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Unit 1

01

NUMBER SYSTEM

Unit Structure

1.0 Objectives

1.1 Introduction

1.2 Analog system, digital system

1.3 Numbering system

1.4 Conversion from one number system to another
1.5 Floating point numbers

1.6 Weighted codes binary coded decimal
1.7 Non-weighted codes Excess 3 code
1.8 Gray code

1.9  Alphanumeric codes

1.10 Error detection and correction

1.11 Universal Product Code

1.12 Code conversion

1.0 OBJECTIVES

This chapter would make you understand the following concepts
® What is difference between analog and digital system?
¢ Different numbering system.
¢ Conversion from one number system to another
¢ Floating point numbers
® Weighted codes binary coded decimal
¢ Non-weighted codes Excess 3 code
¢ Gray code and Alphanumeric codes
¢ Error detection and correction

e Universal Product Code and Code conversion

1.1 INTRODUCTION

The study of number systems is important from the viewpoint of
understanding how data are represented before they can be processed by
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any digital system including a digital computer. In this chapter we will
discuss different number systems commonly used to represent data such as
the binary, octal and hexadecimal number systems.

1.2 ANALOG SYSTEM, DIGITAL SYSTEM

Digital as well as Analog System, both are used to transmit signals
from one place to another like audio/video. Digital system uses binary
format as 0 and 1 whereas analog system uses electronic pulses with
varying magnitude to send data.

1.2.1 Analog system:

A signal is defined as any physical quantity that varies with time,
space, or any other independent variable or variables. Mathematically
signal can be function of one or more independent variables, for example,
Si(t)=10t¢
S:)=10¢

Most of the signals find in science and engineering are analog in
nature i.e. the signals are functions of a continuous variable, such as time
or space, and usually take on values in continuous range. The most
common example of analog signal is sinusoidal waveform as shown Fig.
1.2.1

The expression for the signal can be written asS(t)=A sin (@t+6)

S(t)=A sin (@t+0) T="1/F
Where, A =
Amplitude

@ = Radian/sec

0 = Phase Time
T = Time duration
of one cycle

F = Frequency = 1/T

f 1
\

Amplitude

To measure an analog signal analog multimeter is used. The main
problem with an analog signal is continuously varying with respect to
time; the person has to be expert in Time domain analysis to find out
perfect result.

1.2.2 Digital system:

To overcome the problems of an analog system; the digital system
developed. Digital system requires digital information. Digital information

2



can be represented by fixed number of non — continuous or discrete
symbols called as Digits. In digital system binary system is used which
has only two digits *“‘0’” and ““1"".

Binary system: as we are using binary in digital system which restricts
the digital signal to have only two distinct values.

Advantages of Binary system:

1. Most information processing systems are constructed by using
switches (binary devices).

2. Binary signal are more reliable.

3. The basic decision making processes required of digital systems are
binary.

Bits: As binary quantities are encountered in many different physical
forms, it is convenient to have a common way of representing binary
states by using digit symbols ‘‘0’” and ‘‘1’’ to represent two possible
values of binary quantity at any time. These symbols are called as *‘bits’’,
abbreviation of term ‘‘Binary digits’’. Fig. 1.2.2 shows digital and analog
signal. We use “‘1”” to denote ‘‘“IGH’’ and ‘‘0’’ to denote ‘‘LOW’’ level
of the signal. Binary voltage values Vg and Vj, are represented as ‘‘1°” and
‘0’ respectively.

| —— )
Vi Vi
> =
v VI. 'R
a) Digital Signal b) Analog Signal
Convention:

In binary system two states 1 and O are present. The voltage levels
are predefined by the manufactures of chip and user cannot change it.
Generally HIGH LOGIC =1 = V¢c¢ = +5 volt and LOW LOGIC =0 =
GND = 0 volt Currently we are in the digital world. The widest
application of digital system is computers and to learn inside of the
computers digital system is the base also it is easy to implement and in
around 90% cases you will find that analog systems are replaced by digital
systems.



1.3 NUMBERING SYSTEM

We will begin our discussion on various number systems by briefly
describing the parameters that are common to all number systems.
Positional Number:

A number system is defined by digits or numerals. We can combine
digits as per our requirement to represent full range. The number system
with which we are normally familiar is Arabic Numerals, consists of 10
digits such as 0, 1, 2,..., 9.

Decimal Number System:

The 10 Arabic digits can be combined in various ways to represent
any number. Fundamental way of constructing a number is to form a
sequence or string of digits in which consecutive digits represent
consecutive power of 10. For example take 3 digit number 876. The 876
represent, from left to right, hundreds (8), tens (7) and unit (6).

We can decompose the number as
876 =8x 10+ 7x 10" + 6 x 10’ (1)

This system is decimal number system which is a good example of
positional number system. Here each digit of multi-digit number has
fixed value (or weight) determined by its position. The number is also
called as weighted number system. Presently in the above example we
have considered only integer part. One may require to represent fractional
part also. Here fractional part is denoted by sequences of digits whose
weights are negative powers of 10. The integer part and fractional part
represents the full number for example 1.414, both integer and fractional
part are separated by special symbol ¢.” called a decimal point.

The number can be decomposed as
1414=1x10°+4x 10" +1x 10?+4x 10° (D)

Number Base:
The decimal number notation can be written in generalized form
where quantity 10 is replaced by ‘r’ called as base or radix, of the number

system.

. a1 _-2
We will represent number X; X3 Xg. X X~ as
X2 X1 X0 . X.1 X2 =X2X1‘2+X1 Xr! +x0Xr0. X1 Xr! +x_2Xr'2 ...3

Following table shows various number systems of our interest.

System Name Base ‘1’ Digits / symbols used in the system

Decimal 10 0,1,2,3,4,5,6,7,8,9
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Binary 2 0,1

Octal 8 0,1,2,3,4,5,6,7

Hexadecimal 16 0,1,2,3,4,5,6,7,8,9, A, B, C, D,
E,F

1.3.1 Binary number system:

We have already seen that binary number system has base / radix
2, which means it has only two digits, namely ‘0’ and “1°’. The weights
for binary number can be given by
Binary number | 2° [2° [2° 2" [2° |27 |2* |27
Equivalent 1618 (4 |2 |1 [05]0.25|0.125
decimal

By putting r = 2 in equation (3) we can get equation for binary as follows
)(2)(22+Xl)(21+)(0)(20+X_1x2'l+x_2)(2'2 @

Let’s have one example, If Binary number is (101),, then x; x; xo = 101
X2x22+xlx21+xox20
=1x2*+0x2'+1x2°
=4+0+1=0)o
o (101)2= (5o

1.3.2 Octal number system:

The octal number system has a base 8 and consists of 8 different
digits or symbols such as 0 to 7. As there are 8 digits, 3 bits (2° = 8) are
sufficient to represent any octal number in binary format. Following table
shows 3 bit binary equivalent for each octal number

3-bit binary equivalent Octal Number
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

The weights for actual number system can be given by

Octal g 8> |8 [g° [8] 87 g3
number

Equivalent |[512 [64 |8 |1 |1/8 =|1/64 =] 1/512 = | -—--
decimal 0.125 | 0.01562 | 0.00195

By putting r = 8 in equation (4) we can get equation for octal as follows
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)(2)(82+XlX81+xox80+x_1)(8'1+x_2x8'2 .. (5

Let’s have one example, If Octal number is (357)s, then x; X; Xo = 357
xzx82+xlx81+xox8o
=3x8 +5x8 +7x8°
=192+40+7=(239)10
= (357)8 =(239)10

1.3.3 Hexadecimal number system:

The Hexadecimal number system has a base 16 and consists of 16
different digits or symbols. First ten digits or symbols are from decimal
number system i.e. 0, 1, 2, ..., 9 and next six are A, B, C, D, E and F
representing 10, 11, 12, 13, 14 and 15 respectively. As there are 16 digits
or symbols, 4 bits (2* = 16) are sufficient to represent any hexadecimal
number in binary format. Following table shows 4 bit binary equivalent
for each hexadecimal number.

4-bit binary equivalent Hexadecimal Number
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10=A
1 0 1 1 11=B
1 1 0 0 12=C
1 1 0 1 13=D
1 1 1 0 14=E
1 1 1 1 15=F

The weights for actual number system can be given by:

Hexadecimal | 16 | 16" [ 16° [ 16 16
number
Equivalent 256 |16 |1 1/16=0.0625 | 1/256 = 0.00390
decimal
By putting r = 16 in equation (5) we can get equation for hexadecimal as

follows
X2 X 16>+ X1 X 16" + Xg X 16° + X1 X 167 + X2 X 16%......... (6)
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Let’s have one example, If Hexadecimal number is (1AF)1¢, then
XoX;1Xo=1AF
Xs X 162+X1X 16 + Xg X 16°
=1x16°+Ax 16' +Fx 16°
=256+ (10x 16)+ (15x 1)
=256 + 160 + 15 = (431)9
s (1AF)16= (43110

1.4 CONVERSION FROM ONE NUMBER SYSTEM TO
ANOTHER

In this section we are going to study conversion from one type of
number system to another i.e. decimal to binary / octal / hexadecimal or
vice versa and hexadecimal to octal, hexadecimal to binary, binary to octal
etc.

There are many methods or techniques which can be used to convert
numbers from one base to another. In this chapter, we'll demonstrate the
following

Decimal to Other Base System
¢ Other Base System to Decimal
e Other Base System to Non-Decimal
¢ Binary to Octal
e Qctal to Binary
® Binary to Hexadecimal
¢ Hexadecimal to Binary

1.4.1 Decimal to Other Base System:

Step1 : Divide the decimal number to be converted by the value of the
new base.

Step2 : Get the remainder from Step 1 as the rightmost digit (least
significant digit) of the new base number.

Step 3 : Divide the quotient of the previous divide by the new base.

Step 4 : Record the remainder from Step 3 as the next digit (to the left)
of the new base number.

Repeat Steps 3 and 4, getting remainders from right to left, until the
quotient becomes zero in Step 3.

The last remainder thus obtained will be the Most Significant Digit
(MSD) of the new base number.



Example:
Decimal Number : 29,

Calculating Binary Equivalent:

Step Operation Result Remainder
Step 1 29/2 14 1
Step 2 14/2 7 0
Step 3 7172 3 1
Step 4 3/2 1 1
Step 5 1/2 0 1

As mentioned in Steps 2 and 4, the remainders have to be arranged
in the reverse order so that the first remainder becomes the Least
Significant Digit (LSD) and the last remainder becomes the Most
Significant Digit (MSD).

Decimal Number : 29,9 = Binary Number : 11101,

1.4.2 Other Base System to Decimal System:

Step 1

Step2 :

Step 3

Determine the column (positional) value of each digit (this
depends on the position of the digit and the base of the number

system).

Multiply the obtained column values (in Step 1) by the digits in

the corresponding columns.

: Sum the

products calculated in Step 2. The total is the

Equivalent value in decimal.

Example:
Binary Number: 11101,

Calculating Decimal Equivalent:

Step Binary Decimal Number
Number
Step 1 11101, (Ax2H+Ax2)+ (1 x2)+0x2") + (1 x2%)
Step 2 11101, (16 +8+4+0+ 1)y
Step 3 11101, 290

Binary Number : 11101, = Decimal Number : 291
1.4.3 Binary to Octal:

Step 1

Step 2 :

Divide the
right).

binary digits into groups of three (starting from the

Convert each group of three binary digits to one octal digit.




Example

Binary Number : 10101,
Calculating Octal Equivalent:

Step Binary Number | Octal Number
Step 1 10101, 010 101

Step 2 101012 28 58

Step 3 10101, 254

Binary Number : 10101, = Octal Number : 253

1.4.4 Octal to Binary:
Step 1 Convert each octal digit to a 3-digit binary number (the octal
digits may be treated as decimal for this conversion).

Step 2 : Combine all the resulting binary groups (of 3 digits each) into a
single binary number.

Example:

Octal Number : 253

Calculating Binary Equivalent:

Step Octal Number | Binary Number
Step 1 254 210 510
Step 2 254 010, 101,
Step 3 254 010101,

Octal Number : 253 = Binary Number : 10101,

1.4.5 Hexadecimal to Binary:

Step 1 : Convert each hexadecimal digit to a 4-digit binary number (the
hexadecimal digits may be treated as decimal for this
conversion).

Step 2 : Combine all the resulting binary groups (of 4 digits each) into
a single binary number.

Example:

Hexadecimal Number : 156

Calculating Binary Equivalent

Step Hexadecimal Number | Binary Number
Step 1 1516 110 510
Step 2 1546 0001, 0101,
Step 3 1556 00010101,




1.5 FLOATING POINT NUMBER

Floating point numbers are used to represent non integer fractional
numbers and are used in technical calculations. E.g. 3.256, 2.1 and 0.0036.

The most commonly used floating point standard is the IEEE
standard.

According to this standard, floating point numbers are represented
with 32 bits (single precision) or 64 bits (double precision).

It is an arithmetic operations consist of addition, subtraction,
multiplication and division.

These operations are done with algorithms similar to those used on
sign magnitude integers (because of the similarity of representation)
example, only add numbers of the same sign. If the numbers are of
opposite sign, must do subtraction.

Addition:
Example on decimal value given in scientific notation:

325x10**3
+ 2.63x10**-1

First step: align decimal points

Second step: add
3.25 x 10 **3
+ 0.000263 x 10 **3

3.250263 x 10 **3
(presumes use of infinite precision, without regard for accuracy)

Third step : normalize the result (already normalized!)

Example on fl pt. value given in binary:

S E F
25 =0 01111101 00000000000000000000000
100 = O 10000101 10010000000000000000000

to add these fl. pt. representations,
Step 1 : align radix points

shifting the mantissa LEFT by 1 bit DECREASES THE EXPONENT by 1
shifting the mantissa RIGHT by 1 bit INCREASES THE EXPONENT by 1

we want to shift the mantissa right, because the bits that fall off the end
should come from the least significant end of the mantissa
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-> choose to shift the .25, since we want to increase it's exponent.
-> shift by 10000101
01111101
00001000 (8) places.
with hidden bit and radix point shown, for clarity
001111101 00000000000000000000000 (original value)
001111110 10000000000000000000000 (shifted 1 place)
(note that hidden bit is shifted into msb of mantissa)
001111111 01000000000000000000000 (shifted 2 places)
0 10000000 00100000000000000000000 (shifted 3 places)
0 10000001 00010000000000000000000 (shifted 4 places)
0 10000010 00001000000000000000000 (shifted 5 places)
0 10000011 00000100000000000000000 (shifted 6 places)
0 10000100 00000010000000000000000 (shifted 7 places)
0 10000101 00000001000000000000000 (shifted 8 places)

Step 2 : add (don't forget the hidden bit for the 100)
0 10000101 1.10010000000000000000000 (100)
+ 010000101 0.00000001000000000000000 (.25)

0 10000101 1.10010001000000000000000

Step 3 : normalize the result (get the "hidden bit" to be a 1)
it already is for this example.
result is
0 10000101 10010001000000000000000
suppose that the result of an addition of aligned mantissas gives
10.11110000000000000000000
and the exponent to go with this 1s 10000000.

We must put the mantissa back in the normalized form. Shift the mantissa
to the right by one place, and increase the exponent by 1.

The exponent and mantissa become
10000001 1.01111000000000000000000 O (1 bit is lost off the least
significant end)

Subtraction:
Like addition as far as alignment of radix points then the algorithm for
subtraction of sign mag. numbers takes over.

11



Before subtracting,
® Compare magnitudes (don't forget the hidden bit!)
¢ Change sign bit if order of operands is changed.
Don't forget to normalize number afterward.

Example :
0 10000001 10010001000000000000000 (the representations)

- 0 10000000 11100000000000000000000

Step 1 : align radix points
0 10000000 11100000000000000000000
becomes
0 10000001 11110000000000000000000 (notice hidden bit shifted in)
0 10000001 1.10010001000000000000000
- 0 10000001 0.11110000000000000000000

Step 2 : subtract mantissa
1.10010001000000000000000
- 0.11110000000000000000000
0.10100001000000000000000
Step 3 : put result in normalized form

Shift mantissa left by 1 place, implying a subtraction of 1 from the
exponent.

0 10000000 01000010000000000000000

Multiplication:
example on decimal values given in scientific notation:

3.0 x 10 **1
+ 05x10 **2

algorithm: multiply mantissas add exponents

30x 10 ** 1
+ 05x10 ** 2

1.50 x 10 ** 3

example in binary: use a mantissa that is only 4 bits so that I don't spend
all day just doing the multiplication part.

12



0 10000100 0100
x 100111100 1100

mantissa multiplication: 1.0100
(don't forget hidden bit) x 1.1100
00000
00000
10100
10100
10100
1000110000
becomes 10.00110000

add exponents: always add true exponents (otherwise the bias gets added
in twice)
biased:
10000100
+ 00111100
10000100 01111111  (switch the order of the subtraction,
- 01111111 - 00111100 so that we can get a negative value)

00000101 01000011
true exp  true exp
is 5. is -67
add true exponents 5 + (-67) is -62.
re-bias exponent: -62 + 127 is 65.

unsigned representation for 65 is 01000001.
put the result back together (and add sign bit).
1 01000001 10.00110000
normalize the result:
(moving the radix point one place to the left increases
the exponent by 1.)
1 01000001 10.00110000
becomes
1 01000010 1.000110000
this is the value stored (not the hidden bit!):
1 01000010 000110000

13



Division:

It is similar to multiplication.

true division:

e do unsigned division on the mantissas (don't forget the hidden bit)
e subtract TRUE exponents

The IEEE standard is very specific about how all this is done.
Unfortunately, the hardware to do all this is pretty slow.

Some comparisons of approximate times:
e 2's complement integer add 1 time unit
e fl. pt add 4 time units
e fl. pt multiply 6 time units
e fl. pt. Divide 13 time units

There is a faster way to do division. It is called division by
reciprocal approximation. It takes about the same time as a fl. pt. multiply.
Unfortunately, the results are not always the same as with true division.

Division by reciprocal approximation:
instead of doing a/b
they do a x 1/b.
figure out a reciprocal for b, and then use the fl. pt.
multiplication hardware.
example of a result that isn't the same as with true division.
true division: 3/3 =1 (exactly)
reciprocal approx:  1/3 = .33333333
3 x.33333333 =.99999999, not 1
It is not always possible to get a perfectly accurate reciprocal

1.6 WEIGHTED CODES BINARY CODED DECIMAL,
NON-WEIGHTED CODES EXCESS 3 CODE

Binary code: The digital data is represented, stored and transmitted as
group of binary bits. This group is also called as binary code.

e The binary code is represented by the number as well as
alphanumeric letter.

¢ The group of symbols is called as a code.
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Binary Codes for Decimal digits:

The following table shows the various binary codes for decimal digits O to
9.

Decimal | 8421 Code | 2421 Code | 84-2-1 Code | Excess 3 Code
Digit
0 0000 0000 0000 0011
1 0001 0001 0111 0100
2 0010 0010 0110 0101
3 0011 0011 0101 0110
4 0100 0100 0100 0111
5 0101 1011 1011 1000
6 0110 1100 1010 1001
7 0111 1101 1001 1010
8 1000 1110 1000 1011
9 1001 1111 1111 1100

We have 10 digits in decimal number system. To represent these 10
digits in binary, we require minimum of 4 bits. But, with 4 bits there will
be 16 unique combinations of zeros and ones. Since, we have only 10
decimal digits, the other 6 combinations of zeros and ones are not
required.

8421 code:

* The weights of this code are 8, 4, 2 and 1.

» This code has all positive weights. So, it is a positively weighted code.
* This code is also called as natural BCD Binary Coded decimal code

Example:

Let us find the BCD equivalent of the decimal number 786. This
number has 3 decimal digits 7, 8 and 6. From the table, we can write the
BCD 84218421 codes of 7, 8 and 6 are 0111, 1000 and 0110 respectively.

=~ 78678610 =011110000110011110000110BCD

There are 12 bits in BCD representation, since each BCD code of decimal
digit has 4 bits.

2421 code:
* The weights of this code are 2, 4, 2 and 1.
* This code has all positive weights. So, it is a positively weighted code.

e It is an unnatural BCD code. Sum of weights of unnatural BCD codes
is equal to 9.
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* Itis a self-complementing code. Self-complementing codes provide
the 9’s complement of a decimal number, just by interchanging 1’s and
0’s in its equivalent 2421 representation.

Example:

Let us find the 2421 equivalent of the decimal number 786. This
number has 3 decimal digits 7, 8 and 6. From the table, we can write the
2421 codes of 7, 8 and 6 are 1101, 1110 and 1100 respectively.

Therefore, the 2421 equivalent of the decimal number 786 is
110111101100.

84 -2 -1 code:
* The weights of this code are 8, 4, -2 and -1.

» This code has negative weights along with positive weights. So, it is a
negatively weighted code.

* It is an unnatural BCD code.
* Itis a self-complementing code.

Example:

Let us find the 8 4-2-1 equivalent of the decimal number 786. This

number has 3 decimal digits 7, 8 and 6. From the table, we can write the 8
4 -2 -1 codes of 7, 8 and 6 are 1001, 1000 and 1010 respectively.

Therefore, the 8 4 -2 -1 equivalent of the decimal number 786 is
100110001010.

Excess 3 code:
* This code doesn’t have any weights. So, it is an un-weighted code.

* We will get the Excess 3 code of a decimal number by adding three
00110011 to the binary equivalent of that decimal number.  Hence, it
is called as Excess 3 code.

* Itis a self-complementing code.

Example:

Let us find the Excess 3 equivalent of the decimal number 786. This
number has 3 decimal digits 7, 8 and 6. From the table, we can write the
Excess 3 codes of 7, 8 and 6 are 1010, 1011 and 1001 respectively.

Therefore, the Excess 3 equivalent of the decimal number 786 is
101010111001
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1.7 GRAY CODE

A binary code used to represent digits generated from a mechanical
sensor that may be prone to error. Used in telegraphy in the late 1800s,
and also known as "reflected binary code," Gray code was patented by
Bell Labs researcher Frank Gray in 1947.

Only Change One Bit:

In Gray code, there is only one bit location different between
numeric increments, which make mechanical transitions from one digit to
the next less error prone.

The following table shows the 4-bit Gray codes corresponding to
each 4-bit binary code.

Decimal Binary Code Gray Code

Number
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

* This code doesn’t have any weights. So, it is an un-weighted code.

* In the above table, the successive Gray codes are differed in one bit
position only. Hence, this code is called as unit distance code.

Binary code to Gray Code Conversion:

Follow these steps for converting a binary code into its equivalent Gray
code.

* Consider the given binary code and place a zero to the left of MSB.

e Compare the successive two bits starting from zero. If the 2 bits are
same, then the output is zero. Otherwise, output is one.

* Repeat the above step till the LSB of Gray code is obtained.
17



Example:

From the table, we know that the Gray code corresponding to binary
code 1000 is 1100. Now, let us verify it by using the above procedure.

Given, binary code is 1000.
Step 1 : By placing zero to the left of MSB, the binary code will 01000.

Step 2 : By comparing successive two bits of new binary code, we will
get the gray code as 1100.

1.8 ALPHANUMERIC CODES

Alphanumeric codes are sometimes called character codes due to
their certain properties. Now these codes are basically binary codes. We
can write alphanumeric data, including data, letters of the alphabet,
numbers, mathematical symbols and punctuation marks by this code
which can be easily understandable and can be processed by the
computers. Input output devices such as keyboards, monitors, mouse can
be interfaced using these codes. 12-bit Hollerith code is the better known
and perhaps the first effective code in the days of evolving computers in
early days. During this period punch cards were used as the inputting and
outputting data. But nowadays these codes are termed obsolete as many
other modern codes have evolved. The most common alphanumeric codes
used these days are ASCII code, EBCDIC code and Unicode. Now we will
discuss about them briefly.

1.8.1 ASCII code:

The full form of ASCII code is American Standard Code for
Information Interchange. It is a seven bit code based on the English
alphabet.

In 1967 this code was first published and since then it is being
modified and updated. ASCII code has 128 characters some of which are
enlisted below to get familiar with the code.

DEC [ OCT | HEX BIN Symbol Description
0 000 00 00000000 NUL Null char
1 001 01 00000001 SOH Start of Heading
2 002 02 00000010 STX Start of Text
3 003 03 00000011 ETX End of Text
4 004 04 00000100 EOT End of Transmission
5 005 05 00000101 ENQ Enquiry
6 006 06 00000110 ACK Acknowledgment
7 007 07 00000111 BEL Bell
8 010 08 00001000 BS Back Space
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9 011 09 00001001 HT Horizontal Tab
10 012 0A 00001010 LF Line Feed

11 013 0B 00001011 VT Vertical Tab
12 014 0C 00001100 FF Form Feed

13 015 0D 00001101 CR Carriage Return
14 016 OE 00001110 SO Shift Out / X-On
15 017 OF 00001111 SI Shift In / X-O

There are many more codes which are not included here.

1.8.2 EBCDIC:

The EBCDIC

stands

for Extended Binary Coded Decimal
Interchange Code. IBM invented this code to extend the Binary Coded
Decimal which existed at that time. All the IBM computers and
peripherals use this code. It is an 8 bit code and therefore can
accommodate 256 characters. Below is given some characters of EBCDIC
code to get familiar with it.

C| EBCDIC | HEX | Cha | EBCDIC | HE | Char | EBCDIC | HEX

h r X

a

r

A 1100 Cl P 1101 0111 | D7 4 1111 0100 | F4
0001

B 1100 C2 Q | 1101 1000 | D8 5 1111 0101 | F5
0010

C 1100 C3 R | 11011001 | D9 6 11110110 | F6
0011

D 1100 C4 S 1110 0010 | E2 7 11110111 | F7
0100

E 1100 C5 T | 11100011 | E3 8 1111 1000 | F8
0101

F 1100 Co6 U | 11100100 | E4 9 1111 1001 | F9
0110

G 1100 C7 V | 11100101 | E5 | blan
0111 k

H 1100 C8 W | 11100110 | E6
1000

I 1100 C9 X | 11100111 | E7 (
1001

J 1101 D1 Y | 11101000 | E8 +
0001

K 1101 D2 Z | 11101001 | E9 $
0010

L 1101 D3 0 1111 0000 | FO *
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0011

M 1101 D4 1 1111 0001 | F1 )
0100
1101 D5 2 [ 11110010 | F2 -
0101

O| 1101 D6 3 | 11110011 | F3
0110

1.8.3 ISCII Code:

ISCII stands for Indian Script Code for Information Interchange.
IISCII was developed to support Indian languages on computer. Language
supported by IISCI include Devanagari, Tamil, Bangla, Gujarati,
Gurmukhi, Tamil, Telugu, etc. IISCI is mostly used by government
departments and before it could catch on, a new universal encoding
standard called Unicode was introduced.

1.8.4 Hollerith code:

In 1896, Herman Hollerith formed a company -called the
Tabulating Machine Company. This company developed a line of
machines that used punched cards for tabulation. After a number of
mergers, this company was formed into the IBM, Inc. We often refer to
the punched-cards used in computer systems as Hollerith cards and the 12-
bit code used on a punched-card is called the Hollerith code.

A Hollerith string is a sequence of 12-bit characters; they are
encoded as two ASCII characters, containing 6 bits each. The first
character contains punches 12,0,2,4,6,8 and the second character contains
punches 11, 1, 3, 5, 7, 9. Interleaving the two characters gives the original
12 bits. To make the characters printable on ASCII terminals, bit 7 is
always set to 0 and bit 6 is said to the complement of bit 5. These two bits
are ignored when reading Hollerith cards.

Today, as punched cards are mostly obsolete and replaced with
other storage medias so the Hollerith code is rendered obsolete.

1.8.5 Morse code:

The Morse code, invented in 1837 by Samuel F.B. Morse, was the
first alphanumeric code used in telecommunication. It uses a standardized
sequence of short and long elements to represent letters, numerals and
special characters of a given message. The short and long elements can be
formed by sounds, marks, pulses, on off keying and are commonly known
as dots and dashes. For example : The letter ‘°‘A’’ is formed by a dot
followed by a dash. The digit 5 is formed by 5 dots in succession. The
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International Morse code treats a dash equal to three dots. To see the
details of Morse code table you can refer the Internet search engines.

Due to variable length of Morse code characters, the morse code
could not adapt to automated circuits. In most electronic communication,
the Baudot code and ASCII code are used.

Morse code has limited applications. It is used in communication
using telegraph lines, radio circuits. Pilots and air traffic controllers also
use them to transmit their identity and other information

1.8.6 Teletypewriter (TTY):

A teletypewriter (TTY) is an input device that allows alphanumeric
character to be typed in and sent, usually one at a time as they are typed, to
a computer or a printer. The Teletype Corporation developed the
teletypewriter, which was an early interface to computers. Teletype mode
is the capability of a keyboard, computer, application, printer, display, or
modem to handle teletypewriter input and output. Basically, this is a one-
character-at-a-time mode of sending, receiving, or handling data, although
it is often modified to handle a line of characters at a time. Since this mode
requires little programming logic, it is often used where memory is
limited. The Basic Input/Output Operating System ( BIOS ) sends
messages to a PC display using teletype mode. Most printers offer a
teletype mode. The simplest video display output format is text in teletype
mode. Many modems today continue to include support for a TTY
interface.

1.9 ERROR DETECTION AND CORRECTION

What is Error?:

Error is a condition when the output information does not match
with the input information. During transmission, digital signals suffer
from noise that can introduce errors in the binary bits travelling from one
system to other. That means a 0 bit may change to 1 or a 1 bit may change
to 0.

Binary signal

noise

. ¢ P i S
Computer 1 | U L Computer 2
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Error-Detecting codes:

Whenever a message is transmitted, it may get scrambled by noise
or data may get corrupted. To avoid this, we use error-detecting codes
which are additional data added to a given digital message to help us
detect if an error occurred during transmission of the message. A simple
example of error-detecting code is parity check.

Error-Correcting codes:

Along with error-detecting code, we can also pass some data to
figure out the original message from the corrupt message that we received.
This type of code is called an error-correcting code. Error-correcting codes
also deploy the same strategy as error-detecting codes but additionally,
such codes also detect the exact location of the corrupt bit.

In error-correcting codes, parity check has a simple way to detect
errors along with a sophisticated mechanism to determine the corrupt bit
location. Once the corrupt bit is located, its value is reverted (from O to 1
or 1 to 0) to get the original message

1.10 UNIVERSAL PRODUCT CODE

A UPC, short for universal product code, is a type of code printed on
retail product packaging to aid in identifying a particular item. It consists
of two parts — the machine-readable barcode, which is a series of unique
black bars, and the unique 12-digit number beneath it.

The purpose of UPCs is to make it easy to identify product features,
such as the brand name, item, size, and color, when an item is scanned at
checkout. In fact, that’s why they were created in the first place — to speed
up the checkout process at grocery stores. UPCs are also helpful in
tracking inventory within a store or warehouse.

To obtain a UPC for use on a product a company has to first apply to
become part of the system. GS1 US, the Global Standards Organization,
formerly known as the Uniform Code Council, manages the assigning of
UPCs within the US.

Parts of a UPC:
After paying a fee to join, GS1 assigns a 6-digit manufacturer
identification number, which becomes the first six digits in the UPC on all

the company’s products. That number identifies the particular
manufacturer of the item.

22



The next five digits of the UPC is called an item number. It refers to
the actual product itself. Within each company is a person responsible for
issuing item numbers, to ensure that the same number isn“t used more
than once and that old numbers referring to discontinued products are
phased out.

Many consumer products have several variations, based on, for
example, size, flavor, or color. Each variety requires its own item number.
So a box of 24 one-inch nails has a different item number than a box of 24
two-inch nails, or a box of 50 one-inch nails.

The last digit in the 12-digit UPC is called the check digit. It is the
product of several calculations — adding and multiplying several digits in
the code — to confirm to the checkout scanner that the UPC is valid. If the
check digit code is incorrect, the UPC won’t scan properly.

Advantages of UPCs:

* UPCs have a number of advantages to businesses and consumers.
Because they make it possible for barcode scanners to immediately
identify a product and its associated price, UPCs improve speed.

* They improve efficiency and productivity, by eliminating the need to
manually enter product information.

* They also make it possible to track inventory much more accurately
than hand counting, to know when more product is needed on retail
shelves or in warehouses. Or when there is an issue with a particular
product and consumers who purchased it need to be alerted or a recall
issued, UPCs allow products to be tracked through production to
distribution to retail stores and even into consumer homes.

1.11 CODE CONVERSION

In this section we are going to lean the following code conversions:
1 Binary to BCD 2 BCD to Binary
3 BCD to Excess-3 4 Excess-3 to BCD

1.11.1 Binary to BCD:

For the binary to BCD conversation the steps to be followed are as given
below:

Step 1 : Convert the binary number to decimal
Step 2 : Convert decimal number into BCD

Example: Convert the binary number (110101)2 into BCD
Solution:
Step 1 : Convert the binary number to decimal
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L] o] [of [] [of [1]
v v v v v v

22 4+ 2+ 0 o+ 22+ o 4+ 2
32 + 16 + 0 + 4 + 0 + 1 =053

Step 2 : Convert decimal number into BCD

5 3
v v
0101 001 1)

- (110101), =(01010011) BCD

1.11.2 BCD to Binary:

Steps to be followed are as given below:

Step 1 : Convert the BCD number to decimal
Step 2 : Convert decimal number into binary

Example : Convert the BCD number (0101 0011)BCD into binary
Solution:
Step 1 : Convert the BCD number to decimal

BCD — |1 |1 |0 [1 [0 [0 |1
3 )

5 3 «— Decimal

Step 2 : Convert decimal number into binary
Use the long division method for decimal to binary conversation
(53)10 = (110101),
(0101 0011)gcp = (110 101),

1.11.3 BCD to Excess-3:

Steps to be followed are as given below:
Step 1 : Convert BCD to decimal
Step 2 : Add (3)" to this decimal number

Step 2 : Convert the decimal number of step 2 into binary, to get the
excess -3 code
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Example : Convert (1001)BCD to excess -3
Solution:

BCD I |0 |0 |1

\2
Decimal 9
Add 3 + 3
(12)10 Covert (1100),
“to Binary

Therefore ... (1001)gcp = (1100)ey.3

1.11.4 Excess-3 to BCD Conversion:

Subtract (0011), from each 4 bit excess-3 digit to obtain the corresponding
BCD code.

Given XS- 3 number 1001 1010
Subtract (0011), -0011 0011

11 111
BCD 0110 0111

(10011010)xs-3 =(0110 0111)Bcp

UNIT END QUESTIONS

1. State the difference between analog and digital signals

2. Explain numbering system in brief

3. Explain floating point numbers with suitable example

4.  Explain Universal Product Code

5. What is an error correction code?

6.  Explain binary to decimal with suitable example

7.  Explain decimal to binary with suitable example

8.  Explain code conversion with suitable example

9.  Convert the following fractional decimal numbers to equivalent

binary number (show the step by step)
1. 0.5682 2.0.6954 3.0.1235 4.0.4754

%k %k %k %k %k
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BINARY ARITHMETIC

Unit Structure
2.0 Objectives
2.1 Introduction
2.2 Binary addition
2.3 Binary subtraction
2.4 Negative number representation
2.4.1 Subtraction using 1’s complement and 2’s complement
2.5 Binary multiplication
2.6 Binary division
2.7  Arithmetic in octal number system
2.8  Arithmetic in hexadecimal number system
2.9 BCD arithmetic

2.10 Excess 3 arithmetic

2.0 OBJECTIVE

This chapter would make you understand the following concepts
e  What is binary arithmetic?

