
T.Y.B.Sc. (IT)
SEMESTER - V

ASP.NET WITH C#

© UNIVERSITY OF MUMBAI

ipin Enterprises

Tantia Jogani Industrial Estate, Unit No. 2,

Ground Floor, Sitaram Mill Compound,

J.R. Boricha Marg, Mumbai - 400 011

Published by : Director
Institute of Distance and Open Learning ,
University of Mumbai,
Vidyanagari, Mumbai - 400 098.

August 2021, Print - I

Programme Co-ordinator : Shri Mandar Bhanushe
Head, Faculty of Science and Technology,
IDOL, University of Mumbai, Mumbai

Course Co-ordinator : Mr. Sumedh Shejole
Asst. Professor, B.Sc. I.T.
IDOL, University of Mumbai, Mumbai

Course Writers : Prof. Jayalaxmi Shrinivasan

: Prof. Zaini Zari Haider

: Prof. Arif H. Patel

DTP Composed and : Mumbai University Press
Printed by Vidyanagari, Santacruz (E), Mumbai - 400098

Prof. Suhas Pednekar
Vice-Chancellor,
University of Mumbai,

Prof. Ravindra D. Kulkarni Prof. Prakash Mahanwar
Pro Vice-Chancellor, Director,
University of Mumbai, IDOL, University of Mumbai,

CONTENTS

Unit No. Title Page No.

Unit - I

1. C# - Basic Syntax 01

2. OOP with C# 21

3. Exception Handling 37

Unit - II

4. Collections, Comparisions and Conversions, Delegate
and Event 46

5. Windows Programming 63

Unit - III

6. Introduction to ASP.NET 4 93

7. ASP.NET Server Controls 99

8. State Management 136

Unit - IV

9. Programming ASP.NET Web Pages 158

10. User Controls 168

11. Website Navigation 173

Unit - V

12. Data Base : ADO.NET 187

13. Data Control in ASP.NET 211

14. LINQ 245

15. ASP.NET Security 267

Unit - VI

16. ASP.NET AJAX 282

17. J QUERY 300



I

SYLLABUS
T.Y.B.SC. INFORMATION TECHNOLOGY

SEMESTER - V
ASP.NET WITH C#

Unit-I :
Review of .NET frameworks, Introduction to C#, Variables and
expressions, flow controls, functions, debugging and error handling, OOPs
with C#, Defining classes and class members. Assembly, Components of
Assembly, Private and Shared Assembly, Garbage Collector, JIT
compiler. Namespaces

Unit - II :
Collections, Comparisons and Conversions, Delegates and Events,
Windows programming: Controls(Button, Label , Link Label, Radio
Button, Check Box, Text Box, Rich Text Box, List Box, Checked List
Box, List View, Tabbed), Forms (Menus and Tool Bars, SDI and MDI
applications, Building MDI applications.

Unit - III :
Introduction to ASP.NET 4: Microsoft.NET framework, ASP.NET
lifecycle.
Themes in ASP.NET
CSS: Need of CSS, Introduction to CSS, Working with CSS with visual
developer
ASP.NET server controls: Types of control, ASP.NET state management
engine. Web.config and global.asax files.

Unit - IV :
Programming ASP.NET web pages: Introduction, data types and
variables, statements, organizing code, object oriented basics. Master
Pages, Caching.
Navigation: Using navigation controls, programmatic redirection
User Controls: Introduction to user controls
Validating User Controls

Unit - V :
Databases: Introduction, Using SQL to work with database, retrieving and
manipulating data with SQL, working with ADO.NET, ADO.NET
architecture, ASP.NET data control, data source control, deploying the
web site. Crystal reports.
LINQ: Operators, implementations, LINQ to objects, XML, ADO.NET,
Query Syntax
ASP.NET Security: Authentication, Authorization, Impersonation,
ASP.NET provider model

Unit - VI :
ASP.NET Ajax: Introducing AJAX, Using ASP.NET AJAX, Web
Services and Page methods in AJAX websites,

II

JQuery: Introduction to JQuery, JQuery syntax, modifying DOM with
JQuery, effects with JQuery, JQuery and extensibility,

Books:
Beginning Visual C# 2010, K. Watson, C. Nagel, J.H Padderson, J.D.
Reid, M.Skinner, Wrox (Wiley) 2010. (Unit I and II).
Beginning ASP.NET 4 in C# and VB, I. Spanjaars, Reprint 2011 (Unit III
to VI).
ASP.NET 4.0 programming, J. Kanjilal, Tata McGraw-Hill (Unit III to
VI).

References:
Programming ASP.NET, D. Esposito, Microsoft Press (Dreamtech),
Reprint 2011.
ASP.NET Visual C#.NET, Vijay Nicoel, TMH
Advanced .NET Technology, Patel, Dreamtech.

Term Work:
Assignments: Should contain at least 6 assignments (one per unit)
covering the Syllabus.

Practical:

1. Simple Programs with C#:

a) Write a console application that obtains four int values from the
user and displays the product. Hint: you may recall that the
Convert. To Double() command was used to convert the input
from the console to a double; the equivalent command to convert
from a string to an int is Convert.ToInt32().

b) If you have two integers stored in variables var1 and var2, what
Boolean test can you perform to see if one or the other (but not
both) is greater than 10?

c) Write an application that includes the logic from Exercise 1,
obtains two numbers from the user, and displays them, but rejects
any input where both numbers are greater than 10 and asks for two
new numbers.

d) Write a console application that places double quotation marks
around each word in a string

e) Write an application that uses two command-line arguments to
place values into a string and an integer variable, respectively.
Then display these values.

f) Write an application that receives the following information from a
set of students:

Student Id:

Student Name:

Course Name:

Date of Birth:

III

The application should also display the information of all the
students once the data is entered. Implement this using an Array of
Structs.

g) Write programs using conditional statements and loops:

i. Generate Fibonacci series.

ii. Generate various patterns (triangles, diamond and other
patterns) with numbers.

iii. Test for prime numbers.

iv. Generate prime numbers.

v. Reverse a number and find sum of digits of a number.

vi. Test for vowels.

vii. Use of for each loop with arrays.

2. Object oriented programs with C#

a. Program using classes.

b. Program with different features of C#

Function Overloading

Operator Overloading

Inheritance (all types)

Constructor overloading

Interfaces

Using Delegates and events

Exception handling

3. Programs using different controls.

4. Programs using CSS.

5. Programs using ASP.NET Server controls.

6. Database programs with ASP.NET and ADO.NET

7. Programs using Language Integrated query.

8. Programs securing web pages.

9. Programs using AJAX.

10. Programs using JQuery.



1

1
C# - BASIC SYNTAX

Unit Structure

1.0 Review of .NET Framework

1.1 Introduction to C#

1.2 Variables and Expressions

1.2.1 Identifier

1.2.2 Variable

1.2.3 Keyword

1.2.4 Data Type

1.2.5 Primitive Type

1.2.6 Literals

1.2.7Operators

1.2.8 Type Casting

1.2.9 Boxing and Unboxing

1.2.10 Arrays

1.2.11Expressions

1.2.12 Statements

1.2.13 Comments

1.3 Flow Control Structures

1.3.1 Selection Statements

1.3.2 Repetition Statements

1.3.3Break and Continue Statements

1.4 Functions

1.5 Debugging and Error Handling

1.6 Example Programs

1.7 Summary

1.8 Exercise

1.9 Reference

2

1.0 REVIEW OF .NET FRAMEWORKS

The .NET Framework is a development platform for building

apps for web, Windows, Windows Phone, Windows Server, and Microsoft

Azure. The .NET Framework is a managed execution environment for

Windows that provides a variety of services to its running apps. It consists

of two major components: the common language runtime (CLR),

which is the execution engine that handles running apps, and the .NET

Framework Class Library, which provides a library of tested, reusable

code that developers can call from their own apps. The services that the

.NET Framework provides to running apps include the following:

1) Memory management. In .NET Framework apps, the CLR allocates

and releases memory and for handling object lifetimes on behalf of the

app.

2) A common type system. In the .NET Framework, basic types are

defined by the .NET Framework type system and are common to all

languages that target the .NET Framework.

3) An extensive class library. Instead of having to write vast amounts of

code to handle common low-level programming operations,

programmers use a readily accessible library of types and their

members from the .NET Framework Class Library.

3

4) Development frameworks and technologies. The .NET Framework

includes libraries for specific areas of app development, such as

ASP.NET for web apps, ADO.NET for data access, Windows

Communication Foundation for service-oriented apps, and Windows

Presentation Foundation for Windows desktop apps.

5) Language interoperability. Language compilers that target the .NET

Framework emit an intermediate code named Common Intermediate

Language (CIL), which, in turn, is compiled at runtime by the common

language runtime. With this feature, routines written in one language

are accessible to other languages, and programmers focus on creating

apps in their preferred languages.

6) Version compatibility. With rare exceptions, apps that are developed

by using a particular version of the .NET Framework run without

modification on a later version.

7) Side-by-side execution. The .NET Framework helps resolve version

conflicts by allowing multiple versions of the common language

runtime to exist on the same computer and an app can run on the

version of the .NET Framework with which it was built.

8) Multitargeting. By targeting .NET Standard, developers create class

libraries that work on multiple .NET Framework platforms supported

by that version of the standard.

1.1 INTRODUCTION TO C#

C# is an elegant and type-safe object-oriented language that

enables developers to build a variety of secure and robust applications that

run on the .NET Framework. You can use C# to create Windows client

applications, XML Web services, distributed components, client-server

applications, database applications, etc.

The syntax of C# is 70% Java, 10% C++, 5% Visual Basic, 15%

new.C# provides powerful features such as nullable value types,

enumerations, delegates, lambda expressions and direct memory access.

C# supports generic methods and types, collection classes having

enumerators and iterators that are simple to use by client code.

C# supports the object-oriented programming concepts of

encapsulation, inheritance, and polymorphism. All variables and methods

are encapsulated within class definitions. A class may inherit directly from

one parent class, but it may implement any number of interfaces. It

supports method overloading and method overriding. In C#, a struct is like

4

a lightweight class; it is a stack-allocated type that can implement

interfaces but does not support inheritance.

In addition to these basic object-oriented principles, it has several

innovative language constructs, including the following: Encapsulated

method signatures called delegates, which enable type-safe event

notifications. Properties, which serve as acessors for private member

variables. Attributes, which provide declarative metadata about types at

run time. Language-Integrated Query (LINQ) which provides built-in

query capabilities across a variety of data sources.

1.2 VARIABLES AND EXPRESSIONS

1.2.1 Identifier

An identifier, in C#, is the user-defined name of a program

element. It can be a namespace, class, method, variable or interface.

Identifiers are symbols used to uniquely identify a program element in the

code. They are also used to refer to types, constants, macros and

parameters. The identifier can begin with either a letter (uppercase or

lowercase) or a underscore ('-') or the symbol '@'. The succeeding

characters can be any letter or digit or '-'. May contain Unicode escape

sequences (e.g. \u03c0 for p).

1.2.2 Variable

The variable is a name given to a data value. A variable holds the

value of specific type e.g string, int, etc. A variable can be declared and

initialized later or declared & initialized at the same time. The value of a

variable can be changed at any time throughout the program as long as it is

accessible. Examples: some Name, sum_of3, _10percent, @while, \u03c0.

1.2.3 Keyword

Keywords are predefined, reserved identifiers that have special

meanings to the compiler. They cannot be used as identifiers in your

program unless they include @ as a prefix. There are 77 keywords. Some

of them are: is, base, checked, decimal, delegate, event, explicit, extern,

fixed, foreach, implicitininternal, is,lock, object, override, params,

readonly, ref, sealed, stackalloc, unchecked, unsafe, using.

1.2.4 Data Type

C# contains two general categories of built-in data types: value types and

reference types.

5

All types are compatible with object

- can be assigned to variables of type object

-all operations of type object are applicable to them

Difference between Value Type and Reference Type

Variable of ... Value Types Reference Types

contains value reference

stored on stack (or in an object) heap

initialization 0, false, '\0' null

assignment copies the value copies the reference

example inti = 17; string s = "Hello";

int j = i; string s1 = s;

1.2.5 Primitive Type

Primitive Types are non-numeric and numeric. The non-numeric are bool

and char. The former represents the values true/false. The latter is 16-bit

quantity to hold a Unicode character, which defines the character set for

all languages of the world.

6

long form range

System.SByte -128 .. 127

System.Byte 0 .. 255

System.Int16 -32768 .. 32767

System.UInt16 0 .. 65535

System.Int32 -2
31

.. 2
31

-1

System.UInt32 0 .. 2
32

-1

System.Int64 -2
63

.. 2
63

-1

System.UInt64 0 .. 2
64

-1

System.Single 1.5E-45 .. 3.4E38 (32 Bit)

System.Double 5E-324 .. 1.7E308 (64 Bit)

decimal System.Decimal 1E-28 .. 7.9E28 (128 Bit)

System.Boolean true, false

System.Char Unicode character

The numeric type are integral types to represent integral decimal,

octal and hexadecimal values; and the floating types to represent floating

point values. The decimal is a floating type for financial calculations

having higher precision. It provides 28-29 significant digits.

1.2.6 Literals

The Literals are fixed values in human readable form.

The bool literals are true or false.

The char literals are enclosed by single quotation marks. E.g. ‘a’,

‘3’, ‘&’. They can also be represented by their Unicode hexadecimal

value. E.g. \0x0041 is ‘a’; \0x0391 is Greek letter ‘α’.

The string literal is enclosed within double quotes. E.g. “C”,

“Hello World”, “1234”.

Integer literals are specified as number. E.g. 10, -100 are decimal

integers. 045 is an octal integer. 0xCD87 and 0x ffb6 are hexadecimal

integers. Examples of floating point literals are 1.23, 4.5e20, 7.78E-12.

The decimal literal is specified by appending a ‘m’ or ‘M’ at the

end. E.g. 5.3445m, 7.123345M.

7

When a char literal begins with the symbol ‘\’ (called as escape

sequence then the letter which follows it has special meaning. E.g. ‘\n’

indicates a new line; ‘\t’ is a horizontal tab; ‘\\’ is a backslash; ‘\”’ is a

double quote.

Integer literals, the type of the integer literal is the smallest integer

type that will holdit, beginning with int. Thus, an integer literal is either of

type int, uint, long, or ulong,depending upon its value. Floating-point

literals are of type double.

If you do not want the C#’s default type for a literal, you can

explicitly specify its type by including a suffix. To specify a long literal,

append an l or an L. E.g. 25L is a long.To specify an unsigned integer

value, append a u or U. E.g. 513U is a uint. To specify an unsigned, long

integer, use ul or UL. E.g.1234789UL is of type ulong. To specify a float

literal, append an F or f to the constant. E.g. 10.19F is of type float.

1.2.7 Operators

C# has a rich set of operatorswhich allows the programmer to

construct varied types of expressions. Most of them are similar to those

found in C++ and other modern languages. They can be categorized in

various groups: Arithmetic, relational, logical, bitwise, shift,

assignment, compound assignment, etc. There are other operators which

handle specialized situations, like indexing an array, accessing the

members of class, etc.Operator precedence is a set of rules which defines

how an expression is evaluated.But if both the operators have same

precedence, then the expression is evaluated based on the associativity of

operator (left to right or right to left).

C# Operator Precedence (Highest to lowest)

Category Operators

Postfix Increment and
Decrement

++, --

Prefix Increment,
Decrement & Unary

++, --, +, -, !, ~

Multiplicative *, /, %

Additive +, -

Shift <<, >>

Relational <, <=, >, >=

Equality ==, !=

8

Bitwise AND &

Bitwise XOR ^

Bitwise OR |

Logical AND &&

Logical OR ||

Ternary ? :

Assignment =, +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=

C# Associativity of operators

Category Operators Associativity

Postfix Increment and
Decrement

++, -- Left to Right

Prefix Increment, Decrement &
Unary

++, --, +, -, !, ~ Right to Left

Multiplicative *, /, % Left to Right

Additive +, - Left to Right

Shift <<, >> Left to Right

Relational <, <=, >, >= Left to Right

Equality ==, != Left to Right

Bitwise AND & Left to Right

Bitwise XOR ^ Left to Right

Bitwise OR | Left to Right

Logical AND && Left to Right

Logical OR || Left to Right

Ternary ? : Right to Left

Assignment =, +=, -=, *=, /=, %=,
&=, |=, ^=, <<=, >>=

Right to Left

1.2.8 Type Casting

A common task in programming is assignment of one type of

variable to another. These conversions can be automatic (implicit) or

explicit, which is called as casting. The first conversions will occur when

the two types are compatible and the range of destination type is wider

than the source type. If the second condition is not fulfilled, then we have

9

to perform a cast. The general syntax for casting is :(target-type)

expression. E.g. if a, b are of the type double and val is of type int then we

can write val = (int) (a / b).

The automatic conversions are given below. For example, if the

expression contains int type and long type, then the int type is

automatically promoted to the long type, and so forth.

1.2.9 Boxing and Unboxing

Simple types and other structs inherit from class ValueType in

namespace System. ClassValueType inherits from class object. Thus, any

simple-type value can be assigned to an object variable; this is referred to

as a boxing conversion and enables simple types to be used anywhere

objects are expected. In a boxing conversion, the simple-type value is

copied into an object so that the simple-type value can bemanipulated as

an object. Boxing conversions can be performed either explicitly or

implicitly as shown in the following statements:

inti = 50; // create an int value

object object1 = (object) i; // explicitly box the int value

object object2 = i; // implicitly box the int value

An unboxing conversion can be used to explicitly convert an object

reference to a simple value, as shown in the following statement:

int int1 = (int) object1; // explicitly unbox the int value

Explicitly attempting to unbox an object reference that does not refer to

the correct simple value type causes an error.

1.2.10 Arrays

An array is a group of variables (called elements) containing

values that all have the same type. Arrays are reference types. An array is

actually a reference to an array object. The elements of an array can be

either value types or reference types, including other arrays. To refer to a

long int short sbyte

ulong uint ushort byte

decimal double float

char

10

particular element in an array, we specify the name of the reference to the

array and the position number of the element in the array, which is known

as the element’s index. The first element in every array has index zero.

Array names follow the same conventions as other variable names.An

index must be a nonnegative integer and can be an expression.

Arrays in C# can be single dimension, or multi dimension. Two

dimensional array are of two types: rectangular or jagged. In a rectangular

array, the number of columns in each row is same, whereas in a jagged

array the number of columns in all rows is not equal.

Creation of arrays

One-dimensional arrays

int[] a = new int[3];

int[] b = new int[] {3, 4, 5};

int[] c = {3, 4, 5};

SomeClass[] d = new SomeClass[10]; // array of references

SomeStruct[] e = new SomeStruct[10]; // array of values

(directly in the array)

To access the second element of array a, we can write a[1].

Multidimensional arrays (jagged)

int[][] a = new int[2][]; // array of references to other arrays

a[0] = new int[] {1, 2, 3}; // cannot be initialized directly

a[1] = new int[] {4, 5, 6};

To access the second element of array a (first row and second column, we

can write a[0][1].

Multidimensional arrays (rectangular)

int[,] a = new int[2, 3]; // block matrix

int[,] b = {{1, 2, 3}, {4, 5, 6}}; // can be initialized directly

a

a[0]

a[1]

a[0][1]

11

To access the second element of array a (first row and second column), we

can write a[0,1].

Each array has associated with it a Length property that contains

the number of elements that an array can hold. Thus, each array provides a

means by which its length can be determined.

1.2.11 Expressions

An expression is a sequence of one or more operands and zero or

more operators that can be evaluated to a single value, object, method, or

namespace. Expressions can consist of a literal value, a method

invocation, an operator and its operands, or a simple name. Simple names

can be the name of a variable, type member, method parameter,

namespace or type.

1.2.12 Statements

The actions that a program takes are expressed in statements.

Common actions include declaring variables, assigning values, calling

methods, looping through collections, and branching to one or another

block of code, depending on a given condition.A statement can consist of

a single line of code that ends in a semicolon, or a series of single-line

statements in a block. A statement block is enclosed in {} brackets and

can contain nested blocks.

1.2.13 Comments

A comment describes or explains the operation of the program to

anyone who is reading its source code. The contents of a comment are

ignored by the compiler. Three types of comments are:

Single-line comments

// This is a comment till the end of this line

Delimited comments

/* This is a comment which

can span several lines*/

This must not be nested.

Documentation comments

/// This is a documentation comment

a[0,1]
a

12

1.3 FLOW CONTROL STRUCTURES

The order in which statements are executed in a program is called

the flow of control or flow of execution. The flow of control may vary

every time that a program is run, depending on how the program reacts to

input that it receives at run time. The syntax and working of the control

structures are similar to those in C++.

There are three types of control structures—sequence, selection

and repetition. The sequence structure is built into C#. Unlessdirected

otherwise, the computer executes C# statements one after the other in the

order in which they’re written.

1.3.1 Selection Statements

C# has three types of selection statements: the if statement, the

if…else statement and the switch statement.

The if statement is called a single-selection statement becauseit

selects or ignores a single action.

if(condition) statement;

The if…else statement is called a double-selection statement

because it selects between two different actions (or groups of actions).

if(condition) statement;

else statement;

The switch statement is called a multiple-selection statement

because it selects among many different actions (or groups ofactions).

switch(expression) {

case constant1:

statement sequence

break;

case constant2:

statement sequence

break;

.

.

default:

statement sequence

break;

}

13

1.3.2 Repetition Statements

C# provides four repetition statements: the while, do…while, for

and foreach statements.

The while, for and foreach statements perform the actions intheir

bodies zero or more times.

for(initialization; condition; iteration) statement;

while(condition) statement;

foreach(type loopvar in collection) statement;

The do…while statement performs the actions in its body one

ormore times.

do {

statements;

} while(condition);

To include several statements in the body of an if (or the body of

an else for an if…else statement), enclose the statements in braces

({ and }). A set of statements contained within a pair of braces is called

ablock. A block can be placed anywhere in an app that a singlestatement

can be placed.

The statement or statement block of the body of each control

structure is executed when the ‘condition’ expression evaluates to ‘true’.

All these control structures can be nested within itself or others.

1.3.3 Break and Continue Statements

C# provides statements break and continue to alter the flow of control.

The break statement causes immediate exit from a while, for,

do…while, switch or foreach statement. Execution typically continues

with the first statement after the control statement.

The continue statement, when executed in a while, for, do…while

or foreach, skips the remaining statements in the loop body and proceeds

with the next iteration of the loop.

1.4 FUNCTIONS

Methods (called functions or procedures in other programming

languages) allow you to modularize an app by separating its tasksinto self-

contained units. The actual statements in the methodbodies are written

14

only once, can be reused from several locationsin an app and are hidden

from other methods.

General syntax of a method:

access ret-type name(parameter-list) {

// body of method

}

The 'access' is an access modifier that governs what other parts of

your program can call the method. The access modifier is optional. If not

present, then the method is private to the class in which it is declared.

The 'ret-type' specifies the type of data returned by the method.

This can be any valid type, including class types that you create. If the

method does not return a value, its return type must be void.

The name of the method is specified by 'name'. This can be any

legal identifier other than those that would cause conflicts within the

current declaration space.

The 'parameter-list' is a sequence of type and identifier pairs

separated by commas. Parameters are variables that receive the value of

the arguments passed to the method when it is called. If the method has no

parameters, then the parameter list will be empty.

The return statements are used in the methods. There are two

forms of return: one for use in void methods (those that do not return a

value) and one for returning values. The former when used immediately

exits the method in which it is called. The latter are used to return the

result of some task.

1.5 DEBUGGING AND ERROR HANDLING

The errors your program will encounter can be classified in three

categories: runtime, syntax, and logic errors.

A syntax error is due to a misuse of the C# language in your code.

The built-in Code Editor of Microsoft Visual Studio makes it extremely

easy to be aware of syntax errors as soon as they occur.

A logic error is called a bug. Debugging is the process of

examining code to look for bugs or to identify problems. Debugging is the

ability to monitor the behavior of a variable, a class, or its members

throughout a program. Microsoft Visual C# provides many features to

perform debugging operations.

15

The debugger is the program you use to debug your code. The

code or application that you are debugging is called the debuggee.

Probably the most fundamental way of examining code is to read every

word and every line, with your eyes, using your experience as a

programmer. But is not applicable for code which covers many pages or

many files. Microsoft Visual Basic provides various tools and windows

that you use, one window or a combination of objects for debugging. One

of the tools you can use is the Standard toolbar that is equipped with

various debugging buttons.

One of the primary pieces of information you want to get is the

value that a variable is holding. A window named Locals is used to show

that value. Normally, when you start debugging, the Locals window shows

automatically.

Just as done when reading code with your eyes, the most basic way

to monitor code is to execute one line at a time and see the results

displayed before your eyes. To support this operation, the debugger

provides what is referred to as stepping into.

The Step Into feature is a good tool to monitor the behavior of

variables inside a method. This also allows you to know if a method is

behaving as expected. Once you have established that a method is alright,

you may want to skip it. Instead of executing one line at a time, the

debugger allows you to execute a whole method at a time or to execute the

lines in some methods while skipping the others. To support this, you use

a feature named Step Over.

When executing a program, you can specify a section or line where

you want the execution to pause, for any reason you judge necessary. This

approach is useful if you have checked code up to a certain point and it

looked alright. If you are not sure about code starting at a certain point,

this can be your starting point.

A breakpoint on a line is the code where you want the execution

to suspend. You must explicitly specify that line by creating a breakpoint.

You can as well create as many breakpoints as you want. You can also

remove a breakpoint you don't need anymore.

You can combine the Step Into and/or the Step Over feature with

breakpoints. That is, you can examine each code line after line until you

get to a specific line. This allows you to monitor the values of variables

and see their respective values up to a critical section. To do this, first

create one or more breakpoints, then proceed with steps of your choice.

16

1.6 EXAMPLE PROGRAMS

Program 1: A Simple program

using System;

namespace Hello World{

class Program{

static void Main(string[] args){

System. Console. WriteLine("Hello World");

System.Console.Read();

}
}

}

Program 2: A program which takes a number from the user and prints the

word form of it. E.g. if the user enters 852, the program prints EIGHT

FIVE TWO.

1 using System;

2

3 namespace ToWords{

4 class Program{

5 static void Main(string[] args){

6 string s = "";

7 intnum;

8 int digit;

9 System.Console.WriteLine("Enter the number: ");

10 num = Int32.Parse(System.Console.ReadLine());

11 while (num != 0){

12 digit = num % 10;

13 switch (digit){

14 case 0: s = "ZERO " + s;

15 break;

16 case 1: s = "ONE " + s;

17 break;

18 case 2: s = "TWO " + s;

19 break;

20 case 3: s = "THREE " + s;

21 break;

22 case 4: s = "FOUR " + s;

23 break;

24 case 5: s = "FIVE " + s;

25 break;

26 case 6: s = "SIX " + s;

27 break;

28 case 7: s = "SEVEN " + s;

17

28 break;

30 case 8: s = "EIGHT " + s;

31 break;

32 case 9: s = "NINE " + s;

33 break;

34 }

35 num = num/10;

36 }

37 System.Console.WriteLine("The number in words is :\n" + s);

38 System.Console.Read();

39 }

40 }

41 }

Program 3:A program to demonstrate the creation of arrays

1using System;

2

3namespace ArrayDemo{

4 class Program{

5 static void Main(string[] args){

6 //Method 1

7 int[] inum = {0,1,2,3,4,5,6,7,8,9};

8

9 //Method 2

10 double[] dnum;

11 dnum = new [] {0.0,0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 };

12

13 //Method 3

14 int[] isqr;

15 isqr = new int[10];

16

17 //Method 4

18 double[] dsqrt = new double[10];

19

20 for (inti = 0; i<inum.Length; ++i){

21 isqr[i] = inum[i] * inum[i];

22 }

23

24 for (inti = 0; i<inum.Length; ++i){

25 dsqrt[i] = Math.Sqrt(dnum[i]);

26 }

27

28 Console.WriteLine("\nDisplay using foreach\n");

29 foreach(int v in isqr){

18

30 Console.WriteLine("{0,7:D}",v);

31 }

32

33 Console.WriteLine("\nAnother display using foreach\n");

34 foreach (double v in dsqrt){

35 Console.WriteLine("{0,7:e4}", v);

36 }

37

38 /*

39 *Two dimensional arrays

40 */

41

42 int[,] twod = new int[10, 3];

43

44 for(inti = 0; i<twod.GetLength(0); ++i) {

45 twod[i, 0] = i + 1;

46 twod[i, 1] = twod[i, 0] * twod[i, 0];

47 twod[i, 2] = twod[i, 1] * twod[i, 0];

48 }

49

50 for (inti = 0; i<twod.GetLength(0); ++i){

51 Console.WriteLine();

52 for (int j = 0; j <twod.GetLength(1); ++j){

53 Console.Write("{0,7:D}", twod[i, j]);

54 }

55 }

56

57 Console.WriteLine();

58 double[,] darray = {{0.1, 0.2}, {0.3,0.4}, {0.5, 0.6}};

59 for (inti = 0, j = 0; i<darray.GetLength(0); ++i){

60 Console.WriteLine("{0, -7:f2}{1, -7:f2}", darray[i, j], darray[i, j+1]);

61 }

62

63 //Jagged arrays

64

65 int[][] ijda = new int[][] { new int[] {1,2},

66 new int[] {3,4,5},

67 new int[]{6,7,8,9} };

68

69 Console.WriteLine("\nJagged array\n");

70 for(inti = 0; i<ijda.Length; ++i){

71 for (int j = 0; j <ijda[i].Length; ++j) {

72 Console.Write("{0, 4:d}", ijda[i][j]);

73 }

19

74 Console.WriteLine();

75 }

76

77 double[][] djda;

78 djda = new double[3][];

79 djda[0] = new double[5];

80 djda[1] = new double[2];

81 djda[2] = new double[7];

82

83 Random rd = new Random();

84 for(inti = 0; i<djda.Length; ++i){

85 for (int j = 0; j <djda[i].Length; ++j){

86 djda[i][j] = rd.NextDouble();

87 }

88 }

89

90 Console.WriteLine("\nAnother jagged array\n");

91 for (inti = 0; i<djda.Length; ++i){

92 for (int j = 0; j <djda[i].Length; ++j){

93 Console.Write("{0, 8:f4}", djda[i][j]);

94 }

95 Console.WriteLine();

96 }

97 Console.Read();

98 }

99 }

100}

Program 4: A program which ask the user for two values and displays all

the prine numbers between those two values.

1 using System;

2

3 namespace PrimeNumbers{

4 class Program{

5 static public bool isPrime(intnum){

6 inti;

7 bool flag = true;

8 for (i = 2; i<= Math.Sqrt(num); ++i){

9 if (num % i == 0){

10 flag = false;

11 break;

12 }

13 }

14 return flag;

20

15 }

16

17 static void Main(string[] args){

18 int start, end, n, i, j;

19 System.Console.WriteLine("Enter the starting value of the range");

20 start = Int32.Parse(System.Console.ReadLine());

21 System.Console.WriteLine("Enter the ending value of the range");

22 end = Int32.Parse(System.Console.ReadLine());

23 for (i = start; i<= end; ++i){

24 if (isPrime(i)) {

25 System.Console.WriteLine(i);

26 }

27 }

28 System.Console.ReadLine();

29 }

30 }

31 }

1.7 SUMMARY

This chapter gives the basic syntax of C#. It discusses about

variables, keywords, data types, creation of arrays, operators, control

structures, methods debugging and few example programs. After learning

the above topics, you can write many useful programs and built a strong

foundation for larger programming projects.

1.8 REVIEW QUESTIONS

1) Write a note on .NET Framework.

2) Explain the data types in C#.

3) Explain the various operators in C#.

4) Discuss the various looping structures in C#.

5) Explain how arrays are created in C#.

6) What is a method? Explain its components.

7) How is debugging done in C#?

1.9 REFERENCE

1) The Complete Reference: C#

2) Visual C# 2012: How to program.

3) https://docs.microsoft.com/en-us/dotnet/csharp/



21

2
OOP WITH C#

Unit Structure

2.0 Defining classes and class members

2.1 Constructors

2.2 Destructors

2.3 Methods

2.4 Property

2.5 Indexers

2.6 Operator Overloading

2.7 Inheritance

2.8 Method overriding

2.9 Abstract class

3.10 Interface

2.11 Struct and Class

2.12 Summary

2.13 Review Questions

2.14 Reference

2.0 DEFINING CLASSES AND CLASS MEMBERS

The class construct is the mechanism in C# for the OOP design

paradigm of data encapsulation. A class is like a blueprint. It defines the

data and behavior of a type. If the class is not declared as static, client

code can create instances of it. These instances are objects which are

assigned to a variable. The instance of a class remains in memory until all

references to it go out of scope.The declaration and content of the class is

shown below.

class C {

... fields, constants ... //for object-oriented programming

... methods ...

... constructors, destructors ...

... properties ... //for component-based programming

... events ...

22

... indexers ... // for convenience

... overloaded operators ...

... nested types (classes, interfaces, structs, enums, delegates) ...

}

2.1 CONSTRUCTORS

Constructors are methods that are called when the object is first

created. To create an object, the constructor call is preceded by the

keyword ‘new’. The process of doing this is called instantiation. An

objectis then referred to as an instance of its class. They are often used to

initialize the data of an object. A constructor has the same as the name of

its type (name of class). Its method signature includes only the method

name andits parameter list; it does not include a return type. Objects are

allocated on the heap (a memory region allocated for the program).

Objects must be created with new Eg. Stack stk = new Stack(50);

If you don't provide a constructor for your class, C# creates one by

default that instantiates the object and sets member variables to the default

values.If a constructor was declared, no default constructor is generated.

2.2 DESTRUCTORS

Destructors/finalizers are used to destruct instances of classes.A

class can only have one finalizer. Finalizers cannot be inherited or

overloaded. Finalizers cannot be called. They are invoked automatically.

A finalizer does not take modifiers or have parameters. The programmer

has no control over when the finalizer is called because this is determined

by the garbage collector.

A field is a variable of any type that is declared directly in a class

or struct. Fields are members of their containing type.A class or struct may

have instance fields or static fields or both. Instance fields are specific to

an instance of a type. You can create two objects and modify the instance

field in each object without affecting the value in the other object. By

contrast, a static field belongs to the class itself, and is shared among all

instances of that class. Changes made from object A will be visibly

immediately to objects B and C if they access the field.

Fields are declared in the class block by specifying the access level

of the field, followed by the type of the field, followed by the name of the

field. Initialization of field is optional. Initialization value must be

computable at compile time. Field declared with 'const' must beinitialized,

23

value must be computable at compile time, and once initialized, its value

cannot be changed throughout the program.

Fields specified with ‘readonly’ keyword must be initialized in

their declaration or in a constructor. Its value must not be changed later.

The value need not be computable at compile time.

Variables that are a block of code or methods are called as local variables.

Scope is the region of your program within which the members and

variables are accessible. The basic scope rules are as follows:

1. The scope of a parameter declaration is the body of the method in

which the declaration appears.

2. The scope of a local-variable declaration is from the point at which

the declaration appears to the end of the block containing the

declaration.

3. The scope of a local-variable declaration that appears in the

initialization section of a for statement’s header is the body of the

for statement and the other expressions in the header.

4. The scope of a method, property or field of a class is the entire

body of the class. This enables non-static methods and properties

of a class to use any of the class’s fields, methods and properties,

regardless of the order in which they’re declared.

class Stack {

int[] values; //Field

int top = 0; //Field

public Stack(int size) { ... } //Constructor

public void Push (int x) {...} //method

public intPop() {...} //method

public ~Stack() { ... } //Destructor

}

To access any instance field or method of a class, we have to use the ‘.’

(dot) operator. E.g. stk.Pop().

When a method is called, it is automatically passed a reference to

the invoking object (that is, the object on which the method is called). This

reference is called ‘this’. Therefore, this refers to the object on which the

method is acting.

It is also possible to use 'this' inside a constructor. In this case, 'this'

refers to the object that is being constructed. When the name of a

24

parameter or a local variable is the same as the name of an instance

variable, the local name hides the instance variable. You can gain access

to the hidden instance variable by referring to it through 'this'. E.g.

class Rectangle {

int x, y, width, height;

public Rectangle (int x, int y, int w, int h) {this.x =x; this.y = y;

width = w; height = h; }

public Rectangle (int w, int h) : this(0, 0, w, h) {}

public Rectangle () : this(0, 0, 0, 0) {}

...

}

Rectangle r1 = new Rectangle();

Rectangle r2 = new Rectangle(2, 5);

Rectangle r3 = new Rectangle(2, 2, 10, 5);

Constructors can be overloaded. A constructor may call another

constructor with ‘this’.Before a constructor is called, fields are possibly

initialized.

2.3 METHODS

Methods (called functions or procedures in other programming

languages) allow you to modularize an app by separating its tasks into

self-contained units. These methods are sometimes referred to as user-

defined methods. The actual statements in the method bodies are written

only once,can be reused from several locations in an app and are hidden

from other methods. Methods give an advantage of the “divide-and-

conquer” approach, which makes appdevelopment more manageable by

constructing apps from small, simple pieces. Another advantage is

software reusability—existing methods can be used as building blocks to

create new apps. A third advantage is avoid repeating code. Dividing an

app into meaningful method makes the app easier to debug and maintain.

Arguments are passed to the methods in two ways. The first way is

call-by-value. This method copies the value of an argument into the

formal parameter of the method. Therefore, changes made to the

parameter of the subroutine have no effect on the argument used in the

call. By default, C# uses call-by-value.

The second way an argument can be passed is call-by-reference.

In this method, a reference to an argument (not the value of the argument)

is passed to the parameter. Inside the method, this reference is used to

25

access the actual argument specified in the call. This means that changes

made to the parameter will affect the argument used to call the method.

void Inc(int x) {x = x + 1;}

void F() {

intval = 3;

Inc(val); // the value of val will still be 3

}

As just explained, value types, such as int or char, are passed by

value to a method. This means that changes to the parameter that receives

a value type will not affect the actual argument used in the call. If you

want a method to be able to operate on the actual arguments that are

passed to it then you can use of the ref and out keywords.

void Inc(ref int x) { x = x + 1; }

void F() {

intval = 3;

Inc(ref val); // the value of val will be 4

}

void Read (out int x, out int y) {

x = Console.Read(); y = Console.Read();

}

void F() {

int first, next;

Read(out first, out next);

}

An argument passed by ref must be assigned a value prior to the

call. Thus, using ref, you cannot use a method to give an argument an

initial value.

The method must assign the out parameter a value prior to the

method’s termination. Thus, after the call to the method, anout parameter

will contain a value.

Methods of the same name can be declared in the same class, as

long as they have different sets of parameters (determined by the number,

types and order of the parameters).

26

This is called method overloading. When an overloaded method

is called, the C# compiler selects the appropriate method by examining the

number, types and order of the arguments in the call. Method overloading

is commonly used to create several methods with the same name that

perform the same or similar tasks, but on different types or different

numbers of arguments. Methods of a class may be overloaded if they have

different numbers of parameters, or if they have different parameter types,

or if they have different parameter kinds (value, ref/out). Overloaded

methods must not differ only in their function return types.

E.g.

void F (int x) {...}

void F (char x) {...}

void F (int x, long y) {...}

void F (long x, int y) {...}

void F (ref int x) {...}

intF() {...}

string F() {...}

Now if the variables are declared as below, then the appropriate

method which are called is indicated.

inti; long n; short s;

F(i); // F(int x)

F('a'); // F(char x)

F(i, n); // F(int x, long y)

F(n, s); // F(long x, int y);

F(i, s); // ambiguous between F(int x, long y) and F(long x, int y); =>

compilation error

F(i, i); // ambiguous between F(int x, long y) and F(long x, int y); =>

compilation error

F(); //ambiguous between intF() and string F();=> compilation error

A static variable represents classwide information—all objects of

the class share the variable.

The scope of a static variable is the body of its class. A class’s

public static members can be accessed by qualifying the member name

with the class name and the member access (.) operator. Static class

members exist even when no objects of the class exist; they’re available as

soon as the class is loaded into memory at execution time.

A method declared static cannot access non-static class members

directly, because a static method can be called even when no objects of the

27

class exist. For the same reason, the 'this' reference cannot be used in a

static method. Constants must not be declared as static.

class Rectangle {

static Color defaultColor; // once per class

static readonlyint scale; // once per class

int x, y, width,height; // once per object

public static void ResetColor() {

defaultColor = Color.white;

}

...

}

To access static variables from other classes, use the class name

instead of object name. E.g.Rectangle. default Color ... Rectangle. Reset

Color()...

2.4 PROPERTY

A property is declared like a field, but with a get/set block added.

Properties look like fields from the outside, but internally they contain

logic, like methods do. Property can have read-only and write-only fields.

Property can validate a field when it is accessed. 'get' and 'set' denote

property accessors. The get accessor runs when the property is read. It

must return a value of the property’s type. The set accessor is run when

the property is assigned. It has an implicit parameter named 'value' of the

property’s type that you typically assign to a private field. The most

common implementation for a property is a getter and/or setter that simply

reads and writes to a private field of the same type as the property. An

automatic property declaration instructs the compiler to provide this

implementation.

E.g.

public class Stock{

decimal currentPrice; // The private "backing" field

public decimal CurrentPrice{ // The public property

get{
return currentPrice;

}
set{

currentPrice = value;
}

}
}
.....

28

Stock s = new Stock();

s.CurrentPrice = 100; // Calls set

decimal v = s.CurrentPrice; // Calls get

E.g. Readonly property

class Account {

long balance;

public long Balance {

get { return balance; }

}

}

E.g. Automatic Property

public class Stock{

...

public decimal CurrentPrice{ get; set; }

}

2.5 INDEXERS

Indexers provide a natural syntax for accessing elements in a class

or struct that encapsulate a list or dictionary of values. Indexers are similar

to properties, but are accessed via an index argument rather than a

property name. A class may declare multiple indexers, each with

parameters of different types. An indexer can also take more than one

parameter.

E.g.

class Sentence{

string[] words = "The quick brown fox".Split();

public string this [intwordNum]{ //
indexer

get{
return words [wordNum];

}
set{

words [wordNum] = value;
}

}
}

Sentence s = new Sentence();

Console.WriteLine (s[3]); // fox

s[3] = "kangaroo";

Console.WriteLine (s[3]); // kangaroo

29

E.g. Indexer having multiple parameters

public string this [int arg1, string arg2]{

get { ... } set { ... }

}

2.6 OPERATOR OVERLOADING

C# allows you to define the meaning of an operator relative to a

class that you create. This process is called operator overloading. By

overloading an operator, one expands its usage to that class. A principal

advantage of operator overloading is that it allows you to seamlessly

integrate a new class type into your programming environment.

There are two forms of operator methods: one for unary operators and one

for binary operators.

// General form for overloading a unary operator

public static ret-type operator op(param-type operand){

// operations

}

// General form for overloading a binary operator

public static ret-type operator op(param-type1 operand1, param-

type1 operand2) {

// operations

}

Operator methods must be both public and static. For unary

operators, the operand must be of the same type as the class for which the

operator is being defined. For binary operators, at least one of the

operands must be of the same typeas its class. Thus, you cannot overload

any C# operators for objects that you have not created. For example, you

can’t redefine + for int or string. Operator parameters must not use the ref

or out modifier.

E.g.

class Fraction {

int x, y;

public Fraction (int x, inty){

this.x = x;

this.y = y;

}

30

public static Fraction operator +(Fraction a, Fraction b){

return new Fraction(a.x * b.y + b.x * a.y, a.y* b.y);

}

}

Usage

Fraction a = new Fraction(1, 2);

Fraction b = new Fraction(3, 4);

Fraction c = a + b; // c.x == 10, c.y == 8

The following operators can be overloaded:

arithmetic: +, - (unary and binary), *, /, %, ++, --

relational: ==, !=, <, >, <=, >=

bit operators: &, |, ^

others: !, ~, >>, <<, true, false

Must always return a function result

If == (<, <=, true) is overloaded,!= (>=, >, false) must be overloaded as

well.

To enable the use of the && and || short-circuit operators, you must follow

four rules.

First, the class must overload & and |.

Second, the return type of the overloaded & and | methods must be the

same as the class for which the operators are being overloaded.

Third, each parameter must be a reference to an object of the class for

which the operator is being overloaded.

Fourth, the true and false operators must be overloaded for the class.

E.g.

class TriState {

intstate; // -1 == false, +1 == true, 0 == undecided

public TriState(int s) { state = s; }

public static bool operator true (TriState x) { returnx.state> 0; }

public static bool operator false (TriState x) { returnx.state< 0; }

public static TriState operator & (TriState x, TriState y) {

if (x.state> 0 &&y.state> 0) return new TriState(1);

else if (x.state< 0 || y.state< 0) return new TriState(-1);

else return new TriState(0);

}

public static TriState operator | (TriState x, TriState y) {

if (x.state> 0 || y.state> 0) return new TriState(1);

else if (x.state< 0 &&y.state< 0) return new TriState(-1);

else return new TriState(0);

}

}

31

2.7 INHERITANCE

Inheritance is one of the principles of OOP paradigm. It allows the

creation of hierarchical classifications. Using inheritance, you can create a

general class that defines traits common to a set of related items. This

class can then be inherited by other, more specific classes, each adding

those things that are unique to it. A class that is inherited is called a base

class. The class that does the inheriting is called a derived class. It

inherits all of the variables, methods, properties, and indexers defined by

the base class and adds its own unique elements.

Using protected access offers an intermediate level of access

between public and private. A base class’s protected members can be

accessed by members of that base class and by members of its derived

classes. Base-class members retain their original access modifier when

they become members of the derived class. Methods of a derived class

cannot directly access private members of the base class.

