UNIVERSITY OF MUMBAI

Syllabus for the M.Sc. Part - II
[Semester III and IV]

Program: M.Sc.

Course: Life Sciences

Specialization:

Biochemistry

Choice Based Credit and Grading System

The Academic Year 2017-18

M.Sc. Semester III and IV - Life Sciences Syllabus Restructured for Credit Based Semester and Grading System To be implemented from the Academic year 2017-2018 SEMESTER III Theory

Course Code	
Cell and Molecular Biology Techniques A	
Techniques) IV Plant Tissue Culture PSLSCBMT302	
PSLSCBMT302 (Bioenergetics and Primary Betabolism IV Metabolism IV Systems Biology Chemical Bonds and Spectroscopic Techniques III Protein and Nucleic Acid Structure III Supramolecular Assemblies and DNA-protein Interactions IV Biomolecular Structure and Diseases Course Code UNIT TOPIC HEADINGS Credits L / We	
Metabolism 4	
Metabolism 4	
and Primary Metabolism) IV	
and Primary Metabolism IV Metabolic Engineering and Systems Biology I Chemical Bonds and Spectroscopic Techniques PSLSCBMT303 (Biomolecular Structure) III Supramolecular Assemblies and DNA-protein Interactions IV Biomolecular Structure and Diseases Course Code UNIT TOPIC HEADINGS Credits L/We	
IV Systems Biology Systems Biology Systems Biology I	
PSLSCBMT303 (Biomolecular Structure) III Spectroscopic Techniques III Protein and Nucleic Acid Structure III Supramolecular Assemblies and DNA-protein Interactions IV Biomolecular Structure and Diseases Course Code UNIT TOPIC HEADINGS Credits L / We	
PSLSCBMT303 (Biomolecular Structure) III Spectroscopic Techniques III Protein and Nucleic Acid Structure III Supramolecular Assemblies and DNA-protein Interactions IV Biomolecular Structure and Diseases Course Code UNIT TOPIC HEADINGS Credits L / We	
Structure Structure Supramolecular Assemblies and DNA-protein Interactions IV Biomolecular Structure and Diseases Course Code UNIT TOPIC HEADINGS Credits L / We	
Structure) III Supramolecular Assemblies and DNA-protein Interactions IV Biomolecular Structure and Diseases Course Code UNIT TOPIC HEADINGS Credits L / We	
Course Code UNIT TOPIC HEADINGS Credits L / We	
PSLSCBMT304 I Research Methodology	∍k
(Research II Scientific Writing	
Methodology and Quality III ISO 4	
Control) IV GLP and GMP	
Practical	
PSLSCBMP301 Biomathematics and Cell Biology Techniques 2	
PSLSCBMP302 Bioenergetics and Primary Metabolism 2	
PSLSCBMP303 Biomolecular Structure 2	
PSLSCBMP304 Literature Review 2	

SEMESTER IV

Theory

	I	Cell Division and Apoptosis		
PSLSCBMT401 (Molecular Cell Biology)	II	Biomembrane and Cell Matrix	A	
	III	Protein Trafficking and Targeting	4	
Biology	IV	Gene Silencing and Epigenetics		
1				
	I	Nucleotide Metabolism		
PSLSCBMT402	II	Nitrogen Assimilation in Plants		
(Nitrogen Metabolism and Plant	III	Photosynthesis and Secondary Metabolism	4	
Biochemistry)	IV	Free radicals and Antioxidant Biology		
	I	Protein folding and Engineering		
PSLSCBMT403	II	Kinetics and Mechanism in		
(Biomolecular		Biological Systems	4	
Function)	Ш	Metabolomics and		
	IV	Transcriptomics Nanobiology		
	l iv	Nanobiology		
PSLSCBMT404	l 1	Natural products		
(Drug		Activity Guided Drug		
Development	II	Development	4	
and Environmental	III	Environmental toxicology		
Toxicology)	IV	Environmental monitoring		
	<u> </u>			JI.
DOLGODA A DAGA	NA-L L	Practical		
PSLSCBMP401		r Cell Biology	2	
PSLSCBMP402	Nitrogen Metabolism and Plant Biochemistry		2	
PSLSCBMP403	Biomolec Toxicolog	ular Function and Environmental	2	
PSLSCBMP404	Project	y	2	
. JEGEDIVII 704	110,000			

Program Objective

- To expose the learner to various aspects of Biochemistry
- To give an insight in developing skills and knowledge in Biochemical techniques for Biotech and Pharma industries

Program Outcome

The learner will be able to

- Earn a Master's Degree with specialization in Biochemistry
- Comprehend various Biochemical techniques and applications for research laboratories and industries.
- Increase his/ her employability and develop skills for research labs.

M.Sc. Part – II Life Sciences Syllabus Restructured for Credit Based Semester and Grading System To be implemented from the Academic year 2017-2018 Semester III Detailed Syllabus

Paper-PSLSCBMT301 Title- Biomathematics and Cell Biology Techniques

Prerequisite: Students with basic knowledge of mathematics at HSC level and Biological Sciences at Graduation level.

Course objectives:

- To provide the understanding of basic mathematics concept with reference to biological data
- To familiarize students with advance techniques available to study cell biology, protein and DNA structure.
- To explain the basics of animal tissue culture, its analysis and production.
- Introduction of basics of plant tissue culture, advance recombinant technology related to plant tissue culture and its application.

Course Outcomes:

On completion of the course, learner will be able to-

- Analyze biological data with the help of mathematics
- Isolate and quantify cellular or molecular samples.
- Design and formulate animal tissue culture experiments for various applications.
- Set up plant tissue culture laboratory for the production of transgenic plants and secondary metabolites.

Course Code	Title	Credits		
PSLSCBMT301	Biomathematics and Cell Biology Techniques (60L)			
Unit I: Biomathe	matics (15L)			
and derivatives, Differentiation, I substitution, spe- integration to fir	Binomial Theorem (without infinite series), atrices, Rank of Matrices by Diagonalisation method Limit Differentiation (including differentiability), Successive ntegration – Definite and Indefinite (ordinary, method of cial trigonometric function, partial fraction) Application of d area, Differential equationshomogeneous and Linear ple applications to biological problems.			

Unit II: Cell and Molecular Biology Techniques

(15L)

Cell Biology Techniques: Principles, Instrument overview, and Applications of flow cytometry, Fluorescence Resonance Energy Transfer (FRET); Surface Plasmon resonance.

Proteomics: Peptide synthesis and Protein sequencing methods, detection of post-translation modification of proteins; 2-D gel electrophoresis; Mass spectrometry; X-ray diffraction methods; Static and dynamic light scattering (SLS and DLS); Capillary electrophoresis; Protein chips; Differential scanning calorimetry; Isothermal titration calorimetry.

