
SUBJECT CODE : USIT304

DATA BASE
MANAGEMENT SYSTEMS

S.Y.B.SC.(IT)
SEMESTER - III (CBCS)

© UNIVERSITY OF MUMBAI

Published by : Director
Institute of Distance and Open Learning ,
University of Mumbai,
Vidyanagari, Mumbai - 400 098.

Prof. Suhas Pednekar
Vice Chancellor

University of Mumbai, Mumbai.

Programme Co-ordinator : Prof. Mandar Bhanushe
Head, Faculty of Science & Technology,
IDOL, University of Mumbai - 400 098.

Course Co-ordinator : Gouri S. Sawant
Assistant Professor B.Sc.IT, IDOL,
University of Mumbai- 400098.

Course Writers : Ms. SeemaViswakarma
Assistant Professor,
Vidyalankar School of Information Technology,
Wadala.

: Ms. Madhavi Amondhkar
Assistant Professor,
Vidyalankar School of Information Technology,
Wadala

: Mr. Amit Kukreja
Assistant Professor,
KJ Somaiya Institute of Engineering and Information Technology,
Sion.

: Ms. Ashwini Koyande
Assistant Professor,Vidyalankar School of Information Technology,
Wadala

July 2021, Print I

Prof. Ravindra D. Kulkarni
Pro Vice-Chancellor,

University of Mumbai.

Prof. Prakash Mahanwar
Director

IDOL, University of Mumbai.

DTP COMPOSED AND PRINTED BY
Mumbai University Press

Vidyanagari, Santacruz (E), Mumbai - 400098.

CONTENT
Chapter No. Title Page No.

UNIT I

1. Introduction To Database And Transaction 1

2. Data Models 11

3. Database Design 21

UNIT II

4. Relational Database Model 34

5. Relational Algebra 43

6. Calculus 54

UNIT III

7. Constraint 62

8. Structured Query Language Part-I 81

9. Structured Query Language Part-II 101

10. Views, Nested Queries And Joins 122

UNIT IV

11. Transaction Management 141

UNIT V

12. Beginning With Pl / Sql 158

13. Cursors, Procedure And Functions 176

Syllabus

F.Y.B.Sc. (Information Technology) Semester – III

Course Name: Database Management

Systems

Course Code: USIT304

Periods per week (1 Period is 50 minutes) 5

Credits 2

 Hours Marks

Evaluation

System

Theory 2½ 75

Examination - 25

Unit Details Lectures

I

Introduction to Databases and Transactions

What is database system, purpose of database

system, view of data, relational databases,

database architecture, transaction management

Data Models

The importance of data models, Basic building

blocks, Business rules, The evolution of data

models, Degrees of data abstraction.

Database Design, ER Diagram and Unified

Modeling Language

Database design and ER Model: overview, ER

Model, Constraints, ER Diagrams, ERD

Issues, weak entity sets, Codd’s rules,

Relational Schemas, Introduction to UML

12

II Relational database model:

Logical view of data, keys, integrity rules,

Relational Database design: features of good

relational database design, atomic domain and

Normalization (1NF, 2NF, 3NF, BCNF).

Relational Algebra and Calculus

Relational algebra: introduction, Selection and

projection, set operations, renaming, Joins,

Division, syntax, semantics. Operators,

grouping and ungrouping, relational

comparison.

Calculus: Tuple relational calculus, Domain

relational Calculus, calculus vs algebra,

computational capabilities

12

III Constraints, Views and SQL

Constraints, types of constrains, Integrity

constraints, Views: Introduction to views, data

independence, security, updates on views,

comparison between tables and views SQL:

data definition, aggregate function, Null

Values, nested sub queries, Joined relations.

Triggers.

12

IV Transaction management and Concurrency

Control Transaction management: ACID

properties, serializability and concurrency

control, Lock based concurrency control (2PL,

Deadlocks), Time stamping methods,

optimistic methods, database

recovery management.

12

V PL-SQL: Beginning with PL / SQL,

Identifiers and Keywords, Operators,

Expressions, Sequences, Control Structures,

Cursors and Transaction, Collections and

composite data types, Procedures and

Functions, Exceptions Handling, Packages,

With Clause and Hierarchical Retrieval,

Triggers.

12

Books and References:

Sr.

No.

Title Author/s Publisher Edition Year

1.

Database

System and

Concepts

A Silberschatz

Sudarshan

McGrawHill

Fifth

Edition

2.

Database

Systems

Rob Coronel Cengage

Learning

Twelth

Edition

3.

Programmin

g with

PL/SQL for

Beginners

H. Dand, R.

Patil and T.

Sambare

X –Team First 2011

4.

Introduction

to Database

System

C.J.Date Pearson First 2003

1

UNIT I

1

INTRODUCTION TO DATABASE AND

TRANSACTION
Unit structure

1.0 Objectives

1.1 Introduction

1.2 What is database System

1.3 Purpose of database system

1.3.1 Data redundancy and inconsistency

1.3.2 Difficulty in accessing data

1.3.3 Data isolation

1.3.4 Integrity problems

1.3.5 Atomicity problems

1.3.6 Security problems

1.4 View of Data

1.4.1 Data Abstraction

1.4.2 Instances and Schema

1.5 Relational Database

1.5.1 Tables

1.6 Data-Manipulation Language

1.7 Data-Definition Language

1.8 Database Access from Application Programs

1.9 Database Design

1.9.1 Design Process

1.10 Database Architecture

1.11 Transaction Management

1.11.1 Atomicity

1.11.2 Consistency

1.11.3 Durability

1.11.4 Recovery Manager

1.11.5 Failure recovery

1.11.6 Concurrency-control manager

1.12 Let us Sum Up

1.13 List of Reference

1.14 Bibliography

1.15 Unit End Exercise

2

1.0 OBJECTIVES

The objective of the chapter is as follow

• To get familiar with core component of database management systems

• To understand the different architecture of database

• To understand the concept of relational database

1.1 INTRODUCTION

• A database management system (DBMS) is a collection of interrelated
data and a set of programs to access those data.

• The collection of data, usually referred to as the database, contains
information relevant to an enterprise.

• The primary goal of a DBMS is to provide a way to store and retrieve
database information that is both convenient and efficient

• Main purpose if to manage large bodies of information in a structured
format

1.2 DATABASE SYSTEM APPLICATIONS

Databases are widely used many application. Some of them are mentioned
below

• Banking: For customer information, accounts, and loans, and banking
transactions.

 • Airlines: For reservations and schedule information. Airlines were
among the first to use databases in a geographically distributed manner
− terminals situated around the world accessed the central database
system through phone lines and other data networks.

• Universities: For student information, course registrations, and grades.

• Credit card transactions: For purchases on credit cards and
generation of monthly statements.

 • Telecommunication: For keeping records of calls made, generating
monthly bills, maintaining balances on prepaid calling cards, and
storing information about the communication networks.

• Finance: For storing information about holdings, sales, and purchases
of financial instruments such as stocks and bonds.

• Sales: For customer, product, and purchase information.

1.3 PURPOSE OF DATABASE SYSTEM

1.3.1 Data redundancy and inconsistency:

3

• Files and application programs created by different programmers have
different structures and written using different programming
languages.

• The same information may be duplicated in several places (files).

• This redundancy leads to higher storage and access cost.

• In addition, it may lead to data inconsistency; that is, the various
copies of the same data may no longer agree. For example, a changed
student address may be reflected in the one department records but not
elsewhere in the system.

1.3.2 Difficulty in accessing data: The conventional file-processing
environments do not allow needed data to be retrieved in a convenient and
efficient manner. More responsive data-retrieval systems are required for
general use.

1.3.3 Data isolation: Because data are scattered in various files, and files
may be in different formats, writing new application programs to retrieve
the appropriate data is difficult

1.3.4 Integrity problems: The data values stored in the database must
satisfy certain types of consistency constraints

1.3.5 Atomicity problems: A computer system, like any other device, is
subject to failure. Atomic—it must happen in its entirety or not at all. It is
difficult to ensure atomicity in a conventional file-processing system

1.3.6 Security problems: Not every user of the database system should be
able to access all the data

1.4 VIEW OF DATA

A database system is a collection of interrelated files and a set of

programs that allow users to access and modify these files. A major
purpose of a database system is to provide users with an abstract view of
the data. That is, the system hides certain details of how the data are stored
and maintained.

1.4.1 Data Abstraction:

• For the system to be usable, it must retrieve data efficiently.

• The need for efficiency has led designers to use complex data
structures to represent data in the database.

• Since many users of databasesystems are not computer trained,
developers hide the complexity from users through several levels of
abstraction, to simplify users interactions with the system:

4

Physical level: The lowest level of abstraction describes how the data are
actually stored. The physical level describes complex low−level data
structures in detail.

Logical level: the next−higher level of abstraction describes what data are
stored in the database, and what relationships exist among those data. The
logical level thus describes the entire database in terms of a small number
of relatively simple structures.

1.4.2 Instances and Schema:
Databases change over time as information is inserted and deleted.

Instances:

• The collection of information stored in the database at a particular
moment is called an instance of the database.

• The values of the variables in a program at a point in time correspond
to an instance of a database schema

Schema:

• The overall design of the database is called the database schema.

• Schemas are changed infrequently.

• A database schema corresponds to the variable declarations (along
with associated type definitions) in a program. Each variable has a
particular value at a given instant.

1.5 RELATIONAL DATABASES

A relational database is based on the relational model and uses a

collection of tables to represent both data and the relationship among those
data. It also includes a DML and DDL.

5

1.5.1 Tables:

• The relational model is an example of a record-based model.

• Record-based models are so named because the database is structured
in fixed-format records of several types.

• Each table contains records of a particular type. Each record type
defines a fixed number of fields, or attributes.

• It is possible to create schemas in the relational model that have
problems such as unnecessarily duplicated information. The relational
model hides such low-level implementation details from database
developers and users

• The columns of the table correspond to the attributes of the record
type.

• The relational model hides such low-level implementation details from
database developers and users.

1.6 DATA-MANIPULATION LANGUAGE

The SQL query language is nonprocedural. A query takes as input

several tables (possibly only one) and always returns a single table. Here
is an example of an SQL query that finds the names of all instructors in
the History department:

select instructor.name

from instructor

where instructor.dept_name = ‘History’

The query specifies that those rows from the table instructor where the
dept nameis

History must be retrieved, and the name attribute of these rows must be
displayed.

6

1.7 DATA-DEFINITION LANGUAGE

SQL provides a rich DDL that allows one to define tables, integrity
constraints, assertions, etc.

For instance, the following SQL DDL statement defines the department
table:
create table department

(depLnamechar(20),

building char (15),

budget numeric (12,2))

Execution of the above DDL statement creates the department

table with three columns :dept_name, building, and budget, each of which
has a specific data type associated with it. In addition, the DDL statement
updates the data dictionary, which contains metadata. The schema of a
table is an example of metadata

1.8 DATABASE ACCESS FROM APPLICATION

PROGRAMS

SQL is not as powerful as a universal Turing machine; that is,

there are some computations that are possible using a general-purpose
programming language but are not possible using SQL. SQL also does not
support actions such as input users, output to displays, or communication
over the network. Such computations are supposed to be written in host
language such as C, C++ or java with embedded SQL queries that access
the data in the database. Application programs are programs that are used
to interact with the database in this fashion

• To access the database?

• DML statements need to be executed from the host language. There
are two ways to do this:

• By providing an application program interface (set of procedures) that
can be used to send DML and DDL statements to the database and
retrieve the results.

• The Open Database Connectivity (ODBC) standard for use with the C
language is a commonly used application program interface standard.
The Java Database Connectivity ODBC) standard provides
corresponding features to the Java language.

• By extending the host language syntax to embed DML calls within the
host language program. Usually a special character prefaces DML
calls, and a preprocessor, called the DML precompiler, converts the
DML statements to normal procedure calls in the host language.

7

1.9 DATABASE DESIGN

• Database systems are designed to manage large bodies of information.
These large bodies of information do not exist in isolation. They are
part of the operation of some enterprise whose end product may be
information from the database or may be some device or service for
which the database plays only a supporting role.

• Database design mainly involves the design of the database schema.
The design of a complete database application environment that meets
the needs of the enterprise being modelled requires attention to a
broader set of issues.

1.9.1 Design Process:

• A high-level data model provides the database designer with a
conceptual framework in which to specify the data requirements of the
database users, and how the database will be structured to fulfill these
requirements.

• The initial phase of database design, then, is to characterize fully the
data needs of the prospective database users. The database designer
needs to interact extensively with domain experts and users to carry
out this task. The outcome of this phase is a specification of user
requirements.

• The designer chooses a data model, and by applying the concepts of
the chosen data model, translates these requirements into a conceptual
schema of the database. The schema developed at this conceptual-
design phase provides a detailed overview of the enterprise.

• In a specification of functional requirements, users describe the kinds
of operations (or transactions) that will be performed on the data.
Example operations include modifying or updating data, searching for
and retrieving specific data, and deleting data. At this stage of
conceptual design, the designer can review the schema to ensure it
meets functional requirements.

• In the logical-design phase, the designer maps the high-level
conceptual schema onto the implementation data model of the
database system that will be used. The designer uses the resulting
system-specific database schema in the subsequent physical-design
phase, in which the physical features of the database are specified.

1.10 DATABASEARCHITECTURE

Database System Structure:

• The architecture of a database system is greatly influenced by the
underlying computer system on which the database system runs.

8

• Database systems can be centralized, or client-server, where one server
machine executes work on behalf of multiple client machines.

• Most users of a database system today are not present at the site of the
database system, but connect to it through a network.

• This can be differentiated between client machines, on which remote
database users work, and server machines, on which the database
system runs

• Database applications are usually partitioned into two or three parts,

• In a two-tier architecture, the application resides at the client machine,
where it invokes database system functionality at the server machine
through query language statements. Application program interface
standards like ODBC and JDBC are used for interaction between the
client and the server.

• In contrast, in a three-tier architecture, the client machine acts as
merely a front end and does not contain any direct database calls.
Instead, the client end communicates with an application server,
usually through a forms interface.

• The application server in turn communicates with a database system to
access data. The business logic of the application, which says what
actions to carry out under what conditions, is embedded in the
application server, instead of being distributed across multiple clients.

• Three-tier applications are more appropriate for large applications, and
for applications that run on the World Wide Web.

1.11 TRANSACTION MANAGEMENT

1.11.1 Atomicity:

• Several operations on the database form a single logical unit of work.

9

• Consider an example of funds transfer, in which one department
account(say A) is debited and another department account (say B) is
credited.

• It is essential that either both the credit and debit occur, or that neither
occur.

• This all-or-none requirement is called atomicity.

1.11.2 Consistency:

• In addition, it is essential that the execution of the funds transfer
preserve the consistency of the database. That is, the value of the sum
of the balances of A and B must be preserved. This correctness
requirement is called consistency.

1.11.3 Durability:

• Finally, after the successful execution of a funds transfer, the new
values of the balances of accounts A and B must persist, despite the
possibility of system failure. This persistence requirement is called
durability.

• A transaction is a collection of operations that performs a single
logical function in a database application. Each transaction is a unit of
both atomicity and consistency. Thus, we require that transactions do
not violate any data base consistency constraints. That is, if the
database was consistent when a transaction started, the database must
be consistent when the transaction successfully terminates.

1.11.4 Recovery Manager:

• Ensuring the atomicity and durability properties is the responsibility of
the database system itself specifically, of the recovery manager.

1.11.5 Failure recovery:

• The database must be restored to the state in which it was before the
transaction in question started executing. The database system must
therefore perform failure recovery, that is, detect system failures and
restore the database to the state that existed prior to the occurrence of
the failure.

1.11.6 Concurrency-control manager:

• When several transactions update the database concurrently, the
consistency of data may no longer be preserved, even though each
individual transaction is correct. It is the responsibility of the
concurrency-control manager to control the interaction among the
concurrent transactions, to ensure the consistency of the database.

• The transaction manager consists of the concurrency-control manager
and the recovery manager

10

1.12 LET US SUM UP

• A database-management system (DBMS) consists of a collection of
interrelated data and a collection of programs to access that data. The
data describe one particular enterprise.

• The primary goal of a DBMS is to provide an environment that is both
convenient and efficient for people to use in retrieving and storing
information

• A data-manipulation language (DML) is a language that enables users
to access or manipulate data. Nonprocedural DMLs, which require a
user to specify only what data are needed, without specifying exactly
how to get those data, are widely used today.

• A data-definition language (DDL) is a language for specifying the
database schema and as well as other properties of the data

• Transaction management ensures that the database remains in a
consistent (correct) state despite system failures. The transaction
manager ensures that concurrent transaction executions proceed
without conflicting.

1.13 LIST OF REFERENCE

A Silberschatz, H Korth, S Sudarshan, “Database System and Concepts”,
fifth Edition McGraw- Hill

1.14 BIBLIOGRAPHY

• Database Systems ,RobCoronel,Cengage Learning.

• Programming with PL/SQL for Beginners, H. Dand, R. Patil and T.
Sambare,X-Team.

• Introduction to Database System,C.J.Date,Pearson

1.15 UNIT END EXERCISE

1. Define database system and explain the purpose of database system in

detail

2. Mention the views of database.

3. Explain DML and DDL in detail

4. Write a note on transaction management systems

5. Explain database architecture in detail.

11

2

DATA MODELS
Unit Structure

2.0 Objectives

2.1 Introduction

2.2 Data Models

 2.2.1 Importance of Data Models

 2.2.2 Advantages of Data Models

2.3 File Management Systems

 2.3.1 Hierarchical Databases

 2.3.2 Network Databases

2.4 Basic Building Blocks

 2.4.1 Entity

 2.4.2 Attributes

 2.4.3 Relationships

 2.4.4 Degree

2.5 Types of Relationships

2.6 Business Rules

 2.6.1 Characteristics of Business Rules

 2.6.2 Types of Business Rules

2.7 Degrees of data Abstractions

2.8 Let us Sum Up

2.9 List of Reference

2.10 Bibliography

2.11 Unit End Exercise

2.0 OBJECTIVES

The objective of the chapter is as follow

• To get familiar with core data models in database management
systems

• To understand the different types of database models

• To understand the concept of basic building blocks and business rules.

2.1 INTRODUCTION

• Data model gives an idea of how the final system or software will look
after when the development is completed

12

• This concept is exactly like real world modelling in which before
constructing any project (Buildings, Bridges, Towers) engineers create
a model for it and gives the idea of how a project will look like after
construction

• A data model is an overview of a software system which describes
how data can be represented and accessed from software system after
its complete implementation.

2.2 DATA MODELS

• Data models define data elements and relationships among various
data elements for a specified system

• A data model is a way of finding tool for both business and IT
professionals which uses a set of symbols and text to precisely explain
a subset of real information to improve communication within the
organisation and thereby lead to more flexible and stable application
environment

• Data model is a simple abstraction of complex real world data
gathering environment

2.2.1 Importance of Data Models:

• A data model is a set of concepts that can be used to describe the
structure of data in a database.

• Data models are used to support the development of information
systems by providing the definition and format of data to be involved
in future system.

• Data model is acting like a guideline for development also gives an
idea about possible alternatives to achieve targeted solution.

• A data model can sometimes be referred to as data structure especially
in the context of programming languages.

2.2.2 Advantages of Data Models:

• Data model prevents the system from future risk and failure by
defining structure of data in advance.

• As we got an idea of final system at the beginning of development
itself so we can reduce the cost of project by proper planning and cost
estimation as actual system is not yet developed.

• Data repetition and data type compatibility can be checked and
removed with help of data model.

• We can improve Graphical User Interface (GUI) of system by making
its model and get it approved by its future user so it will be simple for
them to operate system and make entire system effective.

13

2.3 FILE MANAGEMENT SYSTEMS

• All data were permanently stored on a computer system, such as
payroll and accounting records, was stored in individual files.

• A file management system, usually provided by the computer
manufacturer as part of the computer’s operating system, kept track of
the names and locations of the files.

• The file management system basically had no data model; it knew
nothing about the internal contents of files.

• To the file management system, a file containing a word processing
document and a file containing payroll data appeared the same.

• Knowledge about the contents of a file which data is contained and
how the data was organized was embedded in the application programs
that used the file

• The problems of maintaining large file-based systems led in the late
1960s to the development of database management systems.

• The idea behind these systems was simple: take the definition of a
file’s content and structure out of the individual programs, and store it,
together with the data, in a database.

• Using the information in the database, the DBMS that controlled it
could take a much more active role in managing both the data and
changes to the database structure.

2.3.1 Hierarchical Databases:

• This was developed by joined efforts of IBM and North American
Rockwell known as Information management system.

• It was the first DBMS model

• The data is sorted hierarchically, either in top down or bottom up
approach of designing.

• This model uses pointers to navigate between stored data.

• This model represents data as a hierarchical tree.

• Let us consider simple organizational structure as given below.

• CEO is root node having DU Heads below that managers who
manages multiple project lead who organizes developer as shown
below

• CEO -> Program manager (PM) -> Project Manager (PrM) -> Project
Leader (PL) -> Team Leader (TL) -> Developer

14

Advantage:

Conceptual Simplicity:

Relationships between various levels is logically very simple.
Hence database structure becomes easier to view.

Database Security:

Security is given by DBMS system itself it does not depends on
whether programmer has given security or not.

Simple Creation, Updation and Access:

This model is simple to construct with help of pointers or similar
concepts and very simple to understand also adding and deleting record is
easy tin tree structure using pointers. This file system is faster and easy
data retrieval through higher level records in tree structure.

Disadvantages:

Complex implementation:

Only data independence is not enough for designer and

programmers to build database system they need to have knowledge of
physical data storage which may be complex.

Complex application programming:
Programmers must know how data is stored and path of data storage

Limitations in implementation:
1: N relationship can be implemented but implementing M:N relationship
is difficult

15

2.3.2 Network Databases:

• The simple structure of a hierarchical database became a disadvantage
when the data had a more complex structure.

• To deal with applications such as order processing, a new network data
model was developed. The network data model extended the
hierarchical model by allowing a record to participate in multiple
parent/child relationships

• Like the hierarchical model, this model also uses pointers toward data
but there is no need of parent to child association so it does not
necessarily use a downward tree structure. This model uses network
databases

• This database model is similar to hierarchical model up to some
aspect.

• A relationship between any two record types is called as a set.

• EXAMPLE – IDS (Integrated Data Store) one of the products based
on network models developed by IBM and North American Rockwell

Advantages:

Simple design:
The network model is simple and easy to design and understand.

Ability to handle many types of relationship:
The network model can handle the one-t o-many or many-to-many or
other relationships.
Hence network model manages multiuser user environment

Ease of data access:
In a network model an application can access a root (parent) record and all
the member records within a set(child)

Disadvantages:

System complexity:
Data are accessed one record at a time hence the complexity for the
system increases for accessing multiple records at a time.

Lack of structural independence:
Any changes made to the database structure (or data) requires the
application programs to be modified before it can access data.

16

2.4 BASIC BUILDING BLOCK

The basic building block for any of model is Entities, Attributes ,
relationships and constraints.

2.4.1 Entity:

A fundamental component of a model. An entity is having its own
independent existence in real world.

E.g.: A Student, Faculty, Subject having independent existence.
An entity may be an object with a physical existence, or it may have
logical existence.

E.g.: Entities like Department, Section, adult(age>18) may have physical
existence or it may have only logical existence.

2.4.2 Attributes:

Each entity has its own properties which describes that entity, such
properties are called as attributes

A particular entity will have some value for each of its attributes

– Employee entity may be described by attributes name, age, phone etc.

2.4.3 Relationships:

It is an association among several entities for e. g. Employee works for
Department.

17

The degree of the relationship is the number of participating entity types in
a particular relation

Data model uses three types of relationships

2.4.4 Degree:
 The degree of relationship type is number of participating entity types in a
particular relation

2.5 TYPES OF RELATIONSHIPS

One is to one:

One entity is associated with at most one other entity.
E.g., One department can have only one manager

One is to Many:

One entity is associated with any number of entities in other entity.
E.g., One teacher may teach to many students

Many is to Many:
One entity is associated with any number of entities in other entity.
E.g., Books in library issued by students

2.6 BUSINESS RULES

• Definition: Business rules are statements of a discrete operational
business policy or practice within specific organisations that constrains
the business. It is intended to control or influence the behaviour of the
business.

• Database designer needs to take help from concepts such as entity,
attributes and relationships to build a data model, but the above things
are not sufficient to describe a system completely.

• Business rules may define actors and prescribe how they should
behave by setting constraints and help to manage business change in
the system.

2.6.1 Characteristics of Business Rules:

Atomicity:
Rule should define any one aspect of the system environment.
E.g.: - College should have students in it.

Business format:
Rule should be expressed in business terms understandable tobusiness
people.

18

E.g.: ER diagram, object diagram etc

Business ownership:
Each rule is governed by a businessperson who is responsible for verifying
it, enforcing it, and monitoring need for change.
E.g.: End user or customer is responsible for requirements submitted by
him.

Classification:
Each rule can be classified by its data and constraints.

Business Formalism:
Each rule can be implemented in the related information system. Business
rules should be consistent and non-redundant.

EXAMPLES:
A student may take admission to college
One subject is taught by only one professor
A class consists of minimum 60 and maximum 80 students

2.6.2 Types of Business Rules:

DEFINITIONS:
Define some business terms. Definitions are incorporated in systems data
dictionary.
E.g., A professor is someone who teaches to students

FACTS:
Connect business terms in ways that make business sense. Facts are
implemented as relationships between various data entities
E.g., A professor may have student

CONSTRAINTS:
Shows how business rules and how business terms are connected with
each other. Constraints usually state how many of one data entity can be
related to another data entity
E.g., Each professor may teach up to four subjects.

DERIVATIONS:
Enable new knowledge or actions. Derivations are often implemented as
formulas and triggers.
E.g. A student pending fees is his fees paid minus total fees.

2.7 DEGREES OF DATA ABSTRACTION

For the system to be usable, it must retrieve data efficiently. The

need for efficiency has led designers to use complex data structures to
represent data in the database. hide the complexity from users through

19

several levels of abstraction, to simplify users interactions with the
system:

• Physical level: The lowest level of abstraction describes how the data
are el data structures in detail.

• Logical level: the next higher level of abstraction describes what data
are stored in the database, and what relationships exist among those
data. The logical level thus describes the entire database in terms of a
small number of relatively simple structures. Although implementation
of the simple the user of the logical level does not need to be aware of
this complexity. Database administrators, who must decide what
information to keep in the database, use the logical level of
abstraction.

• View level: The highest level of abstraction describes only part of the
entire database. Even though the logical level uses simpler structures,
complexity remains because of the variety of information stored in a
large database. Many users of the database system do not need all this
information; instead, they need to access only a part of the database.
The view level of abstraction exists to simplify their interaction with
the system. The system may provide many views

• for the same database.

Type customer = record

customer-id: string;

customer-name: string;

customer-street: string;

customer-city: string;

end;

This code defines a new record type called customer with four
fields. Each field has a name and a type associated with it.

A banking enterprise may have several such record types,
including account, with fields account number and balance employee, with
fields employee name and salary

At the physical level, a customer, account, or employee record can
be described as a block of consecutive storage locations (for example,
words or bytes). The language compiler hides this level of detail from
programmers. Similarly, the database system hides many of the lowest
level storage details from database programmers.

Database administrators, on the other hand, may be aware of
certain details of the physical organization of the data.

At the logical level, each such record is described by a type
definition, as in the previous code segment, and the interrelationship of

20

these record types is defined as well. Programmers using a programming
language work at this level of abstraction.

Similarly, database administrators usually work at this level of
abstraction

Finally, at the view level, computer users see a set of application
programs that hide details of the data types. Similarly, at the view level,
several views of the database are defined, and database users see these
views. In addition to hiding details of the logical level of the database, the
views also provide a security mechanism to prevent users from accessing
certain parts of the database.

2.8 LET US SUM UP

• A database-management system (DBMS) consists of a collection of
interrelated data and a collection of programs to access that data. The
data describe one particular enterprise.

• The primary goal of a DBMS is to provide an environment that is both
convenient and efficient for people to use in retrieving and storing
information

• A data-manipulation language (DML) is a language that enables users
to access or manipulate data. Nonprocedural DMLs, which require a
user to specify only what data are needed, without specifying exactly
how to get those data, are widely used today.

• A data-definition language (DDL) is a language for specifying the
database schema and as well as other properties of the data

• Transaction management ensures that the database remains in a
consistent (correct) state despite system failures. The transaction
manager ensures that concurrent transaction executions proceed
without conflicting.

2.9 LIST OF REFERENCE

• A Silberschatz, H Korth, S Sudarshan, “Database System and
Concepts”, fifth Edition McGraw- Hill

• Introduction to Database System,C.J.Date,Pearson

• Database Systems ,Rob Coronel,Cengage Learning.

2.10 BIBLIOGRAPHY

• Programming with PL/SQL for Beginners, H. Dand, R. Patil and T.
Sambare,X-Team.

21

3

DATABASE DESIGN

Unit Structure

3.0 Objectives

3.1 Introduction

3.2 ER Relationship Model

 3.2.1 Entity

 3.2.2 Entity Set

 3.2.3 Attributes

 3.2.4 Relationship

 3.2.5 Simple and Composite attributes

 3.2.6 Single-valued and multivalued attributes

 3.2. 7 Derived attribute

3.3 Constraints

 3.3.1 Mapping Cardinalities

 3.3.2 Participation Constraints

 3.3.3 Keys

3.4 ER Diagram

 3.4.1 Mapping Cardinality

 3.4.2 Strong Entity Set

 3.4.3 Weak entity set

3.5 ERD issues

3.6 Codd’s Rules

3.6 Codd’s Rules

3.7 Relational Schema

 3.7.1 Representation of Strong Entity Sets with Simple Attributes

 3.7.2 Representation of Strong Entity Sets with Complex Attributes

 3.7.3 Representation of Weak Entity Sets

3.8 Introduction to UML

 3.8.1 Class diagram

 3.8.2 Use case diagram

 3.8.3 Activity Diagram

 3.8.4 Implementation diagram

 3.8.5 Advantages of UML Diagrams

 3.8.6 Disadvantages of UML Diagrams

3.9 Let us Sum Up

3.10 List of Reference

22

3.11 Bibliography

3.12 Unit End Exercise

3.0 OBJECTIVES

The objective of the chapter is as follow

• To get familiar with the design of the database schema

• To understand the influence of design choice on database schema

• To understand the concept of ER Model

3.1 INTRODUCTION

• The task of creating a database application is a complex one, involving
design of the database schema, design of the programs that access and
update the data, and design of a security scheme to control access to
data.

• The needs of the users play a central role in the design process

• The design of a complete database application environment that meets
the needs of the enterprise being modelled requires attention to a broad
set of issues.

• These additional aspects of the expected use of the database influence
a variety of design choices at the physical, logical, and view levels.

3.2 ERRELATIONSHIP MODEL

• The entity-relationship (E-R) data model was developed to facilitate
database

• Design by allowing specification of an enterprise schema that
represents the overall

• Logical structure of a database.

• The E-R model is very useful in mapping the meanings and
interactions of

• Real-world enterprises onto a conceptual schema

• The E-R data model

• Employs three basic concepts: entity sets, relationship sets, and
attributes

• The E-R model also has an associated diagrammatic representation,
the E-R diagram,

23

3.2.1 Entity:

An entity is a “thing” or “object” in the real world that is
distinguishable from all other objects. For example, each person in an
enterprise in an entity.

An entity has a set of properties, and the values for some set of
properties may uniquely identity an entity. For instance, a person may
have a person-id property whose value uniquely identifies that person

An entity may be concrete, such as a person or a book, or it may be
abstract, such as a loan, or a holiday, or a concept.

3.2.2 Entity Set:
An entity set is a set of entities of the same type that share the same
properties, or attributes. The set of all people who are instructors at a
given university

3.2.3 Attributes:

An entity is represented by a set of attributes.

Attributes are descriptive properties possessed by each member of
an entity set.

The designation of an attribute for an entity set expresses that the
database stores similar information concerning each entity in the entity set;
however, each entity may have its own value for each attribute. Each
entity has a value for each of its attributes

3.2.4 Relationship:

A relationship is an association among several entities. For

example, we can define a relationship advisor that associates instructor
Katz with student Shankar. This relationship specifies that Katz is an
advisor to student Shankar. A relationship set is a set of relationships of
the same type.

24

3.2.5 Simple and Composite attributes:

 Simple and composite attributes. In our examples thus far, the
attributes have been simple; that is, they have not been divided into
subparts. Composite attributes, on the other hand, can be divided into
subparts (that is, other attributes). For example, an attribute name could be
structured as a composite attribute consisting of first name, middle initial,
and last name

3.2.6 Single-valued and multivalued attributes:

The attributes in our examples all have a single value for a
particular entity. For instance, the student ID attribute for a specific
student entity refers to only one student ID. Such attributes are said to be
single valued.

An instructor may have zero, one, or several phone numbers, and
different instructors may have different numbers of phones. This type of
attribute is said to be multivalued.

3.2.7 Derived attribute:

The value for this type of attribute can be derived from the values

of other related attributes or entities. Eg age can be derived from the
birthdate

3.3 CONSTRAINTS

An E-R enterprise schema may define certain constraints to which

the contents of a database must conform. In this section, we examine
mapping cardinalities and participation constraints, which are two of the
most important types of constraints

3.3.1 Mapping Cardinalities:

• Mapping cardinalities, express the number of entities to which another
entity can be associated via a relationship set.

25

• Mapping cardinalities are most useful in describing binary relationship
sets, although they can contribute to the description of relationship sets
that involve more than two entity sets.

For a binary relationship set R between entity sets A and B, the mapping
cardinality must be one of the following:

• One to one: An entity in A is associated with at most one entity in B,
and an entity in B is associated with at most one entity in A. (see figure
(a).)

• One to many: An entity in A is associated with any number (zero or
more) of entities in B. An entity in B, however, can be associated with at
most one entity in A. (see figure (b))

• Many to one: An entity in A is associated with at most one entity in B.
An entity in B, however, can be associated with any number (zero or
more) of entities in A. (see figure a).

• Any to many: An entity in A is associated with any number (zero or
more) of entities in B, and an entity in B is associated with any number
(zero or more) of entities in A. (see figure b).

26

3.3.2 Participation Constraints:

The participation of an entity set E in a relationship set R is said to

be total if every entity in E participates in at least one relationship in R. If
only some entities in E participate in relationships in R, the participation
of entity set E in relationship R is said to be partial.

3.3.3 Keys:

• The column value that uniquely identifies a single record in the table is
called as KEY of table.

• An attribute or set of attributes whose values uniquely identify each
entity in an entity set is called as key for that entity set

• Any key consisting of single attribute is called a simple key while that
consisting of a combination of attributes is called a composite key

• A super key is any combination of fields within a table that uniquely
identifies each record within that table.

• A candidate key is a subset of super key. It is a single field or the least
combination of fields that uniquely identifies each record in the table

• The least combination of fields distinguishes a candidate key from a
super key

• A primary key is a candidate key that is most appropriate to be the
main reference key for the table.

3.4 ER DIAGRAM

E-R diagram can express the overall logical structure of a database

graphically. E-R diagrams are simple and clear—qualities that may well
account in large part for the widespread use of the E-R model.

• Rectangles divided into two parts represent entity sets. The first
part, which in this textbook is shaded blue, contains the name of the
entity set. The second part contains the names of all the attributes of
the entity set.

• Diamonds represent relationship sets.

