
TYIT ADVANCED JAVA

B.S.C. (IT)
SEMESTER-V PAPER-IV (CBCS)

ipin Enterprises
Tantia Jogani Industrial Estate, Unit No. 2,
Ground Floor, Sitaram Mill Compound,
J.R. Boricha Marg, Mumbai - 400 011

Published by : Director
Institute of Distance and Open Learning ,
University of Mumbai,
Vidyanagari, Mumbai - 400 098.

DTP Composed : Univeristy Press
Institute of Distance and Open Learning ace Computronics

"Samridhi" Paranjpe 'B' Scheme, Vile Parle (E), Mumbai - 57.
Printed by :

Programe Co-ordinator : Mandar L. Bhanushe
Head, Faculty of Science and Technology,
IDOL, University of Mumbai – 400098.

Course Co-ordinator : Sumedh Pandit Shejole,
Assistant Professor,
B.Sc.(Information Technology),
Institute of Distance & Open Learning,
University of Mumbai- 400098.

Course Writers : Dr. Rakhee Yadav
Assistant Professor
S. K. Somaiya College of Arts, Science and Commerce

: Mr. Milind Thorat
Assistant Professor
K. J. Somaiya Institute of Engineering and Information Technology

: Ms. Rohini Desai
Assistant Professor
Vidyalankar School of Information Technology

: Ms. Aarti Sahitya
Assistant Professor
K. J. Somaiya Institute of Engineering and Information Technology

September 2021, Print I

© UNIVERSITY OF MUMBAI

Prof. Prakash Mahanwar
Director

IDOL, University of Mumbai.

Prof. Suhas Pednekar
Vice Chancellor

University of Mumbai, Mumbai.
Prof. Ravindra D. Kulkarni

Pro Vice-Chancellor,
University of Mumbai.

CONTENTS
Chapter No. Title Page No

UNIT I

1. Swings 1

UNIT II

2. Introduction To Servlets 17

UNIT III

3. Java Database Connectivity 35

4. Java Server Pages-1 53

5. Java Server Pages-2 70

UNIT IV

6. Java Server Faces 86

7. Enterprise Java Bean (Ejb) 106

UNIT V

8. Hibernate And Struts 121

9. Struts 131

UNIT VI

10. Webservices, Javamail And Jndi 146

SYLLABUS

Unit-I Swing: Event Handling, JFrames, Lists, Tables, Trees, Text
Components, Progress Indicators, Component Organizers

Unit-II Introduction to servlets: Need for dynamic content, java
servlet technology, why servlets?
Servlet API and Lifecycle: servlet API, servletConfig
interface, ServletRequest and ServletResponse Interfaces,
GenericServlet Class. ServletInputStream And
ServletOutputStreamClasses,RequestDispatcher
Interface,HttpServlet Class, HttpServletRequest and
HttpServletResponse Interfaces, HttpSession Interface,
Servlet Lifecycle.
Working with servlets: organization of a web application,
creating a web application(using netbeans), creating a
servlet, compiling and building the web application

Unit-III JDBC: Design of JDBC, JDBC configuration, Executing
SQL statement, Query Execution, Scrollable and updatable
result sets, row sets, metadata, Transaction.
JSP: Introduction, disadvantages, JSP v/s Servlets,
Lifecycle of JSP, Comments, JSP documents, JSP elements,
Action elements, implicit objects, scope, characterquoting
conventions, unified expression language.

Unit-IV Java server Faces :
Need of MVC , what is JSF?, components of JSF, JSF as an
application, JSF lifecycle, JSF configuration, JSF web
applications (login form, JSF pages)
EJB: Enterprise bean architecture, Benefits of enterprise
bean, types of beans, Accessing beans, packaging beans,
creating web applications, creating enterprise bean, creating
web client, creating JSP file, building and running web
application.

Unit-V HIBERNATE: Introduction, Writing the application,
application development approach, creating database and
tables in MySQL, creating a web application, Adding the
required library files, creating a java bean class, creating
hibernate configuration and mapping file, adding a mapping
resource, creating JSPs.
STRUTS: Introduction, Struts framework core components,
installing and setting up struts, getting started with struts.

CLASS: B. Sc (Information technology) Semester–V
Paper IV; SUBJECT: Advanced Java
Periods per week
1 Period is 50 minutes

Lecture 5

TW/Tutorial/Practical 3
Hours Marks

Evaluation System Theory Examination InternalTheory Examination 2 60
TW/Tutorial/Practical - 40

Unit-VI WEB Services: SOAP, Building a web services using JAX-
WS, Building web service.
JAVAMAIL: Mail Protocols, Components of the Javamail
API, JAVAMAIL API, Starting with API.
JNDI: NAMING Service, Directory service, JNDI,
Resources and JNDI,

Books:
Java EE 6 for Beginners, Sharanam Shah, Vaishali Shah, SPD (Unit II to
VI) Core Java Vol. II – Advanced Features, Cay S. Horstmans, Gary
Coronell, Eight Edition, Pearson (Unit I and III) Java Complete Reference,
Herbert Schildt, Seventh Edition,TMH. (Unit I)

References:
Java EE Project using EJB 3, JPA and struts 2 for beginners, Shah, SPD
Java Programming A practical Approach, C Xavier, McGraw Hill Java
Server Faces A practical Approach for beginners, B M Harwani, Eastern
Economy Edition (PHI). Advanced Java Technology, Savaliya,
Dreamtech.

Term Work:

Assignments: Should contain at least 6 assignments (one per unit)
covering the Syllabus.

Practicals
1. Write a java program to present a set of choices for a user to select

Stationary products and display the price of Product after Selection
from the list.

2. Write a java program to demonstrate typical Editable Table,
describing employee details for a software company.

3. Write a java program using Split pane to demonstrate a screen
divided in two parts, one part contains the names of Planets and
another Displays the image of planet. When user selects the planet
name form Left screen, appropriate image of planet displayed in right
screen.

4. Develop Simple Servlet Question Answer Application to demonstrate
use of HttpServletRequest and HttpServletResponse interfaces.

5. Develop Servlet Application of Basic Calculator (+,-,*, /, %) using
ServletInputStream and ServletOutputStream.

6. Develop a JSP Application to accept Registration Details form user
and Store it into the database table.

7. Develop a JSP Application to Authenticate User Login as per the
registration details. If login success the forward user to Index Page
otherwise show login failure Message.

8. Develop a web application to add items in the inventory using JSF.
9. Develop a Room Reservation System Application Using Enterprise

Java Beans.
10. Develop a Hibernate application to store Feedback of Website Visitor

in MySQL Database.

11. a. Develop a simple Struts Application to Demonstrate 3 page
Website of Teaching Classes which passes values from every page to
another.

b. Develop a simple Struts Application to Demonstrate E-mail Validator.

1

UNIT I

1
SWINGS

Unit Structure
1.0 Event Handling

1.1 JFrames

1.2 Lists

1.3 Tables

1.4 Trees

1.5 Text Components

1.6 Progress Indicators

1.7 Component Organizers

References

Unit End Questions

1.0 EVENT HANDLING

Event handling is fundamental to Java programming because it is
integral to the creation of applets and other types of GUI-based programs.
any program that uses a graphical user interface, such as a Java application
written for Windows, is event driven. Thus, you cannot write these types
of programs without a solid command of event handling. Events are
supported by a number of packages, including java.util, java.awt, and
java.awt.event. When a user interacts with a GUI-based software, the
majority of events to which your programme will reply are created. There
are several types of events, including those generated by the mouse, the
keyboard, and various GUI controls, such as a push button, scroll bar, or
check box. It then examines the main event classes and interfaces used by
the AWT and develops several examples that demonstrate the
fundamentals of event processing. The modern approach to handling
events is based on the delegation event model, which defines standard and
consistent mechanisms to generate and process events. Its concept is quite
simple: a source generates an event and sends it to one or more listeners.
Swing components do respond to user input and the events generated by
those interactions need to be handled. Events can also be generated in
ways not directly related to user input. For example, an event is generated
when a timer goes off. Whatever the case, event handling is a large part of
any Swing-based application.

2

1.1 SWINGS

The AWT defines a basic set of controls, windows, and dialog
boxes that support a usable, but limited graphical interface. One reason for
the limited nature of the AWT is that it translates its various visual
components into their corresponding, platform-specific equivalents, or
peers. This means that the look and feel of a component is defined by the
platform, not by Java. Because the AWT components use native code
resources, they are referred to as heavyweight. The use of native peers led
to several problems. First, because of variations between operating
systems, a component might look, or even act, differently on different
platforms. This potential variability threatened the overarching philosophy
of Java: write once, run anywhere. Second, the look and feel of each
component was fixed (because it is defined by the platform) and could not
be (easily) changed. Third, the use of heavyweight components caused
some frustrating restrictions.

1.2 JFRAME

JFrame is the top-level container that is commonly used for Swing
applications. JLabel is the Swing component that creates a label, which is
a component that displays information. The label is Swing’s simplest
component because it is passive. That is, a label does not respond to user
input. It just displays output. The program uses a JFrame container to hold
an instance of a JLabel. The label displays a short text message.
A simple java program for JFrame:

import javax.swing.*;

class SwingDemo {

SwingDemo() {

// Create a new JFrame container.

JFramejfrm = new JFrame("A Simple Swing Application");

// Give the frame an initial size.

jfrm.setSize(275, 100);

// Terminate the program when the user closes the application.

jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// Create a text-based label

JLabeljlab = new JLabel(" Swing means powerful GUIs.");

// Add the label to the content pane.

jfrm.add(jlab);

// Display the frame.

jfrm.setVisible(true);

3

}

public static void main(String args[]) {

// Create the frame on the event dispatching thread.

SwingUtilities.invokeLater(new Runnable() {

public void run() {

new SwingDemo();

}

});

}

}

Theconstructor is where most of the action of the program occurs. It
begins by creating a JFrame, using this line of code:

JFramejfrm = new JFrame("A Simple Swing Application");

This creates a container called jfrm that defines a rectangular window
complete with a titlebar; close, minimize, maximize, and restore buttons;
and a system menu. Thus, it creates astandard, top-level window. The title
of the window is passed to the constructor. Next, the window is sized
using this statement:

jfrm.setSize(275, 100);

The setSize() method (which is inherited by JFrame from the AWT class
Component) setsthe dimensions of the window, which are specified in
pixels. Its general form is shown here:

void setSize(int width, int height)

In this example, the width of the window is set to 275 and the
height is set to 100.By default, when a top-level window is closed (such as
when the user clicks the closebox), the window is removed from the
screen, but the application is not terminated. Whilethis default behavior is
useful in some situations, it is not what is needed for most
applications.Instead, you will usually want the entire application to
terminate when its top-levelwindow is closed. There are a couple of ways
to achieve this. The easiest way is to callsetDefaultCloseOperation(), as
the program does:

jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

4

After this call executes, closing the window causes the entire application
to terminate. The general form of setDefaultCloseOperation() is shown
here:

void setDefaultCloseOperation(int what)

The value passed in what determines what happens when the window is
closed. There areseveral other options in addition to
JFrame.EXIT_ON_CLOSE. They are shown here:

JFrame.DISPOSE_ON_CLOSE

JFrame.HIDE_ON_CLOSE

JFrame.DO_NOTHING_ON_CLOSE

Their names reflect their actions. These constants are declared in
WindowConstants, which is an interface declared in javax.swing that is
implemented by JFrame. The next line of code creates a Swing JLabel
component:

JLabeljlab = new JLabel(" Swing means powerful GUIs.");

JLabel is the simplest and easiest-to-use component because it does
not accept user input. It simply displays information, which can consist of
text, an icon, or a combination of the two.The label created by the program
contains only text, which is passed to its constructor.The next line of code
adds the label to the content pane of the frame:

jfrm.add(jlab);

1.2.1 JFrame constructors:

1. JFrame() – JFrame() is a JFrame class constructor which creates a
new Frame. By default, it remains invisible.

2. JFrame(String title, GraphicsConfigurationgc) – This constructor
creates a JFrame in the specified graphical configuration & with the
specified title as in parameter.

3. JFrame(GraphicsConfigurationgc) – This constructor creates a
JFrame in the specified graphical configuration as it is in the
parameter.

4. JFrame(String title) – This constructor creates a JFrame with the
specified title as in parameter.

1.2.2 JFrame Methods:

JFrame class provides some methods which play an important role in
working with JFrame.

1. AccessibleContextgetAccessibleContext() – This method gets the
accessible context that remains associated with the JFrame.

5

2. Container getContentPane() – This method creates the
JFrame’scontentPane object.

3. Component getGlassPane() – This method creates the glassPane
object for JFrame.

4. int getDefaultCloseOperation() – When the user clicks on the close
button on this Frame then this method returns the operation.

5. JMenuBargetJMenuBar() – Menubar set created at the Frame by
using this method.

6. JLayeredPanegetLayeredPane() – LayeredPane object is returned by
this method.

7. JRootPanegetRootPane() – The rootPane object is returned by this
method.

1.3 LISTS

List in Java provides the facility to maintain the ordered collection.
It contains the index-based methods to insert, update, delete and search the
elements. It can have the duplicate elements also. We can also store the
null elements in the list.The List interface is found in the java.util package
and inherits the Collection interface. It is a factory of ListIterator
interface. Through the ListIterator, we can iterate the list in forward and
backward directions. The implementation classes of List interface are
ArrayList, LinkedList, Stack and Vector. The ArrayList and LinkedList
are widely used in Java programming. The syntax is given as

public interface List<E>extends Collection<E>

1.3.1 List Methods:

Method Description
void add(int index, E element) It is used to insert the specified

element at the specified position in a
list.

booleanadd(E e) It is used to append the specified
element at the end of a list.

booleanaddAll(Collection<?
extends E> c)

It is used to append all of the
elements in the specified collection
to the end of a list.

booleanaddAll(int index,
Collection<? extends E> c)

It is used to append all the elements
in the specified collection, starting at
the specified position of the list.

void clear() It is used to remove all of the
elements from this list.

booleanequals(Object o) It is used to compare the specified
object with the elements of a list.

int hashcode() It is used to return the hash code
value for a list.

Eget(int index) It is used to fetch the element from
the particular position of the list.

6

booleanisEmpty() It returns true if the list is empty,
otherwise false.

int lastIndexOf(Object o) It is used to return the index in this
list of the last occurrence of the
specified element, or -1 if the list
does not contain this element.

Object[] toArray() It is used to return an array
containing all of the elements in this
list in the correct order.

<T>T[] toArray(T[] a) It is used to return an array
containing all of the elements in this
list in the correct order.

booleancontains(Object o) It returns true if the list contains the
specified element

booleancontainsAll(Collection<?>
c)

It returns true if the list contains all
the specified element

int indexOf(Object o) It is used to return the index in this
list of the first occurrence of the
specified element, or -1 if the List
does not contain this element.

E remove(int index) It is used to remove the element
present at the specified position in
the list.

booleanremove(Object o) It is used to remove the first
occurrence of the specified element.

booleanremoveAll(Collection<?> c) It is used to remove all the elements
from the list.

void replaceAll(UnaryOperator<E>
operator)

It is used to replace all the elements
from the list with the specified
element.

void retainAll(Collection<?> c) It is used to retain all the elements in
the list that are present in the
specified collection.

E set(int index, E element) It is used to replace the specified
element in the list, present at the
specified position.

void sort(Comparator<? super E> c) It is used to sort the elements of the
list on the basis of specified
comparator.

Example:
import java.util.*;

public class ListExample1{

public static void main(String args[]){

//Creating a List

List<String> list=new ArrayList<String>();

//Adding elements in the List

list.add("Mango");

list.add("Apple");

list.add("Banana");

7

list.add("Grapes");

//Iterating the List element using for-each loop

for(String fruit:list)

System.out.println(fruit);

}

}

1.4 TABLE

JTable is a component that displays rows and columns of data. You can
drag the cursor on column boundaries to resize columns. You can also drag a
column to a new position. Depending on its configuration, it is also possible to
select a row, column, or cell within the table, and to change the data within a cell.
JTable is a sophisticated component that offers many more options and features
than can be discussed here. (It is perhaps Swing’s most complicated component.)
However, in its default configuration, JTable still offers substantial functionality
that is easy to use—especially if you simply want to use the table to present data
in a tabular format. The brief overview presented here will give you a general
understanding of this powerful component. Like JTree, JTable has many classes
and interfaces associated with it. These are packaged in javax.swing.table. JTable
supplies several constructors. The one used here is JTable(Object data[][],
Object colHeads[]) Here, data is a two-dimensional array of the information to
be presented, and colHeads is a one-dimensional array with the column headings.
JTable relies on three models. The first is the table model, which is defined by
the TableModel interface. This model defines those things related to displaying
data in a two-dimensional format. The second is the table column model, which
is represented by TableColumnModel. JTable is defined in terms of columns, and
it is TableColumnModel that specifies the characteristics of a column. These two
models are packaged in javax.swing.table.A JTable can generate several different
events. The two most fundamental to a table’s operation are ListSelectionEvent
and TableModelEvent. A ListSelectionEvent is generated when the user selects
something in the table. By default, JTable allows you to select one or more
complete rows, but you can change this behavior to allow one or more columns,
or one or more individual cells to be selected. A TableModelEvent is fired when
that table’s data changes in some way.

Constructors:
Constructor Description
JTable() Creates a table with empty cells.
JTable(Object[][] rows, Object[]
columns)

Creates a table with the specified data.

Program for JTable:
import java.awt.*;

import javax.swing.*;

/*

<applet code="JTableDemo" width=400 height=200>

</applet>

*/

8

public class JTableDemo extends JApplet {
public void init() {
try {
SwingUtilities.invokeAndWait(

new Runnable() {
public void run() {
makeGUI();
}
}
);
} catch (Exception exc) {

System.out.println("Can't create because of " + exc);
}
}
private void makeGUI() {
// Initialize column headings.
String[] colHeads = { "Name", "Extension", "ID#" };

// Initialize data.
Object[][] data = {
{ "Gail", "4567", "865" },
{ "Ken", "7566", "555" },
{ "Viviane", "5634", "587" },
{ "Melanie", "7345", "922" },

{ "Anne", "1237", "333" },
{ "John", "5656", "314" },
{ "Matt", "5672", "217" },
{ "Claire", "6741", "444" },
{ "Erwin", "9023", "519" },
{ "Ellen", "1134", "532" },
{ "Jennifer", "5689", "112" },

{ "Ed", "9030", "133" },
{ "Helen", "6751", "145" }
};

// Create the table.

JTable table = new JTable(data, colHeads);
// Add the table to a scroll pane.

JScrollPanejsp = new JScrollPane(table);
// Add the scroll pane to the content pane.
add(jsp);
}
}

9

1.5 TREES

A tree is a component that presents a hierarchical view of data. The
user has the ability to expand or collapse individual subtrees in this
display. Trees are implemented in Swing by the JTree class.
JTree(Object obj[])

JTree(Vector v)

JTree(TreeNodetn)

In the first form, the tree is constructed from the elements in the
array obj. The second form constructs the tree from the elements of vector
v. In the third form, the tree whose root nodeis specified by tn specifies the
tree. Although JTree is packaged in javax.swing, its support classes and
interfaces are packaged in javax.swing.tree. This is because the number
of classes and interfaces neededto support JTree is quite large. JTree relies
on two models: TreeModel and TreeSelectionModel. A JTree generates a
variety of events, but three relate specifically to trees:
TreeExpansionEvent, TreeSelectionEvent, and TreeModelEvent.
TreeExpansionEvent events occur when a nodeis expanded or collapsed.
A TreeSelectionEvent is generated when the user selects ordeselects a
node within the tree. A TreeModelEvent is fired when the data or structure
of thetree changes. The listeners for these events are
TreeExpansionListener, TreeSelectionListener, and TreeModelListener,
respectively. The tree event classes and listener interfaces are packaged in
javax.swing.event.The event handled by the sample program shown in
this section is TreeSelectionEvent. To listen for this event, implement
TreeSelectionListener. It defines only one method, called valueChanged(
), which receives the TreeSelectionEvent object. You can obtain the path
to the selected object by calling getPath(), shown here, on the event
object.

TreePathgetPath()

It returns a TreePath object that describes the path to the changed
node. The TreePath classencapsulates information about a path to a
particular node in a tree. The TreeNode interface declares methods that
obtain information about a tree node. The MutableTreeNode interface
extends TreeNode. It declares methods that can insert and remove child
nodes or change the parent node. The DefaultMutableTreeNode class
implements the MutableTreeNode interface. It represents a node in a tree.
One of its constructors is shown here:

DefaultMutableTreeNode(Object obj)

Here, obj is the object to be enclosed in this tree node. The new
tree node doesn’t have a parent or children. To create a hierarchy of tree
nodes, the add() method of DefaultMutableTreeNode canbe used. Its
signature is shown here:

void add(MutableTreeNode child)

10

Here, child is a mutable tree node that is to be added as a child to
the current node. JTree does not provide any scrolling capabilities of its
own. Instead, a JTree is typically placed within a JScrollPane. This way, a
large tree can be scrolled through a smaller viewport. Theprogram creates
a DefaultMutableTreeNode instance labeled “Options.” This is the
topnode of the tree hierarchy. Additional tree nodes are then created, and
the add() method is called to connect these nodes to the tree. A reference
to the top node in the tree is provided as the argument to the JTree
constructor. The tree is then provided as the argument to the JScrollPane
constructor. This scroll pane is then added to the content pane. Next, a
label is created and added to the content pane. The tree selection is
displayed in this label. To receive selection events from the tree, a
TreeSelectionListener is registered for the tree. Inside the valueChanged()
method, the path to the current selection is obtained and displayed.

// Demonstrate JTree.

import java.awt.*;

import javax.swing.event.*;

import javax.swing.*;

import javax.swing.tree.*;

/*

<applet code="JTreeDemo" width=400 height=200>

</applet>

*/

public class JTreeDemo extends JApplet {

JTree tree;

JLabeljlab;

public void init() {

try {

SwingUtilities.invokeAndWait(

new Runnable() {

public void run() {

makeGUI();

}

}

);

} catch (Exception exc) {

System.out.println("Can't create because of " + exc);

}

}

private void makeGUI() {

// Create top node of tree.

DefaultMutableTreeNode top = new
DefaultMutableTreeNode("Options");

11

// Create subtree of "A".

DefaultMutableTreeNode a = new DefaultMutableTreeNode("A");

top.add(a);

DefaultMutableTreeNode a1 = new DefaultMutableTreeNode("A1");

a.add(a1);

DefaultMutableTreeNode a2 = new DefaultMutableTreeNode("A2");

a.add(a2);

// Create subtree of "B".

DefaultMutableTreeNode b = new DefaultMutableTreeNode("B");

top.add(b);

DefaultMutableTreeNode b1 = new DefaultMutableTreeNode("B1");

b.add(b1);

DefaultMutableTreeNode b2 = new DefaultMutableTreeNode("B2");

b.add(b2);

DefaultMutableTreeNode b3 = new DefaultMutableTreeNode("B3");

b.add(b3);

// Create the tree.

tree = new JTree(top);

// Add the tree to a scroll pane.

JScrollPanejsp = new JScrollPane(tree);

// Add the scroll pane to the content pane.

add(jsp);

// Add the label to the content pane.

jlab = new JLabel();

add(jlab, BorderLayout.SOUTH);

// Handle tree selection events.

tree.addTreeSelectionListener(new TreeSelectionListener() {

public void valueChanged(TreeSelectionEventtse) {

jlab.setText("Selection is " + tse.getPath());

}

});

}

}

1.6 TEXT COMPONENTS

It generates text events when the user enters a character. The plain
text components (text field, password field, and text area) are the easiest
and most commonly used components. In a few lines of code, you can
easily create, configure, and use a plain text component in your program.
The components that can display styled text (editor pane and text pane)
typically require more effort to use. Most programmers using editor pane

12

or text pane need to build a user interface that lets the user manipulate the
text styles. Also, getting the content from a styled text component
typically requires more code than a simple call to getText. Yet, as the
diagram shows, both plain and styled text components inherit from
JTextComponent. This abstract base class provides a highly-configurable
and powerful foundation for text manipulation. JTextComponent provides
these customizable features for all of its descendants.

