static final TYPE_SCROLL_SENSTIVE

b) ScrollInSensitive ResultSet:

e These are scrollable ResultSet objects, which will alow the later
database modifications after creation.

e To represent this ResultSet object we have to use the following
constant from the ResultSet interface.

Public static final TYPE_SCROLL_INSENSTIVE

on the basis of ResultSet concurrency there are two types of ResultSets

1. Read only ResultSet:

This ResultSet will alow the users only to read the data.To
represent this ResultSet object we have to use the following constant
from the ResultSet interface.

Public static final int CONCUR_READ_ONLY
2. Updatable ResultSet:

This ResultSet object will allow the user to perform updates on it’s
content.

46

To represent this ResultSet object to use following constant from
ResultSet interface.

Public static final int CONCUR_UPDATABLE.

e To refresh the present report a scroll sensitive ResultSet object we
have to use the following method.
Public void refreshRow() throws SQLEXxception

e In case of scrollable ResultSet object to move ResultSet cursor before
first record position we have to use following method
public void beforeFirst()

e To move ResultSet cursor after last record position we have to use
following method
public void afterLast()

e To move ResultSet cursor to first record position we will use the
following method
public boolean first()

e To move ResultSet cursor to last record position we will use the
following method
public boolean last()

e To move ResultSet cursor to a particular record position we will use
the following method
public boolean absolute(int rec_position)

e To skip particular no.of records from the current position of the
ResultSet we have to use the following method
public boolean relative(int no_of records)

e To insert new row in updatable ResultSet object we have to use
following method
public void moveTol nsertRow()

e To insert record data temporarily in a row we have to use the
following method
public void updatexxx(int column_index,xxx value)

e In order to make temporary insertion as permanent insertion in the
ResultSet object and database we have to use the following method.
public void insertRow()

Example:

import java.sgl.Connection;
import java.sgl.DriverManager;

47

import java.sgl.ResultSet;
import java.sgl.Statement;
import java.util.Properties,
public class JdbcAppl4 {
public static void main(String args|])throws Exception
{
Class.forName(*com.mysql.jdbc.Driver”);
Properties p=new Properties();
Connection
con=DriverManager.getConnection(“jdbc:mysql://localhos
t:3306/test ”,”root”,”system”);

Statement
st=con.createStatement(ResultSet. TY PE_SCROLL_SENSITIVE,
ResultSet. CONCUR_UPDATABLE);
boolean b=st.execute(“select * from empl1");
System.out.printin(b);
ResultSet rs=st.getResultSet();
System.out.printIn(* “);
System.out.printin(“ENO ENAME ESAL”);
while(rs.next())
{

System.out.printIn(rs.getString(“eno”)+”
“+rs.getString(“ename”) +7 “+rs.getString(“esal”));

System.out.printin(*“application in pausing state”);

System.out.printin(“perform updations at database”);

System.in.read();

rs.beforeFirst();

System.out.printin(*“data after updations”);

System.out.printin(* “Y;

System.out.printin(“ENO ENAME ESAL”);

System.out.printIn(* “Y;

while(rs.next())

{

rs.refreshRow();

System.out.printin(rs.getString(“eno”)+”
“+rs.getString(“ename”) +” “+rs.getString(“esal’));

con.clos();
}

7. Row sets;

e A RowSet object is ajava bean component and extends the ResultSet
interface Thus, it has a set of JavaBeans properties and follows the
JavaBeans event model.

48

e A RowSet object's properties alow it to create its own database
connection and to execute its own query in order to fill itself with data.

e Typesof Rowset

The RowSet is mainly classified into two types as per their properties:-

1. Connected Rowset.:- The connected rowset as the name suggests
is connected to the database connection object like the resultset.

2. Disconnected RowSet: - The disconnected RowSet only connects
to the database whenever needed and after finishing the
communication they close the database connection. So if the
connection pool is minimally used in this case.

e There are following ways to create the JDBCRowSet: -

1. Passing the ResultSet:- In this type the data is populated in the
object and then can retrieve the data by using the getter methods
aswedid in case of the ResultSet.

Example:-

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(“select * from employee”);
JdbcRowSet jdbcRs = new JdbcRowSetImpl(rs);

2. Creating the default object:- This method is useful to set the data
sources dynamically. In this method the Database URL, username
and password is explicitly set in the RowSetObject.

Example: -

JdbcRowSet jdbcRs = new JdbcRowSetimpl();
jdbcRs.setUsername(" user");

jdbcRs.setPassword(" password");

jdbcRs.setUrl ("jdbc:mySubprotocol :mySubname”);
jdbcRs.setCommand("select * from EMP");
jdbcRs.execute();

e The following example will illustrate the basic operation using the
JDBCRowSet interface.

import java.sgl. SQLException;

import javax.sgl.rowset.JdocRowSet;
import com.sun.rowset.JdbcRowSetImpl;
public class IDBCRowSetExample

{

public static void man(String[] args) throws
SQLException
{

49

JdbcRowSet jdbcRs = new JdbcRowSetimpl();
jdbcRs.setUsername(" scott");
jdbcRs.setPassword("tiger");

jdbcRs.setUrl ("jdbc:odbc:MyDsn™);
jdbcRs.setCommand(“select * from employee”);

jdbcRs.execute();
while(jdbcRs.next())
{
System.out.printIn(jdbcRs.getString("ename"));
}
}
}
8. Metadata:

e Data about the datais called metadata. In JIDBC there are two types of
metadata.

1.Database metadata
2.ResultSet metadata.

e JIDBC MetaData is the collective information about the data structure
and property of a column available in the table. The meta data of any
table tells the name of the columns,datatype used in column and
constraint used to enter the value of datainto the column of the table.

e Loading a driver by calling a class.forname(),this accepts the driver
class as argument.

DriverManager.getConnection () -This method returns a connection
object and builds a connection between url and database. Once a
connection is set up, afront end can access, insert ,update and retrieve the
datain the backend database.

con.createStatement () -This is used to create a sgl object. An object con
of the connection class is used to send and create a sgl query in the
database backend.

executeQuery () -This method retrieves a record set from a table in the
database. The retrieve record set is assigned to aresult set object.

getMetaData () - The Result Set call get Metadata(),which returns the
property of the retrieve record set (length,field,column).MetaData
accounts for the data element and its attribute.

Getcolumncount () -The method returns an integer data type and provides
the number of columnsin the Result set object.

Example:

JdbcM etaDataGettables.java

50

import java.sgl.*;
public class JdbcM etaDataGettab
{
static public final String driver = "com.mysgl.jdbc.Driver";
static public fina String connection =
"jdbc:mysqgl://localhost:3306/test";
static public final String user = "root";
static public final String password = "root";
public static void main(String args[])
{

{

try

Class.forName(driver);

Connection con = DriverManager.getConnection(connection,
user,password);

Statement st = con.createStatement();

String sgl = "select * from person”;

ResultSet rs = st.executeQuery(sql);

ResultSetM etaData metaData = rs.getM etaData();

int rowCount = metaData.getColumnCount();

System.out.printin(" Table Name : " +metaData.getTableName(2));

System.out.printin("Field \tsize\tDataType");

for (inti =0; i <rowCount; i++)

{
System.out.print(metaData.getColumnName(i + 1) + "\t");
System.out.print(metaData.getColumnDisplaySize(i + 1)+"\t");
System.out.printin(metaData.getColumnTypeNa me(i + 1));

}

} catch (Exception €)
{

System.out.printin(e);

}
}
}
Output:-
Table Name: person
Field Size DataTypes
id 2 VARCHAR
cname 50 VARCHAR
dob 10 DATE

9. Transaction:

e Transaction represents a single unit of work. The ACID properties
describe the transaction management well. ACID stands for Atomicity,
Consistency, isolation and durability.

e Advantage of Transaction Management is fast performance It makes
the performance fast because the database is hit at the time of commit.

51

Transaction succeeded

Commit /

inftial State | \ransanction

Rollback

Transaction failed

Fig. 6 Transaction Management in JDBC

e In JDBC, the Connection interface provides methods to manage
transactions.

M ethod Description

void setAutoCommit(boolean status) |It is true bydefault means each
transaction is committed bydefault.

void commit() commits the transaction.

void rollback() cancels the transaction.

e Simple example of transaction management in jdbc using Statement

import java.sgl.*;
class FetchRecords

{
public static void main(String args|])throws Exception

{

Class.forName("oracle.jdbc.driver.OracleDriver");

localhost: 1521:x€","system"," oracle");
con.setAutoCommit(false);
Statement stmt=con.createStatement();
stmt.executeUpdate("insert into user420 values(190,'abhi’,40000)");
stmt.executeUpdate("insert into user420 values(191,'umesh’,50000)");
con.commit();
con.close();
}
}

Connection con=DriverManager.getConnection("jdbc:oracle:thin: @

10 SUMMARY

e Working with databases using java is very simple as java supports
various database systems.

e Javahasan APl caled JDBC API which works with databases.
52

e The JDBC API is industrially accepted for database-independent

connectivity between the java programming language and a wide
variety of databases and other tabular data sources.

REFERENCE FOR FURTHER READING

1.
2.

Java EE 6 for Beginners, Sharanam Shah, Vaishali Shah, SPD
https://docs.oracle.com/cd/B10501 01/java.920/a96654/overvw.htm

UNIT END EXERCISES

1.

What are the seven basic steps for using JDBC to access a database?
Explain briefly with syntax.?

Explain different types of JDBC Driver Managers.?
Explain the different types of JDBC Driver?
Write a short note on: metadata & resultset.?

kkk

53

JAVA SERVER PAGES-1

Unit Structure

4.0 Objective

4.1 Introduction

4.2 Disadvantages,
4.3 JSPv/s Servlets,
4.4 LifeCycle of JSP
4.5 Comments,

4.6 JSP documents,
4.7 JSP elements,

4.8 Summary

Reference for further reading
Unit End Exercises

4.0 OBJECTIVE

N

To understand the difference between JSP & Servlet
To study the life cycle of JSP

Using JSP separates the design and implementation of web
applications.

To study the different JSP tag, element, object and their scope.
To study the different Action elements available in JSP.

4.1 INTRODUCTION

Java Server Pages (JSP) is a Java technology that allows software
developers to dynamicaly generate HTML, XML or other types of
documentsin response to a Web client request.

The technology alows Java code and certain predefined actions to be
embedded into static content. Java Server Pages or JSP for short is
Sun's solution for

Developing dynamic web sites.
JSP pages typically comprise of:
Static HTML/XML components.
Special JSP tags

Optionally, snippets of code written in the Java programming language
called "scriptlets.”

54

4.2 DISADVANTAGES OF JSP

1.

Not able to use the feature-rich Swing or AWT controls to construct
the user interface.

The HTML language has fewer features than the Swing controls for
creating a user interface.

In addition, ssimple functions such as scrolling down in a list of
records, deleting a record, or changing the way information is sorted
requires arefresh of the page.

Embedding of JavaScript in the HTML page to enhance functionality,
but this solution requires that the JavaScript that you use be supported
by the ability of users browsersto interpret it correctly.

As JSP pages are trandated to servlets and compiled, it is difficult to
trace errors occurred in JSP pages.

6. JSP pages require double the disk space to hold the JSP page.

7. JSP pages require more time when accessed for the first time as they

are to be compiled on the server.

4.3JSP VISSERVLETS

JSP Servlets

JSP is a web page scripting
language that can generate
dynamic content.

Servlets are Java programs
that are aready compiled
which aso creates dynamic
web content.

In MV C(Model View
Controller), jsp actsasaview.

In MV C(Model View
Controller), servlets act as a
controller.

It’s easier to code in JSP than
in Java Servlets.

There's little code to write
here.

JSP are generaly preferred
when there is not much
processing of data required.

servlets are best for use when
there is more processing and
manipulation involved.

JSP run slower compared to
Servlet as it takes compilation

Servlets run faster compared
to JSP.

time to convert into Java
Servlets.
The advantage of JSP | There is no such custom tag

programming over serviets is
that we can build custom tags
which can directly cal Java
beans.

facility in servlets.

We can achieve functionality
of JSP a client side by
running JavaScript at client
side.

There are no such methods for
servlets.

55

44 LIFE CYCLE OF JSP

JSPs are HTML web pages with specia JSP tags embedded.

These JSP tags can contain Java code. The JSP file extension is .jsp
instead of .html.

The JSP engine parses the .jsp and creates a servlet source file. It then
compiles the source file into a class file, this is done the first time and
thisiswhy the JSP is probably slower when first timeit is accessed.

Any time after this the special process or compiled servlet is executed
and istherefore returned faster.

Web Server

= >

Web Browser / 5P

1. Web browser Request 5 yop request sent to Web serve File

- 1

3. Send to JSP Servlet Engine
9. HTML sent to browser L, p—
. JSP Servlet Engine
\ '4.Parse JSPfile -
INTERNET ‘5. Generate Serviet '
source ¢ode .
6. Compile Serviet -
‘source code into
.class.

8 HTML (Servlet_mpi.ﬂ] +7. Instantiate Serviet:

Fig. 1 Life Cycleof JSP

Stepsrequired for a JSP request:

1.

The user goes to a web site made using JSP. The user goes to a JSP
page (ending with .jsp). The web browser requests the web page via
the Internet.

The JSP request sent to the Web server for processing.

The Web server grant that the file required is specia (.jsp),therefore
passes the JSP file to the JSP Servlet Engine.

If the JSP file has been called the first time,the JSP file is parsed, else
gotostep 7.

The next step is to generate a special Servlet file from the JSP file. All
the HTML required is converted to println or output statements.

The Servlet source code is compiled into aclassfile.

7. The Servlet isinstantiated, calling the init and service methods.

56

8. HTML from the Servlet output is sent via the Internet.
9. HTML results are displayed on the user's web browser

Trandation phase and a request processing phase:

1. Trandation phase:

Web server needs a servlet container to provide an interface to servlets,
the server needs a JSP container to process JSP pages. The JSP
container is responsible for intercepting incoming requests for JSP
pages.

To process al JSP elements in the page, the container first turns the
JSP page into a servlet (known as the JSP page implementation class).
The container then compiles the servlet class.

JSP page Converted to a servlet and compiling the servlet form the
trandation phase. The JSP container begins the translation phase for a
page automatically when it receives the first request for the page.

The trandlation phase takes a bit of time, the first user to request a JSP
page notices aslight delay.
2. Request processing phase:

The JSP container is responsible for invoking the JSP page
implementation class to process each request and generate the response.
Thisis called the request processing phase.

The JSP page remains unchanged; any subsequent request goes straight
to the request processing phase. When the JSP page or its content is
modified, it goes through the trandlation phase again before entering the
reguest processing phase.

The two phases areillustrated in following Figure

I hello.jsp
A — Tranglation

Client L T phase

helloServiet.java
& GET Mellojsp (3 JE

¢ . ¢
' o (ompile

" chimbHellol</him> - o

G o

Request
helloServiet.dass processing

phase

Fig. 2 Trandation & Request Processing Phase
57

JSP Access Moddl:

The JSP specifications have two approaches, popularly known as
Model 1 and Model 2 architectures, for applying JSP technology.

These approaches vary essentialy in the location at which the bulk of
the request processing was performed, and offer a useful paradigm for
building applications using JSP technology.

In the Model 1 architecture, the arriving request from a web browser is
sent directly to the JSP page, which is responsible for processing it and
replying back to the client. There is till separation of presentation from
content, because all data accessis performed using beans.

Although the Model 1 architecture is suitable for simple applications, it
may not be desirable for complex implementations. Utilization of this
architecture usually leads to a significant amount of scriptlets or Java
code embedded within the JSP page, especially if there is a significant
amount of request processing to be performed.

Another drawback of this architecture is that each of the JSP pages
must be individually responsible for managing application state and
verifying authentication and security.

Model 1 architecture:

1 |
Request ';

4
——

Response

JSP

2

Servlet Container Enterprise Information
Systems (EIS)

dISAAOIg

Fig. 3Model 1Architecture

Modd 2 architecture:

The Model 2 architecture, shown below, is a server-side
implementation of the popular Model/View/Controller design pattern.
In Model 2 processing is divided between presentation and front

components.

58

Model 2 Presentation components are JSP pages that generate the
HTML/XML response that determines the user interface when rendered
by the browser.

Front components (controllers) do not handle any presentation issues,
but rather, process al the HTTP requests. They are responsible for
creating any beans or objects used by the presentation components, as
well as deciding, depending on the user's actions, which presentation
component to forward the request to. Servlet or JSP pages can be
implemented by front components.

The benefits of this architecture is that there is no processing logic
within the presentation component itself; it is smply responsible for
retrieving any objects or beans that may have been previously created
by the controller, and extracting the dynamic content within for
insertion within its static templ ates.

Another benefit of this approach is that the front components present a
single point of entry into the application, making the management of
application state, security, and presentation uniform and simple to
maintain.

MVC Design Pattern
1
——»{ (Controller)
0 Request Servlet :
th %-(Model)
: Jav,
, > | (View) | . ﬂ.Beanl? f
Response| JSP 4 O
Servlet Container EIS
Fig. 4 Mode 2 Architecture
45 COMMENTS

JSP comments are ignored by JSP containers that should be marked. A
JSP comment is useful for hiding or "comment out" part of your JSP

page.
Following is the syntax of JSP comments:

<%-- Thisis JSP comment --%>

Following is the simple example for JSP Comments:

59

<html>

<head><title>A Comment Test</title></head>

<body>

<h2>A Test of Comments</h2>

<%-- This comment will not be visible in the page source --%>
</body>

</html>

There are asmall number of special constructs:

Syntax Purpose

<%-- comment --%> | A JSP comment. Ignored by the JSP engine.

<!-- comment --> An HTML comment. Ignored by the browser.

<\% Represents static <% literal.

%\> Represents static %> literal.

\' A single quote in an attribute that uses single
guotes.

