F.Y.B.SC (L.T)
SEMESTER - II (CBCS)

MICROPROCESSOR
ARCHITECTURE

SUBJECT CODE: USIT202

© UNIVERSITY OF MUMBAI

Dr. Suhas Pednekar
Vice Chancellor
University of Mumbai, Mumbai

Prof. Ravindra D. Kulkarni Dr. Prakash Mahanwar
Pro Vice-Chancellor, Director,
University of Mumbai IDOL, University of Mumbai
Programme Co-ordinator : Shri Mandar Bhanushe

Head, Faculty of Science and Technology IDOL,
Univeristy of Mumbai — 400098

Course Co-ordinator : Gouri S.Sawant
Assistant Professor B.Sc.I.T, IDOL,
University of Mumbai- 400098

Course Writers : Jyotika D Chheda
Assistant Professor,
Mulund College of Commerce, Mulund West.

: Ms. Pradnya Patil
Assistant Professor,
K J Somaiya Institute of Engineering and
Information Technology, Sion, Mumbai.

: Aarti Sahitya
Assistant Professor,
K J Somaiya Institute of Engineering and
Information Technology, Sion, Mumbai.

: Amit Tikamdas Kukreja
Assistant Professor,
K J Somaiya Institute of Engineering and
Information Technology, Sion, Mumbai.

June 2021, Print - 1

Published by : Director,
Institute of Distance and Open Learning,
University of Mumbai,
Vidyanagari,Mumbai - 400 098.

DTP Composed by : 7SKILLS
Dombivli West, Thane - 421202

Printed by

CONTENTS

Chapter No. Title Page No.

Unit 1

1. Microprocessor, Microcomputers, and Assembly Language...........cccccvevuvennenee. 01

2. Microprocessor Architecture and Microcomputer Systems.........ccccceeeevveerevennee. 19

3. 8085 Microprocessor Architecture and Memory Interfacing...........cccoeeeveveeennnnne 38
Unit 2

4, I/O INEEITACING ...ttt et e e tb et steesteestnesanees 60

5. Introduction to 8085 Assembly Language Programmingccccceevverieeneeenen. 87

6. Introduction to 8085 INSIUCHIONScccveiviriiriiiirieee e 111
Unit 3

7. Programming Techniques w-ith Additional Instructions...........c.cccecevieeneennnes 151

8. Counter & Time DEIayscccveeieriiiiiiie ettt eae e 167

9. Stacks and SUb-ROULINEScoouiriirieiee e 178
Unit 4

10. Code Conversion With Bedcocoiiiiiiiiiiiiiiiiieeeceeeeeen 191

11. BCD Arithmetic and 16-Bit Data Operation.............ecvevveevveesreecveecreenreesieeneens 207

12. Software Development System and Assemblers..........occvveecvieecieeeciieenieenieennee. 226

13. INECTTUPLS ettt et st et et bte e e 242
Unit 5

14. The Pentium and Pentium Pro MiCroproCesSOrsccvveeveeerveeerveeerieeeneveeneveennnes 260

15. Core 2 and Later MiCTOPIOCESSOTScevueeruieriieeieriierrtesieeseeseeseesnseseeseesneens 299

16. SUN SPArc MICTOPTOCESSOTvvverereiieriieriieniiesiteseiesteeseesstessressaesseesseesseesseesseenses 314

F.Y.B.SC (L.T)
SEMESTER - II (CBCS)

Microprocessor Architecture

SYLLABUS

Unit

Details

Lectures

Microprocessor, microcomputers, and Assembly Language:
Microprocessor, Microprocessor Instruction Set and Computer
Languages, From Large Computers to Single-Chip Microcontrollers,
Applications.

Microprocessor Architecture and Microcomputer System:
Microprocessor Architecture and its operation’s, Memory, I/O Devices,
Microcomputer System, Logic Devices and Interfacing,
Microprocessor-Based System Application.

8085 Microprocessor Architecture and Memory Interface:
Introduction, 8085 Microprocessor unit, 8085-Based Microcomputer,
Memory Interfacing, Interfacing the 8155 Memory Segment,
[llustrative Example: Designing Memory for the MCTS Project,
Testing and Troubleshooting Memory Interfacing Circuit, 8085-Based
Single-Board microcomputer.

12

I

Interfacing of 1/0 Devices

Basic Interfacing concepts, Interfacing Output Displays, Interfacing
Input Devices, Memory Mapped 1/0, Testing and Troubleshooting /O
Interfacing Circuits.

Introduction to 8085 Assembly Language Programming:

The 8085 Programming Model, Instruction Classification, Instruction,
Data and Storage, Writing assembling and Execution of a simple
program, Overview of 8085 Instruction Set, Writing and Assembling
Program.

Introduction to 8085 Instructions:

Data Transfer Operations, Arithmetic Operations, Logic Operation,
Branch Operation, Writing Assembly Languages Programs, Debugging
a Program.

12

I

Programming Techniques With Additional Instructions:
Programming Techniques: Looping, Counting and Indexing,
Additional Data Transfer and 16-Bit Arithmetic Instructions,
Arithmetic Instruction Related to Memory, Logic Operations: Rotate,
Logics Operations: Compare, Dynamic Debugging.

Counters and Time Delays:

Counters and Time Delays, Illustrative Program: Hexadecimal Counter,
[lustrative Program: zero-to-nine (Modulo Ten) Counter, Generating
Pulse Waveforms, Debugging Counter and Time-Delay Programs.
Stacks and Sub-Routines:

Stack, Subroutine, Restart, Conditional Call, Return Instructions,
Advanced Subroutine concepts.

12

v

Code Conversion, BCD Arithmetic, and 16-Bit Data Operations:
BCD-to-Binary Conversion, Binary-to-BCD Conversion, BCD-to-
Seven-Segment-LED Code Conversion, Binary-to-ASCII and ASCII-
to-Binary Code Conversion, BCD Addition, BCD Subtraction,
Introduction To Advanced Instructions and Applications,
Multiplication, Subtraction With Carry.

Software Development System and Assemblers:
Microprocessors-Based Software Development system, Operating
System and Programming Tools, Assemblers and Cross-Assemblers,
Writing Program Using Cross Assemblers.

Interrupts:

The 8085 Interrupt, 8085 Vectored Interrupts, Restart as S/W
Instructions, Additional I/O Concepts and processes.

12

The Pentium and Pentium Pro microprocessors: Introduction,
Special Pentium registers, Memory management, Pentium instructions,
Pentium Pro microprocessor, Special Pentium Pro features.

Core 2 and later Microprocessors: Introduction, Pentium II software
changes, Pentium IV and Core 2, 13, i5 and i7.

SUN SPARC Microprocessor: Architecture, Register file, data types
and instruction format

12

UNIT 1

1

MICROPROCESSOR, MICROCOMPUTERS,

AND ASSEMBLY LANGUAGE

Unit Structure

1.0
1.1
1.2

1.3

1.4

Objectives
Introduction
Microprocessor
1.2.1 A Programmable Machine
1.2.2 Advances in Semiconductor Technology
1.2.3 Organization of a Microprocessor-based system
1.2.4 How does the Microprocessor work?
Microprocessor Instruction Set and Computer Languages
1.3.1 Machine Language

1.3.1.1 8085 Machine language
1.3.2 Assembly language

1.3.2.1 8085 Assembly language

1.3.2.2 Writing and executing an assembly language program
1.3.3 High-level language
1.3.4 Operating systems
From Large Computers to Single-Chip Microcontrollers
1.4.1 Large computers
1.4.2 Medium-size computers

1.4.3 Microcomputers

1.5 Application:

1.5.1 System hardware

1.5.2 System software

MICROPROCESSOR ARCHITECTURE

1.6 Summary

1.7 List of references

1.8 Unit End Exercise

1.0 Objectives

After going through this chapter, you will be able to

Define microprocessor
Define microprocessor based system and functions of each component

Differentiate between machine language, assembly language and high-level
language

Classification of computers

Design of basic microprocessor controlled temperature system (MCTS)

application

1.1 Introduction

Today microprocessor systems are used in every sphere of life with day to
day demand increasing for faster and better systems.

Microprocessors are multipurpose versatile devices that are designed either
for generic or specific functionalities.

Microprocessor is the brain of computer which does all the work.

Before we start a detailed study about the microprocessors, we need to know
the differences between the following:

» Microcomputer — A computer with a microprocessor as its CPU and
includes memory, I/O

» Microprocessor —A silicon chip which includes ALU, register circuits
& control circuits

» Microcontroller —Also a silicon chip which includes microprocessor,
memory & /0 all in a single package.

Chapter 1: Microprocessor, Microcomputers, and Assembly Language

1.2 Microprocessor

The term microprocessor is an amalgamation of two words - micro and

Processor.

Processor means a device that processes data or information but in this
perspective it will process only binary data Os and 1s.

The word micro is the latest addition.

In early 1960s, the processor was built using separate elements and in the
1970s all of the components that make up the processor are fabricated on a

single chip i.e. silicon chip.
So this reduces the size of the processor and increases the computation speed.

So we can now say that Microprocessor is born.

Definition: Microprocessor is a multipurpose register-based clock-driven device

that takes binary data as input, processes it according to instructions stored in its

memory, and provides binary results as output.

A microprocessor is the central processing unit of a computer system and is
processes the distinctive set of instructions and programs

The microprocessor is made up of several tiny components namely diodes,

transistors and registers that work together.

The microprocessor is a programmable device that takes in data and performs

arithmetic or logical operations on them based on the instructions and
program stored in memory and then produces processed results.

We elaborate underlined words in depth.

As a programmable device, the microprocessor performs different
operations on the data based on the instruction given to carry out the task.
The microprocessor manipulates it by changing the operation carried out by
the instruction.

The data the microprocessor takes in for manipulation comes from the input
devices. These devices writes data from the outside world to the

Mmicroprocessor.

The microprocessor only understands binary data or numbers. A binary
number is called a bit. The microprocessor identifies and manipulates these
groups of bits together.

MICROPROCESSOR ARCHITECTURE

Every microprocessor has basic arithmetic operations such as addition,
subtraction, increment and decrement and logic operations such as NOT,
OR, AND, EXOR, shifting (left or right).

Memory is the location where instructions and programs are stored. Each
location is capable of storing only one bit. So several bit locations are
combined to create registers and several registers are combined to create a
memory. Each location in memory is identified by address and capable of

storing group of bits.

After manipulation the microprocessor produces results and sends it to the
output device. These devices display the results to the outside world reading

it from the microprocessor.

1.2.1 A Programmable Machine

A typical programmable machine has four parts that work collectively.
Hardware is the physical part of the system.

Set of instruction is the program that instructs the microprocessor to perform

the required operation and set of programs makes the software.

Microprocessor Output

v

Memaory

Figure 1.1 — A Programmable Machine

The microprocessor is the central unit of a computer system that performs
basic arithmetic and logic operation.

A microprocessor works on the instructions stored in memory by accepting
binary data as input followed by processing the data and then produces

output.

Chapter 1: Microprocessor, Microcomputers, and Assembly Language

The microprocessor applications are classified into two categories

» Reprogrammable system —The microprocessor computes and processes
instructions given by the user or programmer.

» Embedded system — The programming is already done and
microprocessor is part of the specific system such as washing machine,

fridge and air conditioner.

The microprocessor processes on binary digits (called bits) i.e. 0 and 1 only.

Several digits i.e. bits are combined to create words and this forms the basis

of microprocessor classification based on word length.
The memory stores instructions and data in group of bits.
This information is given to the microprocessor whenever it is required..

Memory is viewed as pages in notebook where each line represents register

and is capable of storing a binary word.

So for example each line is an 8 bit register that stores a 8 bit word and several
registers are combined one below the another to create a memory cell.

The combination of registers to create a memory cell is always in power of

two.

The user enters data into memory through input devices like keyboard and
simple switch.

The microprocessor reads the instruction from the memory and processes the
data according to those instructions.

The results are viewed on output device like seven segment LEDs and printer.

N/

Hexadecimal Switches Seven segment Printer
keyboard LED

Figure 1.2 — Input and Output Devices

MICROPROCESSOR ARCHITECTURE

1.2.2 Advances in Semiconductor Technology

Semiconductor technology has undergone unprecedented changes from its
inception in 1950s

In early systems the semiconductor devices have replaced vacuum tubes

which drastically reduced the size of the system.
The invention of transistors further brought down the size of the system

SSI (Small Scale Integration) containing upto 10 transistors were used in

development of early systems.

The number of transistors slowly increased to about 100 calling it MSI
(Medium-Scale Integration).

By 1970s tens of thousands of transistors were used calling it LSI (Large
Scale Integration) system.

Later on hundreds of thousands of transistors on a single chip brought in the

VLSI (Very Large Scale Integration) era.

Today we are in the era of SLSI (Super Large Scale Integration).

Historical Perspective:

The world’s first recognized microprocessor 1s Intel4004 a 4-bit

microprocessor—programmable controller on a chip.

There were just 45 instructions for 4004 and widely used in video games and

small-scale microprocessor control system.

The instructions executed at 50KIPs (kilo-instructions per second) and
fabricated with P-Channel MOSFET (Metal Oxide Semiconductor Field
Effect Transistor).

In 1970 due to the increase in computational demand, Intel built the 8008
which is extended 8-bit version of the 4004 microprocessor.

As people begin to use, Intel recognized the limitations and came up with the
powerful 8 bit microprocessor 8080 in 1973.

Several other manufacturers too entered the microprocessor market.

Table 1.1 lists several of these early microprocessors and their manufacturers.

Chapter 1: Microprocessor, Microcomputers, and Assembly Language

Table 1.1 — Early Microprocessor

Manufacturer Part Number
Fairchild F-8
Intel 8080
MOS Technology 6502
Motorola MC6800
National Semiconductor IMP-8
Rockwell International PPS-8
Zilog 7Z-8

With fifty years since the invention of the 4004, Intel has made the processors
that are designed with 15 million transistors that can address 1TB of memory
and can operate at 400 Mhz to 1.5 GHz frequency.

The following table summarizes the historical perspective of Intel

microprocessors.

Table 2 — Intel Microprocessor Historical Perspective

Microprocessor Year of Introduction Data Bus | Address Bus
4004 1971 4 8
8008 1972 8 8
8080 1974 8 16
8085 1977 8 16
8086 1978 16 20
80186 1982 16 20
80286 1983 16 24
80386 1986 32 32
80486 1989 32 32

Pentium 1993 onwards 32
Core Solo 2006 32
Dual Core 2006 32
Core 2 Duo 2006 32
Quad Core 2008 32

13, 15,17 2010 64

MICROPROCESSOR ARCHITECTURE

1.2.3 Organization of A Microprocessor-Based System

The organization of a microprocessor based system consist of three basic

components: microprocessor, /O and memory.

These components are organized around a common communication path

called a bus.

CONTROL UNIT

1/0 DEVICES

——

OUTPUT INPUT
DEVICES DEVICES

1 !

SYSTEM BUS

RAM ROM

MICROPROCESSOR i

MEMORY

Figure 1.3 — Microprocessor-Based System with Bus Architecture

Microprocessor: A typical microprocessor consists of three sub components

namely arithmetic and logic unit (ALU), control unit and register array to

process the instructions.

>

Arithmetic and Logic Unit: The ALU performs the arithmetic and
logical operations such as Addition, Subtraction, AND, OR, XOR etc.
The data is taken from memory, accumulator and registers to perform
operation. The results of the operations in the microprocessor are
usually stored in the accumulator or memory.

Register Array: The 8085 microprocessor includes six general-
purpose registers, one accumulator and one flag register. It also has two
16-bit registers namely stack pointer and program counter.

Control unit: It provides timing and control signal to the
microprocessor to perform operations such as read and write from

memory and peripherals.

Memory: It stores information in binary format. The user enters its

instructions into the memory. The microprocessor reads these instructions

stored in the memory in sequence, interprets and executes one by one and

stores the final results in memory or sends it to output device. The

microprocessor contains basically two types of memory.

Chapter 1: Microprocessor, Microcomputers, and Assembly Language

> Read Only Memory (ROM) — A nonvolatile memory that stores
information that does not change.

> Random Access Memory (RAM) or Read/Write Memory — A
volatile memory that stores information supplied by the user such as

programs and data.

o I/O Devices: 1/O (Input/output) devices also referred as peripherals. The
input device is a hexadecimal keyboard with some additional functional keys
to perform. The output device is a 7 segment LED display which displays the
processed results.

o System bus: It is a set of wires that establishes communication or connection
between the microprocessor and peripherals to exchange data. There are three
types of system bus
» Address bus
» Databus
» Control bus

1.2.4 How Does The Microprocessor Work?

. To execute a program, the microprocessor reads the instruction from the

memory, interprets and decodes it, then executes it.
o The instructions are sequentially stored in the memory one after another.

o So the microprocessor fetches the first instruction from the memory,
interprets and executes that instruction.

o The series is continued until each and every instructions are done.

. The microprocessor uses system bus to fetch the address, data and binary
instructions to and from the memory.

. It uses registers to store data temporarily, performs the operations in ALU
and sends the binary result to seven segment LEDs.

1.3 Microprocessor Instruction Set and Computer Languages

. Microprocessor processes binary words.

o However each microprocessor has its own binary words creating the
instruction set and the interpretation of the words which is designed based on
the microprocessor.

MICROPROCESSOR ARCHITECTURE

The word length (expressed in bytes — 8 bits) is defined as the number of bits
the microprocessor recognizes and processes in a given time

To communicate with the computer one must give instruction in binary

language or machine language.
It is difficult for most people to write programs in binary format.

So programmers write program in assembly language which contain English

like word to represent the binary instruction of a machine.

But assembly programs are specific to given machine and cannot be

transferred from one machine to another.

So high level languages are used which contains English like statements and

are machine independent.

1.3.1 Machine Language

The number of bits in a word for a given language is fixed and the words are
formed through various combinations of these bits.

If a machine language has ‘n’ bits then the language has 2" words.

For example a machine with a word length of eight bits can have 256 (2%)
combinations of eight bits — thus a language have 256 words.

The design engineer selects only certain combination of bit pattern and not
all and then gives a specific interpretation to each combination known as

instruction.

1.3.1.1 8085 MACHINE LANGUAGE

The Intel 8085 is an 8-bit microprocessor with 246 identifiable patterns

forming 74 instructions.

It is difficult to enter the instructions in binary and hence entered in
hexadecimal code format.

For example, the combination 0000 1100 (Hex Code — 0C) is interpreted as
Increment the value of Register C by 1.

It is tedious and error-inducive for people to write instructions in binary

language so writing in hexadecimal makes it less error-prone.

10

Chapter 1: Microprocessor, Microcomputers, and Assembly Language

1.3.2 Assembly Language

Entering the instructions using hexadecimal is quite easier than entering the
binary combinations.

But just reading a set of hexadecimal code makes it difficult for the user to

interpret the meaning of the program.

So the designers of the microprocessor give symbolic name for each
hexadecimal code.

This code known as mnemonics are short English words which are machine

dependent.

The assembly language program written for one type of microprocessor is
not transferable to a computer with another microprocessor unless the

machine codes are compatible with each other.

1.3.2.1 8085 ASSEMBLY LANGUAGE

The complete set of 8085 mnemonics is called the 8085 assembly language

program.

Using the same example from before, 0000 1100 is 0C in hex and the
mnemonic is INR C.

It 1s important to remember that a machine language and its associated
assembly language are completely machine dependent.

For example, an 8-bit microprocessor for Motorola i.e. 6800 and Intel i.e.
8085s instruction sets are different from each other.

So a program written for the 6800 microprocessor cannot be executed on

8085 microprocessor and vice versa.

1.3.2.2 Writing and Executing an Assembly Language Program

There are two ways to accomplish this task.
The first procedure is called either manual or hand assembly. The steps are

» From the instruction set given by the manufacturer, write the
instructions in assembly language.

Find the corresponding hexadecimal code for each instruction.

Enter the hex code in the memory step by step in the kit using the
hexadecimal keyboard.

» Press the Exec key to execute the code and check for presence of errors.

11

MICROPROCESSOR ARCHITECTURE

» Correct errors if any and view the result in seven segment LED Display.

o Another technique is the use of assembler tool.

» The assembler is a tool that translates the mnemonics or hex code into
the corresponding binary machine codes of the microprocessor.

» Each microprocessor uses its own assembler because the mnemonics
and machine codes are specific to the microprocessor, and each
assembler has its own set of conversion rules that must be followed by

the user.

1.3.3 High-Level Language
o They are programming language which are machine-independent
o They have English like statements with proper syntax and semantic.

o The machine does not understand high level language and so tools like
compiler and interpreter convert them into machine language for processing.

° Example BASIC, C, C++ and Java

Compiler .
a P Object
Source Code f———» ol -
Code
[nterpreter

Figure 1.4 — Translation of High-level Language
Program into Machine Code

1.3.4 Operating Systems

o The operating system controls the overall operation and manages the
interaction between the computer hardware and software.

. It is basically a collection of programs.

12

Chapter 1: Microprocessor, Microcomputers, and Assembly Language

Microprocessor

Primary
Memory

Operating
system

Storage
Memory

Input / Output
Devices

Figure 1.5 — Functional Relationship of Operating System

with System Hardware

The operating system helps in communication between the memory and

peripherals and stores the information on the disk.

The operating system boots when the system is switched on identifying the

hardware and handles the application programs running in the background.

Computer Hardware

Assembly and High Level language

Application Program

Figure 1.6 — Hierarchical relationship of operating system

with hardware & software

. Several operating systems have evolved over the years from control monitor

program to graphical user interface operating system.

° Example MS-DOS, Unix, Linux, Os/2, Windows 95/98/2000/ME/7/7/1/10

13

MICROPROCESSOR ARCHITECTURE

1.4 From Large Computers to Single-Chip Microcontrollers

Depending on the needs of the user, computers are classified and designed
for different purpose.

Initial classification of computers was mainframe, mini computers and
microcomputers.

With changes in technology and microprocessor being part of every computer
the new classification includes large computer, medium size computer and

microcomputers.

1.4.1 Large Computers

General purpose multitasking multi user computers are called large
computers.

They are capable of solving complex and scientific calculations and handles

huge volumes of data and handles hundreds of user.
Based on size they are classified into

» Mainframe — High speed computers to handle large count of users.
Example IBM System/390 series.

» Supercomputer — High speed and high performance computer used in

research. Example Cray-2 and Y-MP.

Mainframe Supercomputer

Figure 1.7 - Large Computers

1.4.2 Medium-Size Computers

To meet the needs of small factories and data processing tasks the medium-

size or mini computers are introduced.

14

Chapter 1: Microprocessor, Microcomputers, and Assembly Language

Multi processing system capable of supporting hundreds of users but

technology is different as these machines are slow and memory size is less

than mainframe.

Figure 1.8 - Mini Computer

1.4.3 Microcomputers

It contains microprocessor as its central processor along with memory and

minimal input/output devices

Most powerful in 1970s and in 1980s with advent of increasingly powerful

microprocessors more widely used.

They are classified into four categories —

>

Personal computer (PC) — A small computer designed for single
user and is relatively inexpensive. The entire processor is on single
chip and used in word processing, accounting, personal finance,
desktop publishing, accessing resources on the Internet.

Workstations - It is similar to PC but a powerful processor that suites
for engineering and scientific applications, software development and
specific applications seeking average computing power and high-end
graphics.

Single-board microcomputer — It is used in small industries and
college labs to understand, evaluate and test the performance of specific
microprocessor. All basic components such as memory, keyboard,
LED are there with the 8 or 16 bit microprocessor.

Single-chip microcomputers — Includes a microprocessor, R/W
Memory, Read Only Memory and I/O Devices on single chip and
hence commonly referred as microcontrollers.

15

MICROPROCESSOR ARCHITECTURE

Personal Computer Workstation Single-board Single-chip
microcomputer microcomputer

Figure 1.9 — Types of micro computers

1.5 Application — Microprocessor Controlled Temperature
System (MCTYS)

o We are building a microprocessor controlled temperature system that is
capable of reading the temperature in a room and display the recorded
temperature in LCD (Liquid Crystal Display) and based on the value turn on
the fan if the temperature is high or turn on the heater if temperature is low
based on the set point value

i
|
: ! t
Input Port 1 Output Port L Output Port 2
i i L,
soss [1 i !
Microprocessor Beaa Oaly F—
Mamory Memary Output Port 3

Figure 1.10 - MCTS

1.5.1 System Hardware

. The hardware part of the application comprises of the following
components

» Microprocessor — The job of the processor is control the overall
communication. It reads instructions from memory, interprets and

16

Chapter 1: Microprocessor, Microcomputers, and Assembly Language

executes them. It reads temperature from LCD and turn on/off fan or
heater depending on the set point value

» Memory — The ROM provides instructions to monitor the system and

R/W memory temporary stores the temperature value.

» Input Device — The temperature sensor is the main input device which
measures the temperature in signals and for the microprocessor to
process the signal A/D (Analog to Digital) Convertor is used. Devices
cannot be directly connected to processor and therefore connected via
input ports.

» Output Device — LCD panel, fan and heater forms the output device of
this application. Just as input device cannot be directly connected, the
output devices are also connected via ports.

1.5.2 System Software

o The system is initially reset and microprocessor reads instructions from the

memory one by one, decodes it and then executes it.

1.5 Summary

. The microprocessor is an important component of a digital computer.

o The microprocessor along with memory and I/O devices carry out various
functionalities.

o The 8085 is a powerful microprocessor.

o Different computer languages are available but the processor understands the
machine language and users program in assembly or high level language

. Various classification of systems are available today but microprocessor is
an integral part of these systems

. In designing a microprocessor based system, the hardware and software part
have to be designed concurrently because of the interdependency.

List of References

. Ramesh Gaonkar “Microprocessor Architecture, Programming and
Applications with the 80857, Fifth Edition, Penram International Publishing
(I) Private Limited

17

MICROPROCESSOR ARCHITECTURE

. B. Ram, “Fundamentals of Microprocessor and Microcomputers”,. Sixth
Revised and Enlarged Edition, Dhanpat Rai Publications (P) Limited

. Barry B. Brey, “The Intel Microprocessors - Architecture, Programming, and
Interfacing”, Eight Edition, Pearson Prentice Hall

° https://www.tutorialspoint.com/microprocessor/microprocessor overview.h

tm

Unit End Exercise

1. What are the essential components of a microprocessor based system? Draw

the block diagram and explain the function of each component.

2. What is a microprocessor? What is the difference between a microprocessor
and CPU?

3. Explain the various I/O devices used along with a microprocessor.

4. Explain the types of computer languages. What are the advantages of an
assembly language over the high level language?

5. What i1s an operating system? Explain its functional and hierarchical

relationship with various hardware components.

6. Differentiate between personal computer, workstation, single-board and

single-chip microcomputers.

O o% o°
0.0 0’0 0‘0

18

UNIT 1

2

MICROPROCESSOR ARCHITECTURE AND

MICROCOMPUTER SYSTEMS

Unit Structure

2.0
2.1
2.2

23

24

2.5
2.6

2.7
2.8
2.9

Objectives

Introduction

Microprocessor Architecture and its Operation
2.2.1 Microprocessor-Initiated Operations

2.2.2 Internal Operations
2.2.3 Peripheral Operations
Memory

2.3.1 Flip-flop or Latch as Storage Element

2.3.2 Memory Map and Address
2.3.3 Word Size of Memory

2.3.4 Instruction Fetch from Memory
2.3.5 Classification of Memory

I/O Devices

2.4.1 Peripheral-mapped 1/O

2.4.2 Memory-mapped /O
Microcomputer System Illustration

Logic Devices

2.6.1 Tri-state Device
2.6.2 Decoder

2.6.3 Encoder

2.6.4 D Flip-flop

Application: MCTS
Summary

List of references

2.10 Unit End Exercise

19

MICROPROCESSOR ARCHITECTURE

2.0 Objectives

After going through this chapter, you will be able to

Understand and identify the operations performed by the microprocessor
Recognize the memory organization

Learn to create the memory map and address range

Understand the types of memory available

Identify the ways to communicate with I/O Devices

Know the need of logic devices for interfacing

2.1 Introduction

The microprocessor is a programmable digital device designed with flip-flop,
registers, buffers and several other tiny element all which is integrated on a

single chip.

To establish communication between these elements, each microprocessor

has its own instruction set.

The instruction set of the microprocessor is designed to help perform data

manipulation and communication.

The architectural and logic design of the microprocessor helps in executing
these instructions to obtain the desired result.

2.2 Microprocessor Architecture and its Operation

User can write programs using the instruction set of the microprocessor.
We can program the microprocessor to do variety of functions.

So the above functions are categorized into three categories namely
Microprocessor initiated operations, Internal operations, Peripheral
operations

2.2.1 Microprocessor-Initiated Operations

They represent the basic communication between the microprocessor with
memory and I/O devices and they make up four such operations namely

20

Chapter 2: Microprocessor Architecture and Microcomputer Systems

Memory Read ~ It indicates reading data or instruction from the
memory

Memory Write ~ It indicates writing data or instruction to the memory
I/O Read ~ It indicates reading data from the input device

I/O Write ~ It indicates writing result to the output device

To perform any of these operation the microprocessor executes the following

step
>

Step 1: Identify location of memory register or I/O device — This is
achieved with the help of the address bus which identifies the location.
The 8085 microprocessor has 16 bit unidirectional address bus to
perform this step.

Step 2: Transfer data or instruction — This can be achieved with the
help of the data bus. The 8085 microprocessor has 8 bit data bus to
carry information from/to memory or I/O device.

Step 3: Provide timing and control signal — This can be achieved
with the help of the control bus. The 8085 microprocessor provides four

control signals depending on the nature of operation to be performed.

1/P from
Real World

Real
World

Figure 2.1 — Microprocessor and bus structure

21

MICROPROCESSOR ARCHITECTURE

2.2.2 Internal Operations

The internal architecture of the microprocessor unit (MPU) is solely
responsible for the various internal operations.

The 8085 MPU has ALU, internal bus, general-registers, accumulators,

program counter and stack pointer to serve the purpose.

The operation include storing data in registers, performing arithmetic and
logical calculations, checking conditions, executing the instructions in

sequence and using stack for temporarily processing the data.

FLAG REGISTER

ACCUMULATOR (A REGISTER) D7 | D6 | DS | D4 | D3 | D2 | DI | DO
S zZ AC P CY

B C

D E

H L

STACK POINTER (SP)
PROGRAM COUNTER (PC)
ADDRESS BUS | DATA BUS

Figure 2.2 — Microprocessor internal structure

For example, consider the following assembly program

2000 OE MVIC, 65H
2001 65

2002 0C INRC

2003 79 MOV A, C
2004 76 HLT

The first instruction is written at address 2000H and this value is loaded in

program counter and execution begins.

The processor decodes and executes the instruction at 2000H, it increments
the value in program counter 2001 H and fetches the next code and concludes
by interpreting that value 65H be written in C register.

Then program counter is incremented to next address which is 2002H and the
instructions increments the value in C register.

The next address in program counter will be 2003H which is decoded as
content of C register is copied to accumulator

22

Chapter 2: Microprocessor Architecture and Microcomputer Systems

The last address in program counter is 2004H which indicates end od
execution

So for basic internal operations the various registers of the microprocessor

are used.

2.2.3 Peripheral Operations

The peripherals or I/O devices are the external devices that carry out this
operation and hence this category is commonly called as externally-initiated

operation.
Certain individual pins of the microprocessor perform this type of operation

They include reset, interrupt, ready and hold pin.

2.3 Memory

The integral and important component of the microcomputer is the storage

device i.e. the memory.

The microprocessor reads data and programs (here instructions) from the

memory and stores results to the memory.

The microcomputer system has two types of memory — Read Only Memory
and Read/Write Memory

The Read Only Memory is non-volatile that stores system level programs
available to system all time.

The Read/Write memory holds program and data which can be read and

written by the programmer and are volatile in nature.

To read/write information from any kind of memory the microprocessor
performs the following steps

» Select the right memory chip
» ldentify the exact memory location in the selected chip

> Access the data available at the identified location

2.3.1 Flip-Flop or Latch as Storage Element

Memory is defined as a circuit that stores voltage level or electric charge
recorded in terms on binary digits 0 and 1.

23

MICROPROCESSOR ARCHITECTURE

. So a basic feature of memory that stores the binary bits is the flip-flop or
latch.

o D latch or flip-flop is the ideal choice for a memory element.

. The latch includes one input line, one output line, and an enable input that

allows the latch to be triggered.

. For securing and controlling the data in and out of latch, we use tristate

buffers at input and output line.

iNPUT ™ » Q) ? QUTPUT
WRITE {W}J

READ (RD
ENABLE Eny)

Figure 2.3 — Basic D Latch with Tristate Buffers

o The input buffer in controlled by the active low control signal write (WR)
and the output buffer is controlled by the active low control signal read (RD)

. This latch is called as a memory cell capable of storing a binary bit or digit.

. In order to create a memory register, several such latches needs to be
combined together.

. For example four latches have been connected to create a memory register
identified as 1 x 4 where 1 represents count of memory register and 4
represents the number of bits the individual register can hold.

a R o
o> Ho>— J o>

Figure 2.4 — 1 x 4 memory organization

. So a simplified block diagram to represent the above construction.

24

Chapter 2: Microprocessor Architecture and Microcomputer Systems

The Enable signal (EN) enables the register and the write or read operation
can be performed in the register by enabling the input or output buffer
respectively with the control signal.

4 BIT INPUT

WRITE (WR) —ch: INPUT BUFFER |

bl

ENOBLE (EN) —{ REGISTER

L1

REOD (RD) —d; OUTPUT BUFFER |

by

4 BIT OUTPUT

Figure 2.5 — 1 x 4 memory register block diagram
We can now expand the diagram by adding several memory registers to create
a memory chip.

Using interfacing logic with help of decoder, we can select individual
registers and perform write or read operation by enabling the input or output

buffer respectively.

Let’s construct as 4 x 4 memory i.e. 4 registers each capable of storing a 4 bit

word.

When count of registers increases then the enable signal is replaced by
address lines for register selection.

Two address line A1-Ao are connected to decoder for selecting the register.

Four combinations (00, 01, 10 and 11) will select the register (0, 1, 2 and 3).

4 BIT INPUT

WRITE (WR) —c'|> INPUT BUFFER |

bl

e REGISTER 3
(21 a

o REGISTER 2

[

= REGISTER 1
no -

ai REGISTER O

L4

REOD (RD) —q OUTPUT BUFFER |

Ll

4 BIT OUTPUT

Figure 2.6 — 4 x 4 memory register block diagram

25

MICROPROCESSOR ARCHITECTURE

. We shall further expand with eight registers on one chip each capable of
storing 8 bits/1 byte of data.

. For this we will require three address lines A2 — Ao which provides eight
combinations (000, 001, 010, 011, 100, 101, 110, 111) for register select.

WRITE (WR)

8 BIT INPUT / oUTPUT

]

11

BUFFER

-~ REOD (RD)

nz

Al

no

REGISTER 7

10

REGISTER 6

101

REGISTER 5

100

REGISTER 4

o1

REGISTER 3

010

001

3:8 DECODER

REGISTER 2

REGISTER 1

000

REGISTER O

Figure 2.7 — 8 x 8 memory register block diagram

. And if we have 16 registers, we need four address lines and this calculation

goes on.

No. of Size of memory

address lines

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024 = 1K

11 2048 = 2K

12 4096 = 4K

13 8192 = 8K

14 16384 = 16K

15 32768 = 32K

16 65536 = 64K

Table 2.1 — Memory size and address line relationship

26

Chapter 2: Microprocessor Architecture and Microcomputer Systems

. We can also build memory on several chips.

. For example the above 8x8 memory organization can also be arranged on two
chips with each chip having 4 registers each.

° Same three address lines will be used but A; — A will be used to select the

individual registers and A will be used to select the memory chip.

Chip Select (CS)

nz2 f I>O

WRITE t\ﬁ]
(Li REOD [lz_Dl —(L l
BUFFER BUFFER
e | m ~ |1
= REGISTER 3 o REGISTER 3
o o
m o = REGISTER 2 01—+ § ! REGISTER 2
i 01 0
a | — REGISTER 1 g 1 REGISTER 1
Ho L T | oo o — T |40
& | — REGISTER O &l REGISTER O
8 BIT INPUT Ff oUTPUT 8 BIT INPUT 5 oUTPUT

Figure 2.8 — 8 x 8 memory register with chip select

. As the number of registers increase we use a chip select (CS) logic which is
active low signal and acts as master enable pin to decide to perform read or

write operation.

° So now we construct a typical read/write and read only memory chip.

Ll | |

CS RD WR CS RD

- A, . A,

Address Address
\ddres RIWM (Ifl“\' ROM
Lines Lines

Ay —A A,

|- Data f I Data~
(a) Lines (b) Lines

Figure 2.9 — R/W and ROM model

. The difference between the models is concerned with address decoding and
most notable difference is that the ROM does not include WR signal.

27

MICROPROCESSOR ARCHITECTURE

2.3.2 Memory Map and Addresses

. The 8085 microprocessor has 16 address wires or lines and therefore can
identify a maximum of 2'® = 655536 registers.

. The entire memory address range can be represented as

Table 2.2 — Memory map
A1 |A1 |A1 A1 A1 |A1 |A A A A|A|AAAA|A
5 (4 [3 |2 |1 o |9 [8 |7 |6 |5 |4 |3 |2 |1 |0
ojofojojofojojoyo0;0;010j0(0j070O0
N U I OO A

. The above table is called the memory map which is the pictorial

representation of the address range.
o The address range is 0000H to FFFFH.

o We shall now see a memory organization of 256 registers with 8 data lines
i.e. this memory called as 256 x 8 memory organization.

o 256 =28, So 8 address lines (A7—Ao) are used for selecting memory register
and remaining 8 address lines (A1s—As) are used for chip select (CS) logic
and two control signals Write (WR) and Read (RD) for data storage and

retrieval respectively.

o For register select the address line are connected to internal decoder and for
chip select the address line are connected to NAND gate via invertors.

. So when the NAND gate output is low the memory chip is selected.

als
R

a1
o1z

WRITE (WR)

\1o

e
cs

as AEAMW — REOD (RED)
TRESTR

L=

ns
e 256 Reglsters
a3

0z

Infernal Decoder

ao

T

& BIT INPUT F oUTPUT

Figure 2.10 — 256 x 8 memory model

28

Chapter 2: Microprocessor Architecture and Microcomputer Systems

The memory address range for 256 x 8 memory is represented as

Al |A1 |A1 |A1 A1 A1 |AA A A A AA A A A
5 |4 [3 |2 |1 |o |9 |8 W7 |6 |5 |4 |3 |2 |1 |o
0O/ 0[O0 0]O0]O0]|O0 0/0[0[0]0]O
O] 0[O0 0]O0]O0]|O0

Chip Select Register Select
Table 2.3 — Memory map

(=) e

- —_— o
(e}

The address range is 0000H to OOFFH.

We shall now see a memory organization of 8192 registers with 8 data lines
i.e. this is referred as a memory size of 8192 x 8.

8192 = 213, So 8 address lines (A12—Ao) are used for selecting memory
register and remaining 3 address lines (Ais—A13) are used for chip select
(CS) logic and two control signals Write (WR) and Read (RD) for data
storage and retrieval respectively with same logic applied for interfacing.

WIRITE (Wi}

J MAE AW -I_— REDD (RDH

TTERTE.

=4

ALz
A1l

Ao
o=
a7
as
as

18192 Raglstaers

a4

Internol Decoder

Az

Az
a1

HIL

8 BITINPUT J oUTPUT

Figure 2.11 — 8192 x 8 memory model

29

MICROPROCESSOR ARCHITECTURE

The memory address range for 8192 x 8 memory is represented as

A1 | A1 |A1BA1 |A1 |A1 A A A A A A |A|A|AI|A
5 |4 3 2 1 0 9 |8 |7 |6 |5 |4 [3 |2 |1 |o
ojojomgojoO|l0O0]O0O|]O]J]OlO|lO]O]O]OJO]O

ojojogojoj{ojo0ofoj1r|jr171]1

\ﬁ(_/ \ /
|
Chip Select Register Select
Table 2.4 — Memory map

The address range is 0000H to 1FFFH.

We can construct any memory based on above logic and calculate the address

range on the memory chip.

2.3.3 Word Size of Memory

Memory device come in different word size measured in bytes and memory

chip comes in number of bits it stores.

For example, a memory chip of size 512 x 4 means 512 registers individually
which stores 4 bits and total memory chip size calculated as 512 x 4 = 2048
bits.

2.3.4 Instruction Fetch from Memory

The purpose of memory is to store data and instructions, so MPU issues
command to access it.

This is done by sending the address of the specific memory register via the
address bus and enable the data flow depending on the control signal issued.

For example the memory address 2000H contains the instruction MOV E, A

Memory Address Hex Code Binary Code Mnemonic
2000 5F 0101 1111 MOV E, A

The sequence of steps are

> The instruction is available at address 2000H and this value in loaded
in program counter.

» Now the control unit issues the active low memory read (MEMR)
control signal to activate the output buffer.

30

Chapter 2: Microprocessor Architecture and Microcomputer Systems

» The code 5F(0101 1111) for the instruction MOV E, A available at
location 200H is now placed in data bus

» The code is now loaded in instruction register and is decoded where the
content of accumulator is copied into E register.

82085 AF=——01001 111
Microprocessor 7 Data Bus
Memory
| I

2000 = =

Internal Data Bus

LT . —

Flag Instruction B C 2005 {01001 111
Accumulator Flip- Decoder D =3
Flops H L

Arithmetic/Logic Unit

(I

Control
Unit

I 2005

Address Bus T
— | el —
Control Signals 4F —»—

MEMR

Figure 2.12 — Instruction Fetch Operation

2.3.5 Classification of Memory

o Memory is integral part of microcomputer system and are primarily classified

into primary and secondary memory which further have several sub types.

Read/Write Read Only] [Tapes ‘ Disks]
i
I 1 T 1 1
[Static] [Dynamic] [Masked] [PROM] [EPROM] [EEPROM [Flash]
ROM memory

o Main or primary memory contains data and instructions which computer is

currently using.

» The Read/Write or Random Access Memory (RAM) is volatile

memory which stores data, instructions and immediate output.

. Static RAM is built of flip-flops and holds data without external
refresh and is expensive but high speed memory chip.

. Dynamic RAM is built of MOS transistor gates which must be
refreshed many times with low power consumption, high density
and cheaper than static RAM.

31

MICROPROCESSOR ARCHITECTURE

The Read Only Memory (ROM) is non-volatile memory which stores system
level programs that PC want at all times.

. Masked ROM are hard-wired and bit masking is done by metallization
process usually by the manufacturers.

. Programmable ROM (PROM) is diode-based and programmed using
special devices that burn the fuses for storage of the appropriate bit
pattern.

. Erasable PROM (EPROM) can be programmed as it stores bits by
charging and erasing the floating gate. Erasing is done using UV rays
and hence entire memory content will be erased and can be
reprogrammed again.

. Electrically Erasable PROM (EEPROM) — Similar to EPROM with
difference that erasing is done under software control at register level
instead of entire chip.

. Flash Memory are advanced level with erasing done at sector level or
entirely and can be reprogrammed million times.

Secondary memory or storage memory store information and results after
execution and are non-volatile and stored for future reference.
Microprocessor cannot execute programs from here and hence have to be
loaded in main memory for execution.

» The magnetic tapes are serial access device with high capacity but slow
access.

» The disks are semi-random devices made of metal and plastic scanned
by a laser beam.

2.4 1/0 DEVICES

Input/ Output (I/O) devices or peripherals help the microprocessor
communicate with the external world.

Through input devices such as keyboard the system accepts input and the
results are displayed via the output devices such as display and printers

Communication with the I/O device can be established using either an 8-bit
address (Peripheral- Mapped I/O) or 16-bit address (Memory-Mapped I/O).

The steps of communication between microprocessor and peripherals are
» Identify the I/O device by placing the address on the address bus.

> Depending on operation to be performed the MPU issues read (IOR)
and write (IOW) control signal on the control bus.

» Data is then transferred to/from data bus depending on operation.

32

Chapter 2: Microprocessor Architecture and Microcomputer Systems

2.4.1 Peripheral-Mapped 1/0

It is known as I/O Mapped I/O.
Eight address lines are used for I/O interface recognition.

28 =256. Thus, 256 input and output devices with a range of 00H to FFH can
be identified.

To access or read from input device active low I/O Read control signal (I0OR)
is generated and to access or write to output device active low /O Write
control signal (I0W) is generated by the MPU.

2.4.2 Memory-Mapped 1/0

The /0 devices are assumed as memory registers and therefore 16 address
lines are used for identification.

The MPU uses the control signal active low Memory Read (MEMR) and
active low Memory Write (MEMW)) to access the memory.

2.5 Microcomputer System Illustration

We now develop a microcomputer system based on previous study.

The system includes 8085 MPU, memory (EEPROM and R/W Memory),
input and output devices and all interconnected using the various system bus.

The MPU communicates with only device at a time by issuing the
corresponding control signal.

Address of memory location is identified by Ais —Ao and I/O device are
identified by A7- Ao using the address bus

Data bus D7-Dg is common for all and bidirectional

Ays =
Ag| High-Order Address Bus l

':T " Low-Order Address Bus Aqy-Ag i}

8085 o
o8 EPROM RiW Input Output | Input

MPU) Memory o B
: RD WR -4 EN =1 EN Output

Epikiiky

D,
Control D,

Data Bus

===

MEMW

IOR

iow |

Figure 2.13 — Microcomputer System Illustration

33

MICROPROCESSOR ARCHITECTURE

2.6 Logic Devices

Several types of interfacing devices are necessary to interface the
microprocessor with memory and peripherals to establish the communication
using the buses.

2.6.1 Tri-State Device

Normal logic devices have two states — Logic 0 and Logic 1

As name indicate these devices have a three output states — Logic 0, Logic 1
and high impedance state

This state is to effectively remove the device influence from rest of the circuit.

Tristate devices have enable line to confirm whether device works in normal
state or high impedance state

Tristate buffer and tristate invertor are commonly used interfacing devices.

When enable is high these device act as normal device and when enable line

is low, the device enters into high impedance state.

| 0 l ..'_“_}-c:
Enable |f|’ ~1
Enable
Active -'|i;-:|| Active Low
Enable - Enable T
Aehve Low
Active High

Figure 2.14 — Tristate Devices

2.6.2 Decoder

Decoder is a logic circuit that converts binary information from n input to 2"
output.

So in high performance memory system decoders can minimize the effect of
memory selection.

Each combination of input lines helps to select a single unique memory
register.

Example 2:4 Decoder, 3:8 Decoder and so on.

34

—_—
o Data ———7»

Inputs

——

Enable —P»
Inputs ——

2.6.3 Encoder

Chapter 2: Microprocessor Architecture and Microcomputer Systems

n:2n
Decoder

Figure 2.15 — Decoder

Encoder is opposite of decoder where it provides output for each input

signal

Single input line produces a corresponding output, but however if two or

more input lines gets activated then appropriate output code cannot be

generated

They are commonly used device for interfacing with keyboards.

!!2]’1!!
Input
limes

Enable

2.6.4 D Flip-Flop

FEncoder

!!n!!
Cutput
limes

Figure 2.16 — Encoder

It is most essential device while interfacing the output devices

The MPU holds data in the data bus only for few microseconds and it is very

important to latch the data before it is lost

So D latch or flip-flop serves this purpose.

PRESET

Data
Pin

Clock

CLEAR

Figure 2.17 - D FF

Output

Inverted
Output

35

MICROPROCESSOR ARCHITECTURE

2.7 Application: MCTS

The application discussed in the last chapter is now expanded with interfacing
devices included.

Decoder is required to interface each device
The input device in this case temperature sensor are interfaced using buffer

The output devices in this case fan, heater and LCD are interfaced using the
latch

] e]
=
’ o ’

Figure 2.18 - MCTS Application

2.8 Summary

The microprocessor performs basic four operations such as Memory Read
(MEMR), Memory Write (MEMW), I/O Read (IOR), /O Write (IOW).

The address bus, data bus and control bus govern the entire communication
between MPU, memory and peripherals

The architecture of 8085 is robust to handle different kinds of operation.

Memory is integral part of MPU and different types of memories help in
execution of different activities of the microprocessor all identified by 16 bit
address.

I/O devices are interfaced either by 8 bit address or 16 bit address.

To interconnect peripherals and MPU several interfacing devices are used to
ease the operation

36

Chapter 2: Microprocessor Architecture and Microcomputer Systems

2.9 List of References

. Ramesh Gaonkar, “Microprocessor Architecture, Programming and
Applications with the 8085, Fifth Edition, Penram International Publishing
(I) Private Limited

o B. Ram, “Fundamentals of Microprocessor and Microcomputers”. Sixth
Revised and Enlarged Edition, Dhanpat Rai Publications (P) Limited

° https://www.tutorialsmate.com/2020/04/types-of-computer-memory.html

2.10 Unit End Exercise

1. Explain the operation performed by the 8085 microprocessor?

2. Explain the role of 8085 system bus is communication of MPU with
peripherals.

3. What is memory? Draw and explain the memory organization of 16x8
registers on 1 chip and 2 chips with 4 address lines.

4. Tllustrate the memory map and address range of the chip with 4096 bytes and
explain how the range can be changed by modifying the hardware of the chip
select line

5. Explain the following interfacing devices: (A) Tristate device (B) Buffer (C)
D-Flip flop

O o% o
0‘0 0.0 0’0

37

UNIT 1

3

8085 MICROPROCESSOR ARCHITECTURE
AND MEMORY INTERFACING

Unit Structure
3.0 Objectives
3.1 Introduction
3.2 8085 Microprocessor Unit
3.2.1 8085 Microprocessor
3.2.2 Microprocessor communication and bus system
3.2.3 Demultiplexing the address-data bus
3.2.4 Generating Control Signals
3.2.5 The 8085 Microprocessor Architecture
3.3 8085 based Microcomputer Illustration
3.3.1 The 8085 Machine Cycle
3.3.2 Opcode Fetch Cycle
3.3.3 Memory Read Machine Cycle
3.3.4 Memory Write Machine Cycle
3.3.5 How to Recognize Machine Cycle
3.4 Memory Interfacing
3.4.1 Memory structure and its requirements
3.4.2 Basic concepts in memory interfacing
3.4.3 Address Decoding and Memory Address
3.4.3.1 Read Only Memory Chip
3.4.3.2 Read/Write Memory Chip
3.5 Interfacing 8155 Memory Segment
3.6 Designing Memory for MCTS Project

38

Chapter 3: 8085 Microprocessor Architecture and Memory Interfacing

3.7 Testing and Troubleshooting Memory Interfacing Circuit
3.7.1 Testing
3.7.2 Troubleshooting
3.7.3 Diagnostic Routine

3.8 8085-Based Single-Board microcomputer

3.9 Summary

3.10 List of references

3.11 Unit End Exercise

3.0 Objectives

After going through this chapter, you will be able to

Understand the purpose of each pin

Know the role of system bus in decoding and executing an instruction
Know the different techniques available in memory interfacing
Understand the difference between absolute and partial decoding

Need for testing and troubleshooting memory interface circuit.

3.0 Introduction

The 8085 microprocessor is enhanced version of its predecessor 8080A.

Introduced in the year 1976, the 8085 is the predominantly and widely
accepted 8 bit microprocessor.

The instruction set of 8085 is upward compatible with additional instructions.

3.1 8085 Microprocessor Unit

The 8085 is 8-bit general purpose microprocessor packaged as dual inline
package (DIP) with 40 pins.

It works on single +5V power supply and operates on 3MHz clock frequency.

It has 16 address lines with which it can address 64K memory and 8 data

lines.

39

MICROPROCESSOR ARCHITECTURE

3.1.1 8085 MICROPROCESSOR

o The Pin diagram of 8085 microprocessor is categorized into six groups

X; —o{]1 Vce
Xy —9{]2 HOLD
Reset out «—{|3 HLDA
SOD «—{|4 CLK (out)
SID —»{]5 Resetin
Trap «—{|6 Ready
RST 7.5 —»{]|7 I0/M
RST 6.5 «4—{]8 Sy
RST 5.5 —»{|9 Vpp
INTR —»{] RD
INTA €] WR
AD, > So
AD;] Ass
AD, ap{] A14
AD;] A1z
AD, -] Arz
AD;] A1
ADg Ao
AD;] Ag
Vss — Ag

Figure 3.1 — Pin Configuration

° Address bus
o) There are 16 address lines which are unidirectional

o The first eight pins A1s- Ag carry the high order address i.e. the most
significant bits and the remaining eight pins A7- Ao are combined with
data bus which holds the low order address i.e. the least significant bits
and data.

. Multiplexed Address-Data bus

o There are eight pins that serve dual purpose — It holds low order address
and data and are identified as AD7 — AD.

o When they hold the address the lines are unidirectional and when the
lines hold data they are bidirectional

o During instruction execution, initially these pins hold address which is
latched and then same pins hold data during the latter part of the

execution.

40

Chapter 3: 8085 Microprocessor Architecture and Memory Interfacing

Control and status signals

©)

Address Latch Enable (ALE) is output signal which determines the
multiplexed bus contains address or data. ALE = 1—-AD7 — ADo holds
address and ALE =0 — AD7 — ADo holds data.

Read (RD) is active low output signal to read from memory location or

peripherals.

Write (WR) is active low output signal to write to memory location or
peripherals.

Input-Output/Memory (IO/M) is output status signal to help the
microprocessor differentiate between peripheral and memory related
operation. IO/M = 1 — peripheral operation and I0/M = 0 — memory

operation.

Status signal (S1 & S0) are rarely used output status signal for status of

operation of microprocessor.

Power supply and frequency signals

o

o

Power Supply (V) is +5V
Ground (V) — 0V

Clock Input (X and X3>) are input pins connected to crystal to make the
system operate at 3MHz and so crystal should have 6MHz.

Clock Output (CLK OUT) is output signal used as system clock to
trigger other devices.

Externally initiated signals

(@]

Interrupt Request (INTR) is active high input signal for general purpose
interrupt.

Interrupt Acknowledge (INTA) is active low output signal for response
to the INTR signal.

Restart Interrupts (RST 7.5, RST 6.5 and RST 5.5) are active high input
maskable interrupts with RST 7.5 is edge triggered and other two are
level triggered.

Trap (TRAP) interrupt is active high input edge and level triggered and
non-maskable highest priority hardware interrupt.

41

MICROPROCESSOR ARCHITECTURE

o Hold (HOLD) is active high input signal to allow Direct Memory
Access (DMA) between peripherals and memory.

o Hold Acknowledge (HLDA) is active high output response to HOLD
signal.

o Ready (READY) is active high input control signal to delay the read or
write operation as peripherals are slow devices compared to
microprocessor

o Reset Input (RESET IN) is active low signal to reset the
microprocessor by setting program counter address to 0000H and buses
in tristate mode.

o Reset Output (RESET OUT) is active high signal by the
microprocessor to reset other devices.

Serial I/0 ports

o Serial Input Data (SID) is active high input signal for serial
transmission.

o Serial Output Data (SOD) is active high output signal for serial

reception.

3.1.2 Microprocessor Communication and Bus System

The communication process is four-fold.

First step involves the microprocessor placing the 16-bit address on the

program counter.

Next the active low read control signal (RD) on the control bus

The data in the memory location identified by the address in now on placed

on the data bus.

The data bus carries it to instruction decoder where the action is taken

according to the instruction.

The diagram represents the execution of the instruction MOV C, A stored in
address 2005H

42

Chapter 3: 8085 Microprocessor Architecture and Memory Interfacing

" Data Bus

" Internal Data Bus

ALU Instruction

Control

Logic

L

RD

vinter
rogram
o
ddress Bus

Addre

2005 b

2000

2004
— ! 4F 2005

.y

Figure 3.2 — Communication flow of instruction execution

3.1.3 Demultiplexing the Address-Data Bus

o In 8085, the high order address lines Ajs - Agare directly available.

o The low order address lines are multiplexed with data bus as AD7— AD,.

o So it necessary to demultiplex (separate) the address and data.

A15- A3

ALE

8085 Microprocessor

ADT - ADD

:> A15 - AZ

Latch 7473

:> AT - AD

'H 8l

:> D7 - DO

Figure 3.3 — Latching the multiplexed bus

. Execution of any instruction (opcode) requires four clock period.

. The high order address is available for three clock period and low order is

available for only one clock period and hence will be lost

o So we save the address in a latch which is enabled by ALE pin.

. When ALE is high, the latch is enabled and the bus contains address which
is stored in latch and when ALE is low the latch is disabled and the bus now
contains data which is directly used.

43

MICROPROCESSOR ARCHITECTURE

3.1.4 Generating Control Signals

. The control bus is responsible for carrying the control signal which tells the
operation the microprocessor is to perfom.

e Three pins read (RD), write (WR) and Input-Output/Memory (I10/M) are
combined to generate four control signals.

o The signals can be generated using negative NAND gates or a 3:8 decoder.

+5V
8085 L—lj
74L832

I00M MEMR G Vee

3:8

4 AT d
b— -@_ MENW WR Decoder .
RD——B 4

3 3

>

10/M c (74LS138) ’_ij___m
am DS S
74LS04 ot 0%
B e ==
Using negative NAND gate Using 3:8 Decoder

Figure 3.4 — Generating the control signal

3.1.5 The 8085 Microprocessor Architecture

o The architecture is divided into five functional groups.