Figure: Text components

1.6.1 JTextField:

JTextField is the simplest Swing text component. It is also
probably its most widely used text component. JTextField allows you to
edit one line of text. It is derived from JTextComponent, which provides
the basic functionality common to Swing text components. JTextField
uses the Document interface for its model.

Three of JTextField’s constructors are shown here:
JTextField(int cols)

JTextField(String str, int cols)

JTextField(String str)

Here, str is the string to be initially presented, and cols is the
number of columns in the text field. JTextField generates events in
response to user interaction. For example, an ActionEvent is fired when
the user presses ENTER. To obtain the text currently in the text field, call
getText(). It creates a JTextField and adds it to the content pane. When
the user presses ENTER, an action event is generated. This is handled by
displaying the text in the status window.
// Demonstrate JTextField.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/*

<applet code="JTextFieldDemo" width=300 height=50>

</applet>

*/

public class JTextFieldDemo extends JApplet {

13

JTextFieldjtf;

public void init() {

try {

SwingUtilities.invokeAndWait(

new Runnable() {

public void run() {

makeGUI();

}

}

);

} catch (Exception exc) {

System.out.println("Can't create because of " + exc);

}

}

private void makeGUI() {

// Change to flow layout.

setLayout(new FlowLayout());

// Add text field to content pane.

jtf = new JTextField(15);

add(jtf);

jtf.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent ae) {

// Show text when user presses ENTER.

showStatus(jtf.getText());

}

});

}

}

1.6.2 JPasswordField:

The object of a JPasswordField class is a text component specialized for
password entry. It allows the editing of a single line of text. It inherits
JTextField class.

public class JPasswordField extends JTextField

Constructors:

JPasswordField(): Constructs a new JPasswordField, with a default
document, null starting text string, and 0 column width.

JPasswordField(int columns): Constructs a new empty JPasswordField
with the specified number of columns.

JPasswordField(String text): Constructs a new JPasswordField
initialized with the specified text.

14

JPasswordField(String text, int columns): Construct a new
JPasswordField initialized with the specified text and columns.
import javax.swing.*;

public class PasswordFieldExample {

public static void main(String[] args) {

JFrame f=new JFrame("Password Field Example");

JPasswordField value = new JPasswordField();

JLabel l1=new JLabel("Password:");

l1.setBounds(20,100, 80,30);

value.setBounds(100,100,100,30);

f.add(value); f.add(l1);

f.setSize(300,300);

f.setLayout(null);

f.setVisible(true);

}

}

1.6.3 JTextArea:

The object of a JTextArea class is a multi line region that displays
text. It allows the editing of multiple line text. It inherits JTextComponent
class.

public class JTextArea extends JTextComponent

Constructors:

JTextArea(): Creates a text area that displays no text initially.

JTextArea(String s): Creates a text area that displays specified text
initially.

JTextArea(int row, int column): Creates a text area with the specified
number of rows and columns that displays no text initially.

JTextArea(String s, int row, int column): Creates a text area with the
specified number of rows and columns that displays specified text.

Methods:

void setRows(int rows): It is used to set specified number of rows.

void setColumns(int cols): It is used to set specified number of columns.

void setFont(Font f): It is used to set the specified font.

void insert(String s, int position): It is used to insert the specified text on
the specified position.

void append(String s): It is used to append the given text to the end of the
document.

import javax.swing.*;

15

public class TextAreaExample

{

TextAreaExample(){

JFrame f= new JFrame();

JTextArea area=new JTextArea("Welcome to javatpoint");

area.setBounds(10,30, 200,200);

f.add(area);

f.setSize(300,300);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String args[])

{

new TextAreaExample();

}}

1.7 PROGRESS INDICATORS

A JProgressBar is a Swing component that indicates progress. A
ProgressMonitor is a dialog box that contains a progress bar. A
ProgressMonitorInputStream displays a progress monitor dialog box while
the stream is read. JProgressBar is already discussed in previous section.

Progress Monitors:

A progress bar is a simple component that can be placed inside a
window. In contrast, a ProgressMonitor is a complete dialog box that
contains a progress bar. The dialog box contains a Cancel button. If you
click it, the monitor dialog box is closed. In addition, your program can
query whether the user has canceled the dialog box and terminate the
monitored action. (Note that the class name does not start with a "J".)

Figure: Progress Monitors

16

1.8 COMPONENT ORGANISER

The study of advanced Swing features comes to a close with a look
at components that aid in the organisation of other components. These
include the split pane, which divides an area into many pieces with
adjustable bounds, the tabbed pane, which allows a user to flip among
multiple panels using tab dividers, and the desktop pane, which can be
used to implement apps.

Split Panes:

Split panes divide a component into two pieces separated by an
adjustable boundary. A frame with two split pan with a text area on the
bottom and another split pane on top, the outer pane is split vertically. A
list on the left and a label with an image on the right make up that pane,
which is split horizontally. We construct a split pane by specifying the
orientation, one of JSplitPane. HORIZONTAL_SPLIT or
JSplitPane.VERTICAL_SPLIT, followed by the two components. For
example,

JSplitPaneinnerPane = new
JSplitPane(JSplitPane.HORIZONTAL_SPLIT, planetList, planetImage);

That's all you have to do. If you like, you can add "one-touch
expand" icons to the splitter bar. We see those icons in the top pane inthe
Metal look and feel, they are small triangles. If you click one of them, the
splitter moves all the way in the direction to which the triangle is pointing,
expanding one of the panes completely.
innerPane.setOneTouchExpandable(true);

TabbedPane:

Tabbed panes are a familiar user interface device to break up a
complex dialog box into subsets of related options. We can also use tabs to
let a user flip through a set of documents or images. To create a tabbed
pane, you first construct a JTabbedPane object, then you add tabs to it.

JTabbedPanetabbedPane = new JTabbedPane(); tabbedPane.addTab(title,
icon, component);

The last parameter of the addTab method has type Component. To add
multiple components into the same tab, you first pack them up in a
container, such as a JPanel. The icon is optional; for example, the addTab
method does not require an icon:

tabbedPane.addTab(title, component);

We can also add a tab in the middle of the tab collection with the insertTab
method:

17

tabbedPane.insertTab(title, icon, component, tooltip, index);

To remove a tab from the tab collection, use
tabPane.removeTabAt(index);

When we add a new tab to the tab collection, it is not automatically
displayed. We must select it with the setSelectedIndex method. For
example, here is how you show a tab that you just added to the end:

tabbedPane.setSelectedIndex(tabbedPane.getTabCount() - 1);

If we have a lot of tabs, then they can take up quite a bit of space.
Starting with JDK 1.4, we can display the tabs in scrolling mode, in which
only one row of tabs is displayed, together with a set of arrow buttons that
allow the user to scroll through the tab set.

We set the tab layout to wrapped or scrolling mode by calling

tabbedPane.setTabLayoutPolicy(JTabbedPane.WRAP_TAB_LAYOUT);

REFERENCES

 Java Complete Reference, Herbert Schildt, Seventh Edition, Tata McGraw
Hill. (Unit I Chapter 20,21,22)

 https://www.javatpoint.com/

UNIT END QUESTIONS

1. What is Servlets?

2. Explain Text components.

3. Explain Progress Bar in detail.

18

UNIT II

2
INTRODUCTION TO SERVLETS

Unit Structure
2.0 Need for dynamic content

2.1 Java Servlet Technology

2.2 Why Servlets?

2.3 Servlet API

2.4 Servlet and ServletConfig interface

2.5 ServletRequest Interface

2.6 ServletResponse Interface

2.7 Generic Servlet class

2.8 ServletInputStream class

2.9 ServletOutputStream class

2.10 RequestDispatcher Interface

2.11 HttpServlet Class

2.12 HttpServletRequest interface

2.13 HttpServletResponse Interface

2.14 HttpSession Interface

2.15 Servlet Lifecycle

2.16 Organization of a web application

2.17 Creating a web application (using Netbeans)

Unit End Questions

References

2.0 NEED FOR DYNAMIC CONTENT

In order to understand the advantages of servlets, you must have a
basic understanding of how web browsers and servers cooperate to
provide content to a user. Consider a request for a static web page. A user
enters a Uniform Resource Locator (URL) into a browser. The browser
generates an HTTP request to the appropriate web server. The web server
maps this request to a specific file. That file is returned in an HTTP
response to the browser. The HTTP header in the response indicates the
type of the content. The Multipurpose Internet Mail Extensions (MIME)
are used for this purpose. For example, ordinary ASCII text has a MIME
type of text/plain. The Hypertext Markup Language (HTML) source code
of a web page has a MIME type of text/html. Now consider dynamic
content. Assume that an online store uses a database to store information

19

about its business. This would include items for sale, prices, availability,
orders, and so forth. It wishes to make this information accessible to
customers via web pages. The contents of those web pages must be
dynamically generated to reflect the latest information in the database. In
the early days of the Web, a server could dynamically construct a page by
creating a separate process to handle each client request. The process
would open connections to one or more databases in order to obtain the
necessary information. It communicated with the web server via an
interface known as the Common Gateway Interface (CGI). CGI allowed
the separate process to read data from the HTTP request and write data to
the HTTP response. A variety of different languages were used to build
CGI programs. These included C, C++, and Perl. However, CGI suffered
serious performance problems. It was expensive in terms of processor and
memory resources to create a separate process for each client request. It
was also expensive to open and close database connections for each client
request. In addition, the CGI programs were not platform-independent.
Therefore, other techniques were introduced. Among these are servlets.

Servlets offer several advantages in comparison with CGI. First,
performance is significantly better. Servlets execute within the address
space of a web server. It is not necessary to create a separate process to
handle each client request. Second, servlets are platform-independent
because they are written in Java. Third, the Java security manager on the
server enforces a set of restrictions to protect the resources on a server
machine. Finally, the full functionality of the Java class libraries is
available to a servlet

2.1 JAVA SERVLET TECHNOLOGY

Java Servlets are programs that run on a Web or Application server
and act as a middle layer between a request coming from a Web browser
or other HTTP client and databases or applications on the HTTP server.
Using Servlets, you can collect input from users through web page forms,
present records from a database or another source, and create web pages
dynamically. Java Servlets often serve the same purpose as programs
implemented using the Common Gateway Interface (CGI). But Servlets
offer several advantages in comparison with the CGI.

2.2 WHY SERVLETS?

There are many advantages of Servlet over CGI. The web
container creates threads for handling the multiple requests to the Servlet.
Threads have many benefits over the Processes such as they share a
common memory area, lightweight, cost of communication between the
threads are low. The advantages of Servlet are as follows:

1. Better performance: because it creates a thread for each request, not
process.

20

2. Portability: because it uses Java language.

3. Robust: JVM manages Servlets, so we don't need to worry about the
memory leak, garbage collection, etc.

4. Secure: because it uses java language.

2.3 SERVLET API

Two packages contain the classes and interfaces that are required
to build servlets. These are javax.servlet and javax.servlet.http. They
constitute the Servlet API. Keep in mind that these packages are not part
of the Java core packages. Instead, they are standard extensions provided
by Tomcat. Therefore, they are not included with Java SE 6. The Servlet
API has been in a process of ongoing development and enhancement. The
current servlet specification is version 2.4, and that is the one used in this
book. However, because changes happen fast in the world of Java, you
will want to check for any additions or alterations. The javax.servlet
package contains a number of interfaces and classes that establish the
framework in which servlets operate. The following table summarizes the
core interfaces that are provided in this package. The most significant of
these is Servlet. All servlets must implement this interface or extend a
class that implements the interface. The ServletRequest and
ServletResponse interfaces are also very important.

Figure 2.1: Interfaces provided by javax.servlet package

Figure 2.2:Core classes of javax.servlet package

2.4 SERVLET AND SERVLETCONFIG INTERFACE

All servlets must implement the Servlet interface. It declares the
init(), service(), and destroy() methods that are called by the server
during the life cycle of a servlet. A method is also provided that allows a
servlet to obtain any initialization parameters. The init(), service(), and
destroy() methods are the life cycle methods of the servlet. These are
invoked by the server. The getServletConfig() method is called by the

21

servlet to obtain initialization parameters. A servlet developer overrides
the getServletInfo() method to provide a string with useful information
(for example, author, version, date, copyright). This method is also
invoked by the server.

The ServletConfig interface allows a servlet to obtain
configuration data when it is loaded. The methods declared by this
interface are summarized here:

Table 2.3: ServletConfig interface methods

2.5 SERVLETREQUEST INTERFACE

The ServletRequest interface enables a servlet to obtain
information about a client request. Several of its methods are summarized
in Table 2.4.

Table 2.4: ServletRequest interface methods

22

2.6 SERVLETRESPONSE INTERFACE

The ServletResponse interface enables a servlet to formulate a response
for a client. Several of its methods are summarized in Table 2.5.

Table 2.5: ServletResponse Interface methods

2.7 GENERICSERVLET CLASS

The GenericServlet class provides implementations of the basic
life cycle methods for a servlet. GenericServlet implements the Servlet
and ServletConfig interfaces. In addition, a method to append a string to
the server log file is available. The signatures of this method are shown
here: void log(String s) void log(String s, Throwable e) Here, s is the
string to be appended to the log, and e is an exception that occurred.A
generic servlet is a protocol independent Servlet that should always
override the service() method to handle the client request. The service()
method accepts two arguments ServletRequest object and ServletResponse
object. The request object tells the servlet about the request made by client
while the response object is used to return a response back to the client.

Figure 2.1: Generic Servlet

23

2.8 SERVLETINPUTSTREAM CLASS

The ServletInputStream class extends InputStream. It is
implemented by the servlet container and provides an input stream that a
servlet developer can use to read the data from a client request. It defines
the default constructor. In addition, a method is provided to read bytes
from the stream. It is shown here: int readLine(byte[] buffer, int offset, int
size) throws IOException Here, buffer is the array into which size bytes
are placed starting at offset. The method returns the actual number of
bytes read or –1 if an end-of-stream condition is encountered.

2.9 SERVLETOUTPUTSTREAM CLASS

The ServletOutputStream class extends OutputStream. It is
implemented by the servlet container and provides an output stream that a
servlet developer can use to write data to a client response. A default
constructor is defined. It also defines the print() and println() methods,
which output data to the stream.

2.10 REQUESTDISPATCHER INTERFACE:

The RequestDispatcher interface provides the facility of
dispatching the request to another resource it may be html, servlet or jsp.
This interface can also be used to include the content of another resource
also. It is one of the way of servlet collaboration.

There are two methods defined in the RequestDispatcher interface.

2.10.1 Methods of RequestDispatcher interface:

The RequestDispatcher interface provides two methods. They are:

1. public void forward(ServletRequestrequest,ServletResponse
response)throws ServletException,java.io.IOException:Forwards
a request from a servlet to another resource (servlet, JSP file, or
HTML file) on the server.

2. public void include(ServletRequestrequest,ServletResponse
response)throws ServletException,java.io.IOException:Includes
the content of a resource (servlet, JSP page, or HTML file) in the
response.

24

Figure 2.2: forward() method

As we see in the above figure, response of second servlet is sent to
the client. Response of the first servlet is not displayed to the user.

Figure 2.3: include() method

As you can see in the above figure, response of second servlet is
included in the response of the first servlet that is being sent to the client.

2.11 HTTPSERVLET CLASS

The HttpServlet class extends GenericServlet. It is commonly used
when developing servlets that receive and process HTTP requests. The
methods of the HttpServlet class are summarized in Table 2.6

25

Table 2.6: HttpServlet class methods

2.12 HTTPSERVLETREQUEST

The HttpServletRequest interface enables a servlet to obtain
information about a client request. Several of its methods are shown in
Table 2.7

Table 2.7: HttpServletRequest

2.13 HTTPSERVLETRESPONSE INTERFACES

Table 2.8(a): HttpServletResponse interface methods

26

Table 2.8(b): HttpServletResponse interface methods

2.14 HTTPSESSION INTERFACE

The HttpSession interface enables a servlet to read and write the
state information that is associated with an HTTP session. Several of its
methods are summarized in Table 2.9. All of these methods throw an
IllegalStateException if the session has already been invalidated.

Table 2.9: HttpSession methods

2.15 SERVLET LIFECYCLE

Three methods are central to the life cycle of a servlet. These are
init(), service(), and destroy(). They are implemented by every servlet
and are invoked at specific times by the server. Let us consider a typical
user scenario to understand when these methods are called. First, assume
that a user enters a Uniform Resource Locator (URL) to a web browser.
The browser then generates an HTTP request for this URL. This request is
then sent to the appropriate server. Second, this HTTP request is received
by the web server. The server maps this request to a particular servlet. The
servlet is dynamically retrieved and loaded into the address space of the
server. Third, the server invokes the init() method of the servlet. This
method is invoked only when the servlet is first loaded into memory. It is
possible to pass initialization parameters to the servlet so it may configure

27

itself. Fourth, the server invokes the service() method of the servlet. This
method is called to process the HTTP request. You will see that it is
possible for the servlet to read data that has been provided in the HTTP
request. It may also formulate an HTTP response for the client. The servlet
remains in the server’s address space and is available to process any other
HTTP requests received from clients. The service() method is called for
each HTTP request. Finally, the server may decide to unload the servlet
from its memory. The algorithms by which this determination is made are
specific to each server. The server calls the destroy() method to relinquish
any resources such as file handles that are allocated for the servlet.
Important data may be saved to a persistent store. The memory allocated
for the servlet and its objects can then be garbage collected.

2.16 ORGANIZATION OF A WEB APPLICATION

Before we see how the servlet works, let’s get familiar with these three
terms.

Web Server: it can handle HTTP Requests send by clients and responds
the request with an HTTP Response.

Web Application(webapp): I would refer this as webapp in this guide.
Basically, the project is your web application, it is the collection of
servlets.

Web Container: Also known as Servlet Container and Servlet Engine. It
is a part of Web Server that interacts with Servlets. This is the main
component of Web Server that manages the life cycle of Servlets.

2.17 CREATING A WEB APPLICATION (USING
NETBEANS)

To create a servlet application in Netbeans IDE, you will need to follow
the following (simple) steps:

1. Open Netbeans IDE, Select File ->New Project

28

2. Select Java Web -> Web Application, then click on Next.

29

3. Give a name to your project and click on Next.

4. and then, Click Finish

30

5. The complete directory structure required for the Servlet Application
will be created automatically by the IDE.

6. To create a Servlet, open-Source Package, right click on default
packages -> New -> Servlet.

31

7. Give a Name to your Servlet class file.

32

8. Now, your Servlet class is ready, and you just need to change the
method definitions and you will good to go.

9. Write some code inside your Servlet class.

33

10. Create an HTML file, right click on Web Pages -> New -> HTML

11. Give it a name. We recommend you to name it index, because browser
will always pick up the index.html file automatically from a directory.
Index file is read as the first page of the web application.

34

12. Write some code inside your HTML file. We have created a hyperlink
to our Servlet in our HTML file.

13. Edit web.xml file. In the web.xml file you can see, we have specified
the url-pattern and the servlet-name, this means when hello url is
accessed our Servlet file will be executed.

14. Run your application, right click on your Project and select Run.

35

15. Click on the link created, to open your Servlet.

UNIT END QUESTIONS

1. Why there is need of Servlets?

2. Explain Servlet lifecycle?

3. Explain the difference between GenericServlet and HttpServlet?

REFERENCES

 Java EE 6 for Beginners, Sharanam Shah, Vaishali Shah, SPD

 https://www.studytonight.com/servlet/creating-servlet-in-netbeans.php

36

UNIT III

3

JAVA DATABASE CONNECTIVITY

Unit Structure
3.0 Objective

3.1 Introduction

3.2 Design of JDBC

3.3 JDBC configuration

3.4 Executing SQL statement, Query Execution

3.5 Scrollable and updatable result sets

3.6 Row sets

3.7 Metadata

3.8 Transaction

3.9 Summary

Reference for further reading

Unit End Exercises

3.0 OBJECTIVE

 To understand the structure of java database (JDBC)

 To learn design of JDBC database

 To learn how to configure JDBC with database

 To understand the execution of database query and retrieval of data
from the database using JDBC.

3.1 INTRODUCTION

JDBC is a java database connectivity standard that provides the
interface for connecting from Java to relational databases. The JDBC
standard is defined by early Sun Microsystems and implemented through
the standard java.sql interfaces. This permits individual providers to
implement and extend the standard with their own JDBC drivers.

JDBC stands for Java Database Connectivity, which is a standard
Java API for database-independent connectivity between the Java
programming language and a broad range of databases.

The JDBC library includes APIs for each of the tasks commonly
associated with database usage:

37

● Establish a connection to a database

● Creating SQL or MySQL statements

● Executing that SQL or MySQL queries in the database

● Viewing & Modifying the resulting records using resultset.

JDBC API is a Java programming API that can access any kind of
tabular data, especially data stored in a Relational Database. JDBC works
with Java on different platforms, such as Windows, Mac OS, and the
various versions of Unix/Linux.

3.3 DESIGN OF JDBC

Java language was designed to provide platform independence
from hardware/software platforms, so too JDBC has been designed to
provide some degree of database independence for java developers. JDBC
is designed to provide a database API for accessing relational databases
from different vendors. JDBC developed to work with the most common
type of databases, JDBC drivers that allow the API to be used to connect
to both high-end, mainframe databases.

The relationships between the database objects are described using
a query language, the most popular of which is the Structured Query
Language (SQL).

JDBC Architecture:

Fig. 1 JDBC Architecture

● The JDBC interface supports both two-tier and three-tier processing
models for database access but in general JDBC Architecture consists
of two layers:

● JDBC API: This provides the application-to-JDBC Manager
connection.

38

● JDBC driver supports the JDBC Manager-to-Driver Connection.

● The JDBC API connects with driver manager and database-specific
drivers to provide transparent connectivity to heterogeneous databases.

● The JDBC driver manager ensures that the right driver is used to
access each data source. The driver manager is supporting multiple
concurrent drivers connected to multiple heterogeneous databases.

Common JDBC Components:
The JDBC API provides the following interfaces and classes:

● DriverManager:

○ Manages a list of database drivers.

○ Matches connection requests with the proper database driver

○ Establish a database Connection.

● Driver:

○ Handles the communications with the database server.

○ DriverManager to manage objects

● Connection :

○ This interface with all methods for contacting a database.

○ Connection object represents the communication context

● Statement :

○ This interface to submit the SQL statements to the database.

○ Interfaces accept parameters in addition to executing stored
procedures.

● ResultSet:

○ These objects hold data retrieved from a database after execute an
SQL query using Statement objects.

○ It acts as an iterator.

● SQLException:

○ This class handles any errors that occur in a database application.

3.4 JDBC CONFIGURATION

 In JDBC configuration JDBC drivers implement the defined interfaces
in the JDBC API for interacting with the database server. For example,
using JDBC drivers to enable open database connections and to interact
with databases by sending SQL or database commands then receiving
results with Java.

 The Java.sql package with JDK contains various classes with their
methods defined and their actual implementations are done in third-
party drivers. Third party vendors implement the java.sql.driver
interface in their database driver.

39

JDBC drivers are divided into four types or levels. The different types of
jdbc drivers are:

1. Type 1: JDBC-ODBC Bridge driver (Bridge)

2. Type 2: Native-API/partly Java driver (Native)

3. Type 3: JDBC Network-All JAVA driver (Middleware)

4. Type 4: All Java/Native-protocol driver (Pure)

JDBC-ODBC Bridge driver:

 Type 1 drivers act as a "bridge" between JDBC and another database
connectivity mechanism such as ODBC. The JDBC- ODBC bridge
provides JDBC access using most standard ODBC drivers. This driver
is included in the Java 2 SDK within the sun.jdbc.odbc package.

 In this driver the java statements are converted to a jdbc statements.
JDBC statements call the ODBC by using the JDBC-ODBC Bridge.
And finally the query is executed by the database.

 The Type1 driver translates all JDBC calls into ODBC calls and sends
them to the ODBC driver. ODBC is a generic API.