Genomics: Oligonucleotide synthesis; DNA chips/microarrays; DNA hybridization; DNA sequencing methods; Strategies for genome sequencing; Methods for analysis of gene expression at RNA and protein level; Site directed mutagenesis; Gene knockdown; Differential display; Serial analysis of gene expression (SAGE).

Unit III: Animal Tissue culture

(15L)

Basic of animal tissue culture: Methods of cell dissociation/separation and preparation of primary cell culture, characteristics of cells *in vitro*, cell culture growth parameters, detection, prevention and determination of contamination in tissue culture.

Culture: Short term culture, Specialized cells: bone marrow myogenesis, *in vitro* skin cell culture, ethrogenesis - leukemia cells, chondriogenesis- *in vitro*, cryopreservation of tissues and cell lines.

Analysis and Production: cell synchronization, cell transformation *in vitro*, Mass cultivation- cytodex and biofermentors. cell cloning and Transgenic animals.

Applications: Stem cells & therapeutic cloning, Tissue engineering and 3D printing

Unit IV: Plant Tissue Culture

(15L)

Basics of plant tissue culture: Totipotency, macro and micro nutrients, media.

Culture: micropropogation, Callus culture, Somaclonal variation,
Suspension cell culture, Protoplast culture, Somatic hybridization, Cybrids,
Somatic embryogenesis and synthetic seed production. Cryopreservation. **Recombinant technology:** Plant transformation by *Agrobacterium tumfaciens*[including mechanism of T DNA transfer in wild type

tumfaciens[including mechanism of T DNA transfer in wild type Agrobacterium], A. rhizogenesits plasmid, Biolistics: chloroplast transformation: advantages and disadvantages of the technique.

Applications of transgenics: vaccine subunits, edible vaccines, from hairy root cultures.

Transgenic plants: Stress resistance [salt, water, and temperature], Improved nutrition shelf life and Novel applications for industrial purpose, biodegradable plastics, and novel horticultural traits [flower colour,

varigation].

Examples of secondary metabolite production (industrial scale**)**: [shikonin, taxol (biosynthesis and bioreactor production) capsasin/ berbrine].

Practical:

PSLSCBMP301	Biomathematics and Cell Biology Techniques (60L)	2	04
	 Mathematical sums to be solved in biomathematics Site directed mutagenesis 2-D Gel electrophoresis (Demonstration) Expression of foreign protein in <i>E. coli</i> Establishment of Primary Culture (ATC) using a suitable source. In vitro Culture - Washing & Sterilization, Preparatory steps for tissue culture, surface sterilization of plant material, basic procedures for Aseptic tissue transfer, incubation of culture. Preparation of Culture media & Reagents - Media composition, Nutrition, Hormones. Tissue Culture - Callus culture, Cell suspension Preparation of plant protoplast and test for viability Plant micro-propagation - micro-culture of plants. Nucleic acid isolation and blotting A. Isolation of RNA from <i>E. Coli</i> B. Spectrophotometric characterization of RNA C. Capillary blotting (Southern/Northern) of nucleic acids from agarose gels D. Preparation of cDNA and RT-PCR Demonstration of proteomic and genomic techniques. 		

References:

- 1. Primrose, S.B. and Twyman, R.M. (2006) Principles of Genetic Manipulation and Genomics. Seventh Edition. Blackwell Publishing, USA.
- 2. Winnacker, E-L.(1987) From Genes to Clones. VCH Publishers, USA.
- 3. SambrookJ.and Russell D.2001.Molecular Cloning: A Laboratory Manual, 3rd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- 4. A K Vasil. Cell culture and somatic cell genetics of plants (Vols.1to3) A,Press.
- 5. Ed. John R.W Masters Animal cell culture-Practical approach 3rd edition, Oxford university press-2000
- 6. In vitro cultivation of Animal cells. Elsevier India PVT LTD-17-A/1 Main Ring Road, New Delhi-110024
- 7. R. Sasidhara, Animal Biotechnology MJP publishers-Chennai.
- 8. Industrial Biotrasformations by A. Liese, K. Seelbach and C. Wandrey; Wiley VCH.

- 9. Role of Biotechnology in Medicinal and Aromatics Plants by Khan and Khanum Vol. 1 to 3. Plant Tissue Culture by M. K. Razdan.
- 10. Animal Cell Culture by Ian Freshney
- 11. Basic Cell Culture. Ed. J. M. Davis 2nd.Ed 2007. Oxford press
- 12. Animal Cell Culture Sudha Gangal

Paper-PSLSCBMT302 Title-Bioenergetics and Primary Metabolism

Prerequisite: Students with Biological Sciences background at Graduation level.

Course Objectives:

- To introduce the concept of bioenergetics related to free energy change in biochemical reactions and study carbohydrate metabolism by different pathways inside living system.
- To understand lipid metabolism that includes both catabolism and anabolism.
- To study the details of amino acid catabolism and central role of TCA cycle.
- Get knowledge of basic concept of metabolic engineering and system biology

Course Outcomes:

On completion of the course, learner will be able to-

- Understand the concept of bioenergetics and detailed study of metabolic processes like carbohydrate metabolism
- Comprehend the basic concept of catabolic processes of fatty acids that generate energy, and anabolic processes that create biologically important molecules.
- Be acquainted with the significance of amino acid metabolism and key role of TCA cycle in various metabolic processes; inborn errors associated with amino acid metabolic pathways
- Explanation of concept of metabolic engineering and working principles of System Biology; use them for exploiting plants and microbes for production of metabolites.

Course Code	Title	Credits		
PSLSCBMT302	Bioenergetics and Primary Metabolism (60L)			
Unit I: Bioenerge	tics and Carbohydrate Metabolism	(15L)		
Bioenergetics: Co	ncept of free energy, standard free energy, de	termination		
of ∆G for a rea	ction; Relationship between equilibrium co	nstant and		
standard free en	ergy change, biological standard state & sta	andard free		
energy change	in coupled reactions; Biological oxidatio	n-reduction		
reactions; Redox	c potentials; Relation between standard	reduction		
potentials & free	energy change; High energy phosphate co	mpounds –		

introduction, phosphate group transfer, free energy of hydrolysis of ATP and sugar phosphates alongwith reasons for high ΔG .

Carbohydrate Metabolism: Glycolysis in higher organisms and microorganisms; Pentose phosphate pathway and its regulation; Gluconeogenesis, glycogenesis and glycogenolysis, glyoxylate and Gamma aminobutyrate shunt pathways; Cori cycle; Anaplerotic reactions; Entner-Doudoroff pathway; Glucuronate pathway; Metabolism of disaccharides; Hormonal regulation of carbohydrate metabolism; Inborn errors of carbohydrate metabolism.

