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Course Outcomes

1. This course is the foundation course of mathematics, especially mathematical anal-
ysis.

2. Student will be able to grasp approximation of a differentiable function localized at
a point.

3. Inverse function theorem helps to achieve homeomorphism locally at a point whereas
implicit function theorem justifies the graph of certain functions. Indirectly or
directly Unit III talks about value of a function in the neighbourhood of a known
element.

4. In Unit IV, student will be able to understand the concept of Riemann integration.

Unit I. Euclidean space R
n (15 Lectures)

Euclidean space Rn: inner product 〈x, y〉 = ∑n
j=1 xjyj of x = (x1, .., xn), y = (y1, .., yn) ∈

Rn and properties, norm ||x|| =
√∑n

j=1x
2
j of x = (x1, .., xn) ∈ Rn, Cauchy-Schwarz

inequality, properties of the norm function ||x|| on R
n. (Ref. W. Rudin or M. Spivak).

Standard topology on R
n: open subsets of Rn, closed subsets of Rn , interior Ao and

boundary ∂A of a subset A of Rn. (ref. M. Spivak)

Operator norm ||T || of a linear transformation T : Rn → R
m (||T || = sup{||T (v)|| :

v ∈ R
n&||v|| ≤ 1}) and its properties such as: For all linear maps S, T : Rn → R

m and
R : Rm → R

k

1. ||S + T || ≤ ||S||+ ||T ||,
2. ||RoS|| ≤ ||R||||S||,and
3. ||cT || = |c|||T ||(c ∈ R).

(Ref. C. C. Pugh or A. Browder)

Compactness: Open cover of a subset of Rn, Compact subsets of Rn (A subset K of
R

n is compact if every open cover of K contains a finite subover), Heine-Borel theo-
rem (statement only), the Cartesian product of two compact subsets of Rn is compact
(statement only),every closed and bounded subset of Rn is compact. Bolzano-Weierstrass
theorem: Any bounded sequence in R

n has a converging subsequence.
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1. Functions and Continuity Notation: A ⊂ R
n arbitary non-empty set. A function

f : A → R
m and its component functions, continuity of a function(∈, δ definition).

A function f : A → R
m is continuous if and only if for every open subset V ⊂ R

m

there is an open subset U of Rn such that f−1(V ) = A ∩ U .

2. Continuity and compactness:Let K ⊂ R
n be a compact subset and f : K → R

m be
any continuous function. Then f is uniformly continuous, and f(K) is a compact
subset of Rm.

3. Continuity and connectedness:Connected subsets of R are intervals. If f : E → R

is continuous where E ⊂ R
n and E is connected, then f(E) ⊂ R is connected.

Unit II. Differentiable functions (15 Lectures)
Differentiable functions on R

n, the total derivative (Df)p of a differentiable function
f : U → R

m at p ∈ U where U is open in R
n,uniqueness of total derivative, differentia-

bility implies continuity.(ref:[1] C.C.Pugh or[2] A.Browder)

Chain rule. Applications of chain rule such as:

1. Let γ be a differentiable curve in an open subset U of Rn. Let f : U → R be a
differentiable function and let g(t) = f(γ(t)). Then g′(t) = 〈(	f)(γ(t)), γ′(t)〉.

2. Computation of total derivatives of real valued functions such as

(a) the determinant function det(X), X ∈ Mn(R),

(b) the Euclidean inner product function 〈x, y〉, (x, y) ∈ R
n × R

n.

(ref. M. Spivak, W. Rudin )

Results on total derivative:

1. If f : Rn → R
m is a constant function,then (Df)p = 0 ∀p ∈ R

n.

2. If f : Rn → R
m is a linear map, then (Df)p = f ∀p ∈ R

n.

3. A function f = (f1, f2, ..fm) : Rn → R
m is differentiable at p ∈ R

n if and only if
each fj is differentiable at p ∈ R

n, and (Df)p = ((Df1)p, (Df2), p, .., (Dfm)p). (ref.
M. Spivak).

Partial derivatives, directional derivative (Duf)(p) of a function f at p in the direction
of the unit vector, Jacobian matrix, Jacobian determinant. Results such as :

1. If the total derivative of a map f = (f1, .., fm) : U → R
m(U open subset of Rn)

exists at p ∈ U , then all the partial derivatives ∂fi
∂xj

exists at p.

2. If all the partial derivatives ∂fi
∂xj

of a map f = (f1, .., fm) : U → R
m(U open subset

of Rn) exist and are continuous on U , then f is differentiable.(ref. W. Rudin)

Derivatives of higher order, Ck-functions, C∞-functions.(ref. T. Apostol)

Brief review of following three topics:
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Unit III. Inverse function theorem and Implicit function theorem (15 Lec-
tures)
Theorem (Mean Value Inequality): Suppose f : U → R

m is differentiable on an open sub-
set U of Rn and there is a real number such that ||f(Df)x|| ≤ M ∀x ∈ U . If the segment
[p, q] is contained in U , then ||f(q)−f(p)|| ≤ M ||q−p||. (ref. C. C. Pugh or A. Browder).

Mean Value Theorem: Let f : U → R
m is a differentiable on an open subset U of

R
n. Let p, q ∈ U such that the segment [p, q] is contained in U . Then for every vec-

tor v ∈ R
n there is a point x ∈ [p, q] such that 〈v, f(q) − f(p)〉 = 〈v, (Df)x(q − p)〉.

(ref:T. Apostol) If f : U → R
m is differentiable on a connected open subset U of Rn and

(Df)x = 0 ∀x ∈ U , then f is a constant map.

Taylor expansion for a real valued Cm-function defined on an open subset of Rn, sta-
tionary points(critical points), maxima, minima, saddle points, second derivative test for
extrema at a stationary point of a real valued C2-function defined on an open subset of
R

n. Lagrange’s method of undetermined multipliers.
(ref. T. Apostol)

Contraction mapping theorem. Inverse function theorem, Implicit function theorem.(ref.
A. Browder)

Unit IV. Riemann Integration(15 Lectures)
Riemann Integration over a rectangle in R

n, Riemann Integrable functions, Continu-
ous functions are Riemann integrable, Measure zero sets, Lebesgues Theorem(statement
only), Fubini’s Theorem and applications. (Reference for Unit IV: M. Spivak, Calculus
on Manifolds).

Recommended Text Books

1. C. C. Pugh, Mathematical Analysis, Springer UTM.

2. A. Browder, Mathematical Analysis an Introduction, Springer.

3. T. Apostol, Mathematical Analysis, Narosa.

4. W. Rudin, Principals of Mathematical Analysis, McGraw-Hill India.

5. M. Spivak, Calculus on Manifolds, Harper-Collins Publishers.
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    EUCLIDIAN SPACE  

Unit Structure 

1.1 Objectives 

1.2  Introduction 

1.3  Inner product and norm on  

1.4  Cauchy –Schwarz inequality 

1.5  Open and Close subset of  

1.6  Interior  and boundary  of subset  of    

1.7  Operator norm  of linear transformation and it’s properties 

1.8  Compactness on  

1.9  Heine-Borel theorem 

1.10  Bolzano-Weierstrass theorem on   

1.11  Continuous function on  

1.12  Continuous function and compactness 

1.13  Connected subset of  

1.14  Lets sum up 

1.15  Unit End exercise 

1.16  Reference  

1.1 Objectives 

After going through this chapter students will be able to understand: 

 Inner product and norm on  

1
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 Open and Close subset of  and Interior  and boundary  of subset  

of  

 Operator norm  of linear transformation  

 Compactness on  

 Connected subset of  

 Continuous function on  

1.2 Introduction 

This are the generalize concept which we have already study at our graduate level. 
So before going to this chapter one should go through the definition and basic 
example of Vector spaces, Inner product spaces, Norm linear spaces and Metric 
spaces and also all the above concept over  

1.3 Inner product and norm on  

Euclidian n-space  is defined as the set of all n-tuples  where 
each   is just a real number. So, 

. An element of  is often 
called point of , and are often called the line, the plane, and the space 
respectively. 

If denotes the element of  then it look like  where each 
is a real number. 

The point of  is also called a vector in , as is a vector space (over the real 
number, of dimension n) with operations, 

 and  where  are element of  and is an element 
of  

In this vector space there is the notation of the length of a vector usually called 
the norm  of and defined by  If then 

 (mod of ), is the usual absolute value of   

1.3.1 Properties of norm on - 

If  are element of  and is an element of  then the following properties of 
holds, 
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1.4 Cauchy-Schwarz inequality on  

Statement:- For all  in ; ; equality holds if and 
only if  and  are linearly dependent.  

Proof:- If  and  are linearly dependent, then the equality clearly holds. 
(Check!) 

If not, then for all  in so 
 

Therefore the right side is a quadratic equation in  with no real solution, so its 
discriminant must be negative.  

Thus;    

Note:- The quantity is called inner product of and  and denoted as 
 

1.5 Open and Closed subsets of  

The close interval  has a natural analogue in  The close rectangle 
 defined as the collection of all pairs  with 

. More generally, if  and  then  is defined as 
set of all  with  In particular,  

The set  is called a closed 
rectangle in  while the set  is 
called an open rectangle.  

1.5.1 Definition:-  A set  is called open set  if for each  there is an 
open rectangle  such that   

1.5.2 Definition:-  A subset  of is called closed set if  is open set. 

Example: If  contains finitely many points, then  is closed set.     

1.6 Interior and Boundary of subset of  

If and then of three possibilities must holds  



4

ANALYSIS - I 

 There is an open rectangle such that  (Set of all such points are 
called the interior points of  and denoted by ). 

 There is an open rectangle such that  (Set of all such points 
are called the Exterior points of A and denoted by  ). 

 If  is any open rectangle with  then  contains points of both  
and . (Set of all such points are called the boundary points of  and 
denoted by ).  

1.7 Operator norm  of linear transformation and its 
properties 

1.7.1 Definition:-  Let  and  be a vector space over real field  and . 
We say that  is linear if  for all  and 

. 

Example:-  Let  Define  by . Then T is 
linear transformation.  

Note:- Let  denote the set of all linear transformation from vector space  
to vector space  One can see each element of  as a point of Euclidian 
space  and thus we can speak of open set in , continuous function 
of linear transformation etc. 

1.7.2 Definition:- Let   be a linear transformation. The norm  of 
 is defined as;   

1.7.3 Properties of norm  of : For all linear maps  and 
R  we have the following properties of norm 

  

  And 

  

1.8 Compactness on  

 A collection  of open sets is called open cover of (or briefly cover ) if every 
points  is in some open sets in the collection  

Example 1: If  is collection of all open interval for , then  is 
a cover of  Clearly no finite number of open sets in  will cover  
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Example 2: If  is collection of all open interval ( ) for all integer  
then  is open cover of  but again no finite collection of sets in  will cover 

 

1.8.1 Definition:-  A subset  is said to be a compact if every open cover  
contains a finite sub collection of open sets which also covers  

Example 1: A set with finitely many points is compact.     

Example 2: Let  is infinite set which contains 0 and the numbers   for all integers 
. (Reason: If  is open cover,  for some open set  in ; there are only 

finitely many pints of  which are not in , each require at most one more open 
set). 

Note:- One may also define the compactness as; a subset  is (sequentially) 
compact if every sequence  in  has subsequence  that converges to limit 
in   

1.9 Heine-Borel theorem 

The closed and bounded rectangle of  is compact. 

1.9.1 Corollary: - If  and  are compact, then  is compact.  

1.9.2 Theorem: - A closed and bounded subset of  is compact. 

Proof: - If is closed and bounded, then  for some closed rectangle 
 If  is an open cover of   then  together with  is an open cover of . 

Hence a finite number  of sets in , together with  will cover 
 Then  cover  

1.10 Bolzano-Weierstrass theorem on  

Every bounded sequence of  has convergent subsequence.    

Proof: - A bounded sequence is contained in a closed and bounded rectangle, which 
is compact. Therefore the sequence has a subsequence that converges to a limit in 
the rectangle. 

1.11 Continuous function on  

A function from  to (sometimes called a (vector valued) function of n 
variable) is the rule which associates to each points of  to some points of ,   
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a function f associates to is denoted by We write  (reads “f 
takes into ”) to indicate that is defined for  

The notation  indicates that  is defined only for x in the set , which 
is called the domain of  If we define  as set of all for , 
and if we define   

Let , a function  determine  component function 
 by .  

The notation  means that we can get  as closed to  as desired, 

by choosing  sufficiently closed to, but not equal to   

In mathematical terms this means that for every number  there is the number 
 such that  for all  in the domain of  which satisfy 

  

A function  is called continuous at  if  and simply 

called continuous if it is continuous at each   

Note: - We may also define continuity as, a function  is continuous if 
and only if  is open whenever  is open. 

1.11.1 Theorem: - If  a function  is continuous if and only if 
for every open set  there exist open set  in  such that    

Proof: - Suppose  is continuous. If then  Science  is 
open, ther is an open rectangle  with  Science f is continuous at , 
we can ensure that  provided we choose  in some sufficiently small 
rectangle  containing  We can do this for each  Let  be union of 
all such  i.e.  Clearly  The converse can be 
prove similarly.  

1.11.2 Theorem: - If  is continuous where  and  is compact, 
then  is compact. 

Proof: - Let  be an open cover of  For each open set  in  there is an open 
set  such that  The collection of all  is an open cover of  
Science is compact, a finite number of cover Then 

 covers  
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1.13 Connected subset of  

A subset  is said to be disconnected if there exist disjoint non-empty open 
sets (or closed sets)  and  (of ) with .   

A subset  is said to be connected if it is not disconnected. 

Note: - Let  a subset  is said to be open (or closed) in E if there exist 
open (or closed) subset of  such that  

1.13.1 Proposition: - A subset  is connected if and only if it is not the union 
of two non-empty disjoint closed sets, or equivalently, if and only if there exist no 
subset of  which is simultaneously open and closed, other than  and     

1.13.2 Proposition: - A subset  is connected if and only if for every pair 
 of open subset of  such that  and then we have 

either  or  

1.13.3 Theorem: - A subset of  is connected if and only if it is an interval. 

Proof: - (Direct part) suppose  is not an interval, so there exist 
 with  Let  and  Then and  are open 

subset of , with  and Science and  
we see from the proposition 1.13.2 that  is disconnected. 

(Converse part) Now suppose that  is an interval, and there exists open subset 
and  of  such that and neither  nor  is 

empty. Let  and . We may assume that  Science  is an 
interval, for each  with we have  and hence either or  
Let and let . Then  so  If , 
then  and  for some  is open. But science  is least 
upper bound of  there exist  with  This contradiction shows 
that IF , then and  for some  But then 
there exist  with  contadicting the fact that  is an upper bound 
of  Thus our assumption that both  and  are non-empty is invalid. 
Thus  is connected. 

1.13.4 Theorem: - Let  is connected subset and  is continuous, 
then is connected. 

Proof: - Let  is disconnected, then there exist open subset  and  of  such 
that and   
But then  and  are open; science f is continuous, 
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  since ;  
science and neither  nor  is empty.  

Thus  is disconnected whenever  is disconnected.    

1.14 Let us sum up 

In this chapter we have learnt the following: 
 Inner product and norm on , open and closed subset of  

 Operator norm  of linear transformation and its properties.  

 Connectedness and compactness on  

 Continuous function on  and its behavior with connected and compact 
subset of   

1.15 Unit end Exercise 

1. Define the following terms and find 2 to 3 examples for each. 
i) Vector spaces   ii)   Inner product spaces 
iii) Norm Linear spaces                 iv)   Metric Spaces 

2. Prove the properties of 1.3.1 

3. For  
We define;  

                    

            

Prove that and  define the norms on   

Note; -  is called usual or Euclidean norm. 

4. State and prove the Cauchy- Schwarz inequality on where is vector 
space over the field  

5. Prove the following properties of inner product. Consider  and  in 
 

 
 

 

6. Prove that  

7. Prove that  defined by  is continuous function. 
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8. Let and  be integrable on  then prove that, 

 (This is Cauchy-Schwarz inequality in 

integrable space) (Hint:- Consider separately the case  for 

some and  for all in  

9. Prove that closed rectangle in  is indeed a closed set. 

10. Prove that interior of any set  and exterior of any set  (i.e. interior of ) 
are open. 

11. Prove that finite union of open set is open. Also, prove arbitrary union of 
open set is open. 

12.  Prove that finite intersection of open set is open. Does the arbitrary 
intersection of open set is open? 

13. Prove that finite intersection of closed set is closed. Also, prove arbitrary 
intersection of closed set is closed. 

14. Prove that finite unions of closed sets are closed. Does the arbitrary unions 
of closed sets are closed? 

15. Prove that boundary  of set  is closed. 

16. Prove that  is open; where  is some positive real 
number. 

17. Find the interior, exterior and boundary of the following sets. 

 

 

  Each rational  

18. Check that defined as follows are linear transformation or not 

 

 

 

19. Let  and  be the linear map then prove that 
  are also a linear map. 

20. Prove the properties of  of 1.7.3 

21. Prove that continuous real values function defined on a compact set is 
bounded (Ref. C.C. Pugh) 
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22.  Prove that the following are equivalent for the continuous function 
  

i) The - condition 

ii) The sequential convergence preservation condition 

iii) The closed set condition i.e. inverse image of closed set in  is closed 
in  

iv) The open set condition i.e. inverse image of open set in  is open in 
 (Ref. C.C. Pugh) 

23. Prove that every compact set is closed and bounded. (Ref. C.C. Pugh) 

24. The closed interval  is compact. (Ref. C.C. Pugh) 

1.16 References 

1.  C. C. Pugh, Mathematical Analysis, Springer UTM. 

2.  A. Browder, Mathematical Analysis an Introduction, Springer. 

3.  W. Rudin, Principals of Mathematical Analysis, McGraw-Hill India.  

4.  M. Spivak, Calculus on Manifolds, Harper-Collins Publishers 

 

 



UNIT 2 
2 

DIFFERENTIATION OF FUNCTIONS 
OF SEVERAL VARIABLES              

Unit Structure 

2.0 Objectives 

2.1  Introduction 

2.2  Total Derivative 

2.3  Partial Derivatives 

2.4  Directional Derivatives 

2.5  Summary  

2.0 Objectives 

After reading this unit you should be able to  

 define a differentiable function of several variables 

 define and calculate the partial and directional derivatives (if they exist) of a 

function of several variables 

 establish the connection between the total, partial and directional derivatives 

of a differentiable function at a point 

2.1 Introduction 

You have seen how to extend the concepts of limit and continuity to functions 

between metric spaces. Another important concept is differentiation. If we try to 

apply this to functions between metric spaces, we encounter a problem. We realise 

that apart from the distance notion, the domain and codomain also need to have an 

algebraic structure. So, let us consider Euclidean spaces like n . Which have which 

11
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have both metric and algebraic structures. Functions between two Euclidean spaces 

are what we call functions of several variables.  