E.g.

class A { // base class

int a;

public A() {...}

public void F() {...}

}

class B : A { // subclass (inherits from A, extends

A)

int b;

public B() {...}

public void G() {...}

}

B inherits a and F(), it adds b and G(). Constructors are not

inherited. Inherited methods can be overridden. Single inheritance: a class

can only inherit from one base class, but it can implement multiple

interfaces. A class can only inherit from a class, not from a struct. Structs

cannot inherit from another type, but they can implement multiple

interfaces. A class without explicit base class inherits from Object.

The constructor for the base class constructs the base class portion of the

object, and the constructor for the derived class constructs the derived

class part. The default constructors created automatically by C# and are

called automatically from the top level of the in hersitancehierarchy down

32

to the constructor of the derived class object which is being created. When

both the base class and the derived class define constructors, in this case,

you must use another of C#’s keywords, base, which has two uses. The

first use is to call a base class constructor. The second is to access a

member of the base class that has been hidden by a member of a derived

class.

E.g.

class A {// base class

int a;

public A(int a) {...}

public void F() {...}

}

class B : A { // subclass (inherits from A, extends

A)

int b;

public B(int x, int y) : A(x){...}

public void G() {...}

}

A reference variable of a base class can be assigned a reference to an

object of any class derived from that base class.

2.8 METHOD OVERRIDING

The process of redefining a virtual method (of a base class) inside

a derived class is called method overriding. Only methods that are

declared as virtual can be overridden in subclasses. Overriding methods

must be declared as override. Method signatures must be identical same

number and types of parameters (including function type!) same visibility

(public, protected, ...). Properties and indexers can also be

overridden(virtual, override). Static and abstract methods cannot be

overridden.

E.g.

class A {

public void F() {...} // cannot be overridden

public virtual void G() {...} // can beoverridden in subclasses

}

class B : A {

public void F() {...} // warning: hides inherited F(). Use new

33

public void G() {...} // warning: hidesinherited G(). Use new

public overridevoid G() { // ok: overridesinherited G

... base.G(); // callsinherited G()

}

}

Method overriding forms the basis for one OOP principle of

polymorphism. Dynamic method dispatch is the mechanism by which a

call to an overridden method is resolved at runtime, rather than compile

time. Dynamic method dispatch is how C# implements runtime

polymorphism.

class A {

public virtual void Who Are You() { Console. WriteLine("I am an A"); }

}

class B : A {

public override void WhoAreYou() {

Console.WriteLine("I am a B");

}

}

A a = new B();

a.WhoAreYou(); // "I am a B"

void Use (A x) {

x.WhoAreYou();

}

Use(new A()); // "I am an A"

Use(new B()); // "I am a B"

2.9 ABSTRACT CLASS

An abstract method is created by specifying the abstract type

modifier. An abstract method contains no body and is, therefore, not

implemented by the base class. Thus, a derived class must override it; it

cannot simply use the version defined in the base class. An abstract

method is automatically virtual, and it is an error to use the virtual

modifier. If a class has abstract methods (declared or inherited) it must be

abstract itself. An abstract class has atleast one abstract method. One

cannot create objects of an abstract class.

34

E.g.

abstract class Stream {

public abstract void Write(char ch);

public void WriteString(string s) {

foreach (char ch in s)

Write(ch);

}

}

}

class File : Stream {

public override void Write(char ch) {... write chto disk ...}

}

Classes declared with the key word 'sealed' cannot be extended (same as

final classes in Java) override methods can be declared as sealed

individually. In that case, they cannot be overridden.

E.g.

sealed class Account : Asset {

long balance;

public void Deposit (long x) { balance += x; }

public void Withdraw (long x) { balance -= x; }

...

}

3.10 INTERFACE

An interface declaration begins with the keyword interface and

can contain only abstract methods, abstract properties, abstract indexers,

and abstract events. All interface members are implicitly declared both

public and abstract. In addition, each interface can extend one or more

other interfaces to create a more elaborate interface that other classes can

implement. To use an interface, a class must specify that it implements the

interface by listing the interface after the colon (:) in the class declaration.

A concrete class implementing the interface must declare each member of

the interface with the signature specified in the interface declaration. If a

class which implements the interface does not define the body of all the

methods of the interface, then that class is an abstract class and needs to be

declared so.

Interfaces cannot have data members. They cannot define

constructors, destructors, or operator methods. Also, no membercan be

declared as static. You can declare a reference variable of an interface

type. Such a variable can refer to any object that implements its interface.

When you call a method on an object through an interface reference, it is

35

the version of the method implemented by the object that is executed.One

interface can inherit another.

E.g.

interface IList :ICollection, IEnumerable {

int Add (object value); // methods

bool Contains (object value);

...

bool IsReadOnly{ get; } // property

...

object this [int index] { get; set; } // indexer

}

class MyClass :MyBaseClass, IList, ISerializable {

public int Add (object value) {...}

public bool Contains (object value) {...}

...

public bool IsReadOnly{ get {...} }

...

public object this [int index] { get {...} set {...} }

}

IListobj = new MyClass();

obj.Add(…);

2.11 STRUCT AND CLASS

A structure is similar to a class, but is a value type, rather than a

reference type. Structures are declared using the keyword struct and are

syntactically similar to classes, but with some differences.

Classes are reference types (objects are allocated on the heap).

Struts are Value types (objects are allocated on the stack).

Classes support inheritance (all classes are derived from object). Structs

do not support inheritance (but they are compatible with object).

Classes and Structs can implement interfaces.

Classes may declare a parameterless constructor. Structs must not declare

a parameterless constructor.

Classes may have a destructor. Structs cannot have destructors.

36

2.12 SUMMARY

This chapter gives the basic syntax of OOP in C#. It discusses

about class, methods, constructors, destructor, method overloading and

few example programs. After learning the above topics, you can write

many useful programs and built a strong foundation for larger

programming projects.

2.13 REVIEW QUESTIONS

1) Explain OOP in C#.

2) Explain class and its member in C#.

3) Explain the methods in C#.

4) Explain constructor with example in C#.

5) Explain method overloading with example in C#.

6) Explain properties and indexer in C#?

7) Explain inheritance with example.

8) Explain method overriding with example.

9) Explain abstract class.

10) Explain Interface with example.

11) Explain structure with example.

2.14 REFERENCE

1) The Complete Reference: C#

2) Visual C# 2012: How to program.

3) https://docs.microsoft.com/en-us/dotnet/csharp/



37

3
EXCEPTION HANDLING

Unit Structure

3.1 Exception Handling

3.2 Assembly

3.3 Garbage Collector

3.4 JIT Compiler

3.5 Namespaces

3.6 Summary

3.7 Review Questions

3.8 Reference

3.1 EXCEPTION HANDLING

An exception indicates that a problem occurred during a

program’s execution. The exception handling mechanism consists of try-

catch blocks. A try statement specifies a code block subject to error-

handling or cleanup code. The try block must be followed by a catch

block, a finally block, or both. The catch block executes when an error

occurs in the try block. The finally block executesafter execution leaves

the try block (or if present, the catch block), to perform cleanup code,

whether or not an error occurred. A catch block has access to an Exception

object that contains information about the error. You use a catch block to

either compensate for the error or rethrow the exception. Your throw an

exception if you merely want to log the problem, or if you want to rethrow

a new, higher-level exception type. A finally block adds determinism to

your program, by always executing no matter what. It’s useful for cleanup

tasks such as closing network connections.

A try statement looks like this:

try{

... // exception may get thrown within execution of this

block

}catch (ExceptionAex){

... // handle exception of type ExceptionA

}catch (ExceptionBex){

38

... // handle exception of type ExceptionB

}finally{

... // cleanup code

}

E.g.

FileStream s = null;

try {

s = new FileStream(curName, FileMode.Open);

...

} catch (FileNotFoundException e) {

Console.WriteLine("file {0} not found", e.FileName);

} catch (IOException) {

Console.WriteLine("some IO exception occurred");

} catch {

Console.WriteLine("some unknown error occurred");

} finally {

if (s != null) s.Close();

}

The exception hierarchy is shown below:

Exception

SystemException

ArithmeticException

DivideByZeroException

OverflowException

...

NullReferenceException

IndexOutOfRangeException

InvalidCastException

...

IOException

FileNot Found Exception

Directory Not Found Exception

...

Web Exception

...

Application Exception

... user-defined exceptions

...

Exception parameter name can be omitted in a catch clause.

Exception type must be derived from System. Exception. If exception

parameter is missing, System. Exception is assumed. The Sytem

Exception is thrown by the system; the I Exception, Web Exception, etc

39

are thrown by the library methods; Application Exception are user defined

exceptions thrown by the application.

3.2 ASSEMBLY

An assembly is the basic unit of deployment in .NET and is also

the container for all types. An assembly contains compiled types with their

IL code, runtime resources, and information to assist with versioning,

security, and referencing other assemblies. An assembly also defines a

boundary for type resolution and security permissioning. In general, an

assembly comprises a single Windows Portable Executable (PE) file—

with an .exe extension in the caseof an application, or a .dll extension in

the case of a reusable library.

An assembly contains four kinds of things:

An assembly manifest: Provides information to the .NET runtime,

such as the assembly’s name, version, requested permissions, andother

assemblies that it references.

An application manifest: Provides information to the operating

system, such as how the assembly should be deployed and whether

administrative elevation is required.

Compiled types: The compiled IL code and metadata of the types defined

within the assembly.

Resources: Other data embedded within the assembly, such asimages and

localizable text.

Of these, only the assembly manifest is mandatory, although an

assembly nearly always contains compiled types.

The Assembly Manifest The assembly manifest serves two purposes:

It describes the assembly to the managed hosting environment. It

acts as a directory to the modules, types, and resources in the assembly.

Assemblies are hence self-describing. A consumer can discover all of an

assembly’s data, types, and function, without needing additional files. An

assembly manifest is not something you add explicitly to an assembly; it’s

automatically embedded into an assembly as part of compilation. Some of

the functionally significant data stored in the manifest are: The simple

name of the assembly, a version number

40

(Assembly Version), a list of modules that comprise the assembly; a list of

types defined in the assembly and the module containing each type, etc.

The Application Manifest

An application manifest is an XML file that communicates

information about the assembly to the operating system. An application

manifest, if present, is read and processed before the .NET-managed

hosting environment loads the assembly, and can influence how the

operating system launches an application’s process.

Modules

The contents of an assembly are actually packaged within one or

more intermediate containers, called modules. A module corresponds to a

file containing the contents of an assembly. The reason for this extra layer

of containership is to allow an assembly to span multiple files which is

useful feature when building an assembly containing code compiled in a

mixture of programming languages.

Resource

An application typically contains not only executable code, butalso

content such as text, images, or XML files. Such content canbe

represented in an assembly through a resource.

Private assembly is used by only one application. It resides in the

application directory and it does not have a "strong name". Private

assemblies cannot be signed.

Public assembly can be used by all applications. It resides inthe Global

Assembly Cache (GAC) and must have a "strong name". It can be signed.

GAC can hold assemblies with the same name butwith different version

numbers.

A central repository is created on the computer during the

installation of the .NET Framework for storing the .NET assemblies. This

repository is called the Global Assembly Cache (GAC). GAC also

contains a centralized copy of the .NET Framework itself. Versioning of

assemblies in the GAC is centralized at the machine level and controlled

by the administrator. GAC can improve startup time for very large

assemblies, because the CLR verifies the signatures of the assemblies only

once upon installation.

41

3.3 GARBAGE COLLECTOR

Every object which is created uses various system resources, such

as memory. The CLR performs automatic memory management by using

a garbage collector to reclaim the memory occupied by objects that are

no longer in use. This is called garbage collection. The destructor is

invoked by the garbage collector to perform termination housekeeping on

an object before the garbage collector reclaims the object’s memory.

Memory leaks, which are common in other languages (because

memory is not automatically reclaimed in those languages), are less likely

in C#. But the garbage collector is not guaranteed to perform its tasks at a

specified time. Therefore, the garbage collector may call the destructor

any time after the object becomes eligible for destruction, making it

unclear when, or whether, the destructor will be called.

3.4 JIT COMPILER

Before you can run Microsoft intermediate language (MSIL), it

must be compiled against the common language runtime to native code for

the target machine architecture. The .NET Framework provides two ways

to perform this conversion: A .NET Framework just-in-time (JIT)

compiler or The .NET Framework Ngen.exe(Native Image Generator).

Compilation by the JIT Compiler: JIT compilation converts MSIL

to native code on demand at application run time, when the contents of an

assembly are loaded and executed. Because the common language runtime

supplies a JIT compiler for each supported CPU architecture, developers

can build a set of MSIL assemblies that can be JIT-compiled and runon

different computers with different machine architectures. However, if your

managed code calls platform-specific native APIsor a platform-specific

class library, it will run only on that operating system.

JIT compilation takes into account the possibility that some code

might never be called during execution. Instead of using time and memory

to convert all the MSIL in a PE file to native code, it converts the MSIL as

needed during execution and stores the resulting native code in memory so

that it is accessible for subsequent calls in the context of that process. The

loader creates and attaches a stub to each method in a type when the type

is loaded and initialized. When a method is called for the first time, the

stub passes control to the JIT compiler, which converts the MSIL for that

method into native code and modifies the stub to point directly to the

generated native code. Therefore, subsequent calls to the JIT-compiled

42

method go directly to the native code. The JIT compiler also enforces

type-safety in the runtime environment of the .NET Framework. It checks

for the values that are passed to parameters of any method.

The following are the various types of JIT compilation in .NET:

Pre - JIT.

Econo - JIT.

Normal - JIT.

Pre - JIT

In Pre-JIT compilation, complete source code is converted into

native code in a single cycle (i.e. compiles the entire code into native code

in one stretch). This is done at the time of application deployment. In .Net

it is called "Ngen.exe"

Econo - JIT

In Econo-JIT compilation, the compiler compiles only those

methods that are called at run time. After execution of this method the

compiled methods are removed from memory.

Normal - JIT

In Normal-JIT compilation, the compiler compiles only those

methods that are called at run time. After executing this method, compiled

methods are stored in a memory cache. Now further calls to compiled

methods will execute the methods from the memory cache.

3.5 NAMESPACES

A namespace defines a declarative region that provides a way to

keep one set of names separate from another. In essence, names declared

in one namespace will not conflict with the same names declared in

another. The namespace used by the .NET Framework library (which is

the C# library) is System.

Declaring a Namespace

A namespace is declared using the namespace keyword. The

general form of namespace is:

namespace name {

// members

}

Here, 'name' is the name of the namespace. A namespace

declaration defines a scope. Anything declared immediately inside the

namespace is in scope throughout the namespace. Within a namespace,

43

you can declare classes, structures, delegates, enumerations, interfaces, or

another namespace. If your program includes frequent references to the

members of a namespace, having to specify the namespace each time you

need to refer to a member quickly becomes tedious. The using directive

removes this problem. 'using' can also be employed to bring namespaces

that you create into view.

E.g.

Color.cs

namespace Util {

public enum Color {...}

}

Figure.cs

namespace Util.Figures {

public class Rect {...}

public class Circle {...}

}

Triangle.cs

namespace Util.Figures {

public class Triangle {...}

}

Test.cs

using Util.Figures;

class Test {

Rect r; // without qualification (because of using

Util.Figures)

Triangle t;

Util.Color c; // with qualification

}

The using directive has a second form that creates another name,

called an alias, for a type or a namespace. The syntax is:

using alias = name;

Here, alias becomes another name for the type (such as a class

type) or namespace specified by name. Once the alias has been created, it

can be used in place of the original name.

The namespace declaration can be split over several files or even

separated within the same file. The contents of all the same namespace

will be in the scope of that namespace. In other words, once you use

44

'using' for the namespace, contents of all the declarations in all the files are

available.

Namespace can be nested. Namespaces can be nested by more than

two levels. When this is the case, a member in a nested namespace must

be qualified with all of the enclosing namespace names. You can specify a

nested namespace using a single namespace statement by separating each

namespace with a period. If you don’t declare a namespace for your

program, then the default global namespace is used.

E.g.

File X.cs

namespace A {

... classes ...

... interfaces ...

... structs ...

... enumerations ...

... delegates ...

namespace B { // full name: A.B

...

}

}

File Y.cs

namespace A {

...

namespace B {...}

}

namespace C {...}

3.6 SUMMARY

This chapter gives the basic syntax of exception handling in C#. It

discusses about exception, Assembly, Components of Assembly, Private

and Shared Assembly, Garbage Collector, JIT compiler, Namespaces and

few example programs. After learning the above topics, you can write

many useful programs and built a strong foundation for larger

programming projects.

45

3.7 REVIEW QUESTIONS

1. Write a short note on Assembly.

2. What is the significance of Assemblies in .NET?

3. List and Explain the Components of assemblies.

4. How Garbage collector works?

5. Explain JIT compiler.

6. What is namespace? Explain System namespace.

3.8 REFERENCE

1) The Complete Reference: C#

2) Visual C# 2012: How to program.

3) https://docs.microsoft.com/en-us/dotnet/csharp/



46

4

COLLECTIONS, COMPARISONS AND

CONVERSIONS, DELEGATE AND

EVENTS

Unit Structure

4.0 Collections

4.1 Various Collection Classes and Their Usage

4.1.1 C# Array List

4.1.2 C# Hash Table

4.2 Comparisons and Conversions

4.2.1 Numeric Conversions

4.2.2 Floating-point to floating-point conversions

4.2.3 Decimal conversions

4.3 Delegates

4.3.1 Multicast Delegate:

4.4 Events

4.4.1 Events in .NET

4.5 Summary

4.6 Exercise

4.7 Reference

4.0 COLLECTIONS

In C#, collection represents group of objects. By the help of

collections, we can perform various operations on objects such as

Collection types implement the following common functionality:

 Adding and inserting items to a collection

 Removing items from a collection

 Finding, sorting, searching items

 Replacing items

 Copy and clone collections and items

47

 Capacity and Count properties to find the capacity of the collection
and number of items in the collection

All the data structure work can be performed by C# collections.

We can store objects in array or collection. Collection has

advantage over array. Array has size limit but objects stored in collection

can grow or shrink dynamically.

.NET supports two types of collections, generic collections and

non-generic collections. Prior to .NET 2.0, it was just collections and

when generics were added to .NET, generics collections were added as

well.

The non-generic collections operate on data of type object. Thus,

they can be used to store any type of data. They can be used to store any

type of data, and different types of data can be mixed within the same

collection. The non-generic collection classes and interfaces are in

System. Collections.

The various interfaces are discussed briefly.

I Enumerable: Defines the Get Enumerator() method, which supplies the

enumerator for a collection class. It provides the capability to loop through

items in a collection.

I Collection: Defines the elements that all non-generic collections must

have. Provides capability to obtain the number of items in a collection and

copy items into a simple array type (inherits from I Enumerable).

I List: Defines a collection that can be accessed via an indexer (inherits

from I Enumerable and I Collection).

I Dictionary: Defines a collection that consists of key/value pairs (inherits

from I Enumerable and I Collection).

4.1 VARIOUS COLLECTION CLASSES AND THEIR
USAGE

The following are the various commonly used classes of the System.

Collection namespace. Click the following links to check their detail.

4.1.1 C# Array List

 Array List class is a collection that can be used for any types or

objects.

48

 Array list is a class that is similar to an array, but it can be used to
store values of various types.

 An Array list doesn't have a specific size.

 Any number of elements can be stored.

Array List Methods and Properties

 Add()- Add an object to a list.

 Clear()- Removes all the element from the list.

 Contains()–Determines if an element is in the list.

 Copy To()- Copies a list to another.

 Insert()-Insert an element in to the list.

 Remove()- Removes the first occurrence of an element.

 Remove At()-Removes the element at specified field.

 Remove Range()-Removes a range of element.

 Sort()-Sort the element.

 Capacity- Gets or sets the number of elements in the list.

 Count – get the number of elements currently in the list.

using System;

using System.Collections;

namespace ArrayListExample

{

class Program

{

static void Main(string[] args)

{

// ArrayList Diclaration

ArrayList name = new ArrayList();

//Add method of array list

name.Add("Amar");

name.Add("Zaidi");

name.Add("Saif");

name.Add("Irfan");

name.Add("Bhutik");

name.Add("Zeeshan");

name.Add("Pranali");

name.Add("Sameer");

49

// Capacity and count property of arraylist

Console.WriteLine("Capacity = " + name.Capacity);

Console.WriteLine("Element present = " + name.Count + "\n");

Console.WriteLine("element in the list\n\n");

for (int i = 0; i < name.Count; i++)

{

Console.WriteLine(name[i]);

}

Console.WriteLine("element in the list after sorting\n\n");

//sort method of arraylist

name.Sort();

for (int i = 0; i < name.Count; i++)

{

Console.WriteLine(name[i]);

}

Console.WriteLine("RemoveAt Method\n\n");

// removeat method

name.RemoveAt(4);

for (int i = 0; i < name.Count; i++)

{

Console.WriteLine(name[i]);

}

Console.WriteLine("Insert Method\n\n");

name.Insert(4, "Mohaddesa");

for (int i = 0; i < name.Count; i++)

{

Console.WriteLine(name[i]);

}

Console.WriteLine("\n\n contain method");

Console.WriteLine("The element Mohaddesa contain in the
arraylist is:" + name.Contains("Mohaddesa"));

Console.WriteLine("The element Razi contain in the arraylist is:"
+ name.Contains("Razi"));

Console.WriteLine("remove Method\n\n");

name.Remove("Zaidi");

for (int i = 0; i < name.Count; i++)

{

Console.WriteLine(name[i]);

}

50

Console.WriteLine("Reverse Method\n\n");

name.Reverse();

for (int i = 0; i < name.Count; i++)

{

Console.WriteLine(name[i]);

}

Console.WriteLine("Clear Method\n\n");

Console.WriteLine("The number of element in the arraylist are:" +
name.Count + "\n\n");

name.Clear();

Console.WriteLine("The number of element in the arraylist are:" +
name.Count);

Console.Read();

}

}

}

Example 2:

using System;

using System.Collections;

class Example{

public static void Main(){

// Create a new hash table.

HashtableopenWith = new Hashtable();

// Add some elements to the hash table. There are no

// duplicate keys, but some of the values are duplicates.

openWith.Add("txt", "notepad.exe");

openWith.Add("bmp", "paint.exe");

openWith.Add("dib", "paint.exe");

openWith.Add("rtf", "wordpad.exe");

// The Add method throws an exception if the new key is already in
the hash table.

try{

openWith.Add("txt", "winword.exe");

}catch{

Console. Write Line("An element with Key = \"txt\" already exists.");

51

}

// The Item property is the default property, so you

// can omit its name when accessing elements.

Console. Write Line("For key = \"rtf\", value = {0}.", open With["rtf"]);

// The default Item property can be used to change the value
associated with a key.

open With["rtf"] = "winword.exe";

Console. Write Line("For key = \"rtf\", value = {0}.",open With["rtf"]);

// If a key does not exist, setting the default Item property

// for that key adds a new key/value pair.

openWith["doc"] = "winword.exe";

// Contains Key can be used to test keys before inserting them.

if (!open With. Contains Key("ht")){

open With. Add("ht", "hypertrm.exe");

Console. Write Line("Value added for key = \"ht\": {0}", openWith["ht"]);

}

// When you use foreach to enumerate hash table elements,

// the elements are retrieved as KeyValuePair objects.

Console.WriteLine();

foreach(DictionaryEntry de in openWith){

Console.WriteLine("Key = {0}, Value = {1}", de.Key, de.Value);

}

// To get the values alone, use the Values property.

ICollectionvalueColl = openWith.Values;

// The elements of the ValueCollection are strongly typed

// with the type that was specified for hash table values.

Console.WriteLine();

foreach(strings invalueColl){

Console.WriteLine("Value = {0}", s);

}

// To get the keys alone, use the Keys property.

ICollectionkeyColl = openWith.Keys;

// The elements of the KeyCollection are strongly typed

52

// with the type that was specified for hash table keys.

Console.WriteLine();

foreach(strings inkeyColl){

Console.WriteLine("Key = {0}", s);

}

// Use the Remove method to remove a key/value pair.

Console.WriteLine("\nRemove(\"doc\")");

openWith.Remove("doc");

if (!openWith.ContainsKey("doc")){

Console.WriteLine("Key \"doc\" is not found.");

}

}

}

using System;

using System.Collections;

public class SamplesQueue{

public static void Main(){

// Creates and initializes a new Queue.

Queue myQ = new Queue();

myQ.Enqueue("Hello");

myQ.Enqueue("World");

myQ.Enqueue("!");

// Displays the properties and values of the Queue.

Console.WriteLine("myQ");

Console.WriteLine("\tCount: {0}", myQ.Count);

Console.Write("\tValues:");

PrintValues(myQ);

}

public static void PrintValues(IEnumerablemyCollection) {

foreach(Objectobj in myCollection)

Console.Write(" {0}", obj);

Console.WriteLine();

}

}

using System;

53

using System.Collections;

public class SamplesStack{

public static void Main(){

// Creates and initializes a new Stack.

Stack myStack = new Stack();

myStack.Push("Hello");

myStack.Push("World");

myStack.Push("!");

// Displays the properties and values of the Stack.

Console.WriteLine("myStack");

Console.WriteLine("\tCount: {0}", myStack.Count);

Console.Write("\tValues:");

PrintValues(myStack);

}

public static void PrintValues(IEnumerablemyCollection) {

foreach(Objectobj in myCollection)

Console.Write(" {0}", obj);

Console.WriteLine();

}

}

4.1.2 C# HashTable

The Hashtable class represents a collection of key-and-value pairs

that are organized based on the hash code of the key. It uses the key to

access the elements in the collection.

A hash table is used when you need to access elements by using

key, and you can identify a useful key value. Each item in the hash table

has a key/value pair. The key is used to access the items in the collection.

Example

using System;

using System.Collections;

namespace ConsoleApplication6

{

classProgram

{

staticvoid Main(string[] args)

54

{

Hashtable ht = newHashtable();

ht.Add("Zaidi", "C Sharp");

ht.Add("Arif", "Java");

ht.Add("Mohaddesa", "Oracle");

ht.Add("Masoom", "Maths");

foreach (DictionaryEntry d in ht)

{

Console.WriteLine(d.Key + " " + d.Value);

Console.Read();

}

}

}

}

4.2 COMPARISONS AND CONVERSIONS

C# can convert between instances of compatible types. A

conversion always creates a new value from an existing one. Conversions

can be either implicit or explicit: implicit conversions happen

automatically, and explicit conversions require a cast.

Implicit conversions are allowed when both of the following are true:

 The compiler can guarantee they will always succeed.

 No information is lost in conversion.

Conversely, explicit conversions are required when one of the following is

true:

 The compiler cannot guarantee they will always succeed.

 Information may be lost during conversion.

When you cast from a floating-point number to an integral,

anyfractional portion is truncated; no rounding is performed. Thestatic

class System.Convert provides methods that round whileconverting

between various numeric types.

55

4.2.1 Numeric Conversions

Integral to integral conversions

Integral conversions are implicit when the destination type can

represent every possible value of the source type. Otherwise, an explicit

conversion is required. Forexample:

int x = 5678; // int is a 32-bit integral

long y = x; // Implicit conversion to 64-bit integral

short z = (short)x; // Explicit conversion to 16-bit integral

4.2.2 Floating-point to floating-point conversions

A float can be implicitly converted to a double, since a double can

represent every possible valueof a float. The reverse conversion must be

explicit.

Floating-point to integral conversions

All integral types may be implicitly converted to all floating-point

numbers:

inti = 4;

float f = i;

The reverse conversion must be explicit:

int i2 = (int)f;

Implicitly converting a large integral type to a floating-point type

preserves magnitude but may occasionally lose precision. This is because

floating-point types always have more magnitude than integral types, but

may have less precision. Rewritingour example with a larger number

demonstrates this:

int i1 = 200000001;

float f = i1; // Magnitude preserved, precision lost

int i2 = (int)f; // 200000000

4.2.3 Decimal conversions

All integral types can be implicitly converted to the decimal type,

since a decimal can represent every possible C# integral value. All other

numeric conversions to and from a decimal type must be explicit.

56

Casts are optimized for efficiency; hence, they truncate data that

won’t fit. This can be a problem when converting from a real number to an

integer, because often you want to round rather than truncate. Convert’s

numerical conversion methods address just this issue; they always round:

double d = 4.9;

inti = Convert.ToInt32 (d); // i == 5

int thirty = Convert.ToInt32("1E", 16); // Parse in hexadecimal

uintfive = Convert.ToUInt32 ("101", 2); // Parse in binary

The most common operations, String. Compare To and String.

Equals or String. Equality use an ordinal comparison, a case-sensitive

comparison. Ordinal comparisons will compare the strings character by

character. Case-sensitive comparisons use capitalization in their

comparisons.

The most important point about these default comparison methods

is that because they use the current culture, the results depend on the

locale and language settings of the machine where they run. These

comparisons are unsuitable for comparisons where order should be

consistent across machines or locations. The String. Equals method

enables you to specify a String Comparison value of String Comparison.

Ordinal Ignore Case to specify a case-insensitive comparison. There is

also a static Compare method that includes a boolean argument to specify

case-insensitive comparisons.

Sometimes you will want to try a conversion at runtime, but not

throw an exception if the conversion fails (which is the case when a cast is

used). To do this, use the 'as' operator is used.expr as type

57

Here, expr is the expression being converted to type. If the

conversion succeeds, then a reference to type is returned. Otherwise, a null

reference is returned. The as operator canbe used to perform only

reference, boxing, unboxing, or identity conversions.

Example:

using System;
namespace ConsoleApplication7
{
classProgram

{
staticvoid Main(string[] args)

{
int i = 75;
float f = 53.005f;
double d = 2345.7652;
bool b = true;

Console.WriteLine(i.ToString());
Console.WriteLine(f.ToString());
Console.WriteLine(d.ToString());
Console.WriteLine(b.ToString());
Console.ReadKey();

}
}

}

4.3 DELEGATES

 A delegate dynamically wires up a method caller to its target method.

 There are two aspects to a delegate: type and instance.

 A delegate type defines a protocol to which the caller and target will

conform, comprising a list of parameter types and a returntype.

 A delegate instance is an object that refers to one (or more) target

methods conforming to that protocol. A delegate instanceliterally acts

as a delegate for the caller: the caller invokes the delegate, and then the

delegatecalls the target method.

 This indirection decouples the caller from the target method.A

delegate type declaration is preceded by the keyword delegate, but

otherwise it resembles an (abstract) method declaration.

58

Declaration of a delegate type

delegate void Notifier (string sender); // ordinary method signature

// with the keyword delegate

Declaration of a delegate variable

Notifier greetings;

Assigning a method to a delegate variable

void SayHello(string sender) {

Console.WriteLine("Hello from " + sender);

}

greetings = SayHello; // full form: greetings = new

Notifier(SayHello);

Calling a delegate variable

greetings("John"); // invokes SayHello("John") => "Hello from

John"

Example

using System;
///A very basic example (SimpleDelegate1.cs):
namespace BasicDelegate
{

// Declaration
public delegate void SimpleDelegate();
class TestDelegate
{

public static void MyFunc()
{

Console.WriteLine("I was called by delegate ...");
}
public static void Main()
{

// Instantiation
SimpleDelegate obj = new SimpleDelegate(MyFunc);
// Invocation
obj();
Console.Read();

}
}

}

4.3.1 Multicast Delegate
Multicast Delegate is an extension of normal delegates. It combines more

than one method at a single moment of time.

59

Important fact about multicast delegate

In Multicasting, Delegates can be combined and when you call a delegate,

a whole list of methods is called.

 All methods are called in FIFO (First in First Out) order.

 + or += Operator is used for adding methods to delegates.

 – or -= Operator is used for removing methods from the delegates

list.

Example

using System;
namespace multicast_delegate_example
{

delegate void MutiCastDelegate();
class multiCastdelegateDemo
{

public static void Display()
{

Console.WriteLine("ZAIDI");
Console.WriteLine();

}
public static void Print()
{

Console.WriteLine("RIZVI");
Console.WriteLine();

}

}// class multiCastdelegateDemo close
class Program
{

static void Main(string[] args)
{

MutiCastDelegate m1 = new
MutiCastDelegate(multiCastdelegateDemo.Display);

MutiCastDelegate m2 = new
MutiCastDelegate(multiCastdelegateDemo.Print);

MutiCastDelegate m3 = m1 + m2;
MutiCastDelegate m4 = m2 + m1;
MutiCastDelegate m5 = m3 - m2;
m3();
m4();
m5();
Console.Read();

}
}

}

60

4.4 EVENTS

An event is, essentially, an automatic notification that some action
has occurred. The control that generates an event is known as the event
sender. When the user interacts with a GUI component, the interaction -
known as an event - drives the program to perform a task. A method that
performs a task in response to an event is called an event handler, and the
overall process of responding to events is known as event handling. An
object that has an interest in an event registers an event handler for that
event. When the event occurs, all registered handlers are called. When the
event occurs, the event sender calls its event handler to perform a task
(i.e., to “handle the event”). We need a mechanism to indicate which
method is the event handler for an event. Event handlers are represented
bydelegates.

Steps in Event Handling

Declare an event inside a class. (1)

To declare an event inside a class, first a delegate type for
the event must be declared. (1a)

The event itself is declared. (1b)

Create method to raise the event. (2)

Create methods to handle the event. (3)

Hooking up to an event. (4)

Invoke/raise the event. (5)

Example

using System;

// Declare a delegate type for an event.

delegate void MyEventHandler();

// Declare a class that contains an event.

class MyEvent

{

public event MyEventHandler SomeEvent;

// This is called to raise the event.

public void OnSomeEvent()

{

if (SomeEvent != null)

SomeEvent();

}

}

class EventDemo

{

// An event handler.

61

static void Handler()

{

Console.WriteLine("Event occurred");

}

static void Main()

{

MyEvent evt = new MyEvent();

// Add Handler() to the event list.

evt.SomeEvent += Handler;

// Raise the event.

evt.OnSomeEvent();

Console.Read();

}

}

4.4.1 Events in .NET
Events in the .NET Framework are based on the delegate model.

The delegate model follows the observer design pattern, which enables a
subscriber to register with, and receive notifications from, a provider. An
event sender pushes a notification that an event has happened, and an
event receiver receives that notification and defines a response to it.

Example
A System. Web.UI. Web Controls. Button control raises an event

when the user clicks it in the webpage. By handling the event, your
application can perform the appropriate application logic for that button
click.

To handle a button click event on a webpage:

1) Create a ASP.NET Web Forms page (webpage) that has a Button
control with the OnClick value set to the name of method that you will
define in the next step.

<asp:Button ID="Button1" runat="server" Text="Click Me"
OnClick="Button1_Click" />

2) Define an event handler that matches the Click event delegate signature
and that has the name you defined for the OnClick value.

protected void Button1_Click(object sender, EventArgs e){

// perform action

}

3) In the event handler method that you defined in step 2, add code to
perform any actions that are required when the event occurs.

62

4.5 SUMMARY

This chapter gives the basic syntax of Collections, Comparisons

and Conversions, Delegate and Eventsin C#. It discusses about ArrayList

and various collection techniquesalso delegates and events and few

example programs. After learning the above topics, you can write many

useful programs and built a strong foundation for larger programming

projects.

4.6 EXERCISE

1. What is collection? Explain collection in C#.

2. What is Array List? Explain with example.

3. Delegates in C# are used for Event Handling. Justify this statement
with a relevant example program.

4. Write a program using any five Methods/Property of ArrayList Class.

5. Create a delegate with two int parameters and a return type. Create a
class with two delegate methods multiply and divide. Write a program
to implement the delegate.

6. What is delegate? Explain the steps to implement delegate in C#.NET.

4.7 REFERENCE

1) The Complete Reference: C#

2) Visual C# 2012: How to program.

3) https://docs.microsoft.com/en-us/dotnet/csharp/

4) https://www.c-sharpcorner.com



63

5

WINDOWS PROGRAMMING

Unit Structure

5.0 Windows Programming

5.1 Windows Controls

5.2 The Button Control

5.3 The Label And Linklabel Controls

5.4 The Radiobutton And Checkbox Controls

5.5 The Textbox Control

5.6 Richtextbox Control Properties:

5.7 The Listbox And Checkedlistbox Controls

5.8 The Listview Control

5.9 Tabcontrol Control

5.10 Menus

5.11 Toolbars

5.12 SDI And MDI Applications

5.13 Building MDI Applications

5.14 Summary

5.15 Exercise

5.12 Reference

5.0 WINDOWS PROGRAMMING

A graphical user interface (GUI) allows a user to interact visually

with a program. GUIs are built from GUI controls. GUI controls are

objects that can display information on the screen or enable users to

interact with an app via the mouse, keyboard or some other form of input.

A Windows forms application is one that runs on the desktop

computer. Windows Forms are used to create the GUIs for programs. A

Form is a graphical element that appears on the desktop; it can be a dialog,

a window or an MDI (multiple document interface) window. A Windows

64

forms application will normally have a collection of controls such as

labels, textboxes, list boxes, etc. A control has a graphical representation

at runtime. A Form is a container for controls and components.

The steps to create a windows form application using Visual Studio

are as follows:

1. On the menu bar, choose File, New, Project. The dialog box should

look as shown in the figure.

2. Choose either Visual C# or Visual Basic in the Installed Templates

list. We choose Visual C#.

3. In the templates list, choose the Windows Forms Application icon.

Name the new form with your desired application name, and then

choose the OK button. Visual Studio creates a solution for your

program. A solution acts as a container for all of the projects and

files needed by your program.

4. Now you are ready to add controls to the form and write event

handlers.

65

5.1 WINDOWS CONTROLS

ASP.Net has the ability to add controls to a form such as textboxes
and labels.

Windows Controls on a form is one of the interesting features of
Visual Studio. This can be very useful actually, because we all know that
creating Windows applications is sometime more flexible than Web
applications.
In Windows applications you have more control and you have access to a
lot of .NET Framework classes that you don't find in Web applications.

5.2 THE BUTTON CONTROL

The .NET Framework provides a class derived from Control —
System. Windows. Forms. Button Base— that implements the basic
functionality needed in Button controls, so programmers can derive from
this class and create their own custom Button controls. The System.
Windows. Forms namespace provides three controls that derive from
Button Base: Button, Check Box, and Radio Button.

A button is primarily used to perform three kinds of tasks:
 To close a dialog with a state (e.g., the OK and Cancel buttons)
 To perform an action on data entered in a dialog (e.g., clicking

Search after entering some search criteria).
 To open another dialog or application (e.g., Help buttons)

The most frequently used event of a button is the Click event. This
event happens whenever auser clicks the button, which means pressing the
left mouse button and releasing it while the pointer is over the button.
Therefore, if one left-clicks the button and then draws the mouse away
from the button before releasing it, the Click event will not be raised. In
addition, the Click event is raised when the button has focus and the user
presses the Enter key.

Common Button Class Properties:

PROPERTY DESCRIPTION
Flat Style Changes the style of the button. If one set the style

to Popup, the button appears flat until the user
moves the mouse pointer over it. When that
happens, the button pops up to a 3-D look.

Enabled Although this is derived from Control, it’s
mentioned here because it’s a very important
property for a button. Setting it to false means that
the button becomes grayed out and nothing happens
when one click it.

66

Image Specifies an image (bitmap, icon, and so on) that
will be displayed on the button.

Image Align Specifies where the image on the button appears.

5.3 THE LABEL AND LINKLABEL CONTROLS

The .NET Framework includes two label controls that are distinct:
 Label—The standard Windows label.
 Link Label—A label similar to the standard one (and derived from

it) but that presents itself as an Internet link (a hyperlink).

The Link Label needs extra code to enable users clicking it to go to the
target of the Link Label.

Common Label Control Properties:

PROPERTY DESCRIPTION
Border Style Specifies the style of the border around the label.

The default is no border.

Flat Style Determines how the control is displayed. Setting
this property to Popup makes the control appear flat
until the user moves the mouse pointer over the
control, at which time the control appears raised.

Image Specifies a single image (bitmap, icon, and so on) to
be displayed in the label.

Image Align Specifies where in the Label the image is shown.

Link Area Specifies the range in the text that should be
displayed as alink. (Link Label only)

Link Color Indicates the color of the link. (Link Label only)

Links It is possible for a Link Label to contain more than
one link. This property enables one to find the link
one want. The control keeps track of the links
displayed in the text. Not available at design
time.(Link Label only)

Link Visited Setting this to true means that the link is displayed
in a different color if it has been clicked.(Link Label
only)

Text Align Specifies where in the control the text is shown.

Visited Link Color Specifies the color of the Link Label after the user
has clicked it.(Link Label only)

67

5.4 THE RADIO BUTTON AND CHECK BOX
CONTROLS

The Radio Button and Check Box controls share their base class with
the Button control Radio buttons traditionally display themselves as a
label with a tiny circle to the left of it, which can be either selected or not.
One should use radio buttons when one wants to give users a choice
between two or more mutually exclusive options — for example,
undergraduate or graduate.

To group radio buttons together so they create one logical unit one
must use a Group Box control or some other container. One first places a
Group Box onto a form and then places the Radio Button controls one
needs within the borders of the Group Box, the Radio Button controls will
automatically change their state to reflect that only one option within the
group box can be selected. If one does not place the controls within a
Group Box, only one Radio Button on the form can be selected at any
given time.

A Check Box control traditionally displays itself as a label with a
small box at its immediate left. Use a check box when one wants to enable
users to choose one or more options — for example, a questionnaire
asking which programming languages the user has learnt (e.g., C,C++,
Java and so on).

Common Radio Button Control Properties

PROPERTY DESCRIPTION
Appearance A radio button can be displayed either as a label

with a circular check to the left, middle, or right of
it, or as a standard button. When it is displayed as a
button, the control appears pressed when selected,
and not pressed otherwise.

Auto Check When true, a black point is displayed when the user
clicks the radio button. When false, the radio button
must be manually checked in code from the Click
event handler.

Check Align Used to change the alignment of the check box
portion of the radio button. The default is Content
Alignment. Middle Left.

Checked Indicates the status of the control. It is true if the
control is displaying a black point, and false
otherwise.

68

Radio Button Events

One will typically use only one event when working with Radio
Button controls, but many others can be subscribed to.

Common Radio Button Control Events

EVENT DESCRIPTION

Checked Changed Sent when the check of the Radio Button
changes.

Click Sent every time the Radio Button is clicked.
This is not the same as the Checked Change
event, because clicking a Radio Button two
or more times in succession changes the
checked property only once — and only if it
wasn’t checked already. Moreover, if the
Auto Check property of the button being
clicked is false, then the button will not be
checked at all, and only the Click event will
be sent.

Checkbox Control Properties

PROPERTY DESCRIPTION

Check State Unlike the radio button, a check box can have three
states: Checked, Indeterminate, and Unchecked.
When the state of the check box is Indeterminate,
the control check next to the label is usually grayed
out, indicating that either the current value of the
check is not valid; for some reason cannot be
determined (e.g., the check indicates the read-only
state of files, and two are selected, of which one is
read-only and the other is not); or has no meaning
under the current circumstances.

Three State When false, the user will not be able to change the
Check State to Indeterminate. One can, however,
still change the Check State property to
Indeterminate from code.

Checkbox Events
One will normally use only one or two events on this control.

Although the Check Changed event exists on both the Radio Button and
the Checkbox controls, the effects of the events differ.

69

The Group Box Control
The Group Box control is often used to logically group a set of controls
such as the Radio Button and Check Box, and to provide a caption and a
frame around this set.

Check Box Control Events

EVENT DESCRIPTION

Checked Changed Occurs whenever the Checked property of the check
box changes. Note that in a Check Box where the
Three State property is true, it is possible to click
the check box without changing the Checked
property. This happens when the check box changes
from Checked to Indeterminate status.

Check State Changed Occurs whenever the Checked State property
changes. As Checked and Unchecked are both
possible values of the Checked State property, this
event is sent whenever the Checked property
changes. In addition, it is also sent when the state
changes from Checked to Indeterminate.

To use the group box one drags it onto a form and then drags the

controls it should contain onto it (but not the reverse — that is, one can’t

lay a group box over preexisting controls).The effect of this is that the

parent of the controls becomes the group box, rather than the form, so it is

possible to have more than one radio button selected at any given time.

Within the group box, however, only one radio button can be selected.

Moving the Group Box control moves all of the controls placed on it.

Another effect of placing controls on a group box is that it enables one to

affect the contained controls by setting the corresponding property on the

group box. For instance, if one wants to disable all the controls within a

Group Box control, one can simply set the Enabled property of the Group

Box to false.

5.5 THE TEXTBOX CONTROL

Text boxes should be used whenever one wants users to enter text
that one has no knowledge of at design time (e.g., the user’s name). The
primary function of a text box is for users to enter text, but any characters
can be entered, and one can force users to enter numeric values only.

The .NET Framework comes with two basic controls to take text
input from users: Text Box and Rich Text Box. Both controls are derived
from a base class called Text Box Base, which itself is derived from
Control. Text Box Base provides the base functionality for text

70

manipulation in a text box, such as selecting text, cutting to and pasting
from the clipboard, and a wide range of events.

Common Text Box Control Properties

PROPERTY DESCRIPTION

Causes Validation When a control with this property set to true is
about to receive focus, two events are fired:
Validating and Validated. One can handle these
events in order to validate data in the control that is
losing focus. This may cause the control never to
receive focus.

Character Casing A value indicating whether the Text Box changes
the case of the text entered.
Three values are possible: Lower: All text entered is
converted to lowercase. Normal: No changes are
made to the text. Upper: All text entered is
converted to uppercase.

Max Length A value that specifies the maximum length, in
characters, of any text entered into the Text Box.
Set this value to zero if the maximum limit is
limited only by available memory.