INTR RST 6 5 TRAP

|m1ns1'ss lnsrvsl SID SOD
e]

{) Ium Iosternal Data Bus

Accumalaror Temp. Reg
)) Registor (8| a
w8 z ®]]
Temp. Reg. Temp. Reg
Flag (5)) | | B (&) (S]]
Flip-Flops Reg Reg
- fo 3 D (8) E (8)
nstruction
Decr 3 Reg. Reg
Arnthmetic » & H 8 L ® Reguster
] Machine & Reg Reg [Amay
Cycle (16}
o Encoding Stack Poanter
(16)
Program Couster
-y Incrementer Decrementes
Suppt % Address Latch 16)
Pawer Sugpy _\.L VY s L 116)
Timang and Control
X, —= LK Reset ‘Addre
3 -)] [3)
X: el GEN Control Status DMA oAy l Adice By] [oeid e [
1
' RREER T ' 1
CLK ouT RD WR ALE S, s, 10M HLDA RESET OUT
READY HOLD RESET 1N Ass-A ADAD

1Ay
Address Bus Address/Daca Bus

Figure 3.5 — 8085 Architectural Block Diagram

44

Chapter 3: 8085 Microprocessor Architecture and Memory Interfacing

Arithmetic and Logical Group

©)

It includes the Arithmetic-Logic Unit which performs the arithmetic
operation like addition, subtraction, increment and decrement and
logical operation like AND, OR, XOR, complement, compare and
rotate.

An 8-bit general purpose register called accumulator or ‘A’ register
which holds one of the operand and result of the most of the operation.

An 8-bit temporary register not available for programmer but used by

microprocessor for certain operation

A 8 bit flag register (made up of flip-flops) which defines five flags
which are set (value = 1) or reset (value =0) depending on the result of
the arithmetic and logical operation

The various flag flip-flops are are Sign (S), Zero (Z), Auxiliary Carry
(AC), Parity (P) and Carry (CY) flag.

SIGN FLAG PARITY FLAG CARRY FLAG
1=Negative 1=Even Parity 1=0verflow
O=Positive O=0Odd Parity O=No Overflow

|

[m]lx]l-] @] [r]=f=)

ZERO FLAG AUXILIARY CARRY FLAG
1=Result Zero 1=BCD Overflow
O=Result Non—zero 0=No BCD Overflow

Figure 3.6 — 8085 Flag Register Format

Register Group

o

A pair of temporary register W and Z not available to the programmer
but used by the microprocessor during the stack operations.

Six general purpose 8-bit register B, C, D, E, H and L to store data.

They are combined to form register pairs BC, DE and HL to store 16-
bit data.

A 16-bit program counter (PC) to hold the address of the instruction to
be executed and which keeps incrementing to fetch the next instruction
till the end of program.

A 16-bit stack pointer register used as pointer to stack location where
data is stored temporarily.

45

MICROPROCESSOR ARCHITECTURE

. Interrupt Control Group

o Various interrupt pins discussed earlier like TRAP, RST 7.5, RST 6.5
and RST 5.5, are handled by executing the Interrupt Service Routine
(ISR) at the corresponding vector address to decide the action to be

taken when the interrupt occurs.

o For the interrupt INTR, it generates INTA signal to acknowledge and
send opcode of CALL instruction to transfer control to that address
mentioned by the interrupting device.

° Instruction Register, Decoder and Control Unit Group

o The Instruction Register (IR) is 8bit register that stores opcode of the
current instruction being executed and used only by the microprocessor

and not the programmer.

o The Instruction Decoder accepts opcode from IR then decodes it and
sends information to control logic to perform operation specified by the
instruction.

o The timing-control unit generates various signals to sequence and

synchronize the microprocessor operation.

. Serial I/0 Group
o The 8085 is a parallel device but using the pins SID and SOD it can

support serial transmission and reception and also instruction RIM and

SIM help in performing serial transfer.

3.2 8085 Based Microcomputer Illustration

. The 8085 microprocessor executes the instruction in terms of instruction
cycle, machine cycle and T-states

o The time taken for the complete execution of single instruction is the
instruction cycle.

. The time taken for the complete execution of one operation such as accessing
memory or peripheral is the machine cycle.

. One sub division of operation performed in synchronization with system
clock is called the T-state.

o The 8085 one instruction cycle can have one to six machine cycle and each
machine cycle has three to six T-states.

46

Chapter 3: 8085 Microprocessor Architecture and Memory Interfacing

3.3.1 The 8085 Machine Cycle

. There are 74 instructions in 8085 microprocessor and instruction is made of
opcode and operand.

o Some instructions are one byte and some multi-byte.

o Hence different machine cycles such as opcode fetch, memory read/write,

I/O read/write are required for the decoding and execution.

3.3.2 Opcode Fetch Cycle

o All 8085 instruction must have opcode as compulsory part and operand is
optional.

o So the first machine cycle of any instruction is opcode fetch cycle which has

four T-states.

° It uses the first three states T1 —T3, to fetch the code and T4 to decode and

execute the opcode.
o The high order address Ais- Ag is available for three T-states.

o The multiplexed bus AD7— ADo hold low order address during T1 which is
indicated by ALE signal going high and between T2- T3 holds the data
indicated as ALE goes low.

o Opcode fetch is a memory operation and indicated by status signals I0/M, S;
and So=011.

e When opcode (data) is placed in the data bus the read signal (RD) goes low
to enable the operation.

3.3.3 Memory Read Machine Cycle

. The memory read machine cycle requires three T-states to perform the
operation.

J The high order address and multiplexed address data bus logic remains same
as opcode fetch cycle.is available for three T-states.

J Memory read operation is indicated by status signals IO/M, S; and So = 010.

When data is placed in the data bus from memory location the read signal

(RD) goes low to enable the operation.

47

MICROPROCESSOR ARCHITECTURE

3.3.4 Memory Write Machine Cycle

The memory read machine cycle requires three T-states to perform the
operation.

The high order address and multiplexed address data bus logic remains same

as opcode fetch cycle.is available for three T-states.
Memory write operation is indicated by status signals IO/M, S; and So = 001.

When data is placed in the memory location from the data bus now instead

of read, the write signal (WR) goes low to enable the operation

[G—OPCOGO retcn—y{ - k— Memory Write —Dl
3 : 3

T T,

% T T T

CLK
CLK

Memory address [RS :X

-

/NS N\

High order memory address

}.)
=
g
2
2
z
>
I
&

ALEY \

< Data from memory 7 —ADy A -A Data from CPU

ALE

H

i

A

nory address

\

B
Gl

ALE

IofM=0.8=18,=

= iy
=N

\
Status | 0M=0,8 =1, S, = 1/Opcode fetch oM, s, Sy
0 3

s lom‘A—< 10 =0, 5, =0
. \)._// o -(___/— R .(_

lom

0

Opcode Fetch Cycle Memory Read Cycle Memory Write Cycle
Figure 3.7 — 8085 Machine Cycle

3.3.5 How To Recognize Machine Cycle

The first illustration is execution of the instruction MVI B, 43H stored in
address 2000H.

It is a two byte instruction and it requires two machine cycle to execute the
instruction.

The first machine cycle is opcode fetch which requires four T-states and
second machine cycle is memory read which requires three T-states and so a
total of seven T-states.

Memory Address Mnemonic Hex / Machine Code
2000 MVI B, 43H 06 (0000 0110)
2001 43 (0100 0011)

48

Chapter 3: 8085 Microprocessor Architecture and Memory Interfacing

In the first machine cycle the microprocessor decodes the opcode as seen in
the opcode fetch machine cycle and in the second machine cycle the memory
places the data byte on the data bus which is then stored in register B at the
end of Ts.

The execution time of the instruction is calculated as
o Let us assume the Clock frequency f=2 MHz
o T-state = clock period (1/f) = 0.5us

o Execution time for 1** Machine Cycle
(Opcode Fetch) =4T x 0.5 =2us

o Execution time for 2" Machine Cycle
(Memory Read) =3T x 0.5=1.5us

o Total Execution time for Instruction: 2us + 1.5us = 3.5us

M, (Opcode Fetch) M, (Memory Read)
T. T) Y' tl 7. T’ T‘
) L
U— U]
Hi
T e
Low-Order T e Order
‘DA;.I 00, — 06. Opcode } e o - ﬂno.; -
Memory Address emary Address
c o i i
s;“; Statuy lOIIR -O.S,-l.g-| Feich .0“- .s.‘-l.s’-o s‘lw‘

Figure 3.8 — Machine Cycles for the instruction MVI B, 43H

Consider another illustration of executing the instruction STA 8000H stored
in memory address 2050H.

It is a three byte instruction but it requires four machine cycle to execute the
instruction.

There is no direct relationship between the number of bytes of instruction
and the number of machine cycles required to decode that instruction.

49

MICROPROCESSOR ARCHITECTURE

. The first machine cycle is opcode fetch which requires four T-states and
second and the third machine cycle is memory read with three T-states each
followed by final cycle of memory write with three T-states making it a total
of thirteen T-states.

. In the opcode fetch cycle, the microprocessor places the address 2050H in
address bus and opcode 32H in data bus.

o In the first memory read cycle the microprocessor reads the address 2051H
and the data bus reads the low order byte 00H.

. In the second memory read machine cycle the microprocessor reads the
address 2052H and the data bus reads the high order byte 80H.

o In the last cycle the address 8000H is placed in the address bus and the byte
available in the accumulator is stored in this location via the data bus.

o The execution time of the instruction is calculated as
o Letus assume the Clock frequency f=2 MHz
o T-state = clock period (1/f) = 0.5us
o Execution time for 1 Machine Cycle
(Opcode Fetch) =4T x 0.5 =2us

o Execution time for 2" Machine Cycle
(Memory Read) =3T x 0.5 =1.5us

o Execution time for 3™ Machine Cycle
(Memory Read) =3T x 0.5 =1.5us

o Execution time for 4™ Machine Cycle
(Memory Write) =3T x 0.5 = 1.5us

o) Total Execution time for Instruction:
2us + 1.5us + 1.5pus + 1.5us =6.5us

50

Chapter 3: 8085 Microprocessor Architecture and Memory Interfacing

M, (Opcaode Fetch) M, (Memory Read) | M, (Memory Read) | My (Memory Write)
Ty L'IH T, I T, l Ty T, J T, l TS T [T, l Ty

A,s—AZ 20501 I x 20511 x 20521 x 8000H

Opcode Unspecified 2nd Byte 3rd Byte

A0, [0 }-{ 32 | — (5t }-{ oo H{am }{ son H{(oon }-{ o }

Accumulator

B M |

ALE

10/M

N
\
W [| [_J[/
) B

Figure 3.9 — Machine Cycles for the instruction STA 8000H

WR

MEMW

3.4 Memory Interfacing

Memory is an important component of the microprocessor based system
where we store data, program and results.

So the memory must be properly interfaced so it can be easily and frequently
accessed to read data and instructions and write results to it.

3.4.1 Memory Structure and its Requirements

The microprocessor based system possess Read Only memory chip with 4096
registers and R/W memory chip with 2048 registers and each register capable
of storing 8 bits.

Input
|
EPROM Wi
An & 4096 x 8 Input Buffer P~ il
5
g A
10 o
2 <
= 3 R/W
£ A Memory
£ =
2 E 2048 x 8
= s
ke =
Ao e =
aﬁ e
Output Buffer RD Output Buffer b« RD

Output l
Output Data
Data

Read Only Memory Chip R/W Memory Chip (2048 x 8)
(4096 x 8)

Figure 3.10 — Memory Chip

51

MICROPROCESSOR ARCHITECTURE

3.4.2 Basic Concepts in Memory Interfacing

The basic idea of memory interfacing involves foremost selecting the
memory chip, followed by the identifying individual register and enabling
the buffer for the right operation.

The memory read and write cycle explained earlier illustrates the interfacing
concept.

3.4.3 Address Decoding and Memory Address

Address decoding is the process of identifying the memory chip and register

for a given address.

A unique pulse identifies the address and this pulse can be generated using
NAND gate and 3:8 Decoder.

The output of NAND gate selects the chip when address Ais- A1> will be
high.

The same result can be obtained 3:8 decoder which can decode 8 devices
based on the address bits A14- A1a.

D H

.l‘"l |< —
Ag | :) E, E; E,
Aga | A,, MSB Oz p—
Az — A, :
Az —] 3108
Decoder
Using NAND Gate Using Decoder

Figure 3.11 — Interfacing Techniques

3.4.3.1 Read Only Memory Chip

A typical EPROM memory with 4096 registers is used which is identified by
12 address lines A11—Ao, one chip select signal and only one control signal
RD to activate output buffer.

The address lines A11—Ay are connected to memory chip to select register.

The address lines A14—A12 are connected as inputs to 3:8 decoder which
when asserted low selects the chip (CE) and A;s is connected to enable pin of
the decoder.

So the value A1s—A12 = 0000 enables the decoder to assert output through
Oo.

52

Chapter 3: 8085 Microprocessor Architecture and Memory Interfacing

The control signal MEMR is generated by ORing I0/M and RD which
enables the output bufferOE.

5V

MEMR - 10/M

Ats - ~ RD

The address range for the above memory would be

Ay

A

Az —

MSB

= O—L‘

il p—

3-10-8
Decoder
74L.S138

Oo

D,

t
E;

Data Bus

Dy —

- An

I

Ag
0,

2732

“PROM
4096 x 8

Op

Output

Lines

R

Figure 3.12 — Interfacing 4096 x 8 EPROM Memory

Ais | Al | Az | Az A | Ao | Ay | As | A7 | Ae | As | Ad | A3 | A2 | A1 | Ao
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1

Chip Select Register Select

Table 3.1 - Memory map for 4096 x 8 EPROM

The range is 0000H - OFFFH.

3.4.3.2 Read/ Write Memory Chip

A typical R/W memory with 2048 registers is used which is identified by 11
address lines A10—Ao, one chip select signal and control signals

The address lines Ajo—Ao are connected to memory chip to select register.

The address lines A13—A11 are connected as inputs to 3:8 decoder which
when asserted low selects the chip (CE) and remaining address lines A;sand
A4 along with I0/M is connected to enable pin of the decoder

So the value Ais—A11 = 10001 enables the decoder to assert output through
0.

The control lines RD and WR are directly connected to memory chip to
enable output and input buffer respectively and the signals MEMR and
MEMW are not generated.

53

MICROPROCESSOR ARCHITECTURE

All '}\l\ ﬁ)
l()fM—l i — s J]__l (L__ WR
E, E; E A — | CEOEWE
. MSB d Ao =
"\" 3-10-8 6116
Ay — e ! 1 B)
Ay —— vl/?;l(:(li:;{ P R/W Memory
" o b M.SL;LL A 2048 % 8

Dala
Lines

D, Dy

Figure 3.13 — Interfacing 2048 x 8 R/W Memory

o The address range for the above memory would be

Ais | Aia | Az | Az | Aun [llA0 | Ao As A7 | As | As | Ad | A3 | A2 | A1 | Ao
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1

Y ! I
Chip Select Register Select
Table 3.2 - Memory map for 2048 x 8 R/’'W Memory

. The address range is 8800H - 8FFFH.

o Both the memory chips used all address lines for decoding and this is

known as absolute decoding.

3.5 Interfacing 8155 Memory Segment

o The 8155 is multipurpose programmable device interfacing the peripherals
the 8085 microprocessor containing memory (256 bytes R/W memory), I/O
ports (three ports 8-bit each) and timer.

o The 256 x 8 memory is identified with 8 address lines A7-Ao and the
remaining address lines Ais-Aj; are connected to decoder with Ajs-Aus
connected to enable pin and Aj3-A11 connected to input of the decoder and
output O4 of the decoder is asserted low to enable the chip. So Ais-Ai1 =
00100 enables the decoder.

e The control signals IO/M, RD and WR are directly connected to the memory
chip to enable the buffer.

54

Chapter 3: 8085 Microprocessor Architecture and Memory Interfacing

10/M ——

256 X 8
ADg , <r‘:|,> Static
RAM

Port A Apy —
LN L]; r
Sy B By

Port B Ay MSB 0,4 &
— Eat) ¥ = T_
ALE - ‘ Decoiies bs 1o'M ——
S 8155 AL ALE
RD ———» Port C o / X
EE— s s Static
RESET —— WR R/W Memory
RESET ——— 8155
TIMER (_,‘LK—1 L— Vee (#5V) AD
TIMER OUT Ves(0 V) ot o
AD,
*8155/8155-2 = CE, 8156/8156-2 = CE
8155 Memory Section Interfacing 8155 Memory

Figure 3.14 — 8155 Memory and SDK-85

The address lines A1o-Ag are not connected and considered as don’t care

lines.

This interfacing technique where all address lines are not used for decoding

is called as partial decoding and advantageous as cost saving technique.

The address range for the above memory is called foldback or mirror

memory.

Ais | Ais | Az | Az | Al Ao | Ao | As A7 | A6 | As | A4 | A3 | A2 | A1 | Ao | Address
0 0 1 0 0 0 0Ol OO | O]O]J]O]J]O]O]O]O 2000H
0 0 1 0 0 0 0]0 1 1 1 1 1 1 1 1 20FFH
0 0 1 0 0 0 0 1 0O/lO0]JO]O]O]O]O]O 2100H
0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 21FFH
0 0 1 0 0 0 1 O@O0O | 0] O0O]O]O]J]O]O]O 2200H
0 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 22FFH
0 0 1 0 0 0 1 1 0]0]O0O]O0O]O]O]O]O 2300H
0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 23FFH
0 0 1 0 0 1 0O/ OO] O]O]O]O]J]O]O]O 2400H
0 0 1 0 0 1 0]0 1 1 1 1 1 1 1 1 24FFH
0 0 1 0 0 1 0 1 0]0]O0O]O]O]O]O]O 2500H
0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 25FFH
0 0 1 0 0 1 1 OO0 | 0] O0O]O]O]JO]O]O 2600H
0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 26FFH
0 0 1 0 0 1 1 1 0]0]O0O]O]O]O]O]O 2700H
0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 27FFH |

J V |
Chip Select Don’t Care Register Select

Table 3.3 - Memory map for 256 x 8 R/'W Memory

The primary address range is 2000H -20FFH and foldback memory range is
2100H — 27FFH.

55

MICROPROCESSOR ARCHITECTURE

3.6 Designing Memory for MCTS Project

. The interfacing circuit for microprocessor controlled temperature system
MCTS studied in the earlier chapter includes 4K x 8 EPROM and 2K x 8

R/W Memory and 3:8 Decoder for interfacing.

])
5V RD ‘ RD WR
10/M
— -)]
Q.0 L_O 0
E, E E; CE OE CE OE WE|
A, MSB Ajp— Ay Ajo— Ay
L 2732 | 6116
MSEL, < WK X
Ay 0, .b IK X 8 K
| = Ag— Ag Ag 1 Ag
: & L MSEL,
gt do P Dy Dy D, D,

Data
Lines
)

Figure 3.15 - MCTS Project Memory Interfacing

o The EPROM memory with 4K memory is identified by 12 address lines
A11—Ap and remaining address lines Ajs—Aj2 = 0000 with Op of decoder

asserted low to enable the chip and RD directly connected to enable output

buffer.
Ais | Ais | Az | Az A1 | Ao | Ao Asg A7 | A¢ | As | Ad | A3 | A2 | A1 | Ao
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

| |

Chip Select Register Select

Table 3.4 - Memory map for 4K EPROM

. The range is 0000H - OFFFH

o The R/W memory with 2K memory is identified by 11 address lines A1o0—
Ao and remaining address lines Ai1s—A12 = 0010 with O of decoder asserted
low to enable the chip and RD directly connected to enable output buffer and

WR directly connected to enable the input buffer.

. The address line A1 is not connected resulting in foldback memory.

56

Chapter 3: 8085 Microprocessor Architecture and Memory Interfacing

Ais | As | Az Ao | As | A7 | A¢ | As | As | Az | A2 | A1 | Ao | Address
0 0 1 oj{ofjoflO0O|O0O]O]O|O]|]O]O 2000H
0 0 1 1 1 1 1 1 1 1 1 1 1 27FFH
0 0 1 o|{ofjoflO0O|O0O]O]O|O]|]O]O 2800H
0 0 1 1 1 1 1 1 1 1 1 1 1 2FFFH

Chip Select Don’t Care Register Select

The primary address range is 2000H -27FFH and foldback memory range is
2800H — 2FFFH.

3.7 Testing and Troubleshooting Memory Interfacing Circuit

Memory is integral part of microcomputer system as it holds data and

instructions

Hence testing and troubleshooting of memory is fairly important to check the

integrity of the contents.

3.7.1 Testing

Testing is simply done by randomly choosing a memory location and writing
the data byte at that location with help of keyboard and then reading the
content of the same memory location and displaying the result in display.

If the content matches then memory is available and we can repeat this test

at different memory locations.

When we cannot load a byte then we need to perform troubleshooting.

3.7.2 Troubleshooting

The best way to perform troubleshooting is visual inspection.

We check wires, pin connections which is easy but logic level of buses
checking is difficult as it is dynamic.

Signal injection is useful technique where signal is injected at input and check
output as per expected outcome

To perform signal injection we write diagnostic routine.

57

MICROPROCESSOR ARCHITECTURE

3.7.3 Diagnostic Routine

Diagnostic routine involves writing continuous loop.

loop: MVI A, AAH

STA 2000H

JMP loop

The infinite loop loads value AAH in accumulator and then stores the value
in the memory location 2000H and this process is repeated infinitely.

We can diagnose the following

o) If we cannot read the value AAH we need to check data bus

connections.

o If we cannot read the address 2000H, we need to check the address bus
connections

o If output of decoder is asserted high, then we need to check the address
line connections to the decoder chip.

o The control signals RD and WR have to be active low to perform the

operation.

3.8 8085-Based Single-Board microcomputer

When we turn on power, a monitor program is executed where program
counter is reset to 0000H and hex code is loaded from there.

The monitor program reads hex keyboard and check for closure.

It then display the key pressed at display and simultaneously stores binary
equivalent memory.

Finally transfer the program execution to user program as the EXECUTE
button is pressed.

3.9 Summary

The 8085 microprocessor is dual inline package with 40 pins with each pin
having a unique functionality.

The architecture of 8085 has functional groups that helps to carry the
operation with ease.

58

Chapter 3: 8085 Microprocessor Architecture and Memory Interfacing

. Each instruction is executed in instruction cycle which comprises of several
machine cycle which comprises of several T-states.

o There is no direct relationship between the number of bytes of instruction and
the number of machine cycles required to decode that instruction.

o In interfacing the memory, if all address lines are used then it represents
absolute decoding and if few address lines are used its partial decoding and
this reduces hardware and generates foldback mirror which provides multiple

addresses.

3.10 List of references

o Ramesh Gaonkar, “Microprocessor Architecture, Programming and
Applications with the 8085”, Fifth Edition, Penram International Publishing
(I) Private Limited.

° https://tutorialspoint.com

° https://www.brighthubengineering.com

° https://www.javatpoint.com

3.11 Unit End Exercise

1. State the functions of the following pins: (i) X; (ii) HLDA (iii) IO/M (iv)
INTA (v) READY

2. Illustrate the steps and timing of data flow for the instruction MOV D, M
stored in memory location 2000H.

3. Illustrate the steps and timing of data flow for the instruction LDA 4050H
stored in memory location 3000H.

4. How to interface the EPROM. What is the address decoding technique &
state the memory address range?

5. How to test and troubleshoot memory interfacing circuit?

/7
0‘0 0‘0 0‘0

59

UNIT-2

I/O INTERFACING

Unit Structure

4.0
4.1
4.2

4.3

4.4

Objectives

Introduction

Basic Interfacing Concepts

4.2.1 Peripheral I/O Instructions

4.2.2 1/O Execution

4.2.3 Device Selection And Data Transfer
4.2.4 Absolute vs Partial Decoding

4.2.5 Input Interfacing

4.2.6 Interfacing I/Os Using Decoders
Interfacing Output Displays

4.3.1 Illustration: LED Display for Binary Data
4.3.2 Tllustration: Seven- Segment LED Display as an Output Device
INTERFACING INPUT DEVICES

4.4.1 llustration: Data Input from DIP Switches

4.5

4.6

Memory —Mapped 1 /O
4.5.1 Execution of Memory- Related Data Transfer Instructions

4.5.2 Illustration: Safety Control System Using Memory-Mapped
I/O Technique

4.5.3 Comparison of Memory-Mapped I/O and Peripheral /O
Testing And Troubleshooting I/O Interfacing Circuits

4.6.1 Diagnostic Routine And Machine Cycles

4.7 Summary

60

Chapter 4: /O Interfacing

4.0 Objectives

. Mlustrate the 8085 bus contents and control signals when OUT and IN

instructions are executed.

o Recognize the device (port) address of a peripheral-mapped I/O by analyzing
the associated logic circuit.

. Illustrate 8085 bus contents and control signal when memory- related
instructions (LDA, STA, etc) are executed.

. Recognize the device (port) address of a memory-mapped I/O by analyzing

the associated logic circuit.

o Explain the difference between the peripheral-mapped and memory-mapped
I/O techniques.

o Interface an I/O device to a microcomputer for a specified device address by
using logic gates and MSI chips, such as decoders, latches, and buffers.

4.1 Introduction

Any application of a microprocessor based system requires the transfer of data
between external circuitry to the microprocessor and microprocessor to the external
circuitry User can give information to the microprocessor based system using
keyboard and user can see the result or output information from the microprocessor
based system with the help of display device. The transfer of data between
keyboard and microprocessor, and microprocessor and display device is called
input / output data transfer or I/O data transfer. This data transfer is done with the
help of I/ O ports.

4.1.1 Input port:-

It is used to read data from the input device such as keyboard. The simplest form
of input port is a buffer. The input device is connected to the microprocessor
through buffer as shown in the figure. This buffer is a tri-state buffer and its output
is available only when enable signal is active. When microprocessor wants to read
data from the input device (keyboard), the control signals from the microprocessor
activates the buffer by asserting enable input of the buffer. Once the buffer is
enabled, data from input device is available on the data bus. Microprocessor reads
this data by initiating read command.

61

MICROPROCESSOR ARCHITECTURE

4.1.2 Output port : -

It is used to send data to the output device such as display from the microprocessor.
The simplest form of output port is a latch. The output device is connected to the
microprocessor through latch, as shown in the figure, When microprocessor wants
to send data to the output device it puts the data on the data bus and activates the
clock signal of the latch, latching the data from the data bus at the output of latch.
It is then available at the output of latch for output device.

4.2 Basic Interfacing Concepts

The approach to designing an interfacing circuit for an I/O device is determined
primarily by the instructions to be used for data transfer. An I/O device can be
interfaced with the 8085 microprocessor either as a peripheral I/O or as a memory-
mapped I/O.

In the peripheral I/O, the instructions IN/OUT are used for data transfer, and the
device is identified by an 8- bit address. In the memory-mapped /O, memory-
related instructions are used for data transfer, and device is identified by a 16-bit

address.

However, the basic concepts in interfacing I/O devices are similar in both methods.
Peripheral I/O is described in the following section, and memory- mapped I/O in
further section.

4.2.1 Peripheral I/O Instructions

The 8085 microprocessor has two instructions for data transfer between the
processor and the I/O device: IN and OUT.

The instruction IN (Code DB) inputs data from an input device (such as a keyboard)
into accumulator, and the instruction OUT (Code D3) sends the contents of the
accumulator to an output device such as an LED display. These are 2-byte
instructions, with the second byte specifying the address or the port number of an
I/O device. For example, the OUT instruction is described as follows.

Opcode Operand Description
ouT 8- bit Port Address | This is a two-byte instruction with the
hexadecimal opcode D3, and the second byte

is the port address of an output device.
This instruction transfers (copies) data from

the accumulator to the output device.

62

Chapter 4: /O Interfacing

Typically, to display the accumulator at an output device (such as LEDs) with the
address, for example, 01H, the instruction will be written and stored in memory as

follows:
Memory Machine Mnemonics Memory
Address Code Contents
2050 D3 OUT 01H :2050 11010011=D3H
2051 01 :2051 00000001=01H

(Note: The memory locations 2050H are chosen here arbitrarily for the illustration.)

If the output port with the address O1H is designed as an LED display, the
instruction OUT will display the contents of the accumulator at the port. The second
byte of this OUT instruction can be any of the 256 combinations of eight bits, from
0O0H to FFH. Therefore, the 8085 can communicate with 256 different output ports
with device addresses ranging from O0OH to FFH. Similarly, the instruction IN can
be used to accept data from 256 different input ports. Now the question remains:
How does one assign a device address or a port number to an I/O device from
among 256 combinations? The decision is arbitrary and somewhat dependent on
available logic chips. To understand a device address, it is necessary to examine
how the microprocessor executes IN/OUT instructions.

4.2.2 1/0 Execution

The execution of I/O instructions can best be illustrated using the example of the
OUT instruction given in the previous section (4.2.1). the 8085 executes the OUT
instruction in three machine cycles, and it takes ten T-states (clock periods) to
complete the execution.

Out Instruction (8085)

In the first machine cycle, M1 (Opcode Fetch, Figure 4.1) the 8085 places the high-
order memory address 20H on A1s-Ag and the low-order address SOH on AD-AD.,.
At the same time, ALE goes high and 10/ M goes low. The ALE signal indicates
the availability of the address on AD7-ADy, and it can be used to demultiplex the
bus. The IO/M, being low, indicates that it is a memory-related operation. At T»,
the microprocessor sends the RD control signal, which is combined with I0/M

(externally, to generate the (MEMR) signal, and the processor fetches the
instruction code D3 using the data bus.

63

MICROPROCESSOR ARCHITECTURE

When the 8085 decodes the machine code D3, it finds out that the instruction is a
2- byte instruction and that it must read the second byte.

In the second machine cycle, M> (Memory Read), the 8085 places the next address,
2051 H, on the address bus and gets the device address 01H via the data bus.

On the low —order (AD7 - ADy) as well as high-order (Ais - Ag) address bus.
The IO/M signal goes high to indicate that it is an 1/O operation. At T, the
accumulator contents are placed on the data bus (AD7 - ADy), followed by the

control signal WR
By ANDing the IO/M and WR signals, the IOW signal can be generated to enable

an output device.

" Instruction OUT
M, (Opcode Fetch) - M. (Memory Read) M, (VO Write)
T, T Ty T T T Ty T T T
Ajs—Ax x 206 XUnspecil‘md x 20 Port Address 01n \
& { Port Accumulator
AD-_aE= x S SQecuge D | 1 St 5 % (U0 T \Address 01y Contents

=
#
el

' 3|
|
i |
| B 3/:5
4| pas
] g

Figure 4.1 : 8085 Timing for Execution of OUT Instruction

Figure 4.1 shows the execution timing of the OUT instruction. The information
necessary for interfacing an output device is available during T2 and T3 of the M3
cycle. The data byte to be displayed is on data bus, 8- bit device address is available
on the low- order as well as high-order address bus, and availability of the data byte
is indicated by the WR control signal. The availability of the device address on both
segments of the address bus is redundant information; in peripherals I/O, only one
segment of the address bus (low or high) is sufficient for interfacing. The data byte
remains on the data bus only for two T- states, then the processor goes on to execute
the next instruction. Therefore, the data byte must be latched now, before it is lost,

using the device address and control signal

64

Chapter 4: /O Interfacing

In Instruction

The 8085 instruction set includes the instruction IN to read (copy) data from input
devices such as switches, keyboard, and A/D data convertors. This is a two- byte
instruction that reads an input device and places the data in the accumulator. The
first byte is the opcode, and the second byte specifies the port address. Thus, the
addresses for input devices can range from OOH to FFH . The instruction is

described as

IN 8- bit :- This is a two- byte instruction with the hexadecimal opcode DB, and
the second byte is the port address of an input device.

This instruction reads (copies) data from an input device and places the data byte

in the accumulator.

To read switch positions, for example, from an input port with the address 84H, the

instructions will be written and stored in memory as follows :

Memory Machine Mnemonics Memory Contents
Address Code

2065 DB IN 84H :2065 11011011=DBH
2066 84 :2066 10000100=84H

(Note: - The memory locations 2065H and 66H are selected arbitrary for the
illustration.)

When the microprocessor is asked to execute this instruction, it will first read the
machine codes (or bytes) stored at locations 2065H and 2066H, then read the switch
positions at port 84H by enabling the interfacing device of the port. The data byte
indicating switch positions from the input port will be placed in the accumulator.
Figure shows the timing of the IN instruction; M1 and M cycles are identical to
that of the OUT instruction.

In the M3 cycle, the 8085 microprocessor places the address of the input port (84H)
on the low- order address bus AD7—ADy as well as on the high- order address bus
Ars — Ag and asserts the RD signal, which is used to generate the I/O Read (IOR)

signal.

The IOR enables the input port, and the data from input port are placed on the data
bus and transferred into the accumulator.

65

MICROPROCESSOR ARCHITECTURE

Instruction IN
M, (Opcode Fetch) M, (Memory Read) M, (/0 Read)

': ‘ T, \ T, ‘ Ta \ Ta T, T, Ty T T: i)
= il [i

A Ay \ 20»\ \Pnspcciﬁcd 20H Port Address .’An
E l* 1
: =
Port - Datafrom | _|
S Eige T IR
| 7 Ll gt

{9

queeese)
coq® ye v
5‘ GO,

=

i

Lo B

Figure 4.2:- 8085 Timing for Execution of IN Instruction

Machine cycles M3 (Figure 4.2) is similar to the M3 cycle of the OUT instruction;

the only differences are (1) the control signal is RDinstead of WR and (2) data flow
from an input port to the accumulator rather than from the accumulator to an output
port.

4.2.3 Device Selection And Data Transfer

The objective of interfacing an output device is to get information or a result out of
the processor and store it or display it. The OUT instruction serves that purpose;
during the M3 cycle of the OUT instruction the processor places that information
(accumulator contents) on the data bus. If we connect the data bus to a latch, we
can catch that information and display it via LEDs or a printer. Now the questions
are : (1) When should we enable the latch to catch that information ? and (2) What
should be the address of that latch ? The answers to both questions can be found in

the M3 cycle (Figure 4.1) .The latch should be enabled when IO/M is high and WR
is active low. Similarly, the address of an output port is also on the address bus
during M3 (it is O1H in figure 4.1). Now the task is to generate one pulse by
decoding the address bus (A7- Ao or Ais — Ag) to indicate the presence of the port
address we are interested in, generate a timing pulse by combining I0/M and WR
signals to indicate that the data byte we are looking for is on the data bus, and use
these pulses (by combining them) to enable the latch. These steps are summarized

as follows. (For all subsequent discussion, the bus A7- Ap is assumed to be that
demultiplexed bus AD7 — ADy).

66

Chapter 4: /O Interfacing

1. Decode the address bus to generate a unique pulse corresponding to the
device address on the bus; this is called device address pulse or I/O address
pulse.

2. Combine (AND) the device address pulse with the control signal to generate
a device select (I/ O select) pulse that is generated only when both signals are
asserted.

3. Use the I/O select to activate the interfacing device (I/O port).
The block diagram (Figure 4.3) illustrate these steps for interfacing an I/O device.

In Figure 4.3, address lines A7 - Ao connected to a decoder, which will generate a
unique pulse corresponding to each address on the address lines. This pulse is
combined with the control signal to generate a device select pulse, which is used to
enable an output latch or an input buffer.

4 . : Latch
Address Device or /O l;ata or To Peripherals
R L i 3 uS | Buffer
ArA, Becoder Address Pulse
10ADR l
Ao 13 : anp | U loseL | Enale
Control w Device Select Pulse
Signal
(TOR or [OW)

Figure 4.3 :- Block Diagram of 1/0O Interface

Figure 4.4 shows a practical decoding circuit for the output device with address
01H. Address lines A7— Ao are connected to 8- input NAND gate that functions as
a decoder. Lines Ao is connected directly, and lines A7— A are connected through
the inverters. When the address bus carries address 01H, gate Gi generates a low

pulse; otherwise, the output remains high. Gate G2 and the control signal IOW to
generate an 1/O select pulse when both input signals are low.

. : . ’

b @Y N A Vv
At 1o D, Dy

Ay —D— Address Data |~ Lt i Vee

A, —D— g Pulse Bus

A, —P— ; i u D, Dy A4

A, —D—— JOADR Bt —— KWW
A D= Latch Enable

Ao ;

: | Lo\ JU - osEL

oM j- iOW G,

i WR Control Signal U N Device Select Pulse

Figure 4.4:- Decoder Logic for LED Output Port

67

MICROPROCESSOR ARCHITECTURE

Meanwhile the contents of the accumulator are placed on the data bus and are
available on the data bus for a few microseconds and, therefore, must be latched
for display. The I/O select pulse clocks the data into the latch for display by the
LEDs.

4.2.4 Absolute vs Partial Decoding

In figure 4.4, all eight address lines are decoded to generate one unique output
pulse; the device will be selected only with the address, O1H. This is called
absolute decoding and is a good design practice. However, to minimize the cost,
the output port can be selected by decoding some of the address lines, as shown in

figure ; this is called partial decoding.

As a result, the device has multiple addresses (similar to fold back memory

addresses).
Dyj—— D, o AA
B:t: 4 : : +5V
SR T IP %
Fie B
A7_4{>—
>
2:—°l>——
A3_<>—' 4> Device-Select
i% = Pulse
WR <>
oM

Figure 4.5 :- Partial Decoding : Output Latch with Multiple Addresses

Figure 4.5 is similar to figure 4.4 except that the address lines A1 and Ao are not

connected, and they are replaced by 10/ M and WR signals. Because the address
lines A1 and Ao are at don’t care logic level, they can be assumed to be 0 and 1.

Thus this output port (latch) can be accessed by the Hex addresses 00, 01, 02 and
03. The partial decoding is a commonly used technique in small systems. Such
multiple addresses will not cause any problems, provided these addresses are not
assigned to any other output ports.

4.2.5 Input Interfacing

Figure 4.6 shows an example off interfacing an 8-key input port. The basic concepts
behind this circuit are similar to the interfacing concepts explained earlier.

68

Chapter 4: /O Interfacing

A A A
AAA
vy
AAA
v

Tri-State
Buffer i

/
S—— - J

. "4
Iala@-nsivol ~J T Enable

U TOSEL
/" Device Select Rulsws‘_} Juq

o el i
et

Figure 4.6 :- Decode Logic for a Dip — switch Input Port

The address lines are decoded by using an 8- input NAND gate. When address lines
A7 — Ao are high(FFH), the output of the NAND gate goes low and is combined
with control signal IOR in gate Go>. When the MPU executes the instruction (IN
FFH), gate G2 generates the device select pulse that is used to enable the tri- state
buffer. Data from the key are put on the data bus D7 — Do and loaded into the
accumulator. The circuit for the input port in figure differs from the output port in
figure as follows:

1. Control signals IOR is used in place of IOW .

2. The tri-state buffer is used as an interfacing port in place of the latch.

3. In figure 4.6, data flow from the keys to the accumulator on the other hand,
in figure, data flow from the accumulator to the LEDs.

4.2.6 Interfacing 1/Os Using Decoders

Various techniques and circuits can be used to decode an address and interface an
I/O device to the microprocessor. However, all of these techniques should follow
the three basic steps suggested in above section.

Figure 4.4 and 4.6 illustrate an approach to device selection using an 8- input
NAND gate. Figure 4.5 illustrate a technique using minimum hardware; this
technique has the disadvantage of having multiple addresses for same device.

69

MICROPROCESSOR ARCHITECTURE

BRSO 1UGIu0 ns 101 beag ap dossl

253ivab gnioid

54 109 e

- bt ilesaedo: iy i B : y
v _nCentuioads st 1oiliw UL Y bahoogh o4 nkoaid 2a

N

BOIUDT Supiadas: eibosol 2y
- ¥

o 9aiyal

Tri-State
Buffer

U EN OVl

e

e iBOS. 9 2001908

oif L etiudwus 1o gaqyd I =

adigimeulli buoose ady bod 2C0HET dil

Figure 4.7 :- Address Decoding Using 3-to-8 Decoder

Figure 4.7 illustrate another scheme of address decoding. In this circuit, a 3- to- 8
decoder and a 4- input NAND gate are used to decode the address bus; the decoding
of the address bus is the first step in interfacing I/O devices.

The address lines A2, A1 and A0 are used as input to the decoder, and the remaining
address lines A7 — Az are used to enable the decoder. The address lines A7is directly
connected to E3 (active high Enable line), and the address lines A¢ — A3z are
connected to E; and E; (active low enable line) using the NAND gate. The decoder
has eight output lines; thus, we can use this circuit to generate eight device address
pulses for eight different addresses.

The second step is to combine the decoded address with an appropriate control
signal to generate the I/O select pulse. Figure shows that the output Og of the

decoder is logically ANDed in a negative AND gate with the IOW control signal.

The output of the gate is the I/O select pulse for an output port. The third step is to
use this pulse to enable the output port. Figure shows that the I/O select pulse
enables the LED latch with the output port address F8H, as shown below (A7 — Ao
is the de multiplexed low- order bus).

Similarly, the output O; of the decoder is combined with I/O Read (IOR) signal,
and the I/O select pulse is used to enable the input buffer with the address FAH.

70

Chapter 4: /O Interfacing

4.3 Interfacing Output Displays

This section concerns the analysis and design of practical circuits for data display.
The section includes two different types of circuits. The first illustrates the simple
display of binary data with LEDs, and the second illustrate the interfacing of seven-
segment LEDs.

4.3.1 IlTustration: LED Display for Binary Data
Problem Statement

1. Analyze the interfacing circuit in figure, identify the address of the output
port, and explain the circuit operation.

2. Explain similarities between (a) and (b) in figure.

3. Write instructions to display binary data at the port.

Circuit Analysis

Address bus A7 — Ao is decoded by using an 8- input NAND gate. The output of
the NAND gate goes low only when the address lines carry the address FFH. The

output of the NAND gate is combined with the microprocessor control signal IOW
in a NOR gate (connected as negative AND).The output of NOR gate 74LS02 goes
to generate an I/O select pulse when both inputs are low (or both signals are
asserted). Meanwhile, the contents of accumulator have been put on the data bus.
The I/O select pulse is used as a clock pulse to activate the D- type latch, and the
data are latched and displayed.

"o re- I p . -
AT oo mped-ne
=+5V
30

4 yDataBus 2 |5 |2I o

; 1422
B b Dol - 14750 - fad
6| D-Latch §,} »~ : !

U 8 a4
) 330

13 14 1330

ity o Wa)b mﬂﬂlﬂ.’*)f'éli nbvsa :o al fé ' i
Figure 4.8 :- Interfacing LED Output Port Usmg the 7475 D-Latch (a) and
Using the 74L.S373 Octal D-Type Latch (b)

71

MICROPROCESSOR ARCHITECTURE

In this circuit, the LED cathodes are connected to the Q output of the latch. The
anodes are connected to +5V through resistors to limit the current flow through the
diodes. When the data line (for example Do) has 1, the output Q is-0 and the
corresponding LED is turned on. If the LED anode were connected to Q, its cathode
would be connected to the ground .In this configuration, the D flip-flop would not
be able to supply the necessary ground. In this configuration, the D flip-flop would
not be able to supply the necessary current to the LED.

Figure 4.8 uses the 74L.S373 octal latch an interfacing device, and both circuit(a)
an (b) are functionally similar. The 74LS373 includes D-latches(flip-flops)
followed by tri-state buffers. This device has two control signals: Enable (G) to
clock data in the flip-flops and Output Control (OC) to enable the buffers. In this
circuit, the 74L.S373 is used as a latch; therefore the tri- state buffers are enabled
by grounding the OC signal.

Program

Address Machine Mnemonics | Comments

(LO) Code

00 3E MVI A, | ; Load accumulator with data
DATA

01 DATA*

02 D3 OUT FFH ; Output accumulator contents

to port FFH
03 FF
04 76 HLT ; End of program

Program Dscription

Instruction MVI loads the accumulator with the data you enter, and instruction
OUT FFH identifies the LED port as the output device and displays the data.

4.3.2 Illustration: Seven- Segment LED Display as an Output Device
Problem Statement

1. Design a seven-segment LED output port with the device address FSH, using
a 74LS138 3 —to- 8 decoder, a 74L.S20 4-input NAND gate, a 74LS02 NOR
gate, and a common anode seven- segment LED.

2. Given WR and 10/ M signals from the 8085, generate the JOW control signal.

72

Chapter 4: /O Interfacing

3. Explain the binary codes required to display 0 to F Hex digits at the seven-
segment LED.

4. Write instructions to display digit 7 at the port.
Hardware Description

The design problem specifies two MSI chips — decoder (74LS138) and the latch
74LS373 — and a common- anode seven-segment LED. The decoder and the latch
have been described in previous sections; the seven-segment LED and its binary

code requirement are discussed below.

Seven- Segment Led

A seven- segment LED consists of seven light- emitting diode segments and one
segment for the decimal point. These LEDs are physically arranged as shown in
Figure 4.9 (a) . To display a number, the necessary segments are lit by sending an

appropriate signal for current flow through diodes.

A
FI G B
AP 1
El C
°
e DP
8180 1
(a)
Common Anode From Data Lines
ags D 303 , ; Through an Interfacing Device »
#*#%$%% D; D, D; D, D; D, D Dl
OeisauDes U 300 O -0 O I?JPSEEQDSEQ}
PERGESESE D C" B A {###** i
R ‘k# ;_
D, D, Ds D, D, D, D, D, : el e
To Data Lines | o, AT
Through an Interfacing Device Common Cathode et
(b) (c) ,;v

Figure 4.9 :- Seven-Segment LED : LED Segments(a) ;Common-Anode
LED(b); Common- Cathode LED (c)

For example, to display an 8, all segments must be lit. To display 1, segments B
and C must be lit. Seven- segment LEDs is available in two types: common cathode
and common anode. They can be represented schematically as in Figure 4.9 (b) and
(c). Current flow in these diodes should be limited to 20mA.

The seven segments, A through G, are usually connected to data lines Do through
Ds, respectively. If the decimal-point segment is being used, data line D7 is

73

MICROPROCESSOR ARCHITECTURE

connected to DP; otherwise it is left open. The binary code required to display a
digit is determined by the type of the seven-segment LED (common cathode or
common anode), the connections of the data lines, and the logic required to light
the segment. For example, to display digit 7 at the LED in Figure 4.10, the
requirements are as follows :

-&'*ﬂ*.& 44 t0-sl0e ook & ! a‘

2 mm s Rmusssyel baol rob st
é'uﬂ AT inamgos-nsvez ;10 -ﬂh‘q;wﬂ i V JIH ’(

‘“-’i'” HET nong Jugiuo 9d1 o) 10 94 9 g

el b 1) 5} p
ool an o ot 15 Hove) 74[.3373» 1 J*m"u lueslDP

A D,— Latch '%'NC 3300 e5m EEEST

:‘T s b ';KU,‘, H.0i 197 01 D‘\ R & e R ; J EZED) s

r:rh 110 bawoilaub ols #i gl L8

g m 11d ‘i +$v " Dy y j
RIS P T 7 4k
‘A (i DiTTig] i 4 a

A< =1 { : : FlirE T
; ERt L 1

¥

G ;rw i 74Lsdz

3 y il
21 r:i

lOSEL giren

-s s F‘W ol i o, sd'f
o)ﬁaﬂuam l.mu mm

Figure 4.10:- Interfacing Seven-Segment LED

1. It is a common- anode seven- segment LED, and logic 0 is required to turn
on a segment.

2. Todisplay digit 7, segments A, B and C should be turned on.
3. The binary code should be

Data D7 De Ds Dg4 D3 D> Dy Do

Lines =78H
Bits X 1 1 1 1 0 0 0

Segments | NC G F E D C B

The code for each digit can be determined by examining the connections of the data
lines to the segments and the logic requirements.

Interfacing Circuit and its Analysis

To design an output port with the address FSH, the address lines A7 — Ao should
have the following logic:

A7y Ag As Ay As Aj Al Ao

1 1 1 1 0 1 0 1 =F5H

74

Chapter 4: /O Interfacing

This can be accomplished by using Az, A1 and Ao as input lines to the decoder. A3
can be connected to active low enable E; and the remaining address lines can be
connected to Ez> through the 4- input NAND gate. Figure shows an output port with
the address FSH. The output Os of the decoder is logically ANDed with the control
signal JOW using the NOR gate (74LS02). The output of the NOR gate is the I/O
select pulse that is used to enable the latch (74LS373). The control signal is IOW
is generated by logically ANDing IO / M and WR signals in the negative NAND
gate (physically OR gate 74L.S32).

Instructions: The following instructions are necessary to display digit 7 at the
output port:

MVI A, 78H ; Load seven- segment code in the accumulator
OUT F5H ; Display digit 7 at port FSH
HLT; End

The first instruction loads 78H in the accumulator; 78H is binary code necessary to
display digit 7 at the common- anode seven- segment LED. The second instruction
sends the contents of the accumulator (78H) to the output port FSH. When the 8085
executes the OUT instruction, the digit 7 is displayed at the port as follows:

1. In the third machine cycle M3 of the OUT instruction (refer the figure), the
port address F5H is placed on the address bus A7 — Ao (it is also duplicated
on the high- order bus Ais — Ag, but we have used the low- order bus for

interfacing in this example).

2. The address F5H is decoded by the decoding logic (decoder and 4- input
NAND gate), and the output Os of the decoder is asserted.
3. During T> of the M3 cycle (see Figure), the 8085 places the data byte 78H

from the accumulator on the data bus and asserts the WR signal.

4. In the Figure 4.10, when the IOW signal is asserted, the output of the NOR
gate 74L.S02 goes high and enables the latch 74LS 373.

The data byte (78H), which is already on the data bus at th input of the latch, is
passed on the output of the latch and displayed by the seven-segment LED.

However, the byte is latched when the WR signal is de-asserted during Ts.

Current Requirements: The circuit in Figure uses a common- anode seven-
segment LED. Each segment requires 10 to 15 mA of current (Ip max= 19 mA) for
appropriate illumination. The latch can sink 24mA when the output is low and can
supply approximately 2.6 mA when the output is high. In this circuit, common-

75

MICROPROCESSOR ARCHITECTURE

anode LED segments are turned on by zeros on the output of the latch. If common-
cathode seven segment LED were used in this circuit, the output of the latch would
have to be high to drive the segments. The current supplied would be about 2.6mA,
which is insufficient to make the segments visible.

4.4 Interfacing Input Devices

The interfacing of input device is similar to that of interfacing output devices,
except with some differences in bus signals and circuit components. We will follow
the same basic steps described in Section and timing diagram for the execution of
the IN instruction shown in the Figure.

4.4.1 Illustration: Data Input from DIP Switches

In this section, we will analyze the circuit used for interfacing eight DIP switches,
as shown in Figure 4.11. The circuit includes the 74LS138 3- to- 8 decoder to
decode the low- order bus and the tri-state octal buffer (74LS244) to interface the
switches to the data bus. The port can be accessed with the address 84H ; However,
it has multiple addresses, as explained below.

4.4.2 Hardware

Figure 4.11 shows the 74L.S244 tri- state octal buffer used as an interfacing device.
The device has two groups of four buffers each, and they are controlled by active
low signal OE. When OE is low, the input data show up on the output lines
(connected to the data bus), and when OE is high, the output lines assume the high
impedance state.

R ENT

Yyv

4
.
+
w
<
b, (
A

>
< < S © < b
ks B3 T =t ::s, A
po ’ 5
D,—— 74Ls244 S j
Octal s /10

Buffer

olole ===~ |~

e
e P D,
r,,«‘st’ | Decoder

R j}@}l’j

Py
SUS P95 T P VO adt eoin t 9. 201010 Nl s HE

Figure 4.11:- Interfacing DIP Switches

76

Chapter 4: /O Interfacing

4.4.3 Interfacing Circuit

Figure 4.11 shows that the low order address bus, except the lines A4 and Ags, is
connected to the decoder (the L74S138) ; the address lines A4 and A3 are left in the
don’t care state.

The output line O4 of the decoder goes low when the address bus has the following
address (assume the don’t care lines are at logic 0);

A7 A6 A5 A4 A3 A2 Al A0
1 0 0 0 0 1 0 0 = 84H
Enables lines Don’t Care Input

The control signal I/O Read (IOR) is generated by ANDing the IO / M (through
an inverter) and RD in a negative NAND gate, and the I/O select pulse is generated
by ANDing the output of the decoder and the control signal IOR . When the address
is 84H and the control signal IOR is asserted, the I/O select pulse enables the tri-

state buffer and the logic levels of the switches are placed on the data bus.

The 8085, then, begins to read switch positions during T3 (Figure) and places the
reading in the accumulator. When a switch is closed, it has logic 0, and when it is
open, it is tied to +5V, representing logic 1.

Figure 4.11 shows that the switches S7 —S3 are open and S — Sy are closed; thus,
the input reading will be F8H.

4.4.4 Multiple Port Addresses

In Figure 4.11, the address lines A4 and A3 are not used by the decoding circuit; the
logic levels on these lines can be 0 or 1 .Therefore, this input port can be accessed
by four different addresses, as shown below.

A7 A6 AS A4 A3 A2 Al A0

1 0 0 0 0 1 0 0 = 84H
0 1 =8CH
1 0 =94H
1 1 =9CH

4.4.5 Instructions To Read Input Port

To read data from the input port shown in Figure, the instruction IN 84H can be
used. When this instruction is executed, during the M3 cycle, the 8085 places the
address 84H on the low- order bus (as well as on the high-order bus), asserts the

RD control signal, and reads the switch positions.

77

MICROPROCESSOR ARCHITECTURE

4.5 Memory —Mapped I /O

In memory-mapped 1/O, the input and output devices are assigned and identified
by 16- bit addresses. To transfer data between the MPU and I/O devices, memory-

related instructions (such as LDA, STA etc) and memory control signals (MEMR)
and MEMW) are used.

The microprocessor communicates with an I/O device as if it were one of the
memory locations. The memory- mapped I/O technique is similar in many ways to
the peripheral I/O technique. To understand the similarities, it is necessary to
review how a data byte is transferred from the 8085 microprocessor to a memory
location or vice- versa. For example, the following instruction will transfer the

contents of the accumulator to the memory location 8000H.

Memory Machine Code Mnemonics Comments

Address

2050 32 STA 8000H ; Store contents of

2051 00 accumulator in

2052 80 memory location
8000H

(Note : It is assumed here that the instruction is stored in memory locations 2050H,
51H, and 52H).

The STA is a three- byte instruction; the first byte is the opcode, and the second
and third bytes specify the memory address. However, the 16- bit address 8000H
is entered in the reverse order ; the low- order byte 00 is stored in location 2051,
followed by the high-order address 80H (the reason for the reversed order will be
explained in Section). In this example, if an output device, instead of a memory
register, is connected at this address, the accumulator contents will be transferred
to the output device. This is called the memory- mapped I/O technique.

On the other hand, the instruction LDA (Load Accumulator Direct) transfers the
data from a memory location to the accumulator. The instruction LDA is a 3-byte
instruction; the second and third bytes specify the memory location. In the memory-
mapped I/O technique, an input device (keyboard) is connected instead of a
memory. The input device will have the 16- bit address specified by the LDA

instruction.

When the microprocessor executes the LDA instruction, the accumulator receives
data from the input device rather than from a memory location. To use memory-

related instructions for data transfer, the control signals Memory Read (MEMR)

78

Chapter 4: /O Interfacing

and Memory Write (MEMW) should be connected to I/O devices instead of IOR

and IOW signals, and the 16- bit address bus (Ais — Ao) should be decoded. The
hardware details will be described in section).

4.5.1 Execution of Memory- Related Data Transfer Instructions

The execution of memory-related data transfer instructions is similar to the
execution of IN or OUT instructions, except that the memory-related instructions
have 16-bit addresses.

The microprocessor requires four machine cycles (13 T-states) to execute the
instruction STA (Figure 4.12). The machine cycle M4 for the STA instruction is

similar to the machine cycle M3 for the OUT instruction.

For example, to execute the instruction STA 8000H in the fourth machine cycle
(M), the microprocessor places memory address 8000H on the entire address bus
(Ai15 - Ao) .The accumulator contents are sent on the data bus, followed by the

control signal Memory Write MEMW (active low).

On the other hand, in executing the OUT instruction (Figure), the 8- bit device
address is repeated on the low- order address bus (Ao — A7) as well as on the high-
order bus, and the JOW control signal is used. To identify an output device, either
the low-order or the high-order bus can be decoded. In the case of the STA
instruction, the entire bus must be decoded.

AE B

s ki M, (Opcode Fetch) M, (Memory Read) | M; (Memory Read) | My (Memory Wﬁ(e)

AN

Wee vl oh I |sTs T,y T, T, T, T, T, | Ts
AisAR . 2050m) %) 2051H 2052H 1

it B Opcode Unspecified 2nd Byte 3rd Byte
AD-AD [50u | @-——-(sin }-{ oon)-(52m)-(80mH)—{ 00u>-
ol o

R R S
R

. IoOM
bogegerr.
- RD}
o —
~-6t:3bwk il e
¥ !’ll e 13 A»" 1t »

N 9l LS

b $id-a ! wels bas zlsn i
bEl8G8%2 ai bodioezsb sd] i riswtl 2ahsd
~ *Demultiplexed Bus

Figure 4.12 :- Timing for Execution of the Instruction STA 8000H

79

MICROPROCESSOR ARCHITECTURE

Device selection and data transfer in memory-mapped I/O require three steps that
are similar to those required in peripheral I/O:

1. Decode the address bus to generate the device address pulse.

2. AND the control signal with the device address pulse to generate the device
select (I/ O select) pulse.

3. Use the device select pulse to enable the I/O port.

To interface a memory- mapped input port, we can use the instruction LDA 16- bit,
which reads data from an input port with the 16-bit address and places the data in
the accumulator.

The instruction has four machine cycles; only the fourth machine cycle differs from

Ma in Figure 4.12. The control signal will be RDrather than R, the data flow from
the input port to microprocessor.

4.5.2 Illustration: Safety Control System Using Memory-Mapped 1/0
Technique

Figure 4.13 shows a schematic of interfacing I/O device using the memory-mapped
I/O technique. The circuit includes one input port with eight DIP switches and one
output port to control various processes and gates, which are turned on/off by the

microprocessor according to the corresponding switch positions.

s
3

IR (,m[‘"" ﬁ

Figure 4.13 :- Memory-Mapped 1/O Interfacing

For example, switch S7 controls the cooling system, and switch So controls the exit
gate. All switch inputs are tied high; therefore, when switch is open (off), it has
+5V and when a switch is closed (on), it has logic 0.