¢ Binary addition, subtraction, multiplication and division.

¢ Negative number representation

¢ Arithmetic in octal number system

¢ Arithmetic in hexadecimal number system

¢ BCD arithmetic

e Excess 3 arithmetic

e Examples on conversion

2.1 INTRODUCTION

Binary arithmetic is used in digital systems mainly because the
numbers (decimal and floating-point numbers) are stored in binary format
in most computer systems. All arithmetic operations such as addition,
subtraction, multiplication, and division are done in binary representation
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of numbers. It is necessary to understand the binary number representation
to figure out binary arithmetic in digital computers.

Binary arithmetic is essential part of all the digital computers and
many other digital systems.

2.2 BINARY ADDITION

® Binary addition is the key for binary multiplication, subtraction and
division. The four most basic cases of binary addition are shown in
Table 2.1.

Table 2.1 : Four cases of binary addition:

A B Addition Comment
Case 1 0 + 0 0 Same as decimal
Case 2 0 + 1 1 } Addition
Case 3 1 + 0 1
Case 4 1 + 1 10 e+e=see=(10)

For cases 1, 2 and 3 of Table 2.1, the binary addition takes place by
following the rules of decimal addition.

e But concentrate on case 4. Addition of binary 1 + 1 represent the
combining of one pebble and one pebble to obtain a total of two
pebble.

1 + 1 =+¢two pebbles

e Since binary 10 stands for ¢ ¢ two pebbles, the result of binary addition
1+ 1is10.
~ 14 1=(10),

2.1.1 Sum and Carry :

e Thus, the fourth case yields a binary two (10). When the binary
numbers are added, the fourth case in Table 2.1 creates a sum of O in
the given column and a carry of 1 over to the next column.

¢ The four basic rules of binary addition in terms of sum and carry are as
follows :
Table 2.2 Rules for binary addition

Rule A B Sum Carry
1 0 + 0 = 0 0
2 0 + 1 = 1 0
3 1 + 0 = 1 0
4 1 + 1 = 0 1
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2.3 BINARY SUBTRACTION

Rules for subtraction:

In order to understand the binary subtraction, we should remember
some of the important rules of decimal subtraction. They are as follows:

1. To carry out the subtraction (A — B) where A and B are the two single
digit decimal numbers. We have to consider two cases,

2. Case I : Digit A > Digit B :

Let A = (Sho and B = (3)10
Then A—-B = (oco-o) — (ooo) = oo
(Bl -Bro T (2)o

3. Case 11 : Digit A < Digit B :

If A=(3)10 and B = (5)10 then we cannot perform (3 - 5) because
we cannot take out 5 pebbles from 3. Therefore, we have to borrow 1.
After borrowing, the subtraction is charged to,

HB-5=8

Borrow

2.3.1 Subtraction and Borrow:

e These two words will be used very frequently for the binary
subtraction. For binary subtraction we have to remember the following
four cases given in Table 2. 3

Table 2.3 : Four basic rules for binary subtraction:

Case | A B | Subtraction | Borrow | Comment
1 01-10 0 0 Same as decimal
2 11-10 1 0 Same as decimal
3 1 (-1 0 0 Same as decimal
4 0 -1 1 1 Borrow needs to be
taken

e (Consider case 4 in Table 2. 3. it is [0 - 1]. Hence a logic 1 borrowed.
This will change the subtraction from [0 - 1] to [10 - 1] that means [ **
- o] —e—1.
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2.4 NEGATIVE NUMBER REPRESENTATION

Binary Subtraction using 1’s and 2’s Complements:

e The direct binary subtraction becomes complicated as the number size
increases.

® Therefore we can represent the subtraction of A - B in the form of
addition as: A+( - B).

e We can represent number B (which is to be subtracted) in its 1’s
complement or 2’s complement form and use addition instead of
subtraction to get the result of A - B.

2.4.1 Subtraction using 1’s Complement :

The steps to be followed for subtraction (A); - (B), using 1’s complement
are as follows :

Step1 : Convert number to be subtracted (B), to its 1's complement.

Step2 : Add (A); and 1’s complement of (B); using the rules of binary
addition.

Step 3 : If final carry is 1, then add it to the result of addition obtained
in step 2 to get the final result of (A), - (B),. Note that if the
final carry is 1 then the subtraction is positive and 1 in its true
form.

Step 4 : If the final carry produced in step 2 is 0, then the result
obtained in step 2 is negative and in the 1's complement form.
So, convert it into the true form by complementing all the bits.

The following examples will make the concept of subtraction using 1°s
complement crystal clear.

There are four possible cases depending on the magnitude and sign of the
numbers involved.

Case 1: Number A and B, both positive and A > B.
Case 2: A and B both positive and A < B.

Case 3: Both numbers are negative.

Case 4: A =B.

Let us discuss them one by one.

Case 1 : A and B, both positive and A > B
Ex. 2.1 : Perform (9);o - (4)19 using 1’s complement method
Soln.:

Stepl : Convert (4)9 into 1’s complement:
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D10=(0100)
and 1’s complement of (0100), =(1 01 1),

Step2 : Add (9)10 and 1’s complement of (4)y:
1 0 0 1
+ 1 0 1 1

1 0 1 0 0 Result

Step 3 : Add the final carry to the result obtained in step 2:

Do 1 0 0 1
1’s complement of (4);: + 1 0 1

|
01 0

»
»

1

Final carry is generated — [1] 0 1 0 O  Result
1
1

Answer is positive
and in true form

Thus the answer is (0101),.

Note: When the final carry is produced the answer is positive and in its
true form.

D10 - 4)10=(5)10=(0101), which we have obtained.

Case 2 : A and B both positive with A < B
Ex.2.2 : Subtract (9),( from (4);o using 1’ s complement method
Soln. :
Given : A =(4)10=(0100); B=(9);0=(1001),
Step1 : Obtain 1’s complement of (9)) :
1I's complement of (9);0 or (1001), is (0110),.
Step2 : Add (4);0 and 1’s complement of (9). :

I 0 1 0 0
I’s complement of (9);9 + 0 1 1 0
Final carry— 1 0 1 0

Note: As the final carry is 0, the answer is negative and its 1's complement
form.

So convert the answer into its true form, as follows:

Lt [ o | v | o0 |

Invert all bits
Lo [ 1 [ o | 1 |
Answer
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But (010 1)=0)o
S Bio- = 5o

Case 3 : Both number negative:
Ex. 2.3 : Perform (- 4)10 - (- 8);0 using 1's complement method.
Soln. :
(-Dio-8o=(4o+ (8o
Here number A i.e. (- 4);9 1s negative and B is positive.

So we have to take the 1’s complement of A.

Step 1 : Convert number A to 1’s complements:
(410 = (0100),
1's complement of (0100), = (1011),

Step2 : Add 1’s complement of A to number B:

I’s complement of (4)0 1 0 1 1
(8)10 = + 1 0 O 0
Final carry — 0 0 O 1 Result

Step2 : Add the final carry 1
Answer in the true form =01 00 = (4)19

Thus, the answer is positive and in the true form
S Dio- ¢ 8)o= o

Case 4: Equal and opposite numbers:

The last possibility in subtraction of numbers is to subtract a
number from itself. Refer previous example to understand the result of this
subtraction.

Ex. 2.4 Subtract (5);o from (5),0 using 1’s complement.
Soln. : We are supposed to perform (5),p- (5); .
Step1 : Obtainl’s complement of (5)¢ :

1’s complement of (5);p or (0 1 01), is (1010)s.
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Step 2 : Add (5)19 and 1’s complement of (5)y. :

o 0
I’s complement of (5);p + 1
1

el =
—] —_ O

1
0
1 The answer 1is in
complement form

Step 3 : Convert the answer to its true form, :

1 1 1 1
invert

Answer in its true form
“(5)10-3)o=)10o

2.4.2 Binary Subtraction using 2’s Complement Method:

If the subtraction of two binary numbers A and B is to be performed

using the 2’s complement, then the following steps are to be followed.

Steps to be followed:

Step1 : Add (A); to the 2's complement of (B),

Step 2 : If the carry is generated then the result is positive and in its
true form.

Step3 : If the carry is not produced, then the result is negative and in
its 2’s complements form.

Note: Carry is always to be discarded in the subtraction using 2's
complement.

Depending on the magnitude and polarity of numbers A and B we will
deal with different possibilities as follows:

Case 1: Both A and B are positive with A > B.
Case 2: Both A and B are positive with A <B.
Case 3: Both the numbers are negative.

Case 4: Both numbers are equal.

Case 1: Both numbers positive with A >B
The subtraction (A - B) for A > B is illustrated in Ex. 2.5

Ex.2.5: Perform (9)10- (5)10 using 2’s complement method.
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Soln. :
Stepl : Obtain 2’s complement of (5)¢ :

Decimal Binary 2’s complement
5o (0101), 1011

Step2 : Add (9)19 to 2’s complement of (5)y :

Mo 1 0 0 1

to 2’s complement of (5);9 + 1 0 1 1
Carry
1 0

Discard Carry >0 0 —» @
H_J

Final indicates that 4—1 Answer

The answer is positive and in its true form.
= Do - Go=ho

Note : The final carry bit acts as assign bit for the answer. It is 1 then the
answer is positive, and it is O then the answer is negative.

Case2 : A and B both positive with A < B
Ex. 2.6 : Perform (4);0 - (9)10 using 2’s complement method.
Soln. : Convert both the numbers to binary
(4)10 = (1000); and (9)10 = (1001),
Step1 : Obtain 2’s complement of (9)y :

Decimal Binary 2’s complement
Mo (1001), (0111)

Step 2 : Add (4)19 to 2’s complement of (9);¢ :

o 0O 1 0 O

2’s complement of (9),0 + 0 1 1 1

carry 1

Final carry 0O 1 0 1 1 Answer is negative

and in 2’s
complement form
‘0’ indicates that

v

the result is
negative and in its
2’s complement
form
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Step 3 : Convert the answer in its true form:

Answer 1 0 1 1 In 2°s complement
Subtract 1: - 1
oy
YInverts all bits
0 101

Thus the answer is — (0101); i.e. (- 5)10.

Case 3 : A and B both negative
Ex. 2.8 : Perform (- 4)9 - (- 6)10 using 2’s complement method.

Soln. : So we have to perform (- 4);9 + (6)10

Step1 : Convert number A to 2’s complement of :

Decimal Binary 2’s complement
)10 (0100), (1100)

Step 2 : Add to 2’s complement of (4);9 and (6)q9 :

2’s complement of (4); 1 1 0 0
(6)10 + 0 1 1 0
Discard carry 0O O 1 0 Resultin true form

Final carry 1
indicates that the
result is positive
» and in the true form

=~ Answer : 0010 = (2)19
s (-Dio+ (6)i0= )10

Ex. 2.9 : Perform (- 6)9 - (- 2)10 using 2’s complement method

Soln. : So we have to perform (- 6)190+ (2)10

Step1 : Obtain 2’s complement of (6)10 :

Decimal Binary 2’s complement
(6)10 (0110), (1010)
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Step 2 : Add (2)19 to 2’s complement of (6); :

| 2’s complement of (6); | 1 ‘ 0 | 1 | 0
(2)10 + 0 01 0
carry 1
Final carry O 1 1 0 0

Answer in the 2’s complement form

Final carry indicates that the answer
> is negative

Step 3 : Bring the answer into its true form :

Answer 1 I 0 0 In2’scomplement
Subtract 1 - 1
\1 0 1 1 ) Answer in 1’s complement
Y

Invert all bits

0 1 0 O Answerintrue from
= Answer = (0100), = (4)10 and it is negative
“ (6)10- (2) 10=- Do

Case4d : A=B

Ex. 2.10 : Perform (6)9 - (6);0 using 2’s complement method.
Soln.

Step1 : Obtain 2’s complement of (6)1

Decimal Binary 2’s complement
(6)10 (0110), (1010)
Step 2 : Obtain the binary equivalent of (6);90 Add 2’s complement of
(6)10 to it:
(6)10 0 1 10
2’s complement of (6);9 + 1 0 10
carry I 1
Final carry 0 O O O Answerin the true form

Final carry 1 indicates
that the answer is
positive and in true form

v

= (0)10-(0)10=0
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Ex. 2.11 : perform the subtraction using
1. I’s compliment method 2. 2’s compliment
11010)-10000)

Soln. : (11010)-(10000)

Using 1’s compliment method:

Step1 : Obtainl’s complement of (1 00 0 0),

Binary 1’s compliment

10000 01111
Step2 : Add(11010)and 1’scomplementof (1 000O0),:

I 1 0 1 0
0 1 1 1
Final carry i o 1 0 0 1
Final carry=1, Add the carry  + » 1
0 1 0 1 0

~.11010-10000=01010

2’s Compliment method:

Step1 : Obtain 2’s compliment of 100 0 0:
Binary 2’s compliment
10000 10000

Step2 : Add(11010)and1’s complementof (10000 ),:
1 1 0 1 0
1 1 0 1 0
+ 1 0 0 0 0

Final carry [I] 0 1 0 1 0
Final carry = 1 Discard the carry. The carry indicates that result is positive
and its true form

~(11010)-(10000)=(1010)
Ex. 2.12 : Perform the subtraction using 1’s compliment method

0011.1001),-(0001.1110),

Step1 : Obtain 1's complement of (0001.1110) , :
Binary 1’s complement.
0001.1110 1110.0001

Step2 : Add(0011.1001); and 1's complement of (0001.1110) ,
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Ex. 2.12 : Perform the subtraction using 1’s compliment method
0011.1001),-0001.1110),
Step1 : Obtain 1's complement of (0001.1110) , :

Binary 1’s complement.
0001.1110 1110.0001
Step2 : Add(0011.1001) ; and 1's complement of (0001.1110)
1 110 .00 01
+ 001 1 .1 001
Finalcarry (1) 0 0 0 1 . 1 O 1 O
+ 1
0

0001 .1 01
(0011.1001), - (0001.1110), = (0001.1011),

Ex. 2.13 : Perform the subtraction using 1’s and 2’s compliment method
(1010)2 — (1011),

Solution : 1. Subtraction using 1’s complement method
(1010),— (1011),

Step1 : Obtain 1’s complement of (1011),
1’s complement

Step2 : Add (1010); and 1’s complement of (1011); :
First Number : 10 1 0
1* complement of second number :+ 0 1 0 0

Final carry 0 1 1 1 0 <Answer
As carry is not generated answer is negative and in 1’s complements form.

Step 3 : Convert the answer into its true form:

Invert

Thus the answer is -(0001),
2. Subtraction using 2’s complement method

(1010), - (1011),
Stepl : Obtain 2’s complement of (1011),:

2’s complement

(1011)----------- > (0101)
Step2 : Add (1010), and 2’s complement of (1011),
1st number . 1010

2’s complement of 2nd number : + 0101

Finally carry [0] 1111 € Answer
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As the final carry is not generated the answer is negative and in 2’s
complements form.

Step3 : Covert the answer into its true form:
2’s complement

Thus the answer is — (0001),

Ex. 2.14 : Perform following binary operation using 2’ compliment
method
1. (1010); — (101);  2.(1001); — (1101),
1. (1010), — (101),
Let A =(1010), and B= (0101),
Step1 : Obtain 2’s complement of (0101) ,
Invert Add-1
0101 --------- > 1010 --------- > 1011
~ 2’s complement of (0101);, is (1011)

Step2 : Add A to 2’s complement of B:

A: 1010
2’s complement of B: + 1011
Discard carry: (1) 0101

As final carry is generated answer is positive and in true form.
As final carry is generated answer is positive and in true form.
Thus (1010), — (101), = (101),

2.(1001)2 —(1101),

Let A =(1001), and B=(1101),

Step1 : Obtain 2’s complement of B
2’s complement

(1101) -=---mmmmmmm- > (0011)

Step2 : Add A to 2’s complement of B:
A: 1001
2's complement of B: 0011
Discard carry: (D) 1100

As final carry is generated answer is positive and in true form.
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Step3 : Convert answer in true form :
Answer True form.
Subtract Invert
1100 »1011 » 0100

Thus, answer is — (0100),

As final carry is not generated answer is negative and 2’s complement
form.

2.5 BINARY MULTIPLICATION

e The procedure used for binary multiplication is exactly same as that
for the decimal multiplication.

e In fact binary multiplication is simpler than decimal ultiplication
because only Os and 1s are involved.

Rules of binary multiplication are as follows:

0x0=0
0x1=0
1x0=0
Ix1=1

Generalized multiplication of two binary numbers:

Let the two binary numbers to be multiplied by 4-bit numbers (A), =
A3 A2 A] A() and (B)z = B3 B2 B1 Bo. With A() and B() being LSBs. The
generalized multiplication is shown in Fig.2.1.

MSB LS
B
As A A [ Ao
X B; B, B; | By
Multiply(AszA A;By | A2Bo | A | AoB
»A1A()XBy By |o
+ Multiply by AsB; | A;B; | A AoB | - Shift left
B,: B, | by 1
-« ..
position
+ Multiply by A3;B, | A,By | A Ay - - Shift left
B,: B, B, by 2
position
+ MUItlply by A3 A2 B3 A1B3 A() Shift left
B;: B; B; <__by
3positio
n

Addition with carry represents the results
Fig. 2.1 : Generalized multiplication of two binary numbers
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e The process of multiplication is illustrated in Fig. 2.1.

® Always start from LSB. Multiply = A3, A,, A; and A0 to obtain A3 By,
A3 Bo, A3 B(), A3 B() respectively.

e Shift left by 1 position by writing a “0” in the rightmost column and

multiply (Asz Az A Ag) by By.

e Repeat the procedure for B, and B3 with shifting left by 2 position and

3 positions respectively as shown Fig. 2.1.

® Add the entire product terms columns by column to obtain the answer

Ex. 2.15 : Multiply (9)19 by (8)10:

Soln. : Let A =A3AA Ap=(1001),
And B = B3B2B1Bo = (1000)2A

1001 x 0

1001 x0

1001 x 1

1 0 0 1
X 0 0
Multiply A by Bg 0 0 0 <+— <-1001x0
Multiply A by B4 + 0 0 T 0 - «——Shift left by 1 position
Multiply Aby B,  + 0 (‘f 0 0 <«——  Shift left by 2 position
Multiply AbyB;  + 1 0 0 - - «— Shift left by 3 position
Answer : 1 0 0 1 0 0 0

(1001), x (1000), = (1001000)

Cross check : The decimal equivalent of the answer is obtain as

follow:
Answer: 1 0 0 1 |0 |0
Binary weights: 64 32 16 4 |2 1
Decimal Equivalent: 6448 | =72 9X8
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Ex 2.16 : Perform the binary multiplication 101.11x 111.01

A 1 0 1. 1 1

B x 1 1 1. 0 1

1 1 1 1 1

0 0 0 0 -
+ ro 11 1 - - <«— Shift 1 by position
+ 1 o1 11 - - - <«— Shift 2 by position
+ ! o111 - - - - <«— Shift 3 by position

1 o1 00 1 1 O 1 1 <— Shift 4 by position

The binary point is placed after 4 position from LSB.
~Ans:101001.1011

Cross check
A =(101.11), =(5.75)1pand B = (111.01), = (7.25)19

~AxB=(41.6875)19

Ans.:

1 0 .1 0 |0 |1 | I1 0 1 |1 |
I | I | I I

32 % 8 + 1 + 0.5+

0.126+0.0625=(41.6875)10

Thus we have the correct answer

2.6 BINARY DIVISION

The division of binary numbers takes place in a similar way as that
of decimal number. It called as the long division procedure.

Ex. 2.17 : Perform the following binary division 110 + 10

Soln.:
1 1
10 1 1 0

1 o | 110 = (6)10
1 0 10=12)10

- 1 0 #6+2=8
0 0
(I1)2=3) 10
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Ex. 2.18 : Divide 1100 by 10

Soln.
1 1 <+—Quotient
100) 1 1 0 0
1 0 0 l
0 1 0 0
1 0 0
0 0 0 <«—— Remainder

~Ans. : (11),
Ex. 2.19 : Perform the division of (110 110), + (101),

Soln.:
1 0 1 0 <«— Quotient

101) 1 1 0 1 1 0

1 0 1

0 1 0 O0<+— Remainder

~ Quotient = (1010), = (10)19
Remainder = (0100), = (4)1

Ex. 2.20 : Perform the following multiplication in binary number
system: (15)10 x (8)10

Cross check the answer

Soln. : A=(15)0=(1111);and B =(8);0=(1000), B
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Multiply by By 0 0 0 0

Multiply by B, + 0 0 0 0 -

Multiply by B, + 0 0 0 0 - -

Multiply by B3 + 1 1 1 1 - - -

Answer : 1 1 1 1 0 0 0
1 1 1 1 0 0 0

|
Ax29+1x2)+1x2H+1x2)+0+0+0=64+32+16+38

= (120)10

o (15)10 X (8)10 = (120)10 ...Ans.

2.7 ARITHMETIC IN OCTAL NUMBER SYSTEM

2.7.1 Octal Addition:

e The result of sum of two octal numbers is same as sum of their
decimal equivalents as long as the decimal sum is less than 8.

e But if the decimal sum is equal to or greater than 8 then subtract 8
from it (in order to obtain the octal digit, and generate a carry 1. The
octal addition is illustrated in Ex. 2.21

Ex.2.21 : Perform the addition of (2)g and (4)g

Soln.  : Note that the subscript 8 indicates that the numbers are octal
numbers.

“(2) s+ (4)g=(6)s

Note:
1. The addition takes place similar to that of decimal numbers.
2. As (6)g Is less than 8, no correction is necessary.

Ex.2.22 : Add (7)gsand (4) g
Soln.
Step1 : Add the numbers by assuming them to be decimal :

(1) +(4) =D
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Step 2 : Correct the result, as it is greater than 8:
Two corrections will have to be carried out as follows:
1. Subtract 8 from the result: (1 1 )10 - (8)10= 3.
2.  Generate a carry = 1.

= (7)s

+ (A3

Carry[l] 3

~(Ns+A)s=(13)s

6 3 4 Note : Whenever column addition
+ is greater than or equal to 8,
1 5 2 subtract 8 and generate carry 1
Carry 1 and add this to next column
1 8 8 6
Do Do
carry \ carry\
1 0 0 6  Answer

Ex. 2.23 : Add (634) s and (152)g

Solution : The addition takes place as shown below

6 3 4  Note: Whenever column addition
+ is greater than or equal to 8,
1 5 2 subtract 8 and generate carry 1.

Add this carry to next column.
Carry 1

<
4

1 0 0 6 Answer

Hence (634)g+(152)s =(1006)s
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Ex. 2.24 : Add the octal number 354g, 2665, 123g

Solution :
3 5 4g
+
2 6 6g Note: Whenever
+ column addition is
1 ) 3 greater than or equal to
8, subtract 8 and
Carry : @ ) generate carry 1. Add
7 14 13 this carry to next
) 8 ) 8 column.
©F Ds
Ctry Ca{ry
7 6 5 Final Answer

(354)s + (266)s + (123)s= (765)s

2.7.2 Subtraction of Octal Numbers:
The following methods can be used for octal subtraction:
1. Direct subtraction.

2. Convert the numbers to binary, perform the subtraction and convert
the result back to octal.

3. Use the 7°s complement method.
4. Use the 8’s complement method

2.7.3 Method 1 : Direct Subtraction:

e In the direct subtraction of octal numbers, we use the same rules as
used in decimal subtraction.

e That means, if the Minuend (number for which second number is to be
subtracted) is less than the subtrahend (number to be subtracted) then
we take borrow and return carry.

e The direct subtraction of octal numbers is illustrated in the following
example.

Ex. 2.25 : Perform (75)s — (68)s without conversion.

Soln. : A=(75) B=(68)s
Borrow: 6
A: 7 5} (13)10
B: 6 1 8
7
Carry: @J (7)o
Result: 0 5

= (75)8- (68)s=(05)s
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2.7.4 Octal Multiplication:

Now we are going to learn multiplication in octal system. If you
directly multiply octal number it becomes bit complicated therefore
normal procedure followed is as follows:

Stepl : Convert octal to binary. (both, multiplier and multiplicand.)
Step 2 : Perform simple binary multiplication.
Step3 : After performing multiplication, whatever answer you get in

binary, convert it to equivalent octal.

Ex. 2.26 : Perform (12) g x (7)g

Soln.
Step1 : Convert both octal number to binary:
(12)§ = (001010) = (1010),
(Mg = A11x = ({11y
Step2 : Perform binary multiplication :
1 0 1 0
1 1
1 0 1 0
1 0 1 0 -

—_
o
—_
)
1
1

L1 JLo (Y) 0 Ju 1 % 0 ) Binary
0

6 (106) g

To cross check.

(12)5x (s =(1x 8" +2x8") x [7x 8°] = (10)10 x (710 = (7010
Consider result i.e. (106)g

(106)=1x8"+0x8'+6x 8 =(64+0+6)0=(70)0

2.7.5 Octal Division:

For division in octal system, we follow the same steps i.e.
Step1 : Convert octal to binary (both the given numbers).
Step 2 : Perform binary division.

Step3 : Convert given binary quotient and remainder to octal.
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Ex. 2.27 : perform (24)s + (4)g
Soln.
Step1 : Convert both numbers to binary

\_%_) \_AYL_) octal \_%_) 101 Quotient

010 100  Binary 100  Divisor 100) 10100
100

0100
0100

0000 Remainder

2.8 HEXADECIMAL ARITHMETIC

In this section we are going to discuss the hexadecimal addition and
subtraction.

2.8.1 Hex Addition:

1. The sum of two hex numbers is same as the sum of their decimal
equivalents as long as a decimal sum is less than 16. (i. e. from O to
15)

2. But if the decimal sum is equal to or greater than 16 then subtract 16
from it (in order to obtain the hex digit) and generate a carry 1. The
hex addition is illustrated in Ex. 2.28

Ex. 2.28 : Perform the addition of (§)H and (5)H.

Soln. : The subscript H indicates that both the numbers are hex
numbers.

=8y +35y=(13)10=Dn

Note : 1. The addition takes place similar to that of decimal numbers.
2. As Dy is less than 16, no correction is necessary.

Ex.2.29 : Add 94 and 8.

Soln.

Step1 : Add the numbers by assuming them to be decimal numbers:
9+8= (17)1()

Step 2 : Correct the result because it is greater than 16.

Two corrections will have to be carried out as follows:
1. Subtract 16 from the result : (17);0— (16)10=1

2. Generate a carry = 1.
9u
+ 8u

Carry| 1| 7
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Ex2.30 : Add C2zand 3Ey

Soln
Step1 : Add the digits by assuming them to be digital:
C 2 e > (120 @
+
+ 3 E------- > @1 ( 14 )1

Step 2 : Correct the result:
(15)10 (16)10

+ @ (16)19
16), @
- (16X

) 0

Final Answer (1 0 06
Hence (C2)y+ (BE)u= (100)y

2.8.2 Hex Subtraction:

There are various methods used to perform the hex subtraction. They are
as follows:

1. Direct subtraction.

2. Subtraction by converting the given numbers into binary.
3. Subtraction using 15’s complement.

4. Subtraction using 16's complement.

2.8.3 Method 1: Direct Subtraction:
e This method is similar to the direct octal subtraction.

e If the Minuend is less than the subtrahend then we have to take borrow
and return carry.

e The concept of direct hex subtraction is illustrated in the following
examples.

Ex 2.31 (A): Perform the following hex subtraction without converting
the numbers. (a) (A)is— (8)16 (b) (73)u— (1C)u

Soln. : A)(A)ig— (862
Borrow
A : Apo}
B : 8 (A)16 - B)16=(2)16
Carry
Result : 2
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(b) (73)16-AC)s6 ¢

Borrow : 16
A . 7 3 }(19)10
c

B : -1} (2)10
Carry : 1

Result : 5§ 7:% (12)10

2.8.4 Hexadecimal Multiplication:

If you directly multiply hex numbers, the thing becomes bit complicated.
Therefore it will be better if one follows following steps

Step1 : Convert hex to binary. (Multiplier and Multiplicand both).
Step 2 : Perform Simple binary multiplication.

Step3 : After performing multiplication, whatever answer you get in
binary, convert it to equivalent hex. This you can achieve by
grouping 4 binary bits. Add extra zeros where required.

Ex 2.32 : Mllltiply (72)16 and (39)16

Soln.

Stepl : Convert hex to binary :
(72)16=(01110010),=(1110010),
39)16=00111001),=(111001),

Step2 : perform binary multiplication :

1 11 0 O 1 O
+ 1 1 1 0 0 1
1 11 0 O 1 O
o 0 0 0 O 0 0 -
o 0 o 0o o o O - -
1 1 1 0 0O 1 O - - -
1 1+ 1 0 O 1 O - - - -
!1 1+ 1 0 O 1 O - - - - -
10 10 1 1 1 1 1
1 1 0O 1 0 1T 1 0 0 O 1 0 binary

Step3 : Convert binary to hex:

0001 1001 0110 0010
1 9 6 2
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Perform (A2C);6 and (B42)6

Ex 2.33 :
Soln.

Convert hex to binary :

Stepl

0010 1100),
0100 0010),

1010
1011

= (
= (

(A20)46
(B42)16

00

1
1000010
00000 OOOOOOO

1 0100 0101

x 1 0110

1 0 0 -

1

0000O0OO0OO0O O0OO0O0OOO
0000O0OO0OO0OO0OO0OO0O0O
0000O0OO0OO0OO0OO0OOO0O

10
000O0O0O0OO0OO0OOO0OO00O0

1 01 000

1 0 O-

000O0O0O0OOOO0OOO0OTO O

101 000101

1 00

1 01 00O01O01T1QO0O0
0000O0OO0OO0OO0OO0OO0OO0OO

1 01 00O0T10O01
101 000101100

1011000

1110010000O0O0O0O01T10

Perform (FA.2),s and (11.D)5

Ex2.34 :
Soln.

Convert hex to binary :

Stepl

(1111 1010 .. 0010),
(111 11010 . 001),

(FA.2)6

(0001 0001 . 1101),
(10001 . 1101),

(11.D)s6

Perform binary multiplication:

01 00O0T1PO

1
0 0011 101

1 01 00010

1 111
0 00O0O
1 11110

I 1
1 1111010
00 0O0O0OOO0OO
000O0O0OO0OOO0OO0ODO

000O0O0OO0OOOO®O0OO
1 11 11 100O0O010

0 00 0O0O0OO

1

00 00O

0 00 1O
0 01 0
0 00
0

0

1

0

1

1011000

0

000101T1O0O0T1T171

v
1
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Step2 : Convert binary to hex:

0001 0001, 0110, 0111, 0101, 1010,
T T T T T

\_Y_l
1 1 6 7 5 A
~ Ans. : (1167.5A)46
2.8.5 Hex Division:
To perform division in hex number you have to follow steps given below :
Step1 : Convert hex number to equivalent binary.
Step 2 : Perform binary division.
Step3 : Convert final answer in binary i.e. Quotient and Remainder to

equivalent hex.

Ex. 2.35 : Perform (24)y + (8)n.
Step1 : Convert both numbers into binary :
2 4 Hex 8
0010 0100 Binary 1000

Step2 : Perform division
100 Quotient
1000) 100100
1000
100 Remainder
Step3 : Convert the answer into hex
Quotient : 100 = (0100), = (@)n
Remainder : 100 = (0100), = (4)g

2.9 BCD ARITHMETIC

BCD is a binary code of the ten decimal digits. It is not a binary
equivalent.

To perform BCD addition:

¢ Add the BCD digits as regular binary numbers.

e [f the sum is 9 or less and no carry was generated, it is a valid BCD
digit.

e [f the sum produces a carry, the sum is invalid and the number 6
(0110) must be added to the digit.

e [f the sum is greater than nine, the sum is invalid and the number 6
(0110) must be added to the digit.

e Repeat for each of the BCD digits.
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Addition:
There are four basic rules to adding two binary digits.

0+0=0carry0
O+1=1carry0
I1+0=1carry0
I+1=0carry1

o Binary digits are added two at a time and any carry must be carried
over to the next higher column of digits.

° To get the sum of three digits, add the first two and then add the sum
to the third digit.

o To add large binary numbers add one column of digits starting with
the least significant position. Add any carry into the next significant
column.

For Example:

Add the binary numbers 00111 and 10101 and show the equivalent
decimal addition

0 1 1

0O 0 1 1 1

1 0 1 0 1 2 1
1110 0 = 2 8

Subtraction:

There are four possible combinations when subtracting two binary digits.
0—-0=0 borrow 0

0—-1=1 borrow 1

1 -0=1 borrow 0

1 -1 =0 borrow 0

e The borrow from a column of digits must be subtracted from the next
most significant column.

® To subtract a large binary number from another large binary number, a
borrow may need to be carried over several bit positions.

For Example:

Subtract the binary number 00111 from 10101 and show the equivalent
decimal subtraction.

I 1 1

o r o0 1 2 1
0O 0 1 1 1 7
1110 0= 1 4



2.10 EXCESS-3 ARITHMETIC

2.10.1 Excess - 3 Addition:

To add the two excess - 3 numbers A and B follow the procedure given
below : Steps to be followed :

Stepl : Add the two excess - 3 numbers using the rules of binary
addition.

Step2 : If carry is 1, then add (0011), or (3);9 to the sum.
Step3 : If carry is 0, then subtract (0011);3 or (3);¢ from the sum.

Ex. 2.36 : Add (7)10 and (6)1¢ in excess - 3.

Soln. : Convert (7)1 and (6);¢ in excess - 3.
(7M10=(1010)xs3 and (6)19 = (1001) xs-3
Step1 : Add two excess - 3 numbers :

1010 — Excess -3 for (7)o
+1001 — Excess -3 for (6)9
Final carry > 10011 — Sum

Step2 : Carry=1so add 0011 to the sum :

0 0 O 1 0 0 1 I <—sum
0 0 1 1 0 0 1 1 <«—Add(3)
Y 1 0 0o Q 1 1 0o
Y Y
110 310
~(7),,+(6),,=(13),,
Ex. 2.37 : Add (2)9and (3)10 in excess - 3.
Soln. : Convert (2);0 and (3);o in excess - 3.
(2)10=(010 Dxs3 (3)10=(0110) xs3
Step1 : Add two excess - 3 numbers :
1 0 1 0 <« Excess-3for (7)o
+ 1 0 0 1 <«—Excess-3for(6)9
Final carry «— 1 0 0 1 1 Sum

Step2 : Carry =0 so subtract 0011 from the sum :

1 0 1 1<« Sum
0O O 1 1 <«—Subtract(3)
J 0 0 0
(5o

#+(2),+(3),, =(5),
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2.10.2 Excess - 3 Subtraction:

The steps to be followed for the Excess - 3 subtraction A - B are as
follows : Steps to be followed :

Step1 : Take the complement of B (subtrahend).
Step2 : Add A (minuend) and complement of B using the rules of
binary addition.