\" A double quote in an attribute that uses double
quotes.

4.6 JSP DOCUMENTS

A JSP written in an XML format with JSP elements expressed as XML
elements.

A JSP document is JSP written in XML format and therefore must
comply with the XML standard rules.

JSP document must be well formed
A JSP Document should be saved with the .jspx extension

A JSP Document must have a root element called "root" with a
"version” attribute like: <jsp:root verson="2.1"
xmlns:jsp="http://java.sun.com/JSP/Page">

Identification of JSP documents can occur in three ways:

4.7JSP ELEMENTS

A JSP (jsp) file can contain JSP elements, fixed template data, or any
combination of the two.

JSP elements are instructions to the JSP container about what code to
generate and how it should operate.

JSP elements have distinct start and end tags that identify them to the
JSP compiler. Template data is everything else that is not recognized
by the JSP container.

60

Template or HTML data is passed through unmodified one, so the
HTML that is ultimately generated contains the template data exactly
asit was coded inthe .jspfile.

Threetypes of JSP elements exist:

1. Directives

2. Scripting elements, including expressions, scriptlets, and declarations
3. Actions

1. Directives:

Directives are instructions to the JSP container that describe what
code should be generated. They have the general form

<%@ directive-name [attribute="value" attribute="value" ...] %>

Zero or more spaces, tabs, and newline characters can be after the
opening <%@ and before the ending %>, and one or more
whitespace characters can be after the directive name and between
attributes/value pairs.

The only restriction is that the opening <%@ tag must be in the
same physica file as the ending %> tag.

The JSP 1.1 specification describes three standard directives
availablein al compliant JSP environments:

1. page
2. include

3. taglib

No custom directives can be used in the JSP environment, this
leaves open the possibility that user-defined directives may be
included in alater specification.

The next three sections provide an overview of each of these directives.

1. The page Directive

The page directive is used to specify attributes for the JSP page as a
whole. It has the following syntax:

<%@ page [attribute="value" attribute="value" ...] %>

Attributes of JSP page directive
import
contentType
extends
info

61

buffer

language
isELIgnored
isThreadSafe
autoF ush

session

pageEncoding

errorPage
isErrorPage

1) Import:

The import attribute is used to import class, interface or al the

members of a package. It is similar to importing keywords in java class or
interface.

Example of import attribute

<html>

<body>

<%@ page import="java.util.Date" %>
Today is. <%= new Date() %>
</body>

</html>

2) contentType:

The contentType attribute defines the MIME(Multipurpose Internet
Mail Extension) type of the HTTP response.The default value is
"text/html;charset=1SO-8859-1".

Example of contentType attribute

<html>

<body>

<%@ page contentType=application/msword %>
Today is: <%= new java.util.Date() %>

</body>

</html>

3) extends:

The extends attribute defines the parent class that will be inherited

by the generated servlet. It israrely used.

62

4) Info:

This attribute simply sets the information of the JSP page which is
retrieved later by using getServletinfo() method of the Servlet interface.

Example of info attribute

<html>

<body>

<%@ page info="composed by ABC" %>
Today is: <%= new java.util.Date() %>
</body>

</html>

The web container will create a method getServletinfo() in the resulting
serviet.

For example:

public String getServletinfo()

{
return "composed by ABC";

}

5) Buffer:

e The buffer attribute sets the buffer size in kilobytes to handle output
generated by the JSP page. The default size of the buffer is 8Kb.

Example of buffer attribute

<html>

<body>

<%@ page buffer="16kb" %>

Today is. <%= new java.util.Date() %>
</body>

</html>

6) Language:

The language attribute specifies the scripting language used in the JSP
page. The default valueis"java'.
7) isELIgnored:

We can ignore the Expression Language (EL) in jsp by theisELIgnored
attribute.

63

By default its value is fase i.e. Expression Language is enabled by

default.
<%@ page isELIgnored="true" %>//Now EL will be ignored

8) isThreadSafe:

Servlet and JSP both are multithreaded. If you want to control this
behaviour of a JSP page, you can use the isThreadSafe attribute of the
page directive.

The value of isThreadSafe value is true. If you make it false, the web
container will seriaize the multiple requests, i.e. it will wait until the
JSP finishes responding to a request before passing another request to

it.

The value of isThreadSafe attribute like:

<%@ page isThreadSafe="fa se" %>

The web container in such a case, will generate the servlet as:

public class SimplePage jsp extends HttpJspBase
implements SingleThreadM odel{

9) errorPage:

The errorPage attribute is used to define the error page, if an exception
occursin the current page, it will be redirected to the error page.

Example:

/lindex.jsp

<html>

<body>

<%@ page errorPage="myerrorpage.jsp" %>
<%= 100/0 %>

</body>

</html>

10) isErrorPage:

The isErrorPage attribute is used to declare that the current page is the

error page.

Note: The exception object can only be used in the error page.

Example:

/Imyerrorpage.jsp

64

<html><body>

<%@ page isErrorPage="true" %>
Sorry an exception occured!

The exception is. <%= exception %>
</body>

</html>

2. JSP Includedirective:

The include directive is used to include the contents of any resource it
may bejsp file, html file or text file.

The include directive includes the origina content of the included
resource at page translation time.

Advantage of Include directive is code reusability

Syntax of include directive:
<%@ include file="resourceName" %>

Example of include directive

It is including the content of the header.html file. To run this
example you must create a header.html file.

<html>

<body>

<% @ include file="header.html" %>

Today is: <%= java.util.Calendar.getlnstance().getTime() %>
</body>

</html>

3. JSP Taglib directive:

The JSP taglib directive is used to define atag library that defines many
tags.
The TLD (Tag Library Descriptor) file to define the tags.

In the custom tag section use this tag so it will be better to learn it in
custom tag.

Syntax JSP Taglib directive
<%@ tagliburi="uriofthetaglibrary" prefix="prefixoftaglibrary" %>

Example of JSP Taglib directive:

In this example, using our tag named currentDate. To use thistag it
must specify the taglib directive so the container may get information
about the tag.

65

<html>

<body>

<%@ tagliburi="http://www.javatpoint.com/tags’ prefix="mytag" %>
<mytag:currentDate/>

</body>

</html>

Therearefour types of scripting elements:

1.

=

Scriptlet tag

2. Expression tag
3.
4. Comment tag

Declaration tag

. scriptlet tag:

A scriptlet is a valid code in java and is placed in the _jspService()
method of the JSP engine at the time of running. The scriptlet syntax is-

<% java code %>
There are variables available exclusively for the scriplets.

They are request, response, out,session and pageContext, application,
config and exception.

Simple Example of JSP scriptlet tag

In this example, displaying a wel come message.

<html>

<body>

<% out.print("welcometo jsp"); %>
</body>

</html>

Example of JSP scriptlet tag that prints the user name

In this example, create two files index.html and welcome.jsp.

The index.html file gets the username from the user and the
welcome.jsp file prints the username with the wel come message.

index.html

<html>

<body>

<form action="welcome.jsp">

<input type="text" name="uname">
<input type="submit" value="go">

</form>

</body>

</html>

66

welcome.jsp

<html>

<body>

<%

String name=request.getParameter("uname");
out.print("welcome "+name);

%>

</fform>

</body>

</html>

2. JSP expression tag:

The code placed within the expression tag is written to the output
stream of the response.

Need not write out.print() to write data. It is mainly used to print the
values of variables or methods.

Syntax of JSP expression tag
<%= statement %>
Example of JSP expression tag

In this example of jsp expression tag, ssmply displaying a welcome
message.

<html>

<body>

<%= "welcometo jsp" %>
</body>

</html>

Example of JSP expression tag that printscurrent time

To display the current time, it is used in the getTime() method of
Calendar class.

The getTime() is an instance method of Calendar class, so we have
called it after getting the instance of Calendar class by the getInstance()
method.

Example of JSP expression tag that printsthe user name

index.jsp

<html>

<body>

Current Time: <%= java.util.Calendar.getlnstance().getTime() %>
</body>

</html>

67

In this example, printing the username using the expression tag.

The index.html file gets the username and sends the request to the
welcome.jsp file, which displays the username.

index.html
<html>
<body>

</form>
</body>
</html>

<form action="welcome.jsp">
<input type="text" name="uname">

<input type="submit" value="go">

welcome.jsp
<html>
<body>

</form>
</body>
</html>

<%= "Welcome "+request.getParameter("uname") %>

3. JSP Declaration Tag

The JSP declaration tag is used to declare fields and methods.

The code written inside the jsp declaration tag is placed outside the
service() method of auto generated servlet. So it doesn't get memory at

each request.

Syntax of JSP declaration tag

<%! field or method declaration %>

Difference between the jspscriptlet tag and jsp declaration tag

JspScriptlet Tag

Jsp Declaration Tag

The jspscriptlet tag can only
declare variables not methods.

The jsp declaration tag can declare
variables as well as methods.

The declaration of scriptlet tag is
placed inside the _jspService()
method.

The declaration of jsp declaration
tag is placed outside the
_jspService() method.

Example of JSP declaration tag that declaresfield

In this example of JSP declaration tag, declaring the field and printing
the value of the declared field using the jsp expression tag.

68

index.jsp

<html>

<body>

<%! int data=50; %>

<%= "Vaue of the variable is:"+data %>
</body>

</html>

Example of JSP declaration tag that declares method

In this example of JSP declaration tag, hence defining the method
which returns the cube of given number and calling this method from
the jsp expression tag. But it can aso use jspscriptlet tag to call the
declared method.

index.jsp

<html>

<body>

<%!

int cube(int n)
{

}
%>
<%= "Cube of 3is."+cube(3) %>
</body>
</html>

return n* n*n*;

4. JSP Comment:

There is only one type of JSP comment available by JSP specification.
JSP Comment Syntax:
<%-- comment --%>

This JSP comment tag tells the JSP container to ignore the comment
part from compilation. That is, the commented part of source code is
not considered for the content parsed for ‘response’.

<html>

<body>

<%-- This JSP comment part will not be included in the response
object --%>

</body>

</html>

69

4.8 SUMMARY

1. Java Server Pages (JSP) is a Java technology that allows software
developers to dynamically generate HTML, XML or other types of
documents in response to a Web client request.

2. JSP pages typically consist of: Static HTML/XML components.
Special JSP tags optionally, snippets of code written in the Java
programming language called "scriptlets.”

3. The JSP page goes through the Trandation Phase and Request
Processing Phase.

REFERENCE FOR FURTHER READING

1. JSP: The Complete Reference Phil Hanna
2. JavaEE 6 for Beginners, Sharanam Shah, Vaishali Shah, SPD

UNIT END EXERCISES

1. What is JSP? Explain the Life Cycle of JSP Page?
2. Explain the difference between JSP & Servlet?
3. Write aJSP Program to print current Date & Time.

*kk*k*k

70

JAVA SERVER PAGES-2

Unit Structure

5.0
5.1
5.2
5.3
5.4
5.5
5.6
5.7

Objective

Introduction

Action elements

Implicit objects

Scope

character quoting conventions
unified expression language
Summary

Reference for further reading
Unit End Exercises

5.00BJECTIVE

N

To understand the different Action tag availablein JSP
To study the Implicit Objects

Understand Difference between jsp include directive and include
action

To study the use of JavaBeansin JSP.
To study the scope of JSP Objects.

5.1 INTRODUCTION

There are many JSP action tags or elements. Each JSP action tag is
used to perform some specific tasks.

The action tags are used to control the flow between pages and to use
Java Bean.

There are 9 jsp implicit objects. These objects are created by the web
container that are available to all the jsp pages.

The available implicit objects are out, request, config, session,
application etc.

5.2ACTION ELEMENTS

There are many JSP action tags or elements.

71

e Each JSP action tag is used to perform some specific tasks.
e The action tags are used to control the flow between pages and to use

Java Bean.

The Jsp action tags are given below.

JSP Action Tags Description

jsp:forward forwards the request and response to another
resource.

jsp:include includes another resource.

jsp:useBean creates or locates bean object.

jSp:setProperty sets the value of property in a bean object.

jSp:getProperty prints the value of property of the bean.

jsp:plugin embeds other components such as applets.

jsp:param sets the parameter value. It is used in forward
and include mostly.

jsp:fallback can be used to print the message if the plugin is
working. It isused in jsp:plugin.

e The jsp:useBean, jsp:setProperty and jsp:getProperty tags are used for

bean development.

A. jsp:forward action tag

e Thejsp:forward action tag is used to forward the request to another
resource; it may be jsp, html or another resource.

e Syntax of jsp:forward action tag without parameter
<jsp:forward page="relativeURL | <%= expression %>" />

e Syntax of jsp:forward action tag with parameter

<jsp:forward page="relativeURL | <%= expression %>">
<jsp:param name="parametername” value="parametervalue |
<%=expression%>" />

</jsp:forward>

e Example of jsp:forward action tag without parameter

In this example, we are simply forwarding the request to the printdate.jsp

file.

index.jsp
<html>
<body>

</body>
</html>
printdate.jsp
<html>

<h2>thisisindex page</h2>
<jsp:forward page="printdate.jsp" />

72

<body>

<% out.print("Today is:"+java.util.Calendar.getinstance().getTime());
%>

</body>

</html>

e Example of jsp:forward action tag with parameter

In this example, we are forwarding the request to the printdate.jsp file with
parameter and printdate.jsp file prints the parameter value with date and
time.

index.jsp

<html>

<body>

<h2>thisisindex page</h2>

<jsp:forward page="printdate.,jsp" >
<jsp:param name="name" value="ABC" />
</jsp:forward>

</body>

</html>

printdate.jsp

<html>

<body>

<% out.print("Today is"+java.util.Caendar.getinstance().getTime());
%>

<%= request.getParameter("name") %>

</body>

</html>

B. jsp:include action tag:

e The jspiinclude action tag is used to include the content of another
resource. It may be jsp, html or servlet.

e Thejsp include action tag includes the resource at request time so it is
better for dynamic pages.

e The jspiinclude tag can be used to include static as well as dynamic
pages.
e Advantage of jsp:include action tag is code reusability

e Difference between jsp include directive and include action

JSP include directive JSP include action

includes resources at trandation | includes resources at request time.
time.

better for static pages. better for dynamic pages.

includes the original content in the | cals the include method.
generated servlet.

73

e Syntax of jsp:include action tag without parameter
<jgp:include page="relativeURL | <%= expression %>" />

e Syntax of jsp:include action tag with parameter
<jsp:include page="relativeURL | <%= expression %>">
<jgp:param name="parametername"
value="parameterval ue | <%=expression%>" />
</jsp:include>

e Example of jsp:include action tag without parameter

In this example, index.jsp file includes the content of the printdate.jsp file.

index.jsp

<html>

<body>

<h2>thisisindex page</h2><jsp:include page="printdate.,jsp" />
<h2>end section of index page</h2>

</body>

</html>

printdate.jsp

<html>

<body>

<% out.print("Today
is:"+java.util.Calendar.getinstance().getTime()); %>

</body>

</html>

C. jsp:useBean action tag:

A JavaBeanisajavaclassthat should follow following conventions:
1. It should have a no-arg constructor.
2. It should be Serializable.
3. It should provide methods to set and get the values of the
properties, known as getter and setter methods.

Use Java Bean: According to Java white paper, it is a reusabl e software
component. A bean encapsulates many objects into one object, so it can
access this object from multiple places. Moreover, it provides easy
mai ntenance.

Example of java bean class:

//Employee.java

package mypack;

public class Employee implements java.io.Serializable

{
privateint id;
private String name;

74

public Employee()
{

}

public void setld(int id){ this.id=id;
}
public intgetld()
{

returnid;

public void setName(String name){ this.name=name;
} public String getName(){ return name;

}
}

Access thejava bean class:
To access the java bean class, we should use getter and setter methods.

package mypack;

public class Test{

public static void main(String args[])
{
Employee e=new Employee();//object is created
e.setName(" Subodh");//setting value to the object
System.out.printin(e.getName()); }}

D. jsp:useBean action tag
The jsp:useBean action tag is used to locate or instantiate a bean class.

If the bean object of the Bean class is aready created, it doesn't create
the bean depending on the scope. But if an object of the bean is not
created, it instantiates the bean.

Syntax of jsp:useBean action tag

<jsp:useBean id= "instanceName" scope= "page | request |
session | application”

class= "packageName.className" type=
"packageName.className"

beanName="packageName.className | <%= expression
S>>
</jsp:useBean>
Attributes and Usage of jsp:useBean action tag
1. id: isused to identify the bean in the identity scope.

2. scoperepresents the scope of the bean. It may be page, request, session
or application. The default scopeis page.

75

3. page: specifies that you can use this bean within the JSP page. The
default scope is page.

4. request: specifies that you can use this bean from any JSP page that
processes the same request. It has awider scope than the page.

5. session: specifies that you can use this bean from any JSP page in the
same session whether it processes the same request or not. It has a
wider scope than request.

6. application: specifies that you can use this bean from any JSP page in
the same application. It has awider scope than session.

7. class: instantiates the specified bean class but it must have no-arg or no
constructor and must not be abstract.

8. typeprovides the bean a data type if the bean aready exists in the
scope. It is mainly used with class or beanName attributes. If you use
it without class or beanName, no bean is instantiated.

9. beanNameiinstantiates the bean using the
java.beans.Beans.instantiate() method.

Simple example of jsp:useBean action tag

Calcub.java

public class Calcube{

public int cube(int n){ return n*n*n;}
}
index.jsp file

<jsp:useBean id="obj" class="ABC"/>
<%

int m=obj.cube(5);

out.print("cube of 5is"+m);

%>

E. jsp:setProperty and jsp:getProperty action tags:

The setProperty and getProperty action tags are used for developing
web applications using Java Bean.

In web applications, bean class is mostly used because it is a reusable
software component that represents data.

The jsp:setProperty action tag sets a property value or values in a bean
using the setter method.