In this chapter we shall introduce the concept of differentiability of a function of 

several variables. The extension of this concept from one to several variables was 

not easy. Many different approaches were tried before this final one was accepted. 

The definition may seem a little difficult in the beginning, but as you will see, it 

allows us to extend all our knowledge of derivatives of functions one variable to 

the several variables case. You may have studied these concepts in the third year 

of graduation.  So, here we shall try to go a little deeper into these concepts, and 

deal with vector functions of several variables. 

2.2 Total Derivative 

To arrive at a suitable definition of differentiability of functions of several 

variables, mathematicians had to closely examine the concept of derivative of a 

function of a single variable. To decide on the approach to extension of the concept, 

it was important to know what was the essence and role of a derivative. So, let us 

recall the definition of the derivative of a function :f  

We say that f is differentiable at a R, if the limit,  
0

lim
h h

afhaf )()(  exists. 

 In that case, we say that the derivative of f at a,  

'( )f a =  
0

lim
h h

afhaf )()(  .......(2.1) 

So, we take the limit of the ratio of the increment in f(x) to the increment in x. Now, 

when our function is defined on Rn, the increment in the independent variable will 

be a vector. Since division by a vector is not defined, we cannot write a ratio similar 

to the one in (2.1). But (2.1) can be rewritten as  

   
0

lim
h

[
h

afhaf )()(   − '( )f a  ]  = 0, or   

0
lim
h

[ ( ) ( ) '( ).f a h f a f a h
h

] = 0, or 
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0

( )lim
h

r h
h

= 0, where r(h) = f(a+h) – f(a) – '( )f a .h.  

So, we can write f(a+h) = f(a) + '( )f a .h + r(h), ........................(2.2) 

where the “remainder” r(h) is so small, that ( )r h
h

 tends to zero as h tends to zero. 

For a fixed a, f(a), and '( )f a are fixed real numbers. This means, except for the 

remainder, r(h), (2.2) expresses f(a + h) as a linear function of h. This also helps us 

in “linearizing” f. We say that for points close to a, the graph of the function f can 

be approximated by a line.  

Thus, '( )f a  gives rise to a linear function L from to . 

L: ,   h '( )f a .h, which helps us in linearizing the given function f near 

the given point a. (2.2) then transforms to  

f(a + h) = f(a) + L(h) + r(h)                          ...........................(2.3) 

It is this idea of linearization that we are now going to extend to a function of 

several variables. 

Definition 2.1 Suppose E is an open set in n , f : E m , and a E . We say 

that f is differentiable at a, if there exists a linear transformation : n mT ,   

such that 

0
lim
h

  = 0                           ......................... (2.4) 

and we write '( )f a  = T. 

If f is differentiable at every point in E, we say that f is differentiable in E. 

Remark 2.1  

i)  Bold letters indicate vectors. 

ii)  Since E is open, , such that B(a, r)  E. We choose h, such that 

 h  < r, so that  a + h  E. 



14

ANALYSIS - I

iii)  The norm in the numerator of (2.4) is the norm in Rm, whereas the one in the 

denominator is the norm in Rn. 

iv)  The linear transformation T depends on the point a. So, when we have to deal 

with more than one point, we use the notation, Ta, Tb, and so on. 

 We have seen that in the one variable case, the derivative defines a linear function,  

h  f1(a).h from R to R. Similarly, here the derivative is a linear transformation 

from Rn to Rm.  With every such transformation, we have an associated m  n
matrix. The jth column of this matrix is T(ej), where ej is a basis vector in the 

standard basis of Rn. 

For a given point a, the linear transformation Ta is called the total derivative of f at 

a, and is denoted by f1(a) or Df(a). We can then write 

 f(a + h) = f(a) + Ta(h) + r(h),where  , as h . .. (2.5)                   

We now give a few examples.  

Example 2.1 : Consider f: Rn  Rn,  f(x) = a + x, where a is a fixed vector in Rn . 

Find the total derivative of f at a point p  Rn, if it exists. 

Solution : Now, f(p + h) – f(p) = h.   So, if we take T to be the identity 

transformation from Rn to Rn, then we get                  

      f(p + h) – f(p) – T(h) = 0,  and hence 

0
lim
h

 0.                                                

Comparing this with 2.5, we conclude that the identity transformation is the total 

derivative of  f at the point p. 

Example 2.2 : Find the total derivative, if it exists, for f : R2  R2,  f(x, y) = (x2, y2), 

at a point a = (a1, a2). 

Solution : If f is differentiable, we expect Ta to be a 2 2  matrix.   
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Let h = (h1, h2). Now, 

f(a + h) – f(a) = (  

                        = ( ) 

                        = (2 ) + ( ) 

                        = + ( ) 

We take Ta =  , and r(h) = ( ), and write  

f(a+h) = f(a) + Ta(h) + r(h), where   0, as h . 

Thus Ta is the total derivative of  f at a.  

Now that we have defined the total derivative, let us see how many of the results 

that we know about derivatives of functions of a single variable, hold for these total 

derivatives. 

Theorem 2.1: If f : Rn  Rm is differentiable at a  Rn, then its total derivative is 

unique. 

Proof :  Suppose f has two derivatives, T1 and T2 at a, and let   T = T1 – T2. Let h 

 Rn,  

h  0, and t  R, such that t  0. 

Then th  0 as  t  0. 

Since T1 is a total derivative of f at a,  

0
lim
t 0

lim
t

 0 ...................... (2.6)  

Since T2 is also a total derivative of f at a,  

0
lim
t 0

lim
t

  0     ......................(2.7) 
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Thus,  

  =  

   

Therefore,    +   

Since T is a linear transformation, T(th) = tT(h). Therefore,  

    +  . 

So, using (2.6) and (2.7) , we get 

0
0

lim
t 0

lim
t 0

lim
t

0 

Since    is independent of t, this means  = 0,z 

 which means that  = 0. 

Now, h was any non-zero vector in Rn. Further, T(0) = 0. Hence we conclude that 

T(h) = 0 for all h  Rn. Thus T = T1 – T2 is the zero linear transformation. Thus, 

T1 = T2. That is, the derivative is unique. 

In the next example we find the derivatives of some standard functions. 

Example 2.3 :  

i) Find the total derivative f1(a), if f : Rn Rm , f(x) = c,  

 where c is a fixed vector in Rm and  a Rn. 

ii)  If   f : Rn Rm  is a linear transformation,  

 show that Df(a) = f for every a Rn . 
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Solution : 

 i)  Since f is a constant function, we expect its derivative to be the zero 
transformation.  

 Here  f(a + h) – f(a) = c – c = 0. 

 If we take T to be the zero transformation, 

 
0

lim
h 0

lim
h

  0. 

 Hence f1(a) exists and is equal to 0 for every a  Rn. 

ii) Since f is a linear transformation, f(a + h) = f(a) + f(h).   
If we take T = f, 

 r(h) = f(a + h)  f(a)  f(h) = 0     

We have defined the total derivative of a function as a linear transformation. Now 
we prove a result about linear transformations which we may use later. 

Proposition 2.1: Every linear transformation T from Rn to Rm is continuous on Rn. 

Proof: If T is the zero linear transformation, it is clearly continuous.  
If  T  0, let p  Rn,  

p = (p1, p2, ..., pn), and . Suppose {e1, e2, ..., en} is the standard basis for Rn. 
Choose M, where M =  ....... + . 

If x = (x1, x2, ..., xn) is such that  < , then |xi – pi| <  for i = 1, 2, ..., n. 

Also,  <   =  = 
   | |  +| | 

  ....... +| |  < (  +.......+
) =  

Thus, T is continuous at p. Since p was an arbitrary point of Rn, we conclude that 
T is continuous on Rn. 

In fact, since  did not depend on p, we can conclude that T is uniformly continuous 
on Rn. 
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For functions of a single variable, we know that differentiability implies continuity. 
The next theorem shows that this holds for functions of several variables too. 

Theorem 2.2 : If f : Rn Rm  is differentiable at p, then f is continuous at p. 

Proof : Since f is differentiable at p, there exists a linear transformation Tp  such 
that  

0
lim
h

 0.                                                

Thus,  such that  

  <  

Choose  Then 

  < ( )   

By Proposition 2.1, Tp is continuous at 0, and Tp(0) = 0. So, there exists  
such that  

  . 

Now choose  Then 

    

<  . 

Thus, , and f is continuous at  p.  

With your knowledge of functions of one variable, you would expect that the 

converse of Theorem 2.2 does not hold. That is, continuity does not imply 

differentiability. The following example shows that it is indeed so. 

Example 2.4 : Consider the function f : R R2, f(x) = (|x|, |x|). We shall show that 

f is continuous at 0, but is not differentiable there. 

Given  choose . Then 

|x| <   . 

Hence, f is continuous at x = 0. 
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Now suppose f is differentiable at x = 0. Then there exists a linear transformation  

T : R   R2, such that    

0
lim
h

 = 0   
0

lim
h

 = 0                                                         

                                                        

Now, (1, 1) and ( −1, −1) are two distinct points in  R2,  

and B((1, 1), 1) B((−1, −1), 1) = .  For  = 1,  > 0, such that                            

.    ………................ (2.8) 

Putting h =  in (2.8), we get . 

This means T(1)  B((1, 1), 1).                                     

Similarly, taking  h =  − , we get that T(1)  B((−1, −1), 1).  But this contradicts 

the fact that  B((1, 1), 1) and  B(( −1, − 1), 1) are disjoint.  

Thus, f is not differentiable at x = 0. 

If   f : Rn Rm , then, as you know, we can write f = (f1,f2, ...,fm), 

where each fi  : Rn R,  

i = 1, 2,...,m. These fis are called coordinate functions of f. Similarly, a linear 
transformation 

T : Rn Rm can be written as T = (T1,T2, ...,Tm), where each Ti is a linear 
transformation from Rn to R. 

Theorem 2.3 : Let   f = (f1,f2, ...,fm) : Rn Rm, and p  Rn. f is differentiable at p, 
if and only if each fi, 1  m is differentiable at p. 

Proof : f is differentiable at p if and if there exists a linear transformation  
Tp : Rn Rm, such  

that  
0

lim
h

 = 0,  that is, if only if                                                        
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0
lim
h

 = 0, where {e1, e2, ..., em} is the standard basis of Rm, 

if and only if, 
0

lim
h

= 0,  i,  1  m. 

That is, if and only if each fi is differentiable and Dfi = Ti,  , 1  m. 

Thus, Df(p) = Tp = (Df1(p), Df2(p), ....., Dfm(p)). 

Theorem 2.4 :  Let f : Rn Rm and g : Rn Rm be two functions differentiable at 
p  Rn.  If k  R, then f + g and  kf are also differentiable at p. Moreover, 

D(f + g)(p) = Df(p) + Dg(p), and  D(kf)(p) = kDf(p). 

Proof : Let  Df(p) = T1, and Dg(p) = T2. Then T1 + T2 is also a linear transformation 
from Rn to Rm, and 

0  
0

lim
h

 

 = 
0

lim
h

 

 
0

lim
h

 + 
0

lim
h

 = 0. 

Therefore,  f + g  is differentiable at p, and  D(f + g)(p) = T1 + T2 = Df(p) + Dg(p). 

Now, 
0

lim
h

|k| 
0

lim
h

  = 0. 

Therefore, kf  is also differentiable and  D(kf)(p) = kT1 = kDf(p). 

2.3 Partial Derivatives 

We know that the derivative of a function of one variable denotes the rate at which 

the function value changes with change in the domain variable. In the case of 

functions of several variables, change in the domain vector variable means a change 

in any or all of its components. But if we consider change in only one component 

and study the rate at which the function value changes, we get what is known as 

the partial derivative of the function. Corresponding to each component of the 

variable, there will be a partial derivative. Here is the formal definition. 
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Definition 2.2  Let f : E Rm, where E Rn. Let x = (x1, x2, ..., xn) be an interior 

point of E. Then for every i, i = 1, 2, ..., n, the limit 

0
lim
h

, if it exists, is called the ith partial derivative 

of f with respect to xi at x. It is denoted by . We write  to 

indicate the point at which the partial derivative is calculated. 

Remark 2.2 :  

i)  If a function f has partial derivatives at every point of the set E,  

we say that f has partial derivatives on E. 

ii)  It is clear from the definition that a partial derivative can be defined at an 

interior point of E, and not on its boundary. 

iii)  If a function has a partial derivative at a point, its value depends on the values 

of the function in a neighbourhood of that point. So, if the function values 

outside this neighbourhood are changed, it does not affect the value of the 

partial derivative. 

The following examples will make the concept clear. 

Example 2.5 : Find the partial derivative of the function,  f(x, y, z) = xyz + x2z. 

Solution :  This is a real-valued function. You are already familiar with the partial 

differentiation of such a function.  

 = 
0

lim
h

 = yz + 2xz. Similarly, you can check that  

fy = xz, and fz = xy + x2. 

Let us take a vector-valued function in the next example. 

Example 2.6 : Find the partial derivatives of the function,  

f : R3 R2, f(x, y, z) = (xy, z2), if they exist. 

Solution : 
0

lim
h

 = 
0

lim
h
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                 = (
0

lim
h 0

lim
h

 = (y, 0).  

Therefore, = (y, 0). 

Proceeding similarly, we find that  = (x, 0), and  = (0, 2z). 

You must have observed that the partial derivatives of a vector function are formed 

by taking the partial derivatives of its coordinate functions. In fact we have the 

following theorem, which establishes the connection between differentiability of a 

vector-valued function and the existence of partial derivatives of its coordinate 

functions 

Theorem 2.5 : Let E be an open subset of Rn, and f : E Rm.  

Suppose f = (f1,f2, ...,fm) is differentiable at p  E. Then the partial derivatives 

  exist for i = 1, 2,  ..., m, j = 1, 2, ..., n. 

Proof : Since f is differentiable at p, there exists a linear transformation T,  

such that 
0

lim
h

. Let h = tej, where {e1, e2, ...,en} is the 

standard basis of Rn. Then, h  0  if and only if t  0. Thus, 

 
0

lim
t

. Therefore, 
0

lim
t

 T( ). 

That is, 

(
0

lim
t 0

lim
t 0

lim
t

) 

= T( ).           

Hence the limits exist, and (p) exists for all i = 1, 2, ..., m. 

Since j was arbitrary, we conclude that  (p) exists for all i = 1, 2, .., m, j = 1, 2, .., n. 

If f : E Rm, where E is an open subset of Rn, and if f is differentiable at p  E , 

then using Theorem 2.5, the matrix of the linear transformation T can be written as  
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This m x n matrix is called the Jacobian matrix of f at p, and is denoted by [f’(p)] 

or [Df(p)]. 

If m = n, the determinant of the Jacobian matrix is called the Jacobian of f at p, and 

is denoted by  .  

Thus, if f is differentiable at p, then the total derivative of f at p, T : Rn Rm is 

given by the Jacobian matrix. For x = (x1, x2, ..., xn)  Rn,  

T(x) = [f’(p)] . 

When m = 1, f is a real-valued function, and T(ej) =  . Hence, the Jacobian 

matrix of T is the row matrix, [ ]. 

The vector form, ( ) is called the gradient of f at p , and 

is denoted by f(p), or gradf(p). 

If  h = (h1, h2, ..., hn)  Rn,  

Tp(h) =   [ ] . 

Thus, T(h) =   ,   or Tp(h) = f(p)  h. 

So, we can say that the total derivative Tp of a real-valued function is given by  

Tp (h) = f(p) h.  
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Example 2.7 : Find the Jacobian matrix of    

i)  f(x, y) = (x2y, exy)    

ii)   f(x, y, z) = (xsinz, yez) at (1, 2, 1). 

Solution : i) f1(x, y) = x2y,  and  f2(x, y) = exy.  Therefore,  = 2xy,  = x2,  

= yexy, and   = xexy.  

Hence, [fi(x, y)] =  

 = sinyz, and (1, 2, 1) =  sin2 

  (1, 2,  1) =  cos2,    (1, 2,  1) = 2 cos2,    

 (1, 2, 1) = 0,   (1, 2,  1) =  e-1,    (1, 2,  1) =  2e-1. 

Thus, [fi(1, 2,  1)] =     

In the next section we shall consider yet another type of derivative. 

2.4 Directional Derivatives 

Partial derivatives measure the rate of change of a function in the directions of the 

standard basis vectors. Directional derivatives measure the rate of change in any 

given direction. 

Definition 2.3 : Let f : E  R, where E is an open subset of Rn. Let u be a unit 

vector in Rn, and p  E. If 
0

lim
t

 exists, then it is called the directional 

derivative of f at p in the direction u. It is denoted by  or fu(p). 