Step3 : If carry =1, then add (3)o to the result and end around the
carry. The result is positive.

Step4 : If carry = 0, then subtract (3),o from the sum obtained in step
2 and take the complement. The result is negative.

Ex. 2.38 : Perform the subtraction (8)19 — (3)10 in excess - 3.

Soln.

Stepl : Convert the numbers into excess 3 :
(8)10=(1011)xs3and (3);o=(0110 )xs3

Step2 : Take complementof (0110):
NumberB=0110
Complement of B=1001

Step3 : Add A and complement of B :

1 0 1 1 <« Excess-3for (8)
+ 1 0 0 1 <«—ComplementofB
+ 1 1
Finalcary 1 0 1 0 O

Step4 : If carry =1, then add (3)10 to the sum and end around
carry :

]

0O 1 0 O Sum
+ 1 0 0 1 Add@3)
Add end 1 0 1 1 1
around carry
> ]
1 1 1
1 0 0 9 Final answer in excess -3
'
So
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Ex. 2.39 : Perform the subtraction (3)10 —(8)19 in excess - 3.
Soln.:
Stepl : Convert the numbers into excess 3 :
(3)10=(0110)xs3and (8)10=(1011 )xs3
Step2 : Take complementof (1011):
Number B=1011
Complementof B=0100
Step3 : Add A and complement of B :

0110 A
+ 0100 Complement of B

Final carry=0 1010

Step4 : Final carry = 0, then subtract (3);9 from sum :
1 0 1 0 Sum
-0 0 1 1 Add@®B)io
0 1 Final carry is negative and in

complemented excess -3form

Step 5 : Take complement of final answer:
0 1 1 1 Answerincompliment XS-3 for compliment

|

I 0 0 O J Answer in true XS-3 and negative
Y

(-3)10
Thus, (3)10 - 8)10= (- 510

Ex. 2.40 : Perform the following addition in excess — 3 code.

N

910 + (6)10
Sol. : 9+6
Decimal Excess -3
9 1100
+ 6 1001
15 Final Carry 0101 Carry = 1, so add 3 to sum
(1) and carry
+ 0011 0011 Add 3
11 111
0100 1000 Final answer in excess - 3
(Do (-0

~(9),,+(6),, =(15),,
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Ex. 2.41 : Subtract (168)¢ from in (234);9 in Excess — 3.
Soln
Step 1 Obtain the excess - 3 equivalent of given numbers:
Number B : (168);p = 0100 1001 1011
Number A : (234);p = 0101 01100111
Step 2 Take the complement of number B :
Number B = 0100 1001 1011
Compliment of Number B = 1011 0110 0100
Step 3 Add A and compliment of B :
Decimal Excess 3
234 0101 0110 0111
168 + 1011 0110 0100 Compliment of B
66 111 11 1
Final carry =1 0000 1100 1011
Thus the
answer
positive  add
the end
around + carry > |
0000 1100 1100  Sum
Step4 : Add or subtract 011 for correction : Add 0011 to 0000 because

carry = 1 was produced along with 0000

0000 1100 1100  Sum in step 3
+ 0011 Add 0011

0011 1100 1100

Now subtract 0011 from 1100 as the carry =0 along with them

0011 1100 1100 Sum in step 3
- 0011 0011 Subtract 0011
OQ} 1 1 901 S 1001 , Answer in XS -3 form
0 6
REVIEW QUESTIONS

Q. 1 Explain binary arithmetic in brief

Q. 2 Explain binary arithmetic with suitable example

Q. 3 Solve following examples
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1. (10101), + (10111),
2. (11101)2 + (101010),
3. (11111), - (10111),
4. (1110)2/ (10),
5. (1011)  *(111),
Q.4 Explain arithmetic’s in octal number with suitable example
Q. 5 Explain arithmetic’s in hexadecimal number with suitable example

Q. 6 What is BCD arithmetic?

% %k kK k
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Unit 2

LOGIC GATES

Unit Structure

3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Introduction

OR Gate

AND Gate

NOT Gate

NAND Gate

NOR Gate

Laws of Boolean Algebra
Exclusive-or Gate(EX-OR)
Exclusive-Nor Gate(EX-NOR)

Universal Gate

3.10 De Morgan’s Theorms
3.11 Unit End Question

3.0 INTRODUCTION

The logic gate is the most basic building block of any digital system,
including computers. Each one of the basic logic gates is a piece of
hardware or an electronic circuit that can be used to implement some
basic logic expression.

While laws of Boolean algebra could be used to do manipulation
with binary variables and simplify logic expressions, these are
actually implemented in a digital system with the help of electronic
circuits called logic gates. The three basic logic gates are the OR
gate, the AND gate and the NOT gate.

3.1 OR GATE

An OR gate performs an ORing operation on two or more than two
logic variables.

The OR operation on two independent logic variables A and B is
written as “Y = A+B “ and reads as Y equals A OR B.
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o An OR gate is a logic circuit with two or more inputs and one output.

o The output of an OR gate is LOW only when all of its inputs are
LOW. For all other possible input combinations, the output is HIGH.

. Figure below shows the circuit symbol and the truth table of a two-
input OR gate. The operation of a two-input OR gate is explained by
the logic expression:

Boolean Expression : Y = A+B

A
Y=A+B
B
Symbol for OR gate
TRUTH TABLE:
Input Output
Y=A+B
A B
0 0 0
0 1 1
1 0 1
1 1 1
3.2 AND GATE

o An AND gate is a logic circuit having two or more inputs and one
output.

. The AND operation on two independent logic variables A and B is
written as “Y = Ae B “ and reads as Y equals “A AND B”

. The output of an AND gate is HIGH only when all of its inputs are
in the HIGH state. In all other cases, the output is LOW.

®  When interpreted for a positive logic system, this means that the
output of the AND gate is a logic *‘1°” only when all of its inputs are
in logic ‘‘1°’ state. In all other cases, the output is logic “‘0’’.

. The Boolean expression, logic symbol and truth table of a two-input
AND gate are shown below;
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Boolean Expression : Y = A* B

Y=AB

Symbol for AND Gate
TRUTH TABLE:
Input Output
A B | Y=A°B
0 0 0
0 1 0
1 0 0
1 1 1
3.3 NOT GATE

. A NOT gate is a one-input, one-output logic circuit whose output is
always the complement of the input.

o That is, a LOW input produces a HIGH output, and vice versa.

. When interpreted for a positive logic system, a logic ‘0’ at the
input produces a logic ‘1’ at the output, and vice versa.

. It is also known as a ‘‘complementing circuit’” or an ‘‘inverting
circuit’’ or hex inverter’’.

The Boolean expression, logic symbol and truth table of a NOT gate are
shown below;

Boolean Expression : Y = A

Symbol for NOT gate
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TRUTH TABLE:

Input Output Y=A
0 1
1 0
Symbol for NOT gate
3.4 NAND GATE

. A NAND gate is a logic circuit having two or more inputs and one
output.

. The NAND operation on two independent logic variables A and B is
written as "Y = AoB

e “Y=A.B “andreads as Y equals “A AND B the whole BAR”

o The output of an NAND gate is HIGH when any one of its input is
low

. The Boolean expression, logic symbol and truth table of a two-input
AND gate are shown below;

Boolean Expression: ¥ =4 «F

A

Y=AB

Symbol for NAND Gate
Truth Table:
Input Output
A B ‘" =A+B
0 0 1
0 1 1
1 0 1
1 1 0
3.5 NOR GATE

. A NOR gate performs an complementary operation of OR gate on
two or more than two logic variables.
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. The NOR operation on two independent logic variables A and B is
written as

° "Y =A+B" “andreads as Y equals “A OR B the whole BAR”.

. The output of an OR gate is HIGH only when all of its inputs are
LOW. For all other possible input combinations, the output is LOW.

. Figure below shows the circuit symbol and the truth table of a two-
input OR gate. The operation of a two-input OR gate is explained by
the logic expression:

Boolean Expression "Y = A+B"

A Y=A+B

Symbol for NOR gate
TRUTH TABLE:
Input Output

A B "Y=A+B"

0 0 1

0 1 0

1 0 0

1 1 0

3.6 LAWS OF BOOLEAN ALGEBRA
Name AND form OR form
Identity Law 1«A=A 0+A=A
Null Law 0-A=0 1+A=1
Idempotent Law A<A=A A+A=A
Inverse Law A-A=0 A+A=1
Commutative Law | AB=BA A+B=B+A
Associative Law | (A B)C = A(B C) (A+B)+C =
A+(B+C)

Distributive Law A+BC=(A+B)(A+C) | A(B+C) = AB + AC
Absorption Law A(A+B) = A A+AB=A
De Morgan’sLaw | AB=A+B A+B=AB
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Question : Drawing logic diagram for Boolean expression given below
) A+B)C

2) A+BC+D
3) AB+ AC

4 (A+B)(C+D)C

(A +B)C A+BC+D

AB +AC (A + B)(C+D)C

- >— )

3.7 EXCLUSIVE-OR Gate(EX-OR)

. An EX-OR gate is a logic circuit having two or more inputs and one
output.

. The EX-OR operation on two independent logic variables A and B is
written as “Y = A @ B *’ and reads as Y equals “ EX-OR B”.

. The output of an EX-OR gate is a logic ‘1’ when the inputs are
unlike and a logic ‘0’ when the inputs are like for two input EX-OR
gate, while if the input is more than two then output is logic “1”
when odd number of inputs are “HIGH” and logic “0” when even
number of inputs are “LOW”.

. The Boolean expression, logic symbol and truth table of a two-input
EX-OR gate are shown below;
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Boolean Expression: Y=A @ B = AB+AB

Y=A@B

Two Input EX-OR Gate Symbol

Two Input TRUTH TABLE:
Input Output
A B Y=A®DB
0 0 1
0 1 0
1 0 0
1 1 1

3.8 EXCLUSIVE-NOR Gate(EX-NOR)

. The EX-OR operation on two independent logic variables A and B is
written as “Y = A @ B “and reads as Y equals “ EX-NOR B”.

o The output of an EX-NOR gate is a logic ‘1’ when the inputs are like
and a logic ‘0’ when the inputs are unlike for two input EX-OR gate,
while if the input is more than two then output is logic “1” when
even number of inputs are “HIGH” and logic “0” when odd number
of inputs are “LOW”.

. The Boolean expression, logic symbol and truth table of a two-input
EX-NOR gate are shown below;

Boolean Expression: Y= A®B

Y=A@#B

ot

Two Input EX-NOR Gate Symbol
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Two Input TRUTH TABLE:

Input Output
Y=A®B

A B

0 0 1
0 1 0
1 0 0
1 1 1

3.9 UNIVERSAL GATE

. OR, AND and NOT gates are the three basic logic gates as they
together can be used to construct the logic circuit for any given
Boolean expression.

o NOR and NAND gates have the property that they individually can
be used to hardware-implement a logic circuit corresponding to any
given Boolean expression. That is, it is possible to use either only
NAND gates or only NOR gates to implement any Boolean
expression.

. This is so because a combination of NAND gates or a combination
of NOR gates can be used to perform functions of any of the basic
logic gates.

. It is for this reason that NAND and NOR gates are universal gates

NAND as NOT:

NAND as AND:

Y=A.B




NAND as OR:

—f
o {

NOR as NOT:

A Sk

|

Y=A+B

0|

NOR as AND:

A—i

NOR as OR:

A

Y=A+B

B

3.10 DE MORGAN’S THEORMS

First Theorem:

. It states that, the complement of a sum equals the product of
complements.
OR

. It states that, the output of NOR gate is equal to the output of
bubbled AND gate.
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__ A—fpX A
A, Y=ARE - I v
B—= L B~ _I—?_J '
NOR B — ’,_.é‘u B
NOR = Bubbled AND
A \Y=A.B
=P = F -
Truth Table:
Input L.H.S. R.H.S
A+B AB
A B 1 1
0 0 0 0
0 1 0 0
1 0 0 0

Second Theorem:

. It states that, the complement of a product equals the sum of

complements.
OR
. It states that, the output of NAND gate is equal to the output of
bubbled OR gate.
AP T

e L~ -_—
A 1’£ B : .
B _- = o ‘q":_+_

NAND B —L/,x‘ B
MAND — Bubbled OR
AT
B :'_:J__F_,-f"{ Y=A+8B
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Truth Table:

Input LH.S R.H.S
A B —= ==
A+B | A-B
0 0 1 1
0 1 0 0
1 0 0 0
1 [ 0 0
3.11 UNIT END QUESTION
1. For the logic expression Y=AB’+A’B. Obtain the truth table, name
the gate and operation performed and symbol for it also realize this
using AND,OR,NOT gates.
2. Prove the given Boolean expression using Boolean laws and draw
the circuit for it using NAND gates only.
A.B+A’B+A’B’=A’+B
3. State and prove De-Morgan’s theorem and realize it using basic
gates.
4. What is meant by universal logic gate? Draw logic circuits showing
construction of Ex-OR gate using NAND gate and using NOR gate.
5. Draw logic circuit and make truth table to prove the following
Boolean theorems
i) A.0=0 ii) (A.B)C=A(B.C)
6.  Using rules of Boolean algebra, solve y = (x+z)(X’+y+z). Draw a

logic circuit using suitable gates to implement the simplified
equation.

% % %k %k %k
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SOP AND POS REPRESENTATION OF
LOGICAL EXPRESSIONS AND
KARNAUGH MAP

Unit Structure

4.0 Sop And Pos Representation of Logical Expressions:
4.1 Concept of Minterm and Maxterm

4.2 Minimization With Karnaugh Maps

4.3  Way of Grouping (Pairs, Quads, Octets)

4.4 Minimization of Logical Functions Not Specified
Minterms/Maxterms

4.5 Quine-Mccluskey Minimization Technique

4

In

4.0 SOP AND POS REPRESENTATION OF LOGICAL

EXPRESSIONS

® Any logic expression can be expressed in the following two standard

forms:

1)  Sum-Of-Products (SOP) form ii) Product of Sums (POS) form
Sum-Of-Products (SOP) form:
Y =AB +BC + AC

. The above expression is a Sum of three Product terms i.e.,
. A.B,B.Cand A.C.

. Therefore such expressions are called expressions in Sum-

Products (SOP) form.

Of-

. In a SOP sums are logical OR functions while products are logical

AND functions.

. In above expression A, B and C are literals or inputs while Y is

output of a combinational circuit.

. Some more examples of SOP are as follows:

«  Y=ABC+ABD+B.D+AB.C
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X=PQ+P.QR+P.R

Thus in an SOP in each product term there can be one or more than
literals ANDed together and then these product terms are logically
ORed.

Product-of-Sums (POS) form:

Y = (A+B), (B+C), (A+C)
The above expression is a Product of three Sum terms i.e., (A+B),
(B+C) and (A+C).

Therefore such expressions are called expressions in Product-Of-
Sum (POS) form.

In a POS sums are logical OR functions while products are logical
AND functions.

In above expression A, B and C are literals or inputs while Y is
output of a combinational circuit.

Some more examples of POS are as follows
X=(A+B+C).(A+C+D).(A+B+C)

M= (X+Y).(X+Y+2).(X+Y)

Thus in a POS in each sum term there can be one or more than

literals ORed together and then these Sum terms are logically
ANDed

e Standard SOP and POS forms:

In a standard SOP or POS each term may contain one, two or any
number of literals. It is not necessary that each term should contain all
the literals.

e Canonical SOP and POS forms:

In a canonical SOP or POS each term contains all the literals in their
complimented or uncomplemented forms.

Sr. No. Expressions Types

L Y= AB+ABC+AB.C Standard SOP
2 Y=AB+AB+AB Canonical SO
3. Y=(A+C).(A+B+C).(A+B+C) Standard POS
4 Y=(A+B+C).(A+B+C)(A+B+C). |Canonical POS
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4.1 CONCEPT OF MINTERM AND MAXTERM

Each individual term in a canonical SOP form is called as Minterm.

Each individual term in the canonical POS is called as Maxterm

Canonical SOP

Canonical POS

Y=ABC+ABC +ABC

Y

Each individual term

(A+B).

T

(4+B)

T

is called Minterm

Each individual term

is called Maxterm

The following table shows the minterms and maxterms for a three
variable logic function Y=F (A, B, C). Let Y be the output and A, B,

C be the inputs.

The number of minterms and maxterms is 2° = 8 In general for ‘n’
number of variables the number of minterms or maxterms will be 2".

Each minterm is represented by mi and each maxterm is represented
by Mi where 10, 1,... ,2n — 1.

In thiscasei10,1, ..., 7

Variables Minterms Maxterms
A [B |cC m, M,
0 0 0 ABC=m, A+B+C=M,
0 |0 1 AB.C=m, A+B+C=M,
0 1 0 ABC= m, A+B+C = M,
0 |1 1 AB.C=m, A+B+C =M,
1 0 0 ABC=m, A+B+C=M,
1 0 1 ABC= m; A+B+C = M
1 0 ABC=m, A+B+C=M,
1 1 1 AB.C=m, A+B+C=M,

As we can see, minterm is product of given variables where logic 0
is represented by complemented variable, while logic 1 is represented by
uncomplemented variable. Whereas maxterm is sum of given variables
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where logic 1 is represented by complemented variable, while logic O is
represented by uncomplemented variable.

4.2 MINIMIZATION WITH KARNAUGH MAPS

o Karnaugh map technique which provides a systematic method for
simplifying and manipulating Boolean expressions.

° In this technique, the information contained in a truth table or
available in POS or SOP form is represented on Karnaugh map (K-
map).

. This is perhaps the most extensively used tool for simplification of
Boolean functions.

o Although the technique may be used for any number of variables, it
is generally used up to six variables beyond which it becomes very
cumbersome.

° Below figures shows the K-maps for two, three and four variable.
* 2 variables Karnaugh map

A

B 0 1
o| AB | AB
1 4B | AB

» 3 variables Karnaugh map

C |ABC | ABC | ABC

1|ABC | ABC | ABC|ABC
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* 4 variables Karnaugh map

AB

CcD

oo

o1

i1

10

o0

o1

11

10

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

4.2 WAY OF GROUPING (PAIRS, QUADS, OCTETS)

. Pairs: group of two adjacent 1’s in SOP K-map or two adjacent 0’s

in OS K-map)

. Quads: A group of four adjacent 1’s in SOP K-map or four adjacent

0’s in (POS K-map)

. Octets: group of eight adjacent 1’s in SOP K-map or eight adjacent

0’s in (POS K-map)

Grouping for eight adjacent Ones (Octets):

. Group the adjacent 1s in the given K-map and write the common
variables eliminating uncommon variables. In reduction technique by

forming octet three variables gets eliminated.

. Possible Octets in 4-variable K-map: (Note: octet is not possible in 2
variables K-map. While in 3-variable K map octet will select all the

blocks making it equal to 1)

Adjacent Horizontal:

ABCD cb Cb c¢p €D _
00 01 11 10
\\
A500 ( ol 3l &l 4
i )
ABOI o . "
L3 =] ! B
)\
e
ABII 12 13 15 14
_ [~k
AB10
—g 9 11 10
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Adjacent vertical:

CD Ep Cbp cD cD
AB 00 o1 11 10
JE\
L '8 ™ ' N
ABOO 0 i " X
ABOI 4 t " 1
ABI11 o 4
AB10|\,
AN -2
C
Fold-back:
CD cD 1y cD cD cD CD Ch cCD cD
AB 00 01 11 10 AB 00 01 11 10
S =
ABOO|~—yp i i ABOO 0 " 4 3
ABOI 4 g 3 § - ABO1 . 1 , i
B
ABI1
12 13| 15] 14 AB 11 h 13 .sl| 1
i g 9 11 % S of alt sl §
D

Grouping for four adjacent Ones (Quads):

Group the adjacent 1s in the given K-map and write the common

variables eliminating uncommon variables. In reduction technique by
forming pair two variables gets eliminated.

Possible Quads in 3-variable K-map:

Adjacent Horizontal:

BC BC BC BC BC
A 00 01 11 10
Ao K&
0 1 3 y;
S 1 I N -
"""" ] iR | ERAREE " PaleRa




Adjacent squares:

BC BC BC BC BC
A 00 o1 11 10
—_ A
T el ]

0 1 ( 3 12
SN

A S 7] N\ B
B
B C B

Fold-back:

BC BC BC BC BC
A 00 o1 1 10
767‘\ e %
A 0 [

0 1 3 2

A ‘

| 4 5 717 5%’,

. \\//‘/
e

Possible Quads in 4-variable K-map:

1S

1. Adjacent Horizontal 2. Adjacent Vertical
CEBEE = b (D gp ©€pb c¢cp CD

CD cD cD cD

A B 00 01 11 10 iB i 00 01 11 10
-~ = . i/— \ { W

ABOO { " " 4 ABOO o : ] k

A B ABOI
ABOI L 4 s . 4 5 7 &
ABI1I1 L 45 §

L)
(=5}
b=
@
[
-
-
=

D

o
[N
s
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Adjacent squares:

AT AD
_ / e GO = E ]
CD = / CD D cD CcD
cp ¢€bp /cp c¢bD
AB 00 o1/ 11 10 BB 00 o1 1L 0
N I ) [ R AB00 (
0
ABOO 0 ‘I 3 b B : 1 ] 2
J « S ¥ ) L
- AB0I _
01 pal y L—B.C
AB 4 21k | . o 4 7 6
ABI11 Akl ] o[ 13l 5] 1
12 1 15 14
_ ‘ A.C ABIO |
ABLO]|\ gl \—9} 1 10
—st——9 —11—10
NG AD
CD g ©CTp <¢D €D
A B 00 01 11 10
ABOO 0 i . "
ABOI
AR 4[ 5 \7 6
N ==
AB \ /
12| ~—13—1s 14
ABI10O
8 9 11 10
Fold-backs:
= B ] AD s A 2
DN R O I T
/ AB 00 01| 111 [0),—"
T —14 | .
2500 ‘ { — I !
0 T [~ )
1 3‘ 2 ABOO 3 | IR
KBO] ‘ 7\‘ =
oy — 5 7| 6 ABO1
— . 4 5 7 6
< : 1>
AB1I | i
1 €| I KT ABII
; ; 12 13 15 14
ABI10 ; s aalus = N i -
i el 9 11 10] % ABI1O ' !
\ 8 9: 11 10
AD B ! |
- 3 1
AL~ ¥ Vi
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€0 5 /:\ED CD’T\ €D cD Et_)/\ o co Tco
AB 00 (01 Il 10 AB 00 01 11 1
__ | ‘ B | oo JU L
_ AB OO
RBOO[  of 513 ] 1 3 2l
_ T —1 AB 01
3801 ' ‘ 4 5 7 6
ol sl 9l e
2R | ‘ AB 1l 12 13 15 14
pad Y| R | = — 1
e L 9 11‘ 10
ABI0 ! ! BD
sl ol 1 J ED |
‘ -
vy ¢ —BD

Grouping for two adjacent Ones (Pairs):

o Group the adjacent 1s in the given K-map and write the common
variables eliminating uncommon variables. In reduction technique by
forming pairs one variable gets eliminated.

o Possible pairs in 2-variable K-map:

A
B B B B
AB 0 1 / AB 0 1
zo |l B A0 A
o 1 0 -
1 1
A v |
2 3 2 3
B B B B
AB 0 1 AB 0 1
A0 A0 (
_ 1 0 1
g A J Al J"__B
— 3 3] ==—13

Possible pairs in 3-variable K-map:

Horizontal Adjacent:

=
ol
=
(]
e
w

BC B¢ | BC BC  BC BC BC  BC BC  BC BC BT B¢ Bc | BT
AN, 01 1 10 AN 0 0 1 10 AN, 0 o1 1 10
AD ] AD | A0 l

= 1 3 2 0 1 3 2 i ) s 2
Ad Al At
4 5 7 6 | 5 7 6 4 5 7 5
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BC

w % % ONE % %% O NE ¥ % ¥
An Ao Ao
of 3 2 0 1 3 2 0 3 2
At Al A1
L q _JS 7 6 ‘[ z Jr [ 4 5 [ 7 j1[5
A.B AC AB
2. Vertical adjacent:
BC BC BC BC BC BC BC BC BC BC
A 1 1] o 1" 10 A (1] )] 1 10
_ (r_‘\' _ J—1
Ao Ao
0 1 3 2 0 i 3 2
A1 At
— 4 5 7 6 W —s 7 6
B.C B.C
BC BC BC Bc| BC BC BC BC BC  BC
A of 1] 10 AN 0O 0 1 10
— T i 1
Ao Ao [
0 1 2 0 1 3 2
Al l At \
4 : 7 6 4 5 7| —8
3. Fold-backs :
BC BT 3 T BC BC B ¢
NE ¥ ¥ f NE % o
_ = _
A0 A0
s =0 1 3 > 0 1 3 2
o &3
A1 A1l
4 : 7 6 eja 5 7 Liﬁ
AC &
A.C
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Possible pairs in 4-variable K-map:

Horizontal Adjacent:

£ [Ep €O LD en @ D ED
00 01 11 10 00 0 11 10
EEC—L l ‘ ]e—ﬁ.ﬁc [ ) AB.D
i3 ) - ABOO J
ARy~ ol 13
ABCRB(}! L _J L }_M‘c AB(| l - J I
3 I I 4| 5[ 7 6
ABT—] h— B
ABll]. . J‘_A'B‘C AB1| } Ea
. et T 2l DL 5L 1
ABC—} _ |
wi10]! | —ABC 1 AB1O Q—J —ABD
‘ g9 —ul 10 § w10
Vertical Adjacent:
o AC o o F & 3
ACD l = ACD  ZcD ¥ Cdg E-ID ‘]jID ‘i;’
\Ed |lem €0 €D/ AB
\oo |o1 11/ 10/ e
ﬁ“—] — —x — ABoo " ,
| WL
l J~:——B.c.ﬁ
15| —14
|
i1 10
B.CD
tp €D cCD
0P AIT L

o
—
)

Example 1:
Solve:

Y =AB+A.B




Solution:
Hence Y = my + m;

We need 2-variable K-map

B B B A
ﬂ\ 0 1 //z'A

Aol 1 1 __|

A1 0 0

Here pair variable “B” is eliminated

Hence, Y = A

Example 2:
Solve: Y = A.B+A.B+A.B
Solution:

Hence Y =m,+ m, + m,

— (Variable B is eliminated)
B B B A
A 0 1 i
A0 [__ 1 : § I ] (Variable A is eliminated)
0 1
f—" B
A1 0 1
2] + J3
Hence Y = A.B

Example 3:

Solution :
Y =m,+ m, + m,+ ms

Hence we need 3-variable (8 places) K-map.
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AB (Variable A is eliminated)

AN O | O W 10 BC
ol | 1| o [[2V
0 1 3 ‘2

Hence Y = K.§+B E

Example 4:
Solve: Y = ABC+A.B.C+AB.C+AB.C

Solution :

Y =m,+ m,+ m;+ ms

AB (Variable Cis
eliminated AC
BC BC BC BC BC (Variable B is
A 0o o1 11 \ 10 : eliminated)
AQ 1 0 E ‘ 1 ]
-~ -0 | - I —
1
A 0 1] 0 0
4 7t 5 7 B
ot (Since group is not formed
AB.C no variable eliminated

Hence Y = AB+A.C+AB.C

Example 5:

Solve:

+ABCD+ABCD+ABCD+ABC.D

Solution:

Y =my+ m, + m,+ m;+ ms + m; + my+ m,, + my;
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we need 4-variable (16 places) K-map.

Ch CD C.D C.D C.D

AB 00 01 11 10
[ X

AB 00 [1 1 1 1k

0 : 2 2 “AB
aBoi| © 4 \1 5 1/’? 0 6
aBi| O 1 0 0 |ap

1) | 43 as] 1l
As10| O 1 0 @

gl o 11] N Ao

W T

C.D ABCD

Hence Y = AB+A.D+C.D+A.BCD

4.2 MINIMIZATION OF LOGICAL FUNCTIONS NOT
SPECIFIED IN MINTERMS/MAXTERMS

If the function is specified in one of the two standard forms, its K-
map can be prepared and the function can be minimized. Now we consider
the cases where the functions are not specified in standard forms. In such
cases, the equations can be converted into standard forms using the
techniques, the K-maps obtained and minimized. Alternately, we can
directly prepare K-map using the following algorithm:

1. Enter ones for minterms and zeros for maxterms.

ii.  Enter a pair of ones/zeros for each of the terms with one variable less
than the total number of variables.

iii.  Enter four adjacent ones/zeros for terms with two variables less than
the total number of variables.

iv.  Repeat for other terms in the similar way.

Once the K-map is prepared the minimization procedure is same as
discussed earlier.

The following examples will help in understanding the above procedure:

Example 1 : Minimize the four variable logic function
f (A,B,C,D)= ABCD+A.B.C.D+A.B.C+A.BD+A.C+A.BC+B
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Solution :

The method for obtaining K-map is

L.

ii.

iii.

1v.

Vi.

Vii.

Enter 1 in the cell with A=1,B=1,C =0, D =1 corresponding to
the minterm ABCD

Enter 1 in the cell with A=0,B =1, C =1, D =1 corresponding to
the minterm ABCD .

Enter 1’s in the two cells with A =0, B =0
Enter 1's in the two cells with A =0, B =0, D = 0 (one of these is

already entered) corresponding to the term. ABD

Enter 1's in the two cells with A = 1, B =0, C = 1 corresponding to
the term ABC

Enter 1's in the four cells with A =1, C = 0 (one of them is already
entered) corresponding to the term AC

Enter 1's in the eight cells with B = 0 (all of them except one have
already been entered) corresponding to the term B.

AB
cD 00 01 11 10
0o i 1 1
i
(43 1 1 1
11 1 1 1
10 1 1

4.3 QUINE-Mc CLUSKEY MINIMIZATION
TECHNIQUE

Modem digital systems are designed using complex programmable

logic devices (CPLDs), field-programmable gate arrays (FPGAs), and
other very large scale integrated circuits that can be configured by the end
user. These devices are highly complex and therefore, the techniques
required for designing digital systems using these devices have to be
computer driven rather than manual. A logic minimization technique
which has the following characteristics is therefore, required:

1.

It should have the capability of handling large number of variables.
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2. It should not depend on the ability of a human user for recognising
prime-implicants.

It should ensure minimized expression.

4. It should be suitable for computer solution.

The Quine-McCluskey minimization technique satisfies the above
requirements and hence can be effectively used for the design of logic
circuits. The K-map technique is not suitable for handling the design of
complex digital systems because of the following disadvantages:

1.  Minimization of logic functions involving more than six variables is
unwieldy.

2. Recognition of prime-implicants that may form part of the simplified
function relies on the ability of the human user making it difficult to
be sure whether the best selection has been made.

The Quine-McCluskey method consists of two parts:

1. To find by an exhaustive search all the prime-implicants that may
form part of the simplified function.

2. To identify essential prime-implicants obtained from part 1 and
choose among the remaining prime-implicants those that give an
expression with the least number of literals

The method can be best understood with the help of examples. This
method is also known as Tabular method.

Example 1: Simplify the logic function
Y(A,B,C,D):z m(0,1,3,7,8,9,11,15) the Quine-McCluskey minimization
technique

Solution: Y(A,B,C,D)=>m(0,1,3,7,8,9,11,15)

Step 1: The logic function to be minimized here is in the minterm form,
therefore, we go to step 2.

Step 2: Arrange all the minterms of the function in binary representation
form in a Table according to the number of ones contained and form the
groups containing no ones, one 1, two 1s, three 1s and so on. The groups
are separated by horizontal lines.

Below Table shows the arrangement of groups, minterms, and the
variables. Here group O contains no 1s {0}; group 1 contains minterms
having a single 1 {1, 8}; group 2 contains minterms with two 1s {3, 9};
group 3 contains minterms with three 1s {7, 11}; and group 4 contains
minterms with four 1s {15}.
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Group | Minterm Variables Setup3
A B C D N
0 0 0 0 0 0 N
1 1 0 0 0 1 N
8 1 0 0 0 N
2 3 0 0 1 1 N
9 1 0 0 1 N
3 7 0 1 1 1 N
11 1 0 1 1 N
4 17 1 1 1 1 N

Step 3 : The Boolean algebraic theorem A+A = 1 (Tneorem 1.7) is applied
to pairs of minterms in which only one variable is different and all the
other variables are same. This kind of relationship will be applicable only
to the minterms belonging to adjacent groups of minterms. For this search,
compare each minterm in group (n+1) with each minterm in group and
identify the matched pairs. Put a check (\ ) on each matched pair as shown
in Table 5.15.

The detailed procedure for comparison and matched pairs for Table 5.16 is
given below and another Table 5.17 is prepared,

(1)

(ii)

(iii)

@iv)

v)

(Vi)

(vii)

The minterm O from group 0 is compared with the minterm 1 in the
adjacent group 1. The three variables A, B, C are same in both with
value O and the variable D is 0 in minterm O and 1 in minterm 1.
Check (V) marks are placed on both the terms in Table 5.16 and a
new term is generated as a result of the matching of these two terms
which will contain A =0, 8 = 0. C = 0 and a dash (-) mark is placed
in D. Since the variable D differs and hence it gets eliminated and
the resulting combination of these two terms is ABC.

Next the minterm 0 is compared with the minterm 8. The minterms
match and their combination results in a term BCD. Check mark is
placed on minterm 8 in Table 5.16, check mark on minterm O has
already been placed. A - is placed under variable A.

Similarly, comparison of minterm 1 with 3 resultsin A =0, B=0, C
= -, and D = 1 The minterm 3 is checked in Table 5.16.

Comparison of minterm 1 with minterm 9 yields A=-,B=0,C =0,
and D = 1 and the minterm 9 is checked

Now compare 8 with 3 and 9. The minterms 8 and 3 do not match.
The comparison of minterms 8 and 9 resultsin A=1,B=0,C =0,
and D =-

Next compare the minterms 3 and 7, it resultsin A=0,B=-,C =1,
and D =1 and the minterm 7 is checked in Table 5.16.

Comparison of the minterms 3 and 11 resultsinA=-,B=0,C=1,
and D =1 and the minterm 11 is checked in Table 5.16
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(viii) The minterms 9 and 7 do not match.

(ix) Comparison of the minterms 9 and 11 resultsin A=1,B =0, C = -,
andD=1

(x) Next compare the minterms 7 and 15, the resultis A=-,B=1,C =
1, and D = 1 and the minterm 15 is checked in Table 5.16

(xi) Comparison of the minterms 11 and 15 resultsinA=1,S=-,C=1,
andD=1

(xi) Table 5.17 lists the results of all the above matchings and all of the
minterms in each group have been compared to those in the next
higher group.