Syntax of jsp:setProperty action tag
<JSp setProperty name="instanceOfBean" property="*" |
property="propertyName" param="parameterName" |
property="propertyName" value="{ string | <%= expression %>}"
/>
Example of jsp:setProperty:
<jsp:setProperty name="bean" property="*" />
76

Example of jsp:setProperty:
<jsp:setProperty name="bean" property="username" />
Example of jsp:setProperty:
<jsp:setProperty name="bean" property="username" value="ABC" />
jSp:getProperty action tag
The jsp:getProperty action tag returns the value of the property.
Syntax of jsp:getProperty action tag
<jsp:getProperty name="instanceOfBean" property="propertyName" />
Simple example of jsp:getProperty action tag
<jsp:getProperty name="obj" property="name" />
F. Displaying applet in JSP (jsp:plugin action tag)

The jsp:plugin action tag is used for embedded applets in the jsp file.
The jsp:plugin action tag downloads plugin at client side to execute an
applet or bean programs.

Syntax of jsp:plugin action tag
<jsp:plugin type= "applet | bean" code= "nameOfClassFil€"
codebase="directoryNameOfClassFile"

</jsp:plugin>

4. implicit objects:

There are 9 jsp implicit objects. These objects are created by the web
container that are available to al the jsp pages.

The available implicit objects are out, request, config, session,
application etc.

A list of the 9 implicit objectsis given below:

Object Type
Out JspWriter
Request HttpServletRequest
Response HttpServletResponse
Config ServletConfig
application ServletContext
Session HttpSession
pageContext PageContext
page Object
exception Throwable

A. JSP out:

e For writing any data to the buffer, JSP provides an implicit object
named out. It is the object of JspWriter. In case of servlet you need to
write:

77

PrintWriter out=response.getWriter();

Example of out implicit object

index.jsp

<html>

<body>

<% out.print("Today is:"+java.util.Caendar.getinstance().getTime());
%>

</body>

</html>

B. JSP request:

The JSP request is an implicit object of type HttpServlietRequest i.e.
created for each jsp request by the web container. It can also be used to
set, get and remove attributes from the jsp request scope.

Example of JSP request implicit objectindex.html
<form action="welcome.jsp">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

welcome.jsp

<% String name=request.getParameter("uname”);
out.print("welcome "+name);

%>

C. JSP response:

JSP response is an implicit object of type HttpServletResponse. The
instance of HttpServletResponse is created by the web container for
each jsp request.

Example of response implicit object

index.html

<form action="welcome.jsp">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

welcome.jsp

<%
response.sendRedirect("http://www.google.com');
%>

78

D. JSP config:
In JSP, config is an implicit object of type ServlietConfig.

This object can be used to get an initidization parameter for a
particular JSP page.

The config object is created by the web container for each jsp page.

Example of config implicit object:

index.html

<form action="welcome">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

web.xml file

<web-app>

<servlet>

<servlet-name>ABC</servlet-name>
<jsp-file>/wel come.jsp</jsp-file>

<init-param>
<param-name>dname</param-name>
<param-value>sun.jdbc.odbc.JdbcOdbcDriver</param-value>
</init-param>

</servlet>

<servlet-mapping>
<servlet-name>ABC</servlet-name>
<url-pattern>/wel come</url-pattern>
</servlet-mapping>

</web-app>

welcome.jsp

<%

out.print("Welcome "+request.getParameter("uname"));
String driver=config.getlnitParameter("dname");
out.print("driver name is="+driver);

%>

E. JSP application:
In JSP, application is an implicit object of type ServletContext.

The instance of ServletContext is created only once by the web
container when application or project is deployed on the server.

Example:

index.html

<form action="welcome">

<input type="text" name="uname">
<input type="submit" value="go">

79

</form>

web.xml file

<web-app>

<servlet>

<servlet-name>ABC</servlet-name>
<jsp-file>/welcome.jsp</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>ABC</servlet-name>
<url-pattern>/wel come</url-pattern>
</servlet-mapping>

<context-param>
<param-name>dname</param-name>
<param-value>sun.jdbc.odbc.JdbcOdbcDriver</param-value>
</context-param>

</web-app>

welcome.jsp

<%

out.print("Welcome "+request.getParameter("uname"));
String driver=application.getlnitParameter("dname");
out.print("driver nameis="+driver);

%>

F. session:
In JSP, session is an implicit object of type HttpSession.
The Java devel oper can use this object to set,get or remove attributes or
to get session information.

Example:

index.html

<html>

<body>

<form action="welcome.jsp">

<input type="text" name="uname">
<input type="submit" value="go">

</form>

</body>

</html>

welcome.jsp

<html>

<body>

<%

String name=request.getParameter("uname");
out.print("Welcome "+name);
session.setAttribute("user”,name);

80

second jsp page
%>

</body>

</html>

second.jsp

<html>

<body>

<%

String name=(String)session.getAttribute(" user");
out.print("Hello "+name);

%>

</body>

</html>

G. pageContext:
In JSP, pageContext isan implicit object of type PageContext class.

The pageContext object can be used to set,get or remove attribute from
one of the following scopes:
1. Page

2. reguest
3. Session
4. Application
In JSP, page scope is the default scope.

Example:

index.html

<html>

<body>

<form action="welcome.jsp">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

</body>

</html>

welcome.,jsp

<html>

<body>

<%

String name=request.getParameter("uname");
out.print("Welcome "+name);
pageContext.setAttribute(" user” ,name,PageContext. SESSION_SCOPE);
second jsp page
%>

</body>

81

</html>
second.jsp
<html>
<body>
<%
String name=(String)pageContext.getAttribute
("user",PageContext.SESSION_SCOPE);
out.print("Hello "+name);
%>
</body>
</html>

5. Scope:

The availability of a JSP object for use from a particular place of the
application is defined as the scope of that JSP object.

Every object created in a JSP page will have a scope. Object scope in
JSP is segregated into four parts and they are page, request, session and
application.

a) Page

‘page’ scope means the JSP object can be accessed only from
within the same page where it was created.

The default scope for JSP objects created using <jsp:useBean> tag
is page.
JSP implicit objects out, exception, response, pageContext, config
and page have ‘page’ scope.

b) Request:

A JSP object created using the ‘request’ scope can be accessed
from any pages that serves that request.

More than one page can serve a single request.
The JSP object will be bound to the request object.

Implicit object request has the ‘request’ scope.

C) Session:

‘Session scope means the JSP object is accessible from pages that
belong to the same session from where it was created.

The JSP object that is created using the session scope is bound to
the session object.

Implicit object session has the “session’ scope.

82

6.

7.

d) Application:

A JSP object created using the ‘application’ scope can be accessed
from any pages across the application.

The JSP object is bound to the application object.

Implicit object application has the “application” scope.

Character quoting conventions:

There are a small number of special constructs we can use in various
cases to insert comments or characters that would otherwise be treated

specialy.
Character Quoting And Data Conventions :

Syntax Purpose
<\% Used in template text (static HTML) where you
really want "<%".
%\> Used in scripting elements where you really want
"%>".
\' A single quote in an attribute that uses single quotes.

Remember, however, that you can use either single
or double quotes, and the other type of quote will
then be aregular character.

\" A double quote in an attribute that uses double
guotes. Remember, however, that you can use either
single or double quotes, and the other type of quote
will then be aregular character.

%\> %>in an attribute.

<\% <% in an attribute.

\ Used as adelimiter.

<%-- A JSP comment. Ignored by JSP-to- scriptlet
comment-- | translator. Any embedded JSP scripting e ements,
%> directives, or actions are ignored.

<l-- An HTML comment. Passed through to resultant
comment-- | HTML. Any embedded JSP scripting elements,
> directives, or actions are executed normally.

Unified expression language:

Expression Language(EL):

The Expression Language (EL) provides away to simplify expressions
in JSP.

It is a simple language used for accessing implicit objects and Java
classes, and for manipulating collections in an elegant manner.

EL provides the ability to use run-time expressions outside of JSP
scripting elements.

83

"Unified" Expression Language:

JavaServer Pages each has its own expression language.

The expression language included in JSP provides greater flexibility
to the web application devel oper.

Deferred evaluation means that the technology using the unified EL
takes over the responsibility of evaluating the expression from the JSP
engine and evaluates the expression at the appropriate time during the
page lifecycle.

But the JSP EL is designed for immediate evaluation of expressions.

The Expression Language (EL) simplifies the accessibility of data
stored in the Java Bean component, and other objects like request,
session, application etc.

There are many implicit objects, operators and reserve words in EL.

Syntax for Expression Language (EL)
${ expression }

Implicit Objects in Expression Language (EL)

There are many implicit objects in the Expression Language. They are as

follows:
I mplicit Objects Usage
pageScope it maps the given attribute name with the
value set in the page scope
requestScope it maps the given attribute name with the
value set in the request scope
sessionScope it maps the given attribute name with the

value set in the session scope

applicationScope

it maps the given attribute name with the
value set in the application scope

param it maps the request parameter to the single
value

paramVaues it maps the request parameter to an array of
values

header it maps the request header name to the single
value

headerValues it maps the request header name to an array of
values

cookie it maps the given cookie name to the cookie
value

initParam it maps the initialization parameter

pageContext it provides access to many objects request,

Session ete.

84

Example:

index.jsp

<form action="process.jsp">

Enter Name:<input type="text" name="name" />

<input type="submit" value="go"/>

</fform>

process.jsp

Welcome, ${ param.name }

Example of Expression Language that prints the value set in the session
scope

In this example, we print the data stored in the session scope using EL.
For this purpose, we have used a sessionScope object.

Index.jsp

<h3>welcome to index page</h3>
<%
session.setAttribute("user”,"ABC");
%>

<ahref="process.jsp">visit
process.jsp

Valueis ${ sessionScope.user }

Precedence of Operatorsin EL
There are many operators that have been provided in the Expression
Language.

1 1].

0

-(unary) not ! empty
* [div % mod

+ - (binary)
<<=>>=|[tlegtge
==I=eqne

&& and

. Jlor

10. 2.

© o NO WD

Reverse words in EL
There are many reserved words in the Expression Language. They are as
follows:

It le ot ge

eq ne true fase

and or not I nstanceof
div mod empty | null

85

SUMMARY

1.

JSP specification provides Standard(Action) tags for use within your
JSP pages.

These tags are used to remove or eliminate scriptlet code from your
JSP page because scriplet code is technically not recommended
nowadays.

It's considered to be bad practice to put java code directly inside your
JSP page.

There are 9 jsp implicit objects. These objects are created by the web
container that are available to al the jsp pages.

The available implicit objects are out, request, config, session,
application etc.

JSP provides the capability to the user to define the scope of these
variables.

REFERENCE FOR FURTHER READING

1. JavaEE 6 for Beginners, Sharanam Shah, Vaishali Shah, SPD
2. JSP: The Complete Reference Phil Hanna

UNIT END EXERCISES

Eal R A o

Write a short note on Expression Language? With example.
Explain the different action tag in jsp with example?

What is an implicit object?

What is scopein JSP object?

kkk

86

UNIT IV

JAVA SERVER FACES

Unit Structure

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Objective

Introduction

Need of MVC

What is JSF?

Components of JSF

JSF as an application

JSF lifecycle,

JSF configuration,

JSF web applications (login form, JSF pages)
Summary

Reference for further reading
Unit End Exercises

6.1 OBJECTIVE

To reduce the effort in creating and maintaining applications using JSF,
this will run on a Java application server and will render application Ul
on to atarget client.

To Providing reusable Ul components

Making easy data transfer between Ul components

To Managing Ul state across multiple server requests

Enabling implementation of custom components

To Understand the client-side event to server-side application code

6.2 INTRODUCTION

Development of the Web is constantly changing from plain HTML to
Servlet, JSP to JavaServer Faces.

JSF isthe latest and most advanced web component technol ogy.

Initially a web application written using Servlets, which is used to
deliver HTML directly.

A JSP isacomposite between an HTML page and a servlet.

JSF is new and most advanced technology for instant building web
applications using java.
87

JSF follows the Model View Controller architecture.

6.3 NEED OF MVC

In the past, the first problem during Software development always
desired to simplify modification of the user interface.

The second one is that programmer who develop application have
different skills setswhich is classified as follows:

o Server side programmers
o HTML code writers
o Graphics Designers

MV C does separation of logic from presentation, which alows each
member of the WAD team to concentrate on its own development

jproccess.

| Data == =
Controller 4—>] Model

Fig. 1L MVC Design
MVC design pattern designs an application using three separate

modules:
Module Description
Model Carries Dataand login
View Shows User Interface
Controller Handles processing of an application.

6.4 WHAT ISJSF?

JSF is a Server side user interface component framework to build web
applications

JSF simplifies web application development by providing a compose
centric approach to developing java web interfaces.

Server side:
o Present Enterprise application are multi-tier and mostly server side

User Interface
o JSFisused to create a user interface.

Component Framework
88

o Components are the core of the framework.

o JSFisthe standard web component technology for java

The framework is not only limited to developing customized User
Interface Components but also provides support for various Advanced
Features like Event handling Mechanism, Validating User Inputs that
are sent by the clients, Easy Page Navigation Mechanism etc.

JSF is a Java standard developed through Java Community Process
(JCP), development tools vendors are fully empowered to provide
easy to use, visua, and productive develop environments for
JavaServer Faces.

JSF provides a rich component model complete with event handling
and component rendering.

6.5 COMPONENTS OF JSF

In JSF, a component is a group of interacting classes that together
provide a reusable piece of web-based user interface code. A
component is made up of three classes that work closely together.

Components in JSF are elements like text box, button, table etc..that are
used to create Ul of JSF Applications. These are objects that manage
interaction with a user.

o Simple components like text box, button.
o Compound components like table, data grid

A component containing many components inside it is called a
compound component.

Components help developers to create Uls by assembling a number of
components, associating them with

There are two types of Componentsin JSF
A. Standard Ul Components
B. Custom Ul Components

A. Standard Ul Components:

It contains a basic set of Ul components like text fields, check boxes,
list boxes, panel, label, radio button etc. These are called standard
components

B. Custom Ul Components:

JSF lets create and use your own set of reusable components, These
components are called custom components.

JSF-Basic Tags

JSF provides a standard HTML tag library. These tags get rendered into
corresponding html output.

89

These tags need to use the following namespaces of URI in the html

node.

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmins:h="http://java.sun.com/jsf/html" >
Following are important Basic Tagsin JSF:

SN. Tag & Description

1 h:inputText RendersaHTML input of type="text", text box.

2 h:inputSecret Renders a HTML input of type="password", text
box.

3 h:inputTextarea RendersaHTML textareafield.

4 h:inputHidden Rendersa HTML input of type="hidden".

5 h:sel ectBool eanCheckbox Renders asingle HTML check box.

7 h:selectOneRadio Renders asingle HTML radio button.

8 h:selectOneL istbox RendersaHTML single list box.

9 h:selectManyL istbox Rendersa HTML multiple list box.

10 h:selectOneMenu Renders aHTML combo box.

11 h:outputText Rendersa HTML text.

12 h:outputFormat RendersaHTML text. It accepts parameters.

13 h:graphiclmage Renders an image.

14 h:outputStylesheet Includes a CSS style sheet in HTML output.

15 h:outputScript Includes a script in HTML output.

16 h:commandButton Renders a HTML input of type="submit"
button.

17 h:Link RendersaHTML anchor.

18 h:commandLink RendersaHTML anchor.

19 h:outputLink RendersaHTML anchor.

20 h:panel Grid Renders an HTML Tablein form of grid.

21 h:message Renders message for a JSF Ul Component.

22 h:messages Renders al messages for JSF Ul Components.

23 f:param Pass parameters to JSF Ul Component.

24 f.attribute Pass attribute to a JSF Ul Component.

25 f.setPropertyActionListener Sets value of a managed bean's

property

JSF — Facelets Tags:

JSF provides specia tags to create a common layout for a web
application called facel ets tags.

These tags give flexibility to manage common parts of multiple pages
at one place.

The following namespaces of URI in the html node.

<html xmIns="http://www.w3.0rg/1999/xhtml"

xmins:ui="http://java.sun.com/jsf/facelets’ >

90

Following areimportant Facelets Tagsin JSF:

Sr. No.

Tag & Description

1.

Templates Well demonstrate how to use templates using
following tags

<ui:insert>

<ui:define>

<ui:include>

<ui:define>

Parameters We'll demonstrate how to pass parameters to a
template file using following tag
<ui:param>

Custom We'll demonstrate how to create custom tags.

H~w

Remove We'l demonstrate capability to remove JSF code
from generated HTML pages.

JSF-Convertor Tags.

JSF provides inbuilt converters to convert its Ul component's data to
objects used in a managed bean and vice versa.

For example, these tags can convert a text into date objects and can
validate the format of input as well.

For these tags you need to use the following namespaces of URI in
html node.
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://java.sun.com/jsf/core" >

Following are important Convertor Tagsin JSF:

S.No. Tag & Description

1 f.convertNumber Converts a String into a Number of desired
format

2 f.convertDateTime Converts a String into a Date of desired
format

3 Custom Convertor Creating a custom convertor

JSF-Validator Tags:

JSF provides inbuilt validators to validate its Ul components. These
tags can validate length of field, type of input which can be a custom

object.

For these tags you need to use the following namespaces of URI in the
html node.

<html xmlns="http://www.w3.ora/1999/xhtml"
xmins:.f="http://java.sun.com/jsf/core" >

91

Following are important Validator Tagsin JSF:

Sr. No. Tag & Description

f:validatelength Vaidates length of a string

f:validatel ongRange V alidates range of numeric value
f:validateDoubleRange Validates range of float value
f:.validateRegex Validate JSF component with a given
regular expression.

5. Custom Validator Creating a custom validator

AWINPE

JSF-Composite Components

JSF provides developers a powerful capability to define their own
custom components which can be used to render custom contents.