80

Chapter 4: /O Interfacing

The circuit includes 3 — to-8 decoder, one 8- input NAND gate, and one 4-input
NAND gate to decode the address bus. The output Og of decoder is combined with

control signal MEMW to generate the device select pulse that enables the octal

latch. The output O; is combined with the control signal (MEMR) to enable the
input port. The eight switches are interfaced using a tri-state buffer 74L.S244, and
the solid state relays controlling various processes are interfaced using an octal
latch (74LS373) with tri-state output.

Output Port and its Address

The various process control devices are connected to the data bus through the latch
74LS373 and solid state relays. If an output bit of the 74Ls373 is high, it activates
the corresponding relays and turns on the process; the process remains on until the
bit stays high. Therefore, to control these safety processes, we need to supply an
appropriate bit pattern to the latch.

The 74LS373 is a latch followed by a tri-state buffer, as shown in Figure. The latch
and and the buffer are controlled independently by the Latch Enable (LE) and
Output Enable (OE).

When LE is high, the data enter the latch, and when LE goes low, data are latched.
The latched data are available on the output lines of the 74L.S373 if the buffer is
enabled by OE (active low). If OE is high, the output lines go into the high
impedance state.

Figure 4.13 shows that the OE is connected to the ground; thus, the latched data
will keep the relays on/ off according to the bit pattern. The LE is connected to the
device select pulse, which is asserted when the output Op of the decoder and the
control signal MEMW go low .Therefore, to assert the I/O select pulse, the output
port address should be FFF8H, as shown below:

Al A A A A A A A |A A A |A|A A A A
5 4 3 2 1 0 9 8 7 6 5 4 2 1 0
1 1 1 1 1 1 1 1 1 1 1 1|1 0 |0 |0
To 8- input NAND gate to Enable E> To 4-input NAND | To Decoder =FFF8§
gate to Enable E1 | Enable | Input H
Es

Input Port and its Address
The DIP switches are interfaced with the 8085 using the tri- state buffer 74L.S244.

The switches are tied high, and they are turned on by grounding, as shown in
Figure. The switch positions can be read by enabling the signal OE, which is
asserted when the output O1 of the decoder and the control signal (MEMR) go low.
Therefore, to read the input port, the port address should be

81

MICROPROCESSOR ARCHITECTURE

Al A A A A A A A A A A A A AlA | A
5 4 3 2 1 0 9 8 7 6 5 4 2 |1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 010 |1
To 8- input NAND gate to Enable E To 4-input NAND | To Decoder =FFF9
gate to Enable E; Enable | Input H
Es

Instructions: - To control the processes according to switch positions, the
microprocessor should read the bit pattern at the input port and send that bit pattern

to the output port.

The following instructions can accomplish this task:
READ : LDA FFF9H ; Read the switches

CMA ; Complement switch reading, convert on- switch (logic 0) into logic 1 to

turn on appliances

STA FFF8H ; Send switch positions to output port and turn on/off appliances.
JMP READ ; Go back and read again

When this program is executed, the first instruction reads the bit pattern

1011 0111 (B7H) at the input port FFFOH and places that reading in the
accumulator; this bit pattern represents the on- position of switches S¢ and S3 . The
second instruction complements the reading ; this instruction is necessary because
the on-position has logic 0, and to turn on solid state relays logic 1 is necessary.
The third instruction sends the complemented accumulator contents (0100 1000=
48H) to the output port FFF8H. The 74LS373 latches the data byte 0100 1000 and
turns on the heating system and lights. The last instruction, JMP READ, takes the
program back to the beginning and repeats the loop continuously .Thus, it monitors
the switches continuously.

4.5.3 Comparison of Memory-Mapped I/O and Peripheral 1/0

Characteristics Memory-Mapped 1/0 Peripheral 1/0

1. Device address 16- bit 8- bit

2. Control signals for

Input / Output (MEMR) / MEMW IOR | IOW

3. Instruction Memory-related instructions

available such as STA; LDA; LDAX; | IN and OUT
STAX; MOV M, R: ADD M;
SUB M; ANA M; etc.

82

Chapter 4: /O Interfacing

4. Data transfer

Between any register and I/O

Only between I/O and

the accumulator

5. Maximum number
of I/Os possible

The memory map (64K) is
shared between 1/Os

system memory

and

The 1O
independent

map s
of the
memory map; 256 input
devices and 256 output
be

devices can

connected.

6. Execution speed

13 T-states (STA, LDA)
7 T-states (MOV M, R)

10 T-states

7. Hardware

requirements

More hardware is needed to
decode 16-bit address

Less hardware is needed
to decode 8-bit address

8. Other features Arithmetic or logical Not available

operations can be directly
performed with I/O data

4.6 Testing and Troubleshooting I/O Interfacing Circuits

In previous sections we illustrated how to interface an I/O device to a working
microcomputer system or add an I/O port as an expansion to the existing system.
In section we designed the LED output port with the address FSH. The next step is
to test and verify that we can display the digit 7 by sending the code 78H as
specified in the design problem. In the first attempt, the most probable outcome
will be that nothing is displayed or digit 8 is displayed irrespective of the code sent
to the port.

Now we need to troubleshoot the interfacing circuit. The obvious first step is to
check the wiring and the pin connections. After this preliminary check, we need to
generate a constant and identifiable signal and check various points in relation to
that signal. We can generate such a signal by asking the processor to execute a
continuous loop, called a diagnostic routine.

4.6.1 Diagnostic Routine and Machine Cycles

We can use the same instructions for the diagnostic routine that we used in the
design problem; however, to generate a continuous signal, we need to add a Jump
instruction, as shown next.

83

MICROPROCESSOR ARCHITECTURE

Instruction Bytes | T- States Machine Cycles
M; M M3

START : MVI | 2 7(4,3) Opcode Memory

A, 78H Fetch Read

OUT F5H 3 10 (4,3, 3) | Opcode Memory /O Write
Fetch Read

JMP START |3 10 (4, 3,3) | Opcode Memory Memory
Fetch Read Read

This loop has 27 T- states and eight operations (machine cycles). To execute the
loop once, the microprocessor asserts the RD signal seven times (the Opcode Fetch
is also a loop is executed in 8.9pus, and the WR signal is repeated every 8.9us that
can be observed on a scope. If we sync the scope on the WRWR pulse from the
8085, we can check the output on a scope. If we sync the scope on the WR pulse

from the 8085, we can check the output of the decoder, IOW, and IOSEL signals;

some of these signals of a working circuit are shown in Figure 4.14

Figure 4.14 :- Timing Signals of Diagnostic Routine

When the 8085 asserts the WR signal, the port address FSH must be on the address
bus A7- Ao, and the output Os of the decoder in figure must be low. Similarly, the

[OW must be low and the IOSEL (the output of the 74LS02) must be high. Now if

we check the data bus in relation to WR signal, one line at a time, we must read the
data byte 78H.If the circuit is not properly functioning, we can check various

signals in reference to the WR signal as suggested below:

1. IfIOSEL is low, check IOW and Os of the decoder .

84

Chapter 4: /O Interfacing

2. IfIOW is high, check the input to the OR gate 74LS32 . Both should be low.

3. If Osof'the decoder is high, check all the output lines O to O7 of the decoder.
If all of them are high, that means the decoder is not enabled. If one of the
outputs of the decoder is low, it suggests that the input address lines are

improperly connected.

4. If the decoder is not enabled, check the address lines A4 — A7 ; all of them
must be high and the address line A3z must be low.

5. Another possibility is that the port is enabled, but the seven-segment display

is wrong .

The problem must be with data lines. Try different codes to display other digits. If
two data lines are interchanged, you may be able to isolate these two data lines.

The final step is to check all the data lines.

4.7 Summary

In this chapter, we examined the machine cycles of the OUT and IN instructions
and derived the basic concepts in interfacing peripheral-mapped I/Os. Similarly,
we examined the machine cycles of memory-related data transfer instructions and
derived the basic concepts in interfacing memory-mapped 1/Os. These concepts
were illustrated with various examples of interfacing I/O devices.

Peripheral-Mapped 1/0

The OUT is a two-byte instruction. It copies (transfers or sends) data from the
accumulator to the addressed port.

When the 8085 executes the OUT instruction, in the third machine cycle, it places
the output port address on the low-order bus, duplicates the same port address on
the high-order bus, places the contents of the accumulator on the data bus, and

asserts the control signal WR
A latch is commonly used to interface output devices.

The IN instruction is a two-byte instruction. It copies (transfer or reads) data from
an input port and places the data into the accumulator.

When the 8085 executes the IN instruction, in the third machine cycle, it places the
input port address on the low-order bus, as well as on the high-order bus, asserts

the control signal RD, and transfers data from the port to the accumulator.

A tri-state buffer is commonly used to interface input devices.

&5

MICROPROCESSOR ARCHITECTURE

To interface an output or an input device, the low- order address bus A7 — A0 (or
high- order bus A1s— Ag) needs to be decoded to generate the device address pulse,

which must be combined with the control signal IOR (or IOW) to select the device.
Memory-Mapped 1/0
Memory-related instructions are used to transfer data.

To interface I/O devices, the entire bus must be decoded to generate the device

address pulse, which must be combined with the control signal (MEMR) (or
MEMW) to generate the I/O select pulse. This pulse is used to enable the I/O device
and transfer the data.

Questions and Problems

1. Explain why the number of output ports in the peripheral-mapped /O is
restricted to 256 ports.

2. In the peripheral-mapped I/O, can an input port and an output port have the
same port address?

3. If an output and input port can have the same 8-bit address, how does the
8085 differentiate between the ports?

4. Specify the two 8085 signals that are used to latch data in an output port.
5. What are control signals necessary in the memory-mapped I/O?

6. Can the microprocessor differentiate whether it is reading from a memory-
mapped input port or from memory?

7. Specify the 8085 signals that are used to latch data in an input port.

8. Specify the type of pulse (high or low) required to latch data in the 7475.

Books and References
1. Computer System Architecture by M. Morris Mano, PHI Publication, 1998.

2. Structured Computer Organization by Andrew C. Tanenbaum, PHI
Publication.

3. Microprocessors Architecture, Programming and Application with 8085 by
Ramesh Gaonker, PENRAM, Fifth Edition, 2012.

00000’0

86

Unit-2

INTRODUCTION TO 8085 ASSEMBLY
LANGUAGE PROGRAMMING

Unit Structure

5.0 Objectives

5.1 Introduction
5.2 The 8085 Programming Model
5.2.1 Programming Registers
5.3 Instruction Classification
5.3.1 The 8085 Instruction Set
5.4 Instruction and Data Format
5.4.1 Instruction Word Size
5.4.2 Opcode Formats
5.4.3 Data Format
5.5 How to Write Assemble, and Execute a Simple Program
5.5.1 Illustrate Program: Adding Two Hexadecimal Numbers

5.5.2 How Does a Microprocessor Differentiate Between
Data and instruction Code?

5.6 Overview of the 8085 Instruction Set

5.7 Summary

5.0 Objectives

o Explain the various functions of the registers in the 8085 programming
model.

. Define the term flag and explain how the flags are affected

o Explain the terms operation code (opcode) and operand, and illustrate these
terms by writing instructions.

87

MICROPROCESSOR ARCHITECTURE

. Classify the instructions in terms of their word size and specify the number
of memory registers required to store the instructions in memory

o List the five categories of the 8085 instruction set.

. Define and explain the term addressing mode.

o Write logical steps to solve a simple programming problem.

. Draw a flowchart from the logical steps of a given programming problem.

° Translate the flowchart into mnemonics and convert the mnemonics into Hex

code for a given programming problem.

5.1 Introduction

An Assembly program is a set of instructions written in the mnemonics of a given
microprocessor. These instructions are commands to the microprocessor to be
executed in the given sequence to accomplish a task. To write such programs for
the 8085 microprocessor, we should be familiar with the programming model and

the instruction set of the microprocessor.

The 8085 instruction set is classified into five different groups : data transfer,
arithmetic, logic, branch, and machine control; each of these groups is illustrated
with examples. It also discusses the instruction format and various addressing
modes. A simple problem of adding to Hex numbers is used to illustrate writing,
assembling, and executing a program. The flowcharting technique and symbols are
discussed in the context of the problem. It concludes with a list of selected 8085

instructions.

5.2 THE 8085 PROGRAMMING MODEL

5.2.1 Programming Registers

The 8085 programming model includes six registers, one accumulator, and flag
register, as shown in Figure 5.1.In addition,it has two 16- bit registers: the stack
pointer and program counter. They are described briefly as follows.

88

Chapter 5: Introduction to 8085 Assembly Language Programming

Accumulator A (8) Flag Register (8)
B (8) C(®)
D (8) E (8)
H (8) L(8)

Stack Pointer (SP) (16)
Program Counter (PC) (16)

Data Bus Address Bus
Bidirectional 8-Lines Unidirectional 16-Lines
(a)

D7 Ds¢ Ds Dy Ds D> Dy Do
S Z AC P CYy
(b)

Figure 5.1: 8085 Programming Model (a) and Flag Register (b)

Registers

The 8085 has six general-purpose registers to store 8- bit data; these are identified
as B,C, D, E, H, and L, as shown in Figure 5.1. They can be combined as register
pairs — BC, DE, and HL — to perform some 16- bit operations. The programmer can
use these registers to store or copy data into the registers by using data copy

instructions.

Accumulator

The accumulator is an 8- bit register that is part of the arithmetic / logic unit (ALU)
. This register is used to store 8- bit data and to perform arithmetic and logical
operations. The result of an operation is stored in the accumulator. The accumulator
is also identified a register A.

Flags

The ALU includes five flip-flops, which are set or reset after an operation according
to data conditions of the result in the accumulator and other registers.

They are called Zero (Z), Carry (CY), Sign (S), Parity (P),and Auxiliary (AC) flags;
they are listed in Table 5.1 and their bit positions in the flag register are shown in

&9

MICROPROCESSOR ARCHITECTURE

Figure 5.1(a) . The most commonly used flags are Zero, Carry and Sign. The
microprocessor uses these flags to test data conditions.

For example, after an addition of two numbers, if sum in the accumulator is larger
than eight bits, the flip- flop used to indicate a carry — called the Carry flag (CY) is
set to one.

Table 5.1: THE 8085 Flags

The following flags are set or reset after execution of an arithmetic or logic

operation ; data copy instructions do not affect any flags

7 — Zero; The Zero flag is set to 1 when the result is zero ; otherwise it is reset.

CY — Carry: If an arithmetic operation results in a carry, the CY flag is set ;

otherwise it is reset.

S —Sign : The Sign flag is set if bit D7 of the result =1 ; otherwise it is reset.

P — Parity : If the result has an even number of 1s, the flag is set; for an odd
number of 1s, the flag is reset.

AC — Auxiliary Carry : In an arithmetic operation, when a carry is generated by
digit D3 and passed to digit D4, the AC flag is set. This flag is used internally for
BCD (binary- coded decimal) operations ; there is no Jump instruction

associated with this flag.

When an arithmetic operation results in zero, the flip- flop called the Zero (Z) flag
is set to one. Figure 5.1(a) shows an 8-bit register, called the flag register, adjacent
to the accumulator. However, it is not used as a register; five bit positions out of
eight are used to store the outputs the five flip-flops. The flags are stored in the 8-
bit register so that the programmer can examine these flags (data conditions) by
accessing the register through an instruction.

These flags have critical importance in the decision- making process of
microprocessor. The conditions (set or reset) of the flag are tested through software
instructions.

For example, the instruction JC (Jump on Carry) is implemented to change the
sequence of a program when the CY flag is set. The thorough understanding of

flags is essential in writing assembly language programs.

Program Counter (PC)

This 16- bit register deals with sequencing the execution of instructions. This
register is a memory pointer. Memory locations have 16- bit addresses, and that is
why this is a 16- bit register.

90

Chapter 5: Introduction to 8085 Assembly Language Programming

The microprocessor uses this register to sequence the execution of the instructions.

The function of the program counter is to point to the memory address from which
the next byte is to be fetched. When a byte (machine code) is being fetched, the

program counter is incremented by one to point to the next memory location.

Stack Pointer (SP)

The stack pointer is also a 16- bit register used as a memory pointer. It points to a
memory location in R/W memory, called the stack. The beginning of the stack is
defined by loading a 16-bit address in the stack pointer.

5.3 Instruction Classification

An instruction is a binary pattern designed inside a microprocessor to perform a
specific function. The entire group of instructions called instruction set, determines
what functions the microprocessor can perform. The 8085mmicroprocessor
includes the instruction set of its predecessor, the 8080A, plus two additional

instructions.

5.3.1 The 8085 Instruction Set

The 8085 instruction can be classified into the following five functional categories:
data transfer (copy) operations, arithmetic operations, logical operations, branching

operations, and machine- control operations.

Data Transfer (Copy) Opertions

This group of instruction copies data from a location called source to another
location, called a destination, without modifying the contents of the source. The
term data transfer is used for this copying function .However, the term transfer is
misleading; it creates the impression that the contents of source are destroyed when,
in fact, the contents are retained without any modification. The various types of
data transfer (copy) are listed below together with examples of each type:

Table 5.2 : Data Transfer Examples

Types Examples

Between registers Copy the contents of register B into
register D
Specific data byte to a register or a | Load register B with data byte 32H

memory location

91

MICROPROCESSOR ARCHITECTURE

Types

Examples

Between a memory location and a

register

From the memory location 2000H to
register B

Between an [/O device and the

accumulator

From an input keyboard to the
accumulator

Arithmetic Operations

These instructions perform arithmetic operation such as addition, subtraction,
increment, and decrement.

1.

Addition: - Any 8- bit number, or the contents of a register, or the contents
of'a memory location can be added to the contents of the accumulator and the
sum is stored in the accumulator. No two other 8- bit registers can be added
directly (e.g. the contents of register B cannot be added directly to contents
of register C).

The instruction DAD is exception; it adds 16- bit data directly in register
pairs.

Subtraction: - Any 8- bit number, or the contents of a register, or the contents
of'a memory location can be subtracted from the contents of the accumulator
and the result is stored in the accumulator.

The subtraction is performed in 2’s complement, and the results, if negative,
are expressed in 2’s complement. No two other registers can be subtracted
directly.

Increment / Decrement: - The 8- bit contents of a register or a memory
location can be incremented or decremented by 1.Similarly, the 16- bit
contents of a register pair (such as BC) can be incremented or decremented
by 1. These increment and decrement operations differ from addition and
subtraction in an important way i.e. they can be performed in any one of the
registers or in a memory location.

Logical Operations

These instructions perform various logical operations with the contents of the
accumulator.

1.

AND, OR, Exclusive -OR :- Any 8- bit number, or contents of a register, or
of a memory location can be logically ANDed,ORed, or Exclusive-ORed
with the contents of the accumulator. The results are stored in the
accumulator.

92

Chapter 5: Introduction to 8085 Assembly Language Programming

Rotate: - Each bit in the accumulator can be shifted either left or right to the

next position.

Compare: - Any 8-bit number, or the contents of a register, or memory
location can be compared for equality, greater than, or less than, with the

contents of the accumulator.

Complement: - The contents of the accumulator can be complemented; all

0Os are replaced by 1s and all 1s are replaced by Os.

Branching Opertions

This group of instructions alters the sequence of program execution either

conditionally or unconditionally.

1.

Jump:- Conditional jumps are an important aspects of the decision-making
process in programming. These instructions test for a certain condition (e.g.
Zero or Carry flag) and alter the program sequence when the condition is met.
In addition, the instruction set includes an instruction called unconditional

jump.

Call, Return, and Restart:- These instructions change the sequence of a
program either by calling a subroutine or returning from a subroutine. The

conditional Call and Return instructions also can test condition flags.

Machine Control Opertions

These instructions control machine functions such as Halt, Interrupt, or do nothing.

Some important aspects of the instruction set are noted below:

1.

In data transfer, the contents of the source are not destroyed; only the contents
of the destination are changed. The data copy instructions do not affect the
flags.

Any register including memory can be used for increment or decrement.

Arithmetic and logical operations are performed with the contents of the
accumulator.

A program sequence can be changed either conditionally or by testing for a
given data condition.

5.4 Instruction and Data Format

An instruction is a command to the microprocessor to perform a given task on
specified data. Each instruction has two parts: one is the task to be performed,

93

MICROPROCESSOR ARCHITECTURE

called the operation code (opcode) and the second is the data to be operated on,
called the operand. The operand (or data) can be specified in various ways. It may
include 8-bit (or 16- bit) data, an internal register, a memory location, or 8- bit (or
16- bit) address. In some instructions, the operand is implicit.

5.4.1 Instruction Word Size

The 8085 instruction set is classified into the following three groups according to
word size:

1. One-word or 1-byte instructions.
2. Two-word or 2-byte instructions
3. Three-word or 3-byte instructions

In the 8085, “byte” and “word” are synonymous because it is an 8-bit
microprocessor. However, instructions are commonly referred to in terms of bytes
rather than words.

One- Byte Instructions

A 1- byte instruction includes the opcode and the operand in the same byte. For

example:
Table 5.3: One- Byte Instructions

Task Opcode Operand Binary | Hex Code
Code

Copy the contents of the | MOV CA 0100 4FH

accumulator in register C 1111

Add the contents of register | ADD B 1000 80H

B to the accumulator 0000

Invert (complement) each | CMA 0010 2FH

bit in the accumulator 1111

These instructions are 1-byte instructions performing three different tasks. In the
first instruction, both operand registers are specified.

In the second instruction, the operand B is specified and the accumulator is
assumed. Similarly, in the third instruction, the accumulator is assumed to be the
implicit operand. These instructions are stored in 8-bit binary format in memory;
each requires one memory location.

Two-Byte Instructions

In a 2-byte instruction, the first specifies the operation code and thee second byte
specifies the operand. For example:

94

Chapter 5: Introduction to 8085 Assembly Language Programming

Table 5.4 : Two-Byte Instructions

Task Opcode Operand Binary Hex Code

Code
Load an 8-bit | MVI A,Data 0011 1110 | 3E First Byte
dhata byte in DATA Data Second
the Byte
accumulator

Assume the data byte is 32H.The assembly language instruction is written as

Mnemonics Hex Code
MVI A,32H 3E 32H

This instruction would require two memory locations to store in memory.

Three-Byte Instructions

In a 3-byte instruction, the first byte specifies the opcode, and the following two
bytes specify the 16-bit address. Note that the second byte is the low-order address
and the third byte is the high-order address. For example:

Table 5.5: Three-Byte Instructions

Task Opcode | Operand | Binary Hex

Code Code
Transfer the | JMP 2085H 1100 0011 | C3 First byte
program sequence 1100 0011 | 85 Second byte
to the memory
location 2085H 0010 0000 | 20 Third byte

This instruction would three memory locations to store in memory.

These commands are in many ways similar to our everyday conversation. For
example, while eating in a restaurant, we may make the following requests and
orders:

1. Pass (the) butter

2 Pass (the) bowl.

3 (Let us) eat.

4. I will have combination 17 (on the menu).
5

I will have what Susie ordered.

The first request specifies the exact item; it is similar to the instruction for loading
a specific data byte in a register.

95

MICROPROCESSOR ARCHITECTURE

The second request mentions the bowl rather than the contents, even though one is
interested in the contents of the bowl. It is similar to the instruction MOV C,A
where registers (bowls) are specified rather than data.

The third suggestion (let us eat) assumes that one knows what to eat. It is similar
to the instruction Complement, which implicitly assumes that the operand is
accumulator.

In the fourth sentence, the location of the item on menu is specified and not the
actual item. It is similar to the instruction: transfer the data byte from the location
2050H.

The last order (what Susie ordered) is specified indirectly. It is similar to an
instruction that specifies a memory location through the contents of a register pair.

These various ways of specifying data are called the addressing modes. Although
microprocessor instructions require one or more words to specify the operands, the
notations and conventions used in specifying the operands have very little to do
with the operation of the microprocessor.

The mnemonic letters used to specify a command are chosen by the manufacturer.
When an instruction is stored in memory, it is stored in binary code, the only code
the microprocessor is capable of reading and understanding. The conventions used
in specifying the instructions are valuable in terms of keeping uniformity in
different programs and in writing assemblers. The important point to remember is
that the microprocessor neither reads nor understands mnemonics or hexadecimal
numbers.

5.4.2 OPCODE FORMATS

The microprocessor 8085 is an 8 bit microprocessor and has 8 bit opcodes .Each
instruction has a unique opcode.

The opcode contains information regarding the operation, type of operation to be
performed, registers to be used, flags. The opcode is fixed for each instruction.

Notations used in object code or OPCODE are:
Table: 5.6 (a) Opcode Formats

Notations Meaning
ddd Destination register(s)
SSS Source registers,

ddd=sss = 111= A register
= 000= B register
=001 = C register

96

Chapter 5: Introduction to 8085 Assembly Language Programming

Notations Meaning

= 010 = D register

=011 = E register

=100 = H register
=101 = L register

nnn Restart number 000 to 111

Table: 5.6 (b) Opcode Formats

Notation Meaning
yy An 8 bit binary data
VYVy A 16 binary data unit
X Register pair 0= BC
1=DE
XX Register pair 00=BC
01=DE
10=HL
11=SP
(if PUSH/POP)PSW
PPQQ A 16 bit memory address

Table: 5.6 (¢) Information operations

Information operations
Io Io Io Operation
0 0 0 Read/ set interrupt
mask
0 0 1 Immediate
operation Ry
0 1 0 Load / store
0 1 1 Increment /
Decrement Ry,
1 0 0 Increment single
register
1 0 1 Decrement single
register
1 1 0 Immediate
operation on single
register
1 1 1 Register shifting /
Miscellaneous

97

MICROPROCESSOR ARCHITECTURE

Table: 5.6 (d) Arithmetic logic unit operations

Arithmetic logic unit operations
AL AL AL Operation
0 0 0 ADD
0 0 1 ADD with carry
0 1 0 SUB
0 1 1 SUB with borrow
1 0 0 Logical AND
1 0 1 X-OR
1 1 0 Logical OR
1 1 1 Compare
Table: 5.6 (e) Branch condition
Branch condition
Cs Cs Cs Operation
0 0 0 INZ
0 0 1 JZ
0 1 0 INC
0 1 1 JC
1 0 0 JPO
1 0 1 JPE
1 1 0 JP
1 1 1 IM
Table 5.6 (f) Branch condition
Branch operation
Bo Bo Bo Operation
0 0 0 Conditional return
0 0 1 Simple return /
Miscellaneous
0 1 0 Conditional Jump
0 1 1 Unconditional jump
/ Miscellaneous
1 0 0 Conditional CALL
1 0 1 Simple CALL /
Miscellaneous
1 1 0 Special A/ L
operations
1 1 1 Special
unconditional jump

For all data transfer instructions except MOV instruction format the opcode is,

0 0

d | d | d

Io | Io | Io

Destination register

Information operation

98

Chapter 5: Introduction to 8085 Assembly Language Programming

5.4.3 Data Format

The 8085 is an 8- bit microprocessor, and it processes (copy, add, subtract, etc)
only binary numbers. However, the real world operates in decimal numbers and
languages of alphabets and characters. Therefore, we need to code binary numbers

into different media.

Let us examine coding. What is letter “A”? It is a symbol representing a certain
sound in a visual medium that eyes can recognize. Similarly, we can represent or
code groups of bits into different media. In 8- bit processor systems, commonly
used codes and data formats are ASCII, BCD, signed integers, and unsigned

integers.

ASCII Code — This is a 7 bit alphanumeric code that represents decimal numbers,
English alphabets, and nonprintable characters such as carriage return. Extended
ASCII is an 8- bit code.

The additional numbers (beyond 7- bit ASCII code) represent graphical characters.

BCD Code — The term BCD stands for binary-coded decimalj it is used for decimal
numbers. The decimal numbering system has ten digits, 0 to 9. Therefore, we need
only four bits to represent ten digits from 0000 to 1001. The remaining numbers,
1010 (A) to 1111(F), are considered invalid. An 8- bit register in thev8085 can
accommodate two BCD numbers.

Signed Integer - A signed integer is either a positive number or a negative
number. In an 8- bit processor, the most significant digit D7, is used for the sign ; 0
represents the positive sign and 1 represent the negative sign. The remaining seven
bits D¢ — Do, represent the magnitude of an integer. Therefore, the largest positive
integer that can be processed by the 8085 at one time is 0111 1111 (7FH) ; the
remaining Hex number in this microprocessor are represented in 2’s complement

format.

Unsigned Integers- An integer without a sign can be represented by all the 8 bit in
a microprocessor register. Therefore, the largest number that can be processed at
one time is FFH. However, this does not imply that the 8085 microprocessor is
limited to handling only 8- bit numbers.

Numbers larger than 8 bits (such as 16-bit or 24-bit numbers) are processed by
dividing them in groups of 8 bits.

99

MICROPROCESSOR ARCHITECTURE

Now let us examine how the microprocessor interrupts any number. Let us assume
that after performing some operations the result in the accumulator is 0100 0001
(41H) . This number can have many interpretations:

(1) It is an unsigned number equivalent to 65 in decimal.
(2) It is BCD number representing 41 decimal
(3) Itis the ASCII capital letter “A” or

(4) It is group of 8 bits where bits D¢ and Do turn on and the remaining bits turn
off output devices.

The processor processes binary bits; it is up to the user to interpret the result. In our
example, the number 41H can be displayed on a screen as an ASCII “A” or 41
BCD.

5.5 How to Write Assemble, and Execute a Simple Program

A Program is a sequence of instructions written to tell a computer to perform a
specific function. The instructions are selected from the instruction set of the
microprocessor. To write a program, divide a given problem in small steps in terms
of the operations the 8085 can perform, then translate these steps into instructions.
Writing a simple program of adding two numbers in the 8085 language is illustrated
below.

5.5.1 Illustrate Program: Adding Two Hexadecimal Numbers

Problem Statement

Write instructions to load the two hexadecimal numbers 32H and 48H in registers
A and B respectively. Add the numbers, and display the sum at the LED output port
PORTTI.

Problem Analysis

Even though this is a simple problem, it is necessary to divide the problem into
small steps to examine the process of writing programs. The wording of the
problem provides sufficient clues for the necessary steps. They are as follows:

1. Load the numbers in the registers.
2. Add the numbers.
3. Display the sum at the output port PORTI.

100

Chapter 5: Introduction to 8085 Assembly Language Programming

Flowchart

The steps listed in the problem analysis and the sequence can be represented in a
block diagram, called a flowchart. Figure shows such a flowchart representing the
above steps. This is a simple flowchart, and the steps are self-explanatory.

Assembly Language Program

Start

Load 1 Hex
Numbers

Add Numbers

Display Sum

!

Figure 5.2: Flowchart: Adding Two Numbers

To write an assembly language program, we need to translate the blocks shown in
the flowchart into 8085 operations and then, subsequently into mnemonics. By
examining the blocks, we can classify them into three types of operations: Block 1
and 3 are copy operations ; Block 2 in an arithmetic operation ; and Block 4 is a
machine-control operation. To translate these steps into assembly and machine

languages, you should review thee instruction set.

101

MICROPROCESSOR ARCHITECTURE

The translation of each block into mnemonics with comments is shown as follows:

Block 1: MVI A, 32H Load register A with 32H
MVI B, 48H Load register B with 48H

Block 2: ADD B Add two bytes and save the sum in A
Block 3: OUT 01H Display accumulator contents at port 01H
Block 4 : HALT End

From Assembly Language to Hex Code

To convert the mnemonics into Hex code, we need to look up the code in the
8085 instruction set; this is called either manual or hand assembly.

Mnemonics Hex Code
MVI A,32H 3E 2- byte instruction
32
MVI B, 48H 06 2- byte instruction
48
ADD B 80 1- byte instruction
OUT 01H D3 2- byte instruction
01
HLT 76 1- byte instruction

Storing In Memory and Converting From Hex Code to Binary Code

To store the program in R/ W memory of a single-board microprocessor and display
the output, we need to know the memory addresses and the output port address.

Let us assume that R/W memory ranges from 2000H to 20FFH, and the system has
an LED output port with the address 01H. Now, to enter the program:

1. Reset the system by pushing the RESET key.

2. Enter the first memory address using the Hex keys where the program should
be stored.

Let us assume it is 2000H.

3. Enter each machine code by pushing Hex keys. For example, to enter the first
machine code, push the 3, E, and STORE keys. (The STORE key may be
labelled differently in different systems.) When you push the STORE key,
the program will store the machine code in memory location 2000H and
upgrade the memory address to 2001H.

4. Repeat Step 3 until the last machine code, 76H.

5. Reset the system.

102

Chapter 5: Introduction to 8085 Assembly Language Programming

Now the question is : How does the Hex code get converted into binary code?

The answer lies with the Monitor program stored in Read- Only memory (or
EPROM) of the microcomputer system. An important function of the Monitor
program is to check the keys and convert Hex code into binary code. The entire

process of manual assembly is shown in Figure

In this illustrate example, the program will be stored in memory as follows:

Mnemonics Hex Code Memory Memory
Contents Address
MVI A, 32H 3E 0011 1110 2000
32 0011 0010 2001
MVI B,48H 06 0000 0110 2002
48 0100 1000 2003
ADD B 80 1000 0000 2004
OUT O01H D3 1101 0011 2005
01 0000 0001 2006
HLT 76 01111110 2007

This program has eight machine codes and will require eight memory locations to
store the program. The critical concept that needs to be emphasized here is that the
microprocessor can understand and execute only the binary instructions (or data)
everything else (mnemonics, Hex code, comments) is for the convenience of

human being.

Executing the Program

To execute the program, we need to tell the microprocessor where the program
begins by entering the memory address 2000H. Now we can push the Execute key
(or the key with a similar label) to begin the execution. As soon as the Execute
function key is pushed, the microprocessor loads 2000H in the program counter
and the program control is transferred from the Monitor program to our program.

Flowchart Manual Mgltar
8085 X
—P —_—> _—
Hex Code Binary —
Mnemonics Code
Lookup Program To

Memory
For
Storage

Figure 5.3: Manual Assembly Process

103

MICROPROCESSOR ARCHITECTURE

The microprocessor begins to read one machine code at a time, and when it fetches
the complete instruction, it executes that instruction. For example, it will fetch the
machine codes stored in memory locations 2000H and 2001H and execute the
instruction MVI A, 32H; thus it will load 32H in register A. The ADD instruction
will add the two numbers, and the OUT instruction will display the answer 7A (32H
+48H=7A) at the LED port. It continues to execute instructions until it fetches the
HLT instruction.

Recogning the Number of Bytes in An Instruction

Students who are introduced to an assembly language for the first time should hand
assemble at least a few small programs. Such exercises can clarify the relationship
among instruction codes, data, memory registers, and memory addressing. One of
the stumbling blocks in hand assembly is in recognizing the number of bytes in a
given instruction. The following clues can b used to recognize the number of bytes
in an instruction of the 8085 microprocessor.

1. One- byte instruction — A mnemonic followed by a letter (or two letters)
representing the registers (such as A,B, C, D, E,H,L.,M, and SP) is a one-byte
instruction.

Instructions in which registers are implicit are also one- byte instructions.
Examples: (a) MOV A,B; (b) DCX SP (¢) RRC

2. Two- byte instruction — A mnemonic followed by 8-bit (byte) is a two- byte
instruction.

Examples: (a) MVI A, 8-bit; (b) ADI 8-bit

3. Three-byte instruction- A mnemonic followed by 16-bit (also terms such as
adr or dble) is a three-byte instruction.

In writing assembly language programs, we can assign memory addresses in a
sequence once we know the number of bytes in a given instruction. For example, a
three-byte instruction has three Hex codes and requires three memory locations in
a sequence.

In hand assembly, omitting a byte inadvertently can have a disastrous effect on
program execution, as explained in the next section.

5.5.2 How Does a Microprocessor Differentiate Between Data and Instruction
Code?

The microprocessor is a sequential machine. As soon as a microprocessor- based
system is turned on, it begins the execution of the code in memory. The execution

104

Chapter 5: Introduction to 8085 Assembly Language Programming

continues in a sequence, one code after another (one memory location after another)
at the speed of its clock until the system is turned off (or the clock stops) . If an
unconditional loop is set up in a program, the execution will continue until the

system is either reset or turned off.

Now a puzzling questions is : How does the microprocessor differentiate between

a code and data when both are binary numbers ?

The answer lies in the fact that the microprocessor interprets the first byte it fetches

as an opcode.

When the 8085 is reset, its program counter is cleared to 0000H and it fetches the
first code from the location 0000H

In the example of the previous section, we tell the processor that our program
begins at location 2000H. The first code it fetches is 3EH. When it decodes that
code, it knows that it is a two- byte instruction. Therefore, it assumes that the
second code, 32H, is a data byte. If we forgot to enter 32H and enter the next code,
06H, instead, the 8085 will load 06H in the accumulator, interpret the next code,
48H, as an opcode, and continue the execution in sequence. As a consequence, we

may encounter a totally unexpected result.

5.6 Overview of the 8085 Instruction Set

The 8085 microprocessor instruction set has 74 operation codes that result in 246
instructions. The set includes all the 8080A instructions plus two additional
instructions (SIM an RIM, related to serial I/O) .

The following notations are used in the description of the instructions.

R= 8085 8- bit register (A, B,C,D, E, H, L)
M=Memory register (location)

Rs= Register Source (A, B, C, D, E, H, L)

Rd= Register Destination (A, B, C, D, E, H, L)
Rp= Register Pair (BC, DE, HL, SP)

() = Contents of

1. Data transfer (copy) instructions:
From register to register

Load an 8-bit number in a register
Between memory and register
Between I/0 and accumulator

Load 16-bit number in a register pair

105

MICROPROCESSOR ARCHITECTURE

Table 5.8 : Data transfer (copy) instructions

Mnemonics Tasks

1. MOV Rd,Rs Copy data from source register Rs into destination register
Rd

2. MVIR, 8-bit Load 8-bit data in a register

3. OUT 8-bit Send (write) data byte from accumulator to an output

(port address) device

4. IN 8-bit Accept (read) data byte from an input device and place it in

(port address) the accumulator.

5. LXI Rp, 16-bit | Load 16- bit in a register pair

MOV R.M Copy the data byte from a memory location (source) into
a register

LDAX Rp Copy the data byte into the accumulator from a memory
location indicated by a register pair.

LDA 16-bit Copy the data byte into the accumulator from a memory
location specified by 16- bit address.

MOV M,R Copy the data byte from register into memory location.

STAX Rp Copy the data byte from the accumulator into the memory
location indicated by a register pair.

STA 16-bit Copy the data byte from the accumulator in the memory
location specified by 16- bit address

2. Arithmetic instructions:

Add
Subtract

Increment (Add 1)

Decrement (Subtract 1)

Table 5.9: Arithmetic instructions

Mnemonics Tasks

ADD R Add the contents of a register to the contents of the
accumulator

ADI 8-bit Add 8-bit data to the contents of the accumulator

SUB R Subtract the contents of a register from the contents of the
accumulator.

SUI 8-bit Subtract 8-bit data from the contents of the accumulator.

INR R Increment the contents of a register

106

Chapter 5: Introduction to 8085 Assembly Language Programming

Mnemonics Tasks

DCR R Decrement the contents of a register

INX Rp Increment the contents of a register pair

DCX Rp Decrement the contents of a register pair

ADD M Add the contents of a memory location to the contents of the
accumulator

SUBM Subtract the contents of a memory location from the contents
of the accumulator.

INR M Increment the contents of a memory location.

DCR M Decrement the contents of a memory location.

3. Logical instructions:

AND
OR
X-OR
Compare
Rotate
Table 5.10: Logical instructions
Mnemonics Tasks
ANA R/M Logically AND the contents of register/memory with the
contents of the accumulator.
ANI 8-bit Logically AND the 8-bit data with the contents of the
accumulator.
ORA 8-bit Logically OR the contents of register/memory with the
contents of the accumulator.
ORI 8-bit Logically OR the 8-bit data with the contents of the
accumulator.
XRA 8-bit Exclusive-OR the contents of register/memory with the
contents of the accumulator.
XRI 8-bit Exclusive-OR the 8-bit data with the contents of the
accumulator.
CMA Complement the contents of the accumulator.
RLC Rotate each bit in the accumulator to left position.
RAL Rotate each bit in the accumulator including the carry to the
left position.
RRC Rotate each bit in the accumulator including the carry to the

right position.

107

MICROPROCESSOR ARCHITECTURE

Mnemonics Tasks

RAR Rotate each bit in the accumulator including the carry to the
right position.

CMP R/M Compare the contents of register/ memory with the contents
of the accumulator for less than, equal to, or more than.

CPI 8-bit Compare 8-bit data with the contents of the accumulator for
less than, equal to, or more than.

4. Branch Instructions:

Change the program sequence unconditionally.

Change the program sequence if specified data conditions are met.

Table 5.11: Branch Instructions

Mnemonics

Tasks

JMP 16- bit address

Change the program sequence to the location specified
by the 16- bit address.

JZ 16- bit address

Change the program sequence to the location specified
by the 16-bit address if the Zero flag is set.

JNZ 16-bit address

Change the program sequence to the location specified
by the 16- bit address if Zero flag is reset.

JC 16-bit address

Change the program sequence to the location specified
by the 16- bit address if Carry flag is set.

JNC 16-bit address

Change the program sequence to the location specified
by the 16- bit address if Carry flag is reset.

CALL 16- bit address

Change the program sequence to the location of a
subroutine.

RET

Return to the calling program after completing the

subroutine sequence.

5. Machine Control instructions:

Table 5.12: Machine Control instructions

Mnemonics Tasks
HLT stop processing and wait.
NOP Do not perform any operation.

This set of instructions is a representative sample; it does not include various

instructions related to 16- bit data operations, additional Jump instructions, and

conditional Call and Return instructions.

108

Chapter 5: Introduction to 8085 Assembly Language Programming

5.7 Summary

This chapter described the data manipulation functions of the 8085 microprocessor,
provided an overview of the instruction set, and illustrated the execution of
instructions in relation to the system’s clock. The important concepts in this chapter
can be summarized as follows.

The 8085 microprocessor operations are classified into five major groups: data

transfer (copy), arithmetic, logic, branch, and machine control.

An instruction has two parts: opcode (operation to be performed) and operand (data
to be operated on).

The operand can be data (8-bit or 16- bit), address, or register, or it can be implicit.
The method of specifying an operand (directly, indirectly, etc.) is called the
addressing mode.

The instruction set is classified in three groups according to the word size : 1,2,3-

byte instructions.

To write an assembly language program, divide the given problem into small steps
in terms of the microprocessor operations, translate these steps into assembly

language instructions, and then translate them into the 8085 machine code.

Questions and Programming Assignments

1. List the four categories of 8085 instructions that manipulate data.

2. Define opcode and operand, and specify the opcode and the operand in the
instruction MOV H,L.

3. Find the Hex codes for the following instructions, identify the opcodes and
operands, and show the order of entering the codes in memory.

a. STA2050H b.JNZ2070H

4. Find the Hex machine code for the following instructions from the instruction
set, and identify the number of bytes of each instruction.

MVI B, 4FH ; Load the first byte
MVI C,78H; Load the second byte
MOV A,C ; Get ready for addition

ADD B; Add two bytes
OUT 07H ; Display the result at port 7
HLT : End the program

109

MICROPROCESSOR ARCHITECTURE

5. Assemble the following program, starting at location 2000H.

START: IN F2H; Read input switches at port F2H
CMA; Set ON switches to logic 1.
JZ START ; Go back and read input port if all switches are off.

6. Write logical steps to add the following two Hex numbers. Both the numbers
should be saved for future use. Save the sum in the accumulator.

Numbers: A2H and 18H

7. Data byte 28H is stored in register B and data byte 97H is stored in the
accumulator. Show the contents of register B, C, and the accumulator after
the execution of the following two instructions:

MOV A,B
MOV C,A

Books and References
1. Computer System Architecture by M. Morris Mano, PHI Publication, 1998.

2. Structured Computer Organization by Andrew C. Tanenbaum, PHI
Publication.

3. Microprocessors Architecture, Programming and Application with 8085 by
Ramesh Gaonker, PENRAM, Fifth Edition, 2012.

%0 % &%

110

Unit-2

6

INTRODUCTION TO 8085 INSTRUCTIONS

Unit Structure
6.0 Objectives
6.1 Introduction
6.2 Data Transfer (Copy) Opertions
6.2.1 Addressing Modes
6.2.2 Illustrative Program: Data Transfer — From Register to Output Port
6.2.3 Illustrative Program: Data Transfer to Control Output Devices
6.3 Arithmetic Operations
6.3.1 Addition
6.3.2 Illustrate Program: Arithmetic Operations —Addition and Increment
6.3.3 Subtraction
6.3.4 Illustrative Program: Subtraction of Two Unsigned Numbers
6.4 Logic Operations
6.4.1 Logic and
6.4.2 Illustrative Program: Data Masking with Logic And
6.4.3 Or, Exclusive-Or and Not
6.4.4 Setting and Resetting Specific Bits
6.4.5 Illustrative Program : Oring Data from Two Input Ports
6.5 Branch Operations
6.5.1 Unconditional Jump

6.5.2. Illustrative Program: Unconditional Jump to Set Up
A Continuous Loop

6.5.3 Conditional Jumps
6.5.4 Illustrative Program: Testing of the Carry Flag
6.6 Writing Assembly Language Programs

111

MICROPROCESSOR ARCHITECTURE

6.6.1 Getting Started

6.6.2 Illustrative Program: Microprocessor — Controlled
Manufacturing Process

6.6.3 Documentation
6.7 Debuging A Program
6.7.1 Debugging Machine Code

6.8 Summary

6.0 Objectives

. Explain the functions of data transfer (copy) instructions and how the
contents of the source register and destination register are affected.

. Explain the Input/ output instructions and port addresses.

o Explain the functions of the machine control instructions HLT and NOP
. Recognize the addressing modes of the instructions

o Draw a flowchart of a simple program

. Write a program in 8085 mnemonics to illustrate an application of data copy
instructions, and translate those mnemonics manually into their Hex code.

o Explain the arithmetic instructions, and recognize the flags that are set or
reset for given data conditions.

. List the important steps in writing and troubleshooting a simple program.

6.1 Introduction

A microcomputer performs a task by reading and executing the set of instructions
written in its memory. This set of instructions, written in a sequence, is called a
program. Each instruction in the program is a command, in binary, to the
microprocessor to perform an operation. This chapter introduces 8085 basic
instructions, their operations, and their applications.

It is concerned with using instructions within the constraints and capabilities of its
registers and the bus system. A few instructions are introduced from each of the
five groups (Data Transfer, Arithmetic, Logical, Branch, and Machine Control) and
are used to write simple programs to perform specific tasks.

112

Chapter 6: Introduction to 8085 Instructions

The simple illustrative programs given in this chapter can be entered and executed

on the single-board microcomputers used commonly in laboratories.

6.2 Data Transfer (Copy) Opertions

One of the primary functions of the microprocessor is copying data, from a register
(or I/O or memory) called the source, to another (or I/O or memory) called the
destination. The copying function is frequently labelled as the data transfer

function.

MOV : Move Copy a data byte.
MVI: Move Immediate Load a data byte directly.
OUT : Output to Port Send a data byte to an output device.

IN : Input from Port Read a data byte from an input device.

The term copy is equally valid for input /output functions because the contents of
the source are not altered. However, the term data transfer is used so commonly to
indicate the data copy function, these terms are used interchangeably when the

meaning is not ambiguous.

In addition to data copy instructions, it is necessary to introduce two-machine

control operations to execute programs.

HLT : Halt Stop processing and wait.

NOP : No Operation Do not perform any operation.

Instructions

The data transfer instructions copy data from a source into a destination without
modifying the contents of the source. The previous contents of the destination are
replaced by the contents of the source.

In the 8085 processor, data transfer instructions do not affect the flags.

Table 6.1: Data Transfer (Copy) Operations

Opcode Operand Description

MOV Rd, Rs Move
This is a 1-byte instruction

Copies data from source register Rs to destination
register Rd

113

MICROPROCESSOR ARCHITECTURE

Opcode Operand Description

MVI R, 8-bit | Move Immediate
This is a 2-byte instruction

Loads the 8 bits of the second byte into the register

specified.
ouT 8-bit port | Output to Port
address This is a 2-byte instruction
Sends (copies) the contents of the accumulator (A) to
the output port specified in the second byte.
IN 8-bit port | Input from Port
address This is a 2-byte instruction
Accepts (reads) data from the input port specified in
the second byte, and loads into the accumulator.
HLT Halt
This is a 1-byte instruction
The processor stops executing and enters wait state
The address bus and data bus are placed in high
impedance state. No register contents are affected.
NOP No Operation

This is 1-byte instruction
No operation is performed.

Generally used to increase processing time or
substitute in place of an instruction. When an error
occurs in a program and an instruction needs to
eliminated, it is more convenient to substitute NOP

than to reassemble the whole program.

Example 6.1:- Load the accumulator A with data byte 82H (H as Hexadecimal
number) and save the data in register B.

Instructions: MVI A, 82H
MOV B, A

114

Chapter 6: Introduction to 8085 Instructions

The first instruction is a 2-byte instruction that loads the accumulator with the data
byte 82H, and the second instruction MOV B, A copies the contents of the
accumulator in register B without changing the contents of the accumulator.

Example 6.2 :- Write instructions to read eight ON/OFF switches connected to the
input port with the address 00H, and turn on the devices connected to the output
port with the address 01H, as shown in Figure 6.1

M“‘ﬂ“i L IR AR -
éihom LR SRR
4 : u U R
!l;((ﬁ"l= 0 AN
= s.~"3§ 3 e 6 g A
—— Somo . Data Bus Flags | F
i Tﬂ SW 4F ——p =1 ol Y 4F ags
| E
. D
eSO) : :
S; ON 1 Port
o A on | p,
s Yon 1]
= sm" " | f,““.". ' ' s e
e o
% L—lnp\nmb _o__ g;—
Bidenazent i =
& P
: N ONTE—
‘ B f— ON ——
ke 7l —-E:l—mm

Figure 6.1: Reading Data at Input Port and Sending Data to Output Port

Solution: - The input has eight switches that are connected to the data bus through
the tri-state buffer. Any one of the switches can be connected to +5V (logic 1) or
to ground (logic 0), and each switch controls the corresponding device at the output
port. The microprocessor needs to read the bit pattern on the switches and send the
same bit pattern to the output port to turn on the corresponding devices.

Instructions: IN O0H
OUT 01H
HLT

When the microprocessor executes the instruction IN 00H, it enables the tri-state
buffer. The bit pattern 4FH formed by the switch positions is placed on the data bus
and transferred to the accumulator. This is called reading an input port.

115

MICROPROCESSOR ARCHITECTURE

When the microprocessor executes the next instruction, OUT 01H, it places the
contents of the accumulator on the data bus and enables the output port 01H.The
output port latches the bit pattern and turns ON/ OFF the devices connected to port
according to the pattern. In the Figure 6.1, the bit pattern 4FH will turn on the
devices connected to the output port data lines Ds, D3, D2, D1, and Do . The space
heater and four light bulbs. To turn off some of the devices and turn off some of
the devices and turn on the other devices, the bit pattern can be modified by
changing the switch positions.

For example, to turn on the radio and the coffeepot and turn off all other devices,
the switches S4 and Ss should be on the others should be off. The microprocessor
will read the bit pattern 0011 0000, and this bit pattern will turn on the radio and
the coffeepot and turn off other devices.

The preceding explanation raises two questions:
1. What are second bytes in the instructions IN and OUT?
2. How are they determined?

In answer to the first question, the second bytes are 1/O port addresses. Each 1/0
port is identified with a number or an address similar to the postal address of a
house. The second byte has eight bits, meaning 256 (2%) combinations; thus 256
input ports and 256 output ports with the addresses from O0OH to FFH can be
connected to the system.

The answer to the second question depends on the logic circuit used to connect and
identify a port by the system designer.

6.2.1 Addressing Modes

The above instructions are commands to the microprocessor to copy 8-bit data from
a source to destination. In these instruction source can be a register, an input port,
or an 8-bit number (00H to FFH) .Similarly, a destination can be register or an
output port.

The various formats of specifying the operands are called the addressing modes.
1. Immediate Addressing — MVI R, Data

2. Register Addressing - MOV Rd, Rs

3. Direct Addressing - IN / OUT Port#

The classification of the addressing modes is unimportant, except that it provides
some clues in understanding mnemonics.

116

Chapter 6: Introduction to 8085 Instructions

For example, in the case of the MVI opcode, the letter I suggests that the second
byte is data and not a register. What is important is to become familiar with the

instructions.
6.2.2 Illustrative Program: Data Transfer — From Register to Qutput Port

Problem Statement

Load the hexadecimal number 37H in register B, and display the number at the
output port labelled PORT]1.

Problem Analysis

Even though this is a very simple problem it is necessary to break the problem into
small steps and outline the thinking process in terms of the tasks.

STEPS
Step 1: Load register B with a number.
Step 2: Send the number to the output port.

Questions to be asked

Is there an instruction to load the register B? YES - MVI B.

Is there an instruction to send the data from register B to the output port? No
Review the instruction OUT. This instruction sends data from the accumulator to
an output port.

The solution appears to be as follows: Copy the number from register B into

accumulator A.

Is there an instruction to copy data from one register to another register ? YES —
MOV Rd, Rs.

Flowchart

The thinking process described here and the steps necessary to write the program
can be represented in a pictorial format, called a flowchart. Figure 6.2 describes
the preceding steps in a flowchart.

Flowcharting is an art. The flowchart in Figure 6.2 does not include all the steps
described earlier. Although the number of steps that should be represented in a
flowchart is ambiguous, not all of them should be included. It should represent a
logical approach and sequence of steps in solving the problem.

117

MICROPROCESSOR ARCHITECTURE

A flowchart is a similar to the block diagram of a hardware system or to the outline
of a chapter. Information in each block of the flowchart should be similar to heading
of a paragraph.

|

Enter Number in
a Register

Output
Number

Figure 6.2 : Flowchart

Symbol commonly used in flowcharting are shown in Figure 6.3. Two types of
symbols — rectangles and ovals — are already illustrated in Figure 6.2 .

Arrow: Indicates the direction of the program
execution

Rectangle: Represents a process or an operation

Diamond : Represents a decision-making block

Oval : Indicates the beginning or end of a
© program

118

Chapter 6: Introduction to 8085 Instructions

Double-sided rectangle : Represents a
predefined process such as a subroutine

Circle with an arrow: Represents continuation

(an entry or exit) to a different page.

Figure 6.3: Flowcharting Symbols

The diamond is used with Jump instructions for decision making and the double-

sided rectangle is used for subroutine.

The flowchart in Figure 6.2 includes what steps to do and in what sequence. As a

rule, a general flowchart does not include how to perform these steps or what

registers are being used.

Assembly Language Program

Tasks 8085 Mnemonics
1. Load register B with 37H MVI B, 37H
2.Copy the number from B to A MOV A, B
3. Send the number to output —port 01H | OUT PORT1
4. End the program HLT

Translation from Assembly Language to Machine Language

Now, to translate the assembly language program into machine language, look up

the hexadecimal machine codes for each instruction in the 8085 instruction set and

write each machine code in the sequence, as follows :

8085 Mnemonics Hex Machine Code
1.MVI B, 37H 06
37
2.MOV A, B 78
3.0UT PORTI1 D3
01
4 HLT 76

This program has six machine codes and will require six bytes of memory to enter

the program into your system. If your single-board microprocessor has R/W

memory starting at the address 2000H, this program can be entered in the memory

119

MICROPROCESSOR ARCHITECTURE

locations 2000H to 2005H. The format generally used to write an assembly
language program is shown below.

Program Format

Memory | Machine | Instruction | Operand | Comments

Address Code Opcode

(Hex) (Hex)

XX00 06 MVI B, 37H Load register B with data
37H

XX01 37

XX02 78 MOV A, B Copy(B) into (A)

XX03 D3 ouT PORTI1 | Display accumulator

XX04 PORT1 contents (37H) at Port1

XXO05 76 HLT End of the program

This program has five columns: Memory Address, Machine Code, Opcode,
Operand and Comments.

Memory Address These are 16-bit addresses of the user (R/W) memory in the
system. Where the machine code of the program is stored. The beginning address
is shown as XX00; the symbol XX represents the page number of the available
R/W memory in the microcomputer, and 00 represents the line number.

Machine Code

The monitor program, which is stored in Read-only memory (ROM) of the
microcomputer, translates the Hex number into binary digits and stores the binary
digits in the R/W memory.

If the system has R/W memory with the starting address at 2000H and the output
port address 01H, the program will be stored as follows :

Memory Address Memory Contents Hex Code
2000 0000 0110 06
2001 00110111 37
2002 0111 1000 78
2003 1101 0011 D3
2004 0000 0001 01
2005 01110110 76

120

Chapter 6: Introduction to 8085 Instructions

Opcode (Operation Code) :- An instruction is divided into two parts : Opcode and
Operand . Opcodes indicate the type of operation or function that will be performed
by the machine code.

Operand: - The operand part of an instruction specifies the item to be processed;
it can be 8- bit or 16-bit data, a register, or a memory address.

An instruction, called mnemonic is formed by combining an opcode and an

operand.

The mnemonics are used to write programs in the 8085 assembly language; and
then mnemonics in these programs are translated manually into the binary machine

code by looking up in the instruction set.

Comments The comments are written as a part of the proper documentation of a
program to explain or elaborate the purpose of the instruction used.

These are separated by a semicolon (;) from an instruction on same line.

How to Enter and Execute The Program

This program assumes that one output port is available on your microcomputer
system. The program cannot be executed without modification if your
microcomputer has no independent output ports other than the system display of
memory address and data or if it has programmable I/O ports.