Unit II: Lipid Metabolism

(15L)

Fatty acid catabolism: Hydrolysis of tri-acylglycerols; α -, β -, ω - oxidation of fatty acids; Oxidation of odd numbered fatty acids – fate of propionate; Role of carnitine; Degradation of complex lipids; Formation of ketone bodies; Energetics of beta oxidation.

Fatty acid biosynthesis: Acetyl CoA carboxylase; Fatty acid synthase; ACP structure and function; Lipid biosynthesis; Biosynthetic pathway for triacylglycerols, phosphoglycerides, sphingomyelin and prostaglandins; Metabolism of cholesterol and its regulation; Biosynthesis of bile acids and steroid hormones; Alternative pathway for isoprenoid biosynthesis in chloroplast; Inborn errors of fatty acid metabolism.

Unit III Amino Acid Metabolism

(15L)

Amino acid catabolism: Proteolysis; General reactions of amino acid metabolism - Transamination, decarboxylation, oxidative & non-oxidative deamination of amino acids; Acetyl CoA, alpha ketogutarate, acetoacetyl CoA, succinate, fumarate and oxaloaccetate pathway; Urea cycle and its regulation; Ammonia excretion.

Biosynthesis of Amino Acids: Biosynthesis of aromatic amino acids and Histidine; One carbon atom transfer by folic acid (Biosynthesis of glycine, serine, cysteine, methionine, threonine); Conversion of amino acids to specialized products; Inborn errors of protein metabolism.

TCA cycle: Central role of TCA cycle in energy generation and biosynthesis of energy rich bond; Integration/regulation of carbohydrate, lipid and protein metabolism.

Unit: IV Metabolic Engineering and Systems Biology

(15L)

Metabolic Engineering: Historical perspective and introduction; Importance of metabolic engineering; Paradigm shift; Information resources; Scope and future of metabolic engineering; Plant and microbial metabolic engineering; Metabolically engineered organisms; Metabolic flux analysis.

Systems Biology: Concepts and working principles of System Biology - Practical applications of System Biology in Life Sciences - Introduction to System Biology platforms; Proprietary system Biology platform; Different

Markup languages used in systems biology. Introduction to NGS technology.

Practical:

PSLSCBMP302	Bioenergetics (60L)	and	Primary	Metabolism	2	04
	1. Estimation of SubbaRao 2. Determination of Hydrazine 3, Isolation of 4. Assay of ala 5. Fractionation	cholesterol anine and of cell of identification	uvate by 2, and lecithin aspartate am rganelles from on by ma e activity of en	method ,4-dinitrophenyl method from egg yolk ninotransferases m animal/plant rker enzymes nzymes/proteins		

References

- 1. L. Stryer, Biochemistry, W.H. Freeman and Co. 5th 2002
- 2. Voet, Donald, Voe Judith, Pratt, Charlotte W. Fundamentals of Biochemistry: Life at the molecular Level 2nd Edition. Publisher: Asia, John Wiley & Sons. 2006.
- 3. Nelson David L., Cox Michale. Lehninger Principles of Biochemistry 5th Edition.Publisher: New York. W. H. Freeman. 2008.
- 4. Text Book of Biochemistry with clinical correlation by Thomas M. Devlin, John Wiley Liss, Hobokhen NJ publishers (2006)
- 5. Zubey, Biochemistry GL WCB Publishers.
- 6. Stephanopoulos Gregory N., Aristidou Aristos A., Nielsen Jens. Metabolic Engineering: Principles and Methodologies. Publisher: New Delhi, Reed Elsevier India Pvt. Ltd. 2006.
- 7. Purich Daniel L., Allison R. Donald. The Enzyme Reference: A Comprehensive Guidebook to Enzyme Nomenclature, Reactions, and Methods. Publisher: California, Academic Press.
- 8. Andres Kriete (Editor), Roland Eils (Editor). System Biology: Computational Systems Biology (Hardcover)
- 9. Uri Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits, Chapman & Hall/CRC Press, Mathematical and Computational Biology, 2nd edition, 2006.

Paper-PSLSCBMT303 Title- Biomolecular Structure

Prerequisite: Students with Biological Sciences background at Graduation level.

Course Objectives:

- Introduction to basic chemical bonds, their role in stabilization of different biomolecule and application of spectroscopic techniques for analysis of biomolecules.
- To make student aware to the structure, stability and differentmodifications of protein as well as structure of DNA molecule.
- To provide the understanding of supramolecular assemblies and functions performed by the complex protein molecules.
- To comprehend structural and functional aspects of biomolecular interactions;
 molecular basis of major diseases.

Course outcomes:

On completion of the course, learner will be able to-

- Understand the role of chemical interaction in stabilizing the structure and conformation of biomolecule; Principle, methodology and applications of spectroscopic techniques.
- Understand the relevance of the covalent and synthetic modifications of protein, their application; DNA structure and its different isoform.
- be acquainted with the supramolecular assemblies of Viral structural component, nucleic acid binding motifs in proteins; function of metalloproteins and transport protein inside the living system.
- Be familiar with biomolecular interactions; analyze molecular basis of diseases and basic mechanism behind the prominent genetic and metabolic disorders.

Course Code	Title			
PSLSCBMT303	Biomolecular Structure (60L)			
Unit I: Chemical B	onds and Spectroscopic Techniques	(15L)		
Inter atomic intera	Inter atomic interactions, ionic, covalent and metallic bonds; Importance of			
weak, non-covale	weak, non-covalent bonded interactions in biomolecules, such as Van der			
Waals forces and	Waals forces and hydrogen bonding; Energies and geometrics of these			
interactions and their roles in structure and conformation of biomolecules.				
Spectroscopic techniques: Principle, methodology and applications of				
Infrared, Raman, ESR, Atomic absorption spectroscopy.				
Optical Activity:	Importance of chirality in biomolecul	es; Principles and		

applications of CD and ORD.

Unit II: Protein and Nucleic Acid Structures

(15L)

Structure and Stability of Proteins: Myoglobin, Hemoglobin, Lysozyme, Ribonuclease A, Carboxypeptidase and Chymotrypsin; Conformation of proteins by Ramachandran plot; N and C terminal analysis of proteins.

Covalent modification of proteins: Acetylation, phosphorylation, adenylation, methylation, ribosylation, lipidation.

Synthetic protein modifications: Protein-based hybrid structures and protein polymer systems; applications of protein polymer systems; Amino acid targeting for synthetic protein modification; Synthetic approaches for polymer-protein hybrid structure; Non-covalent approaches for polymer-protein conjugates; Protein-nanopartcle hybrids via surface conjugation; Biocatalytic approaches for biohybrid structures.