S.No. Tag & Description

1. compositeiinterface Declare configurable values to be used
in composite:implementation

2. composite:attribute Configuration values are declared using
thistag

3. composite:implementation
Declares JSF component. Can access the configurable values
defined in compositeiinterface using #{ cc.attrs.attribute-
name} expression.

6.6 JSF ASAN APPLICATION

A JSF application is like a simple java web application, which is run by
aservlet web container.

Example,
o A client makesan HTTP request for apage viaan HTTP server.

o The server responds back by rendering a user interface using JSF
technology after trandating to a pure HTML page.

JSF user interface manages:
o The User Interface component object that maps to the tag on the

page.
o Event listener, validation and converters that register on the
component.

o Java bean component that encapsulate the data and application
specific functionality of the component.

Facelets

o Facedetsisapowerful but lightweight page declaration language that is
used to build JavaServer Faces views using HTML style templates and
to build component trees. Facelets features include the following:

Use of XHTML for creating web pages
92

Support for Facelets tag libraries in addition to JavaServer Faces
and JSTL tag libraries

Support for the Expression Language (EL)
Templating for components and pages

e Advantages of Facelets for large-scale development projects include
the following:

Support for code reuse through templating and composite
components

Functional extensibility of components and other server-side
objects through customization

Faster compilation time
Compile-time EL validation
High-performance rendering

6.7JSF LIFECYCLE

The lifecycle of an application refers to the various stages of processing
of that application, from itsinitiation to its conclusion.

All applications have life cycles.

During a web application lifecycle, common tasks are performed,
including the following.

Handling incoming requests
Decoding parameters

Modifying and saving state
Rendering web pages to the browser

The JavaServer Faces web application framework manages lifecycle
phases automatically for simple applications or allows you to manage
them manually for more complex applications as required.

JavaServer Faces applications that use advanced features may require
interaction with the lifecycle at certain phases.

The lifecycle of a JavaServer Faces application begins when the client
makes an HTTP request for a page and ends when the server responds
with the page, translated to HTML.

The lifecycle can be divided into two main phases. Execute and
Render. The Execute phase is further divided into subphases to support
the sophisticated component tree. This structure requires that
component data be converted and validated, component events be
handled, and component data be propagated to beans in an orderly
fashion.

93

Faces Request

|
\J

Restore View

v
Apply Requests

.

— Render Response — Process Events — Response —»
] Complete

Process Validations

Validation/ ;
— Conversion Errors/ — Process Events — Response —
Render Response T Complete
A

Update Model Values

v

~ Conversion Errors/ — Process Events —~ Response —»
Render Response I Complete

Invoke Application

v

Process Events — Response —

. - Complete
Y

Render Response ————>»

Y

|
A\

Faces Response
Fig. 1 JavaServer Faces Standard Request-Response Lifecycle

The JavaServer Faces application lifecycle Execute phase contains the
following subphases:
- Restore View Phase
Apply Request Values Phase
Process Validations Phase
Update Model Vaues Phase
Invoke Application Phase
Render Response Phase

Restore View Phase

o When arequest for a JavaServer Faces page, by an action, such as
when alink or a button component is clicked, the JavaServer Faces
implementation starts the Restore View phase.

o Through this phase, the JavaServer Faces implementation
constructs the view of the page, wires event handlers and
validators to components in the view, and saves the view in the
FacesContext instance, which has all the information needed to
process a single request. All the components, event handlers,
converters, and validators have access to the FacesContext
instance.

94

Apply Request Values Phase:

The component tree is restored during a postback request, each
component in the tree extracts its new value from the request
parameters by using its decode method. The value is stored locally
on each component.

If any decode methods or event listeners methods have called the
renderResponse method on the current FacesContext instance, the
JavaServer Faces implementation skips to the Render Response
phase.

If any events have been queued during this phase, the JavaServer
Faces implementation broadcasts the events to interested listeners.

Process Validations Phase

O

The JavaServer Faces implementation processes all validators
registered on the components in the tree by using its
processV alidators method.

It examines the component attributes that specify the rules for the
validation and compares these rules to the local value stored for the
component.

The JavaServer Faces implementation also completes conversions
for input components that do not have the immediate attribute set
to true.

If the local value is invalid, or if any conversion fails, the
JavaServer Faces implementation adds an error message to the
FacesContext instance, and the lifecycle advances directly to the
Render Response phase so that the page is rendered again with the
error messages displayed. If there were conversion errors from the
Apply Request Vaues phase, the messages for these errors are a'so
displayed.

If any validate methods or event listeners have called the
renderResponse method on the current FacesContext, the
JavaServer Faces implementation skips to the Render Response
phase.

Update Model Values Phase:

O

The JavaServer Faces implementation determines that the data is
valid, it traverses the component tree and sets the corresponding
server-side object properties to the components local values. The
JavaServer Faces implementation updates only the bean properties
pointed at by an input component's value attribute.

If any updateModels methods or any listeners have called the
renderResponse method on the current FacesContext instance, the
JavaServer Faces implementation skips to the Render Response
phase.

95

Invoke Application Phase

o In this phase the JavaServer Faces implementation handles any
application-level events, such as submitting a form or linking to
another page.

o At thispoint, if the application needs to redirect to a different web
application resource or generate a response that does not contain
any JavaServer Faces components, it can cal the
FacesContext.responseCompl ete method.

o If the view being processed was reconstructed from state
information from a previous request and if a component has fired
an event, these events are broadcast to interested listeners.

o Finaly, the JavaServer Faces implementation transfers control to
the Render Response phase.

Render Response Phase

o During this phase, JavaServer Faces constructs the view and
typical authority to the suitable resource for rendering the pages.

o If the first request is this, the components that are represented on
the page will be added to the component tree. If thisis not the first
request, the components are already added to the tree and need not
be added again.

o If therequest is a postback and errors were experienced during the
Apply Request Vaues phase, Process Vaidations phase, or Update
Model Values phase, the origina page is rendered again during
this phase. If the pages consist h:message or h:messages tags, any
gueued error messages are displayed on the page.

o After the content of the view is relinquished, the state of the
response is saved so that upcoming requests can access it.

6.8 JSF CONFIGURATION

JSF is based on the following configuration files:

JSF configuration

web.xml faces-config.xml

web.xml - General web application configuration file
faces-config.xml - Contains the configuration of the JSF application.

96

web.xml

JSF requires the central configuration list web.xml in the directory
WEB-INF of the application. Thisis similar to other web-applications
which are based on servlets.

A FacesServlet is responsible for handling JSF applications.
FacesServlet is the central controller for the JSF application.

FacesServlet receives all requests for the JSF application and initializes
the JSF components before the JSP is displayed.

Initial for mat:

<?xml version="1.0"?>
<web-app>

faces-config.xml:

Second file faces-config.xml that will be in the same place where
web.xml isi.e. WEB-INF folder.

Here to take care of mentioning the version of xml as we did in the
web.xml file.

All tag elements will be within faces-config opening and closing tag
I.e. <faces-config>and </faces-config>.So the root element of this file
is <faces-config> tag.

"faces-config.xml” alows us to configure the application, managed
beans, convertors, validators, and navigation.

Initial format:

<?2XxXml version="1.0"?>
<faces-config>

</faces-config>

6.9 JSF WEB APPLICATIONS (LOGIN FORM, JSF
PAGES)

This application will take auser First Name and Last Name. Later these
fields will be validated by JSF and using the controller bean and
Navigation rule the output will be displayed.

97

This application will also introduce a Ul component which is a submit
button.

Step 1: Createthetable Usersin mysgl database as

CREATETABLEUSsers(

uidint(20) NOTNULL AUTO_INCREMENT,
unameVARCHAR(60) NOTNULL,
passwordVARCHAR(60) NOTNULL,
PRIMARY KEY (uid));

Step 2: Insert data into the table Users as;

INSERTINTOUSsersVALUES(1,'adam’,'adam’);

Step 3: Createthe JSF login page login.xhtml as;

<?xml version="1.0' encoding="UTF-8" 7>
<IDOCTYPE htm PUBLIC "-//W3C//DTD XHTML

transitional .dtd">
<html xmlns="https.//www.w3.0rg/1999/xhtml"
xmlns:h="https://java.sun.com/jsf/html|" >
<h:head>
<title>login</title>
</h:head>
<h:body>
<h:form>
<h3>JSF Login Logout</h3>
<h:outputText value="Username" />

value="#{login.user}"></h:inputText>
<h:message for="username"></h:message>

</br>
</br>

<h:outputText value="Password" />

value="#{|ogin.pwd} "></h:inputSecret>
<h:message for="password"></h:message>

</br>
</br>

<h:commandButton
action="#{ login.validateUsernamePassword} "
value="Login"></h:commandButton>
</h:form>
</h:body>
</html>

1.0

Transitional//EN" "https.//www.w3.org/ TR/xhtml /D TD/xhtml 1-

<h:inputText id="username"

<h:inputSecret id="password"

98

Step 4: Createthe managed bean L ogin.java as;

package com.journaldev.jsf.beans;
import java.io.Serializable;

import javax.faces.application.FacesM essage;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped,;
import javax.faces.context.FacesContext;
import javax.servlet.http.HttpSession;

import com.journaldev.jsf.dao.LoginDAO,;
import com.journaldev.jsf.util.SessionUtils;

@ManagedBean
@SessionScoped
public class Login implements Serializable {

private static fina long seridVersionUID
1094801825228386363L ;

private String pwd;
private String msg;
private String user;

public String getPwd() {

return pwd;

}

public void setPwd(String pwd) {
this.pwd = pwd;

}

public String getMsg() {
return msg;

}

public void setMsg(String msg) {
this.msg = msg;

}

public String getUser() {
return user;

}

public void setUser(String user) {
this.user = user;

99

}

/Ivalidate login
public String validateUsernamePassword() {
boolean valid = LoginDAO.validate(user, pwd);
if (valid) {
HttpSession session =
SessionUtils.getSession();
session.setAttribute(username”, user);
return "admin”;
} else{

FacesContext.getCurrentlnstance().addM essage(
null,
new
FacesM essage(FacesMessage.SEVERITY _WARN,
"Incorrect
Username and Passowrd",
"Please enter
correct username and Password"));
return "login”;
}

}

//logout event, invalidate session

public String logout() {
HttpSession session = SessionUtils.getSession();
session.invalidate();
return "login”;

Step 5: Now createthe LoginDAO java class

package com.journaldev.jsf.dao;

import java.sgl.Connection;

import java.sgl.PreparedStatement;

import java.sgl.ResultSet;

import java.sgl.SQL Exception;

import com.journaldev.jsf.util.DataConnect;
public class LoginDAO {

public static boolean validate(String user, String password) {
Connection con = null;

100

PreparedStatementps = null;

try {
con = DataConnect.getConnection();

ps = con.prepareStatement("Select uname,
password from Users where uname = ? and password = ?');

ps.setString(1, user);

ps.setString(2, password);

ResultSetrs = ps.executeQuery();

if (rs.next()) {
/lresult found, means valid inputs
return true;

}

} catch (SQLException ex) {
System.out.printin("Login error -->" +

ex.getMessage());
return false;
} findly {
DataConnect.close(con);
}
return false;
}
}

Step 6: Create the DataConnect.java class

package com.journaldev.jsf.util;

import java.sgl.Connection;
import java.sgl.DriverManager;

public class DataConnect {

public static Connection getConnection() {
try {
Class.forName("com.mysqgl.jdbc.Driver");
Connection con =
DriverManager.getConnection(

"jdbc:mysqgl://localhost:3306/cardb”, "pankg”, "pankg 123");
return con;
} catch (Exception ex) {
System.out.printIn(" Database.getConnection()
Error -->"

+ ex.getMessage());

101

return null;
}
}
public static void close(Connection con) {
try {
con.closg();
} catch (Exception ex) {
}
}
}

Step 7: Create SessionUtilsjava to obtain and manage session related
user infor mation.

package com.journaldev.jsf.beans,

import javax.faces.context.FacesContext;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;

public class SessionUtils {

public static HttpSessiongetSession() {
return (HttpSession)
FacesContext.getCurrentlnstance()

.getExternal Context().getSession(false);
}

public static HttpServletRequestgetRequest() {
return (HttpServletRequest)
FacesContext.getCurrentlnstance()
.getExternal Context().getRequest();
}

public static String getUserName() {
HttpSession session
FacesContext.getCurrentlnstance()

(HttpSession)

.getExternal Context().getSession(false);
return session.getAttribute(" username”).toString();
}

public static String getUserld() {
HttpSession session = getSession();
if (session !=null)
return (String) session.getAttribute("userid");

102

ese
return null;

Step 8: Createthe authorization filter classas;

package com.journaldev.jsf filter;

import java.io.l OException;

import javax.servlet.Filter;

import javax.servlet.FilterChain;

import javax.servlet.FilterConfig;

import javax.servlet.ServletException;
import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

import javax.servlet.annotation.WebFilter;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

@WebFilter(filterName = "AuthFilter", urlPatterns = { "* .xhtml" })
public class AuthorizationFilter implements Filter {

public AuthorizationFilter() {

}
@Override
public void init(FilterConfigfilterConfig) throws
ServletException {
}
@Override
public void doFilter(ServletRequest request, ServletResponse
response,
FilterChain chain) throws IOException,
ServletException {
try {
HttpServlietRequestreqt = (HttpServletRequest)
request;
HttpServletResponseresp = (HttpServietResponse)
response;

HttpSessionses = reqt.getSession(fal se);

String reqURI = reqt.getRequestURI();

103

if (reqURI.indexOf("/login.xhtml") >=0
I (ses I= null
& & ses.getAttribute(username”) = null)
|| reqURI.indexOf("/public/*) >= 0
I
reqURI.contains("javax.faces.resource™))
chain.doFilter(request, response);
else
resp.sendRedirect(reqt.getContextPath() +
"[faces/login.xhtml");
} catch (Exception €) {

System.out.println(e.getM essage());
}
}
@Override
public void destroy() {
}

Step 9: Create admin.xhtml as;

<?xml version="1.0' encoding='"UTF-8' 7>
<IDOCTYPE htm PUBLIC "-//W3C//DTD XHTML 1.0
Transitional //EN"
"https.//www.w3.org/TR/xhtml 1/DTD/xhtml 1-transitional .dtd">
<html xmlns="https.//www.w3.0rg/1999/xhtml|"
xmins:h="https:.//java.sun.com/jsf/html">
<h:head>
<title>Facelet Title</title>
</h:head>
<h:body>
<h:form>
<p>Welcome #{ login.user} </p>
<h:commandLink action="#{login.logout} "
value="Logout"></h:commandLink>
</h:form>
</h:body>
</html>

Step 10: Create faces-config.xml file as;

<?ml version="1.0' encoding="UTF-8?>

<faces-config version="2.2"

xmins="https.//xmins.jcp.org/xml/ngjavaee”
xmlns:xsi="https://www.w3.0rg/2001/X M L Schema-instance"

104

xsi:schemalocation="https://xmins.jcp.org/xml/ng/javaee
https.//xmlns.jcp.org/xml/ns/javaee/web-
facesconfig 2 2.xsd">

<navigation-rule>
<from-view-id>/login.xhtml</from-view-id>
<navigation-case>
<from-outcome>admin</from-outcome>
<to-view-id>/admin.xhtml</to-view-id>
</navigation-case>
</navigation-rule>

</faces-config>

Login Page
@Iogin X
¢« - C [_, Iocélhost:QOQO/JSF_Login_-I-_ogo_ut/fac_esltogin.xl:ttml
(JJava [utiity [Apple [Android (L] Personal (L] jQuery |
JSF Login Logout

Username

Password
_Login

Login Success Page
[#]Facelet Title x
<« C [localhost:9090/JSF_Login_Logout/faces/login.xhtml
ava [vty [Apple (L Android [Personal [jQuery |

Welcome adam

Logout

Accessing admin.xhtml while logged in

105

[#Facetet Title .

%~ C localhost:9090/)JSF_Login_Logout/faces/admin.xhtml|

CdJava [uutity [Apple [Android [Personal [jQuery [

Welcome adam

I,fxgnu;

6.10 SUMMARY

JSF is a Java standard technology for building component-based,
event-oriented web interfaces.

JSF is an XML document that represents formal components in a
logical tree.

JSF components are backed by Java objects, which are independent of
the HTML and have the full range of Java abilities, including
accessing remote APIs and databases.

JavaServer Faces is a standardized display technology, which was
formalized in a specification through the Java Community Process.

JSF reduces the effort in creating and maintaining applications, which
will run on a Java application server and will render application Ul on
to atarget client.

JSF provides the developers with the capability to create Web
applications from collections of Ul components that can render
themselvesin different ways for multiple client types.

REFERENCE FOR FURTHER READING

1. JavaEE 6 for Beginners, Sharanam Shah, Vaishali Shah, SPD

Core Java Vol. Il — Advanced Features, Cay S. Horstmans, Gary
Coronell, Eight Edition, Pearson

https://docs.oracle.com/javaee/6/tutorial/doc/gijtu.html

4. https://docs.oracle.com/javaee/7/tutorial/jsf-intro006.htm

UNIT END EXERCISES

A wDdPE

What is the need of MV C in JSF?

What are the Components of JSF?
Explain the JSF lifecycle?

Write a short note on JSF configuration?

*kk*k*k

106

107

ENTERPRISE JAVA BEAN (EJB)

Unit Structure
7.1 Objective
7.2 Introduction
7.3 Enterprise bean architecture,
7.4 Benefits of enterprise bean,
7.5 Typesof beans,
7.6 Accessing beans,
7.7 Packaging beans,
7.8 Creating web applications,
7.9 Creating enterprise bean,
7.10 Creating web client,
7.11 Creating JSPfile,
7.12 Building and running web application
7.13 Summary
Reference for further reading
Unit End Exercises

7.1 OBJECTIVE

To understand the whole system broken into layers, so each layer is
independent and serves a distinct purpose & each layer is made up of
one and more logical components.
To manage the complexity of software projectsin amore easier way.