Example 2.8 : Find the directional derivatives of the following functions: 

i) f(x, y) = 2xy + 3y2 at p = (1, 1), in the direction of v = (1, 1). 
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ii) f(x, y) = x2y  at p = (3, 4), in the direction of v = (1, 1). 

Solution : i)  The unit vector u in the given direction is ( ). Hence the 

required directional derivative is 
0

lim
t

. 

=  
0

lim
t

 

=  
0

lim
t

  =  
0

lim
t

  = 5 . 

 

ii)  We have the same unit vector u here. Therefore, 

Duf(p) =  
0

lim
t

  = 
0

lim
t

 = . 

Example 2.9 : Find the directional derivatives, if they exist, in the following 

cases:                                                         

i) f(x, y) = ,   at (0, 0),  u = (u1, u2), ||u|| = 1 

ii) f(x, y) =          at (0,0),   u = (1/ , 1/ ). 

Solution: i)   if u1  0, u2  0,    
0

lim
t

  =  
0

lim
t

 , which 

does not exist. If either u1 or u2 is zero, we get the standard basis vectors, (1, 0)  

and (0, 1). 

If u = (1, 0),   
0

lim
t

  =    =  1. 

Similarly, if u = (0, 1),  
0

lim
t

   = 1. 
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Thus, the directional derivatives in these two directions exist, and are equal to one. 

In any other direction, the derivative does not exist. Note that the directional 

derivative in the direction (1, 0) is fx, and that in the direction (0, 1) is fy. Thus, this 

function has both the partial derivatives at (0, 0). 

ii)      = =     = =    = 1/ . 

Thus,   Duf(0, 0) =  1/ . 

In fact, if we take u = (cos , sin ), then we can show that f has directional 

derivative at (0, 0) in the direction of u, whatever be . That is, the directional 

derivatives of f at (0, 0) exist in all directions. But you can easily show that this 

function is not continuous at (0, 0) by using the two-path test. Recall, that you need 

to show that the limits of f, at (0, 0) along two different paths  are different. Then 

by Theorem 2.2 we can conclude that f is not differentiable at (0, 0). 

This example shows that the existence of all directional derivatives at a point does 

not guarantee differentiability there. But we have the following theorem: 

Theorem 2.7: Let f : E  R, where E is an open subset of Rn. If f is differentiable 

at p  Rn, then the directional derivatives of f at p exist in all directions. 

Proof : Since f is differentiable at p, there exists a linear transformation,  

T: Rn  R, such that  

                
0

lim
h

. 

Let u be any unit vector in Rn, and take h = tu. Then h  0, as t  0. Therefore, 

0
lim
t

.   This means,        

 
0

lim
t

.   That is, 

0
lim
t

 T(u),   or,  Duf(p) = T(u).  ...................... (2.5)  
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Since u was an arbitrary unit vector, we conclude that the directional derivatives of 

f at p exist in all directions. 

Now, if  u = (u1, u2, ..., un), T(u) = T( u1e1 +  u2e2 + ... + unen), where {e1, e2, ..., en} 

is the standard basis of Rn. Therefore, by (2.5), 

T(u) = u1T(e1) + u2T(e2) + ... + unT(en) 

        =  u1 f(p) + u2 f(p) + ... +  un f(p) 

        =  u1   +  u2   +  ... + un  

            = f(p)  u     

Thus,   Duf(p) = f(p)  u                            ........................   (2.6) 

(2.6) gives an easy way to find a directional derivative of a differentiable function, 

if its partial derivatives are known. For example, if f(x, y) = x2 + y2, then fx and fy 

at (1, 2) are 2 and 4, respectively. So, the directional derivative of f at (1, 2) in the 

direction 2i – 3j is given by   (2i + 4j)  = . 

This concept of directional derivatives can be extended to vector-valued functions. 

The directional derivative of a vector-valued function is a vector formed by the 

directional derivatives of its coordinate functions. Thus, to find the directional 

derivative of  f(x, y) = (x + y, x2), at (1, 2) in the direction of (3, 4) , we first find 

the directional derivatives of f1(x, y) = x + y, and f2(x, y) = x2 . You can check that 

these are 7/5 and 6/5, respectively. Therefore, the required directional derivative of 

f is (7/5, 6/5). 

We have seen in Theorems 2.6 and 2.7, that differentiability of f at a point 

guarantees the existence of partial and directional derivatives there. We have also 

noted that the converse statements are not true. Our next theorem gives us a 

sufficient condition which guarantees the differentiability of a function at a point. 

Theorem 2.8 : Let E be an open subset of Rn, and f : E Rm, f = (f1,f2, ...,fm). If 

all the partial derivatives, Djfi(x) of all the coordinate functions of f exist  in an open 
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set containing a, and if each function Djfi is continuous at a, then f is differentiable 

at a. 

Proof : In the light of Theorem 2.3, it is enough to  prove this theorem for the case 

m = 1. So, we consider a scalar function f from Rn  to R, all whose partial derivatives 

Djf are continuous at a. Since E is open, for a given  > 0, we can find r > 0, such 

that the open ball,  

B(a, r) , and || x – a || < r | Djf(x)  Djf(a) | < /n, for j  = 1, 2, ... , n.   

.                                                                                                         ................. (2.7) 

Now, suppose h = (h1, h2, ... , hn),  ||h|| < r.  Let v0 = 0, v1 = h1e1, v2 = v1 + h2e2, .. ,  

vn = vn – 1 + hnen.    Then  f(a + h) – f(a) = .   

.                                                                                                           .............. (2.8) 

Since ||vj|| < r, vj  B(a, r), and since B(a, r) is convex, the line segment joining the 

points,  

a+ vj – 1 and a + vj  lies in it, for all j = 1, 2, ... , n. Therefore, we can apply the Mean 

Value Theorem to the jth term in the sum (2.8), and get 

f(a + vj) – f(a + vj − 1) = hjDjf(a + vj – 1 + hjej) , for some  (0, 1).    Then, using 

(2.7), we can write 

|f(a + h) – f(a)  (a)| = |  (a + vj − 1 +  hjej )- (a)|  

                                                   , for all h, such that ||h|| < r. 

This means that   

0
lim
h

′
 0, where ′ is the linear transformation, whose matrix 

[ ′ ] consists of the row, (D1f(a), D2f(a), ...., Dnf(a)). 

Thus, f is differentiable at a. 

Definition 2.4 : A function f : E Rm, f = (f1,f2, ...,fm), where E is an open subset 

of Rn, is said to be continuously differentiable, or, a C1 function, if Djfi  is 

continuous on E for all j, j = 1, 2, ..., n, and for all i, i = 1, 2, ..., m. 
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The continuity of partial derivatives assumed in Theorem 2.8, is only a sufficient 

condition, and not a necessary one. That is, there may be functions which are 

differentiable at a point, but do not have continuous partial derivatives there. We 

now give you an example, and ask you to work out the details (See Exercise 3.) 

Example 2.10 : Consider the function f : R2→ R given by 

f(x, y) =  

This function is differentiable at (0, 0), but neither 

 , nor is 

continuous at (0, 0). 

Here are some exercises that you should try. 

Exercises:  

1) Show that the following function is differentiable at all x in Rn. 

     f : Rn ,  f(x) = x  T(x),  where T : Rn Rn  is a linear transformation. 

2) Let f(x, y) = (x3 + x, x2 – y2, 2x + 3y3),  p = (2, 1), v = (4, 5). Compute the 

partial derivatives of f, and the directional derivative of f in the direction v, 

at p.  

3) Prove the assertions in Example 2.10. (Hint: To show that f is differentiable, 

check that f(h, k)  - f(0, 0) – h(hsin ) + k(ksin ) = 0, and so, Df = (hsin , ksin ) ). 
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2.5 Summary 

In this unit we have extended the concept of differentiation from functions of one 

variable to functions of several variables. Apart from the total derivatives, we have 

also defined partial derivatives, and directional derivatives. We have proved that 

differentiability implies the existence of all partial and directional derivatives at a 

point, but the converse is not true. As in the case of functions of one variable, we 

prove that differentiable functions are continuous, but not vice versa. We have also 

derived a sufficient condition for differentiability in terms of the partial derivatives. 
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Unit Structure  

3.0  Objectives 

3.1  Introduction 

3.2  Jacobian Matrix and Chain Rule 

3.3  Higher order partial derivatives 

3.4  Mean Value Theorem 

3.5  Summary 

3.0 Objectives 

After reading this chapter, you should be able to  

 differentiate a composite of two vector-valued functions 

 define and calculate derivatives of higher order 

 derive the conditions for the equality of mixed partial derivatives 

 state and prove the Mean Value Theorem 

3.1 Introduction                                                                                                      

In the last chapter you have seen how functions of several variables are 
differentiated. Now we shall start by discussing how a composite function of two 
differentiable functions can be differentiated. The Jacobian matrix introduced in 
the last chapter proves useful in this.  

One of the important applications of derivatives is the location of extreme points 
of a function. In the next chapter we are going to see how this concept can be 
extended to scalar functions of several variables. But we shall do the necessary 
spade-work in this chapter. So, we shall introduce higher order derivatives. We 

31
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shall also study the conditions under which mixed partial derivatives are equal. You 
may recall that the Mean Value Theorem was one of the most important theorems 
that you studied in Calculus in F. Y. B. Sc. We shall see whether this theorem can 
be applied to functions of several variables. 

3.2 Jacobian Matrix and Chain Rule                           

We have seen in Theorem 3.5, that if f: Rn  Rm, is differentiable at p, then all 
partial derivatives of all coordinate functions of f exist at p. That is,  
if f = (f1, f2, ... , fm), then Djfi(p) exists for all i = 1, 2, ..., m and all j = 1, 2, ..., n. 
We have also seen that if {e1, e2, ..., en} is the standard basis for Rn, then 

 (p)(ej) = (Djf1(p), Djf2(p), ..., Djfm(p)). 

If  h =   is a vector in Rn, then (p)(h) =    (p), 
which is a linear transformation from Rn to Rm, thus has the matrix,   

 

 

As we have already mentioned in Chapter 3, this m x n matrix, called the Jacobian 
matrix, is denoted by [Df(p)]. The kth row of this matrix is the gradient vector,  

fk(p),  and the jth column is the image of ej under the linear transformation Djf(p). 

Thus, the Jacobian matrix of f is formed by all first order partial derivatives of f. 
This means, we can write the Jacobian matrix of any function, all of whose partial 
derivatives exist. As we have noted earlier, the existence of partial derivatives does 
not guarantee differentiability. So, even when a function is not differentiable we 
would be able to write its Jacobian matrix, provided all its partial derivatives exist.  

If f : Rn  R, then its Jacobian matrix, if it exists, will be a 1 x n matrix, or a matrix 
vector.  

If  f : Rn  Rm  is differentiable at p Rn, and if h is any vector in Rn, then 
(p)(h) = [Df(p)]h  is obtained by multiplying the m x n matrix [Df(p)] with the  
n x 1 column matrix h. Thus,  

f

R
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, 

Since 

 

Cauchy-Schwartz inequality for inner products says that  
Using this we get 

. 

If we take , then 

                                                         ......................... (3.1)    

We have seen in Theorem 3.4 how to get the derivative of the sum of two 
differentiable functions, and also that of a scalar multiple of a differentiable 
function. The next theorem, which is known as the chain rule, tells us how to get 
the total derivative of a composite of two functions. 

Theorem 3.1 (Chain Rule) : Let f and g be two differentiable functions, such that 

the composite function  is defined in a neighbourhood of a point a Rn. 
Suppose g is differentiable at a, g(a) = p, and f is differentiable at  
p. Then  is differentiable at a, and 

 

Proof : If  is such that  is small, then  will belong to the above 
neighbourhood of , in which  is defined. Now, since  is differentiable at , 

,                                .......(3.2) 

where  Ea(h)  0, as h  0. 

f is differentiable at p = g(a), and therefore, f(g(a + h)) – f(g(a)) = f(p + k) – f(p) 
= (p)(k) + || k || Ep(k),   where   Ep(k)  0,           as k  0. 

= (g(a))[ g(a + h) – g(a)] + || k || Ep(k) 

= (g(a))[ (a)(h) + || h || Ea(h)]  + || k || Ep(k), using (3.2). 

= (g(a)) (a)(h) + (g(a)) [|| h || Ea(h)] + || k || Ep(k),   since (g(a)) is a 
linear transformation. Thus, we can write f(g(a + h)) – f(g(a)) = (g(a)) (a)(h) 

+ || h ||[ (g(a)) Ea(h) +  Ep(k)], if h  0.                               …….(3.3) 

R

[
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To complete the proof we need to show that the vector in the square brackets in 
(3.3) tends to zero, as h tends to zero. 

We know that Ea(h)  0, as h  0.                                               ..............(*) 

|| k || = || g(a + h) – g(a) ||  || (a)(h) || + || h || || Ea(h) ||, using (3.2). 

If M = , then using (3.1), we can write || (a)(h) ||  M || h ||. Thus, 
 || k ||   M || h || + || h || || Ea(h) || = || h || (M + || Ea(h) ||). Therefore, 

  M + || Ea(h) ||. This means that   is bounded. Thus, 

   0,  as  h  0,  since h  0 .  ....(**) 

Using (*) and (**), we can say that the term in the square brackets in (3.3) tends to 
zero as  h 0 . Therefore,  

 as  

This shows that  is differentiable at a, and  

The Chain Rule can be written in terms of Jacobian matrices as follows: 

. 

Here the product on the right hand side is matrix multiplication. If y = g(x), and z 
= f(y), comparing the entries in the matrices in (3.3), we get 

 where , and  . 

Example 3.1 : Write the matrices for  and  for the following functions, 
and evaluate them at the point 

 

Solution : Here f1(x, y) = x + y, f2(x, y) = x2 + y2, f3(x, y) = 2x + 3y,  

 and  This means, ,  

and . 
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Hence, 

 

At (u, v) = (2, 5),  (x, y) = (4, 125). Therefore, 

, and  

 

 
You can now easily verify that . 

3.3 Higher Order Partial Derivatives                           

You are familiar with the concept of partial derivatives. In the last chapter we have 
calculated the partial derivatives of some functions of n variables. If you take a look 
at those examples, you will realise that the partial derivatives are themselves 
functions of n variables. So, we can talk about their partial derivatives. These, if 
they exist, will be the second order partial derivatives of the original function. If 
we differentiate these again, we will get the third order partial derivatives of the 
original function, and so on. We take a simple example to illustrate.   

Example 3.2 : Find partial derivatives of all possible orders for the function, 
 f(x, y, z) = (x2y2, 3xy3z, xz3). 

Solution : Since f is a polynomial function, we do not have to worry about the 
existence of partial derivatives. We get fx = (2xy2, 3y3z, z3), fy = (2x2y, 9xy2z, 0),  
  fz = (0, 3xy3, 3xz2). 

Then, 

 

Differentiating fy, we get fyx = (4xy, 9y2, 0),   fyy = (2x2, 18xyz, 0), and fyz = (0, 9xy2, 0). 

Then differentiating fz we get fzx = (0, 3y3, 3z2),  fzy = (0, 9xy2, 0), and   
fzz = (0, 0, 6xz). 
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These are all possible second order derivatives of f. Proceeding in this way, we can 
also get fxyz = (0, 9y2, 0),   fyxz = (0, 0, 0),   fzzz = (0, 0, 6x), and so on. There will be 
27 third order partial derivatives of f. See if you can get the remaining. 

You know that fxy and fyx   differ in the order in which f is differentiated with respect 
to the variables x and y. These two derivatives have come out to be equal in 
Example 3.2. But you may have seen examples of scalar functions of several 
variables, for which the two may not be the same. Here is an example, to jog your 
memory. 

Example 3.3 : Consider this function  from  to  for 

, and . You can easily check that 

 

 

Then, , and similarly, 

 

Thus, the mixed partial derivatives of this function both exist, but are not equal.  

Remark 3.1 : If f is a function from Rn to R, the partial derivative of f with respect 
to the ith variable, xi, is denoted by Dif, and the partial derivative of Dif with respect 
to xj , that is, Dj(Dif)  is denoted  by Djif. 

The following theorem gives a sufficient condition for the two mixed partial 
derivatives of a function to be equal. Since the behaviour of a vector-valued 
function is decided by the behaviour of its coordinate functions, it is enough to 
derive this sufficient condition for a scalar function. Without loss of generality, we 
state the theorem for a function of two variables. 

Theorem 3.2 : Let f : R2  R, such that the partial derivatives, D1f, D2f, D12f and 
D21f exist on an open set S in R2. If (a, b)   S, and D12f and D21f are both 
continuous at (a, b), then D12f(a, b) = D21f(a, b). 

Proof :   We choose positive real numbers, h and k, which are small enough so that 
the rectangle with vertices (a, b), (a + h, b), (a, b + k), (a + h, b + k) lies within S. 

Now we consider a function  

(h, k) = [f(a + h, b + k) – f(a + h, b)] – [f(a, b + k) – f(a, b)]. 
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We also define a function G on [a, a+h],  G(x) = f(x, b + k) – f(x, b).  

Now we can write (h, k) = G(a + h) – G(a). Since G is defined in terms of f, and 
since f has all the necessary properties, G is continuous on [a, a + h], and is 
differentiable in (a, a + h). So, we apply the Mean Value Theorem for functions of 
a single variable to G, and get 

G(a + h) – G(a) = h (c), for some c  (a, a + h). Now (x) = D1f(x, b + k) – 
D1f(x, b). So, we write   (h, k) = G(a + h) – G(a) = h[D1f(c, b + k) – D1f(c, b)]. 

Now D1f (c, y) is a differentiable function of one variable with derivative equal to 
D21f. So applying MVT to D1f(c, y) on the interval [b, b + k], we get  

(h,k) = h[D1f(c, b + k) – D1f(c, b)] = hkD21f(c, d),...............................(3.4) 

for some d  (b, b + k). 