• Undivided rectangles represent the attributes of a relationship set.
Attributes that are part of the primary key are underlined.

• Lines link entity sets to relationship sets.

• Dashed lines link attributes of a relationship set to the relationship set.

27

• Double lines indicate total participation of an entity in a relationship
set.

• Double diamonds represent identifying relationship sets linked to
weak entity sets

3.4.1 Mapping Cardinality:

The relationship set advisor, between the instructor and student entity sets
may be one-to-one, one-to-many, many-to-one, or many-to-many.

28

• One-to-one: A directed line from the relationship set advisor to both
entity sets instructor and student. This indicates that an instructor may
advise at most one student, and a student may have at most one
advisor(figure a).

• One-to-many: A directed line from the relationship set advisor to the
entity set instructor and an undirected line to the entity set student.
This indicates that an instructor may advise many students, but a
student may have at most one advisor(figure b).

• Many-to-one: An undirected line from the relationship set advisor to
the entity set instructor and a directed line to the entity set student.
This indicates that an instructor may advise at most one student, but a
student may have many advisors.

• Many-to-many: An undirected line from the relationship set advisor
an instructor may advise many students, and a student may have many
advisors(figure c).

29

3.4.2 Strong Entity Set:

• A single rectangle is used for the representation of a strong entity set.

• It contains sufficient attributes to form its primary key

• A diamond symbol is used for the representation of the relationship
that exists between the two strong entity sets.

• A single line is used for the representation of the connection between
the strong entity set and the relationship.

• Total participation may or may not exist in the relationship.

3.4.3 Weak entity set:

• A double rectangle is used for the representation of a weak entity set

• It does not contain sufficient attributes to form its primary key.

• A double diamond symbol is used for the representation of the
identifying relationship that exists between the strong and weak entity
set

• A double line is used for the representation of the connection between
the weak entity set and the relationship set

• Total participation always exists in the identifying relationship.

3.5 ERD ISSUES

• A common mistake is to use the primary key of an entity set as an
attribute of another entity set, instead of using a relationship

• A common mistake is to use the primary key of an entity set as an
attribute of another entity set, instead of using a relationship

• It is not always clear whether an object is best expressed by an entity
set or a relationship

• Relationships in databases are often binary. Some relationships that
appear to be non binary could actually be better represented by several
binary relationships.

3.6 CODD’S RULES

1. Information Rule: All available data in a system should be

represented as relations or tables.

2. Guaranteed Access Rule: Each data item must be accessible without
ambiguity by providing table name and its primary key of the row also
include its column name to be accessed

3. Systematic Treatment of Null Values: Null values are not equal to
blank space or zero they are unknown unassigned values which should
be treated properly

30

4. Self-Describing Database: There should be dynamic online catalog
based dictionary on relational model which keep information about
tables data in database

5. Comprehensive Data Sublanguage: The data access language (SQL)
must be the only means of accessing data stored in the database and
support DML, DDL etc.

6. View Updating Rule: All views of data are theoretically updateable
can be updated using system also

7. High Level Insert, Update And Delete: This rule states that in a
relational database, the query language must be capable of performing
manipulations on sets of rows in a table

8. Physical Data Independence: Any changes made in the way is
physically stored must not affect applications that access data

9. Logical Data Independence: This rule states that changes to the
database to the database design should be done in a way without the
users being aware of it

10. Integrity Independence: Data integrity constraints which are
definable in the language must be stored in the database as data in
table is, in the catalog and not in the application program

11. Distribution Independence: In a RDBMS data can be stored centrally
that is on a system or distributed across multiple systems

12. Non-Subversion Rule : This rule states that there should be no bypass
of constraints by any other languages

3.7 RELATIONAL SCHEMA

The E-R model and the relational database model are abstract,

logical representations of real-world enterprises. Because the two models
employ similar design principles, an E-R design can be converted into a
relational design.

3.7.1 Representation of Strong Entity Sets with Simple Attributes:

Let E be a strong entity set with only simple descriptive attributes

a1, a2,..., an. We represent this entity by a schema called E with n distinct
attributes. Each tuple in a relation on this schema corresponds to one
entity of the entity set E

An entity set student of the E-R diagram. This entity set has three
attributes: ID, name, tot_ cred. We represent this entity set by a schema
called student with three attributes

student (ID, name, tot cred)

3.7.2 Representation of Strong Entity Sets with Complex Attributes:
A strong entity set has non simple attributes. A composite attribute

is handled by creating a separate attribute for each of the component

31

attributes; consider the version of the instructor entity set. For the
composite attribute name, the schema generated for instructor contains the
attributes first name, middle name, and last name is no separate attribute
or schema for name

3.7.3 Representation of Weak Entity Sets:

Let A be a weak entity set with attributes a1, a2,..., am. Let B be

the strong entity set on which A depends. Let the primary key of B consist
of attributes b1, b2,..., bn. We represent the entity set A by a relation
schema called A with one attribute for each member of the set {a1, a2,...,
am} ∪ {b1, b2,..., bn}

3.8 INTRODUCTION TO UML

• UML is a standard language for specifying visualizing, constructing
and documenting the artifacts of software systems.

• UML is specially proposed standard for creating specifications of
various components of a complex software system.

• UML stands for Unified Modelling Language but is different from the
other common programming languages like C++,Java etc.

• UML is a specification language that is used in the software
engineering field.

3.8.1 Class diagram:

Most popular UML diagrams used for construction of software
applications.

Like E-R diagram. It is a static diagram. Shown using class as its
basic entity and lines between them represents relationship between them.
Describes the attributes and operations of a class and the constraints
imposed on the system.

3.8.2 Use case diagram:

Shows the interaction between users and the system in particular

steps of tasks that users perform. Purpose is to capture the dynamic aspect
of a system and to gather requirements of a system. It also identifies
external and internal factors influencing the system.

3.8.3 Activity Diagram:

Is basically a flowchart to represent the flow from one activity to

another. The activity can be described as an operation of the system. It is a
particular operation of the system and not only used for visualizing

32

dynamic nature of a system but also used to construct the executable
system by using forward and reverse engineering techniques.

3.8.4 Implementation diagram:

Implementation diagrams show the system components and their

interconnections, both at the software component level and the hardware
component level.

3.8.5 Advantages Of UML Diagrams:

• It is the most useful method of visualization and documenting software
systems design .

• It is effective for modeling large, complex software systems.

• It is simple to learn, but provides advanced features for expert
analysts, engineers, designers and architects.

• It can specify systems in an implementation - independent manner.

• It specifies a skeleton that can be refined and extended with additional
features.

• It specifies the functional requirements of system in an object oriented
manner

3.8.6 Disadvantages Of UML Diagrams:

• Still no specification for modelling of graphical user interface.

• Not suitable for distributed systems – no way to formally specify
serialization and object persistence.

3.9 LET US SUM UP

• Database design mainly involves the design of the database schema.
The entity-relationship (E-R) data model is a widely used data model
for database design. It provides a convenient graphical representation
to view data, relationships, and constraints.

• An entity is an object that exists in the real world and is
distinguishable from other objects. We express the distinction by
associating with each entity a set of attributes that describes the object.

• A relationship is an association among several entities. A relationship
set is a collection of relationships of the same type, and an entity set is
a collection of entities of the same type.

• The terms super key, candidate key, and primary key apply to entity
and relationship sets as they do for relation schemas. Identifying the
primary key of a relationship set requires some care, since it is
composed of attributes from one or more of the related entity sets.

33

• Mapping cardinalities express the number of entities to which another
entity can be associated via a relationship set.

• An entity set that does not have sufficient attributes to form a primary
key is termed a weak entity set. An entity set that has a primary key is
termed a strong entity set.

3.10 LIST OF REFERENCE

• A Silberschatz, H Korth, S Sudarshan, “Database System and
Concepts”, fifth Edition McGraw- Hill

• Database Systems ,Rob Coronel,Cengage Learning.

• Introduction to Database System,C.J.Date,Pearson

3.11 BIBLIOGRAPHY

Programming with PL/SQL for Beginners, H. Dand, R. Patil and T.
Sambare,X-Team.

3.12 UNIT END EXERCISE

1. Explain the concept of weak entity set

2. Write various symbols and their meaning used to draw ER diagram

3. Explain the concept of mapping cardinalities in detail

4. Write a short note on Codd’s rules

5. Write short note on UML

34

Unit II

4

RELATIONAL DATABASE MODEL

Unit Structure

4.0 Objectives

4.1 Logical view of data

4.1.1Characteristics

4.1.2 Attributes

4.1.3 Tuple/Records

4.2 Keys

4.3 Integrity rules

4.4 Relational database design

4.5 Features of good relational database design

4.6 Atomic domain and normalization(1NF,2NF,3NF, BCNF)

4.7 Let us sum it up

4.8 List of references

4.9 Bibliography

4.10 Unit end exercise

4.0 OBJECTIVES

1. Is to make students aware of different keys available in relational

table.

2. Make them aware of different forms of Normalization.

4.1 LOGICAL VIEW OF DATA

• Tables / Relations are logical structure which is a collection of 2-
dimensional tables consisting of horizontal rows and vertical columns.

• It is an abstract concept and do not represent how data is stored in
physical memory of computer system.

• Each table in database has its own unique table name by which its
contents can be referred.

4.1.1 Characteristics of Table/Relation:

• A table is perceived as 2-dimensional structure composed of rows and
columns.

35

• Each table row(tuple) represents a single entity occurrence within the
entity set.

• Each table column represents an attribute, and each column has a
distinct name.

• Each row/column intersection represents a single data value.

• All values in a column must confirm to the same data format.

• Each column has specific range of values known as attribute domain.

• The order of the rows and columns is immaterial to DBMS.

• Each table must have an attribute or a combination of attributes that
uniquely identifies each row.

4.1.2 Attributes:

• Each column in the table represents one data item stored in database
for that table.

• Such column in database is called as attribute of a table.

• Tables must have at least one column in it and no two columns can
have same name.

• The ANSI/ISO SQL standard does not specify a maximum number of
columns in a table.

4.1.3 Tuple/Record

• A single row or tuple contains all the information about a single entity.

• Each horizontal row of the table represents a single entity.

• A table can have any number of rows from zero to thousand.

• If number of rows are zero, then it is called as empty table.

4.2KEY

• The column value that uniquely identifies a single record in the table is
called as KEY of table.

• An attribute or set of attributes whose values uniquely identify each
entity in an entity set is called as key for that entity set.

• Any key consisting of single attribute is called a simple key while that
consisting of a combination of attributes is called a composite key.

• Keys are very important part of Relational database. They are used to
establish and identify relation between tables.

• They also ensure that each record within a table can be uniquely
identified by combination of one or more fields within a table.

36

4.2.1 Types of keys:

• Super Key
• Super Key is defined as a set of attributes within a table that

uniquely identifies each record within a table. Super Key is a
superset of Candidate key.

• Candidate Key
• Candidate keys are defined as the set of fields from which primary

key can be selected.
• It is an attribute or set of attributes, that can act as a primary key for

a table to uniquely identify each record in that table.

• Primary Key

• Primary key is a candidate key that is most appropriate to become
main key of the table.

• It is a key that uniquely identify each record in a table.

• For example:

• Customer table

Cust_id Order_id Sales_details

o So here, cust_id&order_id forms a composite key.

4.3 INTEGRITY RULES

• Integrity rules may sound very technical, but they are simple and
straightforward rules that each table must follow.

• These are very important in database design, when tables break any of
the integrity rules our database will contain errors when retrieving
information.

• Hence the name "integrity" which describes reliability and consistency
of values.

• There are two types of integrity rules that we will look at:

• Entity Integrity Rule

• Referential Integrity Rule

• Entity Integrity Rule:

• The entity integrity rule refers to rules the primary key must
follow.

• The primary key value cannot be null.

• The primary key value must be unique.

37

• If a table does not meet these two requirements, we say the table is
violating the entity integrity rule.

• For example, does this table violate entity integrity rule? Where?

Student

Roll_no Name

1 Ram

2 Shyam

 Pooja

3 Neha

5 Rani

5 Pankaj

• The team Student violates the entity integrity rules at two places.

• Student Pooja - missing primary key

• Student Rani & Pankaj have the same primary key

• Referential Integrity Rule:

• The referential integrity rule refers to the foreign key.

• The foreign key may be null and may have the same value but:

� The foreign key value must match a record in the table it is
referring to.

� Tables that do not follow this are violating the referential
integrity rule.

4.4 RELATIONAL DATABASE DESIGN:

• The relational database model was conceived by E.F. Codd in 1969,
then a researcher at IBM.

• The basic idea behind the relational model is that a database consists
of a sequence of relations (or tables) that can be manipulated using
non-procedural operations that return tables.

• A relational DBMS must use its relational facilities exclusively to
manage and interact with the database.

• When designing a database, we need to decide which tables to create,

what columns they will contain, as well as the relationships between

the tables.

38

4.4.1 Goals:

• Design should ensure that all database operations will be efficiently
performed, and DBMS should not perform expensive consistency
checks.

• No data redundancy should be there.

4.5 FEATURES OF GOOD RELATIONAL DATABASE

DESIGN

• The primary feature of a relational database is its primary key, which
is a unique identifier assigned to every record in a table.

• An example of a good primary key is a registration number. It makes
every record unique, facilitating the storage of data in multiple tables,
and every table in a relational database must have a primary key field.

• Another key feature of relational databases is their ability to hold data
over multiple tables.

• This feature overcomes the limitations of simple flat file databases that
can only have one table.

• The database records stored in a table are linked to records in other
tables by theprimary key.

• The primary key can join the table in a one-to-one relationship, one-to-
many relationship or many-to-many relationship.

• Relational databases enable users to delete, update, read and create
data entries in the database tables.

• This is accomplished though structured query language, or SQL,
which is based on relational algebraic principles.

• SQL also enable users to manipulate and query datain a relational
database.

• Relational tables follow various integrity rules that ensure the data
stored in them is always accessible and accurate.

• The rules coupled with SQL enable users to easily enforce transaction
and concurrency controls, thus guaranteeing data integrity.

• The relational database concept was established by Edgar F. Codd in
1970.

4.6 NORMALIZATION (1NF, 2NF, 3NF, BCNF)

4.6.1 What is Normalization?:

• Database Normalisation is a technique of organizing the data in the
database.

39

• Normalization is a systematic approach of decomposing tables to
eliminate data redundancy and undesirable characteristics like
Insertion, Update and Deletion Anomalies.

• It is a multi-step process that puts data into tabular form by removing
duplicated data from the relation tables.

• Normalization is used for mainly two purpose,

• Eliminating redundant (useless) data.

• Ensuring data dependencies make sense i.e data is logically stored.

• Problem without Normalization:

• Without Normalization, it becomes difficult to handle and update
the database, without facing data loss.

• Insertion, Updation and Deletion Anomalies are very frequent if
Database is not Normalized.

4.6.2 Normalization Rule:

• Normalization rule are divided into following normal form.

1. First Normal Form (1NF):

• As per First Normal Form, no two Rows of data must contain
repeating group of information i.e. each set of columns must have a
unique value, such that multiple columns cannot be used to fetch the
same row.

• Each table should be organized into rows, and each row should have
a primary key that distinguishes it as unique.

• The Primary key is usually a single column, but sometimes more
than one column can be combined to create a single primary key.

• For example, consider a table which is not in First normal form

Student

Roll_no Name Subject

1 Ram Biology, Maths

2 Shyam English, Science

3 Pooja Maths

4 Neha Physics

o In First Normal Form, any row must not have a column in which

more than one value is saved, like separated with commas.

o Rather than that, we must separate such data into multiple rows.

40

• Student Table following 1NF will be:

Name Age Subject

Ram 15 Biology

Ram 15 Maths

Shyam 14 English

Shyam 14 Science

Pooja 16 Maths

Neha 17 Physics

• Using the First Normal Form, data redundancy increases, as there will
be many columns with same data in multiple rows, but each row will
be unique.

2. Second Normal Form (2NF):

• As per the Second Normal Form there must not be any partial
dependency of any column on primary key.

• It means that for a table that has concatenated primary key, each
column in the table that is not part of the primary key must depend
upon the entire concatenated key for its existence.

• If any column depends only on one part of the concatenated key, then
the table fails Second normal form.

• In example of First Normal Form there are two rows for Ram, to
include multiple subjects that he has opted for. While this is
searchable, and follows First normal form, it is an inefficient use of
space.

• Also, in the above Table in First Normal Form, while the candidate
key is {Student, Subject}, Age of Student only depends on Student
column, which is incorrect as per Second Normal Form.

• To achieve second normal form, it would be helpful to split out the
subjects into an independent table and match them up using the student
names as foreign keys.

New Student table following 2NF will be:

Name Age

Ram 15

Shyam 14

Pooja 16

Neha 17

• In Student Table the candidate key will be Student column because
all other column i.e Age is dependent on it.

• New Subject Table introduced for 2NF will be:

Name Subject

Ram Biology

41

Ram Maths

Shyam English

Shyam Science

Pooja Maths

Neha Physics

• In Subject Table the candidate key will be {Student, Subject}
column. Now, both the above tables qualifies for Second Normal
Form and will never suffer from Update Anomalies.

• Although there area few complex cases in which table in Second
Normal Form suffers Update Anomalies, and to handle those
scenarios Third Normal Form is there.

3. Third Normal Form:

• Third Normal form applies that every non-prime attribute of table must
be dependent on primary key, or we can say that there should not be
the case that a non-prime attribute is determined by another non-prime
attribute.

• This transitive functional dependency should be removed from the
table and the table must be in Second Normal form. For example,
consider a table with following fields.

Student_detailTable

Stud_id Stud_name DOB Street City State Zip

• In this table Stud_id is Primary key, but street, city and state

depend upon Zip.

• The dependency between zip and other fields is called transitive
dependency. Hence to apply 3NF, we need to move the street, city
and state to new table, with Zip as primary key.

New Student_detail table:

Stud_id Stud_name DOB Zip

Address table:

Zip Street city State

The advantage of removing transitive dependency is,

• Amount of data duplication is reduced.

• Data integrity achieved.

4. Boyce and Codd Normal Form (BCNF):

• Boyce and Codd Normal Form is a higher version of the Third Normal
form.

42

• This form deals with certain type of anomoly that is not handled by
3NF.

• A 3NF table which does not have multiple overlapping candidate keys
is said to be in BCNF.

• For a table to be in BCNF, following conditions must be satisfied:

• R must be in 3rd Normal Form

• and for each functional dependency (X -> Y),X should be a super
Key.

• Consider the following relationship: R (A,B,C,D)

• And following dependencies:

A -> BCD

BC -> AD

D -> B

• Above stated relationship is already in 3NF. Keys are A & BC.

• Hence, the functional dependency, A -> BCD, A is the Super key.

• In second relation, BC -> AD, BC is also a key but in D -> B, D is not
a key.

• Hence, we can break our relationship R into two relationships R1&R2.

4.7 LET US SUM IT UP

1. Types of keys available - Primary, foreign, composite, candidate.

2. Characteristics of Good relational table.

3. Normalization with its types – 1NF, 2NF, 3Nf & BCNF

4.8 LIST OF REFERENCES

1. A Silberschatz, H Korth, S Sudarshan, “Database System and
Concepts”, fifth EditionMcGraw- Hill

4.9 BIBLIOGRAPHY

1. Database Systems,Rob Coronel,Cengage Learning.

2. Programming with PL/SQL for Beginners,H.Dand, R. Patil and T.
Sambare,XTeam.

43

5

RELATIONAL ALGEBRA

Unit Structure

5.0 Objectives

5.1 Relational Algebra

5.1.1 Introduction

5.1.2 Selection

5.1.3 Projection

5.2 Set Operations

5.3 Renaming & Joins

5.4 Division Syntax & semantics

5.5 Operators

5.6 Let us sum it up

5.7 List of references

5.8 Bibliography

5.9 Unit end exercise

5.0 OBJECTIVES

1. Is to make students aware of relational algebra.

2. Develop the foundation for modelling data using algebraic structures.

5.1 RELATIONAL ALGEBRA

• The relational algebra defines a set of operations on relations,
paralleling the usual algebraic operations such as addition, subtraction,
or multiplication, which operate on numbers.

• Just as algebraic operations on numbers take one or more numbers as
input and return a number as output, the relational algebra operations
typically take one or two relations as input and return a relation as
output.

5.1.1 Introduction:

• The relational algebra is a procedural query language. It consists of a
set of operations that take one or two relations as input and produce a
new relation as their result.

• The fundamental operations in the relational algebra are select, project,
union, set difference, Cartesian product, and rename.

44

• In addition to the fundamental operations, there are several other
operations namely, set intersection, natural join, division, and
assignment.

• The Tuple Relational Calculus:

• When we write a relational-algebra expression, we provide a
sequence of procedures that generates the answer to our query.

• The tuple relational calculus, by contrast, is a non-procedural
query language.

• It describes the desired information without giving a specific
procedure for obtaining that information.

• A query in the tuple relational calculus is expressed as{ t | P(t) }.

• That is, it is the set of all tuples t such that predicate P is true or t.
following our earlier notation, we use t[A] to denote the value of
tuple ton attribute A, and we use t € r to denote that tuple t is

inrelation r.

5.1.2 The Selection Operation:

• The select operation selects tuples that satisfy a given predicate. We

use the lowercase Greek lettersigma (σσσσ) to denote selection.

• The predicate appears as a subscript to σσσσ.

• The argument relation is inparentheses after the σ.

• Thus, to select those tuples of the loan relation where the branch is
“Perryridge”, we write

• The relation that results from the preceding query is as shown in figure
1.

• We can find all tuples in which the amount lent is more than ₹1200 by
writing,

• In general, it allows comparisons using =, ≠, ≤, <, ≥, >in the selection

predicate.

• Furthermore, we can combine several predicates into a larger predicate

by using the connectives and (ᴧ), or (ᴠ), and not (−).

• Thus, to find those tuples pertaining to loans of more than $1200 made
by the Perry ridge branch, we write

45

Loan-

number

Branch-name Amount

L-15 Perryridge 1500

L-16 Perryridge 1300

• Output of above query.

• The selection predicate may include comparisons between two
attributes.

• To illustrate, consider the relation loan-officer that consists of three
attributes: customer-name, banker-name, and loan-number, which
specifies that a particular banker is the loan officer for a loan that
belongs to some customer.

• To find all customers who have the same name as their loan officer,
we can write

5.1.3 The Projection Operation:

• Suppose we want to list all loan numbers and the amount of the loans,
but do not care about the branch name.

• The project operation allows us to produce this relation. The project
operation is aunary operation that returns its argument relation, with
certain attributes left out.

• Since a relation is a set, any duplicate rows are eliminated. Projection

is denoted by the uppercase Greek letter Pi (Π).

• We list those attributes that we wish to appear in the result as a

subscript to Π. The argument relation follows in parentheses.

• Thus, we write the query to list all loan numbers and the amount of the
loan as

• Following table shows the relation that results from this query.

Loan-number Amount

L-11 900

L-14 1500

46

L-15 1500

L-16 1300

L-17 1000

L-23 2000

L-93 500

5.2 SET OPERATIONS

• The SQL operations union, intersect, and except operate on relations

and correspond to the relational algebra operations ∪∪∪∪, ∩∩∩∩ and −−−−.

• Like union, intersection, and set difference in relational algebra, the
relations participating in the operations must be compatible; that is,
they must have the same set of attributes.

• Let us demonstrate how several of the example queries that we
considered in Chapter 3 can be written in SQL.

• We shall now construct queries involving the union, intersect, and
except operations of two sets: the set of all customers who have an
account at the bank, which can be derived by,

Select customer-name

From depositor

and the set of customers who have a loan at the bank, which can be
derived by,

Select customer-name
From browser

1) The Union Operation:

• To find all customers having a loan, an account, or both at the bank,
we write,

(select customer-name

from depositor)
UNION

(select customer-name
from borrower)

• The union operation automatically eliminates duplicates, unlike the
select clause.

• Thus, in the preceding query, if a customer - say, Joneshas several
accounts or loans (or both) at the bank, then Jones will appear only
once in the result.

47

• If we want to retain all duplicates, we must write union all in place of
union:

(select customer-name
from depositor)
UNION ALL

(select customer-name
from borrower)

• The number of duplicate tuples in the result is equal to the total
number of duplicates that appear in both.

• Thus, if Jones has three accounts and two loans at the bank, then there
will be five tuples with the name Jones in the result.

2) The intersect Operation:

• To find all customers who have both a loan and an account at the bank,
we write,

(select distinct customer-name

 from depositor)

intersect

(select distinct customer-name

 from borrower)

• The intersect operation automatically eliminates duplicates. Thus, in
the preceding query, if a customer-say, Jones-has several accounts and
loans at the bank, then Jones will appear only once in the result.

• If we want to retain all duplicates, we must write intersect all in place
of intersect:

 (select customer-name

 from depositor)

intersect all

(select customer-name

 from borrower)

• The number of duplicate tuples that appear in the result is equal to the
minimum number of duplicates in both d and b. Thus, if Jones has
three accounts and two loans at the bank, then there will be two tuples
with the name Jones in the result.

3) The Except Operation:

• To find all customers who have an account but no loan at the bank, we
write,

(select distinct customer-name

 from depositor)

except

48

(select customer-name

 from borrower)

• The except operation automatically eliminates duplicates. Thus, in the
preceding query, a tuple with customer name Jones will appear
(exactly once) in the result only if Jones has an account at the bank but
has no loan at the bank.

• If we want to retain all duplicates, we must write except all in place of
except:

(select customer-name

 from depositor)

except all

(select customer-name

 from borrower)

• The number of duplicate copies of a tuple in the result is equal to the
number of duplicate copies of the tuple in d minus the number of
duplicate copies of the tuple in b, provided that the difference is
positive.

• Thus, if Jones has three accounts and one loan at the bank, then there
will be two tuples with the name Jones in the result. If, instead, this
customer has two accounts and three loans at the bank, there will be no
tuple with the name Jones in the result.

5.3 RENAMING & JOINS

• Unlike relations in the database, the results of relational-algebra
expressions do not have a name that we can use to refer to them.

• It is useful to be able to give them names; the rename operator,
denoted by the lowercase Greek letter rho (p), lets us do this, Given a
relational algebra expression E the expression,

returns the result of expression E under the name x.

• A relation r by itself is considered a (trivial) relational algebra
expression. Thus, we can also apply the rename operation to a relation
r to get the same relation under a new name.

• A second form of the rename operation is as follows. Assume that a
relational-algebra expression Ehas arity n.

• Then, the expression, px(A1, A2, ….., An) (E) returns the result of
expression E under the namex' and with the attributes renamed to A1,
A2,….An.

49

• To illustrate renaming a relation, we consider the query “Find the
largest account balance in the bank.”

• Strategy is to,

(1) compute first a temporary relation consisting of those balances that
are not the largest and

(2) take the set difference between the relation ΠΠΠΠbalance (account) and
the temporary relation just computed, to obtain the result.

Step 1: To compute the temporary relation, we need to compare the values
of all account balances. We do this comparison by computing the

Cartesian product account ×account and forming a selection to compare
the value of any two balances appearing in one tuple.

• First, we need to devise a mechanism to distinguish between the
two balance attributes.

• We shall use the rename operation to rename one reference to the
account relation; thus we can reference the relation twice without
ambiguity.

Balance

500

400

700

750

350

• Result of the sub-expression would be,

Balance

900

• Largest account balance in the bank.

• We can now write the temporary relation that consists of the balances
that are not the largest:

• This expression gives those balances in the account relation for which
a larger balance appears some where in the account relation (renamed
as d).

• The result contains all balances except the larges one.

50

• Step 2: The query to find the largest account balance in the bank can
be written as:

• As one more example of the rename operation, consider the query
“Find the names of all customers who live on the same street and in
the same city as Smith.”

• We can obtain Smith’s street and city by writing,

• However, to find other customers with this street and city, we must
reference the customer relation a second time.

• In the following query, we use the rename operation on the preceding
expression to give its result the name smith-addr, and to rename its
attributes to street and city, instead of customer, street and customer-
city:

• The rename operation is not strictly required, since it is possible to use
a positional notation for attributes.

• We can name attributes of a relation implicitly by using a positional
notation, where $1,$2, … refer to the first attribute, the second
attribute, and so on.

• The positional notation also applies to results of relational algebra
operations.

• The result of above query looks like this,

51

5.4 DIVISION SYNTAX & SEMANTICS

• The division operation, denoted by �, is suited to queries that include
the phrase “for all”.

• Suppose that we wish to find all customers who have an account at all
the branches located in Brooklyn. We can obtain all branches in
Brooklyn by the expression,

• The result relation for this expression is shown below,

• We can find all (customer-name, branch-name) pairs for which the
customer has an account at abranch by writing,

• Now, we need to find customers who appear in r2 with every branch
name in r1. The operation that

• provides exactly those customers is the divide operation. We formulate
the query by writing,

• The result of this expression is a relation that has the schema

(customer-name) and that contains the tuple (Johnson).

• Formally, let r(R) and s(S) be relations, and let S ⊆ R; that is, every
attribute of schema S is also in schema R.

• The relation r÷s is a relation on schema R −S (that is, on the schema
containing all attributes of schema R that are not is schema S). A tuple

t is in r ÷ s if and only if both of two conditions hold:

1. t is in ΠR−S(r)

2. For every tuple ts in s, there is a tuple tr in r satisfying both of the
following:

(a) ts [S] = ts[S]

(b) tr [R−S] = t

52

• It may surprise you to discover that, given a division operation and the
schemas of the relations, we can, in fact, define the division operation
in terms of the fundamental operations. Let r(R) and s(S)be given, with

S ⊆ R:

Result of Πcustomer-name, branch-name (depositor ∞account).

• To see that this expression is true, we observe that ΠR−S (r) gives us
all tuples t that satisfy the first condition of the definition of the
definition of division.

• The expression on the right side of the set difference operator,

• serves to eliminate those tuples that fail to satisfy the second condition

of the definition of division.

• Let us see how it does so. Consider ΠR−S (r) × s. This relation is on

schema R, and pairs every tuple in ΠR−S, (r) with every tuple in s.

• The expression ΠR−S, S(r) merely reorders the attributes of r.

• Thus, (ΠR−S (r) × s) −ΠR−S, S(r) gives us those pairs of tuples from

ΠR−S (r) and s that do not appear in r.

• If tuple tj is in,

• Then there is some tuple ts in s that does not combine with tuple tj to
form a tuple in r.

• Thus, tj holds a value for attributes R−S that does not appear in r ÷ s.

• It is these values that we eliminate fromΠR−S (r).

53

5.5 OPERATORS

Ref. Database System Concepts by Korth

5.6 LET US SUM IT UP

1. There are majorly used 2 operations – selection & projection.

2. Using relational algebra we can perform basic set operations such as
union, intersection & set difference.

3. Whereas we can also perform Division operation, rename etc.

5.7 LIST OF REFERENCES

1. A Silberschatz, H Korth, S Sudarshan, “Database System and
Concepts”, fifth EditionMcGraw- Hill

5.8 BIBLIOGRAPHY

1. Database Systems,Rob Coronel,Cengage Learning.

2. Programming with PL/SQL for Beginners,H.Dand, R. Patil and T.
Sambare,XTeam.

3. Introduction to Database System,C.J.Date,Pearson.

5.9 UNIT END EXERCISE

1. Explain the concept of Relational Algebra.

2. Define Joins and its types.

3. Explain set operators with example.

4. Explain Selection and projection operation in relational algebra.

54

6
CALCULUS

Unit Structure

6.0 Objectives

6.1 Tuple relational calculus,

6.2 Domain relational calculus,

6.3 Calculus vs algebra,

6.4 Let us sum it up

6.5 List of references

6.6 Bibliography

6.7 Unit end exercise

6.0 OBJECTIVES

1. Is to make students aware of the difference between relational algebra

& Calculus.

2. Develop the foundation for modelling data using algebraic structures.

6.1 TUPLE RELATIONAL CALCULUS

• When we write a relational-algebra expression, we provide a sequence
of procedures that generates the answer to our query.

• The tuple relational calculus, by contrast, is a non-procedural query
language.

• It describes the desired information without giving a specific
procedure for obtaining that information.

• A query in the tuple relational calculus is expressed as,

{ t | P(t) }

• That is, it is the set of all tuples t such that predicate P is true or t.
following our earlier notation, we use t[A] to denote the value of tuple

ton attribute A, and we use t ∈ r to denote that tuple t is in relation r.

• Before we give a formal definition of the tuple relational calculus, we
return to some of the queries for which we wrote relational algebra.

• Example Queries

o Say that we want to find the branch-name, loan-number, and
amount for loans of over ₹1200:

{t|t∈∈∈∈loan ᴧ t[amount] > 1200}

55

• Suppose that we want only the loan-number attribute, rather than all
attributes of the loon relation.

• To write this query in the tuple relational calculus, we need to write an
expression for a relation on the schema (loan-number).

• We need those tuples on (loan-number) such that there is a tuple in
loan with the amount attribute > 1200. To express this request, we
need the construct “there exists” from mathematical logic.

• The notation,

Ǝ t ∈∈∈∈ r (Q(t))

• means "there exists a tuple t in relation r such that predicate Q{t) is
true."

• Using this notation, we can write the query "Find the loan number for
each loan of an amount greater than ₹1200" as

{t | Ǝ s ∈∈∈∈ loan (t[loan−−−−number] = s[loan−−−−number] ᴧ s[amount] >

1200)}

• In English, we read the preceding expression as "The set of all tuples t
such that there exists a tuple sin relation loan for which the values of t
and s for the loan-number attribute are equal, and the value of s for the
amount attribute is greater than ₹1200."

• Tuple variable t is defined on only the loan-number attribute, since that
is the only attribute having a condition specified for t. Thus, the result

is a relation on (loan−number).

• Consider the query “Find the names of all customers who have a loan
from the Perryridge branch”.

• This query is slightly more complex than the previous queries, since it
involves two relations:borrower and loan.

• As we shall see, however, all it requires is that we have two "there
exists" clausesin our tuple-relational-calculus expression, connected by
and (ᴧ).

• We write the query as follows:

{t | ∃∃∃∃ s ∈∈∈∈ borrower (t[customer-name] = s[customer−−−−name]

∧∧∧∧∃∃∃∃u ∈∈∈∈ loan (u[loan−−−−number] = s[loan−−−−number]

∧∧∧∧∃∃∃∃ u ∈∈∈∈ loan (u[branch−−−−name] = “Perryridge”))}

• In English, this expression is “The set of all (customer-name) tuples
for which the customer has aloan that is at the Perryridge branch”.

• Tuple variable if ensures that the customer is a borrower at the
Perryridge branch. Tuple variable s is restricted to pertain to the same
loan number as s.

• To find all customers who have a loan, an account, or both at the bank,
we used the union operation in the relational algebra. In the tuple

56

relational calculus, we shall need two “there exists” clauses, connected
by or (V):

{t | ∃∃∃∃ s ∈∈∈∈ borrower (t[customer-name] = s[customer−−−−name])

∧∧∧∧∃∃∃∃u ∈∈∈∈ depositor (t [customer−−−−name] = u[customer−−−−name])}

• This expression gives us the set of all customer-name tuples for which
at least one of the following holds:

• The customer name appears in some tuple of the borrower relation as a
borrower from the bank.

• The customer-name appears in some tuple of the depositor relation as
a depositor of the bank.

• If some customer has both a loan and an account at the bank, that
customer appears only once in the result, because the mathematical
definition of a set does not allow duplicate members.