Table 5.17 : Combination of minterm groups of two

Group | Minterm Variables Setup3
A B C D N
0 0,1 0 0 0 - N
0,8 - 0 0 0 N
1 1,3 0 0 - 1 N
1,9 - 0 0 - N
8,9 1 0 0 1 N
2 3,7 0 - 1 1 N
3,11 - 0 1 1 N
9,11 1 0 1 N
3 7,15 - 1 1 1 N
11,15 1 - 1 1 N

Step 4 : Next all the minterms in the adjacent groups in Table 5.17 are
compared to see if groups of four can be made by matching. For this the
dashes must be in the same bit position in the groups of two and only one
variable must differ (O in one group and 1 in the other). The matched pairs
of minterms are checked in Table 5.17 and a new Table 5-18 is created.

In Table 5.18 we observe that in each group the two terms are same,
therefore, only one is to be taken in each group.

Table 5.18 : Combination of minterm groups of four

Group Minterm Variables
A B C D

0 0,1,8,9 - 0 0 -
0,8,1,9 - 0 0 -

1 1,3,9,11 - 0 - 1
1,9,3,11 - 0 - 1

2 3, 7,11,15 | - - 1
3,11,7,15 | - - 1 1
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Step 5: Repeat the Process of Grouping of 8 miniterms. In this case both
dashes must be in the same bit position and only one other variable must
be different for matching. Since, there is no matching possible here,
therefore, the process is complete. In general, this same process is repeated
until no further combinations of minterm groups is possible.

Step 6: All nonchecked minterm groups in Tables 5.16, 5.17, and 5.18 are
the prime-implicants of the function. The function can now be written as

Y (A,B,C.D)=BC+BD +CD.......(5.52)

Step 7: Next a prime-implicant table is prepared listing each of the
minterms contained in the original function, PI terms, and the decimal
numbers of minterms that make up the PL Put cross (x) marks in the table
in each row under the minterms contained in that P1. Table 5.19 is the PI
table for the logic equation Eq. (5.21). Find the minterms that contain only
one x in its column. These x's are encircled and (he corresponding PI
terms are checked ()

Table 5.19 : PI table

PL Decimal No Minterms
Terms
0 1 3 7 8 9 11 15
BC 0,1,8,9 ® X ® X
BD 1,3,9,11 X X X X
BD 3,7,11,15 X ® X ®

The minterms O and 8 are contained in only one PI BC the minterms 7
and 15 are contained in only PI CD. Therefore, the prime-implicants BC
and CD are essential prime-implicants. Now observe the other mfnterms
and see whether these are contained in EPIs or not. Here, the minterms 1

and 9 are contained in BCand 7 and 11 are contained in CD. Therefore,
all the minterms of the original function are included in the two EPIs and
the minimized expression will be

Y=(A,B,C,D)=BC+CD .....5.53

Practice Questions:

1. Using Karnaugh’s map simplify the following SO function and
implement it with basic gates

F(A,B,C,D)=(2,3,6,7,8,10,11,12)+d(14,15)

2. Realize the given Boolean expression using NOR gates only.
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Y=(A'+B+C).(A+B+C').(A+B+C').(A+B+C')
. Obtain product of sum expression for the following function and
implement it using NOR gates F(P,Q,R,S)=(1,3,5,6,7,12,13)

F(AB,C.D)=>m(0,1,2,5,6,7,12,13,15) Draw  k-map and find
minimized Boolean expressions.

. What is meant by don’t care conditions? Explain how they are used in
simplifying an expression using a k-map. Use the following example-
F(A,B,C,D)=Xm (1,4,8,12,13,15) d (3,14)

. What are disadvantages of k-map? Explain the Q-M method. Discuss
the terms ‘prime impeccant’, ‘code word’ and ‘reduction table

%k % % %k %k
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Unit 3
5

COMBINATIONAL LOGIC CIRCUITS

Unit Structure

5.0 Introduction- Combinational Logic Circuits
5.1 Multi Input Combinational Circuit

5.2 Multi Output Combinational Circuit

5.3 Code Converters Design and Implementation

5.0 INTRODUCTION COMBINATIONAL LOGIC
CIRCUITS

Combinational Logic Circuits are circuits designed by using
different types of logic gates. A logic gate is a fundamental building block
of any electronic circuit. In other word Combinational Logic Circuits are
memoryless digital logic circuits whose output at any instant in time
depends only on the combination of its inputs. Means these circuits do not
make use of any memory or storage device.

The digital system consists of two types of circuits as -
a) Combinational circuits b) Sequential circuits 2

Combinational circuit consists of logic gates whose output at any
time is determined from the present combination of inputs. The logic gate
is the most basic building block of combinational logic circuit.

A combinational circuit consists of:
o Input variables

. Logic gates

. Output variables

The logic gates accept signals from inputs and output signals are
generated according to the logic circuits working in it. Binary information
from the given data transforms to preferred output data in this process.
Both input and output are apparently the binary signals, i.e. both the input
and output signals are of two probable states, logic ‘1’ and logic ‘0’.
Logical function performed by a combinational circuit is completely
defined by a set of Boolean expressions.
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The function implemented by combinational circuit is depend upon
the Boolean expressions. Below figure shown the combinational circuit
having ‘n’ inputs and ‘m’ outputs. The ‘n’ number of inputs shows that
there are 2" possible combinations of bits at the input.

— —— ]
22— ——> 2
: Combinational :

, Logic ,

n -——-—-1- -—-I-—-blﬂ

Fig. : Combinational circuit having ‘n’ inputs and ‘m’outputs

Combinational logic circuits may be very simple or very complicated and
any combinational circuit can be implemented with only NAND and NOR
gates as these are classified as universal gates

Design Procedure:

At all combinational circuit can be designed by the following steps of
design process- 3

1. Stated problem

Ascertain the input and output variables

The input and output variables are allocated letter symbols
Construction of a truth table to encounter input -output requirements

A

Writing Boolean expressions for numerous output variables in
relations of input variables.

6. The basic Boolean expression is acquired by any method of
minimization — algebraic, or tabulation method. orKarnaugh map
method.

7. A logic diagram is understood from the simplified Boolean
expression using logic gates.

The logic gates are combined in such a way that the output state
depends completely on the input states. Combinational logic circuits have
no memory, timing or feedback loops, there operation is prompt. A
combinational logic circuit performs an operation assigned logically by a
Boolean expression or truth table.

The three main methods of specifying the function of a combinational

logic circuit as-

1. Boolean Algebra: This forms the algebraic expression viewing the
operation of the logic circuit for each input variable whicheverTrue
or False that results in a logic ‘“1°” output.
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2.  Truth Table: A truth table expresses the function of a logic gate by
providing a brief list that shows all the output states in tabular form
for each possible combination of input variable that the gate could
meet.

3. Logic Diagram : This is a graphical representation of a logic circuit
that displays the wiring and connections of each individual logic
gate, signified by a specific graphical symbol that implements the
logic circuit. These logic circuit representations are shown as-

Q=(AB).(A+B).C

— [ S D@ (@O

e | DD | | | D[ |

— D [t | D |k | D | | D | P>

=A== = A () )

Fig. : Combinational Circuit Diagram, Boolean Expression & truth
Table

As combinational logic circuits are made up from discrete logic
gates only, they can also be considered as decision making circuits and
combinational logic is nearby combining logic gates together to process
two or more signals in order to produce at least one output signal
according to the logical function of each logic gate. General combinational
circuits made up from individual logic gates that carry out a anticipated
application comprise Full and Half Adders Multiplexers, De-multiplexers,
Encoders, Decoders etc.

Classification of Combinational Logic:

[Combinational Logic Circuit ]

Arithmetic & Data ) Code )
| Logical Functions Transmission | Converters
v v !
Adders Multiplexers, Binary
Subtracotrs De-multiplexers BCD
Comparitors Encoders 7-segment
Plds Decoders

Fig. Classification of Combinational Logic
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One of the greatest uses of combinational logic is in Multiplexer and
De-multiplexer type circuits. Here, multiple inputs or outputs are
connected to a common signal stripe and logic gates are used to decode an
address to select a single data input or output switch.

5.1 MULTI INPUT COMBINATIONAL CIRCUIT

In processor designs, transistors are protected down for specific
functions. To overcome the restriction of fixed structures of static
architecture in the next generation of computer is an important issue to the
real-world applications. A reconfigurable technique with dynamic
architecture has made it possible to break through the stable limitations of
the current computer systems. In dynamic architecture, systems can
flexibly change their hardware configurations during the course of
computation according to the demands of various functions. Multi input
gates can be made by constructing gates of the same type with fewer
inputs. The figure below shown how a three input AND gate can be made
out of two input AND gates. The same logical standard applies - the
output goes ‘‘low’” (0) if any of the inputs are made “high” (1).

Combinational Logic Circuits are made up from basic logic NAND,
NOR or NOT gates that are connected together to produce more complex
switching circuits. These logic gates are the building blocks of
combinational logic circuits. An example of a combinational circuit-
Decoder, which converts the binary code data present at its input into a
number of diverse output lines, one at a time producing an equivalent
decimal code at its output.

A - - - X
Muliiple ) o Combinational One,/ More
Inputs Logic Circuit i Outputs

C —m

Fig. Multi Input Combinational Circuit

The number of possible input states is equal to two to the power of the
number of inputs: 6

Number of possible input states = 2"
Where,
n = Number or inputs

This increase in the number of possible input states obviously
allows for more complex gate performance. Instead of simply inverting a
single “high” or “low” logic level, the output of the gate will be
determined by whatsoever combination of 1‘s and O‘s is present at the
input stations.
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Since many combinations are possible with just a limited input
stations, there are many different types of multiple-input gates, unlike
single-input gates which can simply be inverters. Each basic gate type will
be shown as its standard symbol, truth table, andoperation.

Types of different Multi Input Combinational Circuit
a) AND Gate

b) NAND Gate

c¢) Negative AND Gate

d) OR Gate

e) NOR Gate

f)  Negative OR Gate

g) Exclusive OR Gate

h)  Encoder

1)  Multiplexer

a) AND Gate:

The simple multiple-input gates to recognize is the AND gate, the
output of this gate will be ‘‘high’” (1) if and only if all inputs are “high”
(1). If any input(s) is “‘low’” (0), the output is certain to be in a “low”
state.

Two input AND gate Three input AND gate | Truth Table

Input,, — ) . Input, _ S
Input, —1 e

AND Gate Circuit Operation:

The truth table means in practical terms is shown in the following
sequence as, with the 2-input AND gate exposed to all possibilities of
input logic levels. An LED provides visual signal of the output logic level.

Circuit Diagram

Output Output

Input, =0 Input, =1 Input, =0 Input, =1
Inputs = 0 InpulA ) 5 Inputs = 1 Inputg =1
Qutput = 0 (no light) N Output = 0 (no light) Output=1 (light!)

Output = 0 (no light)
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It is only with all inputs raised to ‘‘high’’ logic levels that the AND
gate’s output goes ‘‘high,”’ thus stimulating the LED for only one out of
the four input combination states.

b) NAND Gate:

A distinction on the idea of the AND gate is called the NAND
gate. The term ‘‘NAND’’ is a verbal contraction of the words NOT and
AND. Fundamentally, a NAND gate performs the same as an AND gate
with a NOT gate connected to the output terminal. To represent this output
signal inversion, the NAND gate symbol has a bubble on the output line.
The truth table for a NAND gate is as one might expect, precisely
opposite as that of an AND gate

NAND gate Truth Table
Input, —
Wi _DD— Output A | B | Qutput
010 1
Ol1 1
110 1
1 17°% 0

As with AND gates, NAND gates are made with more than two
inputs. In such cases, the same over-all standard relates: the output will be
“low” (0) if and only if all inputs are ‘‘high’’ (1). If any input is “‘low”’
(0), the output will go “high” (1).

¢) Negative AND Gate:

A Negative-AND gate purposes the same as an AND gate with all its
inputs inverted (connected through NOT gates). In trust with standard gate
symbol convention, these inverted inputs are showed by bubbles.
Opposing to most publics® first nature, the logical conduct of a Negative-
AND gate is not the same as a NAND gate. Its truth table, essentially, is
matching to a NOR gate:

Negative AND gate Truth Table Circuit Diagram

2 - input Negative-AND gate nput,,

Qutput
Input, —d
Output
Inputy —a

Output

Inpulg

nCJI,‘
Qutput
neutg 4

== |1O|O|=
= |1o|=|Co|@

o|lo|o
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d) OR Gate:

Next gate to study is the OR gate, so-called because the output of
this gate will be ‘‘high’” (1) if any of the inputs are ‘‘high’’ (1). The
output of an OR gate goes ‘‘low’” (0) if and only if all inputs are ‘‘low’’

0).

Two input Three Input Truth Table
lnputaDO out | 1MPutA
Inputs utpu :REE:B 3— Qutput AlB Dutput
t olo|l o
011 1
110 1
T | 1

A two-input OR gate’s truth table appearances like the following
sequence of drawings proves the OR gate’s function, with the 2-inputs
undergoing all possible logic levels. An LED delivers visual indication of
the gate’s output logic level

Circuit Diagram

Output

Input, =0 Input, =1

Inputg =1

Input, =1 Input, =0
Inputg =1 .
Output = 1 (light!) Qutput =1 (light])

Inputg = 0
Output = 0 (no light) Inputg =0
Output =1 (light!)

A condition of any input being outstretched to a ‘‘high’’ logic level
makes the OR gate’s output go ‘‘high,’” thus stimulating the LED for three
out of the four input combination states.

e) NOR gate:

The NOR gate is an OR gate with its output inverted, just like a
NAND gate is an AND gate with an inverted output

NOR Gate Truth Table Circuit Diagram
2 - input NOR gate Inpul\
- A | B | Output | t.l :D—Do— Output
Input;: :D>— Output olo 1 nputg
01 0
110 0
1)1 0




NOR gates, like all the other multiple-input gates realized thus
outlying, can be synthetic with more than two inputs. Still, the same
logical standard applies. The output goes ‘‘low’” (0) if any of the inputs
are made ‘‘high’’ (1). The output is ‘‘high’’ (1) only when all inputs are
“low’” (0)

f) Negative-OR Gate:

A Negative-OR gate functions the same as an OR gate with all its
inputs inverted. In possession with standard gate symbol convention, these
inverted inputs are showed by bubbles. The performance and truth table of
a Negative-OR gate is the same as for a NAND gate:

NOR Gate Truth Table Circuit Diagram

Input , o Input,
Inputg Utpit B OUIDUI Output
.1 Inputy

Input
Output
Inputg

alalolol=
= 1o =]

»
]
0

g) Exclusive OR Gate:

This gate is direct variations on three basic functions- AND, OR,
and NOT. The Exclusive-OR gate, however, is approximately fairly
different. Exclusive-OR gates output a ‘‘high’” (1) logic level if the inputs
are at different logic levels, either O and 1 11 inputs are at the same logic
levels. or 1 and 0. Contrariwise, the output a ‘‘low’” (0) logic level if the
The Exclusive-OR ( XOR) gate has both a symbol and a truth table pattern
that is distinctive:

Exclusive OR Gate Truth table

Input, :)D_ exiti A | B | Output
Inputg 010 0
01 1
1]0 1
1] 1 0

There are equivalent circuits for an Exclusive-OR gate made up of
AND, OR, and NOT gates, impartial as there were for NAND, NOR, and
the negative-input gates. A somewhat direct method to simulating an
Exclusive-OR gate is to start with a regular OR gate, then add additional
gates to avoid the output from going ‘‘HIGH’’ (1) when both inputs are
“HIGH™’ (1):
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h) Encoder:

An encoder is a digital circuit that achieves the inverse operation of
a decoder. Therefore, the opposite of the decoding process is called
encoding. An encoder is a combinational circuit that converts binary
information from 2" input lines to a maximum of ‘n’ exclusive output
lines.

—
T
2odata - —r
nputs 2nn = dat
: : n-data
2 Encoder : outputs
S
Enable ——™
mputs ——

It has 2" input lines, only one ‘‘1’” is active at any time and ‘n’
output lines. It encodes one active inputs to a coded binary output with ‘n’
bits. In an encoder, the number of outputs is less than the number of
inputs.

i) Octal-to-Binary Encoder:

It has eight inputs and the three outputs that produce the equivalent
binary number. It is assumed that only one input has a value of ‘1’ at any
given time

Inputs Outputs
Dy | Dy D, Ds; Dy Ds Dg D; A B C
1 |0 0 0 0 0 0 0 0 0 0
0 |1 0 0 0 0 0 0 0 0 1
0 |0 1 0 0 0 0 0 0 1 0
0 |0 0 1 0 0 0 0 0 1 1
0 |0 0 0 1 0 0 0 1 0 0
0 |0 0 0 0 1 0 0 1 0 1
0 |0 0 0 0 0 1 0 1 1 0
0 |0 0 0 0 0 0 1 1 1 1

Table: Input / Output of Octal-to-‘Binary Encoder’

The encoder can be implemented with OR gates whose inputs are
determined straight from the truth table. Output z is equal to 1, when the
input octal digitis 1 or 3 or 5 or 7. Output y is 1 for octal digits 2, 3, 6, or
7 and the output is 1 for digits 4, 5, 6 or 7. These conditions can be
expressed by the following output Boolean functions:

z= D+ D3+ Ds+ D5
y= D2+ D3+ D6+ D7
x= D+ Ds+ Dg+ D7
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The encoder can be applied with three OR gates. The encoder
defined in the below table, has the restriction that only one input can be
active at any given time. If two inputs are active concurrently, the output
produces an approximate combination.

For eg. if D3 and Dg are 1 concurrently, the output of the encoder
may be 111. This does not represent either D¢ or D3;. To resolve this
problem, encoder circuits must establish an input priority to ensure that
only one input is encoded. If we establish a higher priority for inputs with
higher subscript numbers and if D; and D¢ are 1 at the same time, the
output will be 110 because D¢ has higher priority than Ds.

D D¢ Ds D Ds Do Dh Iy

1
} x= D+ Ds+ Dg+ D7
A1
} y= Do+ D3+ Ds+ D7
\
j z=Th+ Ds+ Ds+ Dy

Fig. Circuit diagram of Octal-to-Binary Encoder

Another issue in the octal-to-binary encoder is that an output with
all 0’s is produced when all the inputs are 0; this output is same as when
Dy is equal to 1. The inconsistency can be resolved by providing one more
output to indicate that at least one input is equal to 1.

i) Multiplexer: (Data Selector):

A multiplexer or MUX, is a combinational circuit with more than
one input line, one output line and more than one selection line. A
multiplexer selects binary information present from one of many input
lines, depending upon the logic status of the selection inputs, and
directions it to the output line. Generally, there are 2" input lines and n
selection lines whose bit combinations determine which input is selected.
The multiplexer is labelled as MUX in block diagrams. A multiplexer is
also called a data selector, since it selects one of many inputs and leads the
binary information to the output line.
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Fig. multiplexer

j) 2-to-1- line Multiplexer:

This circuit has two data input lines, one output line and one
selection line. When S= 0, the upper AND gate is enabled and Iy has a
path to the output.

When S=1, the lower AND gate is enabled and I; has a path to the

}j>~

I

S—!i—[>&

Fig.Circuit diagram 2-to-1- line Multiplexer

The multiplexer acts like an electronic switch that selects one of the two
sources.

S Y
Iy
1 I,

Table: Truth table
ii) 4-to-1-line Multiplexer:

A 4-to-1-line multiplexer has four (2n) input lines, two (n) select
lines and one output line. It is the multiplexer comprising of four input
channels and information of one of the station can be selected and
transmitted to an output line according to the select inputs combinations.
Selection of one of the four input station is possible by two selection
inputs.
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Each of the four inputs Iy through I3, is applied to one input of AND
gate. Selection lines S; and Sy are decoded to select a particular AND gate.
The outputs of the AND gate are applied to a single OR gate that provides
the 1-line output.

Io
_\

—L_
I
b Y

——
Iz

D—

Fig. Circuit diagram of 4-to-1-line Multiplexer

Sy So | Y
0 0 Iy
0 1 I,
1 0 I,
1 1 I5

Table: Truth table 4-to-1-line Multiplexer

To establish the circuit operation, consider the case when S;So= 1.
The AND gate associated with input I, has two of its inputs equal to 1 and
the third input connected to I,. The other three AND gates have at least
one input equal to 0, which makes their outputs equal to 0. The OR output
is now equal to the value of I, providing a path from the selected input to
the output.

The data output is equal to 10 only if S1=0 and Sp=0; Y=1pS‘Sy’.
The data output is equal to I only if S;=0 and Spo=1; Y=1LS;‘Sy’.
The data output is equal to [ only if S;=1 and Sp=0; Y=1,5;S,.
The data output is equal to Iz only if S;=1 and Sp=1; Y=135,S,.

When these terms are ORed, the total expression for the data output is,
Y= I()Sl’S()’+ I]S]’So +Izslso’+ 135150.

In decoder, multiplexers may have an enable input to control the
operation of the unit. When the enable input is in the inactive state, the
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outputs are disabled, and when it is in the active state, the circuit functions
as multiplexer.

5.2 MULTI OUTPUT COMBINATIONAL CIRCUIT

A combinational circuit has output values that depend only on the
current input values irrespective of presence or absence of
responses.Circuits that implement these functions may be combined into
expensive single circuit with multiple outputs by sharing some gates
desirable in the implementation of the single functions. Boolean
expressions are used to output a Boolean function of number of variables.
There are circuits which have multiple outputs and multiple inputs.
Conventional combinational circuits are normally acyclic but these circuits
can have feedbacks (cycles) which will give more minimized expressions
as compared to usual combinational circuits. Thoughtful integration of
such cycles or feedbacks in usual combinational circuits eventually results
in reduction in number of literals in the expression of the combinational
circuits. The reduction in literal counts decreases the number of gates
required to implement the expressions of the combinational circuits.
Hence, the decrease in number of gates leads to reduction in transistor
counts. A cyclic combinational circuit is defined as the circuit whose
output depends on present inputs only, but at the same time contains one
or more feedbacks (cycles)

Types of multiple-output circuits:

1) Decoder a) 2 to 4 decoder b) 3-to-8 Line Decoder
ii) Demultiplexer a) 1 to 4 Demultiplexer b) 3 to 8 Demultiplxer

i) Decoder:
A decoder is a combinational circuit that converts binary information

from ‘n’ input lines to a maximum of ‘2™’ unique output lines. The
general structure of decoder circuit is 17

_.- _.-
n-data ~ : ' - ™
mnputs - :
s “ .
n:om : Possible
Decoder 2® outputs
Enable ——* :
: . "
nputs -

Fig. Decoder block diagram
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The encoded information is presented as ‘n’ inputs producing 2n
possible outputs. The 2" output values are from 0 through 2"'. A decoder
is provided with enable inputs to activate decoded output based on data
inputs. When any one enable input is unasserted, all outputs of decoder are
disabled

a) Binary Decoder (2 to 4 decoder):

A binary decoder has ‘n’ bit binary input and a one activated
output out of 2n outputs. A binary decoder is used when it is necessary to
activate exactly one of 2" outputs based on an n-bit input value.

A B

E4F-

Yo=AB

Y1=AB

Y,=AB

Y3=AB

JUUU

Enable
Fig. 2 to 4 decoder circuit diagram

Here the 2 inputs are decoded into 4 outputs, each output signifying one of
the minterms of the two input variables.

Inputs Outputs
Enable A B Y; Y2 Ya Yo
0 X X 0 0 0 0
1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0
: | 1 1 1 0 0 0

Fig.Truth table 2 to 4 decoder circuit

As shown in the truth table, if enable input is 1 (EN= 1) only one of the
outputs (Yo — Y3), is active for a given input.

The output Yy is active, i.e., Yo= 1 when inputs A= B= 0, Y, is active
when inputs, A= 0 and B=1,
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b) 3- to-8 Line Decoder:

A 3-to-8 line decoder has three inputs (A, B, C) and eight outputs (Y-

Y7). Based on the 3 inputs one of the eight outputs is selected

The three inputs are decoded into eight outputs, each output
signifying one of the minterms of the 3-input variables. This decoder is
used for binary-to-octal conversion. The input variables may represent a
binary number and the outputs will signify the eight digits in the octal
number system. The output variables are mutually exclusive because only
one output can be equal to 1 at any one time. The output line whose value
is equal to 1 signifies the minterm equivalent of the binary number
currently accessible in the input lines.

Inputs Outputs
A B C Yo Yy Y: Ys | Ya Ys Yo | Y7
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

Fig.Truth table 3- to-8 Line Decoder

A

v

Yo

Y1

Y2

Y1

¥s

Xr

UUUUUUUU

Fig. 3- to-8 Line Decoder
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ii) Demultiplexer:

Demultiplex means one into many. Demultiplexing is the process of
taking information from one input and transmitting the same over one of
several outputs. A demultiplexer is a combinational logic circuit that
receives information on a single input and transmits the same information
over one of several (2") output lines

o
1 input signal—| DEMUX : g‘
: 5
-
'n'- Control

signals
Fig. Demultiplexer circuit

The block diagram of a demultiplexer which is opposite to a
multiplexer in its operation is shown above. The circuit has one input
signal, ‘n” select signals and 2" output signals. The select inputs determine
to which output the data input will be connected. As the serial data is
changed to parallel data, i.e., the input produced to appear on one of the n
output lines, the demultiplexer is also called a —data distributer.

i) 1-to-4 Demultiplexer:

A 1-to-4 demultiplexer has a single input, Din, four outputs (Y to
Y3) and two select inputs (S; and Sy).

: 1:-4 — Y1
Din — & pEMUX

[ ]

S1 So
Fig. 1-to-4 Demultiplexer

——» Y2

—-Y3

The input variable Din has a path to all four outputs, but the input
information is directed to only one of the output lines. The truth table of
the 1-to-4 demultiplexer is shown below.
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Enable Sq So Din Yo Y1 Y2 Y3
0 % X X 0 0 0 0
1 0 0 0 0 0 0 0
il 0 0 1 1 0 0 0
1 0 1 0 0 0 0 0
1 0 1 1 0 1 0 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 1

Table: Input /Output of 1-to-4 Demultiplexer

From the truth table, it is clear that the data input, Din is connected
to the output Yy, when S;= 0 and Sp= 0 and the data input is connected to
output Y| when S;= 0 and So= 1. Similarly, the data input is connected to
output Y, and Y3 when S;= 1 and Sp= 0 and when S;= 1 and So= 1,
respectively. From the truth table, the expression for outputs can be
written as follows,

Yo=S1°So‘Din
Y 1= S1°SeDin
Y2=S1S¢'Din
Y3= S1S¢Din

ilin o1 So

JUUU

Fig. Circuit diagram 1-to-4 Demultiplexer

Now, using the above expressions, a 1-to-4 demultiplexer can be
applied using four 3-input AND gates and two NOT gates. Here, the input
data line Din, is connected to all the AND gates. The two select lines S,
So enable only one gate at a time and the data that appears on the input line
passes through the selected gate to the associated output line.

b)1-to-8 Demultiplexer :

A 1-to-8 demultiplexer has a single input, Din, eight outputs (Y to
Y7) and three select inputs (S,, S; and Sy). It distributes one input line to
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eight output lines based on the select inputs. The truth table of 1-to-8
demultiplexer is shown below.

Din [S2 [S1 [Se |Y7 | Y6 |Ys Y4 [Ys |[Y2 Y1 | Y
0 X X X 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 0 1 0 0 0
1 1 0 0 0 0 0 1 0 0 0 0
1 1 0 1 0 0 1 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0

Table: Input/output of 1-to-8 Demultiplexer

From the above truth table, it is clear that the data input is connected with
one of the eight outputs based on the select inputs. Now from this truth
table, the expression for eight outputs can be written as follows

Yo = So’SI'SO” Din Y4 = S2S1°So” Dia
Y, = S,’SI’SO Din Ys = S2S/’Se’ Din
Y, = So°’SISO’ Din Y6 = S2S:1S¢” Din
Ys; = S2°S1S0 Din Y7 = S2S:1S¢” Din

Now using the above expressions, the logic diagram of a 1-to-8
demultiplexer can be drawn as shown below. Here, the single data line,
Din is connected to all the eight AND gates, but only one of the eight
AND gates will be enabled by the select input lines. For example, if
S2S1Sp= 000, then only AND gate-0 will be enabled and thereby the data
input, Din will appear at Yo. Similarly, the different combinations of the
select inputs, the input Din will appear at the respective output.

Din 5 51 So

v Iv[¥y

Fig.Circuit diagram 1-to-8 Demultiplexer
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5.3 CODE CONVERTERS DESIGN AND
IMPLEMENTATION

Introduction:

The converters, which convert one code to another code are called as
code converters. These code converters basically consist of Logic gates.
The availability of a large variety of codes for the same distinct elements
of information outcomes in the use of different codes by different digital
systems. It is necessary to use the output of one system as the input to the
other. Thus a conversion circuit must be introduced between the two
systems if each uses different codes for the same information. A code
converter is a circuit that makes the two systems well-matched even
though each uses the different codes. Code converters are used for
protecting private information from detectives. They are also used to
enhance data portability and tractability. Code converters have found
applications in algorithm generation and communication. Some of the
major codes are as follows:

Binary Code: A symbolic representation of data/information is called
code. The base or radix of the binary number is 2. Hence, it has two
independent symbols. The symbols used are 0 and 1. A binary digit is
called a bit. A binary number consists of sequence of bits, each of which is
either a 0 or 1. Each bit carries a weight based on its position comparative
to the binary point. The weight of each bit position is one power of 2
greater than the weight of the position to its immediate right.

Code Converters Design and Implementation done with the help of
following way as below-

a) Binary code to Gray code converter
b) Parity Bit Generator

1) Even Parity Generator

ii) Odd Party Generator

c) Parity Checker
i) Even Parity Checker
ii) Odd Party Checker

a) Binary code to Gray code converter:

Let us implement a converter, which converts a 4-bit binary code
WXYZ into its equivalent Gray code ABCD.

The following table shows the Truth table of a 4-bit binary code to Gray
code converter.
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Binary code WXYZ
WXYZ Gray code

ABCD
0000 0000
0001 0001
0010 0011
0011 0010
0100 0110
0101 0111
0110 0101
0111 0100
1000 1100
1001 1101
1010 1111
1011 1110
1100 1010
1101 1011
1110 1001
1111 1000

Fig. -bit binary code to Gray code converter

Boolean Expression:
From Truth table, we can write the Boolean functions for each output bit
of Gray code as below

A =2%2m(8,9,10,11,12,13,14,15)
B =2Xm(4,5,6,7,8,9,10,11)

C =Xm(2,3,4,5,10,11,12,13)

D = ¥m(1,2,5,6,9,10,13,14)

Let us simplify the above functions using 4 variable K-Maps.
K-Map:
Let us simplify the above functions using 4 variable K-Maps.

The following figure shows the 4 variable K-Map for simplifying Boolean
function, A.
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WX 1z 00 01 11 10

00

01

11 |1 1 111

1o lla |3 L& | app==e- w

Fig. 4 variable K-Maps

By grouping 8 adjacent ones, we got A=WA=W.
The following figure shows the 4 variable K-Map for simplifying Boolean
function, B.

Yz
wx \C 00 01 11 10

00

otfla [a Ja]a}}-oo WX

11

wofls [+ a2} wx

Fig. Simplification of 4 variable -K-Map
There are two groups of 4 adjacent ones. After grouping, we will get B as

B=W'X+WX'=WOHXB=W'X+WX'=WDHX

Similarly, we will get the following Boolean functions for C & D after
simplifying.

C=X'Y+XY'=XDYC=X'Y+XY'=XDY
D=Y"Z+YZ'=YDZD=Y'"Z+YZ'=YDZ

Circuit Diagram:

The following figure shows the circuit diagram of 4-bit binary code to
Gray code converter.

) >

Fig. 4-bit binary code to Gray code converter
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Since the outputs depend only on the present inputs, this 4-bit Binary code
to Gray code converter is a combinational circuit. Similarly, you can
implement other code converters.

b) Parity Bit Generator:

There are two types of parity bit generators based on the type of
parity bit being generated. Even parity generator generates an even parity
bit. Similarly, odd parity generator generates an odd parity bit.

i) Even Parity Generator ii) Odd Party Generator
i) Even Parity Generator:

Let us implement an even parity generator for a 3-bit binary input,
WXY. It generates an even parity bit, P. If odd number of ones present in
the input, then even parity bit, P should be ‘1’ so that the resultant word
contains even number of ones. For other combinations of input, even
parity bit, P should be ‘0’. The following table shows the Truth table of
even parity generator.

Binary Input | Even Parity

WXY bit P
000
001
010
011
100
101
110
111

—_— OO O ==

Table. Even parity generator

From the above Truth table, we can write the Boolean function for even
parity bit as
P=WX'Y+WXY'+WXY'+WXYP=WX'Y+WXY'+WX'Y'+WXY
SP=W'X'Y+XY)+WXY'+XY)=P=W' X' Y+XY)+WX'Y'+XY)
SP=WXPY)+WXDY)=-WHhXPY=2P=WXPY)+WXDY)=WD
XPY

The following figure shows the circuit diagram of even parity generator.
w

X

Y

/.

Fig. circuit diagram of even parity generator
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This circuit consists of two Exclusive-OR gates having two inputs
each. First Exclusive OR gate having two inputs W & X and produces an
output W @ X. This output is given as one input of second Exclusive-OR
gate. The other input of this second Exclusive-OR gate is Y and produces
anoutput of W X P Y.

ii) Odd Parity Generator:

If even number of ones present in the input, then odd parity bit, P
should be ‘1’ so that the resultant word contains odd number of ones. For
other combinations of input, odd parity bit, P should be ‘0’.Follow the
same procedure of even parity generator for implementing odd parity
generator. The circuit diagram of odd parity generator is shown in the
following figure.

Fig: circuit diagram of odd parity generator

The above circuit diagram consists of Ex-OR gate in first level and
Ex-NOR gate in second level. Since the odd parity is just opposite to even
parity, we can place an inverter at the output of even parity generator. In
that case, the first and second levels contain an Ex-OR gate in each level
and third level consist of an inverter

¢) Parity Checker:

There are two types of parity checkers based on the type of parity
has to be checked. Even parity checker checks error in the transmitted
data, which contains message bits along with even parity. Similarly, odd
parity checker checks error in the transmitted data, which contains
message bits along with odd parity

i) Even Parity Checker ii) Odd Party Checker
i) Even parity checker:

Let us implement an even parity checker circuit. Consider a 3-bit
binary input, WXY is transmitted along with an even parity bit, P. So, the

resultant word data contains 4 bits, which will be received as the input of
even parity checker.
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It generates an even parity check bit, E. This bit will be zero, if the
received data contains an even number of ones. That means, there is no
error in the received data. This even parity check bit will be one, if the
received data contains an odd number of ones. That means, there is an
error in the received data. The following table shows the Truth table of an
even parity checker.