We now write (h, k) = [f(a + h, b + k) – f(a, b + k)] – [f(a + h, b) – f(a, b)], and 
define 

H(y) = f(a + h, y) – f(a, y),  so that   (h, k) = H(b + k) – H(b). Using the same 
arguments that we used for G, we apply MVT to H, and then to D2f(x, p), we get 

(h, k)= k[D2f(a + h, p) – D2f(a, p)] = khD12f(q, p), ……………………(3.5) 

for some p  (b, b + k), and q  (a, a + h).                           

From (3.4) and (3.5) we get D21f(c, d) = D12f(q, p). Since D12f and D21f are 
continuous, taking the limit as (h, k)  (0,0), we get D12f(a, b) = D21f(a, b). 

As we have mentioned earlier, the conditions of this theorem are sufficient, and not 
necessary. In fact, the continuity of just one of the mixed partial derivatives is also 
sufficient to guarantee equality. Functions whose partial derivatives are continuous 
play an important role in Calculus. We classify these functions as follows: 

Definition 3.1 : A function f from Rn to Rm is said to be continuously 
differentiable, or belong to class C1, if all its partial derivatives  Dif are continuous. 
It is said to belong to class C’’, if all its second order partial derivatives are 
continuous, and so on. If all its partial derivatives of all orders are continuous, then 
it is said to belong to class . 

We have proved that a function in class C1 is differentiable in Theorem 3.8. In 
Theorem 3.2 we have seen that the mixed partial derivatives of a function belonging 
to class C’’ are equal. 
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In the next chapter we shall see that a Ck function, that is a function, all whose 
partial derivatives of order up to k are continuous, can be approximated by means 
of a polynomial of order k. We shall also discuss the technique to find the maximum 
and minimum values of a function belonging to class C’’.   

3.4 Mean Value Theorem                           

The Mean Value Theorem (MVT) is an important theorem in Calculus. It is used 
as a tool to derive many other results. In the last section we have used it in the proof 
of Theorem 3.2. In this section we shall see if it also holds good for functions of 
several variables. But first, let us recall the one-variable case. 

MVT (single variable): If f : [a, b]  R is continuous on [a, b], and differentiable 
on (a, b), then there exists c  (a, b), such that f(b) – f(a) = (b - a) (c). 

If we write b = a + h, then there exists , such that 
 f(a + h) – f(a) = h .  

Unfortunately, it is not possible to extend this theorem to a function f : Rn  Rm, 
when m > 1. This will be quite clear from the following example. 

Example 3.4 : Consider f : [0, 2 ]  R2, f(t) = (cost, sint). This function is 

continuous on [0, 2 ] and differentiable on (0, 2 ).  

Now, f(2 ) – f(0) = (1, 0) – (1, 0) = (0, 0). 

(t) = ( − sint, cost). For the extension of MVT to hold, we must have  

f(2 ) – f(0) = 2 (c) for some c in (0, 2 ). So, we should have (0, 0) = 2 (  
sinc, cosc). But this is impossible, since sinc and cosc both cannot be zero. 

So, the extension of MVT in its stated form does not hold. But there is a way around 
this difficulty. A slightly modified version of MVT does hold true for all functions 
of several variables. We now state and prove this modified theorem for functions 
from Rn to Rm. As a special case of this theorem you will realize that MVT holds 
for real-valued functions of several variables.  

Theorem 3.3 : (Mean Value Theorem)  Let , where S is an open subset 
of . Suppose f is differentiable on S. Let x and y be two points in S, such that the 
line segment joining x and y, L(x, y) = {tx + (1  t)y | }, also lies in S. 
Then for every a  Rm, there is a point z  S,  
such that a{f(y) – f(x)} =  a { (z)(y  x)}           ........................................(3.6) 

)

)
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Before we start the proof, let us understand the geometry involved. Let u = y – x. 
Then x + tu gives us a point on the line segment L(x, y), if  0  1. Since S is 

open, we can find a  > 0, such that   S, and  S. See Fig. 
3.1, in which we show the situation when n = 2. The point p is on the extension of 

L(x, y) and is equal to x + (1 + )u. Similarly the point q is also on the extension 

of L(x, y), and is equal to  x – u for some  > 0. 

 

     p 

                                                                        

                                                             
  

 

 

Figure 3.1 

Thus we get a  > 0, such that x + tu  S for every t . Now we 
start the formal proof. 

Proof : Let a  Rn. We define a function F :   R, F(t) = a f(x + tu). 

This F is a differentiable function on , and (t) = a, using chain rule.      

 (Recall, that  is a linear transformation.)                                                  

Thus, we can apply MVT for functions of a single variable, and get 

, for some  ........................................... (3.7) 

, and 

, where  

Therefore, from (6.7) we get   

for some . 

 

 

)

p 

q 

Y 

X 
S 
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Remark 3.2 :   

i)  (3.6) is true for all x, y in S, such that the line segment joining x and y is also 
in S. This means, if S is a convex open set in Rn, then (3.6) will be true for 
all x, y in S. 

ii)  If f is a real-valued function, then m = 1, and a  R. Then for a = 1 we 
have 1. , 
 for some . 

So, the MVT for functions of a single variable extends directly to real-valued 
functions of several variables. We can also directly prove MVT for scalar functions. 
The proof runs exactly similar to that of Theorem 3.3, if we put a = 1. 

The MVT has a well-known consequence, which we now state: 

Theorem 3.4 :  Let f : S  Rm, where S is an open  connected subset of Rn. 
Suppose f is differentiable on S, and   = 0 for every p  S. Then f is a 
constant function on S. 

Proof : The set S is polygonally connected, since it is open and connected.  Let x 
and y be two points in S. Then x and y are joined by line segments L1, L2, L3, ... , 
Lr, lying entirely in S. Suppose Li is a line segment joining pi and pi+1, 1 
r, p1 = x, and pr+1 = y.   

Let . Then using Theorem , we have 

 since  

This means, 

……   

 is true for every  in . So, in particular, it is true for .  

Thus, 
 

 So,  or  .  

Since x and y were any arbitrary points in S, we have thus proved that f is a constant 

function on S.   
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Try a few exercises now. 

Exercises : 

1) Find the partial derivatives, D1f, D2f, D12f and D21f  at (0, 0) , if they exist, for 
the following function f from R2 to R.   

 f(x, y) =  y  , if (x, y)  (0, 0), and f(0, 0) = 0. 

2) If u(x, y) = x +y2, x(t) = 3t2 + 4, and y(t) = sin2t, find (t) and (t). 

3) If  u(x, y) = x – 2y + 3, x = r + s + t,  y = rs + t2,  find ur, us and ut at  
(1, 2, 4).  

4) Let  f : R2  R2, and  g : R3  R2 be two vector functions, defined as: 

       f(x, y) = (sin(2x + y), cos(x + 2y)),  g(r, s, t) = (2r – s – 3t, r2 – 3st). 

i) Write the Jacobian matrices for  and  If  is the composite function, 
, compute the Jacobian matrix of  at the point . 

5) If f  is a function from R2 to R, and D1f = 0 at all points, show that f is 
independent of the first variable. If D1f = D2f = 0 at all points, show that f is 
a constant function. 

3.5 Summary                                                                                             

In this chapter we have derived the chain rule for differentiation of composite of 
two functions. We have also seen that the Jacobian matrix for the composite 
function is the product of the Jacobian matrices of the two given functions. We 
have defined higher order partial derivatives of functions of several variables. We 
have seen functions, whose second order mixed partial derivatives depend on the 
order of the variables with respect to which the function is differentiated. On the 
other hand, we have derived sufficient conditions for such mixed partial derivatives 
to be equal. Finally, through an example we have seen that the Mean Value 
Theorem cannot be extended to all vector functions. We have proved a restricted 
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form of the MVT for vector functions. Of course, MVT does extend to scalar-
valued functions of several variables. As a result of MVT we have proved that a 
function defined on an open connected set is constant, if its derivative is uniformly 
zero over its domain. 
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4.4  Lagrange’s Multipliers 

4.5  Summary 

4.0 Objectives 

After reading this chapter, you should be able to  

 state Taylor’s theorem for real-valued functions of several variables 

 obtain Taylor’s expansions for some simple functions  

 define,  locate and classify extreme points of a function of several variables 

 obtain the extreme values of a function of n variables, subject to some 
constraints 

4.1 Introduction                                                                                        

In the two previous chapters we have discussed differentiation of scalar and vector 
functions of several variables. Now we shall tell you about some applications of 
derivatives. In your study of functions of one variable you have seen that a major 
application of the concept of derivatives is the location of maxima and minima of 
a function. This knowledge is very crucial for curve tracing. Here we shall see how 
the derivatives help us in locating the extreme values of a real-valued function of 
several variables. But before we do that, we are going to discuss Taylor’s theorem 
and Taylor’s expansions, which help us approximate a function with the help of 
polynomials. This knowledge will help us derive some tests for locating and 
classifying the extreme points of a function. 

43
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4.2 Taylor’s Theorem                                                                               

It will be useful to recall Taylor’s theorem for functions of one variable, which you 
have studied in F. Y. B. Sc. Here we shall also give you the proof of this theorem. 
Our method of proof involves the use of Rolle’s theorem. You have studied this 
theorem too in F. Y. We now state Rolle’s theorem, and then move on to Taylor’s 
theorem. 

Theorem 4.1 (Rolle’s Theorem): If f: [a, b] 

(c) = 0.  

Theorem 4.2 (Taylor’s theorem for real functions of one variable): Let f be a real-
valued function defined on the open interval (p, q). Suppose f has derivatives of all 
orders up to and including n +1 in (p, q). Let a be any point in (p, q). Then for any 

x  (p, q), f(x) = f(a) +
!1
ax (a) +

!2
)( 2ax

!
)(

n
ax n

)!1(
)( 1

n
ax n

(c),………………………………………………………...(4.1)  

 where c  (a, b).  

Proof: We now define a new function g on [a, x], or [x, a], according as a < x, or x 

< a, by g(y) = f(y) +
!1

)( yx
!2

)( 2yx
!

)(
n

yx n

A,   …………………………………………………………....(4.2) 

where A is a constant, chosen so as to satisfy  g(x) = g(a). We can easily write the 
expression for A by using this condition. We leave this to you as an exercise. See 
Exercise 1).  

Using the properties of f, we can see that g satisfies all the conditions of Rolle’s  
theorem on its domain. Thus, we can conclude that there exists a point c 

!2
)( 2yx

)!1(
)( )1(

n
yx n

!
)(

n
yx n

A. 

=  
!

)()1(

n
yf n

 (n + 1)A]. 
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Hence,  
!

)()1(

n
cf n

 − (n + 1)A] = 0.  

This means that A = 
!

)()1(

n
cf n

 

Substituting this value of A in (4.2), we get  

f(x) = g(x) =  

g(a) = f(a)+
!1
ax (a) +

!2
)( 2ax

!
)(

n
ax n

)!1(
)( 1

n
ax n

(c), thus proving the theorem. 

 

Remark 4.1 : If the function in Theorem 4.2 has derivatives of all orders in (p, q), 
then we can write a Taylor expansion as in (7.1) for any n 

 orders are bounded by a positive number , 

that is, if  for all , and at all points in ,  

then  as  for every  in some interval 

 Therefore, in this case we can write 

 ,...(4.3) 

The infinite series in (4.3) is convergent under the given conditions, and is called 
the Taylor series of f about a. 

Now, (7.1) can be written as  f(x) = Pn(x) + Rn(x), where Pn(x) =  f(a) +
!1
ax

(a) +
!2

)( 2ax
!

)(
n

ax n

  

is called the nth 

)!1(
)( 1

n
ax n

(c), is called the remainder. 

We now state Taylor’s theorem for functions of two variables, and then find Taylor 
expansions of some functions. 

Theorem  (Taylor’s theorem for  Let  be a real-valued  
function on an open convex set . Let . Then for any , 
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f(c, d),               ...........(4.4) 

where h = x – a, k = y – b, and (c, d) is some point on the line segment joining (a, 
b) and (x, y). 

We are not going to prove this theorem. But, note the following points: 

1. Recall that f is Cn+1  means f has continuous partial derivatives of all orders  
n + 1. This ensures that all the relevant mixed partial derivatives are equal. 

2. E is convex. This guarantees that the line segment joining any two points of E, 
lies in E, the domain of f. 

Pn(x, y) = f(a, b)+ (h

 

nth Taylor polynomial, and 

f(c, d)  is called the remainder of order n. 

Let us use this theorem to get the expansions of some functions. 

Example 4.1: Find the Taylor expansions of the following functions about the 
given points up to the third order. 

i)         f(x, y) = x3 + 2xy2 – 3xy + 4x + 5,    (a, b) = (1, 2) 

ii) f(x, y) = sin(2x + 3y)        (a, b) = (0, 0).  

Solution: i) Since f(x,y) = x3 + 2xy2 – 3xy + 4x + 5 is a polynomial, it has partial 
derivatives of all orders. Further, its partial derivatives of order > 3 are all zero. In 
fact, fx = 3x2 + 2y2 – 3y + 4, fy = 4xy – 3x,  fxx = 6x,  fxy = 4y – 3,  fyy = 4x,  fxxx = 6,  
fxxy = 0,  fxyy = 4,  fyyy = 0, and all higher partial derivatives are zero. Calculating all 
these partial derivatives at (1, 2), we write f(1 + h, 2 + k) = 12 + 9h + 5k + 

(6h3 + 12hk2) + R3 . 

Now, R3 involves all fourth order derivatives, and therefore is zero. Hence, 

 f(1 + h, 2 + k) = 12 + 9h + 5k + (6h3 + 12hk2) . 
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ii) f(x, y) = sin(2x + 3y)  also has derivatives of all orders.  

fx = 2cos(2x + 3y) = 2 at (0, 0),  fy = 3cos(2x + 3y) = 3 at   (0, 0), 

fxx =  4sin(2x + 3y), fxy =  6sin(2x + 3y),  fyy =  9sin(2x + 3y). These 
second order derivatives are all zero at (0, 0). 

fxxx =  8cos(2x + 3y), fxxy =  12cos(2x + 3y),                              

 fxyy =  18cos(2x + 3y), fyyy =  27cos(2x + 3y). 

 These are, respectively,  8,  12,  18, and – 27 at (0, 0). Thus, f(h, k) =  0 + (2h 
+ 3k) + 

)4sin(2c + 3d), where (c, d) is some point on the line segment joining 

(0, 0) and (h, k). 

We are now going to state Taylor’s theorem for real-valued functions of n variables. 
For this, let us first take a close look at the Taylor expansion of a function of two 
variables. 

If we write (x, y) as (a + h, b + k), we get f(a + h, b + k) =  f(a, b) + (h

f(c, d),                            

If we take the variables to x1, x2, instead of x and y, take (a, b) to be (a1, a2), and 
(h, k) to be   
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where , and  or 2, and the sum is taken 

over all 
ordered k-tuples  For example, 

 a  )  

 

 

Similarly, 

 )f(a1, a2) . 

You must have noticed that we have added the mixed partial derivative terms, for 
example, D12f and D21f, or  D112f , D121f, and D211f. We could do this, since f  
ensures that that these partial derivatives are equal. Now we state Taylor’s theorem 
for real-valued functions of several variables. 

Theorem 4.4 :  

Let f : E  n  

n  

  
+ Rm-1(c),           ........................................................................................ (4.5) 

where    take values from the set {1, 2, ..., n}, and the inner summation 
in (4.5) is taken over all possible such k-tuples. 

Further, the remainder Rm-1(c) =  .  This sum is 
taken over all possible m-tuples (i1, i2, ..., im), where i1, i2, ..., im take values from 
{1, 2, ..., n},and c is some point on the line segment joining a and 
a + h. 
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This theorem is used to approximate a given function by a polynomial. In the next 
section we shall use it to derive conditions for locating and classifying extreme 
points of a function. 

Exercises: 1) Write the expression for A appearing in Theorem 4.2. 

4.3 Maxima And Minima                                                                        

One of the most interesting and well-known applications of Calculus is the location 
and classification of extreme points of a function. You have solved many such 
problems involving functions of one or two variables. We shall now extend the 
definitions of maxima and minima to functions of n variables, and derive suitable 
tests for their location. 

Definition 4.1 : Let f : Rn 
n

 N.   

f(a) is then called the local or relative maximum value. 

A local minimum (or relative minimum) is defined in a similar manner.  

You will agree that the function 
, clearly has a local minimum at . Can you find an example of a 

function with a local maximum? Definition  A point  is called a saddle 
point of a function , if every ball , contains points , such 
that , and also other points , such that . 

In general, it is not easy to spot the local maximum or local minimum merely by 
observation. For differentiable functions we can derive tests to locate these values. 
You know that in the case of a differentiable function of a single variable, the 
derivative vanishes at an extreme point. We have a very similar test for the location 
of extreme points of a function of n variables, as you can see in the next theorem. 

Theorem 4.5 : If  f : Rn  

n (a), if it exists, is equal to zero. 

Proof: Since  has a local maximum at ,  
such that . 
For , consider a function , such that 

 since  is the local maximum value 
of  is the maximum value of . If  exists, then  also exists, 
and the two are equal. By applying the first derivative test for functions of one 
variable to , 
 we get 

 



50

ANALYSIS - I

An exactly similar proof will help us conclude that (a), if it exists, is equal to 

zero, even when a is a local minimum of f. 

Thus, if f has a local extremum at a, and all the partial derivatives exist at a, then  
f(a) = 0. 

As in the case of functions of one variable, the condition in theorem 4.5 is a 
necessary one, and is not sufficient. That is, if all the partial derivatives of a 
function at a point a are zero, we cannot say that a is a local maximum or local 
minimum point. It may be neither.  