To follow great discipline to the software development process.

To reduce the devel opment time.

Build EJB technol ogy-based distributed systems.

Create entity beans.

Create session beans.

Deploy solutions in a server.

Create standalone enterprise bean clients.

Use entity beans from within session beans.

107

7.2INTRODUCTION

The Enterprise JavaBeans (EJB) specification describes architecture
for the development and deployment of transactional, distributed
object applications based, server-side software components.

Organizations can develop their own components or purchase
components from third party vendors.

These server-side components, called enterprise beans, are distributed
objects that are hosted in Enterprise JavaBean containers and provide
remote services for clients distributed all-round the network.

7.3 ENTERPRISE BEAN ARCHITECTURE

Enterprise Bean architecture defines a model for the development and
deployment of reusable java server components. EJB component
architecture is the backbone of the java EE platform.

A wbdpE

EJB Architectureis composed of:

An Enterprise Bean Server.
Enterprise Bean Containers that runs on these servers.
Enterprise Beans that run in these containers.

Others Systems Such as Java Naming and Directory Interface [INDI]
and Java Transaction service [JTS].

Request And Response:

The communi cation between the components happens as follow:

1.

2.

Client object makes a request for a method that is available in the
bean.

Container comes into picture and checks whether the client is in the
approved list for calling a method on the bean.

If the client is authorized, the container either creates a new instance or
activates the requested bean from the pool.

Container ensures the bean getsits own new transaction.

Container informs the EJB object (wrapper class generated by
container) that the beans ready and passes the client’s method request
to the bean.

Enterprise Bean Server:

An Enterprise Java Beans (EJB) Server is a Component Transaction
Server.

It Supports the EJB server side component model for developing and
deploying distributed enterprise -level applications in a multi-tiered
environment.

108

An Enterprise Bean Server provides:

The framework for creating, Deploying and managing middle -tier
businesslogic.

An Environment that alows the execution of applications developed
using Enterprise Java Beans (EJB) components.

In athree-tier environment:
The client provides the user Interface logic.
The business rules are split to the middle tier.
The database is the information repository.

The client does not access the database directly. Instead, the client
makes a call to the EJB server on the middle tier, which then accesses
the database.

An EJB server takescare of:
Managing and coordinating the allocation of resources to the
applications
security
threads
Connection pooling
Access to adistributed transaction management service

The EJB server provides one or more containers for the enterprise
beans, which is called an EJB Container

An EJB container handles the enterprise beans contained within it.

Enterprise beans or components are reusable modules of code that
combine related tasks or methods into a well-defined interface. These
enterprise beans EJB components hold the methods that execute
business logic and access data sources.

These components (i.e. the executable code) are installed on an EJB
Server. All number of independent Java or EJB applications or clients
can use the EJBs.

An Enterprise bean (EJP):

Business components developed using the EJB architecture are called
Enterprise javaBeans components or simply Enterprise Beans.

An Enterprise Bean (EJB) is a server-side component that encapsulates
the code that fulfills the purpose of the application. They can be merged
with other components and rapidly produce a custom application.

The fundamental purpose of introducing EJB was for building
distributed components. EJB xx introduced a promise to solve all issues
and complexities of CORBA.

109

EJB technology is powerful and sophisticated. The technology helps
developers to build business applications that support a very large
number of users simultaneously. They applications developed with EJB
are capable of maintaining data integrity even though data is processed
concurrently by multiple users, thus making them transaction enabled.

The EJB component is assembled and reassembled into different
distributed application

EJB Evolution:

EJB specification evolved significantly.
It is capable of embracing the requirement of many enterprises.

EJB is complicated due to:
o Lack of good persistence strategy
o Long and tedious deployment descriptors.
o Limited capacity of testing.

7.4 BENEFITS OF ENTERPRISE BEAN:

1.

EJB container provides system-level services to enterprise beans, the
bean developer can focus on solving business problems.

The responsibility of EJB containers for system-level services, such as
transaction management and security authorization.

The beans rather than the clients consist of the application’s business
logic; the client developer can concentrate on the presentation of the
client.

The clients are thinner, a benefit that is especially important for clients
that run on small devices.

Enterprise beans are portable components; the application assembler
can develop new applications from existing one. They use the standard
APIs, these applications can run on any compliant Java EE server.

7.5 TYPES OF BEANS

There are two types of EJBs: session beans and message-driven beans.

1.

Session Beans

2. Message-Driven Beans

Session Beans:

A session bean implements one or more business tasks.

A session bean might consist of methods that query and update data in
a relationa table. Session beans are frequently used to implement
different services.

110

For example, an application developer implements one or severa
session beans that retrieve and update inventory datain a database.

A session bean implements the javax.gb.SessionBean interface,
following is the definition:

public interface javax.glb.SessionBean extends javax.gb.EnterpriseBean
{
public abstract void gbActivate();
public abstract void g bPassivate();
public abstract void g bRemove();
public abstract void setSessionContext(SessionContextctx);

}

An EJB must implement the following methods, as specified in the
javax.gb.SessionBean interface:

gjbCreate() The container invokes this
method right before it creates the
bean.

gjbActivate() The container invokes this
method right after it reactivates
the bean.

gjbPassivate() The container invokes this
method right before it passivates
the bean.

ejbRemove() A container invokes this method
before it ends the life of the
Session object.

setSessionContext This method associates a bean
instance with its context
information.

There are two types of session beans:

Stateless Session Beans
Statel ess session beans do not share state or specification between

method invocations. They are effective mainly in middle-tier application
servers that provide a pool of beans to process frequent and brief requests.

Stateful Session Beans:
Stateful session beans are useful for informal sessions, in which it is

necessary to maintain state of the bean, like instance variable values or
transactional state, between method invocations. These session beans are
depicted to asingle client for the life of that client.

Stateless Session Beans:

A statel ess session bean does not keep any state for the client.

111

It is strictly a single invocation bean. It is active for reusable business
services that are not connected to any specific client, such as currency
calculations, mortgage rate calculations etc.

Stateless session beans may carry client-independent, read-only state
across a call. Succeeding calls are controlled by other stateless session
beans in the pool. The information is used only for the single
invocation.

I mplementation M ethods

Home Interface Extends javax.gjb.EJBHome and
requires a single create() factory
method, with no arguments, and a
single remove() method.

Remote Interface Extends javax.gb.EJBObject and
defines the business logic
methods, which are implemented
in the bean implementation.

Bean implementation Implements SessionBean. This
class must be declared as public,
contain a public, empty, default
constructor, no finalize() method,
and implement the methods
defined in the remote interface.

Stateful Session Beans:

A dstateful session bean keeps up its state between method calls.
Therefore, there is one instance of a stateful session bean created for
each client.

Each stateful session bean has its own identity and a one-to-one
mapping with an individual client.

The state of this type of bean is maintained across various calls through
seridization of its state, called passivation.

I mplementation M ethods

Home Interface Extends javax.ejb.EJBHome and
requires one or more create()
factory methods, and a single
remove() method.

Remote Interface Extends javax.eb.EJBObject and
defines the business logic
methods, which are implemented
in the bean implementation.

112

M essage-Driven Beans:

Message-Driven Beans (MDB) provide a ssmple method to implement
asynchronous communication than using straight JMS. MDBs were
created to receive asynchronous JM S messages.

The container controls much of the setup required for IMS queues and
topics.

A MDB is the same as a statel ess session bean because it does not save
conversational state and is used for handling various incoming requests.
Instead of handling direct requests from a client, MDBs handle requests
placed on a queue. Figure 1 shows how clients place requests on a
gueue. The container takes the requests off of the queue and sends the
reguest to an MDB in its pool.

i IMS Queue ETb Container

\ /_
/Q() Q.__/j

Pool of MDEBs

| dient

wi

\ ¢
1

Figure 1 Message Driven Beans

MDBs implement the javax.ejb.MessageDrivenBean interface, which
also inherits the javax.jmsMessagelistener methods. Within these
interfaces, the following methods must be implemented:

Method Description

onM essage(msg) The container dequeues a
message from the JMS queue
associated with this MDB and
gives it to this instance by
invoking this method.

setM essageDrivenContext(ctx) After the bean is created, the
setM essageDrivenContext
method isinvoked.

gbCreate() This method is used just like the
stateless session bean ejbCreate
method. No initialization should
be done in this method.

ejbRemove() Delete any resources allocated
within the g/ bCreate method.

7.6 ACCESSING BEANS

Accessed of Enterprise Beans:
a No-interface view
b. Businessinterface

113

a. No-interface view:

A no-interface view of an enterprise bean reveals the public methods of
the enterprise bean implementation class to clients.

Clients using the non-interface view of an enterprise bean may invoke
any public methods in the enterprise bean implementation class.
b. Businessinterface:

A Business interface is a standard java programming language interface
that contains the business methods in the enterprise bean.

A client can access a session bean through the methods defined in the
bean's interface or through the public methods of an enterprise bean
that has a no-interface view.

7.7 PACKAGING BEANS

Enterprise beans can be packaged in EJB JAR or WAR modules.

Packaging Enterprise Beansin EJB JAR Modules:
EJB JAR fileis portable.
Used for different applications.

To assemble a Java EE application, package one or more modules, such
as EJB JAR files, into an EAR file, the archive file that holds the
application.

When deploying the EAR file that contains the enterprise bean's EJB
JAR file, this aso deploys the enterprise bean to GlassFish Server.

Beans can also deploy an EJB JAR that is not contained in an EAR file.
Figure 2 shows the contents of an EJB JAR file.

Assembly Root
l
I META-INF

All .class files
for this module

ejb-jar.xml MANIFEST.MF

glassfish-ejb-jarxml
(optional)

Figure 2 Structure of an Enterprise Bean JAR

114

Packaging Enterprise Beansin WAR Modules

EJB provides the business logic of aweb application.

WAR module simplifies deployment and application organization.
Enterprise beans may be packaged within a WAR module.

To include, the class files should be in the WEB-INF/classes directory.

To include aJAR file, add the JAR to the WEB-INF/lib directory of the
WAR module.

Enterprise beans do not require an gb-jar.xml deployment descriptor.

JAR files that contain enterprise bean classes packaged within a WAR
module are not considered EJB JAR files.

JAR files are semantically equivalent to enterprise beans.

For example, The shopping cart bean exposes alocal, no-interface view
and is defined as follows:

package com.example.cart;
@Stateless
public class CartBean{ ... }

The credit card processing bean is packaged within its own JAR file,
cc.jar, exposes alocal, no-interface view, and is defined as follows:

package com.example.cc;
@Stateless
public class CreditCardBean{ ... }

7.8 CREATING WEB APPLICATIONS

To develop, deploy, and run a simple web application named currency
converter. The purpose of the converter is to calculate currency
conversions between Japanese yen and Eurodollars.

Currency converter consists of an enterprise bean, which performs the
calculations, and two types of clients: an application client and a web
client.

Steps:

o g b~ wbdpE

Create the enterprise bean: CurrencyConverterBean.
Create the application client: CurrencyConverterClient.
Create the web client in converter-war.

Deploy converter onto the server.

Run the application client.

Using a browser, run the web client.

115

7.9 CREATING ENTERPRISE BEAN

Creating the Enter prise Bean:

The enterprise bean in our example is a stateless session bean called
CurrencyConverterBean.

Creating CurrencyConverterBean requires these steps:

1. Coding the bean’s business interface and class (the source code is
provided)

2. Compiling the source code with the Ant tool

Enterprise Bean:

The enterprise bean in this example needs the following code:
e Remote businessinterface

e Enterprise bean class

Business I nterface:

The business interface defines the business methods that a client
can call. The business methods are implemented in the enterprise bean
class. The source code for the CurrencyConverter remote business
interface follows.

package com.sun.tutorial .javaee.gjb;

import java.math.BigDecimal;
import javax.ejb.Remote;

@Remote

public interface CurrencyConverter {
public BigDecimaldollarToY en(BigDecimal dollars);
public BigDecimalyenToEuro(BigDecimal yen);

}

Note the @Remote annotation decorating the interface definition. Thislets
the container know that CurrencyConverterBean will be accessed by
remote clients.

Enterprise Bean Class:

The enterprise bean class for this example is caled
CurrencyConverterBean. This class implements the two business methods
(dollarToYen and yenToEuro) that the CurrencyConverter remote
business interface defines. The source code for the
CurrencyConverterBean class follows.

package com.sun.tutorial .javaee.glb;

116

import java.math.BigDecimal,
importjavax.gb.*;

@Statel ess

public class CurrencyConverterBean implements CurrencyConverter {
private BigDecimalyenRate = new BigDecimal(*115.3100");
private BigDecimaleuroRate = new BigDecimal("0.0071");

public BigDecimaldollarToY en(BigDecimal dollars) {
BigDecimal result = dollars.multiply(yenRate);
return result.setScale(2, BigDecimal .ROUND_UP);

}

public BigDecimalyenToEuro(BigDecimal yen) {
BigDecimal result = yen.multiply(euroRate);
return result.setScale(2, BigDecimal . ROUND_UP);

}
}

7.10 CREATING WEB CLIENT

Creating the converter Application Client:

An application client is a program written in the Java programming
language. At runtime, the client program executes in a different virtua
machine than the Application Server. For detailed information on the
appclient command-line tool, see the man page at appclient.

The CurrencyConverterClient.java source code illustrates the basic tasks
performed by the client of an enterprise bean:

o Creating an enterprise bean instance
e Invoking abusiness method

CurrencyConverter Client program follows.

packagecom.sun.tutoria.javaee.gb;

importjava.math.BigDecimal,
importjavax.g/b.EJB;

public class CurrencyConverterClient {
@EJB
private static CurrencyConverter converter;

publicCurrencyConverterClient(String[] args) {

117

}

public static void main(String[] args) {
CurrencyConverterClient client = new CurrencyConverterClient(args);
client.doConversion();

}

public void doConversion() {

try {

BigDecimalparam = new BigDecimal("100.00");
BigDecimal yenAmount = converter.dollarToY en(param);

System.out.printin("$" + param + " is" + yenAmount

+ n Ym.ll);
BigDecimaleuroAmount = converter.yenToEuro(yenAmount);
System.out.printin(yenAmount + " Yenis" + euroAmount

+" Euro.");

System.exit(0);
} catch (Exception ex) {
System.err.println(" Caught an unexpected exception!");
ex.printStackTrace();
}
}

}

Compiling the converter Application Client

The application client files are compiled at the same time as the enterprise
bean files, as described in Compiling and Packaging the converter
Example.

7.11 CREATING JSP FILE

Creating the converter Web Client

<%@ page import="converter.gjb.CurrencyConverter,
javamath.*, javax.naming.*" %>

<%!
private CurrencyConverter converter = null;
public void jspinit() {
try {
InitialContextic = new InitialContext();
converter = (CurrencyConverter)
ic.lookup(CurrencyConverter.class.getName());
} catch (Exception ex) {
System.out.printIn("Couldn’t create converter bean."+

ex.getMessage());

118

}
}

public void jspDestroy() {
converter = null;

}
%>
<html>
<head>
<title>CurrencyConverter</title>
</head>

<body bgcolor="white">
<h1>CurrencyConverter</h1>

<hr>

<p>Enter an amount to convert:</p>
<form method="get">

<input type="text" name="amount" size="25">

<p>

<input type="submit" value="Submit">
<input type="reset" value="Reset">
</form>

<%
String amount = request.getParameter("amount”);
if (amount !=null &&amount.length() >0) {
BigDecimal d = new BigDecimal (amount);

BigDecimalyenAmount = converter.dollar ToY en(d);

%>
<p>
<%= amount %> dollars are <%= yenAmount %> Yen.
<p>
<%
BigDecimaleuroAmount =
converter.yenToEuro(yenAmount);

%>
<%= amount %> Y en are <%= euroAmount %> Euro.
<%

}

%>
</body>
</html>

119

7.12 BUILDING AND RUNNING WEB APPLICATION

Running the converter Application Client:

When you run the application client, the application client
container first injects the resources specified in the client and then runs the
client. You can run the application client using either NetBeans IDE or
Ant.

Running the converter Application Client Using NetBeans | DE:
Follow these instructions to run the application client using NetBeans
IDE.

1. In NetBeans IDE, make sure the converter application is open.
In the Projects tab, right-click the converter project and select Run. You
will see the following output in the Output tab:

$100.00 is 11258.00 Y en.
11258.00 Yen is 78.81 Euro.
2.

Running the converter Application Client Using Ant

To run the application client using Ant, perform the following steps.

In aterminal window, go to this directory:

Type the following command:
ant run

appclient -client client-jar/converter Client.jar
In the termina window, the client displays these lines:

$100.00is11531.00 Yen.
11531.00 Yen is 81.88 Euro.
1.

Running the converter Web Client:

To run the web client, point your browser at the following URL. Replace
host with the name of the host running the Application Server. If your
browser is running on the same host as the Application Server, you can
replace host with localhost.

http://host:8080/converter

120

| Ele Edt vew Go Bookmarks Tools Hebp

QJ.J > B - @ T:’:\ L] http:/flocalhost:8080/converter/ V ICL

Converter

Enter an amount to convert:

[Submit | | Reset |

| Done Adblock

Figure 3 Currency Converters Web Client

7.13 SUMMARY

Enterprise JavaBeans present a way to build components as well as a
means to make these components exist in a transactional, secure, and
distributed environment.

However, a single bean represents only one component - and
conseguently only one part of a complete application.

EJB provides developers with flexibility in determining how these
components should be made to work together.

There are a number of ways in which Enterprise JavaBeans can be
made to work together to form a complete enterprise application.

Top Link can be integrated into each variety of EJB application
architecture to provide both the technology that enables these
architectures and the features that add value to them.