Fig. 2 Type 1: JDBC-ODBC Bridge Driver

Native-API/partly Java driver:

 Type 2 drivers use the Java Native Interface (JNI) to make calls to a
local database library API. This driver converts the JDBC calls into a
database specific call for databases such as SQL, ORACLE etc.

 This driver communicates directly with the database server. It requires
some native code to connect to the database. Type 2 drivers are usually
faster than Type 1 drivers.

 Like Type 1 drivers, Type 2 drivers require native database client
libraries to be installed and configured on the client machine. The
distinctive characteristic of type 2 jdbc drivers is that Type 2 drivers
convert JDBC calls into database-specific calls i.e. this driver is
specific to a particular database.

40

Fig. 3 Type 2: JDBC-Native API

All Java/Net-protocol driver:

● Type 3 drivers are pure Java drivers that use a proprietary network
protocol to communicate with JDBC middleware on the server. The
middleware then translates the network protocol to database-specific
function calls.

● Type 3 drivers are the most flexible JDBC solution because they do
not require native database libraries on the client and can connect to
many different databases on the back end. Type 3 drivers can be
deployed over the Internet without client installation.

● Java-------> JDBC statements------> SQL statements ------> databases.

Fig. 4 Type 3: JDBC-Net pure Java

Native-protocol/all-Java driver:
The Type 4 uses java networking libraries to communicate directly with
the database server.

41

Fig. 5 Type 4: 100% pure Java

The programming involved to establish a JDBC connection is fairly
simple. Here are these simple four steps:

 Import JDBC Packages: Add import statements to Java program to
import required classes in Java code.

 Register with JDBC Driver: This step causes the JVM to load the
desired driver implementation into memory so it can fulfill JDBC
requests.

 Database URL expression: This is to create a properly formatted
address that points to the database to which wish to connect.

 Create Connection Object: Finally, code a call to the DriverManager
object's getConnection() method to establish actual database
connection.

Import JDBC Packages:

The Import statements tell the Java compiler where to find the
classes reference in r code and are placed at the very beginning of r
source code.

import java.sql.* ; // for standard JDBC programs

Register JDBC Driver:

To register the JDBC driver in r program before using it.
Registering the driver is the process by which the Oracle driver's class file
is loaded into memory so it can be utilized as an implementation of the
JDBC interfaces.

Class.forName():

The most common approach to register a driver is to use Java's
Class.forName() method to dynamically load the driver's class file into

42

memory, which automatically registers it. This method is preferable
because it allows to make the driver registration configurable and portable.
The following example uses Class.forName() to register the Oracle
driver:

try
{

Class.forName("oracle.jdbc.driver.OracleDriver");
}
catch(ClassNotFoundException ex)
{

System.out.println("Error: unable to load driver class!");
System.exit(1);

}

DriverManager.registerDriver():

The second approach can use to register a driver is to use the static
DriverManager.registerDriver() method.

The following example uses registerDriver() to register the Oracle driver:

try {
Driver myDriver = new oracle.jdbc.driver.OracleDriver();
DriverManager.registerDriver(myDriver);
}
catch(ClassNotFoundException ex) {
System.out.println("Error: unable to load driver class!");
System.exit(1);
}

Database URL Formulation:

After loading the driver, JDBC establishes a connection using the
DriverManager.getConnection() method.

The three overloaded DriverManager.getConnection() methods:

● getConnection(String url)

● getConnection(String url, Properties prop)

● getConnection(String url, String user, String password)

Following table lists down popular JDBC driver names and database
URLs.
RDBMS JDBC driver name URL format
MySQL com.mysql.jdbc.Driver jdbc:mysql://hostname/

databaseName
ORACLE oracle.jdbc.driver.OracleDrive

r
jdbc:oracle:thin:@hostname:p
ort Number:databaseName

43

DB2 COM.ibm.db2.jdbc.net.DB2D
river

jdbc:db2:hostname:port
Number/databaseName

Sybase com.sybase.jdbc.SybDriver jdbc:sybase:Tds:hostname:
port Number/databaseName

Create Connection Object:

Using a database URL with a username and password:

● There are three forms of DriverManager.getConnection() method to
create a connection object. The most commonly used form of
getConnection() requires to pass a database URL, a username, and a
password:

host:port:databaseName value for the database portion of the URL.

Example, jdbc:oracle:thin:@amrood:1521:EMP

● to call getConnection() method with appropriate username and
password to get a Connection object as follows:

String URL = "jdbc:oracle:thin:@amrood:1521:EMP";

String USER = "username";

String PASS = "password"

Connection conn = DriverManager.getConnection(URL, USER,
PASS);

● Using only a database URL:

A second form of the DriverManager.getConnection() method
requires only a database URL:

DriverManager.getConnection(String url);

Example, String URL =
"jdbc:oracle:thin:username/password@amrood:1521:EMP";

Connection conn = DriverManager.getConnection(URL);

import java.util.*;
String URL = "jdbc:oracle:thin:@amrood:1521:EMP";
Properties info = new Properties();
info.put("user", "username");
info.put("password", "password");
Connection conn = DriverManager.getConnection(URL);

Closing JDBC connections:
At the end of JDBC program, it is required to explicitly close all the
connections to the database to end each database session. .
To close above opened connection should call close() method as follows:
conn.close();

44

3.5 EXECUTING SQL STATEMENT, QUERY
EXECUTION

There are 3 objects in JDBC
 Statement Object.

 PreparedStatement Object

 CallableStatement Object

Statement Class:

 For sending SQL Statements, JDBC uses the executeQuery (String
SQL) method of this Statement Class.

 The execute (String SQL) method which will return a boolean value,
whether the same have been executed or not. This is normally used
when the statement returns more than one Result Set.

 We can also use the executeUpdate (String SQL) method, which will
return an int value, which the number of rows updated (that is inserted,
deleted, or modified).

 JDBC provides two kinds of objects that can be used to execute SQL
Statements and they are PreparedStatement and CallableStatement
interfaces which are sub-interfaces of the Statement Interface. The
PreparedStatement Interface extends the Statement Interface and the
CallableStatement Interface extends the PreparedStatement interface.

 PreparedStatement objects differ from the Statement objects in that the
SQL statement is pre-compiled and can have placeholders (?) for
runtime parameters values.

 The PreparedStatement objects are particularly useful when a statement
will be executed many times (for example, adding new rows) since
substantial performance gains can be achieved.

Example:

import java.sql.*;
class DBTest
{

public static void main(String[] args)
{
try
{
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
Connection c =

DriverManager.getConnection("jdbc:odbc:dum");
Statement s = c.createStatement();
s.execute("create table DeptMaster(deptno Number, dname

Text, loc Text)");
System.out.println("Table successfully created");

45

}
catch(SQLException e)
{

System.out.println("Datebase Error"+e.getMessage());
}
catch(Exception e)
{

System.out.println("General Error"+e.getMessage());
}

}
}

Creating and Executing SQL statements

The commonly used SQL statements are:

1) Select

2) Insert

3) Update

4) Delete

SQL Select statement:

● The SELECT statement is used to select data from a table.

Syntax: Select column_names FROM table_name;

● The result from a SQL query is stored in a resultset.

● The Select specifies the table columns that are retrieved.

● The From clause tells from where the table has been accessed.

● The Where clause specifies which tables are used. The Where clause is
optional, if not used then all the table rows will be selected.

SQL INSERT Statement:

● This statement allows to insert a single or multiple records into the
database.

● We can specify the name of the column in which we want to insert the
data.

Syntax: Insert into table_name values (value1, value2..);

We can also specify the columns for which we want to insert data.

The UPDATE Statement:

● The Update statement is used to modify the data in the table.

● Whenever we want to update or delete a row then we use the Update
statement.

The syntax is:

46

UPDATE table_name Set colunm_name = new_value WHERE
column_name = some_name;

The Update statement has mainly three clauses.

1) UPDATE: It specifies which table column has to be updated.

2) Set: It sets the column in which the data has to be updated.

3) Where: It tells which tables are used.

SQL DELETE Statement:
● This delete statement is used to delete rows in a table.

Syntax: DELETE FROM table_name WHERE column_name =
some_name;

Scrollable and updatable result sets:

1. scrollable ResultSets:

● These ResultSet objects will allow the users to interact with the data in
both forward and backward directions.

● Scrollable ResultSets can be divided into following two types.

a) ScrollSensitive ResultSet:

● It is a ResultSet object, it will allow the later database
modifications.

● To represent this ResultSet object we have to use the following
constant from the ResultSet interface.

Public static final TYPE_SCROLL_SENSITIVE

b) ScrollInSensitive ResultSet:

● These are scrollable ResultSet objects, which will allow the later
database modifications after creation.

● To represent this ResultSet object we have to use the following
constant from the ResultSet interface.

Public static final TYPE_SCROLL_INSENSITIVE

on the basis of ResultSet concurrency there are two types of ResultSets

1. Read only ResultSet:

This ResultSet will allow the users only to read the data.To
represent this ResultSet object we have to use the following constant
from the ResultSet interface.

Public static final int CONCUR_READ_ONLY

2. Updatable ResultSet:

This ResultSet object will allow the user to perform updates on it’s
content.

47

To represent this ResultSet object to use following constant from
ResultSet interface.

Public static final int CONCUR_UPDATABLE.

● To refresh the present report a scroll sensitive ResultSet object we
have to use the following method.

Public void refreshRow() throws SQLException

● In case of scrollable ResultSet object to move ResultSet cursor before
first record position we have to use following method

public void beforeFirst()

● To move ResultSet cursor after last record position we have to use
following method

public void afterLast()

● To move ResultSet cursor to first record position we will use the
following method

public boolean first()

● To move ResultSet cursor to last record position we will use the
following method

public boolean last()

● To move ResultSet cursor to a particular record position we will use
the following method

public boolean absolute(int rec_position)

● To skip particular no.of records from the current position of the
ResultSet we have to use the following method

public boolean relative(int no_of_records)

● To insert new row in updatable ResultSet object we have to use
following method

public void moveToInsertRow()

● To insert record data temporarily in a row we have to use the
following method

public void updatexxx(int column_index,xxx value)

● In order to make temporary insertion as permanent insertion in the
ResultSet object and database we have to use the following method.

public void insertRow()

Example:

import java.sql.Connection;
import java.sql.DriverManager;

48

import java.sql.ResultSet;
import java.sql.Statement;
import java.util.Properties;

public class JdbcApp14 {
public static void main(String args[])throws Exception
{
Class.forName(“com.mysql.jdbc.Driver”);
Properties p=new Properties();
Connection
con=DriverManager.getConnection(“jdbc:mysql://localhos

t:3306/test ”,”root”,”system”);

Statement
st=con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_UPDATABLE);

boolean b=st.execute(“select * from emp1″);
System.out.println(b);
ResultSet rs=st.getResultSet();
System.out.println(“————————“);
System.out.println(“ENO ENAME ESAL”);
while(rs.next())
{
System.out.println(rs.getString(“eno”)+”

“+rs.getString(“ename”) +” “+rs.getString(“esal”));
}
System.out.println(“application in pausing state”);
System.out.println(“perform updations at database”);
System.in.read();
rs.beforeFirst();
System.out.println(“data after updations”);
System.out.println(“——————–“);
System.out.println(“ENO ENAME ESAL”);
System.out.println(“——————–“);
while(rs.next())
{
rs.refreshRow();
System.out.println(rs.getString(“eno”)+”

“+rs.getString(“ename”) +” “+rs.getString(“esal”));
}
con.close();
}

}

7. Row sets:

● A RowSet object is a java bean component and extends the ResultSet
interface Thus, it has a set of JavaBeans properties and follows the
JavaBeans event model.

49

● A RowSet object's properties allow it to create its own database
connection and to execute its own query in order to fill itself with data.

● Types of Rowset

The RowSet is mainly classified into two types as per their properties:-

1. Connected Rowset.:- The connected rowset as the name suggests
is connected to the database connection object like the resultset.

2. Disconnected RowSet:- The disconnected RowSet only connects
to the database whenever needed and after finishing the
communication they close the database connection. So if the
connection pool is minimally used in this case.

● There are following ways to create the JDBCRowSet:-

1. Passing the ResultSet:- In this type the data is populated in the
object and then can retrieve the data by using the getter methods
as we did in case of the ResultSet.

Example:-

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(“select * from employee”);
JdbcRowSet jdbcRs = new JdbcRowSetImpl(rs);

2. Creating the default object:- This method is useful to set the data
sources dynamically. In this method the Database URL, username
and password is explicitly set in the RowSetObject.

Example:-

JdbcRowSet jdbcRs = new JdbcRowSetImpl();
jdbcRs.setUsername("user");
jdbcRs.setPassword("password");
jdbcRs.setUrl("jdbc:mySubprotocol:mySubname");
jdbcRs.setCommand("select * from EMP ");
jdbcRs.execute();

● The following example will illustrate the basic operation using the
JDBCRowSet interface.

import java.sql.SQLException;
import javax.sql.rowset.JdbcRowSet;
import com.sun.rowset.JdbcRowSetImpl;
public class JDBCRowSetExample
{

public static void main(String[] args) throws
SQLException
{

50

JdbcRowSet jdbcRs = new JdbcRowSetImpl();
jdbcRs.setUsername("scott");
jdbcRs.setPassword("tiger");
jdbcRs.setUrl("jdbc:odbc:MyDsn");
jdbcRs.setCommand("select * from employee");
jdbcRs.execute();
while(jdbcRs.next())
{

System.out.println(jdbcRs.getString("ename"));
}

}
}

8. Metadata:
● Data about the data is called metadata. In JDBC there are two types of

metadata.

1.Database metadata

2.ResultSet metadata.

● JDBC MetaData is the collective information about the data structure
and property of a column available in the table. The meta data of any
table tells the name of the columns,datatype used in column and
constraint used to enter the value of data into the column of the table.

● Loading a driver by calling a class.forname(),this accepts the driver
class as argument.

DriverManager.getConnection () -This method returns a connection
object and builds a connection between url and database. Once a
connection is set up, a front end can access, insert ,update and retrieve the
data in the backend database.

con.createStatement () -This is used to create a sql object. An object con
of the connection class is used to send and create a sql query in the
database backend.

executeQuery () -This method retrieves a record set from a table in the
database. The retrieve record set is assigned to a result set object.

getMetaData () - The Result Set call get Metadata(),which returns the
property of the retrieve record set (length,field,column).MetaData
accounts for the data element and its attribute.

Getcolumncount () -The method returns an integer data type and provides
the number of columns in the Result set object.

Example:

JdbcMetaDataGettables.java

51

import java.sql.*;
public class JdbcMetaDataGettab
{

static public final String driver = "com.mysql.jdbc.Driver";
static public final String connection =

"jdbc:mysql://localhost:3306/test";
static public final String user = "root";
static public final String password = "root";
public static void main(String args[])

{
try

{
Class.forName(driver);
Connection con = DriverManager.getConnection(connection,

user,password);
Statement st = con.createStatement();
String sql = "select * from person";
ResultSet rs = st.executeQuery(sql);
ResultSetMetaData metaData = rs.getMetaData();
int rowCount = metaData.getColumnCount();
System.out.println("Table Name : " +metaData.getTableName(2));
System.out.println("Field \tsize\tDataType");
for (int i = 0; i < rowCount; i++)

{
System.out.print(metaData.getColumnName(i + 1) + "\t");
System.out.print(metaData.getColumnDisplaySize(i + 1)+"\t");
System.out.println(metaData.getColumnTypeNa me(i + 1));

}
} catch (Exception e)

{
System.out.println(e);

}
}
}

Output:-
Table Name: person
Field Size DataTypes
id 2 VARCHAR
cname 50 VARCHAR
dob 10 DATE

9. Transaction:

● Transaction represents a single unit of work. The ACID properties
describe the transaction management well. ACID stands for Atomicity,
Consistency, isolation and durability.

● Advantage of Transaction Management is fast performance It makes
the performance fast because the database is hit at the time of commit.

52

Fig. 6 Transaction Management in JDBC

● In JDBC, the Connection interface provides methods to manage
transactions.

Method Description

void setAutoCommit(boolean status) It is true bydefault means each
transaction is committed bydefault.

void commit() commits the transaction.

void rollback() cancels the transaction.

● Simple example of transaction management in jdbc using Statement

import java.sql.*;
class FetchRecords
{
public static void main(String args[])throws Exception
{
Class.forName("oracle.jdbc.driver.OracleDriver");
Connection con=DriverManager.getConnection("jdbc:oracle:thin:@

localhost:1521:xe","system","oracle");
con.setAutoCommit(false);
Statement stmt=con.createStatement();
stmt.executeUpdate("insert into user420 values(190,'abhi',40000)");
stmt.executeUpdate("insert into user420 values(191,'umesh',50000)");
con.commit();
con.close();
}
}

10 SUMMARY

● Working with databases using java is very simple as java supports
various database systems.

● Java has an API called JDBC API which works with databases.

53

● The JDBC API is industrially accepted for database-independent
connectivity between the java programming language and a wide
variety of databases and other tabular data sources.

REFERENCE FOR FURTHER READING

1. Java EE 6 for Beginners, Sharanam Shah, Vaishali Shah, SPD

2. https://docs.oracle.com/cd/B10501_01/java.920/a96654/overvw.htm

UNIT END EXERCISES

1. What are the seven basic steps for using JDBC to access a database?
Explain briefly with syntax.?

2. Explain different types of JDBC Driver Managers.?

3. Explain the different types of JDBC Driver?

4. Write a short note on: metadata & resultset.?

54

4
JAVA SERVER PAGES-1

Unit Structure
4.0 Objective

4.1 Introduction

4.2 Disadvantages,

4.3 JSP v/s Servlets,

4.4 Life Cycle of JSP

4.5 Comments,

4.6 JSP documents,

4.7 JSP elements,

4.8 Summary

Reference for further reading

Unit End Exercises

4.0 OBJECTIVE

1. To understand the difference between JSP & Servlet

2. To study the life cycle of JSP

3. Using JSP separates the design and implementation of web
applications.

4. To study the different JSP tag, element, object and their scope.

5. To study the different Action elements available in JSP.

4.1 INTRODUCTION

 Java Server Pages (JSP) is a Java technology that allows software
developers to dynamically generate HTML, XML or other types of
documents in response to a Web client request.

 The technology allows Java code and certain predefined actions to be
embedded into static content. Java Server Pages or JSP for short is
Sun's solution for

 Developing dynamic web sites.

 JSP pages typically comprise of:

 Static HTML/XML components.

 Special JSP tags

 Optionally, snippets of code written in the Java programming language
called "scriptlets."

55

4.2 DISADVANTAGES OF JSP

1. Not able to use the feature-rich Swing or AWT controls to construct
the user interface.

2. The HTML language has fewer features than the Swing controls for
creating a user interface.

3. In addition, simple functions such as scrolling down in a list of
records, deleting a record, or changing the way information is sorted
requires a refresh of the page.

4. Embedding of JavaScript in the HTML page to enhance functionality,
but this solution requires that the JavaScript that you use be supported
by the ability of users' browsers to interpret it correctly.

5. As JSP pages are translated to servlets and compiled, it is difficult to
trace errors occurred in JSP pages.

6. JSP pages require double the disk space to hold the JSP page.

7. JSP pages require more time when accessed for the first time as they
are to be compiled on the server.

4.3 JSP V/S SERVLETS

JSP Servlets
JSP is a web page scripting
language that can generate
dynamic content.

Servlets are Java programs
that are already compiled
which also creates dynamic
web content.

In MVC(Model View
Controller), jsp acts as a view.

In MVC(Model View
Controller), servlets act as a
controller.

It’s easier to code in JSP than
in Java Servlets.

There's little code to write
here.

JSP are generally preferred
when there is not much
processing of data required.

servlets are best for use when
there is more processing and
manipulation involved.

JSP run slower compared to
Servlet as it takes compilation
time to convert into Java
Servlets.

Servlets run faster compared
to JSP.

The advantage of JSP
programming over servlets is
that we can build custom tags
which can directly call Java
beans.

There is no such custom tag
facility in servlets.

We can achieve functionality
of JSP at client side by
running JavaScript at client
side.

There are no such methods for
servlets.

56

4.4 LIFE CYCLE OF JSP

 JSPs are HTML web pages with special JSP tags embedded.

 These JSP tags can contain Java code. The JSP file extension is .jsp
instead of .html.

 The JSP engine parses the .jsp and creates a servlet source file. It then
compiles the source file into a class file, this is done the first time and
this is why the JSP is probably slower when first time it is accessed.

 Any time after this the special process or compiled servlet is executed
and is therefore returned faster.

Fig. 1 Life Cycle of JSP

Steps required for a JSP request:

1. The user goes to a web site made using JSP. The user goes to a JSP
page (ending with .jsp). The web browser requests the web page via
the Internet.

2. The JSP request sent to the Web server for processing.

3. The Web server grant that the file required is special (.jsp),therefore
passes the JSP file to the JSP Servlet Engine.

4. If the JSP file has been called the first time,the JSP file is parsed, else
go to step 7.

5. The next step is to generate a special Servlet file from the JSP file. All
the HTML required is converted to println or output statements.

6. The Servlet source code is compiled into a class file .

7. The Servlet is instantiated, calling the init and service methods.

57

8. HTML from the Servlet output is sent via the Internet.

9. HTML results are displayed on the user's web browser

Translation phase and a request processing phase:

1. Translation phase:

 Web server needs a servlet container to provide an interface to servlets,
the server needs a JSP container to process JSP pages. The JSP
container is responsible for intercepting incoming requests for JSP
pages.

 To process all JSP elements in the page, the container first turns the
JSP page into a servlet (known as the JSP page implementation class).
The container then compiles the servlet class.

 JSP page Converted to a servlet and compiling the servlet form the
translation phase. The JSP container begins the translation phase for a
page automatically when it receives the first request for the page.

 The translation phase takes a bit of time, the first user to request a JSP
page notices a slight delay.

2. Request processing phase:

 The JSP container is responsible for invoking the JSP page
implementation class to process each request and generate the response.
This is called the request processing phase.

 The JSP page remains unchanged; any subsequent request goes straight
to the request processing phase. When the JSP page or its content is
modified, it goes through the translation phase again before entering the
request processing phase.

 The two phases are illustrated in following Figure

Fig. 2 Translation & Request Processing Phase

58

JSP Access Model:

 The JSP specifications have two approaches, popularly known as
Model 1 and Model 2 architectures, for applying JSP technology.

 These approaches vary essentially in the location at which the bulk of
the request processing was performed, and offer a useful paradigm for
building applications using JSP technology.

 In the Model 1 architecture, the arriving request from a web browser is
sent directly to the JSP page, which is responsible for processing it and
replying back to the client. There is still separation of presentation from
content, because all data access is performed using beans.

 Although the Model 1 architecture is suitable for simple applications, it
may not be desirable for complex implementations. Utilization of this
architecture usually leads to a significant amount of scriptlets or Java
code embedded within the JSP page, especially if there is a significant
amount of request processing to be performed.

 Another drawback of this architecture is that each of the JSP pages
must be individually responsible for managing application state and
verifying authentication and security.

Model 1 architecture:

Fig. 3 Model 1Architecture

Model 2 architecture:

 The Model 2 architecture, shown below, is a server-side
implementation of the popular Model/View/Controller design pattern.
In Model 2 processing is divided between presentation and front
components.

59

 Model 2 Presentation components are JSP pages that generate the
HTML/XML response that determines the user interface when rendered
by the browser.

 Front components (controllers) do not handle any presentation issues,
but rather, process all the HTTP requests. They are responsible for
creating any beans or objects used by the presentation components, as
well as deciding, depending on the user's actions, which presentation
component to forward the request to. Servlet or JSP pages can be
implemented by front components.

 The benefits of this architecture is that there is no processing logic
within the presentation component itself; it is simply responsible for
retrieving any objects or beans that may have been previously created
by the controller, and extracting the dynamic content within for
insertion within its static templates.

 Another benefit of this approach is that the front components present a
single point of entry into the application, making the management of
application state, security, and presentation uniform and simple to
maintain.

Fig. 4 Model 2 Architecture

4.5 COMMENTS

 JSP comments are ignored by JSP containers that should be marked. A
JSP comment is useful for hiding or "comment out" part of your JSP
page.