An example is the function f : R2  R,  f(x, y) = 1 – x2 + y2.  Here fx = - 2x, and  
 fy = 2y. So, fx(0, 0) = 0 and fy(0, 0) = 0. But you can see clearly, that f has a 
maximum in the direction of the x-axis, and a minimum in the direction of the y-
axis at (0, 0). This means, f has neither a minimum, nor a maximum at (0, 0). In 
fact (0, 0) is a saddle point for this function.    

Definition 4.3 : Let f : Rn n (a) is equal 

to zero for i = 1, 2, ..., n, then a is called a critical point, or a stationary point  
of f. 

Theorem 7.5, tells us to look for extreme points among the critical points of a 
function. We shall now see how to classify these points as local maxima, local 
minima, or saddle points. This involves second order partial derivatives. This is to 
be expected, since in one variable functions too, we have a second derivative test 
to classify stationary points. The proof of the test for several variables involves 
quadratic forms. You have studied them in T. Y. B. A. /B. Sc. We start with a 
definition and recall the relevant results. 

Definition 4.4 : If  A = (aij) is a real symmetric n x n matrix, and  x = (x1, x2, ..., xn) 
n   is called a quadratic form associated 

with A. 

We can write Q(x) = xAxt.  If A is a diagonal matrix, then Q(x) = 

 x = 0. Such a quadratic form is called negative 
definite. 

It may not be very easy to get the eigen values. But we have an easier way to decide. 

A principal minor of a square matrix, A, is the determinant of  the matrix obtained 
by taking the first k rows, and the first k columns of A, 1  n.  
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If all the principal minors are positive, then the associated quadratic form is positive 
definite. 

If the principal minors are alternately positive and negative, starting with a negative 
minor for k = 1, then the associated quadratic form is negative definite. 

If a principal minor of order k is negative, when k is an even number, then Q(x) 
takes both positive and negative values.  

We now use these facts about quadratic forms to derive the second derivative test. 
A definition first. 

Definition 4.5 : If f is a C2 function from Rn to R, then the symmetric matrix A = 

H(x) =   is called the Hessian matrix of f at x. Thus, 

A = H(x) =    . 

If  a 
n

 + R1(c).  

If a is a critical point, then  = 0, and therefore we get   

 f(a + h) − f(a)  = R1(c).    

Now, , where  

 We write 

 

Therefore,  when  

 

 

0.  
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   Hence, f(a + h) – f(a) =  ).           .................(4.7)       

Theorem 7.6 : If f  is a function from Rn to R, and has continuous second order 
partial derivatives in a ball B(a; r) around a stationary point a of f, then 

i) f has a relative minimum at a, if H(a) is positive definite 

ii) f has a relative maximum at a, if h(a) is negative definite 

iii) f has a saddle point at a, if H(a) has both positive and negative eigen 
values. 

Proof : Using the notations that we have used  in the discussion just before this 
theorem,  
we can write f(a + h) – f(a) =   

 hH(a)ht .  

i) This value will be positive for all h, if H(a) is positive definite. Hence, f(a + h) 
– f(a) > 0 for all h, such that 0 < ||h|| < r. This tells us that f(a + h) 

 B(a; r), that is , a is a relative minimum point  
of f. 

The argument for proving ii) and iii) are exactly similar, and we are sure you can 
write those. 

Remark 4.2 : i) If  an even principal minor, that is a principal minor of even order 
is negative, then the point is a saddle point. 

ii) If detH(a) = 0, the test is inconclusive, and a is called a degenerate 
stationary point of f. 

Go through the following examples carefully, they illustrate our discussion 
here.     

Example 4.2: Locate and classify the stationary points of the functions given by 

i) x2 + xy + 2x + 2y + 1,   ii) x3 + y3 – 3xy,    iii) (x − 1)exy. 

Solution : i) Let  f(x, y) =  x2 + xy + 2x + 2y + 1.  Then fx = 2x + y + 2,  fy = x + 2. fx 
= fy = 0   x = − 2 and y = 2. 
Therefore, f has only one stationary point, ( − 2, 2). Now, fxx = 2, fyy = 1, and fxy = 0. 

Thus, H(( −2, 2)) = , and det (H(( − 2, 2))) =  −1. 

Therefore, f has a saddle point at ( − 2, 2). 

ii) Let f(x, y) = x3 + y3 – 3xy. Then, fx = 3x2 – 3y, fy = 3y2 – 3x. 

fx = fy = 0  
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. 
 det(H(0, 0)) = - 9 < 0, and (0, 0) is a saddle point. 

H((1, 1)) =  . The principal minors are 6, and 27. Both are positive, and 
hence f has a local minimum at (1, 1).        

iii) Let f(x, y) = (x - 1)exy.  Then fx = exy(xy – y + 1),  fy = x(x - 1)exy 

 fx = 0  x = 0, or x = 1. 

x = 0  y = 1, and x = 1 contradicts fx = 0. So,  (0, 1) is the only stationary point. 

fxx = exy(y + xy2 – y2 + y),  fxy = exy(x – 1 + x2y – xy + x),  fyy = x2(x - 1)exy. 

Therefore, H((0, 1)) =   .  det(H(0, 1)) = - 1 < 0.  

Hence, (0, 1) is a saddle point. 

Example 4.3 : Locate and classify the stationary points of  f(x, y, z) =   

i) xyz , 

ii)  x2y + y2z + z2 - 8 x,   iii)  x2 – xy + yz3 – 6z. 

Solution :  i) fx = yz yz(1 – 2x2) 

fy =  

), where a, b, c are real 
numbers, as the stationary points. 

fxx =  − 4xyz  

fxy = z(1 – 2x2) , 

fyz =  (1 – 2y2).  

We have indicated the procedure. We are sure now you will be able to get  fxz, fyy, 
and fzz. Evaluating these second order partial derivatives at the stationary points, 
we find, 

 H((a, 0, 0)) =   detH((a, 0, 0)) = 0. Therefore, (a, 0, 0) is a 

degenerate point of f. Similarly, (0, b, 0) and ( 0, 0, c) are also degenerate points. 

H((  
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). 

ii) fx = 2xy - 8

, 2, − 2). 

You will find that (0, 0, 0) is a degenerate stationary point, and (2 , 2, − 2) is a 
saddle point. 

iii) fx = 2x – y, fy = - x + z3,  fz = 3yz2 – 6. Equating these to zero, we get (1, 2, 1) 

as the stationary point. Check that H((1, 2, 1)) = , and the principal 

minors are 2, - 1, - 6. Hence, (1, 2, 1) is a saddle point. 

See  if you can solve these exercises now. 

Exercises: 

1) Find the stationary points of  f(x, y) = i) 
422 yx

x    ii) (x + y)exy. 
422 yx

x  

2) Find the extreme values of  f(x, y) = x2 + y3 + 3xy2 – 2x. 

3) Is (0, 0) an extreme point of 2cos(x + y) + exy? 

4) Locate and classify the stationary points of  

i) f(x, y) = (2 - x)(4 - y)(x + y - 3),  ii) f(x, y, z) = 4xyz – x4 – y4 – z4,   

iii) f(x, y, z) = 64x2y2 – z2 + 16x + 32y + z,  iv) f(x, y, z) = xyz(x + y+ z – 1). 

4.4 Lagrange’s Multipliers                                                                      

Look at these situations: 

i) A rectangular cardboard sheet is given. We have to make a closed box out of it. 
What is the maximum volume that is possible? 



55

Chapter 4: Applications of Derivatives 

ii) Temperature varies on a metal surface according to some formula. Where do the 
maximum and minimum temperature occur on the surface? 

In both these problems we have to maximize or minimize a certain function: 
volume in the first case, and temperature in the second. So these are max-min. 
Problems. But there is a difference between these and the problems considered in 
the last section. Here, an additional constraint or condition is imposed. The given 
cardboard sheet has a fixed area. The maximum/minimum temperature points are 
to be on the given surface. 

In this section we shall see how such problems are solved. A very useful method 
was developed by Joseph Louis Lagrange. This method gives a necessary condition 
for the extreme points of a function. We now state the theorem and then illustrate 
its use through some examples. 

Theorem 4.7 : Let f : Rn 
n

Digm(a) = 0,    i = 1, 2, . . . , n. 

We can also write the vector equation (a) = 0. 

When we want to find the extreme values of a function  f : Rn 

Digm(a) = 0, i = 1, 2, . . . , n. 

These n equations, along with the m equations,   g1(x1, x2, . . . ,xn) = 0, g2(x1, x2, . . 
. ,xn) = 0, . . . , gm(x1, x2, . . . ,xn) = 0, are then solved to get the values of the n + m 
unknowns, x1, x2, . . . ,xn, . The solutions x = (x1, x2, . . . ,xn) are the 
stationary points, and contain the extreme points of f .  

 are called Lagrange’s Multipliers. We use one multiplier for each 
constraint. 

To analytically classify these stationary points into local maximum, minimum, or 
saddle, is a very complicated process. It is usually easier to look at the physical or 
geometrical aspect of the problem to arrive at any conclusion. We now solve a few 
problems, so that the entire process is clear to you.  

Example 4.4 : Find the dimensions of the box with maximum volume that can be 
made with a cardboard sheet of size 12 cm2. 

Solution : If the dimensions of the box are x, y, z  cms, then its volume V = xyz  c. 
cms. And surface area is 2(xy + yz + xz) sq. cms. Here we have to maximize V, 
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subject to a constraint 2(xy + yz + xz) = 12, or (xy + yz + xz) = 6. So, f(x, y, z) = 
xyz, and  

g(x, y, z) = xy + yz + xz – 6. Hence,  

 

fx + 
(x + y) = 0. 

xyz = 
 0, then xy + xz = xy + yz = xz + yz. That 

is, x = y = z (unless, of course, x = y = z = 0).  

Therefore, xy + yz + xz = 6  c. 
cms. is the maximum volume. 

Example 4.5 : Find the extreme values of the function given by f(x, y, z) = 2x + y 
+ 3z, subject to x2 + y2 = 2, x +z = 5. 

Solution : Let g1(x, y, z) = x2 + y2 – 2 = 0, and g2(x, y, z) = x + z – 5 = 0. Then 

 

fx +  = 0 

 fy +   = 0 

fz + 
  = − 1. 

1. Hence, the stationary points are (1, - 1, 4) and 
( - 1, 1, 6), and the extreme values are 13 and 17. 

Example 4.6 : Find the minimum distance of a point on the intersection of the 
planes,  

x + y – z = 0, and x + 3y + z = 2 from the origin. 

Solution: The distance of P(x, y, z) from the origin is 
, subject to  

g1(x, y, z) =  x + y – z = 0, and 
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g2(x, y, z) = x + 3y + z – 2 = 0.  

 

fx +  = 0 

fy +  = 0 

fz +  

 ,  

z =  = 0. 
Therefore, x = 0 and y = z. Using this in x + 3y + z – 2 = 0, we get y = z = ½.  

Thus, the stationary point is  

(0, 1/2, 1/2). The distance of this point from the origin is  . 

Geometrically, the constraints are equations of two planes. There is no maximum 
to the distance of a point on their line of intersection from the origin. So, the 
stationary point is a minimum point. 

Here are some problems you can try. 

1) Find the extreme values of the function f(x, y) = xy on the surface 

 
28

22 yx
 = 1.  

2) Find the extreme values of z = 
32
yx  on the unit circle in the xy-plane.  

3) Find the distance of the point (10, 1, − 6) from the intersection of the planes,  

x + y + 2z = 5 and 2x – 3y + z = 12. 

4.5 Summary 

In this chapter we have introduced Taylor’s theorem for functions of several 
variables. We have also seen how to get Taylor polynomials of a given order for a 
given function. Of course, to be able to do this, the function must have continuous 
partial derivatives of higher orders.  

We have then discussed the location of maxima and minima of a real-valued 
function of several variables. This has tremendous applications in diverse fields of 
study. In particular, we have proved that the extreme points of a function are located 
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among the points at which the gradient vector of the function is zero. That is, the 
points at which all the first order partial derivatives are zero. The classification of 
these points into maxima, minima, or saddle points depends on the signs of the 
principal minors of the Hessian matrix. 

We pointed out that there are some situations, where we need to find the extreme 
values subject to certain constraints. Such problems, and the method of tackling 
them is also discussed, and illustrated through some examples. 
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5.0 Objectives 

After reading this chapter, you should be able to  

 state and prove Inverse Function Theorem for functions of several variables 

 check if some simple functions are locally invertible  

 state and prove Implicit Function Theorem for functions of several variables 

5.1 Introduction                                                                                        

In this chapter we introduce two very important theorems. You have not come 
across these theorems even for functions of a single variable. In each case, we shall 
first discuss the single variable case, and then extend the concept to functions of 
several variables. A word of caution : these theorems are not easy. To help you 
understand them better, we are going to prove some smaller results, and then use 
them in the proof of the theorems. Do study this chapter carefully and we are sure 
you would have no difficulty in digesting the concepts.  

5.2 Inverse Function Theorem                                                                

The inverse function theorem is a very important theorem in Calculus. You may be 
familiar with its one dimensional version. Before we introduce the theorem for 
functions from Rn to Rn, we shall recall some results about functions of one 
variable: 

59
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1) If f : [a, b]  R is continuous, and f(c) > 0 for some c  (a, b), then  
such that  

(c ) (a, b), and f(x) > 0   (c ). In other 
words, we can always find a neighbourhood of the point c, in which f(x) has the 
same sign as f(c). 

2) If f : [a, b]  R is a continuously differentiable function, and  for 
some  
c  (a, b), then using 1) we can prove that  such that f is an injective 
function on  
(c ) (a, b). Further,  f-1: f(c )  
(c )  is differentiable at f(c) ,  
The statement in 2) is the inverse function theorem. Note that we do not know 
whether the inverse of f exists on [a, b]. But what this theorem tells us, is that if  

, then f is  “locally invertible” at c. For example, we know that the 
function f : [0, 2 ]  R, f(x) = sinx    does not have an inverse. But   

is a continuous function, and  .  So, the theorem says 

that f is locally invertible at . That is, we can find a neighbourhood N of  , such 
that f restricted to N has an inverse. Check that f is injective when restricted to N = 

( ), and hence has an inverse on N. 

We shall now see if this theorem extends to functions of several variables. Let us 
start with a definition. 

Definition 5.1 : Let f : E  Rn, where E  Rn. If f  C1, f is said to be locally 
invertible at a  E, if there exists a neighbourhood N1 of a, N1  E, and a 
neighbourhood N2 of f(a), such that f(N1) = N2,  f is injective on N1, and f-1 : N2  
N1 is a C1 function. 

We shall soon state and prove the inverse function theorem. In the proof, we are 
going to use some minor results. You have already studied some in the earlier 
chapters of this course. Next we state and prove one other result, which will be 
useful to us. 

Theorem 5.1 : Let f = (f1 f2, . . . , fn) : E  Rn,  where E is an open set in Rn. 
Suppose f  C1. If the Jacobian of f, J(a)  0 for some a  E, then f is injective 
on a neighbourhood of a in E. 

) )

) )
)



61

Chapter 5: Inverse and Implicit Function Theorems

 Proof : If  X1, X2, . . . , Xn  E, we consider a point X = (X1, X2, . . . , Xn)  
, whose first n coordinates are the coordinates of X1, the next n are the coordinates 
of  X2, and so on. We define a function, j, such that  

j(X) = det[Djfi(Xi)] = det  .     

Now, the function j, being an n×n determinant, is a polynomial of its n2 entries, and 
each entry,  is a continuous function, since f  C1. Thus, j is a continuous 
function on its domain. We write A = (a, a, . . . , a). Then j(A) = det[Djfi(a)] = J(a) 

 0. Now, since f C1, all the entries of j(A) are continuous, and hence, j(A) is 
also continuous. The continuity of j(A) ensures that there exists a neighbourhood N 
of A, such that j(X)  0 , if X  N. 

In other words, there exists a convex neighbourhood Na of a, such that  j(X)  0 , if  

X = (X1, X2, . . . , Xn) is a point, for which Xi  Na  for every i = 1, 2, . . . , n.    
                                                         ..........(5.1) 

This Na is the required neighbourhood. We have to show that f is injective on Na. 
For this, suppose x, y  Na , such that f(x) = f(y). Then fi(x) = fi(y)  for every i = 1, 
2, . . . , n.    

Then, using the Mean Value Theorem for scalar fields (See Remark 6.2 ii).), we 
get 

fi(x) − fi(y) = fi(ci)  (x − y)    fi(ci)  (x − y) = 0 for some ci on the line 
segment joining x and y. So, if x – y  0, then  fi(ci) = 0 for some ci on the line 
segment joining x and y, that is, in the neighbourhood Na, since Na is convex. This 
means, Djfi(ci) = 0 for every j, 1 . Thus, if C = (c1, c2, . . 
. , cn), then j(C) = det[Djfi(ci)] = 0. But this contradicts (5.1). So, we conclude that 
x – y = 0, which proves that f is injective on Na. 

Remark 5.1 : i) A function may not be injective on its entire domain. But if its 
Jacobian is non-zero at a point, then it is injective on a neighbourhood of that point. 
In other words, it is locally injective. 

ii) If the Jacobian is non-zero, then the linear transformation Df, which represents 
the derivative of f, is non-singular, and hence, is a linear isomorphism. 

Example 5.1 : a) Consider the function f(x, y) = (excosy, exsiny). This function is 
not injective, since f(x, 0) = f(x, 2 ). But,  

X

f f
f
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J(x, y) =  = e2x  0. Thus, f is locally injective at each point in R2. 

Here we have a function, which is locally injective at every point of its domain, but 
is not injective on the domain. 

b)   Consider the function f(x, y) = (x3, y3), defined on R2. The Jacobian of this 
function is zero at (0, 0). But the function is locally invertible at (0, 0). In fact, it is 
an invertible function. 