• If we now want only those customers who have both an account and a
loan at the bank, all we need to do is to change the or (ᴠ) to and (ᴧ) in
the preceding expression.

{t | ∃∃∃∃ s ∈∈∈∈ borrower (t[customer-name] = s[customer−−−−name])

∧∧∧∧∃∃∃∃u ∈∈∈∈ depositor (t [customer−−−−name] = u[customer−−−−name])}

• Now consider the query “Find all customers who have an account at
the bank but do not have a loanfrom the bank.” The tuple-

relational−calculus expression for this query is like the expressionsthat

we have just seen, except for the use of the not (¬) symbol:

{t | ∃∃∃∃ u ∈∈∈∈ depositor (t [customer-name] = u[customer−−−−name])

∧∧∧∧¬¬¬¬∃∃∃∃ s ∈∈∈∈ borrower (t [customer−−−−name] = u[customer−−−−name])}

Customer-

name

Adams

Hayes

Fig.: Names of all customers who have a loan at the Perryridge branch

• This tuple-relational-calculus expression uses the Ǝ u ∈ depositor (...)
clause to require that the customer have an account at the bank, and it

uses the ¬Ǝ s ∈ borrow r (...) clause to eliminate those customers who
appear in some tuple of the borrower relation as having a loan from the
bank.

• The query that we shall consider next uses implication, denoted, by ⇒.

• The formula P ⇒ Q means “P implies Q”; that is, “if P is true, then
must be true.”

• Note that P ⇒ Q is logically equivalent to ¬P ᴠ Q. The use of
implication rather than not and or often suggests, a more intuitive
interpretation of a query in English.

57

• “Find all customers who have an account at all branches located in
Brooklyn.” To write this query in the tuple relational calculus, we
introduce the “for all” construct, denoted by �.

• The notation,

∀∀∀∀ t ∈∈∈∈ r (Q(t))

means “Q is true for all tuples t in relation r.”

• We write the expression for our query as follows:

{t | ∃∃∃∃ r ∈∈∈∈ customer (r [customer−−−−name] = t [customer−−−−name])∧∧∧∧

(∀∀∀∀ u ∈∈∈∈ branch (u [branch−−−−city] = ”Brooklyn” ⇒⇒⇒⇒

∃∃∃∃ s ∈∈∈∈ depositor (t[customer−−−−name] = s[customer−−−−name]

∧∧∧∧∃∃∃∃ w ∈∈∈∈ account (w[account−−−−number] = s[account−−−−number]

∧∧∧∧ w [branch−−−−name] = u[branch−−−−name]))))}

• In English, we interpret this expression as “The set of all customers
(that is, (customer-name) tuples t) such that, for all tuples u in the
branch relation, if the value of u on attribute branch-City is Brooklyn,
then the customer has an account at the branch whose name appears in

the branch−name attribute of u.”

• Note that there is a subtlety in the above query: If there is no branch in
Brooklyn, all customer names satisfy the condition.

• The first line of the query expression is critical in this case−without the
condition.

∃∃∃∃ r ∈∈∈∈ customer (r[customer−−−−name] = t [customer−−−−name])

• If there is no branch in Brooklyn, any value of t (including values that
are not customer names in the depositor relation) would qualify.

• Formal Definition:

• We are now ready for a formal definition. A

tuple−relational−calculus expression is of the form {t | P (t)}
Where P is a formula.

• Several tuple variables may appear in a formula. A tuple variable is

said to be a free variable unless it is quantified by a ∃ or ∀. thus, in

 t ∈∈∈∈ loan ∧∧∧∧∃∃∃∃ s∈∈∈∈ customer (t[branch−−−−name]

 = s [branch−−−−name])

• T is a free variable. tuple variable s is said to be a bound variable.

• A tuple-relational-calculus formula is built up out of atoms. An atom
has one of the following forms:

• s ∈ r, where s is a tuple variable and r is a relation (we do not

allow use of the ∉ operator)

• s[x] Θ u[y], where s and u are tuple variables, x is an attribute on

which s is defined, y is an attribute on which u is defined, and Θ is

58

a comparison operator (<, ≤, >, ≥, =, ≠); we require thatattributes x

and y have domains whose members can be compared by Θ.

• s[x] Θ c, where s is a tuple variable, x is an attribute on which s is

defined, Θ is a comparison operator, and c is a constant in the
domain of attribute x We build up formulae from atoms by using
the following rules:

� An atom is a formula.

� If P1 is a formula, then so are ¬P1 and (P1).

� If P1 and P2 are formulae, then so are P1 ∨ P2, P1 ∧ P2, and

P1 ⇒ P2.

� If P1(s) is a formula containing a free tuple variable s, and r is

a relation, then ∃ s ∈ r (P1 (s)) and ∀ s ∈ r (P1 (s)) are also
formulae.

• As we could for the relational algebra, we can write equivalent
expressions that are not identical in appearance. In the tuple relational
calculus, these equivalences include the following three rules:

i) P1 ∧ P2 is equivalent to ¬(¬(P1)∨¬(P2)).

ii) ∀t∈r(P1(t)) is equivalent to ¬∃∈ r (¬P1(t)).

iii) P1 ⇒ P2 is equivalent to ¬ (P1) ∨ P2.

6.2 DOMAIN RELATIONAL CALCULUS

• A second form of relational calculus, called domain relational
calculus, uses domain variables that take on values from an attribute
domain, rather than values for an entire tuple.

• The domain relational calculus, however, is closely related to the tuple
relational calculus.

• Domain relational calculus serves as the theoretical basis of the widely
used QBE language, just as relational algebra serves as the basis for
the SQL language.

• Formal Definition An expression in the domain relational calculus is
of the form { | P (x1, x2, ….., xn)} where x1, x2, …., xn represent
domain variables.

• P represents a formula composed of atoms, as was the case in the tuple
relational calculus.

• An atom in the domain relational calculus has one of the following
forms:

• < x1 x2,……., xn>∈ r, where r is a relation on n attributes and x1
x2,…, xn are domain variables or domain constants.

• x Θ y, where x and y are domain variables and Θ is a comparison

operator (<, ≤, =, ≠, >, ≥).

59

• We require that attributes x and y have domains that can be compared

by Θ.

• x Θ c, where x is a domain variable, Θ is a comparison operator, and c
is a constant in the domain of the attribute for which x is a domain
variable.

• We build up formulae from atoms by using the following rules:

• An atom is a formula.

• If P1 is a formulae, then so are ¬P1 and (P1).

• If P1 and P2 are formulae, then so are P1 ∨ P2, P1 ∧ P2, and P1

⇒P2.

• If P1 (x) is a formula in x, where x is a domain variable, then ∃x

(P1 (x)) and ∀ x (P1(x)) are also formulae.

• As a notational shorthand, we write ∃ a, b, c (P(a, b, c)) for ∃ a (∃b

(∃c (P (a, b, c))))

• Example Queries

• We now give domain-relational-calculus queries for the examples
that we considered earlier.

• Notethe similarity of these expressions and the corresponding
tuple-relational-calculus expressions.

• Find the loan number, branch name, and amount for loans of over
₹1200:

 {<l, b, a> | <l, b, a>∈∈∈∈ loan ᴧ a > 1200}

• Find all loan numbers for loans with an amount greater than ₹1200:

 {< l > | Ǝ b, a (< l, b, a >∈∈∈∈ loan ᴧ a > 1200)}

• Although the second query appears similar to the one that we wrote for
the tuple relational calculus, there is an important difference.

• In the tuple calculus, when we write Ǝ s for some tuple variables, we

bind it immediately to a relation by writing Ǝ s ∈ r.

• However, when we write Ǝ b in the domain calculus, b refers not to a
tuple, but rather to a domain value.

• Thus, the domain of variable b is unconstrained until the sub-formula

<l, b, a>∈ loan constrains b to branch names that appear in the loan
relation.

• For example,

• Find the names of all customers who have a loan from the
Perryridge branch and find the loan amount

 {<<<<c, a>>>> | ∃∃∃∃ l (<<<< c, l >>>>∈∈∈∈ borrower

 ∧∧∧∧∃∃∃∃ b (<<<<l, b, a>>>>∈∈∈∈ loan ∧∧∧∧ b = “Perryridge”))}

• Find the names of all customers who have a loan, an account, or
both at the Perryridge branch:

60

 {<<<<c>>>> | ∃∃∃∃ l (<<<<c, l>>>>∈∈∈∈ borrower

 ∧∧∧∧∃∃∃∃ b, a (<<<<l, b, a>>>>∈∈∈∈ loan ∧∧∧∧ b = “Perryridge”))

 ∨∨∨∨∃∃∃∃ a (<<<<c, a>>>>∈∈∈∈ depositor

 ∧∧∧∧∃∃∃∃ b, n (<<<<a, b, n>>>>∈∈∈∈ account ∧∧∧∧ b = “Perryridge”))}

• Find the names of all customers who have an account at all the
branches located in Brooklyn:

 {<<<<c>>>> | ∃∃∃∃ n (<<<<c, n>>>>∈∈∈∈ customer) ∧∧∧∧

 ∀∀∀∀ x, y, z (<<<<x, y, z>>>>∈∈∈∈ branch ∧∧∧∧ y = “Brooklyn” ⇒⇒⇒⇒

 ∃∃∃∃ a, b (<<<< a, x, b>>>>∈∈∈∈ account ∧∧∧∧<<<<c, a>>>>∈∈∈∈depositor))}

• In English, we interpret this expression as "The set of all {customer-name)
tuples c such that, for all(branch-name, branch-city, assets) tuples, x, y, z,
if the branch city is Brooklyn, then the following is true":

• There exists a tuple in the relation account with account number a

and branch name x.

• There exists a tuple in the relation depositor with customer c and
account numbers. a"

6.3 CALCULUS VS ALGEBRA

Calculus Relational Algebra

While Relational Calculus is
Declarative language.

It is a Procedural language.

While Relational Calculus means
what result we must obtain.

Relational Algebra means how to
obtain the result.

While in Relational Calculus, the
order is not specified.

In Relational Algebra, the order is
specified in which the operations
have to be performed.

While Relation Calculus can be a
domain dependent.

Relational Algebra is independent
on domain

While Relational Calculus is not
nearer to programming language.

Relational Algebra is nearer to a
programming language.

It is denoted as below,
{t | P(t)} where,
t: the set of tuples
p: is the condition which is true
for the given set of tuples.

Basic operations used are,
1. Select (σ)
2. Project (Π)
3. Union (U)
4. Set Difference (-)
5. Cartesian product (X)
6. Rename (ρ)

Ref: Geeksforgeeks

6.4 LET US SUM IT UP

1. There are majorly used 2 operations – selection & projection.

61

2. Using relational algebra, we can perform basic set operations such as
union, intersection & set difference.

3. Whereas we can also perform Division operation, rename etc.

4. Comes in two flavours: Tuple relational calculus (TRC) and

5. Domain relational calculus (DRC)

a. TRC: Variables range over (i.e., get bound to) tuples.

b. DRC: Variables range over domain elements (= attributevalues)

6. Both TRC and DRC are subsets of first-order logic

6.5 LIST OF REFERENCES

1. A Silberschatz, H Korth, S Sudarshan, “Database System and

Concepts”, fifth EditionMcGraw- Hill

2. https://www.ccs.neu.edu/home/kathleen/classes/cs3200/4-
RAAndRC.pdf

6.6 BIBLIOGRAPHY

1. Database Systems,Rob Coronel,Cengage Learning.

2. Programming with PL/SQL for Beginners,H.Dand, R. Patil and T.
Sambare,XTeam.

3. Introduction to Database System,C.J.Date,Pearson.

6.7 UNIT END EXERCISE

1) Explain the concept of Relational Calculus.

2) Define Domain Relational Calculus with example.

3) Define Tuple Relational Calculus with example.

4) Differentiate between Calculus & relational algebra.

62

UNIT III

7

CONSTRAINT
Unit Structure

7.0 Objective

7.1 Introduction

7.2 Domain Constraints

7.3 Referential Integrity

7.4 Data Constraints

7.4.1 NULL Value Concept

7.4.2 Primary Key Concept

7.4.3 Unique Key Concept

7.4.4 Default Value Concept

7.4.5 Foreign Key Concept

7.4.6 Check Integrity Constraint

7.5 Assertions

7.6 Trigger

7.6.1 Need for Triggers

7.6.2 Triggers in SQL

7.6.3 When Not to use Triggers

7.7 Security And Authorization In SQL

7.7.1 Security

7.7.2 Authorization

7.7.3 Authorization in SQL

7.8 Important Questions and Answers

7.9 Summary

7.10 Questions

7.11 References

7.0 OBJECTIVES

• To understand Integrity, Domain constraint and Referential Integrity.

• To understand and apply primary key, unique key, Default, Foreign,
Null and Check Integrity constraint.

• To understand and apply Assertions Triggers in SQL.

• To Understand and apply Security and Authorization in SQL.

63

7.1 INTRODUCTION

Integrity constraints guard against accidental damage to the

database, by ensuring that authorized changes to the database do not result
in a loss of data consistency.

Example of integrity constrains are:

• An account balance cannot be null.

• No two students can have same roll no.

In general, an integrity constraint can be any arbitrary predicate
pertaining to the database. However, arbitrary predicate can be costly to
test. Hence, the most database systems allow one to specify integrity
constraint that can be tested with minimal overhead.

7.2 DOMAIN CONSTRAINTS

• Domain constraints are the most elementary form of integrity
constraint.

• They test values inserted in the database, and test queries to ensure that
the comparisons make sense.

• New domain can be created from existing data types.

Example:

Create domain Dollars numeric (12, 2)

Create domain pounds numeric (12, 2)

• We cannot assign or compare a value of type Dollars to a value of
type Pounds.

However, we can convert type as below:

 (Cast r. A as Pounds)

• (Should also multiply by the dollar-to-pound conversion-rate)

Different types of constraints are:

7.3 REFERENTIAL INTEGRITY

A value that appears in one relation for given set of attributes also

appears for a certain set of attributes in another relation. This called
referential integrity.

Referential integrity in the E-R model:

64

Referential integrity constraints arise frequently. If we derive our
relational database scheme by constructing tables from E-R diagrams then
every relation arising from a relationship set has referential integrity
constraints.

Figure : 7.3.1 An n-ary relationship set

 As shown in Fig. 7.3.1, an n-ary relationship set R, relating

entity sets E1, E2, ……En.

Let Ki denote the primary key of Ei. The attributes of the relation
scheme for relationship set R include K1 ᴗK2 ᴗ …..ᴗ Kn. Each Ki in the
scheme for R is a foreign key that leads to a referential integrity constraint.

Another source of referential integrity constraints are weak entity
sets. The relation scheme for a weak entity set entity set must include the
primary key of the entity set on which it depends. Thus, the relation
scheme for each weak entity set includes a foreign key that leads to a
referential integrity constraint.

• Referential integrity in SQL :

Using SQL, primary key, candidate key, and foreign key are
defined as part of the create table statement as given below:

Example:

E1

 E2

 En-1

En

R

65

Create table Deposit
(Branch_name char (15),
Acc_no char(10),
Cust_name char (20) not null,
Balance integer,
Primary key (Acc_no, Cust_name),
foreign key (Branch_name) references Branch,
foreign key (Cust_name) references Customer) ;

• Cascading Actions in SQL

create table Account
foreign key (Branch-name) references Branch
on delete cascade

 on update cascade

. . .)

• Due to the on delete cascade clause, if a delete of a tuple in Branch
results in referential-integrity constraint violation, the delete_casades_
to the Account relation, deleting the tuple that refers to the branch that
was deleted.

• Cascading updates are similar.

• If there is a chain of foreign-key dependencies across multiple
relations, with on delete cascade specified for each dependency, a
deletion or update at one end of the chain can propagate across the
entire chain.

• If a cascading update to delete causes a constraint violation that caanot
be handled by a further cascading operation, the system aborts the
transaction. As a result, all the changes caused by the transaction and
its cascading actions are undone.

• Referential integrity is only checked at the end of a transaction.
Intermediate steps are allowed to violate referential integrity provided
later steps remove the violation. Otherwise it would be impossible to
create some database states.

Example:

Insert two tuples whose foreign keys point to each other:

 # Example: spouse attribute of relation
 Marriedperson (Name, Address, Spouse)

Alternative to cascading:
“ on delete set null

 “ on delete set default

66

• Null values in foreign key attributes complicate SQL referential
integrity semantics, and are best prevented using not null. If any
attribute of a foreign key is null, the constraint.

7.4 DATA CONSTRAINTS

 Besides the column name, datatype and length, there are other

parameters that can be passed to the DBA at cell creation time.

These data constraints are checked by DBA when data is assigned
to columns. If the data being loaded fails any of the data constraint checks
fired by the DBA, the DBA will not load the data into the column, reject
the entered record and will display error message to the user.

These constraints are given a constraint name and the DBA stores
the constraints with it’s name and instructions internally along with the
column itself.

The constraints can either be placed at the column level or at the table
level.

1) Column level constraints:
If the constraints are defined along with the column definition, it is

called a column level constraint. Column level constraint can be applied to
any column. If the constraint spans across multiple columns, the user has
to use table level constraint.

2) Table level constraint:

If the data constraints attached to a specific column in a table

references the contents of another column in the table then the user will
have to use table level constraints.

Examples of different constraints that can be applied on the table are

as follows:

• Null Value Concept

• Primary Key Concept

• Unique Key Concept

• Default Value Concepts

• Foreign Key Concepts

• Check Integrity Constraints

7.4.1 NULL Value Concept:

While creating tables, if a row lacks a data value for a particular
column, that value is said to be null. Columns of any data types may

67

contain null values unless the column was defined as not null when the
table was created.

Principles of NULL Values:

• Setting a null value is appropriate when the actual value is unknown,
or when a value would not be meaningful.

• A null value is not equivalent to a value of zero.

• A null value will evaluate to null in any expression. Example : null
multiplied by 10 is null.

• When a column name is defined as not null, then that column becomes
a mandatory column. It implies that that the user is forced to enter data
into that column.

7.4.2 Primary Key Concept:

 A primary key is one more column in a table used to uniquely

identify each row in the table. primary key values must not be null and
must not unique across the column.
A multicolumn primary key is called a composite primary key.

Examples:

1) Column level primary key constraint

SQL > CREATE TABLE student
 (roll_no numbers (5) PRIMARY KEY,
 name varchar(25) NOT NULL,
 address varchar(25) NOT NULL,
 ph_no varchar (15);

Table created.

2) Table level primary key constraint.

SQL > CREATE TABLE student1
 (roll_no number(5),
 name varchar(25) NOT NULL,
 address varchar(25) NOT NULL,
 ph_no varchar(15),
 PRIMARY KEY(roll_no));

Table created.

7.4.3 Unique Key Concept:

Unique key is used to ensure that the information in the column for

each record is unique, as with license number. A table may have many
unique keys.

Example:

68

CREATE TABLE special_customer
(customer_code number(5) PRIMARY KEY,
customer_name varchar(25) NOT NULL,
customer_address varcher (30) NOT NULL,
license_no varchar (15) constraint uk_license_no_UNIQUE);

7.4.4 Default Value Concept:

At the time of column creation a ‘default value’ can be assigned to

it. When the user is loading a record with values and leaves this column
empty, the DBA will automatically load this column with the default value
specified. The data type of the default value should match the data type of
the column. You can use the default clause to specify any default value
you want.

Example

SQL > CREATE TABLE employee
 (emp_code number(5),
 emp_name varchar(25) NOT NULL,
 ph_no varchar(15),
 married char(1) DEFAULT ‘M’ ,
 PRIMARY KEY (emp_coder));

Table created.

7.4.5 Foreign Key Concept:

Foreign key represents relationship between tables. The existence

of a foreign key implies that the table with the foreign key is related to the
primary key table table from which the foreign key is derived.

The foreign key/ references constraint

• Rejects an INSERT or UPDATE of a value, if a corresponding value
does not currently exist in the primary key table.

• Rejects a DELETE, if it would invalidate a REFERENCES constraint.

• Must refer a PRIMARY KEY or UNIQUE column in primary key
table.

• Will refer the PRIMARY KEY of primary key table if no column or
group of columns is specified in the constraint.

• Must refer a table, not a view or cluster.

• Requires that the FOREIGN KEY column(s) and the CONSTRAINT
column (s) have matching data types.

Example

69

SQL > CREATE TABLE book

(ISBN varchar(25) PRIMARY KEY,

 title varchar(25) , pub_year varchar(4),

 unit_price number(4),

 author_name varchar(25) references author,

 publisher_name varchar(25) references publisher);

Table created.

7.4.6 Check Integrity Constraint:

The CHECK constraint defines a condition that every row must

satisfy. There can be more than one CHECK constraint on a column and
the CHECK constraint can be defined at column as well as table level.

At the column level , the constraint is defined by,

DeptID Number (2) CONSTRAINT ck-deptID

CHECK ((DeptID >= 10) and (DeptID <= 99));

And at the table level by

CONSTINT ck-deptId
CHECK (DeptID > = 10) and (DeptID < = 99));

Following are few examples of appropriate CHECK constraints.

• Add CHECK constraint on the Emp_Code column of the Employee so
that every Emp_Code should start with ‘E’.

• Add CHECK constraint on the City column of the Employee so that
only the cities ‘Mumbai’, ‘Pune’, ‘Nashik’, ‘Solapur’ are allowed.

Example

SQL > CREATE TABLE employee
 (emp_code number(5) CONSTRAINT ck_epcode CHECK
(emp_code like ‘E%),
 emp_name varchar(25) NOT NULL,
 city varchar (30) CONSTRAINT ck_city
 CHECK (city IN (‘Mumbai’, ‘Pune’, ‘Nashik’, ‘Solapur’)),
 salary numbers(5),
PRIMARY KEY (emp_code));

Table created.

Restrictions on CHECK constraints:

70

• The condition must be a Boolean expression that can evaluated using
the values in the row being inserted or updated.

• The condition cannot contain subqueries or sequences.

• The condition cannot include the SYS DATE, UID, USER OR USER
ENV SQL functions.

Defining integrity constraints in the ALTER TABLE command:
You can also define integrity constraints using constraint clause in the
ALTER TABLE command.

Consider following existing tables:

1) Student with definition:

SQL > CREATE TABLE student
 (roll_no number(3),
 name varchar(25);

2) Test with definition:

SQL > CREATE TABLE test
 (roll_no number(3),
 Subject_ID number(2),
 Marks number(2));

 3) Subject_info with definition:

SQL > CREATE TABLE subject_info
(subject_ID number(2) PRIMARY KEY,
 subject_name varchar(15));

The following examples show the definitions of several integrity
constraints.

1) ADD PRIMARY KEY constraints on column roll_no in student table.

SQL > ALTER TABLE student
 ADD PRIMARY KEY(roll_no)

Table altered.

2) Modify column marks to include NOT NULL constraint.

SQL > ALTER TABLE test
 MODIFY (marks number(3) NOT NULL);

Dropping integrity constraints in the ALTER TABLE command:

71

You can drop an integrity constraint if the rule that it enforces is no
longer true or if the constraint is no longer needed. Drop the constraint
using the ALTER TABLE command with the DROP clause.

The following examples illustrate the dropping of the integrity constraints.
1) Drop following primary key of student table.

SQL > ALTER TABLE student
 DROP PRIMARY KEY;

Table altered.

2) Drop unique key constraint on column license-no in table customer.

SQL > ALTER TABLE student
 DROP CONSTRAINT license_ukey;

7.5 ASSERTIONS

An assertion is a predicate expressing a condition that we wish the
database always to satisfy.

• An assertion in SQL takes the form:

Create assertion < assertion-name >check <predicate>

• When an assertion is made, the system tests it for validity, and tests
it again on every update that may violate the assertion. This testing
may introduce a significant amount of overhead; hence assertions be
used with great care.

Assertion Examples:

1) The sum of all loan amounts for each branch must be less than the sum
of all account balances at the branch.

 Create assertion sum-constraint check

 (not exists (select * from branch
where (select sum (amount) from loan
where loan. Branch-name =
 branch.branch-name)
> = (select sum (amount) from account
where loan.branch-name =
branch.branch-name)))

2) Every loan has atleast one borrower who maintains an account with a
minimum balance or $1000.00

72

 create assertion balance-constraint check

 (not exists (
select * from loan
where not exists(

select*
from borrower, depositor, account
where loan.loan-number = borrower.loan-number
and borrower.customer-name = depositor. customer-name
and depositor.account-number = account.account-number
and account.balance > = 1000)))

7.6 TRIGGER

A trigger is a statement that the system executes automatically as a

side effect of a modification to the database. To design a trigger
mechanism, we must meet two requirements:

1. Specify when a trigger is to be executed. This is broken up into event
that causes the trigger to be checked and as condition that must be
satisfied for trigger execution to proceed.

2. Specify the actions to be taken when the trigger executes.

 The above model of triggers is referred to as the event-condition-

action model for trigger.

 The database stores triggers just as if they were regular data, so

that they are persistent and are accessible to all database operations. Once
we enter a trigger into the database, the database system takes on the
responsibility of executing it whenever the specified event occurs and the
corresponding condition is satisfied.

7.6.1 Need for Triggers:

Triggers are useful mechanism for alerting humans for starting

certain tasks automatically when certain conditions are met. For example,
suppose that, instead of allowing negative account balances, the bank
deals with overdrafts by setting the account balance to zero and creating a
loan in the amount of the overdraft. The bank gives this loan a loan
number identical to the account number of the overdraft. The bank gives
this loan a loan number identical to the account number of the overdrawn
account. For this example, the condition for executing the trigger is an
update to the account relation that results in a negative balance value.
Suppose that Jones withdrawal of some money from an account made the
account balance negative. Let t denote the account tuple with a negative
balance value. The actions to be taken are:

• Insert a new tuple s in the loan relation with

s[loan_no] = t [account_not]

73

s[branch_name] = t [branch_name],
 s[amount] = - t [balance]

• Insert a new tuple u in the borrower relation with

u [customer_name] = “Jones”
 u [loan_no] = t [account_no]

• Set t [balance] to 0.

As another example of the use of triggers, suppose a warehouse
wishes to maintain a minimum inventory of each item; when the inventory
level of an item falls below the minimum level, an order should be placed
automatically. This is how the business rule can be implemented by
triggers: on an update of the inventory level of an item, the trigger should
compare the level with the minimum inventory level for the item, and if
the level is at or below the minimum, a new order is added is added to an
orders relation.

7.6.2 Triggers in SQL:

SQL based database systems use triggers widely. Example of SQL trigger
is given below:

Create trigger overdraft_trigger after update on account

new row as nrow
for each row
when nrow.balance < 0
begin atomic
insert into borrower
(select customer_name, account_no
from depositor
where nrow. account_no = depositor. account_no);
insert into loan values

(nrow.account_no, nrow.branch_name, -nrow.balance) ;
update account set balance = 0
where account. account_no = nrow.account_no;
end

This trigger definition specifies that the trigger is initiated after any

update of the relation account is executed. The referencing new as clause
creates a variable nrow, which stores the value of an update row after the
update. Then, for each row, when statement checks the value of balance
whether it is less than zero or not. If it is, then customer_name and
account_no of depositor for given account_no inserted into borrower
relation. A new tuple with values nrow.account_no, nrow.branch_name
and _nrow.balance is inserted into loan relation, and finally balance of that
account_no is set to zero in account relation.

74

7.6.3 When not to use Triggers:

Triggers should be written with great care, since a trigger error

detected at run time causes the failure of the insert/delete /update
statement that set off the trigger. The action of one trigger can set off
another trigger. In worst case, this could lead to an infinite chain of
triggering. For example, suppose an insert trigger on a relation has an
action that causes another (new) insert on the same relation.

The insert action then triggers yet another insert action, and so on.
Database system typically limits the length of such chains of triggers, and
considers longer chains of triggering an error.

7.7 SECURITY AND AUTHORIZATION IN SQL

7.7.1 Security:

Security is protection from malicious attempts mechanisms to steal

or modify the data. The security should be provided at following levels:
1. Database system level:

• Use Authentication and authorization mechanisms to allow specific
users access only to required data.

2. Operating system level:

• Operating system super-users can do anything they want to the
database. Good operating system level security is required.

3. Network level:

• Use encryption to prevent

• Eavesdropping (unauthorized reading of messages).

• Masquerading (pretending to be an authorized user or sending
messages supposedly from authorized users).

4. Physical level:

• Here, physical access to computers allows destruction of data by
intruders; traditional lock-and-key security is needed.

• Computers must also be protected from floods, fire, etc.

5. Human level:

• Users must be screened to ensure that authorized users do not give
access to intruders.

• Users should trained on password selection and secrecy.

7.7.2 Authorization:

75

We should assign a user several forms of authorizations on parts of the
database.

Different forms of authorization on parts of the database are :

• Read authorization – allows reading, but not modification of data.

• Insert authorization- allows insertion of new data, but not
modification of existing data.

• Update authorization- allows modification, but not deletion of data.

• Delete authorization- allows deletion of data.

Different forms of authorization to modify the database schema are :

• Index authorization –allows creation and deletion of indices.

• Resource authorization- allows creation of new relations.

• Alteration authorization –allows addition or deletion of attributed
in a relation.

• Drop authorization- allows deletion of relations.

Each of these types of authorizations is called a privilege. We may
authorize the use all, none, or a combination of these types of privileges
on specified parts of a database, such as a relation or a view.

Privileges in SQL:

The SQL includes the privileges select, insert, update and delete.
The select privilege authorizes a user to read data. In addition, to these
forms of privileges, SQL supports several other privileges, such as the
privilege to create, delete or modify relations, and privilege to execute the
procedures.

7.7.3 Authorization in SQL:

The SQL DDL includes commands to grant and revoke privileges.

1. Grant command:

The grant statement is used to confer authorization. The form of grant is :

Grant < privilege list > on < relation name or view name > to <
user / role list>

The privilege list allows the granting of several privileges in one
command.

Example:

The following grant statement grants database users Shyam and Om select
authorization on the Student relation:

76

Grant select on Student to Shyam, Om

2. Revoke command:

The revoke command is used to cancel the authorization. The form of
revoke statement is :

Revoke < privilege list > on <relation name or view name >
from < user / role list >

To revoke the above privileges write following statement,

Revoke select on Student from Shyam , Om

Limitation of SQL Authorization:

• SQL does not support authorization at a tuple level.

� Example: We cannot restrict students to see only (the tuples
storing) their own grades.

• With the growth in Web access to databases, database accesses come
primarily from application servers.

� End users don’t have database user ids, they are all mapped to the
same database user id.

• All end-users of an application (such as a web application) may be
mapped to a single database user.

• The task of authorization in above cases falls on the application
program, with no support from SQL :

� Benefit is: Fine-granted authorizations, such as to individual
tuples, can be implemented by the application.

� Drawback is: Authorization is required to be done in application
code. Checking for absence of authorization loopholes becomes
very difficult since it requires reading large amounts of application
code.

7.8 IMPORTANT QUESTIONS AND ANSWERS

Q1) Explain the integrity constraints: Not Null, Unique, Primary Key with
an example each. Is the combination ‘Not Null, primary Key’ a valid
combination. Justify.

Answer:

• Not Null: Should contain valid values and cannot ne NULL.

77

• Unique: An attribute or a combination of two or more attributes must
have a unique value in each row. The unique key can have NULL
values.

• Primary Key: It is same as unique key but cannot have NULL values.
A table can have at most one primary key in it.

For Example:
Consider following ‘Student’ table:

Roll_No Name City Mobile No

01 Om Patil Pune 9822398776

02 Shanti Desai Mumbai 9019198234

In ‘Student’ table:

• Roll_No is a primary key.

• Name is defined with NOT NULL, means each student must have a
name.

• Mobile_No is unique.

‘Not Null’ constraint in it but we can also add ‘Not Null’ constraint
with it. The use of

 ‘Not Null’ with ‘Primary Key’ will not have any effect. It is same as if
we are using just

 ‘Primary Key’.

Q.2 What do you mean by integrity constrains? Explain the two
constraints, check and foreign key in SQL with an example for each. Give
the syntax.

Answer :

• Integrity Constraints: An integrity constraint is a condition specified
on a database schema and restricts and restricts the data that can be
stored in an instance of the database. If a database instance satisfies all
the integrity constraints specified on the database schema, it is a legal
instance. A DBMS enforces integrity constraints, in that it permits
only legal instances to be stored in the database.

• CHECK Constraint: CHECK constraint specifies an expression that
must always be true for every row in the table. it the table. it can’t
refer to values in other rows.

Syntax:

ALTER TABLE < table_name >

ADD CONSTRAINT < constraint_name > CHECK (<

expression>);

78

• FOREIGN KEY constraint: A foreign key is combination of
columns with values based on the primary key values from another
table. A foreign key constraint, also known as referential integrity
constraint, specifies that the values of the foreign key correspond to
actual values of the primary or unique key in other table. One can refer
to a primary or unique key in the same table also.

Syntax :

ALTER TABLE < table_name >

ADD CONSTRAINT < constraint_name > FOREIGN KEY (<

column_name(s) >)

REFRENCES < base_table > (column_name >) ON {

DELETE | UPDATE}

CASCADE;

Q3) Discuss the types of integrity constraints that must be checked for

the update operations- Insert and Delete.

Answer: Insert operation can violet any of the following four
constraints:

1. Domain constraints can be violated if given attribute value does not
appear in corresponding domain.

2. Key constraint can be violated if given attribute value does not appear
in corresponding domain.

3. Entity integrity can be violated if the primary key of the new tuple t is
NULL.

4. Referential integrity can be violated if value of any foreign key in t
refers to a tuple that does not exist in referenced relation.

Delete operation can violate only referential integrity constraints , if the
tuple being deleted is referenced by the foreign keys from other tuples in
the database.

7.9 SUMMARY

A value that appears in one relation for given set of attributes also

appears for a certain set of attributes in another relation. The relation
scheme for each weak entity set includes a foreign key that leads to a
referential integrity constraint. The relation scheme for each weak entity
set includes a foreign key that leads to a referential integrity constraint.

Data constraints are checked by DBA when data is assigned to
columns. If the data being loaded fails any of the data constraint checks
fired by the DBA, the DBA will not load the data into the column, reject
the entered record and will display error message to the user.

79

If the constraints are defined along with the column definition, it is
called a column level constraint. If the data constraints attached to a
specific column in a table references the contents of another column in the
table then the user will have to use table level constraints.

If a row lacks a data value for a particular column, that value is
said to be null. Columns of any data types may contain null values unless
the column was defined as not null when the table was created.

A primary key is one more column in a table used to uniquely
identify each row in the table. primary key values must not be null and
must not unique across the column.

Unique key is used to ensure that the information in the column for
each record is unique.

At the time of column creation a ‘default value’ can be assigned to
it. When the user is loading a record with values and leaves this column
empty, the DBA will automatically load this column with the default value
specified. The data type of the default value should match the data type of
the column.

The existence of a foreign key implies that the table with the
foreign key is related to the primary key table table from which the foreign
key is derived.

The CHECK constraint defines a condition that every row must
satisfy. There can be more than one CHECK constraint on a column and
the CHECK constraint can be defined at column as well as table level.

An assertion is a predicate expressing a condition that we wish the

database always to satisfy.

A trigger is a statement that the system executes automatically as a
side effect of a modification to the database.

Security is protection from malicious attempts mechanisms to steal
or modify the data.

Use Authentication and authorization mechanisms to allow
specific users access only to required data.