DNA structure: A/B/Z/D forms of double helical structure of DNA; Triple helix; DNA supercoiling and topoisomerases.

Unit III: Supramolecular Assemblies and Complex proteins

(15L)

Viruses: Viral assembly; Capsid; Capsomere, eg., TMV, HIV, Adenovirus, Influenza.

Nucleic Acid Binding Motifs in Proteins: Leucine zipper; Zinc fingers; Helixturn-helix; Beta barrel; OB fold and their role in regulation of gene expression.

Metalloproteins: General principles of metal coordination; Storage and transport metalloproteins (Rubredoxin, Plastocyanin, Ferritin, Ceruloplasmin); Signal-transduction metalloproteins (Calmodulin, Troponin); Metalloenzymes (Carbonic anhydrase, SOD, Hydrogenase). Transport proteins: Oxygen transport proteins from vertebrate and invertebrate (haemoglobin, hemoeryhtrin, cytochrome C), Albumin.

Unit IV: Biomolecular Structure and Diseases

(15L)

Structural and functional aspects of proteins and DNA: Relationships between structure and function and their role in human disease; DNA-protein interactions; Protein-RNA interactions; Protein-protein interactions; Protein aggregation; Non-enzymatic glycosylation (Protein-sugar interaction); Methods to study these interactions.

Molecular basis of disease: methods for prevention, diagnosis, and treatment; Advanced techniques used in the diagnostics of diseases due to structural alteration.

Diseases: Huntington's disease, Sickel-cell anemia; Cataract; Alzheimer's disease; p53 in cancer; Von Hippel-Lindau syndrome; Metabolic syndrome (Diabetes).

Practical:

PSLSCBMP303	Biomolecular Structure (60L)	2	04
	1. Protein purification methods:		
	A. Isolation of casein from milk B. Purification of an enzyme by ion exchange chromatography/affinity chromatography C. Use of ammonium sulphate precipitation and dialysis		
	D. Use of gel filtration E. SDS-PAGE		
	Polyacrylamide gel electrophoresis under non denaturing conditions		
	A. Silver staining B. Activity staining of enzymes C. Determination of effect of acrylamide concentration on the mobility of proteins 3. Determination of melting temperature (Tm) of DNA. 4. Analysis of DNA A. Estimation of DNA and RNA by UV absorption method B. Determination of purity of nucleic acids C. Conformational analysis of plasmid DNA by		
	agarose gel electrophoresis (Oxidative/carbonyl stress induced damage).		
	5. Spectrofluorimetric analysis of proteins6. Determination of N- and C-terminal amino acids (demonstration).		
	7. Protein aggregation studies by Congo Red and Thioflavin T.		
	8. Generation and measurement of non-enzymatic glycosylated products (Protein/DNA).		
	9. Assay of transport protein (BSA) – esterase activity. 10. Analysis of protein-sugar-DNA interactions		

References:

- 1. K. Wilson and I. Walker, Practical Biochemistry, 5th edition, University press (2000)
- 2. Shawney, Practical Biochemistry
- 3. P. Asokan, Analytical Biochemistry. China publications, (2003)
- 4. David Frifelder, Physical Biochemistry, W. H. Freeman; 2nd edition (1982)
- 5. Sheehan, D. (2009) Physical Biochemistry: Principles and Applications. John Wiley & Sons Ltd., UK.
- 6. Branden, C. I. and Tooze, T.(1999) Introduction to Protein Structure. Garland Publishing, USA.

- 7. Lesk, A. M. (2004) Introduction to Protein Science: Architecture, Function and Genomics. Oxford University Press, UK.
- 8. Creighton, T.E. (1983) Proteins: Structures and Molecular Properties. W.H. Freeman and Co., USA.
- 9. Pain, R.H. (2000) Mechanism of Protein Folding. Oxford University Press, UK.
- 10. Arai, M. and Kuwajima, K. (2000) Advances in Protein Chemistry. Academic Press, USA
- 11. The Chemical Reactions of Living Cells: David E Metzler
- 12. William J. Marshall, Stephan K. Bangert, Elizabeth S.M. Ed. S.M (ed) Marshall, Clinical Biochemistry: Metabolic And Clinical Aspects by (2008) Publisher: Elsevier Science Health Science Div

Paper- PSLSCBMT304 Title- Research Methodology and Quality Control

Prerequisites: Students with Biological Sciences background at Graduation level.

Course Objectives:

- To understand the different types of research work.
- To present the research work scientifically.
- To acquaint with latest good laboratory practices used in various industries.
- To explain the importance of Quality Management System.

Course Outcome:

On completion of the course, learner will be able to

- Design a research framework.
- Develop soft skills in compilation and presentation of their research work.
- Apply and practice good laboratory practices.
- Generate management quality assurance based on ISO tenets.

Course Code	Title		Credits
PSLSCBMT304	Research Methodology and Quality Control	(60L)	4
Unit I: Research M	lethodology	(15L)	
of research – Des Qualitative, Conce Approaches; Rese Method; Research Research; Samplir	rch; Objectives of research, motivation in research; Objectives of research, motivation in research; ptual, Empirical and Other Types of Research; arch Methods vs. Methodology; Research and Process: Steps of research process; Criteriang, Sample size determination, Plan for data collection, Plan for data processing and analysting research	Research Scientific of Good collection,	
Unit II: Scientific w	vriting	(15L)	
proposals, Synop (Abstract, Introd Discussions, Sum	tific and non scientific writings; Structures of sis, Dissertations, Thesis, Research paper luction, Review literature, methodology, mary, Conclusion, Bibliography etc); Prese, Animation, Power point etc	writings Results,	
Unit III: ISO		(15L)	
Introduction: Over	r View of standards in ISO9000 Family		
Key principles: Key	y principles of ISO 9000- Quality Management S	ystem	
	ed study on ISO 9001:2015 standard, based on the tymanagement, including a strong customer to		

motivation and implication of top management, the process approach and continual improvement	
<u>Application:</u> Sector specific Application of ISO 9001- Quality Management System adapted by various industries	
Unit IV: GMP/ GLP (15L)	
Introduction: Good Manufacturing Practices (GMO) and Good Laboratory Practices (GLP) in Pharmaceutical Industries.	
Overview of GMPs is enforcement by the U.S. Food Drug Administration (US FDA) under Title 21 CFR	
Documentation requirement for GMP and GLP	
Case studies for Documentation related to SOP preparation and CAPA (Corrective action Preventive Action).	