 Following is the syntax of JSP comments:

 <%-- This is JSP comment --%>

 Following is the simple example for JSP Comments:

60

<html>
<head><title>A Comment Test</title></head>
<body>
<h2>A Test of Comments</h2>
<%-- This comment will not be visible in the page source --%>
</body>
</html>

 There are a small number of special constructs:

Syntax Purpose
<%-- comment --%> A JSP comment. Ignored by the JSP engine.
<!-- comment --> An HTML comment. Ignored by the browser.
<\% Represents static <% literal.
%\> Represents static %> literal.
\' A single quote in an attribute that uses single

quotes.
\" A double quote in an attribute that uses double

quotes.

4.6 JSP DOCUMENTS

 A JSP written in an XML format with JSP elements expressed as XML
elements.

 A JSP document is JSP written in XML format and therefore must
comply with the XML standard rules.

 JSP document must be well formed

 A JSP Document should be saved with the .jspx extension

 A JSP Document must have a root element called "root" with a
"version" attribute like: <jsp:root version="2.1"
xmlns:jsp="http://java.sun.com/JSP/Page">

 Identification of JSP documents can occur in three ways:

4.7 JSP ELEMENTS

 A JSP (.jsp) file can contain JSP elements, fixed template data, or any
combination of the two.

 JSP elements are instructions to the JSP container about what code to
generate and how it should operate.

 JSP elements have distinct start and end tags that identify them to the
JSP compiler. Template data is everything else that is not recognized
by the JSP container.

61

 Template or HTML data is passed through unmodified one, so the
HTML that is ultimately generated contains the template data exactly
as it was coded in the .jsp file.

Three types of JSP elements exist:

1. Directives

2. Scripting elements, including expressions, scriptlets, and declarations

3. Actions

1. Directives:

Directives are instructions to the JSP container that describe what
code should be generated. They have the general form

<%@ directive-name [attribute="value" attribute="value" ...] %>

 Zero or more spaces, tabs, and newline characters can be after the
opening <%@ and before the ending %>, and one or more
whitespace characters can be after the directive name and between
attributes/value pairs.

 The only restriction is that the opening <%@ tag must be in the
same physical file as the ending %> tag.

 The JSP 1.1 specification describes three standard directives
available in all compliant JSP environments:

1. page
2. include
3. taglib

 No custom directives can be used in the JSP environment, this
leaves open the possibility that user-defined directives may be
included in a later specification.

The next three sections provide an overview of each of these directives.

1. The page Directive

 The page directive is used to specify attributes for the JSP page as a
whole. It has the following syntax:

<%@ page [attribute="value" attribute="value" ...] %>

Attributes of JSP page directive

 import

 contentType

 extends

 info

62

 buffer

 language

 isELIgnored

 isThreadSafe

 autoFlush

 session

 pageEncoding

 errorPage

 isErrorPage

1) Import:

The import attribute is used to import class, interface or all the
members of a package. It is similar to importing keywords in java class or
interface.

Example of import attribute

<html>
<body>
<%@ page import="java.util.Date" %>
Today is: <%= new Date() %>
</body>
</html>

2) contentType:

 The contentType attribute defines the MIME(Multipurpose Internet
Mail Extension) type of the HTTP response.The default value is
"text/html;charset=ISO-8859-1".

Example of contentType attribute

<html>
<body>
<%@ page contentType=application/msword %>
Today is: <%= new java.util.Date() %>
</body>
</html>

3) extends:

The extends attribute defines the parent class that will be inherited
by the generated servlet. It is rarely used.

63

4) Info:

 This attribute simply sets the information of the JSP page which is
retrieved later by using getServletInfo() method of the Servlet interface.

Example of info attribute

<html>
<body>
<%@ page info="composed by ABC" %>
Today is: <%= new java.util.Date() %>
</body>
</html>

The web container will create a method getServletInfo() in the resulting
servlet.

For example:

public String getServletInfo()
{
return "composed by ABC";
}

5) Buffer:

● The buffer attribute sets the buffer size in kilobytes to handle output
generated by the JSP page. The default size of the buffer is 8Kb.

Example of buffer attribute

<html>
<body>
<%@ page buffer="16kb" %>
Today is: <%= new java.util.Date() %>
</body>
</html>

6) Language:

 The language attribute specifies the scripting language used in the JSP
page. The default value is "java".

7) isELIgnored:

 We can ignore the Expression Language (EL) in jsp by the isELIgnored
attribute.

64

 By default its value is false i.e. Expression Language is enabled by
default.

<%@ page isELIgnored="true" %>//Now EL will be ignored

8) isThreadSafe:

 Servlet and JSP both are multithreaded. If you want to control this
behaviour of a JSP page, you can use the isThreadSafe attribute of the
page directive.

 The value of isThreadSafe value is true. If you make it false, the web
container will serialize the multiple requests, i.e. it will wait until the
JSP finishes responding to a request before passing another request to
it.

 The value of isThreadSafe attribute like:
<%@ page isThreadSafe="false" %>

The web container in such a case, will generate the servlet as:

public class SimplePage_jsp extends HttpJspBase
implements SingleThreadModel{
.......
}

9) errorPage:

 The errorPage attribute is used to define the error page, if an exception
occurs in the current page, it will be redirected to the error page.

Example:

//index.jsp
<html>
<body>
<%@ page errorPage="myerrorpage.jsp" %>
<%= 100/0 %>
</body>
</html>

10) isErrorPage:

The isErrorPage attribute is used to declare that the current page is the
error page.

Note: The exception object can only be used in the error page.

Example:

//myerrorpage.jsp

65

<html><body>
<%@ page isErrorPage="true" %>
Sorry an exception occured!

The exception is: <%= exception %>
</body>
</html>

2. JSP Include directive:

 The include directive is used to include the contents of any resource it
may be jsp file, html file or text file.

 The include directive includes the original content of the included
resource at page translation time.

 Advantage of Include directive is code reusability

 Syntax of include directive:
<%@ include file="resourceName" %>

Example of include directive

It is including the content of the header.html file. To run this
example you must create a header.html file.

<html>
<body>
<%@ include file="header.html" %>
Today is: <%= java.util.Calendar.getInstance().getTime() %>
</body>
</html>

3. JSP Taglib directive:

 The JSP taglib directive is used to define a tag library that defines many
tags.

 The TLD (Tag Library Descriptor) file to define the tags.

 In the custom tag section use this tag so it will be better to learn it in
custom tag.

Syntax JSP Taglib directive

<%@ tagliburi="uriofthetaglibrary" prefix="prefixoftaglibrary" %>

Example of JSP Taglib directive:

In this example, using our tag named currentDate. To use this tag it
must specify the taglib directive so the container may get information
about the tag.

66

<html>
<body>
<%@ tagliburi="http://www.javatpoint.com/tags" prefix="mytag" %>
<mytag:currentDate/>
</body>
</html>

There are four types of scripting elements:
1. Scriptlet tag

2. Expression tag

3. Declaration tag

4. Comment tag

1. scriptlet tag:

 A scriptlet is a valid code in java and is placed in the _jspService()
method of the JSP engine at the time of running. The scriptlet syntax is-

<% java code %>

 There are variables available exclusively for the scriplets.

 They are request, response, out,session and pageContext, application,
config and exception.

Simple Example of JSP scriptlet tag

In this example, displaying a welcome message.

<html>
<body>
<% out.print("welcome to jsp"); %>
</body>
</html>

Example of JSP scriptlet tag that prints the user name

 In this example, create two files index.html and welcome.jsp.

 The index.html file gets the username from the user and the
welcome.jsp file prints the username with the welcome message.

index.html
<html>
<body>
<form action="welcome.jsp">
<input type="text" name="uname">
<input type="submit" value="go">

</form>
</body>
</html>

67

welcome.jsp
<html>
<body>
<%
String name=request.getParameter("uname");
out.print("welcome "+name);
%>
</form>
</body>
</html>

2. JSP expression tag:

 The code placed within the expression tag is written to the output
stream of the response.

 Need not write out.print() to write data. It is mainly used to print the
values of variables or methods.

Syntax of JSP expression tag

<%= statement %>

Example of JSP expression tag

In this example of jsp expression tag, simply displaying a welcome
message.

<html>
<body>
<%= "welcome to jsp" %>
</body>
</html>

Example of JSP expression tag that prints current time

 To display the current time, it is used in the getTime() method of
Calendar class.

 The getTime() is an instance method of Calendar class, so we have
called it after getting the instance of Calendar class by the getInstance()
method.

Example of JSP expression tag that prints the user name

index.jsp
<html>
<body>
Current Time: <%= java.util.Calendar.getInstance().getTime() %>
</body>
</html>

68

 In this example, printing the username using the expression tag.

 The index.html file gets the username and sends the request to the
welcome.jsp file, which displays the username.

welcome.jsp
<html>
<body>
<%= "Welcome "+request.getParameter("uname") %>
</form>
</body>
</html>

3. JSP Declaration Tag

 The JSP declaration tag is used to declare fields and methods.

 The code written inside the jsp declaration tag is placed outside the
service() method of auto generated servlet. So it doesn't get memory at
each request.

Syntax of JSP declaration tag

<%! field or method declaration %>

Difference between the jspscriptlet tag and jsp declaration tag

JspScriptlet Tag Jsp Declaration Tag
The jspscriptlet tag can only
declare variables not methods.

The jsp declaration tag can declare
variables as well as methods.

The declaration of scriptlet tag is
placed inside the _jspService()
method.

The declaration of jsp declaration
tag is placed outside the
_jspService() method.

Example of JSP declaration tag that declares field

 In this example of JSP declaration tag, declaring the field and printing
the value of the declared field using the jsp expression tag.

index.html
<html>
<body>
<form action="welcome.jsp">
<input type="text" name="uname">

<input type="submit" value="go">
</form>
</body>
</html>

69

index.jsp
<html>
<body>
<%! int data=50; %>
<%= "Value of the variable is:"+data %>
</body>
</html>

Example of JSP declaration tag that declares method

 In this example of JSP declaration tag, hence defining the method
which returns the cube of given number and calling this method from
the jsp expression tag. But it can also use jspscriptlet tag to call the
declared method.

index.jsp
<html>
<body>
<%!
int cube(int n)

{
return n*n*n*;

}
%>
<%= "Cube of 3 is:"+cube(3) %>
</body>
</html>

4. JSP Comment:

 There is only one type of JSP comment available by JSP specification.
JSP Comment Syntax:

<%-- comment --%>

 This JSP comment tag tells the JSP container to ignore the comment
part from compilation. That is, the commented part of source code is
not considered for the content parsed for ‘response’.

<html>
<body>
<%-- This JSP comment part will not be included in the response
object --%>
</body>
</html>

70

4.8 SUMMARY

1. Java Server Pages (JSP) is a Java technology that allows software
developers to dynamically generate HTML, XML or other types of
documents in response to a Web client request.

2. JSP pages typically consist of: Static HTML/XML components.
Special JSP tags optionally, snippets of code written in the Java
programming language called "scriptlets."

3. The JSP page goes through the Translation Phase and Request
Processing Phase.

REFERENCE FOR FURTHER READING

1. JSP: The Complete Reference Phil Hanna

2. Java EE 6 for Beginners, Sharanam Shah, Vaishali Shah, SPD

UNIT END EXERCISES

1. What is JSP? Explain the Life Cycle of JSP Page?

2. Explain the difference between JSP & Servlet?

3. Write a JSP Program to print current Date & Time.

71

5

JAVA SERVER PAGES-2

Unit Structure
5.0 Objective

5.1 Introduction

5.2 Action elements

5.3 Implicit objects

5.4 Scope

5.5 character quoting conventions

5.6 unified expression language

5.7 Summary

Reference for further reading

Unit End Exercises

5.0 OBJECTIVE

1. To understand the different Action tag available in JSP

2. To study the Implicit Objects

3. Understand Difference between jsp include directive and include
action

4. To study the use of JavaBeans in JSP.

5. To study the scope of JSP Objects.

5.1 INTRODUCTION

● There are many JSP action tags or elements. Each JSP action tag is
used to perform some specific tasks.

● The action tags are used to control the flow between pages and to use
Java Bean.

● There are 9 jsp implicit objects. These objects are created by the web
container that are available to all the jsp pages.

● The available implicit objects are out, request, config, session,
application etc.

5.2 ACTION ELEMENTS

● There are many JSP action tags or elements.

72

● Each JSP action tag is used to perform some specific tasks.

● The action tags are used to control the flow between pages and to use
Java Bean.

The Jsp action tags are given below.

JSP Action Tags Description
jsp:forward forwards the request and response to another

resource.
jsp:include includes another resource.
jsp:useBean creates or locates bean object.
jsp:setProperty sets the value of property in a bean object.
jsp:getProperty prints the value of property of the bean.
jsp:plugin embeds other components such as applets.
jsp:param sets the parameter value. It is used in forward

and include mostly.
jsp:fallback can be used to print the message if the plugin is

working. It is used in jsp:plugin.

● The jsp:useBean, jsp:setProperty and jsp:getProperty tags are used for
bean development.

A. jsp:forward action tag

● The jsp:forward action tag is used to forward the request to another
resource; it may be jsp, html or another resource.

● Syntax of jsp:forward action tag without parameter

<jsp:forward page="relativeURL | <%= expression %>" />

● Syntax of jsp:forward action tag with parameter

<jsp:forward page="relativeURL | <%= expression %>">
<jsp:param name="parametername" value="parametervalue |

<%=expression%>" />
</jsp:forward>

● Example of jsp:forward action tag without parameter

In this example, we are simply forwarding the request to the printdate.jsp
file.

index.jsp
<html>
<body>
<h2>this is index page</h2>
<jsp:forward page="printdate.jsp" />
</body>
</html>
printdate.jsp
<html>

73

<body>
<% out.print("Today is:"+java.util.Calendar.getInstance().getTime());
%>
</body>
</html>

● Example of jsp:forward action tag with parameter

In this example, we are forwarding the request to the printdate.jsp file with
parameter and printdate.jsp file prints the parameter value with date and
time.

index.jsp
<html>
<body>
<h2>this is index page</h2>
<jsp:forward page="printdate.jsp" >
<jsp:param name="name" value="ABC" />
</jsp:forward>
</body>
</html>

printdate.jsp
<html>
<body>
<% out.print("Today is:"+java.util.Calendar.getInstance().getTime());
%>
<%= request.getParameter("name") %>
</body>
</html>

B. jsp:include action tag:

● The jsp:include action tag is used to include the content of another
resource. It may be jsp, html or servlet.

● The jsp include action tag includes the resource at request time so it is
better for dynamic pages.

● The jsp:include tag can be used to include static as well as dynamic
pages.

● Advantage of jsp:include action tag is code reusability

● Difference between jsp include directive and include action

JSP include directive JSP include action
includes resources at translation
time.

includes resources at request time.

better for static pages. better for dynamic pages.
includes the original content in the
generated servlet.

calls the include method.

74

● Syntax of jsp:include action tag without parameter
<jsp:include page="relativeURL | <%= expression %>" />

● Syntax of jsp:include action tag with parameter
<jsp:include page="relativeURL | <%= expression %>">
<jsp:param name="parametername"

value="parametervalue | <%=expression%>" />
</jsp:include>

● Example of jsp:include action tag without parameter

In this example, index.jsp file includes the content of the printdate.jsp file.

index.jsp
<html>
<body>
<h2>this is index page</h2><jsp:include page="printdate.jsp" />
<h2>end section of index page</h2>
</body>
</html>

printdate.jsp
<html>
<body>
<% out.print("Today
is:"+java.util.Calendar.getInstance().getTime()); %>
</body>
</html>

C. jsp:useBean action tag:

 A Java Bean is a java class that should follow following conventions:
1. It should have a no-arg constructor.

2. It should be Serializable.

3. It should provide methods to set and get the values of the
properties, known as getter and setter methods.

 Use Java Bean: According to Java white paper, it is a reusable software
component. A bean encapsulates many objects into one object, so it can
access this object from multiple places. Moreover, it provides easy
maintenance.

Example of java bean class:

//Employee.java
package mypack;
public class Employee implements java.io.Serializable
{

private int id;
private String name;

75

public Employee()
{
}
public void setId(int id){this.id=id;

}
public intgetId()
{

return id;
}
public void setName(String name){this.name=name;
} public String getName(){return name;
}
}

 Access the java bean class:
To access the java bean class, we should use getter and setter methods.

D. jsp:useBean action tag

 The jsp:useBean action tag is used to locate or instantiate a bean class.

 If the bean object of the Bean class is already created, it doesn't create
the bean depending on the scope. But if an object of the bean is not
created, it instantiates the bean.

Syntax of jsp:useBean action tag

<jsp:useBean id= "instanceName" scope= "page | request |
session | application"

class= "packageName.className" type=
"packageName.className"

beanName="packageName.className | <%= expression
>" >
</jsp:useBean>

Attributes and Usage of jsp:useBean action tag

1. id: is used to identify the bean in the identity scope.

2. scope:represents the scope of the bean. It may be page, request, session
or application. The default scope is page.

package mypack;
public class Test{
public static void main(String args[])
{
Employee e=new Employee();//object is created
e.setName("Subodh");//setting value to the object
System.out.println(e.getName()); }}

76

3. page: specifies that you can use this bean within the JSP page. The
default scope is page.

4. request: specifies that you can use this bean from any JSP page that
processes the same request. It has a wider scope than the page.

5. session: specifies that you can use this bean from any JSP page in the
same session whether it processes the same request or not. It has a
wider scope than request.

6. application: specifies that you can use this bean from any JSP page in
the same application. It has a wider scope than session.

7. class: instantiates the specified bean class but it must have no-arg or no
constructor and must not be abstract.

8. type:provides the bean a data type if the bean already exists in the
scope. It is mainly used with class or beanName attributes. If you use
it without class or beanName, no bean is instantiated.

9. beanName:instantiates the bean using the
java.beans.Beans.instantiate() method.

Simple example of jsp:useBean action tag

Calcub.java
public class Calcube{
public int cube(int n){return n*n*n;}
}
index.jsp file
<jsp:useBean id="obj" class="ABC"/>
<%
int m=obj.cube(5);
out.print("cube of 5 is "+m);
%>

E. jsp:setProperty and jsp:getProperty action tags:

 The setProperty and getProperty action tags are used for developing
web applications using Java Bean.

 In web applications, bean class is mostly used because it is a reusable
software component that represents data.

 The jsp:setProperty action tag sets a property value or values in a bean
using the setter method.

 Syntax of jsp:setProperty action tag
<jsp:setProperty name="instanceOfBean" property= "*" |

property="propertyName" param="parameterName" |

property="propertyName" value="{ string | <%= expression %>}"
/>

 Example of jsp:setProperty:
<jsp:setProperty name="bean" property="*" />

77

 Example of jsp:setProperty:
<jsp:setProperty name="bean" property="username" />

 Example of jsp:setProperty:
<jsp:setProperty name="bean" property="username" value="ABC" />

 jsp:getProperty action tag
The jsp:getProperty action tag returns the value of the property.

 Syntax of jsp:getProperty action tag

<jsp:getProperty name="instanceOfBean" property="propertyName" />

 Simple example of jsp:getProperty action tag
<jsp:getProperty name="obj" property="name" />

F. Displaying applet in JSP (jsp:plugin action tag)

 The jsp:plugin action tag is used for embedded applets in the jsp file.
The jsp:plugin action tag downloads plugin at client side to execute an
applet or bean programs.

 Syntax of jsp:plugin action tag
<jsp:plugin type= "applet | bean" code= "nameOfClassFile"

codebase= "directoryNameOfClassFile"

</jsp:plugin>

4. implicit objects:

 There are 9 jsp implicit objects. These objects are created by the web
container that are available to all the jsp pages.

 The available implicit objects are out, request, config, session,
application etc.

 A list of the 9 implicit objects is given below:

Object Type
Out JspWriter
Request HttpServletRequest
Response HttpServletResponse
Config ServletConfig
application ServletContext
Session HttpSession
pageContext PageContext
page Object
exception Throwable

A. JSP out:

● For writing any data to the buffer, JSP provides an implicit object
named out. It is the object of JspWriter. In case of servlet you need to
write:

78

PrintWriter out=response.getWriter();

Example of out implicit object

B. JSP request:

 The JSP request is an implicit object of type HttpServletRequest i.e.
created for each jsp request by the web container. It can also be used to
set, get and remove attributes from the jsp request scope.

Example of JSP request implicit objectindex.html
<form action="welcome.jsp">
<input type="text" name="uname">
<input type="submit" value="go">

</form>
welcome.jsp
<% String name=request.getParameter("uname");
out.print("welcome "+name);
%>

C. JSP response:

 JSP response is an implicit object of type HttpServletResponse. The
instance of HttpServletResponse is created by the web container for
each jsp request.

 Example of response implicit object

index.html
<form action="welcome.jsp">
<input type="text" name="uname">
<input type="submit" value="go">

</form>
welcome.jsp
<%
response.sendRedirect("http://www.google.com");
%>

index.jsp
<html>
<body>
<% out.print("Today is:"+java.util.Calendar.getInstance().getTime());
%>
</body>
</html>

79

D. JSP config:

 In JSP, config is an implicit object of type ServletConfig.

 This object can be used to get an initialization parameter for a
particular JSP page.

 The config object is created by the web container for each jsp page.

Example of config implicit object:

index.html
<form action="welcome">
<input type="text" name="uname">
<input type="submit" value="go">

</form>
web.xml file
<web-app>
<servlet>
<servlet-name>ABC</servlet-name>
<jsp-file>/welcome.jsp</jsp-file>
<init-param>
<param-name>dname</param-name>
<param-value>sun.jdbc.odbc.JdbcOdbcDriver</param-value>
</init-param>
</servlet>
<servlet-mapping>
<servlet-name>ABC</servlet-name>
<url-pattern>/welcome</url-pattern>
</servlet-mapping>
</web-app>
welcome.jsp
<%
out.print("Welcome "+request.getParameter("uname"));
String driver=config.getInitParameter("dname");
out.print("driver name is="+driver);
%>

E. JSP application:

 In JSP, application is an implicit object of type ServletContext.

 The instance of ServletContext is created only once by the web
container when application or project is deployed on the server.

Example:

index.html
<form action="welcome">
<input type="text" name="uname">
<input type="submit" value="go">

80

</form>
web.xml file
<web-app>
<servlet>
<servlet-name>ABC</servlet-name>
<jsp-file>/welcome.jsp</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>ABC</servlet-name>
<url-pattern>/welcome</url-pattern>
</servlet-mapping>
<context-param>
<param-name>dname</param-name>
<param-value>sun.jdbc.odbc.JdbcOdbcDriver</param-value>
</context-param>
</web-app>
welcome.jsp
<%
out.print("Welcome "+request.getParameter("uname"));
String driver=application.getInitParameter("dname");
out.print("driver name is="+driver);
%>

F. session:

 In JSP, session is an implicit object of type HttpSession.

 The Java developer can use this object to set,get or remove attributes or
to get session information.

Example:

index.html
<html>
<body>
<form action="welcome.jsp">
<input type="text" name="uname">
<input type="submit" value="go">

</form>
</body>
</html>
welcome.jsp
<html>
<body>
<%
String name=request.getParameter("uname");
out.print("Welcome "+name);
session.setAttribute("user",name);

81

second jsp page
%>
</body>
</html>
second.jsp
<html>
<body>
<%
String name=(String)session.getAttribute("user");
out.print("Hello "+name);
%>
</body>
</html>

G. pageContext:

 In JSP, pageContext is an implicit object of type PageContext class.

 The pageContext object can be used to set,get or remove attribute from
one of the following scopes:

1. Page

2. request

3. Session

4. Application

In JSP, page scope is the default scope.