Multiline Indicates whether this is a multiline control,
meaning it is able to show multiple lines of text.
When Multiline is set to true, one will usually want
to set WordWrap to true as well.

Password Char Specifies whether a password character should
replace the actual characters entered into a single-
line Text Box. If the Multiline property is true, then
this has no effect.

Read Only A Boolean indicating whether the text is read-only.

Scroll Bars Specifies whether a multiline Text Box should
display scroll bars.

Selected Text The text that is selected in the Text Box.

Selection Length The number of characters selected in the text. If this
value is set to be larger than the total number of
characters in the text, then it is reset by the control
to be the total number of characters minus the value
of Selection Start.

71

Selection Start The start of the selected text in a Text Box.

Word Wrap Specifies whether a multiline Text Box should
automatically wrap words if a line exceeds the
width of the control.

TextBox Events

TextBox Control Events

EVENT DESCRIPTION

Enter , Leave ,
Validating, Validated

These four events occur in the order in which they
are listed here. Known as focus events, they are
fired whenever a control’s focus changes, with two
exceptions. Validating and Validated are fired only
if the control that receives focus has the Causes
Validation property set to true. The receiving
control fires the event because there are times when
one do not want to validate the control, even if
focus changes. An example of this is when a user
clicks a Help button.

Key Down, Key Press
Key Up These three are known as key events. They enable

one to monitor and change what is entered into ones
controls. Key Down and Key Up receive the key
code corresponding to the key that was pressed.
This enables one to determine whether special keys
such as Shift or Ctrl and F1 were pressed. Key
Press, conversely, receives the character
corresponding to a keyboard key. This means that
the value for the letter ‘a’ is not the same as the
letter ‘A’. It is useful if one wants to exclude a
range of characters — for example, only allowing
numeric values to be entered.

Text Changed Occurs whenever the text in the text box is changed,
no matter what the change.

5.6 RICH TEXT BOX CONTROL PROPERTIES:

PROPERTY DESCRIPTION
Can Redo True when the last undone operation can be

reapplied using Redo.

72

Can Undo True if it is possible to undo the last action on the
Rich Text Box. Note that Can Undo is defined in
Text Box Base, so it is available to Text Box
controls as well.

Redo Action Name Holds the name of an action that would be
performed by the Redo method.

Detect Urls Set to true to make the control detect URLs and
format them (underline, as in a browser).

Rtf Corresponds to the Text property, except that this
holds the text in RTF.

Selected Rtf Use this to get or set the selected text in the control,
in RTF. If one copies this text to another application
— Word, for example — it will retain all
formatting.

Selected Text As with Selected Rtf, one can use this property to
get or set the selected text. However, unlike the
RTF version of the property, all formatting is lost.

Selection Alignment Represents the alignment of the selected text. It can
be Center, Left, or Right.

Selection Bullet Use this to determine whether the selection is
formatted with a bullet in front of it, or use it to
insert or remove bullets.

Bullet Indent Specifies the number of pixels a bullet should be
indented.

Selection Color Changes the color of the text in the selection.

Selection Font Changes the font of the text in the selection.

Selection Length Set or retrieve the length of a selection.

Selection Type Holds information about the selection. It will
indicate whether one or more OLE objects are
selected or if only text is selected.

Show Selection Margin If true, a margin will be shown at the left of
the Rich Text Box. This makes it easier for the user
to select text.

Undo Action Name Gets the name of the action that will be used if the
user chooses to undo something.

73

Selection Protected One can specify that certain parts of the text should
not be changed by setting this property to true.

Rich Text Box Events

Most of the events used by the Rich Text Box control are the same as
those used by the Text Box control.

EVENT DESCRIPTION

Link Clicked Sent when a user clicks on a link within the text.

Protected Sent when a user attempts to modify text that has
been marked as protected.

Selection Changed Sent when the selection changes. If for some reason
one does not want the user to change the selection,
one can prevent the change here.

5.7 THE LISTBOX AND CHECKEDLISTBOX
CONTROLS

List boxes are used to show a list of strings from which one or more
can be selected at a time. Just like check boxes and radio buttons, the list
box provides a way to ask users to make one or more elections. One
should use a list box when at design time one does not know the actual
number of values from which the user can choose (e.g., a list of co-
workers). Even if one knows all the possible values at design time, one
should consider using a list box if there are a large number of values.

The List Box class is derived from the List Control class, which
provides the basic functionality for list-type controls. Another kind of list
box available is called Checked List Box. Derived from the List Box class,
it provides a list just like the List Box does, but in addition to the text
strings it provides a check for each item in the list.

List Box Properties

PROPERTY DESCRIPTION
Selected Index Indicates the zero-based index of the selected item

in the list box. If the list boxcan contain multiple
selections at the same time, then this property
holds the index of the first item in the selected list.

Column Width Specifies the width of the columns in a list box with
multiple columns.

74

Items The Items collection contains all of the items in the
list box. Oneuse the properties of this collection to
add and remove items.

Multi Column A list box can have more than one column. Use this
property to get or set whether values should be
displayed in columns.

Selected Indices A collection that holds all of the zero-based indices
of the selected items in the list box.

Selected Item In a list box where only one item can be selected,
this property contains the selected item, if any. In a
list box where more than one selection can be made,
it will contain the first of the selected items.

Selected Items A collection that contains all currently selected
items.

Selection Mode One can choose from four different modes of
selection from the List Selection Mode enumeration
in a list box: None: No items can be selected. One:
Only one item can be selected at any time. Multi
Simple: Multiple items can be selected. With this
style, when one click an item in the list it becomes
selected and stays selected even if one click another
item until one click it again. Multi Extended:
Multiple items can be selected. One use the Ctrl,
Shift, and arrows keys to make selections.
Unlike Multi Simple, if one simply click an item
and then another item afterwards, only the second
item clicked is selected.

Sorted When set to true, the List Box alphabetically sorts
the items it contains.

Text One saw Text properties on a number of controls,
but this one works differently from any one’ve seen
so far. If one set the Text property of the List Box
control, it searches for an item that matches the text
and selects it.

75

List Box Methods

METHOD DESCRIPTION

Clear Selected() Clears all selections in the List Box.
Find String() Finds the first string in the List Box beginning with

a string one specify. For example, Find
String("a")will find the first string in the List Box
beginning with ‘a’.

Find String Exact() Like Find String, but the entire string must be
matched.

Get Selected() Returns a value that indicates whether an item is
selected.

Set Selected() Sets or clears the selection of an item.

To String() Returns the currently selected item.

GetItem Checked() (Checked List Box only) Returns a value indicating
whether an item is checked.

GetItem Check State() (Checked List Box only) Returns a value
indicating the check state of an item.

SetItem Checked() (Checked List Box only) Sets the item
specified to a Checked state.

SetItem Check State() (Checked List Box only) Sets the check state
of an item.

List Box Events
Normally, the events one will want to be aware of when working

with a List Box or Checked List Box are those related to the selections
being made by the user.

EVENT DESCRIPTION

Item Check (Checked List Box only) Occurs when the
check state of one of the list items changes.

Selected Index Changed Occurs when the index of the selected item
changes.

5.8 THE LISTVIEW CONTROL

The list view is usually used to present data for which the user is
allowed some control over the detail and style of its presentation. It is
possible to display the data contained in the control as columns and rows
much like in a grid, as a single column, or with varying icon

76

representations. The most commonly used list view is like the one shown
earlier, which is used to navigate the folders on a computer.

List View Properties

PROPERTY DESCRIPTION

Property & Description

Alignment

Gets or sets the alignment of items in the control.

Auto Arrange

Gets or sets whether icons are automatically kept arranged.

Back Color

Gets or sets the background color.

Check Boxes

Gets or sets a value indicating whether a check box appears next to
each item in the control.

Checked Indices

Gets the indexes of the currently checked items in the control.

Checked Items

Gets the currently checked items in the control.

Columns

Gets the collection of all column headers that appear in the control.

Grid Lines

Gets or sets a value indicating whether grid lines appear between the
rows and columns containing the items and subitems in the control.

Header Style

Gets or sets the column header style.

Hide Selection

Gets or sets a value indicating whether the selected item in the control
remains highlighted when the control loses focus.

Hot Tracking

Gets or sets a value indicating whether the text of an item or subitem
has the appearance of a hyperlink when the mouse pointer passes over
it.

Hover Selection

Gets or sets a value indicating whether an item is automatically
selected when the mouse pointer remains over the item for a few
seconds.

Insertion Mark

Gets an object used to indicate the expected drop location when an
item is dragged within a List View control.

77

Items

Gets a collection containing all items in the control.

Label Wrap

Gets or sets a value indicating whether item labels wrap when items are
displayed in the control as icons.

Large Image List

Gets or sets the Image List to use when displaying items as large icons
in the control.

Multi Select

Gets or sets a value indicating whether multiple items can be selected.

Right To Left Layout

Gets or sets a value indicating whether the control is laid out from right
to left.

Scrollable

Gets or sets a value indicating whether a scroll bar is added to the
control when there is not enough room to display all items.

Selected Indices

Gets the indexes of the selected items in the control.

Selected Items

Gets the items that are selected in the control.

Show Groups

Gets or sets a value indicating whether items are displayed in groups.

Show Item Tool Tips

Gets or sets a value indicating whether ToolTips are shown for the List
View Item objects contained in the List View.

Small Image List

Gets or sets the Image List to use when displaying items as small icons
in the control.

Sorting

Gets or sets the sort order for items in the control.

State Image List

Gets or sets the Image List associated with application-defined states in
the control.

Top Item

Gets or sets the first visible item in the control.

View

Gets or sets how items are displayed in the control. This property has
the following values:

 LargeIcon − displays large items with a large 32 x 32 pixels
icon.

 SmallIcon − displays items with a small 16 x 16 pixels icon

78

 List − displays small icons always in one column

 Details − displays items in multiple columns with column
headers and fields

 Tile − displays items as full-size icons with item labels and sub-
item information.

Virtual List Size

Gets or sets the number of List View Item objects contained in the list
when in virtual mode.

Virtual Mode

Gets or sets a value indicating whether you have provided your own
data-management operations for the List View control.

List View Methods

 Begin Update() Tells the list view to stop drawing updates until End
Update() is called. This is useful when one are inserting many items at
once because it stops the view from flickering, and dramatically
increases speed.

 Clear() Clears the list view completely. All items and columns are
removed.

 End Update() Call this method after calling Begin Update. When one
call this method, the list view draws all of its items.

 Ensure Visible() Tells the list view to scroll itself to make the item
with the index one specified visible.

 Get Item At() Returns the List View Item at position x,y in the list
view.

Events of the ListView Control

The following are some of the commonly used events of the ListView
control −

Sr.No. Event & Description

1 ColumnClick

Occurs when a column header is clicked.

2 ItemCheck

Occurs when an item in the control is checked or unchecked.

3 SelectedIndexChanged

Occurs when the selected index is changed.

4 TextChanged

Occurs when the Text property is changed.

79

5.9 TABCONTROL CONTROL

The Tab Control manages tab pages where each page may host

different child controls. In this article, I will demonstrate how to create

and use a Tab Control in Windows Forms.

The Tab Control control provides an easy way to organize a dialog
into logical parts that can be accessed through tabs located at the top of the
control. A Tab Control contains Tab Pages that essentially work like a
Group Box control, in that they group controls together, although they are
somewhat more complex.

Using the Tab Control is easy. One simply add the number of tabs
one want to display to the control’s collection of Tab Page objects and
then drag the controls one want to display to the respective pages.

Tab Control Properties
The properties of the Tab Control are largely used to control the

appearance of the container of Tab Page objects — in particular, the tabs
displayed.

Understanding the Tab Control and Tab Page class

A Tab Control is a collection of tab pages and a tab page is the
actual control that hosts other child controls. TabPage class represents a
tab page.

Tab Control class represents a Tab Control. This class provides
members (properties, methods, and events) to work with the Tab Controls.
Table 1 lists the Tab Control properties.

Property Description

Alignment Area of the control where the tabs are aligned.

Appearance Visual appearance of the control's tabs.

DrawMode A way that the control's tab pages are drawn.

HotTrack Value indicating whether the control's tabs change in
appearance when the mouse passes over them.

ImageList The images to display on the control's tabs.

ItemSize Size of the control's tabs.

Multiline A value indicating whether more than one row of tabs
can be displayed.

Padding Amount of space around each item on the control's tab
pages.

80

RowCount Returns the number of rows that are currently being
displayed in the control's tab strip.

SelectedIndex The index of the currently-selected tab page.

SelectedTab Currently selected tab page.

ShowToolTips The value indicating whether a tab's ToolTip is shown
when the mouse passes over the tab.

SizeMode The way that the control's tabs are sized.

TabCount Number of tabs in the tab strip.

TabPages Returns the collection of tab pages in this tab control.

Adding TabPage to a TabControl
Now I will add few tabs to the TabControl with the help of

Properties window of TabControl. The Properties window has a property
called TabPages, which is a collection of TabPage controls (see Figure 2).
A TabPage represents a page of the TabControl that can host child
controls.

Figure 2. TabPages property of TabControl

81

Now if you click on TabPages property in Property window, it
launches TabPage Collection Editor (see Figure 3) where you can add a
new page or remove existing pages by using Add and Remove buttons.
You can also set the properties of pages by using the right side properties
grid. As you can see from Figure 3, I add two pages and set their
properties.

Figure 3. Adding Tab pages to a TabControl

After adding two pages to Tab Control, the final Form looks like Figure 4.

Figure 4. A Form with two Tab pages

82

Adding and Removing a Tab Page to Tab Control Programmatically

You can add and remove Tab pages to a Tab Control using the Tab
Control. Tab Pages. Add and Tab Control. Tab Pages. Remove methods.
The following code snippet adds a new page to the Tab Control
programmatically:

1. TabPage newPage = new TabPage("New Page");
2. tabControl1.TabPages.Add(newPage);

After adding the page, the new TabControl would look like Figure 5.

Figure 5.Adding a Tab page programmatically.

The Remove method of Tab Page Collection class (through Tab
Control. Tab Pages) removes a page by name or index from the page
collection. The following code snippet removes "New Page" from the
collection:

1. TabPage newPage = new TabPage("New Page");
2. tabControl1.TabPages.Remove(newPage);

The Remove All method removes all the pages from the collection.

Adding Controls to a TabPage

Adding controls to a Tab Page is similar to adding controls to a
Form. Make a page active in the Form Designer and drag and drop
controls from Toolbox to the page. I add a Label, a Text Box, and a Button
control to Settings page of TabControl and change their properties. The
final page looks like Figure 6.

83

Figure 6. Adding controls to a Tab page

Controls are added to a page by using TabPage.Controls.Add
method. Now if you see the code generated by the designer, you will
notice the following code:

1. this.SettingsPage.Controls.Add(this.BrowseBtn);
2. this.SettingsPage.Controls.Add(this.textBox1);
3. this.SettingsPage.Controls.Add(this.label1);

Using the same code, you can even add controls to a TabPage
programmatically.

5.10 MENUS

How many Windows applications can one think of that do not
contain a menu or toolbar of some Kind? None, right? Menus and toolbars
are likely to be important parts of any application one will write for the
Windows operating system. To assist one in creating them for one
applications, Visual Studio 2010 provides two controls that enable one to
create, with very little difficulty, menus and toolbars that look like the
menus one find in Visual Studio.

The controls one will use can be grouped into a family of controls
that has the suffix Strip. They are the Tool Strip, Menu Strip, and Status
Strip. One return to the Status Strip later in the chapter. In their purest
form, the Tool Strip and the Menu Strip are in fact the same control,
because Menu Strip derives directly from the Tool Strip. This means that
anything the Tool Strip can do, the Menu Strip can do.

84

The Menu Strip Control
In addition to the Menu Strip control, several additional controls

are used to populate a menu. The three most common of these are the Tool
Strip MenuItem, Tool Strip Drop Down, and the Tool Strip Separator.

All of these controls represent a particular way to view an item in a
menu or a toolbar.

The Tool Strip MenuItem represents a single entry in a menu, the
Tool Strip Drop Down represents an item that when clicked displays a list
of other items, and the Tool Strip Separator represents a horizontal or
vertical dividing line in a menu or toolbar.

There is another kind of menu that is discussed briefly after the
discussion of the Menu Strip the Context Menu Strip. A context menu
appears when a user right-clicks on an item, and typically displays
information relevant to that item.

A menu on a form is created with a Main Menu object, which is a

collection of Menu Item objects. You can add menus to Windows Forms

at design time by adding the Main Menu control and then adding menu

items to it using the Menu Designer. Menus can also be added

programmatically by adding one or more Main Menu controls to a form

and adding Menu Item objects to the collection.

Now we perceive the following information regarding menus with
instances.

1. Adding Menu,Menu Items to a Menu.
2. Adding Menu Enhancements to Windows Forms Menus.
3. Replacing, Cloning, Merging of Menus.
4. Context menus (Popupmenus).

Adding Menu, Menu Items to a Menu

First add a Main Menu control to the form. Then to add menu
items to it add Menu Item objects to the collection. By default, a
MainMenu object contains no menu items, so that the first menu item
added becomes the menu heading. Menu items can also be dynamically
added when they are created, such that properties are set at the time of
their creation and addition.

The following program shows how to create a simple menu

The Class MenuTest1 creates a simple menu on a form. The form has a
top-level File menu with menu items New,Open and Exit .The menu also
includes a About menu.
using System;
usingSystem.Collections.Generic;

85

usingSystem.ComponentModel;
usingSystem.Data;
usingSystem.Drawing;
usingSystem.Threading.Tasks;
usingSystem.Windows.Forms;

namespace WindowsFormsApplication1
{
publicpartialclassForm1 : Form

{
privateMainMenumainMenu;

publicvoid MenuTest1()
{

InitializeComponent();
mainMenu = newMainMenu();
MenuItem File = mainMenu.MenuItems.Add("&File");
File.MenuItems.Add(newMenuItem("&New"));
File.MenuItems.Add(newMenuItem("&Open"));
File.MenuItems.Add(newMenuItem("&Exit"));
this.Menu = mainMenu;
MenuItem About = mainMenu.MenuItems.Add("&About");
About.MenuItems.Add(newMenuItem("&About"));
this.Menu = mainMenu;
mainMenu.GetForm().BackColor = Color.Indigo;

}

}
}

5.11 TOOLBARS

While menus are great for providing access to a multitude of
functionality in oner application, some items benefit from being placed in
a toolbar as well as on the menu. A toolbar provides one-click access to
such frequently used functionalities as Open, Save, and so on.

86

A button on a toolbar usually displays a picture and no text,
although it is possible to have buttons with both. Examples of toolbars
with no text are those found in Word, and examples of toolbars that
include text can be found in Internet Explorer. In addition to buttons, one
will occasionally see combo boxes and text boxes in the toolbars too. If
one let the mouse pointer hover above a button in a toolbar, it will often
display a tool tip, which provides information about the purpose of the
button, especially when only an icon is displayed.

The Tool Strip, like the Menu Strip, has been made with a
professional look and feel in mind. When users see a toolbar, they expect
to be able to move it around and position it wherever they want it. The
Tool Strip enables users to do just that — that is, if one allow them to.

When one first add a Tool Strip to the design surface of oner form
it looks very similar to the Menu Strip shown earlier, except for two
things: To the far left are four vertical dots, just as one know them from
the menus in Visual Studio. These dots indicate that the toolbar can be
moved around and docked in the parent application window. The second
difference is that by default a toolbar displays images, rather than text, so
the default of the items in the bar is a button. The toolbar displays a drop-
down menu that enables one to select the type of the item.

One thing that is exactly like the Menu Strip is that the Actions
window includes a link called Insert Standard Items. When one click this,
one don’t get quite the same number of items as one did with the Menu
Strip, but one get the buttons for New, Open, Save, Print, Cut, Copy,
Paste, and Help.

Tool Strip Properties
The properties of the Tool Strip control and manage how and

where the control is displayed. Remember that this control is actually the
base for the Menu Strip control shown earlier, so many properties are
shared between them. Again, the table that follows shows only a few
properties of special interest — if one want a complete listing please refer
to .NET Framework SDK documentation.

PROPERTY DESCRIPTION
Grip Style Controls whether the four vertical dots are displayed at the far
left of the toolbar.

The effect of hiding the grip is that users can no longer move the
toolbar. Laonet Style Controls how the items in the toolbar are displayed.
The default is horizontally.=Items Contains a collection of all the items in
the toolbar. ShowTime Tool Tip determines whether tool tips should be
shown for the items in the toolbar.

87

Stretch By default, a toolbar is only slightly wider or taller than the
items contained within it. If one set the Stretch property to true, the toolbar
will fill the entire length of its container.

Tool Strip Items
One can use numerous controls in a ToolStrip. Earlier, it was

mentioned that a toolbar should be able to contain buttons, combo boxes,
and text boxes. As one would expect, there are controls for each of these
items, but there are also quite a few others, described in the following
table:

CONTROL DESCRIPTION
Tool Strip Button Represents a button. One can use this for buttons

with or without text. Tool Strip Label Represents a label. It can also
display images, which means that this control can be used to display a
static image in front of another control that doesn’t display information
about itself, such as a text box or combo box.

Tool Strip Split Button Displays a button with a drop-down button
to the right that, when clicked, displays a menu below it. The menu does
not unfold if the button part of the control is clicked.

CONTROL DESCRIPTION
Tool Strip Drop Down Button Similar to the Tool Strip Split Button. The
only difference is that the drop-down button has been removed and
replaced with an image of a down arrow. The menu part of the control
unfolds when any part of the control is clicked.

Tool Strip Combo Box Displays a combo box.
Tool Strip Progress Bar Embeds a progress bar in oner toolbar.
Tool Strip Text Box Displays a text box.
Tool Strip Separator Creates horizontal or vertical dividers for the items.
One saw this control earlier.

5.12 SDI AND MDI APPLICATIONS

Traditionally, three kinds of applications can be programmed for
Windows:

 Dialog-based applications: These present themselves to the user
as a single dialog from whichall functionality can be reached.

 Single-document interfaces (SDI): These present themselves to
the user with a menu, one ormore toolbars, and one window in
which the user can perform some task.

 Multiple-document interfaces (MDI): These present themselves
to the user in the same manneras an SDI, but are capable of
holding multiple open windows at one time.

88

Dialog-based applications are usually small, single-purpose
applications aimed at a specific task that needs a minimum of data to be
entered by the user or that target a very specific type of data. An example
of such an application is the Windows Calculator.

Single-document interfaces are each usually aimed at solving one
specific task because they enable users to load a single document into the
application to be worked on. This task usually involves a lot of user
interaction, and users often want the capability to save or load the result of
their work. Good examples of SDI applications are WordPad and Paint,
both of which come with Windows. The simple text editor one’ve been
creating in this chapter so far is another example of an SDI application.

However, only one document can be open at any one time, so if a
user wants to open a second document, a fresh instance of the SDI
application must be opened, and it will have no reference to the first
instance. Any configuration one do to one instance is not carried over into
the other. For example, in one instance of Paint one might set the drawing
color to red, but when oneopen a second instance of Paint, the drawing
color is the default, which is black.

Multiple-document interfaces are much the same as SDI
applications, except that they can hold more than one document open in
different windows at any given time. A telltale sign of an MDI
applicationis the inclusion of the Window menu just before the Help menu
on the menu bar. Visual Studio is an advanced example of an MDI
application. Every designer and editor in Visual Studio opens in the same
application, and the menus and toolbars adjust themselves to match the
current selection.

5.13 BUILDING MDI APPLICATIONS

What is involved in creating an MDI? First, the task one want
users to be able to accomplish should be one for which they would want to
have multiple documents open at one time. A good example of this is a
text editor or a text viewer. Second, one provide toolbars for the most
commonly used tasks in the application, such as setting the font style, and
loading and saving documents. Third, one provide a menu that includes a
Window menu item that enables users to reposition the open windows
relative to each other (tile and cascade) and that presents a list of all open
windows. Another feature of MDI applications is that when a window is
open and that window contains a menu, that menu should be integrated
into the main menu of the application.

An MDI application consists of at least two distinct windows. The
first window one creates is called an MDI container. A window that can
be displayed within that container is called an MDI child. This chapter
refers to the MDI container as the MDI container or main window
interchangeably, and to the MDI child as the MDI child or child window.

89

You will create an MDI form in the Win App project. You will
also see how to create a menu bar for the parent form, that will allow you
to navigate to all the child forms. To do so, follow these steps:

1. Navigate to Solution Explorer, select the Win App project, right-
click, and select "Add" -> "Windows form". Change the Name
value from "Form1.cs" to "Parent Form.cs", and click "Add".

2. Select the newly added Parent Form in the Design View. Select the
Parent Form form by clicking the form's title bar, navigate to the
Properties window, and set the following properties:

o Set the "IsMdi Container" property to True (the default
value is False). Notice that the background color of the
form has changed to dark gray.

o Set the Size property's Width to 546 and Height to 411.

3. Drag a MenuStrip control to the ParentForm. In the top-left corner,
you should now see a drop-down showing the text "Type Here".
Enter the text "Open Forms" in the drop-down. This will be your
main, top-level menu.

4. Now under the Open Forms menu, add a submenu by entering the
text "Win App".

5. Under the Win App submenu, enter "User Info".

6. Now click the top menu, "Open Forms", and on the right side of it,
type "Help". Under the Help menu, enter "Exit".

7. Now, click the top menu, on the right side of Help, type
"Windows".

8. Under the Windows menu, add the following options as separate
submenus: Cascade, Tile Horizontal, Tile Vertical, and Arrange
Icons. These will help in arranging the child forms.

9. Now it's time to attach code to the submenus you have added under
the main menu Open Forms. First, you'll add code for the submenu
Win App, that basically will open the WinApp form. In the Design
View, double-click the "Win App" submenu, that will take you to
the Code View. Under the click event, add the following code:

WinAppobjWA = new WinApp();
objWA.Show();

10. Now to associate functionality with the User Info submenu:
double-click this submenu, and under the click event add the
following code:

UserInfoobjUI = new UserInfo();
objUI.Show();

90

11. To associate functionality with the Exit submenu located under the
Help main menu, double-click "Exit", and under the click event
add the following code:

Application. Exit();

12. Now you have the form-opening code functionality in place, and
you are nearly set to run the application. But first, you need to set
the ParentForm as the start-up object. To do so, open Program.cs,
and modify the "Application. Run(new User Info());" statement to
the following:

Application. Run(new Parent Form());

13. Now build the solution, and run the application by pressing F5; the
MDI application will open and should look as in Figure 1-1.

Figure 1-1. Running an MDI form application

14. Now if you click "Win App" and then "User Info" then both the
forms will open one by one. These forms can be opened and
dragged outside of the MDI form. This is not an expected behavior
from a MDI application, as shown in Figure 1-2.

91

This issue will be addressed later in this chapter.

Figure 1-2. Running an MDI form application

How It Works

Each Windows Forms form is a class and exposes a Show() function by an
instance created for it. You use the following code, that is creating an
object and then invoking the Show() method. This opens the other form
from the MDI parent form.

This creates an instance of the WinApp form and opens it for you:
WinAppobjWA = new WinApp();
objWA.Show();
The following code creates an instance of the UserInfo form and opens it
for you:
UserInfoobjUI = new UserInfo();
objUI.Show();
You close the application with the following code:
Application. Exit();

5.14 SUMMARY

This chapter gives the basic of Windows form control in asp,net. It

discusses about controls properties, methods and events. After learning the

above topics, you can desing windows applicationand many useful

programs and built a strong foundation for larger programming projects.

92

5.15 EXERCISE

1. Explain the text box control. List and explain any four text box
attributes.

2. What is the difference between check box and radio button control?
What are the common attributes associated with these controls?

3. Explain any five properties of List box and Drop-down list controls.

4. Explain Listbox with properties and methods.

5. What is the difference between List Box and Drop-Down Lists? List
and explain any three common properties of these controls.

6. Explain MDI Form in details

7. Explain Menu control with its properties.

8. Explain Toolbar with its properties.

5.16 REFERENCE

1) The Complete Reference: C#

2) Visual C# 2012: How to program.

3) https://docs.microsoft.com/en-us/dotnet/csharp/

4) https://www.c-sharpcorner.com

















93

6

INTRODUCTION TO ASP.NET 4

The .NET Framework is Microsoft's comprehensive and consistent

programming model for building applications that have visually stunning

user experiences, seamless and secure communication, and the ability to

model a range of business processes.

The .NET Framework 4 works side by side with older Framework

versions. Applications that are based on earlier versions of the Framework

will continue to run on the version targeted by default.

The Microsoft .NET Framework 4 provides the following new

features and improvements:

 Improvements in Common Language Runtime (CLR) and Base Class
Library (BCL)

 Performance improvement including better multicore support,
background garbage collection, and profiler attach on server.

 New memory mapped file and numeric types.

 Easier debugging including dump debugging, Watson minidumps,
mixed mode debugging for 64 bit and code contracts.

 Innovations in the Visual Basic and C# languages, for example
statement lambdas, implicit line continuations, dynamic dispatch, and
named/optional parameters.

 Improvements in Data Access and Modeling

 The Entity Framework enables developers to program against
relational databases using .NET objects and Language Integrated
Query (LINQ). It has many new features, including persistence
ignorance and POCO support, foreign key associations, lazy loading,
test-driven development support, functions in the model, and new
LINQ operators. Additional features include better n-tier support with
self-tracking entities, customizable code generation using T4
templates, model first development, an improved designer experience,
better performance, and pluralization of entity sets. For more
information go here.

 WCF Data Services is a component of the .NET Framework that
enables you to create REST-based services and applications that use

94

the Open Data Protocol (OData) to expose and consume data over the
Web. WCF Data Services has many new features, including enhanced
BLOB support, data binding, row count, feed customization,
projections, and request pipeline improvements. Built-in integration
with Microsoft Office 2010 now makes it possible to expose Microsoft
Office SharePoint Server data as an OData feed and access that data
feed by using the WCF Data Services client library

 Enhancements to ASP.NET

 More control over HTML, element IDs and custom CSS that make it
much easier to create standards-compliant and SEO-friendly web
forms.

 New dynamic data features including new query filters, entity
templates, richer support for Entity Framework 4, and validation and
templating features that can be easily applied to existing web forms.

 Web forms support for new AJAX library improvements including
built-in support for content delivery networks (CDNs).

 Improvements in Windows Presentation Foundation (WPF)

 Added support for Windows 7 multi-touch, ribbon controls, and
taskbar extensibility features.

 Added support for Surface 2.0 SDK.

 New line-of-business controls including charting control, smart edit,
data grid, and others that improve the experience for developers who
build data centric applications.

 Improvements in performance and scalability.

 Visual improvements in text clarity, layout pixel snapping,
localization, and interoperability.

 Improvements to Windows Workflow (WF) that enable developers to
better host and interact with workflows. These include an improved
activity programming model, an improved designer experience, a new
flowchart modeling style, an expanded activity palette, workflow-rules
integration, and new message correlation features. The .NET
Framework 4 also offers significant performance gains for WF-based
workflows.

 Improvements to Windows Communication Foundation (WCF) such
as support for WCF Workflow Services enabling workflow programs
with messaging activities, correlation support. Additionally, .NET
Framework 4 provides new WCF features such as service discovery,
routing service, REST support, diagnostics, and performance.

 Innovative new parallel-programming features such as parallel loop
support, Task Parallel Library (TPL), Parallel LINQ (PLINQ), and
coordination data structures which let developers harness the power of
multi-core processors.

95

ASP.NET Lifecycle

ASP.NET life cycle specifies, how:

 ASP.NET processes pages to produce dynamic output.

 The application and its pages are instantiated and processed.

 ASP.NET compiles the pages dynamically.

The ASP.NET life cycle could be divided into two groups:

 Application Life Cycle.

 Page Life Cycle.

Let's look at the various stages of a typical page lifecycle of an ASP.Net

Web Application.

1. Application Start: The life cycle of an ASP.NET application starts
when a request is made by a user. This request is to the Web server for the
ASP.Net Application. This happens when the first user normally goes to
the home page for the application for the first time. During this time, there
is a method called Application_ start which is executed by the web server.
Usually, in this method, all global variables are set to their default values.

2. Object Creation: The next stage is the creation of the Http Context,
Http Request & Http Response by the web server. The Http Context is just
the container for the Http Request and Http Response objects. The Http
Request object contains information about the current request, including
cookies and browser information. The Http Response object contains the
response that is sent to the client.

3. Http Application Creation: This object is created by the web
server. It is this object that is used to process each subsequent request sent
to the application. For example, let's assume we have 2 web applications.
One is a shopping cart application, and the other is a news website. For
each application, we would have 2 Http Application objects created. Any
further requests to each website would be processed by each Http
Application respectively.

96

4. Dispose: This event is called before the application instance is
destroyed. During this time, one can use this method to manually release
any unmanaged resources.

5. Application End: This is the final part of the application. In this
part, the application is finally unloaded from memory.

ASP.NET Page Life Cycle

When a page is requested, it is loaded into the server memory,

processed, and sent to the browser. Then it is unloaded from the memory.

At each of these steps, methods and events are available, which could be

overridden according to the need of the application. In other words, you

can write your own code to override the default code.

The Page class creates a hierarchical tree of all the controls on the

page. All the components on the page, except the directives, are part of

this control tree. You can see the control tree by adding trace= "true" to

the page directive. We will cover page directives and tracing under

'directives' and 'event handling'.

Let's look at the various stages of the lifecycle of an ASP.Net web page.

1. Page Request: This is when the page is first requested from the
server. When the page is requested, the server checks if it is requested for
the first time. If so, then it needs to compile the page, parse the response
and send it across to the user. If it is not the first time the page is
requested, the cache is checked to see if the page output exists. If so, that
response is sent to the user.

2. Page Start: During this time, 2 objects, known as the Request and
Response object are created. The Request object is used to hold all the
information which was sent when the page was requested. The Response
object is used to hold the information which is sent back to the user.

97

3. Page Initialization: During this time, all the controls on a web page
is initialized. So if you have any label, textbox or any other controls on the
web form, they are all initialized.

4. Page Load: This is when the page is actually loaded with all the
default values. So if a textbox is supposed to have a default value, that
value is loaded during the page load time.

5. Validation: Sometimes there can be some validation set on the
form. For example, there can be a validation which says that a list box
should have a certain set of values. If the condition is false, then there
should be an error in loading the page.

6. Postback Event Handling: This event is triggered if the same page
is being loaded again. This happens in response to an earlier event.
Sometimes there can be a situation that a user clicks on a submit button on
the page. In this case, the same page is displayed again. In such a case, the
Postback event handler is called.

7. Page Rendering: This happens just before all the response
information is sent to the user. All the information on the form is saved,
and the result is sent to the user as a complete web page.

8. Unload: Once the page output is sent to the user, there is no need
to keep the ASP.net web form objects in memory. So the unloading
process involves removing all unwanted objects from memory.

Let’s look at the ASP.NET life cycle events in detail:

Page Event Typical Use

PreInit This event is raised after the start stage is

complete and before the initialization stage.

Init This event occurs after all controls have been

initialized.

We can use this event to read or initialize control

properties.

InitComplete This event occurs at the end of the page's

initialization stage.

We can use this event to make changes to view

state that we want to make sure are persisted

after the next postback.

PreLoad This event is occurs before the post back data is

loaded in the controls.

98

Load This event is raised for the page first time and

then recursively for all child controls.

Control events This event is used to handle specific control

events such as Button control' Click event.

Load Complete This event occurs at the end of the event-

handling stage.

We can use this event for tasks that require all

other controls on the page be loaded.

Pre Render This event occurs after the page object has

created all controls that are required in order to

render the page.

Pre Render Complete This event occurs after each data bound control

whose DataSourceID property is set calls its

DataBind method.

Save State Complete It is raised after view state and control state have

been saved for the page and for all controls.

Render This is not an event; instead, at this stage of

processing, the Page object calls this method on

each control.

Unload This event raised for each control and then for

the page.



99

7
ASP.NET SERVER CONTROLS

Controls are small building blocks of the graphical user interface,
which include text boxes, buttons, check boxes, list boxes, labels, and
numerous other tools. Using these tools, the users can enter data, make
selections and indicate their preferences.

Controls are also used for structural jobs, like validation, data
access, security, creating master pages, and data manipulation.

These controls provide the following features:

 Automatic state management.

 Simple access to object values without having to use
the Request object.

 Ability to react to events in server-side code to create applications that
are better structured.

 Common approach to building user interfaces for Web pages.

 Output is automatically customized based on the capabilities of the
browser.

In addition to the built-in controls, the ASP.NET page framework
also provides the ability to create user controls and custom controls. User
controls and custom controls can enhance and extend existing controls to
build a much richer user interface.

Hierarchy of Server Control :

Control class in System. Web.UI namespace is the base class of all
the web server controls. In fact, page class which is the base class of web
form we create, is also derived from Control class.

100

Control Class Properties:

Client ID :
Return unique identifier for the control created by ASP.NET when the
page is instantiated.

Controls :
Return child controls collection.

Enable View State :
Returns the boolean value indicating whether viewstate should be
maintained across postback.

Visible :
Returns boolean value indicating whether control should be displayed or
not.

Parent :
Returns reference to control which is parent to the control.

Page :
Returns reference to page which contains control.

ID:
Returns or sets identifier for the control.
Control Class Methods:

Data Bind():
Bind Control to its data source.

Find Control():
Searches and returns child control within parent control. Returned control
needs to be cast to proper type.

Has Controls():
Returns boolean value indicating whether control has any child control.

Render():
Generates html from the control based on its current state.

101

HTML Server Controls

Html Control is the base class of all HTML server controls.

The HTML server controls are Hypertext Markup Language
(HTML) elements that include a runat=server attribute. The HTML server
controls have the same HTML output and the same properties as their
corresponding HTML tags. In addition, HTML server controls provide
automatic state management and server-side events. HTML server
controls offer the following advantages:

 The HTML server controls map one to one with their corresponding
HTML tags.

 When the ASP.NET application is compiled, the HTML server
controls with the runat=server attribute are compiled into the
assembly.

 Most controls include an OnServerEvent for the most commonly
used event for the control. For example, the <input type=button>
control has an OnServerClick event.

 The HTML tags that are not implemented as specific HTML server
controls can still be used on the server side; however, they are added
to the assembly as HtmlGenericControl.

 When the ASP.NET page is reposted, the HTML server controls keep
their values.

102

The System. Web. UI. Html Controls. Html Control base class
contains all of the common properties. HTML server controls derive from
this class.

To use an HTML server control, use the following syntax (which
uses the HtmlInput Text control as an example):

<input type="text" value="hello world" runat=server />

The following table describes the HTML server controls:

Web Server Controls
All web controls are defined in a System. Web. UI. Web

Controls namespace and derive from Web Control base class.
These web controls are able to generate not just single html tag
but more complex output consists of several HTML tags and
JavaScript code.

Figure shows the inheritance hierarchy of web controls.

103

Web server controls offer the following advantages:

 Make it easier for manufacturers and developers to build tools or
applications that automatically generate the user interface.

 Simplify the process of creating interactive Web forms, which
requires less knowledge of how HTML controls work and make the
task of using them less prone to errors.

To use a Web server control, use the following syntax (which uses
the Text Box control as an example):

<asp:textbox text="hello world" runat=server />

Web server controls can be divided into four categories:

 Basic Web Controls

 Validation Controls

 List Controls

 Rich Controls

Basic Web Controls
Basic Web controls provide the same functionality as their HTML

server control counterparts. However, basic Web control include
additional methods, events, and properties against which you can program.

Button Web Server Control, CheckBox Web Server Control,
HyperLink Web Server Control, Image Web Server Control, ImageButton
Web Server Control, Label Web Server Control are some of the basic web
controls.

104

Validation Controls

Validation controls are used to validate the values that are entered
into other controls of the page. Validation controls perform client-side
validation, server-side validation, or both, depending on the capabilities of
the browser in which the page is displayed. Validation controls offer the
following advantages:

 You can associate one or more validation controls with each control
that you want to validate.

 The validation is performed when the page form is submitted.

 You can specify programmatically whether validation should occur,
which is useful if you want to provide a cancel button so that the user
can exit without having to fill valid data in all of the fields.

 The validation controls automatically detect whether validation
should be performed on the client side or the server side.

Note A client-side validation catches errors before a postback
operation is complete. Therefore, if you have combinations of client-
side and server-side validation controls on a single page, the server-
side validation will be preempted if a client-side validation fails.

In ASP.NET following validation controls exists –

 Require Field Validator: Checks value of the control is not empty
when form is submitted.

 Range Validator: Checks the value of the control is in specified
range.

 Compare Validator: Checks the value of the control matches
comparison against another control value or value.

 Regular Expression Validator: Checks the value of the control
matches specific Regular Expression.

 Custom Validator: Allows you to specify your custom validation
logic (client side or server side)

 Validation Summary: Shows Summary of Validation Messages
generated by all Validation controls on web page or popup
message.

All the Validation Controls are derived from Base Validator class and
are found in System. Web. UI. Web Controls namespace.

List Controls

105

List controls are special Web server controls that support binding
to collections. You can use list controls to display rows of data in a
customized, templated format. All list controls expose Data
Source and Data Member properties, which are used to bind to collections.

List controls can bind only to collections that support the I Enumerable, I
Collection, or I List Source interfaces.

For example, a Microsoft Visual C# .NET sample page appears as
follows:

<%@ Page Language="C#" %>
<script runat="server">
Public void Page_Load()
{
String[] myStringArray = new String[] {"one","two","three"};
rptr.DataSource = myStringArray;
rptr.DataBind();
}
</script>
<html>
<body>
<asp:repeater id=rptrrunat="server">
<itemtemplate><%# Container.DataItem %>
</itemtemplate>
</asp:repeater>
</body>
</html>

A Microsoft Visual Basic .NET sample page appears as follows:

<%@ Page Language="vb" %>
<script runat="server">
public sub Page_Load()

Dim myStringArray as String()
myStringArray = new String() {"one","two","three"}
rptr.DataSource = myStringArray
rptr.DataBind()
end sub
</script>
<html>
<body>
<asp:repeater id=rptrrunat="server">
<itemtemplate><%# Container.DataItem %>
</itemtemplate>
</asp:repeater>
</body>
</html>

The output appears as follows:

106

one

two

three

List Box Web Server Control, Check Box List Web Server Control, Radio
Button List Web Server Control, Repeater Web Server Control, Data List
Web Server Control, Data Grid Web Server Control, Drop Down List Web
Server Control are some of the List Controls.

Rich Controls
In addition to the preceding controls, the ASP.NET page

framework provides a few, task-specific controls called rich controls. Rich
controls are built with multiple HTML elements and contain rich
functionality. Examples of rich controls are the Calendar control and
the Ad Rotator control.

Ad Rotator: This control is used to display banner ads from a set of
images. You can display each image for a predefined schedule configured
in xml file.

Calendar: This control is used to display date. User can move through
months, days to select date.

User Controls
User controls behaves like miniature ASP.NET pages or web

forms, which could be used by many other pages. These are derived from
the System. Web. UI. User Control class.

To convert a Web Form into a user control, follow these steps:

1. Remove all <html>,<head>, <body> and <form> tags.

2. If the @ Page directive appears in the page, change it to @ Control.

3. Include a class Name attribute in the @ Control directive so that the
user control is typed strongly when you instantiate it.

4. Give the control a descriptive file name, and change the file extension
from .aspx to .ascx.

Custom Controls
Custom control is a control that is not included in the .NET

framework library and is instead created by a third-party software vendor
or a user.

Custom control is a concept used while building both Windows

107

Forms client and ASP.NET Web applications. Custom client controls are
used in Windows Forms applications, while custom server controls are
used in ASP.NET pages (Web forms). Using custom controls is easier in
.NET than the earlier Windows versions due to simple programming
techniques.

Custom control is a generic term that also includes user controls.
User control in ASP.NET is created using ASP.NET code and is reused in
other Web pages, whereas user control in the context of Windows Forms
implies a composite control with a consistent user interface (UI) and
behavior within or across applications.

STATE MANAGEMENT
No web application framework, no matter how advanced, can

change the fact that HTTP is a stateless protocol. After every web request,
the client disconnects from the server, and the ASP.NET engine discards
the objects that were created for the page. This architecture ensures that
web applications can scale up to serve thousands of simultaneous requests
without running out of server memory. The drawback is that your code
needs to use other techniques to store information between web requests
and retrieve it when needed.

In this section, you’ll see how to tackle this challenge by
maintaining information on the server and on the client using a variety of
techniques. You’ll also learn how to transfer information from one web
page to another.

State Management changes in ASP.NET 4

ASP.NET 4 adds a few refinements to its state management features:

Opt-in view state: ASP.NET 4 adds a View State Mode property that
allows you to disable view state for a page but then selectively enable
view state for those controls that absolutely require it.

This opt-in model of view state is described in the “Selectively Disabling
View State” section.

Session compression: ASP.NET 4 introduces a compression feature that
reduces the size of data before it’s sent to an out-of-process state provider.
This feature is described in the “Compression” section.

Selectively enabling session state: ASP.NET 4 adds the Http Context. Set
Session State Behavior() method. You can create an HTTP module (as
described in Chapter 5) that examines the current request and then calls
SetSessionStateBehavior() to programmatically enable or disable session
state. The idea here is to wring just a bit more performance out of your

108

web application by disabling session state when it’s not needed but still
allowing it to work for some requests.

However, this is a fairly specialized optimization technique that
most developers won’t use.

Partial session state: Session state now recognizes the concept of partial
state storage and retrieval, which could theoretically allow you to pull just
a single property out of a serialized object.

As promising as this sounds, no current state providers support it,
so you can’t use this feature in your applications just yet. Microsoft may
release session state providers that support this feature in future versions
of ASP.NET or sooner—for example, with new products like Windows
Server

App Fabric (http://tinyurl.com/yhds97y).