REFERENCE FOR FURTHER READING

1
2.

Java EE 6 for Beginners, Sharanam Shah, Vaishali Shah, SPD
https://docs.oracle.com/javaee/5/tutorial/doc/bnbnc.html

UNIT END EXERCISES

A wDdPE

Explain the EJB Architecture?

What are the benefits of EJB?

What are the different types of enterprise beans?

Write a short note on accessing and packaging of beans?

kkk

121

UNIT V

HIBERNATE AND STRUTS

Unit Structure

8.1 Hibernate: Introduction

8.2 Hibernate

8.2 Structure of Hibernate.Cfg.Xml File (Hibernate Configurationfile)
8.3 Steps For Hibernateproject

8.1 HIBERNATE: INTRODUCTION

Writing the application, Application development approach, creating
database and tables in MySQL, creating a web application, Adding the
required library files, creating a java bean class, creating hibernate
configuration and mapping file, adding a mapping resource, creatingJSPs.

8.2HIBERNATE

Hibernate is the latest Open-Source persistence technology. It is
available as a free open source [distributed under the GNU Lesser General
Public License] Object/Relational Mapping [ORM] library for the Java
programming language. It provides a framework for mapping an object-
oriented DOMAIN model to atraditional Relational Database.

Hibernate was developed by a team of Java software developers around
the world led by Gavin King, JBoss Inc. [now pail of Red Hat].

Hibernate has become the de-facto ORM [Object/Relational Mapping]
framework for most of the organizations today.

Hibernate was developed with a goal to relieve the developers from 95%
of common data persistence related programming tasks by:

Making the developer fed as if the database contains plain Java
objects, without having them worry about how to get them out of [or
back into] databasetables.

Allowing the developers to focus on the objects and features of the
application, without having to worry about how to store them or find
them later.

Its primary feature is mapping from:
Java Classes® DatabaseTables

121

Java Data Types® SQL DataTlypes

In addition to this, Hibernate also allows querying and retrieving data. It
generates all the necessary SQL calls to achieve this and thereby, relieves
the devel opers from manual result set handling and objet conversion.

Hibernate provides transparent persistence that enables the applications
[using Hibernate as the ORM] to switch to any database [supported by
Hibernate].

To use Hibernate :

JavaBean classes [POJOs| that represents the table in the database are
created.

The instance variables of the class are mapped to the columns in the
database table.

Why Hibernate?:
Because of the following reasons:

Hibernate isFreeunder LGPL i.e. Hibernate can be wused to
devel op/package and distribute the applications for free.

It eliminates the need for repetitiveSQL.

It allows working with classes and objects instead of queries and result
sets which makes the approach more Object Oriented and less
Procedural.

Handles al Create, Read, Update, Delete [CRUD] operations.

Bringsin portability across databases.

Supports IDEs such as Eclipse, NetBeans by providing a suite of plug-
ins.

Reduces the development time by supporting inheritance,
polymorphism, composition and the Java Collection framework.

Supports the multiple primary key generation including built-in
support for identity [Auto increment] columns, sequences, UUID
algorithm and HI/LO agorithm. Hibernate also includes support for
application assigned identifiers and composite keys.

Hibernate’s Dual Layer Cache Architecture [HDCLCA] delivers
thread safeness, nonblocking data access, session level cache, optional
second- level cache and optional query cache. Hibernate also works
well when other applications have simultaneous access to the database.

Supports connectionpooling
Supports wide range of database such as:

Oracle -DB2 - Sybase
MS SQL Server - PostgreSQL - MySQL
HypersonicSQL - Mckoi SQL - SAPDB

122

— Interbase —Pointbase — Progress

— FrontBase —Ingres — Informix

— Firebird — TimesTen — InterSystemsCache
— ApacheDerby — HP NonStopSQL/MX— MS Access

— CorelParadox — Xbase

Architecture of Hibernate:

——~Application —

———tipeme——————]

I TN
gcmﬁgnmhw% Session Fm% Sesslon E Tnmmg Query E t‘.'rlu?l

Fig. 1

Configuration Object:

The Configuration Object represents a configuration or properties
file for Hibernate. It is usually created once during application
initialization.

The Configuration object reads the properties
[hibernate.properties/ hibernate.cfg.xml] to establish a database
connection. Typically, a Configuration object is spawned to create a
SessionFactory.

Session Factory:

The SessionFactory is created with the help of a Configuration
object during the application start up. It serves as a factory for spawning
Session objects when required.

Typically, it is created once [one SessionFactory object per
database] and kept alive for later use. However, for applications that
require interacting with multiple databases, multiple SessionFactory
objects [each with a separate Configuration object].

123

Session:

Session objects are lightweight and inexpensive to create. They
provide the main interface to perform actual database operations. All the
POJOs i.e. persistent objects are saved and retrieved with the help of a
Session object. Typically, session objects are created as needed and
destroyed when not required.

Transaction:

A Transaction represents a unit of work with the database. Any kind of
modifications initiated via the session object are placed with in a
transaction. A Session object helps creating a Transaction object.
Transaction objects are typically used for a short time and are closed by
either committing or rejecting.

Query:

Persistent objects are retrieved using a Query object. Query objects allow
using SQL or Hibernate Query Language [HQL] queries to retrieve the
actual data from the database and create objects.

Criteria

Persistent objects can also be retrieved using a Criteria object. Criteria
uses an object/method based means of constructing and executing a
request to retrieve objects.

8.3 STRUCTURE OF HIBERNATE.CFG.XML FILE
(HIBERNATE CONFIGURATIONFILE).

<?xml version="1.0" encoding="UTF- 8”?>

<hibernate- configuration>
<session- factory>

<property name="hibernate.dialect”>
org.hibernate.dialect. MySQL Dial ect</property>

<property name="hibernate.connection.driver_class”>
com.mysqgl.jdbc.Driver</property>

<property name="hibernate.connection.url”>
jdbc:mysgl://localhost/DBname</property>

<property name="hibernate.connection.username”> root</property>
<property name="hibernate.connection.password”> root</property>
<mapping resource="guestbook.hbm.xml”/>

</session- factory>

124

</hibernate- configuration>

Elements:
hibernate.dialect- It represents the name of the SQL dialect for the
database

hibernate.connection.driver_class- It represents the JDBC driver class for
the specific database

hibernate.connection.url- It represents the JDBC connection to the
database

hibernate.connection.username- It represents the user name which is used
to connect to thedatabase

hibernate.connection.password- It represents the password which is used
to connect to thedatabase

guestbook.hbm.xml- It represents the name of mapping file

Structure Of Guestbook.Hbm.Xml File (Hiber nate M apping File).
<?xml version="1.0" encoding="UTF- 877>
<hibernate- mapping>

<class name="guestbook” table="guestbooktable”>

<property name="name” type="string”>
<column name="username” length="50" />
</property>

<property name="message” type="string”>
<column name="usermessage” length="100" />
</property>

</class>
</hibernate- mapping>
Elements:

<hiber nate- mapping> </hiber nate- mapping>

It is the base tag which is used to write hibernate mapping file, which is
used to map POJO class with database table.

<class> </class>

It represents name of the class and database table which we want to map
with each other. It has 2 parameters:
name- It represents name of the class

125

table- It represents name of the database table

<property> </property>

It is used to write the property which we want to map with database
column. It has 2 parameters:

name- It represents name of the property

type- It represents type of the property

<column> </column>

It is used to write the database column which we want to map with java
class property. It has 2 parameters:

name- It represents name of the column

length- It represents maximum length of a column value

8.3 STEPSFOR HIBERNATEPROJECT

|. Createthe Database and Table structure

I1. Create the Database Service through NetBeans IDE
Click the Services Tab from the Project Workspace

Right Click on the Databases option and select the option “New
Connection”

Select the Driver as “MySQL (Connector / J driver)

Click Next — Type the Database Name (db) — specify
the password of MySQL database — select remember
password checkbox — click “test connection” to check
the successful database connection — Next — Finish

I11.Create a Hiber nate project

File -> New Project (Select Java Web and Web Application)

— Next (Give the Project Name; change the project location as
required; select the checkboxes Dedicated folder for storing
libraries) — Next

Sdect Glassfish Server —. Next — Select the framework
Hibernate 3.2.5(select the respective Database Connection) -
Finish

V. Adding the Hiber nate Configuration and POJO

1. Adding Reverse Engineering File
Right click on the project from the workspace — New - other —
(Select Hibernate category and Hibernate Reverse Engineering Wizard
filetype) - Next — File name (hibernate.reveng) — Next — select
the table name from the available tables option — click add(select the
check box include related tables) — Finish

2. Adding Hibernate Configuration and POJO

126

3. Rignht click on the project from the workspace — New — other —
(Select Hibernate category and Hibernate mapping files and POJOs
from Database filetype) — Next - Keep the default configuration
file name(hibernate.cfg) and Hibernate Reverse Engineering
File(hibernate.reveng) and type the package name(hibernate) - Finish

V. Add the required JSP’s Servlet’s Files

Example: Develop a Hibernate application to store Feedback of

Website Visitor in MySQL Database.

Database commandsin MySQL

1) create databasedb;

2) usedb;

3) create table guestbook(no int primary key auto_increment,
name varchar(20),

msg varchar(100), dt varchar(40));

Guestbook.java
package hibernate;
public class Guestbook implements
javaio.Serializable { private Integer no;
private String
name; private
String msg;
private String
dt;

public Guestbook() {
}

public Guestbook(String name, String msg,
String dt) { this.name = name;

thismsg =

msg; this.dt

= dt;

}

public Integer
getNo() { return
this.no;

}

public void setNo(Integer
no) { this.no = no;

}

public String

getName() { return
this.name;

}
127

public void setName(String
name) { this.name = name;
}

public String

getMsg() {

returnthis.msg;

}

public void setMsg(String
msg) { this.msg =msg;
}

public String
getDt() { return
this.dt;

public void
setDt(String dt) {
this.dt = dt;

}

}

hibernate.cfg.xml
<hibernate-configuration>

<session-factory>

<property
name="hibernate.dialect">org.hibernate.dialect. MySQL Dia ect</p
roperty>

<property
name="hibernate.connection.driver_class'>com.mysqgl.jdbc.Driver</p
roperty>

<property
name="hibernate.connection.url">jdbc:mysqgl://local host:3306/db</p
roperty>
<property name="hibernate.connection.username" >root</property>
<property name="hibernate.connection.password">tiger</property>

<mapping r esour ce=" hiber nate/Guestbook.hbm.xml" />
</session-factory>
</hibernate-configuration>

Guestbook.hbm.xml

<hibernate-mapping>

<class name="hibernate. Guestbook" table="guestbook" catalog="db">
<id name="no" type="java.lang.Integer">

<column name="no" />

<generator class="identity" />

<fid>

<property name="name" type="string">
<column name="name" length="20" />
</property>

128

<property name="msg" type="string">
<column name="msg" length="100" />
</property>

<property name="dt" type="string">

<column name="dt" length="40" />

</property>

</class>

</hibernate-mapping>

index.jsp

<html>

<head>

<title>Guest Book</title>

</head>

<body>

Guest Book <hr>

<form action="guestbookview.jsp" method="post">

Name <input type="text" nhame="name" maxlength="20">

Message <textarea rows="5" cols="40"

maxlength="100" name="msg"></textarea>

<input type="submit" value="submit">

</form>

</body>

</html>

questbookview.jsp
<%@page import="org.hibernate. SessionFactory" %>

<%@page import="org.hibernate.Session" %>
<%@page import="org.hibernate.cfg.Configuration" %>
<%@page import="org.hibernate. Transaction" %>
<%@page import="java.util .List" %>
<%@page import="java.util.Iterator" %>
<%@page import="hibernate. Guestbook" %>
<%!
SessionFactory sf;
org.hibernate.Session ss;
List<hibernate.Guestbook>
gbook;
%>
<%
sf = new
Configuration().configure().buil dSessionFactory();
ss= sf.openSession();
Transaction tx=null;
Guestbook gb=new
Guestbook(); try
{
tx=ss.beginTransaction();
String
name=request.getParameter("name");
129

String
msg=request.getParameter("msg");
String dt=new java.util.Date().toString();
gb.setName(name);

gb.setMsg(m

sg);

gb.setDt(dt);

ss.save(gh);

tx.commit();

}
catch(Exception e){ out.printIn("Error"+e.getMessage()); }

try
{

ss.beginTransaction();
gbook=ss.createQuery("from
Guestbook™).list();

}
catch(Exception €){ }

%>

<html>

<head>

<title>Guest View</title>
</head>

<body>

Guest View

Click here to go <ahref="index.jsp"> BACK

<%

Iterator

it=gbook.iterator();

while(it.hasNext())

{

Guestbook each=(Guestbook)it.next();
out.print(each.getDt()+" ");
out.print(each.getName()+"
");
out.print(each.getMsg()+"
<hr>");

}

%

>
</body>
</html>

Output:

130

STRUTS

Unit Structure

9.1 Struts: Introduction

9.2 Strut’s framework core components
9.3 Installing and setting up struts

9.4 Getting started with struts.

9.1INTRODUCTION TO STRUTS

The Javaworld is very vast. Web application development in this vast
world has come a long way with several Integrated Development
Environments such as NetBeans, Eclipse and So on which has made
creating standard Java based Web applications quite easy.

The main Java based technologies that one commonly uses to develop
Web applications are Servlet and JavaServer Pages [JSP].

Standard Application Flow
In a standard Java EE Web application:
1) Using Web based data entry form information is submitted to theserver

2) Suchinformation is handed over to a Java Servlet or a JavaServer
Page for processing

3 The Java Servlet or thelSP:

Interacts with thedatabase
Produces an HTMLresponse

As an application grows in complexity, it becomes more and more
difficult to manage the relationship between the JSP pages, the backend
business logic and the forms and validations. Developers start finding it
increasingly difficult to maintain and add additional functionality to the
applications.

Both the technol ogies [Java Servlets and JSP] mix the application and the
business logic with the presentation layer and thus make maintenance
very difficult. This is not suitable for large enterprise applications. This
means there’s something still missing in these technologies which create

agap.

In such scenarios, most experienced developers, split various pieces of an
application’s functionality into small manageable pieces of code spec.

131

These small pieces of code spec hold a single piece of functionality and
when taken together as a whole forms the basis for an application
development framework.

FRAMEWORK

A framework is a collection of services that provide developers with
common set of functionality, which can be reused and leveraged across
multiple applications.

A framework usually come into existence by:

Making generalizations about the common tasks and workflow of a
specific domain

Providing a platform upon which applications of that domain can be
more quickly built

A framework helps automate all the tedious tasks of the domain and
provides an elegant architectural solution to the common workflow of the
domain.

A framework allows devel opers to focus on coding the business logic and
the presentation layer of the application and not the overhead jobs such
as heavy code spec to capture user input or to generate drop down list
boxes.

Nowadays with several frameworks available, application development
projects no longer begin with the question: Should we use a
framework?

Instead, they begin with: Which framework should we use? Why
Struts?

Struts, a Java based framework, allows a clean separation between the
application logic and interacts with a database from the HTML pages that
form the response.

It cuts time, out of the development process and makes developers more
productive by giving them prebuilt components to assemble Web
applications from.

Struts is not a technology, it’s a framework that can be used along with
Java based technologies.

Struts makes the development of enterprise Web application
development easier by providing a flexible and extensible application
architecture, custom tags and a technique to configure common
workflows within an application.

132

The Struts framework is a strong implementation of the widely
recognized Model View Controller design pattern. The key focus of
MV C pattern is separation which iswhat is desired.

Struts

Strutsis an application Framework for building Web based applicationsin
Javausing the Java Enterprise Edition platform.

Struts [formerly located under the Apache Jakarta Project] was originally
developed by Craig McClanahan and donated to the Apache Foundation
in May, 2000. It was formerly known as Jakarta Struts. Struts is
maintained as a part of Apache Jakartaproject.

Struts comes with an Open-Source license which means it has no cost and
its users have free access to al itsinternal source code.

Today, the Apache Struts Project offers the two major versions of the
Struts framework:

Struts 1 Which was recognized as the most popular Web application
framework forJava

Struts 2 originally known as WebWork 2 is now the best choice
which provides elegant solutions to complexproblems.

9.2 STRUTSFRAMEWORK CORE COMPONENTS

After understanding the fundamentals of Struts 2, it’s time to learn about
the CORE components of Struts 2.

This chapter takes a complete and comprehensive look at each CORE
component of the Struts 2 architecture aong with an in- depth
explanation of the roles these components play in the framework.

These components make up the functionality of the application as well as
the framework itself.

In Struts 2 the Model- View- Controller design pattern is recognized with
the following CORE components:

MODEL - Actions

VIEW - Results and Result Types [ViewTechnologies]
CONTROLLER - FilterDispatcher

Interceptors

Vaue Stack /OGNL

133

Reads oorfﬁguraum

stru xm _ -
_t
hl II hl

Fig. 2

Figure 2 indicates how the MV C components in Struts 2 interact
with each other.

Let’s begin with the Controller.

Filter Dispatcher

The controller is the first component that takes charge when
processing a request. In Struts 2 the Filter Dispatcher plays the
role of the Controller.

Actions

Action [the Action class] is heart and soul of the Struts 2
framework. It processes input and interacts with other layers of
the application.

It isassociated with aHT TP request received from the user. Each HTTP
request [in form of aURL] is mapped to a specific Action. This Action
class holds the code spec that helps serve the user request.

Actions are used to:
Encapsul ate the actual work to be done for a given request
Server as adata carrier from the request to the view

Assist the framework in choosing the response that has to be sent to
the user i.e. view

I nterceptors

Interceptors allow developing code spec that can be run before and/or after
the execution of an action.