Example:

index.html
<html>
<body>
<form action="welcome.jsp">
<input type="text" name="uname">
<input type="submit" value="go">

</form>
</body>
</html>
welcome.jsp
<html>
<body>
<%
String name=request.getParameter("uname");
out.print("Welcome "+name);
pageContext.setAttribute("user",name,PageContext.SESSION_SCOPE);
second jsp page
%>
</body>

82

</html>
second.jsp
<html>
<body>
<%

String name=(String)pageContext.getAttribute
("user",PageContext.SESSION_SCOPE);

out.print("Hello "+name);
%>
</body>
</html>

5. Scope:

 The availability of a JSP object for use from a particular place of the
application is defined as the scope of that JSP object.

 Every object created in a JSP page will have a scope. Object scope in
JSP is segregated into four parts and they are page, request, session and
application.

a) Page:

 ‘page’ scope means the JSP object can be accessed only from
within the same page where it was created.

 The default scope for JSP objects created using <jsp:useBean> tag
is page.

 JSP implicit objects out, exception, response, pageContext, config
and page have ‘page’ scope.

b) Request:

 A JSP object created using the ‘request’ scope can be accessed
from any pages that serves that request.

 More than one page can serve a single request.

 The JSP object will be bound to the request object.

 Implicit object request has the ‘request’ scope.

c) Session:

 ‘Session scope means the JSP object is accessible from pages that
belong to the same session from where it was created.

 The JSP object that is created using the session scope is bound to
the session object.

 Implicit object session has the ‘session’ scope.

83

d) Application:

 A JSP object created using the ‘application’ scope can be accessed
from any pages across the application.

 The JSP object is bound to the application object.

 Implicit object application has the ‘application’ scope.

6. Character quoting conventions:

 There are a small number of special constructs we can use in various
cases to insert comments or characters that would otherwise be treated
specially.

 Character Quoting And Data Conventions :

Syntax Purpose
<\% Used in template text (static HTML) where you

really want "<%".
%\> Used in scripting elements where you really want

"%>".
\' A single quote in an attribute that uses single quotes.

Remember, however, that you can use either single
or double quotes, and the other type of quote will
then be a regular character.

\" A double quote in an attribute that uses double
quotes. Remember, however, that you can use either
single or double quotes, and the other type of quote
will then be a regular character.

%\> %>in an attribute.
<\% <% in an attribute.
\ Used as a delimiter.
<%--
comment--
%>

A JSP comment. Ignored by JSP-to- scriptlet
translator. Any embedded JSP scripting elements,
directives, or actions are ignored.

<!--
comment--
>

An HTML comment. Passed through to resultant
HTML. Any embedded JSP scripting elements,
directives, or actions are executed normally.

7. Unified expression language:

Expression Language(EL):

 The Expression Language (EL) provides a way to simplify expressions
in JSP.

 It is a simple language used for accessing implicit objects and Java
classes, and for manipulating collections in an elegant manner.

 EL provides the ability to use run-time expressions outside of JSP
scripting elements.

84

"Unified" Expression Language:

 JavaServer Pages each has its own expression language.

 The expression language included in JSP provides greater flexibility
to the web application developer.

 Deferred evaluation means that the technology using the unified EL
takes over the responsibility of evaluating the expression from the JSP
engine and evaluates the expression at the appropriate time during the
page lifecycle.

 But the JSP EL is designed for immediate evaluation of expressions.

 The Expression Language (EL) simplifies the accessibility of data
stored in the Java Bean component, and other objects like request,
session, application etc.

 There are many implicit objects, operators and reserve words in EL.

 Syntax for Expression Language (EL)

${ expression }

 Implicit Objects in Expression Language (EL)

There are many implicit objects in the Expression Language. They are as
follows:

Implicit Objects Usage
pageScope it maps the given attribute name with the

value set in the page scope
requestScope it maps the given attribute name with the

value set in the request scope
sessionScope it maps the given attribute name with the

value set in the session scope
applicationScope it maps the given attribute name with the

value set in the application scope
param it maps the request parameter to the single

value
paramValues it maps the request parameter to an array of

values
header it maps the request header name to the single

value
headerValues it maps the request header name to an array of

values
cookie it maps the given cookie name to the cookie

value
initParam it maps the initialization parameter
pageContext it provides access to many objects request,

session etc.

85

Example:

index.jsp
<form action="process.jsp">
Enter Name:<input type="text" name="name" />

<input type="submit" value="go"/>
</form>
process.jsp
Welcome, ${ param.name }
Example of Expression Language that prints the value set in the session
scope
In this example, we print the data stored in the session scope using EL.
For this purpose, we have used a sessionScope object.
Index.jsp

<h3>welcome to index page</h3>
<%
session.setAttribute("user","ABC");
%>
visit
process.jsp
Value is ${ sessionScope.user }

 Precedence of Operators in EL
There are many operators that have been provided in the Expression
Language.

1. [] .

2. ()

3. -(unary) not ! empty

4. * / div % mod

5. + - (binary)

6. <<= >>= lt le gtge

7. == != eq ne

8. && and

9. || or

10. ?:

 Reverse words in EL
There are many reserved words in the Expression Language. They are as
follows:

lt le gt ge
eq ne true false
and or not instanceof
div mod empty null

86

SUMMARY

1. JSP specification provides Standard(Action) tags for use within your
JSP pages.

2. These tags are used to remove or eliminate scriptlet code from your
JSP page because scriplet code is technically not recommended
nowadays.

3. It's considered to be bad practice to put java code directly inside your
JSP page.

4. There are 9 jsp implicit objects. These objects are created by the web
container that are available to all the jsp pages.

5. The available implicit objects are out, request, config, session,
application etc.

6. JSP provides the capability to the user to define the scope of these
variables.

REFERENCE FOR FURTHER READING

1. Java EE 6 for Beginners, Sharanam Shah, Vaishali Shah, SPD

2. JSP: The Complete Reference Phil Hanna

UNIT END EXERCISES

1. Write a short note on Expression Language? With example.

2. Explain the different action tag in jsp with example?

3. What is an implicit object?

4. What is scope in JSP object?

87

UNIT IV

6
JAVA SERVER FACES

Unit Structure
6.1 Objective

6.2 Introduction

6.3 Need of MVC

6.4 What is JSF?

6.5 Components of JSF

6.6 JSF as an application

6.7 JSF lifecycle,

6.8 JSF configuration,

6.9 JSF web applications (login form, JSF pages)

6.10 Summary

Reference for further reading

Unit End Exercises

6.1 OBJECTIVE

 To reduce the effort in creating and maintaining applications using JSF,
this will run on a Java application server and will render application UI
on to a target client.

 To Providing reusable UI components

 Making easy data transfer between UI components

 To Managing UI state across multiple server requests

 Enabling implementation of custom components

 To Understand the client-side event to server-side application code

6.2 INTRODUCTION

 Development of the Web is constantly changing from plain HTML to
Servlet, JSP to JavaServer Faces.

 JSF is the latest and most advanced web component technology.

 Initially a web application written using Servlets, which is used to
deliver HTML directly.

 A JSP is a composite between an HTML page and a servlet.

 JSF is new and most advanced technology for instant building web
applications using java.

88

 JSF follows the Model View Controller architecture.

6.3 NEED OF MVC

 In the past, the first problem during Software development always
desired to simplify modification of the user interface.

 The second one is that programmer who develop application have
different skills sets which is classified as follows:

○ Server side programmers

○ HTML code writers

○ Graphics Designers

 MVC does separation of logic from presentation, which allows each
member of the WAD team to concentrate on its own development
proccess.

Fig. 1 MVC Design
 MVC design pattern designs an application using three separate

modules:

Module Description
Model Carries Data and login
View Shows User Interface
Controller Handles processing of an application.

6.4 WHAT IS JSF?

 JSF is a Server side user interface component framework to build web
applications

 JSF simplifies web application development by providing a compose
centric approach to developing java web interfaces.

 Server side:

○ Present Enterprise application are multi-tier and mostly server side

 User Interface
○ JSF is used to create a user interface.

 Component Framework

89

○ Components are the core of the framework.
○ JSF is the standard web component technology for java

 The framework is not only limited to developing customized User
Interface Components but also provides support for various Advanced
Features like Event handling Mechanism, Validating User Inputs that
are sent by the clients, Easy Page Navigation Mechanism etc.

 JSF is a Java standard developed through Java Community Process
(JCP), development tools vendors are fully empowered to provide
easy to use, visual, and productive develop environments for
JavaServer Faces.

 JSF provides a rich component model complete with event handling
and component rendering.

6.5 COMPONENTS OF JSF

 In JSF, a component is a group of interacting classes that together
provide a reusable piece of web-based user interface code. A
component is made up of three classes that work closely together.

 Components in JSF are elements like text box, button, table etc..that are
used to create UI of JSF Applications. These are objects that manage
interaction with a user.

○ Simple components like text box, button.

○ Compound components like table, data grid

 A component containing many components inside it is called a
compound component.

 Components help developers to create UIs by assembling a number of
components, associating them with

There are two types of Components in JSF

A. Standard UI Components

B. Custom UI Components

A. Standard UI Components:

 It contains a basic set of UI components like text fields, check boxes ,
list boxes, panel, label, radio button etc. These are called standard
components

B. Custom UI Components:

 JSF lets create and use your own set of reusable components, These
components are called custom components.

JSF–Basic Tags

 JSF provides a standard HTML tag library. These tags get rendered into
corresponding html output.

90

 These tags need to use the following namespaces of URI in the html
node.

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html" >
Following are important Basic Tags in JSF:

S.N. Tag & Description
1 h:inputText Renders a HTML input of type="text", text box.
2 h:inputSecret Renders a HTML input of type="password", text

box.
3 h:inputTextarea Renders a HTML textarea field.
4 h:inputHidden Renders a HTML input of type="hidden".
5 h:selectBooleanCheckbox Renders a single HTML check box.
7 h:selectOneRadio Renders a single HTML radio button.
8 h:selectOneListbox Renders a HTML single list box.
9 h:selectManyListbox Renders a HTML multiple list box.
10 h:selectOneMenu Renders a HTML combo box.
11 h:outputText Renders a HTML text.
12 h:outputFormat Renders a HTML text. It accepts parameters.
13 h:graphicImage Renders an image.
14 h:outputStylesheet Includes a CSS style sheet in HTML output.
15 h:outputScript Includes a script in HTML output.
16 h:commandButton Renders a HTML input of type="submit"

button.
17 h:Link Renders a HTML anchor.
18 h:commandLink Renders a HTML anchor.
19 h:outputLink Renders a HTML anchor.
20 h:panelGrid Renders an HTML Table in form of grid.
21 h:message Renders message for a JSF UI Component.
22 h:messages Renders all messages for JSF UI Components.
23 f:param Pass parameters to JSF UI Component.
24 f:attribute Pass attribute to a JSF UI Component.
25 f:setPropertyActionListener Sets value of a managed bean's

property

JSF – Facelets Tags:

 JSF provides special tags to create a common layout for a web
application called facelets tags.

 These tags give flexibility to manage common parts of multiple pages
at one place.

 The following namespaces of URI in the html node.

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets" >

91

Following are important Facelets Tags in JSF:

Sr. No. Tag & Description
1. Templates We'll demonstrate how to use templates using

following tags
<ui:insert>
<ui:define>
<ui:include>
<ui:define>

2. Parameters We'll demonstrate how to pass parameters to a
template file using following tag
<ui:param>

3. Custom We'll demonstrate how to create custom tags.
4. Remove We'll demonstrate capability to remove JSF code

from generated HTML pages.

JSF–Convertor Tags:

 JSF provides inbuilt converters to convert its UI component's data to
objects used in a managed bean and vice versa.

 For example, these tags can convert a text into date objects and can
validate the format of input as well.

 For these tags you need to use the following namespaces of URI in
html node.

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:f="http://java.sun.com/jsf/core" >

Following are important Convertor Tags in JSF :

S.No. Tag & Description
1 f:convertNumber Converts a String into a Number of desired

format
2 f:convertDateTime Converts a String into a Date of desired

format
3 Custom Convertor Creating a custom convertor

JSF–Validator Tags:

 JSF provides inbuilt validators to validate its UI components. These
tags can validate length of field, type of input which can be a custom
object.

 For these tags you need to use the following namespaces of URI in the
html node.

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:f="http://java.sun.com/jsf/core" >

92

Following are important Validator Tags in JSF :

Sr. No. Tag & Description
1. f:validateLength Validates length of a string
2. f:validateLongRange Validates range of numeric value
3. f:validateDoubleRange Validates range of float value
4. f:validateRegex Validate JSF component with a given

regular expression.
5. Custom Validator Creating a custom validator

JSF–Composite Components

 JSF provides developers a powerful capability to define their own
custom components which can be used to render custom contents.

S.No. Tag & Description
1. composite:interface Declare configurable values to be used

in composite:implementation
2. composite:attribute Configuration values are declared using

this tag
3. composite:implementation

Declares JSF component. Can access the configurable values
defined in composite:interface using #{cc.attrs.attribute-
name} expression.

6.6 JSF AS AN APPLICATION

 A JSF application is like a simple java web application, which is run by
a servlet web container.

 Example,
○ A client makes an HTTP request for a page via an HTTP server.

○ The server responds back by rendering a user interface using JSF
technology after translating to a pure HTML page.

 JSF user interface manages:

○ The User Interface component object that maps to the tag on the
page.

○ Event listener, validation and converters that register on the
component.

○ Java bean component that encapsulate the data and application
specific functionality of the component.

Facelets

● Facelets is a powerful but lightweight page declaration language that is
used to build JavaServer Faces views using HTML style templates and
to build component trees. Facelets features include the following:

 Use of XHTML for creating web pages

93

 Support for Facelets tag libraries in addition to JavaServer Faces
and JSTL tag libraries

 Support for the Expression Language (EL)

 Templating for components and pages

● Advantages of Facelets for large-scale development projects include
the following:

 Support for code reuse through templating and composite
components

 Functional extensibility of components and other server-side
objects through customization

 Faster compilation time

 Compile-time EL validation

 High-performance rendering

6.7 JSF LIFECYCLE

 The lifecycle of an application refers to the various stages of processing
of that application, from its initiation to its conclusion.

 All applications have life cycles.

 During a web application lifecycle, common tasks are performed,
including the following.

 Handling incoming requests

 Decoding parameters

 Modifying and saving state

 Rendering web pages to the browser

 The JavaServer Faces web application framework manages lifecycle
phases automatically for simple applications or allows you to manage
them manually for more complex applications as required.

 JavaServer Faces applications that use advanced features may require
interaction with the lifecycle at certain phases.

 The lifecycle of a JavaServer Faces application begins when the client
makes an HTTP request for a page and ends when the server responds
with the page, translated to HTML.

 The lifecycle can be divided into two main phases: Execute and
Render. The Execute phase is further divided into subphases to support
the sophisticated component tree. This structure requires that
component data be converted and validated, component events be
handled, and component data be propagated to beans in an orderly
fashion.

94

Fig. 1 JavaServer Faces Standard Request-Response Lifecycle

 The JavaServer Faces application lifecycle Execute phase contains the
following subphases:
 Restore View Phase

 Apply Request Values Phase

 Process Validations Phase

 Update Model Values Phase

 Invoke Application Phase

 Render Response Phase

Restore View Phase
○ When a request for a JavaServer Faces page, by an action, such as

when a link or a button component is clicked, the JavaServer Faces
implementation starts the Restore View phase.

○ Through this phase, the JavaServer Faces implementation
constructs the view of the page, wires event handlers and
validators to components in the view, and saves the view in the
FacesContext instance, which has all the information needed to
process a single request. All the components, event handlers,
converters, and validators have access to the FacesContext
instance.

95

Apply Request Values Phase:

○ The component tree is restored during a postback request, each
component in the tree extracts its new value from the request
parameters by using its decode method. The value is stored locally
on each component.

○ If any decode methods or event listeners methods have called the
renderResponse method on the current FacesContext instance, the
JavaServer Faces implementation skips to the Render Response
phase.

○ If any events have been queued during this phase, the JavaServer
Faces implementation broadcasts the events to interested listeners.

Process Validations Phase
○ The JavaServer Faces implementation processes all validators

registered on the components in the tree by using its
processValidators method.

○ It examines the component attributes that specify the rules for the
validation and compares these rules to the local value stored for the
component.

○ The JavaServer Faces implementation also completes conversions
for input components that do not have the immediate attribute set
to true.

○ If the local value is invalid, or if any conversion fails, the
JavaServer Faces implementation adds an error message to the
FacesContext instance, and the lifecycle advances directly to the
Render Response phase so that the page is rendered again with the
error messages displayed. If there were conversion errors from the
Apply Request Values phase, the messages for these errors are also
displayed.

○ If any validate methods or event listeners have called the
renderResponse method on the current FacesContext, the
JavaServer Faces implementation skips to the Render Response
phase.

Update Model Values Phase:
○ The JavaServer Faces implementation determines that the data is

valid, it traverses the component tree and sets the corresponding
server-side object properties to the components local values. The
JavaServer Faces implementation updates only the bean properties
pointed at by an input component's value attribute.

○ If any updateModels methods or any listeners have called the
renderResponse method on the current FacesContext instance, the
JavaServer Faces implementation skips to the Render Response
phase.

96

Invoke Application Phase
○ In this phase the JavaServer Faces implementation handles any

application-level events, such as submitting a form or linking to
another page.

○ At this point, if the application needs to redirect to a different web
application resource or generate a response that does not contain
any JavaServer Faces components, it can call the
FacesContext.responseComplete method.

○ If the view being processed was reconstructed from state
information from a previous request and if a component has fired
an event, these events are broadcast to interested listeners.

○ Finally, the JavaServer Faces implementation transfers control to
the Render Response phase.

Render Response Phase
○ During this phase, JavaServer Faces constructs the view and

typical authority to the suitable resource for rendering the pages.

○ If the first request is this, the components that are represented on
the page will be added to the component tree. If this is not the first
request, the components are already added to the tree and need not
be added again.

○ If the request is a postback and errors were experienced during the
Apply Request Values phase, Process Validations phase, or Update
Model Values phase, the original page is rendered again during
this phase. If the pages consist h:message or h:messages tags, any
queued error messages are displayed on the page.

○ After the content of the view is relinquished, the state of the
response is saved so that upcoming requests can access it.

6.8 JSF CONFIGURATION

JSF is based on the following configuration files:

 web.xml - General web application configuration file

 faces-config.xml - Contains the configuration of the JSF application.

web.xml faces-config.xml

JSF configuration

97

web.xml

 JSF requires the central configuration list web.xml in the directory
WEB-INF of the application. This is similar to other web-applications
which are based on servlets.

 A FacesServlet is responsible for handling JSF applications.

 FacesServlet is the central controller for the JSF application.

 FacesServlet receives all requests for the JSF application and initializes
the JSF components before the JSP is displayed.

Initial format:

<?xml version="1.0"?>
<web-app>
..................................
..................................
..................................
</web-app>

faces-config.xml:

 Second file faces-config.xml that will be in the same place where
web.xml is i.e. WEB-INF folder.

 Here to take care of mentioning the version of xml as we did in the
web.xml file.

 All tag elements will be within faces-config opening and closing tag
i.e. <faces-config>and </faces-config>.So the root element of this file
is <faces-config> tag.

 "faces-config.xml" allows us to configure the application, managed
beans, convertors, validators, and navigation.

Initial format:

<?xml version="1.0"?>
<faces-config>
.................................
.................................
.................................
</faces-config>

6.9 JSF WEB APPLICATIONS (LOGIN FORM, JSF
PAGES)

 This application will take a user First Name and Last Name. Later these
fields will be validated by JSF and using the controller bean and
Navigation rule the output will be displayed.

98

 This application will also introduce a UI component which is a submit
button.

Step 1: Create the table Users in mysql database as

CREATETABLEUsers(
uidint(20) NOTNULL AUTO_INCREMENT,
unameVARCHAR(60) NOTNULL,
passwordVARCHAR(60) NOTNULL,
PRIMARY KEY(uid));

Step 2: Insert data into the table Users as;

INSERTINTOUsersVALUES(1,'adam','adam');

Step 3: Create the JSF login page login.xhtml as;

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN" "https://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">
<html xmlns="https://www.w3.org/1999/xhtml"

xmlns:h="https://java.sun.com/jsf/html">
<h:head>

<title>login</title>
</h:head>
<h:body>

<h:form>
<h3>JSF Login Logout</h3>
<h:outputText value="Username" />
<h:inputText id="username"

value="#{login.user}"></h:inputText>
<h:message for="username"></h:message>

</br>
</br>

<h:outputText value="Password" />
<h:inputSecret id="password"

value="#{login.pwd}"></h:inputSecret>
<h:message for="password"></h:message>

</br>
</br>

<h:commandButton
action="#{login.validateUsernamePassword}"

value="Login"></h:commandButton>
</h:form>

</h:body>
</html>

99

Step 4: Create the managed bean Login.java as;

package com.journaldev.jsf.beans;

import java.io.Serializable;

import javax.faces.application.FacesMessage;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;
import javax.faces.context.FacesContext;
import javax.servlet.http.HttpSession;

import com.journaldev.jsf.dao.LoginDAO;
import com.journaldev.jsf.util.SessionUtils;

@ManagedBean
@SessionScoped
public class Login implements Serializable {

private static final long serialVersionUID =
1094801825228386363L;

private String pwd;
private String msg;
private String user;

public String getPwd() {
return pwd;

}

public void setPwd(String pwd) {
this.pwd = pwd;

}

public String getMsg() {
return msg;

}

public void setMsg(String msg) {
this.msg = msg;

}

public String getUser() {
return user;

}

public void setUser(String user) {
this.user = user;

100

}

//validate login
public String validateUsernamePassword() {

boolean valid = LoginDAO.validate(user, pwd);
if (valid) {

HttpSession session =
SessionUtils.getSession();

session.setAttribute("username", user);
return "admin";

} else {

FacesContext.getCurrentInstance().addMessage(
null,
new

FacesMessage(FacesMessage.SEVERITY_WARN,
"Incorrect

Username and Passowrd",
"Please enter

correct username and Password"));
return "login";

}
}

//logout event, invalidate session
public String logout() {

HttpSession session = SessionUtils.getSession();
session.invalidate();
return "login";

}
}

Step 5: Now create the LoginDAO java class

package com.journaldev.jsf.dao;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

import com.journaldev.jsf.util.DataConnect;

public class LoginDAO {

public static boolean validate(String user, String password) {
Connection con = null;

101

PreparedStatementps = null;

try {
con = DataConnect.getConnection();
ps = con.prepareStatement("Select uname,

password from Users where uname = ? and password = ?");
ps.setString(1, user);
ps.setString(2, password);

ResultSetrs = ps.executeQuery();

if (rs.next()) {
//result found, means valid inputs
return true;

}
} catch (SQLException ex) {

System.out.println("Login error -->" +
ex.getMessage());

return false;
} finally {

DataConnect.close(con);
}
return false;

}
}

Step 6: Create the DataConnect.java class

package com.journaldev.jsf.util;

import java.sql.Connection;
import java.sql.DriverManager;

public class DataConnect {

public static Connection getConnection() {
try {

Class.forName("com.mysql.jdbc.Driver");
Connection con =

DriverManager.getConnection(

"jdbc:mysql://localhost:3306/cardb", "pankaj", "pankaj123");
return con;

} catch (Exception ex) {
System.out.println("Database.getConnection()

Error -->"
+ ex.getMessage());

102

return null;
}

}

public static void close(Connection con) {
try {

con.close();
} catch (Exception ex) {
}

}
}

Step 7: Create SessionUtils.java to obtain and manage session related
user information.

package com.journaldev.jsf.beans;

import javax.faces.context.FacesContext;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;

public class SessionUtils {

public static HttpSessiongetSession() {
return (HttpSession)

FacesContext.getCurrentInstance()

.getExternalContext().getSession(false);
}

public static HttpServletRequestgetRequest() {
return (HttpServletRequest)

FacesContext.getCurrentInstance()
.getExternalContext().getRequest();

}

public static String getUserName() {
HttpSession session = (HttpSession)

FacesContext.getCurrentInstance()

.getExternalContext().getSession(false);
return session.getAttribute("username").toString();

}

public static String getUserId() {
HttpSession session = getSession();
if (session != null)

return (String) session.getAttribute("userid");

103

else
return null;

}
}

Step 8: Create the authorization filter class as;

package com.journaldev.jsf.filter;

import java.io.IOException;
import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.annotation.WebFilter;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

@WebFilter(filterName = "AuthFilter", urlPatterns = { "*.xhtml" })
public class AuthorizationFilter implements Filter {

public AuthorizationFilter() {
}

@Override
public void init(FilterConfigfilterConfig) throws

ServletException {

}

@Override
public void doFilter(ServletRequest request, ServletResponse

response,
FilterChain chain) throws IOException,

ServletException {
try {

HttpServletRequestreqt = (HttpServletRequest)
request;

HttpServletResponseresp = (HttpServletResponse)
response;

HttpSessionses = reqt.getSession(false);

String reqURI = reqt.getRequestURI();

104

if (reqURI.indexOf("/login.xhtml") >= 0
|| (ses != null

&&ses.getAttribute("username") != null)
|| reqURI.indexOf("/public/") >= 0
||

reqURI.contains("javax.faces.resource"))
chain.doFilter(request, response);

else
resp.sendRedirect(reqt.getContextPath() +

"/faces/login.xhtml");
} catch (Exception e) {

System.out.println(e.getMessage());
}

}

@Override
public void destroy() {

}
}

Step 9: Create admin.xhtml as;

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN"
"https://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="https://www.w3.org/1999/xhtml"

xmlns:h="https://java.sun.com/jsf/html">
<h:head>

<title>Facelet Title</title>
</h:head>
<h:body>

<h:form>
<p>Welcome #{login.user}</p>
<h:commandLink action="#{login.logout}"

value="Logout"></h:commandLink>
</h:form>

</h:body>
</html>

Step 10: Create faces-config.xml file as;

<?xml version='1.0' encoding='UTF-8'?>
<faces-config version="2.2"
xmlns="https://xmlns.jcp.org/xml/ns/javaee"

xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"

105

xsi:schemaLocation="https://xmlns.jcp.org/xml/ns/javaee
https://xmlns.jcp.org/xml/ns/javaee/web-

facesconfig_2_2.xsd">

<navigation-rule>
<from-view-id>/login.xhtml</from-view-id>
<navigation-case>

<from-outcome>admin</from-outcome>
<to-view-id>/admin.xhtml</to-view-id>

</navigation-case>
</navigation-rule>

</faces-config>

Login Page

Login Success Page

Accessing admin.xhtml while logged in

106

6.10 SUMMARY

1. JSF is a Java standard technology for building component-based,
event-oriented web interfaces.

2. JSF is an XML document that represents formal components in a
logical tree.

3. JSF components are backed by Java objects, which are independent of
the HTML and have the full range of Java abilities, including
accessing remote APIs and databases.