ASP.NET includes a variety of options for state management. You
choose the right option depending on the data you need to store, the length
of time you want to store it, the scope of your data (whether it’s limited to
individual users or shared across multiple requests), and additional
security and performance considerations. The different state management
options in ASP.NET are complementary, which means you’ll almost
always use a combination of them in the same web application (and often
the same page).

State Management Options Compared (Part 1)

View State Query String Custom Cookies

Allowed data
types

All
serializable
.NET data
types.

A limited amount
of

string data.

String data.

Storage
location

A hidden field
in the current
web page.

The browser’s URL
string.

The client’s
computer (in

memory or a small
text file, depending
on its lifetime
settings).

Lifetime Retained
permanently

for postbacks
to a single
page.

Lost when the user
enters a new URL
or closes the
browser. However,
can be stored and
can persist between
visits.

Set by the
programmer. It can
be used in multiple
pages and it persists
between visits.

109

Scope Limited to the
current page.

Limited to the
target page.

The whole
ASP.NET
application.

Security Tamper-proof
by default but
easy to read.
You can use
the Page
directive to

Enforce
encryption.

Clearly visible and
easy for the user to
modify.

Insecure and can be

modified by the
user.

Performance

Implications

Storing a
large

amount of

information
will slow

transmission
but will

not affect
server

performance.

None, because the

amount of data is

trivial.

None, because the
amount

of data is trivial.

Typical use Page-specific
settings.

Sending a product
ID from a catalog
page to a details
page.

Personalization

preferences for a
website.

State Management Options Compared (Part 2)

Session State Application State

Allowed data types All serializable .NET
data types.

Nonserializable types are
supported if you are
using the default in-
process state service.

All .NET data types.

Storage location Server memory (by
default), or a dedicated

database, depending on
the mode you choose.

Server memory.

Lifetime Times out after a
predefined period
(usually 20 minutes but
can be altered globally or
programmatically).

The lifetime of the
application

(typically, until the
server is rebooted).

110

Scope The whole ASP.NET
application.

The whole ASP.NET
application.

Unlike most other
types of

methods, application
data is

global to all users.

Security Secure, because data is
never transmitted

to the client. However,
subject to session

hijacking if you don’t
use SSL.

Very secure, because
data is

stored on the server.

Performance

Implications

Storing a large amount
of information can slow
down he server
severely, especially if

there are a large number
of users at once, because
each user will have a
separate set of session
data.

Storing a large
amount of

information can slow
down the

server, because this
data will

never time out and be
removed.

Typical use Store items in a shopping
basket.

Storing any type of
global data.

State Management Options Compared (Part 3)

Profiles Caching

Allowed data types All serializable .NET data
types.

All .NET data types.
Nonserializable types
are supported if you
create a custom profile.

Storage location A back-end database. Server memory.

Lifetime Permanent. Depends on the
expiration policy you
set, but may possibly be
released early if server
memory becomes
scarce.

Scope The whole ASP.NET

application. May also be
accessed by other

applications.

The same as application
state (global to all users
and all pages).

111

Security Fairly secure, because

although data is never

transmitted, it is stored

without encryption in a

database that could be

compromised.

Very secure, because
the cached

data is stored on the
server.

Performance
implications

Large amounts of data can
be

stored easily, but there may

be a nontrivial overhead in

retrieving and writing the

data for each request.

Storing a large amount
of information may
force out other, more
useful cached
information.

However, ASP.NET
has the ability to

remove items early to
ensure optimum
performance.

Typical use Store customer account

information.

Storing data retrieved
from a database.

View State
View state should be your first choice for storing information

within the bounds of a single page. View state is used natively by the
ASP.NET web controls. It allows them to retain their properties between
postbacks.

You can add your own data to the view state collection using a
built-in page property called View State. The type of information you can
store includes simple data types and your own custom objects.

Like most types of state management in ASP.NET, view state
relies on a dictionary collection, where each item is indexed with a unique
string name. For example, consider this code:
View State["Counter"] = 1;

This places the value 1 (or rather, an integer that contains the value
1) into the View State collection and gives it the descriptive name
Counter. If there is currently no item with the name Counter, a new item
will be added automatically. If there is already an item indexed under the
name Counter, it will be replaced.

When retrieving a value, you use the key name. You also need to
cast the retrieved value to the appropriate data type. This extra step is
required because the View State collection casts all items to the base
Object type, which allows it to handle any type of data.

112

Here’s the code that retrieves the counter from view state and converts it
to an integer:
int counter;
if (ViewState["Counter"] != null)
{
counter = (int)ViewState["Counter"];
}

If you attempt to look up a value that isn’t present in the collection,
you’ll receive a Null Reference Exception. To defend against this
possibility, you should check for a null value before you attempt to
retrieve and cast data that may not be present.

A View State Example

Another approach to saving data for the user, is the View State. As
described elsewhere in this tutorial, the View State allows ASP.NET to
repopulate form fields on each post back to the server, making sure that a
form is not automatically cleared when the user hits the submit button. All
this happens automatically, unless you turn it off, but you can actually use
the View State for your own purposes as well. Please keep in mind
though, that while cookies and sessions can be accessed from all your
pages on your website, View State values are not carried between pages.
Here is a simple example of using the View State to carry values between
post backs:

<%@PageLanguage="C#"AutoEventWireup="true"CodeFile="Default.as
px.cs"Inherits="_Default" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">
<htmlxmlns="http://www.w3.org/1999/xhtml">
<headrunat="server">
<title>ViewState</title>
</head>
<body>
<formid="form1"runat="server">
<asp:TextBoxrunat="server"id="NameField"/>
<asp:Buttonrunat="server"id="SubmitForm"onclick="SubmitForm_Click
"text="Submit & set name"/>
<asp:Buttonrunat="server"id="RefreshPage"text="Just submit"/>

Name retrieved from ViewState:
<asp:Labelrunat="server"id="NameLabel"/>
</form>
</body>
</html>

113

And the CodeBehind:

usingSystem;
usingSystem.Data;
usingSystem.Web;

publicpartialclass_Default:System.Web.UI.Page
{
protectedvoidPage_Load(object sender,EventArgs e)
{
if(ViewState["NameOfUser"]!=null)
NameLabel.Text=ViewState["NameOfUser"].ToString();
else
NameLabel.Text="Not set yet...";
}

protectedvoidSubmitForm_Click(object sender,EventArgs e)
{
ViewState["NameOfUser"]=NameField.Text;
NameLabel.Text=NameField.Text;
}
}

Try running the project, enter your name in the textbox and press
the first button. The name will be saved in the View State and set to the
Label as well. No magic here at all. Now press the second button. This one
does nothing at all actually, it just posts back to the server.

As you will notice, the Name Label still contains the name, but so
does the textbox. The first thing is because of us, while the textbox is
maintained by ASP.NET itself. Try deleting the value and pressing the
second button again. You will see that the textbox is now cleared, but our
name label keeps the name, because the value we saved to the View State
is still there!

Accessing View State

View state is ideal because it doesn’t take up any memory on the
server and doesn’t impose anyarbitraryusage limits (such as a time-out).
So, what might force you to abandon view state for another type of state
management? Here are three possible reasons:

• You need to store mission-critical data that the user cannot be allowed to
tamper with. (An ingenious user could modify the view state information
in a postback request.) In this case, consider session state. Alternatively,
consider using the countermeasures described in the next section. They
aren’t bulletproof, but they will greatly increase the effort an attacker
would need in order to read or modify view state data.

114

• You need to store information that will be used by multiple pages. In this
case, consider session state, cookies, or the query string.

• You need to store an extremely large amount of information, and you
don’t want to slow down page transmission times. In this case, consider
using a database, or possibly session state.

The amount of space used by view state depends on the number of
controls, their complexity, and the amount of dynamic information. If you
want to profile the view state usage of a page, just turn on tracing by
adding the Trace attribute to the Page directive, as shown here:
<%@ Page Language="C#" Trace="true" ... %>

Look for the Control Tree section. Although it doesn’t provide the total
view state used by the page, it does indicate the view state used by each
individual control in the Viewstate Size Bytes column (Figure below).
Don’t worry about the Render Size Bytes column, which simply reflects
the size of the rendered HTML for the control.

Selectively Disabling View State

To improve the transmission times of your page, it’s a good idea to
eliminate view state when it’s not needed. Although you can disable view
state at the application and page level, it makes the most sense to disable it
on a per-control basis. You won’t need view state for a control in three
instances:

 The control never changes. For example, a button with static text
doesn’t needview state.

 The control is repopulated in every postback. For example, if you
have a label that shows the current time, and you set the current
time in the Page.Load event handler, it doesn’t need view state.

 The control is an input control, and it changes only because of user
actions. After each postback, ASP.NET will populate your input
controls using the submitted form values. This means the text in a
text box or the selection in a list box won’t be lost, even if you
don’t use view state.

115

To turn off view state for a single control, set the Enable View
State property of the control to false. To turn off view state for an entire
page and all its controls, set the Enable View State property of the page to
false, or use the Enable View State attribute in the Page directive, as
shown here:

<%@ Page Language="C#" EnableViewState="false" ... %>

Even when you disable view state for the entire page, you’ll still
see the hidden view state tag with a small amount of information in the
rendered HTML. That’s because ASP.NET always stores the control
hierarchy for the page at a minimum. There’s no way to remove this last
little fragment of data.

You can turn view state off for all the web pages in your
application by setting the enable View State attribute of the <pages>
element in the web.config file, as shown here:

<configuration>
<system.web>
<pages enableViewState="false" />
...
</system.web>
</configuration>

Now, you’ll need to set the Enable View State attribute of the Page
directive to true if you want to switch on view state for a particular page.
Finally, it’s possible to switch of view state for a page (either through the
Page directive or through the web. config file) but selectively override that
setting by explicitly enabling view state for a particular control. This
technique, which is new in ASP.NET 4, is popular with developers who
are obsessed with paring down the view state of their pages to the smallest
size possible. It allows you to switch on view state only when it’s
absolutely necessary—for example, with a data editing control such as the
Grid View (which uses view state to keep track of the currently selected
item, among other details).

To use this approach, you need to use another property, called View State
Mode. Like Enable View State, the View State Mode property applies to
all controls and page and can be set in a control tag or through an attribute
in the page directive. View State Mode takes one of three values:

Enabled: View state will work, provided the Enable View State property
allows it.

Disabled: View state will not work for this control, although it may be
allowed for child controls.

116

Inherit: This control will use the View State Mode property of its
container. This is the default value.

To use opt-in state management, you set View State Mode of the
page to Disabled. This turns off view state for the top-level page. By
default, all the controls inside the page will have a View State Mode of
Inherit, which means they also disable themselves.

<%@ Page Language="C#" View State Mode="Disabled" ... %>

Note that you do not set Enable View State to false—if you do,
ASP.NET completely shuts down view state for the page, and no control
can opt in.
Now, to opt in for a particular control in the page, you simply set View
State Mode to Enabled:

<asp:LabelViewStateMode="Enabled" ... />

This model is a bit awkward, but it’s useful when view state size is
an issue. The only drawback is that you need to remember to explicitly
enable view state on controls that have dynamic values you want to persist
or on controls that use view state for part of their functionality.

The Query String

One common approach is to pass information using a query string
in the URL. You will commonly find this approach in search engines. For
example, if you perform a search on the Google website, you’ll be
redirected to a new URL that incorporates your search parameters. Here’s
an example:

http://www.google.ca/search?q=organic+gardening

The query string is the portion of the URL after the question mark.
In this case, it defines a single variable named q, which contains the
“organic+gardening” string.

The advantage of the query string is that it’s lightweight and
doesn’t exert any kind of burden on the server. Unlike cross-page posting,
the query string can easily transport the same information from page to
page. It has some limitations, however:

 Information is limited to simple strings, which must contain URL-
legal characters.

 Information is clearly visible to the user and to anyone else who
cares to eavesdrop on the Internet.

117

 The enterprising user might decide to modify the query string and
supply newvalues, which your program won’t expect and can’t
protect against.

 Many browsers impose a limit on the length of a URL (usually
from 1 to 2 KB). Forthat reason, you can’t place a large amount of
information in the query string andstill be assured of compatibility
with most browsers.

Adding information to the query string is still a useful technique.
It’s particularly well suited in database applications where you present the
user with a list of items corresponding to records in a database, like
products. The user can then select an item and be forwarded to another
page with detailed information about the selected item. One easy way to
implement this design is to have the first page send the item ID to the
second page. The second page then looks that item up in the database and
displays the detailed information. You’ll notice this technique in e-
commerce sites such as
Amazon.com.

Using the Query String

To store information in the query string, you need to place it there
yourself. Unfortunately, there is no collection-based way to do this.
Typically, this means using a special HyperLink control, or you can use a
Response.Redirect() statement like the one shown here:

// Go to newpage.aspx. Submit a single query string argument
// named recordID and set to 10.
int recordID = 10;
Response.Redirect("newpage.aspx?recordID=" + recordID.ToString());

You can send multiple parameters as long as you separate them with an
ampersand (&), as
shown here:

// Go to newpage.aspx. Submit two query string arguments:
// recordID (10) and mode (full).
Response.Redirect("newpage.aspx?recordID=10&mode=full");

The receiving page has an easier time working with the query
string. It can receive the values from the QueryString dictionary collection
exposed by the built-in Request object, as shown here:

string ID = Request.QueryString["recordID"];

If the query string doesn’t contain the recordID parameter, or if the
query string contains the recordID parameter but doesn’t supply a value,
the ID string will be set to null.

118

Note that information is always retrieved as a string, which can
then be converted to another simple data type. Values in the Query String
collection are indexed by the variable name.

Cookies

Custom cookies provide another way you can store information for
later use. Cookies are small files that are created on the client’s hard drive
(or, if they’re temporary, in the web browser’s memory). One advantage
of cookies is that they work transparently without the user being aware
that information needs to be stored. They also can be easily used by any
page in your application and even retained between visits, which allows
for truly long-term storage. They suffer from some of the same drawbacks
that affect query strings. Namely, they’re limited to simple string
information, and they’re easily accessible and readable if the user finds
and opens the corresponding file. These factors make them a poor choice
for complex or private information or large amounts of data.

Some users disable cookies on their browsers, which will cause
problems for web applications that require them. However, cookies are
widely adopted because so many sites use them.

Cookies are fairly easy to use. Both the Request and Response
objects (which are provided through Page properties) provide a Cookies
collection. The important trick to remember is that you retrieve cookies
from the Request object, and you set cookies using the Response object.

To set a cookie, just create a new System. Net. Http Cookie object. You
can then fill it with string information (using the familiar dictionary
pattern) and attach it to the current web response, as follows:
// Create the cookie object.
HttpCookie cookie = new HttpCookie("Preferences");

// Set a value in it.
cookie["LanguagePref"] = "English";

// Add another value.
cookie["Country"] = "US";

// Add it to the current web response.
Response.Cookies.Add(cookie);

A cookie added in this way will persist until the user closes the
browser and will be sent with every request. To create a longer-lived
cookie (which is stored with the temporary Internet files on the user’s hard
drive), you can set an expiration date, as shown here:

// This cookie lives for one year.
cookie.Expires = DateTime.Now.AddYears(1);

119

Cookies are retrieved by cookie name using the Request.Cookies
collection, as shown here:

HttpCookie cookie = Request.Cookies["Preferences"];

// Check to see whether a cookie was found with this name.
// This is a good precaution to take,
// because the user could disable cookies,
// in which case the cookie would not exist.
string language;
if (cookie != null)
{
language = cookie["LanguagePref"];
}

The only way to remove a cookie is by replacing it with a cookie that has
an expiration date that has
already passed. The following code demonstrates this technique:

HttpCookie cookie = new HttpCookie("LanguagePref");
cookie.Expires = DateTime.Now.AddDays(-1);
Response.Cookies.Add(cookie);

Session Architecture

Session management is not part of the HTTP standard. As a result,
ASP.NET needs to do some extra work to track session information and
bind it to the appropriate response.

ASP.NET tracks each session using a unique 120-bit identifier.
ASP.NET uses a proprietary algorithm to generate this value, thereby
guaranteeing (statistically speaking) that the number is unique and that it’s
random enough so a malicious user can’t reverse-engineer or guess what
session ID a given client will be using. This ID is the only piece of
information that is transmitted between the web server and the client.
When the client presents the session ID, ASP.NET looks up the
corresponding session, retrieves the serialized data from the state server,
converts it to live objects, and places these objects into a special collection
so they can be accessed in code. This process takes place automatically.

120

Session state is another example of ASP.NET’s pluggable
architecture. A state provider is any class that implements the IHttp
Session State interface, which means you can customize how session state
works simply by building (or purchasing) a new .NET component.
ASP.NET includes three prebuilt state providers, which allow you to store
information in process, in a separate service, or in a SQL Server database.

For session state to work, the client needs to present the
appropriate session ID with each request.

The final ingredient in the puzzle is how the session ID is tracked
from one request to the next. You can accomplish this in two ways:

Using cookies: In this case, the session ID is transmitted in a special
cookie (named ASP.NET_SessionId), which ASP.NET creates
automatically when the session collection is used. This is the default, and
it’s also the same approach that was used in earlier versions of ASP.

Using modified URLs: In this case, the session ID is transmitted in a
specially modified (or “munged”) URL. This allows you to create
applications that use session state with clients that don’t
support cookies.

Using Session State:

You can interact with session state using the System. Web. Session
State. Http Session State class, which is provided in an ASP.NET web

121

page as the built-in Session object. The syntax for adding items to the
collection and retrieving them is basically the same as for adding items to
the view state of a page.

For example, you might store a DataSet in session memory like this:

Session["ProductsDataSet"] = dsProducts;

You can then retrieve it with an appropriate conversion operation:

dsProducts = (DataSet)Session["ProductsDataSet"];

Session state is global to your entire application for the current user.
Session state can be lost in

several ways:

• If the user closes and restarts the browser.

• If the user accesses the same page through a different browser window,
although the session will still exist if a web page is accessed through the
original browser window. Browsers differ on how they handle this
situation.

• If the session times out because of inactivity. By default, a session times
out after20 idle minutes.

• If the programmer ends the session by calling Session. Abandon().

In the first two cases, the session actually remains in memory on
the server, because the web server has no idea that the client has closed the
browser or changed windows. The session will linger in memory,
remaining inaccessible, until it eventually expires.

In addition, session state will be lost when the application domain
is re-created. This process happens transparently when you update your
web application or change a configuration setting. The application domain
may also be recycled periodically to ensure application health. If this
behaviour is causing a problem, you can store session state information
out of process,as described in the next section. With out-of-process state
storage, the session information is retained even when the application
domain is shut down.

Mode
The mode session state settings allow you to configure what

session state provider is used to store session state information between
requests. The following sections explain your options.

Off
This setting disables session state management for every page in

the application. This can provide aslight performance improvement for
websites that are not using session state.

In Proc
In Proc is similar to how session state was stored in classic ASP. It

instructs ASP.NET to store information in the current application domain.

122

This provides the best performance but the least durability. If yourestart
your server, the state information will be lost.
InProc is the default option, and it makes sense for most small websites.

State Server

With this setting, ASP.NET will use a separate Windows service
for state management. Even if you run this service on the same web
server, it will be loaded outside the main ASP.NET process, which gives it
a basic level of protection if the ASP.NET process needs to be restarted.
The cost is the increased time delay imposed when state information is
transferred between two processes. If you frequently access and change
state information, this can make for a fairly unwelcome slowdown.

When using the State Server setting, you need to specify a value
for the state Connection String setting. This string identifies the TCP/IP
address of the computer that is running the State Server service and its
port number (which is defined by ASP.NET and doesn’t usually need to
be changed). This allows you to host the StateServer on another computer.
If you don’t change this setting, the local server will be used (set as
address 127.0.0.1).

Of course, before your application can use the service, you need to
start it. The easiest way to do this is to use the Microsoft Management

Console. Select Start ➤Programs ➤Administrative Tools ➤ Computer
Management (you can also access the Administrative Tools group through
the Control Panel).

Then, in the Computer Management tool, find the Services and

Applications ➤Services node. Find theservice called ASP.NET State
Service in the list, as shown in Figure below.

123

Once you find the service in the list, you can manually start and stop it by
right-clicking it.

Generally, you’ll want to configure Windows to automatically start the
service. Right-click it, select Properties, and modify the Startup Type
setting to Automatic, as shown in Figure below. Then click Starttostart it
immediately.

SQL Server

This setting instructs ASP.NET to use a SQL Server database to
store session information, as identified by the sql Connection String
attribute. This is the most resilient state store but also the slowest by far.
To use this method of state management, you’ll need to have a server with
SQL Server installed.

When setting the sql Connection String, you follow the same sort of
pattern you use with ADO.NET data access. Generally, you’ll need to
specify a data source (the server address) and a user ID and password,
unless you’re using SQL integrated security.

124

In addition, you need to install the special stored procedures and
temporary session databases.

These stored procedures take care of storing and retrieving the
session information. ASP.NET includes a command-line tool that does the
work for you automatically, called aspnet_regsql.exe. It’s found in the
c:\Windows\Microsoft.NET\Framework\[Version] directory. The easiest
way to run aspnet_regsql.exe is to start by launching the Visual Studio

command prompt (open the Start menu and choose Programs ➤ Visual

Studio 2010 ➤Visual Studio Tools ➤Visual Studio 2010 Command
Prompt). You can then type in an aspnet_regsql.exe command, no matter
what directory you’re in.

Here’s a command that creates the session storage database on the
current computer, using the default database name ASP State:
aspnet_regsql.exe -S localhost -E -ssadd

This command uses the alias localhost, which tells
aspnet_regsql.exe to connect to the database server on the current
computer. You can replace this detail with the computer name of your
database server.

Once you’ve created your session state database, you need to tell
ASP.NET to use it by modifying the <sessionState> section of the
web.config file. If you’re using a database named ASPState to store
yoursession information (which is the default), you don’t need to supply
the database name. Instead, yousimply need to indicate the location of the
server and the type of authentication that ASP.NET shoulduse to connect
to it, as shown here:

<session State mode="SQLServer"
sql Connection String="data source=localhost; Integrated Security=SSPI"
... />

Additionally, the state tables will be removed every time you
restart SQL Server, no matter what the session time-out. That’s because
the state tables are created in the tempdb database, which is atemporary
storage area. If this isn’t the behavior you want, you can tell the
aspnet_regsql.exe tool to install permanent state tables in the ASP State
database. To do this, you use the -sstype p (for persisted) parameter.
Here’s the revised command line:

aspnet_regsql.exe -S localhost -E -ssadd -sstype p

Now session records will remain in the database, even if you
restart SQL Server.

Your final option is to use aspnet_regsql.exe to create the state
tables in a different database (not

125

ASPState). To do so, you use the -sstype c (for custom) parameter, and
then supply the database name with the -d parameter, as shown here:
aspnet_regsql.exe -S localhost -E -ssadd -sstype c -d MyCustomStateDb

When you use this approach, you’ll create permanent session tables, so
their records will remain even when SQL Server is restarted.

Cookieless

You can set the cookieless setting to one of the values defined by
the Http Cookie Mode enumeration. You can also set the name that’s used
for the cookie with the cookie Name attribute. If you don’t, the default
value cookie name is ASP.NET_SessionId.

Here’s an example that forces cookieless mode (which is useful for
testing):
<sessionStatecookieless="UseUri" ... />

In cookieless mode, the session ID will automatically be inserted
into the URL. When ASP.NET receives a request, it will remove the ID,
retrieve the session collection, and forward the request to the appropriate
directory. A munged URL is shown here:

http://localhost/WebApplication/(amfvyc55evojk455cffbq355)/Page1.aspx

Because the session ID is inserted in the current URL, relative
links also automatically gain the session ID. In other words, if the user is
currently stationed on Page1.aspx and clicks a relative link to Page2.aspx,
the relative link includes the current session ID as part of the URL. The
same is true if you call Response. Redirect() with a relative URL, as
shown here:

Response. Redirect("Page2.aspx");

The only real limitation of cookieless state is that you cannot use
absolute links, because they will not contain the session ID. For example,
this statement causes the user to lose all session information:

Response. Redirect("http://localhost/WebApplication/Page2.aspx");

By default, ASP.NET allows you to reuse a session identifier. For
example, if you make a request and your query string contains an expired
session, ASP.NET creates a new session and uses that session ID.

The problem is that a session ID might inadvertently appear in a
public place—such as in a results page in a search engine. This could lead
to multiple users accessing the server with the same session identifier and
then all joining the same session with the same shared data.

126

To avoid this potential security risk, it’s recommended that you
include the optional regenerate Expired SessionId attribute and set it to
true whenever you use cookieless sessions. This way, anew session ID
will be issued if a user connects with an expired session ID. The only
drawback is that this process also forces the current page to lose all view
state and form data, because ASP.NET performs a redirect to make sure
the browser has a new session identifier.

Timeout

Another important session state setting in the web.config file is the
timeout. This specifies the number ofminutes that ASP.NET will wait,
without receiving a request, before it abandons the session.

<session State timeout="20" ... />

This setting represents one of the most important compromises of
session state. A difference of minutes can have a dramatic effect on the
load of your server and the performance of your application.

Ideally, you will choose a time frame that is short enough to allow
the server to reclaim valuable memory after a client stops using the
application but long enough to allow a client to pause and continue
asession without losing it.

You can also programmatically change the session time-out in
code. For example, if you know a session contains an unusually large
amount of information, you may need to limit the amount of time the
session can be stored. You would then warn the user and change the
timeout property. Here’s a sample line of code that changes the time-out to
ten minutes:

Session.Timeout = 10;

Application State

Application state allows you to store global objects that can be accessed
by any client. Application state is based on the System. Web.Http
Application State class, which is provided in all web pages through the
built-in Application object.

Application state is similar to session state. It supports the same types of
objects, retains information on the server, and uses the same dictionary-
based syntax. A common example with application state is a global
counter that tracks how many times an operation has been performed by
all of the web application’s clients.

For example, you could create a global.asax event handler that tracks how
many sessions have been created or how many requests have been

127

received into the application. Or you can use similar logic inthe Page.Load
event handler to track how many times a given page has been requested by
variousclients. Here’s an example of the latter:

protected void Page_Load(Object sender, EventArgs e)
{
int count = 0;
if (Application["HitCounterForOrderPage"] != null)
count = (int)Application["HitCounterForOrderPage"];

count++;
Application["HitCounterForOrderPage"] = count;
lblCounter.Text = count.ToString();
}

Once again, application state items are stored as objects, so you
need to cast them when you retrieve them from the collection. Items in
application state never time out. They last until the application or server is
restarted or until the application domain refreshes itself (because of
automatic process-recycling settings or an update to one of the pages or
components in the application).

Application state isn’t often used, because it’s generally inefficient.
In the previous example, the counter would probably not keep an accurate
count, particularly in times of heavy traffic. For example, iftwo clients
requested the page at the same time, you could have a sequence of events
like this:

1. User A retrieves the current count (432).

2. User B retrieves the current count (432).

3. User A sets the current count to 433.

4. User B sets the currentcount to 433.

In other words, one request isn’t counted because two clients
access the counter at the same time.

To prevent this problem, you need to use the Lock() and UnLock()
methods, which explicitly allow only one client to access the Application
state collection at a time, as follows:

protected void Page_Load(Object sender, EventArgs e)
{
// Acquire exclusive access.
Application.Lock();
int count = 0;

if (Application["HitCounterForOrderPage"] != null)

128

count = (int)Application["HitCounterForOrderPage"];

count++;
Application["HitCounterForOrderPage"] = count;
// Release exclusive access.
Application.UnLock();
lblCounter.Text = count.ToString();
}

The Web.config file

Every web application inherits the settings from the
machine.config file and the root web.config file. In addition, you can
apply settings to individual web applications. For example, you might
want to set aspecific method for authentication, a type of debugging, a
default language, or custom error pages. To do so, you supply a
web.config file in the root virtual directory of your web application. To
further configure individual subdirectories in your web application, you
can place additional web.config files in these folders.

It’s important to understand that the web.config file in a web
application can’t override all thesettings in the machine.config file.
Certain settings, such as the process model settings, can’t be changedon a
per-application basis. Other settings are application-specific. That means
you can set them in theweb.config file that’s in the root virtual directory of
your website, but you can’t set them using a web.config file that’s in a
subdirectory.

The entire content of an ASP.NET configuration file is nested in a
root <configuration> element.

This element contains a <system.web> element, which is used for
ASP.NET settings. Inside the<system.web> element are separate elements
for each aspect of configuration. Along with<system.web>are the
<appSettings> element%, which you can use to store custom settings, and
the<connectionStrings> element, which you can use to store connection
strings to databases that you useor that other ASP.NET features rely on.

Here is the absolute simplest web.config file, which is what you
get when you create a blankASP.NET website in Visual Studio:

<?xml version="1.0"?>
<configuration>
<system.web>
<compilation debug="true" targetFramework="4.0" />
</system.web>
</configuration>

129

The <system.web> section is the heart of ASP.NET configuration. Inside
it are all the elements that
configure ASP.NET features.

<?xml version="1.0"?>
<configuration>
<appSettings />
<connectionStrings />
<system.web>
<!-- ASP.NET configuration sections go here. -->
</system.web>
<system.webServer />
</configuration>

<system.web>

The <system.web> element contains all the ASP.NET-specific
configuration settings. These settingsconfigure various aspects of your
web application and enable services such as security, statemanagement,
and tracing. The schema of the <system.web> section is fixed—in other
words, you can’tchange the structure or add your own custom elements
here. However, you can include as few or asmany configuration sections
as you want.

Some basic configuration sections.

130

<system.webserver>

This section contains settings that affect to the web server. You use the
<handlers> element inside this section to register custom HTTP handlers.
You use the <modules> section to register HTTP modules.

<appSettings>

You add custom settings to a web.config file in a special element called
<appSettings>. Here’s where the<appSettings> section fits into the
web.config file:

<?xml version="1.0"?>
<configuration>
<appSettings>
<!-- Custom application data goes here. -->
</appSettings>
<system.web>...</system.web>
</configuration>

Custom settings are entered using an <add> element that identifies a
unique variable name (thekey) and the variable contents (the value). The
following example adds two new custom configuration settings:

<?xml version="1.0" ?>
<configuration>
<appSettings>
<add key="websiteName" value="My New Website"/>
<add key="welcomeMessage" value="Welcome to my new Website,
friend!"/>
</appSettings>
<system.web>...</system.web>
</configuration>

Once you’ve added this information, .NET makes it extremely easy to
retrieve it in your web-page code. You simply need to use the Web
Configuration Settings class from the System.Web. Configuration
namespace. It exposes a static property called App Settings, which
contains a dynamically built collection of available application settings for
the current directory. For example, if the ASP.NET pageclass referencing
the AppSettings collection is at a location such

131

ashttp://localhost/MyApp/MyDirectory/MySubDirectory, it is possible
that the App Settings collection contains settings from three different
web.config files. The App Settings collection makes that hierarchy
seamless to the page that’s using it.

To use the Web Configuration Settings class, it helps to first import the
System. Web. Configuration namespace so you can refer to the class
without needing to use the long fully qualified name, as shown here:

using System.Web.Configuration;

Next, you simply need to retrieve the value by name. The following
example fills two labels using the custom application information:

protected void Page_Load(object sender, EventArgs e)
{
lblSiteName.Text =
WebConfigurationManager.AppSettings["websiteName"];
lblWelcome.Text
=WebConfigurationManager.AppSettings["welcomeMessage"];
}

An error won’t occur if you try to retrieve a value that doesn’t
exist. If you suspect this could be aproblem, make sure to test for a null
reference before retrieving a value.

<connection Strings>

This section allows you to define database connection strings that
will be used elsewhere in your application. Seeing as connection strings
need to be reused exactly to support connection pooling andmay need to
be modified without recompiling the web application, it makes perfect
sense to store them in the web.config file.

132

You can add as many connection strings as you want. For each
one, you need to specify theADO.NET provider.

Here’s an example that defines a single connection string:

You can retrieve connection strings in your code using the static Web
Configuration Manager. Connection Strings property: string connection
String =Web Configuration Manager. Connection Strings ["North wind
Connection"].Value;

The Connection Strings collection includes the connection strings
that are defined directly in yourweb. config file and any that are defined in
higher-level configuration files (namely, the root web. configfile and the
machine.config file). That means you’ll automatically get a connection
string named Local Sql Server that points to a local instance of SQL
Server Express (which is the scaled-down version of SQL Server that’s
included with Visual Studio). The connection string looks like this:

Data
Source=.\SQLEXPRESS;IntegratedSecurity=SSPI;AttachDBFilename=|D
ataDirectory|aspnetdb.mdf;User Instance=true
<The global.asax Application file>

The global.asax file allows you to write event handlers that react to
global events. Users cannot request the global.asax file directly. Instead,
the global.asax file executes its code automatically in response to certain
application events. The global.asax file provides a similar service to the
global.asa file in classic ASP applications.

You write the code in a global.asax file in a similar way to a web
form. The difference is that the global.asax doesn’t contain any HTML or
ASP.NET tags. Instead, it contains methods with specific, predefined
names. For example, the following global.asax file reacts to the Http
Application. End Request event, which happens just before the page is
sent to the user:
<%@ Application Language="C#" %>
<script language="C#" runat="server">
protected void Application_OnEndRequest()

{
Response.Write("<hr />This page was served at " +
DateTime.Now.ToString());
}
</script>

133

Although it’s not indicated in the global.asax file, every
global.asax file defines the methods for a single class—the application
class. The application class derives from HttpApplication, and as a result
your code has access to all its public and protected members. This
example uses the Response object, which is provided as a built-in property
of the HttpApplication class, just like it’s a built-in property of the Page
class.

In the preceding example, the Application On End Request() event
handler writes a footer at the bottom of the page with the date and time
that the page was created. Because it reacts to the HttpApplication. End
Request event, this method executes every time a page is requested, after
all the event-handling code in that page has finished.

As with web forms, you can also separate the content of the
global.asax file into two files, one that declares the file and another that
contains the code. However, because there’s no design surface for
global.asax files, the division isn’t required. Visual Studio doesn’t give
you the option to create a global.asax file with a separate code-behind
class.

The global.asax file is optional, but a web application can have no
more than one global.asax file, and it must reside in the root directory of
the application, not in a subdirectory. To add a global.asax file to a

project, select Website ➤Add New Item (or Project ➤Add New Item if
you’re using the Visual Studio web project model) and choose the Global
Application Class template. (This option doesn’t appear if youalready
have a global.asax file in your project.) When Visual Studio adds a
global.asax file, it includes empty event handlers for the most commonly
used application events. You simply need to insert yourcode in the
appropriate method.

Application Events

You can handle two types of events in the global.asax file:
• Events that always occur for every request. These include request-related

and response-related events.
• Events that occur only under certain conditions.

The required events unfold in this order:
1. Application_ Begin Request(): This method is called at the start of

every request.

2. Application_Authenticate Request(): This method is called just
before authentication is performed. This is a jumping-off point for
creating your own authentication logic.

3. Application_Authorize Request(): After the user is authenticated
(identified),it’s time to determine the user’s permissions. You can use
this method toassign special privileges.

134

4. Application_Resolve Request Cache(): This method is commonly
used in conjunction with output caching. With output caching, the
rendered HTML of a web form is reused, without executing any of
your code. However, this event handler still runs.

5. At this point, the request is handed off to the appropriate handler.
Forexample, for a web form request, this is the point when the page is
compiled (ifnecessary) and instantiated.

6. Application_Acquire RequestState(): This method is called just
before session specific information is retrieved for the client and used
to populate the Session collection.

7. Application_Pre Request Handler Execute(): This method is called
before the appropriate HTTP handler executes the request.

8. At this point, the appropriate handler executes the request. For
example, if it’sa web form request, the event-handling code for the
page is executed, and thepage is rendered to HTML.

9. Application_Post Request Handler Execute(): This method is called
just after the request is handled.

10. Application_Release Request State(): This method is called when
the session specific information is about to be serialized from the
Session collection so that it’s available for the next request.

11. Application_Update Request Cache(): This method is called just
before information is added to the output cache. For example, if
you’ve enabled output caching for a web page, ASP.NET will insert
the rendered HTML for the page into the cache at this point.

12. Application_End Request(): This method is called at the end of the
request, just before the objects are released and reclaimed. It’s a
suitable point for cleanup code.

Below figure shows the process of handling a single request.

135

Some events don’t fire with every request:

Application_Start(): This method is invoked when the application first
starts up and the application domain is created. This event handler is a
useful place to provide application-wide initialization code. For example,
at this point you might load and cache data that will not change throughout
the lifetime of an application, such as navigation trees, static product
catalogs, and so on.

Session_Start(): This method is invoked each time a new session begins.
This is often used toinitialize user-specific information. Chapter 6
discusses sessions with state management.

Application_Error(): This method is invoked whenever an unhandled
exception occurs in the application.

Session_End(): This method is invoked whenever the user’s session ends.
A session ends when your code explicitly releases it or when it times out
after there have been no more requests received within a given timeout
period (typically 20 minutes). This method is typically used to clean up
any related data. However, this method is only called if you are using in-
process session state storage (the InProc mode, not the State Server or
SQLServer modes).

Application_End(): This method is invoked just before an application
ends. The end of an application can occur because IIS is being restarted or
because the application is transitioning to a new application domain in
response to updated files or the process recycling settings.

Application_Disposed(): This method is invoked some time after the
application has been shut down and the .NET garbage collector is about to
reclaim the memory it occupies. This point is too late to perform critical
cleanup, but you can use it as a last-ditch failsafe to verify that critical
resources are released.

Application events are commonly used to perform application
initialization, cleanup, usage logging, profiling, and troubleshooting.
However, don’t assume that your application will need to use global
application events. Many ASP.NET applications don’t use the global.asax
file at all.





136

8

STATE MANAGEMENT

No web application framework, no matter how advanced, can
change the fact that HTTP is a stateless protocol. After every web request,
the client disconnects from the server, and the ASP.NET engine discards
the objects that were created for the page. This architecture ensures that
web applications can scale up to serve thousands of simultaneous requests
without running out of server memory. The drawback is that your code
needs to use other techniques to store information between web requests
and retrieve it when needed.

In this section, you’ll see how to tackle this challenge by
maintaining information on the server and on the client using a variety of
techniques. You’ll also learn how to transfer information from one web
page to another.

State Management changes in ASP.NET 4
ASP.NET 4 adds a few refinements to its state management features:

Opt-in view state: ASP.NET 4 adds a View State Mode property that
allows you to disable view state for a page but then selectively enable
view state for those controls that absolutely require it.

This opt-in model of view state is described in the “Selectively Disabling
View State” section.

Session compression: ASP.NET 4 introduces a compression feature that
reduces the size of data before it’s sent to an out-of-process state provider.
This feature is described in the “Compression” section.

Selectively enabling session state: ASP.NET 4 adds the Http Context. Set
Session State Behavior() method. You can create an HTTP module (as
described in Chapter 5) that examines the current request and then calls
Set Session State Behavior() to programmatically enable or disable session
state. The idea here is to wring just a bit more performance out of your
web application by disabling session state when it’s not needed but still
allowing it to work for some requests.

However, this is a fairly specialized optimization technique that most
developers won’t use.

137

Partial session state: Session state now recognizes the concept of partial
state storage and retrieval, which could theoretically allow you to pull just
a single property out of a serialized object.

As promising as this sounds, no current state providers support it,
so you can’t use this feature in your applications just yet. Microsoft may
release session state providers that support this feature in future versions
of ASP.NET or sooner—for example, with new products like Windows
Server App Fabric (http://tinyurl.com/yhds97y).

ASP.NET includes a variety of options for state management. You
choose the right option depending on the data you need to store, the length
of time you want to store it, the scope of your data (whether it’s limited to
individual users or shared across multiple requests), and additional
security and performance considerations. The different state management
options in ASP.NET are complementary, which means you’ll almost
always use a combination of them in the same web application (and often
the same page).

State Management Options Compared (Part 1)

View State Query String Custom Cookies

Allowed data
types

All serializable
.NET data types.

A limited
amount of

string data.

String data.

Storage location A hidden field in
the current web
page.

The browser’s
URL string.

The client’s
computer (in

memory or a
small text file,
depending on its

lifetime settings).

Lifetime Retained
permanently

for postbacks to
a single page.

Lost when the
user enters a
new URL or

closes the
browser.

However, can
be stored and
can persist

between visits.

Set by the
programmer. It

can be used in
multiple pages
and it persists

between visits.

Scope Limited to the
current page.

Limited to the
target page.

The whole
ASP.NET

application.

138

Security Tamper-proof by

default but easy
to

read. You can
use the

Page directive to

enforce
encryption.

Clearly visible
and easy

for the user to
modify.

Insecure and can
be

modified by the
user.

Performance

Implications

Storing a large

amount of

information will
slow

transmission but
will not affect
server
performance.

None, because
the amount of
data is trivial.

None, because the
amount of data is
trivial.

Typical use Page-specific
settings.

Sending a
product ID

from a catalog
page to a
details page.

Personalization

preferences for a
website.

State Management Options Compared (Part 2)

Session State Application State

Allowed data types All serializable .NET
data types.

Nonserializable types are
supported if you

are using the default in-
process state service.

All .NET data types.

Storage location Server memory (by
default), or a dedicated

database, depending on
the mode you choose.

Server memory.

Lifetime Times out after a
predefined period

(usually 20 minutes but
can be altered globally or
programmatically).

The lifetime of the
application (typically,
until the server is
rebooted).

139

Scope The whole ASP.NET
application.

The whole ASP.NET
application. Unlike
most other types of

methods, application
data is global to all
users.

Security Secure, because data is
never transmitted

to the client. However,
subject to session

hijacking if you don’t
use SSL.

Very secure, because
data is stored on the
server.

Performance

Implications

Storing a large amount
of information can

slow down the server
severely, especially if

there are a large number
of users at once,

because each user will
have a separate set

of session data.

Storing a large
amount of

information can slow
down the server,
because this data will

never time out and be
removed.

Typical use Store items in a shopping
basket.

Storing any type of
global data.

State Management Options Compared (Part 3)

Profiles Caching

Allowed data types All serializable .NET
data

types.

All .NET data types.
Nonserializable

types are supported if
you create a

custom profile.

Storage location A back-end database. Server memory.

Lifetime Permanent. Depends on the
expiration policy

you set, but may
possibly be

released early if server
memory

becomes scarce.

140

Scope The whole ASP.NET

application. May also
be accessed by other

applications.

The same as application
state (global to all users
and all pages).

Security Fairly secure, because

although data is never

transmitted, it is stored

without encryption in a

database that could be

compromised.

Very secure, because
the cached data is
stored on the server.

Performance
implications

Large amounts of data
can be stored easily,
but there may be a
nontrivial overhead in

retrieving and writing
the data for each
request.

Storing a large amount
of information may
force out other, more
useful cached
information.

However, ASP.NET
has the ability to
remove items early to
ensure optimum
performance.

Typical use Store customer account

information.

Storing data retrieved
from a

database.

View State
View state should be your first choice for storing information

within the bounds of a single page. View stateis used natively by the
ASP.NET web controls. It allows them to retain their properties between
postbacks.

You can add your own data to the view state collection using a
built-in page property called View State. The type of information you can
store includes simple data types and your own custom objects.

Like most types of state management in ASP.NET, view state
relies on a dictionary collection, where each item is indexed with a unique
string name. For example, consider this code:
ViewState["Counter"] = 1;

This places the value 1 (or rather, an integer that contains the value
1) into the ViewState collection and gives it the descriptive name Counter.
If there is currently no item with the name Counter, a new item will be
added automatically. If there is already an item indexed under the name
Counter, it will be replaced.

141

When retrieving a value, you use the key name. You also need to
cast the retrieved value to the appropriate data type. This extra step is
required because the ViewState collection casts all items to the base
Object type, which allows it to handle any type of data.

Here’s the code that retrieves the counter from view state and converts it
to an integer:
int counter;
if (ViewState["Counter"] != null)
{
counter = (int)ViewState["Counter"];
}

If you attempt to look up a value that isn’t present in the collection,
you’ll receive a Null Reference Exception. To defend against this
possibility, you should check for a null value before you attempt to
retrieve and cast data that may not be present.

A View State Example
Another approach to saving data for the user, is the View State. As

described elsewhere in this tutorial, the View State allows ASP.NET to
repopulate form fields on each post back to the server, making sure that a
form is not automatically cleared when the user hits the submit button. All
this happens automatically, unless you turn it off, but you can actually use
the View State for your own purposes as well. Please keep in mind
though, that while cookies and sessions can be accessed from all your
pages on your website, View State values are not carried between pages.
Here is a simple example of using the View State to carry values between
post backs:

<%@PageLanguage="C#"AutoEventWireup="true"CodeFile="Default.as
px.cs"Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">

<htmlxmlns="http://www.w3.org/1999/xhtml">

<headrunat="server">

<title>ViewState</title>

</head>

<body>

<formid="form1"runat="server">

<asp:TextBoxrunat="server"id="NameField"/>

<asp:Buttonrunat="server"id="SubmitForm"onclick="SubmitForm_Click
"text="Submit & set name"/>

<asp:Buttonrunat="server"id="RefreshPage"text="Just submit"/>

142

Name retrieved from ViewState:
<asp:Labelrunat="server"id="NameLabel"/>

</form>

</body>

</html>

And the CodeBehind:

usingSystem;
usingSystem.Data;
usingSystem.Web;

publicpartialclass_Default:System.Web.UI.Page
{
protectedvoidPage_Load(object sender,EventArgs e)
{
if(ViewState["NameOfUser"]!=null)
NameLabel.Text=ViewState["NameOfUser"].ToString();
else
NameLabel.Text="Not set yet...";
}

protectedvoidSubmitForm_Click(object sender,EventArgs e)
{
ViewState["NameOfUser"]=NameField.Text;
NameLabel.Text=NameField.Text;
}
}

Try running the project, enter your name in the textbox and press
the first button. The name will be saved in the ViewState and set to the
Label as well. No magic here at all. Now press the second button. This one
does nothing at all actually, it just posts back to the server.