Theorem 5.2 (The Inverse Function Theorem): Let f = (f1, f2, . . . , fn)  C1, 
 f: E  Rn , where E is an open set in Rn. Let T = f(E). Suppose J(a)  0 for some 
a  E. Then there exists a unique function f-1 from Y to X, where X is open in E, 
Y is open in T, such that 

i) a  X, f(a)  Y,  ii) Y = f(X),  iii) f is injective on X,  iv) f-1: Y  X, f-1(Y) = 
X,  v) f-1  C1 on Y. 

Proof : Using Theorem 5.1, we can conclude that f is injective on a neighbourhood 
N of a in E. So, f : N  f(N) is bijective, and hence has an inverse, f-1 : f(N)  N. 
Let r > 0 be such that    N. Since   is compact in Rn , we use Theorem 
3.4.1 to conclude that  f(  )  is also compact in Rn . Now f is continuous and 
injective on the compact set   . Hence, using Theorem 3.4.2, we can say that 
f-1 is continuous on f(  ).   

 Now, B(a, r) is an open set in  ,  and therefore,  

(B(a, r)) is open in f( ). That is, f(B(a, r)) is open in f( ).  

Also, f(a)  f(B(a, r)). Therefore, there exists a  > 0, such that B(f(a), )  

 f(B(a, r)). 

Take X = f-1(B(f(a), )), and  Y = B(f(a), ). Then X and Y satisfy i), ii), iii) and 
iv) in the statement of the theorem.  

To prove the last assertion v) in the statement, we have to show that all the partial 
derivatives of all the component functions of f-1 are continuous on Y. For this we 
first define the function  j(X) = det[Djfi(xi)] , as in Theorem 5.1. Here X = (X1, X2, 
. . . , Xn). Then, as before, there is a neighbourhood Na of a, such that j(X)  0, 
whenever each Xi  Na. We can assume that the neighbourhood N  Na. This 
ensures that j(X)  0, whenever each Xi   . 

NNN
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Now we first prove that Dif-1 exists on Y. Let y  Y, and consider 

t
yfteyf i )()( 11

, 

  where ei is the ith coordinate vector, and t is a scalar. Let x = f-1(y), and  
= f-1(y + tei). Then  

f( ) – f(x) = tei. Thus, fi( ) – fi(x) = t, and  fj( ) – fj(x) = 0, when i  j. 

By applying Mean Value Theorem (Remark 6.2 ii)), we can write       

t
xfxf mm )()( '

 fm(xm)  
t

xx '

 ,    m = 1, 2, . . . , n. Here xm is a point on the 

line segment joining x and . 

So, we get a system of  n equations (for the n values of m). The left hand side of an 
equation in this system is 1, if m = i, otherwise it is 0. The right hand side is of the 
form  

D1fm(xm) 
t

xx 1
'
'1

+ D2fm(xm) 
t

xx 2
'
2  + . . . + Dnfm(xm) 

t
xx nn

'

,   m = 1, 2, . . . , n.   

The determinant of this system of linear equations is j(X), which we know is non-

zero. Hence we can solve it by Cramer’s rule and get the variables  
t

xx jj
'

  as the 

quotient of two determinants. Then, as t tends to zero,  approaches x, and hence, 
each xm also approaches x. The determinant in the denominator, j(X) = det[Djfi(xi)]  
then approaches J(x), the Jacobian of f at x, which is again non-zero. Thus, as t 

tends to zero, the limit of 
t

xx jj
'

  exists. That is,  
t

yfteyf i

t

)()(
lim

11

0
  

exists. Thus, Dif-1(y) exists for all i, and for all y in Y. 

We have obtained the partial derivatives of the components of f-1 as quotients of 
two determinants. The entries in these determinants are partial derivatives of the 
components of f, which are all continuous. Since a determinant is a polynomial of 
its entries, we conclude that the partial derivatives of f-1 are continuous on Y.  

Example 5.2 : Show that the function f: R2  R2, f(x, y) = (2xy, x2 – y2)  is not 
invertible on  R2, but is locally invertible at every point of E = {(x, y) | x > 0}. Also 
find the inverse function at one such point. 

Solution : Here f(1, 1) = f( − 1, − 1) = (2, 0). Therefore f is not injective, and hence 
is not invertible on R2. On the other hand, if (x, y)  E, then  

(((( ) ((((((( ) (((( )

f

.
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J(x, y) =  = − 4(x2 + y2)  0. Hence by the inverse function theorem, 
 f is locally invertible.  

Suppose  f(x, y) = (u, v).  If  (x, y)  E,  then y =
x

u
2

, and v = x2  . Therefore, 4x4 - 

4x2v – u2 = 0. Thus, x2 = 
2

22 uvv  , and     x = (
2

22 uvv )1/2,   

y = u(2v + 2 )−1/2 

5.3 Implicit  Function Theorem                                                              

 If  x2 + y2 = 0, find   . You must have done exercises like this in your under-
graduate classes. Here, we take f(x, y) = x2 + y2, and find fx = 2x, and  fy = 2y. Then 

dx
dy  = 2x/2y = x/y. Of course, y cannot be zero.  

While doing this exercise, actually we have used a theorem, the implicit function 
theorem. To recall, in this setting, a function which can be written as y = g(x), is 
called an explicit function, and one which can be expressed only as f(x, y) = 0, is 
called an implicit function. The implicit function tells us that under certain 
conditions, we can express an implicit function as an explicit one, and then we can 

use this expression to find  
dx
dy  . 

In this section we are going to discuss this implicit function theorem for functions 
of several variables. Before we state and prove the general case, we first prove the 
case for functions involving only two variables, x and y. 

Theorem 5.3 : Let f be a real-valued C1 function, defined on the product , 
where  and  are two intervals in R. Let (a, b)  , and f(a, b) = 0, but 
fy(a, b)  0. Then there   exists an interval I in R, containing a, and a C1 function 
g : I R, such that g(a) = b, and  

f(x, g(x)) = 0 for all x  I. 

Proof : We consider a function, h:   R2, given by h(x, y) = (x, f(x, y)). If 
we write   

 h = ( ), the Jacobian matrix of h is  

R



65

Chapter 5: Inverse and Implicit Function Theorems

Jh(x, y) =   =  .  The determinant of this matrix,   is not zero at 

(a, b). Thus, h is a C1 function, with a non-zero Jacobian at (a, b). Therefore, by the 

inverse function theorem, Theorem 5.2 , we can conclude that h is locally invertible 

at (a, b). Let u = ( ) be the local inverse of h. You will agree that  (x, y) = 

x for all x and y in R. That is,  

u(x, y) = (x, (x, y)) for all x and y in R.  We now define g as, g(x) = (x, 0), 
and show that it has all the required properties. 

Now, since h(a, b) = (a, 0), u(a, 0) = (a, b). This means, (a, 0) = b. Thus, g(a) 
= b. 

Also, (x, 0) =  h(u(x, 0)) = h(x, (x, 0)) = h(x, g(x)) = (x, f(x, g(x))). This implies 
that 

 f(x, g(x)) = 0.  

Since u is a C1 function, g is also C1. Differentiating  f(x, g(x)) = 0 with respect to 
x using chain rule, we get  D1f(x, g(x)) + D2f(x, g(x)) (x) = 0, and thus, 

(x) = 
))(,(
))(,((

2

1

xgxfD
xgxfD

,  since D2f(x, g(x))  0.  

Basically, this theorem tells us that under certain conditions, the relation  
f(x, y) = 0, between x and y can be explicitly written as y = g(x). 

Remark 5.2  :  If instead of fy(a, b)  0, we take the condition fx(a, b)  0, then 
we can express x as an explicit function of y. 

Example 5.3  : Can f(x, y) = x3 + y3 – 2xy be expressed by an explicit function  
y = g(x) in a neighbourhood of the point (1, 1)? 

Solution : Note that f(1,1) = 0, and fy = 3y2 – 2x = 1 at (1, 1). Further, f is a 
 C1 function on R2. Therefore, we can apply Theorem 5.3, and conclude that there 
exists a unique function g, defined on a neighbourhood of 1, such that g(1) = 1. 

Also, (x) =  
xy
yx

23
23

2

2

  in this neighbourhood.   

Example 5.4  : Check whether Theorem 5.3 can be applied at all points, where  

f(x, y) = x2 – y2 = 0. 
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Solution : x2 – y2 = 0 is true at points (0, 0), (1, 1),(1, −1), ( −1, 1), and ( −1, −1). fy 
= −2y, and fx = 2x. At the point (0, 0), fx and fy  are both zero, and hence we cannot 
apply the theorem. At all the remaining points, the function satisfies all the 
conditions of Theorem 5.3, and hence it can be applied. You will agree that at each 
of these points, we will get either  

g(x) = x, or g(x) = − x. 

We now go a step further, and consider a real-valued function of several variables. 

Theorem 5.4 : Let f be a real-valued C1  function, defined on an open set, U, in Rn. 
Let  

a = (a1, a2, ... , an-1)  Rn-1, such that (a, b)  U,  f(a, b) = 0, and Dnf(a, b)  0. 
Then there exists a unique C1function g, defined on a neighbourhood N of a, such 
that g(a) = b, and  

f(x, g(x)) = 0 for all x  N. 

Proof : We consider a function h : U  Rn−1 x R, defined by h(x, y) = (x, f(x, y)). 
If we write h = (h1, h2, ... , hn), then hi(x, y) = xi, for 1  i  n – 1, and hn(x, y) = 
f(x, y). Therefore, the Jacobian matrix of h is given by 

       

The determinant of this matrix is Dnf, which is non-zero. Therefore, we can apply 
the inverse function theorem (Theorem 5.2), and conclude that h is locally 
invertible at (a, b). If u is the local inverse of h, and we write u = (u1, u2), then you 
will see that u1(x, y) = x for all (x, y). Thus, u(x, y) = (x, u2(x, y)) for all (x, y). We 
now define g(x) = u2(x, 0), and show that this has the required properties. 

Now, u(a, 0) = (a, b). This gives g(a) = u2(a, 0) = b. 

Also, (x, 0) = h(u(x, 0)) = h(x, (x, 0)) = h(x, g(x)) = (x, f(x, g(x))). This implies 
that 

 f(x, g(x)) = 0.  

Example 5.5 : Examine whether the function f(x, y, z) = x2 + y2 – 4  can be 
expressed as a function  y = g(x, z) in a neighbourhood of the point (0, -2, 0). 
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Solution : We note that f(0, −2, 0) = 0, and D2f = 2y = − 4 at (0, −2, 0). So, applying 
the implicit function theorem, there exists the required neighbourhood of (0, −2, 0). 
In fact, you can check that in the neighbourhood, N = B((0, − 2, 0), 1), we can 
express the function as y = − (4 – x2)1/2 . 

Here are some exercises that you should try : 

1) Determine whether the following functions are locally invertible at the given 
points : 

i) f(x, y) = (x3y + 3, y2)      at (1, 3) 

ii) f(x, y, z) = (excosy, exsinz, z)    at (1, 1, 1). 

2) For each of the following functions, show that the equation f(x, y, z) = 0 defines 
a continuously differentiable function z = g(x, y), in a neighbourhood of the given 
point: 

i) f(x, y, z) = x3 + y3+ z3 – xyz – 2  ,         (1, 1, 1) 

ii) f(x, y, z) = x2 + y3 – xysinz ,                (1, - 1, 0). 

That brings us to the end of this chapter. We hope you have studied the concepts 
carefully, and have understood them.  

5.4 Let Us Sum Up                                                                                   

In this chapter we have discussed two very important theorems: the inverse function 
theorem, and the implicit function theorem. The proofs of these theorems are a little 
complicated. So we have tried to go step by step from functions of one variable to 
functions of many variables.  

The Inverse Function Theorem: gives the conditions under which a function, even 
though not invertible on its domain, is seen to be locally invertible. The Jacobian 
of the function being non-zero at a point ensures the local invertibility of the 
function in a neighbourhood of that point. 

The Implicit Function Theorem: gives the conditions, under which an implicit 
relationship  between variables can be expressed in an explicit manner. Here, again, 
the Jacobian plays an important role. 
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Unit Structure  

6.1 Introduction 

6.2 Partition 

6.3 Riemann Criterion 

6.4 Properties of Riemann Integral  

6.5 Review 

6.6 Unit End Exercise 

6.1 Introduction 

The Riemann integral dealt with in calculus courses, is well suited for computations 
but less suited for dealing with limit processes.  

Bernhard Riemann in 1868 introduced Riemann integral. He need to prove some 
new result about Fourier and trigonometric series. Riemann integral is based on 
idea of dividing. The domain of function into small units over each such unit or 
sub-interval we erect an approximation rectangle. The sum of the area of these 
rectangles approximates the area under the curve.  

As the partition of the interval becomes thinner, the number of sub-interval 
becomes greater. The approximating rectangles become narrower and more 
precise. Hence area under the curve is more accurate. As limits of sub-interval tends 
to zero, the values of the sum of the areas of the rectangles tends to the value of an 
integral. Hence the area under curve to be equal to the value of the integral. 

Before going for exact definition of Riemann explained the following definitions.  

 

6.2 Partition 

A closed rectangle in n  is a subset A of n  of the forms.  

68
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1 1 2 2, , .... ,n nA a b a b a b  where i ia b . Note that  

1 2, ,...., nx x x A iff i i ia x b i .  

The points 1 2, ,...., nx x x  are called the partition points.  

The closed interval 1 0 1 2 1 2 1, , , ,......, ,n n nI x x I x x I x x are called the 

component internal of ,a b .  

Norm : The norm of a portion P is the length of the largest sub-internal of P and is 
denoted by P . 

For example : Suppose that 1 0 1, ,.... kP t t t is a partition of 1 1,a b  and 

2 0 ,...., rP S S is a partition of 2 2,a b . Then the partition 1 2.P P P  of 

1 1 2 2, ,a b a b  divides the closed rectangle 1 1 2 2, ,a b a b into Kr-gub 

rectangles. 

In general if iP  divides ,i ia b  into ik  sub-interval then 1,.... nP P P

1 1, .... ,n na b a b  into 1 2..... nK k k k  sub-rectangle. These sub-rectangles are 

called sub-rectangles of the partition p.  

Refinement :  

Definition : Let A be a rectangle in n  and :f A  be a bounded function and 
P be partition of A for each sub-rectangles of the partition.  

1

inf :

. . . ,s s

ms f f x x S

g l b of f on x x
 

1

sup :

. . . ,s s

Ms f f x x S

l u b of f on x x
 

where 1,2,....,S n  

The lower and upper sums of f for ‘p’ are defined by  
, s

s
L f p m f s  and , s

s
U f p M f s  

Since s sm M  we have , ,L f p U f p  
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Refinement of a partition : Let 1 2, ,..., nP P P P and * * *
1 ,..., nP P P  be partition 

of a rectangle A in n . We say that a partition *P  is a refinement of P  if *P P
. 

If 1P  and 2P  are two partition of A then 1 2P P P  is also a partition of A is called 

the common refinement of 1P  and 2P . 

A function :f A  is called integrable on the rectangle A in n  if ' 'f is 
bounded . .g l b  of the set of all upper sum of ' 'f  and . .l u b  of the set of all lower 
sum of ' 'f  exist.  

Let inf ,U f U f p  

      sup ,L f L f p  

If U f L f is called ' 'f  is R-integrable over A.  

if can be written as 
A

U f L f f . 

Theorem : 

Let P and P  be partitions of a rectangle A in n . If P  refines P  then show that 
, ,L f p L f P and , ,U f P U f p . 

Proof :  

Let a function :f A  is bounded on A P  & *P  are two partition of A and P  
is retinement to P.  

Any subrectangle S of P  is union of some subrectangles  

1 2, ,...., ks s s  of P  and 1 2 ..... kV S V s V s V s . 

Now inf ; inf ;s im f f x x s f x x s   

1,....,
is sm f m f i k  

 

, s
s p

L f p m f V s  

1 ....s s km f V s m f V s V s  

                        
1 1 .....

ks s km f V s m f V s  
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The sum of LHS for all subrectangle is  of P  will get ,L f P .  

1, ,L f p L f p  

Now, sup ;sM f f x x S  

                     sup ; if x x S  

1,...,s si
M f M f i K  

, s
s p

U f p m f V s  

Now, 1 2 ....i kMs f V S Ms f V S V S V S  

                              1 2..... ....s s kMs f V s M f V s M f V s  

Taking the of L.H.S. for all subrectangle iS  of P  will get 

, , ,U f P U f P U f P . 

Theorem : 

Let 1P  & 2P  be partitions of rectangle A & :f A  be bounded function. Show 

that 2 1, ,L f P U f P  & 1 2, ,L f P f P . 

Proof : 

Let a function :f A be a bounded find 1P  & 2P  are any two partition  
of A.  

Let 1 2 P P P  

P  is a refinement of both 1P  & 2P  

 1, ,U f P U f P ……….. (I) 

 2, ,U f P U f P ……….. (II) 

 1, ,L f P L f P ……….. (III) 

 2, ,L f P L f P ……….. (IV) 

 We get 1 2, , , ,U f P U f P L f P L f P . 

Hence 1 2, ,U f P L f P  

Similarly, 2 2 1, , , ,U f P U f P L f P L f P . 

Hence, 2 1, ,U f P L f P  
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Theorem : 

Let a function :f A  be bounded on A then for any 0, a partition P on A 

such that ,U f P U f  and ,L f P L f  

Proof : 

Let a function :f A  be bounded on A inf ,U f U f P  and 

sup ,L f L f P  for any 0,  partitions 1P  & 2P  of A such that 

1,U f P U f  & 2,L f P L f .  

Let 1 2P P P  the common refinement of 1P  and 2P . 