4. JavaServer Faces is a standardized display technology, which was
formalized in a specification through the Java Community Process.

5. JSF reduces the effort in creating and maintaining applications, which
will run on a Java application server and will render application UI on
to a target client.

6. JSF provides the developers with the capability to create Web
applications from collections of UI components that can render
themselves in different ways for multiple client types.

REFERENCE FOR FURTHER READING

1. Java EE 6 for Beginners, Sharanam Shah, Vaishali Shah, SPD

2. Core Java Vol. II – Advanced Features, Cay S. Horstmans, Gary
Coronell, Eight Edition, Pearson

3. https://docs.oracle.com/javaee/6/tutorial/doc/gijtu.html

4. https://docs.oracle.com/javaee/7/tutorial/jsf-intro006.htm

UNIT END EXERCISES

1. What is the need of MVC in JSF?

2. What are the Components of JSF?

3. Explain the JSF lifecycle?

4. Write a short note on JSF configuration?

107

107

7

ENTERPRISE JAVA BEAN (EJB)

Unit Structure
7.1 Objective

7.2 Introduction

7.3 Enterprise bean architecture,

7.4 Benefits of enterprise bean,

7.5 Types of beans,

7.6 Accessing beans ,

7.7 Packaging beans,

7.8 Creating web applications,

7.9 Creating enterprise bean,

7.10 Creating web client,

7.11 Creating JSP file,

7.12 Building and running web application

7.13 Summary

Reference for further reading

Unit End Exercises

7.1 OBJECTIVE

 To understand the whole system broken into layers, so each layer is
independent and serves a distinct purpose & each layer is made up of
one and more logical components.

 To manage the complexity of software projects in amore easier way.

 To follow great discipline to the software development process.

 To reduce the development time.

 Build EJB technology-based distributed systems.

 Create entity beans.

 Create session beans.

 Deploy solutions in a server.

 Create standalone enterprise bean clients.

 Use entity beans from within session beans.

108

7.2 INTRODUCTION

 The Enterprise JavaBeans (EJB) specification describes architecture
for the development and deployment of transactional, distributed
object applications based, server-side software components.

 Organizations can develop their own components or purchase
components from third party vendors.

 These server-side components, called enterprise beans, are distributed
objects that are hosted in Enterprise JavaBean containers and provide
remote services for clients distributed all-round the network.

7.3 ENTERPRISE BEAN ARCHITECTURE

Enterprise Bean architecture defines a model for the development and
deployment of reusable java server components. EJB component
architecture is the backbone of the java EE platform.

 EJB Architecture is composed of:
1. An Enterprise Bean Server.

2. Enterprise Bean Containers that runs on these servers.

3. Enterprise Beans that run in these containers.

4. Others Systems Such as Java Naming and Directory Interface [JNDI]
and Java Transaction service [JTS].

 Request And Response:

The communication between the components happens as follow:

1. Client object makes a request for a method that is available in the
bean.

2. Container comes into picture and checks whether the client is in the
approved list for calling a method on the bean.

3. If the client is authorized, the container either creates a new instance or
activates the requested bean from the pool.

4. Container ensures the bean gets its own new transaction.

5. Container informs the EJB object (wrapper class generated by
container) that the beans ready and passes the client’s method request
to the bean.

Enterprise Bean Server:

 An Enterprise Java Beans (EJB) Server is a Component Transaction
Server.

 It Supports the EJB server side component model for developing and
deploying distributed enterprise -level applications in a multi-tiered
environment.

109

An Enterprise Bean Server provides:

 The framework for creating, Deploying and managing middle -tier
business logic.

 An Environment that allows the execution of applications developed
using Enterprise Java Beans (EJB) components.

In a three -tier environment:

 The client provides the user Interface logic.

 The business rules are split to the middle tier.

 The database is the information repository.

 The client does not access the database directly. Instead, the client
makes a call to the EJB server on the middle tier, which then accesses
the database.

An EJB server takes care of:

 Managing and coordinating the allocation of resources to the
applications

 security

 threads

 Connection pooling

 Access to a distributed transaction management service

 The EJB server provides one or more containers for the enterprise
beans, which is called an EJB Container

 An EJB container handles the enterprise beans contained within it.

 Enterprise beans or components are reusable modules of code that
combine related tasks or methods into a well-defined interface. These
enterprise beans EJB components hold the methods that execute
business logic and access data sources.

 These components (i.e. the executable code) are installed on an EJB
Server. All number of independent Java or EJB applications or clients
can use the EJBs.

An Enterprise bean (EJP):

 Business components developed using the EJB architecture are called
Enterprise javaBeans components or simply Enterprise Beans.

 An Enterprise Bean (EJB) is a server-side component that encapsulates
the code that fulfills the purpose of the application. They can be merged
with other components and rapidly produce a custom application.

 The fundamental purpose of introducing EJB was for building
distributed components. EJB xx introduced a promise to solve all issues
and complexities of CORBA.

110

 EJB technology is powerful and sophisticated. The technology helps
developers to build business applications that support a very large
number of users simultaneously. They applications developed with EJB
are capable of maintaining data integrity even though data is processed
concurrently by multiple users, thus making them transaction enabled.

 The EJB component is assembled and reassembled into different
distributed application

EJB Evolution:

 EJB specification evolved significantly.

 It is capable of embracing the requirement of many enterprises.

 EJB is complicated due to:
○ Lack of good persistence strategy

○ Long and tedious deployment descriptors.

○ Limited capacity of testing.

7.4 BENEFITS OF ENTERPRISE BEAN:

1. EJB container provides system-level services to enterprise beans, the
bean developer can focus on solving business problems.

2. The responsibility of EJB containers for system-level services, such as
transaction management and security authorization.

3. The beans rather than the clients consist of the application’s business
logic; the client developer can concentrate on the presentation of the
client.

4. The clients are thinner, a benefit that is especially important for clients
that run on small devices.

5. Enterprise beans are portable components; the application assembler
can develop new applications from existing one. They use the standard
APIs, these applications can run on any compliant Java EE server.

7.5 TYPES OF BEANS

There are two types of EJBs: session beans and message-driven beans.

1. Session Beans

2. Message-Driven Beans

Session Beans:

 A session bean implements one or more business tasks.

 A session bean might consist of methods that query and update data in
a relational table. Session beans are frequently used to implement
different services.

111

 For example, an application developer implements one or several
session beans that retrieve and update inventory data in a database.

 A session bean implements the javax.ejb.SessionBean interface,
following is the definition:

public interface javax.ejb.SessionBean extends javax.ejb.EnterpriseBean
{

public abstract void ejbActivate();
public abstract void ejbPassivate();
public abstract void ejbRemove();
public abstract void setSessionContext(SessionContextctx);

}

 An EJB must implement the following methods, as specified in the
javax.ejb.SessionBean interface:

ejbCreate() The container invokes this
method right before it creates the
bean.

ejbActivate() The container invokes this
method right after it reactivates
the bean.

ejbPassivate() The container invokes this
method right before it passivates
the bean.

ejbRemove() A container invokes this method
before it ends the life of the
session object.

setSessionContext This method associates a bean
instance with its context
information.

There are two types of session beans:

 Stateless Session Beans
Stateless session beans do not share state or specification between

method invocations. They are effective mainly in middle-tier application
servers that provide a pool of beans to process frequent and brief requests.

 Stateful Session Beans:
Stateful session beans are useful for informal sessions, in which it is

necessary to maintain state of the bean, like instance variable values or
transactional state, between method invocations. These session beans are
depicted to a single client for the life of that client.

Stateless Session Beans:

 A stateless session bean does not keep any state for the client.

112

 It is strictly a single invocation bean. It is active for reusable business
services that are not connected to any specific client, such as currency
calculations, mortgage rate calculations etc.

 Stateless session beans may carry client-independent, read-only state
across a call. Succeeding calls are controlled by other stateless session
beans in the pool. The information is used only for the single
invocation.

Implementation Methods
Home Interface Extends javax.ejb.EJBHome and

requires a single create() factory
method, with no arguments, and a
single remove() method.

Remote Interface Extends javax.ejb.EJBObject and
defines the business logic
methods, which are implemented
in the bean implementation.

Bean implementation Implements SessionBean. This
class must be declared as public,
contain a public, empty, default
constructor, no finalize() method,
and implement the methods
defined in the remote interface.

Stateful Session Beans:

 A stateful session bean keeps up its state between method calls.
Therefore, there is one instance of a stateful session bean created for
each client.

 Each stateful session bean has its own identity and a one-to-one
mapping with an individual client.

 The state of this type of bean is maintained across various calls through
serialization of its state, called passivation.

Implementation Methods
Home Interface Extends javax.ejb.EJBHome and

requires one or more create()
factory methods, and a single
remove() method.

Remote Interface Extends javax.ejb.EJBObject and
defines the business logic
methods, which are implemented
in the bean implementation.

113

Message-Driven Beans:

 Message-Driven Beans (MDB) provide a simple method to implement
asynchronous communication than using straight JMS. MDBs were
created to receive asynchronous JMS messages.

 The container controls much of the setup required for JMS queues and
topics.

 A MDB is the same as a stateless session bean because it does not save
conversational state and is used for handling various incoming requests.
Instead of handling direct requests from a client, MDBs handle requests
placed on a queue. Figure 1 shows how clients place requests on a
queue. The container takes the requests off of the queue and sends the
request to an MDB in its pool.

Figure 1 Message Driven Beans

 MDBs implement the javax.ejb.MessageDrivenBean interface, which
also inherits the javax.jms.MessageListener methods. Within these
interfaces, the following methods must be implemented:

Method Description
onMessage(msg) The container dequeues a

message from the JMS queue
associated with this MDB and
gives it to this instance by
invoking this method.

setMessageDrivenContext(ctx) After the bean is created, the
setMessageDrivenContext
method is invoked.

ejbCreate() This method is used just like the
stateless session bean ejbCreate
method. No initialization should
be done in this method.

ejbRemove() Delete any resources allocated
within the ejbCreate method.

7.6 ACCESSING BEANS

 Accessed of Enterprise Beans:
a. No-interface view

b. Business interface

114

a. No-interface view:

 A no-interface view of an enterprise bean reveals the public methods of
the enterprise bean implementation class to clients.

 Clients using the non-interface view of an enterprise bean may invoke
any public methods in the enterprise bean implementation class.

b. Business interface:

 A Business interface is a standard java programming language interface
that contains the business methods in the enterprise bean.

 A client can access a session bean through the methods defined in the
bean's interface or through the public methods of an enterprise bean
that has a no-interface view.

7.7 PACKAGING BEANS

Enterprise beans can be packaged in EJB JAR or WAR modules.

Packaging Enterprise Beans in EJB JAR Modules:

 EJB JAR file is portable.

 Used for different applications.

 To assemble a Java EE application, package one or more modules, such
as EJB JAR files, into an EAR file, the archive file that holds the
application.

 When deploying the EAR file that contains the enterprise bean's EJB
JAR file, this also deploys the enterprise bean to GlassFish Server.

 Beans can also deploy an EJB JAR that is not contained in an EAR file.
Figure 2 shows the contents of an EJB JAR file.

Figure 2 Structure of an Enterprise Bean JAR

115

Packaging Enterprise Beans in WAR Modules

 EJB provides the business logic of a web application.

 WAR module simplifies deployment and application organization.

 Enterprise beans may be packaged within a WAR module.

 To include, the class files should be in the WEB-INF/classes directory.

 To include a JAR file, add the JAR to the WEB-INF/lib directory of the
WAR module.

 Enterprise beans do not require an ejb-jar.xml deployment descriptor.

 JAR files that contain enterprise bean classes packaged within a WAR
module are not considered EJB JAR files.

 JAR files are semantically equivalent to enterprise beans.

 For example, The shopping cart bean exposes a local, no-interface view
and is defined as follows:

package com.example.cart;
@Stateless
public class CartBean { ... }

The credit card processing bean is packaged within its own JAR file,
cc.jar, exposes a local, no-interface view, and is defined as follows:

package com.example.cc;
@Stateless
public class CreditCardBean { ... }

7.8 CREATING WEB APPLICATIONS

 To develop, deploy, and run a simple web application named currency
converter. The purpose of the converter is to calculate currency
conversions between Japanese yen and Eurodollars.

 Currency converter consists of an enterprise bean, which performs the
calculations, and two types of clients: an application client and a web
client.

Steps:

1. Create the enterprise bean: CurrencyConverterBean.

2. Create the application client: CurrencyConverterClient.

3. Create the web client in converter-war.

4. Deploy converter onto the server.

5. Run the application client.

6. Using a browser, run the web client.

116

7.9 CREATING ENTERPRISE BEAN

Creating the Enterprise Bean:
The enterprise bean in our example is a stateless session bean called
CurrencyConverterBean.
Creating CurrencyConverterBean requires these steps:

1. Coding the bean’s business interface and class (the source code is
provided)

2. Compiling the source code with the Ant tool

Enterprise Bean:
The enterprise bean in this example needs the following code:

● Remote business interface

● Enterprise bean class

Business Interface:

The business interface defines the business methods that a client
can call. The business methods are implemented in the enterprise bean
class. The source code for the CurrencyConverter remote business
interface follows.

package com.sun.tutorial.javaee.ejb;

import java.math.BigDecimal;
import javax.ejb.Remote;

@Remote
public interface CurrencyConverter {

public BigDecimaldollarToYen(BigDecimal dollars);
public BigDecimalyenToEuro(BigDecimal yen);

}

Note the @Remote annotation decorating the interface definition. This lets
the container know that CurrencyConverterBean will be accessed by
remote clients.

Enterprise Bean Class:
The enterprise bean class for this example is called
CurrencyConverterBean. This class implements the two business methods
(dollarToYen and yenToEuro) that the CurrencyConverter remote
business interface defines. The source code for the
CurrencyConverterBean class follows.

package com.sun.tutorial.javaee.ejb;

117

import java.math.BigDecimal;
importjavax.ejb.*;

@Stateless
public class CurrencyConverterBean implements CurrencyConverter {

private BigDecimalyenRate = new BigDecimal("115.3100");
private BigDecimaleuroRate = new BigDecimal("0.0071");

public BigDecimaldollarToYen(BigDecimal dollars) {
BigDecimal result = dollars.multiply(yenRate);

return result.setScale(2, BigDecimal.ROUND_UP);
}

public BigDecimalyenToEuro(BigDecimal yen) {
BigDecimal result = yen.multiply(euroRate);

return result.setScale(2, BigDecimal.ROUND_UP);
}

}

7.10 CREATING WEB CLIENT

Creating the converter Application Client:

An application client is a program written in the Java programming
language. At runtime, the client program executes in a different virtual
machine than the Application Server. For detailed information on the
appclient command-line tool, see the man page at appclient.

The CurrencyConverterClient.java source code illustrates the basic tasks
performed by the client of an enterprise bean:

● Creating an enterprise bean instance

● Invoking a business method

CurrencyConverterClient program follows.

packagecom.sun.tutorial.javaee.ejb;

importjava.math.BigDecimal;
importjavax.ejb.EJB;

public class CurrencyConverterClient {
@EJB

private static CurrencyConverter converter;

publicCurrencyConverterClient(String[] args) {

118

}

public static void main(String[] args) {
CurrencyConverterClient client = new CurrencyConverterClient(args);
client.doConversion();

}

public void doConversion() {
try {
BigDecimalparam = new BigDecimal("100.00");
BigDecimalyenAmount = converter.dollarToYen(param);

System.out.println("$" + param + " is " + yenAmount
+ " Yen.");

BigDecimaleuroAmount = converter.yenToEuro(yenAmount);
System.out.println(yenAmount + " Yen is " + euroAmount

+ " Euro.");

System.exit(0);
} catch (Exception ex) {

System.err.println("Caught an unexpected exception!");
ex.printStackTrace();

}
}

}

Compiling the converter Application Client
The application client files are compiled at the same time as the enterprise
bean files, as described in Compiling and Packaging the converter
Example.

7.11 CREATING JSP FILE

Creating the converter Web Client

<%@ page import="converter.ejb.CurrencyConverter,
java.math.*, javax.naming.*"%>

<%!
private CurrencyConverter converter = null;
public void jspInit() {

try {
InitialContextic = new InitialContext();
converter = (CurrencyConverter)
ic.lookup(CurrencyConverter.class.getName());

} catch (Exception ex) {
System.out.println("Couldn’t create converter bean."+
ex.getMessage());

119

}
}

public void jspDestroy() {
converter = null;

}
%>
<html>
<head>
<title>CurrencyConverter</title>
</head>

<body bgcolor="white">
<h1>CurrencyConverter</h1>
<hr>
<p>Enter an amount to convert:</p>
<form method="get">
<input type="text" name="amount" size="25">

<p>
<input type="submit" value="Submit">
<input type="reset" value="Reset">
</form>

<%
String amount = request.getParameter("amount");
if (amount != null &&amount.length() > 0) {

BigDecimal d = new BigDecimal(amount);

BigDecimalyenAmount = converter.dollarToYen(d);
%>

<p>
<%= amount %> dollars are <%= yenAmount %> Yen.
<p>
<%
BigDecimaleuroAmount =
converter.yenToEuro(yenAmount);

%>
<%= amount %> Yen are <%= euroAmount %> Euro.
<%

}
%>

</body>
</html>

120

7.12 BUILDING AND RUNNING WEB APPLICATION

Running the converter Application Client:

When you run the application client, the application client
container first injects the resources specified in the client and then runs the
client. You can run the application client using either NetBeans IDE or
Ant.

Running the converter Application Client Using NetBeans IDE:
Follow these instructions to run the application client using NetBeans
IDE.
1. In NetBeans IDE, make sure the converter application is open.
In the Projects tab, right-click the converter project and select Run. You
will see the following output in the Output tab:

…
$100.00 is 11258.00 Yen.
11258.00 Yen is 78.81 Euro.
2. …

Running the converter Application Client Using Ant
To run the application client using Ant, perform the following steps.
In a terminal window, go to this directory:
Type the following command:
ant run

appclient -client client-jar/converterClient.jar
In the terminal window, the client displays these lines:
...
$100.00 is 11531.00 Yen.
11531.00 Yen is 81.88 Euro.
1. ...

Running the converter Web Client:
To run the web client, point your browser at the following URL. Replace
host with the name of the host running the Application Server. If your
browser is running on the same host as the Application Server, you can
replace host with localhost.

http://host:8080/converter

121

Figure 3 Currency Converters Web Client

7.13 SUMMARY

 Enterprise JavaBeans present a way to build components as well as a
means to make these components exist in a transactional, secure, and
distributed environment.

 However, a single bean represents only one component - and
consequently only one part of a complete application.

 EJB provides developers with flexibility in determining how these
components should be made to work together.

 There are a number of ways in which Enterprise JavaBeans can be
made to work together to form a complete enterprise application.

 Top Link can be integrated into each variety of EJB application
architecture to provide both the technology that enables these
architectures and the features that add value to them.

REFERENCE FOR FURTHER READING

1. Java EE 6 for Beginners, Sharanam Shah, Vaishali Shah, SPD

2. https://docs.oracle.com/javaee/5/tutorial/doc/bnbnc.html

UNIT END EXERCISES

1. Explain the EJB Architecture?

2. What are the benefits of EJB?

3. What are the different types of enterprise beans?

4. Write a short note on accessing and packaging of beans?

121

UNIT V

8

HIBERNATE AND STRUTS

Unit Structure
8.1 Hibernate: Introduction

8.2 Hibernate

8.2 Structure of Hibernate.Cfg.Xml File (Hibernate Configurationfile)

8.3 Steps For Hibernateproject

8.1 HIBERNATE: INTRODUCTION

Writing the application, Application development approach, creating
database and tables in MySQL, creating a web application, Adding the
required library files, creating a java bean class, creating hibernate
configuration and mapping file, adding a mapping resource, creatingJSPs.

8.2 HIBERNATE

Hibernate is the latest Open-Source persistence technology. It is
available as a free open source [distributed under the GNU Lesser General
Public License] Object/Relational Mapping [ORM] library for the Java
programming language. It provides a framework for mapping an object-
oriented DOMAIN model to a traditional Relational Database.

Hibernate was developed by a team of Java software developers around
the world led by Gavin King, JBoss Inc. [now pail of Red Hat].

Hibernate has become the de-facto ORM [Object/Relational Mapping]
framework for most of the organizations today.

Hibernate was developed with a goal to relieve the developers from 95%
of common data persistence related programming tasks by:

 Making the developer feel as if the database contains plain Java
objects, without having them worry about how to get them out of [or
back into] databasetables.

 Allowing the developers to focus on the objects and features of the
application, without having to worry about how to store them or find
them later.

Its primary feature is mapping from:

 Java Classes  DatabaseTables

122

 Java Data Types  SQL DataTypes

In addition to this, Hibernate also allows querying and retrieving data. It
generates all the necessary SQL calls to achieve this and thereby, relieves
the developers from manual result set handling and objet conversion.

Hibernate provides transparent persistence that enables the applications
[using Hibernate as the ORM] to switch to any database [supported by
Hibernate].

To use Hibernate :

 JavaBean classes [POJOs] that represents the table in the database are
created.

 The instance variables of the class are mapped to the columns in the
database table.

Why Hibernate?:
Because of the following reasons:

 Hibernate is Free under LGPL i.e. Hibernate can be used to
develop/package and distribute the applications for free.

 It eliminates the need for repetitiveSQL.

 It allows working with classes and objects instead of queries and result
sets which makes the approach more Object Oriented and less
Procedural.

 Handles all Create, Read, Update, Delete [CRUD]operations.