4-bit Received | Even Parity
Data WXYP Check bit E
0000 0

0001
0010
0011
0100

0101
0110

0111
1000
1001
1010
1011

1100
1101

1110
1111

—_— = (O = O O = = OO = O = =

o

Table: Truth Table - even parity checker

From the above Truth table, we can perceive that the even parity
check bit value is ‘1°, when odd number of ones present in the received
data. That means the Boolean function of even parity check bit is an odd
function. Exclusive-OR function satisfies this condition. Hence, we can
directly write the Boolean function of even parity check bit as

=WOXDYPPE=WPXPYDP
The following figure shows the circuit diagram of even parity checker.

W

X

Y

/.

Fig: circuit diagram of even parity checker
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This circuit consists of three Exclusive-OR gates having two inputs
each. The first level gates produce outputs of WHXWDHX & YOPYDP.
The Exclusive-OR gate, which is in second level produces an output of

WEXDYPDPWDXPYDP
0Odd Parity Checker:

Consider a 3-bit binary input, WXY is transmitted along with odd
parity bit, P. So, the resultant word data contains 4 bits, which will be
received as the input of odd parity checker.

It generates an odd parity check bit, E. This bit will be zero, if the
received data contains an odd number of ones. That means, there is no
error in the received data. This odd parity check bit will be one, if the
received data contains even number of ones. That means, there is an error
in the received data. Follow the same procedure of an even parity checker
for implementing an odd parity checker. The circuit diagram of odd parity
checker is shown in the following figure.

) >—

Fig: circuit diagram of odd parity checker

The above circuit diagram consists of Ex-OR gates in first level
and Ex-NOR gate in second level. Since the odd parity is just opposite to
even parity, we can place an inverter at the output of even parity checker.
In that case, the first, second and third levels contain two Ex-OR gates,
one Ex-OR gate and one inverter correspondingly.

esfoskoskock
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ARITHMETIC CIRCUITS

Unit Structure

6.1 Arithmetic Circuits

6.2 Introduction to arithmetic circuits
6.3 Adder

6.4 BCD Adder

6.5 Excess-3 Adder

6.6 Binary Subtractors

6.7 BCD Subtractors

6.1 INTRODUCTION

Combinational circuit is a circuit in which we have to combine the

different gates in the circuit, for example encoder, decoder, multiplexer
and demultiplexer. Some of the characteristics of combinational circuits
are as below —

The output of combinational circuit at any instant of time, depends
only on the stages present at input stations.

The combinational circuit do not use any memory. The previous
state of input does not have any effect on the present state of the
circuit.

A combinational circuit can have an ‘n’ number of inputs and ‘m’
number of outputs.

Following are the various types of arithmetic circuits —

Adder, BCDAdder, Binarysubtractor, BCDsubtractor etc.

6.2 ADDER

Adder arithmetic circuit can classified into two main types as —

a)

Half Adder b)  Full Adder
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a) Half Adder:

Introduction:

Half adder is a combinational logic circuit with two inputs and two
outputs. The half adder circuit is designed to add two single bit binary
number A and B. It is the basic building block for addition of two single
bit numbers. This circuit has two outputs carry and sum.

Block Diagram Truth Table Circuit diagram
A
A — s Sim Inputs Qutput . }J 5
e A Ayl B |8 €
0|0 |00 G
B— - (amy
4] 1 10
£ S8 I+ 1 e A+
b) Full Adder:
Introduction:

Full adder is designed to overcome the drawback of Half Adder
circuit. It can add two one-bit numbers A and B, and carry C. The full
adder is a three input and two output combinational circuit

Block Diagram Truth Table Circuit diagram
* — s Inputs | Output || i==p—:
fliAker A | B |Cin | S Co N m
4{ "0 {0]0 |0 |0
0O |01 |1 [O
0 |1]0 |1 |0
0O |11 |0 |1
1 |0]0 |1 |O
1 (0|1 |0 |1
1 |1]0 |0 |1
I |11 |1 |1

N-Bit Parallel Adder:
Introduction:

The Full Adder is capable of adding only two single digit binary
number along with a carry input. But in practical we need to add binary
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numbers which are much longer than just one bit. To add two n-bit binary
numbers, we need to use the n-bit parallel adder. It uses a number of full
adders in cataract. The carry output of the previous full adder is connected
to carry input of the next full adder.

4. Bit Parallel Adder:
Introduction:

“In the block diagram, A, and By represent the Least Significant
Bits(LSB) of the four bit words A and B. Hence Full Adder-0 is the lowest
stage. Hence its Cj, has been permanently made 0. The rest of the
connections are precisely same as those of n-bit parallel adder is shown in
fig. The four bit parallel adder is a very common logic circuit.

Block diagram:
A Bs Az Bz Ay B1 A Bao
Cn G Full Adder | " Cv! Full Adder | &0 Co rull Adder | ©°  Co Full Adder Co
3 2 1 | 0
5z 5z St So
6.4 BCD ADDER
Introduction:

A 4-bit binary adder that is accomplished of adding two 4-bit words
having a BCD (binary-coded decimal) format. The result of the addition is
a BCD-format 4- bit output word, demonstrating the decimal sum of the
addend and augend, and a carry that is generated if this sum exceeds a
decimal value of 9.

Use of BCD Adder:

A BCD 1-digit adder is a circuit that adds two BCD digits in parallel
and also produces the Sum digit in BCD along with the essential
correction logic. It can be seen that a 4-bit binary adder is used originally
to add two BCD digits with a carry-input. When the binary sum is less
than or equal to 9, it also correctly represents the sum in BCD. When the
binary sum is greater than 9, however, it does not represent the correct
BCD sum. The sum in BCD is to be attained by adding 6 to it.
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In the BCD representation system each digit is encoded into its
binary equivalent with four (4) bits.

Decimal BCD
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Table: BCD representation system

Observe that only 10 of the 16 possible bit-patterns are used in
BCD. That means the remaining 6 patterns could be treated as don't-care
cases. For the arithmetic addition of two decimal digits in BCD, the
maximum value that may be produced as the resultis 9 + 9 + 1 = 19 (two
largest operands plus the carry). If we try to add two decimal digits in
BCD with a 4-bit ripple-carry adder we will get a binary sum extending
from O to 19. When the binary sum is less than or equal to 9, it may
represents the sum in BCD. When the binary sum is greater than 9,
however, it does not represent the correct BCD sum. The sum in BCD is to
be obtained by adding 6 to it.

Perform the following addition in BCD as explained above
D7+4 2)3+2 3)9+9

The above examples should benefit you realize when the
conversion is necessary and what should be done to perform the
conversion correctly.

Here is a block diagram of a 1-digit BCD adder

X[0-3]  Y[0-3]
1 1
carry-out 4-bit
Adder

[~ carry-in

2[0-3]

carry-out —(o__r\F 4-bit .
Adder
T
S[0-3]1

Fig. Block diagram of a 1-digit BCD adder
117




Complete the truth table below

Inputs Binary Sum BCD Sum Decimal
Number

Cin ‘ X | Y | Cout | Z | Cout ‘ S

0 0000 | 0000 |O 0000 |0 0000

0 0000 | 0001 |O 0001 |0 0001 1

0 0001 | 0001

0 0101 | 0100

0 0101 | 0101

0 0101 | 0110

0 1000 | 1000 |1 0000 |1 0110 |16
0 1000 | 1001
0 1001 1001
1 1001 1001

Table: Truth table - 1-digit BCD adder

Upon an examination of the 1-digit BCD adder block diagram
shown above, you should notice that the only block you do not have a
circuit for is the —Sum > 977 block. Having the circuit just excitingly
appear on your circuit diagrams

3.4.4 Excess-3 Adder:

The excess-3 code is a non-weighted code used to express code used
to express decimal numbers. It is a self-complementary Binary Coded
Decimal (BCD) code and numerical system which has partial
representation.

The primary benefit of excess-3 coding over non-biased coding is
that a decimal number can be nines' complemented as easily as a binary
number can be ones' complemented, just by inverting all bits.Excess-3 is a
modified form of a BCD number. The excess-3 code can be derived from
the natural BCD code by adding 3 to each coded number.

For example, decimal 12 can be represented in BCD as 0001 0010.
Now adding 3 to each digit we get excess-3 code as 0100 0101 (12 in
decimal). With this information the truth table for BCD to Excess-3 code
converter can be determined as-
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BCD code Excess-3 code
Decimal
B; B By Bo E; Ez Ey Eo
0 0 0 0 0 0 0 1 1
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 0 1
3 0 0 1 1 0 1 1 0
4 0 1 0 0 0 1 1 1
5 0 1 0 1 1 0 0 0
6 0 1 1 0 1 0 0 1
7 0 1 1 1 1 0 1 0
8 1 0 0 0 1 0 1 1
9 1 0 0 1 1 1 0 0

Table: Truth Table - Excess-3 Adder

From the truth table, the logic expression for the Excess-3 code outputs
can be written as,

Ez = 2m(,6,7,8,9) + 2d (10, 11, 12, 13, 14, 15)
E, = 2m(1,2,3,4,9) + 2d (10, 11, 12, 13, 14, 15)
E: = 2m(0,3,4,7,8) + 2d (10, 11, 12, 13, 14, 15)
Eoh = 2Zm(0,2,4,6,8) + Xd (10,11, 12,13, 14, 15)

K-map Simplification:

For E3

E~-B:B:'By'+ By (Ba+ Ba)

For Ea
B 3}3\1& 11
00 0
01 0
11 X
10 2
E:=B1'Ba'+ BabBa E

=B1@Ba
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Circuit Diagram:

BCD Code

B3 B2 B1 Bo

?7 ?? ?’ ?7 Excess-3 Code
Eo- Bp"
;D—Et—BnOB1

Ez= BzB1'Bo”
+ B2’ (Bo+ B1)

%b

Es= Ba+ B: (Bo+ B1)

Fig.Excess-3 Adder circuit
6.6 BINARY SUBTRACTORS

Introduction:

The subtraction can be carried out by taking the 1's or 2's
complement of the number to be subtracted. For example we can perform
the subtraction (A-B) by adding either 1's or 2's complement of B to A.
That means we can use a binary adder to perform the binary subtraction.

4. Bit Parallel Subtractor:

Introduction:

The number to be subtracted (B) is first accepted through inverters
to obtain its 1's complement. The 4-bit adder then adds A and 2's
complement of B to produce the subtraction. S3 S, S; Sy represents the
result of binary subtraction (A-B) and carry output C,, represents the
polarity of the result. If A > B then C,,; = 0 and the result of binary form
(A-B) then C,, = 1 and the result is in the 2's complement form.

Block diagram:

Number A Number B

f_A_'\

1] YT

A A A A

+Ve

Co 4 bit parallel binary adder .—‘ c

S & 5 S

Result of subtraction

Fig. 4 Bit Parallel Subtractor
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Types of Subtractors:
Subtractors circuit can classified into two main category as-
a) Half Subtractor b) Full Subtractors

a) Half Subtractors:

Introduction:

Half subtractor is a combination circuit with two inputs and two
outputs. It produces the difference between the two binary bits at the input
and also produces an output to indicate if a 1 has been borrowed. In the
subtraction (A-B), A is called as Minuend bit and B is called as
Subtrahend bit.

Truth Table Circuit Diagram
Inputs Output A _ﬁ_ D=A+B
B
_A | B |(A—B) Borrow
0. 8 0 0 ?
oul 1 1 1 )7 B=AB
il 0 '
kst | S0 e
a) Full Subtractors
Introduction:

The drawback of a half subtractor is overcome by full subtractor.
The full subtractor is a combinational circuit with three inputs A,B,C and
two output D and C'. A is the 'minuend’, B is 'subtrahend', C is the 'borrow’
produced by the previous stage, D is the difference output and C' is the
borrow output.

Truth Table Circuit Diagram
Inputs Qutput A g5
Al Blc | aBgC QZ
L S— D=A+B+C
o|o0o|o 0o o . )
==
| b |4 s . F
0|1 |® . | o
" C'=AC+AB+BC
0L R i :
. =
AL ET i i i _
10|00 || 0 o0
-
P TE EAN
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6.7 BCD Subtractor

Introduction:

A Binary Coded Decimal (BCD) adder is a circuit which adds two 4-
bit BCD numbers in parallel and produces a 4-bit BCD result. The block
diagram of conventional BCD adder. The circuit must include the
correction logic to produce valid BCD output.subtractor an electronic
logic circuit for calculating the difference between two binary numbers,
the minuend and the number to be subtracted, the subtrahend . A full
subtractor performs this calculation with three inputs- subtrahend bit,
minuend bit, and borrow bit

BCD Subtraction:

Addition of signed BCD numbers can be accomplished by using 9’s
or 10’s complement methods. A negative BCD number can be expressed
by taking the 9’s or 10’s complement.The BCD Subtraction using 9’s
Complement and BCD Subtraction using 10‘s Complement numbers and
BCD Subtraction process using it.

9s Complement:
The 9’s complement of a decimal number is found by subtracting

each digit in the number from 9. The 9’s complement of each of the
decimal digits is as follows:

Digit 9’s Complement
0 9
1 8
2 7
3 6
4 5
5 4
6 3
7 2
8 1
9 0

Table: 9°’s Complement

BCD Subtraction using 9’s Complement:

In 9°s Complement subtraction when 9°’s Complement of smaller
number is added to the larger number carry is produced. It is essential to
add this carry to the result. When larger number is subtracted from smaller
one, there is no carry, and the result is in 9’s complement form and
negative. This is demonstrated in following ways as:
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Regular 9’s Complement Subtraction

subtraction
(a) 8 8
-2 + 7 9’s complement of 2
6 1 5
L + 1 Add carry to result
6
(b) 2 8 28
-1 3 + 86
1 5 1 14 9’s complement of 13
L+ 1
15
(©) 1 8 18
-2 4 + 75 9’scomplement of 24
- 6 9 3 9’s complement of result

l (No carry indicates that
the answer is negative and
- 0 6 incomplement form)

The 10’s complement of a decimal number is equal to the 9’s complement
plus 1.

BCD Subtraction using 10s Complement:

The BCD Subtraction using 10’s Complement can be used to
accomplish subtraction by adding the minuend to the 10’s Complement of
the subtrahend and dropping the carry. This is demonstrated in following
ways as:

Regular subtraction 10’s Complement Subtraction

() 8 8
-2 + 8 10’s complement of 2
6 46  Drop carry
(b) 2 8 28
-1 3 + 87 10’s complement of 13
1 5 -4 15 Drop carry
(c) 18 18
-2 4 + 7 5 10’s complement of 24
- 6 9,4 10’s complement of result

(No carry indicates that
the answer is negative and
0 6 in complement form)
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From the above examples we can review steps for 9’s Complement BCD
subtraction as follows:

Find the 9’s complement of a negative number
Add two numbers using BCD addition

If carry is generated add carry to the result otherwise find the 9s
complement of the result.
BCD input (operand 2)
."'"__'A_"\
Bs 52 E’1 Bn

uuuu A

e 99|

. Ay A A Ay By 3231300_{, circuit
out : in~
Ignored 4-bit Adder -——l
S3 S; 845 N
IC7483
BCD input
{operand 1)
{1 I .1
Ay A, Ap Ay By By By By
Cout : Cun 0 \
4-bit Adder 1
H. 8. 0.,
b IC7483
i BCD
} Adder
circuit
_L i | ]
; Ay Ay Ay Ag B3 By By By
E. Ch=0
8| Cp 4-bit Adder
O ignored -1-
9 85, 6,8,
IC7483
Y 3
p i e i o B
If =
J_ T_ ] circuit adds 1
in the result
= A B, B, By B
e e nl i,
gnore S, 32 S, SD of the result
l l l I IC7483
J o
Sign BCD output {magnitude)

Fig.4 bit BCD substractor using 9’s complement
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Above figure demonstrate the logic diagram of the circuit to
implement above stated steps to perform BCD subtraction using 9’s
Complement method. First binary adder finds the 9’s Complement of the
negative number. It does this by inverting each bit of BCD number and
adding 10 (1 0 1 0,) to it. Let us find the 9’s complement of 2

Ignore carry —»

0 0 1
1 I 0
I 0 1
1 0 1 1

0 <«—BCD for2
1 <«—Inverting each bit
0 <«—Add 10(1010,)

1 <«—9’s complement for 2

Next two 4-bit binary adders accomplish the BCD addition. The
last adder finds the 9°’s Complement of the result if carry is not generated
after BCD addition otherwise it adds carry in the result. From the above
examples we can summarize steps for 10s complement BCD subtraction

as:

¢ Find the 10’s complement of a negative number
¢ Add two numbers using BCD addition

e If carry is not generated find the 10s Complement of the result.
BCD input (operand 2)
T T

ErL T
T e
T 10
1lof1]0 ??\?? complement
= Ay Ap A Ay By By By By circuit
Com
Fiiored 4-bit Adder C=t
S38, 8,8,
| IC7483
BCD input |
{operand 1)
I [ O
A; Az A; Ay 53525,9000 \
. B
Cout 4-bit Adder LJ_
$385:8: 5 2
4 IC7483
BCD
} Adder
\—I_'_ﬁ}__‘ circuit
= |A Ay Aj Ag By By By By
Cout _
| Abi . Gy =0
‘7'9 i bit Adder —-L in J
538,55 2
IC7483
ooty ly 3
0 YWY ;
= A B. B, B, circuit finds
Co P e By Ty s B2 By By Cin 10's complement
out____ | _bi f
iGired 4-bit Adder of the risull
$; 8,85, circuit pe-forms
1 l I l 17483 GeBi0AB
Sign BCD output (magnitude) J

Fig.4 bit BCD substractorusing 10’s complement
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The logic diagram of the circuit to implement above stated steps to
perform subtraction using 10s Complement method. First binary adder
finds the 10’s Complement of the negative number (9’s complement + 1).
Next two 4-bit binary adders perform the BCD addition. Lastly, last 4-bit
binary adder finds the 10’s complement of the number if carry is not
generated after BCD addition.

esfoskoskosk
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MULTIPLEXER

Unit Structure
7.1 Introduction
7.2 Multiplier

7.3 Comparator

7.1 INTRODUCTION

Multiplexer is a distinct type of combinational circuit. There are ‘n’
data inputs, one output and ‘m’ select inputs with 2m = ‘n’. It is a digital
circuit which selects one of the ‘n’ data inputs and routes it to the output.
The selection of one of the ‘n’ inputs is done by the selected inputs.
Depending on the digital code applied at the selected inputs, one out of ‘n’
data sources is selected and transmitted to the single output ‘Y’. ‘E’ is
called the strobe or enable input which is useful for the cascading. It is
commonly an active low terminal that means it will complete the required
operation when it is low.

Block diagram:

Data nel
: ——Y (output
|“P‘Ut< Multiplexer {pritput)

NE
Enable

Input [ {

Sea 5: 5

Select Input

Fig: n:1 Multiplexer

Types of Multiplexer:
Multiplexers come in multiple variations
a)  2:1 multiplexer

b) 4:1 multiplexer
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c) 16:1 multiplexer
d) 32:1 multiplexer

a) 2 :1 multiplexer:

Block Diagram:
D —
L. —
2k
MUX s
E o —g
Fig.2:1 multiplexer
Truth Table:
Enable | Select Qutput
E S Y
0 0
1 0 Da
1 1 D:
x= Don't care
Table: Truth Table
Demultiplexers:
Introduction:

A demultiplexer achieves the reverse operation of a multiplexer i.e.
it receives one input and distributes it over several outputs. It has only one
input, n outputs, m select input. At a time only one output line is selected
by the select lines and the input is transmitted to the selected output line.

Types of demultiplexer:

Demultiplexers comes in multiple variations
a) 1 : 2 demultiplexer

b) 1 : 4 demultiplexer

c) 1 : 16 demultiplexer
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d) 1 : 32 demultiplexer

a) 1 : 2 demultiplexer

Block diagram:
| B R
I
1:2
DEMUX
L Y.
AR :
Fig. 1:2 Demux
Truth Table:
Enable | Select Output
E S Yo Y,
0 X 0 0
1 0 0 D;,
1 1 D;, 0
Table : 1:2 Demux truth table
7.6 COMPARATOR
Introduction:

Comparator is a combinational logic circuit that compares the
magnitudes of two binary quantities to determine which one has the
greater magnitude. In other word, a comparator determines the association
of two binary quantities. An ex-OR gate can be used as a basic
comparator. Digital comparators are also called as binary or logic
comparators.

Usage:

This logic circuit is used for testing whether the binary number at
one input is greater than or less than or equal to another binary number. In
other word, Comparator is a very useful combinational circuit capable of
comparing two numbers as input in binary form and determines whether
one number is greater than, less than or equal to other number.
Comparators can also be used as window detectors. A comparator is used
to compare two voltages and determine whether a given input voltage is
under voltage or over voltage. Comparators are used in central processing
unit (CPUs) and microcontrollers (MCUs).
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Types of Comparators:

There are two types of comparators:
1. Equality or Identity Comparator
2. Magnitude or inequality comparator

1. Equality or Identity Comparator:

Identity Comparator is a digital comparator that has only one output.
The circuit of the equality comparator is made up from an exclusive NOR
gate (XNOR) per pair of input bits. If the two inputs are equal (both logic
1 or both logic 0) then a logic 1 is output

Consider two 4-bit binary numbers A and B so

A =A3AAA
B = B;B,B;B,
" = 8 & [T x maf"—a am ¢

Fig. Identity Comparator
Here each subscript represents one of the digits in the numbers.
Equality:

The binary numbers A and B will be equal if all the pairs of
significant digits of both numbers are equal, i.e.,

A3=Bg, A2= B2, A]=B] al’ldAo = Bo

Since the numbers are binary, the digits are either 0 or 1 and the
Boolean function for equality of any two digits Ai and Bi can be expressed
as

Xi=A;B; + Z, +E
we can also replace it by XNOR gate in digital electronics.

X ;is 1 only if A; and B, are equal

For the equality of A and B, all variables (for i=0,1,2,3) must be 1.
So the equality condition of A and B can be implemented using the AND
operation as
X ;is 1 only if A; and B; are equal
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The binary variable (A=B) is 1 only if all pairs of digits of the two
numbers are equal

2. Magnitude or inequality comparator:

To manually determine the greater of two binary numbers, you have
inspect the relative magnitudes of pairs of significant digits, starting from
the most significant bit, gradually proceeding towards lower significant
bits until an inequality is found. When an inequality is found, if the
corresponding bit of A is 1 and that of B is 0 then we conclude that A>B.

This sequential comparison can be expressed logically as:
Fig.2
(A>B)=A,B,+ x,A, B, + x;x,A B, + x;x,x, A, B,

(A< B) = AsB, + x, A2B, + x,x, AiB, + X,X, X, AoB,

=B

—)
opa}—>o—

Fig.2 inequality comparator

!

=B

(A>B) and (A < B) are output binary variables, which are equal to 1 when
A>B or A<B respectively.

EXERCISE
1. List and Explain Applications of Encoder.

2. Explain in detail Binary Encoder

List of References

1.  https://study.com/academy/lesson/basic-combinational-circuits-
types-examples.html

2. https://www.electronics-tutorials.ws/combination/comb _1.html

3. https://www.tutorialspoint.com/computer logical organization/com
binational circuits.htm

4.  https://www.tutorialspoint.com/digital circuits/digital arithmetic_cir
cuits.htm

5.  https://www.allaboutcircuits.com/textbook/digital/chpt-3/multiple-
input-gates/
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Unit 4

MULTIPLEXER AND DEMULTIPLEXER

Unit Structure

8.0 Multiplexer

8.1 Demultiplexer
8.2 Decoder

8.3 Encoder

8.4 Arithmetic Logic
8.5 Unit Questions
8.6 Further Reading

8.0 OBJECTIVE

This chapter takes a comprehensive look at another class of
building blocks used to design more complex combinational circuits, and
covers building blocks such as multiplexers and demultiplexers and other
derived devices such as encoders and decoders. Particular emphasis is
given to the operational basics and use of these devices to design more
complex combinational circuits.

8.1 MULTIPLEXER

e Multiplex means many into one.

e A digital multiplexer is a combinational circuit that selects binary
information from one of many input lines and directs it to a single
output line.

e The selection of a particular input line is controlled by a set of
selection lines.

e [t is also called a data selector is a device that selects between several
analog or digital input signals and forwards it to a single output line
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Block Diagram :

z
|&

Fig.1 Block Diagram

The circuit has n input signals, m select signals and 1 output signal.
Note that, m control signals can select at the most 2™ input signals thus n
<=2" 4x1 Multiplexer

—
—P 4x1

——3| Multiplexer

[

Fig.2 4x1 multiplexer block diagram

The circuit diagram of a 4-to-1 multiplexer is shown in Fig.
Depending on control inputs S; & So, one of the four inputs Do to D3 is
steered to output Y.

Let us write the logic equation of this circuit. Clearly, it will give a
SOP representation, each AND gate generating a product term, which
finally are summed by OR gate. Thus,
Y=Sl'So’Do + Sl'SoDl + S1S¢'Ds + S]S()D3
If S1=0 and Sp=0
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Y=0'0'Dp+0'0D;+00"D,+00 D3
Y=1.1 Do + 1.0 D; + 0.1 D> + 0.0 D3 0’=1)
Y=Dy

In other words, for S;Sop = 00, the first AND gate to which Dy is
connected remains active and equal to Dy and all other AND gate are
inactive with output held at logic 0.

Thus, multiplexer output Y is same as D.

If Dp=0, Y=0 and if Dp=1, Y= 1.

Control Output

Signals

S1 So Y
0 0 DO
0 1 DI
1 0 D2
1 1 D3

A logic diagram of 4-line to 1-line multiplexer is shown in figure 3

Each of the four input lines, Dy to Ds, is applied to one input of an
AND gate. Selection lines s; and sy are decoded to select a particular AND
gate. The function table in the figure lists the input-to-output path for each
possible bit combination of the selection lines.

To demonstrate the circuit operation, consider the case when s;sg =
10. The AND gate associated with input D, has two of its inputs equal to 1
and the third input connected to D».

The other three AND gates have at least one input equal to O,
which makes their output equal to 0.

The OR-gate output is now equal to the value of D,, thus providing
a path from the selected input to the output.

| >, .
n @ [ S—
2. B

T =

Fig.3 logic diagram of 4 to 1 multiplexer
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8.2 DEMULTIPLEXER

° Demultiplex means one into many.

° A demultiplexer is a circuit that receives information on a single line
and transmits this information on one of 2n possible output lines.

° The selection of a specific output line is controlled by the bit values
of n selection lines.

Select lines
12 m

=

Input

Fig.4. Demultiplexer Block diagram

Demultiplexer has single data input (D) and n outputs (Yo — Yu.1).
While number of Select lines depends on number of outputs.

If ‘n’ is number of outputs and ‘m’ is number of select lines then the
relation between them is given by n = 2™,

1 to 4 Demultiplexer:
Outputs
—> Y0
1“1_’“t 1:4 e 11
P> DEMUX | .
V3

I

S1 S0
Fig. 5 Block diagram 1 to 4 Demultiplexer

The truth table of this type of demultiplexer is given below.

Input Control Signals Output

Si Se |Ys Y, Y:; |Y,
D 0 0 0 0 0 D
D 0 1 0 0 D 0
D 1 0 0 D 0 0
D 1 1 D 0 0 0
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From the truth table it is clear that, when S;=0 and S¢= 0, the data
input is connected to output Yo and when S;= 0 and Sp=1, then the data
input is connected to output Y.

Similarly, other outputs are connected to the input for other two
combinations of select lines.

Y, =S,.5,D
Y, =S,.5,D
Y, =S5,.5,D
Y, =5,.5,D
Data ° Yo
P
& > % “
o/
. _'\ Y2
L r . e
—{
Fig.6 Logic Diagram 1 to 4 Demultiplexer
Decoder:

o A decoder is similar to a demultiplexer, with one exception-there is
no data input.

° The only inputs are the Select signals.

° Decoder is a logic circuit that converts n-bit binary input code into m
output lines.

° The decoders presented here are called n-to-m line decoders where
m < 2n.

o Each output line will be activated for only one of the possible
combination of inputs.
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== n-to-2" -1

i Decoder 5

Fig. 7 Block diagram
2 to 4 Decoder:

—’YO
Sy ———»

210 4 > Y

Decoder
St —— — Y,

— Y3

The two inputs are decoded into four outputs, each output
representing one of the minterms of the 2-input variables. The two
inverters provide the complement of the inputs, and each one of the four
AND gates generates one of the minterms. A particular application of this
decoder would be a binary-to-octal conversion. The input variables may
represent a binary number, and the outputs will then represent the four
digits. However, a 2-to-4 line decoder can be used for decoding any 2-bit
code to provide four outputs, one for each element of the code.

Y, =55,
Y, = §1S_0
Y, = EIS_O
Y, = §1 S_o
Inputs QOutputs
Sl S() Y3 Yz Yl Y0
X X 0 0 0
0 0 0 0 0 1
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1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0
[y | SO
— 1
w —
®
— O+
*r— :)' [
Encoder:

° An Encoder is a combinational circuit that performs the reverse
operation of Decoder.

° An encoder converts an active input signal into a coded output signal
° There are n input lines, only one of which is active.

o Internal logic within the encoder converts this active input to a coded
binary output with m bits.

ninputs< « | Encoder

.|

—
m outputs

Decimal-to-BCD Encoder:

Figure shows a common type of encoder-the decimal-to-BCD encoder.
The switches are push-button switches like those of a pocket calculator.

When button 3 is pressed, the C and D OR gates have high inputs;
therefore, the output is

ABCD=0011
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If button 5 is pressed, the output becomes
ABCD=0101

When switch 9 is pressed,

ABCD= 1001

5V

Encoders Decoders

Encoders may have more than one | Decoders may have more than one
input line active and may have | input line active at any given time but
more than one output line active at | only one output line will be active

any given time

Number of input lines is more than | Number of output lines is more than
number of output lines number of input lines

Number of input lines = 2Number | Number of output lines = 2Number of
of output lines input lines

Encoder is logic device used to | Decoder is logic device used to
create binary code for given | decode binary input to give decimal
decimal input output

Priority Encoder:

A priority encoder is a practical form of an encoder. The encoders
available in IC form are all priority encoders. In this type of encoder, a
priority is assigned to each input so that, when more than one input is
simultaneously active, the input with the highest priority is encoded.
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In previous cases we saw that if two or more input lines are
activated then output code is invalid. Therefore we have to modify the
circuit. The modification is we have to define the priority of given
number. It means whenever two or more inputs are applied at a time,
internal hardware will check this condition and if priority is set such that
higher input is to be taken into account and remaining are considered as
don’t care then output code that will appear is of higher input.

Arithmetic Logic Unit (ALU):

The arithmetic logic unit (ALU) is a digital building block capable
of performing both arithmetic as well as logic operations. Arithmetic logic
units that can perform a variety of arithmetic operations such as addition,
subtraction, etc., and logic functions such as ANDing, ORing, EX-ORing,
etc., on two four-bit numbers are usually available in IC form. The
function to be performed is selectable from function select pins.
Functional details of these ICs are given in the latter part of the chapter
under the heading of Application-Relevant Information.

More than one such IC can always be connected in cascade to perform
arithmetic and logic operations on larger bit numbers.

8.5 QUESTIONS

1.  Define Multiplexer.

2. Write short note on 4 —to- 1 Channel Multiplexer.

3. Explain 4- to -2 Channel Multiplexer With help of suitable diagram.
4.  What is De-Multiplexer?

5. What is Digital Encoder? Explain 4- to -2 Bit Binary Encoder with

help of suitable diagram.

6.  What is Priority Encoder? Explain 8- to -3 Priority Encoder with the
help of suitable diagram.

eskesteskesk
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FLIP-FLOPS

Unit Structure

9.0 Objective

9.1 Introduction to Sequential Circuits

9.2 SR Flip-Flop

9.3 D Flip-Flop

9.4 JK Flip-Flop

9.5 Race Around Condition

9.6 Master Slave JK Flip-Flop

9.7 T Flip-Flop

9.8 Conversion of flip-flop from one type to another

9.9  Applications of Flip-Flop

9.0 OBJECTIVE

° After completing this chapter, you will be able to: Understand the
basics of Sequential Logic Circuits.

o Learn different types of Flips —Flops, their working and applications
with the help of suitable diagrams.

9.1 INTRODUCTION TO SEQUENTIAL CIRCUITS

Sequential Circuits: Digital electronics is classified into
combinational logic and sequential logic. Combinational logic output
depends on the inputs levels, whereas sequential logic output depends on
stored levels and also the input levels.

Sequential logic elements perform as many different functions as
combinational logic elements; however, they do carry out certain well-
defined functions, which have been given names.

Latch:

A latch is a 1-bit memory element. You can capture a single bit in a
latch at one instant and then use it later; for example, when adding
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numbers, you can capture the carry-out in a latch and use it as a carry-in in
the next calculation.

Register: The register is just m latches in a row and is able to store an m-
bit word; that is, the register is a device that stores one memory word. A
computer’s memory is just a very large array of registers.

Flip-flop:

In the electronics world, a flip-flop is a type of circuit that has two
states (i.e., on or off, 1 or 0). These circuits are often used to store state
information. By sending a signal to the flip-flop, the state can be changed.
Flip-flops are used in many electronics, including computers and
communications equipment.

Flip-flops and latches are used as data storage elements. Such data
storage can be used for storage of state, and such a circuit is described as
sequential logic. When used in a finite-state machine, the output and next
state depend not only on its current input, but also on its current state (and
hence, previous inputs). It can also be used for counting of pulses, and for
synchronizing variably-timed input signals to some reference timing
signal. A flip-flop can be symbolically represented as shown below:

Set Pin 5 i) Outpu
Reset ; Invert
Pin B Q Outp
A
Clock |

Generally, Set and Reset Pins are input pins; whereas Q and Q" are output
pins.

When Set Pin= logic 1, the output Q is SET to 1. (Q"=0)
When Reset Pin=logic 1, the output Q is RESET to 0. (Q"=1)

Note that Q" is complement of Q at all times.

9.2 SR FLIP- FLOP

The R-S flip-flop is the most basic of all flip-flops. The letters ‘‘R’’ and
‘S’ here stand for RESET and SET.

It is constructed by feeding the outputs of two NOR gates back to the
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other NOR gates as shown below:

RS Flip-Flop composed of two NOR Gates:

R

To understand the operation of the RS-flip-flop (or RS-latch) consider the
following scenarios:

e S=1 and R=0:
¢ The output of the bottom NOR gate is equal to zero, Q'=0.

e Hence both inputs to the top NOR gate are equal to one, thus,
Q=l.

e Hence, the input combination S=1 and R=0 leads to the flip-flop
being set to Q=1.
e S=0and R=1:
¢ The output of the top NOR gate is equal to zero, Q=0.