1. Push the Reset key.
2. Enter the 16-bit memory address of the first machine code of your program.

3. Enter and store all the machine codes sequentially, using the hexadecimal
keyboard on your system.

4. Reset the system.
5. Enter the memory address where the program begins and push the Execute

key.

If the program is properly entered and executed, the data byte 37H will be
displayed.

How to Execute a Program without an Output Port

If your system does not have an output port, either eliminate the instruction OUT
PORTI, or substitute NOP (No Operation) in place of the OUT instruction.
Assuming your system has R/W memory starting at 2000H, you can enter the
program as follows:

121

MICROPROCESSOR ARCHITECTURE

Memory Machine Mnemonic

Address Code Instruction
2000 06 MVIB, 37H
2001 37
2002 78 MOV A, B
2003 00 NOP
2004 00 NOP
2005 76 HLT

After you have executed this program, you can find the answer in the accumulator
by pushing the Examine Register Key

The program also can be executed by entering the machine code 76 in location
2003H, thus eliminating the OUT instruction.

6.2.3 Illustrative Program: Data Transfer to Control Output Devices

Problem Statement

A microcomputer is designed to control various appliances and lights in your
house. The system has an output port with the address 01H, and various units are
connected to the D7 to Do as shown in Figure 6.4. On a cool morning you want to
turn on the radio, the coffeepot, and space heater. Write appropriate instructions for
the microcomputer.

Assume the R/W memory in your system begins at 3000H.

Problem Analysis

The output port in Figure 6.4 is a latch (D flip-flop) .When data bits are sent to the
output port they are latched by the D flip-flop. A data bit at logic 1 supply
approximately 5V as output and can turn on solid-state relays.

To turn on the radio, the coffeepot and the space heater set D¢, Ds, and D4 at logic
1, and the other bits at logic 0.

Dy Ds Ds D4 D3 D> D Do
0 1 1 1 0 0 0 0 =70H

The output port requires 70H, and it can be sent to the port by loading the
accumulator with 70H.

122

Chapter 6: Introduction to 8085 Instructions

2@ bos (A1) 103 umuand 281 6
R sieb hoo. — '
D,

s 1

Output
Latch

Port Address OlH

| D I

iR Do
(Wﬁ_‘— L)
54 Output ____}
E) Enable

Figure 6.4: Output Port to Control Devices

Program
Memory | Machine | Mnemonic | Comments
Address | Code Instruction
3000 3E MVI A, | Load the accumulator with the bit pattern
70H necessary to turn on the devices
3001 70
3002 D3 OUT 01H Send the bit pattern to the port 01H, and
3003 01 turn on the devices
3004 76 HLT End of the program
Program Output

The program simulates controlling of the devices connected to the output port by
displaying 70H on a seven-segment LED display. If your system has individual

LEDs, the binary pattern — 0111 0000- will be displayed.

6.3 Arithmetic Operations

The 8085 microprocessor performs various arithmetic operations, such as addition,
subtraction, increment, and decrement. These arithmetic operations have the
following mnemonics.

ADD : Add Add the contents of a register.

ADI : Add Immediate Add 8- bit data

SUB : Subtract Subtract the contents of a register.

SUI : Subtract Immediate Subtract 8-bit data.

INR : Increment Increase the contents of a register by 1
DCR : Decrement Decrease the contents of a register by 1.

123

MICROPROCESSOR ARCHITECTURE

The arithmetic operations Add and Subtract are performed in relation to the
contents of the accumulator. However, the Increment or Decrement operations can
be performed in any register.

Instructions

These arithmetic instructions (except INR and DCR)

1. Assume implicitly that the accumulator is one of the operands.

2 Modify all the flags according to the data conditions of the result.
3. Place the result in the accumulator.
4

Do not affect the contents of the operand register.

The instructions INR and DCR
1. Affect the contents of the specified register.
2. Affect all flags except the CY flag.

Opcode | Operand | Description

ADD R* Add

It is 1- byte instruction

Adds the contents of register R to the contents of the
accumulator.

ADI 8-bit Add Immediate

It is 2- byte instruction

Adds the second byte to the contents of the accumulator.
SUB R* Subtract

It is 1- byte instruction

Subtracts the contents of register R from the contents of
the accumulator.

SUI 8-bit Subract Immediate

It is 2- byte instruction

Subtracts the second byte from the contents of the
accumulator.

INR R* Increment

It is a 1-byte instruction

Increases the contents of register R by 1
All flags except the CY are affected
DCR R* Decrement

It is a 1-byte instruction

Decreases the contents of register R by 1
All flags except the CY are affected

124

Chapter 6: Introduction to 8085 Instructions

6.3.1 Addition

The 8085 performs addition with 8-bit binary numbers and stores the sum in the
accumulator. If the sum is larger than eight bits (FFH), it sets the Carry flag.

Addition can be performed either by adding the contents of a source register (B, C,
D, E, H, L, or memory) to the contents of the accumulator (ADD) or by adding the
second byte directly to the contents of the accumulator (ADI).

Example 6.3 :- The contents of the accumulator are 93H and the contents of
register C are B7TH. Add both contents.

Instruction :- ADD C

CY D7 Ds Ds Dy D3 D> D Do

(A) 93= 1 o Jo 1 o |o |1 1
+

(©) B7= EERE EERE 1 1

Carry 1 1 1 1 1 1

SUM(A) | 14A |1 0 1 0 |0 1 0 1 0

Flag Status: S=0, Z=0, CY=1

When the 8085 adds 93H and B7H, the sum is 14AH; it is larger than eight bits, .
Therefore, the accumulator will have 4AH in binary, and the CY flag will be set.

The result in the accumulator (4AH) is not 0, and bit D7 is not 1; therefore the Zero
and the Sign flags will be reset.

Example 6.4:- Add the number 35H directly to the sum in the previous example
when the CY flag is set.

Instruction: - ADI 35H

CY | Dy D¢ Ds | D Dj Dy D Do
(A) 4AH + 1 0 1 0 0 1 0 1 0
Data 35H= 0 0 1 1 0 1 0 1

SUM(A) | 7FH 0 0 1 1 1 1 1 1 1

Flag Status: S=0, Z=0, CY=0

The addition of 4AH and 35H does not generate a carry and will reset the previous
carry flag.

125

MICROPROCESSOR ARCHITECTURE

Therefore, in adding numbers, it is necessary to count how many times the CY flag
is set by using some other programming techniques.

Example 6.5:- Assume the accumulator holds the data byte FFH. Illustrate the
difference in the flags set by adding 01H and by incrementing the accumulator
contents.

Instruction:- ADI 01H
CY | Dy Ds Ds Dy D3 D> D Do

(A) FFH= 1 1 1 1 1 1 1 1
+

(Data) 01H= 0 0 0 0 0 0 0 1

Carry 1

SUM(A) | 100H |1 0 0 0 0 0 0 0 0

Flag Status: S=0, Z=1, CY=1

After adding 01H to FFH the sum in the accumulator is 0 with a carry.
Therefore, the CY and Z flags are set. Sign flag is reset because D7 is 0.
Instruction INR A

The accumulator contents will be 00H, the same as before. However, the instruction
INR will not affect the Carry flag; it will remain in its previous status.

Flag Status: S=0, Z=1, CY=NA
Flag Concepts And Cautions

After an operation, one or more flags may be set, and they can be used to change
the direction of the program sequence by using the Jump instructions. The
programmer should be alert for them to make a decision. If the flags are not
appropriate for the tasks, the programmer can ignore them.

Caution #1 :- In the Example 6.3, CY flag is set, and in Example 6.4, CY flag is
reset. [f programmer ignores the flag, it can be lost after the subsequent instructions.
The flag can be ignored when the programmer is not interested in using it.

Caution #2 :- In Example 6.5, two flags are set. The programmer may use one or
more flags to make decisions or may ignore them if they are irrelevant.

Caution #3 :- The CY flag has a dual function ; it is used as a carry in addition and
as a borrow in subtraction.

126

Chapter 6: Introduction to 8085 Instructions

Carry Flag Set to 1 because the answer is larger than eight bits; there is a carry
generated out of the last bit D7. During the addition bits Do through Ds may generate
carries but these carries do not affect the CY flag.

Misconception #1:- Bit Dy in the result (4AH) corresponds to the bit position of
the Carry flag Dy in the flag register, therefore, the Carry flag is reset.

Misconception #2 :- In the addition process, bits Do of 93H and B7H generate a
carry (or other bit additions generate carries); therefore the Carry flag is set.

Zero Flag:- Reset to 0 because the answer is not zero. The Zero flag is set only
when all eight bits in the result are 0.

Misconception #3 :- Bit Ds in the result (4AH) is 1, and it corresponds to bit Ds
(zero flag position) in the fag register. Therefore, the Z flag is set.

Sign Flag :- Reset to 0 because D7 in the result is 0. The position of the sign flag
in the flag register is also D7 . But it is just a coincidence. The microprocessor
designer could have chosen bit D¢ for the Sign flag and bit D7 for the Zero flag in
the flag register. The Sign flag is relevant only when we are using signed numbers.

Misconception #4 :- If the Sign flag is set, the result must be negative.

6.3.2 Illustrate Program: Arithmetic Operations —Addition and Increment

Problem Statement

Write a program to perform the following functions, and verify the output.

1. Load the number 8BH in register D

2. Load the number 6FH in register C.

3. Increment the contents of register C by 1.

4. Add the contents of register C and D and display the sum at the output
PORT]I.

Program

The illustrative program for arithmetic operations using addition and increment is

presented as figure 6.5 to show the register contents during some of the steps.

127

MICROPROCESSOR ARCHITECTURE

Comments and art

Memory Machine Instruction e
Address (H) Code Opcode Operand Registei ! .
The first four machine codes a
_ load the registers as .
0 SZ oY]
*)l(lxoo 16 MVl D8BH A X X X
o1 8B B 6F
02 OE MVI C.6FH D 8B
03 = 6F H
04 oC INR (0 Add 01 10 (C): 6F + 01 = 700 =
Sz CY
A 70 00 %
05 79 MOV A.C B 5
8B
06 82 ADD D :> A = ? > CJ
07 D3 ouT PORTI 0 =
EEEYN
PORT # PORTI
. = 8B
9 76 HLT

End of the program

Figure 6.5: Illustrative Program for Arithmetic Operations-Using
Addition and Increment

Program Description

1. The first machine cycle codes load 8BH in register D and 6FH in register C .
These are data copy instructions, so no flags are affected and they remain in
the previous state.

The status of the flags is shown X to indicate no change in their status.

2. Instruction INR C adds 1 to 6FH and changes the contents of C to 70H . The
result is nonzero and bit D7 is zero; therefore, the S and Z flags are reset. The
CY flag is not affected by the INR instruction,

3. Toadd (C) to (D), the contents of the registers must be transferred to the
accumulator because the 8085 cannot add two registers directly. The
instruction MOV A, C copies 70Hfrom C register into the accumulator
without affecting (C).

4. Instruction ADD D, adds (D) to (A) stores the sum in A, and sets the Sign
flag as shown below:

(A) :70H=01110000
+
(D) :8BH=1000 1011
(A) :FBH=11111011
Flag Status: S=1, Z=0, CY=0
5. The sum is displayed by the OUT instruction.

128

Chapter 6: Introduction to 8085 Instructions

Program Output

It will display FBH at the output port. If the output port is not available, the program
can be executed by entering the NOP instructions in place of the OUT instruction
and the answer FBH can be verified by examining the accumulator A. Similarly the
contents of registers C and D and the flags can be verified.

By examining the contents of the registers, following points can be confirmed:
1. The sum is stored in Accumulator

2. The contents of the source registers are not changed.

3. The Sign (S) flag is set.

Even though the Sign(S) flag is set, this is not a negative sum. The microprocessor
sets the Sign flag whenever an operation results in D7 =1. The microprocessor
cannot recognize whether FBH is a sum, a negative number, or a bit pattern.

In this example, the addition is not concerned with the signed numbers. With the
signed numbers, bit D7 is reserved for a sign programmer and no number larger
than +127;¢ can be entered.

6.3.3 Subtraction
The 8085 performs subtraction by using the method of 2’s complement.

The subtraction can be performed by using either the instruction SUB to subtract
the contents of a source register or the instruction SUI to subtract an 8- bit number
from the contents of the accumulator.

The 8085 performs the following steps internally to execute the instruction SUB
(or SUI)

Step1: Converts subtrahend (the number to be subtracted) into its 1’s complement.
Step 2 : Adds 1 to 1’s complement to obtain 2’s complement of the subtrahend.
Step3: Add 2’s complement to the minuend (the contents of the accumulator)

Step 4: Complement the Carry flag

Example 6.6

Register B has 65H and the accumulator has 97H. Subtract the contents of register
B from the contents of the accumulator.

Instruction: SUB B
Subtrahend (B) : 65H = 01100101

129

MICROPROCESSOR ARCHITECTURE

Stepl:

1’s complement of 65H= 10011010

Step2:
+

Add 01 to obtain 00000001

2’s complement of 65H= 1001 1011

To subtract: 97H- 65H

Step 3:

Add 97H to 2’s complement of 65H= 1001 0111

2’s complement of 65H= 1001 1011

Carry 11111
Cy 1 00110010
Cy 0 00110010

Step 4 : Complement Carry
Result (A) :32H
Flag Status: S=0, Z=0, CY=0

If the answer is negative, it will be shown in the 2’s complement of the actual
magnitude.

For example, if the above subtraction is performed as 65H — 97H, the answer will
be the 2’s complement of 32H with the Carry (Borrow) flag set.

6.3.4 Illustrative Program: Subtraction of Two Unsigned Numbers

Problem Statement

Write a program to do the following:

1. Load the number 30H in register B and 39H in register C.
2. Subtract 39H from 30H

3. Display the answer at PORT1

Program

The illustrative program for subtraction of two unsigned numbers is presented as
Figure 6.6 to show the register contents during the steps.

130

Chapter 6: Introduction to 8085 Instructions

“

e S

T A Bl)
05 91 SUB c ___:> . 7 \ &

; Comments and
Memory Machine Instruction
Address (H) Code Opcode Operand

Register Contents

HILO Load the minuend in register B
AX0 o M v RN Load the subtrahend in register C
ol 30 S The register contents:
02 OE MVI C,39H
03 39 A 30 F
04 78 MOV A.B I e = "

06 D3 ouT PORTI
07 PORT#
08 76 HLT =

Figure 6.6: Illustrative Program: Subtraction of Two Unsigned Numbers

Program Description

1.

Register B and C are loaded with 30H and 39H, respectively. The instruction
MOV A, B copies 30H into the accumulator. The contents of a register can
be subtracted only from the contents of the accumulator and not from any
other register.

To execute the instruction SUB C the microprocessor performs the following

steps
Step1:
39H = 0011 1001
1’s complement of 39H= 11000110
Step2:
|.

Add 01 to obtain 0000 0001
2’s complement of 39H= 1100 0111

To subtract: 30H- 39H

Step 3:
Add 30H to 2’s complement of 39H= 0011 0000
2’s complement of 39H= 1100 0111

CY=0 11110111

131

MICROPROCESSOR ARCHITECTURE

Step 4: Complement carry
CY=1 1111011 1=F/H

3. The number F7H is a 2’s complement of the magnitude (39H — 30H) = 09H.
4. The instruction OUT display F7H at PORTI.

Program Output

In this program, the unsigned numbers were used to perform the subtraction.

There is no way to differentiate between a straight binary number and 2’s
complement by examining the answer at the output port. The flags are internal and
not easily displayed. However, a programmer can test the Carry flag by using the
instruction Jump On Carry (JC) and can find a way to indicate the answer is in 2’s
complement.

6.4 Logic Operations

The 8085instruction set includes logic functions such as AND, OR, Ex OR, and
NOT (complement) . The opcodes of these operations as follows :

ANA: AND Logically AND the contents of a register
ANI: AND Immediate Logically AND 8-bit data

ORA: OR Logically OR the contents of a register
ORI: OR Immediate Logically OR 8-bit data

XRA: X-OR Exclusive —OR the contents of a register.
XRI: X-OR Immediate Exclusive-OR 8-bit data.

All logic operations are performed in relation to the contents of the accumulator.

Instructions
1. Implicitly assume that the accumulator is one of the operands.

2. Reset (clear) the CY flag .The instruction CMA is an exception; it does not
affect any flags.

3. Modify the Z, P, and S flags according to the data conditions of the result.
4. Place the result in the accumulator.

5. Do not affect the contents of the operand register.

132

Chapter 6: Introduction to 8085 Instructions

Opcode

Operand

Description

ANA

R

Logical AND with Accumulator
This is a 1- byte instruction

Logically ANDs the contents of the register R with the
contents of accumulator.

8085 : CY is reset and AC is set.

ANI

8-bit

AND Immediate with Accumulator
This is a 2- byte instruction

Logically ORs the second byte with the contents of
accumulator

8085 : CY is reset and AC is set.

ORA

Logical OR with Accumulator
This is a 1- byte instruction

Logically ORs the contents of the register R with the
contents of accumulator

ORI

8-bit

OR Immediate with Accumulator
This is a 2- byte instruction

Logically ORs the second byte with the contents of
accumulator

XRA

Logical Exclusive-OR with Accumulator
This is a 1- byte instruction

Exclusive-OR the contents of the register R with the
contents of accumulator.

XRI

8-bit

Exclusive-OR Immediate with Accumulator
This is a 2- byte instruction

Exclusive-ORs the second byte with the contents of

accumulator

CMA

Complement Accumulator

This is a I-byte instruction that complements the
contents of accumulator

No flags are affected.

133

MICROPROCESSOR ARCHITECTURE

6.4.1 Logic AND

The process of performing logic operations through the software instructions is
slightly different from the hardwired logic. The AND gate is shown in Figure 6.7(a)
has two inputs and one output

On the other hand, the instruction ANA simulates eight AND gates, as shown in
Figure 6.7(b) .

For example, assume that register B holds 77H and the accumulator A holds 81H.
The result of the instruction ANA B is 01H and is placed in the accumulator
replacing the previous contents as shown in figure 6.7 (b)

®) = o]|]||||0|l|'ll|':‘

l-pm:D—omn (A)=[||oJoIo|olo[o||k

@) ANA B

[T T T ol

(b)

Figure 6.7(a) Gate (b) a simulated ANA Instruction

Figure 6.7(b) shows that each bit of register b is independently ANDed with each
bit of the accumulator, thus simulating eight 2- input AND gates.

6.4.2 Illustrative Program: Data Masking with Logic AND

Problem Statement

To conserve energy and to avoid an electrical overload on a hot afternoon,
implement the following procedures to control the appliances throughout the
house(figure 6.8) . Assume that the control switches are located in the kitchen, and
they are available to anyone in the house. Write the instruction to

1. Turn on the air conditioner if switch S7 of the input port O0H is on.

2. Ignore all other switches of the input port even if someone attempts to turn
on other appliances.

Problem Analysis

In this problem we are interested in only one switch positions, S;, which is
connected to data line D7. Assume that various persons in the family have turned
on the switches of the air conditioner (S7), the radio (S4), and the lights (S3, S», Si,
So).

134

Chapter 6: Introduction to 8085 Instructions

If the microprocessor reads the input port (IN 00H), the accumulator will have data
byte 9FH .This can be simulated by using the instruction MVI A, 9FH .However,
if we are interested in knowing only whether switch S7 is on, we can mask bits De
through Do by ANDing the input data with a byte that has 0 in bit positions Ds
through Do and 1 in the position D7 .

D7 D¢ Ds Ds D3z D2 D1 Do
1 0O 00 0O0O0 O =80H

After bits Ds through Do have been masked, the remaining byte can be sent to the
output port to simulate turning on the air conditioner.

Program
Memory | Machine | Instruction Comments
Address | Code Opcode Operand
HI-LO
XX00 3E MVI A, Data This instruction simulates
01 9F the instruction IN O0H
02 E6 ANI 80H Mask all the bits except D7
03 80
04 D3 ouT 01H Turn on the air conditioner
05 01 if S71s on.
06 76 HLT End of program
Program Output

The instruction ANI 80H ANDs the accumulator data as follows:

(A)= 1001 1111 (9FH)
AND

(Masking Byte = 10000000 (80H)
(A) 10000000 (80H)

Flag Status: S=1,7=0,CY=0

The ANDing operation always reset the CY flag. The result (80H) will be placed
in accumulator and then sent to output port, and the logic 1 of data bit D7 turns on
the air conditioner.

135

MICROPROCESSOR ARCHITECTURE

The masking is a commonly used technique to eliminate unwanted bits in abyte.
The masking byte to be logically ANDed is determined by placing Os in bit
positions that are to be masked and by placing 1s in the remaining bit positions.

6.4.3 OR, Exclusive-OR and NOT

The instruction ORA (and ORI) simulates logic ORing with eight 2- input OR gate
; this process is similar to that of ANDing The instruction XRA (and XRI) performs
Exclusive ORing of eight bits, and the instruction CMA inverts bits off the
accumulator.

Example 6.7:- Assume register B holds 93H and the accumulator holds 15H.
Illustrate the results of the instruction ORA B, XRA B, and CMA.

1. The instruction ORA B will perform the following operation:

(B) 10010011 (93H)
OR

(A) 00010101 (15H)
(A) 10010111 | (97H)

Flag Status: S=1, Z=0, CY=0

The result 97H will be placed in the accumulator, the CY flag will be reset, and the
other flags will be modified to reflect the data conditions in the accumulator.

2. The instruction XRA B will perform the following operation.

(B) 10010011 (93H)
X-OR

(A) 00010101 (15H)
(A) 10000110 | (86H)

Flag Status: S=1, Z=0, CY=0

The result 86H will be placed in the accumulator and flags will be modified as
shown.

3. The instruction CMA will result in

(A) 00010101 (15H)
CMA
(A) 11101010 | (EAH)

The result EAH will be placed in the accumulator and no flags will be modified.

136

Chapter 6: Introduction to 8085 Instructions

6.4.4 Setting And Resetting Specific Bits

At the various times, we may want to set or reset a specific bit without affecting
the other bits. OR logic can used to set the bit, and AND logic can be used to reset
the bit.

Example 6.8 :- In Figure 6.8, keep the radio on (D4) continuously without affecting
functions of other appliances, even if someone turns off the switch S4 .

g‘ﬁ sty 1T D,
~oN: - iy
m: s,_———
L ON: Se— 11 Input Port Data Bus 8085
3 20 J s 1 m . symm
lm' Sy]
R 1 . e
" ON: !
L
Bty 1 Do
ON: So—] EN
o oo Input ___T Air Conditioner
Enable - Heater
O Coffeepot
sl ni Output |—— Radio
adi o Port 01 Light 1
o) 2306w Kight2
Light 3
EN ——— Light 4
Output Enable e

Figure 6.8:- Input Port To Control Appliances

Solution:- To keep the radio on without affecting the other appliances, the bit D4
should be set by ORing the reading of the input port with the data byte 10H as
follows :

INOOH | (A= | Dy Ds Ds Dy D3 D> D1 Do
ORI = 0 0 0 1 0 0 0 0
10H

4) [Dy |Ds [Ds |1 Dy [D: [Di |Dy

Flag Status: CY=0 ; other will depends on data

The instruction IN reads the switch positions shown as D7 — Do and the instruction
ORI sets the bit D4 without affecting any other bits.

137

MICROPROCESSOR ARCHITECTURE

Example 6.9:- In the Figure 6.8, assume it is winter and turn off the air conditioner
without affecting the other appliances.

Solution :- To turn off the air conditioner, reset bit D7 by ANDing the reading of
the input port with the data byte 7FH as follows :

INOOH |[(A=] D7 | De | Ds | Ds | D;s | D, | Di | Do
ANI7FH | = 0 1 1 1 1 1 1 1

(A) 0 Ds Ds D4 D3 D2 D Do

Flag Status: CY=0 ; other will depends on data
The ANI instruction resets bit D7 without affecting the other bits.

6.4.5 Illustrative Program : ORing Data From Two Input Ports
Problem Statement

An additional input port with eight switches and the address 01H (Figure 6.9) is
connected to the microcomputer shown in the Figure 6.8 to control the same
appliances and lights from the bedroom as well as from the kitchen. Write
instructions to turn on the devices from any of the input ports.

F 5 /\
Data Bus —{
W, 1 B ‘M‘
SW, 0 e T A L 3033
SWy | Input Port L L Mzm |
SW. 0 00H /-—j guBs Sys! |
< 1 Located Lt |
SW, in L4177
0 -
SW, o] Kitchen T
SW, fnE= 1 L/
0 r—
SWo EN Do
Enable t e
Input 00H /" = Air (io::l::::er
g OB sy
W, 1 = [1 Co ‘eePO
SWe e — 1 Radio
SWs O Input Port L, Output Port (1 Light 1 (Kitchen)
SW, ! OlH = olH [0 Light2
SW : u’f:l “ L,_,/ 0 Light3
SW, O e iroom | i }_l’,_. Light 4 (Bedroom)
sW, z ‘ = = ey
SW, EN :
t Enable
Enable

Input O1H Ouipst QB!

Figure 6.9 Two Input Ports to Control Output Devices

138

Chapter 6: Introduction to 8085 Instructions

Problem Analysis

To turn on the appliances from any one of the input ports, the microprocessor needs
to read the switches at both ports and logically OR the switch positions.

Assume that the switch positions in one input port correspond to the data byte 91H
and the switch positions in the second port correspond to the data byte ASH. The
person in the bedroom wants to turn on the air conditioner, the radio, and the
bedroom light; and the person in the kitchen wants to turn on the air conditioner,
the coffeepot, and the kitchen light. By ORing these two data bytes the

microprocessor can turn on the necessary appliances.

To test this program, we must simulate the reading of the input port by loading the
data into register — for example, into B and C.

Program
Memory | Machine | Instruction Comments
Address Code Opcode Operand
HI-LO
XX00 06 MVI B, 91H This instruction simulates
01 91 reading input port 01H
02 0E MVI C,A8H | This instruction simulates

03 A8 reading input port 00H

04 78 MOV A, B It is necessary to transfer data
byte fro B to A to OR with C.
Band C cannot be ORed
directly.

05 B1 ORA C Combine the switch positions
from register B and C in the
accumulator.

06 D3 OuT PORT! Turn on appliances and light

07 PORT1

08 76 HLT End of program
PROGRAM OUTPUT

By logically ORing the data bytes in registers B and C

(B) —> (A) = 1001 0001 91H
(C)= 1010 1000 |ASH
(A)= 1011 1001 | (B9H)

139

MICROPROCESSOR ARCHITECTURE

Flag Status: S=1, Z=0, CY=0

Data byteB9H is placed in the accumulator that turns on the air conditioner, radio,
coffeepot, and bedroom and kitchen lights.

6.5 BRANCH OPERATIONS

The branch instructions are most powerful instructions because they allow the
microprocessor to change the sequence of a program, either unconditionally or
under certain test conditions. These instructions are key to the flexibility and
versatility of a computer.

Branch instructions instruct the microprocessor to go to a different memory
location, and the microprocessor continues executing machine codes from that new
location.

The address of the new memory location is either specified explicitly or supplied
by the microprocessor or by extra hardware. They are classified in three categories:

1. Jump instructions
2. Call and Return instructions
3. Restart instructions

The Jump instructions specify the memory location explicitly. They are 3-byte
instructions: one byte for the operation code; followed by a 16-bit memory address.
Jump instructions are classified into two categories Unconditional Jump and
Conditional Jump.

6.5.1 Unconditional Jump

The 8085 instruction set includes one unconditional jump instruction. The

unconditional Jump instruction enables the programmer to set up continuous loops.

Instruction

Opcode | Operand | Description
IMP 16-bit Jump
It is 3-byte instruction

The second and third bytes specify the 16-bit memory
address.
Second byte low-order and third-byte high- order memory

address.

For example, to instruct the microprocessor to go the memory location 2000H, the
mnemonics and the machine code entered will be as follows:

140

Chapter 6: Introduction to 8085 Instructions

Machine Code Mnemonics
C3 JMP 2000H
00
20

The 16 —bit memory address of the jump location is entered in the reverse order,
the low-order byte(00H) first, followed by the high-order byte(20H)

6.5.2. Illustrative Program: Unconditional Jump to Set Up a Continuous Loop

Problem Statement

Modify the program in Example6.2 to read the switch positions continuously and
turn on the appliances accordingly.

Problem Analysis

One of the major drawbacks of the program in Example 6.2 is that the program
reads switch positions once and then stops. Therefore, if you want to turn on/off
different appliances, you have to reset the system and start all over again. This is
impractical in real-life situations. However, the unconditional Jump instruction, in
place of the HLT instruction, will allow the microcomputer to monitor the switch

positions continuously.

Memory | Machine | Label | Mnemonics | Comments

Address | Code

2000 DB START | IN 00H Read input switches

2001 00

2002 D3 OUT 01H Turn on devices according to
2003 01 switch position

2004 C3 JMP START | Go back to beginning and
2005 00 read the switches again

2006 20

Program Format

The program includes one more column called label . The memory location 2000H
is defined with the label START ; therefore, the operand of the jump instruction
can be specified by the label START. The program sets up the endless loop, and
the microprocessor monitors the input port continuously. The output will reflect
any change in the switch positions.

141

MICROPROCESSOR ARCHITECTURE

6.5.3 Conditional Jumps

Conditional Jump instructions allow the microprocessor to make decisions based
on certain conditions indicated by the flags. After logic and arithmetic operations,
flip-flops (flags) are set or reset to reflect data conditions. The conditional Jump
instructions check the flag conditions and make decisions to change the sequence
of a program.

Flags

The 8085 flag register has five flags, one of which (Auxiliary Carry) is used
internally.

The other four flags used by the Jump instructions are

1. Carry flag

2. Zero flag

3. Sign flag

4. Parity flag

Two Jump instructions are associated with each flag. The sequence of a program

can be changed either because the condition is present or because the condition is
absent.

For example, while adding the numbers we can change the program sequence either
because the carry is present (JC= Jump on Carry) or because carry is absent
(JNC=Jump On No Carry).

Instructions

All conditional Jump instructions in 8085 are 3-byte instructions; the second byte
specifies the low-order (line number) memory address, and the third byte specifies
the high-order (page number) memory address.

The following instructions transfer the program sequence to the memory location
specified under the given conditions.

Opcode | Operand | Description

JC 16-bit Jump on Carry (if result generate carry and CY=1)
INC 16-bit Jump on No Carry (CY=0)

Iz 16-bit Jump on Zero (if result is zero and Z=1)

INZ 16-bit Jump on No Zero(Z=0)

JP 16-bit Jump On Plus (if D7= 0 and S=0)

M 16-bit Jump On Minus (if D7= 0 and S=0)

JPE 16-bit Jump On Even Parity (P=1)

JPO 16-bit Jump On Odd Parity (P=0)

142

Chapter 6: Introduction to 8085 Instructions

All the Jump instructions are listed here. Zero and Carry flags and related Jump
instructions are used frequently.

6.5.4 Illustrative Program: Testing of the Carry Flag

Problem Statement

Load the hexadecimal number 9BH and A7H in register D and E, respectively, and
add the numbers. If the sum is greater than FFH, display O1H at output PORTO;
otherwise, display the sum.

Problem Analysis And Flowchart

The problem can be divided into the following steps:
1. Load the numbers in the registers.
2. Add the numbers
3. Check the sum.

Is the sum > FFH, go to step 4, else go to step 5
4. Getready to display 01

Display
6. End

Flowchart and Assembly Language Program

The six steps listed above can be converted into a flowchart and assembly language
program as shown in Figure 6.10

- St
e goi

Load 2 MVI D, 9BH
Step 1 Numbers v MVI E, ATH
in Registers
v A, D
Step 2 Numbers ; ADD E
b, = AY
Step 3 | — JNC DSPL
Yes
Get Ready
Step 4 to Display MVI A, 01H
OlH
Step 5 { Display || — DSPLAY: OUT OOH

Figure 6.10: Flowchart And Assembly Language Program to Test Carry Flag

143

MICROPROCESSOR ARCHITECTURE

Step 3 is a decision-making block. In a flowchart, the decision-making process is
represented by a diamond shape.

It is important to understand how this block is translated into the assembly language
program.

1. Isthere a Carry

2. If the answer is no, change the sequence of the program. In the assembly
language this is equivalent to JUMP On No Carry —JNC.

3. Now the next question is where to change the sequence — to Step 5.At this
point exact location is not known, but it is labelled DSPLAY.

4. The next step in the sequence is 4 .Get ready to display byte O1H.

5. After completing the straight line sequence, translate Step 5 and Step 6 :
Display at the port and halt.

Machine Code with Memory Addresses

Assuming R/W memory begins at 2000H, the preceding assembly language
program can be translated as follows:

Memory Machine Label Mnemonics
Address Code

2000 16 START: MVI D, 9BH
2001 9B

2002 1E MVIE, A7TH
2003 A7

2004 TA MOV A, D
2005 83 ADD E

2006 D2 JNC DSPLAY
2007 X

2008 X

2009 3E MVI A, 01H
200A 01

200B D3 DISPLAY: OUT 00H
200C 00

200D 76 HLT

While translating into machine code, we leave memory locations 2007H and 2008H
blank because the exact locations of the transfer is not known. What is known is
that two bytes should be reserved for the 16-bit address. After completing the
straight line sequence, we know the memory address of the label DSPLAY i.e.
200BH. This address must be placed in the reversed order as shown:

2007 0B Low- order: Line Number
2008 20 High-order : Page Number

144

Chapter 6: Introduction to 8085 Instructions

Using the Instruction Jump On Carry (JC)

Now the question remains : Can the same problem be solved b using the instruction
Jump On Carry (JC) ? To use instruction JC, exchange the places of the answers
YES and NO to the question : Is there a Carry ?

[Ty o)
e B
L orrey o
o

Figure 6.11: Flowcharts for Instruction JUMP ON CARRY

The flowchart will be as be as in Figure 6.11, and it shows that the program
sequence is changed if there is a Carry. This flowchart has two end points : thus it
will require a few more instructions than that of the Figure 6.10.In this particular
example, it is unimportant whether to use instruction JC or JNC, but in most cases
the choice is made by the logic of a problem.

6.6 Writing Assembly Language Programs

Writing a program is equivalent to giving commands to the microprocessor in a
sequence to perform a task.

6.6.1 Getting Started

Perform a Task. What is the task you are asking to do?

Sequence .What is the sequence you want it to follow?

Commands What are commands (instruction set) it can understand?
These terms can be translated into the steps as follows:

Step 1: Read the problem carefully.

Step 2: Break it down into small steps.

Step 3: Represent these steps in a possible sequence with a flowchart — a plan
of attack.

145

MICROPROCESSOR ARCHITECTURE

Step 4: Translate each block of the flowchart into appropriate mnemonic
instructions.

Step 5 : Translate mnemonics into the machine code.

Step 6: Enter the machine code in memory and execute. Only on rare

occasions is a program successfully executed on the first attempt.

Step 7: Start troubleshooting (debug a program).

6.6.2 Illustrative Program: Microprocessor —Controlled Manufacturing
Process

Problem Statement

A microcomputer is designed to monitor various processes on the floor of a
manufacturing plant, presented schematically in Figure 6.12.1t has two input ports
with the addresses F1H and F2H and output port with address F3H.

Input port F1H has six switches, five of which D4 —Do control the conveyer belts
through the output port F3H.

Switch S7, corresponding to the data line D7, is reserved to indicate an emergency
on the floor. Input port F2H is controlled by the foreman, and its switch S7’ is used
to indicate an emergency. Output line D¢ of port F3H is connected to the emergency
alarm.

__.———_"—- : iv(:;'a
’ e
& D, e
o r . 085
Input Data 8
Z‘ Port Bus MPU -
2 FlH :
S, Do
S,
Sot=—=—1""EN
l Input
Enable .
D, __._[)7 >
iy _l-)"—— Emergency Alarm
D, :
Input ol‘)“l:‘"‘ ———10 A o 3
Port (; D3 :] o
% P e conenr
_D‘_E__— Belts
D, Do
EN ENs92) drtomlalle o} i
A Solid-State Relays
L——-lnput Enable Output Enable '

Figure 6.12: Input /Output Ports to control Manufacturing Processes

146

Chapter 6: Introduction to 8085 Instructions

Write a program to

l.

Turn on the five conveyer belts according to the ON/ OFF positions of the
switches S4— So at port F1H.

Turn off the conveyer belts and turn on the emergency alarm only when both
switches —S7 from port F1H and S7” from the port F2H — are triggered.

Monitor the switches continuously.

Problem Analysis

To perform the task specified in the problem, the microprocessor needs to

l.
2.
3.

Read the switch positions.
Check whether switches S7and S;7” from the ports F1H and F2H are on.

Turn on the emergency signal if both switches are on, and turn off all the
conveyer belts.

Turn on the conveyer belts according to the switch positions So through S4 at
input port F1H if both the switches, S7 and S7” are not on simultaneously.

Continue checking the switch positions.

The five steps listed above can be translated into a flowchart and an assembly
language program as shown in the Figure 6.13

Flowchart and Program

HAOD 2 & o
a1e m g START: [INFIH :Read switches from port F1
MOV B, A ;Save data from port F1
Toput Ports > IN F2H :Read switches from port F2
and Save Data X B4
i : ANI 80H ;Mask all switch positions
From Switches 5 of T2 enceptiSS”
" Check S, | mMovca :Save S,
., [~ MOV A.B :Get data from F1 again
ANI 80H ;Mask all switch positions
_> ; of Fl except S,
Yes 3
| ANA C ;Logically AND S, and S,
:—INZSHTDWN ;If both S; and S;’ are on,
; transfer to shutdown
No e
MOV A.B ;If not, turn on conveyer
Tum on ; belts
C« 'y > ANI 1FH ;Mask bits Ds, Dg, Dy
per S-S,
‘ |5 OUT F3H
feOiH ack JMP START :Go back and check switches
to Check > ; again
Switches H
e
3 HTDWN:
x Tumn on = MVI A,40H ;Tumn off conveyer belts -
E gency ; and turn on emergency alarm
Alarm OUT F3H

Figure 6.13: Flowchart and Program for Controlling
Manufacturing Processes

147

MICROPROCESSOR ARCHITECTURE

6.6.3 Documentation

A program is similar to a circuit diagram. Its purpose is to communicate to others
what the program does and how it does it. Appropriate comments are critical for
conveying the logic behind a program. The program as a whole should be self-
documented.

From Assembly Language To Machine Code

Mnemonics Machine Code Memory Addresses
1. START: IN F1H DB 2000
Fl1 2001
2. MOV B, A 78 (1) 2002
3. IN F2H DB 2003
F2 2004
4. ANI 80H E6 2005
80 2006
5.MOV C, A 4F 2007
6. MOV A, B 78 2008
7. ANI 80H E6(2) 2009
8. ANA C Al 200A
9. JNZ SHTDWN C2(3) 200B
20 200C
14 200D
10. MOV A, B 78 200E
11. ANI 1FH E6 200F
1F 2010
12. OUT F3H D3 2011
F3 2012
13. JMP START C3(4) 2013
14. SHTDWN: MVIA, 40H | 3E 2014
40 2015
15. OUT F3H D3(5) 2016
16. HLT 76 2017

This program includes the several errors, indicated by the () besides the code.

Program Execution

The above machine codes can be loaded in R/W memory, starting with memory
address 2000H.The execution of the program can be done in two ways. The first is
to execute the entire code by pressing the Execute key, and second is to use the

148

Chapter 6: Introduction to 8085 Instructions

Single-Step key executes one instruction at a time, and by examining Register key
and flags as each instruction is being executed.

6.7 DEBUGING A PROGRAM

Debugging is a program is similar to troubleshooting hardware. It is essential to

search carefully for the errors in the program logic, machine code, and execution.

Static Debugging is similar to visual inspection of a circuit board; it is done by a
paper- and pencil check off a flowchart and machine code.

Dynamic Debugging involves observing the output, or register contents, following
the execution of each instruction(Single-Single technique) or of a group of
instructions (the breakpoint technique).

6.7.1 Debugging Machine Code

Translating the assembly language to the machine code is similar to building a
circuit from a schematic diagram; the machine code will have errors just as would
the circuit.

The following errors are common:

1. Selecting a wrong code.

2. Forgetting the second or third byte of an instruction.

3. Specitying the wrong jump instruction.

4. Not reversing the order of high and low bytes in a Jump instruction

5. Writing memory addresses in decimal, thus specifying wrong jump

instructions.

6.8 Summary

The instructions from 8085 instruction set include Data transfer instructions such
as MOV, MVI, IN, OUT instruction. These instructions copy the contents of the
source into the destination without affecting the source register.

Arithmetic Instructions such as ADD, ADI, SUB, SUI, INR, DCR and Logic
Instructions such as ANA, ANI, ORA, ORI, XRA, XRI, CMA. The results of
arithmetic and logic operations are usually placed in the accumulator.

The conditional Jump instructions are executed according to the flags set after an
operation.

149

MICROPROCESSOR ARCHITECTURE

Questions and Programming Assignments

Q)
Q2)

Q3)

Q4)

Q5)
Qo)

Explain data transfer operations with examples.

Write instructions to load the hexadecimal number 65H in register C, and
92H in the accumulator A. Display the number 65 at PORTO and 92H in
PORT]I.

Explain Arithmetic operations with examples.

Write a program using the ADI instruction to add the two hexadecimal
numbers 3AH and 48H and to display the answer at an output port.

Explain Logic operations with examples.

Explain branch operations with examples.

Books and References

1.
2.

Computer System Architecture by M. Morris Mano, PHI Publication, 1998.

Structured Computer Organization by Andrew C. Tanenbaum, PHI
Publication.

Microprocessors Architecture, Programming and Application with 8085 by
Ramesh Gaonker, PENRAM, Fifth Edition, 2012.

K/
0‘0 0‘0 0‘0

150

UNIT 3

PROGRAMMING TECHNIQUES WITH
ADDITIONAL INSTRUCTIONS

Unit Structure

7.1 Objectives

7.2 Introduction

7.3 Looping, Counting And Indexing

7.4 Additional Data Transfer And 16-Bit Arithmetic Instructions& Arithmetic
Instruction Related To Memory.

7.5 Logic Operations: Rotate,Logics Operations: Compare, Dynamic
Debugging.

7.1 Objectives

At the end of this unit, the student will be able to

® Write the program on Looping

® Write the program on 16 bit arithmetic Instructions
® [llustrate various Data transfer instructions
([J

Describe the concept of rotate, compare instructions and dynamic debugging

7.2 Introduction

1. The 8085 instruction set includes equivalents of the 8086

2. Aninstruction is a binary pattern designed inside a microprocessor to perform
a specific function.

3. Asitistedious and error inductive to recognize and write instruction in binary

languages these instructions are written in hexadecimal code.

4. Each manufacturer of a microprocessor has devised a symbolic code for each

instruction called Mnemonic.

151

MICROPROCESSOR ARCHITECTURE

The mnemonic for a particular instruction consists of letters and suggest the
operation to be performed by that instruction.

The mnemonic for a particular instruction consists of letters and suggest the
operation to be performed by that instruction.

Table 1 Equivalent Binary and Hexadecimal code for Mnemonic

Binary Code Hexadecimal Code Mnemonic

00111100 3C INR A

10000000 80 ADD B

10.

11.

12.
13.

14.
15.
16.

Machine Language- The instruction in binary coded form or hexadecimal
coded form are called machine code. A program written using machine code
(only 0 & 1) is called machine language program

Assembly Language- The program can also be written using mnemonic
operation codes & symbolic address for writing instructions and the data
using different notations L.e binary,decimal,hexadecimal etc. This is called
assembly language, program written in assembly language has to be
translated in to a machine language. A translator, which translates an

assembly program in to a machine language program is known as assembler.

Mnemonics can be written by hand on a paper and translated manually in
hexadecimal code by looking in to the opcode sheet or table. This is called
hand assembly.

Then the program can be feed in to the microprocessor kit for execution
starting from the first address of RAM(Random Access Memory).

Assembly language program (Source Code) ------------- > Hand Assembly----
------ > Machine Language Program

The 8085 has 74 instructions and 246 binary patterns.

The entire group of instructions that a microprocessor supports is called
instruction set.

Each instructions is represented by an 8-bit binary value.
These 8-bits of binary value is called op-code or instruction.

Classification of Instruction set

16.1 Data Transfer Group - This group of instructions copies data from a

location

152

Chapter 7: Programming Techniques w-ith Additional Instructions

16.2 Arithmetic Group-This group of instructions perform operations such
as addition, substraction, decrement, or data in register or in memory

location

16.3 Logical Group-This group of instructions perform logical operations
such as AND, OR EX-OR, compare, rotate complement with contents
of the accumulator. Then the result is stored in accumulator.

16.4 Branch Control Group- This group of instruction that change the
sequence of program execution using conditional and unconditional

jumps, subroutine call, Return and Restart

16.5 Stack I/O and Machine Control Group- This group of instruction
includes set of those instruction which can be able to perform function
on stack.

7.3 Looping, Counting And Indexing

1.

Looping- In this technique, the program is instructed to execute certain set of
instructions repeatedly to execute a particular task number of times.

Counting- This technique allows programmer to count how many times the
instruction/set of instructions are executed.

Indexing- This technique allows programmer to point or refer the data stored

in sequential memory location one by one.

Decision

e
Data Acquisition

Data Processing

Temporary
storage of partial
results

Getting ready for
next operation

Fig 1 Generalized Programming Flowchart

153

MICROPROCESSOR ARCHITECTURE

4. Example 1 Write a program to store ‘FFH’ in 20 continuous memory
locations starting at 4500H.

Instruction

LXI H,4500H

MVIC, 14h

UP: MVI M, FFh

INX H

DCR C

INZ UP

HLT

The program listed above will continuously add data FF h in memory location
starting at 4500H.

First Instruction- LXI H will load the address 4500 H address in H & L
Second Instruction- MVI C will load data 14h in Register C

Third Instruction- Will Copy data FFH in M(H & L) Register continuously with
labelled loop UP

Fourth instruction- Increment Memory location.

Fifth Instruction- will decrement the counter register over here is C
Sixth Instruction- Will continuously Jump if no zero.

Seventh Instruction- Will Halt the program

Example 2 Write a program on Bubble Sort

Instruction

Start: LXI B, OFF5H
MVI D, 00H
MVI C,04H
Check: Mov A,M
INX H

CMP M

JC Nxtbt

DCX H

MOV M, A

DCX H

MOV BM

INX H
MVID,01H
Nxtbt: DCR C
JNZ Check

Mov A,D

RRC

JC Start

HLT

154

Chapter 7: Programming Techniques w-ith Additional Instructions

The above program will compare two numbers and sort the number in ascending

order

Example 3 To find the largest number in an array of data using 8085 instruction set

Algorithm

1. Load the address of the first element of the array in HL pair

2. Move the count to B register

3. Increment the pointer

4. Get the first data in A register

5. Decrement the counter

6. Increment the pointer

7. Compare the content of memory addressed by HL pair with that of A register

8. If carry=0, go to step 10 or if carry=1 go to step 9

9. Move the content of memory addressed by HL to A register

10. Decrement the counter

11. Check for Zero of the counter. If ZF=0, go to step 6, or if ZF=1 go to next

step

12. Store the largest data in memory

13. Terminate the Program
Instruction Explanation
LXI H,4200 Set pointer for array
MOV B.M Load the Count
LOOP: INX H Increment the Memory location
CMP M If A register > M go to Head
JNC AHEAD Jump to AHEAD label if carry=0
MOV AM Set new value as largest
AHEAD:DCR B Decrement the B counter
JNZ LOOP Repeat comparisons till count=0
STA 4300 Store the largest value at 4300
HLT Terminate the program

155

MICROPROCESSOR ARCHITECTURE

Input 05(4200)
0A(4201)
F1(4202)
1F(4203)
26(4204)
FE(4205)

Output FE(4300)

Example 5 To find the smallest number in an array of data using 8085 instruction
set

Algorithm

1. Load the address of the first element of the array in HL pair
2 Move the counttoB-reg.

3. Incrementthe pointer
4

Getthe firstdata inA —reg.

5. Decrementthe count.

6. Incrementthepointer

7. Compare the contentofmemory addressed by HLpairwiththatofA -reg.
8. Ifcarry = 1,go tostep10orifCarry = Ogoto step9

9. Move the contentofmemory addressedby HLtoA —reg.

10. Decrementthecount
11. CheckforZero ofthe count. I[fZF=0,goto step6,orifZF= 1go to next step.
12. Storethe smallestdata inmemory.

13. Terminatetheprogram.

Program
LXIMOV |H,4200B,M Set pointer for array Loadthe Count
INX H
MOV AM Setl™elementaslargestdata
DCR B Decrement the count
LOOP: INX H
CMP M IfA-reg < Mgo toAHEAD
JC AHEAD Jump if carry=1 to AHEAD Label

156

Chapter 7: Programming Techniques w-ith Additional Instructions

MOV AM Set the new value as smallest
AHEAD: |DCR B

INZ LOOP Repeatcomparisonstillcount= 0

STA 4300 Storethe largestvalue at4300

HLT Terminate the program

Input: 05(4200) Array Size
0A(4201)
F1(4202)
1F(4203)
26(4204)
FE(4205)

Output: 0A(4300)

Example 6 To write a program to arrange anarray of descending order

Algorithm

1. Initialize HL pairas memory pointer

2. Get the countat4200intoC—register

3. Copy it in D-register(for bubble sort(N-1)times required)

4. Get the first value in A —register

5. Compare it with the value at next location.

6. If they are out of order, exchange the contents of A—register and Memory
7. Decrement D-register content by 1

8. Repeat steps 5 and 7 till the value in D-register become zero

9. Decrement C —register content by 1

10. Repeat steps 3 to 9 till the value in C —register becomes zero

LXIMOVD H,4200C,M
REPEAT: |[CR C

MOV D,C

LXI H,4201
LOOP: MOV A.M

INX H

CMP M

INC SKIP

157

MICROPROCESSOR ARCHITECTURE

MOV B.M

MOV M,A

DCX H

MOV M,B

INX H

SKIP: DCR D

INZ LOOP

DCR C

INZ REPEAT

HLT

Input: 4200 05 (Array Size)
4201 01
4202 02
4203 03
4204 04
4205 05
Output: 4200 05 (ArraySize)

4201 05
4202 04
4203 03
4204 02
4205 01

7.4 Additional Data Transfer and 16-Bit Arithmetic Instructions

1. Load Register Pair Immediate- LXI Reg pair, 16-bit data. The instruction
loads 16 bit data in the register pair designated in the operand. Eg LXI
H,2034H.

2. Load H and L registers direct-LHLD 16-bit address. The instruction copies
the contents of the memory location pointed out by the 16-bit address in to
register L and Copies the contents of the next memory location in to register
H. The contents of source memory locations are not altered. Eg LHLD 2040
H.

3. Mov R.M-R.M copies data byte from memory to register. Memory location,
its location is specified by the contents of the HL registers. Eg MOV B,M.

158

Chapter 7: Programming Techniques w-ith Additional Instructions

10.

11.

12.

13.

LDAX B/D Register pair- The contents of the designated register pair point
to a memory location. This location in to the accumulator. The contents of
either the register pair or the memory location are not altered. Eg LDAX B

Load Accumulator- LDA 16-bit address , the contents of a memory location,
specified by a 16-bit address in the operand, are copied to the accumulator.
The contents of the source are not altered. Eg LDA 2034H

MOV M,R-This instruction copies the contents of the source. The source
register are not altered. As one of the operands is a memory location, its
location is specified by the contents of the HL registers. Eg MOV M,B

STA 16-bit address- The contents of the accumulator are copied in to the
memory location specified by the operand. This is a 3-byte instruction, the
second byte specifies the low-order address and the third byte. Eg MOV M,B

Store Accumulator Indirect- STAX register pair the contents of the
accumulator are copied in to the memory location specified by the contents
of the operand(register pair). The contents of the accumulator are not altered.
Eg STAX B

Store H and L registers indirect- SHLD 16-bit address, the contents of register
L are stored in to the memory location specified by the 16-bit address in the
operand and the contents of the H register are stored in to the next memory
location by incrementing the operand. The contents of register HL are not
altered. This is a 3 byte instruction, the second byte specifies the low-order
address and the third byte specifies the high-order address. Eg SHLD 2470H

Increment register pair by 1-INX R, the contents of the designated register
pair are incremented by 1 and the result is stored in the same place.
Eg INX H

Decrement register pair by 1- DCX R, the contents of the designated register
pair are decremented by 1 and the result is stored in the same place.
Eg DCX H

Add memory(ADD M)- The contents of the operand (memory) are added to
the contents of the accumulator and the result is stored in the accumulator.
The operand is a memory location, its location is specified by the contents of
the HL registers. All flags are modified to reflect the result of the addition.

Substract Memory (SUB M)- The contents of the operand (memory) are
substracted to the contents of the accumulator and the result is stored in the
accumulator. The operand is a memory location, its location is specified by
the contents of the HL registers. All flags are modified to reflect the result of
the substraction.

159

MICROPROCESSOR ARCHITECTURE

14.

Increment memory by 1/ Decrement memory by 1(INR M/DCR M)- The
contents of the memory are incremented by 1 using INR and decremented by
1 using DCR and the result is stored in the same place. The operand is a

memory location, its location is specified by the contents of the HL registers.

Eg Toperformadditionoftwo8bitnumbersusing8085.

Algorithm
1. Start the program by loading the first data into Accumulator.
2. Move the data to a register (B register).
3. Get the second data and load into Accumulator.
4. Add the two register contents.
5. Check for carry.
6. Store the value of sum and carry in memory location.
7. Terminate the program.
Program
MVI C,00 | InitializeC registerto00
LDA 4150 | Loadthevalue toAccumulator.
MOV B,A Movethe contentofAccumulatortoBregister.
LDA 4151 | Loadthevalue toAccumulator.
ADD B Addthe value ofregisterBto A
INC LOOP | Jumponno carry.
INR C Incrementvalue ofregisterC
LOOP:STA 4152 | StorethevalueofAccumulator(SUM).
MOV A, C | Move contentofregisterC toAcc.
STA 4153 Storethevalue ofAccumulator(CARRY)
HLT Haltthe program.

Eg 2 Toper form the subtraction of two 8bit numbers using 8085.

Input: | 80(4150)
80(4251)
Output: | 00(4152)
01(4153)

160

Chapter 7: Programming Techniques w-ith Additional Instructions

Algorithm

1. Start the program by loading the first data into Accumulator.

2. Move the data to a register(B register).
3. Get the second data and load in to Accumulator.
4. Subtract the two register contents.
5. Check for carry.
6. If carry is present take 2’s complement of Accumulator.
7. Store the value of borrow in memory location.
8. Store the difference value (present in Accumulator) to a memory
9. location and terminate the program.
Program
MVI C, 00 | Initialize C to 00
LDA 4150 | Loadthe value to Acc.
MOV B,A Move the contentof Acc to Bregister.
LDA 4151 | Loadthe value to Acc.
SUB B
INC LOOP | Jumpon no carry.
CMA Complement Accumulator contents.
INR A Increment value in Accumulator.
INR C Increment value in register C
LOOP:STA | 4152 | Storethe value of A-reg to memory address.
MOV A, C | Move contents of register C to Accumulator.
STA 4153 | Storethe value of Accumulator memory address.
HLT Terminate the program.

Input: 06(4150)
02(4251)

Output:04(4152)
01(4153)

161

MICROPROCESSOR ARCHITECTURE

Toper form the multiplication of two 8 bit numbers using 8085.

ALGORITHM:

1. Start the program by loading HL register pair with address of memory
location.

Move the data to a register (B register).

Get the second data and load in to Accumulator.
Add the two register contents.

Check for carry.

Increment the value of carry.

NS ke

Check whether repeated addition is over and store the value of product and
carry in memory location.

8. Terminate the program.

PROGRAM:
MVI D,00 InitializeregisterDto00
MVI A, 00 Initialize Accumulatorcontentto00
LXI H,4150
MOV B.M Get the first number in B-reg
INX H
MOV C,M Get the second number in C-reg.
LOOP: ADD B Add content of A- reg to register B.
INC NEXT | Jump on no carry to NEXT.
INR D Increment content of register D
NEXT: DCR C Decrement content of register C.
INZ LOOP | Jump on no zero to address
STA 4152 Store the result in Memory
MOV A,D
STA 4153 Store the MSB of result in Memory
HLT Terminate the program.

162

Chapter 7: Programming Techniques w-ith Additional Instructions

Eg 4 Toper form the division of two 8bit numbers using 8085.

Algorithm:
1. Start the program by loading HL register pair with address of memory
location.
2. Move the data to a register (B register).
3. Get the second data and load in to Accumulator.
4. Compare the two numbers to check for carry.
5. Subtract the two numbers.
6. Increment the value of carry .
7. Check whether repeated subtraction is over and store the value of product
and carry in memory location.
8. Terminate the program.
PROGRAM:
LXI H,4150
MOV B.M Getthedividendin B— reg.
MVI C, 00 ClearC —regforqoutient
INX H
MOV A, M Getthe divisorin A —reg.
NEXT: CMP B CompareA -regwithregisterB.
JC LOOP Jumponcarry toLOOP
SUB B SubtractA-regfromB-reg.
INR C IncrementcontentofregisterC.
JMP NEXT JumptoNEXT
LOOP: STA 4152 Storethe remainderinMemory
MOV A, C
STA 4153 Storethe quotientinmemory
HLT Terminatetheprogram.

Input: FF(4150)
FF(4251)

Output: 01(4152) Remainder
FE(4153) Quotient

163

MICROPROCESSOR ARCHITECTURE

7.5 Logic Operations:

Dynamic Debugging

Rotate,Logics Operations:

Compare,

1.

Logic instructions of a microprocessor are simply the instructions that carry

out basic logical operations such as OR, AND, XOR and So on. In intel’s

8085 microprocessor, the destination operand for the instructions is always

the accumulator register. Here, the logical operations work on a bitwise level.