Read authorization – allows reading, but not modification of
data,Insert authorization- allows insertion of new data , but not
modification of existing data, Update authorization- allows modification ,
but not deletion of data, Delete authorization- allows deletion of data.

QUESTIONS

Q1) What is integrity? Explain constraints with example.

80

Q2) Explain referential integrity constraints with example.

Q3) What is need of trigger ? Explain when not to use trigger.

Q4) What is assertion ? Explain with example.

Q5) Write short note on :

a. Assertion b. Trigger

Q6) Write short note on security mechanism in database.

Q7) What do you mean by authorization and authentication in DBMS?
Explain how it is implemented in SQL with suitable example.

Q8) Discuss different security and authorization mechanism in database.

Q9) What is meant by authorization in DBMS? What is granting of
privileges? Explain security mechanisms in database.

REFERENCES

1. Peter Rob and Carlos Coronel, ― Database Systems Design,
Implementation and

Managementǁ, Thomson Learning, 9thEdition.

2. G. K. Gupta : “Database Management Systems”, McGraw – Hill.

Text Books:

1. Korth, Slberchatz, Sudarshan, Database System Concepts, 6th Edition,
McGraw Hill

2. Elmasri and Navathe, Fundamentals of Database Systems, 6thEdition,
Pearson education

3. Raghu Ramkrishnan and Johannes Gehrke, Database Management
Systems, TMH

81

8

STRUCTURED QUERY LANGUAGE

PART-I

Unit Structure

8.0 Objective

8.1 Introduction

8.1.1 Characteristics of SQL

8.1.2 Advantages of SQL

8.2 SQL Literals

8.3 Types Of SQL Commands

8.4 SQL Operators

8.5 Data Definition Commands

8.6 Set Operations

8.6.1 The Union Operation

8.6.2 The Intersect Operation

8.6.3 The Except Operation

8.7 Important Questions And Answers

8.8 Summary
8.9 Unit End Questions

8.0 OBJECTIVE

• To understand characteristics of SQL, Literals, Operators.

• To understand and apply different types of SQL commands to real
world problems.

• To Understand Data Definition Commands and solve real world
problems.

8.1 INTRODUCTION

Structured Query Language (SQL) is the standard command set

used to communicate with the relational database management systems.
All tasks related to relational data management creating tables, querying
the database for information, modifying the data in the database, deleting
them, granting access to users and so on can be done using SQL.

82

8.1.1 Characteristics of SQL:

SQL usage by its very nature is extremely flexible. It uses a free

from syntax that gives the user the ability to structure SQL statements in a
way best suited to him. Each SQL request is parsed by the RDMS before
execution, to check for proper syntax and to optimize the request. Unlike
certain programming languages, there is no need to start SQL statements
in a particular column or be finished in a single line. The same SQL
request can be written in a variety of ways.

8.1.2 Advantages of SQL:

The various advantages of SQL are:

• SQL is a high level language that provides a greater degree of
abstraction than procedural languages.

• SQL enables the end-users and systems personnel to deal with a
number of database management systems where it is available.
Increased acceptance and availability of SQL are also in its favor.

• Applications written in SQL can be easily ported across systems. Such
porting could be required when the underlying DBMS needs to be
upgraded or changed.

• SQL specifies what is required and not how it should be done.

• The language while being simple and easy to learn can handle
complex situations.

• All SQL operations are performed at a set level. One select statement
can retrieve multiple rows, one modify statement can modify multiple
rows. This set at a time feature of the SQL makes it increasingly
powerful than the record at a time processing techniques employed in
language like COBOL.

8.2 SQL LITERALS

There are four kinds of literal values supported in SQL. They are :

• Character string

• Bit string

• Exact numeric

• Approximate numeric

1. Character string:

Character strings are written as a sequence of characters enclosed in single
quotes. The single quote character is represented within a character string
by two single quotes. Some example of character strings are:

• Computer Engg’

83

• Structured Query Language’

2. Bit string:

 A bit string is written either as a sequence of 0 s and 1s enclosed in
single quotes and preceded by the letter ‘B’ or as a sequence of
hexadecimal digits enclosed in single quotes and preceded by the letter
‘X’ some examples are given below:

• B’1011011’

• B’1’

• B’0’

• X’A 5’

• X’1’

3. Exact numeric:

These literals are written as a signed or unsigned decimal number
possibly with a decimal point. Examples of exact numeric literals are
given below:

• 9

• 90

• 90.00

• 0.9

• + 99.99

• -99.99

4. Approximate numeric:

Approximate numeric literals are written as written as exact
numeric literals followed by the letter R ‘E’, followed by a signed or
unsigned integer. Some example are:

• 5E5

• 55.5E5

• +55E-5

• 0.55E

• -5.55E-9

8.3 TYPES OF SQL COMMANDS

SQL provides set of commands for a variety of tasks including the
following:

• Querying data

• Updating, inserting and deleting data

• Creating, modifying and deleting database objects

84

• Controlling access to the database

• Providing for data integrity and consistency.

For example, using SQL statements you can create tables, modify
them, delete the tables, query the data in the tables, insert data into the
tables, modify and delete the data, decide who can see data and so on.

The SQL statement is a set of instructions to the RDMS to perform an
action. SQL statements are divided into the following categories:

• Data definition language (DDL)

• Data Manipulation Language (DML)

• Data Query Language(DQL)

• Data Control Language (DCL)

1. Data Definition Language (DDL):

• Data definition language is used to create, alter and delete database
objects.

• The commands used are create, alter and drop.

• The principal data definition statements are :

• Create table, create view, create index

• Alter table

• Drop table, drop view, drop index

2) Data Manipulation Language (DML):

Data Manipulation Language commands let users insert, modify
and delete the data in the database. SQL provides three data manipulation
statements insert, update and delete.

3) Data Query Language(DQL):

This is one of the most commonly used SQL statements. This SQL
statement enables the users to query one or more tables to get the
information they want. SQL has only one data query statement ‘select’.

4) Data Control Language (DCL):

The data control language consists of commands that control the
user access to the database objects. Various DCL commands are: Commit,
Rollback, Save point, Grant, Revoke.

8.4 SQL OPERATORS

Operators and conditions are used to perform operations such as

addition, subtraction or comparison on the data items in an SQL statement.

85

Different types of SQL operators are:

Arithmetic operators:

Arithmetic operators are used in SQL expressions to add, subtract,
multiply, divide and negate data values. The result of this expression is a
number value.

Unary operators (B)
+, - Denotes a positive or negative

expression

Binary operator (B)

* Multiplication

/ Division

+ Addition

- Subtraction

Fig.8.1 Arithmetic operators

Example:
Update Emp_Salary
Set salary=salary* 1.05;

• Comparison Operators
These are used to compare one expression with another. The comparison
operators are given below:

Operator Definition

= Equality

ǃ=, <>, -, = Inequality

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

IN Equal to any member of set

NOT IN Not equal to any member of set

Is NULL Test for nulls

Is NOT NULL Test for anything other than nulls

LIKE Returns true when the first expression
matches the pattern of the second expression

ALL Compares a value to every value in a list

ANY SOME Compares a value to each value in a list

EXISTS True if sub query returns at least one row

BETWEEN x and y >=x and <=y

Fig.8.2 Comparison operators

Examples:
1) Get the name of students who have secured first class.
→ select student_name
 from student
 where percentage > = 60 and percentage < 67;

86

2) Get the out of state students name
→ select student_name
 from student
 where state <> ‘Maharashtra’;

3) Get the names of students living in ‘Pune’
→ select student_name
 from student
 where city = ‘Pune’ ;

4) Display the names of students with no contact phone number.
→ select student_name
 from student
 where Ph_No is NULL;

5) Display the names of students who have secured second class in exam.
→ select student_name
 from student
 where percentage BETWEEN 50 AND 55;

• Logical Operators:

A logical operator is used to produce a single result from

combining the two separate conditions. Following figure shows logical
operators and their definitions.

Operator Definition

AND Returns true if both component
conditions are true; otherwise
return false.

OR Return true if either component
condition is true; otherwise
returns false.

NOT Returns true if the condition is
false; otherwise returns false.

Fig 8.3 Logical operators

Examples:
1) Display the names of students living in Pune and Bombay.
→ select student_name
 from student
 where city = ‘Pune’ or city = ‘Bombay’;

2) Display the names of students who have secured higher second class in
exam.
→ select student_name
 from student
 where percentage > = 55 and percentage < 60 ;

87

• Set Operators:

Set operators combine the results of two separate queries into a
single result. Following table shows different set operators with definition.

Operator Definition

UNION Returns all distinct rows from both queries

INTERSECT Returns common rows selected by both queries

MINUS Returns all distinct rows that are in the first
query, but not in second one.

Fig. 8.4 Set Operators

Examples:
Consider following two relations-
Permanent_Emp (Emp_Code, Name, Salary}
Temporary_emp = { Emp_Code, Name, Daily_wages}

1) Display name of all employees.
→ select Name
 from Permanent_Emp
 Union
 select Name
 from Temporay_Emp;

• Operator Precedence:

Precedence defines the order that the DBMS uses when evaluating
the different operators in the same expression. The DBMS evaluates
operators with the highest precedence first before evaluating the operators
of lower precedence. Operators of equal precedence are evaluated from
the left to right.

Fig. 8.5 shows the order of precedence.

Operator Definition

: Prefix for host variable

, Variable separator

() Surrounds subqueries

“ Surrounds a literal

“ “ Surrounds a table or column alias or literal text

() Overrides the normal operator precedence

+ , - Unary operators

* , / Multiplication and division

+ , - Addition and subtraction

|| Character concatenation

NOT Reverses the result of an expression

AND True if both conditions are true

OR True if either conditions are true

UNION Returns all data from both queries

88

INTERSECT Returns only rows that match both queries

MINUS Returns only row that do not match both queries

Fig. 8.5 Operator precedence

8.5 DATA DEFINITION COMMANDS

The standard query language for relational database is SQL

(Structured Query Language). It is standardized and accepted by ANSI
(American National Standards Institute). SQL, is a fourth-generation high-
level nonprocedural language, using a nonprocedural language query, a
user requests data from the DBMS. The SQL language uses English – like
commands such as CREATE, INSERT, DELETE, UPDATE, and DROP.
The SQL language is standardized and its syntax is same across most
DBMS packages.

� Different types of SQL commands are:

• Data retrieval retrives data from the database, for example SELECT.

• Data manipulation Language (DML) inserts new rows, changes
existing rows, and removes unwanted rows, for example INSERT,
UPDATE, and DELETE.

• Data Definition Language (DDL) creates, changes, and removes a
table structure, for example, CREATE, ALTER, DROP, RENAME,
and TRUNCTATE.

• Transaction Control manages and changes logical transactions.
Transactions are changes made to the data by DML statements
grouped together, for example, COMMIT, SAVE POINT, and
ROLLBACK.

• Data control Language (DCL) gives and removes rights to database
objects, for example GRANT, and REVOKE.

� SQL DDL
SQL DDL is used to define relational database of a system. The general
syntax of SQL sentence is:

VERB (parameter 1, parameter 2,…., parameter n);

In above syntax, parameters are separated by commas and the end
of the verb is indicated by a semicolon. The relations are created using
CREATE verb.

The different DDL commands are as follows:

• CREATE TABLE

• CREATE TABLE …AS SELECT

• ALTER TABLE …….ADD

• ALTER TABLE ……MODEIFY

• DROP TABLE

89

1) Create Table:

This command is used to create a new relation and the corresponding
syntax is:

CREATE TABLE relation _name

(field 1 data type (size), field 2 data type (size)….., fieldn data type

(size);

� Example:

The modern Book House mostly supplies books to institutions
which frequently buy books from them. Various relations used are
Customer, Sales Book Author, and Publisher. Design database scheme for
the same.

1) The customer table definition is as follows:

SQL > create table Customer

 (Cust_no varchar (4) primary key,

 Cust_ name varchar (25), Cust_add varchar(30),

 Cust_ ph varchar(15);

Table created.

2) The sales table definition is as follows:

SQL > create table Sales

 (Cust_n0 varchar (4) , ISBN varchar (15),

 Qty number (3),

 Primary key (Cust_no, ISBN);

Table created.

3) The book table definition is as follows:

SQL > create table book

 (ISBN varchar (15) primary key,

 Title varchar (25), Pub_year varchar (4),

 Unit_price number (4),

 Author_name varchar (25);

Table created.

4) The author table definition is as follows:

SQL > create table Author

 (Author_name varchar (25) primary key,

 Country varchar (15);

2) CREATE TABLE …. AS SELECT

This type of create command is used to create the structure of new
table from the structure of existing table.

90

 The generalized syntax of this form is shown in below:

CREATE TABLE relation_name 1

(field1, field2,….,fieldn)

AS SELECT field1, field2,…..fieldn

FROM relation_name2;

Example:
Create the structure for special customer from the structure of Customer
table.

The required command is shown below.

SQL > create table Special_customer

 (Cust_no, Cust_name, Cust_add)

 As select Cust_no, Cust_name, Cust_add

 From Customer;

Table created.

3) ALTER TABLE …..ADD……..

 This is used to add some extra columns into existing table. The
generalized format is given below.

ALTER TABLE relation_name
ADD (new field1 datatype (size),
New field 2 datatype (size) ,…..,
New field n datatype (size)) ;

Example:
ADD customer phone number and fax number in the customer relation.

SQL > ALTER TABLE Customer

 ADD (Cus_ph_no varchar (15),

 Cust_fax_no varchar (15);

Table created.

4) ALTER TABLE …… MODIFY:
This form is used to change the width as well as data type of

existing relations. The generalized syntax of this shown below.

ALTER TABLE relation_name

MODIFY (field1 new data type (size),

 field2 new data type (size),

 fieldn new data type (size);

Example:
Modify the data type of the publication year as numeric data type.

SQL > ALTER TABLE Book

 MODIFY (Pub-year number (4);

Table created.

91

Restrictions of the Alter Table:

Using the alter table clause you cannot perform the following tasks:

• Change the name of the table

• Change the name of the column

• Drop a column

• Decrease the size of a column if table data exists.

5) DROP TABLE:

This command is used to delete a table. The generalized syntax of
this form is given below:

DROP TABLE relation-name

Example: Write the command for deleting special-customer relation.

SQL > DROP TABLE Special_customer

Table dropped.

6) Renaming a Table:

You can rename a table provided you are the owner of the table. The
general syntax is:

RENAME old table name TO new table name;

Example:

SQL > RENAME Test To Test_info;

Table renamed.

7) Truncating a Table:

Truncating a table is removing all records from the table. The

structure of the table stays intact. The SQL language has a DELETE
statement which can be used to remove one or more (or all) rows from a
table. Truncation releases storage space occupied by the table, but deletion
does not. The syntax is :

TRUNCATE TABLE table name;

Example:

SQL > TRUNCATE TABLE Student;

8) Indexes:
 Indexes are optional structures associated with tables. We can

create indexes explicitly to speed up SQL statement execution on a table.

92

Similar to the indexes in books that help us to locate information faster, an
index provides faster access path to table data.

The index points directly to the location of the rows containing the

value. Indexes are the primary means of reducing disk I/O when properly
used. We create an index on a column or combinations of column.

Types of index:
These are two types of index:

1) Simple index: It is created on multiple columns of a table.

Example:

 Create index Item_index on order_details (Item_code);

2) Composite index: It is created on multiple columns of a table.

Example:

Create index Ordernoltem_index on Order_detail (Order_no,
Item-code);

The indexes in the above examples do not enforce uniquencess i.e.

the column included in the index can have duplicate values. To create a
unique index, the key word ‘unique’ should be included in ‘create index’
command.

Example:

Create unique index client_index on Client_master (Client_no);

When the user defines a primary key or a unique key constraint,

Oracle automatically creates unique indexes on the primary key column or
unique key.

Dropping indexes:
An index can be dropped by using the ‘drop index’ command.

Example:

Drop index client_index;

When the user drops the primary key, unique key constraint or the

table, Oracle automatically drops the indexes on the primary key column,
unique key or the table itself.

8.6 SET OPERATIONS

The SQL operations union, intersect, and except operate on

relations and correspond to the relational-algebra operations ᴗ,ᴖ, and.

Consider two tables:

i) Depositor (Customer_name,

ii) Borrower (Customer_name, Loan_no)

SQL > select * from Depositor;

Output:

Customer_name

Johan

Sita

Vishal

Ram

SQL> select * from Borrower;

Output:

Customer_name

Johan

Tonny

Rohit

Vishal

8.6.1 The Union Operation
Union clause merges the output of two or more queries into a

single set of rows and column.

Fig 8.6.1 Output of union clause

Output = Records only in query one +

two + A single set of records which is common in both queries.

Example: Find all customers having a loan, an account, or both at the
bank.

SQL> select customer_name

Records

only in

93

i) Depositor (Customer_name, Account_no)

ii) Borrower (Customer_name, Loan_no)

SQL > select * from Depositor;

Customer_name Account_no

Johan 1001

Sita 1002

Vishal 1003

Ram 1004

SQL> select * from Borrower;

Customer_name Loan_no

Johan 2001

Tonny 2003

Rohit 2004

Vishal 2002

8.6.1 The Union Operation:
Union clause merges the output of two or more queries into a

single set of rows and column.

Fig 8.6.1 Output of union clause

Output = Records only in query one + records only in query in query

two + A single set of records which is common in both queries.

Find all customers having a loan, an account, or both at the

SQL> select customer_name

Records

only in

query

one

Records

only

in query

two

Common

records in

both

queries

Union clause merges the output of two or more queries into a

records only in query in query

Find all customers having a loan, an account, or both at the

Records

in query

94

 from Borrower

 union

 select Custmer_name

 from Depositor;

Output:

Customer_name

John

Ram

Rohit

Sita

Tonny

Vishal

The union operation automatically eliminates duplicates.

If we want to retain all duplicates, we must write union all in place of
union.

SQL > select Customer_name

 from Borrower

 union all

 select Customer_name

 from Depositor;

Output:

CUSTOMER_NAME

John

Tonny

Rohit

Vishal

John

Sita

Vishal

Ram

The restrictions on using a union are as follows:

• Number of columns in all the queries should be same.

• The data type of the column in each query must be same.

• Union cannot be used in sub-queries.

• You cannot use aggregate functions in union.

8.6.2 The Intersect Operation:

The Intersect clause output only rows produced by both the queries

intersected the intersect operation returns common records from the output
of both queries.

Fig.8.6.2 Output of intersect clause

Output = A single set of records which are

Example: Find all customers who have an account and loan at the bank.

SQL > select Customer_name

 from Depositor

 intersect

 select Customer_name

 from Borrower;

Output:

Customer_name

John

Vishal

The intersect operation automatically eliminates duplicates. If we want
retain all duplicates we must use

SQL > select Customer_name

 from Depositor

 intersect all

 select Customer_name

 from Borrow;

8.6.3 The Except Operation

The Except also called as
not in second table.

Output = Records only in query one.

Fig. 8.6.3 Output of the except
95

Fig.8.6.2 Output of intersect clause

Output = A single set of records which are common in both queries.

Find all customers who have an account and loan at the bank.

SQL > select Customer_name

from Depositor

intersect

select Customer_name

from Borrower;

me

operation automatically eliminates duplicates. If we want
retain all duplicates we must use intersect all in place of intersect.

SQL > select Customer_name

from Depositor

intersect all

select Customer_name

from Borrow;

8.6.3 The Except Operation:

The Except also called as Minus outputs rows that are in first table but

Output = Records only in query one.

Fig. 8.6.3 Output of the except (Minus) clause

Records

only in

query

one

Common

records in

both

queries

Find all customers who have an account and loan at the bank.

operation automatically eliminates duplicates. If we want

outputs rows that are in first table but

96

Example: Find all customers who have an account but no loan at the
bank.

SQL > select Customer_name

 from Depositor

 minus

 select Customer_name

 from Borrower;

Output:

Customer_name

Ram

Sita

8.7 IMPORTANT QUESTIONS AND ANSWERS

Q.1 Consider the following relational schemas:

EMPLOYEE_NAME STREET, CITY)
WORKS (EMPLOYEE_NAME , COMPANYNAME, SALARY)
COMPANY (COMPANY_NAME, CITY)
Specify the table definitions in SQL.

Ans. ;
1) CREATE TABLE EMPLOYEE

(EMPLOYEE_NAME VARCHAR2(20) PRIMARY KEY,
STREET VARCHAR2(20),
CITY VARCHAR2(15);

2) CREATE TABLE COMPANY
 (COMPANY_NAMEVARCHAR2(50) PRIMARY KEY,

CITY VARCHAR2(15);

3) CREATE TABLE WORK

(EMPLOYEE_NAME VARCHAR2(20)
REFERENCES EMPLOYEE EMPLOYEE_NAME,
(COMPANY_NAMEVARCHAR2(50)
REFERENCES COMPANY COMPANY_NAME,
SALARY NUMBER(6),
CONSTRAINT WORK_PK PRIMARY KEY (EMPLOYEE_NAME,
COMPANY_NAME));

Q.2 Consider the relations defined below:

PHYSICIAN (regno, name, telno, city)

PATIENT (pname, street, city)

VISIT (pname, regno, date_of_visit, fee)

Where the regno and pname identify the physician and the patient
uniquely
Respectively. Express queries (i) to (iii) in SQL.

i) Get the name and regno of physicians who are in Mumbai.

97

ii) Find the name and city of patient(s) who visited a physician on 01
August 2012.

iii) Get the name of the physician and the total number of patients who
have visited her.

iv) What does the following SQL query answer

SELECT DISTINCT name

FROM PHYSICAN P

WHERE NOT EXISTS

(SELECT *

FROM VISIT

WHERE regno = p.regno)
Ans.:

i) Select name, regno from PHYSICIAN where city = ‘Mumbai’,

ii) Select pname, city from PATIENT, VISIT where PATIENT.pname =
VISIT .pname and date_of_visit = ’01-Aug-12’;

iii) select name, count(*) from PHSICAN, VISIT

where PHYSICIAN. Regno = VISIT.regno

group by Physician. Regno;

iv) This will give the name of physicians who have not visited any patient.

Q.3 Consider the following relations:

BRANCH (bno, street, area, city, pcode, Tel_no, Fax_no)

STAFF(Sno, Fname, Lname, address, position, salary, bno)

Express the following queries in SQL :

i) List the staff who work in the branch at ‘Main Bazar’

ii) Find staff whose salary is larger than the salary of every member of
staff at branch B1.

Ans.:

i) Select Fname, Lname

from STAFF, BRANCH

ii) Select Fname, Lname

from STAFF

where salary > (select max (salary) from Staff where bno =’B1’);

Q.4 Consider the relations given below

Borrower (id_no, name)
Book (accno, title, author borrower_idno)

a) Define the above relations as tables in SQL making real world
assumptions about the type of the fields. Define the primary keys and
the foreign keys.

98

b) For the above relations answer the following queries in SQL

i. What are the titles of the books borrowed by the borrower whose id-no
in 123.

ii. Find the numbers and names of borrowers who have borrowed books
on DBMS in ascending order in id_no.

iii. List the names of borrowers who have borrowed at least two books.

Ans.:
a)
1) Create table Book

(Accno int Primary Key,
Title char(30), author char(30),
Borrow-idno int references Borrower_id.no);

2) Create table borrower
(id-no int Primary Key,
Name char(30));

b)
i) Select title from Book

where borrower.id=123
ii) Select id_no, name

from borrower, Book
where Borrower.id_no = Book.borrower_idno
and title =’DBMS’
order by id_no asc;

iii) Select name
from Borrower, Book
where Borrower.id_no = book.Borrower_id_no
having count (*) > 2;

Q.5 Describe substring comparison in SQL. For the relation Person

(name, address), write a SQL query which retrieves the names of
people whose name begins with ‘A’ and address contains ‘Pune’.

Ans.:
i) SUBSTR is used to extract a set of charters from a string by

specifying the character starting position and end position and length
of characters to be fetched.

Example:
Substr(hello’, 2,3);
will return ‘ell.

ii) Select name
from Person
where name like ‘A%’and address ‘Pune’;

Q.6 Consider the following relations:

S(S#, SNAME, STATUS, CITY)
SP(S#, P#, QTY)
P(P#, PNAME, COLOR, WEIGHT, CITY)

99

Give an expression in SQL for each of queries below:

i) Get supplier names for supplier who supply at least one red part

ii) Get supplier names for supplier who do not supply part P2.

Ans.:
i)

SELECT SNAME FROM S

WHERE S# IN (SELECT S# FROM SP

 WHERE P# IN (SELECT P# FROM P

 WHERE COLOR = RED’));

ii) SELECT SNAME FROM S

WHERE S# NOT IN (SELECT S# FROM SP WHERE P# = ‘P2’)

8.8 SUMMARY

All tasks related to relational data management creating tables,

querying the database for information, modifying the data in the database,
deleting them, granting access to users and so on can be done using
SQL.SQL specifies what is required and not how it should be done.

There are four kinds of literal values supported in SQL. They are
Character string, Bit string, Exact numeric and Approximate numeric.
Data definition language is used to create, alter and delete database
objects.

Arithmetic operators are used in SQL expressions to add, subtract,
multiply, divide and negate data values. The result of this expression is a
number value.

A logical operator is used to produce a single result from
combining the two separate conditions. Set operators combine the results
of two separate queries into a single result. Precedence defines the order
that the DBMS uses when evaluating the different operators in the same
expression.

Data retrieval retrives data from the database, for example
SELECT.

Data Definition Language (DDL) creates, changes, and removes a
table structure, for example, CREATE, ALTER, DROP, RENAME, and
TRUNCTATE.

ALTER TABLE …..ADD……..is used to add some extra
columns into existing table. ALTER TABLE …… MODIFY is used to
change the width as well as data type of existing relations .DROP

TABLE command is used to delete a table. Truncating a table is removing

100

all records from the table. The structure of the table stays intact. We can
create indexes explicitly to speed up SQL statement execution on a table.

8.9 UNIT END QUESTIONS

1) Write short note on : SQL

2) Explain different characteristics of SQL.

3) Explain various advantages of SQL.

4) Explain basic structure of SQL.

5) Explain SQL data types.

6) Explain different SQL DDL commands.

7) Explain different types of SQL commands.

8) Explain various set operations in SQL.

Text Books:

1. Korth, Slberchatz, Sudarshan, Database System Concepts, 6th Edition,
McGraw Hill

2. Elmasri and Navathe, Fundamentals of Database Systems, 6thEdition,
Pearson education

3. Raghu Ramkrishnan and Johannes Gehrke, Database Management
Systems, TMH

References:

1. Peter Rob and Carlos Coronel, ― Database Systems Design,
Implementation and Managementǁ, Thomson Learning, 9thEdition.

2. G. K. Gupta : “Database Management Systems”, McGraw – Hill.

101

UNIT III

9
STRUCTURED QUERY LANGUAGE

 Part-II

Unit Structure

9.0 Objective

9.1 Introduction

9.2 Aggregate Functions

9.3 Null Values

9.4 Data Manipulation Commands

9.4.1 Basic Structure

9.4.1.1 The select Clause

9.4.1.2 The where Clause

9.4.1.3 The from Clause

9.4.2 Rename Operation

9.4.3 Tuple Variable

9.4.4 String Operations

9.4.5 Ordering the Display of Tuples

9.4.6 Group by

9.4.7 Having

9.5 Database Modification

9.5.1 Delete

9.5.2 Insertion

9.5.3 Updates

9.6 Data Control Commands

9.7 Important Questions And Answers

9.8 Summary

9.9 Unit End Questions

9.0 OBJECTIVE

• To apply Aggregate functions to different SQL functions.

• To apply data manipulation commands to solve the problem.

• To understand and apply data control commands.

102

9.1 INTRODUCTION

All tasks related to relational data management creating tables,

querying the database for information, modifying the data in the database,
deleting them, granting access to users and so on can be done using SQL.

9.2 AGGREGATE FUNCTIONS

Aggregate functions are functions that take a collection of values

as input and return a single value. SQL offers five built-in aggregate
functions:

• Average: avg

• Minimum : min

• Maximum : max

• Total : sum

• Count : count

1. avg:

Syntax : avg ([Distinct | All] n)
Purpose: Returns average value of n, ignoring null values.

Example:

SQL > select avg (Unit- price) “Average Price”

 From Book;

Output:

Average Price

359.8

2. min

Syntax : min ([Distinct | All] expr)

Purpose: Return minimum value of expression

Example :

SQL > select min(Unit_price) “ Minimum Price”

 From Book;

Output :

Minimum Price

250

3. max

Syntax : max ([Distinct | All] expr)

Purpose : Return maximum value of expression

103

Example:

SQL > select max(Unit_price) “ Maximum Price”

 From Book;

Output:

Maximum Price

450

4. sum

Syntax : sum ([Distinct | All] n)

Purpose : Return sum of values of n.

Example:

SQL > select sum(Unit_price) “ Total”

 From Book;

Output :

Total

1799

5. count

Syntax : count ([Distinct | All] expr)

Purpose : Returns the number of rows where expression is not null.

Example :

SQL > select count(Title) “ No. of Books”

 From Book;

Output:

No. of Books

5

9.3 NULL VALUES

SQL allows the use of null values to indicate absence of

information about the value of an attribute.

We can use the special keyword null in a predicate to test for null value.

Let no. of records of customer relation are :

SQL > select * from Cust;

Output:

Cust-no Cust_name Cust_ph_no

C101 Telco 5346772

C102 Bajaj 5429810

C103 Mahindra

104

Example: Final all customers from relation with null values for
cust_ph_no field.

SQL > select Cust_name

 from Cust

 where Cust_ph_no is null;

Output:

Cust_name

Mahindra

Not Null:
The predicate is not null tests for the absence of a null value.

Example: Find all customers from customer relation where phone is not
null.

SQL > select cust_name
from cust

where cust_ph_no is not null;

Output:

Cust_name

Telco

Bajaj

9.4 DATA MANIPULATION COMMANDS

9.4.1 Basic Structure:

The basic structure of an SQL expression consists of three clauses: Select,
from, and where.

• The select clause corresponds to projection operation of the relational
algebra. It is used to list the attributes desired in the result of query.

• The from clause corresponds to the Cartesian product operation of the
relational algebra. It lists the relations to be scanned in the evaluation
of the expression.

• The where clause corresponds to the selection predicate of the
relational algebra. It consists of a predicate involving attributes of the
relations that appear in the from clause.

A typical SQL query has the form:

Select A1, A2,…………, An

 from r1,r2,…………..,rn

 where p;

Where,
 Ai - respresents an attribute

105

 ri - representing relation
 p - is a predicate

SQL forms the Cartesian product of the relations named in the

from clause, performs a relational algebra selection using the where
clause predicate, and then projects the result onto the attributes of the
select clause.

9.4.1.1 The select Clause:

This command is used to display all fields/or set of selected fields
for all/ selected records from a relation.

Different forms of select clause are given below:

• Form 1: Use of select clause for displaying selected fields

Example: Find the names of all publishers in the book relation.

 SQL > Select publisher_name from book;

Output:

PUBLISHER_NAME
PHI
Technical
Nirali
Technical
SciTech

Above query displays all publisher_name, from Book relation.

Therefore, some publishers name will get displayed repeatedly. SQL
allows duplicates in relations as well as in the results of SQL expressions.

Form 2: Use of select for displaying distinct values

For elimination of duplicates the keyword distinct is used. The above
query is rewritten as,

SQL > select distinct publisher_name from book;

Output:

PUBLISHER_NAME
Nirali
PHI
SciTech
Technical

SQL allows us to the keyword all to specify explicitly that duplicates are
not removed.

SQL > select all publisher_name from book;

106

Output:

PUBLISHER_NAME
PHI
Technical
Nirali
Technical
SciTech

Form 3: Use of select for displaying all fields:

The asterisk symbol “*” can be used to denote “all attributes.” A

select clause of the form select * indicates that all attributes of all relations
appearing in the from clause are selected.

Example:

SQL > select * from book;

Output:

ISBN TITLE PUB_

YEAR

UNIT_

PRICE

AUTHOR

_NAME

PUBLISHER_

NAME

1001 Oracle 2004 399 Arora PHI

1002 DBMS 2004 400 Basu Technical

2001 DOS 2003 250 SInha Nirali

2002 ADBMS 2004 450 Basu Technical

2003 Unix 2000 300 Kapoor SciTech

SQL > select * from author;

Output:

AUTHOR_NAME COUNTRY

Arora U.S.

Kapoor Canada

Basu India

Sinha India

SQL > select * from publisher;

PUBLISHER_NAME PUB_ADD

PHI Delhi

Technical Pune MainBazar

Nirali Mumbai

SciTech Chennai

Form 4 : Select clause with arithmetic expression:

The select clause may also contain arithmetic expressions
involving the operators +, -, *, and / operating on constants or attributes of
tuples.

107

Example:

SQL > select title, unit_price* 10 from book;

Output:

TITLE UNIT_PRICE *10

Oracle 3990

DBMS 4000

DOS 2500

ADBMS 4500

Unix 3000

The above query returns a relation that is the same as the book

relation with attributes title as it is and unit_price will get multiplied by
10.

9.4.1.2 The where Clause:

The where clause is used to select specific rows satisfying given
predicate.

Example: “Find the titles of books published in year 2004.”

This query can be written in SQL as:

SQL > select title from book where pub_year = ‘2004’ ;

Output:

TITLE

Oracle

DBMS

ADBMS

SQL uses the logical connective and, or and not in the where

clause. The operands of logical connectives can be expressions involving
the comparison operators <, <=, >,>=, =, and <>. SQL allows us to use the
comparison operators to compare strings and arithmetic expressions, as
well as special types, such as date types.

Between:

SQL includes a between comparison operator to specify that a
value be less than or equal to some value and greater than or equal to some
other value.

Example: “Find the titles of book having price between 300 to 400”.

SQL> select Title from Book

 where Unit_price between 300 and 400;

108

Output:

TITLE

Oracle

DBMS

Unix

Or

SQL > select Title from Book

 where Unit_price >= 300 and Unit_price < = 400;

Output:

TITLE

Oracle

DBMS

Unix

Similarly, we can use the not between comparison operator.

9.4.1.3 The from Clause:

The from clause defines a Cartesian product of the relations in the clause.

Example: “Find the titles of books with author name and country
published in year2004”.

SQL > select Title, Book. author_name, Country

 from Book, Author

 where Book.author_name = Author.author_name

 and pub_year = ‘2004’.

Output:

TITLE AUTHOR_NAME COUNTRY

Oracle Arora U.S.

DBMS Basu India

ADBMS Basu India

Notice that SQL uses the notation relation_name to avoid ambiguity in
cases where an attribute appears in the schema of more than one relation.

9.4.2 Rename Operation:

SQL provides a mechanism for renaming both relations and

attributes. It uses the as clauses taking the form:
Old-name as new-name

The as clause can appear in both the select and from clause.

109

Example:

SQL > select Title, Unit_price * 1.15 as New_price

 from Book;

Output:

TITLE NEW_PRICE

Oracle 458.85

DBMS 460

DOS 287.5

ADBMS 517.5

Unix 345

The above query calculates the new price as Unit_price * 1.15 and

display the result under the column name NEW_PRICE.

9.4.3 Tuple Variable:

Tuple variables are defined in the from clause by the way of as
clause.

Example: “Find the titles of Books with author name and author country.”
The above query is written in SQL using tuple variable as:

SQL > select Title, B.Author A_name, Country

 from Book B, Author A

 where B.Author_name = A.Author_name;

Output:

TITLE AUTHOR_NAME COUNTRY

Oracle Arora U.S.