¢ Hence, the inputs to the bottom NOR gate are equal to 1, thus
[ ] Q\:l
e  We say that the flip-flop is reset, that is reset to Q=0.

e S=0and R=0:

e Assume the flip-flop is set (Q=0 and Q'=1), then the output of
the top NOR gate remains at Q=1 and the bottom NOR gate
stays at Q'=0.

e Similarly, when the flip-flop is in a reset state (Q=1 and Q'=0), it
will remain there with this input combination.

e Therefore, with inputs S=0 and R=0, the flip-flop remains in its
state.

e S=1and R=1

e We can summarize the operation of the RS-flip-flop by the
following truth table.

e This input combination must be avoided
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We can summarize the operation of the RS-flip-flop by the following truth
table.

R S Q Comment
0 0 Q Q Hold State
0 1 1 Q Set

1 0 0 1 Reset

1 1 ? ? Avoid

Note, the output Q&#39; is simply the inverse of Q.
An RS flip-flop can also be constructed from NAND gates.

S-R Flip-Flop Using NAND Gate:

A basic NAND gate SR flip-flop circuit provides feedback from
both of its outputs back to its opposing inputs. The term “Flip-flop” means
that the output can be “flipped” into one logic Set state or “flopped” back

into the opposing logic Reset state.

The NAND Gate SR Flip-Flop

Basic SR Flip-Flop Circuit:

1 S (set)
S o— L eQ o I * ] x Q
SR
Flip-flop
gl i B il
R @— —e Q 1 Y Q
o I &
R (reset)
Symbol Circuit
The Set State:

To understand the operation of the RS-flip-flop (or RS-latch) consider the
following scenarios:

S'=1 and R =0:

° In a NAND gate, if one of the input =0, then output of NAND
gate=1.

° Using this logic, the lower NAND gate Y will be Q’=1, assuming
B=0.
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° Let us consider the upper NAND gate X now. A=0 since Q’=1 from
above, but S’=1. Therefore, output of X will be 0, that is Q=0. This
is exactly what we had assumed when we said let B=0.

° Thus, the SR flip-flop is said to be RESET to 1. Q=0. Q’=1

S'=0 and R =1:

° Using the same logic, the upper NAND gate X will be Q=I,
assuming A=0.

° Let us consider the lower NAND gate Y now. B=1 since Q=1 from
above, but R*=1. Therefore, output of Y will be 0, that is Q"=0. This
is exactly what we had assumed when we said let A=0.

° We say that the flip-flop is set, that is set to Q=1. Q =0.

S’=0 and R*=0:

o S*=0 and R'=0 is not desired or invalid condition. This must be
avoided. This condition will cause both Q and Q" to go high together
to logic 1. In such a case, the flip-flop will become unstable.

S'=1and R'=1:

° When both S* and R are equal to logic HIGH, the outputs Q and Q
can be at 1 or 0 logic level. This depends on the states of S™ and R*
before this input condition existed. Thus, S"=R’=1 results in no
change of state of the outputs.

Truth Table for this Set-Reset Function

S R Q Q State

1 1 Previous state | Previous state | No change
1 0 0 1 RESET
0 1 1 0 SET

0 0 ? ? Forbidden

9.3 D FLIP-FLOP

The Delay Flip-Flop or D Flip-flop is easily formed from SR flip-
flop by adding a NOT gate(inverter) as shown in the logic diagram

We have observed that S’=0, R’=0 is a forbidden condition in SR
NAND gate flip-flop. We can prevent this from happening by connecting
a NOT gate between S and R inputs.
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The D flip-flop ensures that S and R can never be simultaneously equal to
each other.

The single input then is called the Data input or simply D input.

D-type Flip-Flop Circuit:

Data (D) @ LS —>_ | .

Clock (Clk) @— :
Symbol : m‘
D @—] —0 0 |
C-type ! Gated SR Flip-flop !
Clk @— Flip-flop B S —
| @T Circuit

If D=1, then S=1 in the above circuit resulting in Q=1 and Q=0
If D=0, then R=1 in the above circuit resulting in Q’=1 and Q=0.

Thus, the D input condition is copied to the output Q when the
clock input is active. Once the clock input goes low, the output at Q and
Q" will remain unchanged. We say that the output is “latched” at logic O or

logic 1.

Truth Table for the D-type Flip Flop:

Clk D Q Q Description

1»0 X Q Q Memory no change
T»1 0 0 1 Reset Q » 0

T»1 1 1 0 SetQ»1

Note that: | and 1 indicates direction of clock pulse as it is assumed D-
type flip flops are edge triggered

9.4 JK FLIP-FLOP

We have seen that S=0 and R=0 condition in SR NAND flip-flop is
forbidden and should be avoided. Also, while Enable input is HIGH, the
correct latching may not occur, if S or R changes state during this period.
To overcome these two problems, the JK flip-flop was developed. The
inputs J and K are derived from its inventor Jack Kilby.
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The operation of JK flip-flop is same as the SR flip-flop for same S
and R inputs. The difference is that it has no forbidden or invalid states of
SR flip-flop.

The JK flip flop is obtained by adding two NAND gates to SR
NAND gate flip-flop as shown below:

The Basic JK Flip-flop:

Toggles on leading edge SR flip-flop
of clock signal /

o« Cg it

) RSy
J J-K B N | AR e

Hip-flop |

Ck e—> Clk | I
K e— —8Q g } | P10 Q

I R J

B el |

mbol Circuit

Both the S and the R inputs of the previous SR bi-stable have now
been replaced by two inputs called the J and K inputs. Thus, J =S and K =
R.

The two 2-input AND gates of the gated SR bi-stable have now been
replaced by two 3-input NAND gates with the third input of each gate
connected to the outputs at Q and Q’. This cross coupling of the SR flip-
flop allows the previously invalid condition of S = “1” and R = “1” state to
be used to produce a “toggle action” as the two inputs are now interlocked.

If the circuit is now “SET”, then the J input is inhibited by the “0”
status of Q through the lower NAND gate. If the circuit is “RESET” the K
input is inhibited by the “0” status of Q through the upper NAND gate. As
Q and Q’ are always different we can use them to control the input. When
both inputs J and K are equal to logic “1”, the JK flip flop toggles as
shown in the following truth table
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The Truth Table for the JK Function:

Same as

SR Latch

toggle
action

Clock Input
Description
Memory
no change
X 0 0 0 1
! 0 1 1 0
ResetQ » 0
X 0 1 0 1
! 1 0 0 1
SetQ» 1
X 1 0 1 0
! 1 1 0 1
Toggle
l 1 1 1 0

9.5 RACE-AROUND CONDITION

Before getting into the race around condition, let us have a look at
the JK flip-flop’s truth table.

Input Outputs
J K |Q Q
0 X | X Same as Same as | No
previous previous | change
Clock comments
Input
1 010 Same as Same as | No
previous previous | change
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1 0 |1 0 1 Reset
1 1 |0 1 0 set
1 1 1 | Opposite Toggle
of
previous

Here, Q is the present state and Q" is the next state. As you can see,
when J, K and Clock are equal to 1, toggling takes place, i.e. The next
state will be equal to the complement of the present state.

Now, let us look at the timing diagram of JK flip-flop.

T
1 <> 1 1 1 1 i

0 0 0 0 0|_

CLK

7
0 (t+1) E——
s

At

[

Here, T is the time period of the clock whereas delta t is the
propagation delay. The delay between input and output is called a
propagation delay.

This is what was expected, but the output may not be like this all
the time. This is where Race around condition comes into the play.

Let us look at the timing diagram of JK flip-flop when the race around
condition is considered

T
1 €« 1 1 1 1 1

0 0 0 0 OF

o (1) R 1]
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When J, K and Clock are equal to 1, toggling takes place. Here,
propagation delay has also been reduced, so the output will be given out at
the instant input is given. So there is a toggling again. Therefore,
whenever Clock is equal to 1 there are consecutive toggling. This
condition is called as Race around condition. To put it in words, “For JK
flip-flop if J, K and Clock are equal to 1 the state of flip-flop keeps on
toggling which leads to uncertainty in determining the output of the flip-
flop. This problem is called Race around condition. *“’” This condition also
exists in T flip-flop since T flip-flop also has toggling options.

9.6 MASTER-SLAVE JK FLIP-FLOP

° The master slave JK flip flop is a combination of a clocked JK flip-
flop and a clocked SR flip-flop. The clocked JK flip-flop acts as the
master and the clocked SR flip-flop acts as the slave.

° Master is positive level triggered and due to the presence of an
inverter in the clock line, the slave is negative level edge triggered.
Hence when clock=1, the master is active and slave is inactive. Vice
versa happens when clock=0.

o

>0

Figh. Master slave JK FF

¢ The following is truth table of master slave flip flop.

Input Output
Case CLK J K Qut @ n+1 Remark
I X 0 0 Q. Q. No Change
o | 0 0 Qn Qn No Change
111 I 1(1) 0 1 0 1 Reset
v I1(1) 1 0 1 0 Set
v (D) 1 1 @n Q. Toggle

Fig 7 Truth table of Master slave jk FF
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Operation:

Case I: When clock is not given, both master and slave are inactive and
there will be no change in outputs.

Case II: For clock=1, master is active, slave inactive. As J=K=0, output of
master Q and Q' will not change. As soon as clock goes to 0, slave
becomes active, and master is inactive. But since input to slave S and R is
same, output of slave will also remain same.

Case III: For clock=1, master is active and slave is inactive. When J=0
and K=1, outputs of master will be Q=0, Q'=1, which will be inputs to
slave. When clock=0, slave becomes active and takes inputs 0,1 to give
output Q=0, Q'=1. This output will not change if clock is again made land
then 0. Hence we get a stable output from master and slave.

Case IV: For clock=1, master is active and slave is inactive. When J=1
and K=0, outputs of master will be Q=1, Q'=0, which will be inputs to
slave. When clock=0, slave becomes active and takes inputs 1,0 to give
output Q=1, Q'=0. This output will not change if clock is again made 1
and then 0. Hence we get a stable output from master and slave.

Case V: When clock =1, J=K=1, master output will toggle. So S and R
will invert. But slave remains inactive all this time since clock is 1. As
soon as clock becomes 0, slave becomes active and master becomes
inactive. So slave will also toggle. These changed outputs are returned
through feedback to the master, but master does not respond to them
because clock is now 0 and master is inactive. Thus, in one clock period,
master and slave both toggle only once, avoiding race condition caused by
multiple toggling

9.7 T FLIP-FLOP

We can construct a T flip — flop by any of the following methods
(1) Connecting the output feedback to the input, in SR flip — flop.

(2) Connecting the XOR of T input and Q PREVIOUS output to the
Data input, in D flip — flop.

(3) Wiring the J and K inputs together and connecting it to T input, in
JK flip — flop. This is illustrated in the figures below
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CLK ¢
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Figure (1) From SR flip flop

TﬁD_ _LQ

CLK > Ly Q

Figure (2) From D Flip flop

L
D- a
S

Figure (3) From JK Flip flop

)
9]

T )

}

Working:

Toggle Flip flop changes its output whenever it is edge-triggered.
What it means is that whenever the clock changes its state from low to
high or high to low.

Truth Table of T flip — flop

Previous Next
T QPrev Q\ Prev QNext Q\ Next
0 0 1 0 1
0 1 0 1 0
1 0 1 1 0
1 1 0 0 1
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The disadvantage of T flip flop is that the state of the flip-flop at an
applied trigger is known only when read with the previous state.

T flip flops are not available as Integrated Circuits(ICs). But, they
can be easily constructed using SR flip-flop, JK flip-flop or D flip-flop as
shown above.

9.8 CONVERSION OF FLIP-FLOP FROM ONE TYPE
TO ANOTHER

We have discussed four flip-flops-SR, D, JK and T flip-flops so
far. It is possible to convert one flip-flop from one type to another very
easily. The steps required for such conversion are:

1. Consider the truth table of the desired flip-flop.

2. Fill in the excitation values of the flip-flop in hand for each
combination of present and next state.

Get a simplified expression for each input using Karnaugh Maps.

4. Draw the logic circuit diagram of the flip-flop to be formed
according to the simplified expression. Use flip-flop in hand and
logic gates to achieve this

Let us understand this with an example. Let us consider converting SR
flip- flop to a D flip flop.

Step 1. Prepare truth table of desired flip flop, that is D flip flop.

Step 2. SR flip-flop has two inputs S and R. Write the excitation values of
SR flip flop for each combination of present state and next state. The

Input Present state Next state
D Q@ Q (t+1)
0 0 1
0 1 0
1 0 1
1 1 1

above table will now be modified to

Input Present state | Next state SR flip-flop inputs
D Q(t) Q(t+1) S R
0 0 1 0 X
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0 1 0 0 1

1 0 1 1 0

1 1 1 X 0
Step 3.

From the above table, we can write the Boolean functions for each input
as below.

S=m2+d3S=m2+d3
R=m1+dOR=m1+d0

We can use 2 variable K-Maps for getting simplified expressions for these
inputs. The k-Maps for S & R are shown below

K-Map for S K-Map for R
Q(t) Q(t)
DNLO 1 DNLO 1
0 0 X 1D

1 I1 x!...D 1

So, we got S =D & R = D' after simplifying

Step 4.

The circuit diagram of D flip-flop is shown in the following figure

¥ — :

[} ]

1 S '
D= =— 9t}

1 SR 1

] ]

: :T: D Fi p-Flop 4

1 |}
278 H— Q)

D Flip-Flop ) R '

T e e S A G, '

clk
This circuit contains a NOT gate connected in addition to SR flip-flop.

Other conversions can be similarly worked out.

9.9 APPLICATIONS OF FLIP-FLOP

Flip-flops are used in numerous applications, such as
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(1) Registers

(2) Counters

(3) Event Detectors

(4) Data Synchronizers
(5) Frequency Divider

1) Registers:
Registers are storage devices used to store memory. Each flip-flop

can store a single bit. Figure 1 shows cascading three D flip-flops to store
3-bit information.

FF1 FF2 FF3

Clock ——> Clk Ql- ’—> Clk Ql- ’—> Clk Ql—

Figure 1  3-bit register formed by cascading three D flip-flops

The data can be shifted within registers in/out of the register by
applying clock pulses. These registers are called shift registers and can be
pictorially represented as in Figure 2.

Data in

Data Data Dat
in =-== out oe:na

Serial-in serial-out right-shift registers Parallel-in serial-out left-shift register

Data in

e el

Data out Data out
Serial-in parallel-out shift register Parallel-in parallel-out shift register

Figure 2  Varicus kinds of shift registers

2) Counters:

Counters are used for the purpose of counting. A series of flip —
flops are cascaded to form counters. These counters can be synchronous or
asynchronous. They can be positive-edge triggered or negative-edge
triggered. Counters are used as up-counter, down counter, ring counter,
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Johnson counter etc. Figure 3 shows a 3-bit asynchronous positive edge
triggered up-counter.
Qg Q; Q-

1_Dg QUJ 1_D-1 Q-]J 1_D2 QQJ

FF1 FF2 FF3

414 —>Ck Qy——> Clk Q,———> Clk Q—

Figure 3  3-bit asynchronous positive edge triggered up-counter

3) Event Detectors:

These are circuits which are used to find occurrence of a particular
event. Flip-flops do not change their state unless triggered. This can be
used to detect and store occurrence of an event. Figure 4a shows one such
event detector which detects the event of switching ‘‘ON’’ of light. The
working is illustrated in Figure 4b.

1—D @ — Output

FF
Event of light b
Switching 'ON' —>1CIK ¢y Q |—

Clear 4]

Signal
(a)
Event of light | |
Switching 'ON' !
Clear Signal
Output 1 0 1 0 1

(b)
Figure 4 Event detector (a) Circuit (b) Timing diagram

4) Data Synchronizers:
Outputs of a particular combinational circuit should change their

states simultaneously. Using Data synchronizers, this can be easily
achieved as illustrated in Figure 5 below
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— —— Output A
: Combinationa
Inputs I Circuit
S " Output B
(a)
s —D QF—Output A
i | Combinationa ClkQ
Inputs I Circuit
— D @Q—Output B -
ClkQ
Cloc * ‘

(b)

Figure5 Data synchronizing application of flip-flops
5) Frequency Divider:

Consider a positive edge triggered JK flip-flop as shown in Figure 6
below

T
>
- J g c )
— CLK
. a_ Q_ | I
Tout

Figure 6 JK flip-flop as a frequency divider
The output of JK flip-flop will toggle for each positive-edge of the
clock. It is clearly seen from the waveforms that if Tin is the input clock

period, then Tout= 2Tin. In other words, fout=fin/2. This is how frequency
division takes place using flip-flops.

eslesteskesk
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10

COUNTERS

Unit Structure

10.0  Objectives

10.1  Introduction

10.2  Asynchronous counter

10.3  Terms related to counters
10.4 IC 7493 (4-bit binary counter)
10.5 Synchronous counter

10.6  Bushing

10.7 Type T Design

10.8 Type JK Design

10.9  Presettable counter

10.10 IC 7490

10.11 IC 7492

10.12 Synchronous counter ICs
10.13 Analysis of counter circuits
10.14 Summary

10.15 Reference for further reading
10.0 OBJECTIVES

This chapter would make you understand the following concepts

What is counter? Different types of counters — Asynchronous and

synchronous counter. Terms related to counters. IC 7493 (4-bit binary
counter) Synchronous counter, Bushing, Type T Design, Type JK Design.

Presettable counter, IC 7490, IC 7492. Synchronous counter ICs,

Analysis of counter circuits.
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10.1 INTRODUCTION

In the design of counters and registers FFs (flip-flops) are most
widely used. The FF is the basic building block of any sequential logic
system. FF and combinational circuit are used in the design of any
sequential system.

Counter is a sequential circuit. A counter is a device that stores the
number of times a particular event or process has occurred, often in
relationship to CLK (a clock) pulse. Counters are used in digital
electronics for counting purpose, they can count specific event happening
in the circuit.

10.1.1 Definition:

A digital circuit which is used for counting pulses is known
counter. Counter is the widest application of FFs. It is a group of FFs with
a CLK pulse applied. Counter is a register that goes through a prescribed
series of states. Counter is a circuit which cycle through state sequence.

10.1.2 Types of Counters:

A digital circuit which is used for counting pulses is known
counter. Counter is the widest application of FFs. It is a group of FFs with
a CLK pulse applied. Counter is a register that goes through a prescribed
series of states. Counter is a circuit which cycle through state sequence.

10.1.3 Types of Counters:

The number of FFs used and the way in which they are connected
determines the number of states and also the specific sequence of states
that the counter goes through during each complete cycle. Counters are
classified according to the way they are clocked: Asynchronous or ripple
counters and Synchronous counters

Asynchronous counter Synchronous counter
1. Itis also called as serial counter. | 1. It is also called as parallel
2. Simple and straight forward in counter.
operation. 2. Complex in operation as
3. Slower than synchronous. compared to asynchronous.
4. Next FF is triggered by previous | 3. Faster than asynchronous.
FF. 4. Al FFs are  triggered
5. Problem of glitch. simultaneously by external
6. Settling time is more. CLK.
5. No problem of glitch.
6. Settling time is less.
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Synchronous / asynchronous counter can be further divided in to following
sub-type:

1.  Regular Counter: FFs are used to build the regular counter, in
which the number of FFs determines the number of states means
there is direct relation between number of FFs used and number of
states of counter.

Suppose ‘N’ is number of States in counter and ‘m’ is number of FFs
then the relation is N (number of States) = 2 ™ * ofFFs)

Let’s say m (# of FFs) =3 then N=2"=2°=8

.. Number of States (N) in counter = 8

Consider one additional variable ‘n’, which indicates the number of

actual states of counter. In regular counter, number of actual states of

counter (n) and number of states of counter (N) are equal i.e. n = N.
2. Truncated counter: in this counter, number of actual states of

counter (n) are always less than number of states of counter (N) i.e. n

<N.IfFFs are 3, then N=2"=8 butn < 8.

3. Sequential Counter: in this counter, states of counter are sequential
1.e.0,1,2,3,4,5,6, ... soon.

4. Non-sequential Counter: in this counter, states of counter are not
sequential means states are irregular. e.g. 0, 3,9, 8,2, 1, 7.

10.2 ASYNCHRONOUS OR RIPPLE COUNTERS

Asynchronous counter is a cascaded arrangement of FFs where the
output of one FF drives the CLK input of the following FF. The number of
FFs in the cascaded arrangement depends upon the number of different
logic states that it goes through before it repeats the sequence, a parameter
known as the modulus of the counter.

Asynchronous counter, also called ripple counter or a serial
counter, the CLK input is applied only to the first FF, also called the input
FF, in the cascaded arrangement. The CLK input to any subsequent FF
comes from the output of its immediately preceding FF. For instance, the
output of the first FF acts as the CLK input to the second FF, the output of
the second FF feeds the CLK input of the third FF and so on. In general, in
an arrangement of ‘n’ FFs, the CLK input to the nth FF comes from the
output of the (n—1)™ FF for n>1.
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Figure 10.2 shows the generalized block diagram of an n-bit binary
ripple counter. As a natural consequence of this, not all FFs change state at
the same time. The second FF can change state only after the output of the
first FF has changed its state. That is, the second FF would change state a
certain time delay after the occurrence of the input CLK pulse owing to
the fact that it gets its own CLK input from the output of the first FF and
not from the input CLK. This time delay here equals the sum of
propagation delays of two FFs, the first and the second FFs. In general, the
nth FF will change state only after a delay equal to n times the propagation
delay of one FF. The term ‘ripple counter’ comes from the mode in which
the CLK information ripples through the counter. It is also called an
‘asynchronous counter’ as different FFs comprising the counter do not
change state in synchronization with the input CLK. In a counter like this,
after the occurrence of each CLK input pulse, the counter has to wait for a
time period equal to the sum of propagation delays of all FFs before the
next CLK pulse can be applied. The propagation delay of each FF, of
course, will depend upon the logic family to which it belongs.

1
—a J —1 J b—{ J p—{ J On|—
4 Ozt Qn-1
Sk > FF1 w > FF2 > FFin-1) 7 > FF(n)
LK 1K LK K

Figure 10.2: Block diagram of an n-bit binary ripple counter
10.2.3 Bit Ripple Counter:

A binary ripple counter can be constructed using clocked JK FFs.
Figure 10.2.1(a) shows three negative edge — triggered, JK FFs connected
in cascade. The system clock, a square wave, drives FF A. The output of A
drives FF B, and the output of B drives FF C. All the J and K inputs are
tied to +V¢ce. This means that each FF will change state (toggle) with a
negative transition at its clock input.

When the output of a FF is used as the clock input for the next FF,
we call the counter a ripple counter, or asynchronous counter. The A FF
must change state before it can trigger the B FF, and the B FF has to
change state before it can trigger the C FF. The triggers move through the
FFs like a ripple in water. Because of this, the overall propagation delay
time is the sum of the individual delays.

For instance, if each FF in this three- FF counter has a propagation

delay time of 10 ns, the overall propagation delay time for the counter is
30 ns.
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Figure 10.2.1: 3 - bit Ripple Counter

The waveforms given in Fig. 10.2.1(b) show the action of the
counter as the clock runs. Let's assume that the FFs are all initially reset to
produce O outputs. If we consider A to be the least-significant bit (LSB)
and C the most-significant bit (MSB), we can say the contents of the
counter is CBA = 000.

Every time there is a clock NT (Negative Transition), FF A will
change state. This is indicated by the small arrows (]) on the time line.
Thus at point a on the time line, A goes high, at point b it goes back low,
at c it goes back high, and so on. Notice that the waveform at the output of
FF A is one-half the clock frequency.

Since A acts as the clock for B, each time the waveform at A goes
low, FF B will toggle. Thus at point b on the time line, B goes high; it then
goes low at point d and toggles back high again at point f Notice that the
waveform at the output of FF B is one-half the frequency of A and one-
fourth the clock frequency.

Since B acts as the clock for C, each time the waveform at B goes
low, FF C will toggle. Thus C goes high at point d on the time line and
goes back low again at point h. The frequency of the waveform at C is
one-half that at B, but it is only one-eighth the clock frequency.
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10.3 TERMS RELATED TO COUNTERS

Before we proceed further, we would like to study few things related to
counter.

10.3.1 State Diagram:

State diagram means graphical representation of the states of
counter circuit. For example state diagram for 3 bit binary ripple up
counter and 3 bit binary ripple down counter can be as shown in Figures
10.3.1(a) and 10.3.1(b) respectively.

Arrow shows flow of counter

O—(O—O0 | O——O—0O
O—E—C)— | O—0—(—)

State of counter

Figure 10.3.1(a): 3 bit binary Figure 10.3.1(b): 3 bit binary
ripple up counter ripple down Counter
10.3.2 Module N Counter:

If it is desired to have modulo N (mod — N) counter, the number of FFs
required is determined by,

N < 2™ where m = number of FFs

Let say m = 4, therefore N = 16. But if we require only 10 states
out of 16, it is called as modulus — 10 (Mod — 10) counter, but required
FFs will be 4 only.

Mod — N can be achieved by resetting the FF. This should be done
at the N state. In Mod — 10, counter will count from O to 9, and at 10th
state it will reset back to 0. Mod — 10 counter is also called as decade

counter.
Up till now we have seen that counter is sequential and number of

states provided are N = 2™, Now let us take a case of truncated ripple
counter when n (number of actual state) < N.

Example 1: Design mod — 3 ripple counter
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Solution:
1) State diagram = 3 states — ( to 2

2)  No of actual states aren=3
n <N =2" 3 <2"™ therefore m = 2
Hence 2 FFs are required.

3)  Here FF used should have clear terminal for resetting or clearing.

4)  Assumption: considering FF and gates are having 0 propagation
delay.

5)  Reset logic circuit required to terminate count after 2.

6) 2 FFs are used therefore N = 4

Figure 10.3.2.1(a): state diagram

QB QA

0 0 0

0 1 — 1 Valid States

1 0 —» | 2 Invalid State so whenever this
1 1 —> 3 state occurs countershould

beCLEARED(Reset)

Normally CLR terminal is ACTIVE LOW therefore Design a reset
logic combinational circuit such that output Y should be 1 when valid
states are there and Y = 0 when Invalid states are present.

K-Map :
Truth Table: B
A 0 i
Qp |Qa| Y O/P
0 0 1 0
0 1 1
1 0 1 ’
1 1 0 — ResetFF
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Circuit Diagram:

e e e e e e

H ]
15 Q )
! A A Tg QBT :
CLK i A - S 3
N ; B :Gounter
1 —
I Q Q )
! car__°| |1
1 1
IR | oot ____'_______-_.T _________ i
"""" 3
T
I
_——
Resetlogic  vQy vQ
LS — - 8
State output

Figure 10.3.2.1(b): mod - 3 ripple counter: circuit diagram

Counter is up counter, therefore FF should be —ve edge triggered,
cascade Q O/P and final O/P is taken from Q. The final circuit diagram is
therefore shown in figure 10.3.2.1(b). Wave form for the same is shown in
following figure 10.3.2.1(c).

...................

I
1
f '
Y Output : H y i ; 3 3 : ! z ' : I : :
Resst Patssyited ) L B 5 i PR b i i Decimal

le——1st Cycle — e ond Cycle —pie—— 3rd Cycle —»ie— 4th Cycle
Figure 10.3.2.1(c): mod - 3 ripple counter: wave form

Working: to check the working refer the figures 10.3.2.1(b) and
10.3.2.1(c) (QBQA =B A)

1)  Initially all FFs are cleared.
~ BA=00; .. Y=1

2)  When 1* negative CLK edge hits, A toggles
~A=1,..BA=01Y=1

3) At 2" hit of CLK edge, A toggles from 1 — 0 (negative edge),

. B also toggles from 0 — 1.
~BA=10..Y=1
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4)  When 3" CLK edge hits, A will toggle from 0 — 1(positive edge)
B =unchanged .. BA=11
Y =0. As Y =0, all FFs will be cleared.
and BA =00. As BA =00, Y = 1 again.

The sequence from BA =11 to BA =00, is so fast (as propagation
delay is considered 0 * sec) that, it is not possible to observe 11 condition
of waveform. Y waveform pulse is also very sharp and of very, very small
duration. Thus counter willrun0 — 1 — 2 — 0.

Example 2: Design mod - 6 ripple counter
Solution:

1) State diagram = 6 states — 0 to 5

Figure 10.3.2.2(a): state diagram

2)  No. of states = 6 therefore n < N =2™ 6 < 2™ therefore m =3

3) Design of reset circuit. Truth table is,
N=2"=2=8,butn=6

Truth Table:

o I 3 B A |YO//P

0 0 0 |

0 0 1 1

vatid | 21 21 2| ¢

0 1 1 1

1 0 0 1

k1 110 1 1

1 1 0 0

Invalid { | ] 1 0
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K-map:

Points:

1)  Counter is up counter, therefore we have to cascade Q output, -ve
edge triggered FF and final output from Q.

2)  FF should have ACTIVE LOW reset (clear) terminal.

3)  Propagation delay presently assumed O n sec.

Circuit diagram:

— L l_ N
5 Q, Tg Qg [ Te Q¢ —‘
—p A —a> B D c
CLK - -
IN QB ] Qc
CLR CLR
1 b
-_l | F_
Q Q@ Q
“hr—v———/
State output

Figure 10.3.2.2(b): mod - 6 ripple counter - circuit diagram

i
"..'_ -~
1
v il eset Pulse
O T T T Pl
. ST SO TS U NG ) VRN MU S SO
Decimal 0 1 2 a

M—————— 1" Cycle

Figure 10.3.2.2(c): mod - 6 ripple counter - wave form
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10.3.3 Problems involved in Ripple Counter:

Mainly there are two problems involved in ripple counter.
1)  Glitch operation — propagation delay of Reset logic.
2) Propagation delay — propagation delay of FF

Glitch operation:

In example 1 assumption was made that propagation delay through
FF and reset circuit is 0 * sec. But practically this situation does not exist,
therefore glitch operation occurs.

Let’s consider propagation delay of reset logic. For analysis let‘s
consider example 1 in which states are 0, 1, 2. Redraw the waveforms
considering propagation delay of reset CLK.

E----v.;-’.'\-.-- r .__..g-...___. r_.____.;:___..__ - ...l‘.lalE|'|-|-' 4 ‘i" il aaand ";E
o TTIVYTTEY T T i1 ey
Qa: | 0 i1 i 0 it ilao0
—_— 3 Zrvares e i = .
R EEREEREEERER I RN
Qi : 0 it io [ f1ii]lio}o
Decimal state ——0——pit——{ ——pr——2——» H—0——> :
vouput{ | {1 b L L L L LI B L
Reset
period

Figure 10.3.3(a): mod - 3 ripple counter - wave form
Working: Refer Figure 12.3.3(a) and example 1 (Qa = A Qg =B)

1) Initially all FFs are reset .. BA=00 ... Y=1
2)  When 1st CLK edge hits, A will toggle ... BA=01, .. Y=1

3) At2nd CLK edge, A will toggle from 1 — 0 (negative edge), B also
toggles. .. BA=10. .Y =1

4)  When 3rd CLK edge hits, A will toggle from 0 — 1 (positive edge),
-.Bis unchanged. .. BA=11

Reset circuit is designed in such a way that, when 11 occurs Y = 0.
But appearing of logic 11 at NAND input, getting settled, then propagates
through NAND and appear at output, then resetting the FF will take some
time in "t sec. During this period BA = 11. This condition is invalid
condition and as in Figure 10.3.3(a), Qa produces unwanted short duration
pulse called glitch.
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Propagation Delay in Ripple counter:

Basic principle of operation of a synchronous counter is, each FF is
triggered by the transition at the output of preceding FF. Each FF has
internal propagation delay, means second FF will not respond unless and
until propagation delay time, after the first FF receives an active clock
transition. .. Third FF will not respond until a time equal to twice
propagation delay (2 x t,q) after that clock transition.

Thus propagation delay of FF accumulates so that N™ cannot
change state unless and until, time equals to N x t,q after the CLK

transition occurs. To understand this refers waveforms in following figure
10.3.3(b).

+. *107sec < | 4201 secPart'B'
Part ‘A’ e
10nsec 20nsec

Figure 10.3.3(b): mod — 3 ripple counter: wave form

Refer figure 12.3.3(b), (Qa = A, Qp = B) propagation delay of one FF = 10
n sec.

1)  Initially both output BA =00

2)  When the first CLK edge hits, A changes from 0 — 1. As shown QA
changes states 10 n sec after CLK edge hits. (Part (a)).

3) In Second CLK edge QA changes from 1 — 0. Transition occurs, 10
n sec after CLK edge hits.

Qa provides negative transition (1 — 0) to B FF.
. Qp changes the state from 0 — 1, 10 n sec after the transition of

Qa.
. With respect to CLK edge Qg changes state after 20 n sec. (Part
(b)).

i.e. 2 FF x 10 nsec = 20 " sec
This propagation delay causes limitation on CLK frequency input,

so for ripple counter, following equation provides relationship between
CLK period, number of FFs used and propagation delay of FF.
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Time period of CLK (TCLK) >N x t,q
Where, tyq= propagation delay

N = No. of FFs
1 1

R M,

10.3.4 Power on Reset Circuit:

Whenever counter working was discussed, it was assumed that
initially everything is reset. Whenever power supply is switched ON; one
cannot predict the output state of FF. Therefore clear terminal is provided.
But clear terminal requires some external circuitry to force it self ‘LOW’
so that it can provide Q = 0 (some known state). This external circuitry is
nothing but power ON reset circuit. Refer following figure 10.3.4.

1
Ve

__________

Circuit taken
i : circuit from Ex. 1
1

e mmmmm——————

Figure 10.3.4: mod - 3 counter with power ON Reset circuit

As shown in figure 10.3.4 (counter states are 0, 1, 2). In addition
one RC n/w with AND gate is used. So either of the input is LOW output
of AND gate is LOW, FFs will be cleared

,&v Voltage 4
_‘ a
[ =
[/ —
Vec— Voud b > Tine
| ¢ VOP Vg p--e ’I_ _____
0 == Power on 289
Il |
; A
- 4 . t‘ » Time
figure 10.3.4(a) figure 10.3.4(b).
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Working:
Refer figure 10.3.4(a) and 10.3.4(b).

When power supply is switched ON, V¢ will appear across RC
n/w at time to. .. Capacitor will start charging. The charging slope
depends upon RC time constant. When capacitor voltage (Voupu) reaches
to level Vg (Threshold voltage), chip (IC) will consider it HIGH logic.
Below threshold it is considered as LOW logic.

.. For duration t; — to output of AND gate is ‘0’ .. FFs are cleared.
When counter steps through states and AB = 11, output of NAND is equal
to 0.

CLEAR.(CLK) =(0as AND output is ‘0’ ... FF will reset.