 Brings in portability across databases.

 Supports IDEs such as Eclipse, NetBeans by providing a suite of plug-
ins.

 Reduces the development time by supporting inheritance,
polymorphism, composition and the Java Collection framework.

 Supports the multiple primary key generation including built-in
support for identity [Auto increment] columns, sequences, UUID
algorithm and HI/LO algorithm. Hibernate also includes support for
application assigned identifiers and composite keys.

 Hibernate’s Dual Layer Cache Architecture [HDCLCA] delivers
thread safeness, nonblocking data access, session level cache, optional
second- level cache and optional query cache. Hibernate also works
well when other applications have simultaneous access to the database.

 Supports connectionpooling

 Supports wide range of database such as:

 Oracle DB2 Sybase
 MS SQLServer PostgreSQL MySQL
 HypersonicSQL Mckoi SQL  SAP DB

124

Session:
Session objects are lightweight and inexpensive to create. They

provide the main interface to perform actual database operations. All the
POJOs i.e. persistent objects are saved and retrieved with the help of a
Session object. Typically, session objects are created as needed and
destroyed when not required.

Transaction:
A Transaction represents a unit of work with the database. Any kind of
modifications initiated via the session object are placed with in a
transaction. A Session object helps creating a Transaction object.
Transaction objects are typically used for a short time and are closed by
either committing or rejecting.

Query:
Persistent objects are retrieved using a Query object. Query objects allow
using SQL or Hibernate Query Language [HQL] queries to retrieve the
actual data from the database and create objects.

Criteria
Persistent objects can also be retrieved using a Criteria object. Criteria
uses an object/method based means of constructing and executing a
request to retrieve objects.

8.3 STRUCTURE OF HIBERNATE.CFG.XML FILE
(HIBERNATE CONFIGURATIONFILE).

<?xml version=”1.0” encoding=”UTF8”?>

<hibernateconfiguration>
<sessionfactory>

<property name=”hibernate.dialect”>
org.hibernate.dialect.MySQLDialect</property>

<property name=”hibernate.connection.driver_class”>
com.mysql.jdbc.Driver</property>

<property name=”hibernate.connection.url”>
jdbc:mysql://localhost/DBname</property>

<property name=”hibernate.connection.username”> root</property>

<property name=”hibernate.connection.password”> root</property>

<mapping resource=”guestbook.hbm.xml”/>

</sessionfactory>

125

</hibernateconfiguration>

Elements:
hibernate.dialect It represents the name of the SQL dialect for the
database

hibernate.connection.driver_class It represents the JDBC driver class for
the specific database

hibernate.connection.url It represents the JDBC connection to the
database

hibernate.connection.username It represents the user name which is used
to connect to thedatabase

hibernate.connection.password It represents the password which is used
to connect to thedatabase

guestbook.hbm.xml It represents the name of mapping file

Structure Of Guestbook.Hbm.Xml File (Hibernate Mapping File).
<?xml version=”1.0” encoding=”UTF8”?>
<hibernatemapping>

<class name=”guestbook” table=”guestbooktable”>

<property name=”name” type=”string”>
<column name=”username” length=”50” />
</property>

<property name=”message” type=”string”>
<column name=”usermessage” length=”100” />
</property>

</class>

</hibernatemapping>

Elements:

<hibernatemapping> </hibernatemapping>
It is the base tag which is used to write hibernate mapping file, which is
used to map POJO class with database table.

<class> </class>
It represents name of the class and database table which we want to map
with each other. It has 2 parameters:
nameIt represents name of the class

126

tableIt represents name of the database table

<property> </property>
It is used to write the property which we want to map with database
column. It has 2 parameters:
nameIt represents name of the property
typeIt represents type of the property
<column> </column>
It is used to write the database column which we want to map with java
class property. It has 2 parameters:
nameIt represents name of the column
lengthIt represents maximum length of a column value

8.3 STEPS FOR HIBERNATEPROJECT

I. Create the Database and Table structure

II. Create the Database Service through NetBeans IDE

 Click the Services Tab from the Project Workspace

 Right Click on the Databases option and select the option “New
Connection”

 Select the Driver as “MySQL (Connector / J driver)
 Click Next → Type the Database Name (db) → specify

the password of MySQL database → select remember
password checkbox → click “test connection” to check
the successful database connection → Next → Finish

III.Create a Hibernate project

 File -> New Project (Select Java Web and Web Application)
→ Next (Give the Project Name; change the project location as
required; select the checkboxes Dedicated folder for storing
libraries) → Next

 Select Glassfish Server → Next → Select the framework
Hibernate 3.2.5(select the respective Database Connection) →
Finish

IV. Adding the Hibernate Configuration and POJO
1. Adding Reverse Engineering File

Right click on the project from the workspace → New → other →
(Select Hibernate category and Hibernate Reverse Engineering Wizard
file type) → Next → File name (hibernate.reveng) → Next → select
the table name from the available tables option → click add(select the
check box include related tables) → Finish

2. Adding Hibernate Configuration and POJO

127

3. Right click on the project from the workspace → New → other →
(Select Hibernate category and Hibernate mapping files and POJOs
from Database file type) → Next → Keep the default configuration
file name(hibernate.cfg) and Hibernate Reverse Engineering
File(hibernate.reveng) and type the package name(hibernate) → Finish

V. Add the required JSP’s Servlet’s Files
Example: Develop a Hibernate application to store Feedback of
Website Visitor in MySQL Database.
Database commands in MySQL
1) create databasedb;
2) usedb;
3) create table guestbook(no int primary key auto_increment,

name varchar(20),
msg varchar(100), dt varchar(40));

Guestbook.java
package hibernate;
public class Guestbook implements
java.io.Serializable { private Integer no;
private String
name; private
String msg;
private String
dt;

public Guestbook() {
}

public Guestbook(String name, String msg,
String dt) { this.name = name;
this.msg =
msg; this.dt
= dt;

}

public Integer
getNo() { return
this.no;
}

public void setNo(Integer
no) { this.no = no;
}
public String
getName() { return
this.name;
}

128

public void setName(String
name) { this.name = name;
}
public String
getMsg() {
returnthis.msg;
}

public void setMsg(String
msg) { this.msg =msg;
}
public String
getDt() { return
this.dt;
}
public void
setDt(String dt) {
this.dt = dt;
}
}
hibernate.cfg.xml
<hibernate-configuration>
<session-factory>

<property
name="hibernate.dialect">org.hibernate.dialect.MySQLDialect</p
roperty>

<property
name="hibernate.connection.driver_class">com.mysql.jdbc.Driver</p
roperty>

<property
name="hibernate.connection.url">jdbc:mysql://localhost:3306/db</p
roperty>
<property name="hibernate.connection.username">root</property>
<property name="hibernate.connection.password">tiger</property>

<mapping resource="hibernate/Guestbook.hbm.xml"/>
</session-factory>
</hibernate-configuration>

Guestbook.hbm.xml
<hibernate-mapping>
<class name="hibernate.Guestbook" table="guestbook" catalog="db">
<id name="no" type="java.lang.Integer">
<column name="no" />
<generator class="identity" />
</id>

<property name="name" type="string">
<column name="name" length="20" />
</property>

129

<property name="msg" type="string">
<column name="msg" length="100" />
</property>

<property name="dt" type="string">
<column name="dt" length="40" />
</property>
</class>
</hibernate-mapping>
index.jsp
<html>
<head>
<title>Guest Book</title>
</head>
<body>
Guest Book <hr>

<form action="guestbookview.jsp" method="post">
Name <input type="text" name="name" maxlength="20">

Message <textarea rows="5" cols="40"
maxlength="100" name="msg"></textarea>

<input type="submit" value="submit">
</form>
</body>
</html>

guestbookview.jsp
<%@page import="org.hibernate.SessionFactory"%>
<%@page import="org.hibernate.Session"%>
<%@page import="org.hibernate.cfg.Configuration"%>
<%@page import="org.hibernate.Transaction"%>
<%@page import="java.util.List"%>
<%@page import="java.util.Iterator"%>
<%@page import="hibernate.Guestbook"%>
<%!
SessionFactory sf;
org.hibernate.Session ss;
List<hibernate.Guestbook>
gbook;
%>
<%
sf = new
Configuration().configure().buildSessionFactory();
ss= sf.openSession();
Transaction tx=null;
Guestbook gb=new
Guestbook(); try
{
tx=ss.beginTransaction();
String
name=request.getParameter("name");

130

String
msg=request.getParameter("msg");
String dt=new java.util.Date().toString();
gb.setName(name);
gb.setMsg(m
sg);
gb.setDt(dt);
ss.save(gb);
tx.commit();
}
catch(Exception e){ out.println("Error"+e.getMessage()); }

try
{
ss.beginTransaction();
gbook=ss.createQuery("from
Guestbook").list();
}

catch(Exception e){ }

%>

<html>
<head>
<title>Guest View</title>
</head>
<body>
Guest View
Click here to go BACK

<%
Iterator
it=gbook.iterator();
while(it.hasNext())
{
Guestbook each=(Guestbook)it.next();
out.print(each.getDt()+" ");
out.print(each.getName()+"
");
out.print(each.getMsg()+"
<hr>");
}
%
>
</body>
</html>

Output:

131

9
STRUTS

Unit Structure
9.1 Struts: Introduction

9.2 Strut’s framework core components

9.3 Installing and setting up struts

9.4 Getting started with struts.

9.1 INTRODUCTION TO STRUTS

The Javaworld is very vast. Web application development in this vast
world has come a long way with several Integrated Development
Environments such as NetBeans, Eclipse and So on which has made
creating standard Java based Web applications quite easy.

The main Java based technologies that one commonly uses to develop
Web applications are Servlet and JavaServer Pages [JSP].

Standard Application Flow

In a standard Java EE Web application:

1) Using Web based data entry form information is submitted to theserver

2) Such information is handed over to a Java Servlet or a JavaServer
Page for processing

3) The Java Servlet or theJSP:

 Interacts with thedatabase

 Produces an HTMLresponse

As an application grows in complexity, it becomes more and more
difficult to manage the relationship between the JSP pages, the backend
business logic and the forms and validations. Developers start finding it
increasingly difficult to maintain and add additional functionality to the
applications.

Both the technologies [Java Servlets and JSP] mix the application and the
business logic with the presentation layer and thus make maintenance
very difficult. This is not suitable for large enterprise applications. This
means there’s something still missing in these technologies which create
a gap.

In such scenarios, most experienced developers, split various pieces of an
application’s functionality into small manageable pieces of code spec.

132

These small pieces of code spec hold a single piece of functionality and
when taken together as a whole forms the basis for an application
development framework.

FRAMEWORK

A framework is a collection of services that provide developers with
common set of functionality, which can be reused and leveraged across
multiple applications.

A framework usually come into existence by:

 Making generalizations about the common tasks and workflow of a
specific domain

 Providing a platform upon which applications of that domain can be
more quickly built

A framework helps automate all the tedious tasks of the domain and
provides an elegant architectural solution to the common workflow of the
domain.

A framework allows developers to focus on coding the business logic and
the presentation layer of the application and not the overhead jobs such
as heavy code spec to capture user input or to generate drop down list
boxes.

Nowadays with several frameworks available, application development
projects no longer begin with the question: Should we use a
framework?

Instead, they begin with: Which framework should we use? Why
Struts?

Struts, a Java based framework, allows a clean separation between the
application logic and interacts with a database from the HTML pages that
form the response.

It cuts time, out of the development process and makes developers more
productive by giving them prebuilt components to assemble Web
applications from.

Struts is not a technology, it’s a framework that can be used along with
Java based technologies.

Struts makes the development of enterprise Web application
development easier by providing a flexible and extensible application
architecture, custom tags and a technique to configure common
workflows within an application.

133

The Struts framework is a strong implementation of the widely
recognized Model View Controller design pattern. The key focus of
MVC pattern is separation which is what is desired.

Struts

Struts is an application Framework for building Web based applications in
Java using the Java Enterprise Edition platform.

Struts [formerly located under the Apache Jakarta Project] was originally
developed by Craig McClanahan and donated to the Apache Foundation
in May, 2000. It was formerly known as Jakarta Struts. Struts is
maintained as a part of Apache Jakartaproject.

Struts comes with an Open-Source license which means it has no cost and
its users have free access to all its internal source code.

Today, the Apache Struts Project offers the two major versions of the
Struts framework:

 Struts 1 Which was recognized as the most popular Web application
framework forJava

 Struts 2 originally known as WebWork 2 is now the best choice
which provides elegant solutions to complexproblems.

9.2 STRUTS FRAMEWORK CORE COMPONENTS

After understanding the fundamentals of Struts 2, it’s time to learn about
the CORE components of Struts 2.

This chapter takes a complete and comprehensive look at each CORE
component of the Struts 2 architecture along with an indepth
explanation of the roles these components play in the framework.

These components make up the functionality of the application as well as
the framework itself.

In Struts 2 the ModelViewController design pattern is recognized with
the following CORE components:

 MODEL Actions

 VIEW  Results and Result Types [ViewTechnologies]

 CONTROLLER  FilterDispatcher

 Interceptors

 Value Stack /OGNL

134

Fig. 2

Figure 2 indicates how the MVC components in Struts 2 interact
with each other.

Let’s begin with the Controller.

Filter Dispatcher
The controller is the first component that takes charge when
processing a request. In Struts 2 the Filter Dispatcher plays the
role of the Controller.

Actions
Action [the Action class] is heart and soul of the Struts 2
framework. It processes input and interacts with other layers of
the application.

It is associated with a HTTP request received from the user. Each HTTP
request [in form of a URL] is mapped to a specific Action. This Action
class holds the code spec that helps serve the user request.

Actions are used to:

 Encapsulate the actual work to be done for a given request

 Server as a data carrier from the request to the view

 Assist the framework in choosing the response that has to be sent to
the user i.e. view

Interceptors
Interceptors allow developing code spec that can be run before and/or after
the execution of an action.

A request usually processed as follows:
 A user requests a resource that maps to an Action
 The Struts 2 framework invokes the appropriate Action to serve the

request

135

If interceptors are written, available and configured, then:

 Before the Action is executed, the invocation could be intercepted by
another object

 After the Action executes, the invocation could be intercepted again
by another object

Such objects who intercept the invocation are called Interceptors.

Conceptually, Interceptors are very similar to Servlet Filters or the JDKs
Proxy class.

Why Interceptors?
Interceptors are one of the best aspects of the Struts 2 framework
Interceptors are mainly used to encapsulate common functionality in a
reusable form that can be applied to one or more Actions in the
application.

Developers can define code spec that can be executed before and/or after
the execution of an action. This thus Intercepting can be done:

 Before the action

 After the action

Value Stack/OGNL
Now that the Action and Interceptor components are covered, let’s move
on to the next component in the Struts 2 framework.

Value Stack
Value Stack is exactly what the name suggests a stack of objects.

The Value Stack is a storage area that holds all of the data associated with
the processing of a Request.

Accessing Value Stack
The Value Stack can be accessed by simply using the tags provided for
JSP. When the Value Stack is queried for an attribute value, each stack
element, in the provided order, is asked whether it holds the queried
property.

If it holds the queried property, then the value is returned.
If it does not hold the queried property, then the next element down is
queried.

This continues until the last element in the stack is scanned. This is very
useful as the developer need not know where the attribute value currently
is. Is it available in:

 The Action

 The Model

 The HTTP Request

136

The developer simply needs to know that such a value exists somewhere
and Struts 2 returns it!

OGNL [ObjectGraph Navigation Language]

OGNL [ObjectGraph Navigation Language] is a fully featured
expression language (the default expression language) for Retrieving and
Setting properties of the Java objects. It helps data transfer and type
conversion.

In the Value Stack, searching or evaluating, a particular expression, can
be done using OGNL. OGNL provides a mechanism to navigate object
graphs using a dot notation and evaluate expressions, including calling
methods on the objects being retrieved.

OGNL supports:

 Type conversion  Calling methods

 Collection manipulation  Generation

 Projection across collections  Expression evaluation

 Lambda expressions

RESULTS AND RESULT TYPES [VIEW TECHNOLOGIES]
After the Action completes its job, resulting information needs to be sent
back to the user as a Response.

In Struts 2, this task is split into the Result Type and the Result itself.

Results
Results and Result Types come into picture only after the processing of
the Action is complete.

Results define what happens next after the Action has been executed.

For example, Results can help determine, if the control is shifted to
success view, an error view or back to the date entry input view.

The method of the Action class that processes the Request returns a String
as the results. The value of the String is used to select a Result element.
This return value is mapped via the configuration file to an
implementation of the Result interface.

The XML [struts.xml] configuration:

<action name=”MyFirstStruts2App” class=“book.MyFirstStruts2App”>
<result name =“SUCCESS”>/apps/WelcomeToStruts.jsp</result>

<result name=”ERROR”>/apps/SorryNoEntry.jsp</result>
</action>

137

View Technologies
The most common way of rendering Results [View Technology] is
JavaServer Pages [JSP]. However, JSP is not the only view technology.
There are a few others that can replace JSP in a Struts 2 application:

 Velocity Templates

 Freemarker Templates

 XSLT Transformations

Freemarker and Velocity are very similar to JSP. In terms of
configuration, the name of the JSP template is simply replaced with then
ameof either the Velocity or Freemarker template in the actions
configuration file.

For example, the XML [struts.xml] configuration for Fremarker template
would be:
<action name=“MyFirstStruts2App” class = “book.MyFirstStruts2App”>
<result type=“freemarker” name=
“SUCCESS”>/apps/WelcomeToStruts.ftl
</results>
<result type= “freemarker” name=
“ERROR”>/apps/SorryNoEntry.ftl/result>
</action>

The XSLT result is a little different. Instead of replacing the template
name with the style sheet name, additional parameters are used.

Result Types
The response that the Result interface generates can vary between
different concrete class implementations which are nothing but Result
Types.

The Result Type provides the implementation details for the type of
information that is returned to the user.

For example, a response could modify the HTTP response codes,
generate a byte array for an image or render a JSP and soon.

This completes a comprehensive look at the Core Components. Let’s setup
the required development environment to start off.

9.3 STRUCTURE OF STRUTS.XML FILE

<?xml version=”1.0” encoding=”UTF8”?>
<struts>

<package name=”/” extends=”strutsdefault”>
<action name=”test” class=”hello.test”>

138

<result name=”SUCCESS”>/welcome.jsp</result>
</action

>

</packa
ge>

</struts>

Elements:
<struts></struts>
It represents the base tag for struts.xml file. This file contains all of the
routing and configuration information for the Struts application.

<package></package>
It allows separation and modularization of the configuration. This is very
useful when you have a large project and project is divided into different
modules. It has 2 parameters:

nameIt represents the package name

extendsIt represents which package does this package extend from

<action>..................... </action>
It represents the action class. It has 2 parameters:

nameIt represents name of the action

classIt represents the name of the action class

<result></result>
It represents the name of the result or a view. It has 1 parameter:

nameIt represent a result for which appropriate view will get displayed

9.4 STEPS FOR HIBERNATE PROJECT

I Create a Struts project

 File -> New Project (Select Java Web and Web Application) → Next
(Give the Project Name; change the project location as required; select
the checkboxes Dedicated folder for storing libraries) → Next

 Select Glassfish Server → Next → Select the framework Struts
1.3.10(select the check box Add struts TDL) → Finish

II. Creating Views

 To add views Right click on the project -> New -> JSP (Add
the required number of JSP pages) eg – (login, success, failure)

139

III. Writing business login(Model)
A. Design Action bean
 To add StructsActionForm bean, Right click on the project -> other -

> select(Struts and StrutsActionFormBean) ->next
 Give the bean class name (bean1) -> select the package name from

the list ->Finish
 Include the variables (username and email) into the action bean and

insert setter and gettermethod

B. Design Action
 To add Action, Right click on the project -> other -> select(Struts

and StrutsAction) ->next

 Give the class name (LoginAction) -> select the package from the
list -> type the action path as (/login) ->next

 Select the action form bean(bean1) -> keep input resource blank ->
select the scope as request -> uncheck validate ActionForm Bean
checkbox ->Finish

 Modify the execute()method.

IV. Configuring controllers and mapping instruts-config.xml

A. Configuration File

 Select the struts-config.xml file from the configuration files

 Right click within the <action>tag

 Select Struts ->Add forward

 Select the forward name (success) and select the resource
file(success.jsp)

 Repeat and Add all the forwards
B. Mapping file

 Select the web.xml file from the configuration files

 Click the page stag

 Select the welcome files(login.jsp)

Example: Develop a simple Struts Application to Demonstrate E-
mail Validator Login.jsp:
<html>
<head>
<title>LoginPage</title>
</head>
<body>
<form name="login" action="login.do">

Username

140

<input type="text" name="username" value="">

Email ID
<input type="text" name="email" value="">

<input type="submit" name="submit" value="submit">
</form>
</body>
</htmtml> Success.jsp:
<%@taglib uri="http://struts.apache.org/tags-bean" prefix="bean"%>
<html>
<head>
<title>Success Page</title>
</head>
<body>
Email Validation is done...

Your entered details are

Username
<bean:write name="bean1" property="username" />

email
<bean:write name="bean1" property="email" />
</body>
</html> Failure.jsp:
<%@taglib uri="http://struts.apache.org/tags-bean" prefix="bean"%>

<html>
<head>
<title>Failure Page</title>
</head>
<body>
Wrong Email ID..

Your entered details are

Username
<bean:write name="bean1" property="username" />

email
<bean:write name="bean1" property="email" />
</body>
</html>
Struts-config.xml
<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE struts-config PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration
1.3//EN" "http://jakarta.apache.org/struts/dtds/struts-
config_1_3.dtd">

<struts-config>
<form-beans>
<form-bean name="bean1" type="com.myapp.struts.bean1"/>

141

</form-beans>
<global-exceptions>

</global-exceptions>

<global-forwards>
<forward name="welcome"path="/Welcome.do"/>
</global-forwards>

<action-mappings>
<action name="bean1" path="/login"

scope="request"
type="com.myapp.struts.loginaction1"
validate="false">
<forward name="login" path="/login.jsp"/>
<forward name="success" path="/success.jsp"/>
<forward name="failure" path="/failure.jsp"/>

</action>
<action path="/Welcome" forward="/welcomeStruts.jsp"/>
</action-mappings>

<controller
processorClass="org.apache.struts.tiles.TilesRequestProcessor"/>

<message-resources
parameter="com/myapp/struts/ApplicationResource"/>

<plug-in className="org.apache.struts.tiles.TilesPlugin" >
<set-property property="definitions-config" value="/WEB-INF/tiles-
defs.xml"
/>
<set-property property="moduleAware" value="true" />
</plug-in>

<!-- ========================= Validator plugin
================================= -->
<plug-in className="org.apache.struts.validator.ValidatorPlugIn">

<set-property
property="pathna
mes"
value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>
</plug-in>

</struts-config>

Bean1.java(form bean)
package com.myapp.struts;

142

import javax.servlet.http.HttpServletRequest;

import
org.apache.struts.action.ActionErro
rs; import
org.apache.struts.action.ActionMap
ping; import
org.apache.struts.action.ActionMes
sage;
public class bean1 extends org.apache.struts.action.ActionForm {

private String
username;
private String
email;

public String
getEmail() {
return email;
}

public void
setEmail(String email) {
this.email = email;
}

public String
getUsername() {
return username;
}

public void setUsername(String
username) { this.username =
username;
}

}
Loginaction1.java

package com.myapp.struts;

import
javax.servlet.http.HttpServletReque
st; import
javax.servlet.http.HttpServletRespo
nse; import
org.apache.struts.action.ActionFor
m; import

143

org.apache.struts.action.ActionFor
ward; import
org.apache.struts.action.ActionMap
ping;
public class loginaction1 extends
org.apache.struts.action.Action {
private static final String
SUCCESS = "success";
private static final String FAILURE = "FAILURE";

@Override
public ActionForward execute(ActionMapping mapping,
ActionForm form, HttpServletRequest request,
HttpServletResponse response)
throws Exception {

bean1
b1=(bean1)form;
String
m=b1.getEmail();
if (m == null || m.equals("") || m.indexOf("@")
== -1) { return
mapping.findForward(FAILURE);
}
else{

return mapping.findForward(SUCCESS);
}

}
}
Web.xml
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0"

xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaeehttp://java.sun.co
m/xml/ns/javaee/web-app_3_0.xsd">
<servlet>
<servlet-name>action</servlet-name>
<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
<init-param>
<param-name>config</param-name>
<param-value>/WEB-INF/struts-config.xml</param-value>
</init-param>
<init-param>
<param-name>debug</param-name>
<param-value>2</param-value>
</init-param>
<init-param>

144

<param-name>detail</param-name>
<param-value>2</param-value>
</init-param>
<load-on-startup>2</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>action</servlet-name>
<url-pattern>*.do</url-pattern>
</servlet-mapping>
<session-config>
<session-timeout> 30
</session-timeout>
</session-config>
<welcome-file-list>
<welcome-file>login.jsp</welcome-file>
</welcome-file-list>
<jsp-config>
<ta
glib

>
<taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-bean.tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/WEB-INF/struts-html.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-html.tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/WEB-INF/struts-logic.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-logic.tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/WEB-INF/struts-nested.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-nested.tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/WEB-INF/struts-tiles.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-tiles.tld</taglib-location>
</ta
glib

>
</jsp-
config

>
</web-app>

145

Output:

148

UNIT VI

10

WEBSERVICES, JAVAMAIL AND JNDI

Unit Structure
10.1 Objectives

10.2 Introduction

10.3 Webservices

10.3.1 SOAP

10.3.2 Building a web services using JAX-WS

10.4 Java Mail

104.1 Mail protocols

10.4.2 Components of the JavaMail API

10.4.3 Starting JavaMail API

10.5 JNDI

10.5.1 Naming Service and Directory Service

10.5.2 JNDI and Resources of JNDI

10.6 Summary

References

Questions

10.1 OBJECTIVES

At the end of this unit learner will be able to

 Describe the concept of webservice

 Demonstrate the concept of JAX-WS

 Illustrate the mean of SOAP

 Explain the concept of Java Mail and JNDI

10.2 INTRODUCTION

1 Web service is a technology to communicate one programming
language with another. For example, java programming language can
interact with PHP and .Net by using web services. In other words, web
service provides a way to achieve interoperability.