DBMS Basu India

DOS SInha India

ADBMS Basu India

Unix Kapoor Canada

Tuple variables are most useful for comparing two tuples in the

same relation. Suppose we want to display the book titles that have price
greater than at least one book published in year 2004.

SQL > select distinct B1. Title

 from Book B1, Book B2

 where B1. Unit_price > B2. Unit_price

 and B2. Pub_year = ‘2004’;

Output:

TITLE

ADBMS

DBMS

110

9.4.4 String Operations:

SQL specifies strings by enclosing them in single quotes, for

example: ‘DBMS’. A single quote character that is part of a string can be
specified by using two single quote characters; for example the string :
“It’s right” can be specified by “Its right”.

The most commonly used operation on string is pattern matching using the
operator like. We describe patterns by using two special characters.

• Percent (%): The % character matches any substrings.

• Underscore: (_): The _ character matches any character.

Patterns are case sensitive, that is, upper case characters do not match
lowercase character or vice-versa.

Example:

• ‘Computer%’ – matches any string beginning with ‘computer’.

• ‘%Engg’ – matches any string containing “Engg” as a substring, for
example, “Computer Engg department”, Mechanical Engg”.

• ‘-s%’ – matches any string with second character‘s’.

• ‘_ _ _ ‘ – matches any string of exactly three characters.

• ‘_ _ _%’ – matches any string of at least three characters.

Example of SQL queries:

1) Find the names of author’s from author table where the first two

characters of name are ‘Ba’;

SQL > select Author_name

 from Author

 where Author_name like ‘Ba%’;

Output:

AUTHOR_NAME

Basu

2) Select author_name from author where the second character of name is

‘r’ or ‘a’;

SQL > select Author_name

 from Author

 Where Author_name like ‘_r%’ or Author_name like ‘_a% ’ ;

111

Output:

AUTHOR_NAME

Arora

Kapoor

Basu

3) Display the names of all publishers whose address includes the

substring ‘Main’;

SQL > Select Publisher_name

 from Publisher

 where Pub-add like ‘%Main%’;

Output:

PUBLISHER_NAME

Technical

9.4.5 Ordering the Display of Tuples:

SQL uses order by clause to display the tuples in the result of the

query to appear in sorted order.

Example:

1) Display all titles of books with price in ascending order of titles

SQL > select Title, Unit_price

 from Book

 order by Title;

Output:

TITLE UNIT_PRICE

ADBMS 450

DBMS 400

DOS 250

Oracle 399

Unix 300

2) Display all titles of books with price, and year in decreasing order of

year.

SQL > select Title, Unit_price, Pub_year

 from Book

 order by Pub_year desc;

Output:

TITLE UNIT_PRICE PUB_YEAR

Oracle 399 2004

112

DBMS 400 2004

ADBMS 450 2004

DOS 250 2003

Unix 300 2000

9.4.6 Group by:

Group by clause is used to group the rows based on certain criteria.
For example, you can group the rows in the Book table by the publisher
name, or in an exmployee table, you can group the employees by the
department and so on. Group by is usually used in conjuction with
aggregate functions like sum, avg, min, max, etc.

Examples:

1) Display total price of all books (publisher wise).

SQL > select Publisher_name, sum (Unit_price) “Total Book

Amount”

 from Book

 group by Publisher_name;

Output:

Publisher name Total Book Amount

Nirali 250

PHI 399

SciTech 300

Technical 850

2) “On every book author receives 15% display royalty. Display total

royalty amount received by each author till date”.

SQL > select Author_name, sum (Unit_price * 0.15) “Royalty

Amount”

 from Book

 group by Author_name;

Output:

Author_name Royalty Amount

Arora 59.85

Basu 127.5

Kapoor 45

Sinha 37.5

9.4.7 Having:

The having clause tells SQL to include only certain groups

produced by the group by clause in the query result set. Having is

113

equivalent to the where clause and is used to specify the search criteria or
search condition when group by clause is specified.

Examples:

1) Display publisher wise total price of books published, except for

publisher ‘PHI’.

SQL > select Publisher_name, sum(Unit_price) “Total Book

 Amount”

 from Book

 group by Publisher_name

 having Publisher_name <> ‘PHI’;

Output:

Publisher_name Total Book Amount

Nirali 250

SciTech 300

Technical 850

2) Display royalty amount received by those authors whose second

character name contains ‘a’.

SQL > select Author_name, sum (Unit_price * 0.15) “Royalty

Amount”

 from Book

 group by Authour_name

 having Author_name like ‘_a%’;

Output:

Author_name Royalty Amount

Basu 127.5

Kapoor 45

9.5 DATABASE MODIFICATION

Different operations that modify the contents of the database are:

• Delete

• Insert

• Update

9.5.1 Delete:

A delete request is expressed in same way as a query. The delete

operation is used to delete all or specific rows from database. We cannot
delete values of particular attributes.

114

Syntax:

delete from r

 where p

Where,
r- relation
p- predicate

The delete statement first finds all tuples in r for which P (t) is
true, and then deletes them from r. The where clause is omitted if all
tuples in r are to be deleted.

A delete command operates only on one relation. If we want to
delete tuples from several relations, we must use one delete command for
each relation.
Examples:

1) Delete all books from Book relation where publishing year is less than

1997.

 SQL > delete from Book

 Where Pub_year < 1997;

2) Delete all books from Book relation where publishing year is between

1997 to 1999.

SQL > delete from Book

 Where Pub_year between 1997 and 1999.

3) Delete all books of authors living in country ‘U.K.’ from Book relation

SQL > delete from Book

 where Author_name in

 (select Author_name

 from Author

 where Country = ‘U.K.’);

4) Delete all books having price less than average price of books.

SQL > delete from Book

 where Unit_price <

 (select avg (Unit_price)

 from Book);

5) Delete all books from Book relation.

SQL > delete from Book;

9.5.2 Insertion:

To insert data into a relation, we either specify a tuple to be

inserted or write a query whose result is a set of tuples to be inserted. The

115

attribute values for inserted tuples must be members of the attribute’s
domain.

Consider following customer relation.

Customer= { Cust_no, Cust_name, Cust_add, Cust_ph}

Example: Insert a new customer record with customer record with
customer no. as 05, customer_Name as ‘Pragati’, Address- ‘ABC’ and ph.
no.as 9822398910.

SQL > insert into Customer

 values (05, ‘Pragati’, ABC’, 9822398910);

In above example, the values are specified in the order in which
the corresponding attributes are listed in the relation schema. SQL allows
the attributes to be specified as part of the insert statement.

Above query is rewritten as:

SQL > insert into customer (cust_no, cust_name, cust_address,

cust_ph)

Values (05,‘Pragati’, ABC’, 9822398910);

We can insert tuples in a relation on the basis of the result of a query.

Consider two relations:

• Student = {Roll_No, Name, Flag}

• Defaulter_student = {Roll_No, Name}

Supposed we want to inster tuples from Student relation to
Defaulter_student where flag is ‘D’.

The query for above statement is:

SQL > insert into Defaulter_student

 select Roll_no, Name

 from Student

 where falg = ‘D’,

It is also possible to assign values only to particular attributes
while inserting a tuple

Example:

SQL > insert into Customer

 Values (05, ‘Pragati’, ‘ABC’, null);

9.5.3 Updates:

Using update statement, we can change value in a tuple or all the

tuples of a relation. Consider following relation;

116

Employee = { Emp_code, Name, Salary};
No. of records of employee relation are:

SQL > select * from Employee;

Output:

Emp_code Name Salary

1 Ram 10000

2 Jim 7000

3 John 9000

4 Sita 11000

Examples:

1) Increase salary of all employees by 15%

SQL > update Employee

Set Salary =Salary * 1.15;

Rows updated.

The updated salary values are:

SQL > select * from Employee;

Output:

Emp_code Name Salary

1 Ram 11500

2 Jim 8050

3 John 10350

4 Sita 12650

2) Increase salary of employees who earn less than 9,000 by 15%

SQL > update Employee

 Set Salary = Salary* 1.15;

 Where Salary < 9000;

1 row updated.

The updated salary values are:

SQL > select * from Employee;

Output:

Emp_code Name Salary

1 Ram 10000

2 Jim 8050

3 John 9000

4 Sita 11000

117

3) Increase salary of employees by 15% who earn less than average salary
of employees.

SQL > update Employee

 set Salary = Salary * 1.15

 where Salary < (Select avg(Salary)

 from Employee);
2. rows updated.

The updated salary values are:

SQL > select * from Employee;

Output:

Emp_code Name Salary

1 Ram 10000

2 Jim 8050

3 John 10350

4 Sita 11000

4) Increase salary of employees by 15% who earn less than 9000 and for

remaining employees give 5% salary raise.

For above example, we require two update statements:

i) update Employee

 set Salary = Salary * 1.15

 where Salary < 9000;

ii) update Employee

 set Salary = Salary * 1.05

 where Salary >= 9000;

SQL provides a case construct, which we can use to perform both
updates with a single update statement.

update employee

set Salary = case

when Salary < 9000 than

 Salary * 1.15

 else Salary * 1.05

end;

The general form of case statement is:

Case

 when pred 1 then result 1

 when pred 2 then result 2

 - - - - - - -

 when pred n then result

end else result

118

The operation returns result i; where I is the first of pred 1, pred 2,
…., pred n, that is satisfied ; if none of the predicate is satisfied the
operation returns result 0.

9.6 DATA CONTROL COMMANDS

Transaction control commands manage changes made by DML
commands.

Collection of operation that forms a single logical unit of work are

called Transactions.

A transaction can either be one DML statement or a group of
statements. When managing groups of transactions, each designated group
of transactions must be successful as one entity or none of them will be
successful.

The Following list describes the nature of transactions:

• All transactions have a beginning and an end.

• A transaction can be saved or undone.

• If a transaction fails in the middle, no part of the transaction can be
saved to the database.

Transactional control is the ability to manage various transactions

that may occur within a relational database management system. Different
types of transaction control commands are:

1) COMMIT Command:

The commit command saves all transactions to the database since

the last COMMIT or ROLLBACK command was issued.

2) ROLLBACK Command:

 The rollback command is the transactional control command

used to undo transactions that have not already been saved to the database.
The rollback command can only be used to undo transactions since the last
COMMIT or ROLLBACK command was issued.

3) SAVEPOINT Command:

Establishes a point back to which you may roll.

4) SET TRANSACTION Command:

Establish properties for the current transaction.

119

9.7 IMPORTANT QUESTIONS AND ANSWERS

Q.1 Give an expression in SQL for each of queries below:

1) Find the names of all employees who work for City Bank Corporation.

2) Find the names and company names of all employees sorted in
ascending order of company name and descending order of employee
names of that company.

 3) Change the city Bank Corporation to ‘Delhi’
Ans.:
1) SELECT EMPLOYEE_NAME
FROM WORKS
WHERE COMPANYNAME = ‘City Bank Corporation’;

2) SELECT EMPLOYEE_NAME, COMPANYNAME
FROM WORKS
ORDER BY COMPANYNAME, EMPLOYEE_NAME DESC;

3) UPDATE COMPANY
SET CITY = ‘Delhi’
WHERE COMPANY_NAME = ‘City Bank Corporation’;

Q.2 Consider the following relational database:

STUDENT (name, student#, class, major)

COURSE (course name, course#, credit hours, department)

SECTION (section identifier, course#, semester, year, instructor)

GRADE_REPORT (student#, section identifier, grade)

PRESEQUISITE (course#, presequisite#)

Specify the following queries in SQL on the above database schema.

i) Retrieve the names of all students majoring in ‘CS’.

ii) Retrieve the names of all courses taught by Professor Kulkarni in
1999.

iii) Delete the record for the student whose name is ‘Om’ and whose
student number is 12.

iv) Insert a new course <’DBMS’, ‘CS1390’, 23, ‘CS’ >

Ans.:

i) SELECT NAME FROM STUDENT WHERE MAJOR = ‘CS’;

ii) SELECT COURSE_NAME

 FROM COURSE C, SECTION S

WHERE C. COURSE# = S.COURSE#

AND INSTRUCTOR = ‘Kulkarni’ AND YEAR = 1999;

OR

SELECT COURSE_NAME FROM COURSE

120

WHERE COURSE# IN (SELECT COURSE# FROM SECTION

WHERE INSTRUCTOR = ‘Kulkarni’ AND YEAR = 1999);

iii) DELETE FROM STUDENT WHERE NAME = ‘Om’ AND
STUDENT# = 12;

iv) INSERT INTO COURSE

VALUES (‘DBMS’, ‘CS1390’, 23, ‘CS’);

9.8 SUMMARY

SQL provides three data manipulation statements insert, update

and delete. Data retrieval retrives data from the database, for example
SELECT.

Data manipulation Language (DML) inserts new rows, changes
existing rows, and removes unwanted rows, for example INSERT,
UPDATE, and DELETE.

Transaction Control manages and changes logical transactions.
Transactions are changes made to the data by DML statements grouped
together, for example, COMMIT, SAVE POINT, and ROLLBACK.

Data control Language (DCL) gives and removes rights to
database objects, for example GRANT, and REVOKE.

Aggregate functions are functions that take a collection of values
as input and return a single value. SQL offers five built-in aggregate
functions: Average, Minimum, Maximum, sum, count.SQL allows the use
of null values to indicate absence of information about the value of an
attribute.

The select clause corresponds to projection operation of the
relational algebra. The from clause corresponds to the Cartesian product
operation of the relational algebra. The where clause corresponds to the
selection predicate of the relational algebra.

SQL provides a mechanism for renaming both relations and
attributes. Group by clause is used to group the rows based on certain
criteria

Having is equivalent to the where clause and is used to specify the
search criteria or search condition when group by clause is specified.
Collection of operation that forms a single logical unit of work are called
Transactions.

9.9 UNIT END QUESTIONS

1. Explain different SQL DML commands.

121

2. Explain different SQL DCL commands.

3. Explain different types of SQL commands.

4. Explain various aggregate functions available in SQL.

5. Explain the use of NULL value with example.

TEXT BOOKS

1. Korth, Slberchatz, Sudarshan, Database System Concepts, 6th Edition,

McGraw Hill

2. Elmasri and Navathe, Fundamentals of Database Systems, 6thEdition,
Pearson education

3. Raghu Ramkrishnan and Johannes Gehrke, Database Management
Systems, TMH

REFERENCES

1. Peter Rob and Carlos Coronel, ― Database Systems Design,
Implementation and Managementǁ, Thomson Learning, 9thEdition.

2. G. K. Gupta : “Database Management Systems”, McGraw – Hill.

122

10

VIEWS, NESTED QUERIES AND JOINS

Unit structure

10.0 Objective

10.1 Introduction

10.2 Views in SQL

10.2.1 Creation of Views

10.2.2 Selecting Data from a View

10.2.3 Updatable Views

10.2.4 Destroying a View

10.3 Nested and Complex Queries

10.3.1 Nested Queries

10.3.1.1 Set Memberships

10.3.1.2 Set Comparison

10.3.1.3 Test for Empty Relations

10.3.2 Complex Queries

10.3.2.1 Derived Relations

10.3.2.2 The with Clause

10.4 Join

10.4.1 Inner Join

10.4.2 Outer Join

10.4.2.1 Left Outer Join

10.4.2.2 Right Outer Join

10.5 Important Questions And Answers

10.6 Summary

10.7 Unit End Questions

10.0 OBJECTIVE

• To understand and apply different operation such as Creation,
selecting and destroying View in SQL.

• To write nested and complex queries to solve the real-world problems
in efficient manner.

• To understand and apply Join operations to retrieve the data from
multiple tables.

123

10.1 INTRODUCTION

A subquery is a SELECT statement that is embedded in a clause of

another SELECT statement. It is also used in complex type of query.
Subqueries are written in the WHERE clause of the another SQL
statement to obtain values based on the unknown conditional value. Use of
a subquery is equivalent to performing two or more sequential queries.
The result of inner query is fed to the outer query to display the values. A
join condition is used when data from more than one table in the database
is required to be displayed. Rows in one table can be joined to rows of
another table according to common values existing in the corresponding
columns, those usually primary key and foreign key columns.

An SQL view is a virtual table, dynamically constructed for a user
by extracting data from actual base tables. A view is a tailored
presentation of the data contained in one or more tables (or other views).
A view takes takes the output of a query and treats it as a table ; therefore
a view can be thought of as stored query or a virtual table .It provides an
additional level of table security by restricting access to a predetermined
set of rows and / or columns of a table. It hides data complexity and it
simplifies commands for the user because they allow to select information
from multiple tables without actually knowing how to perform a join.

10.2 VIEWS IN SQL

A view object that gives the user a logical view of data from an

underlying table or tables. You can restrict what uses can view by
allowing them to see only a few attributes columns from a table.

View may be created for the following reasons:

• Simplifies queries

• Can be queried as a base table

• Provides data security

10.2.1 Creation of Views:

Syntax:

CREATE VIEW viewname as

SELECT columnname, columnname

FROM tablename

WHERE columnname = expression list;

Example: Create view on Book table which contains two fields title, and
author name.

SQL > create view V_Book as

 Select Title, Author_name

124

 from Book;

View created.

SQL > select * from V_Book;

Output:

TITLE AUTHOR_NAME

Oracle Arora

DBMS Basu

DOS SInha

ADBMS Basu

Unix Kapoor

10.2.2 Selecting Data from a View:

Example: Display all the titles of books written by author ‘Basu’.

SQL > select Title

 from V_Book

 Where Author_name = ‘Basu’;

Output:

TITLE

DBMS

ADBMS

10.2.3 Updatable Views:

Views can also be used for data manipulation i.e the user can

perform Insert, Update, and the Delete operations on the view. The views
on which data manipulation can be done are called Updatable Views

Views that do not allow data manipulation are called Ready only
Views. When you give a view name in the Update, Insert, or Delete
statement, the modifications to the data will be passed to the underlying
table.

For the view to be updatable, it should meet following criteria:

• The view must be created on a single table.

• The primary key column of the table should be included in the view.

• Aggregate functions cannot be used in the select statement.

• The select statement used for creating a view should not include
Distinct, Group by, or Having clause.

• The select statement used creating a view should not include
subqueries.

• It must not use constants, strings or value expressions like total / 5.

125

10.2.4 Destroying a View:
A view can be dropped by using the DROP VIEW command.

Syntax:

DROP VIEW viewname;

Example:

DROP VIEW V_Book;

10.3 NESTED AND COMPLEX QUERIES

10.3.1 Nested Queries:

SQL provides a mechanism for nesting subqueries. A subquery is a
select from where expression that is nested within another query. Mostly
subqueries are used to perform tests for set membership to make set
comparisons and determine set cardinality.

10.3.1.1 Set Memberships:

SQL uses in and not in constructs for set membership tests.

i) IN:

The in connective tests for set membership , where the set is a
collection of values produced by a select clause.

Examples:

1) Display the title, author, and publisher name of all books published in
2000, 2002 and 2004.

SQL > select Title, Author_name, Publisher_name, Pub_year

 from Book

 where Pub_year in (‘2000’, ‘2004’) ;

Output:

TITLE AUTHOR

_NAME

PUBLISHER

_NAME

PUB_YEAR

Oracle Arora PHI 2004

DBMS Basu Technical 2004

ADBMS Basu Technical 2004

Unix Kapoor SciTech 2000

2) Get the details of author who have published book in year 2004.

SQL> select * from Author

 where Author_name in (select Author_name

 from Book

 where Pub_year = ‘2004’);

126

Output:

AUTHOR_NAME Country

Arora U.S

Basu India

ii) Not IN:
 The not in connective tests for the absence of set membership.

Examples

1) Display title, author, and publisher name of all books except those
which are published in year 2002, 2004 and 2005.

SQL > select Title, Author_name, Publisher_name, Pub_year

 from Book

 where Pub_year not in (‘2002’, ‘2004’, ‘2005’)

Output:

TITLE AUTHOR_NA

ME

PUBLISHER_NAME PUB_YEAR

DOS SInha Nirali 2003

Unix Kapoor SciTech 2000

2) Get the titles of all books written by authors not living in India.

SQL > select Title

 from Book

 where Author_name not in (select Author_name from

 from author

 where country = ‘India’);

Output:

TITLE

Oracle

Unix

10.3.1.2 Set Comparison:

Nested subqueries are used to compare sets. SQL uses various

comparison operators such as <, < = , > , > = , =, <>, any, all, and some,
etc to compare sets.

Examples:

1) Display the titles of books that have price greater than at least one
book published in year 2004.

For given example, we write the SQL query as:

SQL > select distinct B1. Title

127

 from Book B1, Book B2

 where B1. Unit_price > B2. Unit_price

 and B2. Pub_year = ‘2004’;

Output:

TITLE

ADBMS

DBMS

SQL offers alternative style for writing preceding query.

The phrase ‘greater than at least one’ is represented in SQL by > some.

Using > some, we can rewrite the query as:

SQL > select distinct Title

from Book

 where Unit_price > some (select Unit_price

 from Book

 where Pub_year = ‘2004’);

Output:

TITLE

ADBMS

DBMS

The subquery generates the set of all unit price values of books

published in year 2004. The > some comparison in the where clause of
the outer select is true if the unit price value of the tuple is greater than at
least one member of the set of all unit price values of books published in
year 2004.

• SQL allows < some, >some, <=some, >=some, =some, and <> some

comparisons.

• = some is identical to in and <> some is identical to not in.

• The keyword any is similar to some.

All

• The “>all” corresponds to the phrase ‘greater than all’.

• SQL allows <all, <=all, >all, <>all, =all comparisons.

• all is identical to not in construct.

1) Display the titles of books that have price greater than all the books
publisher in year 2004.

SQL > select distinct title

from Book

where Unit_price > all (select Unit_price

128

from Book

where Pub_year = ‘2004’);

Output: no rows selected

2) Display the name of author who have received highest royalty amount.

SQL > select Author_name

 from Book

 group by Author_name

having sum (Unit_price * 0.15) > = all (select sum (Unit_price * 0.15)

 from Book

 group by Author_name);

Output:

AUTHOR_NAME

Basu

10.3.1.3 Test for Empty Relations:

Exists is a test for non empty set. It is represented by an expression

of the form Exists (select ….. from ……). Such an expression evaluates to
true only if the result of evaluating the subquery represented by the (select
….. from …..) is nonempty.

Consider two relations:

i) Book_Info = { Book_ID, Title, Author_name, Publisher_name,

Pub_year}

ii) Order_Info = { Order_no, Book_ID, Order, Date, Qty, Price}

Records of Book _Info and Order_Info relations are:

SQL > select * from Book _Info;

Book_id TITLE AUTHOR_NAME PUBLISHER_NAME PUB_YEAR

1001 Oracle Arora PHI 2004

1002 DBMS Basu Technical 2004

2001 DOS Sinha Nirali 2003

2002 ADBMS Basu Technical 2004

2003 Unix Kapoor SciTech 2000

SQL > select * from Order_Info;

Output:

Order_no Book_id Order_date Qty Price

1 1001 10-10-2004 100 399

2 1002 11-01-2002 50 400

129

Consider the following example:

“Get the names of all books for which order is placed”.

SQL > select Title

 from Book_Info

 where exists (select * from Order_Info

where Book_Info.book_id = Order_Info. Book_id);

Output:

TITLE

Oracle

DBMS

In above SQL, first the subquery ‘select * from Order_Info where

Book_Info.Book_Id = Order_Info.Book_Id’ is evaluated. Then the outer
query is evaluated which displays the titles of books returned by inner
query.

Similar to the exists we can use not exists also.

Example: Display the titles of books for which order is not placed.

SQL> select Title

 from Book_info

 where not exists (select * from Order_ Info

 where Book_Info. Book_id = Order_Info.Book_Id)

Output:

Title

DOS

ADBMS

Unix

10.3.2 Complex Queries:

Complex queries are often hard or impossible to write as a single SQL
block. There are two ways for composting multiple SQL blocks to express
a complex query.

i) Derived relations

ii) With clause

10.3.2.1 Derived Relations:

SQL allows a sub query expression to be used in the from clause.

If we use such as expression, then we must give the results relation a
name, and we can rename the attributes. For renaming as clause is used.

Example:

(select Branch_name, avg (Balance)

130

 from Account
 group by Branch_name)
as result (Branch_name, Avg_balance);

This subquery generates a relation consisting of the names of all

branches and their corresponding average account balances. The subquery
is named as result and the attributes as Branch_name, and Avg_balance.

The use of a subquery expression in the from clause is given below:

1) “Find the average account balance of those branches where the average
account balance is greater than $1200”.

SQL > select Branch_name, avg (Balance)

 from (select Branches_name, avg(Balance)

 from Account

 group by Branch_name)

 as Branch_avg(Branch_name,avg(Balance))

 where Avg_Balance > 1200;

2) ‘Find the maximum across all branches of the total balance at each
branch.

 SQL > select max (Tot_balance)

 from (select Branch_name, sum (Balance)

 from Account

 group by Branch_name)

 as branch_total (Branch_name, Tot_balance);

10.3.2.2 The with Clause:

The with clause provides a way of defining a temporary view

whose definition is available only to the query in which the with clause
occurs. Consider the following query, which selects accounts with the
maximum balance; if there are many accounts with the same maximum
balance, all of them are selected.

with Max_balance (value) as
select max (Balance)
from Account
select Account_number
from Account, Max_balance
where Account. Balance =
Max_balance. Value;

10.4 JOIN

Join is a query in which data is retrieved from two or more table. a
join matches data from two or more tables, based on the values of one or
more columns in each table.

131

Need for joins:

In a database where the tables are normalized, one table may not
give you all the information about a particular entity. For example, the
Employee table gives only the department ID, so if you want to know the
department name and the manager name for each employee, than you will
have to get the information from the Employee and Department table.

In other words, you will have to join two tables. So for
comprehensive data analysis, you must assemble data from several tables.
The relational model having made you to partition your data and put them
in different tables for reducing data redundancy and improving data
independence – relies on the join operation to enable you to perform adhoc
queries that will combine the related data which resides in more than one
table.

Different types of Joins are:

• Inner Join

• Outer Join

• Natural Join

10.4.1 Inner Join:

Inner Join returns the matching rows from the tables that are being joined.
Consider following two relations:

i) Employee (Emp-name,Department, Salary)

ii) Employee_salary (Emp_name, Department, Salary)

These two relations are shown in Figure 10.4.1 and 10.4.2

Employee

Emp_name City

Hari Pune

OM Mumbai

Smith Nashik

Jay Solapur

Fig .10.4.1 The Employee relation

Employee_salary

Emp_name Department Salary

Hari Computer 10000

Om IT 7000

Bill Computer 8000

Jay IT 5000

Fig. 10.4.2 The Employee_Salary relation

132

Example 1:

SQL > Select Employee.Emp_name, Employee_salary. Salary

from Employee inner join Employee_salary on

Employee. Emp_name = Employee_salary. Emp_name;

Fig. 10.4.3 shows the result of above query

Emp_name Salary

Hari 10000

Om 7000

Jay 5000

Fig.10.4.3 The result of Employee inner join employee_salary

operation with selected fields from employee and employee and

employee_salary relation

Example 2:

Select *

from Employee inner join Employee_salary on

Employee. Emp_name = Employee_salary. Emp_name;

The result of above query is shown in Fig. 10.4.4

Emp_name City Emp_name Department Salary

Hari Pune Hari Computer 10000

Om Mumbai Om IT 7000

Jay Solapur Jay IT 5000

Fig. 10.4.4 The result of Employee inner join employee_salary

operation with all fields from employee and employee_salary relation

As shown in Fig. 10.4.4 the result consists of the attributes of the
left-hand-side relation followed by the attributes of the right-hand-side
relation. Thus the Emp_name attribute appears twice in result first is form
Employee relation and second is from Employee_salary relation.

10.4.2 Outer Join:

When tables are joined using inner join, rows which contain

matching values in the join predicate are returned. Sometimes, you may
want both matching and non_matching rows returned for the tables that
are being joined. This kind of an operation is known as an outer join.

An outer join is an extended from of the inner join. In this, the

rows in one table having no matching rows in the other table will also
appear in the result table with nulls.

Types of outer join:

The outer join can be any one of the following:

• Left outer

133

• Right outer

• Full outer

Join types and conditions:

Join operations take two relations and return another relation as the
result. Each of the variants of the join operation in SQL consists of a join
type and join condition.

Join type: It defines how tuples in each relation that do not match with
any tuple in the other relation, are treated. Following Fig. 10.4.5 shows
various allowed join types.

Join types

Inner join
Left outer join

Right outer join
Full outer join

Fig. 10.4.5 Join types

Join conditions: The join condition defines which tuples in the two
relations match and what attributes are present in the result of the join.

Following Fig. 10.4.6 shows allowed join conditions.

Join conditions

natural
on <predicate>

using (A1, A2, …..An)

Fig. 10.4.6 Join conditions

The use of join condition is mandatory for outer joins, but is
optional for inner join (if it is omitted, a Cartesian product results).
Syntactically, the keyword natural appears before the join type, whereas
the on and using conditions appear at the end of the join expression.

The join condition using (A1, A2, ….., An) is similar to the natural
join condition, except that the join attributes are the attributes A1, A2,
……, An, rather than all attributes that are common to both relations. The
attributes A1, A2, ……, An must consist of only attributes that are
common to both relations, and they appear only once in the result of the
join.

Example: Employee full outer join Emp_salary using (Emp_name)

134

10.4.2.1 Left Outer Join:

The left outer join returns matching rows from the tables being
joined, and also non-matching rows from the left table in the result and
places null values in the attributes that come from the right table.

Example:

Select Employee. Emp_name, Salary
from Employee left outer Employee_salary

on Employee. Emp_name = Employee_salary. Emp_name;

The result of above query is shown in Fig. 10.4.7.

Emp_name Salary

Hari 10000

Om 7000

Jay 5000

Smith Null

Fig. 10.4.7 The result of Employee left outer join Employee_salary

with selected fields from Employee_salary relations.

Left outer join operation is computed as follows:

First, compute the result of inner join as before. Then, for every
tuple t in the left hand side relation Employee that does not match any
tuple in the right-hand-side relation Employee_salary in the inner join, add
a tuple r to the result of the join : The attributes of tuple r that are derived
from the left-hand-side relation are filled with the from tuple t, remaining
attributes of r are filled with null values as shown in Fig. 10.4.7

10.4.2.2 Right Outer Join:

The right outer join operation returns matching rows from the
tables being joined, and also non-matching rows from the right table in the
result and places null values in the attributes that comes from the left table.

Example:

Select Employee. Emp_name, City, Salary from Employee right

outer join

Employee_salary on Employee. Emp_name = Employee_salary.

Emp_name;

The result of preceding query is shown in Fig. 10.4.8.

Emp_name City Salary

Hari Pune 10000

OM Mumbai 7000

Bill Null 5000

Jay Solapur 8000

Fig. 10.4.8 The result of outer join operation with selected fields from

Employee and Employee_salary relations

135

10.5 IMPORTANT QUESTIONS AND ANSWERS

Q.1 For given database, write SQL queries.

Employee (EID, Name, Street, City)

Works(BID, CID, Salary)

Manager (CID, Company_name, City)

i) Modify the database so that PRATHAM now lives in “USA

ii) Find all employees in the database who live in the same cities as the
company for which they work.

iii) Give all employees of SHARAYU Steel’ a 10% raise in salary.

Ans.:
i) update Employee
set city = ‘USA’
where EID = ‘PRATHAM’;

ii) select Name
from Employee, Works, company where Employee. EID = Works.EID
and
Works.CID = company. CID and Employee. City = comapy. City;

iii) update Works
set Salary = Salary * 1.10
where CID = (Select CID from company where company-name =
‘SHARAYU
Steel’);

Q.2 For the given employee database give an expression in SQL for the

following:

Employee (empname,street, city)

Works (empname, company-name, salary)

Company (Company-name, city)

Managers (empname, manager-name)

 i) Modify database so that ‘swapnil’ now lives in ‘Navi Mumbai’.

 ii) Give all employees of ‘IBM’ a 40% noise.

 iii) List all the employees who lives in the same cities as their managers.

Ans.:
i) update Employee

set city = Navi Mumbai
where empname = Swapnil;

ii) update Employee
set salary = Salary * 1.40
where company-name = IBM;

136

iii) select E. empname
from Empolyee E, Employee T, Managers M
where E.empname = M. empname and
e.city = T. city and T. empname = M. manager – name;

Q.3 Consider the employee database where the primary keys are

underlined. Give an Expression in SQL for the following gueries:

 Employee (employee-name, street, city)

 Works (employee-name, company-name, salary)

 Company (company-name, city)

 manages (employee-name, manager-name)

i) Find all employees in the database who earn more than each employee

of small Bank Corporation.

ii) Find all employees in the database who do not work for first Bank
Corporation.

iii) Find all employees who earn more that the average salary of all
employees of their company.

iv) Find the names of all employees who work for First Bank Corporation.

Ans.:
i) select employee name
 from works
 where salary > all
 (select salary
 from works
 where company name = ‘small Bank Corporation’);

ii) select employee name
 from works
 where company name <> ‘First bank Corporation’;

iii) create view Avg-salary (salary) as
 select avg (Salary)
 from works;
 select employee-name
 from works
 where salary > Avg-salary. Salary ;

iv) select employee name
 from works
 where company name = ‘First Bank Corporation’;

Q.4 For the following given database, write SQL queries:-
 Person (driver_id #, name, address)
 Car (license, model, year)
 accident (report_no, date, location)

137

 owns (driver_id #, license)
participated (drive cid, car, report_number, damage_amount)

i) Find the total number of people who of people who owned cars that

involved in an accident in 2007.

ii) Find the number of accidents in which the cars belonging to “Ajay”.
Were involved.

iii) Find the number of accidents that were reported in Mumbai region in
the year 2004.

Ans.:
i) select count (distinct name)
 from accident, participated, person

where accident. report number = participated.report number
 and participated. Driver id = person.driver id

and date between ’01-01-2007’ and ’31-12-2007’;

ii) select count (distinct report_number)

from accident natural join participated natural join person
where name = ‘Ajay’;

iii) select count (distinct report_number)
 from accident

where location = ‘Mumbai’ and date between ’01-01-2004’ and ’31-
12-2004’;

Q.5 For the following given database, write SQL queries:-

person (driver_id#, name, address)
 car (license, model, year)
 accident (report_no, date, location)
 owns (driver_id #, license)
 participated (driver_id, car, report_number, damage_amount)

i) Find the total number of people who owned cars that were involved in

accident in 1995.

ii) Find the number of accidents in which the cars belonging to Sunil K”,
were involved.

iii) Update the damage amount for car with licence number “Mum2022”
in the accident with report number “AR2197” to rs5000.

Ans.:
i) select count (distinct name)
 from accident, participated, person
 where accident.report number = participated. Report number
 and participated. Driver id = person. Driver id
 and date between ’01-01-1995’ and ’31-12-1995’;

138

ii) select count (distinct report_number)
 from accident natural join participated natural join person
 where name = ‘Sunil K’;

iii) update participated
 set damage_amount = 5000
 where license = “MUM2022” and report_number = “AR2197”;

Q.6 Given the following relational schema.
 Division (div #, div-name, director)
 Department (dept #, dept-name, location, div #)
 Employee (emp #, emp name, salary, address, dept #)
 State the following queries in SQL.

i) Get tmployee name, dept-name and division name for all employees

whose salary is above 20,000/-

ii) List the name of all employees who work in “Marketing” division.

iii) List the dept-names and employee name in that dept, for all
department whose location is “Mumbai”.