The corresponding result is also stored in the accumulator register.

2. Following is the table showing the list of logical instruction
Sr. | OP Operand | Destination Explanatio
No | Code n
1 |[ANA |R A=A AND R ANA B
2 |ANA | M A=A AND MC (Memory Content) ANA 2050
3 | ANI | 8-bit Data | A=A AND 8-bit data ANI 50
4 |ORA |R A=A ORR ORA B
5 |ORA | M A=A OR MC ORA 2050
6 | ORI 8-bit data | A=A OR 8-bit data ORI 50
7 | XRA | R A=A XOR R XRA B
8 | XRA | M A=A XOR MC XRA 2050
9 | XRI 8 bitdata | A=A XOR 8-bit data XRI 50
10 | CMA | None A=1’s CMA
11 |CMP | R Compares R with A and triggers CMP B
12 |CMP | M Compares MC with A and triggers the | CMP 2050
flag register
13 | CPI 8-bit data | Compares 8-bit data with A and | CPI 50
triggers the flag register
14 | RRC | none Rotate accumulator right without | RRC
carry
15 | RLC | None Rotate accumulator left without carry | RLC
16 | RAR | none Rotate accumulator right with carry | RAR
17 | RAL | none Rotate accumulator left with carry RAL
18 | CMC | none Compliments the carry flag CMC
19 | STC | none Sets the carry flag STC

164

Chapter 7: Programming Techniques w-ith Additional Instructions

Debugging is the process of identifying and removing bug from software or
program. It refers to identification of errors in the program logic, machine
codes and execution. It gives step by step information about the execution of
code to identify the fault in the program.

3.1 Debugging of Machine code-Translating the assembly language to
machine code is similar to building a circuit from a schematic diagram.
Debugging can help in determining

3.1.1 Value of register

3.1.2 Flow of Program

3.1.3 Entry and exit point of a function

3.1.4 Entry in to if or else statement

31.5 Logging of code

3.1.6 Calculation check
3.2 Common Sources of Error

1. Selecting a wrong code

2 Forgetting second or third byte of instruction
3. Specifying wrong jump locations
4

Not reversing the order of high and low bytes in a jump
instruction

Writing memory addresses in decimal instead of hexadecimal
Failure to clear accumulator when adding two numbers
Failure to clear carry registers

Failure to set flag before jump instruction

A S SR

Specifying wrong memory address on Jump instruction
10. Use of improper combination of rotate instructions
3.3 The debugging process is divided in to two parts

1 Static Debugging- It is similar to visual inspection of circuit
board, it is done by a paper and pencil to check the flow chart and
machine codes. It is used to the understanding of code logic and
structure of program

2. Dynamic Debugging- It involves observing the contents of
register or output after execution of each instruction (in single
step technique) or a group of instructions(in breakpoint
technique).

165

MICROPROCESSOR ARCHITECTURE

3.4 In single board microprocessor, techniques and tools commonly used

in dynamic debugging are-

1.

Single Step- This technique allows to execute one instruction at
a time and observe the results of each instruction. Generally, this
is build using hard-wired logic circuit. As we press the single step
run key we will be able to observe the contents of register and
memory location. However, if there is large loop then single step
debugging can be very tiring and time-consuming. So instead of
running the loop n times, we can reduce the number of iteration
to check the effectiveness of the loop. The single step technique
is very useful for short programs. This helps to spot: A)incorrect
addresses B)incorrect jump location in loops C)incorrect data or

missing codes.

Break Point- The breakpoint facility is usually a software routine
that allows users to execute a program in sections. The
breakpoints can be set using RST instruction. When we push the
Execute key, the program will be executed till the breakpoint.
The registers can be examined for the expected result. With the
breakpoint facility, isolate the segment of program with errors.
Then that segment can be debugged using the single-step facility.
It is usually used to check: a) Timing loop b) I/O section
¢) Interrupts

Register Examine- The register examine key allows you to
examine the contents of the microprocessor register. This
technique is used in conjunction with either single-step or

breakpoint facility.

Miscellaneous Questions

Ql.
Q2.
Q3.
Q4.

Write down some arithmetic Instruction with illustrative program

Write Logical instructions with program

Describe the concept about dynamic debugging

Describe the types of dynamic debugging

0‘0 0‘0 0’0

166

UNIT 3

COUNTER & TIME DELAYS

Unit Structure

8.1
8.2
8.3
8.4
8.5
8.6

Objectives

Introduction

Counters and Time Delays, Illustrative Program: Hexadecimal Counter
[Nustrative Program: zero-to-nine (Modulo Ten) Counter

Generating Pulse Waveforms

Debugging Counter and Time-Delay Programs

8.1 Objectives

At the end of this chapter, the student will be able to

Describe about Counter and Delays

Write the program Hexadecimal counter
Write the program for modulo ten counter
[lustrate the concept of Pulse waveform

Elaborate on concept of debugging and Time-Delay Programs

8.2 Introduction

The delay will be used in different places to simulate clocks, or counters or
some other area.

When the delay subroutine is executed, the microprocessor does not execute
other tasks. For the delay we are using the instruction execution times,

executing some instructions in a loop, the delay is generated.

So in this chapter we are going to study more about counters, time delays and
various other programs of 8085 for hexadecimal counter, modulo ten counter,
pulse wave form.

167

MICROPROCESSOR ARCHITECTURE

8.3 Counters and Time Delays, Illustrative Program: Hexadecimal
Counter

1. Counters are used to keep track of events

2. Time delays are important in setting up reasonably accurate timing between
two events

3. A Counter is designed simply by loading an appropriate number in to one of
the registers and using the INR(Increment by one) or the DCR(Decrement by
one) instructions. A loop is established to update the count and each count is
checked to determine whether it has reached the final number, if not, the loop
is repeated.

'
| Initialize |

—

Display |

Fig. 1 Flow chart of Counter

4. Time Delays- The procedure used to design a specific delay is similar to that
used to set up a counter. A register is loaded with a number, depending on
the time delay is required, and then the register is decremented until it
reaches zero by setting up a loop with a conditional jump instruction. The
loop causes the delay, depending upon the clock period of the system

!

Load Delay Register

Body of loop

Yes

Fig 2 Flow chart of Time Delay

168

Chapter 8: Counter & Time Delays

10

Calculating Time Delays- Each instruction passes through different
combinations of opcode fetch, memory read and memory write cycles

Knowing the combination of cycles, one can calculate how long such an
instruction would require to complete with respect to number of bytes,

number of machine cycles, number of T-State.

Knowing how many T-States an instruction requires and keeping in mind that
a T-State is one clock cycle long, we can calculate the time delay using the

following formula:
Time Delay=No of T-States * Clock Period

For example - MVI instruction uses 7 T States. Therefore, if the
microprocessor is running at 2 MHZ, the instruction would require 3.5

microsecond to complete.

We can design time delay using following three techniques
9.1 Using One Register

9.2 Using a Register Pair

9.3 Using a Loop with in a Loop

Using One Register- A Count is loaded in a register, and we can use a loop
to produce a certain amount of time delay in a program.

10.1 The following is an example of a delay using one register
MVIC, FFH 7T States
LOOP DCR C 4 T States
JINZ LOOP 10T States

The first instruction initializes the loop counter and is executed only once
requiring only 7T-States

The following two instructions form a loop that requires 14T States to
execute and is repeated 255 times until C becomes 0.

10.2 We need to keep in mind though that in the last iteration of the loop,
the JNZ instruction will fail and require only 7T States rather than the
10.

10.3 Therefore,we must deduct 3 T states from the total delay to get an
accurate delay calculation. To calculate the delay, we use the following
formula

Tdelay=TO + TL

169

MICROPROCESSOR ARCHITECTURE

11

12

10.4

10.5

10.5

10.6

Whereas Tdelay= Total delay, TO=delay outside the loop and
TL=delay of the loop

TO is the sum of all delays outside the loop and TL is calculated using
the formula

TL=T*Loop T-States*N(No of iterations)

Using a single register, one can repeat a loop for a maximum count of
255 times.

It is possible to increase this count by using a register pair for the loop
counter instead of the single register.

A minor problem arises in how to test for the final count since DCX
and INX do not modify the flags.

However, if the loop is looking for when the count becomes zero, we
can use a small trick by oring the two registers in the pair and then
checking the zero flag

Using a Register Pair- The Following is an example of a delay loop set up

with a register pair as the loop counter.

LXI B, 1000H 10T States
LOOP DCX B 6T States

11.1

MOV A,C 4 T states
ORA B 4 T Sates
JNZ LOOP 10 T States

Using the same formula from before, we can calculate To=10 T
Sates(The delay for the LXI instruction)

TL=(24 * 4096)-3 = 98301 T States

(24 T-States for the 4 instructions in the loop repeated 4096
times(100016=409610) reduced by the 3 T sates for the JNZ in the last
iteration).

TDelay=(10 +98301) * 0.5 m sec=49.155 msec

Using a Loop with in a loop- Nested loops can be easily set up in assembly

language by using two registers for the two loop counters and updating the

right register in the right loop.

170

Chapter 8: Counter & Time Delays

12.1

12.2

12.3

Initialize loop 2

—_—

¥
Body of loop 2
Initialize loop 1

T
Body of loop 1

[Update the count] |

%

o
Yes

pdate the count [

Fig 3 Flow chart for time delay with two loops

Instead (or in conjunction with) Register Pairs, anested loop structure

can be used to increase thetotal delay produced.

MVIB, 10H 7 T-States

LOOP2 MVI C, FFH 7 T-States
LOOPI1 DCR C 4 T-States

JNZ LOOP1 10 T-States

DCR B 4 T-States

JNZ LOOP2 10 T-States

The Calculation remains the same except that the formula must be
applied recursively to each loop, Start with the inner loop, then plug
that delay in the calculation of the outer loop.

Delay of inner loop
TO1=7 T States (MVI C, FFH)

TL1=(255*14)-3= 3567 T States(14 T States for the DCR C and JNZ
instructions repeated 255 times (FF16=25510) minus 3 for the final INZ)
TLoopl= 7+3567=3574 T States

Delay of the outer loop
TO2=7 T States
(MVIB, 10H)

171

MICROPROCESSOR ARCHITECTURE

13.

TL1= (16 *(14+3574))-3=57405 T-States (14 T Sates for the DCR B
and JNZ instructions and 3574 T States for loopl repeated 16 times
minus 3 for the final INZ

T Delay=7+57405 = 57412 T Sates
Total Delay(T Delay)= 57412*0.5 micro Sec=28.706 Msec

Increasing the Time Delay- The Delay can be further increased by using
register pairs for each of the loop counters in the nested loops set up. It can
also be increased by adding dummy instructions(like NOP) in the body of the
Loop.

¥

Initialize Counte __ l

o Load Delay Register

.." Body of loop
-

-
S
-~
et
i
"
-~
"
e i
S
S
oy Mo

T v TES

Display Count

[Update Count |

Fig 5 Variations of Counter Flow chart

172

Chapter 8: Counter & Time Delays

14 TIllustrative Program on Hexadecimal Counter

Write a program to count continuously in hexadecimal from fth to 00h in a

system with a 0.5 micro sec clock period. Use register ¢ to set up a one

millisecond delay between each count and display the numbers at one of the

Output ports.

14.1

This Problem has two parts, the first is to set up a continuous down-
counter and the second is to design a given delay between two counts.
The hexadecimal counter is set up by loading a register with an
appropriate starting number and decrementing it until it becomes zero.
After zero count, the register goes back to FF because decrementing
zero results in a (-1), which is FF in 2’s Complement. The 1 ms delay

between each count is set up by using delay techniques.

MVI B,00H Store the 00 H in B register and
initialize a counter

NEXT:

DCR B Decrement the B counter

MVI C, COUNT Load register C with Delay count

DELAY:

JNZ DELAY

MOV A,B Copy the Contents of B to A

OUT PORT #(number of port) | Display the output at port

JMP NEXT

Comments and Register Status
Flowchart
First Cycle
Initialize B Bl oo 1| ¥ [k~
as a Counter
= Bl el | KS
Decrement
Counter
¥ Bl Fe.) %0 1%

Load Register

C with Delay
Count ()~ C
————ﬂ . i (Cr— 1
Decrement -
Delay Count Bl FF_] ©)«0 V¢

Fig 6 Flow chart for Hexadecimal Counter

173

MICROPROCESSOR ARCHITECTURE

Time Delay Calculation - Delay loop includes two instructions: DCR C andJNZ
with 14 T-states. Therefore the time delay TL inthe loop (without accounting for
the fact that INZrequires 7 T-States in the last cycle, because countwill remain
same even if the calculations take intoaccount the difference of 3 T-States) is:

TL = 14 T-states X T (Clock period) X Count
=14 X (0.5 x 10-6) x Count
= (7.0 X 10-6) X Count
The Delay outside the loop includes the following instructions:
DCR B 4T Delay outside the loop:
MVI C,COUNT 7T To = 35 T-States * T
MOV A,B 4T =35 * (0.5* 10-6)
OUT PORT 10T =17.5ps
JMP 10T

35 T-States
Total Time Delay TD = To + TL
Ims=17.5 * 10-6 + (7.0 *10-6) *Count
Count=1x 10-3 - 17.5 x 10-6 14010 ms
7.0 x 10-6

Hence, a delay count 8CH(14010) must be loaded in C.

8.4 Illustrative Program: Zero-to-Nine (Modulo Ten) Counter

Write A Program To Count From0-9 With A One-Second DelayBetween Each
Count. At Count Of9, The Counter Should Resetltself To 0 And Repeat The
Sequence Continuously. UseRegister Pair HI To Set Up TheDelay, And Display
Each Count AtOne Of The Output Ports. AssumeThe Clock Frequency Of
TheMicrocomputer Is 1 Mhz.

START: MVI B,OOH 7 T(no of states) | Initialize the B as a counter
MOV A.B 4T Copy the contents of B to A
DISPLAY: |OUTPORT# |10T Output will be displayed at
particular port
LXIH, 16 bit 10T Load 16 bit data in H and L
pair
LOOP: DCXH 6T Decrement the H

174

Chapter 8: Counter & Time Delays

MOV AL 4T Copy the contents of L to A
ORA H 4T Oring the data of H

JINZ LOOP 10/7 Jump if no zero

INR B 4 Increment the B counter
CPI 0AH 7 Compare the data

JNZ DISPLAY | 10/7

JZ START 10/7

€ Corrarnents
samad Flovwchare

C ==)

= s

Imitialirzre € Couanter

e

IPDisgprizay COuxtprust

=

I . omcd ey I Rosistoer

=

-
r
L

IDecsorrrant

INDelay Roepgistaes

Set Flasssgzss To

C hoeckl Eoclzey T aoauamt

h—duJ

N>

.

Next € arzamt

.

N>

Fig 6 Flow chart Modulo Ten Counter

w ES

=

Time Delay Calculation- The major delay between two counts is provided by the

16-bit number in the delay register HL(inner loop in flow chart). This delay is set

up by using a register pair.

Loop Delay TL= 24 T-states *T * Count

1 second=24*1.0 *10-6 *Count

Count=1=41666 = A2C2H

24 x 10-6

175

MICROPROCESSOR ARCHITECTURE

A2C2H would provide approx 1 sec delay between two counts. To achieve higher
accuracy in the delay, the instructions outside the loop must be accounted for delay
calculation. (will be 41665).

8.5 Generating pulse Wave forms

Write A Program To Generate A Continuous Square Wave With the Period Of
500Micro Sec. Assume The System Clock Period is 325 Ns, And Use Bit DO To
Output The Square Wave.

MVID,AA 7T | Move immediate AA data to D
register
ROTATE: MOV A,D 4T | Copy the data of accumulator to
register
RLC 4T | Rotate left with Carry
MOV D,A 4T | Move the content from A to D
ANIO1H 7T | And the contents of A register with
01 H
OUT PORT 1 10 T | Display the output at port 1
MVI B, COUNT Keep the count in B
DELAY: DCR B 4T | Decrement B
JINZ DELAY 10/7T
JMP ROTATE 10T

A10101010

After RLC01010101
AANDOIH00000001
COUNT= 52410 = 34H

8.6 Debugging Counter and Time-Delay Programs

1. Errors in counting T-States in a delay loop. Typically, the firstinstruction —
to load a delay register — is mistakenly includedin the loop.

2. Errors in recognizing how many times a loop is repeated.

3. Failure to convert a delay count from a decimal number intoits hexadecimal

equivalent.

176

Chapter 8: Counter & Time Delays

A A

Conversion error in converting a delay count from decimal tohexadecimal

number or vice versa.

Specifying a wrong jump location.

Failure to set a flag, especially with 16-bitdecrement/increment instructions.
Using a wrong jump instruction.

Failure to display either the first or the last count.

Failure to provide a delay between the last and the last-but one count.

Miscellaneous Questions

Ql.
Q2.
Q3.
Q4.
Qs.
Q6.

Write in short about Counter & Time Delays in 8085
Write a program for hexadecimal counter

How to calculate time delay for a particular program
Write a Program for Modulo ten counter

How to write a program for generating pulse wave form

Write the steps for debugging counter and Timer delay programs

%0 % %

177

UNIT 3

STACKS AND SUB-ROUTINES

Unit Structure

9.1
9.2
9.3
9.4

Objectives
Introduction
Stack, Subroutine, Restart, Conditional Call, Return Instructions

Advanced Subroutine concepts

9.1 Objectives

At the end of this unit, the student will be able to

Describe the concept of stack and its instruction

llustrate more about subroutines

9.2 Introduction

The stack is an area of memory identified by the programmer for temporary
storage of information.

The stack is a LIFO (Last In First Out.) structure.

The stack normally grows backwards into memory.

In other words, the programmer defines the bottom of the stack and the stack
grows up into reducing address range.

Pl rmm o oy

The Stauck
CI MO <
backwards

IO I STy 51:31':1—;'_:'0"'
] =

Stack

Fig 1 Stack Structure

178

Chapter 9: Stacks and Sub-Routines

Given that the stack grows backwards into memory, it is customary to place
the bottom of the stack at the end of memory to keep it as far away from user
programs as possible.In the 8085, the stack is defined by setting the SP (Stack
Pointer) register.

LXI SP, FFFFH

This sets the Stack Pointer to location FFFFH (end of memory for the 8085).
Saving Information on the Stack

1. Information is saved on the stack by Pushing it on.

2. Itisretrieved from the stack by Poping it off.

3. The 8085 provides two instructions: PUSH and POP for storing
information on the stack and retrieving it back.

4. Both PUSH and POP work with register pairs ONLY.

The PUSH Instruction

PUSH B/D/H/PSW

Decrement SP

Copy the contents of register B to the memory location pointed to by SP
Decrement SP

Copy the contents of register C to the memory location pointed to by SP

B cC

12 [F3 |

FFFB
FFFC

FRFDL_F3 1<
FFFE[__12
FFFF SP

Fig 2. Push Operation of Stack

The POP Instruction
POP B/D/H/PSW

Copy the contents of the memory location pointed to by the SP to register E

179

MICROPROCESSOR ARCHITECTURE

9.

Increment SP

Copy the contents of the memory location pointed to by the SP to register D

Increment SP

D E

12 | F3 |
FFFB
FFFC
FFFD|_F3 SP
FFFE[__ 12 |
FFFF -«

Fig.3 - POP operation on Stack

Operation of the Stack

1.

During pushing, the stack operates in a “decrement then store”
style.The stack pointer is decremented first, then the information is
placed on the stack.During poping, the stack operates in a “use then
increment” style.The information is retrieved from the top of the the
stack and then the pointer is incremented.The SP pointer always points
to “the top of the stack”.

LIFO

The order of PUSHs and POPs must be opposite of each other in order
to retrieve information back into its original location.

PUSH B

PUSH D

POP D

POP B

Reversing the order of the POP instructions will result in the exchange
of the contents of BC and DE.

The PSW Register Pair

The 8085 recognizes one additional register pair called the PSW
(Program Status Word).This register pair is made up of the
Accumulator and the Flags registers.It is possible to push the PSW onto
the stack, do whatever operations are needed, then POP it off of the
stack.The result is that the contents of the Accumulator and the status
of the Flags are returned to what they were before the operations were
executed.

180

Chapter 9: Stacks and Sub-Routines

Cautions with PUSH and POP

PUSH and POP should be used in opposite order.There has to be as
many POP’s as there are PUSH’s.If not, the RET statement will pick
up the wrong information from the top of the stack andthe program will

fail.It is not advisable to place PUSH or POP inside a loop.

5. Program to Reset and display Flags

Clear all Flags.

Load O0H in the accumulator, and demonstrate that the zero flag is not

affected by data transfer instruction.

Logically OR the accumulator with itself to set the Zero flag, and

display the flag at PORT]1 or store all flags on the stack.

6. Program to Reset and display Flags

XX00 LXISP,XX99H Initialize the stack

03 MVI L,00H Clear L

05 PUSHH Place (L) on stack

06 POPPSW Clear Flags

07 MVIA, 00H Load 00H

09 PUSH PSW Save Flags on stack
0A POPH Retrieve flags in L
0B MOVA,L

0C OUT PORTO Display Flags (O0H)
0E MVIA, 00H Load 00H Again

7. Program to Reset and display Flags

XX10 ORA A Set Flags and reset(CY, AC)

11 PUSH PSW Save Flags on Stack

12 POPH Retrieve Flags in L

13 MOVA,L

14 ANI40H Mask all Flags except Z

16 ~ OUT PORTI1 Displays 40H

18 HLT End of Program
D7 Dig D Dy D5 Dy I Dy
A z AC P o

Fig. 4 - Flags affected after executing above program

181

MICROPROCESSOR ARCHITECTURE

9.3 Stack, Subroutine, Restart, Conditional Call, Return Instructions

1.

2000

2003

Subroutines

1.

A subroutine is a group of instructions that will be used repeatedly in
different locations of the program.

2. Rather than repeat the same instructions several times, they can be
grouped into a subroutine that iscalled from the different locations.

3. In Assembly language, a subroutine can exist anywhere in the code.

4. However, it is customary to place subroutines separately from the main
program.

5. The 8085 has two instructions for dealing with subroutines.

6. The CALL instruction is used to redirect program execution to the
subroutine.

7. The RTE instruction is used to return the execution to the calling
routine.

The CALL Instruction

1. CALL 4000H

1.1 3-byte instruction.

1.2 Push the address of the instruction immediately following
theCALL onto the stack and decrement the stack pointer register
by two.Load the program counter with the 16-bit address
supplied with the CALL instruction.

1.3 Jump Unconditionally to memory location.

CALI|4ODC:
[ool 1 [W] [ZIRegister
PC 2003
FFFR
FFEC
» FFFD| 03 4—‘
el FFFE 20
FFFE SP
Fig 5 CALL Instruction
2. MP reads the subroutine address from the next two memory location

and stores the higher order 8 bit of the address in the W register and
stores the lower order 8 bit of the address in the Z register.

182

Chapter 9: Stacks and Sub-Routines

4.

PUSH the address of the instruction immediately following the CALL
on to the stack (Return address).

Loads the program counter with the 16-bit address supplied with the
CALL instruction from WZ register.

The RTE Instruction

1.
2.

4014
4013

It is 1-byte instruction

Retrieve the return address from the top of the stack and increments

stack pointer register by two.

Load the program counter with the return address.

Unconditionally returns from a subroutine.

PCL__2003 |
&
FFFB
- FFFC
RTE s FFED| (13 SP
Frre| 20
FFFF 1——————J

Fig. 6 - RTE Instruction

Hlustrates the exchange of information between stack and Program

Counter

Memory
Address
2000 L.XI SP,2400H
< 4
2040 CALIL 2070H
2041
2042
2043 NEXT INSTRUCTION
205F HLT
2070 First Subroutine
l Instruction
$
207F RET
2080 i 8
l ?ther Subroutines
2398 Empty Space
23FF e B
2400

Fig. 7 - Program

183

MICROPROCESSOR ARCHITECTURE

Program Execution

2000

Subroutine
2032 = 2070
2043
205F >O7F

hlemory Machine

Address Code Mnemonics Comments

2040 CD CALL 2070H :Call subroutine located at the memory
2041 70 ; location 2070H

2042 20

2043 NEXT INSTRUCTION

Fig. 8 - Program execution with CALL instruction

5. CALL Execution

Instruction requires five machine cycles and eighteen Tstates:Call instruction
is fetched, 16-bit address is read during M2 and M3 and stored temporarily
in W/Zregisters. In next two cycles content of program counter are stored on
the stack (address from where microprocessor continue it execution of
program after completion of the subroutine)

Instruction: CALL 2070n1

Stack M d
Machine Pointer Address P:’ogram Data lnte_mal A;::-::Z C:'de
Cycles (SP) Bus Counter Bus Registers - (H)
2400 (AB) J(PCH)(PCL)| (DB) (W) (2) 2040 D
= 2041 70
)
opeode | S| 2040 2041 | €D > e 2
Fetch poode
- o]
sy MR 70
emo 2041 42 70
Readry = Operand
M M, 5 20 -
emory 23FF 042 20 43 =1 20
Read o3 Operand
M, : N -
Mecmory 23FE 23FF 20 43 20
Write (SP-2) 3 (PCH)
Ms : N\ v
Memory - 23FB 23FE 20 43 43 (20) (70)
Write 3 (PCL)
M
Opcode Fetch 2070 —-»~ 2071 i
of Next >
Instruction (WXZ) (WHZ)

Data Transfer During the Execution of the CALL Instruction

Fig. 9 - Data transfer during execution of CALL instruction

184

Chapter 9: Stacks and Sub-Routines

6. RET Execution

Program execution sequence is transferred to the memory location 2043H

location.M1 is normal fetch cycle during M2 contents of stack pointer are

placed on address bus so 43H data is fetched and stored on Z register and SP

is upgraded.Similarly for M3. Program sequence is transfered t02043H by

placing contents of memory and stack

Memory | Code
Address | (H) D fnternal
Stack | Address ala nic:
207F 3 Machine Pointer Bus I’mgmn: Bus | Registers
Cycles (23FE) | (AB) Counte (DB) | OWH (@)
M cy
Contents of ' F | 2080
Opcode 23FE 207 Opcode
Stack Memory Fetch
23FE ;3 M . 0
23FF z — 43
Memory 23FF 2IFE (Stack) >
Read
M, 20 __ |
Me::}r 2400 | 23FF (Stack—1) | 2
R
M, 2043
2043
h 2044
ot e
Instruction

Data Teansfer During the Execution of the RET nstruchion

Fig. 10 - Data transfer during execution of RET instruction

7. Passing Data to a Subroutine

1.
2.

In Assembly Language data is passed to a subroutine through registers.

The data is stored in one of the registers by the calling program and the
subroutine uses the value from the register.

The other possibility is to use agreed upon memory locations.

The calling program stores the data in the memory location and the
subroutine retrieves the data from the location and uses it.

8. Restart, Conditional Call & Return Instructions

l.

In addition to unconditional CALL and RET instructions, the 8085
instruction set includes eight restart instructions and eight conditional
CALL and Return instructions.

RST Instruction

2.1 RST instruction are 1-byte call instructions that transfer the
program execution to a specific location on page 00H

185

MICROPROCESSOR ARCHITECTURE

2.2 Executed the same way as call instructions, the 8085 stores the
contents of the program counter(the address of the next
instruction) on the top of the stack and transfers the program to
the restart location.

RST O Call O000H RST 4 Call O020H
RST 1 Call QO0O8H RST 5 Call O028H
RST 2 Call OO10H RST 6 Call O0O30H
RST 3 Call OO18H RST 7 Call OO38H

Fig. 11 - 7 types of RST

3. The conditional Call and Return instructions are based on four data
conditions(flags): Carry, Sign and Parity. In case of a conditional call
the program is transferred to the subroutine if condition is met. In case
of a conditional return instruction, the sequence returns to the main
program if the condition is met.

cC Call subroutine if Carry flag is set (CY = 1)

CNC Call subroutine if Carry flag is reset (CY = 0)

CZ Call subroutine if Zero flag is set (Z = 1)

CNZ Call subroutine if Zero flag is reset (Z = 0)

CM Call subroutine if Sign flag is set (8§ = 1, negative number)
CP (Call subroutine if Sign flag is reset (S = 0, positive number)

Fig. 12 - Conditional CALL

CPE Call subroutine if Parity flag is set (P =1, even parit?')
CPO Call subroutine if Parity flag is reset (P = 0, odd parity)

Fig. 13 - CALL instruction for subroutine

RC Return if Carry flag is set (CY = 1)

RNC Return if Carry flag is reset (CY = 0)

RZ Return if Zero flag is set (Z = 1)

RNZ Return if Zero flag is reset (Z = 0)

RM Return if Sign flag is set (S = 1, negative numbe
RP Return if Sign flag is reset (S = 0, positive numt
RPE Return if Parity flag is set (P = 1, even parity)
RPO Return if Parity flag is reset (P = 0, odd parity)

Fig. 14 - Conditional Return Instructions

186

Chapter 9: Stacks and Sub-Routines

9.4 Advanced Subroutine Concepts

1.

5.

According to Software Engineering practices, a proper subroutine:Is only
entered with a CALL and exited with an RTE

Has a single entry point

Do not use a CALL statement to jump into different points of the same
subroutine.

For eg Writing Subroutines

Write a Program that will display FF and 11 repeatedly on the seven segment

display. Write a ‘delay’ subroutine and Call it as necessary.

C000: LXI SP, FFFF

C003: MVI A, FF

C005: OUT 00

C007: CALL C014

CO0A: MVTA, 11

C00C: OUT 00

COOE: CALL 1420

CO11: IMP C003

4.1 Writing Subroutines
DELAY: C014: MVIB, FF
C016: MVIC, FF

C018: DCR C

C019: INZ C018

CO01C: DCR B

CO1D: JNZ C016

C020: RET

Nesting Subroutines
1. The Programming technique of a subroutine calling another subroutine.

2. This process is limited only by the number of available stack locations.

187

MICROPROCESSOR ARCHITECTURE

2000 Subroutine I | Subroutine I
% / 2090 20C2
e i)/ D/
2050 CALL / 7
2051 %
2052 20 |
' 2053 CALL
c2
20
y
9
RET - v.| RET

Fig. 15 - Nested Subroutines

6. Write a program to provide the given on /off time to three traffic lights
(Green, Yellow and Red) and two pedestrian signs(Walk and Don’t Walk).
The signal lights and signs are turned on /off by the data bits of an output port

Lights Data Bits On Time
1. Green Dq 13 seconds
2. Yellow D, 5 seconds
3. Red Dy 20 seconds
4. WALK Ds |5 seconds

5. DON'T WALK D, 25 seconds

Fig. 16 - Input to a program

Time " Hex.l

ilsleg::e:ncgs]»)v(ﬁx WALK Red Yellow Green Codg
0 D, D, D5 Di D p, D Do |

. 115 R O B e i
(5) 2&() 1,/, op g 3 /’1’/,_0 Bt 345{1;

® 410 f o 0 e 0 0 0 = o

Fig. 17 - Schematic execution of a program

188

Chapter 9: Stacks and Sub-Routines

Label Mnemonics Comments
LXI SP, 0099H Initalize stack pointer at location 0099H
START | MVIA,41H Load accumulator with the bit pattern for green
light and Walk Sign
OUT PORT # Turn on Green light and Walk sign, that is
displayed on out port number
MVI B,0FH Use B as a counter to count 15 seconds, B is
decremented in the subroutine
CALL DELAY Call delay subroutine located at SO0H
MVI A, 84H Load accumulator with the bit for Yellow light
and Don’t Walk
OUT PORT # Turn on Yellow light and Don’t Walk
MVI B,05 Set up 5 second delay counter
CALL DELAY Call of subroutine
MVI A, 90H Load accumulator with the bit pattern of Red
light and Don’t Talk
OUT PORT # Turn on Red light, kepp Don’t walk on and turn
off yellow light
CALL DELAY
JMP START Go back to location START to repeat the
sequence
DELAY | PUSHD Save the contents of DE and accumulator
PUSH PSW Push the contents on program status word
SECOND | LXI D, COUNT | Load register pair DE with a count for 1 second
delay
LOOP DCX D Decrement register pair DE
MOV A,D
ORA E OR(D) and (E) to set Zero flag
JNZ LOOP Jump to loop if delay decrement the counter
JNZ SECOND Go back to repeat 1-second delay
POP PSW Retrieve contents of saved registers
POP D
RET Return to main program

189

MICROPROCESSOR ARCHITECTURE

Miscellaneous Questions

Q1. Explain the concept of Stack, subroutines, Return, Restart and conditional
Call

Q2. Explain about nesting of subroutines
References
To refer opcodes for program in simulator use the link Here

https://electricalvoice.com/opcodes-8085-microprocessor/

o%0 %o o%0

190

UNIT 4

10

CODE CONVERSION WITH BCD

Unit Structure

10.0

10.1

10.2

10.3

10.4

Objectives

Introduction

BCD —TO- Binary Conversion

10.2.1 Ilustrative Program: 2- Digit BCD — to- Binary Conversion
Binary —TO-BCD Conversion

10.3.1 Illustrative Program: Binary — To-Unpacked-BCD Conversion
BCD-TO-Seven-Segment-LED Code Conversion
10.4.11lustrativeProgram:BCD-TO-Common-Cathode-LEDCode

Conversion

10.5

10.6

Binary ~TO-ASCII AND ASCII-TO-Binary Code Conversion
10.5.1 Tllustrative Program: Binary-To-ASCII Hex Code Conversion
10.5.2 Tllustrative Program: ASCII Hex-to-Binary Conversion

Summary

Questions and Programming Assignments

10.0 Objectives

Write programs and subroutine to

Convert a packed BCD number (0-99) into its binary equivalent.
Convert a binary digit (0 to F) into its ASCII Hex code and vice versa.

Select an appropriate seven-segment code for a given binary number using
the table look-up technique.

Convert a binary digit (0 to F) into its ASCII Hex code and vice versa.
Decimal- adjust 8-bit BCD addition and subtraction.

Perform such arithmetic operation as multiplication and subtraction using 16-
bit data related instructions.

Demonstrate uses of instructions such as DAD, PCHL, XTHL, and XCHG.

191

MICROPROCESSOR ARCHITECTURE

10.1 Introduction

In microprocessor applications, various number systems and codes are used to input
data or to display results. The ASCII (American Standard Code for Information
Interchange) keyboard is a commonly used input device for disk- based
microcomputer systems. Similarly, alphanumeric characters (letters and numbers)
are displayed on a CRT(cathode ray tube) terminal using the ASCII code. However
, inside the microprocessor , data processing is usually performed in binary. In some
instances, arithmetic operations are performed in BCD numbers. Therefore, data
must be converted from one code to another code. The programming techniques
used for code conversion fall into four general categories.

1. Conversion based on position of a digit in a number (BCD to binary and vice
versa) .
2. Conversion based on hardware consideration (binary to seven-segment code

using table look-up procedure).

3. Conversion based on sequential order of digits (binary to ASCII and vice

versa).

4. Decimal adjustment in BCD arithmetic operations. (This is an adjustment
rather than a code conversion).

This chapter discusses these techniques with various examples as
subroutines. The subroutines are written to demonstrate industrial practices
in writing software, and can be verified on single- board microcomputers. In
addition, instructions related to 16- bit data operations are introduced and
illustrated.

10.2 BCD —to- Binary Conversion

In most microprocessor —based products, data are entered and displayed in decimal
numbers.

For example, in an instruction laboratory , readings such as voltage and current are
maintained in decimal numbers, and data are entered through a decimal keyboard.
The system-monitor program of the instrument converts each key into equivalent
4- bit binary number and stores two BCD number in an 8-bit register or a memory
location. These numbers are called packed BCD. Even if data are entered in
decimal digits, it is inefficient to process data in BCD numbers because , in each 4-
bit combination, digit A though F are unused. Therefore, BCD numbers are
generally converted into binary numbers for data processing.

192

Chapter 10: Code Conversion with BCD

The conversion of a BCD number into its binary equivalent employs the principle
of positional weighting in a given number.

For example: 7210 =7 * 10+ 2

The digit 7 represents 70, based on its second position from the right. Therefore ,
converting 72gcp into its binary equivalent requires multiplying the second digit by
10 and adding the first digit.

Converting a 2- digit BCD number into its binary equivalent requires the following
steps:

1. Separate an 8- bit packed BCD number into two 4- bit unpacked BCD digits:
BCD1 and BCD;

2. Convert each digit into its binary value according to its position.

3. Addboth binary numbers to obtain the binary equivalent of the BCD number.

Example 10.1: - Convert 72gcp into its binary equivalent

72 10=0111 0010 Bcp

Step1:0111 0010 — 0000 0010 Unpacked BCD;
— (0000 0111 Unpacked BCD»

Step 2 : Multiply BCD2 by 10 (7 * 10)
Step 3 : Add BCD; to the answer in step 2

The multiplication of BCD2 by 10 can be performed by various methods. One
method is multiplication with repeated addition: add 10 seven times. This technique
is illustrated in the next program.

10.2.1 IMustrative Program: 2- Digit BCD — to- Binary Conversion

Problem Statement

A BCD number between 0 and 99 is stored in an R/W memory location called the
Input Buffer (INBUF) . Write a main program and a conversion subroutine
(BCDBIN) to convert the BCD number into its equivalent binary number. Store the
result in a memory location defined as the Output Buffer (OUTBUF).

Program
START : LXI SP, STACK; | Initialize stack pointer
LXI H, INBUF Point HL index to the Input Buffer Memory
location where BCD number is stored.
LXI B,OUTBUF Point BC index to the Output Buffer memory
where binary number will be stored.
MOV A, M Get BCD number

193

MICROPROCESSOR ARCHITECTURE

CALL BCDBIN Call BCD to binary conversion routine
STAX B Store binary number in the Output Buffer
HLT End of program

BCDBIN : Function : This subroutine converts a BCD number into its binary
equivalent

Input : A 2-digit packed BCD number in the accumulator

Output : A binary number in the accumulator

No other register contents are destroyed.

Example : Assume BCD number is 72.

PUSH B ; Save BC registers

PUSH D ; Save DE registers A 0111 0010 —> 729

MOV B,A ; Save BCD number B 0111 0010 — 7210

ANI OFH ; Mask most significant four bits A 0000 0010 —— 0210
MOV C,A ; Save unpacked BCD; in C C 0000 0010 — 0210
MOV A,B ; Get BCD again A 0111 0010 —> 72
ANI FOH ; Mask least significant four bits A 0111 0000 — 7010
RRC : Convert most significant four

RRC; bits into unpacked BCD»

RRC

RRC

MOV D,A; Save BCD; in D A 00000111 _—— 0710
XRA A; Clear accumulator D 00000111 —» 0710

MVI E,0AH ; Set E as multiplier of 10 E 0000 1010 —— OAH

SUM : ADDE ; Add 10 until (D) =0 Add E as many times as (D)
DCR D; Reduce BCD; by one
JNZ SUM ; Is multiplication complete ? After adding E seven times A

;If not ,go back and add again contains : 0100 0110

ADD C ; Add BCD; C +0000 0010

A 0100 1000 — 48H

POP D ; retrieve previous contents

RET

194

Chapter 10: Code Conversion with BCD

Program Description

1.

In writing assembly language programs, the use of labels is a common
practice. Rather than writing a specific memory location or a port number a
programmer uses such labels as INBUF (Input Buffer) and OUTBUF (Output

Buffer). Using labels give flexibility and ease of documentation.

The main program initializes the stack pointer and two memory indexes. It
brings the BCD number into the accumulator and passes that parameter to the
subroutine.

After returning from the subroutine , the main program stores the binary
equivalent in the Output Buffer memory.

The subroutine saves the contents of the BC and DE registers because these
registers are used in the subroutine. Even if this particular main program does
not use the DE registers, the subroutine may be called by some other program
in which the DE registers are being used. Therefore, it is good practice to
save the registers that are used in the subroutine, unless parameters are passed
to the subroutine. The accumulator contents are not saved because that
information is passed to the subroutine.

The conversion from BCD to binary is illustrated in the subroutine with the
example of 72pcp converted to binary.

Program Execution

To execute the program on a single-board computer, complete the following steps:

1.

Assign memory addresses to the instructions in the main program and in the
subroutine .Both can be assigned consecutive memory addresses.

Define STACK: the stack location with a 16- bit address in the R/W memory
(such as 2099H).

Define INBUF (Input Buffer) and OUTBUF (Output Buffer): two memory
locations in the R/W memory (e.g. 2050H and 2060H).

Enter a BCD byte in the Input Buffer (e.g. 2050H).
Enter and execute the program.

Check the contents of the Output Buffer memory location(2060H) and verify

the answer.

195

MICROPROCESSOR ARCHITECTURE

10.3 Binarys—to-BCD Conversion

In most microprocessor —based products, numbers are displayed in decimal.
However, if data processing inside the microprocessor is performed in binary, it is
necessary to convert the binary results into their equivalent BCD numbers just
before they are displayed. Results are quite often stored in R/W memory locations
called the Output Buffer.

The conversion of binary to BCD is performed by dividing the number by the
powers of ten; the division is performed by the subtraction method.

For example, assume the binary number is
1111 11112 (FFH) =25510

To represent this number in BCD requires twelve bits or three BCD digits, labelled
here as BCD3; (MSB) , and BCD(LSB)

0010 0101 0101
BCD; BCD» BCD;
The conversion can be performed as follows :

Step 1: If the number is less than 100 , go to Step 2; otherwise , divide by 100 or
subtract 100 repeatedly until the remainder is less than 100.The quotient is the most
significant BCD digit , BCD3

Step 2 : If the number is less than 10 , go to step 3; otherwise divide by 10
repeatedly until the remainder is less than 10. The quotient is BCD>

Step 3: The remainder from Step 2 is BCD;

Example Quotient
255
-100 =155 1
-100 =55

BCD; 2
55
-10 =45 1
-10 =35 1
-10 =25 1
-10 =15 1
-10 =05 1
BCD, =5
BCDi=5

196

Chapter 10: Code Conversion with BCD

10.3.1 Illustrative Program: Binary — To-Unpacked-BCD Conversion

Problem Statement

A binary number is stored in memory location BINBYT. Convert the number into
BCD; store each BCD as two unpacked BCD digits in the output Buffer. To
perform this task, write a main program and two subroutines: one to supply the

powers of ten and the other to perform the conversion.

Program

This program converts an 8- bit binary number into a BCD number; thus it requires
12 bits to represent three BCD digits. The result is stored as three unpacked BCD

digits in three Output-Buffer memory locations.

LXI SP,STACK | ;Intialize stack pointer
LXIH, BINBYT | ;Point HL index where binary number is

stored
MOV AM ;Transfer byte
CALL PWRTEN | ;call subroutine to load power of 10

HLT

PWRTEN: ; this subroutine loads the power of 10 in register B and calls the
binary — to- BCD conversion routine.

; Input : Binary number in accumulator

;Output : Powers of ten and stores BCD1 in the first Output-
Buffer memory

; Calls BINBCD routine and modifies register B

LXI H,OUTBUF | ;Point HL index to Output-Buffer memory
MVIB,64H ;Load 100 in register B
CALL BINBCD | ; Call conversion
MVIB,0AH ; Load 10 in register B
CALL BINBCD
MOV M,A Store BCD;
RET
BINBCD ; This subroutine coverts a binary number into BCD and stores

BCD2 and BCD3 in the Output Buffer

; Input : Binary number in accumulator and powers of 10 in B
; Output : BCD; and BCD3 in Output Buffer

;Modifies accumulator contents

197

MICROPROCESSOR ARCHITECTURE

MVI M,FFH ;Load buffer with (0-1)
NXTBUF: INR M ; Clear buffer and increment for each
subtraction
SUB B ; Subtract power of 10 from binary number

JNC NXTBUF ; Is number > power of 10? If yes, add 1 to
buffer memory

ADD B ; If no , add power of 10 to get back
remainder

INX H ;Go to next buffer location

RET

Program Description

This program illustrates the concepts of the nested subroutine and the multiple-calll
subroutine. The main program calls the PWRTEN subroutine ; in turn the
PWRTEN calls the BINBCD subroutine twice.

1.

The main program transfers the byte to be converted to the accumulator and
calls the PWRTEN subroutine.

The subroutine PWRTEN supplies the powers of ten by loading register B
and the address of the first Output-Buffer memory location , and calls the
conversion routine BINBCD.

In the BINBCD conversion routine , the Output-Buffer memory is used as a
register. It is incremented for each subtraction loop. This step also can be
achieved by using a register in the microprocessor. The BINBCD subroutine
is called twice, once after loading register B with 64H (10010) and again after
loading register B with 0AH (1010).

During the first call of BINBCD, the subroutine clears the Output Buffer ,
stores BCD3, and points the HL registers to the next Output-Buffer location.
The instruction ADD B is necessary to restore the remainder because one
extra subtraction is performed to check the borrow.

During the second call of BINBCD , the subroutine again clears the output
buffer, stores BCD; , and points to the next buffer location. BCDs is already
in the accumulator after the ADD instruction, which is stored in the third
Output- Buffer memory by the instruction MOV M,A in the PWRTEN
subroutine.

This is an efficient subroutine; it combines the functions of storing the answer
and finding a quotient. However, two subroutines are required, and the
second subroutine is called twice for a conversion.

198

Chapter 10: Code Conversion with BCD

10.4 BCD-to-Seven-Segment-Led Code Conversion

When a BCD number is to be displayed by a seven-segment LED, it is necessary
to convert the BCD number to its seven-segment code. The code is determined by
hardware considerations such as common-cathode or common-anode LED; the cod
has no direct relationship to binary numbers. Therefore , to display a BCD digit at

a seven-segment LED , the table look-up technique is used.

In the look-up technique the codes of the digits to be displayed are stored
sequentially in memory. The conversion program locates the code of a digit based
on its magnitude and transfers the code to the MPU to send out to a display port.
The table look-up technique is illustrated in the next program.

10.4.1 IlustrativeProgram:BCD-TO-COMMON-CATHODE-LED CODE
CONVERSION

Problem Statement

A set of three packed BCD numbers (six digits) representing time and temperature
are stored in memory locations starting at XX50H. The seven-segment codes of the
digit 0 to 9 for a common-cathode LED are stored in memory locations starting at
XX70H, and the Output-Buffer memory is reserved at XX90H.

Write a main program and two subroutines, called UNPAK and LEDCOD , to
unpack the BCD numbers and select an appropriate seven-segment code for each
digit. The codes should be stored in the Output-Buffer memory.

Program
LXI SP,STACK ; Initialize stack pointer
LXI H, XX50H ; Point HL where BCD digits are stored.
MVI D,03H ; Number of digits to be converted is placed
inD
CALL UNPAK Call subroutine to unpack BCD numbers
HLT ; End of conversion

UNPAK: | ; This subroutine unpacks the BCD number in two single digits
;Input : Starting memory address of the packed BCD numbers in
HL registers

;Number of BCDs to be converted in register D

Output : Unpacked BCD into accumulator and output

;Buffer address in BC

;Calls subroutine LEDCOD

LXI B,BUFFER ;Point BC index to the buffer memory

199

MICROPROCESSOR ARCHITECTURE

segment-LED code

NXTBCD: | MOV A M Get packed BCD number
ANI FOH Masked BCD;
RRC Rotate four times to place BCD; as unpacked
RRC single-digit BCD
RRC
RRC
CALL LEDCOD ; Find seven-segment code
INX B ;Point to next buffer location
MOV AM Get BCD number again
ANI OFH ;Separate BCDy
CALL LEDCOD
INX B
INX H ; Point to next BCD
DCR D ; One conversion complete , reduce BCD
count
INZ NXTBCD ;If all BCDs are not yet converted , go back
to convert next BCD
RET
LEDCOD: | ; This subroutine converts an unpacked BCD into its seven-

;Input :An unpacked BCD in accumulator

;Memory address of the buffer in BC register

;Output : Stores seven-segment code in the output buffer

PUSH H ;Save HL contents of the caller

LXI H,CODE ; Point index to beginning of seven-segment
code

ADD L ; Add BCD digit to starting address of the
code

MOV LA ; Point HL to appropriate code

MOV AM ; Get seven- segment code

STAX B ;Store code in buffer

POP H

RET

200

Chapter 10: Code Conversion with BCD

CODE: 3F ; Digit 0: Common- cathode codes
06 ; Digit 1
5B ; Digit 2
4F ; Digit 3
66 ; Digit 4
6D ; Digit 5
7D ; Digit 6
07 ; Digit 7
7F ; Digit 8
6F ; Digit 9
00 ;Invalid Digit

Program Description / Output

1.

The main program initializes the stack pointer, the HL register as a pointer
for BCD digits , and the counter for the number off digits; then it calls the
UNPAK subroutine.

The UNPAK subroutine transfers a BCD number into the accumulator and
unpacks it into two BCD digits by using the instruction ANI and RR. This
subroutine also supplies the address of the buffer memory to the next
subroutine, LEDCOD. The subroutine is repeated until counter D becomes

Z€10.

The LEDCOD subroutine saves the memory address of the BCD number and
points the HL register to the beginning address of the code.

The instruction ADD L adds the BCD digit in the accumulator to the starting
address of the code. After storing the sum in register L, the HL register points
to the seven-segment code of that BCD digit.

The code is transferred to the accumulator and stored in the buffer.

This illustrative program uses the technique of the nested subroutine (one-
subroutine calling another).

Parameters are passed from one subroutine to another; therefore, we should
be careful in using Push instructions to store register contents on the stack. In
addition , the LEDCOD does not account for a situation if by adding the
register L a carry is generated.

201

MICROPROCESSOR ARCHITECTURE

10.5 Binary —To-ASCII and ASCII-to-Binary Code Conversion

The American Standard Code for Information Interchange (known as ASCII) is
used commonly in data communication. It is a seven-bit code, and its 128(27)
combinations are assigned different alphanumeric characters. For example, the
hexadecimal capital letters 30H to 39H represent 0 to 9 ASCII decimal numbers.
and 41H to SAH represent capital letters A though Z ; in this code , bit D7 is zero.
In serial data communication, bit D7 is used for parity checking.

The ASCII keyboard is a standard input device for entering programs in a
microcomputer. When an ASCII character is entered, the microprocessor receives
the binary equivalent of the ASCII Hex number. For example, when the ASCII key
for digit 9 is pressed, the microprocessor receives the binary equivalent of 39H,
which must be converted to the binary 1001 for arithmetic operations. Similarly, to
display digit 9 at the terminal, the microprocessor must send out the ASCII Hex
code (39H) .

These conversions are done through software ,as in the following illustrative

program.

10.5.1 Hlustrative Program: Binary-To-ASCII Hex Cod Conversion
Problem Statement
An 8-bit binary number (e.g. 9FH) is stored in memory location XX50H .
1. Write a program to
a. Transfer the byte to the accumulator.
b. Separate the two nibbles.
c. Call the subroutine to convert each nibble into ASCII Hex code.
d. Store the codes in memory locations XX60H and XX61H.

2. Write a subroutine to convert a binary digit (0 to F) into ASCII Hex Code.

Main Program

LXI SP,STACK ; Initialize the stack pointer

LXI H, XX50H ; Point index where binary number is
stored.

LXI D,XX60H ; Point index where ASCII code is
stored.

MOV AM ;Transfer byte

MOV B,A ;Save byte

202

Chapter 10: Code Conversion with BCD

RRC ;Shift high-order nibble to the
RRC position of low-order nibble
RRC
RRC
CALL ASCII ; Call conversion routine
STAX D ;Store first ASCII Hex in XX60H
INX D ;Point to next memory location ,get
ready to store next byte

MOV A,B ;Get number again for second digit.
CALL ASCII
STAX D
HLT

ASCII: ;This subroutine converts a binary digit between 0 to F to
ASCII Hex Code
;Input : Single binary number 0 to F in the accumulator.
; Output : ASCII Hex code in the accumulator
ANI OFH ;Mask high-order nibble
CPI0AH ;Is digit less than 1019 ?
JC CODE ;If digit is less than 1010 , go to

CODE to add 30H
ADI 07H ;Add 7H to obtain code for digits
from A to F

CODE: ADI 30H ;Add base number 30H

RET
Program Description
1. The main program transfers the binary data byte from the memory locations

to the accumulator.

2. It shifts the high-order nibble into the low-order nibble, calls the conversion

subroutine, and stores the converted value in the memory.

3. It retrieves the byte again and repeats the conversion process for the low-

order nibble.

In this program, the masking instruction ANI is used once in the subroutine rather

than twice in the main program as illustrated in the program for BCD —To —

Common-Cathode Code Conversion.

203

MICROPROCESSOR ARCHITECTURE

10.5.2 Illustrative Program :ASCII Hex-to-Binary Conversion

Problem Statement

Write a subroutine to convert an ASCII Hex number into its binary equivalent. A
calling program places the ASCII number in the accumulator , and the subroutine

should pass the conversion to the accumulator.

Subroutine

ASCBIN : This subroutine converts an ASCII Hex number into its binary
equivalent
;Input: ASCII Hex number in the accumulator

;Output : Binary equivalent in the accumulator

SUI 30H ; Subtract 0 bias from the number
CPI0AH ; Check whether number is between 0 to 9
RC ; If yes , return to main program

SUI 07H ; If not , subtract 07H to find number

between A and F

RET

Program Description:

This program subtracts the ASCII weighting digits from the number. This process
is exactly opposite to that of the Illustrative Program that converted binary into
ASCII Hex .However, this program uses two return instructions , an illustration of
the multiple-ending subroutine.

10.6 Summary

The system-monitor program of the instrument converts each key into equivalent
4- bit binary number and stores two BCD number in an 8-bit register or a memory
location. These numbers are called packed BCD.

Even if data are entered in decimal digits, it is inefficient to process data in BCD
numbers because, in each 4- bit combination, digit A though F are unused.
Therefore, BCD numbers are generally converted into binary numbers for data
processing.

The conversion of a BCD number into its binary equivalent employs the principle
of positional weighting in a given number.

In most microprocessor —based products, numbers are displayed in decimal.
However, if data processing inside the microprocessor is performed in binary, it is

204

Chapter 10: Code Conversion with BCD

necessary to convert the binary results into their equivalent BCD numbers just
before they are displayed. Results are quite often stored in R/W memory locations
called the Output Buffer.

The conversion of binary to BCD is performed by dividing the number by the
powers of ten; the division is performed by the subtraction method.

When a BCD number is to be displayed by a seven-segment LED, it is necessary
to convert the BCD number to its seven-segment code. The code is determined by
hardware considerations such as common-cathode or common-anode LED); the cod
has no direct relationship to binary numbers. Therefore, to display a BCD digit at
a seven-segment LED, the table look-up technique is used.

In the look-up technique the codes of the digits to be displayed are stored
sequentially in memory. The conversion program locates the code of a digit based
on its magnitude and transfers the code to the MPU to send out to a display port.

The American Standard Code for Information Interchange (known as ASCII) is
used commonly in data communication. It is a seven-bit code, and its 128(27)
combinations are assigned different alphanumeric characters. For example, the
hexadecimal capital letters 30H to 39H represent 0 to 9 ASCII decimal numbers.
and 41H to SAH represent capital letters A though Z ; in this code , bit D7 is zero.
In serial data communication, bit D7 is used for parity checking.

The ASCII keyboard is a standard input device for entering programs in a
microcomputer. When an ASCII character is entered, the microprocessor receives
the binary equivalent of the ASCII Hex number. For example, when the ASCII key
for digit 9 is pressed, the microprocessor receives the binary equivalent of 39H,
which must be converted to the binary 1001 for arithmetic operations. Similarly, to
display digit 9 at the terminal, the microprocessor must send out the ASCII Hex
code (39H) .

QUESTIONS AND PROGRAMMING ASSIGNMENTS
Q1) Explain BCD —to —binary conversion with examples.

Q2) Write a program for 2-digit BCD to binary conversion
Q3) Explain Binary —to —-BCD conversion with examples.
Q4) Write a program for binary to unpacked BCD conversion.

Q5) Rewrite the BCDBIN subroutine to include storing results in the Output
Buffer . Eliminate unnecessary PUSH and POP instructions.

Q6) Write a program for BCD to common cathode LED code conversion.
Q7) Write a program for binary to ASCII Hex code conversion

Q8) Write a program for ASCII Hex to binary conversion.

205

MICROPROCESSOR ARCHITECTURE

Books and References
1. Computer System Architecture by M. Morris Mano , PHI Publication, 1998.

2. Structured Computer Organization by Andrew C. Tanenbaum , PHI
Publication.

3. Microprocessors Architecture, Programming and Application with 8085 by
Ramesh Gaonker ,PENRAM , Fifth Edition ,2012.

O o0 o0
0'0 0'0 0‘0

206

11.0

11.2

11.3

11.4

UNIT 4

11

BCD ARITHMETIC AND 16-BIT
DATA OPERATION

Objectives

Introduction

BCD Addition

11.2 .1 Mlustrative Program: Addition of Unsigned BCD Numbers

BCD Subtraction

11.3.1 lustrative Problem: Subtraction of Two Packed BCD Numbers
Introduction To Advanced Instructions And Application

11.4.1:- 16- Bit Data Transfer (Copy) and Data Exchange Group

11.4.2 Arithmetic Group

11.4.3 Instruction Related to the Stack Pointer and the Program Counter

11.4.4 Miscellaneous Instruction

11.5 Multiplication

11.6

11.7

11.5.1 Illustrative Program: Multiplication of Two 8-Bit Unsigned Numbers
Subtraction With Carry
11.6.1 Illustrative Program: 16-Bit Subtraction

Summary

Questions and Programming Assignments

207

MICROPROCESSOR ARCHITECTURE

11.0 Objectives

Write programs and subroutine to
. Convert a packed BCD number (0-99) into its binary equivalent.
. Convert a binary digit (0 to F) into its ASCII Hex code and vice versa.

. Select an appropriate seven-segment code for a given binary number using
the table look-up technique.