As you will notice, the Name Label still contains the name, but so
does the textbox. The first thing is because of us, while the textbox is
maintained by ASP.NET itself. Try deleting the value and pressing the
second button again. You will see that the textbox is now cleared, but our
name label keeps the name, because the value we saved to the ViewState
is still there!

Accessing View State
View state is ideal because it doesn’t take up any memory on the

server and doesn’t impose anyarbitraryusage limits (such as a time-out).
So, what might force you to abandon view state for another type ofstate
management? Here are three possible reasons:

143

 You need to store mission-critical data that the user cannot be
allowed to tamper with. (An ingenious user could modify the view
state information in a post back request.) In this case, consider
session state. Alternatively, consider using the countermeasures
described in the next section. They aren’t bullet-proof, but they
will greatly increase the effort an attacker would need in order to
read or modify view state data.

 You need to store information that will be used by multiple pages.
In this case, consider session state, cookies, or the query string.

 You need to store an extremely large amount of information, and
you don’t wantto slow down page transmission times. In this case,
consider using a database, orpossibly session state.

The amount of space used by view state depends on the number of
controls, their complexity, and the amount of dynamic information. If you
want to profile the view state usage of a page, just turn on tracing by
adding the Trace attribute to the Page directive, as shown here:
<%@ Page Language="C#" Trace="true" ... %>

Look for the Control Tree section. Although it doesn’t provide the
total view state used by the page, it does indicate the view state used by
each individual control in the Viewstate Size Bytes column (Figure
below). Don’t worry about the Render Size Bytes column, which simply
reflects the size of the rendered HTML for the control.

Selectively Disabling View State

To improve the transmission times of your page, it’s a good idea to
eliminate view state when it’s not needed. Although you can disable view
state at the application and page level, it makes the most sense to disable it
on a per-control basis. You won’t need view state for a control in three
instances:

 The control never changes. For example, a button with static text
doesn’t needview state.

144

 The control is repopulated in every postback. For example, if you
have a label that shows the current time, and you set the current
time in the Page.Load event handler, it doesn’t need view state.

 The control is an input control, and it changes only because of user
actions. After each postback, ASP.NET will populate your input
controls using the submitted form values. This means the text in a
text box or the selection in a list box won’t be lost, even if you
don’t use view state.

To turn off view state for a single control, set the Enable View
State property of the control to false. To turn off view state for an entire
page and all its controls, set the Enable View State property of the page to
false, or use the Enable View State attribute in the Page directive, as
shown here:

<%@ Page Language="C#" EnableViewState="false" ... %>

Even when you disable view state for the entire page, you’ll still
see the hidden view state tag with a small amount of information in the
rendered HTML. That’s because ASP.NET always stores the control
hierarchy for the page at a minimum. There’s no way to remove this last
little fragment of data.

You can turn view state off for all the web pages in your
application by setting the enable View State attribute of the <pages>
element in the web.config file, as shown here:

<configuration>
<system.web>
<pages enableViewState="false" />
...
</system.web>
</configuration>

Now, you’ll need to set the Enable View State attribute of the Page
directive to true if you want to switch on view state for a particular page.
Finally, it’s possible to switch of view state for a page (either through the
Page directive or through the web.config file) but selectively override that
setting by explicitly enabling view state for a particular control. This
technique, which is new in ASP.NET 4, is popular with developers who
are obsessed with paring down the view state of their pages to the smallest
size possible. It allows you to switch on view state only when it’s
absolutely necessary—for example, with a data editing control such as the
Grid View (which uses view state to keep track of the currently selected
item, among other details).

To use this approach, you need to use another property, called
View State Mode. Like Enable View State, the View State Mode property
applies to all controls and page and can be set in a control tag or through

145

an attribute in the page directive. ViewStateMode takes one of three
values:

Enabled: View state will work, provided the EnableViewState property
allows it.

Disabled: View state will not work for this control, although it may be
allowed for child controls.

Inherit: This control will use the ViewStateMode property of its
container. This is the default value.

To use opt-in state management, you set View State Mode of the
page to Disabled. This turns off view state for the top-level page. By
default, all the controls inside the page will have a View State Mode of
Inherit, which means they also disable themselves.

<%@ Page Language="C#" ViewStateMode="Disabled" ... %>

Note that you do not set Enable View State to false—if you do,
ASP.NET completely shuts down view state for the page, and no control
can opt in.

Now, to opt in for a particular control in the page, you simply set
View State Mode to Enabled:

<asp:Label View State Mode="Enabled" ... />

This model is a bit awkward, but it’s useful when view state size is
an issue. The only drawback is that you need to remember to explicitly
enable view state on controls that have dynamic values you want to persist
or on controls that use view state for part of their functionality.

The Query String
One common approach is to pass information using a query string

in the URL. You will commonly find this approach in search engines. For
example, if you perform a search on the Google website, you’ll be
redirected to a new URL that incorporates your search parameters. Here’s
an example:

http://www.google.ca/search?q=organic+gardening

The query string is the portion of the URL after the question mark.
In this case, it defines a single variable named q, which contains the
“organic+gardening” string.

The advantage of the query string is that it’s lightweight and
doesn’t exert any kind of burden on the

146

server. Unlike cross-page posting, the query string can easily transport the
same information from page
to page. It has some limitations, however:

 Information is limited to simple strings, which must contain URL-
legal characters.

 Information is clearly visible to the user and to anyone else who
cares to eavesdrop on the Internet.

 The enterprising user might decide to modify the query string and
supply new values, which your program won’t expect and can’t
protect against.

 Many browsers impose a limit on the length of a URL (usually
from 1 to 2 KB). For that reason, you can’t place a large amount of
information in the query string and still be assured of compatibility
with most browsers.

Adding information to the query string is still a useful technique. It’s
particularly well suited in database applications where you present the user
with a list of items corresponding to records in a database, like products.
The user can then select an item and be forwarded to another page with
detailed information about the selected item. One easy way to implement
this design is to have the first page send the item ID to the second page.
The second page then looks that item up in the database and displays the
detailed information. You’ll notice this technique in e-commerce sites
such as Amazon.com.

Using the Query String
To store information in the query string, you need to place it there
yourself. Unfortunately, there is no collection-based way to do this.
Typically, this means using a special HyperLink control, or you can use a
Response.Redirect() statement like the one shown here:

// Go to newpage.aspx. Submit a single query string argument
// named recordID and set to 10.
int recordID = 10;
Response.Redirect("newpage.aspx?recordID=" + recordID.ToString());

You can send multiple parameters as long as you separate them with an
ampersand (&), as
shown here:

// Go to newpage.aspx. Submit two query string arguments:
// recordID (10) and mode (full).
Response.Redirect("newpage.aspx?recordID=10&mode=full");

The receiving page has an easier time working with the query
string. It can receive the values from the QueryString dictionary collection
exposed by the built-in Request object, as shown here: string ID =
Request. Query String ["recordID"];

147

If the query string doesn’t contain the recordID parameter, or if the query
string contains the recordID parameter but doesn’t supply a value, the ID
string will be set to null.

Note that information is always retrieved as a string, which can then be
converted to another simple data type. Values in the QueryString
collection are indexed by the variable name.

Cookies
Custom cookies provide another way you can store information for

later use. Cookies are small files that are created on the client’s hard drive
(or, if they’re temporary, in the web browser’s memory). One advantage
of cookies is that they work transparently without the user being aware
that information needs to be stored. They also can be easily used by any
page in your application and even retained between visits, which allows
for truly long-term storage. They suffer from some of the same drawbacks
that affect query strings. Namely, they’re limited to simple string
information, and they’re easily accessible and readable if the user finds
and opens the corresponding file. These factors make them a poor choice
for complex or private information or large amounts of data.

Some users disable cookies on their browsers, which will cause
problems for web applications that require them. However, cookies are
widely adopted because so many sites use them.

Cookies are fairly easy to use. Both the Request and Response
objects (which are provided through Page properties) provide a Cookies
collection. The important trick to remember is that you retrieve cookies
from the Request object, and you set cookies using the Response object.

To set a cookie, just create a new System.Net.HttpCookie object. You can
then fill it with string information (using the familiar dictionary pattern)
and attach it to the current web response, as follows:
// Create the cookie object.
HttpCookie cookie = new HttpCookie("Preferences");

// Set a value in it.
cookie["LanguagePref"] = "English";

// Add another value.
cookie["Country"] = "US";

// Add it to the current web response.
Response.Cookies.Add(cookie);

A cookie added in this way will persist until the user closes the
browser and will be sent with every request. To create a longer-lived
cookie (which is stored with the temporary Internet files on the user’s hard
drive), you can set an expiration date, as shown here:

148

// This cookie lives for one year.
cookie.Expires = DateTime.Now.AddYears(1);

Cookies are retrieved by cookie name using the Request.Cookies
collection, as shown here:

HttpCookie cookie = Request.Cookies["Preferences"];

// Check to see whether a cookie was found with this name.
// This is a good precaution to take,
// because the user could disable cookies,
// in which case the cookie would not exist.
string language;
if (cookie != null)
{
language = cookie["LanguagePref"];
}

The only way to remove a cookie is by replacing it with a cookie
that has an expiration date that has already passed. The following code
demonstrates this technique:

HttpCookie cookie = new HttpCookie("LanguagePref");
cookie.Expires = DateTime.Now.AddDays(-1);
Response.Cookies.Add(cookie);

Session Architecture
Session management is not part of the HTTP standard. As a result,

ASP.NET needs to do some extra work to track session information and
bind it to the appropriate response.

ASP.NET tracks each session using a unique 120-bit identifier.
ASP.NET uses a proprietary algorithm to generate this value, thereby
guaranteeing (statistically speaking) that the number is unique and that it’s
random enough so a malicious user can’t reverse-engineer or guess what
session ID a given client will be using. This ID is the only piece of
information that is transmitted between the web server and the client.
When the client presents the session ID, ASP.NET looks up the
corresponding session, retrieves the serialized data from the state server,
converts it to live objects, and places these objects into a special collection
so they can be accessed in code. This process takes place automatically.

149

Session state is another example of ASP.NET’s pluggable
architecture. A state provider is any class that implements the IHttp
Session State interface, which means you can customize how session state
works simply by building (or purchasing) a new .NET component.
ASP.NET includes three prebuilt state providers, which allow you to store
information in process, in a separate service, or in a SQL Server database.

For session state to work, the client needs to present the
appropriate session ID with each request.

The final ingredient in the puzzle is how the session ID is tracked
from one request to the next. You can accomplish this in two ways:

Using cookies: In this case, the session ID is transmitted in a special
cookie (named

ASP.NET_SessionId), which ASP.NET creates automatically when the
session collection is used. This is the default, and it’s also the same
approach that was used in earlier versions of ASP.

Using modified URLs: In this case, the session ID is transmitted in a
specially modified (or “munged”) URL. This allows you to create
applications that use session state with clients that don’t support cookies.

150

Using Session State
You can interact with session state using the System. Web. Session State.
HttpSession State class, which is provided in an ASP.NET web page as
the built-in Session object. The syntax for adding items to the collection
and retrieving them is basically the same as for adding items to the view
state of a page.

For example, you might store a DataSet in session memory like this:

Session["ProductsDataSet"] = dsProducts;

You can then retrieve it with an appropriate conversion operation:

dsProducts = (DataSet)Session["ProductsDataSet"];

Session state is global to your entire application for the current
user. Session state can be lost in several ways:

 If the user closes and restarts the browser.

 If the user accesses the same page through a different browser
window, althoughthe session will still exist if a web page is
accessed through the original browserwindow. Browsers differ on
how they handle this situation.

 If the session times out because of inactivity. By default, a session
times out after20 idle minutes.

 If the programmer ends the session by calling Session.Abandon().

In the first two cases, the session actually remains in memory on
the server, because the web server has no idea that the client has closed the
browser or changed windows. The session will linger in memory,
remaining inaccessible, until it eventually expires.

In addition, session state will be lost when the application domain
is re-created. This process happens transparently when you update your
web application or change a configuration setting. The application domain
may also be recycled periodically to ensure application health. If this
behaviour is causing a problem, you can store session state information
out of process, as described in the next section. With out-of-process state
storage, the session information is retained even when the application
domain is shut down.

Mode
The mode session state settings allow you to configure what

session state provider is used to store session state information between
requests. The following sections explain your options.

151

Off
This setting disables session state management for every page in

the application. This can provide a slight performance improvement for
websites that are not using session state.

InProc
InProc is similar to how session state was stored in classic ASP. It

instructs ASP.NET to store information in the current application domain.
This provides the best performance but the least durability. If you restart
your server, the state information will be lost.

InProc is the default option, and it makes sense for most small websites.

State Server
With this setting, ASP.NET will use a separate Windows service

for state management. Even if you run this service on the same web
server, it will be loaded outside the main ASP.NET process, which gives it
a basic level of protection if the ASP.NET process needs to be restarted.
The cost is the increased time delay imposed when state information is
transferred between two processes. If you frequently access and change
state information, this can make for a fairly unwelcome slowdown.

When using the State Server setting, you need to specify a value
for the state Connection String setting. This string identifies the TCP/IP
address of the computer that is running the State Server service and its
port number (which is defined by ASP.NET and doesn’t usually need to
be changed). This allows you to host the State Server on another
computer. If you don’t change this setting, the local server will be used
(set as address 127.0.0.1).

Of course, before your application can use the service, you need to
start it. The easiest way to do this is to use the Microsoft Management

Console. Select Start ➤Programs ➤Administrative Tools ➤ Computer
Management (you can also access the Administrative Tools group through
the Control Panel).

Then, in the Computer Management tool, find the Services and

Applications ➤Services node. Find the service called ASP.NET State
Service in the list, as shown in Figure below.

152

Once you find the service in the list, you can manually start and stop it by
right-clicking it.

Generally, you’ll want to configure Windows to automatically start the
service. Right-click it, select Properties, and modify the Startup Type
setting to Automatic, as shown in Figure below. Then click Starttostart it
immediately.

153

SQL Server
This setting instructs ASP.NET to use a SQL Server database to

store session information, as identified by the sql Connection String
attribute. This is the most resilient state store but also the slowest by far.
To use this method of state management, you’ll need to have a server with
SQL Server installed.

When setting the sql Connection String, you follow the same sort
of pattern you use with ADO.NET data access. Generally, you’ll need to
specify a data source (the server address) and a user ID and password,
unless you’re using SQL integrated security.

In addition, you need to install the special stored procedures and
temporary session databases.

These stored procedures take care of storing and retrieving the
session information. ASP.NET includes a command-line tool that does the
work for you automatically, called aspnet_regsql.exe. It’s found in the
c:\Windows\Microsoft.NET\Framework\[Version] directory. The easiest
way to run aspnet_regsql.exe is to start by launching the Visual Studio

command prompt (open the Start menu and choose Programs ➤Visual

Studio 2010 ➤Visual Studio Tools ➤Visual Studio 2010 Command
Prompt). You can then type in an aspnet_regsql.exe command, no matter
what directory you’re in.

Here’s a command that creates the session storage database on the
current computer, using the default database name ASPState:
aspnet_regsql.exe -S localhost -E -ssadd

This command uses the alias localhost, which tells
aspnet_regsql.exe to connect to the database server on the current
computer. You can replace this detail with the computer name of your
database server.

Once you’ve created your session state database, you need to tell
ASP.NET to use it by modifying the <sessionState> section of the
web.config file. If you’re using a database named ASPState to store
yoursession information (which is the default), you don’t need to supply
the database name. Instead, yousimply need to indicate the location of the
server and the type of authentication that ASP.NET shoulduse to connect
to it, as shown here:

<sessionState mode="SQLServer"
sqlConnectionString="data source=localhost;Integrated Security=SSPI" ...
/>

Additionally, the state tables will be removed every time you
restart SQL Server, no matter what the session time-out. That’s because
the state tables are created in the tempdb database, which is atemporary

154

storage area. If this isn’t the behavior you want, you can tell the
aspnet_regsql.exe tool to install permanent state tables in the ASPState
database. To do this, you use the -sstype p (for persisted)parameter. Here’s
the revised command line:

aspnet_regsql.exe -S localhost -E -ssadd -sstype p

Now session records will remain in the database, even if you
restart SQL Server.

Your final option is to use aspnet_regsql.exe to create the state
tables in a different database (not ASPState). To do so, you use the -sstype
c (for custom) parameter, and then supply the database name with the -d
parameter, as shown here:

aspnet_regsql.exe -S localhost -E -ssadd -sstype c -d MyCustomStateDb

When you use this approach, you’ll create permanent session tables, so
their records will remain even when SQL Server is restarted.

Cookieless
You can set the cookieless setting to one of the values defined by the
HttpCookieMode enumeration. You can also set the name that’s used for
the cookie with the cookieName attribute. If you don’t, the default value
cookie name is ASP.NET_SessionId.

Here’s an example that forces cookieless mode (which is useful for
testing):
<sessionStatecookieless="UseUri" ... />

In cookieless mode, the session ID will automatically be inserted
into the URL. When ASP.NET receives a request, it will remove the ID,
retrieve the session collection, and forward the request to the appropriate
directory. A munged URL is shown here:

http://localhost/WebApplication/(amfvyc55evojk455cffbq355)/Page1.aspx

Because the session ID is inserted in the current URL, relative links also
automatically gain the session ID. In other words, if the user is currently
stationed on Page1.aspx and clicks a relative link to Page2.aspx, the
relative link includes the current session ID as part of the URL. The same
is true if you call Response.Redirect() with a relative URL, as shown here:

Response. Redirect("Page2.aspx");

The only real limitation of cookieless state is that you cannot use absolute
links, because they will not contain the session ID. For example, this
statement causes the user to lose all session information:

155

Response. Redirect("http://localhost/WebApplication/Page2.aspx");

By default, ASP.NET allows you to reuse a session identifier. For
example, if you make a request and your query string contains an expired
session, ASP.NET creates a new session and uses that session ID.

The problem is that a session ID might inadvertently appear in a
public place—such as in a results page in a search engine. This could lead
to multiple users accessing the server with the same session identifier and
then all joining the same session with the same shared data.

To avoid this potential security risk, it’s recommended that you
include the optional regenerate Expired SessionId attribute and set it to
true whenever you use cookieless sessions. This way, anew session ID
will be issued if a user connects with an expired session ID. The only
drawback is that this process also forces the current page to lose all view
state and form data, because ASP.NET performs a redirect to make sure
the browser has a new session identifier.

Timeout
Another important session state setting in the web.config file is the

timeout. This specifies the number ofminutes that ASP.NET will wait,
without receiving a request, before it abandons the session.

<sessionState timeout="20" ... />

This setting represents one of the most important compromises of
session state. A difference ofminutes can have a dramatic effect on the
load of your server and the performance of your application.

Ideally, you will choose a time frame that is short enough to allow
the server to reclaim valuable memoryafter a client stops using the
application but long enough to allow a client to pause and continue
asession without losing it.

You can also programmatically change the session time-out in
code. For example, if you know a session contains an unusually large
amount of information, you may need to limit the amount of time the
session can be stored. You would then warn the user and change the
timeout property. Here’s a sample line of code that changes the time-out to
ten minutes:
Session.Timeout = 10;

Application State
Application state allows you to store global objects that can be

accessed by any client. Application state is based on the System. Web.Http
Application State class, which is provided in all web pages through the
built-in Application object.

156

Application state is similar to session state. It supports the same types of
objects, retains information on the server, and uses the same dictionary-
based syntax. A common example with application state is a global
counter that tracks how many times an operation has been performed by
all of the web application’s clients.

For example, you could create a global.asax event handler that
tracks how many sessions have beencreated or how many requests have
been received into the application. Or you can use similar logic inthe
Page.Load event handler to track how many times a given page has been
requested by variousclients. Here’s an example of the latter:

protected void Page_Load(Object sender, EventArgs e)
{
int count = 0;
if (Application["HitCounterForOrderPage"] != null)
count = (int)Application["HitCounterForOrderPage"];

count++;
Application["HitCounterForOrderPage"] = count;
lblCounter.Text = count.ToString();
}

Once again, application state items are stored as objects, so you
need to cast them when you retrieve them from the collection. Items in
application state never time out. They last until the application or server is
restarted or until the application domain refreshes itself (because of
automatic process-recycling settings or an update to one of the pages or
components in the application).

Application state isn’t often used, because it’s generally inefficient.
In the previous example, the counter would probably not keep an accurate
count, particularly in times of heavy traffic. For example, iftwo clients
requested the page at the same time, you could have a sequence of events
like this:
1. User A retrieves the current count (432).

2. User B retrieves the current count (432).

3. User A sets the current count to 433.

4. User B sets the current count to 433.

In other words, one request isn’t counted because two clients access the
counter at the same time.

To prevent this problem, you need to use the Lock() and UnLock()
methods, which explicitly allow only one client to access the Application
state collection at a time, as follows:

157

protected void Page_Load(Object sender, EventArgs e)

{

// Acquire exclusive access.

Application.Lock();

int count = 0;

if (Application["HitCounterForOrderPage"] != null)

count = (int)Application["HitCounterForOrderPage"];

count++;

Application["HitCounterForOrderPage"] = count;

// Release exclusive access.

Application.UnLock();

lblCounter.Text = count.ToString();

}



158

9

PROGRAMMINGASP.NET WEB PAGES

ASP.NET is a framework that you can use to create dynamic web
pages. A simple HTML web page is static; its content is determined by the
fixed HTML markup that’s in the page. Dynamic pages like those you
create with ASP.NET web pages let you create the page content on the fly,
by using the code.

Dynamic pages let you do all sorts of things. You can ask a user
for input by using a form and then change what a page displays or how it
looks. You can take a information from the user, save it in a database, and
then list it later. You can send email from the site. You can interact with
other services on the web and produce pages that integrate information
from those sources.

Types and Variables

There are two kinds of types in C#: value types and reference
types. Variables of value types directly contain their data whereas
variables of reference types store references to their data, the latter being
known as objects. With reference types, it is possible for two variables to
reference the same object and thus possible for operations on one variable
to affect the object referenced by the other variable. With value types, the
variables each have their own copy of the data, and it is not possible for
operations on one to affect the other (except in the case of ref and out
parameter variables).

C#’s value types are further divided into simple types, enum types,
struct types, and nullable value types. C#’s reference types are further
divided into class types, interface types, array types, and delegate types.

The following provides an overview of C#’s type system.

Value types

Simple types

Signed integral: sbyte, short, int, long

Unsigned integral: byte, ushort, uint, ulong

Unicode characters: char

IEEE binary floating-point: float, double

High-precision decimal floating-point: decimal

Boolean: bool

Enum types

159

User-defined types of the form enum E {...}

Struct types

User-defined types of the form struct S {...}

Nullable value types

Extensions of all other value types with a null value

Reference types

Class types

Ultimate base class of all other types: object

Unicode strings: string

User-defined types of the form class C {...}

Interface types

User-defined types of the form interface I {...}

Array types

Single- and multi-dimensional, for example, int[] and int[,]

Delegate types

User-defined types of the form delegate int D(...)

C#’s bool type is used to represent Boolean values—values that are
either true or false.

Character and string processing in C# uses Unicode encoding. The
char type represents a UTF-16 code unit, and the string type represents a
sequence of UTF-16 code units.

C# programs use type declarations to create new types. A type
declaration specifies the name and the members of the new type. Five of
C#’s categories of types are user-definable: class types, struct types,
interface types, enum types, and delegate types.

A class type defines a data structure that contains data members
(fields) and function members (methods, properties, and others). Class
types support single inheritance and polymorphism, mechanisms whereby
derived classes can extend and specialize base classes.

A struct type is similar to a class type in that it represents a
structure with data members and function members. However, unlike
classes, structs are value types and do not typically require heap
allocation. Struct types do not support user-specified inheritance, and all
struct types implicitly inherit from type object.

An interface type defines a contract as a named set of public
function members. A class or struct that implements an interface must
provide implementations of the interface’s function members. An interface
may inherit from multiple base interfaces, and a class or struct may
implement multiple interfaces.

160

A delegate type represents references to methods with a particular
parameter list and return type. Delegates make it possible to treat methods
as entities that can be assigned to variables and passed as parameters.
Delegates are analogous to function types provided by functional
languages. They are also similar to the concept of function pointers found
in some other languages, but unlike function pointers, delegates are object-
oriented and type-safe.

The class, struct, interface and delegate types all support generics,
whereby they can be parameterized with other types.

An enum type is a distinct type with named constants. Every enum
type has an underlying type, which must be one of the eight integral types.
The set of values of an enum type is the same as the set of values of the
underlying type.

C# supports single- and multi-dimensional arrays of any type.
Unlike the types listed above, array types do not have to be declared
before they can be used. Instead, array types are constructed by following
a type name with square brackets. For example, int[] is a single-
dimensional array of int, int[,] is a two-dimensional array of int, and int[][]
is a single-dimensional array of single-dimensional array of int.

Nullable value types also do not have to be declared before they
can be used. For each non-nullable value type T there is a corresponding
nullable value type T?, which can hold an additional value, null. For
instance, int? is a type that can hold any 32-bit integer or the value null.

There are several kinds of variables in C#, including fields, array
elements, local variables, and parameters. Variables represent storage
locations, and every variable has a type that determines what values can be
stored in the variable, as shown below.

 Non-nullable value type

o A value of that exact type

 Nullable value type

o A null value or a value of that exact type

 object

o A null reference, a reference to an object of any reference type,
or a reference to a boxed value of any value type

 Class type

o A null reference, a reference to an instance of that class type, or a
reference to an instance of a class derived from that class type

 Interface type

161

o A null reference, a reference to an instance of a class type that
implements that interface type, or a reference to a boxed value of
a value type that implements that interface type

 Array type

o A null reference, a reference to an instance of that array type, or a
reference to an instance of a compatible array type

 Delegate type

o A null reference or a reference to an instance of a compatible
delegate type.

Statements

The actions of a program are expressed using statements. C#
supports several different kinds of statements, a number of which are
defined in terms of embedded statements.

A block permits multiple statements to be written in contexts
where a single statement is allowed. A block consists of a list of
statements written between the delimiters { and }.

Declaration statements are used to declare local variables and
constants.

Expression statements are used to evaluate expressions.
Expressions that can be used as statements include method invocations,
object allocations using the new operator, assignments using = and the
compound assignment operators, increment and decrement operations
using the ++ and -- operators and await expressions.

Selection statements are used to select one of a number of possible
statements for execution based on the value of some expression. In this
group are the if and switch statements.

Iteration statements are used to execute repeatedly an embedded
statement. In this group are the while, do, for, and foreach statements.

Jump statements are used to transfer control. In this group are the
break, continue, goto, throw, return, and yield statements.

The try...catch statement is used to catch exceptions that occur
during execution of a block, and the try...finally statement is used to
specify finalization code that is always executed, whether an exception
occurred or not.

The checked and unchecked statements are used to control the
overflow-checking context for integral-type arithmetic operations and
conversions.

162

The lock statement is used to obtain the mutual-exclusion lock for
a given object, execute a statement, and then release the lock.

The using statement is used to obtain a resource, execute a statement, and
then dispose of that resource.

The following lists the kinds of statements that can be used, and provides
an example for each.
 Local variable declaration:

Local constant declaration:

Expression statement:

If statement:

163

Switch statement:

While statement:

Do statement:

For statement:

164

Foreach statement:

Break statement:

Continue statement:

Goto statement:

165

Return statement:

Throw and try statements:

Using statement:

166

Object Oriented Programming Basics
Object-oriented programming (OOP) is a programming language

model in which programs areorganized around data, or objects, rather than
functions and logic. An object can be defined as adata field that has unique
attributes and behavior. Examples of an object can range from physical
entities, such as a human being that is described by properties like name
and address, down to small computer programs, such as widgets. This
opposes the historical approach to programming where emphasis was
placed on how the logic was written rather than how to define the data
within the logic.

The first step in OOP is to identify all of the objects a programmer
wants to manipulate and how they relate to each other, an exercise often
known as data modeling. Once an object is known, it is generalized as a
class of objects that defines the kind of data it contains and any logic
sequences that can manipulate it. Each distinct logic sequence is known as
a method and objects can communicate with well-defined interfaces called
messages.

Simply put, OOP focuses on the objects that developers want to
manipulate rather than the logic required to manipulate them. This
approach to programming is well-suited for programs that are large,
complex and actively updated or maintained. Due to the organization of an
object-oriented program, this method is also conducive to collaborative
development where projects can be divided into groups. Additional
benefits of OOP include code reusability, scalability and efficiency.

Principles of OOP
Object oriented programming is based on the following principles:

1. Encapsulation- The implementation and state of each object are
privately held inside adefined boundary, or class. Other objects do
not have access to this class or the authority to make changes but
are only able to call a list of public functions, or methods. This
characteristic of data hiding provides greater program security and
avoids unintended data corruption.

2. Abstraction- Objects only reveal internal mechanisms that are
relevant for the use of other objects, hiding any unnecessary
implementation code. This concept helps developers make changes
and additions over time more easily.

3. Inheritance- Relationships and subclasses between objects can be
assigned, allowing developers to reuse a common logic while still
maintaining a unique hierarchy. This property of OOP forces a
more thorough data analysis, reduces development time and
ensures a higher level of accuracy.

167

4. Polymorphism- Objects are allowed to take on more than one form
depending on the context. The program will determine which
meaning or usage is necessary for each execution of that object,
cutting down on the need to duplicate code.

An example of the conventions in object oriented programming.

The most popular OOP languages are :

 Java

 Python

 C++

 VB.Net



168

10

USER CONTROLS

The core set of ASP.NET controls is broad and impressive. It
includes controls that encapsulate basic HTML tags and controls that
provide a rich higher-level model, such as the Calendar, Tree View, and
data controls. Of course, even the best set of controls can’t meet the needs
of every developer. Sooner or later, you’ll want to get under the hood, start
tinkering, and build your own user interface components.
In .NET, you can plug into the web forms framework with your own
controls in two ways. You can develop either of the following:

User controls: A user control is a small section of a page that can include
static HTML code and webserver controls. The advantage of user controls
is that once you create one, you can reuse it inmultiple pages in the same
web application. You can even add your own properties, events, and
methods.

Custom server controls: Custom server controls are compiled classes
that programmatically generate their own HTML. Unlike user controls
(which are declared like web-form pages in a plaintext file), server
controls are always precompiled into DLL assemblies. Depending on how
you code the server control, you can render the content from scratch,
inherit the appearance and behaviour from an existing web control and
extend its features, or build the interface by instantiating and
configuring a group of constituent controls.

In this chapter, you’ll explore the first option—user controls. User
controls are a great way to standardize repeated content across all the
pages in a website. For example, imagine you want to provide a consistent
way for users to enter address information on several different pages. To
solve this problem, you could create an address user control that combines
a group of text boxes and a few related validators. You could then add this
address control to any web form and program against it as a single object.

User controls are also a good choice when you need to build and
reuse site headers, footers, and navigational aids. (Master pages, which are
discussed in Chapter 16, complement user controls by giving you a way to
standardize web-page layout.) In all of these examples, you could avoid
user controls entirely and just copy and paste the code wherever you need
to. However, if you do, you’ll run into serious problems once you need to
modify, debug, or enhance the controls in the future. Because multiple
copies of the user interface code will be scattered throughout your website,
you’ll have the unenviable task of tracking down each copy and repeating

169

your changes. Clearly, user controls provide amore elegant, object-
oriented approach.

User Control Basics
User control (.ascx) files are similar to ASP.NET web-form (.aspx)

files. Like web forms, user controls are composed of a user interface
portion with control tags (the .ascx file) and can use inline script or a
.cscode-behind file. User controls can contain just about anything a web
page can, including static HTML content and ASP.NET controls, and they
also receive the same events as the Page object (like Load and Pre Render)
and expose the same set of intrinsic ASP.NET objects through properties
(such as Application, Session, Request, and Response).

The key differences between user controls and web pages are as follows:

 User controls begin with a Control directive instead of a Page
directive.

 User controls use the file extension .ascx instead of .aspx, and their
code-behind files inherit from the System. Web. UI.U ser Control
class. In fact, the User Control class and the Page class both inherit
from the same Template Control class, which is why they share so
many of the same methods and events.

 User controls can’t be requested directly by a client browser.
(ASP.NET will give ageneric “that file type is not served” error
message to anyone who tries.) Instead, user controls are embedded
inside other web pages.

Creating a Simple User Control

To create a user control in Visual Studio, select Website ➤Add
New Item, and choose the Web User Control template.

The following is the simplest possible user control—one that
merely contains static HTML. This user control represents a header bar.

<%@ Control Language="C#" AutoEventWireup="true"
CodeFile="Header.ascx.cs" Inherits="Header" %>
<table width="100%" border="0" style="background-color: Blue">
<tr>
<td style="...">
User Control Test Page
</td>
</tr>
<tr>
<td align="right" style="...">
An Apress Creation © 2008
</td>
</tr>
</table>

170

You’ll notice that the Control directive identifies the code-behind
class. However, the simple header control doesn’t require any custom code
to work, so you can leave the class empty:

public partial class Header : System.Web.UI.UserControl
{}

As with ASP.NET web forms, the user control is a partial class,
because it’s merged with a separate portion generated by ASP.NET. That
automatically generated portion has the member variables for allthe
controls you add at design time.

Now to test the control, you need to place it on a web form. First,
you need to tell the ASP.NET page that you plan to use that user control
with the Register directive, which you can place immediately afterthe
Page directive, as shown here:

<%@ Register TagPrefix="apress" TagName="Header"
Src="Header.ascx" %>

This line identifies the source file that contains the user control
using the Src attribute. It alsodefines a tag prefix and tag name that will be
used to declare a new control on the page. In the same waythat ASP.NET
server controls have the <asp: ... > prefix to declare the controls (for
example,<asp:TextBox>), you can use your own tag prefixes to help
distinguish the controls you’ve created. Thisexample uses a tag prefix of
apress and a tag named Header.

The full tag is shown in this page:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="HeaderTest.aspx.cs"
Inherits="HeaderTest" %>
<%@ Register TagPrefix="apress" TagName="Header"
Src="Header.ascx" %>
<html mlns="http://www.w3.org/1999/xhtml">
<head>

<title>HeaderHost</title>
</head>
<body>

<form id="Form1" method="post" runat="server">
<apress:Header id="Header1"

runat="server"></apress:Header>
</form>

</body>
</html>

At a bare minimum, when you add a user control to your page, you
should give it a unique ID and indicate that it runs on the server, like all

171

ASP.NET controls. Below figure shows the sample page with thecustom
header.

In Visual Studio, you don’t need to code the Register directive by
hand. Instead, once you’ve created your user control, simply select the
.ascx file in the Solution Explorer and drag it onto the design area of a web
form (not the source view). Visual Studio will automatically add the
Register directive for you as well as an instance of the user control tag.

The header control is the simplest possible user control example,
but it can already provide some realistic benefits. Think about what might
happen if you had to manually copy the header’s HTML code into all your
ASP.NET pages, and then you had to change the title, add a contact link,
or something else.

You would need to change and upload all the pages again. With a
separate user control, you just update that one file. Best of all, you can use
any combination of HTML, user controls, and server controls on
anASP.NET web form.

Adding Code to a User Control
The previous user control didn’t include any code. Instead, it

simply provided a useful way to reuse a static block of a web-page user
interface. In many cases, you’ll want to add some code to your user
control creation, either to handle events or to add functionality that the
client can access. Just like a webform, you can add this code to the user
control class in a <script> block directly in the .ascx file, or youcan use a
separate .cs code-behind file.

Handling Events
To get a better idea of how this works, the next example creates a

simple Time Display user control with some event-handling logic. This
user control encapsulates a single Link Button control. Whenever the link
is clicked, the time displayed in the link is updated. The time is also
refreshed when the control first loads.

172

Here’s the user control mark up:

<%@ Control Language="c#"
AutoEventWireup="true"CodeFile="TimeDisplay.ascx.cs"
Inherits="TimeDisplay" %>
<asp:LinkButton id="lnkTime" runat="server" OnClick="lnkTime_Click"
/>

And here’s the corresponding code-behind class:

public partial class TimeDisplay : System.Web.UI.UserControl
{

protected void Page_Load(object sender, EventArgs e)
{

if (!Page.IsPostBack)
RefreshTime();

}
protected void lnkTime_Click(object sender, EventArgs e)
{

RefreshTime();
}
public void RefreshTime()
{

lnkTime.Text = DateTime.Now.ToLongTimeString();
}

}

Note that the lnkTime_Click event handler calls a method named
RefreshTime(). Because this method is public, the code on the hosting
web form can trigger a label refresh programmatically by calling
RefreshTime().

Below Figure shows the resulting control.



173

11
WEBSITE NAVIGATION

Navigation is a fundamental component of any website. Although
it’s easy enough to transfer the user from one page to another, creating a
unified system of navigation that works across an entire website takes
more effort. While you could build your own navigation system with a
few links (and a lot of work),ASP.NET has a built-in navigation system
that makes it easy.

In this chapter, you’ll tackle three core topics:
 The Multi View and Wizard controls: These let you boil down a

series of steps into a single page. With the help of these controls,
you can combine several pages of work into one place, simplifying
your navigation needs.

 The site map model: This lets you define the navigation structure
of your website and bind it directly to rich controls. You’ll also
learn how to extend this framework to support different types of
controls and different site map storage locations.

 The rich navigational controls: These include the Tree View and
Menu. Although these controls aren’t limited to navigation, they’re
an ideal match. In this chapter, you’ll learn about their wide range
of features.

Pages with Multiple Views
Most websites split tasks across several pages. For example, if you

want to add an item to your shopping cart and take it to the checkout in an
e-commerce site, you’ll need to jump from one page to another. This is the
cleanest approach, and it’s easy to program—provided you use some sort
of state management technique (from query strings to session state) to
transfer information from one page to another.

In other situations, you might want to embed the code for several
different pages inside a single page. For example, you might want to
provide several views of the same data (such as a grid-based view and a
chart-based view) and allow the user to switch from one view to the other
without leaving the page. Or, you might want to handle a small multistep
task (such as supplying user information for an account sign-up process),
without worrying about how to transfer the relevant information between
web pages.

In ASP.NET 1.x, the only way to model a page with multiple views was to
add several Panel controls to a page so that each panel represents a single

174

view or a single step. You could then set the Visible property of each
Panel so that you see only one at a time. The problem with this approach is
that it clutters your page with extra code for managing the panels.
Additionally, it’s not very robust—with a minor mistake, you can end up
with two panels showing at the same time.

With ASP.NET 4, there’s no need to design your own multiple
view system from scratch. Instead, you can use one of two higher-level
controls that make these designs much easier—the Multi View and the
Wizard.

The Multiview Control
The MultiView is the simpler of the two multiple view controls.

Essentially, the MultiView gives you a way to declare multiple views and
show only one at a time. It has no default user interface—you get only
whatever HTML and controls you add.

Creating a MultiView is suitably straightforward. You add the
<asp:MultiView> tag to your .aspx page file and then add one <asp:View>
tag inside it for each separate view.

<asp:MultiView ID="MultiView1" runat="server">
<asp:View ID="View1" runat="server">...</asp:View>
<asp:View ID="View2" runat="server">...</asp:View>
<asp:View ID="View3" runat="server">...</asp:View>
</asp:MultiView>

Inside the <asp:View> tag, you add the HTML and web controls for that
view.

<asp:MultiView ID="MultiView1" runat="server"
ActiveViewIndex="0">
<asp:View ID="View1" runat="server">
Showing View #1

<asp:Image ID="Image1" runat="server"ImageUrl="./cookies.jpg"/>
</asp:View>
<asp:View ID="View2" runat="server">
Showing View #2

Text content.
</asp:View>
<asp:View ID="View3" runat="server">
Showing View #3

<asp:Calendar ID="Calendar1" runat="server"></asp:Calendar>
</asp:View>
</asp:MultiView>

175

Visual Studio shows all your views at design time, one after the other (see
Figure 17-1). You can edit these regions in the same way you design any
other part of the page.

The Multi View. Active View Index determines what view will be
shown. This is the only view that’s rendered in the page. The default
Active View Index value is -1, which means no view is shown. One option
is to use a list control that lets users choose from the full list of views.
Here’s some sample code that binds the list of views to a list box:

protected void Page_Load(object sender, Event Args e)

{

if (!Page.Is Post Back)

{

DropDownList1.DataSource = MultiView1.Views;

DropDownList1.DataTextField = "ID";

DropDownList1.DataBind();

}

}

176

And here’s the code that sets the current view based on the listindex:

protected void DropDownList1_SelectedIndexChanged (object sender,
Event Args e)
{
MultiView1.ActiveViewIndex = DropDownList1.SelectedIndex;
}

The Performance of Multi View Pages
The most important detail you need to know about the Multi View

is that unlike the rich data controls (the Grid View, Forms View, and so
on), the Multi View is not a naming container. This means that if you add
a control named textBox1 to a view, you can’t add another control named
textBox1 to another view. In fact, in terms of the page model, there’s no
real difference between controls you add to a view and controls in the rest
of the page. Either way, the controls you create will be accessible through
member variables in your page class. This means it’s easy to configure a
control in the second view when an event is raised by a control in the first
view.

As a result, the pages you create using the Multi View tend to be
heavier than normal pages. That’s because the entire control model—
including the controls from every view—is created on every post back and
persisted to view state. For the most part, this won’t be a significant factor,
unless you are manipulating a large number of controls programmatically
(in which case you might want to turn Enable View State off for these
controls) or you are using several data sources. For example, if you have
three views and each view has a different data source control, each time
the page is posted back all three data source controls will perform their
queries, and every view will be bound, including those that aren’t
currently visible. To avoid this overhead, you can leave your controls
unbound and binding them programmatically, or cancelling the binding
process for views that aren’t currently visible.

177

The Wizard Control

The Wizard control is a more glamorous version of the Multi View
control. It also supports showing one of several views at a time, but it
includes a fair bit of built-in yet customizable behavior, including
navigation buttons, a sidebar with step links, styles, and templates.

Usually, wizards represent a single task, and the user moves
linearly through them, moving from the current step to the one
immediately following it (or the one immediately preceding it in the case
of a correction). The ASP.NET Wizard control also supports nonlinear
navigation, which means it allows you to decide to ignore a step based on
the information the user supplies.

By default, the Wizard control supplies navigation buttons and a
sidebar with links for each step on the left. You can hide the sidebar by
setting the Wizard. Display Side Bar property to false. Usually, you’ll take
this step if you want to enforce strict step-by-step navigation and prevent
the user from jumping out of sequence. You supply the content for each
step using any HTML or ASP.NET controls.

Wizard Steps
To create a wizard in ASP.NET, you simply define the steps and their
content using <asp:WizardStep> tags. Each step takes a few basic pieces
of information. The most important ones are listed in the below Table.

178

The following wizard contains four steps that, taken together,
represent a simple survey. The Step Type adds a Complete step at the end,
with a summary. The navigation buttons and sidebar links are added
automatically.

<asp:Wizard ID="Wizard1" runat="server"
Width="467px"BackColor="#EFF3FB"BorderColor="#B5C7DE"
BorderWidth="1px">

<WizardSteps>

<asp:WizardStep ID="WizardStep1" runat="server"
Title="Personal">

<h3>Personal Profile</h3>

Preferred Programming Language:

<asp:DropDownList ID="lstLanguage"
runat="server">

<asp:ListItem>C#</asp:ListItem>

<asp:ListItem>VB</asp:ListItem>

<asp:ListItem>J#</asp:ListItem>

<asp:ListItem>Java</asp:ListItem>

<asp:ListItem>C++</asp:ListItem>

<asp:ListItem>C</asp:ListItem>

</asp:DropDownList>

</asp:WizardStep>

<asp:WizardStep ID="WizardStep2" runat="server"
Title="Company">

<h3>Company Profile</h3>

Number of Employees: <asp:TextBox
ID="txtEmpCount" runat="server"/>

Number of Locations: <asp:TextBox
ID="txtLocCount" runat="server"/>

179

</asp:WizardStep>

<asp:WizardStep ID="WizardStep3" runat="server"
Title="Software">

<h3>Software Profile</h3>

Licenses Required:

<asp:CheckBoxList ID="lstTools" runat="server">

<asp:ListItem>Visual Studio 2008</asp:ListItem>

<asp:ListItem>Office 2007</asp:ListItem>

<asp:ListItem>Windows Server
2008</asp:ListItem>

<asp:ListItem>SQL Server 2008</asp:ListItem>

</asp:CheckBoxList>

</asp:WizardStep>

<asp:WizardStep ID="Complete" runat="server"
Title="Complete"

StepType="Complete">

Thank you for completing this survey.

Your products will be delivered shortly.

</asp:WizardStep>

</WizardSteps>

</asp:Wizard>

180

Unlike the Multi View control, you can see only one step at a time
on the design surface of your web page in Visual Studio. To choose which
step you’re currently designing, select it from the smart tag as shown in
the below figure. But be warned—every time you do, Visual Studio
changes the Wizard. Active Step Index property to the step you choose.
Make sure you set this back to 0 before you run your application so it
starts at the first step.

Wizard Events
You can write the code that underpins your wizard by responding

to several events (as listed in the Table below).

On the whole, two wizard programming models exist:

Commit-as-you-go: This makes sense if each wizard step wraps an
atomic operation that can’t be reversed. For example, if you’re processing
an order that involves a credit card authorization followed by a final
purchase, you can’t allow the user to step back and edit the credit card
number.