2. The Javamail is an API that is used to compose, write and read
electronic messages(emails).

149

3. The Javamail API provides protocol-independent and platform-
independent framework for sending and receiving mails.

4. A fundamental element in every application is the capability to find
and locate components and services.

5. The component name correspond to the actual name, typically much
more difficult to remember and manage. A well-known naming service
is provided on Internet by DNS.

10.3 WEB SERVICES

10.3.1 SOAP:
1. There are three major web service components

1. SOAP

2.WSDL

3.UDDI

10.1 SOAP:
1. SOAP is an acronym for simple object Access protocol.

2. It is a XML-based protocol for accessing web services.

3. It is a W3C recommendation for communication between
applications.

4. It is XML based, so it is platform independent and language
independent. In other words, it can be used with java, .NET or PHP
language or any platform.

5. Advantages of SOAP Web services:

1. WS Security- It defines its own security known as a WS security.

2. Language and platform independent- SOAP webservices can be
written in any programming language and executed in any platform.

6. Disadvantages of SOAP Web services:

1. Slow- SOAP uses XML format that must be parsed to be read. It
defines many standards that must be followed while developing the
SOAP applications. So it is slow and consumes more bandwidth and
resource.

2. WSDL dependent- SOAP uses WSDL and doesn’t have any other
mechanism to discover the service.

7. SOAP Building blocks:

1. The SOAP specification defines something known as a “SOAP
message” which is what is sent to the web service and the client
application.

150

2. The below diagram of SOAP architecture shows the various blocks of
a SOAP message

Fig 1 SOAP Message Building Blocks

3. The SOAP message is nothing but a mere XML document which has
the below components.

4. An Envelope element that identifies the XML document as a SOAP
message-This is the containing part of the SOAP message and is used
to encapsulate all the details in the SOAP message. This is the root
element in the SOAP message.

5. A Header element that contains header information-The header
element can contain information such as authentication credentials
which can be used by the calling application.

6. A Simple SOAP service example of a complex type is shown below

Suppose we want to send a structured data type which had a combination
of “tutorial name” and “tutorial description”, then we would define the
complex type as shown below

The complex type is defined by the element tag <xsd:complexType>. All
of the required elements of the structure along with their respective data
types are then defined in the complex type collection.

<xsd:complexType>
<xsd:sequence>

<xsd:element name="Tutorial Name" type="string"/>
<xsd:element name="Tutorial Description"

type="string"/>
</xsd:sequence>
</xsd:complexType>

6.1 A body element that contains call and response information- This
element is what contains the actual data which needs to be sent between
the web service and the calling application.
<soap:Body>
<GetTutorialInfo>

<TutorialName>Web Services</TutorialName>

151

<TutorialDescription>All about web
services</TutorialDescription>
</GetTutorialInfo>
</soap:Body>

7. SOAP Message Structure:

1. SOAP messages are normally auto-generated by the web service when
it is called.

2. Whenever a client application calls a method in the web service, the
web service will automatically generate a SOAP message which will
have the necessary details of the data which will be sent from the web
service to the client application.

3. A Simple SOAP message has the following elements-

1. The Envelope element

2. The header element and

3. The body element

4. The fault element(optional)

8. SOAP Envelope element:

1. The first bit of the building block is the SOAP envelope. The SOAP
envelope is used to encapsulate all of the necessary details of the
SOAP messages, which are exchanged between the web service and
the client application.

2. The SOAP envelope element is used to indicate the beginning and to
end of a SOAP message. This enables the client application which
calls the web service to know when the SOAP message ends.

3. The following points can be noted on the SOAP envelope element

1. Every SOAP message needs to have a root envelope element. It is
absolutely mandatory for SOAP message to have an envelope
element.

2. Every envelope element needs to have atleast one SOAP body
element.

3. If an envelope element contains a header element, it must contain
no more than one, and it must appear as the first child of the
envelope before the body element.

4. The envelope changes when SOAP version change.

5. A V1.1 complaint SOAP processor generates a fault upon
receiving a message containing the v1.2 envelope namespace.

6. A v1.2-compliant SOAP processor generates a Version Mismatch
fault if it receives a message that does not include the v1.2
envelope namespace.

9. The Fault Message:
When a request is made to a SOAP web service, the response

returned can be of either 2 forms which are a successful response or an

152

error response. When a success is generated, the response from the server
will always be a SOAP message. But if SOAP faults are generated, they
are returned as "HTTP 500" errors.

10. SOAP Communication Model:

1. All communication by SOAP is done via the HTTP protocol. Prior to
SOAP, a lot of web services used the standard RPC (Remote
Procedure Call) style for communication.

2. SOAP would then use the below communication model

Fig 2 Client Marshalling and Demarshalling

2.1 The client would format the information regarding the procedure call
and any arguments into a SOAP message and sends it to the server as part
of an HTTP request. This process of encapsulating the data into a SOAP
message was known as Marshalling.

2.2 The server would then unwrap the message sent by the client, see what
the client requested for and then send the appropriate response back to the
client as a SOAP message. The practice of unwrapping a request sent by
the client is known as Demarshalling.

3.2 Building a web services using JAX-WS:
1. JAX-WS tutorial is provides concepts and examples of JAX-WS API.
There are two ways to develop JAX-WS example

1.1 Through RPC Style

1.2 Document Style

2. Difference between RPC and Document web services
1. RPC Style
1.1 RPC style web services use method name and parameters to generate

XML structure.

1.2 The generated WSDL is difficult to be validated against schema.

1.3 In RPC style, SOAP message is sent as many elements.

1.4 RPC style message is tightly coupled.

1.5 In RPC style, SOAP message keeps the operation name.

1.6 In RPC style, parameters are sent as discrete values.

153

2. Document Style

1.7 Document style web service can be validated against predefined
schema

1.8 In document style, SOAP message is sent as a single document.

1.9 Document style message is loosely coupled

1.10 In document style, SOAP message loose the operation name.

1.11 In document style, parameters are sent in XML format.

3. Creating JAX-WS example is a easy task because it requires no
extra configuration settings.
1 JAX-WS API is in built in JDK, So you don’t need to load any extra

jar file for it. Lets see a simple example of JAX-WS example in RPC
style

2 There are created 4 files for hello world JAX-WS example

1.3 Helloworld.java

1.4 Helloworldimpl.java

1.5 Publisher.java

1.6 HelloWorldClient.java

The first 3 files are created for server side and 1 application for client side
JAX-WS Server code

File Helloworld.java

1. package com.javatpoint;

2. import javax.jws.WebMethod;

3. import javax.jws.WebService;

4. import javax.jws.soap.SOAPBinding;

5. import javax.jws.soap.SOAPBinding.Style;

6. //Service Endpoint Interface

7. @WebService

8. @SOAPBinding(style = Style.RPC)

9. public interface HelloWorld{

10. @WebMethod String getHelloWorldAsString(String name);

11. }

File HelloWorldImpl.java

1. package com.javatpoint;

2. import javax.jws.WebService;

3. //Service Implementation

4. @WebService(endpointInterface = "com.javatpoint.HelloWorld")

5. public class HelloWorldImpl implements HelloWorld{

6. @Override

154

7. public String getHelloWorldAsString(String name) {

8. return "Hello World JAX-WS " + name;

9. }

10. }

File Publisher.java

1. package com.javatpoint;

2. import javax.xml.ws.Endpoint;

3. //Endpoint publisher

4. public class HelloWorldPublisher{

5. public static void main(String[] args) {

6. Endpoint.publish("http://localhost:7779/ws/hello", new Hello
WorldImpl());

7. }

8. }

After running the publisher code, we can see the generated WSDL file by
visiting the URL
http://localhost:7779/ws/hello?wsdl
JAX-WS Client Code
File HelloWorldClient.java

 package com.javatpoint;

 import java.net.URL;

 import javax.xml.namespace.QName;

 import javax.xml.ws.Service;

 public class HelloWorldClient{

 public static void main(String[] args) throws Exception {

 URL url = new URL("http://localhost:7779/ws/hello?wsdl");


 //1st argument service URI, refer to wsdl document above

 //2nd argument is service name, refer to wsdl document above


QName qname = new QName("http://javatpoint.com/", "HelloWorldI

mplService");

 Service service = Service.create(url, qname);

 HelloWorld hello = service.getPort(HelloWorld.class);


System.out.println(hello.getHelloWorldAsString("javatpoint rpc"));

 }
}

155

Output
HelloWorld JAX-WS Javatpoint rpc

2. JAVA MAIL API

1 The JavaMail is an API that is used to compose, write and read
electronic messages (emails).

2 The JavaMail API provides protocol-independent and platform-
independent framework for sending and receiving mails.

2 The javax.mail and javax.mail.activation packages contains the core
classes of javamail API.

3 The javamail facility can be applied to many events. It can be be used
at the time of registering the user (sending notification such as thanks
for registering), forgot password, sending notifications for important
updates etc.

4.1 Mail Protocols:
1. SMTP

1. SMTP is an acronym for Simple Mail Transfer Protocol. It provides a
mechanism to deliver the email.

2. We can use Apache James server, Postcast server, cmail server etc. as
an SMTP server. But if we purchase the host space, an SMTP server is
by default provided by the host provider.

3. For example, my smtp server is mail.javatpoint.com. If we use the
SMTP server provided by the host provider, authentication is required
for sending and receiving emails.

2 POP:

1. POP is an acronym for Post Office Protocol, also known as POP3. It
provides a mechanism to receive the email.

2. It provides support for single mail box for each user. We can use
Apache James server, cmail server etc. as an POP server.

3. But if we purchase the host space, an POP server is by default
provided by the host provider. For example, the pop server provided
by the host provider for my site is mail.javatpoint.com. This protocol
is defined in RFC 1939.

3. IMAP

1 IMAP is an acronym for Internet Message Access Protocol. IMAP is
an advanced protocol for receiving messages.

2 It provides support for multiple mail box for each user, in addition to,
mailbox can be shared by multiple users. It is defined in RFC 2060.

156

4. MIME:

1 Multiple Internet Mail Extension (MIME) tells the browser what is
being sent e.g. attachment, format of the messages etc. It is not known
as mail transfer protocol but it is used by your mail program.

5. NNTP and Others:

1 There are many protocols that are provided by third-party providers.
Some of them are Network News Transfer Protocol (NNTP), Secure
Multipurpose internet mail extensions (S/MIME) etc.

4.2 Components of the Java Mail API

1 The java application uses JavaMail API to compose, send and receive
mails. The Java Mail API uses SPI(service provider Interfaces) that
provides the intermediatory services to the java application to deal
with the different protocols. Let’s understand it with the figure given
below

Fig 3 Architecture cum Components of Java Mail API

2 JavaMail API Core Classes:

There are two packages that are used in Java Mail API. Javax.mail
and javax.mail.internet package. These packages contains many classes
for java mail API They are

157

 1 javax.mail.Session class

 javax.mail.Message class

 javax.mail.internet.MimeMessage class

 javax.mail.Address class

 javax.mail.internet.InternetAddress class

 javax.mail.Authenticator class

 javax.mail.PasswordAuthentication class

 javax.mail.Transport class

 javax.mail.Store class

 javax.mail.Folder class etc.

4.3 Starting JavaMail API:

1 There are various ways to send email using JavaMail API. For this
purpose, one must have SMTP server that is responsible to send mails.

2 One can use one of the following techniques to get the SMTP server

2.1 Install and use any SMTP server such as Postcast server, Apache
James server, Cmail server etc.

2.2 Use the SMTP server provided by the host provider eg My SMTP
server is mail.javatpoint.com(or)

2.3 Use the SMTP server provided by other companies egg mail etc.

3 Steps to send email using JavaMail API
3.1 There are following three steps to send mail using Javamail. They

are as follows

1 Get the Session object- That stores all the information of host like host
name, username, password etc. The javax.mail.Session class provides two
methods to get the object of session, Session.getDefaultInstance() method
and Session.getInstance() method. We can use any method to get the
session object

1.1 Methods of Session class

Sr. No. Method Description
1 public static Session

getDefaultInstance(Properties
props)

returns the default session.

2 public static Session
getDefaultInstance(Properties
props,Authenticator auth)

returns the default session.

3 public static Session
getInstance(Properties props)

returns the new session.

4 public static Session
getInstance(Properties
props,Authenticator auth)

returns the new session.

158

2. Compose the message- The javax.mail.Message class provides
methods to compose the message. But it is an abstract class so its subclass
javax.mail.internet.MimeMessage class is mostly used.

1.2 To create the message we need to pass session object in MimeMessage
class constructor. For example MimeMessage message=new
MimeMessage(session). Now message object has been created but to store
information in this object MimeMessage class provides many methods.

1.3 Commonly used methods of MimeMessage class

Sr.No Methods Description
1 public void setFrom(Address address) is used to set the from

header field.
2 publicvoid

addRecipient(Message.RecipientType
type, Address address)

is used to add the given
address to the recipient
type.

3 public void
addRecipients(Message.RecipientType
type, Address[] addresses)

is used to add the given
addresses to the
recipient type.

4 public void setSubject(String subject) is used to set the
subject header field.

5 public void setText(String textmessage) is used to set the text
as the message content
using text/plain MIME
type.

6 public void setText(String textmessage) is used to set the text
as the message content
using text/plain MIME
type.

7 public void setContent(Object msg,
String contentType)

is used to set the
content as the message
content using given
MIME type.

2. Send the message- The javax.mail.Transport class provides method to
send the message. Commonly used methods of transport class

Sr.No Method Description
1 public static void

send(Message message)
is used send the message.

2 public static void
send(Message message,
Address[] address)

is used send the message to the
given addresses.

Simple example of sending email in Java

For sending the email using JavaMail API, you need to load two jar files
Mail.jar and activation.jar

159

1. import java.util.*;

2. import javax.mail.*;

3. import javax.mail.internet.*;

4. import javax.activation.*;

5.

6. public class SendEmail

7. {

8. public static void main(String [] args){

9. String to = "sonoojaiswal1988@gmail.com";//change accordi
gly

10. String from = "sonoojaiswal1987@gmail.com";change accordi
ngly

11. String host = "localhost";//or IP address

12.

13. //Get the session object

14. Properties properties = System.getProperties();

15. properties.setProperty("mail.smtp.host", host);

16. Session session = Session.getDefaultInstance(properties);

17.

18. //compose the message

19. try{

20. MimeMessage message = new MimeMessage(session);

21. message.setFrom(new InternetAddress(from));

22. message.addRecipient(Message.RecipientType.TO,new Inte
netAddress(to));

23. message.setSubject("Ping");

24. message.setText("Hello, this is example of sending email ");

25.

26. // Send message

27. Transport.send(message);

28. System.out.println("message sent successfully....");

29.

30. }catch (MessagingException mex) {mex.printStackTrace();}

31. }

32. }

To run above code we need to load two jar files. There are 4 ways
to load the jar file. One of the way is set classpath. Let’s see how to run
this example

160

Load the Jar file set classpath=mail.jar;activation.jar;.;
Compile the source
file

javac SendEmail.java

Run by java SendEmail

5. JNDI:

1. The java Naming and Directory Interface(JNDI) is an application
programming interface(API) that provides naming and directory
functionality to applications written using the Java programming
language.

2. It is defined to be independent of any specific directory service
implementation. Thus a variety of directories- new, emerging and
already deployed can be accessed in a common way.

3. Architecture

1 The JNDI architecture consists of an API and a service provider
interface(SPI). Java applications use the JNDI API to access a variety
of naming and directory services. The SPI enables a variety of naming
and directory services to be plugged in transparently, thereby allowing
the java application using the JNDI API to access their services, as
given in following figure.

Fig 4 Architecture of JNDI

5. Naming and Directory Service:

1 A client looking for a component/service usually knows its name, but
not its physical location.

2 For application, a naming/ directory service is the way to get a
reference to a required service(e.g. a JDBC data source, a JMS
connection factory, an EJB home interface)

161

3 A naming service is an application that contains a set of objects, or
references to objects,
with corresponding names, Such correspondances are called bindings.

A directory service allows for the association of attributes to a binding.
Some popular directory implementations:

• Lightweight Directory Access Protocol (LDAP)

• Network Directory Service (NDS)

Network Information Servis Plus (NIS+)
4JNDI (Java Naming Directory interface) provides java clients with the
capability to access naming and directory services.
JNDI is subdivided in to the following package
Javax.naming
Javax.naming.directory
Javax.naming.event
Javax.naming.ldap
Javax.naming.spi

4 JNDI configuration could be a quite difficult task – Whenever we use
a EJB server, JNDI is started automatically at the same time of the
server itself. Such a service is usually already configured for the
specific server.

5 Whenever we use an EJB server, JNDI is started automatically at the
same time of the server itself. Such a service is usually already
configured for the specific server.

6 Also the client applications using JNDI must be configured and this
task is up to the programmer / assembler / deployer.

10.2 JNDI and Resources of JNDI:

1. JNDI is the acronym for the Java Naming and Directory Interface API.
By making calls to this API, applications locate resources and other
program objects.

2. A resource is a program object that provides connections to sytems,
such as database servers and messaging systems. (A JDBC resource is
sometimes referred to as a data source.)

3. Each resource object is identified by a unique, people-friendly name,
called the JNDI name. A resource object and its JNDI name are bound
together by the naming and directory service, which is included with
the Application Server.

4. To create a new resource, a new name-object binding is entered into
the JNDI.

5. Using Custom Services

5.1 A custom resource accesses a local JNDI repository and an external
resource accesses an external JNDI repository. Both types of resources

162

need user-specified factory class elements, JNDI name attributes, etc.
In this section, we will discuss how to configure JNDI connection
factory resources, for J2EE resources, and how to access these
resources.

5.2 Within Application Server, you can create, delete and list resources as
well as list-jndi-enttites.

5.3 Creating Custom Resources

1. In the left pane of the Admin Console, open the Sun Java System
Application Server instance for the JNDI configuration to be
modified.

2. Open the JNDI tab and click Custom Resources. If any custom
resources have been created already, they are listed in the right
pane. To create a new custom resource, click New. Open the JNDI
tab and click New. A page for adding a new custom resource
appears.

3. In the JNDI Name field, enter the name to use to access the resource.
This name will be registered in the JNDI naming service.

4. In the Resource Type field, enter a fully qualified type definition, as
shown in the example above. The Resource Type definition follows
the format, xxx.xxx.

5. In the Factory Class field, enter a factory class name for the custom
resource to be created. The Factory Class is the user-specified name
for the factory class. This class implements the
javax.naming.spi.ObjectFactory interface.

6. In the Description field, enter a description for the resource to be
creating. This description is a string value and can include a maximum
of 250 characters.

7. Mark the Custom Resource Enabled checkbox, to enable the custom
resource.

8. Click OK to save your custom resource.

5.4 Editing Custom Resources:

1. In the left pane of the Admin Console, open the Sun Java System
Application Server instance for the JNDI configuration to be modified.

2. Open JNDI and select Custom Resources. If any custom resources
have been created already, they are listed in the right pane. To edit a
custom resource, click on the file name in the right pane.

3. Edit the Resource Type field, the Factory Class field, or the
Description field.

4. Mark the Custom Resource Enabled checkbox, to enable the custom
resource.

5. Click Save to save the changes to the custom resource.

163

5.5 Deleting Custom Resource:

1. In the left pane of the Admin Console, open the JNDI tab.

2. Click Custom Resources. If any custom resources have been created
already, they are listed in the right pane. To delete a custom resource,
click in the box next to the name of the resource to be deleted.

3. Click Delete. The custom resource is deleted.

6. Creating External Resource:

1. In the left pane of the Admin Console, open the Sun Java System
Application Server instance for the JNDI configuration to be
modified.

2. Open JNDI and select External Resources. If any external
resources have been created already, they are listed in the right
pane. To create a new external resource, click New.

3. In the JNDI Name field, enter the name that is to be used to access
the resource. This name is registered in the JNDI naming service.

4. In the Resource Type field, enter a fully qualified type definition,
as shown in the example above. The Resource Type definition
follows the format, xxx.xxx.

5. In the JNDI Lookup field, enter the JNDI value to look up in the
external repository. For example, when creating an external
resource to connect to an external repository, to test a bean class,
theJNDI Lookup can look like this; cn=testmybean.

6. In the Factory Class field, enter a JNDI factory class external
repository, for example, com.sun.jndi.ldap. This class
implements the javax.naming.spi.ObjectFactory interface.

7. In the Description field, enter a description for the resource to be
created. This description is a string value and can include a
maximum of 250 characters.

8. Mark the External Resource Enabled checkbox, to enable the
external resource.

9. Click OK to save the external resource.
asadmin command equivalent: create-jndi-resource .

7. Editing External Resource:

1. In the left pane of the Admin Console, open the Sun Java System
Application Server instance for the JNDI configuration to be modified.

2. Open JNDI and select External Resources. If any external resources
have been created already, they are listed in the right pane. To edit an
external resource, click on the file name in the right pane.

3. Edit the Resource Type field, the JNDI Lookup field, the Factory
Class field, or the Description field.

164

4. Mark the External Resource Enabled checkbox, to enable the external
resource.

5. Click Save to save the changes to the external resource.

8 Deleting External Resource:

To delete an external resource:

1. In the left pane of the Admin Console, open the JNDI tab.

2. Click External Resources. If any external resources have been created
already, they are listed in the right pane. To delete an external
resource, click the box next to the name of the resource to be deleted.

3. Click Delete. The external resource is deleted.
asadmin command equivalent delete-jndi-resource.

SUMMARY

In this Unit, overall architecture of webservices, JNDI and SOA is
discussed along with API used for mailing services

REFERENCES

[1] The Complete Reference of Java by Herbert Scheildt, 7th Edition
published by Indian Edition

QUESTIONS

1. Explain the architecture of JNDI

2. Explain the concept of web services

3. Describe SOAP in your own terms?

4. List down the steps for creation JAX-WS web service

5. Illustrate the Java Mail API methods