PSLSCBMP304	Dissertation in Literature Review	(60L)	2	04
	1. Project dissertation of literature review			

References:

- 1. Kothari, C.R., 1985, Research Methodology Methods and Techniques, New Delhi, Wiley Eastern Limited.
- 2. Das, S.K., 1986, An Introduction to Research, Kolkata, Mukherjee and Company Pvt. Ltd.
- 3. Misra R.P., 1989, Research Methodology: A Handbook, New Delhi, Concept Publishing Company
- 4. Kumar, R., 2005, Research Methodology A Step-by-Step Guide for Beginners, (2nd.ed.), Singapore, Pearson Education.
- 5. Bhattachraya, D.K., 2006, Research Methodology, (2nd.ed.), New Delhi, Excel Books.
- 6. Panneerselvam R., 2012, Research Methodology, New Delhi, PHI Learning Pvt. Ltd.
- 7. ISO 9000 quality systems handbook fourth edition by David Hoyle
- 8. International standard iso9001 : quality management systems requirements fifth edition 2015-09-15.
- 9. Pharmaceutical quality assurance for students of pharmacy, @nd edition Dec.2007.by Mr. manohar a. Potdar. NiraliPrakashan.
- 10. How to Practice GMPs 7th ed. by P.P. Sharma ,Seventh edition 2015.
- 11. Hand Book, Good Laboratory Practices: Quality practices for regulated non-clinical research and development, 2nd Edition, 2009.
- 12. The Oxford Book of Modern Science Writing (Oxford Landmark Science) 2009 by Richard Dawkins (Author, Editor)
- 13. Writing Science: How to Write Papers That Get Cited and Proposals That Get Funded (2012) by Joshua Schimel (Author)
- 14. The Best of the Best of American Science Writing (The Best American Science Writing) 2010 by Jesse Cohen (Author)

15. From Research to Manuscript A Guide to Scientific Writing (Second Edition) By Katz,

Michael J. (Springer Publication)

M.Sc. Part – II Life Sciences Syllabus Restructured for Credit Based Semester and Grading System To be implemented from the Academic year 2017-2018 Semester IV Detailed Syllabus

PSLSCBMT401

Title: Molecular Cell Biology

Prerequisite: Students with Biological Sciences background at Graduation level.

Course Objectives:

- To explain cell cycle and programmed cell death; mechanism of carcinogenesis.
- To understand the dynamics of biological membranes; structure and function of nuclear envelope and organization of molecules in cellular matrix.
- Comparative study of protein targeting and trafficking in prokaryotes and eukaryotes
- Basic understanding of gene silencing mechanism and its applications to diagnose, cure human diseases; analyze the behavior of genes through epigenetics

Course Outcomes:

On completion of the course, learner will be able to

- To correlate the process of cell cycle/signal transductionwith carcinogenesis and programmed cell death
- Analyze the membrane structures and nuclear pore; molecular arrangement of microfilaments
- Understand the mechanism of post translational modification of proteins and their significance in sorting of proteins
- Become familiar with the modern concept of gene expression & regulation and their application in gene therapy

Course Code	rse Code Title							
PSLSCBMT401	Molecular Cell Biology	(60L)	4					
Unit I: Cell Divisior	and Apoptosis	(15L)						
control of cell control of cell control of cell by Genes and polymers and their and disease; Caspautophagy, Carcinogenesis: Carcinogenesis: Carcinogenesis	cell cycle: Meiosis: its regulation, steps ycle. Cell-cell fusion in normal and Death: Regulation of Apoptosis; Induct roteins involved in apoptosis; Recep signalling pathways; Role of apoptosic base-independent pathways eg., Necro mitotic Characteristics of cancerous cells; A colecular basis of cancer therapy, Tumo	abnormal cells. ion and Inhibition otors with death s in development osis, necrotopsis, catastrophy. gents promoting						

CEA, hCG; Telomere replication; Telomerase and its role in cancer and aging.

Unit II: Biomembrane and Cell Matrix

(15L)

Biomembranes: Structure and assembly; Orientation of membrane proteins, their solubilisation with detergents and enzymes; Membrane reconstitution; Liposomes and their application in biology and medicine **Nuclear pore complex:** Structure; Assembly and disassembly; RNA transport; Role in macromolecular exchange and regulation; nuclear import—export cycle

Molecules of the matrix: Proteins of the microfilament, microtubules and intermediary filaments; Structure, properties and assembly of actin and tubulin, examples and roles of these filaments in cell structure and function, eg., dynamics and roles of kinesin and dynein; Organization of proteins on microvillus; Cell-cell/cell-matrix interactions.

Unit III: Protein Trafficking and Targeting

(15L)

N-glycosylation in the ER and Golgi (quality control, UPR, ERAD and proteosomal degradation

Intracellular and membrane protein trafficking and targeting; Secretory pathways in prokaryotes and eukaryotes; Endocytic pathways; Signal sequences; Co-translational transport (protease protection assay); Targeting of mitochondrial, chloroplast, peroxisomal and nuclear proteins; Vesicle biogenesis and ER to Golgi transport; ER translocation of polypeptides (soluble and transmembrane); ER chaperons; SNAPs and SNAREs; Methods of studying Protein Transport; Disorders of protein transport

Unit IV: Gene silencing and Epigenetics

(15L)

Gene silencing: Historical background; RNA interference as regulatory mechanism in eukaryotes; Slicer and dicer; Synthesis and function of RNAi molecules in plants; Gene silencing mechanisms; RNAi-based gene therapy; Chromatin remodelling in human disease and diagnosis

Epigenetics: Background, chromosomal inheritance taking fission yeast as an example; DNA methyltransferases, DNA methylation maintenance; Histone modification and regulation of chromatin structure; Bivalent histones; Histone demethylation; Epigenetic therapy; Epigenetic regulation of gene expression

Practical:

PSLSCP401	Molecular Cell Biology (60L)	2	04
	1. Preparation of lipid bilayer vesicles (liposomes) using		
	the purified lipids		
	2. Effect of detergents on membranes		
	3. Protease protection assay to study protein transport		
	and secretion		
	4. Isolation of DNA and demonstration of apoptosis of		
	DNA laddering		
	5. MTT assay for cell viability and growth		
	6. UV damage and repair mechanism in Escherichia coli or		
	Serratia marcescens		
	7. Synthesis of siRNA		
	8. Histone modification assays		