Ans.:
i) Select emp-name, dept-name, div-name From Employee, Department,

Division
 where Employee. Dept # = Department. Dept # and Department. Div #

= Division
 . div # and salary > 20,000;

ii) Select emp-name FROM Employee, Department, Division
 where Employee. Dept # and Department. Dept # and Department div

= Division .
 div # and div-name = ‘Marketing’ ;

iii) Select dept-name, emp-name

from Employee, Department
where Employee. Dept # = Department. Dept # and location =
‘Mumbai’ ;

Q. 7 Consider the relations
 EMP (ENO,ENAME, AGE, BASIC_SALARY)

WORK_IN(ENO,DNO)
DEPT (DNO,DNAME,CITY)
Express the following queries in SQL

i) Find names of employees who work in a department in Pune.

ii) Get the dept. Number in which more than one employee is working.

iii) Find name of employee who earns highest salary in ‘HR’ department.

139

Ans.:
i) select ENAME
 from EMP, WORK_IN, DEPT
 where EMP.ENO = WORK_IN.ENO and WORK_IN.DNO =

DEPT. DNO and CITY =
 ‘Pune’ ;

ii) select DNO

from WORK_IN
group by DNO

 HAVING COUNT (*) >1;

iii) select ENAME

from EMP e
 where BASIC_SALARY > = (select max(BASIC_SALARY)

from DEPT, WORK_IN
where DNAME = ‘HR’ and e. ENO =
WORK_IN. ENO and
WORK_IN. DNO = DEPT. DNO)

10.6 SUMMARY

Subqueries are written in the WHERE clause of the another SQL

statement to obtain values based on the unknown conditional value. Use of
a subquery is equivalent to performing two or more sequential queries.

The result of inner query is fed to the outer query to display the
values.

A join condition is used when data from more than one table in the
database is required to be displayed. Rows in one table can be joined to
rows of another table according to common values existing in the
corresponding columns, those usually primary key and foreign key
columns.

A view takes takes the output of a query and treats it as a table ;
therefore a view can be thought of as stored query or a virtual table .It
provides an additional level of table security by restricting access to a
predetermined set of rows and / or columns of a table. It hides data
complexity and it simplifies commands for the user because they allow to
select information from multiple tables without actually knowing how to
perform a join.

A view object that gives the user a logical view of data from an
underlying table or tables. The user can perform Insert, Update, and the
Delete operations on the view. The views on which data manipulation can
be done are called Updatable Views.

140

A subquery is a select from where expression that is nested within
another query. Mostly subqueries are used to perform tests for set
membership to make set comparisons and determine set cardinality.

SQL uses in and not in constructs for set membership tests. Nested
subqueries are used to compare sets. SQL uses various comparison
operators such as <, < = , > , > = , =, <>, any, all, and some, etc to
compare sets.

Join is a query in which data is retrieved from two or more table. a
join matches data from two or more tables, based on the values of one or
more columns in each table.

Inner Join returns the matching rows from the tables that are being
joined. You may want both matching and non_matching rows returned for
the tables that are being joined. This kind of an operation is known as an
outer join.

10.7 UNIT END QUESTIONS

1) What are views? Why they can’t be used for updates?

2) Explain following operations w.r.t views : create, drop, update.

3) Explain join operation in SQL.

4) Explain different types of outer join operations with example.

5) Explain database modification using SQL.

6) Explain need for following :
i) View
ii) Null values

10) Compare:
a. Outer join and full outer join
b. Left outer join and right outer join

Text Books:
1. Korth, Slberchatz, Sudarshan, Database System Concepts, 6th

Edition, McGraw Hill

2. Elmasri and Navathe, Fundamentals of Database Systems, 6th

Edition, Pearson education

3. Raghu Ramkrishnan and Johannes Gehrke, Database Management
Systems, TMH

REFERENCES

1. Peter Rob and Carlos Coronel, ― Database Systems Design,
Implementation and Managementǁ, Thomson Learning, 9thEdition.

2. G. K. Gupta : “Database Management Systems”, McGraw – Hill

141

Unit IV

11

TRANSACTION MANAGEMENT

& CONCURRENCY CONTROL

Unit Structure

11.1 ACID properties

11.2 Serializability and concurrency control

11.3 Lock based concurrency control (2PL, Deadlocks)

11.4 Time stamping methods

11.5 Optimistic methods

11.6 Database recovery management.

11.7 Summary

11.8 References

11.9 Unit End Questions

11.1 ACID PROPERTIES

ACID Properties:

A transaction is a very small unit of a program and it may contain

several lowlevel tasks. A transaction in a database system must
maintain Atomicity, Consistency, Isolation, and Durability − commonly
known as ACID properties − in order to ensure accuracy, completeness,
and data integrity.

• Atomicity: This property states that a transaction must be treated as an

atomic unit, that is, either all of its operations are executed or none.
There must be no state in a database where a transaction is left
partially completed. States should be defined either before the
execution of the transaction or after the execution/abortion/failure of
the transaction.

• Consistency: The database must remain in a consistent state after any
transaction. No transaction should have any adverse effect on the data
residing in the database. If the database was in a consistent state before
the execution of a transaction, it must remain consistent after the
execution of the transaction as well.

• Durability: The database should be durable enough to hold all its
latest updates even if the system fails or restarts. If a transaction

142

updates a chunk of data in a database and commits, then the database
will hold the modified data. If a transaction commits but the system
fails before the data could be written on to the disk, then that data will
be updated once the system springs back into action.

• Isolation: In a database system where more than one transaction are
being executed simultaneously and in parallel, the property of isolation
states that all the transactions will be carried out and executed as if it is
the only transaction in the system. No transaction will affect the
existence of any other transaction.

To gain a better understanding of ACID properties and the need for
them, consider a simplified banking system consisting of several accounts
and a set of transactions that access and update those accounts. For the
time being, we assume that the database permanently resides on disk, but
that some portion of it is temporarily residing in main memory.

11.2 SERIALIZABILITY & CONCURRENCY CONTROL

The database system must control concurrent execution of

transactions, to ensure that the database state remains consistent. Before
we examine how the database system can carry out this task, we must first
understand which schedules will ensure consistency, and which schedules
will not.

T1 T2

read(A)

A := A − 50

 read(A)

 temp := A * 0.1

 A := A − temp

 write(A)

 read(B)

write(A)

read(B)

B := B + 50

write(B)

 B := B + temp

 write(B)

Fig. 1 : Schedule 4-n a concurrent schedule.

Since transactions are programs, it is computationally difficult to
determine exactly what operations a transaction performs and how
operations of various transactions interact. For this reason, we shall not
interpret the type of operations that a transaction can perform on a data
item. Instead, we consider only two operations: read and write. We thus
assume that, between a read(Q) instruction and a write (Q) instruction on a
data item Q, a transaction may perform an arbitrary sequence of operations
on the copy of Q that is residing in the local buffer of the transaction.

143

Thus, the only significant operations of a transaction, from a scheduling
point of view, are instructions in schedules, as we do in schedule 3 in
Figure 1.

In this section, we discuss different forms of schedule equivalence;
they lead to the notions of conflict serializability and view serializability.

T1 T2

read(A)

write(A)

 read(A)

 write(A)

read(B)

write(B)

 read(B)

 write(B)

Fig. 2 : Schedule 3showing only the read and write instructions

11.3 LOCK BASED CONCURRENCY CONTROL

A DBMS must be able to ensure that only serializable, recoverable

schedules are allowed, and that no actions of committed transactions are
lost while undoing aborted transactions. A DBMS typically uses a locking
protocol to achieve this. A locking protocolis a set of rules to be followed
by each transaction (and enforced by the DBMS), in order to ensure that
even though actions of several transactions might be interleaved, the net
effect is identical to executing all transactions in some serial order.

Strict Two-Phase Locking (Strict 2PL):

The most widely used locking protocol, called Strict Two-Phase Locking,
or Strict 2PL, has two rules. The first rule is

(i) If a transaction T wants to read (respectively, modify) an object,
it first requests a shared (respectively, exclusive) lock on the object.

Of course, a transaction that has an exclusive lock can also read the
object; an additional shared lock is not required. A transaction that
requests a lock is suspended until the DBMS is able to grant it the
requested lock. The DBMS keeps track of the locks it has granted and
ensures that if a transaction holds an exclusive lock on an object, no
other transaction holds a shared or exclusive lock on the same object.

The second rule in Strict 2PL is:

(ii) All locks held by a transaction are released when the transaction is
completed.

144

Requests to acquire and release locks can be automatically inserted
into transactions by the DBMS; users need not worry about these
details.

In effect the locking protocol allows only ‘safe’ interleavings of

transactions. If two transactions access completely independent parts of
the database, they will be able to concurrently obtain the locks that they
need and proceed merrily on their ways. On the other hand, if two
transactions access the same object, and one of them wants to modify it,

their actions are effectively ordered seriallyall actions of one of these
transactions (the one that gets the lock on the common object first) are
completed before (this lock is released and) the other transaction can
proceed.

We denote the action of a transaction T requesting a shared
(respectively, exclusive) lock on object O as ST (O) (respectively, X(O)),
and omit the subscript denoting the transaction when it is clear from the
context. As an example, consider the schedule shown in figure 2. This
interleaving could result in a state that cannot result from any serial
execution of the three transactions. For instance, T1 could change A from
10 to 20, then T2 (which reads the value 20 for A) could change B from
100 to 200, and then T1 would read the value 200 for B. If run serially,
either T1 or T2 would execute first, and read the values 10 for A and 100
for B: Clearly, the interleaved execution is not equivalent to either serial
execution.

If the Strict 2PL protocol is used, the above interleaving is
disallowed. Let us see why. Assuming that the transactions proceed at the
same relative speed as before, T1 would obtain an exclusive lock on A
first and then read and write A (Figure However, this request cannot be
granted until

T1 T2

X(A)

R(A)

W(A)

Fig. 3 : Schedule Illustrating Strict 2PL

T1 releases its exclusive lock on A, and the DBMS therefore
suspends T2. T1now proceeds to obtain an exclusive lock on B, reads and
writes B, then finally commits, at which time its locks are released. T2’s
lock request is now granted, and it proceeds. In this example the locking
protocol results in a serial execution of the two transactions. In general,
however, the actions of different transactions could be interleaved. As an
example, consider the interleaving of two transactions shown in Figure
18.6, which is permitted by the Strict 2PL protocol.

145

Deadlock:

In a multi-process system, deadlock is an unwanted situation that
arises in a shared resource environment, where a process indefinitely waits
for a resource that is held by another process.

For example, assume a set of transactions {T0, T1, T2, ...,Tn}. T0
needs a resource X to complete its task. Resource X is held by T1, and T1
is waiting for a resource Y, which is held by T2. T2 is waiting for resource
Z, which is held by T0. Thus, all the processes wait for each other to
release resources. In this situation, none of the processes can finish their
task. This situation is known as a deadlock.

Deadlocks are not healthy for a system. In case a system is stuck in

a deadlock, the transactions involved in the deadlock are either rolled back
or restarted.

Deadlock Prevention:

For large database, deadlock prevention method is suitable. A
deadlock can be prevented if the resources are allocated in such a way that
deadlock never occur. The DBMS analyzes the operations whether they
can create deadlock situation or not, If they do, that transaction is never
allowed to be executed.

Deadlock prevention mechanism proposes two schemes :

Wait-Die Scheme:

In this scheme, if a transaction requests to lock a resource (data
item), which is already held with a conflicting lock by another transaction,
then one of the two possibilities may occur −

• If TS(Ti) < TS(Tj) − that is Ti, which is requesting a conflicting lock, is
older than Tj − then Ti is allowed to wait until the data-item is
available.

• If TS(Ti) > TS(tj) − that is Ti is younger than Tj − then Ti dies. Ti is
restarted later with a random delay but with the same timestamp.

This scheme allows the older transaction to wait but kills the younger one.

Wound-Wait Scheme:

In this scheme, if a transaction requests to lock a resource (data item),
which is already held with conflicting lock by some another transaction,
one of the two possibilities may occur −

• If TS(Ti) < TS(Tj), then Ti forces Tj to be rolled back − that is Ti
wounds Tj. Tj is restarted later with a random delay but with the same
timestamp.

146

• If TS(Ti) > TS(Tj), then Ti is forced to wait until the resource is
available.

This scheme, allows the younger transaction to wait; but when an

older transaction requests an item held by a younger one, the older
transaction forces the younger one to abort and release the item.
In both the cases, the transaction that enters the system at a later stage is
aborted.

Deadlock Detection:

A simple way to detect a state of deadlock is with the help of wait-

for graph. This graph is constructed and maintained by the system. One
node is created in the wait-for graph for each transaction that is currently
executing. Whenever a transaction Ti is waiting to lock an item X that is
currently locked by a transaction Tj, a directed edge (Ti->Tj).is created in
the wait-for graph. When Tj releases the lock(s) on the items that Ti was
waiting for, the directed edge is dropped from the wait-for graph. We have
a state of deadlock if and only if the wait-for graph has a cycle. Then each
transaction involved in the cycle is said to be deadlocked. To detect
deadlocks, the system needs to maintain the wait for graph, and
periodically to invoke an algorithm that searches for a cycle in the graph.

To illustrate these concepts, consider the following wait-for graph in
figure. Here:

Transaction T25 is waiting for transactions T26 and T27.

Transactions T27 is waiting for transaction T26.

Transaction T26 is waiting for transaction T28.

This wait-for graph has no cycle, so there is no deadlock state.
Suppose now that transaction T28 is requesting an item held by T27. Then
the edge T28 ----------->T27 is added to the wait -for graph, resulting in a
new system state as shown in figure.

147

This time the graph contains the cycle.
T26------>T28------->T27----------->T26

It means that transactions T26, T27 and T28 are all deadlocked.

Invoking the deadlock detection algorithm

The invoking of deadlock detection algorithm depends on two factors:

• How often does a deadlock occur?

• How many transactions will be affected by the deadlock?

If deadlocks occur frequently, then the detection algorithm should
be invoked more frequently than usual. Data items allocated to deadlocked
transactions will be unavailable to other transactions until the deadlock
can be broken. In the worst case, we would invoke the detection algorithm
every time a request for allocation could not be granted immediately.

Deadlock Recovery:

When a detection algorithm determines that a deadlock exists, the
system must recover from the deadlock. The most common solution is to
roll back one or more transactions to break the deadlock. Choosing which
transaction to abort is known as Victim Selection.

Choice of Deadlock victim:

In below wait-for graph transactions T26, T28 and T27 are
deadlocked. In order to remove deadlock one of the transaction out of
these three transactions must be roll backed.

We should roll back those transactions that will incur the minimum
cost. When a deadlock is detected, the choice of which transaction to abort
can be made using following criteria:

• The transaction which have the fewest locks

• The transaction that has done the least work

• The transaction that is farthest from completion

148

Rollback:

Once we have decided that a particular transaction must be rolled
back, we must determine how far this transaction should be rolled back.
The simplest solution is a total rollback; Abort the transaction and then
restart it. However it is more effective to roll back the transaction only as
far as necessary to break the deadlock. But this method requires the
system to maintain additional information about the state of all the running
system.

Problem of Starvation:

In a system where the selection of victims is based primarily on
cost factors, it may happen that the same transaction is always picked as a
victim. As a result this transaction never completes can be picked as a
victim only a (small) finite number of times. The most common solution is
to include the number of rollbacks in the cost factor.

11.4 TIME STAMPING METHODS

Timestamp-Based Concurrency Control:

In lock-based concurrency control, conflicting actions of different
transactions are ordered by the order in which locks are obtained, and the
lock protocol extends this ordering on actions to transactions, thereby
ensuring serializability. In optimistic concurrency control, a timestamp
ordering is imposed on transactions, and validation checks that all
conflicting actions occurred in the same order.

Timestamps can also be used in another way: each transaction can
be assigned a time stamp at startup, and we can ensure, at execution time,
that if action aj of transaction Tj conflicts with action aj of transaction Tj,
aj occurs before aj if TS(Ti)<TS(Tj). If an action violates this ordering, the
transaction is aborted and restarted.

To implement this concurrency control scheme, every database
object O, is given a read timestamp RTS(O) and a write
timestampWTS(O). If transaction T wants to read object O, and TS (T)
<WTS(O), the order of this read with respect to the most recent write on O
would violate the timestamp order between this transaction and the writer.
Therefore, T is aborted and restarted with a new, larger timestamp. If
TS(T) >WTS(O), T reads O, and RTS(O) is set to the larger of RTS(O)and

TS(T). (Note that there is a physical changethe change to RTS(O)to
be written to disk and to be recorded in the log for recovery purposes,
even on reads. This write operation is a significant overhead.)

149

Observe that if T is restarted with the same timestamp, it is
guaranteed to be aborted again, due to the same conflict. Contrast this
behavior with the use of timestamps in 2PL for deadlock prevention: there,
transactions were restarted with the same timestamp as before in order to
avoid repeated restarts. This shows that the two uses of timestamps are
quite different and should not be confused.

Next, let us consider what happens when transaction T wants to write
object O:

i) If TS(T)<RTS(O), the write action conflicts with the most recent read
action of O, and T is therefore aborted and restarted.

ii) If TS(T) <WTS(O), a naive approach would be to abort T because its
write action conflicts with the most recent write of O and is out of
timestamp order. It turns out that we can safely ignore such writes and
continue. Ignoring outdated writes is called the Thomas Write Rule.

iii) Otherwise, T writes O and WTS (O) is set to TS(T).

11.5 OPTIMISTIC METHODS

Optimistic concurrency control (OCC) is a concurrency control method
applied to transactional systems such as relational database management
systems and software transactional memory. OCC assumes that multiple
transactions can frequently complete without interfering with each other.
While running, transactions use data resources without acquiring locks on
those resources. Before committing, each transaction verifies that no other
transaction has modified the data it has read. If the check reveals
conflicting modifications, the committing transaction rolls back and can be
restarted.[1] Optimistic concurrency control was first proposed by H.T.
Kung.[2]

OCC is generally used in environments with low data contention.
When conflicts are rare, transactions can complete without the expense of
managing locks and without having transactions wait for other
transactions' locks to clear, leading to higher throughput than other
concurrency control methods. However, if contention for data resources is
frequent, the cost of repeatedly restarting transactions hurts performance
significantly; it is commonly thought[who?] that other concurrency control
methods have better performance under these conditions.[citation needed]
However, locking-based ("pessimistic") methods also can deliver poor
performance because locking can drastically limit effective concurrency
even when deadlocks are avoided.

More specifically, OCC transactions involve these phases:

• Begin: Record a timestamp marking the transaction's beginning.

• Modify: Read database values, and tentatively write changes.

150

• Validate: Check whether other transactions have modified data that
this transaction has used (read or written). This includes transactions
that completed after this transaction's start time, and optionally,
transactions that are still active at validation time.

• Commit/Rollback: If there is no conflict, make all changes take
effect. If there is a conflict, resolve it, typically by aborting the
transaction, although other resolution schemes are possible. Care must
be taken to avoid a TOCTTOU bug, particularly if this phase and the
previous one are not performed as a single atomic operation

11.6 DATABASE RECOVERYMANAGEMENT

A computer system, like any other device, is subject to failure from

a variety of causes: disk crash, power outage, software error, a fire in the
machine room, even sabotage. In any failure, information may be lost.
Therefore, the database system must take actions in advance to ensure that
the atomicity and durability properties of transactions. An integral part of
a database system is a recovery scheme that can restore the database to the
consistent state that existed before the failure. The recovery scheme must
also provide high availability; that is, it must minimize the time for which
the database is not usable after a crash.

Failure Classification:

There are various types of failure that may occur in a system, each

of which needs to be dealt with in a different manner. The simplest type of
failure is one that does not result in the loss of information in the system.
The failures that are more difficult to deal with are those that result in loss
of information. In this chapter, we shall consider only the following types
of failure :

• Transaction failure. There are two types of errors that may cause a
transaction to fail :

− Logical error. The transaction can no longer continue with its
normal execution because of some internal condition, such as bad
input, data not found, overflow, or resource limit exceeded.

− System error. The system has entered an undesirable state (for
example, deadlock), as a result of which a transaction cannot
continue with its normal execution. The transaction, however, can
be re-executed at a later time.

• System crash: There is a hardware malfunction, or a bug in the
database software or the operating system, that causes the loss of the
content of volatile storage, and brings transaction processing to a halt.
The content of nonvolatile storage remains intact, and is not corrupted.

The assumption that hardware errors and bugs in the software bring
the system to a halt, but do not corrupt the nonvolatile storage

151

contents, is known as the fail-stop assumption. Well-designed systems
have numerous internal checks, at the hardware and the software level,
that bring the system to a halt when there is an error. Hence, the fail-
stop assumption is a reasonable one.

• Disk failure: A disk block loses its content as a result of either a head
crash or failure during a data transfer operation. Copies of the data on
other disks, or archival backups on tertiary media, such as tapes, are
used to recover from the failure.

To determine how the system should recover from failures, we

need to identify the failure modes of those devices used for storing data.
Next, we must consider how these failure modes affect the contents of the
database. We can then propose algorithms to ensure database consistency
and transaction atomicity despite failures. These algorithms, known as
recovery algorithms, have two parts:

i) Actions taken during normal transaction processing to ensure that
enough information exists to allow recovery from failures.

ii) Actions taken after a failure to recover the database contents to a state
that ensures database consistency, transaction atomicity, and
durability.

STORAGE STRUCTURE:

The various data items in the database may be stored and accessed

in a number of different storage media. To understand how to ensure the
atomicity and durability properties of a transaction, we must gain a better
understanding of these storage media and their access methods.

Storage Types:

We saw that storage media can be distinguished by their relative

speed, capacity, and resilience to failure, and classified as volatile storage
or nonvolatile storage. We review these terms, and introduce another class
of storage, called stable storage.

• Volatile storage: Information residing in volatile storage does not
usually survive system crashes. Examples of such storage are main
memory and cache memory. Access to volatile storage is extremely
fast, both because of the speed of the memory access itself, and
because it is possible to access any data item in volatile storage
directly.

• Nonvolatile storage: Information residing in nonvolatile storage
survives system crashes. Examples of such storage are disk and
magnetic tapes. Disks are used for online storage, whereas tapes are
used for archival storage. Both, however, are subject to failure (for
example, head crash), which may result in loss of information. At the
current state of technology, nonvolatile storage is slower than volatile

152

storage by several orders of magnitude. This is because disk and tape
devices are electromechanical, rather than based entirely on chips, as is
volatile storage. In database systems, disks are used for most
nonvolatile storage. Other nonvolatile media are normally used only
for backup data. Flash storage, though nonvolatile, has insufficient
capacity for most database systems.

• Stable storage: Information residing in stable storage is never lost
(never should be taken with a grain of salt, since theoretically never
cannot be guaranteed — for example, it is possible, although extremely
unlikely, that a black hole may envelop the earth and permanently
destroy all data!). Although stable storage is theoretically impossible to
obtain, it can be closely approximated by techniques that make data loss
extremely unlikely.

The distinctions among the various storage types are often less

clear in practice than in our presentation. Certain systems provide battery
backup, so that some main memory can survive system crashes and power
failures. Alternative forms of nonvolatile storage, such as optical media,
provide an even higher degree of reliability than do disks.

Stable-Storage Implementation:

To implement stable storage, we need to replicate the needed

information in several nonvolatile storage media (usually disk) with
independent failure modes, and to update the information in a controlled
manner to ensure that failure during data transfer does not damage the
needed information.

Recall that RAID systems guarantee that the failure of a single disk
(even during data transfer) will not result in loss of data. The simplest and
fastest form of RAID is the mirrored disk, which keeps two copies of each
block, on separate disks. Other forms of RAID offer lower costs, but at the
expense of lower performance.

RAID systems, however, cannot guard against data loss due to
disasters such as fires or flooding. Many systems store archival backups of
tapes off-site to guard against such disasters. However, since tapes cannot
be carried off-site continually, updates since the most recent time that tapes
were carried off-site could be lost in such a disaster. More secure systems
keep a copy of each block of stable storage at a remote site, writing it out
over a computer network, in addition to storing the block on a local disk
system. Since the blocks are output to a remote system as and when they are
output to local storage, once an output operation is complete, the output is
not lost, even in the event of a disaster such as a fire or flood.

In the remainder of this section, we discuss how storage media can
be protected from failure during data transfer. Block transfer between
memory and disk storage can result in

153

• Successful completion. The transferred information arrived safely at
its destination.

• Partial failure. A failure occurred in the midst of transfer, and the
destination block has incorrect information.

• Total failure. The failure occurred sufficiently early during the
transfer that the destination block remains intact.

We can extend this procedure easily to allow the use of an arbitrarily
large number of copies of each block of stable storage. Although a
large number of copies reduces the probability of a failure to even
lower than two copies do, it is usually reasonable to simulate stable
storage with only two copies.

Data Access:

The database system resides permanently on nonvolatile storage
(usually disks), and is partitioned into fixed-length storage units called
blocks. Blocks are the units of data transfer to and from disk, and may
contain several data items. We shall assume that no data item spans two or
more blocks. This assumption is realistic for most data-processing
applications, such as our banking example.

Transactions input information from the disk to main memory, and

then output the information back onto the disk. The input and output
operations are done in block units. The blocks residing on the disk are
referred to as physical blocks; the blocks residing temporarily in main
memory are referred to as buffer blocks. The area of memory where
blocks reside temporarily is called the disk buffer.

Block movements between disk and main memory are initiated through
the following two operations:

1) Input (B) transfers the physical block B to main memory.

2) Output (B) transfers the buffer block B to the disk, and replaces the
appropriate physical block there.

Fig. 4 :Block storage operations.

154

Each transaction Tihas a private work area in which copies of all
the data items accessed and updated by Tiare kept. The system creates this
work area when the transaction is initiated; the system removes it when
the transaction either commits or aborts. Each data item X kept in the
work area of transaction Ti is denoted by xi. Transaction Tiinteracts with
the database system by transferring data to and from its work area to the
system buffer. We transfer data by these two operations:

i) read(X) assigns the value of data item X to the local variable xi. It
executes this operation as follows:

 (a) If block BXon which X resides is not in main memory, it issues
input(BX).

 (b) It assigns to xi, the value of X from the buffer block.

ii) write(X) assigns the value of local variable xi to data item X in the

buffer block. It executes this operation as follows:

(a) If block BXon which X resides is not in main memory, it
issues input (BX).

 (b) It assigns the value of xito X in buffer BX.

Note that both operations may require the transfer of a block from
disk to main memory. They do not, however, specifically require the
transfer of a block from main memory to disk.

A buffer block is eventually written out to the disk either because
the buffer manager needs the memory space for other purposes or because
the database system wishes to reflect the change to B on the disk. We shall
say that the database system performs a force-output of buffer B if it
issues an output (B).

When a transaction needs to access a data item X for the first time,
it must execute read (X). The system then performs all updates to X on xi.
After the transaction accesses X for the final time, it must execute
write(X) to reflect the change to X in the database itself.

The output (BX) operation for the buffer block BXon which X
resides does not need to take effect immediately after write (X) is
executed, since the block BXmay contain other data items that are still
being accessed. Thus, the actual output may take place later. Notice that, if
the system crashes after the write(X) operation was executed but before
output(BX) was executed, the new value of X is never written to disk and,
thus, is lost.

Recovery and Atomicity:

Consider again our simplified banking system and transaction

Tithat transfers $50 from account A to account B, with initial values of A
and B being $1000 and $2000, respectively. Suppose that a system crash
has occurred during the execution of Ti,after output(BA) has taken place,

155

but before output(BB) was executed, where BAand denote the buffer blocks
on which A and B reside. Since the memory contents were lost, we do not
know the fate of the transaction; thus, we could invoke one of two possible
recovery procedures:

• Re-execute Ti. This procedure will result in the value of Abecoming
$900, rather than $950. Thus, the system enters an inconsistent state.

• Do not re-execute Ti. The current system state has values of $950 and
$2000 for A and B, respectively. Thus, the system enters an
inconsistent state.

In either case, the database is left in an inconsistent state, and thus

this simple recovery scheme does not work. The reason for this difficulty
is that we have modified the database without having assurance that the
transaction will indeed commit. Our goal is to perform either all or no
database modifications made by Ti. However, if Ti performed multiple
database modifications, several output operations may be required, and a
failure may occur after some of these modifications have been made, but
before all of them are made.

To achieve our goal of atomicity, we must first output information
describing the modifications to stable storage, without modifying the
database itself. As we shall see, this procedure will allow us to output all
the modifications made by a committed transaction, despite failures.

11.7 SUMMARY

This chapter defines a transaction and describes how the database

processes transactions. It also gives an idea about Serializability and
concurrency control, Lock based concurrency control (2PL,
Deadlocks),Time stamping methods and Optimistic methods.

11.8 REFERENCES

1. Database System and Concepts A Silberschatz, H Korth, S

Sudarshan McGraw-Hill Fifth Edition

2. “Fundamentals of Database Systems” by Elmsari, Navathe, 5th
Edition, Pearson Education (2008).

3. “Database Management Systems” by Raghu Ramakrishnan, Johannes
Gehrke, McGraw Hill Publication.

4. “Database Systems, Concepts, Design and Applications” by
S.K.Singh, Pearson Education.

11.9 UNIT END QUESTIONS

Multiple Choice Questions:

156

1. Identify the characteristics of transactions

a) Atomicity

b) Durability

c) Isolation

d) All of the mentioned

2. Which of the following has “all-or-none” property ?

a) Atomicity

b) Durability

c) Isolation

d) All of the mentioned

3. The database system must take special actions to ensure that

transactions operate properly without interference from concurrently
executing database statements. This property is referred to as

a) Atomicity

b) Durability

c) Isolation

d) All of the mentioned

4. Deadlocks are possible only when one of the transactions wants to
obtain a(n) ____ lock on a data item.

a) binary

b) exclusive

c) shared

d) complete

5. The ____ statement is used to end a successful transaction.

a) COMMIT

b) DONE

c) END

d) QUIT

6. If a transaction acquires a shared lock, then it can perform

operation.

a) read

b) write

c) read and write

d) update

157

7. A system is in a ______ state if there exists a set of transactions such
that every transaction in the set is waiting for another transaction in the
set.

a) Idle

b) Waiting

c) Deadlock

d) Ready

8. The deadlock state can be changed back to stable state by using
_____________ statement.

a) Commit

b) Rollback

c) Savepoint

d) Deadlock

9. What are the ways of dealing with deadlock ?

a) Deadlock prevention

b) Deadlock recovery

c) Deadlock detection

d) All of the mentioned

10. The situation where the lock waits only for a specified amount of time

for another lock to be released is

a) Lock timeout

b) Wait-wound

c) Timeout

d) Wait

Answer the following

1. Explain the concept of transaction

2. Describe ACID properties of transaction

3. Explain difference between the terms serial serial schedule and
serializable schedule with suitable examples.

4. Explain View and conflict serializability with suitable example

5. Explain the need of concurrency control in transaction management

6. Write a short note on Two phase locking protocol

7. Explain Timestamp based protocol

8. Show that two phase locking protocol ensures conflict serializability

9. What is Deadlock. Explain Deadlock detection

10. Explain Deadlock Recovery

158

Unit V

12

BEGINNING WITH PL / SQL,

Unit Structure

12.1 Beginning with PL / SQL,

12.2 Identifiers and Keywords,

12.3 Operators,

12.4 Expressions,

12.5 Sequences,

12.6 ControlStructure

12.7 Summary

12.8 References

12.9 Exercise

12.1 BEGINNING WITH PL / SQL

The PL/SQL programming language was developed by Oracle

Corporation in the late 1980s as procedural extension language for SQL
and the Oracle relational database. Following are certain notable facts
about PL/SQL:

• PL/SQL is a completely portable, high-performance transaction-
processing language.

• PL/SQL provides a built-in, interpreted and OS independent
programming environment.

• PL/SQL can also directly be called from the command-line SQL*Plus
interface.

• Direct call can also be made from external programming language
calls to database.

• PL/SQL’s general syntax is based on that of ADA and Pascal
programming language.

• Apart from Oracle, PL/SQL is available in TimesTen in-memory
database and IBM DB2.

159

Features of PL/SQL:

PL/SQL has the following features:

• PL/SQL is tightly integrated with SQL.

• It offers extensive error checking.

• It offers numerous data types.

• It offers a variety of programming structures.

• It supports structured programming through functions and procedures.

• It supports object-oriented programming.

• It supports the development of web applications and server pages.

Advantages of PL/SQL:

PL/SQL has the following advantages:

• SQL is the standard database language and PL/SQL is strongly
integrated with SQL. PL/SQL supports both static and dynamic SQL.
Static SQL supports DML operations and transaction control from
PL/SQL block. In Dynamic SQL, SQL allows embedding DDL
statements in PL/SQL blocks.

• PL/SQL allows sending an entire block of statements to the database at
one time. This reduces network traffic and provides high performance
for the applications.

• PL/SQL gives high productivity to programmers as it can query,
transform, and update data in a database.

• PL/SQL saves time on design and debugging by strong features, such
as exception handling, encapsulation, data hiding, and object-oriented
data types.

• Applications written in PL/SQL are fully portable.

• PL/SQL provides high security level.

• PL/SQL provides access to predefined SQL packages.

• PL/SQL provides support for Object-Oriented Programming.
\

• PL/SQL provides support for developing Web Applications and Server
Pages.

PL SQL blocks can be divide into two broad categories:

1. Anonymous Block:

160

2. Named Block:

Structure of PL SQL block:

1. Anonymous Block:

PL/SQL program units organize the code into blocks. A block
without a name is known as an anonymous block. The anonymous block is
the simplest unit in PL/SQL. It is called anonymous block because it is not
saved in the Oracle database.

An anonymous block is an only one-time use and useful in certain
situations such as creating test units. The following illustrates anonymous
block syntax:

DECLARE]

 Declaration statements;

BEGIN

 Execution statements;

 [EXCEPTION]

 Exception handling statements;

END;
/

The anonymous block has three basic sections that are the
declaration, execution, and exception handling. Only the execution section
is mandatory and the others are optional.

• The declaration section allows you to define data types, structures, and
variables. You often declare variables in the declaration section by
giving them names, data types, and initial values.

• The execution section is required in a block structure and it must have
at least one statement. The execution section is the place where you
put the execution code or business logic code. You can use both
procedural and SQL statements inside the execution section.

• The exception handling section is starting with the EXCEPTION
keyword. The exception section is the place that you put the code to
handle exceptions. You can either catch or handle exceptions in the
exception section.

Example: To create Pl/SQL block which inserts 2 records in student
table

Begin

Insert into student

Values(‘A101’,’Om’,50);

Insert into student

Values(‘A102’,’Ram’,55);

End;

2. Named Block:

Named Block is a type of block which starts with the header section which
specifies the name and the type of the block .There are two types o
namely :-
a) Procedures
b) Functions

Let’s examine the PL/SQL block structure in greater detail.

Header:

Relevant for named blocks only, the header determines the way
that the named block or program must be calle
name, parameter list and return clause(only for function)

Generate output from
DBMS_OUTPUT is a built
debugging information, and send messages from PL/SQL blocks,
subprograms, packages, and tr

Example: BEGIN

dbms_output.put_line(‘Hello’);

dbms_output.put_line(‘Welcome’);

END;
Output: Hello
World
Welcome

161

Values(‘A102’,’Ram’,55);

Named Block is a type of block which starts with the header section which
specifies the name and the type of the block .There are two types of blocks

Let’s examine the PL/SQL block structure in greater detail.