. Convert a binary digit (0 to F) into its ASCII Hex code and vice versa.
. Decimal- adjust 8-bit BCD addition and subtraction.

. Perform such arithmetic operation as multiplication and subtraction using
16-bit data related instructions.

° Demonstrate uses of instructions such as DAD, PCHL,XTHL, and XCHG.

11.1 Introduction

In microprocessor applications, various number systems and codes are used to
input data or to display results. The ASCII (American Standard Code for
Information Interchange) keyboard is a commonly used input device for disk-
based microcomputer systems. Similarly, alphanumeric characters (letters and
numbers) are displayed on a CRT(cathode ray tube) terminal using the ASCII code.
However, inside the microprocessor, data processing is usually performed in
binary. In some instances, arithmetic operations are performed in BCD numbers.
Therefore, data must be converted from one code to another code. The
programming techniques used for code conversion fall into four general categories.

1. Conversion based on position of adigit in a number (BCD to binary and vice
versa) .
2. Conversion based on hardware consideration (binary to seven-segment code

using table look-up procedure).

3. Conversion based on sequential order of digits (binary to ASCII and vice
versa).

4. Decimal adjustment in BCD arithmetic operations. (This is an adjustment
rather than a code conversion).

This chapter discusses these techniques with various examples as subroutines. The
subroutines are written to demonstrate industrial practices in writing software, and
can be verified on single- board microcomputers. In addition, instructions related
to 16- bit data operations are introduced and illustrated.

208

Chapter 11: BCD Arithmetic and 16-Bit Data Operation

11.2 BCD Addition

In some applications, input /output data are presented in decimal numbers, and the
speed of data processing is unimportant. In such applications, it may be convenient
to perform arithmetic operations directly in BCD numbers. However, the addition
of two BCD numbers may not represent an appropriate BCD value. For example,

the addition of 34gcp and 26scp results in SAH as shown below:

34 0= 0011 0100 Bcp
+2610= 0010 0110 Bcp
601(): 0101 1010 BCD

The microprocessor cannot recognize BCD numbers; it adds any two numbers in

binary.

In BCD addition, any number larger than 9 (from A to F) is invalid and needs to be
adjusted by adding 6 in binary.

For example, after 9, the next BCD number is 10; However, in Hex it is A. The
Hex number A can be adjusted as a BCD number by adding 6 in binary .The BCD
adjustment in 8-bit binary register can be shown as follows:

A= 00001010

+6= 0000 0110

0001 0000 —» 10BcD

Any BCD sum can be adjusted to proper BCD value by adding 6 when the sum
exceeds 9 . In case of packed BCD, both BCD; and BCD> need to be adjusted; if a
carry is generated b adding 6 to BCD1, the carry should be added to BCD», as shown

in the following example.

209

MICROPROCESSOR ARCHITECTURE

Example 11.1:- Add two packed BCD number: 77 and 48.

77 = 0111 0111
+48= 0100 1000
125= 1011 1111
+0110
CY1|0101

+0110
CY 1 00100101

The value of the least significant four bits is larger than 9. Add 6.

The value of the most significant four bits is larger than 9, Add 6 and the carry from
the previous adjustment.

In this example, the carry is generated after the adjustment of the least significant
four bits for the BCD digit and is again added to the adjustment of the most
significant four bits.

A special instruction called DAA (decimal Adjust Accumulator) performs the
function of adjusting a BCD sum in 8085 instruction set. This instruction uses the
Auxiliary Carry flip-flop (AC) to sense that the value of the least four bits is larger
than 9 and adjusts the bits to the BCD value. Similarly, it uses the Carry flag (CY)
to adjust the most significant four bits. However, the AC flag is used internally by
the microprocessor; this flag is not available to the programmer through any Jump
instruction.

Instruction
DAA : Decimal Adjust Accumulator
This is a 1- byte instruction

It adjusts an 8- bit number in the accumulator to form two BCD numbers by using
the process described above.

It uses the AC and the CY flags to perform the adjustment.

210

Chapter 11: BCD Arithmetic and 16-Bit Data Operation

All flags are affected.

It must be emphasized that instruction DAA

Adjust a BCD sum.

It does not convert a binary number into BCD numbers.

It works only with addition when BCD numbers are used ; does not work with

subtraction.
11.2 .1 Ilustrative Program: Addition of Unsigned BCD Numbers

Problem Statement

A set of ten packed BCD numbers is stored in the memory location starting at
XX50H.

1. Write a program with a subroutine to add these numbers in BCD. If a carry
is generated, save it in register B, and adjust it for BCD. The final sum will
be less than 9999gcp .

2. Write a second subroutine to unpack the BCD sum stored in registers A and
B, and store them in the output-buffer memory starting at XX60H. The most
significant digit (BCD4) should be stored at XX60H and the least significant
digit (BCD1) at XX63H.

START : LXI SP, STACK ;Initialize stack pointer
LXI H, XX50H ; Point index to XX50H
MVI C,COUNT ;Load register C with the count of
BCD numbers to be added
XRA A ; Clear accumulator
MOV B,A ; Clear register B to save carry
NXTBCD CALL BCDADD ; Call subroutine to add BCD
numbers
INX H ; Point to next memory location
DCR C ; One addition of BCD number is
complete, decrement the counter
JINZ / NXTBCD ;If all numbers are added go to next
step, otherwise go back
LXI H,XX63H ;Point index to store BCD; first

211

MICROPROCESSOR ARCHITECTURE

CALL UNPAK ; Unpack the BCD stored in the
accumulator
MOV A,B ;Get ready to store high-order
BCD- BCD3 and BCD4
CALL UNPAK ; Unpack and store BCD3 and
BCD4 at XX61H and XX60H
HLT
BCDADD: ; This subroutine adds the BCD number from the memory to
the accumulator and decimal adjusts it. If sum is larger than
eight bits, it saves the carry and decimal-adjusts the carry sum.
; Input : The memory address in HL register where the BCD
number is stored
;Output : Decimal-adjusted BCD number in the accumulator
and the carry in register B
ADD M ; Add packed BCD byte and adjust it for
BCD sum.
DAA
RNC ;If no carry, go back to next BCD
MOV D,A ; If carry is generated, save the sum from
the accumulator
MOV AB ; Transfer CY sum from register B and
add 01
ADIO01H
DAA ; Decimal-adjust BCD from B
MOV B,A ; Save adjusted BCD in B
MOV A,.D ;Place BCD; and BCD; in the
accumulator
RET
UNPAK: ; This subroutine unpacks the BCD in the accumulator and the
carry register and stores them in the output buffer.

212

Chapter 11: BCD Arithmetic and 16-Bit Data Operation

; Input : BCD number in the accumulator, and the buffer
address in HL registers

;Output : Unpacked BCD in the output buffer

MOV D,A ; Save BCD number

ANI OFH ;Mask high-order BCD

MOV M A ; Store low-order BCD

DCX H ; Point to next memory location

MOV A,.D ; Get BCD again

ANI FOH ; Mask low-order BCD

RRC ; Convert the most significant four bits
RRC into unpacked BCD

RRC

RRC

MOV M,A ; Store high-order BCD

DCX H ; Point to the next memory location

RET

Program Description

1.

The expected maximum sum is 9090, which requires two registers. The main
program clears the accumulator to save BCD; and BCDy, clears register B to
save BCD3; and BCDs4, and call the subroutine to add the numbers. The BCD
bytes are added until the counter becomes zero.

The BCDADD subroutine is an illustration of the multiple ending
subroutines. It adds a byte, decimal —adjusts the accumulator and, if there is
no carry, returns the program execution to the main program. If there is a
carry, it adds Ol to the carry register B by transferring the contents to the
accumulator and decimal-adjusting the contents. The final sum is stored in

register A and B.

The main program calls the UNPAK subroutine,which takes the BCD
number from the accumulator (e.g. 57scp), unpacks it into two separate BCD
(e.g. 058cp and 07gcp), stores them in the output buffer. When a subroutine
stores a BCD number in memory, it decrements the index because BCD; is
stored first.

213

MICROPROCESSOR ARCHITECTURE

11.3 BCD Subtraction

When subtracting two BCD numbers, the instruction DAA cannot be used to
decimal adjust the result of two packed BCD numbers; the instruction applies only
to addition. Therefore, it is necessary to devise a procedure to subtract two BCD
numbers. Two BCD numbers can be subtracted by using the procedure of 100’s
complement (also known as 10’s complement), similar to 2’s complement. The

100’s complement of a subtrahend can be added to a minuend as illustrated:

For example, 82-48(=34) can be performed as follows:
100’s complement of subtrahend 52 (100-48=52)
Add minuend +82

1/ 34

The sum is 34 if the carry is ignored. This is similar to subtraction by 2’s
complement .However in an 8-bit microprocessor; it is not a simple process to find
100’s complement of a subtrahend (100scp requires twelve bits). Therefore, in
writing a program 100’s complement is obtained by finding 99’s complement and
adding 01.

11.3.1 Illustrative Problem: Subtraction of Two Packed BCD Numbers

Problem Statement

Write a subroutine one packed BCD number from another BCD number. The
minuend is placed in register B, and subtrahend is placed is register C by the calling
program. Return the answer into the accumulator.

Subroutine

SUBBCD | ; This subroutine subtracts two BCD numbers and adjusts the result
to BCD values by using the 100’s complement method.

; Input : A minuend in register B and a subtrahend in register C

; Output : The result is placed in the accumulator

MVI A,99H

SUB C ; Find 99’s complement of subtrahend

INR A ;Find 100’s complement of subtrahend

ADD B ; Add minuend to 100’s complement of
subtrahend

DAA ; Adjust for BCD

RET

214

Chapter 11: BCD Arithmetic and 16-Bit Data Operation

11.4 Introduction to Advanced Instructions and Application

The instructions deal primarily with 8-bit data (except LXI). However, in some
instances data larger than eight bits must be manipulated, especially in arithmetic
manipulations and stack operations. Even if the 8085 is an 8- bit microprocessor,
its architecture allows specific combinations of two 8-bit registers to form 16-bit
registers. Several instructions in the instruction set are available to manipulate 16
bit data.

11.4.1:- 16- Bit Data Transfer (Copy) and Data Exchange Group
LHLD:- | Load HL registers direct
This is a 3-byte instruction.

The second and third bytes specify a memory location (the second
byte is a line number and the third byte is a page number) .
Transfers the contents of the specified memory location to L register.

Transfers the contents of the next memory location to H register

SHLD:- | Store HL registers direct

This is a 3-byte instruction.

The second and third bytes specify a memory location (the second
byte is a line number and the third byte is a page number) .

Stores the contents of L register in the specified memory location
Stores the contents of H register in the next memory location.

XCHG:- | Exchange the contents of HL and DE

This is a 1-byte instruction

The contents of H register are exchanged with the contents of D
register, and the contents of L register are exchanged with the
contents of E register

Example 11.2:- Memory locations 2050H and 2051H contain 3FH and 42H,
respectively, and register pair DE contains 856FH. Write instructions to exchange
the contents of DE with the contents of the memory locations.

Before Instructions: D 85 6F E Memory

2050
2051

215

MICROPROCESSOR ARCHITECTURE

Instructions:
Machine Code Mnemonics
2A LHLD 2050
50 HU42 3FL 2050
20 2051
EB XCHG
DU2 3HE 2050
H[85 6F L 2051
22 SHLD 2050H
50 H[85 6HL 2050
20 2051
11.4.2 Arithmetic Group
Operation: : Addition with Carry
ADCR These instructions add the contents of
ADCM the operand, the carry, and the
ACI 8-bit accumulator. All flags are affected.

Example 11.3 Registers BC contain 2793H and register DE contain 3182H . Write
instructions to add these twol6- bit numbers, and place the sum in memory

locations 2050H and 2051H.

Before instructions: B ‘27 93‘ C
D31 82/E
Instructions
MOV A,C A D3 F 93
ADD E All5 CY=I|F | +82
MOV LA H L 1/15H
MOVA,B 27
ADC D +31
MOV H,A H[59 15 L 59H
SHLD 2050H

216

Chapter 11: BCD Arithmetic and 16-Bit Data Operation

Operation: Subtraction with Carry

SBB R
SBB M
SBI 8-bit

These instructions subtract the contents of the operand and borrow from the

contents of the accumulator.

Example 11.4 :- Register BC contains 8538H and registers DE contain 62A5H .
Write instructions to subtract the contents of DE from the contents of BC, and place
the result in BC.

Instructions
MOV A,C (B) 85 38 (C)
SUBE | |
MOV C,A (D) 62 A5 (E)
MOV A.B
-1 1/93
SBB D (B) 22 93 (0O
MOV B,A

Operation : Double Register ADD

DAD Rp

DAD B

DAD D

DADH

DAD SP

Add register pair to HL

It is a 1-byt instruction

Adds the contents of the operand (register pair or stack pointer) to the contents of
HL registers

The result is placed in HL registers

The Carry flag is altered to reflect the result of the 16-bit addition. No other flags
are affected.

The instruction set includes four instructions.

217

MICROPROCESSOR ARCHITECTURE

Example 11.5 Write instructions of the stack pointer register at output ports

Instructions

LXI H, 0000H | ; Clear HL

DAD SP ; Place the stack pointer contents in HL

MOV AH ; Place high-order address of the stack pointer in the
accumulator

OUT PORTI

MOV AL ; Place low-order address of the stack pointer in the
accumulator

OUT PORT2

The instruction DAD SP adds the contents of the stack pointer register to the HL
register pair, which is already cleared. This is only instruction in the 8085 that

enables the programmer to examine the contents of the stack pointer register.
11.4.3 Instruction Related to the Stack pointer and the Program Counter
XTHL : Exchange Top of the Stack with H and L

The contents of L are exchanged with the contents of the memory location shown
by the stack pointer, and the contents of H are exchanged with the contents of
memory location of the stack pointer +1.

Example 11.6 :- Write a subroutine to set the Zero flag and check whether the
instruction JZ (Jump on Zero) functions properly, without modifying any register
contents other than flags.

Subroutine

CHECK: PUSH H
MVI L ,FFH ; Set all bits in L to logic 1
PUSH PSW ;Save flags on the top of the stack
XTHL ; Set all bits in the top stack

location

POP PSW ; Set Zero flag
JZ NOERROR
JMP EEROR

NOERROR: POP H
RET

218

Chapter 11: BCD Arithmetic and 16-Bit Data Operation

The instruction PUSHPSW places the flags in the top location of the stack,and the
instruction XTHL changes all the bits in that location to logic 1 . The instruction
POPPSW sets all the flags.

If the instruction JZ is functioning properly, the routine returns to the calling

program; otherwise, it goes to the ERROR routine (not shown).

This example shows that the flags can be examined, and can be set or reset to check

malfunctions in the instructions.
SPHL :- Copy H and L registers into the Stack Pointer Register

The contents of H specify the high-order byte and contents of L specify the low-
order byte.

The contents of HL registers are not affected.
This instruction can be used to load a new address in the stack pointer register.
PCHL :- Copy H and L registers into the Program Counter

The contents of H specify the high-order byte and the contents of L specify the low-
order byte.

11.4.4 Miscellaneous Instruction

CMC : Complement the Carry flag (CY)

If the Carry flagis 1, it is reset ; if it is 0O, it is set.
STC: Set the Carry Flag (CY=1)

11.5 Multiplication

Multiplication can be performed by repeated addition; this technique is used in
BCD —to —binary conversion. It is however, an inefficient technique for a large

multiplier.

A more efficient technique can be devised by following the model of manual

multiplication of decimal numbers.

219

MICROPROCESSOR ARCHITECTURE

For example,

108
X 15

Step 1: (108 X 5)= | 540
Step 2 : shift left and add (108 X 1)= | +108

1620

In this example, the multiplier multiplies each digit of the multiplicand, starting
from the farthest right, and adds the product by shifting to the left. The same process
can be applied in binary multiplication.

11.5.1 Hlustrative Program: Multiplication of Two 8-Bit Unsigned Numbers

Problem Statement

A multiplicand is stored in memory location XX50H and a multiplier is stored in

location XX51H. Write a main program to
1. Transfer the two numbers placed in registers H and L.

2. Store the product in the Output Buffer at XX90H.

Write a subroutine to
1. Multiply two unsigned numbers placed in registers H and L.

2. Return the result into the HL pair.

Main Program

LXI SP, STACK

LHLD XX50H ; Place contents of XX50 in L register and contents of
XX51 in H register

XCHG ; Place multiplier in D and multiplicand in E

CALL MLTPLY ; Multiply the two numbers

SHLD XX90H ; Store the product in locations XX90 and 91H

HLT

220

Chapter 11: BCD Arithmetic and 16-Bit Data Operation

Subroutine

MLTPLY : This subroutine multiplies two 8-bit unsigned numbers

; Input : Multiplicand in register E and multiplier in register D
; Output : Results in HL register

MLTPLY: | MOV A,D ; Transfer multiplier to accumulator

MVI D,00H ; Clear D to use in DAD instruction

LXI H,0000H | ; Clear HL

MVI B,08H ;Set up register B to count eight rotations

NXTBIT: | RAR ;Check if multiplier bit is 1

JNC NOADD | ; If not, skip adding multiplicand

DAD D ; If multiplier is 1, add multiplicand to HL and
place partial result in HL.

NOADD: | XCHG ; Place multiplicand in HL
DAD H ; And shift left
XCHG ; Retrieve shifted multiplicand
DCR B ; One operation is complete, decrement counter
JINZ NXTBIT | ; Go back to next bit
RET

Program Description

1.

The objective of the main program is to demonstrate use of the instruction
LHLD, SHLD, and XCHG. The main program transfers the two bytes
(multiplier and multiplicand) from memory locations to the HL registers by
using the instruction LHLD, places them in DE register by the instruction
XCHG, and places the result in the Output Buffer by the instruction SHLD.

The multiplier routine follows the format —add and shift to the left. The
routine places the multiplier in the accumulator and rotates it eight times until
the counter (B) becomes zero. The reason for clearing D is to use the
instruction DAD to add register pairs.

After each rotation, when a multiplier bit is 1, the instruction DAD D
performs the addition,and DAD H, shifts bits to the left. When a bit is 0, the
subroutine skips the instruction DAD D and just shifts the bits.

221

MICROPROCESSOR ARCHITECTURE

11.6 Subraction with Carry

The instruction set includes several instructions specifying arithmetic operations
with carry. Description of these instructions convey an impression that these
instructions can be used to add (or subtract) 8- bit numbers hen the addition
generates carries.

In fact, in these instructions when a carry is generated, it is added to bit Do of the
accumulator in the next operation . Therefore, these instructions are used primarily
in 16- bit addition and subtraction, as shown in the next program.

11.6.1 Illustrative Program: 16-Bit Subtraction

Problem Statement

A set of five 16-bit readings of the current consumption of industrial control units
is monitored by meters and stored at memory locations starting at XX50H . The
low- order byte is stored first (e.g., at XX50H), followed by the high-order byte(e.g.
at XXX51H) . The corresponding maximum limits for each control unit are stored
starting at XX90H.

Subtract each reading from its specified limit, and store the difference in place of
the readings. If any reading exceeds the maximum limit, call the indicator routine

and continue checking.

Main Program

LXI D, 2050H ; Point index to reading
LXI H,2080H ; Point index to maximum limits
MVI B,05H ; Set up B as a counter
NEXT: CALL SBTRAC ;Point to next location
INXD ;Point to next location
INX H
DCR B
INZ NEXT
HLT
Subroutine
SBTRAC : This subroutine subtracts two 6- bit numbers
; Input : The contents of registers DE point to reading locations
; The contents of registers HL point to maximum limits

222

Chapter 11: BCD Arithmetic and 16-Bit Data Operation

; Output : The results are placed in reading locations, thus destroying
the initial readings;

Memory Contents

The first current LSB
reading =6790H 2050H=90H | MSB
2051H=67H
Maximum limit LSB
=7000H 2090H=00H | MSB
2091H=70H
; [llustrative Example
SBTRAC: MOV AM ;(A) =00H LSB of maximum limit
XCHG ; (HL) =2050H
SUB M ; (A)=10000 0000 2’s complement of 90H
;(M) =0111 0000 Borrow flag is set to
1 0111 0000 indicate the result is in
2’s complement.
MOV M,A ;Store at 2050H
XCHG ; (HL) =2090H
INXH ; (HL) =2091H
INX D ; (DE) =2051H
MOV AM ; (A) =70H MSB of the maximum limit
XCHG ; (HL) =2051H
SBB M ; (A)=0111 0000 (70H)
; (M) =10011001 2’s complement of 67H
; (CY)=1 Borrow flag
CCINDIKET | ;Call Indicate subroutine if reading is
higher than the maximum limit
MOV M,A
RET

Program Description

This is a 16- bit subtraction routine that subtracts one byte at a time. The low-order

bytes are subtracted by using the instruction SUB M . If a borrow is generated, it is

accounted for by using the instruction SBB M (subtract with Carry) for the high-

order bytes. In the illustrative example, the first subtraction (00H -90H) generates
a borrow that is subtracted from the high-order bytes. The instruction XCHG
changes the index pointer alternately between the set of readings and the maximum

limits.

223

MICROPROCESSOR ARCHITECTURE

11.7 Summary

16- bit Data transfer (copy) and data exchange instructions

LHLD, SHLD, XCHG,XTHL, PCHL,SPHL

Arithmetic Instructions used in 16- bit operations

The following instructions add the contents of the operand, the carry, and the

accumulator.

ADC R, ADC M, ACI 8- bit

Subtraction: The following instructions subtract the contents of the operand and the

borrow from the contents of the accumulator.

SBB R, SBB M, SBI 8-bit

Questions and Programming Assignments

Ql)
Q2)

Q3)
Q4)

Q5)
Qo)

Explain BCD Addition with examples.

Write a counter program to count continuously from a 0 to 99 in BCD with a
delay of 750ms between each count. Display the count at an output port.

Explain BCD Subtraction with examples.

Write a program to subtract a 2-digit BCD number from another 2-digit BCD
number .

Explain Multiplication with examples.

A set of 16- bit readings is stored n memory locations starting at 2050H .Each
reading occupies two memory locations: the low- order byte is stored first,
followed by the high- order byte. The number of readings stored is specified
by the contents of B register. Write a program to add all the reading and store
the sum in the Output-Buffer memory. (The maximum limit of a sum is 24
bits).

Books and References

1.
2.

Computer System Architecture by M. Morris Mano, PHI Publication, 1998.

Structured Computer Organization by Andrew C. Tanenbaum, PHI
Publication.

Microprocessors Architecture, Programming and Application with 8085 by
Ramesh Gaonker, PENRAM, Fifth Edition,2012.

224

Chapter 11: BCD Arithmetic and 16-Bit Data Operation

Books and References

1.

2.

Computer System Architecture by M. Morris Mano, PHI Publication, 1998.

Structured Computer Organization by Andrew C. Tanenbaum, PHI

Publication.

Microprocessors Architecture, Programming and Application with 8085 by
Ramesh Gaonker, PENRAM, Fifth Edition, 2012.

0‘0 0’0 0’0

225

UNIT 4

12

SOFTWARE DEVELOPMENT
SYSTEM AND ASSEMBLERS

Unit Structure

12.1
12.2
12.3
12.4
12.5

Objectives

Introduction

Microprocessors-Based Software Development system
Operating System and Programming Tools

Assemblers and Cross-Assemblers, Writing Program Using Cross
Assemblers.

12.1 Objectives

At the end of this chapter, the student will be able to

o [llustrate the concept of Microprocessor-Based Software Development System

e Describe the concept of operating system and programming tools

e Explain the assemblers and Cross-Assemblers

e Write the program using cross Assemblers

12.2 Introduction

The assembly language level differs in a significant respect from the micro-
architecture, ISA and operating system machine levels- it is implemented by

translation rather than by interpretation.

Programs that convert a user’s program written in some language to another
language are called translators.

The language in which the original program is written is called the source
language and the language to which it is converted is called the target
language.

226

Chapter 12: Software Development System and Assemblers

Translation is used when a processor (either hardware or an interpreter) is
available for the target language but not for the source language. If the
translation has been performed correctly, running the translated program will
give precisely the same results as the execution of the source program would
have given had a processor for it been available.

In translation, the original program in the source language is not directly
executed. Instead it is converted to an equivalent program called an object
program or executable binary program whose execution is carried out only

after the translation has been completed.

While the object program is being executed, only three levels are in evidence,
the micro-architecture level, the ISA level and the operating system machine
level and these programs are found on computer’s memory during their
execution, this is possible due to advancement in microprocessor in software
level with respect to operating system and assemblers.

So in this chapter we will going to study more about operating system and its

programming tools along with assemblers , cross assemblers.

12.3 Microprocessors-Based Software Development System

1.

It is simply a computer that enables the user to write, modity, debug and test
programs.

In a microprocessor-based development system, a microprocessor is used to
develop software for a particular microprocessor.

Generally, the microprocessor has a large R/W memory(typically 8M to 64
M), disk storage, and a video terminal with an ASCII keyboard.

The System(I/Os, files, programs etc) is managed by a program called the
operating system.

Software development system includes an ASCII keyboard, a CRT terminal,
an MPU board with 8M to 64M R/W memory and disc controllers and disk
drivers.

The disk controller is an interfacing circuit through which the microprocessor
unit can access a disk and provide Read/Write control signals.

The disk drives have Read/Write elements, which are responsible for reading
and writing data on the disk.

At present, most systems are equipped a 3.5-inch disk stores 1.44M bytes of
information.

227

MICROPROCESSOR ARCHITECTURE

10.

11.

12.

The Storage capacity of a typical hard disk in a PC is 2.2G(giga) bytes or
higher.

Floppy disk- It is made up of a thin magnetic material(iron oxide) that can
store logic Os and 1s in the form of magnetic direction. The surface on the
disk is divided in to a number of concentric tracks, and each track is divided
in to sectors.Data are stored on concentric circular tracks on both
sides(known as doubled-sided). At the edge of the disk there is a ‘notch’
called write protected notch.

Fig. 1 - Image of Floppy Disk

Hard Disk- Another type of storage memory used with computers called a
hard disk. In general the disk is fastened in a dust free drive mechanism. It is
highly precise and reliable. It requires sophisticated controller circuitry. It is
more stable than the floppy disk. They are available in various sizes and their

storage capacity is quite large in the order of gigabytes.

Fig. 2 - Image of Hard Disk

CD-ROM- A CD-ROM is a optical disk that uses a laser beam to store digital
information that can be read with a laser diode. The disk is immune to dust
and mechanical wear because of its optical nature.It comes in various
size(3.5-14 inch) and stores huge amount of data from 100 mb to several gb.

228

Chapter 12: Software Development System and Assemblers

Fig. 3 - Image of CD-ROM

12.4 Operating System and Programming Tools

1.

The operating system of a computer is a group of programs that manages or
oversees all the operations of the computer.

The Computer transfers information constantly among peripherals such as a
floppy disk, printer, keyboard and video monitor.

It also stores user programs under file name on a disk. Each computer has its
own operating system like MS-DOS(microsoft Disk Operating System),
OS/2(Operating system 2), Windows 95, Windows xp, Windows 7,10 etc and
Unix.

Older version of operating system like MS-DOS is being replaced by newer

version such as microsoft windows newer versions, IBM OS/2 and unix/linux.

MS-DOS(Microsoft Disk Operating System)- It is a single user operating
system used normaly in PC’s.

5.1 History of DOS- a) In 1979, a small company called seattle computer
products wrote its own OS names as ODOS. IBM purchased ODOS
and then took the help of microsoft to develop a new product. This
product was announced with IBM-PC in 1981 with names as MS-
DOS version 1.0. b)In 1983 MS-DOS ver 2.0 appeared with many
advances in design. It was made for PC announced by IBM. It
introduced fixed disk formatting, back up utilities and filter

commands for redirection of input/output operations.

5.2 Features- a) MS-DOS has enhanced version MS-DOS 7.0 in market
which has GUI(Graphical user interface) facility. b)In 1991 tie up

229

MICROPROCESSOR ARCHITECTURE

53

54

5.5

between IBM and Microsoft ended and microsoft started new series
which name is window operating system.c)1981- DOS1.1 Renamed
version of QDOS(Quick and Dirty operating system) which was
purchased by Microsoft from Seattle Computer products. d)1982-
supported use of double sided disks. €)1983-DOS 2.0 supported
IBM’s 10 mb hard disk and some other additional features. f)1984-
DOS 3.0 support for high density 3.5 inch floppy disk. Allowed
partition on hard disk. g)1991- DOS 5.0, much upgraded version
included text editor and improved BASIC interpreter etc. h) 1993-
DOS 6.0- Added a disk compression utility antivirus program and disk
defragmenter. 1)1995- DOS 7.0, this version is part of MS windows
95, supports long file names but remove a large number of utilities.
1D1997-DOS 7.1, support for FAT 32 hard disks and is part of later
versions of MS windows 95.

MS-DOS parts- The DOS OS is a set of programs which are stored on
some secondary storage device, normally on floppy disk. It is then
loaded in to RAM when required. The DOS software is divided in to
three parts stored in three different files on disk. The disk which
contains these three files is called a Bootable disk.

The three files loaded on this disk are 10.SYS, MSDOS.SYS and
COMMAND.COM. The 10.SYS file contains the device drivers for
the standard devices such as keyboard, disk, floppy, printer and
monitor are present. All these device drivers are often called
BIOS(Basic Input Output System). The MSDOS.SYS file is also
called DOS Kernel. It contains all the modules for process
management. These modules are written in machine independent

manner so that they could be easily ported.

File in DOS-A file is a organized collection of data stored on storage
device such as magnetic tape, disk. The file is used to store only one
kind of information. Different types of files are used in computer such
as text file, batch file, database file etc. Some file extensions and their
meanings

.CC Source program file

.ftn Fortran source program file

.pas Pascal Source program file

.obj object file

A N NN

.exe Executable File

230

Chapter 12: Software Development System and Assemblers

5.6

5.7

5.8

59

v' .bak Backup File
v' .dat Data File

v .Wav Microsoft windows sound file

File name in DOS- The file name can have up to 8 alphanumeric
characters and an optional extension. The extension name can be up to
3 characters long. The periods(.) separates the primary name and
optional extension. DOS permits following characters in a file name (A
toZ,atoz, 0to9, $,&##,%.,(),@,!)

Directory- Files on the hard disk are divided in to various segments
called directories. A directory can store any number of files. It helps to
organize our files in an efficient manner. Just like filenames, directory
name can also have up to eight alphanumeric characters. Directory is
further classified in to three parts (Current directory, Sub directory, root
directory) for eg C:\abc\xyz.

DOS provides two wildcard characters (*) and (?) , whereas (*) means
single character replacement and (?) means any number of characters.
For eg C:\>del**, C:\>dir??am.c

Piping- DOS also supports piping technique which permits us to

combine multiple commands on a single command. The symbol is |

Window OS- Windows is a very user friendly and popular operating system

developed by microsoft corporation company in 1985. Windows was single

user OD initially but after windows 98 it was turned as multiuser
Multitasking OS. S. Versions of Windows

V V V ¥V ¥V VYV V V VYV VY

Windows 1.0
Windows 2.0
Windows 3.0
Windows 95
Windows 98
Windows XP
Windows 2000
Windows 7
Windows Vista

Windows 10

231

MICROPROCESSOR ARCHITECTURE

6.1

6.2

6.3

6.4

6.5

6.6

The microsoft windows XP operating system is a 32 / 64 bit preemptive
multi tasking operating system for AMD K6/K7, Intel IA32/1A64 and
later multiprocessor.

The Successor to windows NT and windows 2000, windows XP is also
intended to replace the windows 95/98 operating system.

In october 2001, windows XP was released as both an update to the
windows 2000 desktop operating system and an replacement for
windows 95/98. In 2002, the server versions of window xp become
available called windows.Net Server.

Window XP provides better networking and device experience
(including instant messaging, streaming media and digital
photography/video), dramatic performance improvements for both the
desktop and large multiprocessors and better reliability and security
then earlier windows operating systems.

Window XP is a multi-user operating system, supporting simultaneous
access through distributed services or through multiple instances of the
GUI via the window terminal server.

Window XP was the first version of windows to ship a 64 bit version
and hence all the higher version of window like 7-10 are available with
64 bit OS.

7. Unix- It is a multi user, multitasking OS. It was designed for mini computers

but it is now used on various machines ranging from Microcomputers to

supercomputers. It is widely used in Engineering, Scientific and Research

Environment as it open source software.

8. Programming Tools/ Paradigm

1.

Operating System provide a lot of services to the user and in today’s
OS, will execute number of processes at a same time. The role of user
for executing processes is to just create that process and wait for the
output, because the execution of that process is the responsibility of
operating system. For that OS having its own tools of performing
smooth execution of all the process. Following are the tools described
below as

e User Management

e Security Policy

e Device Management

e Performance Monitor

e Task Scheduler

232

Chapter 12: Software Development System and Assemblers

1. User Management- It describes the ability for administrators to
manage user access to various IT resources like systems, devices,
applications, storage systems, networks and more. It is a core part
to any directory service and is a basic security essential for any
organization. It enables admins to control user access and on-
board and off-board users to and from IT resources. There are 3
types of accounts present in Unix OS

2. Root- This account belongs to system administrator. This is also
called as super user. Super user has permission to run any

command.

3. System Accounts- This account is required to system related

components eg email

4. User Accounts- These accounts belongs to users and group of
users. General user have these accounts and these user have
limited to system files and directories.

Security Policy- There are many types of OS security policies and
procedures that can be implemented based on the industry we work in.
In general definition, an OS security policy is one that contains
information of processes ensuring that the OS maintains a certain level
of integrity, confidentiality and availability. OS security protects
systems and data from threats, viruses, worms, malware, backdoor
intrusions and more. Security policies cover all preventive measures
and techniques to ensure the safeguarding of an OS, the network it
connects to and the data which can be stolen, edited or deleted. Since
OS Security policies and procedures cover a broad area there are many

ways to address them. Some of these areas include
v' Ensuring Systems are updated regularly
v' Installing and updating anti-virus software

v' Installing a firewall and ensuring it is configured properly to

monitor all incoming and outgoing traffic

v' Implementing user management procedures secure user accounts

and privileges.

Device Management- Device management in OS implies the
management of the I/O devices such as keyboard, magnetic tape, disk,
printer, microphone, USB ports, scanner, camcorder etc as well as the

233

MICROPROCESSOR ARCHITECTURE

supporting units like control channels. The basic I/O devices can fall in
to 3 categories

v Block Device- It stores information in fixed size block each one

with its own address. For eg Disks.

v' Character Device- It’s delivers or accepts a stream of characters.
The individual characters are not addressable. For eg Printers,
Keyboard etc.

v' Linux treats each device as file. Like file, it open the device, write
data to it and read from it. After using the device, OS then closes
it.

v" Device drivers are responsible for treating every device as file.
Device drivers is a program that controls particular device. When
OS kernel writes data to a particular device then device drivers
of that device carries out appropriate action for that device.

4. Performance Monitor- It can be used to display real time performance
information as well as collect performance data using data collector sets
and by saving the information in log files. We can also generate
performance alerts based on specific thresholds for performance
objects such as the processor, the hard disk, memory, networking
interfaces and protocols and so on. It can be used to compare the
performance information stored in two or more log files. We must use
the performance monitor as a stand alone utility to use this feature.

5. Task Scheduler- is a component of microsoft windows that provides the
ability to schedule the launch of programs or scripts at pre-defined
times or after specified time intervals: Job scheduling (task scheduling)

(&) Resource Monitor — [m] =
| File Monitor Help

Overview CPU Memory Disk Network

Processes . 259 CPU Usage ™ 76% Masximum Frequency Zial

PID Descripti.. ~ Status Threads CPU Aversg. ~
10580 Set Suspen)
12596 LockAp.

13360 Resourc
2800 Search
- Deferre.
1400 Desktop.
a NT Ker.
17444 Snippin.
20812 ByteFen

219
202
158
106
102
101
098

|lecaacaar
NN aNOw

M 5% CPU Usage O

im:ht—dﬂ.ndhl Search Handles 2 |4l

i Associated Modules o ‘

CPU 1 100% ~‘

Fig. 4 - Resource Monitor tool of OS

234

Chapter 12: Software Development System and Assemblers

12.5 Assemblers and Cross-Assemblers, Writing Program Using
Cross Assemblers

1. Assemblers

1. Assembler is a program for converting instructions written in low-level
assembly code in to relocatable machine code and generating along
information for the loader.

Figl Assembler

2. It generates instructions by evaluating the mnemonics (symbols) in operation
field and find the value of symbol and literals to produce machine code. Now,
if assembler do all this work then in one scan then it is called single pass
assembler, otherwise if it does in multiple scans then called multiple pass
assembler. Here assembler divide these tasks in two passes.

3. Pass-1-

3.1.1 Define symbols and literals and remember them in symbol table and

literal table respectively.
3.1.2 Keep track of location counter.
3.1.3 Process Pseudo-operations
4. Pass-2-

4.1 Generate object code by converting symbolic op-code in to respective

numeric op-code
4.2 Generate data for literals and look for values of symbol.

5 For eg we will take a small assembly language program to understand the
working in their respective passes. Assembly language statement format
(Label, opcode and operand).

235

MICROPROCESSOR ARCHITECTURE

ADD R1="3’

Where M=label Add=Opcode an R1 is register operand

Label Opcode Operand LC Value(Locat
J1 START 200
MOVE R R1=3 200
MOVE M R1,X 201
L1 MOVE R R2 =2 202
LTORG 203
X DS 1 204
END

Explanation of above code

v

v

v

Start- This instructions starts the execution of program from location
200 and label with start provides name for the program (J1).

MOVE R-It moves the content 3 in to register operand R1.
MOVE M- It moves the content of register in to memory operand(X).

MOVE R- It again moves the content 2 in to register operand R2 and
its label is specified as L1

LTORG- It assigns address to literals (current LC value).
DS(Data Space)- It assigns a data space of 1 to symbol X.

END-It finishes the program execution

6. Working of Pass-1- Define symbol and literal table with their addresses.
Literal address is specified by LTORG or END.

6.1

6.2
6.3

6.4

6.5

START 200(here no symbol or literal is found so both table would be
empty).
MOVER R1=3 200(=3 is a literal so literal table is made).

MOVEM R1, X201- X is a symbol prior to its declaration so it is stored
in symbol table with blank address field.

L1 MOVER R2=2 202- L1 is a label and =2’ is a literal so store them
in respective tables

LTORG 203-Assign address to first literal specified by LC value,
l.e 203

236

Chapter 12: Software Development System and Assemblers

6.6 X DS 1204- 1t is a data declaration statement I.e X is assigned data
space of 1. But X is a symbol which was referred earlier in step 3 and
defined in step 6. This condition is called Forward Reference Problem
where variable is referred prior to its declaration and can be solved by
back-patching. So now assembler will assign X the address specified
by LC value of current step.

7 END 205 - Program finishes execution and remaining literal will get address
specified by LC value of END instruction. Here is the complete symbol and
literal table made by pass 1 assembler.

8. Now tables generated by pass 1 along with their LC value will go to pass-2
of'assembler for further processing of pseudo-opcodes and machine op-codes.

9. Working of Pass-2- Pass-2 of assembler generates machine code by
converting symbolic machine-opcodes in to their respective bit
configuration(machine understandable form). It stores all machine-opcodes
in MOT table(op-code table) with symbolic code, their length and their bit
configuration. It will also process pseudo-ops and will store them in POT
table(Pseudo-OP table).

Various Data bases required by pass-2

1. MOT table(machine opcode table)

2. POT table(Pseudo opcode table)

3. Base table(Storing value of base register)

4. LC(Location Counter)

|
e — N
table
| |
Swareh Machine-co Dotermine length of
table data apece and
comvert and output
! -m
Gt longth, typs and \
binary code
' [|
Evaluate operands by
saarching symbol
table
|

Asserin the pars —_—
' m

Fig. 2 - Flow chart of how assembly work

237

MICROPROCESSOR ARCHITECTURE

- - 1
- N/

Fig. 3 - As a whole working of assembler

2. Cross-Assembler

A cross-assembler that runs on a computer with one type of processor but generates
machine code for a different type of processor.For eg, if we use a PC with the 8086
compatible machine language to generate a machine code for the 8085 processor,
we need a cross-assembler program that runs on the PC compatible machine but
generates the machine code for 8085 mnemonics. It takes assembly language as
input and give machine language as output.

P
[\

PROGRAM IN

ASSEMBLY MACHINE CODE
FOR
LANGUAGE FOR CROSS ASSEMBLER }ﬁ S &

MACHINE A

MACHINE B

Fig. 4 - Cross Assembler

The above figure explains that there is an assembler which is running on machine
B but converting assembly code of Machine A to machine code, this assembler is
cross-assembler.

2.1 Features of Cross-Assembler
v’ Itis used to convert assembly language in to binary machine code.

v" They are also used to develop program which will run on game console
and other small electronic system which are not able to run development
environment on their own.

v’ It can be used to give speed development on low powered system

238

Chapter 12: Software Development System and Assemblers

3. Writing program through Cross Assembler

20000 DIM H$C15) N FOR I=0 TO 15 N READ H$(I) N NEXT I
20010 DATA "O" "L s "2 "B s * 4"y "Gy 4"y "7y "By "@ s Aty TR Uy MUYy MR e e

20030 M2=70
20040 DIM O14€(71)»02(71)
20050 FOR I=0 TO 70 \ READ QL$(X)»02C1) N NEXT I

20060 DATA "RADD" » 12288y "RXCH* vy 12416 » "RUFY " v 1241 /7 “RAUK " » 129140
20065 DATA "RAND®" 12419 !
20067 REM 0-4 ¥KKXX

20070 DATA “ROL"y 22528, "ROR" » 22528 "SHL " » 235502y "SHR" s 24502
20075 REM 5-8 %k

20080 DATA "AISZ*» 18432, "LI*»19456 "CAL"»20450
20085 REM 9-11 XXXX

20090 DATA "FUSH" 16384y *PULL " vy 17408y " XUHRS " » 221504
20095 REM 12-14 XXX

20100 DATA "LIO*s32768 "LDI"y 368845 8T 5409460y "ST 1"y AL056 AL » 4V 100
20105 DATA "SUR®, 53248, "SKG" » 57344y "SKNE" y61440
20107 REM 15-22 XXX

20110 DATA “AND" 24576 "OR" 1 26624, "BKAZ" y 28672
20115 REM 2325 XXX

20120 DATA *JMP" 8192y "JMFL" s 9216 USR5 10240y " JSR1" v 112645 * 1L p 30720
20125 DATA "DSZ* 31744
20127 REM 26-31 %A%

20130 DATA "BOC"»4096
20135 REM 32 kK¥¥k

20140 DATA "SFLG" 2048, "FFLG"» 2176
20145 REM 33-34 XXX

20150 DATA "RIN"»1024, "ROUT" 15365 *RTS*» 512y "RTI" vy 256
20155 REM 35-38 *kx

20160 DATA CEUSHF * 128y "PULLF " v 440 "HALTY 1 Oy "NOF* y 12417 " 1SUAN" » 1296
20165 REM 39-43XKXX

20170 DATA "SETST® 1792y *CLRST"»1808,"SKETF" » 1856
20175 DATA "SETBRIT*, 1824y "CLRRIT" y 1840y "CHFEIT" 1888y "SKEIT" » 1872
20177 REM 44-350 XXX

20180 DATA 'JINT'v;JIQr'JHPP'31280y'JSRP'??&By'JSRT'rﬂ?&
20185 REM 51-04 ¥okX

20197 REM TWO WORD FROM HERE ON

20200 DATA "MPY"»1152,"DIV*»114685"DANND"y 1184, "DSUR" 1200

20210 DATA *LDB*y12146y"LLE" 1214, "LRE*y1214, "STR"y 1232, "SLR" » 1232
20215 DATA "SRB",1232 .

20217 REM 55-64 XXX

20220 DATA " WORD"»465+* JRYTE®»669 " .ASCII"»67
20225 DATA ".LOCAL"»48y " .NAME" 69+ " JEND"»70
20227 REM okxickkokokxk

20300 M1=300 \ DIM T1$(301)»T1(301)

20320 T1$(0)="." \ T1(0)=0 \ F3=1 \ Ti(M1)=0

Fig 5. - Initialization of Cross Assembler

239

MICROPROCESSOR ARCHITECTURE

For eg Program for Binary to Hex conversion using Cross Assembler

10000 REM BINARY TO HEX CONVERSION » Bl IS BINARYy H1$ 18 HEX
10010 IF R1x6553% THEN 10080

10020 His=" " N\ X3=Rl

10025 IF X3rx=0 THEN 10030 \ X3=65535+X3+1

10030 FOR I=3 TO O STEF -1

10040 X1=16"1 N\ X2=INT(X3/X1) N XF=X3-X2KX1

10050 H1$=H14$&HS (X2)

10060 NEXT I

10070 RETURN

10080 FPRINT “OUF IN BINHEX®™ \ L4$="C* \ Hil$=* "
10090 RETURN

10100 REM HEXADECTIMAL TO EBINARY CONVERSION

10110 X1=LEN(H1%) \ H1=0

10120 IF X134 THEN 10180

10130 FOR I=0 TO (X1-1) N S1$=5EGH(H1$yX1-TyX1~1)

10140 FOR I1=0 TO 15

10150 IF H$(I1)=81% THEN 10170

10140 NEXT I1 N\ FRINT "ILLEGAL CHAR IN HEX NUMBER* \ GO TO 10190
10170 B1=B1+I11%(1671) \ NEXT I \ RETURN '

10180 FRINT *»4 HEX DIGITS®

10190 L4$="C" \ Bl1=0 \ RETURN

10200 REM SEARCH SYMBOL TABLE FOR ELEMENT S2%s RETURN VALUE V1
10201 T3=0 \ S4%=8SEG$(S2%,1,1)

10202 IF 54%:"9" THEN 10210 \ IF S4%>="0" THEN 10204
10203 IF B4%<:x"~" THEN 10204

10204 V1=VAL(52%) \ RETURN

10205 RETURN

10206 IF SEG$(S24,1,1)<x"#" THEN 10210

10207 H1$=SEG$(S2%,2,254) \ BOSUE 10100 N\ VI=EI\RETURN
10210 FOR T3=0 TO M1

10220 IF S2%=T14(T3) THEN 10250

10230 NEXT T3 ’

10280 Vi=T1(T3

10240 RETIHRN

10300 REM SEARCH OFCODE TABLE FOR OFCODE $2%y RETURN NUMEBER I1
10310 FOR Ii=0 TO M2

10320 IF 82%=014(I1) THEN 10360

10330 NEXT I1

10340 RETURN

10400 REM FIND CHAR BEFORE NEXT BLANK OR TAR
10410 GOSUR 10600 \ C2=0C2-1
10440 RETURN

10500 REM LOOK FOR NEXT CHAR EXCEFT TAR OR SPACE
10510 X$=8EGH(L.$,C24C2)

10515 IF C2x80 THEN 10590

10520 IF X$-0 " THEN 10530 \ C2=C2+1 \ GO TO 10510
10530 IF X$<:=" " THEN 108%0 \ €C2=C2+1 \ GO TO 10510
10590 RETURN

10600 REM LOOK FOR 18T TAR OR SFACE

10610 X$=5EGHL$SC2,02)

10620 IF X$=" " THEN 10690

10630 IF X$=" " THEN 10690 \ C2=C2+1 N GO TO 104610
10490 RETURN

10700 REM GET NEXT SYMROL AND VALUE C2 IS POINTER, IF LAST El=1
10710 E1=0 \ C1=02

10720 GOSUR 10600 \ C3=C2 \ REM FIND LAST FLACE

10730 C2=C1

10740 IF SEGH(L$yC2yC2)="4" THEN 10760 \ IF C2:=03 THEN 10750
10745 C2=C2+1 N\ GO TO 10740 -

10750 E=1 N\ C2=C3

107460 C2=C24+1 \ S824=5EG$(L$»C1,C2-2) \ GOSUR 10200

10770 IF T3<:>M1 THEN 10850

10780 FPRINT “UNDEFINED SYMROL:®»S24501.%

10790 V1=0 .

10850 RETURN

Fig. 6 - Program in Cross Assembler with sub routines

240

Chapter 12: Software Development System and Assemblers

Miscellaneous Questions

Q1. Describe about software development of micro processor
Q2. Elaborate about uses of operating tools

Q3. [Illustrate the concept of Operating System

Q4. Describe about Cross Assembler

0.0 0‘0 0‘0

241

Unit 4

13

INTERRUPTS

Unit Structure
13.0 Objectives
13.1 Introduction
13.2 8085 Interrupt
13.2.1 Restart Instructions
13.2.2 Implementation of Interrupt Process
13.2.3 Multiple Interrupts & Priorities
13.3 8085 Vectored Interrupts
13.3.1 TRAP
13.3.2 RST 7.5, RST 6.5 and RST 5.5
13.3.3 Interrupt Driven Clock Illustration
13.4 Restart as Software Instructions
13.4.1 Breakpoint Technique Illustration
13.5 Additional I/O Concepts
13.5.1 Programmable Interrupt Controller
13.5.2 Direct Memory Access
13.6 Summary
13.7 List of References

13.8 Unit End Exercise

13.0 Objectives

After going through this chapter, you will be able to
o Understand the 8085 interrupt process
. Know the difference between the types of interrupt and how to handle them

o Interpret the working of the interrupt instructions

242

Chapter 13: Interrupts

. Understand how to handle multiple interrupts and set their priorities
o Understand the use of Restart Instructions

. Learn the features of Programmable Interrupt Controller and Direct Memory
Access transfer

13.1 Introduction

. Interrupt is defined as signal which suspends the normal execution of the

microprocessor and gets itself serviced.

o It could be simple task of data transfer by peripheral or any external device
which informs the processor that it requires immediate attention and suspend

the ongoing activity.

o So a particular task is assigned to each interrupt signal that the

microprocessor must handle.

. The process is asynchronous as the peripheral can interrupt any time but the

response is fully under the control of the microprocessor.

13.2 8085 Interrupt

o The interrupt processor of the 8085 microprocessor is controlled by the
Interrupt Enable (IE) flip-flop which can be set (logic 1) or reset (logic 0)
with help of the instructions.

o When the flip-flop is enabled, the microprocessor is interrupted with the
INTR (Interrupt Request) pin which is maskable and is disabled.

o The interrupt process of 8085 can be handled in a similar way as receiving
and responding a telephone call while we are sipping a coffee and enjoying
reading the novel

. The interrupt process is as follows:

o The 8085 microprocessor should be ready. This is done by enabling the
interrupt process by writing the instruction EI (Enable Interrupt) in the
main program. The telephone system in a similar way is enabled

meaning the receiver is on the hook.

o The microprocessor checks the INTR signal during program execution.
It is similar to glancing the telephone to see if lights are on and it is
functioning.

243

MICROPROCESSOR ARCHITECTURE

If INTR is found high, microprocessor finishes current execution by
disabling the IE flip-flop and sends active low INTA (Interrupt
Acknowledge) telling the microprocessor not to accept any request till
the flip-flop is enabled again. It is similar to picking up the receiver on
seeing blinking light and until the person places the receiver back, no

phone calls can be received as the line is busy,

With the support of external hardware, the signal INTA inserts RST
(Restart) instructions which transfers control to specific location and
restarts execution at that location in next step. It is similar to receiving

a call to shut the window as there is sandstorm.

On receiving the RST instruction, the address of the program counter
(next instruction) is saved onto stack. This is similar to inserting a
bookmark in the page we were reading so that we can get back to it
when we finish attending the call.

The code written at the new location is called the ISR (Interrupt Service
Routine) which the processor performs. It is similar to closing the
window as phone call instructed it to do so.

The ISR includes the instruction EI to enable the interrupt process again

like the person hooking up the telephone as the task is done.

Finally the RET instruction in the ISR returns the control to the main
program where the microprocessor was interrupted to continue the
execution. This is similar to going back to the book, picking up the
bookmark and continuing the reading operation.

The important instructions to carry the above process are

@)

EI — Enable Interrupt. It is 1-byte instruction that sets the IE flip-flop
to handle the interrupt process.

DI — Disable Interrupts. It is 1-byte instruction that resets the IE flip-
flop and disables the interrupt process.

13.2.1 Restart Instructions

The 8085 microprocessor has eight RST (Restart) instructions.

They are 1 byte instructions that transfer the program control to specific

address and executed in similar way as CALL instruction.

The address in the program counter is stored in stack and control is
transferred to the RST defined vector address.

244

Chapter 13: Interrupts

The microprocessor when encounters RET (Return) instruction in the
subroutine, is pops the address from the stack and begins execution of the
main program

The hex code and address of restart instruction is tabulated as follows

Table 13.1 — RST Instruction

Mnemonics Binary Code Hex | Address

D7 | Dé | Ds [D4 | D3 | D2 | D1 | Do | Code | In Hex
RST 0 1 1 0|00 1 1 1 Cc7 0000
RST 1 1 1 01| 0 1 1 1 1 CF 0008
RST 2 1 1 0 1 0 1 1 1 D7 0010
RST 3 1 1 0 1 | | | 1 DF 0018
RST 4 1 1 1 0] 0 | | 1 E7 0020
RST 5 1 1 1 0 1 1 1 1 EF 0028
RST 6 1 1 1 1 0 1 1 1 F7 0030
RST 7 1 1 1 1 1 1 1 1 FF 0038

The RST instructions are widely used in hardware interrupt.
It is inserted in the microprocessor by external hardware and the signal INTA.

For example consider the instruction RST 5 which is built using resistors and
a tri-state buffer as shown in figure.

+5V
E, Tri-State Buffer
-
Dl M~ !
oL . o
I~ Data
Lr EFu Bus
Dl e~ 1
— Dlz LL 1
= I I
g .
INTA from
Enable Microprocessor

Figure 13.1 — RST 5 Circuit

245

MICROPROCESSOR ARCHITECTURE

The timing diagram of INT A signal consist of three machine cycle.

Qoo oo oo Moo oo oo oo ——
! Restart Instruction :
! iy M, My I
5 T, [T2 [Ta | Ta [75 [Te | T2 [T2 | Ta [Ts | T2 | Ta 5
=T W W W Wan Wan Wan Wan Wan W ._f"‘_!_‘[_/“_
Ag-Ag I FCpy [SP-1)1 [EEEI
ADy-AD; K FC - { RST »4-~— - = — = = =~ X D BAPCH) {seat DU—DLtPCL)
ALE_ [\) Y I\ '
¢. INTR IQ____ :
: A h__;"
10/M.8,.55_ K a.1.71) (©.0.1)] (0.0.7))
RD
WR |/ | ST

Figure 13.2 — INTA and RST S Timing Diagram

retrieved later.

status signals I0/M, Sp and S = 111 instead of 011.

is stored on the stack and during the machine cycle M3, the low order address

of the program counter is stored on the stack.

of program counter on stack.

13.2.2 Implementation Of Interrupt Process

O

A program to count continuously in binary with a one second delay
between each count. A service routine to flash FFH five times when the
program is interrupted, with some appropriate delay between each

count.

Problem Statement

During the M1 cycle, INTA is used to enable buffer and RST code is placed
on data bus and address in the program counter is stored in stack to be

It is similar to Opcode Fetch Cycle, with INTA signal instead of RD and

During the machine cycle M2, the high order address of the program counter

The Machine cycle M2 and M3 are memory write cycle that stores content

246

Chapter 13: Interrupts

Main Program

Address Label Mnemonics
XX00 LXI SP, XX99H
XX03 EI
XX04 MVI A,00H
XX06 loop: OUT 01H
XXO08 MVIC, 01H
XX0A CALL delay
XX0D INR A
XX0E JMP loop

o Interrupt Service Routine

Address Label Mnemonics

XX50 IS: PUSH B
XX51 PUSH PSW
XX52 MVI B, 0AH
XX54 MVI A, 00H
XX56 loop: OUT 00H
XX58 MVI C, 00H
XX5A CALL delay
XX5D CMA
XXS5E DCR B
XXSF JNZ loop
XX62 POP PSW
XX63 POP B
XX64 EI
XX65 RET

©)

Description Of The Interrupt Process

The main program is at memory address XX00H, the delay subroutine
at XX30H, interrupt service routine at address XX50H and stack
pointer at XX99H.

The program counts from 00H to FFH continuously with delay of one

second

Let the INTR line be pulled high in order to interrupt the processor
while PC hold address XX06H.

247

MICROPROCESSOR ARCHITECTURE

The microprocessor completes execution of instruction at that address
(OUT 01H).

It then sends INTA signal, disables other interrupt, enables the tri-state
buffer and places RST 5 (EF) code on data bus.

The address XX08H (next instruction — MVI C, 01H) is placed on stack
and program control is transferred to location 0028H where the
instruction JMP XXS50H redirects it to the subroutine definition at
XX50H.

The subroutine is executed which loads ten in register B to output five
count and five blank and RET statement retrieves the address from
stack (XX08H) and return control to main program.

. Testing Interrupt on Single-Board Computer System

o

8 V—5

10 k

As discussed above, the program control is transferred to address
0028H.

But this location is not accessible to users and system designers prefix
the code at this location to be redirected to another address such as

0028 JMP 20DOH
RST 5 transfers control to 0028H, which redirects to 20D0 and where

we write the instruction to transfer to out interrupt service routine
definition at XX50H as 20D0 JMP IS

v 5V SV
S — V, B8
|
J.‘O
B] 10 k
18 2 DL
AD,
o qg 4 DI
" 16 9 —
1o |, | 6 DI,
NTR 3 14 4 5 e
Data 12 JE 2 8 DI,
o - — 2. ~N 208 - —
8085 Bus FFu w D P 11 DI, _L
3 1 L od - FE Lt —
MPU - g ; > DL
" 74 () et
< | 1S DI,
. s] | 17 DI,
ADg}l— S J—F—
BORE | |
INTA =
1Y Yio
= l:'nul’;lv:

Figure 13.3 — Interrupt Implementation

248

Chapter 13: Interrupts

13.2.3 Multiple Interrupts and Priorities

When we handle single interrupt, we can invoke the interrupt process using
the INTR signal.