A request usually processed as follows:
A user requests aresource that mapsto an Action
The Struts 2 framework invokes the appropriate Action to serve the
request

134

If interceptors are written, available and configured, then:

Before the Action is executed, the invocation could be intercepted by
another object

After the Action executes, the invocation could be intercepted again
by another object

Such objects who intercept the invocation are called Interceptors.

Conceptually, Interceptors are very similar to Servlet Filters or the JDKs
Proxy class.

Why Inter ceptor s?

Interceptors are one of the best aspects of the Struts 2 framework
Interceptors are mainly used to encapsulate common functionality in a
reusable form that can be applied to one or more Actions in the
application.

Developers can define code spec that can be executed before and/or after
the execution of an action. This thus Intercepting can be done:

Before the action
After the action

Value Stack/OGNL

Now that the Action and Interceptor components are covered, let’s move
on to the next component in the Struts 2 framework.

Value Stack
Value Stack is exactly what the name suggests a stack of objects.

The Value Stack is a storage areathat holds all of the data associated with
the processing of a Request.

Accessing Value Stack

The Value Stack can be accessed by simply using the tags provided for
JSP. When the Vaue Stack is queried for an attribute value, each stack
element, in the provided order, is asked whether it holds the queried

property.

If it holds the queried property, then the valueis returned.
If it does not hold the queried property, then the next element down is
queried.

This continues until the last element in the stack is scanned. Thisis very
useful as the developer need not know where the attribute value currently
is. Isit avallablein:

The Action
The Model

The HTTP Request
135

The developer simply needs to know that such a value exists somewhere
and Struts 2 returnsit!

OGNL [Object- Graph Navigation L anguage]

OGNL [Object- Graph Navigation Language] is a fully featured
expression language (the default expression language) for Retrieving and
Setting properties of the Java objects. It helps data transfer and type
conversion.

In the Value Stack, searching or evaluating, a particular expression, can
be done using OGNL. OGNL provides a mechanism to navigate object
graphs using a dot notation and evaluate expressions, including caling
methods on the objects being retrieved.

OGNL supports:

Type conversion - Caling methods
Collection manipulation - Generation

Projection across collections - Expression evaluation
Lambda expressions

RESULTSAND RESULT TYPES[VIEW TECHNOLOGIES]

After the Action completes its job, resulting information needs to be sent
back to the user as a Response.

In Struts 2, this task is split into the Result Type and the Result itself.

Results
Results and Result Types come into picture only after the processing of
the Action is complete.

Results define what happens next after the Action has been executed.

For example, Results can help determine, if the control is shifted to
success view, an error view or back to the date entry input view.

The method of the Action class that processes the Request returns a String
as the results. The value of the String is used to select a Result element.
This return value is mapped via the configuration file to an
implementation of the Result interface.

The XML [struts.xml] configuration:

<action name="MyFirstStruts2App” class="book.MyFirstStruts2App”>
<result name =*SUCCESS”>/apps/Wel comeT oStruts.jsp</result>
<result name="ERROR”>/apps/SorryNoEntry.jsp</result>

</action>

136

View Technologies

The most common way of rendering Results [View Technology] is
JavaServer Pages [JSP]. However, JSP is not the only view technology.
There are afew others that can replace JSP in a Struts 2 application:

Velocity Templates
Freemarker Templates
XSLT Transformations

Freemarker and Velocity are very similar to JSP. In terms of
configuration, the name of the JSP template is simply replaced with then
ameof either the Velocity or Freemarker template in the actions
configuration file.

For example, the XML [struts.xml] configuration for Fremarker template
would be:

<action name=""MyFirstStruts2App” class = “book.MyFirstStruts2App”>
<result type="freemarker” name=
“SUCCESS”>/apps/WelcomeToStruts.fil

</results>

<result type= “freemarker” name=
“ERROR”>/apps/SorryNoEntry.ftl/result>

</action>

The XSLT result is a little different. Instead of replacing the template
name with the style sheet name, additional parameters are used.

Result Types

The response that the Result interface generates can vary between
different concrete class implementations which are nothing but Result
Types.

The Result Type provides the implementation details for the type of
information that is returned to the user.

For example, a response could modify the HTTP response codes,
generate a byte array for an image or render a JSP and soon.

This completes a comprehensive look at the Core Components. Let’s setup
the required development environment to start off.

9.3 STRUCTURE OF STRUTS. XML FILE

<?xml version="1.0" encoding="UTF- 877>
<struts>

<package name="/" extends="struts- default”>
<action name="test” class="hello.test”>

137

<result name="SUCCESS”>/welcome.jsp</result>

</action
>

</packa

ge>
</struts>
Elements:
<SUrUtS> s </struts>
It represents the base tag for struts.xml file. Thisfile contains all of the
routing and configuration information for the Struts application.
<package>.........ccccoeunnn. </package>
It allows separation and modularization of the configuration. Thisis very
useful when you have alarge project and project is divided into different
modules. It has 2 parameters:
name- It represents the package name
extends- It represents which package does this package extend from

<action>........c.cceeeeene </action>
It represents the action class. It has 2 parameters:

name- It represents name of the action

class- It represents the name of the action class

<result>ooeeeeeenne. </result>
It represents the name of the result or aview. It has 1 parameter:

name- It represent aresult for which appropriate view will get displayed

9.4 STEPSFOR HIBERNATE PROJECT

| Create a Struts project

File -> New Project (Select Java Web and Web Application) - Next
(Give the Project Name; change the project location as required; select
the checkboxes Dedicated folder for storing libraries) — Next

Select Glassfish Server — Next - Seect the framework Struts
1.3.10(select the check box Add struts TDL) — Finish

Il. Creating Views

To add views Right click on the project -> New -> JSP (Add
the required number of JSP pages) eg — (login, success, failure)

138

[11. Writing business login(M odel)

A. Design Action bean
To add StructsActionForm bean, Right click on the project -> other -
> select(Struts and StrutsActionFormBean) ->next
Give the bean class name (beanl) -> select the package name from
thelist ->Finish
Include the variables (username and email) into the action bean and
insert setter and gettermethod

B. Design Action
To add Action, Right click on the project -> other -> select(Struts
and StrutsAction) ->next
Give the class name (LoginAction) -> select the package from the
list -> type the action path as (/login) ->next
Select the action form bean(beanl) -> keep input resource blank ->
select the scope as request -> uncheck validate ActionForm Bean
checkbox ->Finish
Modify the execute()method.

V. Configuring controllers and mapping instruts-config.xmi

A. Configuration File
Select the struts-config.xml file from the configuration files
Right click within the <action>tag
Select Struts ->Add forward
Select the forward name (success) and select the resource
file(success.jsp)
Repeat and Add all the forwards
B. Mapping file
Select the web.xml file from the configuration files
Click the page stag

Select the welcome files(login.jsp)

Example: Develop a simple Struts Application to Demonstrate E-
mail Validator Login.jsp:

<html>

<head>

<title>L oginPage</title>

</head>

<body>

<form name="login" action="login.do">

Username

139

<input type="text" name="username" vaue="">

Email 1D

<input type="text" name="email" value="">

<input type="submit" name="submit" value="submit">
</fform>

</body>

</htmtml> Success.jsp:

<%@taglib uri="http://struts.apache.org/tags-bean" prefix="bean"%>
<html>

<head>

<title>Success Page</title>

</head>

<body>

Email Validation isdone...

Y our entered details are

Username

<bean:write name="beanl" property="username" />

email

<bean:write name="beanl" property="email" />
</body>

</html> Failure.jsp:

<%@taglib uri="http://struts.apache.org/tags-bean” prefix="bean"%>

<html>

<head>

<title>Failure Page</title>

</head>

<body>

Wrong Email ID..

Y our entered details are

Username

<bean:write name="beanl" property="username" />

email

<bean:write name="beanl" property="email" />
</body>

</html>

Struts-config.xml
<?xml version="1.0" encoding="UTF-8" 7>

<IDOCTY PE struts-config PUBLIC

"-/|Apache Software Foundation//DTD Struts Configuration
1.3//EN" "http://jakarta.apache.org/struts/dtds/struts-
config_1 3.dtd">

<struts-config>
<form-beans>
<form-bean name="bean1" type="com.myapp.struts.beanl1"/>

140

</form-beans>
<global -exceptions>

</global-exceptions>

<global-forwards>
<forward name="wel come"path="/Welcome.do"/>
</global-forwards>

<action-mappings>

<action name="beanl" path="/login"
scope="request"
type="com.myapp.struts.loginaction1"
validate="fase">
<forward name="login" path="/login.jsp"/>
<forward name="success" path="/success.jsp"/>
<forward name="failure" path="/failure.jsp"/>

</action>
<action path="/Welcome" forward="/welcomeStruts.jsp"/>
</action-mappings>

<controller
processorClass="org.apache.struts.tiles.TilesRequestProcessor" />

<message-resources
parameter="com/myapp/struts/ApplicationResource"/>

<plug-in className="org.apache.struts.tiles. TilesPlugin" >
<set-property property="definitions-config" value="/WEB-INF/tiles-
defs.xml”

/>

<set-property property="moduleAware" value="true" />

</plug-in>

<l-- Validator plugin
>
<plug-in className="org.apache.struts.validator.ValidatorPlugln">
<set-property
property="pathna
mes"

value="/WEB-INF/validator-rules.xml ,/WEB-INF/vaidation.xml"/>
</plug-in>

</struts-config>

Beanl.java(form bean)
package com.myapp.struts;

141

import javax.servlet.http.HttpServletRequest;

import

org.apache.struts.action.ActionErro

rs; import

org.apache.struts.action.ActionMap

ping; import

org.apache.struts.action.ActionMes

Sage,

public class beanl extends org.apache.struts.action.ActionForm {

private String
username;
private String
email;

public String
getEmail () {
return email;

}

public void
setEmail(String email) {
this.email = emalil;

}

public String
getUsername() {
return username;

}

public void setUsername(String
username) { this.username =
username;

}
}

L oginactionl.java

package com.myapp.struts;

import
javax.servlet.http.HttpServietReque
st; import
javax.servlet.http.HttpServletRespo
nse; import
org.apache.struts.action.ActionFor
m; import

142

org.apache.struts.action.ActionFor

ward; import

org.apache.struts.action.ActionMap

ping;

public class loginactionl extends
org.apache.struts.action.Action {

private static final String

SUCCESS = "success';

private static final String FAILURE ="FAILURE",;

@0Override
public ActionForward execute(A ctionM apping mapping,
ActionForm form, HttpServletRequest request,
HttpServletResponse response)
throws Exception {

beanl
bl=(beanl)form;
String
m=bl.getEmail();
if (m==null || m.equals("") || m.indexOf("@")
==-1){ return
mapping.findForward(FAILURE);
}
elsef

return mapping.findForward(SUCCESS);
}

}

}
Web.xml

<?ml version="1.0" encoding="UTF-8"?>
<web-app version="3.0"

xmlns="http://java.sun.com/xml/ng/javaee"
xmins:xsi="http://www.w3.0rg/2001/X M L Schema-instance"
xsi:schemal ocation="http://java.sun.com/xml/ns/javaeehttp://java.sun.co
m/xml/ns/javaee/web-app_3 0.xsd">
<servlet>
<servlet-name>action</servlet-name>
<servlet-class>org.apache.struts.action.ActionServl et</servl et-class>
<init-param>
<param-name>config</param-name>
<param-value>/WEB-INF/struts-config.xml</param-value>
</init-param>
<init-param>
<param-name>debug</param-name>
<param-value>2</param-va ue>
</init-param>
<init-param>

143

<param-name>detail </param-name>
<param-value>2</param-value>
</init-param>
<load-on-startup>2</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>action</servlet-name>
<url-pattern>* .do</url-pattern>
</servlet-mapping>
<session-config>
<session-timeout> 30
</session-timeout>
</session-config>
<welcome-file-list>
<welcome-file>login.jsp</welcome-file>
</welcome-file-list>
<jsp-config>
<ta
glib
>
<taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>
<taglib-location>/WEB-I NF/struts-bean.tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/WEB-INF/struts-html .tld</taglib-uri>
<taglib-location>/WEB-INF/struts-html.tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/WEB-INF/struts-logic.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-logi c.tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/WEB-INF/struts-nested.tld</taglib-uri>
<taglib-location>/WEB-I NF/struts-nested.tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/WEB-INF/struts-tiles.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-til es.tld</taglib-location>
</ta
glib
>

<ljsp-
config

>
</web-app>

144

*kk*k*k

145

UNIT VI

10

WEBSERVICES, JAVAMAIL AND JNDI

Unit Structure
10.1 Objectives
10.2 Introduction
10.3 Webservices
10.3.1 SOAP
10.3.2 Building a web services using JAX-WS
10.4 JavaMail
104.1 Mail protocols
10.4.2 Components of the JavaMail API
10.4.3 Starting JavaMail API
10.5 JNDI
10.5.1 Naming Service and Directory Service
10.5.2 INDI and Resources of JNDI
10.6 Summary
References
Questions

10.1 OBJECTIVES

At the end of this unit learner will be able to
Describe the concept of webservice
Demonstrate the concept of JAX-WS
Illustrate the mean of SOAP
Explain the concept of Java Mail and JNDI

10.2 INTRODUCTION

1 Web service is a technology to communicate one programming
language with another. For example, java programming language can
interact with PHP and .Net by using web services. In other words, web
service provides away to achieve interoperability.

2. The Javamail is an API that is used to compose, write and read
electronic messages(emails).

148

3. The Javamail API provides protocol-independent and platform-
independent framework for sending and receiving mails.

4. A fundamental element in every application is the capability to find
and |locate components and services.

5. The component name correspond to the actual name, typically much
more difficult to remember and manage. A well-known naming service
is provided on Internet by DNS.

10.3 WEB SERVICES

10.3.1 SOAP:

1. There are three major web service components
1. SOAP

2WSDL

3.UDDI

10.1 SOAP:
1. SOAPisan acronym for simple object Access protocol.
2. ItisaXML-based protocol for accessing web services.

3. It is a W3C recommendation for communication between
applications.

4. It is XML based, so it is platform independent and language
independent. In other words, it can be used with java, .NET or PHP
language or any platform.

5. Advantages of SOAP Web services:
1. WS Security- It defines its own security known as a WS security.

2. Language and platform independent- SOAP webservices can be
written in any programming language and executed in any platform.

6. Disadvantages of SOAP Web services.

1. Slow- SOAP uses XML format that must be parsed to be read. It
defines many standards that must be followed while developing the
SOAP applications. So it is slow and consumes more bandwidth and
resource.

2. WSDL dependent- SOAP uses WSDL and doesn’t have any other
mechanism to discover the service.
7. SOAP Building blocks:

1. The SOAP specification defines something known as a “SOAP
message” which is what is sent to the web service and the client
application.

149

2. The below diagram of SOAP architecture shows the various blocks of
a SOAP message

SOAP Envelope

Header Block
Header Block

Message Block

Fig 1 SOAP M essage Building Blocks

3. The SOAP message is nothing but a mere XML document which has
the below components.

4. An Envelope element that identifies the XML document as a SOAP
message-This is the containing part of the SOAP message and is used
to encapsulate al the details in the SOAP message. This is the root
element in the SOAP message.

5. A Header dement that contains header information-The header
element can contain information such as authentication credentials
which can be used by the calling application.

6. A Simple SOAP service example of acomplex type is shown below

Suppose we want to send a structured data type which had a combination
of “tutorial name” and “tutorial description”, then we would define the
complex type as shown below

The complex type is defined by the element tag <xsd:complexType>. All
of the required elements of the structure along with their respective data
types are then defined in the complex type collection.

<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent name="Tutorial Nane" type="string"/>
<xsd: el enent nane="Tut ori al Descri ption”
type="string"/>
</ xsd: sequence>
</ xsd: conpl exType>

6.1 A body element that contains call and response information- This
element is what contains the actual data which needs to be sent between

the web service and the calling application.
<soap: Body>
<Get Tutori al | nf o>
<Tut ori al Name>Web Ser vi ces</ Tut ori al Narme>

150

<Tut ori al Descri pti on>Al | about web
servi ces</ Tutori al Descri pti on>
</ Get Tutori al I nf o>
</ soap: Body>

7. SOAP Message Structure:

1. SOAP messages are normally auto-generated by the web service when
itiscaled.

2. Whenever a client application calls a method in the web service, the
web service will automatically generate a SOAP message which will
have the necessary details of the data which will be sent from the web
service to the client application.

3. A Simple SOAP message has the following elements-

1. The Envelope element

2. The header element and

3. The body element

4. The fault element(optional)

. SOAP Envelope el ement:

1. The first bit of the building block is the SOAP envelope. The SOAP
envelope is used to encapsulate all of the necessary details of the
SOAP messages, which are exchanged between the web service and
the client application.

2. The SOAP envelope element is used to indicate the beginning and to
end of a SOAP message. This enables the client application which
calls the web service to know when the SOAP message ends.

0o

3. Thefollowing points can be noted on the SOAP envel ope element

1. Every SOAP message needs to have aroot envelope element. It is
absolutely mandatory for SOAP message to have an envelope
element.

2. Every envelope element needs to have atleast one SOAP body
element.

3. If an envelope element contains a header element, it must contain
no more than one, and it must appear as the first child of the
envelope before the body el ement.

4. The envelope changes when SOAP version change.

5. A V1.1 complaint SOAP processor generates a fault upon
receiving a message containing the v1.2 envel ope namespace.

6. A vl.2-compliant SOAP processor generates a Version Mismatch
fault if it receives a message that does not include the v1.2
envel ope namespace.

9. The Fault M essage:
When a request is made to a SOAP web service, the response
returned can be of either 2 forms which are a successful response or an

151

error response. When a success is generated, the response from the server
will aways be a SOAP message. But if SOAP faults are generated, they
arereturned as"HTTP 500" errors.