Relevant for named blocks only, the header determines the way
that the named block or program must be called. The header includes the

, parameter list and return clause(only for function)

from a PL/SQL block:
is a built-in package that enables you to display output,

debugging information, and send messages from PL/SQL blocks,
subprograms, packages, and triggers

dbms_output.put_line(‘Hello’); dbms_output.put(‘ World’);
dbms_output.put_line(‘Welcome’);

Named Block is a type of block which starts with the header section which
f blocks

Relevant for named blocks only, the header determines the way
d. The header includes the

in package that enables you to display output,
debugging information, and send messages from PL/SQL blocks,

162

12.2 IDENTIFIERS AND KEYWORDS

The PL/SQL Identifiers PL/SQL identifiers are constants,

variables, exceptions, procedures, cursors, and reserved words. The
identifiers consist of a letter optionally followed by more letters, numerals,
dollar signs, underscores, and number signs and should not exceed 30
characters. By default, identifiers are not case-sensitive. So you can use
integer or INTEGER to represent a numeric value. You cannot use a
reserved keyword as an identifier.

The words listed in this appendix are reserved by PL/SQL. You
should not use them to name program objects such as constants, variables,
cursors, schema objects such as columns, tables, or indexes. These words
reserved by PL/SQL are classified as keywords or reserved words.

12.3 PL/SQL - OPERATORS

An operator is a symbol that tells the compiler to perform specific

mathematical or logical manipulation. PL/SQL language is rich in built-in
operators and provides the following types of operators “

• Arithmetic operators

• Relational operators

• Comparison operators

• Logical operators

• String operators

Here, we will understand the arithmetic, relational, comparison and logical
operators one by one.

Arithmetic Operators:

Following table shows all the arithmetic operators supported by PL/SQL.
Let us assume variable A holds 10 and variable B holds 5, then “

Show Examples

Operator Description Example
+ Adds two operands A + B will give 15

- Subtracts second operand from the first A - B will give 5

* Multiplies both operands A * B will give 50

/ Divides numerator by de-numerator A / B will give 2

**

Exponentiation operator, raises one
operand to the power of other

A ** B will give
100000

163

Relational Operators:

Relational operators compare two expressions or values and return

a Boolean result. Following table shows all the relational operators
supported by PL/SQL. Let us assume variable A holds 10 and variable B
holds 20, the

Operator Description Example

=

Checks if the values of two
operands are equal or not, if yes
then condition becomes true.

(A = B) is not true.

!=<>~=

Checks if the values of two
operands are equal or not, if values
are not equal then condition
becomes true.

(A != B) is true.

>

Checks if the value of left operand
is greater than the value of right
operand, if yes then condition
becomes true.

(A > B) is not true.

<

Checks if the value of left operand
is less than the value of right
operand, if yes then condition
becomes true.

(A < B) is true.

>=

Checks if the value of left operand
is greater than or equal to the value
of right operand, if yes then
condition becomes true.

(A >= B) is not true.

<=

Checks if the value of left operand
is less than or equal to the value of
right operand, if yes then condition
becomes true.

(A <= B) is true

Comparison Operators:

Comparison operators are used for comparing one expression to another.
The result is always either TRUE, FALSE or NULL.

Operator Description Example

LIKE

The LIKE operator
compares a character,
string, or CLOB value
to a pattern and returns
TRUE if the value
matches the pattern
and FALSE if it does
not.

If ‘Zara Ali’ like ‘Z%
A_i’ returns a Boolean
true, whereas, ‘Nuha
Ali’ like ‘Z% A_i’
returns a Boolean
false.

BETWEEN

The BETWEEN
operator tests whether
a value lies in a

If x = 10 then, x
between 5 and 20
returns true, x between

164

specified range. x
BETWEEN a AND b
means that x >= a and
x <= b.

5 and 10 returns true,
but x between 11 and
20 returns false.

IN
.

The IN operator tests
set membership. x IN
(set) means that x is
equal to any member
of set.

If x = ‘m’ then, x in
(‘a’, ‘b’, ‘c’) returns
Boolean false but x in
(‘m’, ‘n’, ‘o’) returns
Boolean true.
IS NULL The IS
NULL operator returns
the BOOLEAN value
TRUE if its operand is
NULL or FALSE if it
is not NULL.
Comparisons involving
NULL values always
yield NULL. If x =
‘m’, then ‘x is null’
returns Boolean false

Logical Operators:

Following table shows the Logical operators supported by
PL/SQL. All these operators work on Boolean operands and produce
Boolean results. Let us assume variable A holds true and variable B holds
false, then:

Operator Description Examples

and

Called the logical AND
operator. If both the operands
are true then condition becomes
true.

(A and B) is false.

or

Called the logical OR Operator.
If any of the two operands is
true then condition becomes
true.

(A or B) is true.

not

Called the logical NOT
Operator. Used to reverse the
logical state of its operand. If a
condition is true then Logical
NOT operator will make it
false.

not (A and B) is
true.

PL/SQL Operator Precedence:

Operator precedence determines the grouping of terms in an
expression. This affects how an expression is evaluated. Certain operators
have higher precedence than others; for example, the multiplication
operator has higher precedence than the addition operator.

165

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator
* has higher precedence than +, so it first gets multiplied with 3*2 and
then adds into 7.

Here, operators with the highest precedence appear at the top of the
table, those with the lowest appear at the bottom. Within an expression,
higher precedence operators will be evaluated first.
The precedence of operators goes as follows: =, <, >, <=, >=, <>, !=, ~=,
^=, IS NULL, LIKE, BETWEEN, IN.

Operator Operation

** Exponentiation

+, - identity, negation

*, / multiplication, division

+, -, || addition, subtraction, concatenation

comparison

NOT logical negation

AND Conjunction

OR Inclusion

12.4 EXPRESSION

An expression is an arbitrarily complex combination of operands

(variables, constants, literals, operators, function calls, and placeholders)
and operators. The simplest expression is a single variable.

Expressions are constructed using operands and operators.

An operand is a variable, constant, literal, or function call that
contributes a value to an expression. An example of a simple arithmetic
expression follows:

-X / 2 + 3

Unary operators such as the negation operator (-) operate on one
operand; binary operators such as the division operator (/) operate on two
operands. PL/SQL has no ternary operators.

The simplest expressions consist of a single variable, which yields
a value directly. PL/SQL evaluates an expression by combining the values
of the operands in ways specified by the operators. An expression always
returns a single value. PL/SQL determines the datatype of this value by
examining the expression and the context in which it appears.

Operator Precedence:

The operations within an expression are done in a particular order
depending on their precedence (priority). Table 2-1 shows the default
order of operations from first to last (top to bottom).

166

Table: Order of Operations

Operator Operation

** exponentiation

+, - identity, negation

*, / multiplication, division

+, -, || addition, subtraction, concatenation

comparison

NOT logical negation

AND conjunction

OR inclusion

12.5 ORACLE / PLSQL: SEQUENCES

This Oracle tutorial explains how to create and drop sequences in

Oracle with syntax and examples.

Description:

In Oracle, you can create an autonumber field by using

sequences. A sequence is an object in Oracle that is used to generate a
number sequence. This can be useful when you need to create a unique
number to act as a primary key.

Create Sequence:

You may wish to create a sequence in Oracle to handle an auto number
field.

Syntax

The syntax to create a sequence in Oracle is:

CREATE SEQUENCE sequence_name

INVALUE value

 MAXVALUE value

 START WITH value

 INCREMENT BY value

 CACHE value;

sequence_name
The name of the sequence that you wish to create.

Example
Let’s look at an example of how to create a sequence in Oracle.

For example:

CREATE SEQUENCE supplier_seq

MINVALUE 1

MAXVALUE 999999999999999999999999999

167

START WITH 1

INCREMENT BY 1

CACHE 20;

This would create a sequence object called supplier_seq. The first

sequence number that it would use is 1 and each subsequent number
would increment by 1 (ie: 2,3,4,...}. It will cache up to 20 values for
performance.

If you omit the MAXVALUE option, your sequence will automatically
default to:

MAXVALUE 999999999999999999999999999

So you can simplify your CREATE SEQUENCE command as follows:

CREATE SEQUENCE supplier_seq

MINVALUE 1

START WITH 1

INCREMENT BY 1

CACHE 20;

Now that you’ve created a sequence object to simulate an
autonumber field, we’ll cover how to retrieve a value from this sequence
object. To retrieve the next value in the sequence order, you need to use
nextval.

For example:

supplier_seq.NEXTVAL;

This would retrieve the next value from supplier_seq.
The nextval statement needs to be used in a SQL statement.

For example:

INSERT INTO suppliers

(supplier_id, supplier_name)

VALUES

(supplier_seq.NEXTVAL, ‘Kraft Foods’);

This insert statement would insert a new record into the suppliers table.
The supplier_id field would be assigned the next number from the

supplier_seq sequence. The
Foods.

Drop Sequence:

Once you have created
that you need to remove it from the database.

Syntax

The syntax to a drop a sequence in Oracle is:

DROP SEQUENCE sequence_name

sequence_name
The name of the sequence that you wish to drop.

Example

Let’s look at an example of how to drop a sequence in Oracle.

For example:

DROP SEQUENCE supplier_seq;

This example would drop the sequence called

PL/SQL Control Structures

Procedural computer programs use the basic control structures

• The selection structure tests a condition, then executes one sequence of
statements instead of another, depending on whether the condition is
true or false. A condition is any variable or expres
BOOLEAN value (TRUE or FALSE).

• The iteration structure executes a sequence of statements repeatedly as
long as a condition holds true.

168

sequence. The supplier_name field would be set to Kraft

Once you have created your sequence in Oracle, you might find
that you need to remove it from the database.

The syntax to a drop a sequence in Oracle is:

sequence_name;

The name of the sequence that you wish to drop.

Let’s look at an example of how to drop a sequence in Oracle.

DROP SEQUENCE supplier_seq;

This example would drop the sequence called supplier_seq.

Structures:

Procedural computer programs use the basic control structures

The selection structure tests a condition, then executes one sequence of
statements instead of another, depending on whether the condition is
true or false. A condition is any variable or expression that returns a
BOOLEAN value (TRUE or FALSE).

The iteration structure executes a sequence of statements repeatedly as
long as a condition holds true.

field would be set to Kraft

your sequence in Oracle, you might find

The selection structure tests a condition, then executes one sequence of
statements instead of another, depending on whether the condition is

sion that returns a

The iteration structure executes a sequence of statements repeatedly as

169

• The sequence structure simply executes a sequence of statements in
the order in which they occur.

12.6 CONTROL STRUCTURES

Testing Conditions: IF and CASE Statements

The IF statement executes a sequence of statements depending on
the value of a condition. There are three forms of IF statements: IF-THEN,
IF-THEN-ELSE, and IF-THEN-ELSIF.

The CASE statement is a compact way to evaluate a single
condition and choose between many alternative actions. It makes sense to
use CASE when there are three or more alternatives to choose from.

• Using the IF-THEN Statement:

The simplest form of IF statement associates a condition with a
sequence of statements enclosed by the keywords THEN and END IF (not
ENDIF)

The sequence of statements is executed only if the condition is
TRUE. If the condition is FALSE or NULL, the IF statement does
nothing. In either case, control passes to the next statement.

Example: Using a Simple IF-THEN Statement

DECLARE

sales NUMBER(8,2) := 1010

quota NUMBER(8,2) := 10000;

bonus NUMBER(6,2);

emp_id NUMBER(6) := 120;

BEGIN

IF sales > (quota + 200) THEN

bonus := (sales - quota)/4;

UPDATE employees SET salary = salary + bonus WHERE employee_id
= emp_id;

END IF;

END;
/

• Using CASE Statements:

Like the IF statement, the CASE statement selects one sequence of
statements to execute. However, to select the sequence, the CASE
statement uses a selector rather than multiple Boolean expressions.

170

selector is an expression whose value is used to select one of several
alternatives.

Example: Using the CASE-WHEN Statement

DECLARE

grade CHAR(1);

BEGIN

grade := ‘B’;

CASE grade

WHEN ‘A’ THEN DBMS_OUTPUT.PUT_LINE(‘Excellent’);

WHEN ‘B’ THEN DBMS_OUTPUT.PUT_LINE(‘Very Good’);

WHEN ‘C’ THEN DBMS_OUTPUT.PUT_LINE(‘Good’);

WHEN ‘D’ THEN DBMS_OUTPUT.PUT_LINE(‘Fair’);

WHEN ‘F’ THEN DBMS_OUTPUT.PUT_LINE(‘Poor’);

ELSE DBMS_OUTPUT.PUT_LINE(‘No such grade’);

END CASE;

END;

Controlling Loop Iterations: LOOP and EXIT Statements:

LOOP statements execute a sequence of statements multiple times.
There are three forms of LOOP statements: LOOP, WHILE-LOOP, and
FOR-LOOP.

• Using the LOOP Statement:

The simplest form of LOOP statement is the basic loop, which encloses a
sequence of statements between the keywords LOOP and END LOOP, as
follows:

LOOP

sequence_of_statements

END LOOP;

With each iteration of the loop, the sequence of statements is
executed, then control resumes at the top of the loop. You use an EXIT
statement to stop looping and prevent an infinite loop. You can place one
or more EXIT statements anywhere inside a loop, but not outside a loop.
There are two forms of EXIT statements: EXIT and
EXIT-WHEN.

171

• Using the EXIT Statement:

The EXIT statement forces a loop to complete unconditionally.

When an EXIT statement is encountered, the loop completes immediately
and control passes to the next statement.

• Using the EXIT-WHEN Statement:

The EXIT-WHEN statement lets a loop complete conditionally.
When the EXIT statement is encountered, the condition in the WHEN
clause is evaluated. If the condition is true, the loop completes and control
passes to the next statement after the loop.

• Labeling a PL/SQL Loop:

Like PL/SQL blocks, loops can be labeled. The optional label, an
undeclared identifier enclosed by double angle brackets, must appear at
the beginning of the LOOP statement. The label name can also appear at
the end of the LOOP statement. When you nest labeled loops, use ending
label names to improve readability.

• Using the WHILE-LOOP Statement:

The WHILE-LOOP statement executes the statements in the loop body as
long as a condition is true:

WHILE condition LOOP

sequence_of_statements

END LOOP;

Using the FOR-LOOP Statement:

Simple FOR loops iterate over a specified range of integers. The
number of iterations is known before the loop is entered. A double dot (..)
serves as the range operator. The range is evaluated when the FOR loop is
first entered and is never re-evaluated. If the lower bound equals the
higher bound, the loop body is executed once.

Example: Using a Simple FOR..LOOP Statement:

DECLARE

p NUMBER := 0;

BEGIN

FOR k IN 1..500 LOOP — calculate pi with 500 terms
p := p + (((-1) ** (k + 1)) / ((2 * k) - 1));

END LOOP;

172

p := 4 * p;

DBMS_OUTPUT.PUT_LINE(‘pi is approximately : ‘ || p); — print
result
END;Sequential Control: GOTO and NULL Statements

The GOTO statement is seldom needed. Occasionally, it can

simplify logic enough to warrant its use. The NULL statement can
improve readability by making the meaning and action of conditional
statements clear.

Overuse of GOTO statements can result in code that is hard to
understand and maintain. Use GOTO statements sparingly. For example,
to branch from a deeply nested structure to an error-handling routine, raise
an exception rather than use a GOTO statement.

• Using the GOTO Statement:

The GOTO statement branches to a label unconditionally. The
label must be unique within its scope and must precede an executable
statement or a PL/SQL block. When executed, the GOTO statement
transfers control to the labeled statement or block. The labeled statement
or block can be down or up in the sequence of statements.

Example : Using a Simple GOTO Statement

DECLARE

p VARCHAR2(30);

n PLS_INTEGER := 37; — test any integer > 2 for prime

BEGIN

FOR j in 2..ROUND(SQRT(n)) LOOP

IF n MOD j = 0 THEN -- test for prime

p := ‘ is not a prime number’; — not a prime number

GOTO print_now;

END IF;

END LOOP;

p := ‘ is a prime number’;

<<print_now>>

DBMS_OUTPUT.PUT_LINE(TO_CHAR(n) || p);

END;

/

173

• Using the NULL Statement:

The NULL statement does nothing, and passes control to the next
statement. Some languages refer to such an instruction as a no-op (no
operation).Example: Using the NULL Statement to Show No Action

DECLARE

v_job_id VARCHAR2(10);

v_emp_id NUMBER(6) := 110;

BEGIN

SELECT job_id INTO v_job_id FROM employees WHERE employee_id
= v_emp_id;

IF v_job_id = ‘SA_REP’ THEN

UPDATE employees SET commission_pct = commission_pct * 1.2;

ELSE

NULL; — do nothing if not a sales representative

END IF;

END;

12.7 SUMMARY

This chapter surveys the main features of PL/SQL and points out

the advantages they offer. It also acquaints you with the basic concepts
behind PL/SQL and the general appearance of PL/SQL programs. You see
how PL/SQL bridges the gap between database technology and procedural
programming languages.

12.8 REFERENCES

1. Database System and Concepts A Silberschatz, H Korth, S Sudarshan

McGraw-Hill Fifth Edition

2. “Fundamentals of Database Systems” by Elmsari, Navathe, 5th
Edition, Pearson Education (2008).

3. “Database Management Systems” by Raghu Ramakrishnan, Johannes
Gehrke, McGraw Hill Publication.

4. “Database Systems, Concepts, Design and Applications” by
S.K.Singh, Pearson Education.

12.9 UNIT END QUESTIONS

MCQs:

1. Which of the following is not a section in PLSQL Block?
a. Endif
b. Begin

174

c. Declare
d. Exception

2. _________blocks are PL/SQL blocks which do not have any names
assigned to them.
a. Consistent
b. Named
c. Anonymous
d. Begin

3. ___________blocks are PLSQL blocks have a specific or unique name
assigned to them.
a. Consistent
b. Named
c. Anonymous
d. Begin

4. Named PLSQL block always start with ___________ Keyword
a. Declare
b. Begin
c. Create
d. End

5. Words used in a PL/SQL block are called ____________
a. Numerals
b. Symbols
c. Compound Units
d. Lexical Units

6. Assignment Operator in PLSQL block
a. (:!=)
b. (:=)
c. (:==)
d. (:&&)

7. Which of the following is not an executable statements supported by
PLSQL?
a. Insert
b. Grant
c. Select
d. Update

8. _________uses a selector which is an expression whose value is used
to return one of the several alternatives.
a. IF Else
b. Searched Case
c. Loop
d. CASE

9. Which of the following loop is not supported by PLSQL?
a. While
b. Do While
c. For
d. Loop

175

10. Which of the following is syntactically correct for declaring and
assigning value e to a variable in PLSQL Block?
a. a int=5;
b. b =: int 7;
c. c int :=10;
d. d int=12:;

Answer the following:

1. Explain advantages of PL/SQL

2. Explain PL/SQL block structure.

3. Explain scalar data types

4. Explain the following:

i)%Type

ii) % Rowtype

iii) Sequences in PL/SQL

iv) Bind Variables

5. Explain various data types conversion functions with examples.

 6. Write a PL/SQL block to demonstrate cube of an input number

7. Write a PL/SQL program to demonstrate the use of basic arithmetic
operators on the numbers input by user.

8. Write a PL/SQL program to find out square of inputed number by the
user.

 9. Explain various looping/iterative constructs in PL/SQL. 9. 10. Explain
various conditional statements in PL/SQL.

176

13

CURSORS, PROCEDURE AND

FUNCTIONS

Unit Structure

13.1 Cursors and Transaction,

13.2 Collections and composite data types,

13.3 Procedures and Functions,

13.4 Exceptions Handling,

13.5 Packages,

13.6 With Clause and Hierarchical

13.7 Retrieval, Triggers.

13.8 Summary

13.9 References

13.10 Unit End Questions

13.1 PL/SQL-CURSORS

Oracle creates a memory area, known as the context area, for

processing an SQL statement, which contains all the information needed
for processing the statement; for example, the number of rows processed,
etc.

A cursor is a pointer to this context area. PL/SQL controls the
context area through a cursor. A cursor holds the rows (one or more)
returned by a SQL statement. The set of rows the cursor holds is referred
to as the active set.

You can name a cursor so that it could be referred to in a program
to fetch and process the rows returned by the SQL statement, one at a
time. There are two types of cursors “

• Implicit cursors

• Explicit cursors

Implicit Cursors:

Implicit cursors are automatically created by Oracle whenever an

SQL statement is executed, when there is no explicit cursor for the
statement. Programmers cannot control the implicit cursors and the
information in it.

177

Whenever a DML statement (INSERT, UPDATE and DELETE) is
issued, an implicit cursor is associated with this statement. For INSERT
operations, the cursor holds the data that needs to be inserted. For
UPDATE and DELETE operations, the cursor identifies the rows that
would be affected.

In PL/SQL, you can refer to the most recent implicit cursor as the SQL
cursor, which always has attributes such as %FOUND, %ISOPEN,
%NOTFOUND, and
%ROWCOUNT. The SQL cursor has additional attributes,
%BULK_ROWCOUNT and %BULK_EXCEPTIONS, designed for
use with the FORALL statement.

The following table provides the description of the most used attributes

Sr. No

Attribute & Description

1.

%FOUNDReturns TRUE if an INSERT, UPDATE, or
DELETE statement affected one or more rows or a SELECT
INTO statement returned one or more rows. Otherwise, it
returns FALSE.

2.

%NOTFOUND The logical opposite of %FOUND. It returns
TRUE if an INSERT, UPDATE, or DELETE statement
affected no rows, or a SELECT INTO statement returned no
rows. Otherwise, it returns FALSE.

3.

%ISOPEN Always returns FALSE for implicit cursors,
because Oracle closes the SQL cursor automatically after
executing its associated SQL statement.

4.

%ROWCOUNT Returns the number of rows affected by an
INSERT, UPDATE, or DELETE statement, or returned by a
SELECT INTO statement.
Any SQL cursor attribute will be accessed as
sql%attribute_name as shown below in the example.

Example:

We will be using the CUSTOMERS table we had created and used in the
previous chapter

Select * from customers;

+----+--------------+------+-------------+-------------+
| ID | NAME | AGE | ADDRESS | SALARY | +-
+----+--------------+------+-------------+-------------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
+----+--------------+------+-------------+-------------+

178

The following program will update the table and increase the salary of
each customer by 500 and use the SQL%ROWCOUNT attribute to
determine the number of rows affected

DECLARE

 total_rows number(2);

BEGIN

 UPDATE customers

 SET salary = salary + 500;

IF sql%notfound THEN

 dbms_output.put_line(‘no customers selected’);

ELSIF sql%found THEN

 total_rows := sql%rowcount;

 dbms_output.put_line(total_rows || ‘ customers selected ‘);

 END IF;

END;

/

When the above code is executed at the SQL prompt, it produces the
following result

6 customers selected

PL/SQL procedure successfully completed

If you check the records in customers table, you will find that the rows
have been updated “

Select * from customers;

+----+------------+-------+-----------------+--------+
| ID | NAME | AGE | ADDRESS | SALARY | +-
-----------+--------+------------+------------+------------+
| 1 | Ramesh | 32 | Ahmedabad | 2500.00 | |
2 | Khilan | 25 | Delhi | 2000.00 |
| 3 | kaushik | 23 | Kota | 2500.00 |
| 4 | Chaitali | 25 | Mumbai | 7000.00 | |
5 | Hardik | 27 | Bhopal | 9000.00 | |
6 | Komal | 22 | MP | 5000.00 |
-------+------------+------------+------------+

Explicit Cursors:

Explicit cursors are programmer-defined cursors for gaining more
control over the context area. An explicit cursor should be defined in the

179

declaration section of the PL/SQL Block. It is created on a SELECT
Statement which returns more than one row.

The syntax for creating an explicit cursor is

CURSOR cursor_name IS select_statement;

Working with an explicit cursor includes the following steps:

• Declaring the cursor for initializing the memory

• Opening the cursor for allocating the memory

• Fetching the cursor for retrieving the data

• Closing the cursor to release the allocated memory

Declaring the Cursor:

Declaring the cursor defines the cursor with a name and the associated
SELECT statement. For example:

CURSOR c_customers IS

SELECT id, name, address FROM customers;

Opening the Cursor:

Opening the cursor allocates the memory for the cursor and makes
it ready for fetching the rows returned by the SQL statement into it. For
example, we will open the above defined cursor as follows:

OPEN c_customers;

Fetching the Cursor:

Fetching the cursor involves accessing one row at a time. For
example, we will fetch rows from the above-opened cursor as follows:

FETCH c_customers INTO c_id, c_name, c_addr;

Closing the Cursor:

Closing the cursor means releasing the allocated memory. For
example, we will close the above-opened cursor as follows:

CLOSE c_customers;
Example:

Following is a complete example to illustrate the concepts of explicit
cursors &minua;

180

DECLARE

c_id customers.id%type;

c_name customerS.No.ame%type;

c_addr customers.address%type;

CURSOR c_customers is

 SELECT id, name, address FROM customers;

BEGIN

 OPEN c_customers;

 LOOP

FETCH c_customers into c_id, c_name, c_addr;

 EXIT WHEN c_customers%notfound;

 dbms_output.put_line(c_id || ‘ ‘ || c_name || ‘ ‘ || c_addr);

END LOOP;

 CLOSE c_customers;

END;

/

When the above code is executed at the SQL prompt, it produces the
following result:

1. Ramesh Ahmedabad

2. Khilan Delhi

3. kaushik Kota

4. Chaitali Mumbai

5. Hardik Bhopal

6. Komal MP

PL/SQL procedure successfully completed.

PL/SQL-Transactions:

A database transaction is an atomic unit of work that may consist
of one or more related SQL statements. It is called atomic because the
database modifications brought about by the SQL statements that
constitute a transaction can collectively be either committed, i.e., made
permanent to the database or rolled back (undone) from the database.

A successfully executed SQL statement and a committed
transaction are not same. Even if an SQL statement is executed
successfully, unless the transaction containing the statement is committed,
it can be rolled back and all changes made by the statement(s) can be
undone.

181

Transaction:

A transaction has a beginning and an end. A transaction starts when one
of the following events take place

• The first SQL statement is performed after connecting to the database.

• At each new SQL statement issued after a transaction is completed.

A transaction ends when one of the following events take place “

• A COMMIT or a ROLLBACK statement is issued.

• A DDL statement, such as CREATE TABLE statement, is issued;
because in that case a COMMIT is automatically performed.

• A DCL statement, such as a GRANT statement, is issued; because in
that case a COMMIT is automatically performed.

• User disconnects from the database.

• User exits from SQL*PLUS by issuing the EXIT command, a
COMMIT is automatically performed.

• SQL*Plus terminates abnormally, a ROLLBACK is automatically
performed.

• A DML statement fails; in that case a ROLLBACK is automatically
performed for undoing that DML statement.

Committing a Transaction:

A transaction is made permanent by issuing the SQL command
COMMIT. The general syntax for the COMMIT command is

COMMIT

For example,

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (1, ‘Ramesh’, 32, ‘Ahmedabad’, 2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (2, ‘Khilan’, 25, ‘Delhi’, 1500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (3, ‘kaushik’, 23, ‘Kota’, 2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

182

VALUES (4, ‘Chaitali’, 25, ‘Mumbai’, 6500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (5, ‘Hardik’, 27, ‘Bhopal’, 8500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (6, ‘Komal’, 22, ‘MP’, 4500.00);

COMMIT;

Rolling Back Transactions:

Changes made to the database without COMMIT could be undone
using the ROLLBACK command.

The general syntax for the ROLLBACK command is:

ROLLBACK [TO SAVEPOINT < savepoint_name>];

When a transaction is aborted due to some unprecedented situation,
like system failure, the entire transaction since a commit is automatically
rolled back. If you are not using savepoint, then simply use the following
statement to rollback all the changes

ROLLBACK;

Savepoints:

Savepoints are sort of markers that help in splitting a long
transaction into smaller units by setting some checkpoints. By setting
savepoints within a long transaction, you can roll back to a checkpoint if
required. This is done by issuing the SAVEPOINT command.

The general syntax for the SAVEPOINT command is

SAVEPOINT < savepoint_name >;

For example:

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (7, ‘Rajnish’, 27, ‘HP’, 9500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (8, ‘Riddhi’, 21, ‘WB’, 4500.00);

SAVEPOINT sav1;

UPDATE CUSTOMERS

SET SALARY = SALARY + 1000;

183

ROLLBACK TO sav1;
UPDATE CUSTOMERS

SET SALARY = SALARY + 1000

WHERE ID = 7;

UPDATE CUSTOMERS

SET SALARY = SALARY + 1000

WHERE ID = 8;

COMMIT;

ROLLBACK TO sav1: This statement rolls back all the changes up to
the point, where you had marked savepoint sav1.

After that, the new changes that you make will start.

Automatic Transaction Control

To execute a COMMIT automatically whenever an INSERT,
UPDATE or DELETE command is executed, you can set the
AUTOCOMMIT environment variable as:

SET AUTOCOMMIT ON;

You can turn-off the auto commit mode using the following command “

SET AUTOCOMMIT OFF;

13.2 COLLECTIONS AND COMPOSITE DATA TYPES

PL/SQL-Collections

A collection is an ordered group of elements having the same data
type. Each element is identified by a unique subscript that represents its
position in the collection.

PL/SQL provides three collection types

• Index-by tables or Associative array

• Nested table

• Variable-size array or Varray

Oracle documentation provides the following characteristics for each type
of collections:

184

Collection
Type

Number of
Elements

Subscript
Type

Dense
or
Sparse

Where
Created

Can Be
Object
Type
Attribute

Associative
array (or
index-by
table)

Unbounded String or
integer

Either Only in
PL/SQL
block

No

Nested table

Unbounded Integer Starts
dense,
can
become
sparse

Either in
PL/SQL
block or
at
schema
level

Yes

Variablesize
array
(Varray)

Bounded Integer Always
dense

Either in
PL/SQL
block or
at
schema
level

Yes

We have already discussed varray in the chapter ‘PL/SQL

arrays’. In this chapter, we will discuss the PL/SQL tables.

 Both types of PL/SQL tables, i.e., the index-by tables and the
nested tables have the same structure and their rows are accessed using the
subscript notation. However, these two types of tables differ in one aspect;
the nested tables can be stored in a database column and the index-by
tables cannot.

Index-ByTable:

An index-by table (also called an associative array) is a set of
key-valuepairs. Each key is unique and is used to locate the corresponding
value. The key can be either an integer or a string.

An index-by table is created using the following syntax. Here, we
are creating an index-by table named table_name, the keys of which will
be of the subscript_type and associated values will be of the element_type

TYPE type_name IS TABLE OF element_type [NOT NULL] INDEX BY
subscript_type;

table_name type_name;

Example:
Following example shows how to create a table to store integer values
along with names and later it prints the same list of names.

185

DECLARE

 TYPE salary IS TABLE OF NUMBER INDEX BY
 VARCHAR2(20);

 salary_list salary;

 nam e VARCHAR2(20);

BEGIN

— adding elements to the table
salary_list(‘Rajnish’) := 62000;
salary_list(‘Minakshi’) := 75000;
salary_list(‘Martin’) := 100000;
salary_list(‘James’) := 78000;

— printing the table

name := salary_list.FIRST;

WHILE name IS NOT null LOOP

 dbms_output.put_line

 (‘Salary of ‘ || name || ‘ is ‘ || TO_CHAR(salary_list(name)));

 name := salary_list.NEXT(name);

END LOOP;

END;

/

When the above code is executed at the SQL prompt, it produces the
following result:

Salary of James is 78000

Salary of Martin is 100000

Salary of Minakshi is 75000

Salary of Rajnish is 62000

PL/SQL procedure successfully completed

Example:

Elements of an index-by table could also be a %ROWTYPE of
any database table or %TYPE of any database table field. The following
example illustrates the concept. We will use the CUSTOMERS table
stored in our database as:

Select * from customers
+----+---------+---+------------+-----------+

| ID | NAME | AGE | ADDRESS | SALARY |
+------+---------------+-----+------------+----------+
| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |
| 2 | Khilan | 25 | Delhi | 1500.00 |

186

3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
+----+------------+----------------+--------------+-------------+

DECLARE
CURSOR c_customers is
select name from customers;

TYPE c_list IS TABLE of customers.Name%type INDEX BY
binary_integer;

 name_list c_list;

 counter integer :=0;

BEGIN

 FOR n IN c_customers LOOP

 counter := counter +1;

 name_list(counter) := n.name;

dbms_output.put_line(‘Customer(‘||counter||’):’||name_lis
t(counter));

 END LOOP;

END;

/

When the above code is executed at the SQL prompt, it produces the
following result:

Customer(1): Ramesh

Customer(2): Khilan

Customer(3): kaushik

Customer(4): Chaitali

Customer(5): Hardik

Customer(6): Komal

PL/SQL procedure successfully completed

NestedTables:

A nested table is like a one-dimensional array with an arbitrary
number of elements. However, a nested table differs from an array in the
following aspects:

• An array has a declared number of elements, but a nested table does
not. The size of a nested table can increase dynamically.

• An array is always dense, i.e., it always has consecutive subscripts. A
nested array is dense initially, but it can become sparse when elements
are deleted from it.

187

A nested table is created using the following syntax “

TYPE type_name IS TABLE OF element_type [NOT NULL];

table_name type_name;

This declaration is similar to the declaration of an index-by table, but
there is no INDEX BY clause.

A nested table can be stored in a database column. It can further be
used for simplifying SQL operations where you join a single-column table
with a larger table. An associative array cannot be stored in the database.

Example:

The following examples illustrate the use of nested table:

DECLARE

 TYPE names_table IS TABLE OF VARCHAR2(10);

 TYPE grades IS TABLE OF INTEGER;

 names names_table;

 marks grades;

 total integer;

BEGIN

 names := names_table(‘Kavita’, ‘Pritam’, ‘Ayan’, ‘Rishav’, ‘Aziz’);

 marks:= grades(98, 97, 78, 87, 92);

 total := names.count;

 dbms_output.put_line(‘Total ‘|| total || ‘ Students’);

FOR i IN 1 .. total LOOP

 dbms_output.put_line(‘Student:’||names(i)||’, Marks:’ || marks(i));

end loop;

END;

/

When the above code is executed at the SQL prompt, it produces the
following result:

Total 5 Students
Student:Kavita, Marks:98
Student:Pritam, Marks:97
Student:Ayan, Marks:78
Student:Rishav, Marks:87
Student:Aziz, Marks:92

PL/SQL procedure successfully completed.

188

Example

Elements of a nested table can also be a %ROWTYPE of any database
table or %TYPE of any database table field. The following example
illustrates the concept. We will use the CUSTOMERS table stored in our
database as:

Select * from customers;
+----+--------------+-----+-------------+-------------+
ID | NAME | AGE | ADDRESS | SALARY |
+----+--------------+-----+-------------+-------------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhiv	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.0
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
+----+--------------+-----+-------------+-------------+
DECLARE

 CURSOR c_customers is

 SELECT name FROM customers;

 TYPE c_list IS TABLE of customerS.No.ame%type;

 name_list c_list := c_list();

 counter integer :=0;

BEGIN

 FOR n IN c_customers LOOP

 counter := counter +1;

 name_list.extend;

 name_list(counter) := n.name;

ms_output.put_line(‘Customer(‘||counter||’):’||name_list(counter));

 END LOOP;

 END;

/

When the above code is executed at the SQL prompt, it produces the
following result:

Customer(1): Ramesh
Customer(2): Khilan
Customer(3): kaushik
Customer(4): Chaitali
Customer(5): Hardik
Customer(6): Komal

PL/SQL procedure successfully completed.