To support this model, you set the Allow Return property to false
on some or all steps, and you respond to the Active Step Changed event to
commit changes for each step.

Commit-at-the-end: This makes sense if each wizard step is collecting
information for an operation that’s performed only at the end. For
example, if you’re collecting user information and plan to generate a new
account once you have all the information, you’ll probably allow a user to
make changes midway through the process. You execute your code for
generating the new account when the wizard is finished by reacting to the
Finish Button Click event.

Site Maps
If your website has more than a handful of pages, you’ll probably

need some sort of navigation system to let the user move from one page to
the next. You can also use master pages to define a template for your site

181

that includes a navigation bar. However, it’s still up to you to fill this
navigation bar with content.

Obviously, you can use the ASP.NET toolkit of controls to
implement almost any navigation system, but it still requires you to
perform all the hard work. Fortunately, ASP.NET includes a set of
navigation features that you can use to dramatically simplify the task.

As with all the best ASP.NET features, ASP.NET navigation is
flexible, configurable, and pluggable. It consists of three components:

 A way to define the navigational structure of your website. This
part is the XML site map, which is (by default) stored in a file.

 A convenient way to parse the site map file and convert its
information into a suitable object model. This part is performed by
the Site Map Data Source control and the Xml Site Map Provider.

 A way to use the site map information to display the user’s current
position and give the user the ability to easily move from one place
to another. This part is provided through the controls you bind to
the Site Map Data Source control, which can include breadcrumb
links, lists, menus, and trees.

You can customize or extend each of these ingredients separately.
For example, if you want to change the appearance of your navigation
controls, you simply need to bind different controls to the Site Map Data
Source. On the other hand, if you want to read a different format of site
map information orread it from a different location, you need to change
your site map provider.

Defining a Site Map
The starting point in site map-based navigation is the site map

provider. ASP.NET ships with a single sitemap provider, named XmlSite
Map Provider, which is able to retrieve site map information from an
XML file. If you want to retrieve a site map from another location or in a

182

custom format, you’ll need to create your own site map provider—a topic
covered in the section “Creating a Custom Sitemap Provider.”

The Xml Site Map Provider looks for a file named Web. sitemap in
the root of the virtual directory. Like all site map providers, its task is to
extract the site map data and create the corresponding Site Map object.
This Site Map object is then made available to other controls through the
Site Map Data Source.

To try this, you need to begin by creating a Web.sitemap file and
defining the website structure using the <siteMap> and <siteMapNode>

elements. To add a site map using Visual Studio, choose Website ➤Add

New Item (or Project ➤Add New Item in a web project), choose the Site
Map template, and then click Add.

Here’s the bare-bones structure that the site map file uses:

<siteMapxmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-
1.0">

<siteMapNode>

<siteMapNode>...</siteMapNode>

<siteMapNode>...</siteMapNode>

...

</siteMapNode>

</siteMap>

To be valid, your site map must begin with the root <siteMap>
node, followed by a single<siteMapNode> element, representing the
default home page. You can nest other <siteMapNode>elements in the
root <siteMapNode> as many layers deep as you want. Each site map
node should havea title, description, and URL, as shown here:

<siteMapNode title="Home" description="Home" url="./default.aspx">

In this example, the URL uses the ./ relative path syntax, which
indicates the root of the web application. This style isn’t necessary, but it
is strongly recommended, as it ensures that your site maplinks are
interpreted correctly regardless of the current folder.

You can now use the <siteMapNode> to create a site map. The
only other restriction is that you can’tcreate two site map nodes with the
same URL.

Here’s a sample site map:

<siteMapxmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-
1.0">

183

<siteMapNode title="Home" description="Home" url="./default.aspx">

<siteMapNode title="Products" description="Our
products"url="./Products.aspx">

<siteMapNode title="Hardware" description="Hardware
choices"url="./Hardware.aspx" />

<siteMapNode title="Software" description="Software
choices"url="./Software.aspx" />

</siteMapNode>

<siteMapNode title="Services" description="Services we
offer"url="./Services.aspx">

<siteMapNode title="Training" description="Training
classes"url="./Training.aspx" />

<siteMapNode title="Consulting" description="Consulting
services"url="./Consulting.aspx" />

<siteMapNode title="Support" description="Support
plans"url="./Support.aspx" />

</siteMapNode>

</siteMapNode>

</siteMap>

Binding to a Site Map
Once you’ve defined the Web. sitemap file, you’re ready to use it

in a page. This is a great place to use master pages so that you can define
the navigation controls as part of a template and reuse them with every
page. Here’s how you might define a basic structure in your master page
that puts navigation controls on the left and creates the Site Map Data
Source that provides navigational information to other controls:

<form id="form1" runat="server">

<table>

<tr>

<td style="width: 226px;vertical-align: top;">

<!-- Navigation controls go here. -->

</td>

<td style="vertical-align: top;">

<asp:ContentPlaceHolder id="ContentPlaceHolder1"
runat="server" />

</td>

</tr>

</table>

184

<asp:SiteMapDataSource ID="SiteMapDataSource1"
runat="server" />

</form>

Then you can create a child page with some simple static content:

<asp:Content ID="Content1"
ContentPlaceHolderID="ContentPlaceHolder1"runat="Server">

Default.aspx page (home).

</asp:Content>

The only remaining task is to choose the controls you want to use
to display the site map data. One all-purpose solution is the Tree View
control. You can add the Tree View and bind it to the Site Map Data
Source in the master page using the Data Source ID, as shown here:
<asp:TreeView ID="treeNav" runat="server"
DataSourceID="SiteMapDataSource1" />

Alternatively, you could use the fly-out Menu control just as easily:
<asp:Menu ID="Menu1" runat="server"
DataSourceID="SiteMapDataSource1" />

Below figure shows both the options:

Creating a Custom Site Map Provider
To really change how the ASP.NET navigation model works, you

need to create your own site map provider. You might choose to create a
custom site map provider for several reasons:

 You need to store site map information in a different data source
(such as a relational database).

 You need to store site map information with a different schema
from the XML format expected by ASP.NET. This is most likely if
you have an existing system in place for storing site maps.

 You need a highly dynamic site map that’s generated on the fly.
For example, you might want to generate a different site map based
on the current user, the query string parameters, and so on.

185

 You need to change one of the limitations in the Xml Site Map
Provider implementation. For example, maybe you want the ability
to have nodes with duplicate URLs.

You have two choices when implementing a custom site map
provider. All site map providers derive from the abstract base class Site
Map Provider in the System. Web namespace. You can derive from this
class to implement a new provider from scratch. However, if you want to
keep the same logic but use a different data store, just derive from the
Static Site Map Provider class instead. It gives you a basic implementation
of many methods, including the logic for node storing and searching.

In the following sections, you’ll see a custom provider that lets you
store site map information in a database.

Storing Site Map Information in a Database

In this example, all navigation links are stored in a single database
table. Because databases don’t lend themselves easily to hierarchical data,
you need to be a little crafty. In this example, each navigation link is
linked to a parent link in the same table, except for the root node. This
means that although the navigational links are flattened into one table, you
can re-create the right structure by starting with the home page and then
searching for the subset of rows at each level.

Figure below shows the Site Map table with some sample data that
roughly duplicates the site map you saw earlier in this chapter.

In this solution, the site map provider won’t access the table
directly. Instead, it will use a stored procedure. This gives some added
flexibility and potentially allows you to store your navigation information
with a different schema, as long as you return a table with the expected
column names from your stored procedure.

Here’s the stored procedure used in this example:

CREATE PROCEDURE GetSiteMap AS
SELECT * FROM SiteMap ORDER BY ParentID, Title

186

Adding Sorting
Currently, the Sql Site Map Provider returns the results ordered

alphabetically by title. This means the About page always appears before
the Contact Us page. This make sense for a quick test, but it isn’t practical
in a real site, where you probably want the ability to control the order in
which pages appear.

Fortunately, an easy solution exists. In fact, you don’t even need to
touch the Sql Site Map Provider code. All you need to do is introduce a
new field in the Site Map table (say, Ordinal Position) and modify the Get
Site Map procedure to use it:

ALTER PROCEDURE Get Site Map AS
SELECT * FROM Site Map ORDER BY Parent ID, Ordinal Position,
Title

First, records are sorted into groups based on the parent (which
node they fall under). Next, they’re ordered according to the Ordinal
Position values, if you’ve supplied them. Finally, they’re sorted by title.



187

12

DATA BASE : ADO.NET

Unit Structure

12.0 Introduction to ADO.NET

12.1 ADO.NET Architecture

12.1.1 Components of ADO.NET Architecture

12.2 Properties of Sql Command Class

12.2.1 Data Reader

12.2.2 Data Adapter

12.3 Connection String

12.4 Connected and disconnected mode of ADO.NET Architecture

12.4.1 Connected Architecture

12.4.1.1 Direct Data Access

12.4.1.2 Creating a Connection

12.4.1.3 Inserting, Updating, and Deleting in Connected Mode

12.4.2 Disconnected Architecture

12.4.2.1 Disconnected Data Access

12.4.2.2 Inserting, Updating and Deleting in Disconnected Mode

12.5 Difference between connected and disconnected architecture in
asp.net

12.6 Summary

12.7 Exercise

12.8 Reference

12.0 INTRODUCTION TO ADO.NET

Microsoft introduced ADO (ActiveX Data Objects), a data access
technology for connecting to databases in 1996.ADO.NET is an extension
of ADO, and it enables you to connect to and work with databases from
within the managed environment of .NET.ADO is a language-neutral
object model that is the keystone of Microsoft's Universal Data Access
strategy. ADO.NET is an integral part of the .NET Compact Framework,

188

providing access and modify to relational data, XML documents, and
application data.

ADO.NET supports a variety of development needs. You can
create database-client applications and middle-tier business objects used
by applications, tools, languages or Internet browsers. ADO.NET provides
data access services in the Microsoft .NET platform. ADO.NET is an
object oriented data access technology that supports both connected and
disconnected modes of operation.

You can use ADO.NET to perform CRUD(Create, Read, Update
and Delete).You can use ADO.NET to access data by using the new .NET
Framework data providers which are:

1. Data Provider for SQL Server (System.Data.SqlClient).
2. Data Provider for OLEDB (System.Data.OleDb).
3. Data Provider for ODBC (System.Data.Odbc).
4. Data Provider for Oracle (System.Data.OracleClient).

ADO.NET is a set of classes that expose data access services to the
.NET developer. The ADO.NET classes are found inSystem.Data.dll and
are integrated with the XML classes in System.Xml.dll.

12.1 ADO.NET ARCHITECTURE

ADO.NET consists of a set of objects that expose data access
services to the .NET environment. It is a data access technology from
Microsoft .Net Framework , which provides communication between
relational and non relational database through a common set of
components .

System. Data namespace is the core of ADO.NET and it contains classes
used by all data providers. ADO.NET is designed to be easy to use, and
Visual Studio provides several wizards and other features that you can use
to generate ADO.NET data access code.

189

12.1.1 Components of ADO.NET Architecture Data Set

Data Set can work in both connected and disconnected modes of
ADO.NET. Data Set is the core component of the disconnected
architecture of ADO.NET. It is an in-memory representation of a database,
provide consistent relational programming model irrespective of the
source of the data, which has been read into it. Data Set contains one or
more tables. Data Adapter is used to get data in DataSet.

Data Table
In ADO.NET, Data Table objects are used to represent the tables

in a Data Set. A Data Table is an in-memory representation of a single
database table which has collection of rows and columns. Data Table
fetches only one Table Row at a time Data Set. You and add or delete
required columns to the Data Table by using the commands.

Data View
A DataView provides a customized view of DataTable. You can

use it to sort or filter a rows of a DataSet.

Data Provider
A data provider provides access to the database. The .Net

Framework includes mainly three Data Providers for ADO.NET. They are
the Microsoft SQL Server Data Provider, OLEDB Data Provider and
ODBC Data provider. A data provider encapsulates the protocols that are
needed to make connection, and perform CRUD operations with database.

Connection Object
The connection object is used to establish a connection to the

database. It carries required authentic information like username and
password in the connection string and opens a connection.
You can use the following connection object

 OLE DB – OleDbConnection
 SQL Server – SqlConnection
 ODBC – OdbcConnection
 Oracle – OracleConnection

Command Object
The command object is used to send SQL statements to the

database in order to execute CRUD operation. The SQL queries can be in
the Form of Inline text, Stored Procedures or direct Table access.
Commands are used to insert data, retrieve data, and execute store
procedures and other database objects. Depending on the underlying
database in use, you can use the Oracle Command, Sql Command, OleDb
Command and Odbc Command objects in ADO.NET.

190

12.2 PROPERTIES OF SQLCOMMAND CLASS

The properties associated with SqlCommand class are shown in the
Table below.

Property Type of Access Description

Connection Read/Write The SqlConnection object that
is used by the command object
to execute SQL queries or
Stored Procedure.

CommandText Read/Write Represents the SQL Statement
or the name of the Stored
Procedure.

CommandType Read/Write This property indicates how
the CommandText property
should be interpreted.
The possible values are:
 Text (SQL Statement)
 StoredProcedure

(Stored Procedure
Name)

 TableDirect

Command
Timeout

Read/Write This property indicates the
time to wait when executing a
particular command.
Default Time for Execution
of Command is 30 Seconds.
The Command is aborted after
it times out and an exception
is thrown.

Execute Methods that can be called from a Command Object.

Property Description

Execute Non Query This method executes the command specifies
and returns the number of rows affected.

Execute Reader The Execute Reader method executes the
command specified and returns an instance of
instance of Sql Data Reader class.

Execute Scalar This method executes the command specified
and returns the first column of first row of the
result set. The remaining rows and column are
ignored.

Execute XML
Reader

This method executes the command specified
and returns an instance of Xml Reader class.
This method can be used to return the result set
in the form of an XML document

191

12.2.1 DataReader

A Data Reader is connected, forward-only, read-only stream of
data that is used to read a sequential collection of records from a database.
The Data Reader cannot be created directly from code, they can created
only by calling the Execute Reader method of a Command Object. It is
much faster than a Data Set but requires an open connection.

12.2.2 Data Adapter

The Data Adapter is used in the disconnected mode of ADO.NET.
Data Adapter acts as a bridge between Data Set and database. Data
Adapter object is used to read the data from the database and bind that
data to dataset. Data Adapter resolves the changes made to the Data Set
back to the database.

Data Adapter provide two methods : Fill and Update
The Fill method populates a Data Set instance with data from the

database. The Update method is used to update the database with data
contained in a Data Set. The Data Adapter provides the Select Command,
Insert Command, Update Command and Delete Command command
objects to perform CURD operations.

12.3 CONNECTION STRING

A connection string provides the information that a provider needs
to communicate with a particular database. The Connection String
includes parameters such as the name of the driver, Server name and
Database name , as well as security information such as user name and
password.

An ADO.NET Data Provider is a class that can communicate with
a specific type of database or data store. Usually Data Providers use a
connection string containing a collection of parameters to establish the
connection with the database through applications.

The .NET Framework provides mainly three data providers, they are
1. .NET Data Provider(SQL Server);
2. OLEDB
3. ODBC

Syntax
Connection String="Data
Source=(LocalDB)\v11.0;AttachDbFileName=|DataDirectory|\DatabaseFi
leName.mdf;InitialCatalog=DatabaseName;Integrated
Security=True;Multiple Active Result Sets=True" />

192

In a web application we can specify a database connection string in
one of the following two ways.
 Specify it in the web.config file.
 Create a common class file for the connection string.

Connection string parameters

Sr
No

Parameter Description

1 Attach DB
Filename
/Extended
Properties /Initial
File Name

The name of the primary database file,
including the full path name of an attachable
database. Attach DB Filename is only
supported for primary data files with an .mdf
extension.

If the value of the Attach DB File Name key is
specified in the connection string, the database
is attached and becomes the default database
for the connection.

2 Connect Timeout
/ Connection
Timeout

The length of time (in seconds) to wait for a
connection to the server before terminating the
attempt and generating an error.

Default time out is 15 seconds.

3 Data Source/

Server/ Address

The name or network address of the instance of
SQL Server to which to connect. The port
number can be specified after the server name:

server=tcp:servername, portnumber

4 Initial Catalog /
Database

The name of the database.

The database name can be 128 characters or
less.

5 Integrated
Security

When false, User ID and Password are
specified in the connection. When true, the
current Windows account credentials are
used for authentication.

6 Persist Security
Info

When set to false or no (strongly
recommended), security-sensitive information,
such as the password, is not returned as part of
the connection if the connection is open or has
ever been in an open state. Resetting the
connection string resets all connection string
values including the password. Recognized
values are true, false, yes, and no.

7 User ID The SQL Server login account. Not
recommended. To maintain a high level of
security, we strongly recommend that you use
the Integrated Security or Trusted_Connection

193

keywords instead.

SqlCredential is a more secure way to specify
credentials for a connection that uses SQL
Server Authentication.

The user ID must be 128 characters or less.

8 Password The password for the SQL Server account
logging on. Not recommended. To maintain a
high level of security, we strongly recommend
that you use the Integrated Security or
Trusted_Connection keyword instead.

9 User Instance A value that indicates whether to redirect the
connection from the default SQL Server
Express instance to a runtime-initiated instance
running under the account of the caller.

10 Application
Name

The name of the application, or '.NET
SQLClient Data Provider' if no application
name is provided.

12.4 CONNECTED AND DISCONNECTED MODE OF
ADO.NET ARCHITECTURE

ADO.NET provides mainly the following two types of architectures-
1. Connected Architecture
2. Disconnected Architecture

194

12.4.1Connected Architecture
In the connected architecture, connection with a data source is kept

open constantly for data access as well as data manipulation operations.

The ADO.NET Connected architecture considers mainly three
types of objects.

• SqlConnection con;
• SqlCommand cmd;
• SqlDataReader dr;

12.4.1.1 Direct Data Access
The most straightforward way to interact with a database is to use

direct data access. When you use direct data access, you’re in charge of
building a SQL command and executing it. You use commands to query,
insert, update, and delete information.

When you query data with direct data access, you don’t keep a
copy of the information in memory. Instead, you work with it for a brief
period of time while the database connection is open, and then close the
connection as soon as possible. This is different than disconnected data
access, where you keep a copy of the data in the DataSet object so you can
work with it after the database connection has been closed. The direct data
model is well suited to ASP.NET web pages, which don’t need to keep a
copy of their data in memory for long periods of time.

When you work with ADO.NET in connected mode, you follow these
steps:

1. Create a connection
2. Open a connection
3. Create a command object
4. Execute SQL statements
5. Close the connection

12.4.1.2 Creating the connection:
To create a connection to the database, you need to use the

connection class appropriate for the underlying database.
You also need a connection string that contains the database credentials
of the database you are connecting to.

Example
You need to import these two namespace before using any

ado.net connection.
using System.Data;
using System.Data.SqlClient;

SqlConnection con = new SqlConnection("Data Source=hp; Initial
Catalog = zaidi; Integrated Security=True");

195

Opening the connection:
To open the connection in preceding section, you need to use the

Open method on the connection object.

Example
con.Open();

Creating the command:
To create the command object, use the class that corresponds to the

database you are using.

Here we are using SQL Server as the database, we should use the
SqlCommand class

Example
SqlCommand cmd = new SqlCommand();

Execute SQL statements
To execute queries using the command object, call the appropriate

command object method.

Example
cmd.CommandText = "select name,class,mobile from student";

Closing the connection
Once we are done with all the operations, we should close the

connection to the database using the close method on the connection
object.

Example
con.Close();

12.4.1.3 Inserting, Updating, Deleting and Searching in
connected mode

In the connected mode of operation, the connection to the database
remains open.

To perform insert, update or delete operations, you need to use the
Execute Query method on the command object.

We are performing simple operations like insert, update , delete
and search operations in a Web Forms application.

The following are the basic steps of performing insert, update ,
delete and search operations on database:-

196

1. At first we should have a Database. So create a database in
Microsoft SQL Server.

In this example our database name is "zaidi" and database table
is "student" which has five columns as "no", "name", "class",
“mobile” and "course", no column is a primary key of the
table.

2. Create a connection in visual studio 2010
The first thing we want to do is add a data connection in the
Visual Studio 2010 Servers Explorer Windows.
Server Explorer allows us to see the contents of the database. It
provides tree structure to explore database files.
Right click on "Data Connections" and click on "Add New
Connection".

197

Enter the required connection info in the "Add Connection" dialog and
click "Test Connection" to test the connection.
If that succeeds, click OK.

198

After you add the data connection you will be able to see the
connection in the Data Connections tree:

1. Create a command.
2. Specify connection string to the connection.

Right click on databse.

199

3. Specify connection that the command will use.
4. Specify the insert/update/delete and other statements for the

Command Text of the command.
5. Add value to the command parameters (if any)
6. Open connection
7. Execute the commands
8. Close connection

Create a web forms application and design the following web page

Double click on the button to generate the even handler for the
buttons and use the following code for insert, update, delete and search
operations.

Default.aspx code

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="_Default" %>

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

200

<title> Insert Update Delete By Haider Zaidi </title>

</head>

<body>

<form id="form1" runat="server">

<div>

<table class="style1">

<td class="style3">

<asp:Label ID="Label1" runat="server" Font-Bold="True"
Font-Names="AR

JULIAN" Font-Size="X-Large" Text="Roll
No"></asp:Label>

</td>

<td class="style4">

<asp:TextBox ID="TextBox1" runat="server" Font-
Bold="True"

Font-Names="AR JULIAN" Font-Size="Medium"
Height="40px"

Width="179px"></asp:TextBox>

</td>

<td class="style3">

<asp:Label ID="Label2" runat="server" Font-Bold="True"
Font-Names="AR

JULIAN" Font-Size="X-Large" Text="Name"></asp:Label>

</td>

<td class="style4">

<asp:TextBox ID="TextBox2" runat="server" Font-
Bold="True"

Font-Names="AR JULIAN" Font-Size="Medium"
Height="40px"

Width="179px"></asp:TextBox>

</td>

<td class="style3">

<asp:Label ID="Label3" runat="server" Font-Bold="True"
Font-Names="AR

JULIAN" Font-Size="X-Large" Text="Class"></asp:Label>

</td>

<td class="style4">

<asp:TextBox ID="TextBox3" runat="server" Font-
Bold="True"

Font-Names="AR JULIAN" Font-Size="Medium"
Height="40px"

Width="179px"></asp:TextBox>

201

</td>

<td class="style3">

<asp:Label ID="Label4" runat="server" Font-Bold="True"
Font-Names="AR

JULIAN" Font-Size="X-Large" Text="Contact
No"></asp:Label>

</td>

<td class="style4">

<asp:TextBox ID="TextBox4" runat="server" Font-
Bold="True"

Font-Names="AR JULIAN" Font-Size="Medium"
Height="40px"

Width="179px"></asp:TextBox>

</td>

<td class="style3">

<asp:Label ID="Label5" runat="server" Font-Bold="True"
Font-Names="AR

JULIAN" Font-Size="X-Large" Text="E-Mail
ID"></asp:Label>

</td>

<td class="style4">

<asp:TextBox ID="TextBox5" runat="server" Font-
Bold="True"

Font-Names="AR JULIAN" Font-Size="Medium"
Height="40px"

Width="179px"></asp:TextBox>

</td>

<td class="style4">

<asp:Label ID="Label6" runat="server" Font-Bold="True"

Font-Names="Copperplate Gothic Light" Font-
Size="Medium"

ForeColor="#3333FF"></asp:Label>

</td>

<td class="style3">

<asp:Button ID="InsertButton" runat="server" Font-
Bold="True"

Font-Names="Copperplate Gothic Bold" Font-Size="X-
Large" Height="47px" onclick="InsertButton_Click" Text="INSERT"
Width="148px" />

</td>

<td class="style4">

<asp:Button ID="UpdateButton" runat="server" Font-
Bold="True"

202

Font-Names="Copperplate Gothic Bold" Font-Size="X-
Large" Height="47px" onclick="UpdateButton_Click" Text="UPDATE"
Width="148px" />

</td>

<td class="style3">

<asp:Button ID="SearchButton" runat="server" Font-
Bold="True"

Font-Names="Copperplate Gothic Bold" Font-Size="X-
Large" Height="47px" onclick="SearchButton_Click" Text="SEARCH"
Width="148px" />

</td>

<td class="style4">

<asp:Button ID="DeleteButton" runat="server" Font-
Bold="True"

Font-Names="Copperplate Gothic Bold" Font-Size="X-
Large" Height="47px" onclick="DeleteButton_Click" Text="DELETE"
Width="148px" />

</td>

</table>

</div>

</form>

</body>

</html>

C# Code (Default.aspx.cs):
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Data; // compulsory for ado.net
using System.Data.SqlClient; // compulsory for ado.net

public partial class _Default : System.Web.UI.Page
{

SqlConnection con = new SqlConnection("Data Source=hp;Initial
Catalog=zaidi; Integrated Security=True");

SqlCommand cmd;
SqlDataReader dr;
protected void Page_Load(object sender, EventArgs e)
{

}
// Code for Insertion Operation

203

protected void InsertButton_Click(object sender, EventArgs e)
{

con.Open();
string s = "insert into student (no , name , class , mobile , email)

values ('" + TextBox1.Text + "' ,'" + TextBox2.Text + "' ,'" +
TextBox3.Text + "' ,'" + TextBox4.Text + "' ,'" + TextBox5.Text + "') ";

cmd = new SqlCommand(s, con);
cmd.CommandType = CommandType.Text;

try
{

int result = cmd.ExecuteNonQuery();
if (result > 0)
{

Label6.Text = "Student Details Has Saved..!!";
}
else
{

Label6.Text = "Failed To Save Student Details ..!!";
}

}
catch(SqlException ex)
{

Label6.Text = ex.Message;
}
finally
{

con.Close();
}

TextBox1.Text = "";
TextBox2.Text = "";
TextBox3.Text = "";
TextBox4.Text = "";
TextBox5.Text = "";

}
// Code for Updation Operation
protected void UpdateButton_Click(object sender, EventArgs e)
{

string s =("Update student set no = '" + TextBox1.Text + "' , name =
'" + TextBox2.Text + "' , class = '" + TextBox3.Text + "', mobile ='" +
TextBox4.Text + "' , email ='" + TextBox5.Text + "' where no = '"+
TextBox1.Text+"' ");

con.Open();
cmd = new SqlCommand(s, con);

204

cmd.CommandType = CommandType.Text;
try
{

int result = cmd.ExecuteNonQuery();
if (result > 0)
{

Label6.Text = "Student Details Updated..!!";
}
else
{

Label6.Text = "Failed To Update Student Details ..!!";
}

}
catch (SqlException ex)
{

Label6.Text = ex.Message;
}
finally
{

con.Close();
}

TextBox1.Text = TextBox2.Text = TextBox3.Text = TextBox4.Text
= TextBox5.Text = "";

}
// Code for Deletion Operation
protected void DeleteButton_Click(object sender, EventArgs e)
{

string s = ("delete from student where no = '" + TextBox1.Text + "' ");

con.Open();
cmd = new SqlCommand(s, con);
cmd.CommandType = CommandType.Text;
try
{

int result = cmd.ExecuteNonQuery();
if (result > 0)
{

Label6.Text = "Student Details Deleted..!!";
}
else
{

Label6.Text = "Failed To Delete Student Details ..!!";
}

}
catch (SqlException ex)
{

Label6.Text = ex.Message;
}

205

finally
{

con.Close();
}

TextBox1.Text = TextBox2.Text = TextBox3.Text = TextBox4.Text =
TextBox5.Text = "";

}
// Code for Searching Operation
protected void SearchButton_Click(object sender, EventArgs e)
{

string s = "select * from student where no = '" + TextBox1.Text + "' ";
con.Open();
cmd = new SqlCommand(s, con);
cmd.CommandType = CommandType.Text;

try
{

dr = cmd.ExecuteReader();
if (dr.Read())
{

TextBox1.Text = dr[0].ToString();
TextBox2.Text = dr[1].ToString();
TextBox3.Text = dr[2].ToString();
TextBox4.Text = dr[3].ToString();
TextBox5.Text = dr[4].ToString();

}
else
{

Label6.Text = "No Record Found ..!!";
}
dr.Close();

}
catch (SqlException ex)
{

Label6.Text = ex.Message;
}
finally
{

con.Close();
}

}
}

206

12.4.2 Disconnected Architecture

Disconnected is the main feature of the .NET framework.
ADO.NET contains various classes that support this architecture. The
.NET application does not always stay connected with the database. The
classes are designed in a way that they automatically open and close the
connection. The data is stored client-side and is updated in the database
whenever required. The ADO.NET Discon nected architecture considers
primarily the following types of objects:

 DataSet ds;
 SqlDataAdapter da;
 SqlConnection con;
 SqlCommandBuilder bldr;

12.4.2.1 Disconnected Data Access

 The architecture of ADO.net in which data retrieved from database
can be accessed even when connection to database was closed is
called as disconnected architecture.

 When you use disconnected data access, you keep a copy of your
data in memory using the DataSet. You connect to the database
just long enough to fetch your data and dump it into the DataSet,
and then you disconnect immediately.

 Method of retrieving a record set from the database and storing it
giving the ability to do many CRUD (Create, Read, Update and
Delete) operations on the data in memory, then it can be re-
synchronized with the database when reconnecting.

207

12.4.2.2 Inserting, Updating, and Deleting in disconnected
mode

 We are using same database which is used in connected mode of
ADO.NET.

 Create a web page same as connected mode.
 Drag and drop a GridView control on the web page.
 After designing page will be like this.

C# Code (Default.aspx.cs):
using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Data;
using System.Data.SqlClient;

public partial class DisconnectedMode : System.Web.UI.Page
{

SqlConnection con = new SqlConnection("Data Source=hp;Initial
Catalog=zaidi;Integrated Security=True");

public DataTable dt;
SqlDataAdapter da;
SqlCommandBuilder cmd;

protected void Page_Load(object sender, EventArgs e)
{

da = new SqlDataAdapter("select * from student", con);

DataSet ds = new DataSet();
da.Fill(ds);
GridView1.DataSource = ds.Tables[0];
GridView1.DataBind();

}
protected void InsertButton_Click(object sender, EventArgs e)

208

{
da = new SqlDataAdapter("select * from student", con);
da.InsertCommand = new SqlCommand("insert into student

values(@p1,@p2,@p3,@p4,@p5)", con);

SqlCommand cmd = da.InsertCommand;

cmd.Parameters.AddWithValue("@p1", TextBox1.Text);
cmd.Parameters.AddWithValue("@p2", TextBox2.Text);
cmd.Parameters.AddWithValue("@p3", TextBox3.Text);
cmd.Parameters.AddWithValue("@p4", TextBox4.Text);
cmd.Parameters.AddWithValue("@p5", TextBox5.Text);
con.Open();
cmd.ExecuteNonQuery();
DataSet ds = new DataSet();
da.Fill(ds);
GridView1.DataSource = ds.Tables[0];
GridView1.DataBind();
con.Close();

}
protected void DeleteButton_Click(object sender, EventArgs e)
{

da.DeleteCommand = new SqlCommand("delete from student where
no = '" + TextBox1.Text + "' ",con);

SqlCommand cmd = da.DeleteCommand;
con.Open();
cmd.ExecuteNonQuery();
DataSet ds = new DataSet();
da.Fill(ds);
GridView1.DataSource = ds.Tables[0];
GridView1.DataBind();
con.Close();

}
protected void UpdateButton_Click(object sender, EventArgs e)
{ string s = ("Update student set no = '" + TextBox1.Text + "' ,

name = '" + TextBox2.Text + "' , class = '" + TextBox3.Text + "', mobile
='" + TextBox4.Text + "' , email ='" + TextBox5.Text + "' where no = '" +
TextBox1.Text + "' ");

da.UpdateCommand = new SqlCommand(s, con);
SqlCommand cmd = da.UpdateCommand;
con.Open();
cmd.ExecuteNonQuery();
DataSet ds = new DataSet();
da.Fill(ds);
GridView1.DataSource = ds.Tables[0];
GridView1.DataBind();
con.Close();

209

}
}

12.5 DIFFERENCE BETWEEN CONNECTED AND
DISCONNECTED ARCHITECTURE IN ASP.NET

Sr.No Connected Disconnected

1 It is connection oriented. It is disconnection oriented.

2 DataReader is used for
retrieving data from the
database

DataSet is used for retrieving
data from the database

3 Connected methods gives
faster performance

Disconnected get low in speed
and performance.

4 In Connected .net runtime
creates an instance of the
DataTable to hold data.

Connected can hold the data of
single table.

In disconnected-data can be
accessed from multiple tables
in a dataset.

Disconnected can hold
multiple tables of data.

5 In connected you need to use a
read only forward only data
reader

In disconnected you cannot

6 Data Reader can't persist the
data

Data Set can persist the data

7 It is Read only, we can't
update the data.

We can update data

8 All the operations can be
performed as the data is
accessed in the database.

All the operations can be
performed with the data once
retrieved.

210

12.6 SUMMARY

This unit gives an overview of ADO.NET architecture and its
components. Further it discusses operation of ADO.NET in connected and
disconnected mode.

12.7 EXERCISE

1. What is ADO.NET? Explain ADO.NET architecture.
2. Write a note on sql Connection and sql Command Class.
3. Write a note on Data Reader and Data Adapter.
4. Explain connected and disconnected mode of ADO.NET.
5. What is the difference between connected and disconnected mode

of ADO.NET.

12.8 REFERENCE

1. ADO.NET: The Complete Reference
2. Beginning ASP.NET 4 by Imar Spaanjaars
3. Database Programming with Visual Basic .Net and ADO.NET by

F Scott Barker, Publisher: Pearson Education
4. https://www.c-sharpcorner.com/
5. https://www.aspdotnet-suresh.com/
6. https://stackoverflow.com/
7. https://docs.microsoft.com/en-

us/dotnet/framework/data/adonet/ado-net-overview



211

13
DATA CONTROL IN ASP.NET

Unit Structure

13.0 ASP.NET data control

13.1 ASP.NET data source control

13.1.1 Grid View Control

13.1.2 Details View Control

13.1.3 Form View control

13.2 Deploying the web site

13.3 Crystal Reports

13.4 Summary

13.5 Exercise

13.6 Reference

12.0 ASP.NET DATA CONTROL

ASP.NET provides a wide variety of rich controls that can be

bound to data. Under the Data tab of the Visual Studio Toolbox, you can

get several controls under the Data tab that could be used to display data

from a data source, like a database or XML file.

212

13.1 ASP.NET DATA SOURCE CONTROL

A data source control interacts with the data-bound controls and

hides the complex data binding processes. These are the tools that provide

data to the data bound controls and support execution of operations like

insertions, deletions, sorting, and updates.

Each data source control wraps a particular data provider-relational

databases, XML documents, or custom classes and helps in:

 Managing connection

 Selecting data

 Managing presentation aspects like paging, caching, etc.

 Manipulating data

Data source controls provide a consistent and extensible method for

declaratively accessing data from web pages. Data source controls

available with ASP.NET 4.0 are as follows:

1. <asp:SqlDataSource>: This data source control is used to work with

SQL Server, OLE DB, Open DataBase Connectivity (ODBC), and

Oracle databases. Using this control, we can also select, update, delete,

and insert data using SQL commands.

2. <asp:ObjectDataSource>: N-tier methodology allows you to create

web applications that are not only scalable but also easier to maintain.

N-tier principle also enables clean separation, thereby allowing you to

easily add new functionalities. In an n-tier application, the middle-tier

objects may return complex objects that you have to process in your

ASP.NET presentation layer. Keeping this requirement in mind,

Microsoft has created this new control that allows you to seamlessly

integrate the data returned from the middle-layer objects with the

ASP.NET presentation layer.

3. <asp:AccessDataSource>: This is very similar to the SqlDataSource

control, except for the difference that it is designed to work with

Access databases.

4. <asp:XmlDataSource>: Allows you to bind to XML data, which can

come from a variety of sources, such as an external XML file, a

DataSet object, and so on. Once the XML data is bound to the

XmlDataSource control, this control can then act as a source of data

for data-bound controls such as TreeView and Menu.

213

5. <asp:SiteMapDataSource>: Provides a site navigation framework

that makes the creation of a site navigation system a breezy

experience. Accomplishing this requires the use of a new XML file

named web.sitemap that lays out the pages of the site in a hierarchical

XML structure. Once you have the site hierarchy in the web.sitemap

file, you can then data-bind the SiteMap DataSource control with the

web.sitemap file. Then the contents of the SiteMapDataSource control

can be bound to data-aware controls such as TreeView, Menu, and so

on.

13.1.1 GRIDVIEW CONTROL

 The GridView control is one of the most powerful user interface
controls available in ASP.NET 4.

 It was introduced with ASP.NET 2.0. The GridView control is
used to display the values of a data source in a table.

 It provides many options that let you customize its appearance and
behavior.

 The GridView control displays data provided by a data source in a
row and column format.

 Each column represents a field where each row represents a record.
It can also display empty data. The GridView control provides
many built-in capabilities that allow the user to sort, update, delete,
select and page through items in the control.

 The GridView control renders its data as an HTML table with one
Tr element for each row in the data source, and one Td element for
each column in the data source.

 Most of the .aspx code for a GridView control is created
automatically by Visual Studio when you drag the control from the
Toolbox onto the form and when you use the configuration wizard
to configure the data source.

The GridView control supports the following features:

 Improved data source binding capabilities.

 Tabular rendering – displays data as a table.

 Item as row.

 Built-in sorting capability.

 Built-in select, edit and delete capabilities.

 Built-in paging capability.

 Built-in row selection capability.

 Multiple key fields.

214

 Programmatic access to the GridView object model to dynamically
set properties, handle events and so on.

 Richer design-time capabilities.

 Control over Alternate item, Header, Footer, Colors, font, borders,
and so on.

Basic attributes of the GridView control

Attribute Description

ID The ID of the control

Runat Must specify “Server”

DataSourceID The ID of the data source to bind to.

DataKeyNames The name of the primary key fields separated
by commas

AutoGenrateColumne Specifies whether the control's columns should
be automatically generated.

SelectedIndex Specifies the row to be initially selected

AllowPaging true/false. Indicate whether the control should
support paging.

AllowSorting true/false. Indicate whether the control should
support sorting.

Caption Gets or sets the caption of the GridView.

CellPadding Indicates the space in pixel between the cells
and the border of the GridView.

CellSpacing Indicates the space in pixel between cells.

GridLines Both/Horizontal/Vertical/None. Indicates
whether GrdiLines should appear or not, if yes
Horizontal, Vertical or Both.

Example: Demo of GridView

215

Default.aspx source code:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="_Default" %>

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

<title>Data Control Example by Haider Sir</title>

</head>

<body>

<form id="form1" runat="server">

<asp:GridView ID="GridView1" runat="server"
AllowPaging="True"

AllowSorting="True" AutoGenerateColumns="False"
BackColor="#FFFFCC"

BorderColor="#999999" BorderStyle="Solid"
BorderWidth="3px"

Caption="GridView Example Demo" CaptionAlign="Top"
CellPadding="4"

CellSpacing="2" DataKeyNames="no"
DataSourceID="SqlDataSource1"

Font-Bold="True" Font-Names="Copperplate Gothic
Bold" Font-Size="X-Large"

ForeColor="#000066" Height="302px" PageSize="4"
Width="935px">

<Columns>

<asp:CommandField ShowDeleteButton="True"
ShowEditButton="True"

ShowSelectButton="True" />

<asp:BoundField DataField="no" HeaderText="no"
ReadOnly="True"

SortExpression="no" />

<asp:BoundField DataField="name"
HeaderText="name" SortExpression="name" />

<asp:BoundField DataField="class" HeaderText="class"
SortExpression="class" />

<asp:BoundField DataField="mobile"
HeaderText="mobile"

SortExpression="mobile" />

216

<asp:BoundField DataField="email"
HeaderText="email" SortExpression="email" />

</Columns>

<FooterStyle BackColor="#CCCCCC" />

<HeaderStyle BackColor="Black" Font-Bold="True"
ForeColor="White" />

<PagerStyle BackColor="#CCCCCC" ForeColor="Black"
HorizontalAlign="Left" />

<RowStyle BackColor="White" />

<SelectedRowStyle BackColor="#000099" Font-
Bold="True" ForeColor="White" />

<SortedAscendingCellStyle BackColor="#F1F1F1" />

<SortedAscendingHeaderStyle BackColor="#808080" />

<SortedDescendingCellStyle BackColor="#CAC9C9" />

<SortedDescendingHeaderStyle BackColor="#383838" />

</asp:GridView>

<asp:SqlDataSource ID="SqlDataSource1" runat="server"

ConflictDetection="CompareAllValues"

ConnectionString="<%$
ConnectionStrings:zaidiConnectionString %>"

DeleteCommand="DELETE FROM [student] WHERE
[no] = @original_no AND (([name] = @original_name) OR ([name] IS
NULL AND @original_name IS NULL)) AND (([class] =
@original_class) OR ([class] IS NULL AND @original_class IS NULL))
AND (([mobile] = @original_mobile) OR ([mobile] IS NULL AND
@original_mobile IS NULL)) AND (([email] = @original_email) OR
([email] IS NULL AND @original_email IS NULL))"

InsertCommand="INSERT INTO [student] ([no], [name],
[class], [mobile], [email]) VALUES (@no, @name, @class, @mobile,
@email)"

OldValuesParameterFormatString="original_{0}"

SelectCommand="SELECT * FROM [student]"

UpdateCommand="UPDATE [student] SET [name] =
@name, [class] = @class, [mobile] = @mobile, [email] = @email
WHERE [no] = @original_no AND (([name] = @original_name) OR
([name] IS NULL AND @original_name IS NULL)) AND (([class] =
@original_class) OR ([class] IS NULL AND @original_class IS NULL))
AND (([mobile] = @original_mobile) OR ([mobile] IS NULL AND
@original_mobile IS NULL)) AND (([email] = @original_email) OR
([email] IS NULL AND @original_email IS NULL))">

217

<DeleteParameters>

<asp:Parameter Name="original_no" Type="Int32" />

<asp:Parameter Name="original_name" Type="String" />

<asp:Parameter Name="original_class" Type="String" />

<asp:Parameter Name="original_mobile" Type="String" />

<asp:Parameter Name="original_email" Type="String" />

</DeleteParameters>

<InsertParameters>

<asp:Parameter Name="no" Type="Int32" />

<asp:Parameter Name="name" Type="String" />

<asp:Parameter Name="class" Type="String" />

<asp:Parameter Name="mobile" Type="String" />

<asp:Parameter Name="email" Type="String" />

</InsertParameters>

<UpdateParameters>

<asp:Parameter Name="name" Type="String" />

<asp:Parameter Name="class" Type="String" />

<asp:Parameter Name="mobile" Type="String" />

<asp:Parameter Name="email" Type="String" />

<asp:Parameter Name="original_no" Type="Int32" />

<asp:Parameter Name="original_name" Type="String" />

<asp:Parameter Name="original_class" Type="String" />

<asp:Parameter Name="original_mobile" Type="String" />

<asp:Parameter Name="original_email" Type="String" />

</UpdateParameters>

</asp:SqlDataSource>

</td>

</table>

</div>

</form>

</body>

</html>

218

13.1.2 DETAILSVIEW CONTROL
 The DetailsView control is designed to display the data for a single

item of a data source.
 To use this control effectively, you must provide some way for the

user to select which data item to display.
 The most common way to do that is to use the DetailsView control

in combination with another control such as a GridView control or
a drop-down list.

 A DetailsView control can be displayed in one of three modes.
1. In Read-only mode, the data for the current data source row is

displayed but can't be modified.
2. In Edit mode, the user can modify the data for the current row.
3. In Insert mode, the user can enter data that will be inserted into

the data source as a new row.
The DetailsView control supports the following features:

 Tabular rendering.
 Supports column layout, by default two columns at a time.
 Optional support for paging and navigation.
 Built-in support for data grouping.
 Built-in support for edit, insert and delete capabilities.

DetailsView control attributes

Attribute Description
ID The ID of the control

Runat Must specify “Server”

DataSourceID The ID of the data source to bind to.

DataKeyNames A list of field names that form the primary key
for the data source.

AutoGenrateColumne If True, a row is automatically generated for
each field in the data source. If False, you must
define the rows in the Fields element.

DefaultMode Sets the initial mode of the DetailsView
control. Valid options are Edit, Insert, or
ReadOnly.

AllowPaging Set to True to allow paging.