1

2

, ,

, ,

U f P U f P U f

L f P L f P L f
 

,U f P U f  

,L f P L f  

6.3 Riemann Criterion 

Let A be a rectangle in n  A bounded function :f A  is integrable iff for 

every 0 , there is a partition P of A such that , ,U f P L f P . 

Proof : 

Let a function :f A  is bounded.  

inf ,U f U f P  

sup ,L f L f P  

Let f  be integrable of A 

U f L f  

for any 0,  a partition P on A such that , 2U f p U f  and 

, 2L f p L f . 

, 2U f p U f  & , 2L f p L f . 
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, , 2 2U f p L f P U f L f . 

,U f p L f  

Conversely,  

Let for any 0,  a partition P on A such that , ,U f p L f P . 

, ,U P f U f U f L f L f L f P  

Since  , ,U f P U f o  

          U f L f o  

and  ,L f L f P o  

we have, o U f L f  

Since  is arbitrary, U f L f  

f is integrable over A. 

Example 1 

Let A be a rectangle in n  and :f A  be a constant function. Show that f is 

integrable and .
A

f C V A  for some C .  

Solution : 

f x C x A  

f  is bounded on A 

 

Let P be a partition of A 

inf ;

sup ;
s

s

m f f x x s C

M f f x x s C
 

, s
S S

L f P m f V S C V S CV A  

, s
S S

U f P M f V S C V S CV A  
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U f L f CV A  

f  is integrable over A. 

 by Reimann criterion, 0  s.t. 

.
A

f C V A  for some C .  

Example 2 : 

Let : 0,1 0,1F X  

,
1
o if x is rational

f x y
if x is irrational

 

Show that ‘f’ is not integrable.  

Solution : 

Let P be a partition of 0,1 0,1  into S subport of P.  

Take any point 1 1,x y S  such that x is rational.  

,f x y o  and 1 1,x y S  such that 1x , is irrational 1 1, 1f x y  

inf ; 0

sup ; 1
s

s

m f f x x S

M f f x x S
 

, 0

, 1

1, 0

s
S

s
S

L f P m f V S

U f P M f V S

U f L f

U f L f

 

f  is not integrable 0,1 0,1  

6.4 Properties of Riemann Integral  

1) Let :f A be integrable and g f  except at finitely many points show 

that g is integrable and 
A A

f g . 

Proof : 

Since f is integrable over A.  
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 by Riemann Criterion,  a partition P of A. 

Such that , ,U f P L f P  ……… (I) 

Let P  be a refinement of P, such that 

1) x A  with f x g x , it belongs to 2n  subrectangles of P  

2) 12nV S
d u

 

Where d = numbers of points in A at which f g  

           
sup inf

inf sup
x Ax A

x A x A

u g x f x

g x f x
 

P  is refines P, we have 

    
, , , ,

, , , ,

L f P L f P U f P U f P

U f P L f P U f P L f P
 

Now 

 , ,U g P U f P  

     
1

d

ij ij ij
i

Ms g Ms f V s  

On other rectangle, f g and so ij ijMs g Ms f .  

supij
x A

Ms g g x & inf infij ijx A x A
Ms f f x Ms f f x  

   ij ijMs g Ms f u  

2

1 1
, ,

nd

ij
i j

U g P U f P u V S  

Let 
2

1 1

1 1
sup , , 2 .

nd
n

ij
i j

V V S U g P U f P uV d u v  ……. (II) 

Now similarly we get 1 1, , 2nL g P L f P d V  ……... (III) by (II) & (III) we 

get.  
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1 1 1 1

1

, , , 2 , 2

2
2

2
2 2 2 2

n n

n

n

n

U g P L g P U f P d u L f P d

d u V

d u
d u

 

1 1, ,U g P L g P  

 By Reimann Criterion G is integrable by equation (II) 

 
1 1

1 1

, , 2

, , 2

n

n

U g P U f P d uv

U g P U f P d u
 

Note that 1 1, , 2n

A

g U g P U f P d u  

                                      1, 2
2

nL f P d u  

                                       1
1

2, 2 2

n

n

d uL f P
d u

 

                      

1

1

, 2 2
,

A

L f P

L f P

f

 

  This is true for any 0  

  
A A

g f  ………………….. (IV) 

Now , , 2
A

g L g P L f P  

                              
,

2
A A

U f P

f f  

inf ,

2

A

A A

f U f P

g f
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This is true for any 0  

 
A A

g f ……… (V) 

from (IV) & (V) we get 

 
A A

g f  

2) Let :f A  be integrable, for any partition P of A and sub-rectangle S, 
show that  

i) s s sm f m g m f g  and  

ii) s s sM f M g M f g  

Deduce that  

 , , ,L f P L g P L f g P  and  

 , , ,U f g P U f P U g P  

Solution :  

Let P be a partition of A and S be a Subrectangle 

inf ;s

s

m f f x x S

m f f x x S
 

Similarly sm g g x x S  

s sm f m g f x g x x S  

s sm f m g  is lower bound of  

; ;f x g x x S f g x x S  

s sm f m g  is lower bound of  

; ;f x g x x S f g x x S  

inf ;s s

s

m f m g f g x x S

m f g
 

s s sm f m g m f g  
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ii) ;Ms f sub f x x s  

 Ms f f x x s  

Similarly Ms g g x x S  

Ms f Ms g f x g x x S  

Ms f Ms g  is upper bound of  

; ;f x g x x S f g x x S  

supMs f Ms g ;f g x x S Ms f g  

Ms f Ms g Ms f g  

Hence,  

  

, ,

,

s p

s p

L f P L g P Ms f Ms g V S

Ms f g V S

L f g P

 

, , ,

, ,

,

s

s

L f P L g P L f g P

U f P U g P Ms f Ms g V S

Ms f g V S

U f g P

 

, , ,U f P U g P U f g P  Proved. 

 

3) Let :f A be integrable, & :g A  integrable than show that f g   

is integrable and 
A A A

f g f g . 
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Proof : 

Let P be any partition of A then 

, , , , , ,U f g P L f g P U f P U g P L f P L g P  

, , , ,U f P U g P L f P L g P …………………….. (I) 

f  is integrable.  

By Rieman interion for given 0,  a partition P, of A such that 

1 1, , 2U f P L f P  ……………………….………….… (II) 

Similarly g is integrable for 0,  a partition 2P  of A such that 

2 2, , 2U g P L f P  ……………………………………… (III) 

Then *
1 2P P P  is a refinement of both 1 2&P P . 

*
1, , ;L f P L f P  *

1, ,U f P U f P  & *
2, , ;L g P L f P  

*
2, ,U g P U g P ………………………………………….. (IV) 

* *
1 12 , , , ,U f P L f P U f P L f P  

* *
2 22 , , , ,U g P L g P U g P L g P ……………….. (V) 

The equation I is true for any partition P of A.  

In general, it is true for partition *P  of A  

* *

* * * *

, ,

, , , ,

2 2

U f g P L f g P

U f P L f P U g P L g P  

* *, ,U f g P L f g P  

By Riemann Criterian f g  is integrable. 

Let 0  since sup ,
A

f f P  so a  partition P such that 1, 2
A

f f P . 
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Similarly a  partition 2 3, ,.... nP P P  of A S 

2

3

4

, 2

, 2

, 2

A

A

A

g L g P

U f P f

U g P g

 

Let 1 2 3 4P P P P P . 

Then 1, ,2 2
A

f f P L f P  

Similarly , 2
A

g L g P  

, 2
A

U f P f  and , 2
A

U g P g   

, , ,
A A A

f g L f P L g P L f g P f g  

                  

,

, ,

2 2
A A

A A

U f g P

U f P U g P

f g

f g

 

A A A A A

f g f g f g  

This is true for any 0  

A A A A A A A A

f g f g f g f g f g  

4) Let :f A be integrable for any constant C, show that 
A A

Cf C f  

Proof : 

Let C  
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Case 1  

Let 0  and suppose 0C . 

Let P be a partition of A and S be a subrectangle of P.  

 

sup ;

sup ;

sup ;

sM Cf Cf x x S

Cf x x S

C f x x S

CMs f

 

Similarly,  

sms Cf Cm f  

,

,
S S

U Cf P Ms Cf v S C Ms f v S

C U f P
 

Similarly , ,L Cf P C L f P  

f  is integrable for above 0,  a partition P of A such that 
, ,U f P L f P C  

, , , ,

, ,

U Cf P L Cf P C U f P C L f P

C U f P L f P

C CC

 

By Riemann Criteria.  

Cf is integrable  

for 0, a  partition P of A such that  

, ,

,

,

A A

A

A

A A A A

C f C f C L f P L Cf PC

Cf U Cf P

C U f P C f C

f Cf C f C fC C
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This is true for any 0  

A A A

A A

C f Cf C f

Cf C f
 

Case II 

Now suppose 0C  

Let P be a partition of A and S be any subrectangle in P.  

Ms Cf C Ms f and  

sm Cf C Ms f  

, ,L Cf P CU f P and  

, ,U Cf P C L f P  

f  is integrable for above 0, a partition P of A such that  

, ,U f P L f P C  

, , , ,

, ,

U Cf P L Cf P C L f P C U f P

C U f P L f P

C C
 

By Riemann Criteria Cf is integrable.  

for 0,  a partition P of A such that 
A A A

C f Cf C f . 

This is true for every 0  

A A A

A A

C f Cf C f

Cf C f
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Example 3: 
Let , :f g A R  be integrable & suppose f g  show that 

A A

f g . 

Solution : 
By definition inf ,

A

f U f P  and inf ,
A

g U g P . 

Let P be any partition of A & S be any subrectangle in P  
as f g  

, ,

inf , inf ,

s sm f m g

U f P U g P

U f P U g P

 

This is true for any partition 

A A

f g  

Example 4: 

If :f A  is integrable show that if is integrable and 
A A

f f . 

Solution : 
Suppose f is integrable first we have to show that f  is integrable.  

 Let P be a partition of A & S be subrectangle of P then  

 

sup ;

sup ;

sup ;

Ms f f x x S

f x x S

f x x S

Ms f

 

Similarly  
Ms f Ms f  

,

,

, ,

s s
S S

s
S

s s s s
P P

U f P M f V S M f V S

L f P m f V S

M f m f V S M f m f V S

U f P L f P

 

f  is integrable, for 0,  a partition P such that , ,U f P L f P . 

, , , ,U f P L f P U f P L f P  
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By Riemann criteria 

f  is integrable over . 

Now inf ,
P

A

F U f P  

                

inf

inf

inf

sP S P

sP

sP P

M f V S

M f V S

M f V S

 

 
inf

inf ,

s
P

M f V S

U f P
 

A A

f f  

Example 5: 

Let :f A  and P be a partition of A show that f is integrable iff for each sub-

rectangle S the function f
s which consist of f restricted to S is integrable and that 

in this case 
SA S

ff s . 

Suppose :f A  is integrable.  

Let P be a partition of A & S be a sub-rectangle in P.  

Now to show that ;f Ss  is integrable.  

Let 0,  a partition P  of A such that , ,U f P L f P  ( f  is 

integrable) 

Let P P P  then 1P  is refinement of both P & P . 

1, ,U f P U f P  & 1, ,L f P L f P  

1 1, , , ,U f P L f P U f P L f P ………………… (I) 

1P  is refinement of P 

S  is union of some subrectangle of 1P  say 
1i

S U si .  
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1

1 1, , s s
S P

U f P L f P M f m f V S  for all rectangle.  

      1

, ,

i

k

i s
i

Ms f m f V S

f fU P L PS S

 

By Riemann Criterion 

 f
S  is integrable.  

Conversely, Suppose f
S is integrable for each S P . 

To show that f is integrable. 

Let 0,  partition SP  of S such that  

, ,S S
f fU P L P ks s  ………………………………. (II) 

f
S  is integrable for each S P  where K is number of rectangle in P.  

Let 1P  be the partition of A obtained by taking all the subrectangle defined in the 
partition SP . 

There is a refinement 1
SP  of SP  containing subrectangles in 1P . 

1 1, ,S SU f s P L f s P k …………………………… (III) 

1 1
1 1

1 1 1, ,
S S

S P

U f P L f P M f m f V S  

  

1
1 1

1 1

1 1, ,

,

S

s
S P S P

S S
S P

S P

Ms f m f V S

U f s P L f s P

k

k k

 

By Riemann Criterian f is integrable.  
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Let 0  

  

1 1

1

,

S

S
S P S PS

s
S P S P

f S k L f S P

m f V S

 

Let 1P  be a partition of A, obtained by taking allthe subrectangle defined in SP . 

1
1 1

1
1 1

1
1 1

1

1 1

1

1

, ,

s
S P S PS

A

s
S P

s
S P S P

f S k m f V S

L f P f U f P

M f V S

M f V S

 

, S
S P S P S

S P S PA

CU f S P f S k

f S C f f S
 

This is true for all 0  

S P S P S

S PA S

f S f f S

f f S
 

Example 6: 

Let :f A  be a continues function show that f is integrable on A.  

Solution :  

Let :f A  be a continuous function to show that f is integrable.  

Let 0 , since A is closed rectangle it is closed and bounded in n . 

A is compact.  

f  is continuous function on compact set f is uniformly continuously on . 

for the above 0, 0 such that , ,x g A  

x y f x f y V A . 
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Let P be a partition of A such that side length of each subrectangle is less than 
n . 

  If ,x y S for some subrectangles S then 

2 2
1 1 .... n nx y x y x y  

           
2

Sn
n

 

f x f y V A  

 

S  is compact 

f  is continuous 

f  attains its bound in S. 

Let 1 2, ,....., kS S S  be the subrectangle in A. Then for 1 , ,i i ii k x y S  such that 

i i si iMs f f x m f f y . 

1
, ,

i

k

i s i
i

U f P L f P Ms f m f V S  

  

1

1

k

i i i
i
k k

i i
i V A

f x f y V S

V S V S
V A V A

V A
V A

 

By Riemann Criterion f is integrable.  
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6.5 Review 

After reading this chapter you would be knowing.  

 Defining R-integral over a rectangle in n  

 Properties of R-integrals 

 R-integrabal functions 

 Continuity of functions using -intervals.  

6.6 Unit End Exercise 

I) Let ; 0,1 0,1f  be defined by  

 
1, 0 0 3

13 13

f x y if y

if y
 

 show that f is integrable.  

II) Let Q  be rectangle in n & ;f Q  be any bounded function.  

 a) Show that for any partition P of Q  , ,L f P U f P  

 b) Show that upper integral of function f exit.  

III) Let f be a continuous non-negative function on 0,1  and suppose there exist 

0 ,x a b such that 0 0f x  show that 
0

f x dx a . 

IV)  Let f  be integrable on ,a b  and : ,F a b  and 1F x f x  then 

prove that 
a

f x dx F b F a  

V) Which of the following functions are Riemann integrable over 0,1 . Justify 

your answer.  

 a) The characteristic function of the set of rational number in 0,1 . 

 b) sinf x x xy  for 0 1x  

  0 3f  
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VI) Prove that if f is -integrable then f  is also R-integrable is the converse 

true? Justify your answer.  

VII) Show that a monotone function defined on an interval ,a b  is R-inegrable.  

VIII) A function ; 0,1f is defined as 1 1

1 1 1
3 3 3n n nf x x  where 

n   

 0 0f  

 show that f is R-integrable on 0,1  & calculate 
1

0

f x dx . 

IX) f x x x  1,3x where x  denotes the greatest integer not greater 

than x  show that f is R-integrable on 1,3 . 

X) A function ; ,f a b  is continuous on ,a b  0f x  ,x a b  and 

0
b

a

f x dx  show that 0f x  ,x a b . 
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UNIT 4 
7 

MEASURE ZERO SET 

Unit Structure  

7.1 Introduction  

7.2 Measure zero set  

7.3 Definition  

7.4 Lebesgue Theorem (only statement) 

7.5 Characteristic function  

7.6 FUBIN’s Theorem 

7.7 Reviews  

7.8 Unit End Exercises  

7.1 Introduction  

As we have seen, we cannot tell if a function is Riemann integrable or not merely 
by counting its discontinuities one possible alternative is to look at how much space 
the discontinuities take up. Our question then becomes : (i) How can one tell 
rigorously, how much space a set takes up. Is there a useful definition that will 
concide with our intuitive understanding of volume or area? 

At the same time we will develop a general measure theory which serves as the 
basis of contemporary analysis.  

In this introductory chapter we set for the some basic concepts of measure theory.  

7.2 Measure Zero Set  

Definition : 

A subset ‘A’ of n  said to have measure ‘O’ if for every 0  there is a cover 

1 2, ....U U  of A by closed rectangles such that the total volume 
1i

v Ui . 

90
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Theorem : 

A function ‘f’ is Riemann integrable iff ‘f’ is discontinuous on a set of Measure 
zero.  

A function is said to have a property of Continuous almost everywhere if the set on 
which the property does not hold has measure zero. Thus, the statement of the 
theorem is that ‘f’ is Riemann integrable if and only if it is continuous atmost 
everywhere.  

Recall positive measure : A measure function : 0,u M  such that 

11
i i

ii

V u V u . 

Example 1:  

1) “Counting Measure” : Let X be any set and M P X the set of all subsets : 

If E X  is finite, then E E  if E X  is infinite, then E  

2) “Unit mass to 0x  - Dirac delta function” : Let X be any set and M P X  

choose 0x X set.  

 0

0

1
0

E if x E
if x E

 

Example 2: 

Show that A has measure zero if and only if there is countable collection of open 
rectangle 1 2, ,....V V  such that iA V  and iV v . 

 

Solution : 

Suppose A has measure zero.  

For 0,  countable collection of closed rectangle 1 2, ,....V V  such that 
1

i
i

A V

and 
1 2i

i
V V . 