10.4 IC 7493 (4-BIT BINARY COUNTER)

Let’s study TTC MSI circuit of 4 bit ripple counter implemented in IC
7493.

e : 5 Reset Terminal
1 r—
1P A [ rra @ R Fo Foip
4> CLK | *l' ich
(14) 1 '
1 I +2
1 CLK
1K ; (MOD 2
. E( oD 2) JULot—{-2 counTeR }‘—‘1 +6 COUNTER 1
R A 1
1:--; ----------- --‘“‘: Q’ P B v v e
Q o 0 A
g ! e L@ or gl i
ST o : al or
1 ]
] ]
K CLR
| i WA Qy Qp GND Q; Qg IPB
:‘_‘_5 : [4] [3] {21 [T1 [0l [B] [8
Y o Y%
i p (10) Q Q
> CLK i = >p QA b Qc Qg
I ! B89
1 ! Roy
1 |K  CLR i
! | : Rog)
A = 1 % Rogy Rog NC Ve NC NG NC
- D 1 (12) (c)
LSCLK i
lr :+8
T s E (MOD 8)
]
F;RG“} P [ W omweeamm: }’_ _________ 1
ol ; @ ': (a)

Figure 10.4.1: 1C 7493
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In IC 7493,

Qb Qc Qs Qs — Binary output of FF.
Input A — CLKIN of FFA
Input B — CLK IN of FFB

Ry 1), Ry 2) — Reset pin

When Ry 1) = Ry 2) = 1 Reset will occur

Figure 10.4.1 shows logic diagram of IC 7493, It shows that FFA
is independent i.e. output is not cascaded to next FF, But FF B, C and D
are cascaded. Therefore we have individual, internally two counters, <2
(Mod 2) and + 8 (Mod 8). If we combine both counters we get 2 x 8 = 16
state counter of mod 16 counter or + 16 counter.

When we connect Q4 output to input B and CLK IN given to Input
A only, it becomes simple 4 bit binary ripple counter. Truth table is as
follows

R01/02| CLK QD QC | QB | QA
1 X 0 0 0 0
0 1 0 0 0 0
0 L 0 0 0 1
0 L 0 0 1 0
0 L 0 0 1 1
0 L 0 1 0 0
0 I 0 1 0 1
0 L 0 1 1 0
0 L 0 1 1 1
0 L 1 0 0 0
0 l 1 0 0 1
0 L 1 0 1 0
0 l 1 0 1 1
0 L 1 1 0 0
0 l 1 1 0 1
0 L 1 1 1 0
0 I 1 1 1 1

Example 3: Implement + 9 counter using IC 7493.
Solution: Procedure is same as when we design mod — N ripple counter.

1) +9means mod -9, ... required states are 9 (0 to 8) .. FF used are 4.
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2) Reset circuit should generate ‘0’ output for valid states (0 to 8) and
‘1’ output for invalid states (9 to 15), because if Rg (1) and Ry (2) both
are 1, then only IC 7493 resets.

3) Design reset circuit, Draw K-map.

DEDEC BC DC DC
BA\ " 00 01

BA 00 0 0

0 4
BA 01 0 0

1 5
BA 11 0 . 0,
BA 10 0, 0 .

Y=BD+AD+CD=D[A+B+C]
4) Circuit diagram:

+ 5V

T.q 11 ? GND
m_ VCC HC‘[I} 1
Ovemmmcnic Pl 0
CLKIN IC 7493
/P B Rog) :
81 Q, Q5 Q¢ Qp

—— S S ——

Figure 10.4.2: mod - 9 counter using IC 7493 - circuit diagram
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10.5 SYNCHRONOUS COUNTERS

In asynchronous counter mainly two problems were present, glitch
and delay in counter. To avoid this, synchronous counter came into
picture. Synchronous counter is now most widely used. Generalized block
diagram of synchronous counter shown in figure 10.5

| —
Combinational logic
G G G
CLK INo 2 B c
JLL S I 1 i I
a7 Ka b Kg o 7Kg
A B G

Qy Qa Qg Qg Qe Qe

I |

Figure 10.5: Generalized block diagram of synchronous counter
Observation from block diagram of Synchronous counter

1) CLK pin of all FFs are tied together, so that FF changes output in
synchronism.

2)  O/p Q given to combinational logic circuit. This circuit is designed
in such a way that Go G G¢ generated from it, applies proper logic
to input of FF, so that we get correct next state.

3)  O/p Q depends upon previous input of FF, when CLK edge hits.
Presently in block diagram, JK is tied together. But this will not be
the case every time. JK can be controlled separately by
combinational circuit.

10.6 BUSHING

If you observe examples solved up till now, in full sequence ‘0’ is
always present and once counter enters in valid state, it will continue the
chain unless and until power supply is switched off. To enter in the chain
we use power on reset circuit, therefore first state is normally ‘0’.

Problem:

1) In some of the applications we don’t require ‘0’ state at all.

2) Secondly due to power supply fluctuation (glitch of power supply),
Electromagnetic inference and RFI (radio frequency interference), it
may happen that counter will enter in invalid state.
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If due to problem stated above it enters in to invalid condition then
what will happen?

Then here your luck factor counts

1. Lock Out State (If Luck Is Bad):

It may happen that counter will lock itself in invalid states only.
Let’s say in above case counter enters into state 1; because of logic circuit
next state happens to be 6. After 6 next state happens to be 1. Then counter
will toggle between two states only, as shown in state diagram figure

10.6(a).
v

Figure 10.6(a): State diagram

(2) If you are lucky enough after entering into invalid state it may switch
over to valid state. But don’t try to check your luck. Take precaution.
As a precautionary step we implement bushing to state diagram.
Bushing means branches. We are going to branch invalid state in such
a way that even though it enters into invalid state after one, two or
three CLK ticks it will enter into valid state chain.

Following are some of the examples for implementing bushing in

Example 5

(b) Enters in valid chain after one CLK () Enter in valid chain after one CLK

(d) Enters into valid state after maximum 2 CLK ficks (¢) Enters after4 CLK tick

Figure 10.6 (b-e): Implementation of Bushing
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Thus one can have ‘n’ number of combinations. Choice depends
upon designer

10.7 TYPE T DESIGN

Let’s start designing synchronous counter using T FF.
Example 4: Design mod — 4 regular sequential synchronous up counter by
using T FF.

Solution:

1
2
3
4.
5
6

No. of states are 4, for mod — 4 counter.

Regular means n = N.

No. of FF required willbe 4 <2™ . m=2

Sequential and up means 0, 1, 2, 3.

.. State design is Figure 10.7(a).

FF A and B are used. G5 and Gy are output from combinational
circuit to provide input to T FF. ... Circuit will be as shown in
Figure 10.7(b).

Design of combinational circuit to generate Ga, Gp

Figure 10.7(a): State diagram

Combinalional circuit

I I ]
—{Ta Cg Ta Qs
—--J.' 2, A
Tg Ty
CLK IN

Figure 10.7(b): Circuit diagram

Step 1: For generation of truth table, depending upon number of bits (FF),
write down sequentially all states.

In our case 2 bits (FF) are used, ..

state are 4.
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A 0 0 1 1 ; A=MSB
B 0 1 0 1 ; B=LSB
decimal | 0 1 2 3

Here Qa = A, Qg = B for simplicity

Step 2: Now below this you write down required output.

A 0 0 1

B 0 1 0 1
(Prev) (Next)

Ga

Gp

Step 3: Now start from state of counter. Treat this state as previous state.
Take next state of counter from state diagram, and it will be obviously
next state.
Inourcase 1% state = AB = 00 — Previous state.

2"state= AB = 01— Next state.
Step 4: Now refer excitation table of T FF, treat change of state for A and

B individually and write down G4 and Gg the step is explained as follows:

A m 0 1 1
T

B 1 0 0 1
Ga
Ge

- O O

As A changes from 0 >0 .. GAo(Ty) = 0
B changes from 0—-1 ..Gg(Tp) =

Step 5: Now treat previously next as previous state. i.e. AB = 01 which
was next state previously, will be Now previous state. Refer state diagram
and find next state. In our case it will be AB = 10. Again the procedure is
same as STEP 4.

Alo o~ % 1
7\
B 1 0o 1

[Prev.) [Next]
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Gal| O

As A changes from 0 — 1,

B changes from

Step 6: Now previous state = AB = 10 and Next state = AB = 11, again

Geg| 1 1
GA (TA) = 1
1-0, . Gg(Tg) = 1

follow STEP4
A 0 0 7y
RN
B 0 1 0 1
[Prev.] [Next]
Ga O 1 0
Gs 1 1
As A changes from 1 —1, .. GA(Ty) = 0
B changes from 0—-1, ...Gg(Tg) = 1

Step 7: Finally previous state = 11 and next state = 00. Next we are

completing full chain of counter. Follow step 4.

A Om 1
B 0 1 0 1
[Next] [Prev.]
Ga 0 1 0
Gg 1 1 1
As A changes from 1—0, .. GA(Ty) = 1
B changes from 1-0, -~ GB(Tp) = 1

Step 8: After filling truth table, next step is to draw K-Map
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Step 9: Draw final circuit diagram.

Already we have drawn half circuit as shown in Figure 10.7(b). Only this
is to replace combinational block by directly some connection.

G
B Qg ¥ T, a
3 B D> A
CLK IN -
Bi vA
)
oIP

Figure 10.7(c): Final circuit diagram

Let us draw the waveforms and analyze the working of the circuit

ST SV P : 1 .
il e et
e : Pl 1 i
é. TR Jrsassndiiiaandd 3 By pruren ey B 1 I 1
Deimali O | 11 213 OtV 2E S i
slate 4
je—— 1" Cycle ——pi+—— 2" Cycle 4 3" Cycle
Figure 10.7(d): Waveforms
Working:
1. Initially counter is Reset, - AB=00

2. At1"CLKedge, TA=0asB=0,Tg=1.
.. A remains constant as Qg toggles from0 — 1. .. AB=01

3. At2™CLK edge, as To =1 (because B=1) Ty =1,
.. A and B both will toggle, giving - Ap=10

4. At3“CLKedge, Ty=0asB=0and T, =1,
. A = unchanged, B = toggle - AB =11
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S.  Finally at 4™ CLK edge TA=1and B=1,Tg=1
. A and B will toggle from 1 — 0 - AB =00

Now the point 2, 3, 4 and 5 will continue till CLK is present, and counter
generates required states.

If you compare the waveform in Figure 10.7(d) with waveforms of
ripple counter. You will find that falling edge is shown only on CLK, not
on Q4 or Qg output, because CLK is synchronized. Counter changes state
ONLY when CLK edge hits.

Example 5: Design synchronous, non-sequential counter

Solution:
O 0020

Figure 10.7.1: State diagram

Counter is non sequential as well as truncated.

2. While designing non sequential counter, instead of number of state
you should consider maximum count of the state. In our case
maximum count of the state is 7. To represent 7 in binary we require
3 bits (111) and thereforem=3. Asm=3,n=2=8

3.  While writing truth table as told in Example — 4 step 1, depending
upon number of bits (FF), write down states sequentially. In our case
N = 8 as m = 3. So we are supposed to write 0 to 7 sequentially,
refer Figure 10.7.1(a) Truth table

4. Truth table.

/’ 0-7@ 50 N\
R
A Q 0 0 __pk__ 1 1 | | — MSB
" 5 0@ 530
0 1 1 0 0 I I
C 0 1 0 1 4] 1 0 | - LsB
Q7 5 1 53 7-5
G, 1 ¥ X 0 X 1 X 1
Gp ] X X 1 X 1 ¥ L o W
Ge I X X 1 X 0 X 1

Figure 10.7.1(a): Truth table
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01 l}'{ _11 ot | X 1 of | X 0

wn

1 5 [ 5 !
11 0 0 11 b 1 1 0
3 7 R ] a 7
0] O ¥ ' 10] \ Ko -.:}!ﬁ:; 10 \.)_(.J X
2 6 Tl 2 5
Gp=B Gg =Vec=1 Gg=R

6. Circuit diagram:

g
a1
mﬂ
m|
o
o
>

o>  BFF J—u:» AFF
, TR Ga TIR Ta

Figure 10.7.1(b): Circuit diagram

Step 1: Write standard table A, B, C and Ga, Gg, Gc.
Step 2: Write 0 — 7 states sequentially under A, B, C.

Step 3: Write down X (don’t care) for invalid states. For our case
invalid states are 1, 2, 4, 6, ... for 1, 2, 6, Ga, Gg, and G¢ are X
(don’t care).

Step 4: Now the steps are standard. Start from 1st state of state
diagram i.e. 0. Next state is 7. So the transition is shown in
Figure 12.7.1(a) by (a). Previous state of ABC = 000, Next
state of ABC = 111.

.. Ga, Gg, and G¢ = 111, written under column '0 — 7' (shown
in Figure 10.7.1(a)).

Step 5: 2" transition is from 7 — 5 (shown by arrow (b)).

ABC changes from 111 to 101 .. G5 =0, Gg =1 and G¢ = 0.
Written under column '7 — 5'.
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Step 6: 3" transition is from ‘5 — 3’ (shown by arrow (c)) ABC
changes from 101 to 011 .. Gao =1, Gg = 1 and G¢ = 0,
written under column ‘5 —3’.

Step 7: Final transition is from 3 to 0 (3 — 0) shown by arrow (d).
ABC changes from 011 to 000 .. G =0, Gg =1 and G¢ =1,

written under column ‘3 -0’

Step 8: After going through one full cycle draw K — map.

Example 6: Design synchronous counter for state diagram shown in
figure 10.7.2

Figure 10.7.2: state diagram

Solution:

1.  Counter is sequence but truncated.

2. Numberofstatesn=6. ... n=6<2", . m=3
Asm=3, 2’=8=N .. n<N (truncated counter)

3.  Up counter (observe from given state diagram)

4.  Truth table for designing combinational logic circuit.

A | 05050005151 1 1
ﬂ‘-}ﬂ—}l—ri—}ﬂ—rh | 1
Gk-a-l—>ﬂ-:-l—}{]—r] 0 I

G, o 0 0. 1 0 1 X X

Gg | 0 1 0 1 0 0 X X

Ge 1 1 1 1 1 1 X X| o»Vee

Figure 10.7.2(a): Truth table

As shown in Figure 10.7.2(a) truth table, valid states are only 0, 1,
2, 3, 4 and 5. Therefore, for invalid states i.e. 6 and 7, Ga, Gg and G¢ are
takes don’t care conditions because we know that these states are not
going to occur.
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5. K- Map for G,, G and G¢:

A R A A R A A R A
BC 0 1 BC 0 1 BC 0 !
BToo| 0O 0 BToo| O 0 BT oo| /1 1)

1] 4 0 4 0 A

BEcol| O ’ﬂ Bc o] (1 0 Becotf |1 1

1 .'.5 ! 5 [} 5

son| @R | ol W | x [ oouffr | x

7 a 7 a !

eT10] O X sG1wo| 0 X BT 10| \1-+ X/

2 [ 2 6 F o

G, =BC+CA - Gg = Vee
=G(A+B) By G

6. Circuit diagram:

cmnﬂC (A+8)
o 4

T Qg D‘E Ts Qg | Ta Qy —]
> CFF —4> BFF —<  AFF
Q Q [e]
CLKIN = 2 2
o

Figure 10.7.2(b): Circuit diagram

7. Waveforms:

CLK w y il I E '}
Pl o2 13 14

D¢-:} 1 : 1
T i ................... —

Qg: 0 } 0 % 4 1 0 -0} 01} 0 |1
: i P f Py Co \
i st f i o igaria M- . P \

Qui 0 O} 01 0} 13 1]0 1010

Decimalstate 0 1 1 & 2 1 3 1 4 ¢ 65 4 0 1 1 12

e 1* cycle »—2" cycle—

Figure 10.7.2(c): Waveforms.
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10.8 TYPE JK DESIGN

Counter design using JK-FF is most widely used. Here J and K
terminals are controlled separately. We have already generated excitation
table for JK-FF.

As far as counter design goes, method is same as we followed up
till now. Figure 10.8 shows generalized block diagram for counter using
JK.

l;c =) fox
3 Cembinational eircuit
c ke Js Kg Ja Ka
CLK INo—
UL —— 3 ——s
C J Y
clk % B ok Ke a otk Ka
CFF B FF A FF
O Qg Q,

Figure 10.8: Generalized block diagram

As shown in Figure 10.8

1. CLK IN of all FFs is tied together. (synchronous counter)

2. Qa, Qp, Qc output are fed to combinational circuit.

3. Depending upon next state combinational circuit generates proper J
and K input for A, B and C FF.

Example 7: Design a modulo — 6 counter using JK FF. Explain its action
by writing a truth table and draw waveforms for the outputs of the flip
flops.

Solution:
1. State diagram, modulo 6 mean O to 5.

Figure 10.8.1(a): State diagram

2. Number of FFs required will be 3. . N=2™=23=8,
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3. Truth table

Invalid states
A D—+(—e—r)—s ]| —>| i 1
B 0 0 I | 0 0 I I
C 0 1 0 1 0 1 0 1
| 0 0 0 1 X X X X
Ki X X X X 0 1 X X
Iy 0 1 X X% 0 o X X
Kp X X 0 ! X X X X
Io 1 X 1 X 1 X X X
Ke X 1 X 1 X ] X X

— Ve
— Vcc




5. Circuit Diagram:

$ Vee
CLKIN
Iy __V _F: __J, _rlg
B A
E O, ), a,

Figure 10.8.1(b): Circuit diagram

6. Waveforms:

oy - bbb d
HEENIERES S s
S LA S 2 ¢ o |1
=N N — T !-—
FECTVPY. YWHRFRE HNE SN S ! : ! : ! : :
. AR ENENEEEE RN
. T -
Istate 0 i 1 | 21 31 44571 0 EM 1 12
1 cycle >4 2 cycle—

Figure 10.8.1(c): Waveforms

Example 8: Implement synchronous counter using JK FF. for the state
diagram shown in Figure 10.8.2

o )r— (a3 )—z)
N4

Figure 10.8.2: State diagram

Solution:
1. Counter is with bushing
2. Number of FFs required will be 2.
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3. Truth table:

2- 3-2
Py
A 0 0 1 1
-3
-3
B 0 | 0 1
¥, 0 1 A A
K, | X X 1 0
Jg 0 X 1 X
Ka X 0 X 1
4. K — Map:
X o 1 B o 1 B 0 1 & o 1

JB =A KB =A
5. Circuit diagram:
3
CLK IN®
s 8l gz é
JE HE J.H I{H
B A
Qg Oy Ca Tn
e ]

Figure 10.8.2(a): Circuit diagram

10.9 PRESETTABLE COUNTER

As we have discussed previously that sometime counter will not
start from ‘0’ state. It will start from some predefined state. Let’s say we
want to down count from decimal 10. So preset counter to start 10, apply
CLK pulses, so it will count down to 9, 8, 7, ... to 0. After that it will again
start from 10.
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Counters can be preset to any desired starting count either
synchronously or asynchronously. This can be done using PRESET and
CLEAR terminals of FF

Figure 10.9 shows 3 bit parallel presettable up counter.
1. Counter is synchronous.

2. Asynchronous inputs, preset and clear, are controlled through load
signal.

3. Steps for 'Preset’,

(a) Apply required count (step) to P,, Py, Py. Let's say Py, Py, Py =
101
(b) Apply 'LOW' going signal to 'LOAD' pin
(¢) .. Output of NAND1, NAND3 = 0 and NAND2 =1 at the
same time NAND4,
NANDG6 =1 and NANDS = 0.
.. FF B will be reset and AC will be preset
. ABC =101.

d) CLK s not going to affect above action.

4.  After presenting applies CLK pulse so that counter can start next
count.

o P, Pg

|

P?
ESEM— |
1 2 3
Trazai WV,
Presel lprese: raset cc
Qa J

Qg J Qn J

. o

A CLK{

B CLK<‘ C CLKJ

CLKIN

Load

Figure 10.9:3 bit parallel presettable up counter

10.10 IC 7490

IC 7490 is TT1 MSI decade counter. It contains four M/S FF and
additional gating to provide divide by 2 counter (Mod-2) and three stage
binary counter which provides divide by 5 counter (Mod-5). Figure 10.10
shows block diagram of IC 7490.
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Reset

| |
Vee
Roy  Po) £

UPA ¥+ » MOD B (+6)

MOD -2

1 GND
¥ 1L vy v
Qa PB G Q¢ %

Figure 10.10: Block diagram of I1C 7490

7490 have gated zero reset (Roqa), Ro2)) and gated set to nine inputs Ro),
Ryz) for use in BCD nine's complement applications

InputA NC Q@ Q GND Qg Q¢

[3 [ el [0 e 5] [6]

QIA (LD Q[:JOC._I

R
B Roy  PRop Ry 79

re=d s =
CT 21 [ [a [ Ll L

InputB  Rgqy FRog NC Vee Ry Rog

Figure 10.10(a): Pin Configuration - IC 7490

Reset Inputs Output
Rocs) | Ro) | Row) | Roz) | Qo [Qc [ Qs Qa
1 1 0 X 0 0 0O O
1 1 X g g O 6 '0 » Reset to 0000
X 0 X 0 COUNTER
0 X 9 * COUNTER If CLK applied it will count or
0 X X 0 COUNTER step from previous to rext step
X 0 0 X COUNTER

Figure 10.10(b): Truth table - IC 7490

As shown in truth table when Ry 1) = Ry 2) = 1, IC 7490 Reset.
When Ry 1) = Ry 2) = IC 7490 sets to 1001 (9 decimal).

So one has to provide logic 1 to these input temporarily, set / reset it, and
lower the input terminals so IC 7490 can start counting as CLK pulses

applied to
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Example 9: Implement sequential decade counter using IC 7490 and write
counter states

Solution: In IC 7490 mod-2 counter and mod-5 counter is available .. 2 x
5=10 .. gives decade counter.

As mentioned in above example, requirement is sequential decade counter.
. Apply CLK IN to INPUT A pin. Output QA is connected to INPUT B
i.e. input of mod-5 counter. Output terminals are Qp Qc Qg Qa, where Qp
= MSB, Qg = LSB connections are shown in Figure 10.10.1(a).

Vee
@l
e
14
i Aot — (MSS_EJ 1 Mais “:2 )
CLK IN { ) N [0
1P B o(2)
(12) (1) ) ®) (1) fm
Y Y Y Y
Q, Qg QO Qy  GND

Figure 10.10.1(a): Sequential decade counter
Important point to be remembered is, now at each falling edge of
Qa O/P, mod 5 counter will increment. And Q4 change at falling edge of
CLK input.

The count sequence can be written as,

Falli Igze of
Count Q, Qu| Qu| Qu " n:z):lgcﬂ

0 ( ojofo 0
1 Change [0 010/ 1
2 ([ oj1]o 0
3 0o|1]1 I
I
5

|
7 11 1
8 1 olofo 0
9 1 of{of1 |

Figure 10.10.1(b): Count Sequence of Sequential decade counter
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If you observe Figure 10.10.1(b), concentrate on Qp, Qg, Q. and
Q. separately initially Qp, Q¢, Qp = 000. When QA changed from 1 —
Qp, Q. Qp changed to 001. For 2nd CLK period state of Qp, Q. Qs
remains unchanged.

10.11 IC 7492

IC 7492 1s TTL, MSI divide by 12 counter. IC 7492 is having 2 counter
inside it. mod 2 (+ 2) and mod 6 (= 6) counter.

.. Combination of both gives 2 x 6 =12 .. + 12 counter.
Block diagram of IC 7492:
Reset
| |
Vee
Roy  Ro) L
VPAL .2 o MOD & (+6)
MOD -2
1 GND
¥ 1L vy v
Qa PB G Q¢ %

Figure 10.11: Block diagram of I1C 7492

Figure 10.11 shows block diagram of IC 7492. For mod 6 counter
IC 7492 counts from 0, I, 2, 4, 5, 6, 0. (Observe sequence carefully, state 3
is absent).

InptA NC @, 03 GND Oy Q

(3 61 [ 6] [ [F] [
[__f

——> B Roy Fo)
T I

I [ '_1
L [T BT &1 &1 [e] J

InputB NG NC  NC Ve Ry Rop)
Figure 10.11(a): Pin diagram of I1C 7492

Example 10:
(a) Write down truth table for Mod 6 counter in IC 7492.

(b) Write down truth table for Mod 12 counter in IC 7492, if CLK IN is
given to Input A and Input B Q4 is shorted.
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Solution:

(a) Truth table of IC 7492 for mod 6 counter. As we know that internally
IC has mod 2 and mod 6 counter. So use only mod 6 counter. CLK
IN gives to Input B and outputs are Qp Q¢ Qp only. States are as
shown in Figure 10.10.1(a).

CLK cdge Q, Qe Qy Decimal equivalent
] % 0 0 0 0
and 0 0 1 |
3rd 0 I 0 2
gt | 0 0 4
5th | 0 1 5
6!l 1 1 0 6
7th 0 0 0 0

Figure 10.11.1(a): Truth table — IC 7492 mod 6 counter
(b) In this part,
(i)  Give CLK IN to Input A
(ii))  Conned Input B to Q4.
.. Circuit will be as shown in Figure 10.11.1(b)

R (6)
MOD-2 MOD-6 o{1)
CLKIN /P P R 7)
{1.;} > +2 e +6 0(2)
(12 (11){ (9)] (8)
Q) Yy Y #
Q, Qc Qp Qg

Figure 10.10.1(b): Circuit diagram - IC 7492 mod 6 counter

Point to be remembered.
(1) Qa toggles at each falling edge of CLK IN.
(2) Qg Qc Qp will change state at each falling edge of Qa.

Working: Refer Figure 10.11.1(a)
(1) Initially Qp Q¢ Qs Qa (DCBA) = 0000

(2) At first CLK edge, a changes from 0 — 1 (rising edge.)
- =000 ... DCBA =0001.

192



3)

“4)

®)

(6)

(7

®)

©)

(10)

(11)

(12)

At 2" CLK edge, A. toggles from 1 — 0 (falling edge.)
. DCB will change from 000 to 001. (From Figure 10.10.1(a))
DCBA = 0010.

3" CLK edge, A changes from 0 — 1 (rising edge), . DCBA =
0010.

4™ CLK edge, A changes from 1 — 0 (falling edge).
.. DCB changes from 001 to 010 .. DCBA = 0100.

At 5™ CLK edge, A changes from 0 — 1 (rising edge),
.. DCB = unchanged .... DCBA = 0101.

At 6™ CLK edge, A changes from 1 — 0 (falling edge),
.. DCB changes from 010 to 100 (Decimal count 011 is not present
in mod 6 refer Figure 10.11.1(a) .. DCBA = 1000

At 7% CLK edge, A changes from 0 — 1,
.. DCB = unchanged. ...DCBA = 1001.

At 8" CLK edge, A changes from 1 — 0, ... DCB changes from 100
to 101. .. DCBA = 1010

At 9 " CLK edge, A changes from 0 — 1, .. DCB unchanged,
..DCBA =1011.

At 10" CLK edge, A changes from 1 — 0, .. DCB changes from
101 to 110 .. DCBA =110

Finally at 11 ™ CLK edge, A changes from 0 — 1,
.. DCB unchanged, DCBA = 1101.

Truth table is written as follows

CLK [Qb[Qc [Qp [Qa | DECIMAL EQUIVALENT

edge
0 ol o] o] o 0
1 o]l o] o 1 1
2 ol o 1 0 2
3 o[ o] 1 1 3
4 ol 1] 0o 4
5 0] 1 0 1 2
6 0] 1 1 0 .
7 0] 1 1 1 g
8 1] o] oo 9
9 1] o] o 1
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10 1Jo] 1]o 10
11 1o | 1 |1 11
12 1| 1 0 0 12
13 1 1] o [1 13
0 0olo ] oo 0

Figure 10.11.1(c): Truth table - IC 7492 mod 12 counter

10.12 SYNCHRONOUS COUNTER ICS

Let's study some synchronous counter ICs
IC 74190:

IC 74190 is UP/DOWN decade counter with preset and ripple
clock. It is a reversible BCD (8421) decade counter featuring synchronous
counting and asynchronous presetting. Reversible BCD means it can count
0,1,2,3,4,5,6,7,8,9,01e.upand 9, 8,7,6,5,4,3,2,1,0.9 i.e. down.
Asynchronous presetting means parallel input data can be loaded at any
instant, it is not dependent upon CLK input.

Pin configuration and logic symbol is as shown in Figure 10.12 (a) & (b)

r 11 15 1 10 9
A R L L1
a2 15]P PL Py Py P, Py
% 3] fidlcr 5—T0D RCp—13
EEE EF&Z‘ 4 —d CE
oo 3] 2le ,_ lee Tol—12
%[5 E]FL Qp O Q, O
N s
GND| 8 P 3 2 6 T
L <17 Voo =PIN 16 GND=PIN 8
(a) Pin (b) Logic Symbol

Figure 10.12: Pin configuration and logic symbol — IC 74190

Let us see the Pin names and functions

NAMES DESCRIPTION
CE Count enable input (Active low)
CP Clock pulse input (Active rising edge)
Po-P; Parallel data input
L Asynchronous parallel load input (Active
low)
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U/D Up / Down count control input

0 — up count
1 — down count
Q,-Q; Flip Flop outputs
_IE Ripple clock output (Active low)
TC Terminal count output (Active HIGH)

Basically 74190 is decade counter. Internally four JK FFs are used,
output is 4 bit Qy — Q3. It may happen because of supply fluctuation or
noise it may enter in invalid state i.e. 10 — 15, then how 74190 behaves?
This point can be explained by using state diagram.

Refer figure 10.12(c)

1) When counter counts up (Shown by dark line
Main loopis — ....0,1,2,3,4,5,6,7,8,9,0 ...
Bushing branches are

(1) 14,15,2
2) 12,13,4
3) 10,11,6

Where 2, 4 and 6 are valid states. Worst case counter will take maximum
three CLK Cycle to enter in main loop.

2) When counter counts down (shown by dotted line):
Main loopis — ....9,8,7,6,5,4,3,2,1,0,9 ...
Bushing branch is — 15, 14, 13, 12, 11, 9.

Here we have only one branch. In worst case situation counter will take
maximum 7

CLK cycles to enter valid states.

Dotled line Dark line
for for
"down ceunt®  “count up®

Figure 10.12(c): State diagram
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Different Modes of 74190:

74190 has different modes of operation. Modes are selected by
PL,CEU /D

Model Select Table
Inputs Mode
PL |CE |U/D |CP
1 0 0 I Count Up
1 0 1 I Count Down
0 X X X Preset(Async.)
1 1 X X NC (Hold)
We will study all these modes step by step.
COUNT UP:
DATA INPUT
d'_'ﬂ""_-.
L L]
T W B o 5 ‘
CLocK ™ |°P
PULSES F R
Uo 74190 T —eNC
i—' - TC}——oNC
Q; G O G
S VAN JIAVAN

R R R R=4T00

Figure 10.12(d): UP Counter using I1C 74190

For counter counting up one has to tie PL=1 and CE :5/ D= 0. Apply

clock pulse and counter counts up. The circuit is as shown in figure
10.12(d)
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COUNT DOWN:

For counter counting down tie PL=1= V_.and U/D =1= Vw,& =0, apply

clock pulses and counter will start counting down.

The circuit is as shown in figure 10.12(e).

DATA [NPUT
———
Veo Py P g F
3 2 1 o
'[ Op
|
RAC—=eNC
FL
74190
CE
Ju v TCH—aNC
cLock & CP
PULSES
W
R=4700

Figure 10.12(e): Down Counter using 1C 74190

PRESET MODE:

When you need programmable divider one should PRESET output Qy—Qj3
to the required count and start counting.

The figure 10.12(f) shows experimental setup for studying presettable
Up/down counter.

Case 1: Presettable Up counter.
Step 1: Close switch S,

Step 2: Apply the count to which you want to PRESET the counter to
Py — P53 input.

Step 3: Close switch S;. Moment switch is closed Py — P3 contents will
appear at Q3 — Qp. You can see it as LED glows.

Step 4: Apply clock pulses. (The pulses should be of low frequency so
that you can see output LED changing)

Step S: Release (open) S; switch.
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Step 6: Now counter will start counting from presetted count. Let's say
Q3 — Qo = 0101 = (5)10.

Then it will count 5, 6, 7, 8, 9 and back to ‘0’. It won’t again preset to zero
unless and until S; is closed again.

If we want that after 9, counter again preset to ‘5’ (or presetted count) then
we have to add combinational circuit.

DATA INPUT
PRECRILES s L

(1]

U 74190
CE TCF——a NG
EppEpW
.~ cP Q, Q@ Q Q

PULSES

R A R R = 470 (1

Figure 10.12(f): Presettable up / down counter.

Case 2: Presettable down counter.
Step 1: Open switch S,.
Step 2: Steps written in case 1 from (2) to (5) is same here also.

Step 3: Now counter will, start counting from presetted count.
Let's say Q3 — Qo = 0101 = (5)1.

Then counter will count 5, 4, 3, 2, 1, 0 and back to 9. It won't preset again
to 5 in this circuit unless and until Sy is closed again.

HOLD:
To HOLD or LATCH the count in the counter make PL=CE=1U / D1

/D and CP, both pins are treated as don’t care

IC 74191:
IC 74191 is binary up/down counter with preset and ripple clock. If

you compare it with 74190, IC 74190 is decade counter, whereas 74191
counts 0 to 15. This IC can count up or down synchronously and has a
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synchronous preset. Preset feature allows the chip to be used in dividers.
The pin configuration and logic symbol is as shown in figure 10.12.1

T 1 15 1 10 9
- R = L [ 1|
a2 15]P PL P, P, P, P,
% [3] fidlcr 5—T0D RClp—13
cE[4] BIRC 4 —d ce
5 E Em 14— CP TCH—12
Q, [§] T]Pe Q Q Q,
> og [T ]
GND |8 P. 3 2 6 7
s EIg Voo =PIN 16 GND = PIN 8
(a) Pin  Out (b) Logic Symbol

Figure 10.12.1: Pinout and Logic Symbol - IC 74191

Pin names are as follows

Pin Names Description
CE Count enable input (Active low)
CP Clock pulse input (Active rising edge)
Py-P; Parallel data inputs
PL Asynchronous parallel load input (Active low)
U/D Up/Down count control input
Qo-Q3 Flip Flop outputs
RC Ripple clock output (Active low)
TC Terminal count output (Active HIGH)

State diagram for chip is as shown in Figure 10.12.1(a)

74191 counts up from O to 15 (shown by dark line) and also counts down
from 15 — 0 (shown by dotted line).

74191 can be operated in different modes

Figure 10.12.1(a): State diagram — IC 74191
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Following is the Mode select table for IC 74191

INPUTS MODE
PL CE ﬁ/D CP Count down
1 0 0 I Count Up
1 0 1 J’ Preset (Async)
0 X X X No Change
(HOLD)
1 1 X X

Following is the RC Truth table

Inputs Output
CE TC CP RC
0 1
1 X X
X 0 X

The modes are same as 74190, therefore the explanation given in
74190 holds for 74191 also.

For cascading or multistage counter, the configuration explained in
74190 holds for 74191 also. RC truth table is also similar.

10.13 ANALYSIS OF COUNTER CIRCUITS

Up till now we have solved some example based on T, D and JK
FF design. This part was designing the counter circuit or synthesis of
counter, where we were given state diagram and we have to find circuit for
the same.

Now it is analysis, i.e. circuit will be given to you and we have to
find state diagram, and some time unused state will be given to us and we

have to find how counter is going to behave.