219

Default2.aspx source code:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Default2.aspx.cs" Inherits="Default2" %>

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

<title>Data Control Example by Haider Sir</title>

</head>

<body>

<form id="form1" runat="server">

<div><table class="style1">

<asp:DetailsView ID="DetailsView1" runat="server"
AllowPaging="True"

AutoGenerateRows="False" BackColor="#FFFFCC"
BorderColor="#999999"

BorderStyle="Solid" BorderWidth="1px"
Caption="DetailsView Example Demo" CellPadding="3"
CellSpacing="1" DataKeyNames="no" DataSourceID="SqlDataSource1"

Font-Bold="True" Font-Names="Copperplate Gothic
Bold" Font-Size="X-Large"

ForeColor="Black" GridLines="Vertical" Height="287px"
Width="436px">

<AlternatingRowStyle BackColor="#CCCCCC" />

<EditRowStyle BackColor="#000099" Font-Bold="True"
ForeColor="White" />

<Fields>

<asp:BoundField DataField="no" HeaderText="no"
ReadOnly="True"

SortExpression="no" />

<asp:BoundField DataField="name"
HeaderText="name" SortExpression="name" />

<asp:BoundField DataField="class" HeaderText="class"
SortExpression="class" />

<asp:BoundField DataField="mobile"
HeaderText="mobile"

SortExpression="mobile" />

<asp:BoundField DataField="email"
HeaderText="email" SortExpression="email" />

220

<asp:CommandField ShowDeleteButton="True"
ShowEditButton="True"

ShowInsertButton="True" />

</Fields>

<FooterStyle BackColor="#CCCCCC" />

<HeaderStyle BackColor="Black" Font-Bold="True"
ForeColor="White" />

<PagerStyle BackColor="#999999" ForeColor="Black"
HorizontalAlign="Center" />

</asp:DetailsView>

<asp:SqlDataSource ID="SqlDataSource1" runat="server"

ConflictDetection="CompareAllValues"

ConnectionString="<%$
ConnectionStrings:zaidiConnectionString2 %>"

DeleteCommand="DELETE FROM [student] WHERE
[no] = @original_no AND (([name] = @original_name) OR ([name] IS
NULL AND @original_name IS NULL)) AND (([class] =
@original_class) OR ([class] IS NULL AND @original_class IS NULL))
AND (([mobile] = @original_mobile) OR ([mobile] IS NULL AND
@original_mobile IS NULL)) AND (([email] = @original_email) OR
([email] IS NULL AND @original_email IS NULL))"

InsertCommand="INSERT INTO [student] ([no], [name],
[class], [mobile], [email]) VALUES (@no, @name, @class, @mobile,
@email)"

OldValuesParameterFormatString="original_{0}"

SelectCommand="SELECT * FROM [student]"

UpdateCommand="UPDATE [student] SET [name] =
@name, [class] = @class, [mobile] = @mobile, [email] = @email
WHERE [no] = @original_no AND (([name] = @original_name) OR
([name] IS NULL AND @original_name IS NULL)) AND (([class] =
@original_class) OR ([class] IS NULL AND @original_class IS NULL))
AND (([mobile] = @original_mobile) OR ([mobile] IS NULL AND
@original_mobile IS NULL)) AND (([email] = @original_email) OR
([email] IS NULL AND @original_email IS NULL))">

<DeleteParameters>

<asp:Parameter Name="original_no" Type="Int32" />

<asp:Parameter Name="original_name" Type="String" />

<asp:Parameter Name="original_class" Type="String" />

<asp:Parameter Name="original_mobile" Type="String" />

<asp:Parameter Name="original_email" Type="String" />

221

</DeleteParameters>

<InsertParameters>

<asp:Parameter Name="no" Type="Int32" />

<asp:Parameter Name="name" Type="String" />

<asp:Parameter Name="class" Type="String" />

<asp:Parameter Name="mobile" Type="String" />

<asp:Parameter Name="email" Type="String" />

</InsertParameters>

<UpdateParameters>

<asp:Parameter Name="name" Type="String" />

<asp:Parameter Name="class" Type="String" />

<asp:Parameter Name="mobile" Type="String" />

<asp:Parameter Name="email" Type="String" />

<asp:Parameter Name="original_no" Type="Int32" />

<asp:Parameter Name="original_name" Type="String" />

<asp:Parameter Name="original_class" Type="String" />

<asp:Parameter Name="original_mobile" Type="String" />

<asp:Parameter Name="original_email" Type="String" />

</UpdateParameters>

</asp:SqlDataSource>

</td>

</table>

</div>

</form>

</body>

</html>

222

13.1.3 FORMVIEW CONTROL

 Besides the DetailsView control, ASP.NET also provides a
FormView control. Like the DetailsView control, the FormView
control is designed to display data for a single item from a data
source.

 A FormView control is similar to a DetailsView control, but its
templates give you more control over how its data is displayed. To
accomplish that, all the columns in the data source can be laid out
within a single template.

 The FormView control renders a single data item at a time from a
data source, even if its data source exposes a multiple records data
item from a data source. It allows for a more flexible layout when
displaying a single record. The FormView control renders all fields
of a single record in a single table row. In contrast, the FormView
control does not specify a pre-defined layout for displaying a
record. Instead, you create templates that contain controls to
display individual fields from the record.

 After you create a FormView control and assign a data source to it,
you can edit the control's templates so the data is displayed the
way you want.

The FormView control supports the following features:

 Template driven
 Supports column layout
 Built-in support for paging and grouping
 Built-in support for insert, edit and delete capabilities

223

<asp:FormView ID="FormView1" runat="server" AllowPaging="True"

BackColor="#CCCCCC" BorderColor="#000099"
BorderStyle="Solid" BorderWidth="3px"

Caption="FormView Example Demo" CaptionAlign="Top"
CellPadding="4"

CellSpacing="2" DataKeyNames="no"
DataSourceID="SqlDataSource1"

Font-Bold="True" Font-Names="Copperplate Gothic
Bold" Font-Size="X-Large"

ForeColor="Black" GridLines="Both" Width="578px">

<EditItemTemplate>

no:

<asp:Label ID="noLabel1" runat="server" Text='<%# Eval("no") %>' />

name:

<asp:TextBox ID="nameTextBox" runat="server"
Text='<%# Bind("name") %>' />

class:

<asp:TextBox ID="classTextBox" runat="server"
Text='<%# Bind("class") %>' />

mobile:

<asp:TextBox ID="mobileTextBox" runat="server"
Text='<%# Bind("mobile") %>' />

email:

<asp:TextBox ID="emailTextBox" runat="server"
Text='<%# Bind("email") %>' />

224

<asp:LinkButton ID="UpdateButton" runat="server"
CausesValidation="True"

CommandName="Update" Text="Update" />

 <asp:LinkButton ID="UpdateCancelButton"
runat="server"

CausesValidation="False" CommandName="Cancel"
Text="Cancel" />

</EditItemTemplate>

<EditRowStyle BackColor="#000099" Font-Bold="True"
ForeColor="White" />

<FooterStyle BackColor="#CCCCCC" />

<HeaderStyle BackColor="Black" Font-Bold="True"
ForeColor="White" />

<InsertItemTemplate>

no:

<asp:TextBox ID="noTextBox" runat="server"
Text='<%# Bind("no") %>' />

name:

<asp:TextBox ID="nameTextBox" runat="server"
Text='<%# Bind("name") %>' />

class:

<asp:TextBox ID="classTextBox" runat="server"
Text='<%# Bind("class") %>' />

mobile:

<asp:TextBox ID="mobileTextBox" runat="server"
Text='<%# Bind("mobile") %>' />

email:

<asp:TextBox ID="emailTextBox" runat="server"
Text='<%# Bind("email") %>' />

<asp:LinkButton ID="InsertButton" runat="server"
CausesValidation="True"

CommandName="Insert" Text="Insert" />

 <asp:LinkButton ID="InsertCancelButton" runat="server"

225

CausesValidation="False" CommandName="Cancel" Text="Cancel" />

</InsertItemTemplate>

<ItemTemplate>

no:

<asp:Label ID="noLabel" runat="server" Text='<%# Eval("no") %>' />

name:

<asp:Label ID="nameLabel" runat="server" Text='<%#
Bind("name") %>' />

class:

<asp:Label ID="classLabel" runat="server" Text='<%#
Bind("class") %>' />

mobile:

<asp:Label ID="mobileLabel" runat="server"
Text='<%# Bind("mobile") %>' />

email:

<asp:Label ID="emailLabel" runat="server" Text='<%#
Bind("email") %>' />

<asp:LinkButton ID="EditButton" runat="server"
CausesValidation="False"

CommandName="Edit" Text="Edit" />

 <asp:LinkButton ID="DeleteButton"
runat="server" CausesValidation="False"

CommandName="Delete" Text="Delete" />

 <asp:LinkButton ID="NewButton"
runat="server" CausesValidation="False"

CommandName="New" Text="New" />

</ItemTemplate>

<PagerStyle BackColor="#CCCCCC" ForeColor="Black"
HorizontalAlign="Left" />

<RowStyle BackColor="White" />

</asp:FormView>

226

How the FormView control differs from the DetailsView control

 The DetailsView control can be easier to work with, but the
FormView control provides more formatting and layout options.

 The DetailsView control can use BoundField elements or
TemplateField elements with templates that use data binding
expressions to define bound data fields. The FormView control can
use only templates with data binding expressions to display bound
data.

 The DetailsView control renders each field as a table row, but the
FormView control renders all the fields in a template as a single
table row.

 When you bind a FormView control to a data source, the Web
Forms Designer generates an Item template that includes heading
text and a bound label for each column in the data source.

 The Item template is rendered whenever the FormView control is
displayed in ReadOnly mode.

 The Item template uses the Eval and Bind methods to create
binding expressions for the columns in the data source.

 If the data source includes Update, Delete, and Insert commands,
the generated Item template will include Edit, Delete, and New
buttons.

 The Web Forms Designer also generates an Editltem template and
an Insertltem template, even if the data source doesn't include an
Update or Insert command. For more information, see the next
figure.

 You can modify a generated template so you can use CSS to
control the format and layout of the data that's rendered for that
template.

13.2 DEPLOYING THE WEB SITE

Once you have put in all the hard work of creating a website, you
need to get it on the web so people can navigate to it and access its
content. This process is called deployment.

227

In simple words, “deployment” simply means getting your website

files onto the server.

There are two categories of ASP.NET deployment:

 Local deployment : In this case, the entire application is contained
within a virtual directory and all the contents and assemblies are
contained within it and available to the application.

 Global deployment : In this case, assemblies are available to
every application running on the server.

There are different techniques used for deployment, however, we will
discuss the following most common and easiest ways of deployment:

 XCOPY deployment
 Copying a Website
 Creating a set up project

XCOPY Deployment

XCOPY deployment means making recursive copies of all the files to
the target folder on the target machine. You can use any of the commonly
used techniques:

 FTP transfer
 Using Server management tools that provide replication on a

remote site
 MSI installer application

XCOPY deployment simply copies the application file to the
production server and sets a virtual directory there. You need to set a
virtual directory using the Internet Information Manager Microsoft
Management Console (MMC snap-in).

Copying a Website

The Copy Web Site option is available in Visual Studio. It is
available from the Website -> Copy Web Site menu option. This menu
item allows copying the current web site to another local or remote
location. It is a sort of integrated FTP tool.

Using this option, you connect to the target destination, select the
desired copy mode:

 Overwrite
 Source to Target Files
 Sync UP Source And Target Projects

228

Then proceed with copying the files physically. Unlike the XCOPY
deployment, this process of deployment is done from Visual Studio
environment. However, there are following problems with both the above
deployment methods:

 You pass on your source code.
 There is no pre-compilation and related error checking for the files.
 The initial page load will be slow.

Creating a Setup Project

In this method, you use Windows Installer and package your web
applications so it is ready to deploy on the production server. Visual
Studio allows you to build deployment packages. Let us test this on one of
our existing project, say the data binding project.

Open the project and take the following steps:

Step (1) : Select File -> Add -> New Project with the website root
directory highlighted in the Solution Explorer.

Step (2) : Select Setup and Deployment, under Other Project Types. Select
Setup Wizard.

Step (3) : Choosing the default location ensures that the set up project will
be located in its own folder under the root directory of the site. Click on
okay to get the first splash screen of the wizard.

229

Step (4) : Choose a project type. Select 'Create a setup for a web
application'.

Step (5) : Next, the third screen asks to choose project outputs from all the
projects in the solution. Check the check box next to 'Content Files from...'

230

Step (6) : The fourth screen allows including other files like ReadMe.
However, in our case there is no such file. Click on finish.

231

Step (7) : The final screen displays a summary of settings for the set up
project.

Step (8) : The Set up project is added to the Solution Explorer and the
main design window shows a file system editor.

232

Step (9) : Next step is to build the setup project. Right click on the project
name in the Solution Explorer and select Build.

Step (10) : When build is completed, you get the following message in the
Output window:

Two files are created by the build process:

 Setup.exe
 Setup-databinding.msi

You need to copy these files to the server. Double-click the setup
file to install the content of the .msi file on the local machine.

13.3 CRYSTAL REPORTS

Crystal Reports is the standard reporting tool for Visual Studio

.NET used to display data of presentation quality. You can display

multiple-level totals, charts to analyze data, and much more in Crystal

Reports. Creating a Crystal Report requires minimal coding since it is

created in Designer interface.

233

Advantages of Crystal Reports

Some of the major advantages of using Crystal Reports are:

1. Rapid report development since the designer interface would ease
the coding work for the programmer.

2. Can extend it to complicated reports with interactive charts and
enhance the understanding of the business model.

3. Exposes a report object model, can interact with other controls on
the ASP.NET Web form.

4. Can programmatically export the reports into widely used formats
like .pdf, .doc, .xls, .html and .rtf.

5. Save time using powerful report creation, integration, and delivery
tools.

It turns out that Crystal Reports for Visual Studio 2010 will be

released separately, instead of included with the product and most

importantly, Crystal Reports for Visual Studio 2010 will continue to be

free, with no registration required.

Let’s start by creating a new website in Visual Studio 2010.

Open VS 2010, select Visual C# and ASP.NET Web Site and click OK as
shown below.

This action will create a new Web site project.

Once we have a Web site project created, next step is to get
database access in the project. That we do using a DataSet from a
database.

234

Creation of Dataset (xsd) File

 The following figure shows you the process to create a DataSet
file.

 To add a DataSet file, click on Solution Explorer -> Right Click on
Project -> click on Add new Item and then it will show you the
following screen:

 Enter the Datset file name. Click on the ok button.

235

 It will ask for confirmation to put that file in the App_Code folder.
Just click yes and that file will opened in the screen as a blank
screen.

 Now we will add one blank datatable to that mydataset.xsd.
 Right-click in the area of the file and select Add -> Datatable.
 It will add one DataTable1 to the screen.
 The following Figure 5 shows how to add a datatable to the

mydataset.XSD file.

236

 Now datatable1 is added to XSD file.

 Now we will add a data column to the datatable1 as per figure 6.
 Remember, whatever columns we add here will be shown on the

report.
 So add the columns you want to display in your reports one by one

here.

 Always remember to give the same name for the column and data
type of column which is the same as the database, otherwise you
will get an error for field and data type mismatch.

237

 To set property for the columns the same as the database.
 The following figure will show you how to set the property for the

data columns.
 The default data type for all the columns is string.
 To change the data type manually right-click on the datacolumn in

the datatable and select property.

238

 From the property window, select the appropriate datatype from
the DataType Dropdown for the selected datacolumn.

 XSD file creation has been done.
 Now we will move on to create the Crystal Reports design.

239

Creation of Crystal report design

 Click on the Solution Explorer -> Right click on the project name
and select Crystal Reports.

 Name it as you choose and click the add button.

 After clicking on the add button a .rpt file will be added to the
solution.

 It will ask for the report creation type of how you want to create
the report.

 Click the ok button to proceed.

240

 Under Data Sources, expand ADO.NET Datasets and select Table
and add to the selected table portion located at the right side of the
window using the > button. Click on Next.

 Select the columns that you want to show in the report.
 Now click on the Finish button and it will show the next screen.

241

 Once the report file is added, you can see the Field Explorer on the
left side of the screen.

 Expand Database Fields, under that you will be able to find the
Datatable that we have created earlier.

 Just expand it and drag one by one each field from the Field
Explorer to the rpt file the under detail section.

 Now the report design part is over.

 Now we have to fetch the data from the database and bind it to the
dataset and then Show that dataset to the report viewer.

Crystal report Viewer

 First Drag a CrystalReportViewer control on the aspx page from
the Reporting Section of the tool box.

 Add a command Button.

242

 Configure the CrystalReportViewer and create a link with Crystal
Reports.

 Select the Crystal Reports source from the right side of the control.

243

The following is the final code for reports (Default.aspx).

Code

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using CrystalDecisions.CrystalReports.Engine;

using CrystalDecisions.Shared;

using System.Data;

using System.Data.SqlClient;

using System.Configuration;

public partial class _Default : System.Web.UI.Page

{

protected void Page_Load(object sender, EventArgs e)

{

CrystalReportViewer1.Visible = false;

}

protected void cmdcrystal_Click(object sender, EventArgs e)

{

CrystalReportViewer1.Visible = true;

ReportDocument rDoc = new ReportDocument();

Mydataset dset = new Mydataset(); // dataset file name

DataTable dtable = new DataTable(); // data table name

dtable.TableName = "Crystal Report "; // Crystal Report Name

rDoc.Load(Server.MapPath("mycrystal.rpt")); // Your .rpt file path

rDoc.SetDataSource(dset); //set dataset to the report viewer.

CrystalReportViewer1.ReportSource = rDoc;

}

}

OutPut

244

13.4 SUMMARY

This unit gives an overview of DATA CONTROL and DATA

SOURCE in ADO.NET such as GridView, FormView and DetailsView

etc. Further it discusses about deployment of ASP.NET web application

and crystal reports.

13.5 EXERCISE

1. What is data source control? Explain various data source control in
.net.

2. What is GridView Control? Explain operation of GridView.

3. Explain FormView control with example.

4. Explain DetailsView control with example.

5. Briefly explain FormView control. How is it different from
DetailsView?

6. Explain the deployment of asp.net website with its steps.

7. What is crystal report? How we can create a crystal report in .net.

13.6 REFERENCE

1. ADO.NET: The Complete Reference
2. Beginning ASP.NET 4 by Imar Spaanjaars
3. Database Programming with Visual Basic .Net and ADO.NET by

F Scott Barker, Publisher: Pearson Education
4. https://www.c-sharpcorner.com/
5. https://stackoverflow.com/
6. https://www.tutorialspoint.com
7. https://www.sap.com/india/products/crystal-visual-studio.html



245

14
LINQ

Unit Structure

14.0 LINQ - Language Integrated Query

14.1 LINQ Features

14.1.1Advantages and disadvantages of LINQ

14.1.2 Difference between SQL and LINQ

14.2 LINQ Query Operators

14.3 LINQ Syntax

14.4 LINQ Query Expression

14.5 Types of LINQ

14.5.1 LINQ to Objects

14.5.2 LINQ to XML:

14.5.3 LINQ to DataSet

14.5.4 LINQ to SQL (DLINQ)

14.5.5 LINQ to ADO.NET

14.6 Summary

14.7 Exercise

14.8 Reference

14.0 LINQ - LANGUAGE INTEGRATED QUERY

LINQ stands for Language Integrated Query. LINQ is a data

querying methodology which provides querying capabilities to .NET

languages with syntax similar to a SQL query. LINQ is a uniform

programming model for querying and manipulating data with a consistent

model from any data source. LINQ is just another tool for embedding SQL

queries into code. Extends powerful query capabilities to C#, VB.NET

languages.In a LINQ query, you are always working with objects. You use

the same basic coding patterns to query and transform data in XML

246

documents, SQL databases, ADO.NET Datasets, .NET collections and any

other format for which a LINQ provider is available.

LINQ simplifies the working model with its generic architecture to

support many kinds of data sources and provide a common platform to

execute the query and get the results.

A .Net application uses LINQ queries to communicate with various

kinds of data sources like SQL Server, XML documents and in-memory

objects. Between SQL queries and data sources one layer of LINQ

providers are present that converts the LINQ queries into the format that

the underlying data source can understand.

14.1 LINQ FEATURES

 Language Integration
 Single general purpose Declarative Programming
 Standard Query Operators that allow

o traversal, filter, and projection operations
 Transparency Across Different Type Systems

o Query expressions benefit from
1. Rich Metadata
2. Compile-Time syntax checking
3. Static Typing
4. IntelliSense

247

14.1.1Advantages and disadvantages of LINQ

Advantages of LINQ

 LINQ can be used for querying multiple data sources such as
relational data and XML data.

 LINQ is a technique for querying data across various kinds of data
sources and formats.

 LINQ has syntax highlighting and IntelliSense that help to identify
compile-time error checking.

 LINQ is extensible so new types of data sources can be made
querable.

 It reduces the complexity of the code and makes it much easy for
the program to read.

 LINQ is composable in nature and it can be used to solve complex
problems into a series of short, comprehensible queries that are
easy to debug.

 The .NET application can interact with LINQ for database
operations and LINQ takes care of complete database operations.

 LINQ is declarative, it is very easy to understand and maintain.

 One of the most advantages in using LINQ is that its availability
over any .NET platform language such as C#.net, VB.NET and
F#.NET.

Disadvantages of LINQ

 LINQ architecture has another layer for LINQ providers that will
provide performance overhead sometimes with complex queries.

 LINQ is not a precompiled statement like Stored Procedures.

 Frequent changes must be recompiled and have a deployment
overhead for the entire code.

 No good way to view permissions.

 When database queries are converted from SQL to the application
side, joins are very slow that are very specific to LINQ to SQL.

248

14.1.2 Difference between SQL and LINQ

SQL LINQ

It is stand for STRUCTURE
QUERY LANGUAGE.

It is stand for LANGUAGE
INTREGRATED QUERY.

SQL Queries: for single inline
queries.

LINQ Queries: Linq are difficult to
debug but easy to write.

SQL is in most cases a
significantly less productive
querying language.

LINQ is in most cases a significantly
more productive querying language.

SQL is difficult to understand. Compared to SQL, LINQ is simpler,
tidier, and higher-level.

SQL enabling you to access and
query from a RDBMS.

LINQ enabling you to access and
query a wide variety of sources
including collections in your own
code, XML files, .NET Datasets, and
databases from your VB.NET or C#
code.

SQL language is used to create,
modify and retrieve information
from RDBMS.

LINQ is a uniform programming
model for any kind of data access.

The LINQ providers those are included with .NET 4:

 LINQ to Objects: This is the simplest form of LINQ. It allows

you to query collections of in-memory objects (such as an array, an

ArrayList, a List, a Dictionary, and so on).

 Parallel LINQ: This is a variation of LINQ to objects that has

built-in support for multithreaded execution.

 LINQ to DataSet: This form of LINQ resembles LINQ to objects,

except it digs DataRow objects out of a DataTable.

 LINQ to XML: This form of LINQ allows you to search the

elements contained in an XElement or XDocument.

 LINQ to SQL: This is the original LINQ provider for data access.

It allows you to fetch data from a SQL Server database.

 LINQ to Entities: Like LINQ to SQL, LINQ to Entities allows

you to perform database queries with a LINQ expression.

249

14.2 LINQ QUERY OPERATORS

Standard Query Operators in LINQ are actually extension methods

for the IEnumerable<T> and IQueryable<T> types. They are defined in

the System. Linq. Enumerable and System. Linq. Queryable classes. There

are over 50 standard query operators available in LINQ that provide

different functionalities like filtering, sorting, grouping, aggregation,

concatenation, etc.

Project Select <expr>

Filter Where <expr>, Distinct

Test Any(<expr>), All(<expr>)

Join <expr> Join <expr> On <expr> Equals <expr>

Group Group By <expr>, <expr> Into <expr>, <expr>

Group Join <decl> On <expr> Equals <expr> Into <expr>

Aggregate Count(<expr>), Sum(<expr>), Min(<expr>), Max(<expr>),

Avg(<expr>)

Partition Skip [While] <expr>, Take [While] <expr>

Set Union, Intersect, Except

Order Order By <expr>, <expr> [Ascending | Descending]

13.3 LINQ SYNTAX

There are two syntaxes of LINQ. These are the following ones.

Lamda (Method) Syntax

var longWords = words.Where(w ⇒ w.length > 10);

Query (Comprehension) Syntax

var longwords = from w in words where w.length > 10;

from [identifier] in [source collection]
let [expression]
where [Boolean expression]

250

order by [[expression](ascending/descending)], [optionally
repeat]
select [expression]
group [expression] by [expression] into [expression]

Where,
from / in - Specifies the data source
where - Conditional Boolean expression
order by (ascending/descending) - Sorts the results into ascending
or descending order
select - Adds the result to the return type
group / by - Groups the results based on a given key

14.4 LINQ QUERY EXPRESSION

 A Query is a set of instructions that describe what the data is to

retrieve from a given data source.

 A Query Expression is a query, expressed in query syntax.

 A LINQ Query Expression is also very similar to SQL.

 A LINQ Query Expression contains the following three (3)

clauses:

1. From

2. Where

3. Select

 From: specifies the data source.

 Where: applies data filtration.

 Select: specifies the returned elements.

14.5 TYPES OF LINQ

The types of LINQ are mentioned below in brief.

 LINQ to Objects

 LINQ to XML(XLINQ)

 LINQ to DataSet

 LINQ to SQL (DLINQ)

251

 LINQ to Entities

14.5.1 LINQ to Objects

 It is the use of LINQ queries with any IEnumerable or

IEnumerable(T) collection directly, without the use of an

intermediate.

 LINQ provider or API such as LINQ to SQL or LINQ to XML.

 It allows query any enumerable collections such as

o List(T),

o Array, or

o Dictionary(TKey, TValue).

 There are also many advantages of LINQ to Objects over

traditional foreach loops like more readability, powerful filtering,

capability of grouping, enhanced ordering with minimal

application coding. Such LINQ queries are also more compact in

nature and are portable to any other data sources without any

modification or with just a little modification.

Example

This example includes LINQ operator, LINQ Expression, LINQ filter and

LINQ sorting.

using System;
using System.Linq;
namespace LINQTOOBJECT
{

class Program
{

static void Main(string[] args)
{

// LINQ TO OBJECT
string[] names = { "ZAIDI", "MUZAFFAR", "SAMEER",
"ARIF","ZEHRA", "MOHADDESA" , "RIZVI" };

var displayname = from name in names
where name.Contains("A")

//where name.StartsWith("Z") // filters
//where name.EndsWith("R")
orderby name // sorting
select name;

foreach (string sname in displayname)

252

{
Console.WriteLine("NAME : {0} ", sname);

}
Console.ReadLine();

}
}

}

Output:
NAME : ARIF
NAME : MOHADDESA
NAME : MUZAFFAR
NAME : SAMEER
NAME : ZAIDI
NAME : ZEHRA

14.5.2 LINQ to XML:

 LINQ to XML provides an in-memory XML programming

interface that leverages the .NET Language-Integrated Query

(LINQ) Framework.

 LINQ to XML is a LINQ-enabled, in-memory XML programming

interface that enables you to work with XML from within the .NET

Framework programming languages.

There are many more classes that can be used in LINQ to XML.
The following are a few of them to explain the functional construction of
XML.

 XDocument
 XDeclaration
 XComment
 XElement
 XAttribute

Example

EMPLOYEE.xml

<?xml version="1.0" encoding="utf-8" ?>

<Employees>

<Employee>

<FirstName>ZAIDI</FirstName>

<Age>29</Age>

253

<Dept>Computer Science</Dept>

</Employee>

<Employee>

<FirstName>SAIF</FirstName>

<Age>30</Age>

<Dept>Information Technology</Dept>

</Employee>

<Employee>

<FirstName>ARIF</FirstName>

<Age>48</Age>

<Dept>Engineering</Dept>

</Employee>

<Employee>

<FirstName>SOHRABH</FirstName>

<Age>30</Age>

<Dept>M.Sc - IT</Dept>

</Employee>

</Employees>

Default.aspx Code:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="_Default" %>

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

</head>

<body>

<form id="form1" runat="server">

<div>

<table class="style1">

<td>

<asp:Label ID="Label1" runat="server" Text="Select Data
using LINQ to XML" Font-Bold="True" Font-Size="Large" Font-
Names="Verdana" ForeColor="Maroon"
BackColor="#66FFFF"></asp:Label></td>

254

<td>

<asp:Button ID="Button1" runat="server" Text="Select Data"
Font-Names="Verdana" Width="253px" BackColor="Lime" Font-
Bold="True" OnClick="Button1_Click" /></td>

<td>

<asp:GridView ID="GridView1" runat="server"
BackColor="White" BorderColor="#336666" BorderWidth="3px"
CellPadding="4"

GridLines="Horizontal" AutoGenerateColumns="False"

BorderStyle="Double" Height="186px" Width="260px"

onselectedindexchanged="GridView1_SelectedIndexChanged">

<FooterStyle BackColor="White" ForeColor="#333333"></FooterStyle>

<HeaderStyle BackColor="#336666" Font-Bold="True"
ForeColor="White"></HeaderStyle>

<PagerStyle HorizontalAlign="Center" BackColor="#336666"
ForeColor="White">

</PagerStyle>

<RowStyle BackColor="White" ForeColor="#333333" />

<SelectedRowStyle BackColor="#339966" ForeColor="White" Font-
Bold="True"></SelectedRowStyle>

<Columns>

<asp:BoundField DataField="FirstName" HeaderText="First Name"
ReadOnly="true" />

<asp:BoundField DataField="Age" HeaderText="Age" Read Only=
"true" />

<asp:BoundField DataField="Dept" HeaderText="Department"
ReadOnly="true" />

</Columns>

<SortedAscendingCellStyle BackColor="#F7F7F7" />

<SortedAscendingHeaderStyle BackColor="#487575" />

<SortedDescendingCellStyle BackColor="#E5E5E5" />

<SortedDescendingHeaderStyle BackColor="#275353" />

</asp:GridView></td>

</table>

</div>

</form>

</body>

255

</html>

Default.aspx.cs Code:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Xml.Linq;

public partial class _Default : System.Web.UI.Page

{

protected void Page_Load(object sender, EventArgs e)

{

}

protected void Button1_Click(object sender, EventArgs e)

{

XDocument document = XDocument.Load(@"F:\ASP.NET
Rizvi\LINQ PROG\EMPLOYEE.xml");

var query = from r in document.Descendants("Employee")

select new

{

FirstName = r.Element("FirstName").Value,

Age = r.Element("Age").Value,

Dept = r.Element("Dept").Value

};

GridView1.DataSource = query;

GridView1.DataBind();

}

}

256

14.5.3 LINQ to DataSet

The Dataset is a standerd object used in ado.net to work with

disconnected data from a variety of data sources and optionally update

data source at a later time with changes made working in disconnected

mode. Linq to dataset lets you query dataset objects using linq queries.

Linq to Dataset also lets you easily and flexible solutions to support tasks

such as generic reporting and analysis.

A linq to dataset query is shown below in following example :-

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data.SqlClient;
using System.Data;

namespace LinqToDataset
{

class Program
{

static void Main(string[] args)
{

string connectString = "Data Source=HP;" +
"Integrated security=true;Initial Catalog=Super_old;";

string sqlSelect = "SELECT * FROM mstore;" +
"SELECT * FROM msalesman;";

// Create the data adapter to retrieve data from the database
SqlDataAdapter da = new SqlDataAdapter(sqlSelect,

connectString);
// Create table mappings

257

da.TableMappings.Add("Table", "mStore");
da.TableMappings.Add("Table1", "mSalesMan");
// Create and fill the DataSet
DataSet ds = new DataSet();
da.Fill(ds);

DataRelation dr = ds.Relations.Add("StoreId_key",
ds.Tables["mStore"].Columns["StoreId"],
ds.Tables["mSalesMan"].Columns["StoreId"]);

DataTable Store = ds.Tables["mStore"];
DataTable SaleMan = ds.Tables["mSalesMan"];

var query = from p in Store.AsEnumerable()
join i in SaleMan.AsEnumerable()

on p.Field<int>("StoreId") equals
i.Field<int>("StoreId")

where p.Field<int>("StoreId") == 2
select new
{

StoreId = p.Field<int>("StoreId"),
Name = p.Field<string>("Name"),
SalesManName = i.Field<string>("Name")

};

foreach (var q in query)
{

Console.WriteLine("StoreId = {0} , StoreName = {1} ,
SalesManName = {2}",

q.StoreId, q.Name, q.SalesManName);
}

Console.WriteLine("\nPress any key to continue.");
Console.ReadKey();

}
}

}

14.5.4 LINQ to SQL (DLINQ)

LINQ to SQL offers an infrastructure (run-time) for the

management of relational data as objects. It is a component of version 3.5

of the .NET Framework and ably does the translation of language-

integrated queries of the object model into SQL. These queries are then

sent to the database for the purpose of execution. After obtaining the

results from the database, LINQ to SQL again translates them to objects.

258

Below is a diagram showing the execution architecture of LINQ to SQL.

How to Use LINQ to SQL?

Step 1 − Make a new “Data Connection” with database server. View
&arrar; Server Explorer &arrar; Data Connections &arrar; Add Connection

259

Step 2 − Add LINQ To SQL class file

Step 3 − Select tables from database and drag and drop into the new
LINQ to SQL class file.

260

Step 4 − Added tables to class file.

Insert, Update and Delete using LINQ To SQL

Insert Code:

using System;
using System.Linq;

namespace LINQtoSQL {
class LinqToSQLCRUD {

static void Main(string[] args) {
string connectString =

System.Configuration.ConfigurationManager.ConnectionStrings["LinqTo
SQLDBConnectionString"].ToString();

LinqToSQLDataContext db = new
LinqToSQLDataContext(connectString);

//Create new Employee

Employee newEmployee = new Employee();
newEmployee.Name = "Michael";
newEmployee.Email = "yourname@companyname.com";
newEmployee.ContactNo = "343434343";
newEmployee.DepartmentId = 3;
newEmployee.Address = "Michael - USA";

261

//Add new Employee to database
db.Employees.InsertOnSubmit(newEmployee);

//Save changes to Database.
db.SubmitChanges();

//Get new Inserted Employee
Employee insertedEmployee =

db.Employees.FirstOrDefault(e⇒e.Name.Equals("Michael"));

Console.WriteLine("Employee Id = {0} , Name = {1}, Email = {2},
ContactNo = {3}, Address = {4}",

insertedEmployee.EmployeeId, insertedEmployee.Name,
insertedEmployee.Email,

insertedEmployee.ContactNo,
insertedEmployee.Address);

Console.WriteLine("\nPress any key to continue.");
Console.ReadKey();

}
}

}

Update Code:

using System;
using System.Linq;

namespace LINQtoSQL {
class LinqToSQLCRUD {

static void Main(string[] args) {
string connectString =

System.Configuration.ConfigurationManager.ConnectionStrings["LinqTo
SQLDBConnectionString"].ToString();

LinqToSQLDataContext db = new
LinqToSQLDataContext(connectString);

//Get Employee for update
Employee employee = db.Employees.FirstOrDefault(e

=>e.Name.Equals("Michael"));

employee.Name = "George Michael";
employee.Email = "yourname@companyname.com";
employee.ContactNo = "99999999";
employee.DepartmentId = 2;
employee.Address = "Michael George - UK";

262

//Save changes to Database.
db.SubmitChanges();

//Get Updated Employee
Employee updatedEmployee = db.Employees.FirstOrDefault(e

⇒e.Name.Equals("George Michael"));
Console.WriteLine("Employee Id = {0} , Name = {1}, Email = {2},

ContactNo = {3}, Address = {4}",
updatedEmployee.EmployeeId, updatedEmployee.Name,

updatedEmployee.Email,
updatedEmployee.ContactNo,

updatedEmployee.Address);

Console.WriteLine("\nPress any key to continue.");
Console.ReadKey();

}
}

}

Delete Code:

using System;
using System.Linq;

namespace LINQtoSQL {
class LinqToSQLCRUD {

static void Main(string[] args) {
string connectString =

System.Configuration.ConfigurationManager.ConnectionStrings["LinqTo
SQLDBConnectionString"].ToString();

LinqToSQLDataContext db =
newLinqToSQLDataContext(connectString);

//Get Employee to Delete
Employee deleteEmployee = db.Employees.FirstOrDefault(e

⇒e.Name.Equals("George Michael"));

//Delete Employee
db.Employees.DeleteOnSubmit(deleteEmployee);

//Save changes to Database.
db.SubmitChanges();

//Get All Employee from Database
var employeeList = db.Employees;
foreach (Employee employee in employeeList) {

263

Console.WriteLine("Employee Id = {0} , Name = {1}, Email = {2},
ContactNo = {3}",

employee.EmployeeId, employee.Name, employee.Email,
employee.ContactNo);

}

Console.WriteLine("\nPress any key to continue.");
Console.ReadKey();

}
}

}

14.5.5 LINQ to ADO.NET

The LINQ to ADO.NET means using LINQ queries on objects in
ADO.NET. The LINQ to ADO.NET will give us a chance to write LINQ
queries on enumerable object in ADO.NET and the LINQ to ADO.NET is
having three types of LINQ technologies available those are LINQ to
Dataset, LINQ to SQL and LINQ to Entities.

Let see an example of LINQ to ADO.NET.

Create one new web application and make connection with SQL
Server and write queries on ADO.NET object (dataset) using LINQ to
display data in gridview.

First we will create one new table “EmployeeDetails” in database
for that execute following query in your database and insert some
dummy data to show it in application.

CREATE TABLE [dbo].[EmployeeDetails](
[EmpId] INT IDENTITY (1, 1) NOT NULL,
[EmpName] VARCHAR (50) NULL,
[Location] VARCHAR (50) NULL,
[Gender] VARCHAR (20) NULL
PRIMARY KEY CLUSTERED ([EmpId] ASC)
);

insert into EmployeeDetails values ('Suresh Dasari','Chennai','Male')
insert into EmployeeDetails values ('Rohini Alavala','Chennai','Female')
insert into EmployeeDetails values ('Praveen Alavala','Guntur','Male')
insert into EmployeeDetails values ('Sateesh Chandra','Vizag','Male')
insert into EmployeeDetails values ('Sushmitha','Vizag','Female')

264

Once we select new project new popup will open in that select
Asp.Net Empty Web Application and give name as “LINQtoADONET” and
click OK to create new web application.

Now we will add web page to the application for that Right click
on your application --> Select Add --> New Item --> Select Web Form -->
give name as “Default.aspx” and click OK button it will create new page
in application.

Default.aspx page code:

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1">
<title>Bind Gridview with LINQ to ADO.NET Operations</title>
<style type="text/css">
.GridviewDiv {font-size: 100%; font-family: 'Lucida Grande', 'Lucida Sans
Unicode', Verdana, Arial, Helevetica, sans-serif; color: #303933;}
.headerstyle
{
color:#FFFFFF;border-right-color:#abb079;border-bottom-
color:#abb079;background-color: #df5015;padding:0.5em 0.5em 0.5em
0.5em;text-align:center;
}
</style>
</head>
<body>
<form id="form1" runat="server">
<div class="GridviewDiv">
<asp:GridView ID="gvDetails" CssClass="Gridview" runat="server"
AutoGenerateColumns="False">
<HeaderStyle CssClass="headerstyle" />
<Columns>
<asp:BoundField HeaderText="Name" DataField="Name" />
<asp:BoundField HeaderText="Location" DataField="Location" />
<asp:BoundField HeaderText="Gender" DataField="Gender" />
</Columns>
</asp:GridView>
</div>
</form>
</body>
</html>

Default.aspx.cs page code:

using System;
using System.Web.UI;

265

using System.Data.SqlClient;
using System.Data;

namespace WebApplication2
{
public partial class _Default : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{
if (!Page.IsPostBack)
{
BindGridview();
}
}
protected void BindGridview()
{
DataSet ds = new DataSet();
using (SqlConnection con = new SqlConnection("Data
Source=HP\\SQLEXPRESS;Integrated Security=true;Initial
Catalog=MySampleDB"))
{
con.Open();
SqlCommand cmd = new SqlCommand("select * from employeedetails",
con);
cmd.CommandType = CommandType.Text;
SqlDataAdapter da = new SqlDataAdapter(cmd);
da.Fill(ds);
con.Close();
if (ds.Tables[0].Rows.Count > 0)
{
var result = from dt in ds.Tables[0].AsEnumerable()
where (dt.Field<string>("Gender") == "Male")
select new
{
Name = dt.Field<string>("EmpName"),
Location = dt.Field<string>("Location"),
Gender = dt.Field<string>("Gender"),
};
gvDetails.DataSource = result;
gvDetails.DataBind();
}
}
}
}
}

266

14.6 SUMMARY

This unit gives an overview of LINQ and its operation in ASP.NET.

14.7 EXERCISE

1. Explain the LINQ query syntax with an example query.
2. Differentiate between SQL and LINQ.
3. Write advantages and disadvantages of LINQ.
4. Short Note on LINQ to object and Query Expression.
5. Explain the query operators SELECT, FROM, ORDERBY and

WHERE in LINQ.
6. Explain LINQ to XML with example.
7. Explain LINQ to SQL with example.
8. Explain LINQ to ADO.NET with example.

14.8 REFERENCE

1. ADO.NET: The Complete Reference
2. Introducing Microsoft LINQ by Paolo Pialorsi
3. Database Programming with Visual Basic .Net and ADO.NET by

F Scott Barker, Publisher: Pearson Education
4. LINQ Unleashed for C# Book by Paul Kimmel
5. https://www.c-sharpcorner.com/
6. https://stackoverflow.com/
7. https://www.tutorialspoint.com
8. http://www.tutorialsteacher.com/linq/linq-tutorials



267

15
ASP.NET SECURITY

Unit Structure

15.0 Introduction

15.1 Authentication

15.1.1 Three types of authentication

15.2 Authorization

15.3 Implementing Forms-Based Security:

15.4 Form Authentication steps in ASP.NET:

15.5 Impersonation

15.6 ASP.NET provider model

15.7 Summary

15.8 Exercise

15.9 Reference

15.0 INTRODUCTION

When you begin a program for a customer using ASP.Net, you

should consider about security. Security is one of the most important

components of any application. Security is even more important when you

are making a web application which is exposed to million of users.

Asp.net provides classes and methods that ensure that the application is

secure from outside attacks.

ASP.NET provides an extensive security model that makes it easy

to protect your web applications. Although this security model is powerful

and profoundly flexible, it can appear confusing because of the many

different layers that it includes. Much of the work in securing your

application is not writing code, but determining the appropriate places to

implement your security strategy.

15.1 AUTHENTICATION

 If you want to limit access to all or part of your ASP.NET
application to certain users, you can use authentication to verify
each user's identity.

268

 Then, once you have authenticated the user, you can use
authorization to check if the user has the appropriate privileges for
accessing a page.

 Authentication refers to the process of validating the identity of a
user so the user can be granted access to an application. A user
must typically supply a user name and password to be
authenticated.

 After a user is authenticated, the user must still be authorized to
use the requested application. The process of granting user access
to an application is called authorization.

15.1.1 Three types of authentication
1. Windows-based authentication
 Causes the browser to display a login dialog box when the user

attempts to access a restricted page.
 Is supported by most browsers.
 Is configured through the IIS management console.
 Uses Windows user accounts and directory rights to grant

access to restricted pages.

2. Forms-based authentication
 Lets developers code a login form that gets the user name and

password.
 The user name and password entered by the user are encrypted

if the login page uses a secure connection.
 Doesn't rely on Windows user accounts. Instead, the

application determines how to authenticate users.

3. Windows Live ID authentication
 Windows Live ID is a centralized authentication service

offered by Microsoft.
 Windows Live ID lets users maintain a single user account that

lets them access any web site that participates in Windows
Live ID.

 The advantage is that the user only has to maintain one user
name and password.

 To use Windows Live ID, you must register your web site with
Microsoft to obtain an application ID and then download the
Windows Live ID Web Authentication SDK.

 To start the ASP.NET Web Site Administration Tool, use the
WebsiteASPNET Configuration command.

 You can use the ASP.NET Web Site Administration Tool to set up
users, roles, and access rules.

How to enable forms-based authentication
 By default, a web site is set up to use Windows authentication.

However, this option is only appropriate for accessing a web site
through a local intranet.

269

 To switch to forms-based authentication, select the From the
Internet option. This is the option that you'll need to use if you
intend to deploy the application so it's available from the Internet.

 When you switch to forms-based authentication, Create User and
Manage Users links become available from the main security page.

Forms-Based Authentication:
Traditionally forms based authentication involves editing the

Web.Config file and adding a login page with appropriate authentication
code.

The Web.Config file could be edited and the following codes written on it:

<system.web>

<authentication mode="Forms">
<forms loginUrl ="login.aspx"/>

</authentication>
<authorization>

<deny users="?"/>
</authorization>

</system.web>
...
...
</configuration>

270

The login.aspx page mentioned in the above code snippet could
have the following code behind file with the usernames and passwords for
authentication hard coded into it.

protected bool authenticate(String uname, String pass)
{

if(uname == "Tom")
{

if(pass == "tom123")
return true;

}
if(uname == "Dick")
{

if(pass == "dick123")
return true;

}
if(uname == "Harry")
{

if(pass == "har123")
return true;

}
return false;

}

public void OnLogin(Object src, EventArgs e)
{

if (authenticate(txtuser.Text, txtpwd.Text))
{

FormsAuthentication.RedirectFromLoginPage(txtuser.Text,
chkrem.Checked);

}
else
{

Response.Write("Invalid user name or password");
}

}

Observe that the Forms Authentication class is responsible for the
process of authentication.

However, Visual Studio allows you to implement user creation,
authentication and authorization with seamless ease without writing any
code, through the Web Site Administration tool. This tool allows creating
users and roles.
Apart from this, ASP.Net comes with readymade login controls set, which
has controls performing all the jobs for you.

271

15.2 AUTHORIZATION

After your application has authenticated users, you can proceed to
authorize their access to resources. But there is a question to answer first:
Just who is the user to whom your are grating access? It turns out that
there are different answers to that question, depending on whether you
implement impersonation. Impersonation is a technique that allows the
ASP.NET process to act as the authenticated user, or as an arbitrary
specified user

15.3 IMPLEMENTING FORMS-BASED SECURITY

To set up forms based authentication, the following things are
needed:

 A database of users to support the authentication process
 A website that uses the database
 User accounts
 Roles
 Restriction of users' and group activities

You need:
 A default page, which will display the login status of the users and

other information
 A login page, which will allow users to log in, retrieve password or

change password
To create users take the following steps:

Step (1): Choose Website -> ASP.Net Configuration to open the Web
Application Administration Tool

Step (2) : Click on the Security tab:

272

Step (3): Select the authentication type to Forms based authentication by
selecting the ‘From the Internet’ radio button.

Step (4): Click on ‘Create Users’ link to create some users. If you already
had created roles, you could assign roles to the user, right at this stage.