But to handle multiple interrupts we need a 8:3 priority encoder that helps in

determining the priority among multiple devices.

The address line A2- A0 are connected to data lines D5-D3 through tri-state
buffer and 8 devices can be connected.

The interrupting device request for service, then that input line goes low

which makes Enable line EO go high to interrupt the processor.

INT A Acknowledges and enables buffer and corresponding code for example
EF (RST 5) is placed on data line.

If there are simultaneous interrupts from multiple devices then priority is

determined by higher-level input.

So device connected to Pin 17 has always the highest priority and this is
drawback of this technique.

+5V

il i

D,

Data
3 hp—— e e Bus
8-t0-3
Prionity Encoder g]=S e
AFE LSV ——t—1— D,
L =
16 $.= 16 g =
¢« [Vec GND Vee GND
L . ? I'n-State
lg — 6 Buffer
1. 2 ds 74LS366
. 6 2 3
L. I(4 A, : : {)o——_ >
3 k ! ; LD
L—23da A p- P
) 6 :
L !." B Ay b- o ,,,,[? L
3 11
1, o 1
o 10 a0
74L.S148
, = - T
-5V Eo E, G, [1G,
15| I 1 ¥ iE
6.8k | - ‘_1‘
-
2} INTA l
INTR
gl'. 8B k
1
+3

v

Figure 13.3 — 8:3 Priority Encoder to handle multiple interrupts

249

MICROPROCESSOR ARCHITECTURE

13.3 8085 Vectored Interrupts

° The 8085 microprocessor has five interrupts - INTR, RST 7.5, RST 6.5, RST
5.5 and TRAP.

o Last four are vectored to specific location on memory without support of
external hardware as it is implemented inside 8085 microprocessor.

Table 13.2 — Interrupts and their call locations

Interrupt Call Location Priority
TRAP 0024H Highest
RST 7.5 003CH
RST 6.5 0034H .
RST 5.5 002CH Lowest

o INTR has the lowest priority among all.

Priority Input Pin Mask Vector
| - Locations

= D (
. { | RST 2 1 ; |
b 3 -l =¥ YL
1L 7.8 AR T [ﬂ >_,,, 003C,,
Reset T
RST 7.5 Interrupt Recognized — 2 H

! 0038,
X ’I RST | el '
6.5 | {@ ———————~ 0034,
{

e / 002C,¢

00284

0030,
] i RST !
4 : _— N
. L 5.5 t +

—_—
| { L TR“\P W e — — 0024
“Tie

A

> & 0018,

0020,,

— S Q

DI El
Reset ——) >—R
Any Interrupt Recognized e ("}V("’“”P‘ - 0010,
=5 nable Get RST Code |77
5 lNTR} [_ }— from External P& = —= (008,,
L Hardware k=

TR 0000,

Figure 13.4 — 8085 Interrupts and Vector Location

13.3.1 Trap

. TRAP is non-maskable interrupt highest priority interrupt which cannot be
disabled and used in critical events.

. It is both level and edge sensitive and stays high to be acknowledged.
o When this interrupt occurs, the control is transferred to location 0024H.

o It requires no external hardware or EI instruction support.

250

Chapter 13: Interrupts

13.3.2 RST 7.5, 6.5, AND 5.5

These are maskable interrupts under the supervision of two instructions — EI
and SIM

RST 7.5 is positive edge triggered with short pulse and cleared by Reset or
bit D4 in SIM Instruction.

RST 6.5 and 5.5 are level-sensitive and microprocessor is unable to service
it immediately then it is stored externally.

The entire interrupt process except TRAP is disabled by resetting the IE flip-
flop.

The important instructions are - SIM (Set Interrupt Mask) and RIM (Read
Interrupt Mask)

SIM is 1 byte instruction and depending on the value in the accumulator and
has three functions - One function is to set mask for RST 7.5, 6.5 and 5.5, the
second function is to reset RST 7.5 and the third function is for transmit serial
data

D7 | D6 | D5 | D4 | D3 D2 DI DO
SOD | SDE | xxx | R7.5 | MSE | M7.5 | M6.5 | M5.5

Bit D»-Dy sets the mask. 0 — available and 1 — masked.

Bit D3 is Mask Set Enable 0 — bits 0-2 are ignored and 1 — mask is set
Bit D4 resets RST 7.5. 1 — reset.

Bit Ds is ignored.

Bit D¢ if 1 is output to Serial Output Data Latch

Bit D7 is Serial Output Data and ignored if bit 6=0

RIM is 1 byte instruction and depending on the value in the accumulator and
has three functions - One function is to read current status of interrupt masks,
the second function is to identify pending interrupts and the third function is
to receive serial data.

D7 | D6 | D5 | D4 | D3| D2 D1 DO
SID | I7.5 | 165|155 | IE | M7.5 | M6.5 | M5.5

Bit D>-Dg reads the mask. 0 — available and 1 — masked.
Bit D3 is Interrupt Enable Flag 1 — enabled
Bit D — D4 represent pending interrupts 1 — pending

Bit D7 is Serial Input Data if any

251

MICROPROCESSOR ARCHITECTURE

13.3.3 Interrupt Driven Clock Illustration
. Problem Statement

o Design a 1-minute timer using a 60 Hz power line as an interrupting
source. The output ports should display minutes and seconds in BCD.
At the end of the minute, the output ports should continue displaying
one minute and zero seconds.

. Hardware Description
o This timer is designed with a 60 Hz AC line with frequency of 16.6 ms

o The circuit uses a step down transformer, the 74121 monostable
multivibrator to provide appropriate pulse width and interrupt pin RST
6.5 which will transfer control to address 0034H when interrupted.

o The interrupt flip-flop is enabled again within 6 ps in the timer service

routine;
45V
;n kf
»
J‘ 0.001 pF
o 14 1|10
Vee Rexr Cexr ¢
5.6 ki) Q f———{ RST 6.5
120V 62V I> 3,
RMS 3”{ RMS S Y 8085
U
5.6 kit i MP
| . ¢35 V—" ¢ * Monostable
J 1B Multivibrator
= GND

1 L

Figure 13.5 — Interrupt Driven Clock

. Monitor Program

0034 JMP RWM

252

Chapter 13: Interrupts

. Main Program

Address Label Mnemonics
XX00 LXI SP, XX99H
XX03 RIM
XX04 ORI 08H
XX06 SIM
XX07 LXI B, 0000H
XX0A MVID, 3CH
XX0C EI
XX0D loop: MOV A, B
XXOE OUT 01H
XX10 MOV A, C
XX11 OUT 02H
XX13 JMP loop
XX16 RWM: JMP rout

. Interrupt Service Routine

Address Label Mnemonics
XX50 rout: DCR C
XX51 EI
XX52 RNZ
XX53 DI
XX54 MVID, 3CH
XX56 MOV A,C
XX57 ADI 01H
XX59 DAA
XX5A MOV C,A
XX5B CPI 60H
XX5D EI
XXS5E RNZ
XXSF DI
XX60 MVIC, 00H
XX62 INR B
XX63 RET

. Program Description

o The main program is at memory address XXO00H, interrupt service
routine at address XX50H and stack pointer at XX99H.

253

MICROPROCESSOR ARCHITECTURE

The main program clears B register to store minutes and C registers to
store seconds with initial values O0H in both and loads D register with
60H to count and enables the interrupt as well.

SIM instruction triggers RST 6.5 which transfer control to vector
address 0034H.

The service routine defines three sections, where in the first section the
D register is decremented every second and interrupt is enabled and
control is transferred to main program and in the second section it
increments the seconds counter and returns control to main program
and in the final section it increments the minute counter and returns
back to the main program.

13.4 Restart as Software Instructions

o Usually external hardware inserts RST instruction when requested to INTR.

. But RST are software instructions and used to set breakpoints which is a

useful debugging technique.

. A breakpoint is RST instruction where the execution of program is stopped

temporarily and control is transferred to RST defined vector address.

. During this the user examines register and memory content on key press.

o Once the routine is executed, the control is again transferred back to the main

program where the breakpoint was set.

13.4.1 Breakpoint Technique Illustration

° Problem Statement

O

Write a subroutine to implement breakpoint at RST 5 and display
accumulator and flag content when key A is pressed and exit the routine
when key 0 is pressed.

. Problem Analysis

o

The accumulator and flag contents is displayed when RST instruction
is encountered.

The register contents are stored on stack.

When A key is pressed the content of accumulator is displayed and wait
for key pressed and retrieve content from stack

When 0 key is pressed it should return to main program.

254

Chapter 13: Interrupts

Breakpoint Subroutine

Address Label Mnemonics
XX50 brkpt: PUSH PSW
XX51 PUSH B
XX52 PUSH D
XX53 PUSH H
XX54 kychk: CALL kbrd
XX57 CPI 0AH
XX59 JNZ loop
XX5C LXI H, 0007h
XXSF DAD SP
XX60 MOV AM
XX61 OUT 01H
XX63 DCX H
XX64 MOV A, M
XX65 OUT 02H
XX67 JMP kychk
XX6A loop: CPI 00H
XX6C JNZ kychk
XX6F POP H
XX70 POP D
XX71 POP B
XX72 POP PSW
XX73 RET

Program Description

o The breakpoint subroutine is located at the address XX50H.

o Initially all registers are stored on the stack

o When key press is detected, A key in our case, the HL register adds SP

content without modifying SP data.

o This is of due importance as if stack contents are altered then data will

not be retrieved correctly with POP and RET instruction.

o The accumulator content is displayed at output port O1H and flag

register content is displayed at output port 02H.

255

MICROPROCESSOR ARCHITECTURE

13.5 Additional I/O Concepts and Processes

There is single interrupt pin in 8085 microprocessor and this limits the
performance to determine interrupt priorities.

These limitations are overcome by using programmable interrupt controller
which extends the capability of 8085 microprocessor.

Also Direct Memory Access is another interrupt technique which facilitates

high speed data transfer.

13.5.1 Programmable Interrupt Controller

The 8259A is the programmable interrupt controller managing device using
the signal INTR/INT for its operation.

It can handle eight interrupt request and can transfer control to any vector
address in the memory with no additional hardware support and restart
instructions.

However the request are spaced at interval of four or eight locations.

The eight levels can be resolved in several modes and biggest advantage is
that it can be expanded up to sixty four levels with additional 8259A device.

The shortcoming of 8085 interrupt process is that all interrupt request are
redirected to vector address 00H which is reserved in ROM and accessing
this location after the system is designed is difficult.

Also additional hardware support to insert and execute restart instructions
make things complex.

But these are easily overwhelmed by the 8259A.

The 8259A consist of control logic, registers to manage the interrupt request,
priority resolver to determine the priority, cascade logic to connect additional
8259A device and internal bus for communication

The instructions are written in device register.

Then interrupt request lines go high requesting the service (multiple request
can occur).

The 8259A resolves priorities and sends INT signal which is acknowledged
by INTA.

After acknowledgment is received, the CALL instruction is executed and
twice INT A signal is issued to read the 8 bit low order address and then 8-bit
high order address of the interrupt vector address.

256

Chapter 13: Interrupts

Block Diagram

Intermal Bus »‘; A INTT
Data - Control Logic
DD, Bus <:’\ r
<‘l:l,> Buffer l/ ks 1 i . ,,f *._(
SIS LB
- IR,
RD ——+»d
ﬂ Read/ <+—IR,
WR - - Wn{c <ﬂ In Intermupt — IR,
r P — Logic Service Priority Request p+—IR,
o ? Register Resolver Registers La— R,
= (ISR) (RR) [o
l— IR,
CAS 0 4—p- Cascads ey
CAS | - = Buffer }je— f ‘1 1
“AS 24— CoOmparator
- 5 - Interrupt Mask Register
SP/EN -3 LN (IMR)

Figure 13.6 — 8259A Architecture Diagram

The control then transfers to the address specified by CALL instruction.

8259A also can read status and change interrupt mode during program

execution.

13.5.2 Direct Memory Access

Direct Memory Access (DMA) is communication or data transfer between

memory and peripherals without intervention of processor.

This is done because the peripherals are slow devices and processor cycles
are wasted waiting for the slow responding devices

The 8085 microprocessor has two pins to support the DMA communication.

o HOLD (Hold) — It is active high input signal to the 8085 from
requesting device to use the system buses.

o HLDA (Hold Acknowledge) — It is active high output signal
indicating microprocessor is relinquishing the control of the system
bus

The 8257 DMA controller is commonly used.
The controller sends the request to the HOLD pin of the processor.

The processor completes the current execution and floats the system bus in
high impedance state and sends HLDA signal.

257

MICROPROCESSOR ARCHITECTURE

Address Bus
— ><,:,> §257 DMA
Controller
MPU
Memaory i | o Bus Slave or
Bus Master

HOLD | Bus Master of o
< =
Ini-State Buses {\3<>
4 Channels with
HLDA R . Memory Pointer
Character Counter

Data Bus

Direction, ¢tc

HLDA 7 ’ 1 l

Figure 13.7 — 8257 DMA Communication

° The DMA controller now have control over the buses and transfer data

between memory and peripherals

o Once exchange is over a low signal is sent to HOLD pin and microprocessor

gain regains the control of the buses.

13.6 Summary

o The interrupt is asynchronous process of communication between

microprocessor and peripherals or external device
. 8085 has maskable and non maskable interrupts

. Instruction EI and DI are used to enable and disable the interrupt mask for
the 8085 microprocessor.

. Instruction SIM and RIM are used to implement and read the status of the

various interrupts

° The restart instruction are software instructions and the transfer the control
to vectored location

o Multiple interrupts and priorities can be handled using a priority encoder.

. A better way to achieve and improve the interrupt process of 8085
microprocessor is by using the Programmable Interrupt Controller 8259A.

. Using the 8257 DMA controller, high speed data transfer under control of
external devices can be easily achieved.

258

Chapter 13: Interrupts

13.7 List Of References

Ramesh Gaonkar, “Microprocessor Architecture, Programming and
Applications with the 8085, Fifth Edition, Penram International Publishing
(I) Private Limited.

https://tutorialspoint.com

https://www.brighthubengineering.com

https://www.javatpoint.com

13.8 Unit End Exercise

1. Explain the following instructions (i) EI ~ (ii) DI (iii)) RST 5 (iv) SIM
(v) RIM

2. Explain the working of an interrupt in 8085 microprocessor.

3. Illustrate the timing and data flows for 8085 Interrupt acknowledge machine
cycle and execution of RST instruction.

4. Explain the working of 8259A Programmable Interrupt Controller.

5. Write a short note on Direct Memory Access (DMA).

%0 % %

259

UNIT 5

14

THE PENTIUM AND PENTIUM PRO
MICROPROCESSORS

Unit Structure
14.0 Objectives:
14.1 Introduction to Pentium Processors
14.2 Special Pentium Registers

14.2.1 The Programming Model
14.2.1.1 Multipurpose Registers
14.2.1.2 Special-purpose Registers
14.2.1.3 Segment Registers

14.3 Memory Management

14.3.1 Real Mode Memory Addressing
14.3.1.1 Segments and Offsets
14.3.1.2 Default Segment and Offset Registers

14.3.2 Segment and Offset Addressing Scheme Allows Relocation

14.3.2 Memory Paging
14.3.2.1 Paging Registers
14.3.3.2. The Page Directory and Page Table

14.4. Pentium Instructions

14.4.1 Instruction Set

14.4.2 Data Movement

14.4.3 Integer Arithmetic

14.4.4 Logical

14.4.5 Floating Point Arithmetic

14.4.6 1/O

14.4.7 Control Instructions

260

Chapter 14: The Pentium and Pentium Pro Microprocessors

14.5. Pentium Pro Microprocessors
14.5.1 Modes
14.5.2 Register Set
14.5.3 Addressing
14.5.4 Processor Reset
14.5.5 Assembly Programming
14.5.5.1 Memory operands
14.5.5.2 Instruction Syntax
14.5.5.3 Assembler Directives
14.5.5.4 Inline Assembly
14.6. Special Pentium Pro Features
14.7. Summary
14.8. Review Your Learnings:
14.9. Sample Questions:

14.10. References for further reading

14.0 Objectives

1. Explain Pentium Processors

2. Explain features of Pentium Processors

3. Understand and explain Assembly Programs

4. Explain difference between Pentium and Pro-Pentium Processors

e

Explain various registers used in Pentium

6. Explain Pentium Instructions sets

14.1 Introduction to Pentium Processors

Pentium is a brand used for a series of x86 architecture-compatible microprocessors
produced by Intel since 1993. In their form as of November 2011, Pentium
processors are considered entry-level products that Intel rates as "two stars",
meaning that they are above the low-end Atom and Celeron series, but below the
faster Intel Core line-up, and workstation Xeon series.

261

MICROPROCESSOR ARCHITECTURE

They are based on both the architecture used in Atom and that of Core processors.
In the case of Atom architectures, Pentiums are the highest performance
implementations of the architecture. Pentium processors with Core architectures
prior to 2017 were distinguished from the faster, higher-end i-series processors by
lower clock rates and disabling some features, such as hyper-threading,

virtualization and sometimes L3 cache.

The name Pentium is originally derived from the Greek word pente meaning "five",
a reference to the prior numeric naming convention of Intel's 80x86 processors
(8086—80486), with the Latin ending -ium since the processor would otherwise
have been named 80586 using that convention.

The Pentium family of processors originated from the 80486 microprocessor. The
term "Pentium processor" refers to a family of microprocessors that share a
common architecture and instruction set. It runs at a clock frequency of either 60
or 66 MHz and has 3.1 million transistors.

Some of the features of Pentium architecture are:

1. Complex Instruction Set Computer (CISC) architecture with Reduced
Instruction Set Computer (RISC) performance.

2. 64-Bit Bus
3. Upward code compatibility.

4. Pentium processor uses Superscalar architecture and hence can issue multiple

instructions per cycle.
5. Multiple Instruction Issue (MII) capability.

6. Pentium processor executes instructions in five stages. This staging, or
pipelining, allows the processor to overlap multiple instructions so that it
takes less time to execute two instructions in a row.

7. The Pentium processor fetches the branch target instruction before it executes
the branch instruction.

8. The Pentium processor has two separate 8-kilobyte (KB) caches on chip, one
for instructions and one for data. It allows the Pentium processor to fetch data

and instructions from the cache simultaneously.

9. When data is modified, only the data in the cache is changed. Memory data
is changed only when the Pentium processor replaces the modified data in
the cache with a different set of data

262

Chapter 14: The Pentium and Pentium Pro Microprocessors

10. The Pentium processor has been optimized to run critical instructions in
fewer clock cycles than the 80486 processor.
11. 8 bytes of data information can be transferred to and from memory in a single
bus cycle.
12. Supports burst read and burst write back cycles.
13. Supports pipelining.
14. Instruction cache.
15. 8 KB of dedicated instruction cache.
Clock CLK —
tializati Reset — 29
Initialization [Init - * Address bus A3-A31
8
Interrupts [INTR —= === Byte enable BEO#-BET7#
NMI ——
BOFF# ———= 64
Bus arbitration BREQ I @EEm)> Data bus D0-D63
HOLD ——= niel
Pentium
HLDA Processor = BRDY#
KEN# —
Cache control WB/WTH ————=
= MU/1O#
) AP == ——— W/R# Bus
Address parity | ApCcHK# = ———=— CACHE# | cycle
8 ——— LOCK# definiti
DPO-DP7 ¢t L~ D chnition
Data parity PCHEK#
PEN# ——

[nterface

[Pre-fetch Buffer | P Pipelined Floating
Memory U Pipe + V Pige Point Unit
| Intecr AL | [imeqerary |
. \ 4
[— Multiplier
S KB l T Addey

Figure 1.1: Pentium Processor

m’{ Code Cache I [Eranch Predicuion
|
I

—’{ Data Cache | Divadex

Figure 1.2: Architecture of Pentium Processor

263

MICROPROCESSOR ARCHITECTURE

The Pentium processor has two primary operating modes -

1.

Protected Mode - In this mode all instructions and architectural features are
available, providing the highest performance and capability. This is the
recommended mode that all new applications and operating systems should

target.

Real-Address Mode - This mode provides the programming environment of
the Intel 8086 processor, with a few extensions. Reset initialization places the
processor in real mode where, with a single instruction, it can switch to

protected mode.

The Pentium's basic integer pipeline is five stages long, with the stages broken

down as follows:

1.

Pre-fetch/Fetch: Instructions are fetched from the instruction cache and
aligned in pre-fetch buffers for decoding.

Decodel: Instructions are decoded into the Pentium's internal instruction
format. Branch prediction also takes place at this stage.

Decode2: Same as above, and microcode ROM kicks in here, if necessary.

Also, address computations take place at this stage.
Execute: The integer hardware executes the instruction.

Write-back: The results of the computation are written back to the register
file.

Pre-fetch Instruction

v

Decode Instraction and
generate control word

v v

Generate control word Generate control word
Generate data memory address Generate data memory address
Lccess data cache Access data cache
Calculate ALTJ result Calculate ALTT result
Write back result Write back result

U Pipe V Pipe

Figure 1.3: Pentium Pipeline Stages

264

Chapter 14: The Pentium and Pentium Pro Microprocessors

Floating Point Unit:

There are 8 general-purpose 80-bit Floating point registers. Floating point unit has
8 stages of pipelining. First five are similar to integer unit. Since the possibility of
error is more in Floating Point unit (FPU) than in integer unit, additional error

checking stage is there in FPU. The floating-point unit is shown as below:

l * Y v Y #
‘ FEXP FADD \ —_ ‘ FEXP \
FDD

lv

FAND /| FMUL

Exponent Result # ‘ IMantissa Result
FED

Figure 1.4: Floating Point Unit

where,

FRD - Floating Point Rounding
FDD - Floating Point Division
FADD - Floating Point Addition
FEXP - Floating Point Exponent
FAND - Floating Point And
FMUL - Floating Point Multiply

14.2 Special Pentium Registers

14.2.1 The Programming Model

The programming model of the 8086 through the Pentium II’s considered to
be program visible because its registers are used during application programming
and are specified by the instructions. Other registers, detailed later in this chapter,
are program invisible because they are not addressable directly during
applications programming, but may be used indirectly during system programming.
Only the 80286 and above contain the program-invisible registers used to control
and operate the protected memory system.

265

MICROPROCESSOR ARCHITECTURE

|
EAX AH AX AL Accumulator
|
|
EBX BH B_X BL Base Index
1
ECX CH Cf‘ CL Count
|
EDX DH BIK DL Data
ESP SP Stack Pointer
EBP BP Base Pointer
EDI D Destination Index
ESI Sl Source Index
EIP P Instruction Pointer
EFLAGS FLAGS Flags
cS Code
DS Data
ES Extra
S5 Stack
FS
GS

Figure 2.1: The Programming Model of Microprocessor

Figure 2.1 illustrates the programming model of the 8086 through the Pentium II
microprocessor. The earlier 8086, 8088, and 80286 contain 16-bit internal
architectures, a subset of the registers. The 80386, 80486, Pentium, Pentium Pro,
and Pentium II microprocessors contain full 32-bit internal architectures. The
architectures of the earlier 8086 through the 80286 are fully forward-compatible to
the 80386 through the Pentium II. The shaded areas in this illustration represent
registers that are not found in the 8086, 8088, or 80286 microprocessors.

The programming model contains 8-, 16-, and 32-bit registers. The 8-bit registers
are AH, AL, BH, BL, CH, CL, DH, and DL and are referred to when an instruction
is formed wusing these two-letter designations. The 16-bit registers
are AX, BX, CX, DX, SP, BP, DL, SI, IP, FLAGS, CS, DS, ES, SS, FS, and GS.

266

Chapter 14: The Pentium and Pentium Pro Microprocessors

The extended 32-bit registers are

EAX, EBX, ECX, EDX, ESP, EBP, EDI, ESI, EIP, and EFLAGS. These 32-
bit extended registers, and 16-bit registers ES and GS are available only in the
80386 and above.

Some registers are general-purpose or multipurpose registers, while some have
special purposes. The multipurpose registers include EAX, EBX, ECX, EDX,
EBP, EDI, and ESI. These registers hold various data sizes (bytes, words, or

doublewords) and are used for almost any purpose, as dictated by a program.

14.2.1.1 Multipurpose Registers
EAX (accumulator)

EAX is referenced as a 32-bit register (EAX), as a 16-bit register (AX), or as either
of two 8-bit registers (AH and AL). Note that if an 8- or 16-bit register is addressed,
only that portion of the 32-bit register changes without affecting the remaining bits.
The accumulator is used for instructions such as multiplication, division, and some
of the adjustment instructions. For these instructions, the accumulator has a special
purpose, but is generally considered to be a multipurpose register. In the 80386 and
above, the EAX register may also hold the offset address of a location in the

memory system.

EBX (base index)

EBX is addressable as EBX, BX, BH, or BL. The BX register sometimes holds the
offset address of a location in the memory system in all versions of the
microprocessor. In the 80386 and above, EBX also can address memory data.

ECX (count)

ECX is a general-purpose register that also holds the count for various instructions.
In the 80386 and above, the ECX register also can hold the offset address of
memory data. Instructions that use a count are the repeated string instructions
(REP/REPE/REPNE); and shift, rotate, and LOOP/LOOPD instructions. The shift
and rotate instructions use CL as the count, the repeated string instructions use CX,
and the LOOP/LOOPD instructions use either CX or ECX.

EDX (data)

EDX is a general-purpose register that holds a part of the result from a
multiplication or part of the dividend before a division. In the 80386 and above,
this register can also address memory data.

267

MICROPROCESSOR ARCHITECTURE

EBP (base pointer)

EBP points to a memory location in all versions of the microprocessor for memory
data transfers. This register is addressed as either BP or EBP.

EDI (destination index)

EDI often addresses string destination data for the string instructions. It also
functions as either a 32-bit (EDI) or 16-bit (DI) general-purpose register.

ESI (source index)

ESI is used as either ESI or SI. The source index register often addresses source
string data for the string instructions. Like EDI, ESI also functions as a general-
purpose register. As a 16-bit register, it is addressed as SI; as a 32-bit register, it is
addressed as ESI.

14.2.1.2 Special-purpose Registers

The special-purpose registers include EIP, ESP, EFLAGS; and the segment
registers CS, DS, ES, SS, FS, and GS.

EIP (instruction pointer)

EIP addresses the next instruction in a section of memory defined as a code
segment. This register is IP (16 bits) when the microprocessor operates in the real
mode and EIP (32 bits) when the 80386 and above operate in the protected mode.
Note that the 8086, 8088, and 80286 do contain EIP, and only the 80286 and above
operate in the protected mode. The instruction pointer, which points to the next
instruction in a program, is used by the microprocessor to find the next sequential
instruction in a program located within the code segment. The instruction pointer
can be modified with a jump or a call instruction.

ESP (stack pointer)

ESP addresses an area of memory called the stack. The stack memory stores data
through this pointer. This register is referred to as SP if used as a 16-hit register and
ESP if referred to as a 32-bit register.

EFLAGS

EFLAGS indicate the condition of the microprocessor and control its operation.
Figure 2-2 shows the flag registers of all versions of the microprocessor. Note that
the flags are upward-compatible from the 8086/8088 to the Pentium II
microprocessor. The 8086-80286 contain a FLAG register (16 bits) and the 80386
and above contain an EFLAG register (32-bit extended flag register).

268

Chapter 14: The Pentium and Pentium Pro Microprocessors

£ 21 20 19 18 17 16 14 1312 11 10 ¢ 8 7T 6 4 2 0
Clofofr]r[s]z] [] [e] [

0P
i

=

D |V|P| VIF | AC | WM | RF | NT

: : |“7 BOBEG /8088 / 80186/ 80188 44
]

! . 80286 !

I

|
+ 80386/ 8986 DX —-lr
80486 SX

+ Pentium Pentium Il ———&

Figure 2.2: EFLAG Register

The rightmost five flag bits and the overflow flag change after many arithmetic and
logic instructions execute. The flags never change for any data transfer or program
control operation. Some of the flags are also used to control features found in the
microprocessor. Following is a list of each flag bit, with a brief description of their

function.

C (Carry)

Carry holds the carry after addition or the borrow after subtraction. The carry flag
also indicates error conditions, as dictated by some programs and procedures. This
is especially true of the DOS function calls.

P (Parity)

Parity is a logic 0 for odd parity and a logic 1 for even parity. Parity is a count of

ones in a number expressed as even or odd.

If a number contains zero one bits, it has even parity. The parity flag finds little
application in modern programming and was implemented in early Intel
microprocessors for checking data in data communications environments. Today
parity checking is often accomplished by the data communications equipment
instead of the microprocessor.

A (Auxiliary Carry)

The auxiliary carry holds the carry (half-carry) after addition or the borrow after
subtraction between bits positions 3 and 4 of the result. This highly specialized flag
bit is tested by the DAA and DAS instructions to adjust the value of AL after a
BCD addition or subtraction. Otherwise, the A flag bit is not used by
the microprocessor or any other instructions.

Z. (Zero)

The zero flag shows that the result of an arithmetic or logic operation is zero. If
Z=1, the result is zero; if Z= 0, the result is not zero.

269

MICROPROCESSOR ARCHITECTURE

S (Sign)

The sign flag holds the arithmetic sign of the result after an arithmetic or logic
instruction executes. If S=1, the sign bit (leftmost hit of a number) is set or negative;
if S=0, the sign bit is cleared or positive.

T (Trap)

The trap flag enables trapping through an on-chip debugging feature. (A program
is debugged to find an error or bug.) If the T flag is enabled (1), the microprocessor
interrupts the flow of the program on conditions as indicated by the debug registers
and control registers. If the T flag is a logic 0, the trapping (debugging) feature is
disabled.

I (Interrupt)

The interrupt flag controls the operation of the INTR (interrupt request) input pin.
If I=1. the INTR pin is enabled: if I= 0, the INTR pin is disabled. The state of
the I flag bit is controlled by the STI (set I flag) and CLI (clear I flag) instructions.

D (Direction)

The direction flag selects either the increment or decrement mode for the DI and/or
SI registers during string instructions. If D=1, the registers are automatically
decremented: if D=1, the registers are automatically incremented. The D flag is set
with the STD (set direction) and cleared with the CLD (clear direction) instructions.

0 (Overflow)

Overflows occurs when signed numbers are added or subtracted. An overflow
indicates that the result has exceeded the capacity of the machine. For unsigned
operations, the overflow flag is ignored.

IOPL (I/0 Privilege Level)

IOPL is used in protected mode operation to select the privilege level for I/O
devices. If the current privilege level is higher or more trusted than the IOPL, I/O
executes without hindrance. If the IOPL is lower than the current privilege level,
an interrupt occurs, causing execution to suspend. Note that an IOPL of 00 is the
highest or most trusted: if IOPL is 11, it is the lowest or least trusted.

NT (Nested Task)

The nested task flag indicates that the current task is nested within another task in
protected mode operation. This line is set when the task is nested by software.

270

Chapter 14: The Pentium and Pentium Pro Microprocessors

RF (Resume)

The resume flag is used with debugging to control the resumption of execution after
the next instruction.

VM (Virtual Mode)

The VM flag bit selects virtual mode operation in a protected mode system. A
virtual mode system allows multiple DOS memory partitions that are 1M byte in
length to coexist in the memory system. Essentially, this allows the system program

to execute multiple DOS programs.

AC (Alignment Check)

The alignment check flag bit activates if a word or douhleword is addressed on a
non-word or non-douhleword boundary. Only the 80486SX microprocessor
contains the alignment check hit that is primarily used by its companion numeric

coprocessor, the 80487SX, for synchronization.

VIF (Virtual Interrupt Flag)

The VIF is a copy of the interrupt flag bit available to the Pentium-Pentium II

microprocessors.

VIP (Virtual Interrupt Pending)

VIP provides information about a virtual mode interrupt for the Pentium—Pentium
IT microprocessors. This is used in multitasking environments to provide the

operating system with virtual interrupt flags and interrupt pending information.

ID (Identification)

The ID flag indicates that the Pentium—Pentium II microprocessors support the
CPUID instruction. The CPUID instruction provides the system with information
about the Pentium microprocessor, such as its version number and manufacturer.

14.2.1.3 Segment Registers

Additional registers, called segment registers, generate memory addresses when
combined with other registers in the microprocessor. There are either four or six
segment registers in various versions of the microprocessor. A segment register
functions differently in the real mode when compared to the protected mode
operation of the microprocessor. Following is a list of each segment register, along
with its function in the system:

271

MICROPROCESSOR ARCHITECTURE

CS (Code)

The code segment is a section of memory that holds the code (programs and
procedures) used by the microprocessor. The code segment register defines the
starting address of the section of memory holding code. In real mode operation,
it defines the start of a 64K-byte section of memory; in protected mode, it selects a
descriptor that describes the starting address and length of a section of memory
holding code. The code segment is limited to 64K bytes in the 8088-80286, and 4G
bytes in the 80386 and above when these microprocessors operate in the protected

mode.

DS (Data)

The data segment is a section of memory that contains most data used by a program.
Data are accessed in the data segment by an offset address or the contents of other
registers that hold the offset address. As with the code segment and other segments,
the length is limited to 64K bytes in the 8086-80286, and 4G bytes in the 80386

and above.

ES (Extra)

The extra segment is an additional data segment that is used by some of the string

instructions to hold destination data.

SS (Stack)

The stack segment defines the area of memory used for the stack. The stack entry
point is determined by the stack segment and stack pointer registers. The BP
register also addresses data within the stack segment.

FS and GS

The FS and GS segments are supplemental segment registers available in
the 80386, 80486, Pentium. and Pentium Pro microprocessors to allow
two additional memory segments for access by programs.

14.3 Memory Management

14.3.1 Real Mode Memory Addressing

The 80286 and above operate in either the real or protected mode. Only the 8086
and 8088 operate exclusively in the real mode. Real mode operation allows the
microprocessor to address only the first IM byte of memory space-even if it is the
Pentium II microprocessor. Note that the first 1 M byte of memory is called either
the real memory or conventional memory system. The DOS operating system

272

Chapter 14: The Pentium and Pentium Pro Microprocessors

requires the microprocessor to operate in the real mode. Real mode operation
allows application software written for the 8086/8088, which contain only 1 M byte
of memory, to function in the 80286 and above without changing the software. The
upward compatibility of software is partially responsible for the continuing
success of the Intel family of microprocessors. In all cases, each of these
microprocessors begins operation in the real mode by default whenever power is

applied or the microprocessor is reset.

14.3.1.1 Segments and Offsets

A combination of a segment address and an offset address access a
memory location in the real mode. All real mode memory addresses must consist
of a segment address plus an offset address. The segment address, located within
one of the segment registers, defines the beginning address of any 64K-byte
memory segment. The offset address selects any location within the 64K byte
memory segment. Segments in the real mode always have a length of 64K bytes.
Figure 2-3 shows how the segment plus offset addressing scheme selects
a memory location. This illustration shows a memory segment that begins at
location 1 0000H and ends at location 1 FFFEH 64K bytes in length. It also shows
how an offset address, sometimes called a displacement, of FOOOH selects
location 1FOOOH in the memory system. Note that the offset or displacement
is the distance above the start of the segment, as shown in Figure 3.1.

FFFFF
\FFFF
1F000 Offset = F000

64 K-Byte

segment

Segment register

10000 «——{ 1000 |
00000

Figure 3.1: The real mode memory addressing scheme

273

MICROPROCESSOR ARCHITECTURE

The segment register in Figure3.1 contains a 1000H, yet it addresses a
starting segment at location 10000H. In the real mode, each segment register is
internally appended with a OH on its rightmost end. This forms a 20-bit memory
address, allowing it to access the start of a segment. The microprocessor must
generate a 20-hit memory address to access a location within the first 1
M of memory. For example, when a segment register contains a 1200H, it addresses
a 64K-byte memory segment beginning at location 12000H. Likewise, if a segment
register contains a 1201H, it addresses a memory segment beginning at location
12010H. Because of the internally appended OH, real mode segments can begin
only at a 16-byte boundary in the memory system. This 16-byte boundary is often
called a paragraph.

Because a real mode segment of memory is 64K in length, once the beginning
address is known, the ending address is found by adding FFFFH.

The offset address, which is a part of the address, is added to the start of the segment
to address a memory location within the memory segment. For example, if the
segment address is 1000H and the offset address is 2000H, the microprocessor
addresses memory location 12000H. The offset address is always added to the
starting address of the segment to locate the data. The segment and offset address
is sometimes written as 1000:2000 for a segment address of 1000H with an offset
of 2000H.

In the 80286 (with special external circuitry), and the 80386 through the Pentium
II, an extra 64K minus 16 bytes of memory is addressable when the segment
address is FFFFH and the HIMEM.SY'S driver is installed in the system. This area
of memory (OFFFFOH-10FFEFH) is referred to as high memory.

Some addressing modes combine more than one register and an offset value to form
an offset address. When this occurs, the sum of these values may exceed FFFFH.
For example, the address accessed in a segment whose segment address is 4000H,
and whose offset address is specified as the sum of FOOOH plus 3000H, will access
memory location 42000H instead of location 52000H. When the FOOOH and 3000H
are added, they form a 16-bit (modulo 16) sum of 2000H used as the offset address;
not 12000H, the true sum. Note that the carry of 1 (FOOOH + 3000H=12000H) is
dropped for this addition to form the offset address of 2000H. This means that the
address is generated as 4000:2000 or 42000H.

14.3.1.2 Default Segment and Offset Registers

The microprocessor has a set of rules that apply to segments whenever memory is
addressed. These rules, which apply in the real and protected mode, define the
segment register and offset register combination. For example, the code segment

274

Chapter 14: The Pentium and Pentium Pro Microprocessors

register is always used with the instruction pointer to address the next instruction
in a program. This combination is CS:IP or CS:EIP, depending upon the
microprocessor’s mode of operation. The code segment register defines the start
of the code segment and the instruction pointer locates the next instruction within
the code segment. This combination (CS:IP or CS:EIP) locates the next instruction

executed by the microprocessor.

Another of the default combinations is the stack. Stack data are referenced through
the stack segment at the memory location addressed by either the stack pointer
(SP/ESP) or the base pointer (BP/EBP). These combinations are referred to as
SS:SP (SS:ESP) or SS:BP (SS:EBP). Note that in real mode, only the rightmost 16
bits of the extended register address a location within the memory segment. In the
80386—Pentium II, never place a number larger than FFFFH into an offset register
if the microprocessor is operated in the real mode. This causes the system to halt

and indicate an addressing error.

Table 3.1: Default 16-bit segment and offset combinations

Segment | Offset Special Purpose
CS 1P Instruction Address
SS SP or BP Stack Address
DS BX, DI, SI, an 8-bit number, or a | Data Address
16-bit number
ES DI for string instructions String Destination Address

Table 3.2: Default 32-bit segment and offset combinations

Segment | Offset Special Purpose
CcS EIP Instruction Address
SS ESP or EBP Stack Address
DS EBX, EDI, ESI, EAX, ECX, EDX, on | Data Address
8-bit number, or an 16-bit number
ES EDI for string instructions String Destination Address
FS No Default General Address
GS No Default General Address

Other defaults are shown in Table 3.1 for addressing memory using any Intel
microprocessor with 16-bit registers. Table 3.2 shows the defaults assumed in the
80386 and above when using 32-bit registers. Note that the 80386 and above have
a far greater selection of segment offset address combinations than do the 8086
through the 80286 microprocessors.

275

MICROPROCESSOR ARCHITECTURE

The 8086-80286 microprocessors allow four memory segments and the 80386 and
above allow six memory segments. Figure 3.2 shows a system that contains four
memory segments. Note that a memory segment can touch or even overlap if 64K
bytes of memory are not required for a segment. Think of segments as windows
that can be moved over any area of memory to access data or code. Also note that
a program can have more than four or six segments but can only access four or six

segments at a time.

Suppose that an application program requires 1000H bytes of memory for its code,
190H bytes of memory for its data, and 200H bytes of memory for its stack. This
application does not require an extra segment. When this program is placed in the
memory system by DOS, it is loaded in the TPA at the first available area of
memory above the drivers and other TPA programs. This area is indicated by a free
pointer that is maintained by DOS. Program loading is handled automatically by
the program loader located within DOS. Figure 3.3 shows how this application is
stored in the memory system. The segments show an overlap because the amount
of data in them does not require 64K bytes of memory. The side view of the
segments clearly shows the overlap. It also shows how segments can be moved
over any area of memory by changing the segment starting address. Fortunately,

the DOS program loader calculates and assigns segment starting addresses.

.
Rhermary

FFFFF

RN

Figure 3.2: A memory system showing the placement of four memory segments

276

Chapter 14: The Pentium and Pentium Pro Microprocessors

Imginary sie
\-'HM('I.‘ldllll’l-‘J
segmant overiap Mamary
FFFFF
L— | L
— A
5|
i
a
-
RlD
a
t
alc DA4B0
a 0A4TF
d Stack
o OAZBD —"‘—{ 0 A28]‘;‘:
DAZTF
Data
— os
] DAQDEF
Code
G00FD 0% 0 F cs
1 OO08F
DOS and drivers
00000

Figure 3.3: An Application program containing code, data and stack segment
loaded into DOS system memory

14.3.2 Segment and Offset Addressing Scheme Allows Relocation

The segment and offset addressing scheme seems unduly complicated. It is
complicated, but it also affords an advantage to the system. This complicated
scheme of segment plus offset addressing allows programs to be relocated in the
memory system. It also allows programs written to function in the real mode to
operate in a protected mode system. A relocatable program is one that can be placed
into any area of memory and executed without change. Relocatable data are data
that can be placed in any area of memory and used without any change to the
program. The segment and offset addressing scheme allows both programs and data
to be relocated without changing a thing in a program or data. This is ideal for use
in a general-purpose computer system in which not all machines contain the same
memory areas. The personal computer memory structure is different from machine
to machine, requiring relocatable software and data.

Because memory is addressed within a segment by an offset address, the memory
segment can be moved to any place in the memory system without changing any
of the offset addresses. This is accomplished by moving the entire program, as a
block, to a new area and then changing only the contents of the segment registers.
If an instruction is 4 bytes above the start of the segment, its offset address is 4. If

277

MICROPROCESSOR ARCHITECTURE

the entire program is moved to a new area of memory, this offset address of 4 still
points to 4 bytes above the start of the segment. Only the contents of the segment
register must be changed to address the program in the new area of memory.
Without this feature, a program would have to be extensively rewritten or altered
before it is moved. This would require additional time or many versions of a

program for the many different configurations of computer systems.

14.3.2 Memory Paging

The memory paging mechanism located within the 80386 and above allows any
physical memory location to be assigned to any linear address. The linear
address is defined as the address generated by a program. With the memory paging
unit, the linear address is invisibly translated into any physical address, which
allows an application written to function at a specific address to be relocated
through the paging mechanism. It also allows memory to be placed into areas where
no memory exists. An example is the upper memory blocks provided by
EMM386.EXE.

The EMM386.EXE program reassigns extended memory, in 4K blocks, to the
system memory between the video BIOS and the system BIOS ROMS for upper
memory blocks. Without the paging mechanism, the use of this area of memory is
impossible.

14.3.2.1 Paging Registers

The paging unit is controlled by the contents of the microprocessor’s control
registers. See Figure 2-11 for the contents of control registers CRO through CR3.
Note that these registers are only available to the 80386 through the Pentium
microprocessors. Beginning with the Pentium, an additional control register labeled
CR4 controls extensions to the basic architecture provided in the Pentium and
above microprocessors. One of these features is a 4M-byte page that is enabled by
setting bit position 4, or CR4.

The registers important to the paging unit are CRO and CR3. The leftmost bit (PG)
position of CRO selects paging when placed at a logic 1 level. If the PG bit is cleared
(0), the linear address generated by the program becomes the physical address used
to access memory. If the PG bit is set (1), the linear address is converted to a
physical address through the paging mechanism. 7he paging mechanism functions

in both the real and protected modes.

CR3 contains the page directory base address, and the PCD and PWT bits. The
PCD and PWT bits control the operation of the PCD and PWT pins on the

278

Chapter 14: The Pentium and Pentium Pro Microprocessors

microprocessor. If PCD is set (1), the PCD pin becomes a logic one during bus
cycles that are not pages. This allows the external hardware to control the level 2
cache memory. (Note that the level 2 cache memory is an external high-speed
memory that functions as a buffer between the microprocessor and the main DRAM
memory system.) The PWT bit also appears on the PWT pin, during bus cycles that
are not pages, to control the write-through cache in the system. The page directory
base address locates the page directory for the page translation unit. Note that this
address locates the page directory at any 4K boundary in the memory system
because it is appended internally with a 000H. The page directory contains 1024

directory entries of 4 bytes each.

12

1

)

o
M PID|TI|P|V
C s|els|v|m| CR4 Pentium, Pentium Pro,
E E oyl |E and Pentium 1l only
ple
Page directory base address Cw CR3
DT
Page fault linear address CR2
Reserved CR1
P|CIN A W NIE|T|E|M|P
G|ofw M P E|T|s|m|p|e| CRO

Figure 3.4: The control register structure of the microprocessor

Each page directory entry addresses a page table that contains 1024 entries.

The linear address, as it is generated by the software, is broken into three sections
that are used to access the page directory entry, page table entry, and page offset
address. Figure 3.4 shows the linear address and its makeup for paging. Notice
how the leftmost 10 bits address an entry in the page directory. For linear address
00000000H—O003FFFFFH, the first entry of the page directory is accessed. Each
page directory entry represents or repages a 4M-byte section of the memory system.
The contents of the page directory select a page table that is indexed by the next 10
bits of the linear address (bit positions 12-21). This means that address
00000000H— 00000FFFH selects page directory entry 0 and page table entry 0.
Notice this is a 4K-byte address range. The offset part of the linear address (bit
positions 0-11) next selects a byte in the 4K-byte memory page. In Figure 2-12, if
the page table 0 entry contains address 00100000H, then the physical address is
00100000H-00100FFFH for linear address 00000000H-00000FFFH. This means
that when the program accesses a location between 00000000H and 00000FFFH,
the microprocessor physically addresses location 00100000H—00100FFFH.

279

MICROPROCESSOR ARCHITECTURE

Because the act of re-paging a 4K-byte section of memory requires access to the
page directory and a page table, which are both located in memory, Intel has
incorporated a cache called the TLB (translation look-aside buffer). In the 80486
micro-processor, the cache holds the 32 most recent page translation addresses.
This means that the last 32-page table translations are stored in the TLB, so if the
same area of memory is accessed, the address is already present in the TLB, and
access to the page directory and page tables is not required. This speeds program
execution. If a translation is not in the TLB, the page directory and page table must
be accessed, which requires additional execution time. The Pentium, Pentium Pro,

and Pentium II contain separate TLBs for each of their instruction and data caches.

Nn
22
21
12
1
=1

Directory Page table Offset

(a)

3
12

6543210

DIA|P{PIUIW|P
Address clw

D|T

L Present
L Writable
e Lser dafined

= Write-through
———————— Cache disable
————— Accessed
(b) = Dirty (0 in page directory)

Figure 3.5: The format for the linear address (a) and

a page directory or page table entry (b)

14.3.3.2. The Page Directory and Page Table

Figure 3.6 shows the page directory, a few page tables, and some memory pages.
There is only one page directory in the system. The page directory contains 1024
double word addresses that locate up to 1024 page tables. The page directory and
each page table are 4K bytes in length. If the entire 4G byte of memory is paged,
the system must allocate 4K bytes of memory for the page directory, and 4K times
1024 or 4M bytes for the 1024 page tables. This represents a considerable
investment in memory resources.

280

Chapter 14: The Pentium and Pentium Pro Microprocessors

Memaory pages

Offset ‘

|

| Dir Page

—

Page diractory

CR3
Base : __(:)’//

Figure 3.6: The paging mechanism the 80386, 80486, Pentium, Pentium Pro,

and Pentium II microprocessor

The DOS system and EMM386.EXE use page tables to redefine the area of
memory between locations CS000H—EFFFFH as upper memory blocks. It does
this by repaging extended memory to back-fill this part of the conventional memory
system to allow DOS access to additional memory. Suppose that the
EMM386.EXE program allows access to 16M bytes of extended and conventional
memory through paging and locations C8000H—EFFFFH must be repaged to
locations 110000—138000H, with all other areas of memory paged to their normal
locations. Such a scheme is depicted in Figure 3.7

Here, the page directory contains four entries. Recall that each entry in the page
directory corresponds to 4M bytes of physical memory. The system also contains
four page tables with 1024 entries each. Recall that each entry in the page table
repages 4K bytes of physical memory. This scheme requires a total of 16K of
memory for the four page tables and 16 bytes of memory for the page directory.

As with DOS, the Windows program also repages the memory system. At present,
Windows version 3.11 supports paging for only 16M bytes of memory because of
the amount of memory required to store the page tables. On the Pentium and
Pentium Pro microprocessors, pages can be either 4K bytes in length or 4M bytes
in length. Although no software currently supports the 4M-byte pages, as the
Pentium II and more advanced versions pervade the personal computer, operating
systems of the future will undoubtedly begin to support 4M-byte memory pages.

281

MICROPROCESSOR ARCHITECTURE

Page table 0
00003FFC | 0003F003
00003FF8 | 0003E003
00003FF4 | 0003D003 00110FFF
00003FF0 | 0003C003 00110FFE
00003328 | 00112003 e
00003324 00111003
00003320 | 00110003 00110002
_,ﬂ_____\ 00110001
00110000
00003008 | 00002003 Page 000C8
00003004 | 00001003 JO—
00003000 | 00000003 O0000FFE
_—‘_q"-\—!————-—-.—.
[

]
0000200C [)
00002008 00000002
00002004 00000001
00002000 | 00003003 00000000

Page directory Page 00000H

Figure 3.7: The page directory, page table 0, and two memory pages

Each entry addresses
| one page lable | pAGE TABLE

PAGE
DIRECTORY
TABLE
1
| Total 1024
1 Fage Tables
1

:

Each enlry addresses
4 KBytes of physical
MEHTIONY

Thare is only ona Paga Directory in the system

|+———— 1024onu|as—————|

f

4 Byles each enlry = — —

Each Page Table is 4 KB in length
= = = = {024 gnirigs —

4 Byles sach entry =— =
(32-bits)

Figure 3.8: The page directory, and page table

14.4 Pentium Instructions

14.4.1 Instruction Set

These instructions set have exactly 2 operands. If there are 2 operands, then one of
them will be required to use register mode, and the other will have no restrictions
on its addressing mode.

There are most often ways of specifying the same instruction for 8-, 16-, or 32-bit
operands.

282

Chapter 14: The Pentium and Pentium Pro Microprocessors

I left out the 16-bit ones to reduce presentation of the instruction set.

Note that on a 32-bit machine, with newly written code, the 16-bit form will never
be used.

Meanings of the operand specifications:

reg - register mode operand, 32-bit register
reg8 - register mode operand, 8-bit register
r/m - general addressing mode, 32-bit

r/m8§ - general addressing mode, 8-bit

immed - 32-bit immediate is in the instruction
immed8 - 8-bit immediate is in the instruction

m - symbol (label) in the instruction is the effective address

14.4.2 Data Movement

mov reg, r/m ; copy data

r/m, reg

reg, immed

r/m, immed

movsx reg, r/m8 ; sign extend and copy data
movzx reg, r/'m8 ; zero extend and copy data
lea reg, m ; get effective address

(A newer instruction, so its format is much restricted

over the other ones.)
Examples:

mov EAX, 23 ; places 32-bit 2's complement immediate 23
; into register EAX

movsx ECX, AL ; sign extends the 8-bit quantity in register
; AL to 32 bits, and places it in ECX

mov [esp], -1 ; places value -1 into memory, address given
; by contents of esp

lea EBX, loop_top ; put the address assigned (by the assembler)
; to label loop_top into register EBX

283

MICROPROCESSOR ARCHITECTURE

14.4.3 Integer Arithmetic

add reg, r/m ; two's complement addition
r/m, reg
reg, immed
r/m, immed
inc reg ; add 1 to operand
r/m
sub reg, r/m ; two's complement subtraction
r/m, reg
reg, immed
r/m, immed
dec reg ; subtract 1 from operand
r/m
neg r/m ; get additive inverse of operand
mul eax, r/m ; unsigned multiplication
; edx|leax <- eax * r/m
imul r/m ; 2's comp. multiplication
; edx|leax <- eax * r/m
reg, r/m ; reg <-reg * r/m
reg, immed ; reg <- reg * immed
div r/m ; unsigned division

; does edx|leax / r/m
; eax <- quotient
; edx <- remainder
idiv r/m ; 2's complement division
; does edx|jeax / r/m
; eax <- quotient
; edx <- remainder

cmp reg, r/m ; sets EFLAGS based on

r/m, immed ; second operand - first operand

r/m8&, immed$§

r/m, immed$8 ; sign extends immed8 before subtract
Examples:

neg [eax + 4] ; takes doubleword at address eax+4

; and finds its additive inverse, then places
; the additive inverse back at that address
; the instruction should probably be
; neg dword ptr [eax + 4]

inc ecx ; adds one to contents of register ecx, and
; result goes back to ecx

284

Chapter 14: The Pentium and Pentium Pro Microprocessors

14.4.4 Logical

not

and

or

XOor

test

Examples:

r/m

reg, r/m

reg8, r/m8
r/m, reg

r/m8, reg8
r/m, immed
r/m8, immed8
reg, r/m

reg8, r/m8§
r/m, reg

r/m8, reg8
r/m, immed
r/m8, immed$§
reg, r/m

reg8, r/m8§
r/m, reg

r/m8, reg8
r/m, immed
r/m8, immed8
r/m, reg

r/m8, reg8
r/m, immed

r/m8, immed$§

and edx, 00330000h

; logical not
; logical and

; logical or

; logical exclusive or

; logical and to set EFLAGS

; logical and of contents of register
; edx (bitwise) with 0x00330000,
; result goes back to edx

14.4.5 Floating Point Arithmetic

Since the newer architectures have room for floating point hardware on chip, Intel

defined a simple-to-implement extension to the architecture to do floating point

arithmetic. In their usual zeal, they have included MANY instructions to do floating

point operations.

The mechanism is simple. A set of 8 registers are organized and maintained (by

hardware) as a stack of floating-point values. ST refers to the stack top. ST(1)

refers to the register within the stack that is next to ST. ST and ST(0) are synonymes.

285

MICROPROCESSOR ARCHITECTURE

There are separate instructions to test and compare the values of floating-point

variables.

finit ; initialize the FPU

fld m32 ; load floating point value
mo64
ST()

fldz ; load floating point value 0.0

fst m32 ; store floating point value
mo64
ST(i)

fstp m32 ; store floating point value
m64 ; and pop ST
ST(i)

fadd m32 ; floating point addition
m64
ST, ST(i)
ST(i), ST

faddp ST(1), ST ; floating point addition

; and pop ST
ETC. (see p.201-202)

14.4.6 1/O

The only instructions which actually allow the reading and writing of I/O devices
are priviledged. The OS must handle these things. But, in writing programs that do
something

useful, we need input and output. Therefore, there are some simple macros defined
to help us do I/O.

These are used just like instructions.

put ch r/m ; print character in the least significant
; byte of 32-bit operand

get ch r/m ; character will be in AL

put_str m ; print null terminated string given
; by label m

286

Chapter 14: The Pentium and Pentium Pro Microprocessors

14.4.7 Control Instructions

These are the same control instructions that all started with the character 'b' in
SASM.

jmp m ; unconditional jump

jg m ; jump if greater than 0

jge m ; jump if greater than or equal to 0
jl m ; jump if less than 0

jle m ; jump if less than or equal to 0

14.5 PENTIUM PRO MICROPROCESSORS

14.5.1 Modes
The Pentium and Pentium Pro processor has three operating modes:

1. Real-address mode: This mode lets the processor to address "real" memory
address. It can address up to 1Mbytes of memory (20-bit of address). It can
also be called "unprotected" mode since operating system (such as DOS)
code runs in the same mode as the user applications. Pentium and Prentium
Pro processors have this mode to be compatible with early Intel processors
such as 8086. The processor is set to this mode following by a power-up or a
reset and can be switched to protected mode using a single instruction.

2. Protected mode: This is the preferred mode for a modern operating system.
It allows applications to use virtual memory addressing and supports multiple

programming environment and protections.

3. System management mode: This mode is designed for fast state snapshot

and resumption. It is useful for power management.

There is also a virtual-8086 mode that allows the processor to execute 8086

code software in the protected, multi-tasking environment.

14.5.2 Register Set

There are three types of registers: general-purpose data registers, segment registers,
and status and control registers. The following figure shows these registers:

287

MICROPROCESSOR ARCHITECTURE

General-purpose registers Segment registers
3 0 15 0
EAX Cs
EBX Ds
ECX SS
EDX ES
ESI FS
EDI GS
EBP
ESP
Status and control registers
31 a
EFLAGS
EIP

Figure 5.1: Register Set

General-purpose Registers

The eight 32-bit general-purpose data registers are used to hold operands for logical
and arithmetic operations, operands for address calculations and memory pointers.

The following shows what they are used for:
EAX-> Accumulator for operands and results data.
EBX->Pointer to data in the DS segment.
ECX->Counter for string and loop operations.
EDX->1/0 pointer.

ESI->Pointer to data in the segment pointed to by the DS register; source pointer

for string operations.

EDI->Pointer to data (or destination) in the segment pointed to by the ES register;

destination pointer for string operations.
ESP->Stack pointer (in the SS segment).

EBP->Pointer to data on the stack (in the SS segment).

The following figure shows the lower 16 bits of the general-purpose registers can
be used with the names AX, BX, CX, DX, BP, SP, SI, and DI (the names for the
corresponding 32-bit ones have a prefix "E" for "extended"). Each of the lower two
bytes of the EAX, EBX, ECX, and EDX registers can be referenced by the names
AH, BH, CH, and DH (high bytes) and AL, BL, CL, and DL (low bytes).