References

- 1. Kleinsmith and Harden, The World of the cell, Becker, Academic Internet Publishers; 5th edition (2006)
- 2. Geoffrey M. Cooper and Robert E. Hausman. The Cell: A Molecular Approach, Fourth Edition
- 3. Harvey Lodish. Molecular cell Biology. W. H. Freeman; Sol edition (2007)
- 4. Alberts B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2002) Molecular Biology of the Cell. Garland Publishing, Taylor & Francis Group, USA.
- 5. Karp, J.G. (2007) Cell and Molecular Biology. John Wiley & Sons, USA.
- 6. Kleinsmith, L.J.and Kish, V.M. (1996) Principles of Cell & Molecular Biology. Second Edition. Harper Collins College Publishers, USA.
- 7. Pollard, T.D. and Earnshow, W.C.(2002) Principles of Cell and Molecular Biology, Saunders, USA.
- 8. Ross Dalbey (Editor), Protein Targeting, Transport, and Translocation:, Publisher: Academic Press; 1 edition (May 13, 2002)
- 9. T Gesteland et al. The RNA World Eds CSHL Press
- 10. Eds. Fire et. al. RNA Interference Technology: From Basic Science to Drug Development. Cambridge University Press,
- 11. Ed. Gregory J. Hannon. RNAi: A Guide to Gene Silencing. CSHL Press
- 12. Ed. Gordon G. Carmichael. RNA Silencing: Methods and Protocols CSHL Press
- 13. Ed. Ute Schepers, RNA Interference in Practice, Wiley-VCH GmbH & Co. KGaA.
- 14. B. M. Turner, Chromatin and Gene Regulation: Molecular Mechanisms in Epigenetics

Paper-PSLSCBMT402

Title-Nitrogen Metabolism and Plant Biochemistry

Prerequisite: Students with Biological Sciences background at Graduation level.

Course Objectives:

- To know the concept of nucleotide metabolism;Inhibitors of nucleic acid biosynthesis and their role in cancer treatment.
- To discuss the concept of nitrogen assimilation in plants at molecular and biochemical level.
- To become familiar with process of photosynthesis by the plants through different pathways and special features of secondary plant metabolism.
- To understand the dynamics of Free radicals and Antioxidant Biology; Role of free radicals in development of diseases.

Course Outcomes:

On completion of the course, learner will be able to

- Acknowledge the metabolic pathways of nucleotides and their exploitation for curing lethal diseases
- Understand the significance of nitrogen assimilation in improving the quality of plants and their application for production of biofuels.
- Differential capacity of plants for synthesis of biomolecules and secondary metabolites
- Analyze the potential role of free radicals in health and diseases

Course Code	Title		Credits				
PSLSCBMT402	Nitrogen Metabolism and Plant Biochemistry	4					
Unit II: Nucleotide	Metabolism	(15L)					
Nucleotide Metak	polism: Role of nucleases and phosphodiesterase	es in the					
degradation of nu	ıcleic acids; Biosynthesis and degradation of puri	ines and					
pyrimidine nucleo	tides and their regulation; Thymine biosynthesis	; Role of					
folic acid in nuc	leotide biosynthesis; Purine salvage pathway;	Role of					
ribonucleotide r	eductase; Biosynthesis of deoxyribonucleotid	les and					
• •	nhibitors of nucleic acid biosynthesis; Inherited d						
	etabolism; Anticancer drugs; Nucleotide metabo	olism as					
target for cancer, antiviral therapy and malaria.							
Unit II: Nitrogen A	Assimilation in Plants	(15L)					
Nitrogen Fixation	: Nitrogenase complex; Electron transport ch	ain and					
mechanism of ac	tion of nitrogenase; Structure of 'NIF' genes	and its					
regulation; Hydrog	gen uptake and bacterial hydrogenases.						
Nitrate assimilatio	n in plants: Structural features of nitrate reduct	ase and					
nitrite reductase,	incorporation of ammonia into organic com	pounds,					
regulation of nit	rate assimilation; Ammonium assimilating enz	ymes –					

glutamine sy	vnthetase.	glutamate:	svnthase	and GDH.
Diataiiii C 3	, ,	Diatainate .	o ,	aa

Unit III: Photosynthesis and Secondary Metabolism

(15L)

Photosynthesis: Light harvesting complexes; plant mitochondrial electron transport and ATP synthesis; alternate oxidase; Carbon fixation by C_3 , C_4 and CAM pathways; Photoprotective mechanisms; Photorespiration; Bioluminescence.

Special features of secondary plant metabolism, terpenes (classification and biosynthesis), lignin, tannins, pigments, phytochrome, waxes, alkaloids; Biosynthesis of nicotine; Functions of alkaloids.

Unit IV: Free radicals and Antioxidant Biology

(15L)

Free radicals: Introduction & Chemistry of Reactive Oxygen/Nitrogen Species (ROS/RNS); Sources of ROS/RNS; Transition metals as catalyst; ROS and Signal Transduction; Glycation mediated free radicals; Carbonyl and oxidative stress; Beneficial Aspects of Oxidative Metabolism. Oxidative damage markers, Methods of Detecting ROS/RNS; Detection of free radicals in biological systems; EPR spectroscopy principles and determination.

Antioxidants: Diet-Derived Antioxidants; Enzymatic and non-enzymatic components of antioxidative defense mechanism (catalase, peroxidase, superoxide dismutases, vitamins E and C, uric acid, glutathione, metal chelators); Chemical scavengers; Antioxidant therapy. Role of free radicals in development of diseases: Mechanisms of Protein oxdidation, Lipid peroxidation, DNA oxidation. Types of oxidized lesions and their biological importance

Practical:

PSLSCBMP402	Nitrogen Metabolism and Plant Biochemistry (60L) 1. Measurement of activity of plant nitrate assimilation enzymes A. Isolation of nitrate reductase from plants B. Effect of environmental factors and hormones (CO ₂ , light, pH, growth hormones) 2. Measurement of free radicals by spectrophotometric method (Total phenolics, DPPH assay, ABTS assay, FRAP assay) 3. Analysis of free radical scavengers and antioxidant enzymes (Assay of any one - peroxidase, catalase, phenol oxidase, ascorbic acid oxidase, SOD) 4. Generation and measurement of oxidative and carbonyl stress in proteins and DNA (Protein oxidation method/DNA cleavage assay)	2	04
	method/DNA cleavage assay) 5. Plant pigments		

B. Separation by column chromatography C. Determination of absorption spectra of plant pigments		C. Determination of absorption spectra of plant	
---	--	---	--