189

Collection Methods:

PL/SQL provides the built-in collection methods that make
collections easier to use. The following table lists the methods and their
purpose:

Sr. No Method Name & Purpose
1 EXISTS(n)

Returns TRUE if the nth element in a collection exists;
otherwise returns FALSE.

2 COUNT
Returns the number of elements that a collection currently
contains.

3 LIMIT
Checks the maximum size of a collection.

4 FIRST
Returns the first (smallest) index numbers in a collection that
uses the integer subscripts

5

LAST
Returns the last (largest) index numbers in a collection that
uses the integer subscripts.

6

PRIOR(n)
Returns the index number that precedes index n in a
collection.

7

NEXT(n)
Returns the index number that succeeds index n.

8

EXTEND
Appends one null element to a collection.

9 EXTEND(n)
Appends n null elements to a collection

10

EXTEND(n,i)
Appends n copies of the ith element to a collection.

11

TRIM
Removes one element from the end of a collection.

12

TRIM(n)
Removes n elements from the end of a collection.

13

DELETE
Removes all elements from a collection, setting COUNT to 0.

14 DELETE(n)
Removes the nth element from an associative array with a
numeric key or a nested table. If the associative array has a
string key, the element corresponding to the key value is
deleted. If n is null, DELETE(n) does nothing.

15

DELETE(m,n)
Removes all elements in the range m..n from an associative
array or nested table. If m is larger than n or if m or n is null,
DELETE(m,n)does nothing.

190

Collection Exceptions:

The following table provides the collection exceptions and when they are
raised:

Collection Exception Raised in Situations
COLLECTION_IS_NULL

You try to operate on an atomically
null collection.

NO_DATA_FOUND

A subscript designates an element
that was deleted, or a nonexistent
element of an associative array.

SUBSCRIPT_BEYOND_COUNT

A subscript exceeds the number of
elements in a collection.

SUBSCRIPT_OUTSIDE_LIMIT

A subscript is outside the allowed
range.

VALUE_ERROR

A subscript is null or not
convertible to the key type. This
exception might occur if the key is
defined as a PLS_INTEGER
range, and the subscript is outside
this range.

Composite Data Type:

A composite data type stores values that have internal
components. You can pass entire composite variables to subprograms as
parameters, and you can access internal components of composite
variables individually. Internal components can be either scalar or
composite. You can use scalar components wherever you can use scalar
variables. PL/SQL lets you define two kinds of composite data types,
collection and record. You can use composite components wherever you
can use composite variables of the same type.

Composite data types falls in two categories:
1) PL/SQL Records
2) PL/SQL Collections

PL/SQL Records:

Records are another type of datatypes which oracle allows to be
defined as a placeholder. Records are composite datatypes, which means it
is a combination of different scalar datatypes like char, varchar, number
etc. Each scalar data types in the record holds a value. A record can be
visualized as a row of data. It can contain all the contents of a row.

The General Syntax to define a composite datatype is:

TYPE record_type_name IS RECORD

(first_col_name column_datatype,

191

second_col_name column_datatype, ...);

record_type_name – it is the name of the composite type you want to
define.

first_col_name, second_col_name, etc.,- it is the names the fields/columns
within the record.

column_datatype defines the scalar datatype of the fields.

There are different ways you can declare the datatype of the fields.

1) You can declare the field in the same way as you declare the fieds
while creating the table.

2) If a field is based on a column from database table, you can define the
field_type as follow

col_name table_name.column_name%type;

The General Syntax to declare a record of a user-defined datatype is:
record_name record_type_name;

If all the fields of a record are based on the columns of a table, we can
declare the record as follows:

record_name table_name%ROWTYPE;

Select using %RowType attribute
1) To get the names of the products and price having unit price than 1000

Create table product
select * from
product

set serveroutput on;
Declare
 cursor cur_prod is
 Select pname,unitprice from product;
 prec product%rowtype;
Begin
for prec in cur_prod loop
 dbms_output.put_line(prec.pname||’ ‘||prec.unitprice);
End loop;
End;

PL/SQL Collection:

A collection is an ordered group of elements having the same data
type. Each element is identified by a unique subscript that represents its
position in the collection.
PL/SQL provides three collection types:

• Index-by tables or Associative array

• Nested table

192

• Variable-size array or Varray

Index-By Table:

An index-by table (also called an associative array) is a set of
key-value pairs. Each key is unique and is used to locate the
corresponding value. The key can be either an integer or a string.

An index-by table is created using the following syntax. Here, we are
creating an index-by table named table_name, the keys of which will be
of the subscript_type and associated values will be of the element_type

TYPE type_name IS TABLE OF element_type [NOT NULL] INDEX BY
subscript_type;

table_name type_name;

Example:

Following example shows how to create a table to store integer values
along with names and later it prints the same list of names.

DECLARE

TYPE salary IS TABLE OF NUMBER INDEX BY VARCHAR2(20);

salary_list salary;

name VARCHAR2(20);

BEGIN

— adding elements to the table

salary_list(‘Rajnish’) := 62000;

salary_list(‘Minakshi’) := 75000;

salary_list(‘Martin’) := 100000;

salary_list(‘James’) := 78000;

— printing the table

name := salary_list.FIRST;

WHILE name IS NOT null LOO

dbms_output.put_line

(‘Salary of ‘ || name || ‘ is ‘ || TO_CHAR(salary_list(name)));

name := salary_list.NEXT(name);

END LOOP; ·END;

/

When the above code is executed at the SQL prompt, it produces the
following result

Salary of James is 78000

Salary of Martin is 100000

Salary of Minakshi is 75000

193

Salary of Rajnish is 62000

PL/SQL procedure successfully completed.

Example
Elements of an index-by table could also be a %ROWTYPE of any
database table or %TYPE of any database table field. The following
example illustrates the concept. We will use the CUSTOMERS table
stored in our database as:
Select * from customers;
+----+--------------+------+-------------+-------------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+--------------+------+-------------+-------------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
+----+--------------+------+-------------+-------------+

DECLARE

CURSOR c_customers is

select name from customers;

TYPE c_list IS TABLE of customers.Name%type INDEX BY
binary_integer;

name_list c_list;

counter integer :=0;

BEGIN

FOR n IN c_customers LOOP counter := counter +1;

name_list(counter) := n.name;
dbms_output.put_line(‘Customer(‘||counter||’):’||name_lis t(counter));
END LOOP; ·END;

When the above code is executed at the SQL prompt, it produces the
following result:

Customer(1): Ramesh

Customer(2): Khilan

Customer(3): kaushik

Customer(4): Chaitali

Customer(5): Hardik

Customer(6): Komal

PL/SQL procedure successfully completed

194

13.3 PROCEDURES AND FUNCTIONS

A subprogram is a program unit/module that performs a particular

task. These subprograms are combined to form larger programs. This is
basically called the ‘Modular design’. A subprogram can be invoked by
another subprogram or program which is called the calling program.

PL/SQL subprograms are named PL/SQL blocks that can be invoked with
a set of parameters. PL/SQL provides two kinds of subprograms “

• Functions “ These subprograms return a single value; mainly used to
compute and return a value.

• Procedures “ These subprograms do not return a value directly;
mainly used to perform an action.

CreatingaProcedure

A procedure is created with the CREATE OR REPLACE
PROCEDURE statement. The simplified syntax for the CREATE OR
REPLACE PROCEDURE statement is as follows :

CREATE [OR REPLACE] PROCEDURE procedure_name
[(parameter_name [IN | OUT | IN OUT] type [, ...])]
{IS | AS}
BEGIN
 < procedure_body >
END procedure_name;

Where

• procedure-name specifies the name of the procedure.

• [OR REPLACE] option allows the modification of an existing
procedure.

• The optional parameter list contains name, mode and types of the
parameters. IN represents the value that will be passed from outside
and OUT represents the parameter that will be used to return a value
outside of the procedure.

• procedure-body contains the executable part.

• The AS keyword is used instead of the IS keyword for creating a
standalone procedure.

Executing a Standalone Procedure

A standalone procedure can be called in two ways:

• Using the EXECUTE keyword

• Calling the name of the procedure from a PL/SQL block

195

The above procedure named ‘greetings’ can be called with the EXECUTE
keyword as:

EXECUTE greetings;

The above call will display

Hello World

PL/SQL procedure successfully complete

The procedure can also be called from another PL/SQL block “

BEGIN

greetings;

END;
/

The above call will display:

Hello World

PL/SQL procedure successfully completed.

ParameterModesinPL/SQLSubprograms

The following table lists out the parameter modes in PL/SQL
subprograms:

Sr. No. Parameter Mode & Description
1

INAn IN parameter lets you pass a
value to the subprogram. It is a
read-only parameter. Inside the
subprogram, an IN parameter acts
like a constant. It cannot be
assigned a value. You can pass a
constant, literal, initialized variable,
or expression as an IN parameter.
You can also initialize it to a default
value; however, in that case, it is
omitted from the subprogram call.
It is the default mode of
parameter passing. Parameters
are passed by reference.

2. OUT
An OUT parameter returns a value
to the calling program. Inside the
subprogram, an OUT parameter
acts like a variable. You can change
its value and reference the value
after assigning it. The actual
parameter must be variable and
it is passed by value

196

3. IN OUT
An IN OUT parameter passes an
initial value to a subprogram and
returns an updated value to the
caller. It can be assigned a value
and the value can be read.

The actual parameter corresponding
to an IN OUT formal parameter
must be a variable, not a constant or
an expression. Formal parameter
must be assigned a value. Actual
parameter is passed by value.

Creating a Function:

A standalone function is created using the CREATE

FUNCTION statement. The simplified syntax for the CREATE OR
REPLACE PROCEDURE statement is as follows:

CREATE [OR REPLACE] FUNCTION function_name
[(parameter_name [IN | OUT | IN OUT] type [, ...])] RETURN
return_datatype

{IS | AS}

BEGIN

 < function_body >

END [function_name];

Where,

• function-name specifies the name of the function.

• [OR REPLACE] option allows the modification of an existing
function.

• The optional parameter list contains name, mode and types of the
parameters. IN represents the value that will be passed from outside
and OUT represents the parameter that will be used to return a value
outside of the procedure.

• The function must contain a return statement.

• The RETURN clause specifies the data type you are going to return
from the function.

• function-body contains the executable part.

The AS keyword is used instead of the IS keyword for creating a
standalone function.

197

Example:

The following example illustrates how to create and call a

standalone function. This function returns the total number of
CUSTOMERS in the customers table.

We will use the CUSTOMERS table, which we had created in the PL/SQL
Variables chapter:

Select * from customers;

+----+------------+-----+-------------+---------------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+------------+-----+-------------+---------------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

+----+------------+-----+-------------+---------------+

CREATE OR REPLACE FUNCTION totalCustomers

RETURN number IS

 total number(2) := 0;

BEGIN

 SELECT count(*) into total

 FROM customers;

RETURN total;

END;

/

When the above code is executed using the SQL prompt, it will produce
the following result:

Function created.

Calling a Function:

While creating a function, you give a definition of what the
function has to do. To use a function, you will have to call that function to
perform the defined task. When a program calls a function, the program
control is transferred to the called function.

198

A called function performs the defined task and when its return
statement is executed or when the last end statement is reached, it returns
the program control back to the main program.

To call a function, you simply need to pass the required parameters
along with the function name and if the function returns a value, then you
can store the returned value. Following program calls the function
totalCustomers from an anonymous block :

DECLARE

 c number(2);

BEGIN

 c := totalCustomers();

 dbms_output.put_line(‘Total no. of Customers: ‘ || c);

END;

/

When the above code is executed at the SQL prompt, it produces the
following result:

Total no. of Customers: 6

PL/SQL procedure successfully completed.

Example:

The following example demonstrates Declaring, Defining, and
Invoking a Simple PL/SQL Function that computes and returns the
maximum of two values.

DECLARE

a number;

DBMS

b number;

c number;

FUNCTION findMax(x IN number, y IN number)

RETURN number

IS

z number;

BGIN

IF x > y THEN

z:= x;

ELSE

Z:= y;

END IF;

199

RETURN z;

END;

BEGIN

a:= 23;

b:= 45;

c := findMax(a, b);

dbms_output.put_line(‘ Maximum of (23,45): ‘ || c);

END;

/

When the above code is executed at the SQL prompt, it produces the
following result:

Maximum of (23,45): 45

PL/SQL procedure successfully completed.

PL/SQL Recursive Functions:

We have seen that a program or subprogram may call another
subprogram. When a subprogram calls itself, it is referred to as a recursive
call and the process is known as recursion.

To illustrate the concept, let us calculate the factorial of a number.
Factorial of a number n is defined as:

n! = n*(n-1)!

= n*(n-1)*(n-2)!

...

= n*(n-1)*(n-2)*(n-3)... 1

The following program calculates the factorial of a given number by
calling itself recursively:

DECLARE

 num number;

 factorial number;

FUNCTION fact(x number)

RETURN number

IS

 f number;

BEGIN

 IF x=0 THEN

f := 1;

 ELSE

 := x * fact(x-1);

200

END IF;

RETURN f;

END;

BEGIN

 num:= 6;

 factorial := fact(num);

 dbms_output.put_line(‘ Factorial ‘|| num || ‘ is ‘ || factorial);

END;

/

When the above code is executed at the SQL prompt, it produces the
following result:

torial 6 is 720

PL/SQL procedure successfully completed.

13.4 EXCEPTIONS HANDLING

An exception is an error condition during a program execution.

PL/SQL supports programmers to catch such conditions using
EXCEPTION block in the program and an appropriate action is taken
against the error condition. There are two types of exceptions “

• System-defined exceptions

• User-defined exceptions

Syntax for Exception Handling:

The general syntax for exception handling is as follows. Here you
can list down as many exceptions as you can handle. The default
exception will be handled using WHEN others THEN:

DECLARE

 <declarations section>

BEGIN

 <executable command(s)>

EXCEPTION

 <exception handling goes here >

 WHEN exception1 THEN

 exception1-handling-statements

 WHEN exception2 THEN

 exception2-handling-statements

 WHEN exception3 THEN

 exception3-handling-statements

........

201

WHEN others THEN

 exception3-handling-statements

END;

Example:

Let us write a code to illustrate the concept. We will be using the
CUSTOMERS table we had created and used in the previous chapters:

DECLARE

 c_id customers.id%type := 8;

 c_name customerS.No.ame%type;

 c_addr customers.address%type;

BEGIN

SELECT name, address INTO c_name, c_addr

 FROM customers

 WHERE id = c_id;

 DBMS_OUTPUT.PUT_LINE (‘Name: ‘|| c_name);

 DBMS_OUTPUT.PUT_LINE (‘Address: ‘ || c_addr);

EXCEPTION

WHEN no_data_found THEN

 dbms_output.put_line(‘No such customer!’);

WHEN others THEN

 dbms_output.put_line(‘Error!’);

END;

/

When the above code is executed at the SQL prompt, it produces the
following result:

No such customer!

PL/SQL procedure successfully completed.

The above program displays the name and address of a customer
whose ID is given. Since there is no customer with ID value 8 in our
database, the program raises the run-time exception
NO_DATA_FOUND, which is captured in theEXCEPTION block.

Raising Exceptions:

Exceptions are raised by the database server automatically
whenever there is any internal database error, but exceptions can be raised
explicitly by the programmer by using the command RAISE. Following is
the simple syntax for raising an exception:
DECLARE

202

 exception_name EXCEPTION;

BEGIN

 IF condition THEN

RAISE exception_name;

 END IF;

EXCEPTION

 WHEN exception_name THEN

 statement;

END;

You can use the above syntax in raising the Oracle standard
exception or any user-defined exception. In the next section, we will give
you an example on raising a user-defined exception. You can raise the
Oracle standard exceptions in a similar way.

User-defined Exceptions:

PL/SQL allows you to define your own exceptions according to the
need of your program. A user-defined exception must be declared and then
raised explicitly, using either a RAISE statement or the
procedureDBMS_STANDARD.RAISE_APPLICATION_ERROR.

The syntax for declaring an exception is:

DECLARE

my-exception EXCEPTION;

Example:

The following example illustrates the concept. This program asks for a
customer ID, when the user enters an invalid ID, the exception invalid_id
is raised.

DECLARE

 c_id customers.id%type := &cc_id;

 c_name customerS.No.ame%type;

 c_addr customers.address%type;

 — user defined exception

 ex_invalid_id EXCEPTION;

BEGIN

 IF c_id <= 0 THEN

 RAISE ex_invalid_id;

ELSE

 SELECT name, address INTO c_name, c_addr

 FROM customers

 WHERE id = c_id;

203

 DBMS_OUTPUT.PUT_LINE (‘Name: ‘||c_name);

 DBMS_OUTPUT.PUT_LINE (‘Address: ‘ || c_addr);

END IF;

EXCEPTION

 WHEN ex_invalid_id THEN

 dbms_output.put_line(‘ID must be greater than zero!’);

 WHEN no_data_found THEN

 dbms_output.put_line(‘No such customer!’);

 WHEN others THEN

 dbms_output.put_line(‘Error!’);

END;

/

When the above code is executed at the SQL prompt, it produces the
following result:

Enter value for cc_id: -6 (let’s enter a
value -6) old 2: c_id
customers.id%type := &cc_id;
new 2: c_id
customers.id%type := -6;
ID must be greater than zero!

PL/SQL procedure successfully completed.

Pre-defined Exceptions:

PL/SQL provides many pre-defined exceptions, which are
executed when any database rule is violated by a program. For example,
the predefined exception NO_DATA_FOUND is raised when a SELECT
INTO statement returns no rows. The following table lists few of the
important pre-defined exceptions:

Exception Oracle
Error

SQLCODE Description

ACCESS_INTO_NUL
L .

06530 -6530 It is raised when a
null object is
automatically
assigned a value

CASE_NOT_FOUND

06592 -6592 It is raised when
none of the choices
in the WHEN
clause of a CASE
statement is
selected, and there
is no ELSE clause.

204

COLLECTION_IS_N
ULL

06531 -6531 It is raised when a
program attempts to
apply collection
methods other than
EXISTS to an
uninitialized nested
table or varray, or
the program
attempts to assign
values to the
elements of an
uninitialized nested
table or varray.

DUP_VAL_ON_INDE
X .

00001 -1 It is raised when
duplicate values are
attempted to be
stored in a column
with unique index

INVALID_CURSOR

01001 -1001 It is raised when
attempts are made
to make a cursor
operation that is not
allowed, such as
closing an
unopened cursor.

INVALID_NUMBER

01722 -1722 It is raised when the
conversion of a
character string into
a number fails
because the string
does not represent a
valid number.

LOGIN_DENIED

01017 -1017 It is raised when a
program attempts to
log on to the
database with an
invalid username or
password.

NO_DATA_FOUND

01403 +100 It is raised when a
SELECT INTO
statement returns no
rows.

NOT_LOGGED_ON

.

01012 -1012 It is raised when a
database call is
issued without
being connected to
the database.

PROGRAM_ERROR

06501 -6501 It is raised when
PL/SQL has an

205

internal problem

ROWTYPE_MISMAT
CH

06504 -6504 It is raised when a
cursor fetches value
in a variable having
incompatible data
type.

SELF_IS_NULL

30625 -30625 It is raised when a
member method is
invoked, but the
instance of the
object type was not
initialized.

STORAGE_ERROR
 .

06500 -6500 It is raised when
PL/SQL ran out of
memory or memory
was corrupted

TOO_MANY_ROWS

01422 -1422 It is raised when a
SELECT INTO
statement returns
more than one row.

VALUE_ERROR

06502 -6502 It is raised when an
arithmetic,
conversion,
truncation, or
sizeconstraint error
occurs.

ZERO_DIVIDE

01476 1476 It is raised when an
attempt is made to
divide a number by
zero.

13.5 PACKAGES

Packages are schema objects that groups logically related PL/SQL types,
variables, and subprograms.

A package will have two mandatory parts

• Package specification

• Package body or definition

Package Specification:

The specification is the interface to the package. It just
DECLARES the types, variables, constants, exceptions, cursors, and
subprograms that can be referenced from outside the package. In other
words, it contains all information about the content of the package, but
excludes the code for the subprograms.

206

All objects placed in the specification are called public objects.
Any subprogram not in the package specification but coded in the package
body is called aprivate object.

The following code snippet shows a package specification having a
single procedure. You can have many global variables defined and
multiple procedures or functions inside a package.

CREATE PACKAGE cust_sal AS

PROCEDURE find_sal(c_id customers.id%type);

END cust_sal;

When the above code is executed at the SQL prompt, it produces the
following result:

Package created

Package Body:

The package body has the codes for various methods declared in
the package specification and other private declarations, which are hidden
from the code outside the package.

The CREATE PACKAGE BODY Statement is used for creating
the package body. The following code snippet shows the package body
declaration for thecust_sal package created above. I assumed that we
already have CUSTOMERS table created in our database as mentioned in
the PL/SQL - Variableschapter.

 CREATE OR REPLACE PACKAGE BODY cust_sal AS

 PROCEDURE find_sal(c_id customers.id%TYPE) IS

 c_sal customers.salary%TYPE;

 BEGIN

 SELECT salary INTO c_sal

 FROM customers

 WHERE id = c_id;

 dbms_output.put_line(‘Salary: ‘|| c_sal);

END find_sal;

END cust_sal;

/

When the above code is executed at the SQL prompt, it produces the
following result:

Package body created.

207

Using the Package Elements:

The package elements (variables, procedures or functions) are accessed
with the following syntax:

package_name.element_name;

Consider, we already have created the above package in our
database schema, the following program uses the find_sal method of
the cust_sal package:

DECLARE

 code customers.id%type := &cc_id;

BEGIN

 cust_sal.find_sal(code);

END;

/

When the above code is executed at the SQL prompt, it prompts to
enter the customer ID and when you enter an ID, it displays the
corresponding salary as follows:

Enter value for cc_id: 1

Salary: 3000

PL/SQL procedure successfully completed.

Example:

The following program provides a more complete package. We will use
the CUSTOMERS table stored in our database with the following records:

Select * from customer

+----+--------------+------+-----------+---------------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+--------------+------+-----------+---------------+

| 1 | Ramesh | 32 | Ahmedabad | 3000.00 |

| 2 | Khilan | 25 | Delhi | 3000.00 |

| 3 | kaushik | 23 | Kota | 3000.00 |

| 4 | Chaitali | 25 | Mumbai | 7500.00 |

| 5 | Hardik | 27 | Bhopal | 9500.00 |

| 6 | Komal | 22 | MP | 5500.00 |

The Package Specification:

CREATE OR REPLACE PACKAGE c_package AS

208

— Adds a customer

 PROCEDURE addCustomer(c_id customers.id%type,

 c_name customerS.No.ame%type,

 c_age customers.age%type,

 c_addr customers.address%type,

 c_sal customers.salary%type);

— Removes a customer

 PROCEDURE delCustomer(c_id customers.id%TYPE);

--Lists all customers

 PROCEDURE listCustomer;

END c_package;
/

When the above code is executed at the SQL prompt, it creates the

above package and displays the following result “

Package created.

Creating the Package Body

CREATE OR REPLACE PACKAGE BODY c_package AS
 PROCEDURE addCustomer(c_id customers.id%type,
 c_name customerS.No.ame%type,
 c_age customers.age%type,
 c_addr customers.address%type,
 c_sal customers.salary%type)
IS
BEGIN
 INSERT INTO customers (id,name,age,address,salary)
 VALUES(c_id, c_name, c_age, c_addr, c_sal);
END addCustomer;

PROCEDURE delCustomer(c_id customers.id%type) IS
BEGIN
 DELETE FROM customers
 WHERE id = c_id;
END delCustomer;

PROCEDURE listCustomer IS
CURSOR c_customers is
 SELECT name FROM customers;

TYPE c_list is TABLE OF customerS.No.ame%type;
name_list c_list := c_list();

209

counter integer :=0;
BEGIN
 FOR n IN c_customers LOOP
 counter := counter +1;
 name_list.extend;
 name_list(counter) := n.name;
 dbms_output.put_line(‘Customer(‘ ||counter|| ‘)’||name_list(counter));
 END LOOP;

END listCustomer;

END c_package;
/

The above example makes use of the nested table. We will discuss
the concept of nested table in the next chapter.

When the above code is executed at the SQL prompt, it produces the
following result:

Package body created.

Using The Package:

The following program uses the methods declared and defined in the
packagec_package.

DECLARE
 code customers.id%type:= 8;

BEGIN
 c_package.addcustomer(7, ‘Rajnish’, 25, ‘Chennai’, 3500);
 c_package.addcustomer(8, ‘Subham’, 32, ‘Delhi’, 7500);
 c_package.listcustomer;
 c_package.delcustomer(code);
 c_package.listcustomer;
END;
/

When the above code is executed at the SQL prompt, it produces the
following result:

Customer(1): Ramesh

Customer(2): Khilan

Customer(3): kaushik

Customer(4): Chaitali

Customer(5): Hardik

Customer(6): Komal

Customer(7): Rajnish

210

Customer(8): Subham

Customer(1): Ramesh

Customer(2): Khilan

Customer(3): kaushik

Customer(4): Chaitali

Customer(5): Hardik

Customer(6): Komal

Customer(7): Rajnish

PL/SQL procedure successfully completed

13.6 HIERARCHICAL QUERIES

If a table contains hierarchical data, then you can select rows in a
hierarchical order using the hierarchical query clause:

hierarchical_query_clause::=

Description of hierarchical_query_clause.gif follows
Description of the illustration hierarchical_query_clause.gif

START WITH specifies the root row(s) of the hierarchy.

CONNECT BY specifies the relationship between parent rows and child
rows of the hierarchy.

The NOCYCLE parameter instructs Oracle Database to return
rows from a query even if a CONNECT BY LOOP exists in the data. Use
this parameter along with the CONNECT_BY_ISCYCLE pseudocolumn
to see which rows contain the loop. Please refer to
CONNECT_BY_ISCYCLE Pseudocolumn for more information.

In a hierarchical query, one expression in condition must be qualified with
the PRIOR operator to refer to the parent row. For example,

... PRIOR expr = expr
or
... expr = PRIOR expr

If the CONNECT BY condition is compound, then only one condition
requires the PRIOR operator, although you can have multiple PRIOR
conditions. For example:

CONNECT BY last_name != ‘King’ AND PRIOR employee_id =
manager_id ...
CONNECT BY PRIOR employee_id = manager_id and
 PRIOR account_mgr_id = customer_id ...

211

PRIOR is a unary operator and has the same precedence as the
unary + and - arithmetic operators. It evaluates the immediately following
expression for the parent row of the current row in a hierarchical query.

PRIOR is most commonly used when comparing column values
with the equality operator. (The PRIOR keyword can be on either side of
the operator.) PRIOR causes Oracle to use the value of the parent row in
the column. Operators other than the equal sign (=) are theoretically
possible in CONNECT BY clauses. However, the conditions created by
these other operators can result in an infinite loop through the possible
combinations. In this case Oracle detects the loop at run time and returns
an error.

Both the CONNECT BY condition and the PRIOR expression can
take the form of an uncorrelated subquery. However, the PRIOR
expression cannot refer to a sequence. That is, CURRVAL and
NEXTVAL are not valid PRIOR expressions.

You can further refine a hierarchical query by using the
CONNECT_BY_ROOT operator to qualify a column in the select list.
This operator extends the functionality of the CONNECT BY [PRIOR]
condition of hierarchical queries by returning not only the immediate
parent row but all ancestor rows in the hierarchy.

13.7 TRIGGERS

Triggers are stored programs, which are automatically executed or fired
when some events occur. Triggers are, in fact, written to be executed in
response to any of the following events:

• A database manipulation (DML) statement (DELETE, INSERT, or
UPDATE)

• A database definition (DDL) statement (CREATE, ALTER, or
DROP).

• A database operation (SERVERERROR, LOGON, LOGOFF,
STARTUP, or SHUTDOWN).

Triggers can be defined on the table, view, schema, or database

with which the event is associated.

Benefits of Triggers:

• Triggers can be written for the following purposes “

• Generating some derived column values automatically

• Enforcing referential integrity

• Event logging and storing information on table access

• Auditing

• Synchronous replication of tables

212

• Imposing security authorizations

• Preventing invalid transactions

Creating Triggers:

The syntax for creating a trigger is:

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF }

{INSERT [OR] | UPDATE [OR] | DELETE}

[OF col_name]

ON table_name

[REFERENCING OLD AS o NEW AS n]

[FOR EACH ROW]

WHEN (condition)

DECLARE

 Declaration-statements

BEGIN

 Executable-statements

EXCEPTION

 Exception-handling-statements

END;

Where,

• CREATE [OR REPLACE] TRIGGER trigger_name “Creates or
replaces an existing trigger with the trigger_name.

• {BEFORE | AFTER | INSTEAD OF} “This specifies when the trigger
will be executed. The INSTEAD OF clause is used for creating trigger
on a view.

• {INSERT [OR] | UPDATE [OR] | DELETE} “This specifies the DML
operation.

• [OF col_name] “This specifies the column name that will be updated.

• [ON table_name] “This specifies the name of the table associated with
the trigger.

• [REFERENCING OLD AS o NEW AS n] “This allows you to refer
new and old values for various DML statements, such as INSERT,
UPDATE, and DELETE.

• [FOR EACH ROW] “This specifies a row-level trigger, i.e., the trigger
will be executed for each row being affected. Otherwise the trigger
will execute just once when the SQL statement is executed, which is
called a table level trigger.

• WHEN (condition) “This provides a condition for rows for which the
trigger would fire. This clause is valid only for row-level triggers.

213

Example

To start with, we will be using the CUSTOMERS table we had created
and used in the previous chapters:

Select * from customers;

+----+--------------+------+-----------+-------------+
ID | NAME | AGE | ADDRESS | SALARY |
+----+--------------+------+-----------+-------------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00

The following program creates a row-level trigger for the
customers table that would fire for INSERT or UPDATE or DELETE
operations performed on the CUSTOMERS table. This trigger will display
the salary difference between the old values and new values;

CREATE OR REPLACE TRIGGER display_salary_changes
BEFORE DELETE OR INSERT OR UPDATE ON customers
FOR EACH ROW
WHEN (NEW.ID > 0)
DECLARE
 sal_diff number;
BEGIN
 sal_diff := :NEW.salary - :OLD.salary;
 dbms_output.put_line(‘Old salary: ‘ || :OLD.salary);
 dbms_output.put_line(‘New salary: ‘ || :NEW.salary);
 dbms_output.put_line(‘Salary difference: ‘ || sal_diff);
END;
/

When the above code is executed at the SQL prompt, it produces the
following result:

Trigger created.

The following points need to be considered here:

• OLD and NEW references are not available for table-level triggers,
rather you can use them for record-level triggers.

• If you want to query the table in the same trigger, then you should use
the AFTER keyword, because triggers can query the table or change it

214

again only after the initial changes are applied and the table is back in
a consistent state.

• The above trigger has been written in such a way that it will fire before
any DELETE or INSERT or UPDATE operation on the table, but you
can write your trigger on a single or multiple operations, for example
BEFORE DELETE, which will fire whenever a record will be deleted
using the DELETE operation on the table.

Triggering a Trigger:

Let us perform some DML operations on the CUSTOMERS table. Here is
one INSERT statement, which will create a new record in the table “

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (7, ‘Kriti’, 22, ‘HP’, 7500.00);

When a record is created in the CUSTOMERS table, the above create
trigger,display_salary_changes will be fired and it will display the
following result:

Old salary:
 New salary: 7500
Salary difference:

Because this is a new record, old salary is not available and the

above result comes as null. Let us now perform one more DML operation
on the CUSTOMERS table. The UPDATE statement will update an
existing record in the table:

UPDATE customersSET
salary = salary + 500

WHERE id = 2;

trigger,display_salary_changes will be fired and it will display the
following result :

Old salary: 1500
New salary: 2000
Salary difference: 500

13.8 SUMMARY

This chapter defines a Cursors and its types. It also describes
collections and composite data types, Procedure and Functions. Also gives
an idea about Exception Handling and Packages.

215

13.9 REFERENCES

1. Database System and Concepts A Silberschatz, H Korth, S

Sudarshan McGraw-Hill Fifth Edition

2. “Fundamentals of Database Systems” by Elmsari, Navathe, 5th
Edition, Pearson Education (2008).

3. “Database Management Systems” by Raghu Ramakrishnan, Johannes
Gehrke, McGraw Hill Publication.

4. “Database Systems, Concepts, Design and Applications” by S.K.Singh,
Pearson Education.

13.10 UNIT END QUESTIONS

MCQs:

1. Which statements are used to control a cursor variable?

a. OPEN-FOR
b. FETCH
c. CLOSE
d. All mentioned above

2. Which of the following is used to declare a record?
a. %ROWTYPE
b. %TYPE
c. Both A & B
d. None of the above

3. Which of the following has a return type in its specification and must
return a value specified in that type?
a. Function
b. Procedure
c. Package
d. None of the above

4. Which collection exception is raised when a subscript designates an
element that was deleted, or a nonexistent element of an associative
array?
a. NO_DATA_FOUND
b. COLLECTION_IS_NULL
c. SUBSCRIPT_BEYOND_COUNT
d. SUBSCRIPT_OUTSIDE_LIMIT

5. Observe the following code and fill in the blanks “
 DECLARE
 total_rows number(2);
 BEGIN
 UPDATE employees
 SET salary = salary + 500;
 IF ____________ THEN
 dbms_output.put_line(‘no employees selected’);

216

 ELSIF ___________ THEN
 total_rows := _____________;
 dbms_output.put_line(total_rows || ‘ employees selected ‘);
 END IF;
 END;

a . %notfound, %found, %rowcount.
b . sql%notfound, sql%found, sql%rowcount.
c . sql%found, sql%notfound, sql%rowcount.
d . %found, %notfound, %rowcount.

6. Which of the following is true about PL/SQL index-by tables?

A. It is a set of key-value pairs.
B. Each key is unique and is used to locate the corresponding value.
C. The key can be either an integer or a string.
D. All of the above.

7. Which keyword is used instead of the assignment operator to initialize

variables?
a. NOT
b. DEFAULT
c. %TYPE
d. %ROWTYPE

8. Which of the following returns all distinct rows selected by either
query?

a. INTERSECT
b. MINUS
c. UNION
d. UNION ALL

9. For which Exception, if a SELECT statement attempts to retrieve data
based on its conditions, this exception is raised when no rows satisfy the
SELECT criteria?

a. TOO_MANY_ROWS
b. NO_DATA_FOUND
c. VALUE_ERROR
d. DUP_VAL_ON_INDEX

10. Which keyword and parameter used for declaring an explicit cursor?

a. constraint
b. cursor_variable_declaration
c. collection_declaration
d. cursor_declaration

Answer the following:

1. Explain PL/SQL Records with example.

2. Explain Explicit Cursors with example.

3. Explain Attributes of Explicit Cursors with example.

217

4. Explain the concept of Cursor for Loop with example.

5. Explain for Update clause and where current clause with example.

6. Explain Exception Handling in PL/SQL with example.

7. Differentiate Anonymous blocks and subprograms

8. Differentiate Procedures and Functions

9. Create a PL/SQL function to find out greatest two numbers. Call the
function to display output.

10. Explain parts of Triggers with the help of example.