The method is very simple. Explained it point by point
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@)

)
3

C))

)

Firstly present state will be given to you e.g. say presently counter is
in CBA = 010, now next states.

By chance if the state is not given, you assume some state. The
thumb rule is to start from 000.

This present state is now previous state for us.

You have to now find out, I/ps to all the FFs, because of this
previous state.

After finding out inputs of all FFs. assume that CLK edge hits. Now
you already know the input, you know the truth table of each FF. So
find out what will be Q output of FF. This 'new' state will be next
state of the FF.

Now von assume the next state as previous and start from point 3.

This chain should be combined unless and until you get next state,
which already exists previously. For example, We started with slate
4. From 4 next state is 6. From 6 next is 8. From 8 next is 9 and from
9 next state is 4. Means '4' has occurred twice so chain is complete.
If you want you can draw state diagram as shown in Figure 10.13(a).

Figure 10.13(a): State diagram

In above example it may happen that you get 6, after 9.6 is already

present. But now state diagram will be different. It is as shown in Figure
10.13(b). ... 4 is bushing.

Figure 10.13(b): State diagram

Thus you go on trying different combination and find next states.

To make analysis simple, all 5 points can be combined in 'one' table. You
keep the table standard now onwards.

Previous State FF inputs ~. Next state Decimal

A | A |B B Ja= |Ka= |Jg= |Kg=|A |B |C Equivalent
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10.14 SUMMARY

In this chapter we have studied in detail about counters which
includes asynchronous, synchronous counters, terms related to counters,
IC 7493 (4-bit binary counter), Bushing, Type T Design, Type JK Design,
Presettable counter , IC 7490, IC 7492, and Synchronous counter ICs with
examples.

10.15 REFERENCE FOR FURTHER READING

For further detailed study following are books prescribed by the
University

1.  Digital Electronics and Logic Design by N. G. Palan
2. Modern Digital Electronics by R. P. Jain
3. Digital Principles and Applications by Malvino and Leach
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REGISTERS

Unit Structure

11

11.0  Objectives

11.1  Introduction

11.2  Parallel and Shift registers
11.3  Serial Shifting

11.4  Serial - in Serial - out (SISO)
11.5 Serial - in Parallel - out

11.6  Parallel - in Parallel - out
11.7 Ring counter

11.8  Johnson counter

11.9 Application of shift registers
11.10 Pseudo-random binary sequence generator
11.11 IC7495

11.12 Seven Segment displays
11.13 Analysis of shift counters.
11.14 Summary

11.15 Reference for further reading
11.0 OBJECTIVES

This chapter would make you understand the following concepts

What

is register?

Different types of registers — Parallel and Shift registers.
Serial Shifting,

Ring counter, Johnson Counter.

Applications of Shift Register.

Pseudo-random binary sequence generator

IC7495, Analysis of Shift Counter

203



11.1 INTRODUCTION

Till this point, we have studied different flip-flops and conversion
from one to another. Now let's concentrate on application part of flip-
flops. The most common use of FF is a simple Register (OR a n bit
memory storage device). In this section, we will start with basic definition
of register and slowly move on to shift register.

Register is a group of memory element that works together as a
unit. Register simply stores a binary word. When register accepts parallel
data and outputs parallel data, the same is referred as Parallel register or
buffer register. About shift register, it is nothing but memory element with
facility of shifting left and right, bit by bit. Before going deep into shift
register, let's see structure of buffer register.

11.2 PARALLEL AND SHIFT REGISTERS

11.2.1 Buffer Register:
Buffer register is simplest kind of register and stores digital word.

The structure of buffer register, built with the edge triggered D type FF is

shown in Figure 11.2
?
s D, D, HS D 1% Do

T
DFF ¢ DFF ¢ DFF 4 DFF <
" - cl-K
] |
|
Q; Q0 Q
oP

Figure 11.2: Buffer Register

Working:
(1) Initially, consider Q3 Q2Q1 Qp=0000

(2) Apply data to be stored at input terminals Yz — Yy. Let's say Y3 Y2
Y: Yo =1010.

(3) Apply clock pulse.

(4) When first clock edge arrives, Y3 Y2 Y; Yo = Q3 Q2 Q; Qo =1010
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(5) Even though if now Y3 Y2Y1Y9=0000, Q3Q,Q; Q=1010i.e.
latched

Conclusion:

From Fig. 11.2 and WORKING we conclude that,

(1) There must be one FF for each bit in binary number. .. For 4 bit we
require 4 FFs.

(2) Simultaneously Y3 — Yy was applied and loaded to Q3 - Qq by single
clock pulse. i.e. at a time Q3 to Qp was loaded.

(3) Therefore, the way we applied input and taken output, is called
parallel in - parallel out (PIPO). The block schematic representation
is shown in Figure 11.2.1.

This is also called as Parallel Shifting.

Parallal data
P

Paralle! data O/P
Figure 11.2.1: Parallel in — Parallel out (PIPO)

11.3 SERIAL SHIFTING

One more method of loading or shifting the data is called Serial
Shifting. What do you mean by serial?

Serial means bit by bit data flow, serially, on single line. Serial
shifting has only single bit data line, not 4 or 8 as in parallel loading. The
serial shifting can be represented by block schematically, as shown in
Figure 11.3.

Single bit data is entered in register and serially single data bit is
taken out, through register. A group of flip-flops connected to provide
serial out, when serial input is given, is called as Shift register
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Serial ; Serial
= Register —-E?P—l-
(Single bit) (Single bit)

Figure 11.3: Serial Shifting

Basically if you see, loading parallel data is much faster than the
serial. Secondly, normally we work with 8 bit, 16 bit, and 32 bit parallel
data bits.

So one can ask, why you think of serial data? The answer for the
question is very simple. If you see, up till now we are looking of loading
the registers, but now think of loading or transmitting data at distant end.
Fig. 11.3.1 shows parallel and serial data transmission.

r—1 bit serial
8 bi
A s B A R B
Location Location Location E Location
———1 km———>| ——1km
(a) Parallel data transmission (b) Serial data transmission

Figure 11.3.1: Parallel and Serial data transmission

As shown in Figure 11.3.1 parallel transmission requires 8 lines,
serial requires single line. Now think of distance between A and B location
is in meters and kilometers. At such a large distance just increasing length
of the wire is not the solutions because now wire is Transmission line, so
reflection, impedance matching, power required etc. parameter, we have to
consider. Increasing power will increase total power consumption of the
system. In parallel, power for 8 lines has to be increased; .. power
consumed is much, in comparison with single line of serial. ... Normally
serial transmission is preferred over parallel. At this point you must be
eager to know how serial data looks like. It is shown in figure 11.3.2

T Amplitude

o 1 1 o 0 1

4

» Time

Figure 11.3.2: Format of Serial data

As shown in Figure 11.3.2, data is represented on time axis is bit
by bit, not full 8 bit or 16 bit as in parallel. Time ‘t’ for each bit is same.
Data stream shown s, ..0, 1, 1,0, 0, 1,...
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Therefore serial communication has become common and most
widely used media for communication. But our systems are normally
dealing with parallel (8 bit, 16 bit and so on), .. one has to convert
parallel to serial. This function is also called as parallel input and serial
output (PISO).

Serial data is now transrnitted to location B. On receiving side (B
side), one has to convert serial data back to parallel. This function of
conversion is called serial in and parallel out (SIPO). Finally one may
require serial in and serial out (SISO). Figure 11.3.3 shows generalized
block schematic of four functions.

Serial in ,
Serial Register(s) Serial — Register(s)
/P oP r———
: W
® MSB LSB
- O/P ”
P-SII‘aIIEI in (b} Pﬂl’&“ﬂl out
P
_.A.._,u Parallel in
M5B LSB e e,

AL !

Register(s) -S‘EL"“‘ S‘Mp Register(s) ﬂw‘
e T

(d) Parallel out

Figure 11.3.3: Generalized block schematic of four functions.

11.4 SERIAL IN - SERIAL OUT (SISO)

In SISO, two main operations are performed, serial left shifting
and serial right shifting

Serial Left Shift

Figure 11.4 shows serial operation, built using D Flip-Flop. To
know data shifts left we temporarily take output of Q2 Q; and Qy also

Serial
Q  Dye—a, D,k Q, D, 0, Dple— data
Serial "
iy CLK< CLK ¢ CLK 4 CLK <
out DFF DFF DFF DFF
CLK

Figure 11.4: Serial operation
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Working:
(1) Initially all FFs are reset .. Q3Q2Q1 Qo=0000

(2) Make Data IN = 1.
(a) At 1st CLK edge, output will be Q3 Q2 Q1 Qy=0001
(Refer truth table of D FF).
(b) At 2nd CLK edge, output willbe Q3 Q2Q: Qo = 0011
(c) At 3rd CLK edge, output willbe Q3 Q2Q: Qo= 0111
(d) At 4th CLK edge, output willbe Q3 Q2Q:1 Qo= 1111

(3) Now the Data IN = 0.
(e) At 5th CLK edge, output willbe Q3 Q2Q:1 Qo= 1110
(f) At 6th CLK edge, output willbe Q3 Q2Q:1 Qo= 1100
(g) At 7th CLK edge, output willbe Q3Q2Q:1 Qo= 1000
(h) At 8th CLK edge, output willbe Q3Q2Q:1 Qo= 0000

CLK pulse
U U UL

1 2 3 4 5 6 7 8 9 4
3§ ' T T T r v '
paen 1 1 1 | Li——>t 1 1 1 1 L
HEENP BER BEREN
i 1 i i 10 JOu 0
I EaErGEl LSS BB ERREEE 'I
=B EennRNPEE R
! - ; ; ' 1 i i i - T T
: 1 1 i 111t 0
i1|§|!¢1 0|ﬂ|0,|0'_l ! |
W b i T T T L
i ! - ' : ; . 1 1 I [l
| i i |1n'1|'1|'1
Q'II:U:O 1:1:1:1 U!U‘!Ulﬂ; 1 : :
T T 14 R L
1 ] i ] i « At ' ! !
! '[—' 1 v g !
OUED:OIO T:1=1:1 Oiﬂlﬂ,u L 1
3 v

|

¥

1 & Cycle o

Figure 11.4.1: Waveforms
If you observe, 1 or 0 travels from right hand to left hand, ... called left
shifting. Let's observe waveforms for the same. Waveforms are self-
explanatory. Refer Figure 11.4.1.
Shift Right:

Figure 11.4.2 shows serial right shift circuit, built using D FF.
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*1 |
LQ?’ ] W R J o, O % Do
CLK 4 in CLK < CLK ¢4 CLK ¢

DFF DFF D FF DFF

¥ Serial out

Figure 11.4.2: Serial right shift circuit
Working:

(1) Initially all FFs are cleared .. Q3Q2Q1Qy=0000

(2) Make Dataln=1

(a) 1st CLK edge, output will be, Q3 Q2Q1Qp = 1000

(b) 2nd CLK edge, output will be, Q3 Q2Q:1 Qo = 1100

(c) 3rd CLK edge, output will be, Q3 Q2Q1Qp = 1110

(d) 4th CLK edge, output will be, Q3Q2Q:1 Qo = 1111
(3) Now apply Data In = 0.

(e) 5th CLK edge, output will be, Q3Q2Q:Qp = 0111

(f) 6th CLK edge, output will be, Q3Q2Q:1 Qo = 0011

(g) 7th CLK edge, output will be, Q3Q2Q:Qy =0001
(h) 8th CLK edge, output will be, Q3 Q2Q:1 Qo = 0000

Thus 1 and 0, travel from left to right, ... right shifting.

11.5 Serial in - Parallel out

In this function, data is entered serially and taken out in parallel.
To take data parallel out, it is necessary to have all data bits available as
output, at the same time and therefore output of each FF is taken.

CLEAR ~>o—
GLOCK:
::D i R SAP SeftR Sc g I
. P 8
s OattfS_Ceftfs_Oc 0,‘}_\
Q’ oﬁ Q,
| —

Parallel data outputs
Figure 11.5: Circuit diagram Serial in — Parallel out
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If you observe the diagram carefully you will find that,

(1) Clock of all FFs are tied together, therefore all FF changes state at
same time.

(2) Asynchronous input, CLEAR, is given to all FF. So that when
CLEAR =0, all FFs are resetted, ... output Q = 0000 0000.

(3) A and B are data inputs, either of the terminal can be used as control
line. When A = 0, irrespective of B, input to FF will be 0. At each
CLOCK edge 0 travels from left to right and after 8 CLOCK pulses.
Q output = 0000 0000. It means if B = Data In, data will get
inhibited.

When A =1, NAND gates enabled and data Input B passes through
NAND gate inverted. The input data shifted serially in the register.

(4) Output of all FFs are taken as final output. O/P is Q, not. Output
appears at a time, .. It is parallel output.

(5) Data inputs may be changed while CLOCK is either low or high.

11.6 PARALLEL IN - PARALLEL OUT

This type we have already studied in section 11.2.1, buffer
register. In that Y3 - Yy was inputted parallel and Qs - Qo taken out
parallel.

11.7 RING COUNTER

Refer figure 11.4 in that circuit if Q3 is connected to Serial Data
In. then circuit is going to circulate injected pulse. The way circuit
behaves, it is named as 'Ring Counter'.

’ " Feedback line e
I e
0y O e a D e Q D, le Q, PR D,
b Data = : ! " ?
F; in F, 4 F, < Fo <
CLR CLR CLR
ax L
. - CLR g
0-- L Puise

Figure 11.7: Ring counter
Working:
Basically ring counter resembles shift register because the bits are
shifted left one position per positive clock edge. Only change is feedback

line. i.e. output of Q3 given to Q,.
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2)

3)

“4)

(&)

Initially CLOCK goes low then back to high. F3, F», F; will be reset
and Fy is preset giving .. output Q3 Q2 Q1 Qy=0001.

At Ist positive CLOCK edge, MSB moves to LSB, Q3 — Qo, Q2 —
Q3, Q1 — Qzand Qy — Q; .. output Q3 Q2Q1 Q=0010

At 2nd positive CLOCK edge, with respect to second point, bits will
shift left. ... Output Q3 Q2 Q1 Qe=0100.

At 3rd positive CLOCK edge, with respect to 3rd point, bits will
shift left. .. Output Q3 Q2Q1 Qy=1000

At 4th positive CLOCK edge, with respect to 4th point, bits will
shift left. .. Output Q3 Q2Q1 Qe=0001

Thus presetted '1' follows circular path or makes ring. ... It is called as ring
counter. Observe waveform for the same. Refer Fig. 11.7 (a)

|
oDlﬂUDlODOTD

o JWWWWWUI_'M—

ool Tloelolo[T]olo o[ 1olo!lo

%001000100:01nu

a0l olofT]ololofn ololo[T1o
CLR=0

Figure 11.7 (a): Waveform — Ring counter

Conclusion:
(1) Number of FFs used are 4.
(2) Number of states for ring counter is also 4. i.e. 0001, 0010, 0100,

3)

1000 and chain repeats.

Number of 1°s s is single.
Let's write output Q for 8 bit. So for 8 bit, 8 FFs will be used.
Initially Q = 0000 0010

Istclock edges, Q = 0000 0010
2nd clock edges, Q = 0000 0100
3rd clock edges, Q = 0000 1000
4th clock edges, Q = 0001 0000
Sth clock edges, Q = 0010 0000
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6th clock edges, Q = 0100 0000
7th clock edges, Q = 1000 0000
8th clock edges, Q = 0000 0001 — Repeat,
If you require you can also take output from @ , .. For 4 bit Refer Figure
11.7
Initially when CLOCK =0,Q=0001 ..  =1110
1st CLOCK edge Q= 1101
2nd CLOCK edge Q= 1011
3rd CLOCK edge Q= 0111
4th CLOCK edge Q= 1110
Application:

Ring counters are invaluable when it is necessary to control
sequence of operation. Mainly ring counters are used in microprocessor.

Relationship of number of states and FFs:

In ring counter number of FFs and number of states are equal.
Ring counter using JK FF is shown in Figure 11.7.1.

The working of circuit is same as that of, when D FF is used

: =1
Qp Jp Q Qg Jg Qy
0 4 c <k B A A
ol Ko . Ke Gg Ks T, Ka

r i [emm i K

R

Figure 11.7.1: Ring counter using JK FF

11.8  JOHNSON
COUNTER)

COUNTER (TWISTED RING

In ring counter output shift register was fed back to input of first
FF, that technique was referred as direct feedback. But if outputs of last
FF are crossed and then connected to inputs of first FF. the technique is
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called inverse feedback. The counter we get from this technique is called
Johnson counter or twisted ring counter

Circuit:
Let's draw circuit of Johnson counter using positive edge triggered JK FF.

L Qo Jo Q¢ Je Ca £ a, T B
D o o c oy - B - A &= 5
So Kp Q¢ Ke Te Kg . Ka
’—a@ [cim foin GiA 5
| Ctk
Figure 11.8: 4 bit Johnson counter
CLOCK | Qp | Qc | Qs | Qa State | Decimal Equivalent
Initially 0 0 0 0 1 0
1 0 0 0 1 1 1
2 0 0 1 1 3 3
3 0 1 1 1 4 7
4 1 1 1 1 5 15
5 1 1 1 0 6 14
6 1 1 0 0 7 12
7 1 0 0 0 8 8
8 0 0 0 0 1 0
Figure 11.8(a): Truth table
Working:

Refer Figures 11.8 and 11.8(a).

(1) Initially CLOCK is made low and then high after some time.

. all FFs will be cleared and output Qp Qc Qp Qa = DCBA =
0000.

(2) Now Inputs JD = JC = JB = 0, KD = KC = KB =1and JA = 1, KA =0.

So CLOCK edge hits. A will change from 0 ..1 BCD are
unchanged .. DCBA = 0001.

3) InputsJp=Jc=0,Kp=Kc=1.ButJa=Jg=1, Ky =Kg=0. ... the
moment CLOCK edge hits D and C are unchanged. A is also unchanged.
But B changes from 0 .. 1. .. DCBA = 0011.

4) Inputs Jp=0Kp=0,Js =Jg=Jc=1and Ky = Kg = K¢ =0 and
. the CLOCK edge will change output C from 0 .. 1, A, B and D
are unchanged. .. DCBA = 0111.

213



(&)

(6)

(7)

®)

)

Inputs Jp = Jc = Jp = Ja and Kp = K¢ = Kg = Ky = 0 .. next
CLOCK edge changes D from 0 .. 1, .. DCBA = 1111

Because of change of state of D from 0 .. 1. Now I/P to Jo = 0 and
KA = 1, JD = JC = JB =1 and K]) = KC = KB = 0. ... next CLOCK
edge changes A from 1 .. 0 .. DCBA =1110.

Now input to Ja =Jg=0and Ky =Kg =1and Jp = Jc =1 and Kp
= K¢ =1 .. next CLOCK edge changes B from 1 .. 0. ... DCBA =
1100 means A, D, C are unchanged.

At this stage inputto JA=Jp=Jc=0and Ky =Kg=Kc=1,Jp=1
and Kp = 0. .. next CLOCK edge keeps A, B and D unchanged, C
changes from 1 0. ... DCBA = 1000.

Finally inputto JA =Jg=Jc=Jp=0and Ky = Kg =Kc=Kp=1
-. at next CLOCK edge D changes from 1 ... 0. ... DCBA = 0000,

Now cycle will repeat from point 2 onwards.

As we have seen in working of Johnson counter and observing

truth table, we conclude that number of states of Johnson counter are
double of number of FFs. Therefore for 4 FFs states will be 8. 5 FFs states
will be 10 and for 8 FFs states will be 16.

Johnson counter using D FF:

Q. D¢ Qg  Dg Q, D, -J

QD DU "
D < c <A B A«
G, €A oTA oA “ cR 1
[ “ " r— | ex

s | [o
Figure 11.8(b): Johnson counter using D FF

The working of the circuit is same as what we have seen

11.9 APPLICATIONS OF SHIFT REGISTERS

Shift registers can be used for:

)
2)

3)

Generating sequence (pulse generator)
Counters
Random bit generator.
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(1) Sequence Generator (Pulse Generator):

Block schematic structure is shown in Figure 11.9

Q. y Oy p Q

_L _________

Combinational
¥ QP legic circuit

» N bit shift register CLOCK_n_n_
i O

Figure 11.9: Block diagram — Sequence generator

Basically shift register sequence generator contains basic two blocks:
(1) 'N'bit shift register (SIPO type).

(2) Combination logic circuit.

Combinational logic circuit has input Q.1 to Q. From this it will
decide, what should be the next serial input for shift register block, should
be generated, so that new state or sequence will appear. Now we will take
an example to design sequence generator.

Example 1:

The following pulse train is to be generated by using a shift
register. Explain the steps in designing and draw logic diagram. pulse
train ... 1011010110 ...

Solution:

(1) Observe the pulse train carefully and you will find that main pulse
train, which is repeating, is 10110.

ie ..1011010110...
—_—

Maim  Re peating

(2) Calculate number of distinct timing intervals. In short you calculate
number of bits of pulse train. In our case it is

5(10110)
12345.....

(3) Number of FFs can be given by
s<2V -1
Where N = Number of FFs.
S = Number of distinct timing intervals.
LS <2¥-1
6 <2¥ L N=3
.. 3 FFs are required.
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C))

Preparing state table for sequence generator:
Make table, containing number of states, decimal equivalent and 3
output of FF (N = 3)

P s ol FF

State Qe Qn Qu
(MSEB)

Decimal equivalent

A b e e

1 2 3
Figure 11.9(a): State table

Procedure for preparing State table:

(a)

(b)

(©)

(d)

(e

Write the format of table as shown in Figure 11.9(a). i.e. states,
output of 'N' number of FF and decimal equivalent.

Under column 1st (Normally MSB is selected) write down sequence
'vertically'.

Now just imagine that sequence is having ring structure and shift the
full sequence by y one bit. .. If sequence is 10110, rotate it left by
one bit so we will get 01101. Write down shifted version under
column 2.

Again shift the sequence by one bit. Therefore with respect to
original it will be shifted twice. Sequence under column 2 is 01101.
Shift left by one bit. .. Sequence is 11010. Write it under column 3.

Continue shifting of sequence unless you reach to LSB column.
After shifting (Rolling) sequence now find out decimal equivalent of

binary sequence. For our case we got 5, 3, 6, 5, 2.

In this decimal sequence, decimal number 5 is repeated twice, .-

states are not distinct, ... we have to increase number of FFs to get distinct
states. Therefore make state table again with four FFs.
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State O/P of FF
Qp Qc QB Q,\ Decimal Equivalent
: | s
3 1/1/0/| 13
4 |/n/1/‘:"n 1;1
5 r}/*""l/:u/l 5

Figure 11.9(b): State table

Procedure for making truth table is same as we discussed just now.
If we observe the decimal equivalent, it is coming out to be 11, 6, 13, 10,

5. All states are distinct.

(5) Design of Combinational circuit:

Here we have to find out O/P Y of combinational circuit, given to

shift register, so that state changes from previous to next.

For example let's say DCBA = 1011 (1 decimal), what should be
input to shift register, so that DCBA will be 0110. Means we have to
apply '0' to input of shift register or in short Y should be 0. Same way you
find Y for each state. The format of table is shown in Figure 11.9(c) State

table
State Qp Qc Q:
1 1 %0 1
3 1 1 0
4 1 > 0 71
5 0 1 0
A

MSB
Column

Figure 11.9(c): State table

As shown in Figure 11.9 (c). Output Y of combinational circuit is

again nothing but 1 bit shifted version of LSB column.
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(6) K-Map:

Valid states are 11, 6, 13, 10, 5, remaining states are don‘t care.
States reached to 13, four variable K-Map should be used.

% 558 8.0 0.0. 0F
ol GpQz  OpQe Q0.

Q5% 400 01 1 10,

= = b'—w

QpQ, 00 X X X )(J
0 4 12 B

aﬁﬂﬁ a1 X 1 0 X

QgQy 11 | | X X X 0

3 7 15 1"

Qg0 10 | X 1 X q
2 1 14 (]

] v

Figure 11.9(d): K- Map
(7) Logic diagram:

4 b shilt reqister i
-—J_I—.I—l_ Cr[NK bil SIPO shilt registe Seri nl_!-1

O Oc Oy @,
Combinational

/ circuit ‘

Figure 11.9(e): Logic diagram

11.10 PSEUDO - RANDOM BINARY SEQUENCE (PRBS)
GENERATOR

One important application of shift register is pseudo-random
generator. It is basically used to generate random sequence. Due to
random sequence generation the same can be used for generating noise, as
well as used for data encryption. By generating random noise, one can test
immunity given by his / her design to the noise. By encrypting data, it
becomes difficult job for a person who hacks the data in between.

Basically, the sequence generated is not truly random because it
cycles through all possible combinations once every 2" — 1 clock cycles
(n= number of FFs).

Generation of pseudo random sequence is based on feedback given
to shift register through Combinational logic circuit. Figure 11.10 depicts
noise generator based on pseudo-random sequence. The combinational
circuit used is simple EX-OR gate.
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Figure 11.10: Noise generator based on pseudo-random sequence

It uses, 31 stage shift register provided with linear feedback to
produce maximum length pseudo-random bit sequence. One of the
significant features of pseudo-random sequence is that the noise produced
from there is repeatable. The spectral density of the noise output of this
circuit is uniform to within 1 dB over the frequency range 20Hz to 20
kHZ.

The maximum length of sequence (MLS) generated will be 2" — 1
~2"—1=2%_1, sufficient length to encrypt the data.

11.11 IC7495

We are going to study now TTL MSI Chip 7495. 4 bit shift register
with serial and parallel synchronous operating mode.

Features of the chip are:

(1)  Synchronous shift left capability.
(2)  Synchronous parallel load.

(3) Separate shift and load clock inputs.

(4) Synchronous expandable shift right. Let's see internal block of IC
7495 and Pin configuration.
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ook 1
Outputs right shift Clock 2
L laft shift

(2] 3] 2] 7] 6] [51 [
1

| I

Serial input
l_ A B C D Mode

| ] | |
L2l ] 4] [STTET G
Seial A B C D Mode GND
input ~ control

-

.
Inputs

Figure 11.11(a): Pin Configuration — IC 7495

Mode (8)(8) A{zl (14) B(J i 7
Bacind _._p._r_[;- ) (2) {4) (3) {5 (5)
Sarial

,-,.,,,': (1)1) - - -

Clock 2 (e)e)
right shift

Clock 1
nght shift___|(8)(7) % EZ

\ip ]

&

Figure 11.11(b): Logic diagram (Universal Shift Register)

We are going to perform basically three functions using 7495:
(1) Parallel load

(2) Shift left

(3) Shift right

1. Parallel Load:

a) Make mode control = 1, therefore AND gate 2, 4, 6, 8 will get
enabled.

(b) Apply input ABCD.

220



(©)

(d)

In this case clock 2 input (pin number 8) is enabled. Therefore a
HIGH to LOW transition on clock and input will transfer parallel
data ABCD inputs to Qp — Qs.

Here clock 1 input is don’t case. DS is also don’t care.

2. Shift Right:

(a)

(b)
(c)
(d)
(e)

Make mode control = 0, therefore AND gate 1, 3, 5, 7 will be
enabled and AND gate 2, 4, 6, 8 will get disabled.

The data input to FF QA is now at serial input (DS).
Clock and input is don’t care. ABCD inputs are don’t care.
Apply CLOCK input to clock 1.

A HIGH to LOW transition on enabled clock 1 input transfers data

serially from from Dg to Qa, Qa to Qp, Qp to Q¢ and Qc to Qp
respectively (right shift).

3. Shift Left:

a)  For shift left operation external connection are to be performed.
Connect Qp to C, Q¢ to B and Qg to A. as shown in figure 11.11.1

Maode
control

Sarial

input

) A 3 4] D
b D (2) (14) (3) (2) (4) (3) (3 (5)
(1}1) e — b
(97
o) Hhal) Leal,
O Qc Q%
o e
Outputs

Figure 11.11.1: Three functions using 7495

11.12 SEVEN SEGMENT DISPLAYS

7 Segment display is one of the oldest methods of displaying

values in electronic devices. The combination of 7 LEDs makes the whole

displa

y. Every time a single pin gets the power of a specific range it starts

glowing. The pattern and drawing of LED make the decimal digit 8. Then

turnin

g on/off the specific pins make the 7-segment to show the other

decimal numbers. The LED has a total of 10 input pins. It also comes in
two types; one is the cathode and the other one is the anode. In both types,
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one gives the common anode and the other has a common cathode. The 7-
segment is useable directly by any low voltage device.

As 7-segment displays are very common components of digital
devices, it is good to be familiar with the ‘driving’ circuits behind them,
and the 4511 is a good example of a typical driver IC.

Its operating principle is to input a four-bit BCD (Binary-Coded
Decimal) value and energize the proper output lines to form the
corresponding decimal digit on the 7-segment LED display. The BCD
inputs are designated A, B, C, and D in order from least-significant to
most-significant. Outputs are labeled a, b, c, d, e, f, and g, each letter
corresponding to a standardized segment designation for 7-segment
displays. Of course, since each LED segment requires its own dropping
resistor, we must use seven 470 Q resistors placed in series between the
4511’s output terminals and the corresponding terminals of the display
unit.

Most 7-segment displays also provide for a decimal point
(sometimes two), a separate LED and terminal designated for its
operation. All LEDs inside the display unit are made common to each
other on one side, either cathode or anode. The 4511 display driver IC
requires a common-cathode 7-segment display unit, and so that is what is
used here.

After building the circuit and applying power, operate the four
switches in a binary counting sequence (0000 to 1111), noting the 7-
segment display. A 0000 input should result in a decimal ‘0’ display, a
0001 input should result in a decimal ‘1’ display, and so on through 1001
(decimal ‘9’). What happens for the binary numbers 1010 (10) through
1111 (15)? Read the data sheet on the 4511 IC and see what the
manufacturer specifies for operation above an input value of 9.

In the BCD code, there is no real meaning for 1010, 1011, 1100,
1101, 1110, or 1111. These are binary values beyond the range of a single
decimal digit, and so have no function in a BCD system. The 4511 IC is
built to recognize this, and output (or not output accordingly.

Three inputs on the 4511 chip have been permanently connected to
either Vdd or ground: the ‘Lamp Test,” ‘Blanking Input,” and “Latch
Enable.” To learn what these inputs do, remove the short jumpers
connecting them to either power supply rail (one at a time!), and replace
the short jumper with a longer one that can reach the other power supply
rail.

For example, remove the short jumper connecting the ‘Latch
Enable’ input (pin #5) to ground, and replace it with a long jumper wire
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that can reach all the way to the V44 power supply rail. Experiment with
making this input ‘high’ and ‘low,” observing the results on the 7-segment
display as you alter the BCD code with the four input switches.

After you have learned what the input‘s function is, connect it to
the power supply rail enabling normal operation, and proceed to
experiment with the next input (either ‘Lamp Test’ or ‘Blanking Input’).

Once again, the manufacturer‘s datasheet will be informative as to
the purpose of each of these three inputs. Note that the ‘Lamp Test” (LT)
and ‘Blanking Input’ (BI) input labels are written with Boolean
complementation bars over the abbreviations.

Bar symbols designate these inputs as active-low, meaning that
you must make each one ‘low’ in order to invoke its particular function.
Making an active-low input ‘high’ places that particular input into a
“passive’’ state where its function will not be invoked. Conversely, the
“Latch Enable” (LE) input has no complementation bar written over its
abbreviation, and correspondingly it is shown connected to ground (“low”)
in the schematic so as to not invoke that function.

The “Latch Enable” input is an active-high input, which means it
must be made “high” (connected to Vg4q4) in order to invoke its function

= Vo
(LSB) = 470 Q

) —— —1B! 4511 each -
t—18 o —W— o b

—— G S—W—Lg
L (vsB) H _M__.Mp_el d IC
— 6V 10 KO % LE g —M— s

each |7 Gnd Cathode

Figure 11.12 Schematic diagram of Seven Segment display with
display driver

11.13 ANALYSIS OF SHIFT COUNTERS

In this circuit will be given and one has to find states through
which shift register passes. To understand this let's solve example.

Example 2: A shift register with associated combinational logic circuit is
shown in Figure 11.13. Explain its action by drawing waveforms for the
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outputs of shift register (ABCD). Assume that initially shift register is in
state ABCD = 1111.

CLKIN Slipo. resister Serial in
—I u L' A B C D

Figure 11.13: circuit diagram

Solution:
(1) Write equation for output Y.

(2) Basically output Y is serial in for shift register, shift is left shift, .-.
serial in placed in LSB i.e. D. So make table.

CLOCK | Serial A |B |[C |D O/P Y= (A @ B) +CD

edge In
- - 1111 0
1 0 L1 ]1]o0 0
nd 0 1] 1]01]0 1
31 1 1lo] o1 1
4™ 1 olo |1 ]1 0
5™ 0 ol1]1]0 1
6™ 1 1] 1]0]1 0
7™ 0 1ol 1]o0 1
gh 1 ol 1]o0]1 1
9 1 1ol 1]1 1
10" 1 ol 1|11 1
1" 1 L] 1|1 ]1 0

Figure 11.13(a): truth table
Explanation:
(Refer Figure 11.13(b))

Initially ABCD =1111, .. Y=1@Q 1D+=0+0=0

. Y=serialin=0, .. when 1st CLOCK edge hits, ABCD = 1110
(Legit shift)
Now ABCD =1110, S Y=1DH+=0+0=0
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Y =serialin =0, . when 2™ CLOCK edge hits, ABCD = 1100

Thus you proceed till you get initial condition ABCD = 1111.
From table (Figure 11.13(a)) we found that counter, counts through 15, 14,
12,9,3,6,13,10,5, 11, 7 and 15.

Thus generates sequence — 111100110101 Waveforms (Waveforms are
as shown in Figure 11.13(b)).

Q, 3 4 5 & 7 8 9 1w 11 12 4 14 16 5 17 18 Pulse
. ! | 1 —
Y17 ledoe T el el 7|7 tLelof 1

% | | | | ] ' l
N1 vlelolm ttloelvlol 1111 Leloefr|r

O | l ‘ | |
" — | | | ——

” 1 I B 0 1 ol 1 i1 1]lolu 1 1 1

Q | ! | i ] | - | | I‘ | |

ol o T T lo T lo T T 17 Lolo TT Lol Lo

Figure 11.13(b): waveform

11.14 SUMMARY

In this chapter we have studied in detail about registers which
includes parallel and shift registers, serial shifting, serial-in serial-out,
serial-in parallel-out, parallel-in parallel-out, Ring counter, Johnson
counter, Application of shift registers, Pseudo-random binary sequence
generator, IC7495, Seven Segment displays and analysis of shift counters
with examples.

11.15 REFERENCE FOR FURTHER READING

For further detailed study following are books prescribed by the
University

1. Digital Electronics and Logic Design by N. G. Palan
2. Modern Digital Electronics by R. P. Jain
3. Digital Principles and Applications by Malvino and Leach
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