References

- 1. Campbell and Farrell: Biochemistry 4th ed. Brooks/Cole Pub Co.
- 2. Buchanan: Biochemistry and molecular Biology of Plant
- 3. Heldt Plant Biochemistry
- 4. Lubert Stryer, Biochemistry, W. H. Freeman; 6 editions (2006).
- 5. Voet and Voet, Fundamentals of Biochemistry:
- 6. Kuchel and Ralston, Biochemistry 1998. 2nd ed. Schaum's Outlines McGraw Hill.
- 7. Harper's Biochemistry: Murray, et al. 2003. 28th ed. McGraw Hill.
- 8. Nelson & Cox, Lehninger's Principle of Biochemistry
- 9. K.G Ramawat, Biotechnology: Secondary Metabolites (2000) Publisher: Science Publishers, U.S.
- 10. P.M Dey and J.B. Harborne, Plant Biochemistry (1997) Publisher: Academic Press
- 11. Prof David T. Dennis, Prof David H. Turpin, Dr Daniel D. Lefebvre and Dr David B. Layzell(Editors), Plant Metabolism by (1997) publisher: Longman
- 12. Packer L and Helumt S. Oxidative Stress and Inflammatory Mechanisms in Obesity, Diabetes, and the Metabolic Syndrome. CRC Press.
- 13. Milan Lazár, Free Radicals in Chemistry and Biology,
- 14. Barry Halliwell, Free Radicals in Biology and Medicine (Paperback), John Gutteridge
- 15. Barry Halliwell, DNA & Free Radicals (Textbook Binding), Okezie I. Aruoma (Editor)

Paper- PSLSCBMT403

Title-Biomolecular Function

Prerequisite: Students with Biological Sciences background at Graduation level.

Course Objectives:

- Be Familiar with dynamics of protein folding and basic concepts for design of a new protein/enzyme molecule.
- To understandfactors contributing to high catalytic rates of enzymes and applications of immobilized enzymes.
- To introduce the concept of detection and characterization of metabolites and gene transcripts.
- Introduction and application of nanobiology.

Course Outcomes:

On completion of the course, learner will be able to

- Learn various aspects of protein folding and design strategy for protein engineering.
- Explore the kinetics of enzyme catalyzed reactions and preparation of immobilized enzymes.
- Apply methods for isolation and analysis of metabolites and gene expression.
- Design methodology for synthesis and characterization of nanomaterials.

Course Code	Title	Title						
PSLSCBMT403	Biomolecular Function (60L)	4					
Protein Folding: Compact Interm mechanisms; Mol prefoldin), heat sh	ding and Engineering Folding pathways; Intermediates of protein folding pathways; Intermediates of protein folding ediates; Hierarchical and non-heirarchical folding ediates; Hierarchical and non-heirarchical folding family (Polymeronia (Group International Control of Polymeronia (Group International Control of Polymeronia (Group International Control of Polymeronia (Polymeronia) (Polymeronia (Polymeronia) (Polymeronia (Polymeronia (Polymeronia) (Polymeronia (Polymero	lding ctor, & II)						
Protein Engineering enzymes using sit strategies; Conform Effect of amino action molecule, Strategies for the Basic concepts for strategies for the strategies and strategies for the strategies and strategies for the strategies for the strategies for the strategies are strategies for the strategies and strategies for the strategies for the strategies are strategies for the strategies and strategies are strategies are strategies and strategies are strategies are strategies.	ng Design and construction of novel proteins e-directed mutagenesis and Random/directed evolumation of proteins in general and enzymes in particities on structure of proteins; Energy status of a producture- function relations of enzyor design of a new protein/enzyme molecule; Spene engineering — Dihydrofolate reductase and Subtilis	and ution ular; otein mes. ecific						

Unit II: Kinetics and Mechanism in Biological Systems

(15L)

Enzyme Kinetics: Enzyme catalysis and factors contributing to high catalytic rates; Molecular aspects of catalysis for specific enzyme substrate complexes (Lysozyme, carbonic anhydrase, carboxypeptidase and chymotrypsin); Multisite binding of ligands to proteins; Bohr's effect; Models of Allostery - MWC and KNF models Hill's equation coefficient; Kinetics of multi-substrate enzyme-catalysed reactions; Ping-pong bi-bi, random order and compulsory order mechanism. **Immobilised enzymes:** Methods and applications.

Unit III: Metabolomics and Transcriptomics

(15L)

Metabolomics: Modern Concept of metabolomics; Detection and characterization of metabolites; metabolite library; Metabolite isolation and analysis by Mass Spectrometry, NMR, LIF, LC-UV; Metabolomics databases and resource (e.g. Metabolights).

Plant metabolomics: Plant stress responses, nutrigenomics, and metabolite dynamics; Metabolite profiling in phenotyping and breeding (*Arabidopsis* ecotypes, rice).

Transcriptomics: basic concepts and technology, data normalization, clustering (Hierarchical, k-means, SOM), detection of over expression and under expression (PCA). Modeling using Boolean Networks. EST, Unigene.

Unit IV: Nanobiology

(15L

Introduction: Nanoscience; Nanobiotechnology; Nanodevices; Applications in various fields viz. Physical and Chemical, Materials and Life Sciences.

Application: Gold bonding proteins; Nanopharmaceuticals such as liposomal formulations; Membrane nanodiscs; Biosensors; Nanowires. **Synthesis of nanostructure:** Physical, chemical and biological methods. **Properties and Characterization of nanomaterials:** Optical (UV-Vis / Fluorescence), X-ray diffraction; Imaging and size (Electron microscopy, Light scattering, Zeta potential), Surface and composition (ECSA, EDAX, AFM/STM).

Practical:

PSLSCBMP403	Biomolecular Function and Environmental Toxicology (60L)	2	04
	1. Protein denaturation by Guanidine hydrochloride/urea		
	2. Enzyme inhibition		
	A. Inhibition of enzyme activity		
	B. Determination of Ki values		
	3. Immobilization studies:		
	A. Preparation of urease entrapped in alginate beads		
	and determination of percent entrapment		
	B. Study of the kinetics of the rate of urea hydrolysis		
	by urease entrapped alginate beads		
	C. Study of reusability and storage stability of urease		
	entrapped alginate beads		
	D. Immobilization of urease by covalent attachment		
	to solid support		
	4. Study of nanoparticles		
	A. Synthesis of Silver nanoparticles		
	B. Spectroscopic characterisation		
	5. Toxicity testing: Effect of chemicals on seeds		
	6. Cytotoxicity assay (onion root tip/pollen germination) to		
	estimate water contamination		

References:

- 1. Lutz, S. and Bornschesser, U. T. (2008) Protein Engineering Handbook. Wiley-VCH,
- 2. Gary C. Howard, Modern Protein Chemistry: Practical Aspects Published: September 12, 2001 by CRC Press
- 3. Thomas E. Creighton, Proteins: Structures and Molecular Properties Publisher: W. H. Freeman 1992 Edition: Second Edition
- 4. Christian Müller (Editor), Protein Engineering Protocols (Methods in Molecular Biology) K, Publisher: Humana Press; Softcover reprint of hardcover 1st ed. 2007
- 5. Anders Liljas, Structural Aspects of Protein Synthesis Publisher: World Scientific Pub Co Inc; 1 edition (November 2004)
- 6. David S. Goodsell, Bionanotechnology: Lessons from Nature, 1st Edition, Wiley-Liss, 2004.
- 7. Nicholas C. Price, Lewis Stevens, and Lewis stevens, Fundamentals of Enzymology: The cell and molecular Biology of Catalytic Proteins by (2000) Publisher: Oxford University Press, USA
- 8. Alejandro G. Marangoni, Enzyme Kinetics: A modern Approach Book: Enzyme Kinetics: A Modern Approach, (2003) Publisher: Wiley-Interscience Enzyme Kinetics and Mechanisms by Taylor Publisher: Springer
- 9. W. Weckwerth, Metabolomics: Methods and Protocols, Humana Press, USA (2006).
- 10. M. Tomita and T. Nishioka, Metabolomics: The Frontier of Systems Biology, Springer Verlag, Japan (2005).

Paper-PSLSCBMT404

Title-Drug Development and Environmental Toxicology

Prerequisite: Students with Biological Sciences background at Graduation level. **Course Objectives:**

- Be Familiar with sources and applications of natural products.
- To understand the isolation and characterization of natural products from various sources.
- To study the biochemical aspects of toxic chemicals in the environment and their health hazards.
- Introduction to the processes of environmental monitoring and Environment Impact Assessment.

Course Outcomes:

On completion of the course, learner will be able to

- Basic differences between primary and secondary metabolites.
- Qualitative and Quantitative methods of identification of natural products and their biological application.
- Analyze the toxicity of pollutants and their epidemiology.
- Parameters of environmental monitoring and technology used for the assessment of environment.

Course Code	Title	Credits							
PSLSCBMT404	Drug Development and Environmental Toxicology (60L)								
organisms; Pringle in the mechanism of the mechanism of the control of the contro	products (15L) ural drugs, Sources of natural drug ie Plants, Animals, Micro mary metabolites: carbohydrates, proteins, nucleic acids and eir importance to plants; Secondary metabolites: Types, f synthesis, Importance in plants and for mankind as ments, flavours and medicines								
Plant collection solvent extraction medicinal properties of the collection of the co	n and Extract preparations: Methods of Plant collection, tion (cold, hot, critical fluid extraction etc), screening of operties; Natural products: methods of identification d Quantitative), isolation and purification (Chromatography), on (LC-MS, GC-MS, NMR, XRD, Elemental analysis etc); Bio is: <i>In vitro</i> testing- Antimicrobial, Antidiabetic, Antioxidant, ory, antilarvicidal etc. Pre clinical and clinical trials.								
Toxic chemica biochemical in	nmental toxicology (15L) Is in the environment (air and water): their effects and teractions aspects: of arsenic, cadmium, lead, mercury, carbon								

monoxide, ozone and PAN pesticide; Mode of entry of toxic substance, its breakdown and detoxification; biotransformation of xenobiotics; Insecticides / Pesticides in environment, MIC effects.

Carcinogens: in environment, chemical carcinogenicity, mechanism of carcinogenicity, environmental carcinogenicity testing.

Epidemiological issues of toxic compounds and metal poisoning.

Unit IV: Environmental monitoring

(15L)

Basics: Definition and environmental monitoring process; Sampling – land (site) sampling, water sampling, air sampling.

Analysis: physical, chemical and biological analysis methods and process.

Monitoring pollution: Bioindicators, Biomarkers.

Toxicity: testing using biological material. **Biosensors**: mechanism, principle and working.

Environment Impact Assessment: EIA complete process, Importance of EIA.

Principles of environmental mitigation and monitoring.

Remote sensing: Principles and its applications in Environmental

Monitoring.

Geographical Information System (GIS): Concept of GIS; Types of Geographical Data.Importance of Geographical Information System in environmental studies.

PSLSCBMP404	Dissertation of Research Project (60L)	2	04
	1. Project studies: presentation and preparation of report		
	of observations and results		

References:

- 1. Chemistry of Natural Products by Sujata V. Bhat , B.A. Nagasampagi , Meenakshi Sivakumar (Springer Publication)
- 2. Indian Uses of Native Plants by Edith Van Allen Murphey
- 3. Plant Taxonomy (2nd Edition) by Sharma
- 4. Plant Drug analysis by H. Wagner
- 5. Biochemistry and Molecular Biology of *Plants* by Bob B. *Buchanan*
- 6. Plant Secondary Metabolites
 - Volume 1: Biological and Therapeutic Significance
 - Volume 2: Stimulation, Extraction, and Utilization by Kamlesh Prasad,
- 7. Vasudha Bansal Herbal Cosmetics & Ayurvedic Medicines by P. K. Chattopadhyay
- 8. Textbook of Clinical Trials by David Machin, Simon Day, Sylvan Green
- **9.** Plant Bioactives and Drug Discovery: Principles, Practice, and Perspectives 1st Edition Valdir Cechinel-Filho (Author), Wiley Publication.
- **10.** Drug Discovery from Plants By Angela A. Salim, Young-Won Chin, A. Douglas Kinghorn (Springer publication)
- **11.** Bioassay Methods in Natural Product Research and Drug Development By Lars Bohlin, Jan G. Bruhn (Springer Publication)
- 12. An Introduction to environmental toxicology: Michael H.Dong.

- **13.** Environmental biotechnology: Alan Scragg. **14.** Remote Sensing and GIS: Basudev Bhatta

SEMESTER III

	COURSE CODE												
	PSLSCBM	T301		PSLS	PSLSCBMT302			PSLSCBMT303			PSLSCBMT304		
Theory	Internal	External	Total	Internal	External	Total	Internal	External	Total	Internal	External	Total	
	40	60	100	40	60	100	40	60	100	40	60	100	
Practicals PSLSCBMP301			PSLS	SCBM	P302	PSLS	SCBM	P303	P	SLSCBN	MT304		
	-	50	50	-	50	50	-	50	50	-	50	50	

SEMESTER IV

	COURSE CODE											
	PSLSCBM	MT401 PSLSCBMT402			Γ402	PSLSCBMT403			PS	PSLSCBMT404		
Theory	Internal	External	Total	Internal	External	Total	Internal	External	Total	Internal	External	Total
	40	60	100	40	60	100	40	60	100	40	60	100
Practicals	PSLSCBMP401			PSLSCBMP402			PSLSCBMP403			PSLSCTBM404		
	-	50	50	-	50	50	-	50	50	-	50	50