For each i , choose a rectangle iu such that i iu v  and 2i iV u V v . 
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Then 
1 1

i i
i i

A v u  and 
1 1 1

2i i i
i i i

V u V u V v  

1
2 2

2i
i

v u  

Note that  : iu  are open rectangles in n  conversely,  

Suppose for 0,  countable collection of open rectangles 1 2, ,....u u  such that 

1
i

i

A u  and 
1

i
i

V u .  

For each ,i  consider i iV u  then iV  is a closed rectangle and i iV v V u . 

Then 
1 1

i i
i i

A u v  and 
1 1

i i
i i

V v V u . 

A has measure zero.  

Note : Therefore we can replace closed rectangle with open rectangles in definition 
of measure zero sets.  

Example 3: 

Show that a set with finitely many points has measure zero.  

Solution : 

Let 1,...., mA a a  be finite subset of n .  

Let 1 20, , ,.....,i i i ina a a a  and  

1 1

1 11 1

1 1, ...
2 2 2 2

n n

i ii iVi a a  
1 1

1 1

1 1... ,
2 2 2 2

n n

in ini ia a  

Then 
1

1 1
1 2 2

n n

i i
i

V Vi  

Clearly ia Vi  for 1 i m  

1

m

i

A Vi  and 1 1
1 1 1

1 1
2 2 2

m m

i i
i i i

V Vi  

By definition of measure of zero 

 A has measure of zero.  



93

Chapter 7: Measure Zero Set

Example 4: 

If 1 2 3 ....A A A A  and each Ai  has measure zero, then show that A has 
measure zero. 

Solution : 

Let 0 and 1 2 ....A A A  with each Ai  has measure zero.  

 Each Ai  has measure zero for 1,2,....i   a cover 1 2, ,....,i i inu U U  of Ai  

By closed rectangle such that 
1

, 1,2,....
2ii i

i
V u i  

Then the collection of iiU  is cover A 

1 1 2i i
i i

V V  

Thus 1 2 ....nA A A A  has measure zero.  

Example 5: 

Let nA  be a Rectangle show that A does not have measure zero. But A  has 
measure zero.  

Proof : 

Suppose A has measure zero. 

 A is a rectangle in n  

0V A  

Choose 0  such that V A  …………………….. (I) 

A has measure zero 

 countable collection of open rectangle iu  such that 
1

i
i

A u  and iV u  

 A is compact  

This open cover has a finite subcover after renaming. We may assume that 

1 2, ,.... ku u u  is subcover of the cover iu . 
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1
i

i

A u . 

Let P be partition of A that contains all the vertices all ' 1iu s i  to k. Let 

1 2, ,...., nS S S  denote the subrectangle of partitions.  

1 1 1

n k

j i i
j i i

V A V S V u V u   

which is a contradiction to (I) 

 A does not have measure zero.  

 Note that A  is a finite union of set of the form 

1 1, , ..... , ,i i n nB a b a b a b . B can be covered by are closed rectangle. 

1 1, ..... , ..... ,i i n nB a b a a a b . 

Then V B  depend on  and 0V B as 0 . 

B  has measure zero 

Boundary of A A  is finite union of measure zero.  

A  has measur5e zero. 

Example 6: 

Let nA  with A . Show that A does not measure zero.  

Solution : 

Let nA , with A  

Let x A  

 0r , such that , ,B x r A  But 

1

, ;

;
n

i i
i

B x r y A y x r

y A y x r
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A does not have measure zero.  

Example 7: 

Show that the closed interval ,a b  does not have measure zero.  

Solution : 

Suppose 
1i i

u  be a cover of ,a b  by open intervals.  

,a b  is compact this open cover has a finite subcover.  

After renaming, we may assume 1 2, ,...., nu u u is the subcover of iu  of ,a b  

We may assume each iu intersect ,a b  (otherwise replace iu with ,iu a b ) 

Let 
1

n

i
i

u u  

If u is not connected then ,a b  is contained in one of connected component of u.  

, ia b u  for some i  

, ja b u  for i j  

Which is not possible  

u  is connected 

u  is an open interval say ,u c d  Then as , ,a b u c d  

iV u d c b a  

In particular we cannot find an open cover of ,a b with total length of the cover 

2
b a . 

,a b  does not have measure zero.  
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Example 8: 

If 0,1A  is the union of all open intervals ,i ia b  such that each rational number 

in (0,1) is contained in some ,i ia b . If 
1

1
i

T bi ai  then show that the 

boundary of A does not have measure zero.  

Solution : 

We first show that 0,1 \A A  

Note that \A A A  

A  is open A A  

Also 0,1Q A 

0,1Q A  

0,1 A  

But 0,1 0,1A A  

0,1

0,1 \

A

A A
 

Let 1 0T  

If A  has measure zero then since 0,  a cover of A  with open intervals such 
that sum of length of intervals 1 T  

A  is closed and bounded  

A  is compact 

 finite subcover 1

n
i i

u  for A  

1iu T  

Note that 1
;1 ; ,i i i i

u i n a b  cover 0,1  and sum of lengths of these open 

intervals is less than 1 1T T  which is not possible as 

1
0,1 ; 1 ; ,i i i i

u i n a b A  does not have measure zero. 
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7.3 Definition  

A subset ‘A’ of n  has content ‘O’ if for every 0 , there is a finite cover 

1 2, ,....., nu u u  of A by closed rectangles such that 
1

n

i
i

V u  

Remark : 

1) If A has content O, then A clearly has measure O.  

2) Open rectangles can be used instead of closed rectangles in the definition.  

Example 9: 

If A is compact and has measure zero then show that A has content zero.  

Solution : 

Let A be a compact set in n  

Suppose that A has measure zero 

 a cover 1 2, ,....u u of A such that 
1

i
i

V u  for every 0 . 

A  is compact, a finite number 1 2, ,....., nu u u  of iu  also covers A and 

1 1

n

i i
i i

V u V u  

A has content zero.  

Example 10 : 

Give one example that a set A has measure zero but A does not have content zero.  

Solution : 

Let 0,1A Q  

Then A is countable 

A  has measure zero 

Now to show that A does not have content zero.  

Let , ;1i ia b i n  be cover of A  

, .... ,i i n nA a b a b  
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1 1, .... ,n nA a b a b  

But 0,1A  

1
, 1

n

i i
i

a b  

In particular, we cannot find a finite cover for A such that 
1

1, 2
n

i i
i

a b  

A does not have content zero.  

Example 11: 

Show that an unbounded set cannot have content zero. 

Solution : 

Let nA  be an unbounded set.  

To show that A does not have content zero 

Suppose A has content zero for 0,  finite cover of closed rectangles 1

k
i i

u  of 

A such that 
1

k

i
i

A u  and 
1

k

i
i

V u . 

Let 1 1, .... ,i i i in inu a b a b  

Let 1 2min , ,.....i i i kia a a a  

      1 2max , ,.....i i i kib b b b  

then 1 1, .... ,i n nu a b a b  

1 1, .... ,n nA a b a b  

A is bounded  

Which is contradiction  

A does not have content zero.  
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Example 12: 

:f A  is non-negative and 0
A

f  where A is rectangle, then show that 

; 0x A f x  has measure zero.  

Solution : 

For 1, ;nn A x A f x n  

Note that , 0 ; 0x A f x x A F x  

f  is non-negative} 

1 1

1; n
n n

x A f x An  

We have to show that nA  has measure zero 

0
A

f  and inf , 0
P

A

f U f P for 0,  a partition P such that 

,U f P n  

Let S be a subrectangle in P 

if 1
n sS A M f n  

clearly ; nS P S A covers nA  and 

1 1

,

s s
S P S P

n

V S M f V S M f
n n

f P n

V S
S A
s p

 

By definition nA has content zero 

nA  has measure zero  

, 0x A f x is countable union of measure zero set.  

; 0x A f x  has measure zero.  
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* Oscillation ,o f a  of ‘f’ at a 

 for 0 , Let , , sup ; &M a f f x x A x a  

, , inf ; &m a f f x x A x a  

The oscillation ,o f a  of f at a defined by 

, lim , , , ,
o

o f a M a f m a f  

This limit always exist since , , , ,M a f m a f  decreases as  decreases.  

Theorem : 

Let A be a closed rectangle and let :f A  be a bounded function such that 

,O f x  for all x A  show that there is a partition P of A with 

, ,U f P L f P V A . 

Proof : 

 Let , lim , , , ,
O

x A U f x M x f m x f  

 a closed rectangle xu  containing x  in its interior such that u ux xM M  by 

definition of oscillation.  

;xu x A  is a cover of A 

A is compact 

This cover has a finite subcover say 1 2, ,....,x x xku u u  

1

k

i
xi

A u . 

Let P be a partition for A such that there each subrectangle ‘S’ of P is contained in 
some xi

u  then s sM f m f  for each subrectangle ‘S’ in f  

, , s s
S P

S P

U f P L f P M f m f V S

V S

V A
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7.4 Lebesgue Theorem (Only Statement) 

Let A be a closed rectangle and :f A  is bounded function. Let B x ; f is 

not continuous at x}. Then f is integrable iff B is a set of measure zero  

7.5 Characteristic Function  

Let nC . The characteristics function c of C is defined by 1c x if x C  

          0 if x C  

If C Awhere A is a closed rectangle and :f A  is bounded then 
C

f  is 

defined as c
C

f  provided cf is integrable [i.e. if f and c  are integrable] 

Theorem : 

Let A be a closed rectangle and C A . Show that the function :c A is 
integrable if and only if C  has measure zero.  

Proof : 

To show that :C A  is integrable iff C  has measure zero.  

By Lebesgue theorem, it is enough to show that : cC x A is discontinuous} 

Let a C  an open rectangle ‘u’ containing a such that u C  

1c n n U  

c  is continuous at a.  

Let a Ext c  Exterior of C 

[By definition union of all open sets disjoints from C] 

Ext (C) is an open set  

 an open rectangle u containing such that U Ext c  

0c n n u  
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c  is continuous at a 

If a c  then c  is continous at a ……………………. (I) 

Let a c  for any open rectangle U with a in its interior contains a point y C  
& a point nz c  

1& 0c cy z  

c  is not continuous at a 

: cc x A is discontinuous at x } 

By Lebesgue Theorem.  

c  is interrable if and only if c  has measure zero.  

Theorem : 

Let A be a closed rectangle and C A  

If C is bounded set of measure zero and c
A

exist then show that 0c
A

.  

Proof : 

C Abe a bounded set with measure zero.  

Suppose c
A

exist c is integral 

To show that 0c
A

 

Let P be a partition of A and S be a subrectangle in P.  

S does not have measure zero  

S C  

x S but x C  

0

0
c

s c

x

m
 

This is true for any subrectangle S in P 
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, 0c s cL P m V C  

This is true for any partition P 

sup , ;c c
A

L P P  is partition of} 

c
A

O  

7.6 Fubini’s Theorem 

Fubini’s Theorem reduces the computation of integrals over closed rectangles in 
, 1n n to the computation of integrals over closed intervals in . Fubini’s 

Theorem is critically important as it gives us a method to evaluate double integrals 
over rectangles without having to use the definition of a double integral directly.  

If :f A R  is a bounded function on a closed rectangle then the least upper bound 
of all lower sum and the greatest lower bound of all upper sums exist. They are 
called the lower integral and upper integral of f and is denoted by 

A

L F  and 
A

U F  

respectively.  

Fubini’s Theorem 

Statement : Let nA  and nB  be closed rectangles and let :f A B  

be integrable for x A , Let :xg B be defined by ,xg y F x y  and let  

,

,

x
B B

x
B B

x L g L f x y dy

u x U g U f x y dy
 

Then  and  are integable on A and 
A B A A B

f L L f x dy dx  

       ,
A B A A B

f u x dx U f x y dy dx  

Proof : 

Let AP  be a partition of A and BP  be a partition of B. Then ,A BP P P is a partition 

of A B  

Let AS  be a subrectangle in AP  and BS  be a subrectangle in BP  
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Then by definition,  

A BS S S  is a subrectangle in P 

1

A B
B B

s
S P

s s A B
S P

L f P m f V S

m f V S S
 

            
A B

A A B B

s s B A
S P S P

m f V S V S …………………. (I) 

For ,
A B BA s s s xx S m f M g  

For ,Ax S  

A B B
B B

s s A B s x B
S P

m V S V S m g V S  

                            ,x B x
B

L g P L g L x  

This is true for any x A  

,
A B

A A B B

A
A A

s s B A
S P S P

s A
S P

L f P m f V S V S

m L x V S
 

             , AL x P  ……………………………………… (II) 

From (I) & (II) 

, , AL f P L x P  ………………………………………… (III) 

Now , S
S P

U f P M f V s  

               
A B

A A
B B

S S A B
S P
S P

M f V S S  

               
A B

A A B B

S S B A
S P S P

M f V S V S  …………….. (IV) 
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For ,
A B BA S S S xx S M f M g  

For Ax S , 

    
,

A B B

B B B B

S S B S x B
S P S P

x B x
B

M f V S M g V S

u g P u g x
 

This is true for any x A .  

A B

A A B B

S S B A
S P S P

M f V S V S  

          
A

A A

S A
S P

M u x V S  

          , Au x P  ……………………………………….. (V) 

from (IV) & (V) 

 , , AU f P U u x P ……………………………. (VI) 

 By (III) & (VI) 

, , ,A AL f P L x P u L x P  

             , ,Au x P U f P  ………………………… (VII) 

Also  

, , , ,A A AL f P L x P L x P u x P ………  (VIII) 

f  is integrable  

sup , inf ,

sup , inf ,
BA

PP A B

A APP A B

L f P U f P f

L x P u x P f
 

x  is integrable 

,
A B A A B

f x L f x y dx  ………………………. (IX) 
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Also by (VIII) & (IX) 

sup , inf ,
AA

A APP A B

L L x P U u x P f  

u x  is integrable.  

,
A B A A B

f u x dx U f x y dx  

Hence Proved 

Remark : 

The Fubini’s theorem is a result which gives conditions under which it is possible 
to compute a double integral using interated integrals, As a consequence if allows 
the under integration to be changed in iterated integrals.  

,

,

A B B B

B A

f L f x y dx dy

U f x y dx dy

 

These integrals are called iterated integrals.  

Example 13: 

Using Fubini’s theorem show that 12 21D f D f  if 12D f  and 21D f  are 

continuous.  

Solution : 

 Let A R  and :f A  continuous 

T.P.T 12 21D f D f  

Suppose 12 21D f D f  

0 0,x y  in domain of f such that  

12 21 0D f a D f a  

without loss of generality, 12 21 0D f a D f a  or 

12 21 0D f D f a  ………………………………….. (I) 
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12 21 , 0
A

D f D f x g  

Let , ,A a b c d  

 By Fubini’s Theorem 

21 21

2 2

, ,

, ,

, , , ,

d b

A c a
d

c

D f x y D f x y dx dy

D f b y D f g y dy

f b d f b c f a d f a c

 

Similarly,  

12

21 12

21 12

, , , , ,

, ,

, 0

A

A A

A

D f x y f b d f b c f a d f a c

D f x y D f x y

D f D f x y

 

Which is contradiction to (I) 

12 21D f D f  proved 

Example 14: 

Use Fubini’s Theorem to compute the following integrals.  

1) 
211

2 2
0 0

.
1

x dy dxI
x y

 

Solution : 

 

2

2

2

11

2 2
0 0

11

2 2
0 0

11
1

2 2
0 0

.
1

1

1 tan
1 1

x

x

x

dy dxI
x y

dydx
x y

ydx
x x
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1

2
0

1. .
41

dx
x

 

              

1

2
0

1
2

0

4 1

log 1
4

log 1
4

dx
x

x x

x

 

ii) 
1 1 2

0

sin
2y

xI dy dx  

Solution : 

 , ; 1,0 1C x y y x y  

By Fubini’s Theorem 

1 1 2

0

1 2

0 0
1 2

0
0
1 2

0

sin
2

sin
2

sin
2

sin
2

y

x

x

xI dxdy

x dxdy

x y dx

xx dx

             

Put 
2

,
2
x t  

x   1 

t  0 
2  
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2
2

x dx dt

dtxdx
 

2 2
2

0
0 0

1 1sin sin cos

1 10 1

dtI t t dt t
 

7.7 Reviews  

After reading this chapter you would be knowing.  

 Definition of Measure zero set and content zero set.  

 Oscillation ,O f a  

 Find set contain measure zero on content zero 

 Statement of Lebesgue Theorem 

 Definition of characteristic function & its properties.  

 Fubini’s Theorem & its examples.  

7.8 Unit End Exercises  

1. If B A  and A has measure zero then show that & has measure zero. 

2. Show that countable set has measure zero.  

3. If A is non-empty open set, then show that A is not of measure zero.  

4. Give an example of a bounded set C if measure zero but C  does not have 
measure zero.  

5. Show by an example that a set A has measure zero but A does not have 
content zero.  

6. Prove that 1 1, .... ,n na b a b  does not have content zero if i ia b  for each 

i . 

7. If C is a set of content zero show that the boundary of C has content zero.  
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8. Give an example of a set A and a bounded subset C of A measure zero such 
that c

A

does not exist.  

9. If f & g are integrable, then show that gf  is integrable.  

10. Let 0,1U be the union of all open intervals ,i ia b such that each rational 

number in 0,1  is contained in some ,i ia b . Show that if cf except on 

a set of measure zero, then f is not integrable on 0,1 . 

11. If : , ,f a b a b  is continuous; then show that 

, ,
b b b b

a x a x

f x y dx dy f x y dy dx  

12. Use Fubini’s theorem, to compute 
2 2

0 0

sin xdy dx
x y

 

13. Let 1,1 0, 2A  and :f A  defined by , sin xf x y x y ye  

compute 
A

f  

14. Let , , sinf x y z z x y  and 0, , 0,12 2A   

computer 
A

f .  
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