10. SOAP Communication M odd!:

1. All communication by SOAP is done viathe HTTP protocol. Prior to
SOAP, a lot of web services used the standard RPC (Remote
Procedure Call) style for communication.

2. SOAP would then use the below communication model

Client Server

(Marshalling) (Demarshalling)

Fig 2 Client Marshalling and Demar shalling

2.1 The client would format the information regarding the procedure call
and any arguments into a SOAP message and sends it to the server as part
of an HTTP request. This process of encapsulating the data into a SOAP
message was known as M ar shalling.

2.2 The server would then unwrap the message sent by the client, see what
the client requested for and then send the appropriate response back to the
client as a SOAP message. The practice of unwrapping a request sent by
the client is known as Demar shalling.

3.2 Building a web servicesusing JAX-WS:
1. JAX-WS tutoria is provides concepts and examples of JAX-WS API.
There are two waysto develop JAX-WS example

1.1 Through RPC Style
1.2 Document Style

2. Difference between RPC and Document web services
1. RPC Style

1.1 RPC style web services use method name and parameters to generate
XML structure.

1.2 The generated WSDL is difficult to be validated against schema.
1.3 In RPC style, SOAP message is sent as many elements.

1.4 RPC style message is tightly coupled.

1.5 In RPC style, SOAP message keeps the operation name.

1.6 In RPC style, parameters are sent as discrete values.

152

2. Document Style

1.7 Document style web service can be validated against predefined
schema

1.8 Indocument style, SOAP message is sent as a single document.
1.9 Document style message isloosely coupled

1.10 In document style, SOAP message |oose the operation name.
1.11 In document style, parameters are sent in XML format.

3. Creating JAX-WS example is a easy task because it requires no
extra configuration settings.

1 JAX-WS API isin built in JDK, So you don’t need to load any extra
jar file for it. Lets see a ssimple example of JAX-WS example in RPC
style

2 Thereare created 4 files for hello world JAX-WS example

1.3 Héloworld.java

1.4 Héeloworldimpl.java

15 Publisher.java

1.6 HeloWorldClient.java

Thefirst 3 files are created for server side and 1 application for client side
JAX-WS Server code

File Helloworld.java

package com.javatpoint;

import javax.jws.WebMethod;

import javax.jws.WebService,

import javax.jws.soap.SOAPBIinding;
import javax.jws.soap.SOAPBinding.Style;
//Service Endpoint Interface
@WebService

@SOAPBInding(style = Style.RPC)

public interface HelloWorl d{

10. @WebMethod String getHelloWorl dA sString(String name);
11. }

© oo N O~ WDRE

File Helloworldimpl.java

package com.javatpoint;

import javax.jws.WebService;

/[Service Implementation

@WebService(endpointinterface = "com.javatpoint.Helloworld")

public class Helloworldimpl implements HelloWorl d{
@Override

o s wbdpE

153

7. public String getHelloWorldA sString(String name) {
8. return "Hello World JAX-WS™" + name;

0. }

10. }

File Publisher.java

package com.javatpoint;

import javax.xml.ws.Endpoint;

//[Endpoint publisher

public class HelloWorldPublisher{

public static void main(String[] args) {
Endpoint.publish("http://local host: 7779/ws/hello”, new Hello

orldimpl());

}

©®NSO AN R

}

After running the publisher code, we can see the generated WSDL file by

visiting the URL

http://localhost:7779/ws/hello?wsdl

JAX-WS Client Code

File HelloWorldClient.java

- package com.javatpoint;

- import java.net.URL,;

- import javax.xml.namespace.QName;

- import javax.xml.ws.Service;

- public class HelloWorl dClient{
public static void main(String[] args) throws Exception {
URL url = new URL("http://localhost: 7779/ws/hello?wsdl");

//1st argument service URI, refer to wsdl document above
//2nd argument is service name, refer to wsdl document above

QName gname = new QName("http://javatpoint.com/", "HelloWorldl
mpl Service");

Service service = Service.create(url, gname);
HelloWorld hello = service.getPort(HelloWorld.class);

System.out.printin(hello.getHelloWorl dAsString("javatpoint rpc'"));
}

154

Output
HelloWorld JAX-WS Javatpoint rpc

2. JAVA MAIL API

1

The JavaMail is an API that is used to compose, write and read
electronic messages (emails).

The JavaMail APl provides protocol-independent and platform-
independent framework for sending and receiving mails.

The javax.mail and javax.mail.activation packages contains the core
classes of javamail API.

The javamail facility can be applied to many events. It can be be used
at the time of registering the user (sending notification such as thanks
for registering), forgot password, sending notifications for important
updates etc.

4.1 Mail Protocols:

1.
1

2.

SMTP

SMTP is an acronym for Simple Mail Transfer Protocol. It provides a
mechanism to deliver the email.

We can use Apache James server, Postcast server, cmail server etc. as
an SMTP server. But if we purchase the host space, an SMTP server is
by default provided by the host provider.

For example, my smtp server is mail.javatpoint.com. If we use the
SMTP server provided by the host provider, authentication is required
for sending and receiving emails.

2 POP:

1.

POP is an acronym for Post Office Protocol, also known as POP3. It
provides a mechanism to receive the email.

It provides support for single mail box for each user. We can use
Apache James server, cmail server etc. as an POP server.

But if we purchase the host space, an POP server is by default
provided by the host provider. For example, the pop server provided
by the host provider for my site is mail.javatpoint.com. This protocol
is defined in RFC 1939.

3. IMAP

1

IMAP is an acronym for Internet Message Access Protocol. IMAP is
an advanced protocol for receiving messages.

It provides support for multiple mail box for each user, in addition to,
mailbox can be shared by multiple users. It is defined in RFC 2060.

155

4. MIME:

1 Multiple Internet Mail Extension (MIME) tells the browser what is
being sent e.g. attachment, format of the messages etc. It is not known
as mail transfer protocol but it is used by your mail program.

5. NNTP and Others;

1 There are many protocols that are provided by third-party providers.
Some of them are Network News Transfer Protocol (NNTP), Secure
Multipurpose internet mail extensions (SMIME) etc.

4.2 Components of the Java Mail API

1 The java application uses JavaMail APl to compose, send and receive
mails. The Java Mail APl uses SPI(service provider Interfaces) that
provides the intermediatory services to the java application to deal
with the different protocols. Let’s understand it with the figure given
below

Java Application |

JavaMail API

(Client Layer)

JavaMail SPI (Server/Protocol Layer)

SMTP IMAP POP

Fig 3 Architecture cum Components of Java Mail API

2 JavaM ail API Core Classes:

There are two packages that are used in Java Mail API. Javax.mail
and javax.mail.internet package. These packages contains many classes
for javamail APl They are

156

1 javax.mail.Session class
javax.mail.Message class
javax.mail.internet. MimeM essage class
javax.mail . Address class
javax.mail.internet.InternetAddress class
javax.mail . Authenticator class
javax.mail.PasswordA uthentication class
javax.mail.Transport class
javax.mail.Store class

javax.mail.Folder class etc.

4.3 Starting JavaM ail API:

1 There are various ways to send email using JavaMail API. For this
purpose, one must have SMTP server that is responsible to send mails.

2 Onecan use one of the following techniques to get the SMTP server

2.1 Install and use any SMTP server such as Postcast server, Apache
James server, Cmail server etc.

2.2 Use the SMTP server provided by the host provider eg My SMTP
server is mail.javatpoint.com(or)

2.3 Usethe SMTP server provided by other companies egg mail etc.

3 Stepsto send email using JavaMail API
3.1 There are following three steps to send mail using Javamail. They
areasfollows

1 Get the Session object- That stores all the information of host like host
name, username, password etc. The javax.mail.Session class provides two
methods to get the object of session, Session.getDefaultinstance() method
and Session.getinstance() method. We can use any method to get the
session object

1.1 M ethods of Session class

Sr. No. M ethod Description

1 public static Session | returns the default session.
getDefaultinstance(Properties
props)

2 public static Session | returns the default session.

getDefaultinstance(Properties
props,Authenticator auth)

3 public static Session | returns the new session.
getinstance(Properties props)
4 public static Session | returns the new session.

getinstance(Properties
props,Authenticator auth)

157

2. Compose the message- The javax.mail.Message class provides
methods to compose the message. But it is an abstract class so its subclass
javax.mail.internet. MimeMessage class is mostly used.

1.2 To create the message we need to pass session object in MimeM essage
class constructor. For example MimeMessage message=new
MimeM essage(session). Now message object has been created but to store
information in this object MimeM essage class provides many methods.

1.3 Commonly used methods of MimeMessage class

Sr.No | Methods Description

1 public void setFrom(Address address) is used to set the from

header field.

2 publicvoid is used to add the given
addRecipient(Message.RecipientType | address to the recipient
type, Address address) type.

3 public void | is used to add the given
addRecipients(Message.RecipientType addresses to the
type, Address[] addresses) recipient type.

4 public void setSubject(String subject) is used to set the

subject header field.

5 public void setText(String textmessage) is used to set the text

as the message content
using text/plain MIME

type.

6 public void setText(String textmessage) is used to set the text
as the message content
using text/plain MIME

type.
7 public void setContent(Object msg, | is used to set the
String contentType) content as the message
content using given
MIME type.

2. Send the message- The javax.mail.Transport class provides method to
send the message. Commonly used methods of transport class

Sr.No Method Description
1 public static void | is used send the message.
send(Message message)
2 public static void | is used send the message to the
send(Message message, | given addresses.
Address[] address)

Simple example of sending email in Java

For sending the email using JavaMail API, you need to load two jar files
Mail.jar and activation.jar

158

1. import java.util.*;

2. import javax.mail.*;

3. import javax.mail.internet.*;

4, import javax.activation.*;

5.

6. public class SendEmail

7. A

8. public static void main(String [] args){

0. String to = "sonoojaiswal 1988@gmail.com";//change accordi
gly

10. String from = "sonoojaiswal 1987@gmail.com™;change accordi
ngly

11. String host = "localhost";//or 1P address

12.

13. //Get the session object

14. Properties properties = System.getProperties();

15. properties.setProperty("mail.smtp.host”, host);

16. Session session = Session.getDefaultinstance(properties);

17.

18. /[compose the message

19. try{

20. MimeM essage message = new MimeM essage(session);

21. message.setFrom(new InternetAddress(from));

22. message.addReci pient(M essage.RecipientType. TO,new Inte

netAddress(to));

23. message.setSubject("Ping");

24, message.setText("Hello, thisis example of sending email ");

25.

26. Il Send message

27. Transport.send(message);

28. System.out.printIn(" message sent successfully....");

29.

30. } catch (MessagingException mex) { mex.printStack Trace();}

31. }

32. }

To run above code we need to load two jar files. There are 4 ways
to load the jar file. One of the way is set classpath. Let’s see how to run
this example

159

Load the Jar file set classpath=mail.jar;activation.jar;.;

Compile the source | javac SendEmail.java
file

Run by java SendEmail

5. JNDI:

1

The java Naming and Directory Interface(JNDI) is an application
programming interface(API) that provides naming and directory
functionality to applications written using the Java programming
language.

It is defined to be independent of any specific directory service
implementation. Thus a variety of directories- new, emerging and
aready deployed can be accessed in a common way.

. Architecture

The JNDI architecture consists of an APl and a service provider
interface(SP1). Java applications use the INDI API to access a variety
of naming and directory services. The SPI enables a variety of naming
and directory services to be plugged in transparently, thereby allowing
the java application using the INDI API to access their services, as
givenin following figure.

Java Application

JNDI API

Naming Manager

) | s | sl] G mmemenite
{ A O B B A |

Fig 4 Architecture of JNDI

5. Naming and Directory Service:
1 A client looking for a component/service usually knows its name, but

not its physical location.

For application, a naming/ directory service is the way to get a
reference to a required service(e.g. a JDBC data source, a JMS
connection factory, an EJB home interface)

160

3

A naming service is an application that contains a set of objects, or
references to objects,
with corresponding names, Such correspondances are called bindings.

A directory service allows for the association of attributes to a binding.
Some popular directory implementations:

Lightweight Directory Access Protocol (LDAP)
Network Directory Service (NDS)

Network Information Servis Plus (NIS+)

4INDI (Java Naming Directory interface) provides java clients with the
capability to access naming and directory services.

JNDI is subdivided in to the following package

Javax.naming

Javax.naming.directory

Javax.naming.event

Javax.naming.ldap

Javax.naming.spi

4

JNDI configuration could be a quite difficult task — Whenever we use
a EJB server, INDI is started automatically at the same time of the
server itself. Such a service is usualy aready configured for the
specific server.

Whenever we use an EJB server, JNDI is started automatically at the
same time of the server itself. Such a service is usually aready
configured for the specific server.

Also the client applications using JNDI must be configured and this
task is up to the programmer / assembler / deployer.

10.2 INDI and Resour ces of JNDI :

1.

4.

5.

JNDI isthe acronym for the Java Naming and Directory Interface API.
By making calls to this API, applications locate resources and other
program objects.

A resource is a program object that provides connections to sytems,
such as database servers and messaging systems. (A JDBC resource is
sometimes referred to as a data source.)

Each resource object is identified by a unique, people-friendly name,
called the INDI name. A resource object and its INDI name are bound
together by the naming and directory service, which is included with
the Application Server.

To create a new resource, a new name-object binding is entered into
the INDI.
Using Custom Services

5.1 A custom resource accesses a local JNDI repository and an external

resource accesses an external JINDI repository. Both types of resources

161

need user-specified factory class elements, INDI name attributes, etc.
In this section, we will discuss how to configure JNDI connection
factory resources, for J2EE resources, and how to access these
resources.

5.2 Within Application Server, you can create, delete and list resources as

well as list-jndi-enttites.

5.3 Creating Custom Resources

8.

1. In the left pane of the Admin Console, open the Sun Java System
Application Server instance for the JNDI configuration to be
modified.

2. Open the JNDI tab and click Custom Resources. If any custom
resources have been created aready, they are listed in the right
pane. To create a new custom resource, click New. Open the JNDI
tab and click New. A page for adding a new custom resource

appears.

In the INDI Name field, enter the name to use to access the resource.
This name will be registered in the INDI naming service.

In the Resource Type field, enter a fully qualified type definition, as
shown in the example above. The Resource Type definition follows
the format, XXX.XXX.

In the Factory Class field, enter a factory class name for the custom
resource to be created. The Factory Class is the user-specified name
for the factory class. This class implements the
javax.naming.spi.ObjectFactory interface.

In the Description field, enter a description for the resource to be
creating. This description is a string value and can include a maximum
of 250 characters.

Mark the Custom Resource Enabled checkbox, to enable the custom
resource.

Click OK to save your custom resource.

5.4 Editing Custom Resour ces:

1.

In the left pane of the Admin Console, open the Sun Java System
Application Server instance for the INDI configuration to be modified.

Open JNDI and select Custom Resources. If any custom resources
have been created already, they are listed in the right pane. To edit a
custom resource, click on the file namein the right pane.

Edit the Resource Type field, the Factory Class field, or the
Description field.

Mark the Custom Resource Enabled checkbox, to enable the custom
resource.

Click Saveto save the changes to the custom resource.
162

5.5 Deleting Custom Resour ce:

1.
2.

3.

In the | eft pane of the Admin Console, open the JNDI tab.

Click Custom Resources. If any custom resources have been created
aready, they are listed in the right pane. To delete a custom resource,
click in the box next to the name of the resource to be del eted.

Click Delete. The custom resource is del eted.

6. Creating External Resource:

1. In the left pane of the Admin Console, open the Sun Java System
Application Server instance for the JNDI configuration to be
modified.

2. Open INDI and select Externa Resources. If any externa
resources have been created aready, they are listed in the right
pane. To create anew external resource, click New.

3. Inthe JNDI Name field, enter the name that is to be used to access
the resource. Thisnameis registered in the INDI naming service.

4. In the Resource Type field, enter a fully qualified type definition,
as shown in the example above. The Resource Type definition
follows the format, xxx. xxx.

5. In the JNDI Lookup field, enter the INDI value to look up in the
external repository. For example, when creating an externd
resource to connect to an external repository, to test a bean class,
theJNDI Lookup can look like this; cn=testmybean.

6. In the Factory Class field, enter a JNDI factory class external
repository, for example, com sun.jndi.ldap. This class
implements the javax.naming.spi.bj ect Fact or y interface.

7. In the Description field, enter a description for the resource to be
created. This description is a string value and can include a
maximum of 250 characters.

8. Mark the External Resource Enabled checkbox, to enable the
external resource.

9. Click OK to save the external resource.
asadmin command equivalent: cr eat e-j ndi - resour ce .

Editing External Resour ce:
In the left pane of the Admin Console, open the Sun Java System

Application Server instance for the INDI configuration to be modified.

Open INDI and select External Resources. If any external resources
have been created aready, they are listed in the right pane. To edit an
external resource, click on the file name in the right pane.

Edit the Resource Type field, the INDI Lookup field, the Factory
Classfield, or the Description field.

163

4. Mark the External Resource Enabled checkbox, to enable the external
resource.

5. Click Save to save the changes to the external resource.
8 Deleting Exter nal Resour ce:

To delete an external resource:
1. Intheleft pane of the Admin Console, open the INDI tab.

2. Click Externa Resources. If any external resources have been created
aready, they are listed in the right pane. To delete an external
resource, click the box next to the name of the resource to be deleted.

3. Click Delete. The external resource is deleted.
asadmin command equivalent delete-jndi-resource.

SUMMARY

In this Unit, overall architecture of webservices, JNDI and SOA is
discussed along with API used for mailing services

REFERENCES

[1] The Complete Reference of Java by Herbert Scheildt, 7th Edition
published by Indian Edition

QUESTIONS

Explain the architecture of INDI

Explain the concept of web services

Describe SOAP in your own terms?

List down the steps for creation JAX-WS web service
[lustrate the Java Mail APl methods

o~ v NP

*kkk*k

164