288

Chapter 14: The Pentium and Pentium Pro Microprocessors

Seneralpurpose registers 16-bit 32-bit
31 16 15 87 O

A Al A2 E.As<

BH BL B> EBXX

_H CL C EC>

DH DL (DD ED>C

== ESI

=1 ED

(3] EBP

SP EsSP

Figure 5.2: Registers with lower bytes

Segment Registers

There are six segment registers that hold 16-bit segment selectors. A segment
selector is a special pointer that identifies a segment in memory. The six segment
registers are:

CS: Code Segment Register

SS: Stack Segment Register

DS, ES, FS, GS: Data Segment Registers

Four data segment registers provide programs with flexible and efficient ways to

access data.

Modern operating system and applications use the (unsegmented) memory model
- all the segment registers are loaded with the same segment selector so that all
memory references a program makes are to a single linear-address space.

When writing application code, you generally create segment selectors with
assembler directives and symbols. The assembler and/or linker then creates the
actual segment selectors associated with these directives and symbols. If you are
writing system code, you may need to create segment selectors directly.

EFLAGS Register

The 32-bit EFLAGS register contains a group of status flags, a control flag, and a
group of system flags. The following shows the function of EFLAGS register bits:

Table 5.1: EFLAGS Register

Function EFLAG Register bit or bits
ID Flag (ID) 21 (system)
Virtual Interrupt Pending (VIP) 20 (system)
Virtual Interrupt Flag (VIF) 19 (system)

289

MICROPROCESSOR ARCHITECTURE

Function EFLAG Register bit or bits
Alignment check (AC) 18 (system)
Virtual 8086 Mode (VM) 17 (system)
Resume Flag (RF) 16 (system)
Nested Task (NT) 14 (system)

I/O Privilege Level (IOPL) 13 to 12 (system)
Overflow Flag (OF) 11 (system)
Direction Flag (DF) 10 (system)
Interrupt Enable Flag (IF) 9 (system)

Trap Flag (TF) 8 (system)

Sign Flag (SF) 7 (status)

Zero Flag (ZF) 6 (status)
Auxiliary Carry Flag (AF) 4 (status)

Parity Flag (PF) 2 (status)

Carry Flag (CF) 0 (status)

Bits 1, 3, 5, 15, and 22 through 31 of this register are reserved.

EIP Register (Instruction Pointer)

The EIP register (or instruction pointer) can also be called "program counter." It
contains the offset in the current code segment for the next instruction to be
executed. It is advanced from one instruction boundary to the next in straight-line
code or it is moved ahead or backwards by a number of instructions when executing
JMP, Jcc, CALL, RET, and IRET instructions. The EIP cannot be accessed directly
by software; it is controlled implicitly by control-transfer instructions (such as JMP,
Jec, CALL, and RET), interrupts, and exceptions. The EIP register can be loaded
indirectly by modifying the value of a return instruction pointer on the procedure
stack and executing a return instruction (RET or IRET).

Note that the value of the EIP may not match with the current instruction because
of instruction prefetching. The only way to read the EIP is to execute a CALL
instruction and then read the value of the return instruction pointer from the
procedure stack.

14.5.3 Addressing
Bit and Byte Order

Pentium and Pentium-Pro processors use "little endian" as their byte order. This
means that the bytes of a word are numbered starting from the least significant byte
and that the least significant bit starts of a word starts in the least significant byte.

290

Chapter 14: The Pentium and Pentium Pro Microprocessors

Data Types

The Pentium/Pentium Pro provide four data types: a byte (8 bits), a word (16 bits),
a doubleword (32 bits), and a quadword (64 bits). Note that a doubleword is

equivalent to "long" in Gnu assembler.

Memory Addressing

One can use either flat memory model or segmented memory mode. With the flat
memory model, memory appears to a program as a single, continuous address
space, called a linear address space. Code (a programs instructions), data, and the
procedure stack are all contained in this address space. The linear address space is

byte addressable, with addresses running contiguously from 0 to 23!,

With the segmented memory mode, memory appears to a program as a group of
independent address spaces called segments. When using this model, code, data,
and stacks are typically contained in separate segments. To address a byte in a
segment, a program must issue a logical address, which consists of a segment
selector and an offset. (A logical address is often referred to as a far pointer.) The
segment selector identifies the segment to be accessed and the offset identifies a
byte in the address space of the segment. The programs running on a Pentium Pro

processor can address up to 16,383 segments of different sizes and types. Internally,
all the segments that are defined for a system are mapped into the processors linear
address space. So, the processor translates each logical address into a linear address
to access a memory location. This translation is transparent to the application

program.

14.5.4 Processor Reset

A cold boot or a warm boot can reset the CPU. A cold boot is powering up a system
whereas a warm boot means that when three keys CTRL-ALT-DEL are all pressed
together, the keyboard BIOS will set a special flag and resets the CPU.

Upon reset, the processor sets itself to real mode with interrupts disabled and key
registers set to a known state. For example, the state of the EFLAGS register is
00000002H and the memory is unchanged. Thus, the memory will contain garbage
upon a cold boot. The CPU will jump to the BIOS (Basic Input Output Services)
to load the bootstrap loader program from the diskette drive or the hard disk and
begins execution of the loader. The BIOS loads the bootstrap loader into the fixed
address 0:7C00 and jumps to the starting address.

291

MICROPROCESSOR ARCHITECTURE

14.5.5 Assembly Programming

It often takes a while to master the techniques to program in assembly language for
a particular machine. On the other hand, it should not take much time to assembly
programming for Pentium or Pentium Pro processors if you are familiar with

another processor.

This section assumes that you are already familiar with Gnu assembly syntax. The
simplest way to learn assembly programming is to compile a simple C program
into its assembly source code as a template. For example, gcc -S -¢ foo.c will
compile foo.c its assembly source foo.s. The source code will tell you common
opcodes, directives and addressing syntax.

The goal of this section is to answer some frequently encountered questions and
provide pointers to related documents.

14.5.5.1 Memory operands

Pentium and Pentium Pro processors use segmented memory architecture. It means
that the memory locations are referenced by means of a segment selector and an
offset:

. The segment selector specifies the segment containing the operand, and

. The offset (the number of bytes from the beginning of the segment to the first
byte of the operand) specifies the linear or effective address of the operand.

The segment selector can be specified either implicitly or explicitly. The most
common method of specifying a segment selector is to load it in a segment
register and then allow the processor to select the register implicitly,
depending on the type of operation being performed. The processor
automatically chooses a segment according to the following rules:

. Code segment register CS for instruction fetches

. Stack segment register SS for stack pushes and pops as well as references
using ESP or EBP as a base register

. Data segment register DS for all data references except when relative to stack
or string destination

. Data segment register ES for the destinations of string instructions
The offset part of the memory address can be specified either directly as a static

value (called a displacement) or through an address computation made up of one
or more of the following components:

292

Chapter 14: The Pentium and Pentium Pro Microprocessors

. Displacement—>An 8-, 16-, or 32-bit value.

. Base—>The value in a general-purpose register.

. Index—>The value in a general-purpose register except EBP.

. Scale Factor=> A value of 2, 4, or 8 that is multiplied by the index value.

An effective address is computed by:

Offset = Base + (Index " Scale) + displacement

The offset which results from adding these components is called an effective

address of the selected segment. Each of these components can have either a

positive or negative (2's complement) value, with the exception of the scaling

factor.

14.5.5.2 Instruction Syntax

There are two conventions about their syntax and representations: Intel and AT&T.

Most documents including those at http://www.x86.org use the Intel convention,

whereas the Gnu assembler uses the AT&T convention. The main differences are:

Table 5.2: Difference between Intel and AT&T

Intel AT&T (Gnu Syntax)
Immediate operands Undelimited Preceded by "$"
e.g. e.g.
push 4 push $4
mov ebx, d00ah movl $0xd00a, %eax
Register operands Undelimited Preceded by "%"
e.g.: eax e.g.: %eax

Argument order (e.g.
adds the address of C
variable "foo" to
register EAX)

Dest, source [, source2]
e.g.: add eax, foo

Source, [source,] dest
e.g.:addl § foo, %eax

Single-size operands

Implicit with register
name, byte ptr, word
ptr, or dword ptr
e.g.: mov al, foo

opcode{b,w,1}
e.g.: movb foo, %al

Address a C variable
Hfooﬂ

[foo]

foo

293

MICROPROCESSOR ARCHITECTURE

Intel AT&T (Gnu Syntax)
Address memory [eax] (%oeax)
pointed by a register
(e.g. EAX)
Address a variable [eax + foo] _foo(%eax)
offset by a value in the
register
Address a value in an [eax*4-+foo] _foo(,%eax,4)
array "'foo" of 32-bit
integers
Equivalent to C code If EAX holds the value | 1(%eax)
*(pt1) of p, then [eax+1]

In addition, with the AT&T syntax, the name for a long JUMP is ljmp and long
CALL is Icall.

14.5.5.3 Assembler Directives

The GNU assembler directives are machine independent, so your knowledge about
assembly programming applies. All directive names begin with a period "." and the
rest are letters in lower case. Here are some examples of commonly used directives:
.ascii "string" defines an ASCII string "string"

.byte 10, 13, 0 defines three bytes

.word 0x0456, 0x1234 defines two words

Jong 0x001234, 0x12345 defines two long words

.equ STACK_SEGMENT, 0x9000 sets symbol STACK _SEGMENT the
value 0x9000

.globl symbol makes "symbol" global (useful for defining global labels and

procedure names)

.codel6 tells the assembler to insert the appropriate override prefixes so the code

will run in real mode.

When using directives to define a string, bytes or a word, you often want to make
sure that they are aligned to 32-bit long word by padding additional bytes.

14.5.5.4 Inline Assembly

The most basic format of inline assembly code into your the assembly code
generated by the gcc compiler is to use

294

Chapter 14: The Pentium and Pentium Pro Microprocessors

asm("assembly-instruction");

where assembly-instruction will be inlined into where the asm statement is. This
is a very convenient way to inline assembly instructions that require no

registers. For example, you can use

asm("cli");
to clear interrupts and
asm("sti");

to enable interrupts.

The general format to write inline assembly code in C is:

asm("statements": output regs: input regs: used regs);

where statements are the assembly instructions. If there are more than one
instruction, you can use "\n\t" to separate them to make them look

pretty. "input regs" tells gcc compiler which C variables move to which
registers. For example, if you would like to load variable "foo" into register EAX

and "bar" into register ECX, you would say

: "a" (foo), "c" (bar)
gcc uses single letters to represent all registers:

Table 5.3: Register Representations
Single Letters Reigsters

eax
ebx
ecx
edx
esi
edi
constant value (0 to 31)
allocate a register from EAX, EBX, ECX, EDX
allocate a register from EAX, EBX, ECX, EDX, ESI, EDI

=l =T e T

Note that you cannot specify register AH or AL this way. You need to get to EAX
first and then go from there.

"output regs" provides output registers. A convenient way to do this is to let gcc
compiler to pick the registers for you. You need to say "=q" or "=r" to let gcc
compiler pick registers for you. You can refer to the first allocated register with
"%0", second with "%1", and so on, in the assembly instructions. If you refer to

295

MICROPROCESSOR ARCHITECTURE

the registers in the input register list, you simply say "0" or "1" without the "%"
prefix.

"used_regs" lists the registers that are used (or clobbered) in the assembly code.

To understand exactly how to do this, please try to use gcc to compile a piece of C

code containing the following inline assembly:

asm ("leal (%1,%1,4), %0"
2"=r" (x_times 5)

L (X))
and

asm ("leal (%0,%0,4), %0"
E (X)

10" (%))

Also, to avoid the gcc compiler's optimizer to remove the assembly code, you can

put in keyword volitale to ensure your inline. Here are some macro code examples:

#define disable() __asm___ volatile_ ("cli");
#define enable() __asm___ volatile ("sti");

to disable and enable interrupts.

14.6 Special Pentium Pro Features

Silent features of Pentium Pro Architecture:
° 64-bit data bus

. 8 bytes of data information can be transferred to and from memory in a
single bus cycle

. Supports burst read and burst write back cycles
. Supports pipelining

Instruction cache

Core specifications
. Pentium Pro
. L1 cache: 8, 8 KB (data, instructions)

. L2 cache: 256, 512 KB (one die) or 1024 KB (two 512 KB dies) in a multi-
chip module clocked at CPU-speed

296

Chapter 14: The Pentium and Pentium Pro Microprocessors

Socket: Socket 8

Front side bus: 60 and 66 MHz

VCore: 3.1-3.3V

Fabrication: 0.50 um or 0.35 BiCMOS[18]

Clockrate: 150, 166, 180, 200 MHz, (capable of 233 MHz on some
motherboards)

First release: November 1995

14.7 Summary

In this chapter we have studied about processor architecture. The various registers

used in processors and their uses. We have seen the page tables for memory

accessing methods. We have seen various types of instructions sets used in

assembly language programming. We have also seen the features of Pentium Pro

Microprocessors.

14.8 Review Your Learnings

l.
2.

Are you able to explain Pentium Processors?
Are you able to recognize the Pentium Instructions Set?

Are you able to understand the features of Pentium and Pentium pro
Processor?

Do you feel capable to explain the architecture of Pentium Processor?

Will you be able to explain the page tables and memory management concept
in processor?

14.9 Sample Questions:

[98)

e e -

Explain Pentium Processors and its acrhitectures?
Explain the any two Pentium Instructions Set with examples?

Are you able to understand the features of Pentium and Pentium pro
Processor?

Explain the architecture of Pentium Processor.

Explain the page tables and memory management concept in processor.
Explain control instructions set.

Explain various addressing modes used in processors for accessing memories.

Explain Real Mode Architecture in processors.

297

MICROPROCESSOR ARCHITECTURE

14.10 References for further reading

. Pentium Pro Family Developers Manual, Volume 2: Programmer’s
Reference Manual, Intel Corporation, 1996

o Pentium Pro Family Developers Manual, Volume 3: Operating System
Writer's Manual, Intel Corporation, 1996

o http://www.x86.org/intel.doc/intelDocs.html

. https://www.byclb.com/TR/Tutorials/microprocessors/ch2 1.htm#:~:text=T
he%2016%2Dbit%20registers%20are,in%20the%2080386%20and%20abo
ve

o https://eun.github.io/Intel-Pentium-Instruction-Set-

Reference/data/index.html

R/
0’0 0’0 0‘0

298

UNIT 5

15

CORE 2 AND LATER MICROPROCESSORS

Unit Structure

15.0
15.1
15.2
15.3
15.4

15.5
15.6
15.7
15.8

Objectives

Introduction

Pentium II Software Changes
Pentium IV

Core 2, 13,15 and 17

15.4.1 Core 12

15.4.2 The Microarchitectures of Nehalem
15.4.3 Core 13, 15 and 17
Summary

Review Your Learnings:
Sample Questions:

References for further reading

15.0 Objectives

Eal

Explain Microprocessor properties

Analyse performance between 12, 13, 15 and 17 processors
Explain multicore processors

Differentiate between properties of 12, i3, 15 and 17 processors

Explain concept of Turbo Boost, Pipelining etc

15.1 Introduction

Performance analysis is a more efficient method of improving processor

performance. We need to learn various already invented and newly emerging

processor architectures. With the evolution of Intel processor architecture over

time, most customer (buyers) of Intel architecture do not really have time to test

299

MICROPROCESSOR ARCHITECTURE

and analyse the architecture before they purchase it for their various day to day use.
In a nutshell, people have not been able to analyse the differences in the
architectures before purchase. Testing performance of computer system is very
necessary because it helps consumers decide what type and configurations of
products to purchase for a particular nature of computing job. However, the
performance is strongly dependent on several factors which include the system
architecture, processor microarchitecture, operating systems, type of compiler, and
program implementation etc. Many processor manufacturers including Intel has
performance analysis tools which can be used to determine the performance of their
architecture. Intel Corporation produces different processors with different
numbers of cores for different nature of jobs, however, it is the important for users
of processor machines to acquire the right processor specifications that would
efficiently process target applications based on the workloads characteristics of the
application program. For instance, some specification of machine works better on
graphics while others perform best on computation. With the evolution of Intel
processor architectures over time, testing performance is necessary. The aim of this
study is to measure the performance of different cores using different applications
(both Single and Multithreaded). The objectives are 1) compare architecture
performance on applications (Single and Multithreaded), 2) measure performance
counters on representative processors and, 3) show methods for exploring
processor architectures. One of the goals of this work is to highlight the advantages
of each feature in a system and to study how the hardware makes use of CPU

resources.
Table 1.1 Functionality and benefit comparison between
various Intel Processors
Component/Feature Functionality Benefit

45nm, Hafnium Hi-K and Metal Gate
Transistor Technology

Power-Optimized (up to) 1066 MHz
Front Side Bus processors

Line of 25W TDP CPUs

Intel* Advanced Smart Cache

Intel* Intelligent Power Capability Containing man
optimal perform

Intel* HD Boost Expedites t
can be executed

Intel* Deep Power Down Technology

Intel* Wide Dynamic Execution

Intel* Smart Memory Access th from the memory

Intel® Trusted Execution Technology’

300

Chapter 15: Core 2 and Later Microprocessors

15.2 Pentium II Software Changes

Pentium II

The Pentium II made a number of subtle changes to the Pentium Pro's design and
one big honkin' shift. It re-added the segment register cache previous x86 CPUs
had used but the Pentium Pro hadn't to improve 16-bit performance, doubled the
L1 cache size to 32K while splitting the L1 into instructions and data caches,
widened the execution core by adding MMX support, and, of course, moved from
a socket configuration to Intel's Slot 1. The Pentium Pro used an onboard L2 cache
that was connected to the primary CPU by a dedicated bus, but the cache itself only
ran at half clock. The Pentium Pro's cache, in contrast, had run at full CPU clock.
This design was a huge success for Intel overall -- most of the company’s last x86

competitors were on their last legs by this time.

To trace the history of Intel CPU cores is to trace the history of various epochs in
the evolution of CPU performance. In the 1980s and 1990s, clock speed
improvements and architectural enhancements went hand in hand. From 2005
forward, it was the era of multi-core chips and higher efficiency parts. Since 2011,
Intel has focused on improving the performance of its low power CPUs more than
other capabilities. This focus has paid real dividends — laptops today have far
better battery life and overall performance than they did a decade ago.

Unlike previous Pentium and Pentium Pro processors, the Pentium II CPU was
packaged in a slot-based module rather than a CPU socket. The processor and
associated components...

Max. CPU clock rate: 233 MHz to 450 MHz

Min. feature size: 0.35 pm to 0.18 um

FSB speeds: 66 MHz to 100 MHz

Socket(s): Slot 1; MMC-1; MMC-2; Mini-Cartridge; PPGA-B615 (WPGA1)

Intel improved 16-bit code execution performance on the Pentium II, an area in
which the Pentium Pro was at a notable handicap, by adding segment register
caches. Most consumer software of the day was still using at least some 16-bit code,
because of a variety of factors. The issues with partial registers was also addressed
by adding an internal flag to skip pipeline flushes whenever possible. To
compensate for the slower L2 cache, the Pentium II featured 32 KB of L1 cache,
double that of the Pentium Pro, as well as 4 write buffers (vs. 2 on the Pentium
Pro); these can also be used by either pipeline, instead of each one being fixed to

301

MICROPROCESSOR ARCHITECTURE

one pipeline. The Pentium II was also the first P6-based CPU to implement the
Intel MMX integer SIMD instruction set which had already been introduced on the
Pentium MMX.

The Pentium II was basically a more consumer-oriented version of the Pentium
Pro. It was cheaper to manufacture because of the separate, slower L2 cache
memory. The improved 16-bit performance and MMX support made it a better
choice for consumer-level operating systems, such as Windows 9x, and multimedia
applications. The slower and cheaper L2 cache's performance penalty was
mitigated by the doubled L1 cache and architectural improvements for legacy code.
General processor performance was increased while costs were cut.

Pentium II Software Updates

Pentium II processor system bus agents can also be configured with some
additional software

Configuration options. These options can be changed by writing to a power-on
configuration

Register which all bus agents must implement. These options should be changed
only after

Considering synchronization between multiple Pentium II processor system bus
agents.

Pentium II processor system bus agents have the following configuration options:
. Output tristate {Hardware}

. Execution of the processor’s built-in self test (BIST) {Hardware}

. Data bus error-checking policy: enabled or disabled {Software}
. Response signal error-checking policy: parity disabled or parity enabled
{Software}

. AERR# driving policy: enabled or disabled {Software}

. AERR# observation policy: enabled or disabled {Hardware}

. BERR# driving policy for initiator bus errors: enabled or disabled {Software}
. BERR# driving policy for target bus errors: enabled or disabled {Software}

. BERR# driving policy for initiator internal errors: enabled or disabled
{Software}

. BINIT# error-driving policy: enabled or disabled {Software}

. BINIT# error-observation policy: enabled or disabled {Hardware}

302

Chapter 15: Core 2 and Later Microprocessors

. In-order Queue depth: 1 or 8 {Hardware}

. Power-on reset vector: 1M-16 or 4G-16 {Hardware}

. FRC mode: enabled or disabled {Hardware}

. APIC cluster ID: 0 or 1 {Hardware}

. APIC mode: enabled or disabled {Software}

. Symmetric agent arbitration ID: 0, 1, 2, or 3 {Hardware}

. Clock frequencies and ratios {Hardware}

15.3 Pentium IV

The term “Pentium Processor” refers to a family of microprocessors that share a
common architecture and instruction set. The first Pentium processors were
introduced in 1993. It runs ata clock frequency of either 60 or 66 MHz and has 3.1

million transistors. Some of the features of Pentium Architectures are listed below:

o Complex Instruction Set Computer (CISC) architecture with Reduced
Instruction Set Computer (RISC) performance.

o 64-bit Bus
. Upward code compatibility

o Pentium Processor uses Superscalar Architecture and hence can issue
multiple instructions per cycle.

. Multiple Instructions Issue (MII) capability

. Pentium Processor executes instructions in five stages. This staging or
pipelining allows the processor to overlap multiple instructions so that it
takes less time to execute two instructions in a row.

. The Pentium Processor fetches the branch target instruction before it

executes the branch instructions.

o The Pentium processors have two separate 8 KB caches on chip, one for
instruction and one for data. It allows the Pentium processor to fetch data

and instructions from cache simultaneously.

. When data is modified, only the data in cache is changed. Memory data is
changed only when Pentium Processor replaces modified data in cache with
a different set of data.

303

MICROPROCESSOR ARCHITECTURE

. The Pentium Processor has been optimized to run critical instructions in
fewer clock cycle than 80486 processor.

E 35
Branch [~ TLB]
Target Instruction Cache
Bufter 8K, 2-way

%256

- Prefetch Buffers
A3
. 5
Dk 3 Instruction Decolde M‘?{OM o
Bus S 1
<= E ! | —
Addr. Control Unit I
L
- Bus) ’
Unit

Address Address

Control —1 Generate | Generate
&?) U-pipe V-pipe Control
= FP Register File

cam L lap Integer Register File
o i AU | AL [Aca |
-

Divide

Barrel
Page 432 432
Unit
Dual-Access Data Cache
8K, 2-way
—— TLEB ——
: 464

Figure 3.1: The Pentium Architecture

15.4 Core 2,13, i5 and i7

15.4.1 Core i2

The Intel Core 2 Duo processor belongs to the Intel’s mobile core family. It is
implemented by using two Intel’s Core architecture on a single die. The design of
Intel Core 2 Duo is chosen to maximize performance and minimize power
consumption. It emphasizes mainly on cache efficiency and does not stress on the
clock frequency for high power efficiency. Although clocking at a slower rate than
most of its competitors, shorter stages and wider issuing pipeline compensates the
performance with higher IPC’s. In addition, the Core 2 Duo processor has more
ALU units. Core 2 Duo employs Intel’s Advanced Smart Cache which is a shared
L2 cache to increase the effective on-chip cache capacity. Upon a miss from the
core’s L1 cache, the shared L2 and the L1 of the other core are looked up in parallel
before sending the request to the memory. The cache block located in the other L1

304

Chapter 15: Core 2 and Later Microprocessors

cache can be fetched without off-chip traffic. Both memory controller and FSB are
still located off-chip. The off-chip memory controller can adapt the new DRAM
technology with the cost of longer memory access latency. Intel Advanced Smart
Cache provides a peak transfer rate of 96 GB/sec (at 3 GHz frequency).

The microarchitectures of Intel Core and Intel Core 2 are shown below in Figure
4.1 and Figure 4.2.

Core Microarchitecture

m,,! EE

7+ Entry pop Buffer
e

Alsas Table and Allocanar
4 pops
v]

T

—*I_ 32 Enory Reservanon Staron I

Figure 4.1: Intel Core Microarchitecture

305

MICROPROCESSOR ARCHITECTURE

(=& ;—

s
[1
L Bmgrsten Adeas Toabde ol Alociaks |l

il wapn

oo o e} 2]
e
-—l-l A2 Emiry Aeserspon Siaton I

Pz 1]
[-

[T2 Erviry Roondos Buller {ROE) I

! !

= - = =
I FF Mlapgssr and Ranoarmeaen I I 4 E rerg meges F uluros Foa I

Figure 4.2: Intel Core 2 Microarchitecture

14.4.2 The Microarchitectures of Nehalem

The Microarchitectures of Nehalem Nehalem architecture is more modular than the
Core architecture which makes it much more flexible and customizable to the
application. The architecture is shown in Figure 4.3. The architecture really only
consists of a few basic building blocks. The main blocks are a microprocessor core
(with its own L2 cache), a shared L3 cache, a Quick Path Interconnect (QPI) bus
controller, an integrated memory controller (IMC), and graphics core. With this
flexible architecture, the blocks can be configured to meet what the market
demands. For example, the Bloomfield model, which is intended for a performance
desktop application, has four cores, an L3 cache, one memory controller, and one
QPI bus controller. Another significant improvement in the Nehalem
microarchitecture involves branch prediction. For the Core architecture, Intel
designed what they call a “Loop Stream Detector,” which detects loops in code

306

Chapter 15: Core 2 and Later Microprocessors

execution and saves the instructions in a special buffer so they do not need to be
continually fetched from cache. This increased branch prediction success for loops
in the code and improved performance. Intel engineers took the concept even
further with the Nehalem architecture by placing the Loop Stream Detector after
the decode stage eliminating the instruction decode from a loop iteration and saving
CPU cycles.

TR I b
- ~ ~ “-:E
- -
3 aop 132 op '
I T2 Entry Racrder Buter (RO
X = . X = P
I FP Mappar and Romamaen I I 24 Entry Integor Fuhore Fie I

= = =

Pkt | il | i I:mng#’umm wﬁm rnm

errsllrrrs |l Freas

o ------

B

Figure 4.3: Nehalem Microarchitecture

307

MICROPROCESSOR ARCHITECTURE

The comparison between configurations of system architectures of Pentium Dual
Core, Core 12 Duo and Core 13 is mentioned below in Table 4.1.

Table 4.1 Configuration of System Architecture

CPU Pentium | ore2Duo | Core i3
Dual Core

pArchitecture Netburst Core 2 Nehalem

Specification Dual Core | Core 2 Duo | Core 13 CPU
CPU E5700 | CPU T5800 M370

Core speed 3.00 GHz 2.00 GHz 2.40 GHz

Bus speed 200.0 133.0 MHz 133.0 MHz
MHz

Number of Core 2 2 2

Number of threads 2 2 4

Core speed (avrg) 1200.05 797.78 MHz | 1197.3MHz
MHz

Pipeline storage 20 14 | e

Operating System Windows 7 | Windows 7 Windows 8

Software DirectX 11 DirectX 11 DirectX 11

The comparisons between Intel Core and Nehalem processors are mentioned below
in Table 4.2.

Table 4.2: Processors Microarchitecture Features

pArchitecture Intel Core Nehalem
Speed: 3GHz (100%) 2.4GHz
Minimum/Maximum/T | 4 >GHz - 3GHz | 931MHz - 2.4GHz
urbo Speed:
Peak Processing pe
Pestovennnte (PP 24GFLOPS 19.2GFLOPS
Adjusted Peak s
Performance (APP): e SR
Cores per Processor: 2 Unit(s) 2 Unit(s)
Threads per Core: 1 Unit(s) 2 Unit(s)
Front Side Bus Speed: 200MHz 133MHz
Mobile,
Type: Dual-Core I s
Revision/Stepping: 17/ A 25/5
Microcode: MUO6170A07 MUO06250503
2x 32kB, 2x 32kB,
L1D (1st Level) Data Write/Back, Write/Back,
Cache: 8-Way, 64kB 8-Way, 64kB Line
Line Size Size, 2 Thread(s)
. 2MB, ECC, : 2x 256kB, ECC,
:‘i c‘f‘:d Leve) Unified | \gvanced, 8-Way, 64kB Linc
s - 8-Way, 64kB Size, 2 Thread(s)

308

Chapter 15: Core 2 and Later Microprocessors

Line Size, 2
Thread(s)
IMB, ECC,
Write/Back.,
L3 (3rd Level) Unified _ 12-Way, Fully
Cache: Inclusive, 64kB
Line Size, 16
Thread(s)
Memory Controller 133MHEz 133MHz
Speed:
L% Y b - Multi-Media Ves Y es
eXtensions:
SSE - S.treamlng SIMID Yes Yes
Extensions:
SSE2 - Streaming .)
SIMD Extensions v2: Yes Yes
SSE3 - Streaming - i
SIMD Extensions v3: Yes Yes
SSSE3 - Supplemental .)
SSE3: Yes Yes
_l!_vpcr- Threading No Yes
Technology

15.4.3 Core i3, i5 and i7

Intel’s core processors are divided into three ranges (Core i3, Core 15 and Core 17),
with several models in each range. The differences between these ranges aren’t
same on laptop chips as on desktops. Desktop chips follow a more logical pattern
as compared to laptop chips, but many of the technologies and terms, we are about
to discuss, such as cache memory, the number of cores, Turbo boost and Hyper-
Threading concepts is same. Laptop processors have to balance power efficiency
with performance — a constraint that doesn’t really apply to desktop chips. Similar
is the case with the Mobile processors.

Let’s start differentiating the processors on the basis of the concepts discussed

below!
Concepts and Technologies

Total number of cores present: Out of all differences between the intel processor
ranges, this is one that will affect performance the most.

Having several cores can also drastically increase the speed at which certain
programs run. The Core i3 range is entirely dual core, while Core i5 and 17
processors have four cores.It is difficult for an application to take advantage of the
multicore system. Each core is effectively its own processor — your PC would still
work (slowly) with just one core enabled. Having multiple cores means that the

computer can work on more than one task at a time more efficiently.

Personal Computer Intel Core 13 Intel Core 15 Intel Core 17
Number of Cores 2 4 4

309

MICROPROCESSOR ARCHITECTURE

What is Turbo Boost in processors?

This may be interesting, the slowest Core i3 chips runs at a faster speed than the
base Core 15 and Core 17. This is where clock speed comes into the scenario. Let’s
first define, What is Clock speed?

The GHz represents the number of clock cycles (calculations) a processor can

manage in a second. Putting simply, a bigger number means a faster processor.

Examples:

2.4GHz means 2,400,000,000 clock cycles.

Personal Intel Core i3 Intel Core 15 Intel Core 17
Computer
Clock Speed | 3.4GHz — 4.2GHz | 2.4GHz - 3.8GHz | 2.9GHz — 4.2GHz
Range (Several
Models)

Turbo Boost has nothing to do with fans or forced induction but is Intel’s marketing
name for the technology that allows a processor to increase its core clock speed
dynamically whenever the need arises. Core 13 processors don’t have Turbo Boost,
but Core 15 and Core i7s do. Turbo Boost dynamically increases the clock speed of
Core 15 and 17 processors when more power is required. This means that the chip
can draw less power, produce less heat and only boost when it needs to. For
example, although a Core 13-7300 runs at 4GHz compared to 3.5GHz for the Core
15-7600, the Core 15 chip can boost up to 4.1GHz when required, so will end up
being quicker. A processor can only Turbo Boost for a limited amount of time. It
is a significant part of the reason why Core 15 and Core 17 processors outperform
Core 13 models in single-core-optimised tasks, even though they have lower base
clock speeds.

Personal Computer | Intel Core 13 Intel Core 15 Intel Core 17
Turbo Boost No Yes Yes
Note:

If a processor model ends with a K, it means it is unlocked and can be
‘overclocked’. This means you can force the CPU to run at a higher speed than its
base speed all the time for better performance.

Cache memory: A processor’s performance isn’t only determined by clock speed
and number of cores, though. Other factors such as cache memory size also play a

310

Chapter 15: Core 2 and Later Microprocessors

part. When a CPU finds it is using the same data over and over, it stores that data
in its cache. Cache is even faster than RAM because it’s part of the processor itself.

Here, bigger is better. Core 13 chips have 3- or 4MB, while i5s have 6MB and the
Core i7s have 8MB.

Personal Computer | Intel Core 13 Intel Core 15 Intel Core 17
Cache Memory 3—-4MB 4 - 6MB 8MB

What is Hyper-Threading?

It’s one of the concepts which is a little confusing to explain, but also confuses as
it’s available on Core 17 and Core i3, but not on the mid-range core i5. A little
shocking, right? Normally we assume that we get more features as we go higher
towards the processor range, but not here. Back to the concept, A thread in
computing terms is a sequence of programmed instructions that the CPU has to
process. For example: If a CPU consists of one core, it can process only one thread
at once, so can only do one thing at once.

Hyper-Threading is a clever way to let a single core handle multiple thread. It
essentially tricks operating system into thinking that each physical processor core
is, in fact, two virtual (logical) cores. A two-core Core i3 processor will appear as
four virtual cores in Task Manager, and a four-core i7 chip will appear as eight
cores. Whereas the current Core 15 range doesn’t have Hyper-Threading so can also
only process four cores. Due to Hyper-Threading operating system can share
processing tasks between these virtual cores in order to help certain applications
run more quickly, and to maintain system performance when more than one

application is running at once.

Personal Computer | Intel Core i3 Intel Core 15 Intel Core 17

Hyper-Threading | Yes No Yes

From these, we conclude why Core 17 processors are the creme de la creme. Not
only are they quad cores, they also support Hyper-Threading. Thus, a total of eight
threads can run on them at the same time. Combine that with 8MB of cache and
Intel Turbo Boost Technology, which all of them have, and you’ll see what sets the
Core 17 apart from its siblings.

On the other side, it totally depends on the requirements, to choose a processor.

311

MICROPROCESSOR ARCHITECTURE

Table 4.3: Comparative study if i3, iS5 and i7 Processors

Sr | Parameter Multicore i3 Multicore i5 Multicore i7
No.

1 | clock rate 2.933 GHz to 2.4 GHzto3.33 | 2.4 GHz to 3.33

3.2 GHz GHz GHz
2 | Launch Year 2010 2009 -
3 | Cores two cores two or four two, four, or six
cores cores
4 | Turbo Boost No Yes Yes
5 | cache memory | 3- or 4MB 6MB 8MB.

15.5 Summary

In this chapter we have studied various microprocessor architectures like Pentium

IV, 12, i3, i5, i7 etc. We have seen their comparison using various properties like

speed, pipelining, cache size, hyper threading, clock speed etc.

15.6 Review Your Learnings:

Are you able to analyse the properties of microprocessors?

Are you able to recognize various clock speeds of microprocessors?
Are you able to explain microarchitecture of processor cores?

Are you able to do performance evaluation of various microprocessors?

Are you able to figure out the impact of cache size and hyper threading on
performance of microprocessor?

15.7 Sample Questions:

Enlist various microprocessor names and its core types.
Compare the performance of Pentium IV and i5 microprocessor.
What do you mean by Hyper-Threading in microprocessors?

Explain the impact of cache size, Hyper threading and pipelining in
efficiency of microprocessor.

Explain architecture of Pentium IV

312

Chapter 15: Core 2 and Later Microprocessors

15.8 References for further reading

. https://www.pdfdrive.com/computer-system-architecture-morris-mano-
third-edition-e51589001.html

o https://www.pdfdrive.com/microprocessor-architecture-programming-and-
applications-with-the-8085-d176171206.html

. Pentium Pro Family Developers Manual, Volume 2: Programmer’s
Reference Manual, Intel Corporation, 1996

. Pentium Pro Family Developers Manual, Volume 3: Operating System

Writer's Manual, Intel Corporation, 1996

o https://www.researchgate.net/publication/278912508 Performance Analysi
s _of Dual Core Core 2 Duo and Core i3 Intel Processor/link/55afa4da
08aeb0ab4668933e/download

. http://www.x86.org/intel.doc/intelDocs.html

o https://www.byclb.com/TR/Tutorials/microprocessors/ch2 _1.htm#:~:text=T
he%2016%2Dbit%20registers%20are,in%20the%2080386%20and%20abo
ve

o https://eun.github.io/Intel-Pentium-Instruction-Set-
Reference/data/index.html

. https://www.lIpthe.jussieu.fr/~talon/pentiumIl.pdf

° http://www.darshan.ac.in/Upload/DIET/Documents/CE/2150707-MPI-
Study-Material 04112017 _033410AM.pdf

313

UNIT 5

16

SUN SPARC MICROPROCESSOR

Unit Structure

16.0
16.1

16.2.

16.5.
16.6.
16.7.
16.8.

Objectives:

SUN SPARC Architecture

16.1.1 Integer Unit:

16.1.2 Integer Unit: Register Window

16.1.3 Floating-point Unit (FPU)

16.1.4 Coprocessor Unit (CU)

Register File

16.2.1 Integer Unit: Register Window

16.2.2 Advantage: Register Window

Data Types

Instruction Format

16.4.1 Arithmetic/Logical/Shift instructions

16.4.2 Load/Store Instructions

16.4.3 Branch Instructions

16.4.4 SPARC Fundamental Instructions
16.4.4.1 Load/Store Instructions
16.4.4.2 Arithmetic/Logical Instructions
16.4.4.3 Call Instruction
16.4.4.4 Synthetic Instructions 13

Summary

Review Your Learnings:

Questions

References for further reading

314

Chapter 16: Sun Sparc Microprocessor

16.0 Objectives

1. Explain SPARC architecture.
Explain the various Registers used in SPARC architecture

Explain the instruction set of SPARC

Sl A

Explain advantages of Register Window of SPARC architecture.

5. Explain Instruction set categories with example

16.1 SUN SPARC Architecture

SPARC is an acronym for Scalable Processor ARChitecture.

Its specifications are listed below:

. Engineered at Sun Microsystems in 1985
. Designed to optimize compilers and pipelined hardware implementations
. Offers fast execution rates

. SPARC:s are load/store RISC processors.

. Load/store means only loads and stores access memory directly.

. RISC (Reduced Instruction Set Computer) means the architecture is
simplified with a limited number of instruction formats and addressing
modes.

. Simple, uniform instruction set allowing fast cycle times.

. Goal — “One instruction per cycle.”(RISC)

. Up to 128 general-purpose registers

. All arithmetic operations are register-to-register

. Simplified instruction set

. Higher number of instructions with fewer transistors
. Flexible integration of cache, memory and FPUs

. 64-bit addressing and 64-bit data bus

. Increased bandwidth
. Fault tolerance
. Nine stage pipeline; can do up to 4 instructions per cycle

315

MICROPROCESSOR ARCHITECTURE

On-chip 16Kb data and instruction caches with 2Mb external cache

A large “windowed” register file — at any one instant, a program sees 8
global integer registers plus a 24-register window into a larger register file.

INTEGER UNIT
(lu)
CoPROCESSOR
UNIT
FLOATING-POINT (V)
UNIT
(FPU)

Figure 1.1: SPARC Architecture

16.1.1 Integer Unit:

Contains the general purpose registers and controls the overall operation of
the processor.

Executes the integer arithmetic instructions and computes memory

addresses for loads and stores.

Maintains the program counters and controls instruction execution for the
FPU.

16.1.2 Integer Unit: Register Window

When a procedure is called, the register window shifts by sixteen registers, hiding

the old input registers and old local registers and making the old output registers

the new input registers.

Input registers : arguments are passed to a function
Local registers: to store any local data.

Output registers: When calling a function, the programmer puts his argument
in these registers.

16.1.3 Floating-point Unit (FPU)

The FPU has

32 Registers (32-bit single-precision floating-point registers)

32 Registers (64-bit double-precision floating-point registers)
16 Registers (128-bit quad-precision floating-point registers)

Floating-point load/store instructions are used to move data between the
FPU and memory.

316

Chapter 16: Sun Sparc Microprocessor

. The memory address is calculated by the IU.

. Floating-Point operate (FPop) instructions perform the floating-point
arithmetic operations and comparisons.

16.1.4 Coprocessor Unit (CU)

. The instruction set includes support for a single, implementation-dependent
COpProcessor.

. The coprocessor has its own set of registers.

. Coprocessor load/store instructions are used to move data between the

coprocessor registers and memory.

Branch
I-Cache Prefetch and Prediction
Di tch Unit and
s i IR Next Field

1T

Integer Rl Floating
Brs"::‘ Execution (i Store ("l)'g:)';:l/cs
Unit Unit Unit
Load D-Cache Store
Buffer [~ DMMU Buffer

¥ S

Second-Level Cache Interface/
System Interface

N System
Second- Data ly)a(a
Level Buffer
Cache
System

128416 (parity) 35+ IA(;!);!:ﬁ;s)

Figure 1.2: Block Diagram of Ultra SPARC

16.2 Register File

The SPARC architecture's definition includes the IU (Integer Unit) which is the
CPU, the FPU (Floating Point Unit) and the CP (Co-Processor) which is optional
for the user. Other options are the memory management unit and cache.

An important concept of the SPARC architecture is borrowed from the Berkeley
RISC chips, the TMS 9900 mainly. This is register windowing. When a program is

317

MICROPROCESSOR ARCHITECTURE

running it has access to 32 32-bit processor registers which include eight global
registers plus 24 registers that belong to the current register window. The first 8
registers in the window are called the in registers (i0-17). When a function is called,
these registers may contain arguments that can be used. The next 8 are the local
registers which are scratch registers that can be used for anything while the function
executes. The last 8 registers are the out registers which the function uses to pass

arguments to functions that it calls.

When one function calls another, the callee can choose to execute a SAVE
instruction. This instruction decrements an internal counter, the current workspace
pointer, shifting the register window downward. The caller's out registers then
become the callee' s in registers, and the callee gets a new set of local and out
registers for its own use. Only the pointer changes because the registers and return
address do not need to be stored on a stack. The CALL instruction automatically
saves its own address in 07 (output register 7) which becomes input register 7 if the
CWP is decremented. Therefore, the callee can access the return address whether
or not it has decremented the CWP.

Register windows are also used to save the processor contexts when traps, or
interrupts occur. The SPARC OS's always ensure that there is a register window
not being used below the current one. If a trap occurs, then the CWP is decremented
and the new window saves the processor context.

The chip that was implemented by Sun had seven overlapping windows which
brought the total of registers to (7*16) + 7 (without counting g0) which is 119
registers. If six levels are not enough due to recursive or deeply nested function
calls, then the program attempts to decrement the CWP to the last unused window
and it discovers that the window has been marked invalid in a register called the
window invalid mask register. This causes a trap and the processor has an
opportunity to "spill" register s in order to make more room. It writes some of the

contents out to memory.

A long series of subroutine returns can cause a window underflow, which
consequently causes the processor to call in a trap handler that fills registers from
memory. All the spilling and filling is hidden from an executing user program
usually. Spilling and filling registers is an essential part of Unix multitasking on
SPARC.

Sparc has 32 general purpose integer registers visible to the program at any given
time. Of these, 8 registers are global registers, and 24 registers are in a register
window. A window consists of three groups of 8 registers, the out, local, and in
registers. See table 1. A Sparc implementation can have from 2 to 32 windows, thus

318

Chapter 16: Sun Sparc Microprocessor

varying the number of registers from 40 to 520. Most implementation have 7 or 8
windows. The variable number of registers is the principal reason for the Sparc
being "scalable".

At any given time, only one window is visible, as determined by the current
window pointer (CWP) which is part of the processor status register (PSR). This is
a five bit value that can be decremented or incremented by the SAVE and
RESTORE instructions, respectively. These instructions are generally executed on
procedure call and return (respectively). The idea is that the in registers contain
incoming parameters, the local register constitute scratch registers, the out registers
contain outgoing parameters, and the global registers contain values that vary little
between executions. The register windows overlap partially, thus the out registers
become renamed by SAVE to become the in registers of the called procedure. Thus,
the memory traffic is reduced when going up and down the procedure call. Since

this is a frequent operation, performance is improved.

(That was the idea, anyway. The drawback is that upon interactions with the system
the registers need to be flushed to the stack, necessitating a long sequence of writes
to memory of data that is often mostly garbage. Register windows was a bad idea
that was caused by simulation studies that considered only programs in isolation,
as opposed to multitasking workloads, and by considering compilers with poor
optimization. It also caused considerable problems in implementing high-end Sparc
processors such as the SuperSparc, although more recent implementations have
dealt effectively with the obstacles. Register windows is now part of the
compatibility legacy and not easily removed from the architecture.)

The overlap of the registers is illustrated in Figure 2.2. The figure shows an
implementation with 8§ windows, numbered 0 to 7 (labelled w0 to w7 in the figure).
Each window corresponds to 24 registers, 16 of which are shared with
"neighbouring" windows. The windows are arranged in a wrap-around manner,
thus window number 0 borders window number 7. The common cause of changing
the current window, as pointed to by CWP, is the RESTORE and SAVE
instructions, shown in the middle. Less common is the supervisor RETT instruction
(return from trap) and the trap event (interrupt, exception, or TRAP instruction).

The "WIM" register is also indicated in the top left of Figure 2.2. The window
invalid mask is a bit map of valid windows. It is generally used as a pointer, i.e.,
exactly one bit is set in the WIM register indicating which window is invalid (in
the figure it is window 7). Register windows are generally used to support
procedure calls, so they can be viewed as a cache of the stack contents. The WIM

"pointer" indicates how many procedures calls in a row can be taken without

319

MICROPROCESSOR ARCHITECTURE

writing out data to memory. In the figure, the capacity of the register windows is
fully utilized. An additional call will thus exceed capacity, triggering a window
overflow trap. At the other end, a window underflow trap occurs when the register
window "cache" if empty and more data needs to be fetched from memory.

16.2.1 Integer Unit: Register Window

The SPARC register windows are, naturally, intimately related to the stack. In
particular, the stack pointer (%sp or %06) must always point to a free block of 64
bytes. This area is used by the operating system (Solaris, SunOS, and Linux at least)
to save the current local and in registers upon a system interrupt, exception, or trap

instruction. (Note that this can occur at any time.)

Other aspects of register relations with memory are programming convention. The
typical, and recommended, layout of the stack is shown in Figure 2.3. The figure
shows a stack frame.

Note that the top boxes of Figure 2.3 are addressed via the stack pointer (%sp), as
positive offsets (including zero), and the bottom boxes are accessed over the frame
pointer using negative offsets (excluding zero), and that the frame pointer is the old
stack pointer. This scheme allows the separation of information known at compile
time (number and size of local parameters, etc) from run-time information (size of
blocks allocated by alloca()).

"addressable scalar automatics" is a fancy name for local variables.

The clever nature of the stack and frame pointers are that they are always 16
registers apart in the register windows. Thus, a SAVE instruction will make the
current stack pointer into the frame pointer and, since the SAVE instruction also
doubles as an ADD, create a new stack pointer.

. When a procedure is called, the register window shifts by sixteen registers,
hiding the old input registers and old local registers and making the old
output registers the new input registers.

o Input registers: arguments are passed to a function
. Local registers: to store any local data.

. Output registers: When calling a function, the programmer puts his

argument in these registers.

320

Chapter 16: Sun Sparc Microprocessor

SO
L31]
s P ki
’I%leocrl'
fis] ST 602
15] fL34]
'[-8] cuts '[24] ns
23] S0
a Te | locals O 5
s |3y [CoweT]
o "al - 7a]
'[%'ﬂl sl
Ai8): e 504
-["b] cuts r[-'”] s
[SR> B A24]
'[%3]“55:“:
(18] GOS
A1s] ocuts eL311 ins
A a1l [Z4]
7 -
R i E06
[i5) |33
r[‘ﬁj out '154] nes
r(g:’]lur:lh'
78]
r[15] :
e soa S - 7 BAMR
=7
a1y Qlebals
[z B2 | o
B3 O

Figure 2.1: Register Window

Cwp
(current window)

Figure 2.2: Circular Arrangement of Register Window

321

MICROPROCESSOR ARCHITECTURE

low addresses

Hsp --> 16 words for storing
LocaL and IMN registers

one-word pointer to
aggregate return wvalue

& words for callee
to store register
arguments

outgoing parameters
past the 6th, if any

space, if needed, for

compiler temporaries
and sawved ftloating-
point registers

space dynamically
allocated wia the
alloca() library call

space, if needed, for
automatic arrays,
aggregates, and
addressable scalar
automatics

#tp -—>
high addresses

Figure 2.3: Stack Frame Contents

16.2.2 Advantage: Register Window

o Make very fast procedure calls as they avoid the need to save a processor’s
current in memory, further reducing off-chip traffic.

° Instead, the state variables are held in the current window, and the next

window is opened for the new procedure.

. A refinement on this idea in that the input and output registers of adjacent
windows overlap, allowing variables and parameters to be passed to the

next process without physically moving data.

. The additional registers are hidden from view until you call a subroutine or
other function. Where other processors would push parameters on a stack
for the called routine to pop off, SPARC processors just "rotate" the register
window to give the called routine a fresh set of registers.

. The old window and the new window overlap, so that some registers are
shared.

322

Chapter 16: Sun Sparc Microprocessor

16.3 Data Types

The SPARC architecture recognizes three fundamental data types:
° Signed Integer— 8, 16, 32, and 64 bits

° Unsigned Integer— 8, 16, 32, and 64 bits

° Floating-Point — 32, 64, and 128 bits

The format widths are defined as:

o Byte — 8 bits

o Half word— 16 bits

o Word/Single word — 32 bits

o Tagged Word— 32 bits (30-bit value plus 2 tag bits)
o Double word— 64 bits

° Quad word— 128 bits

SPARC is "big-endian"- it stores multiple byte objects in memory with the most

significant byte at the lowest address.

16.4 Instruction Format

There are very few addressing modes on the SPARC, and they may be used only
in certain very restricted combinations. The three main types of SPARC
instructions are given below, along with the valid combinations of addressing
modes. There are only a few unusual instructions which do not fall into these

categories.

16.4.1 Arithmetic/Logical/Shift instructions

opcode regl, reg2, reg3 'regl op reg2 ->reg3
opcode regl, constl3, reg3 !regl op constl3 -> reg3

. All "action" instructions (add, sub, and, or, etc.) take three operands.
o The destination is always the third operand.

. The middle operand may be a 13-bit signed constant (-4096...+4095).
o Otherwise, all operands are registers.

. To do the above things in the 680x0, 6 different opcodes would be needed
(move, add, addi, clr, neg, cmp)

323

MICROPROCESSOR ARCHITECTURE

Examples:

add %L1, %L2, %L3 1%L1+%L2->%L3

add %L1,1,%L1 lincrement L1

sub %g0,%1i3,%1i3 !negate i3

sub %1.1,10,%G0 !compare %L1 to 10 (discard result)
add %L1,%G0,%L2 !move %L1 to %L2 (add 0 to it)
add %G0,%G0,%1L.4 !clear L4 (0+0 ->%1L4)

16.4.2 Load/Store Instructions
opcode [regl+reg2], reg3 opcode [regl+const13], reg3
o Only load and store instructions can access memory.

o The contents of reg3 is read/written from/to the address in memory formed
by adding regl+reg2, or else regl+constl3 (a 13- bit signed constant as

above).

o The operands are written in the reverse direction for store instructions, so that
the destination is always last.

. One of regl or const13 can be omitted. The assembler will supply $g0 or 0.
(This 1s a shorthand provided by the assembler. Both are always there in

machine language.)

Examples:

Id [%L1+%L2], %L3 'word at address [%L1+%L2]->%L3
Id [%L1+8],%L2 !'word at address [%L1+8]->%L2

Id [%L1],%L2 !word at address [%L1]->%1L2

st %g0,[%i2+0] !0 > word at address in %i2

st %g0,[%i2] !same as above

16.4.3 Branch Instructions

opcode address
. Branch to (or otherwise use) the address given.

. There are actually 2 types of addresses, but they look the same.

Examples:

call printf
be Loop

324

Chapter 16: Sun Sparc Microprocessor

That's it. Period. No other modes or combinations of modes are possible. This is a
RISC machine and R stands for "Reduced".

add %L1,[%L2],%L3 !Invalid. No memory access allowed.
Id 5,%L4 !Invalid. Must be a memory access.

16.4.4 SPARC Fundamental Instructions

16.4.4.1 Load/Store Instructions

Only these instructions access memory.

All 32 bits of the register are always affected by a load. If a shorter data item
is loaded, it is padded by either adding zeroes (for unsigned data), or by sign
extension (for signed data).

In effect, data in memory may be 1, 2, or 4 bytes long, but data in registers is
always 4 bytes long.

Id - load (load a word into a register)

st - store (store a word into memory)

ldub - load unsigned byte (fetch a byte, pad with 0's)

1dsb - load signed byte (fetch a byte, sign extend it)

lduh - load unsigned halfword (fetch 2 bytes, pad)

ldsh - load signed halfword (fetch 2 bytes, sign extend)

stb - store byte (store only the LSB)

sth - store halfword (store only the 2 LSB's)

There are also two instructions for double words. The register number must
be even, and 8 bytes are loaded or stored. The MSW goes to the even register
and the LSW to the odd register that follows it.
1dd - load double (load 2 words into 2 registers)

std - store double (store 2 words from 2 registers)

4.4.2 Arithmetic/Logical Instructions

All 32 bits of every register is used.

Setting the condition code is always optional. Add "cc" to the opcode to set
the condition code. By default, it is not set.

add -atb
sub -a-b
and - a&b (bitwise AND)

325

MICROPROCESSOR ARCHITECTURE

andn - a&~b (bitwise and - second operand complemented)
or -ab (bitwise OR)

orn - al~b (bitwise or - second operand complemented)
xor - a’b (bitwise exclusive or)

xnor - a’~b (bitwise exor - second operand complemented)

Examples:

add %L1,%L2,%L3 ;add %L1+%L2 -> %L3

subcc %1.4,10,%G0 ;sub %L4-10, set cc, discard result

or %03,0xFF,%03 ;set lowest 8 bits of %03 to 1's

xnor %L6,%G0,%L6 ;complement %L6 (same as NOT in 680x0)
16.4.4.3 Call Instruction

This instruction is used to call subprograms. As for the 680x0, we will leave the

details for later. For now, it will be used only to call library routines.
call printf
16.4.4.4 Synthetic Instructions

Synthetic Instruction Assembled As

clr Yoreg or %g0,%g0,%reg
cmp %reg,%reg subcc %reg,%reg,%g0
cmp %reg,const subcc %reg,const,%g0
mov %reg,%reg or %g0,%reg,%reg
mov const,%reg or %g0,const,%reg
set const,%reg sethi %hi(const),%reg
or %reg,%lo(const22),%reg

And here are some others that may be useful:

Synthetic Instruction Assembled As

clr [address] st %g0,[address]
clrh [address] sth %g0,[address]
clrb [address] stb %g0,[address]
dec %reg sub %reg,1,%reg
deccc %reg subcc %reg,1,%reg
inc %reg add %reg,1,%reg

326

Chapter 16: Sun Sparc Microprocessor

inccc %reg addcc %reg,1,%reg
not %reg xnor %reg,%g0,%reg
neg %oreg sub %g0,%reg,%reg
tst Y%reg orcc %reg,%g0,%g0

Here are two that will be used for subprograms later:

Synthetic Instruction Assembled As

restore restore %g0,%g0,%g0
ret jmpl %i17+8,%g0

16.5 Summary

In this chapter we have studied about Scalable Processor Architecture (SPARC).
The datatypes associated with it. WE have seen the block diagram of architecture
of ULTRA SPARC architecture. We have also seen the circular arrangement of
Register Window.

16.6 Review Your Learnings:

1. Are you able to understand SPARC Architecture?
Can you explain the various instructions format?

Can you explain the Registers Windows?

> »

Can you explain the Data types associated with SPARC Architecture?

16.7 Questions

1. Explain SPARC architecture.

Explain the various Registers used in SPARC architecture
Explain the instruction set of SPARC

Explain advantages of Register Window of SPARC architecture.
Explain Instruction set categories with example.

Draw the block diagram and architecture of ULTRA SPARC.

R

Explain the advantages of SPARC over other processors.

327

MICROPROCESSOR ARCHITECTURE

16.8 References for further reading

http://datasheets.chipdb.org/Intel/x86/Pentium%2011/SpecUpdate/24333745
pdf

https://en.wikipedia.org/wiki/Pentium_II
https://www.Ipthe.jussieu.fr/~talon/pentiumIl.pdf

https://eun.github.io/Intel-Pentium-Instruction-Set-
Reference/data/index.html

https://www.pdfdrive.com/computer-system-architecture-morris-mano-
third-edition-e51589001.html

https://www.pdfdrive.com/microprocessor-architecture-programming-and-
applications-with-the-8085-d176171206.html

Pentium Pro Family Developers Manual, Volume 2: Programmer’s
Reference Manual, Intel Corporation, 1996

o%0 %o o%0

328

	MP starting pages
	MPAChap-1
	MPAChap-2
	MPAChap-3
	MPAChap-4
	MPAChap-5
	MPAChap-6
	MPAChap-7
	MPAChap-8
	MPAChap-9
	MPAChap-10
	MPAChap-11
	MPAChap-12
	MPAChap-13
	MPAChap-14
	MPAChap-15
	MPAChap-16