Step (5): Create a web site and add the following pages:
 Welcome.aspx
 Login.aspx
 CreateAccount.aspx
 PasswordRecovery.aspx
 ChangePassword.aspx

Step (6) : Place a LoginStatus control on the Welcome.aspx from the
login section of the toolbox. It has the templates: Logged in and Logged
out.

In Logged out template, there is a login link and in the Logged in
template, there is a logout link on the control. You can change the login
and logout text properties of the control from the Properties window.

273

Step (7): Place a LoginView control from the toolbox below the
LoginStatus control. Here you can put texts and other controls (hyperlinks,
buttons etc), that will be displayed based on whether the user is logged in
or not.

This control has two view templates: Anonymous template and
Logged in template. Select each view and write some text for the users to
be displayed for each template. The text should be placed on the area
marked red.

Step (8): The users for the application are created by the developer. You
might want to allow a visitor to the site create a user account. For this, add
a link beneath the LoginView control, which should link to the
CreateAccount.aspx page.

Step (9): Place a CreateUserWizard control on the create account page.
Set the ContinueDestinationPageUrl property of this control to
Welcome.aspx.

274

Step (10): Create the Login page. Place a Login control on the page. The
LoginStatus control automatically links to the Login.aspx. To change this
default, make the following changes in the web.config file.

For example, if you want to name your log in page as signup.aspx, add the
following lines to the <authentication> section of the web.config:

<authentication mode="Forms">
<forms loginUrl ="signup.aspx"

defaultUrl = “Welcome.aspx” />
</authentication>
</system.web>
</configuration>

Step (11): Users often forget passwords. The PasswordRecovery control
helps the user gain access to the account. Select the Login control. Open
its smart tag and click ‘Convert to Template’.

Customize the UI of the control to place a hyperlink control under the
login button, which should link to the PassWordRecovery.aspx.

Step (12): Place a PasswordRecovery control on the password recovery
page. This control needs an email server to send the passwords to the
users.

Step (13): Create a link to the ChangePassword.aspx page in the LoggedIn
template of the LoginView control in Welcome.aspx.

275

Step (14): Place a ChangePassword control on the change password page.
This control also has two views.

Now run the application and observe different security operations.
To create roles, go back to the Web Application Administration Tools and
click on the Security tab. Click on ‘Create Roles’ and crate some roles for
the application.

Click on the ‘Manage Users’ link and assign roles to the users.

276

15.4 FORM AUTHENTICATION STEPS IN ASP.NET

1. Create a new blank web site.

2. From the Website menu, select ASP.NET Configuration.

3. The Web Site Administration Tools (WAST) opens.

4. Go the Security Tab .Click Select authentication type.

5. Select the option button From The Internet.

6. Click Back button to the main security tab.

7. Click Enable roles.

8. Click Create or Manage roles.

9. Add two roles: Webmaster and Webuser. Roles are like groups.
They provide an easy way to assign permissions.

10. After creating the two roles, go Back to the main security tab.

11. Then go to user tab on WAST.

12. The first user will be added to the Webmaster role. Fill in the form
with appropriate information. Create to user account.

13. Select role for each user.

14. Click Create User button.

15. Add two folder in solution explorer give the name Secure and
Public.

16. Add two forms to the web site MainLogin.aspx and change
Password.aspx.

17. Add one web page in to secure folder. Rename it secure.aspx.

18. Add one web page in to Public folder. Rename it public.aspx

277

19. Go to MainLogin.aspx page and add a Login Control.

20. Go to Change Password.aspx page and add a ChangePassword
Control.

21. Change the property of ChangePassword control SussessPageUrl
to the public page.

22. Put some text on the public page and secure page.

23. Open web.config file modify the authentication setting inside the
system.web section.

24. Insert the code <forms loginurl = “MainLogin.aspx ” >.

25. Build the website.

26. Go to WAST main security tab click create access rules.

27. Create access rules for the folders you created. These determine
which roles are allowed to see the pages.

28. Click the Public folder and deny Anonymous user.

29. Create another rule on public to allow all users. This allowed
authenticated users only.

30. Next repeat these steps on the secure folder, but deny Anonymous
and all users.

31. After allowing Webmaster access to the secure folder, check it by
clicking Manage access rules.

32. Click on done button.

33. View the secure page in the browser.

34. Login as a Masooma.....Nothing will happen.

35. Then Login as Zaidi.....Secure Page will display.

14.5 IMPERSONATION

When using impersonation, ASP.NET applications can execute
with the Windows identity (user account) of the user making the request.
Impersonation is commonly used in applications that rely on Microsoft
Internet Information Services (IIS) to authenticate the user.

One of our websites uses Impersonation and a specific user
account with special permissions to access certain system resources. The
first step in enabling impersonation is setting up the correct attributes in
the web.config file:

<system.web>

278

<identity impersonate="true" password="xxxxxx"
userName="xxxxxxx" />

By using the attribute impersonate="true", you are telling IIS that
this website will be impersonating the configured user account.

Configure the website to use a specific user account
The next step is you need to go to IIS Manager and configure the user
account you want to impersonate by this website.

Steps

1. Open IIS Manager.

2. Expand computer name.
3. Expand websites.
4. Click on the specific website for which you want to use impersonation.
5. On the right panel, under the heading "IIS", double click

"Authentication".

279

6. Right click on "ASP.NET Impersonation" and select "Edit".
7. Choose "Specific User".
8. Click the SET button to provide the specific user name and password.

Press OK at the popup dialog to complete this step on enabling
impersonation for website in IIS 7.0.

15.6 ASP.NET PROVIDER MODEL

ASP.NET includes a number of services that store state in

databases and other storage media.

A provider is a software module that provides a uniform interface

between a service and a data source. Providers abstract physical storage

media, in much the same way that device drivers abstract physical

hardware devices.

The following are the built-in providers of the ASP.NET Provider Model.
 Membership Providers
 Role Management Providers
 Profile Providers
 Site Map Providers
 Session State Providers
 Web Event Providers
 Web Parts Personalization Providers
 Protected Configuration Providers

280

Goals of the Provider Model

The ASP.NET 2.0 provider model was designed with the following goals

in mind:

 To make ASP.NET state storage both flexible and extensible.

 To insulate application-level code and code in the ASP.NET run-time

from the physical storage media where state is stored, and to isolate

the changes required to use alternative media types to a single well-

defined layer with minimal surface area.

 To make writing custom providers as simple as possible by providing

a robust and well-documented set of base classes from which

developers can derive provider classes of their own.

Provider Types

 Membership is one of several ASP.NET services that use the provider
architecture. The following table documents the features and services
that are provider-based and the default providers that service them:

Feature or
Service

Default Provider

Membership System.Web.Security.SqlMembershipProvider

Role management System.Web.Security.SqlRoleProvider

Site map System.Web.XmlSiteMapProvider

281

Profile System.Web. Profile.Sql Profile Provider

Session state System.Web.Session State.In Proc Session State Store

Web events N/A (see below)

Web Parts
personalization

System. Web. UI. Web Controls.Web Parts. Sql
Personalization Provider

Protected
configuration

N/A (see below)

15.7 SUMMARY

This unit gives an overview of security in ASP.NET such as

authentication, authorization and impersonation. Further it discusses about

provider model.

15.8 EXERCISE

1. Explain the term authentication with respect to ASP.NET security.

2. What is the difference between authorisation and impersonation in
terms of security in ASP.NET?

3. Steps to use Windows authentication with sample code.

4. ASP.NET Provider model with diagram.

5. What do you mean by authentication? Explain its types.

15.9 REFERENCE

1. Beginning ASP.NET 4.5 in C# by Matthew MacDonald

2. Beginning ASP.NET Security by Barry Dorrans

3. https://www.c-sharpcorner.com/
4. https://stackoverflow.com/
5. https://support.microsoft.com/en-us/help/891028/asp-net-security-

overview



282

16
ASP.NET AJAX

Unit Structure

16.0 Introduction

16.1 Advantages and Disadvantages of AJAX

16.2 Partial Refreshes

16.3 ASP.NET AJAX Control Toolkit

16.3.1 The Pointer Control

16.3.2 The Script Manager Control

16.3.3 The Script Manager Proxy Control

16.3.4 The Update Panel Control

16.3.5 The Update Progress Control

16.3.6 The Timer Control

16.4 Web Services

16.5 Summary

16.6 Exercise

16.7 Reference

16.0 INTRODUCTION

Ajax, shorthand for Asynchronous JavaScript and XML. In other

words Ajax is the combination of various technologies such as a

JavaScript, CSS, XHTML, and DOM. The first known use of the term in

public was by Jesse James Garrett in his February 2005 article Ajax: A

New Approach to Web Applications.

ASP.NET AJAX, previously called "Atlas", is a Microsoft

implementation of an AJAX based framework, created for ASP.NET. This

allows for a richer experience for the user, since loading dynamic content

can be done in the background, without refreshing and redrawing the

entire page. Google have made Ajax very popular.

16.1 ADVANTAGES AND DISADVANTAGES OF AJAX

Advantages of AJAX

 When using Ajax, a web application can request only the content

that needs to be updated, thus drastically reducing bandwidth usage

and load time.

283

 The web application will be operated faster or more responsive,

even if the application has not changed on the server side.

 Ajax enable to reduce connections to the server, since scripts and

style sheets only have to be requested once.

 State can be maintained throughout a Web site such as JavaScript

variables.

 AJAX enables a much better user experience for Web sites and

applications.

 Developers can now provide user interfaces that are nearly as

responsive and rich as more traditional Windows Forms

applications while taking advantage of the Web's innate ease of

deployment and heterogeneous, cross-platform nature.

 These benefits have been shown to dramatically reduce software

maintenance costs and increase its reach. You can use AJAX to

load specific portions of a page that need to be changed.

 It further reduces network traffic.

Disadvantages of AJAX

 ActiveX requests are enabled only in IE 5 and IE6

 AJAX is not well integrated with any browser.

 Clicking the browser’s “back” button may not return the user to an

earlier state of the Ajax-enabled page.

 Dynamic web page updates also caused some troubles for a user to

bookmark a particular state of the application.

 Ajax opens up another attack vector for malicious code that web

developers might not expected for.

 Any user whose browser does not support Ajax or JavaScript, or

simply has JavaScript disabled, will not be able to use its

functionality.

16.2 PARTIAL REFRESHES

 The key technique in an Ajax web application is partial refreshes.

With partial refreshes, the entire page doesn’t need to be posted

back and refreshed in the browser.

284

 Instead, when something happens the web page asks the web

server for more information. The request takes place in the

background, so the web page remains responsive.

16.3 ASP.NET AJAX CONTROL TOOLKIT

 Ajax Control Toolkit is an open source library for web

development.

 The ASP.net Ajax Control toolkit contains highly rich web

development controls for creating responsive and interactive

AJAX enabled web applications.

 Controls are available in the Visual Studio Toolbox for easy drag

and drop integration with your web application.

 AJAX Extension supports the .NET Framework to build high

quality application consisting client side scripts.

 In order to improve the web applications in nature of the AJAX

architecture developers prefer it.

285

 .NET Framework has list of controls based on AJAX Extension.

 The toolbox of the asp.net in visual studio contains a group of Ajax
Extender as shown below:

16.3.1 THE POINTER CONTROL
It is just a pointer. If we drag any other control on form it causes to

create that control on form but pointer does not create any control on form.

In other word we can say, we select it for to ignore any other selected

control.

16.3.2 THE SCRIPTMANAGER CONTROL
The Script Manager control is the most important control and must

be present on the page for other controls to work.

It has the basic syntax:

<asp:ScriptManager ID="ScriptManager1" runat="server">
</asp:ScriptManager>
More about ScriptManager Control

 Downloads JavaScript files to client.

 Enables partial-page rendering using UpdatePanel.

 Provides access to Web services via client-side proxies.

 Manages callback timeouts and provides error handling options

and infrastructure

 Provides registration methods for scripts.

 Enables ASP.NET AJAX localization support.

 Every page requires one ScriptManager instance!

286

16.3.3 THE SCRIPTMANAGERPROXY CONTROL
 This control is used on content page when we have ScriptManager

on Master page. From content page ScriptManagerProxy hooks

itself to ScriptManager at runtime.

16.3.4 THE UPDATEPANEL CONTROL

 Enable sections of a page to be partially rendered without a post
back called as Partial page rendering.

o Clean round trips to server and flicker-free updates.

o Requires no knowledge of JavaScript or AJAX.

 A declarative model that works like ASP.NET server controls.

 Can be used with Master pages, User Controls and Data Bound
Controls.

 Single or Multiple Update panel controls can also be used on a
Web page.

 It can be created and refreshed programmatically.

It has the basic syntax:

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
</asp:UpdatePanel>

Properties of the UpdatePanel Control

The properties of the update panel control:

Properties Description

ChildrenAsTriggers This property indicates whether the post
backs are coming from the child controls,
which cause the update panel to refresh.

ContentTemplate It is the content template and defines what
appears in the update panel when it is
rendered.

ContentTemplateContainer Retrieves the dynamically created template
container object and used for adding child
controls programmatically.

IsInPartialRendering Indicates whether the panel is being updated
as part of the partial post back.

RenderMode Shows the render modes. The available
modes are Block and Inline.

UpdateMode Gets or sets the rendering mode by
determining some conditions.

Triggers Defines the collection trigger objects each
corresponding to an event causing the panel
to refresh automatically.

287

Methods of the Update Panel Control

The methods of the update panel control:

Methods Description

Create Content
Template Container

Creates a Control object that acts as a container for
child controls that define the UpdatePanel control's
content.

Create Control
Collection

Returns the collection of all controls that are
contained in the Update Panel control.

Initialize Initializes the Update Panel control trigger
collection if partial-page rendering is enabled.

Update Causes an update of the content of an Update Panel
control.

Example

UpdatePanel.aspx Code:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="UpdatePanel.aspx.cs" Inherits="UpdatePanel" %>

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

</head>

<body>

<form id="form1" runat="server">

<div>

<table class="style1">

<tr>

<h1 align="center" UpdatePanel Example</h1>

</td>

</tr>

<td class="style2">

<asp:ScriptManager ID="ScriptManager1" runat="server">

</asp:ScriptManager>

</td>

<td class="style2">

288

<asp:Label ID="Label1" runat="server" Font-Bold="True"
Font-Names="Goudy Stout" Font-Size="XX-Large"
ForeColor="#000066" Text="TIME "></asp:Label>

</td>

<td class="style2">

<asp:Label ID="Label2" runat="server" Font-Bold="True"
Font-Names="Goudy Stout" Font-Size="XX-Large" ForeColor="Red"
Text="TIME"></asp:Label>

</td>

<td class="style6">

<asp:Button ID="Button3" runat="server" Font-Bold="True"
Font-Names="Algerian" Font-Size="XX-Large" ForeColor="#003300"
Height="46px" onclick="Button3_Click" Text="Update Time"
Width="222px" />

</td>

<td class="style6">

<asp:UpdatePanel ID="UpdatePanel1" runat="server">

<ContentTemplate>

<table class="style3" bgcolor="#00FF99" border="5">
<tr><td>

<asp:Label ID="Label3" runat="server" Font-Bold="True" Font-
Names="Goudy Stout"

Font-Size="XX-Large" ForeColor="#000066" Text="TIME
"></asp:Label> </td> <td>

<asp:Button ID="Button2" runat="server" ClientIDMode="AutoID" Font-
Bold="True"

Font-Names="Algerian" Font-Size="XX-Large" ForeColor="#000099"

onclick="Button1_Click" Text="UPDATE TIME " Width="237px" />

</td>

</table>

</ContentTemplate>

</asp:UpdatePanel>

</table>

</div>

</form>

</body>

</html>

289

UpdatePanel.aspx.cs Code:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

public partial class UpdatePanel : System.Web.UI.Page

{

protected void Page_Load(object sender, EventArgs e)

{

Label1.Text = DateTime.Now.ToLongTimeString();

}

protected void Button1_Click(object sender, EventArgs e)

{

Label3.Text = DateTime.Now.ToLongTimeString();

}

protected void Button3_Click(object sender, EventArgs e)

{

Label2.Text = DateTime.Now.ToLongTimeString();

}

}

290

16.3.5 THE UPDATEPROGRESS CONTROL

 The UpdateProgress Control is used to show the progress of the

partial page contents in the UpdatePanel.

 This control is very useful when the speed of updating content is

slow.

 Thus a user gets idea how much information is processed and how

long a user has to wait.

It has the basic syntax:

<asp: UpdateProgress ID="UpdateProgress1" runat="server">
</asp: UpdateProgress>

More About UpdateProgress control

 It provides status information about partial-page updates in

UpdatePanel controls.

 It helps to prevent flashing when a partial-page update is very fast.

 It helps to design a more intuitive UI when a Web page contains

oneor more UpdatePanel controls.

 Displays custom template-driven UI for:

o Indicating that an async update is in progress.

o Canceling an async update that is in progress.

 Automatically displayed when update begins or "DisplayAfter"

interval elapses.



Properties of the UpdateProgress Control

The properties of the update progress control:

Properties Description

Associated Update
Panel ID

Gets and sets the ID of the update panel with which
this control is associated.

Attributes Gets or sets the cascading style sheet (CSS)
attributes of the Update Progress control.

Display After Gets and sets the time in milliseconds after which
the progress template is displayed. The default is
500.

Dynamic Layout Indicates whether the progress template is
dynamically rendered.

Progress Template Indicates the template displayed during an
asynchronous post back which takes more time
than the Display After time.

291

Methods of the Update Progress Control

The methods of the update progress control:

Methods Description

GetScriptDescriptors Returns a list of components, behaviors, and client
controls that are required for the UpdateProgress
control's client functionality.

GetScriptReferences Returns a list of client script library dependencies
for the UpdateProgress control.

Example

UpdateProgress.aspx code:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="UpdateProgress.aspx.cs" Inherits="UpdateProgress" %>
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
</head>
<body>

<form id="form1" runat="server">
<div>

<table class="style1">
<td class="style11">

<h1>Ajax UpdateProgress Example</h1></td>
<td class="style10" style="text-align: center">

<asp:ScriptManager ID="ScriptManager1" runat="server">
</asp:ScriptManager></td>

<td class="style10">
<asp:UpdateProgress ID="UpdateProgress1" runat="server">

<ProgressTemplate>
<table class="style3">

<tr>
<asp:Image ID="Image2" runat="server" Height="179px"
ImageUrl="~/Loading1.gif" Width="250px" /></td>
</table>

</ProgressTemplate>
</asp:UpdateProgress>

</td>
<td class="style10">

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
<ContentTemplate>

<table class="style3">
<tr>

<td class="style5">

292

<asp:Label ID="Label1" runat="server" Font-
Bold="True" Font-Names="Algerian" Font-Size="XX-Large"
Text="Label"></asp:Label> </td>

<td class="style6">
<asp:Button ID="Button1" runat="server" Font-Bold="True" Font-
Italic="True"
Font-Names="Arial Black" Font-Size="XX-Large"
onclick="Button1_Click"
Text="Update Time" Width="256px" />
</td></tr></table>

</ContentTemplate>
</asp:UpdatePanel>

</td>
</table>

</div>
</form>

</body>
</html>

UpdateProgress.aspx.cs code:

using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

public partial class UpdateProgress : System.Web.UI.Page
{
protected void Button1_Click(object sender, EventArgs e)

{
System.Threading.Thread.Sleep(5000);
Label1.Text = DateTime.Now.ToLongTimeString();

}
}

293

16.3.6 THE TIMER CONTROL
 The Timer Control is used to update the content of a page after a

specific interval.

 The Timer Control is attached with the UpdatePanel control to

perform the regular updates for the partial page after a predefine

interval.

 A developer can add one or more than one control on a single

webpage.

 This control is invisible at runtime just like ScriptManager control.

It has the basic syntax:

<asp:Timer ID="Timer1" runat="server"> </asp:Timer>

Some important properties of Timer Control are given below :

 Interval: It specifies the desire time limit in milliseconds (1000

milliseconds in a single second). The Tick event is raised after the

interval time limit is over.

 Enabled: It sets a value that indicates that the Timer Control fires

the tick event or not.

Example

Timer.aspx code:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Timer.aspx.cs" Inherits="Timer" %>
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
</head>
<body>

<form id="form1" runat="server">
<div>

<table class="style1" bgcolor="#FFFFCC" >

294

<td>
<h1>Timer Control Examample</h1></td>

<td>
<td>

<asp:ScriptManager ID="ScriptManager1" runat="server">
</asp:ScriptManager>

</td>
<td bgcolor="#CCFFCC">

<asp:Label ID="Label1" runat="server" Font-Bold="True"
Font-Names="Algerian"

Font-Size="XX-Large" ForeColor="Red"
Text="Label"></asp:Label></td>

<td>
<asp:UpdatePanel ID="UpdatePanel1" runat="server">

<ContentTemplate>
<table class="style1" bgcolor="#66FFFF">

<tr>
<td bgcolor="#99FFCC">

<asp:Label ID="Label2" runat="server" Font-Bold="True" Font
Italic="True" Font-Names="Algerian" Font-Size="XX-Large"
ForeColor="#000066" Text="Label"></asp:Label>

 <asp:Timer ID="Timer1" runat="server" Interval="5000"
ontick="Timer1_Tick"> </asp:Timer>
</td>
</table>
</ContentTemplate>
</asp:UpdatePanel>

</table>
</div>
</form>

</body>
</html>

Timer.aspx.cs code

using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

public partial class Timer : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

Label1.Text = "Page Load Time : " +
DateTime.Now.ToLongTimeString();

}
protected void Timer1_Tick(object sender, EventArgs e)
{

295

Label2.Text = "Current Time : " +
DateTime.Now.ToLongTimeString();

}
}

15.4 WEB SERVICES

Web Services are an integral part of the .NET framework that
provide a cross-platform solution for exchanging data between distributed
systems. Although Web Services are normally used to allow different
operating systems, object models and programming languages to send and
receive data, they can also be used to dynamically inject data into an
ASP.NET AJAX page or send data from a page to a back-end system. All
of this can be done without resorting to postback operations.

A Web Service is an application that is designed to interact directly
with other applications over the internet. A Web Service is the same as the
Web application that can be accessed over the internet such as the Internet,
and executed on a remote system hosting from requested services. The
Web services are components on a Web server that a client application can
call by making HTTP requests across the Web.

A web service is a web-based functionality accessed using the
protocols of the web to be used by the web applications. There are three
aspects of web service development:
 Creating the web service
 Creating a proxy
 Consuming the web service

So let us start using a different way to add a web service using a template
1. "Start" - "All Programs" - "Microsoft Visual Studio 2010"
2. "File" - "New Project" - "C#" - "Empty Web Application" (to

avoid adding a master page)
3. Provide the web site a name such as "agetodays" or another as you

wish and specify the location
4. Then right-click on Solution Explorer - "Add New Item" - you see

the web service templates

296

Select Web Service Template and click on add button. then after that the
Solution Explorer look like as follows.

Then open the Webservice.cs class and write the following method
followed by [webMethod] attribute as in.
[WebMethod]
public int converttodaysweb(int day, int month, int year)
{
DateTime dt = new DateTime(year, month, day);
int datetodays = DateTime.Now.Subtract(dt).Days;
return datetodays;
}

In the code above I have declared a one integer method named
converttodaysweb with the three parameters day, month and year for
accepting day, month and year from the user.

Then after that I created an object of date time and ed the those
variables that I get from the users. I declared another variable in the
method that is age today to store the number of days remaining from the
user's input date to the current date and finally I return that variable..
The webservice.cs file will then look as in the following

297

using System;

using System.Collections.Generic;

using System.Web;

using System.Web.Services;

///<summary>

/// Summary description for UtilityWebService

///</summary>

[WebService(Namespace = "http://tempuri.org/")]

[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

// To allow this Web Service to be called from script, using ASP.NET
AJAX, uncomment the following line.

// [System.Web.Script.Services.ScriptService]

public class WebService: System.Web.Services.WebService

{

public WebService()

{

//Uncomment the following line if using designed components

//InitializeComponent();

}

[WebMethod]

public int converttodaysweb(int day, int month, int year)

{

DateTime dt = new DateTime(year, month, day);

int datetodays = DateTime.Now.Subtract(dt).Days;

return datetodays;

}

}

Now run the application that look like as follows.

298

Now in the above we see our method that we are created in the
webservice.cs file, so click on that method and provide input values and
click on the "invoke" link as in.

299

The output will be as follows

16.5 SUMMARY

This unit gives an overview of AJAX control in ASP.NET. Further

it discusses about web service in ASP.NET.

16.6 EXERCISE

1. Explain the use of Update Progress Control and Timer Control in AJAX.
2. Explain Update Panel control with example.
3. Explain the use of Update Progress control in AJAX.
4. What is AJAX? How is the processing of a web page without AJAX

different from the processing of a web page with AJAX?
5. What is AJAX? Explain Update Panel control with example.
6. Write a note on web service in ASP.NET.
7. What is the use of Script Manager control in AJAX.

16.7 REFERENCE

1. Beginning ASP.NET 4.5 in C# by Matthew MacDonald

2. Programming ASP.NET AJAX by Christian Wenz

3. Foundations Of Asp.net Ajax by Robin Pars Laurence Moroney

John Grieb

4. Beginning Ajax with ASP.NET by Wallace B. Mcclure, Paul

Glavich, Scott Cate, Craig Shoemaker

5. https://www.codeproject.com/Articles/401903/AJAX-for-

Beginners-Part-Understanding-ASP-NET-AJ

6. http://ajax.net-tutorials.com/



300

17

J QUERY

Unit Structure

17.0 An introduction to jQuery

17.1 The core jQuery library

17.2 Features of jQuery

17.3 How jQuery AJAX works

17.4 The Architecture of jQuery AJAX

17.5 JQuery syntax

17.6 jQuery Selectors

17.7 JQuery DOM

17.8 DOM Manipulation Methods

17.9 JQuery Event

17.10 Effects with JQuery

17.11 JQuery extensibility

17.12 Summary

17.13 Exercise

17.14 Reference

17.0 AN INTRODUCTION TO JQUERY

 Like the ASP.NET AJAX client-side framework, jQuery is a
JavaScript library that provides support for AJAX.

 In addition, jQuery contains functions that make it easier to modify
documents, handle events, and apply effects and animations.

 In 2008, Microsoft adopted jQuery as part of its official application
development platform and announced that it would provide official
support for jQuery.

 jQuery is a lightweight open source JavaScript library (only 15kb
in size) that in a relatively short span of time has become one of
the most popular libraries on the web.

301

 A big part of the appeal of jQuery is that it allows you to elegantly

(and efficiently) find and manipulate HTML elements with

minimum lines of code. jQuery supports this via a nice "selector"

API that allows developers to query for HTML elements, and then

apply "commands" to them.

 Microsoft has included jQuery as part of ASP.NET 4, and it has in-

cluded IntelliSense support for jQuery in Visual Studio 2010. In

addition, Microsoft has contributed code to the jQuery project.

17.1 THE CORE JQUERY LIBRARY

 To start, jQuery makes it easy to write client-side JavaScript code
that's compatible with all modern web browsers.

 In addition, it makes it easy to select and manipulate the DOM
(Document Object Model) and the CSS for the DOM. This allows you
to use JavaScript to change the appearance of the web page.

 jQuery takes this one step further by including some popular
animations and effects such as having a control fade in or fade out.

 In other words, jQuery can do a lot on the client side without ever
needing to make a trip to the server. However, jQuery also includes
AJAX capabilities that allow it to send an AJAX request to the server
and to process the AJAX response that's returned from the server.

 If you start a web site from the ASP.NET Web Site template, you will
find three versions of the jQuery library in the Scripts folder.

 The jquery-1.4.1.js file contains the core library in a format that's easy
for developers to read. The jquery-1.4.1.min.js file contains the core
library in a condensed format that should be used when the application
is deployed. And the jquery-1.4.1 -vsdoc.js file contains the core
library with comments that support Visual Studio IntelliSense.

1. If your computer is not always connected to the Internet and /or if
your Internet connection is not fast, you can download jQuery to
any folder and reference it locally.

2. If your computer is always connected to the Internet, you can
reference the jQuery library, indicating a Web address.

Download jQuery locally:

1. Go to the jQuery Official site and Click on "Download jQuery"
Button in the Home page.

2. Choose: "Download the compressed, production jQuery 1.9.1”, a
.txt file that contains the required code will open. Copy and paste
it into bloc note and save the file with "jquery.js' as name in the
same folder of the Html page.

3. Copy and paste the code below between <head> and </head> :

302

The jQuery Ul library

 One additional feature of jQuery is its extensibility. This means
that developers can develop plug-ins that is built on top of jQuery.

 Some of the most popular jQuery plug-ins can be found in the
jQuery UI library. This library provides a wide range of user-
interface controls, also known as widgets.

 Many of the controls in the jQuery UI library duplicate
functionality that's provided by the controls in the ASP.NET
AJAX Control Toolkit.

 For example, jQuery UI contains a Calendar control that's similar
in function to the Calendar control in the ASP.NET AJAX Control
Toolkit. As a result, if you want to use a Calendar control, you'll
need to decide which control to use. The use of each one has its
pros and cons.

17.2 FEATURES OF JQUERY

1. Cross-browser compatibility: Makes it easy to write code that is
compatible with all modern web browsers.

2. Event handling: Makes it easy to register functions as event
listeners.

3. DOM selection: Makes it easy to select DOM elements.

4. DOM manipulation: Makes it easy to modify DOM elements.

5. CSS manipulation: Makes it easy to modify the CSS for a DOM
element.

6. Effects and animations: Makes it easy to apply special effects and
animations to DOM elements such as fading in or out, sliding up or
down, and so on.

7. AJAX: Makes it easy to send an AJAX request to the server and
use the data in the AJAX response to update the DOM for a web
page.

8. Extensibility: Allows jQuery to work with plug-ins such as the
controls in the jQuery UI library.

17.3 HOW JQUERY AJAX WORKS

 jQuery AJAX works similarly to ASP.NET AJAX. As you would
expect, however, jQuery AJAX uses the jQuery library instead of
the ASP.NET AJAX client-side framework.

 Then, the JavaScript code uses jQuery AJAX to call a WCF
(windows communication foundation) service or web service that's
running on the server.

303

 When a response is received from the server, the JavaScript code
in the response uses jQuery to process the data and update the
DOM accordingly.

 The advantage of that approach is that the JavaScript code that
works with the ASP.NET AJAX client-side framework is
generated automatically when the page is rendered.

 This allows the developer to quickly develop web pages that use
AJAX by dragging and dropping server controls onto the page, and
it shields the developer from having to understand the details of
what's going on under the hood.

 The disadvantage of this approach is that the developer gives up
control over how the JavaScript code works.

 The advantage of using jQuery AJAX is that the developer has
more control over how the client-side controls and code work. The
disadvantage of this approach is that it has a steeper learning curve.
To start, the developer must have a solid understanding of HTML
and CSS.

 Then, the developer must learn how to write JavaScript code that
uses jQuery to work with the DOM and AJAX. Finally, the
developer must manually write most of the client-side code.

17.4 THE ARCHITECTURE OF JQUERY AJAX

17.5 JQUERY SYNTAX

The jQuery syntax is tailor-made for selecting HTML elements

and performing some action on the element(s).

Basic syntax is: $(selector).action()

 A $ sign to define/access jQuery

 A (selector) to "query (or find)" HTML elements

 A jQuery action() to be performed on the element(s)

304

Examples:

1. $(this).hide() - hides the current element.

2. $("p").hide() - hides all <p> elements.

3. $(".test").hide() - hides all elements with class="test".

4. $("#test").hide() - hides the element with id="test".

17.6 JQUERY SELECTORS

jQuery Selectors are used to select and manipulate HTML

elements. They are very important part of jQuery library. With jQuery

selectors, you can find or select HTML elements based on their id, classes,

attributes, types and much more from a DOM.

Selectors are used to select one or more HTML elements using

jQuery and once the element is selected then you can perform various

operation on that. All jQuery selectors start with a dollor sign and

parenthesis e.g. $(). It is known as the factory function.

The $() factory function

Every jQuery selector start with thiis sign $(). This sign is known
as the factory function. It uses the three basic building blocks while
selecting an element in a given document.

S.No. Selector Description
1) Tag

Name:
It represents a tag name available in the DOM.
For example: $('p') selects all paragraphs'p'in the
document.

2) Tag ID: It represents a tag available with a specific ID in the
DOM.
For example: $('#real-id') selects a specific element in
the document that has an ID of real-id.

3) Tag
Class:

It represents a tag available with a specific class in the
DOM.
For example: $('real-class') selects all elements in the
document that have a class of real-class.

Important types of selectors in jQuery

The Universal Selector
The Universal selector, indicated by an asterisk (*), applies to all

elements in your page. The Universal selector can be used to set global
settings like a font family. The following rule set changes the font for all
elements in your page to Arial:
$(‘*’).css(‘font-family’,’Arial’);

305

The Type Selector
The Type selector enables you to point to an HTML element of a specific
type. With a Type selector, all HTML elements of that type will be styled
accordingly.

The ID Selector:
The ID selector is always prefixed by a hash symbol (#) and enables you
to refer to a single element in the page. Within an HTML or ASPX page,
you can give an element a unique ID using the id attribute. With the ID
selector, you can change the behavior for that single element, like this:
$(‘#Button1’).addClass(‘NewClassName’);

The Class Selector:
The Class selector enables you to style multiple HTML elements

through the class attribute.

This is handy when you want to give the same type of formatting
to a number of unrelated HTML elements. The following rule changes the
text to red and bold for all HTML elements that have their class attributes
set to Highlight :

<h1 class = ‘highlight’> Heading 1 </h1>
<h2> Heading 2 </h2>
<p class = ‘highlight’> First Paragraph</p>
<p> Second Paragraph </p>
$(‘.highlight’).css(‘background-color’,’red’);

Grouping and Combining Selectors:
JQUERY also enables you to group multiple selectors by

separating them with a comma. This is handy if you want to apply the
same styles to different elements. The following rule turns all headings in
the page to red:

$(‘h1, h2’).css(‘color’, ‘orange’);
$(‘#Maincontent p’).css(‘border’, ‘1px solid red’);

17.7 JQUERY DOM

 JQuery provides methods to manipulate DOM in efficient way.
You do not need to write big code to modify the value of any
element's attribute or to extract HTML code from a paragraph or
division.

 JQuery provides methods such as .attr(), .html(), and .val() which
act as getters, retrieving information from DOM elements for later
use.

306

Syntax:
selector.MethodName([parameter(s)])

Example:
Content Manipulation
The html() method gets the html contents (innerHTML) of the
first matched element.
Here is the syntax for the method −
Example: selector.html()

17.8 DOM MANIPULATION METHODS

Following table lists down all the methods which you can use to
manipulate DOM elements –

 after(content): Insert content after each of the matched elements.

 append(content): Append content to the inside of every matched
element.

 before(content): Insert content before each of the matched
elements.

 clone(bool): Clone matched DOM Elements, and all their event
handlers, and select the clones.

 html(val): Set the html contents of every matched element.

 text() : Get the combined text contents of all matched elements.

 wrap(elem): Wrap each matched element with the specified
element.

17.9 JQUERY EVENT

We have the ability to create dynamic web pages by using events.
Events are actions that can be detected by your Web Application.

Following are the examples events −

 A mouse click
 A web page loading
 Taking mouse over an element
 Submitting an HTML form
 A keystroke on your keyboard, etc.

When these events are triggered, you can then use a custom function to
do pretty much whatever you want with the event. These custom functions
call Event Handlers.

307

Binding Event Handlers

Using the jQuery Event Model, we can establish event handlers on DOM
elements with the bind() method as follows −

<html>
<head>

<title>The jQuery Example</title>
<script type = "text/javascript"

src =
"https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js">

</script>

<script type = "text/javascript" language = "javascript">
$(document).ready(function() {

$('div').bind('click', function(event){
alert('Hi there!');

});
});

</script>

<style>
.div{ margin:10px;padding:12px; border:2px solid #666;

width:60px;}
</style>

</head>

<body>
<p>Click on any square below to see the result:</p>

<div class = "div" style = "background-color:blue;">ONE</div>
<div class = "div" style = "background-color:green;">TWO</div>
<div class = "div" style = "background-color:red;">THREE</div>

</body>
</html>

The following table lists all the jQuery methods used to handle events.

bind() Attaches event handlers to elements

blur() Attaches/Triggers the blur event

change() Attaches/Triggers the change event

click() Attaches/Triggers the click event

dblclick() Attaches/Triggers the double click event

focus() Attaches/Triggers the focus event

hover() Attaches two event handlers to the hover event

keydown() Attaches/Triggers the keydown event

308

keypress() Attaches/Triggers the keypress event

keyup() Attaches/Triggers the keyup event

mousemove() Attaches/Triggers the mousemove event

mouseout() Attaches/Triggers the mouseout event

mouseover() Attaches/Triggers the mouseover event

mouseup() Attaches/Triggers the mouseup event

ready() Specifies a function to execute when the DOM is fully loaded

unload() Deprecated in version 1.8. Attaches an event handler to the
unload event

16.10 EFFECTS WITH JQUERY

jQuery provides a trivially simple interface for doing various kind
of amazing effects. jQuery methods allow us to quickly apply commonly
used effects with a minimum configuration. This tutorial covers all the
important jQuery methods to create visual effects.

Showing and Hiding Elements
The commands for showing and hiding elements are pretty much

what we would expect − show() to show the elements in a wrapped set
and hide() to hide them.

Syntax
Here is the simple syntax for show() method −
[selector].show(speed, [callback]);

Example
$("#hide").click(function(){

$("p").hide();
});

$("#show").click(function(){
$("p").show();

});

Syntax
$(selector).hide(speed,callback);

$(selector).show(speed,callback);

The optional speed parameter specifies the speed of the
hiding/showing, and can take the following values: "slow", "fast", or
milliseconds.

The optional callback parameter is a function to be executed after
the hide() or show() method completes

309

Example
$("button").click(function(){

$("p").hide(1000);
})

Toggling the Elements
jQuery provides methods to toggle the display state of elements

between revealed or hidden. If the element is initially displayed, it will be
hidden; if hidden, it will be shown.

Syntax
Here is the simple syntax for one of the toggle() methods −
[selector]..toggle([speed][, callback]);

Example
<script type = "text/javascript" language = "javascript">

$(document).ready(function() {
$(".clickme").click(function(event){

$(".target").toggle('slow', function(){
$(".log").text('Transition Complete');

});
});

});
</script>

jQuery Sliding Methods
With jQuery you can create a sliding effect on elements.
jQuery has the following slide methods:

 slideDown()
 slideUp()
 slideToggle()

jQuery slideDown() Method
The jQuery slideDown() method is used to slide down an element.

Syntax:
$(selector).slideDown(speed,callback);

The optional speed parameter specifies the duration of the effect. It can
take the following values: "slow", "fast", or milliseconds.
The optional callback parameter is a function to be executed after the
sliding completes.

The following example demonstrates the slideDown() method:

Example
$("#flip").click(function(){

$("#panel").slideDown();
});

310

jQuery slideUp() Method
The jQuery slideUp() method is used to slide up an element.

Syntax:
$(selector).slideUp(speed,callback);

The optional speed parameter specifies the duration of the effect. It can
take the following values: "slow", "fast", or milliseconds.

The optional callback parameter is a function to be executed after the
sliding completes.

The following example demonstrates the slideUp() method:

Example
$("#flip").click(function(){

$("#panel").slideUp();
});

jQuery slideToggle() Method
The jQuery slideToggle() method toggles between the slideDown() and
slideUp() methods.

If the elements have been slid down, slideToggle() will slide them up.
If the elements have been slid up, slideToggle() will slide them down.

$(selector).slideToggle(speed,callback);
The optional speed parameter can take the following values: "slow",
"fast", milliseconds.
The optional callback parameter is a function to be executed after the
sliding completes.
The following example demonstrates the slideToggle() method:

Example
$("#flip").click(function(){

$("#panel").slideToggle();
});

jQuery Fading Methods

With jQuery you can fade an element in and out of visibility.
jQuery has the following fade methods:

 fadeIn()
 fadeOut()
 fadeToggle()
 fadeTo()

jQuery fadeIn() Method
The jQuery fadeIn() method is used to fade in a hidden element.

311

Syntax:
$(selector).fadeIn(speed,callback);
The optional speed parameter specifies the duration of the effect. It can
take the following values: "slow", "fast", or milliseconds.

The optional callback parameter is a function to be executed after the
fading completes.

The following example demonstrates the fadeIn() method with different
parameters:

Example
$("button").click(function(){

$("#div1").fadeIn();
$("#div2").fadeIn("slow");
$("#div3").fadeIn(3000);

});

jQuery fadeOut() Method
The jQuery fadeOut() method is used to fade out a visible element.

Syntax:
$(selector).fadeOut(speed,callback);
The optional speed parameter specifies the duration of the effect. It can
take the following values: "slow", "fast", or milliseconds.

The optional callback parameter is a function to be executed after the
fading completes.

The following example demonstrates the fadeOut() method with different
parameters:

Example
$("button").click(function(){

$("#div1").fadeOut();
$("#div2").fadeOut("slow");
$("#div3").fadeOut(3000);

});

jQuery fadeToggle() Method
The jQuery fadeToggle() method toggles between the fadeIn() and
fadeOut() methods.

If the elements are faded out, fadeToggle() will fade them in.
If the elements are faded in, fadeToggle() will fade them out.

Syntax:
$(selector).fadeToggle(speed,callback);

312

The optional speed parameter specifies the duration of the effect. It can
take the following values: "slow", "fast", or milliseconds.

The optional callback parameter is a function to be executed after the
fading completes.

The following example demonstrates the fadeToggle() method with
different parameters:

Example
$("button").click(function(){

$("#div1").fadeToggle();
$("#div2").fadeToggle("slow");
$("#div3").fadeToggle(3000);

});

jQuery fadeTo() Method
The jQuery fadeTo() method allows fading to a given opacity (value
between 0 and 1).

Syntax:
$(selector).fadeTo(speed,opacity,callback);
The required speed parameter specifies the duration of the effect. It can
take the following values: "slow", "fast", or milliseconds.

The required opacity parameter in the fadeTo() method specifies fading to
a given opacity (value between 0 and 1).

The optional callback parameter is a function to be executed after the
function completes.

The following example demonstrates the fadeTo() method with different
parameters:

Example
$("button").click(function(){

$("#div1").fadeTo("slow", 0.15);
$("#div2").fadeTo("slow", 0.4);
$("# div3").fadeTo("slow", 0.7);

});

jQuery Animations - The animate() Method

The jQuery animate() method is used to create custom animations.

Syntax:

$(selector).animate({params},speed,callback);

313

The required params parameter defines the CSS properties to be animated.

The optional speed parameter specifies the duration of the effect. It can
take the following values: "slow", "fast", or milliseconds.

The optional callback parameter is a function to be executed after the
animation completes.

Example

$("button").click(function(){
$("div").animate({left: '250px'});

});

jQuery Callback Functions

JavaScript statements are executed line by line. However, with
effects, the next line of code can be run even though the effect is not
finished. This can create errors.

To prevent this, you can create a callback function.

A callback function is executed after the current effect is finished.

Typical syntax: $(selector).hide(speed,callback);

Examples

The example below has a callback parameter that is a function that
will be executed after the hide effect is completed:

Example with Callback

$("button").click(function(){
$("p").hide("slow", function(){

alert("The paragraph is now hidden");
});

});

The example below has no callback parameter, and the alert box will be
displayed before the hide effect is completed:

Example without Callback

$("button").click(function(){
$("p").hide(1000);
alert("The paragraph is now hidden");

});

314

17.11 JQUERY EXTENSIBILITY

jQuery is an open source, cross browser JavaScript library that

simplifies event handling, animations and developing Ajax - enabled web

pages and promotes rapid application development. The jQuery official

web site states, "jQuery is a fast and concise JavaScript Library that

simplifies HTML document traversing, event handling, animating, and

Ajax interactions for rapid web development. jQuery is designed to

change the way that you write JavaScript."

jQuery is a fast, lightweight JavaScript library that is CSS3

compliant and supports many browsers. The jQuery framework is

extensible and handles the DOM manipulations, CSS, AJAX, Events and

Animations, very nicely.

17.12 SUMMARY

This unit gives an overview of jQuery in ASP.NET. Further it

discusses about DOM, event and effect of jQuery in ASP.NET.

17.13 EXERCISE

1. What are the different types of selectors present in JQuery? Explain.

2. What is jQuery selector? Write some examples.

3. Use of document ready event and callback function of jquery.

4. Write a program using jQuery that hides a paragraph on click of a

button.

5. What is the use of Document.Ready function?

6. Explain the jQuery syntax and document.Ready event with example.

7. What is jQuery?How to use jQuery.

8. Explain JQuery expression with example.

9. Write jQuery program that changes the background colour of a

paragraph to red and font colour to yellow when mouse enters over it.

Also set the background colour to white and font colour to black when

mouse leaves the paragraph.

10. Explain the need of What is jQuery?How to use jQuery.

11. Explain DOM manipulation methods in jQuery.

315

17.14 REFERENCE

1. Beginning ASP.NET 4.5 in C# by Matthew MacDonald

2. Programming ASP.NET AJAX by Christian Wenz

3. Foundations Of Asp.net Ajax by Robin Pars Laurence Moroney

John Grieb

4. Beginning Ajax with ASP.NET by Wallace B. Mcclure, Paul

Glavich, Scott Cate, Craig Shoemaker

5. JavaScript and JQuery: Interactive Front-End Web Development

by Jon Duckett

6. http://www.dotnetcurry.com/jquery/231/using-jquery-aspnet-

beginner-tutorial

7. https://www.codeproject.com/Tips/471799/jQuery-introduction-

and-how-to-use-jQuery-with-ASP

8. https://www.w3schools.com/Jquery/default.asp



