UNIVERSITY OF MUMBAI

TIME TABLE OF POST-GRADUATES FOR THE M.Sc. [SEM IV] STUDENTS IN ORGANIC CHEMISTRY AT ZONE I AND II DIVISION FOR THE YEAR 2017-18. [D.G. Ruparel college]

Lectures will commence from : - 5th January 2018 **Coordinator: Dr. R.V. Rele (Ruparel college)**

Semester IV

Sr.	Name of the professor	Days and dates	Paper and topic/unit
<u>No.</u> 01	Dr. K.J. Chavan (Ruparel college)	Monday 2.30 to 4.30 p.m. Jan: 22, 29, Feb: 5, 12, 26 Mar: 5, 12	Paper IV: Unit 4: Green chemistry [15L] 4.1: Introduction, basic principles of green chemistry. Designing a green synthesis: Green starting materials, green reagents, green solvents and reaction conditions, green catalysts. [1L] 4.2: Use of the following in green synthesis with suitable examples: a) Green reagents: dimethylcarbonate, polymer supported reagents. b) Green catalysts: Acid catalysts, oxidation catalysts, basic catalysts, phase transfer catalysts [Aliquat 336, benzyltrimethyl ammonium chloride (TMBA), Tetra-nbutyl ammonium chloride, crown ethers], biocatalysts. c) Green solvents: water, ionic liquids, deep eutectic solvents, supercritical carbon dioxide. d) Solid state reactions: solid phase synthesis, solid supported synthesis. e) Microwave assisted synthesis: reactions in water, reactions in organic solvents, solvent free reactions. f) Ultrasound assisted reactions.
02	Dr. (Mrs.) Pallavi Tiwari (S.I.E.S. College)	Monday 4.30 to 6.00 p.m. Jan: 22, 29, Feb: 5, 12, 26 Mar: 5, 12	Paper III: Unit 4: Advanced spectroscopic techniques [15L]4.1: ¹³ C –NMR spectroscopy: Introduction, ¹³ C- chemical shifts, calculation of ¹³ C- chemical shifts, proton coupled ¹³ C - spectra, proton decoupled ¹³ C- spectra. Off- resonance decoupling, DEPT technique, hetero-nuclear coupling of carbon to ¹⁹ F and ³¹ P.[4L]4.2: Two-dimensional NMR spectroscopy: Introduction, COSY and HETCOR techniques, (including interpretation of COSY and HETCOR spectra). NOESY and ROESY techniques.[4L]4.3: Problems based on combined use of spectroscopic techniques/ advanced techniques.

			[3L]4.4: ESR and Fluorescence spectroscopy: Principles and applications.[3L]4.5: Applications of NMR in medicine.[1L]
03	Prof. (Mrs.) Gomathi Shridhar (Menon college)	Tuesday 2.30 to 430 p.m. Jan: 23, 30, Feb: 6, 20, 27 Mar: 6, 13	Paper II: Unit 2: Designing organic synthesis[15L]2.1: Methodology in organic synthesis: convergent and divergent synthesis, functional group interconversions, general methods of synthesis of 4 -7 membered rings, disconnection approach and retrosynthetic analysis, idea of synthons and synthetic equivalents . Retrosynthesis of acyclic saturated and unsaturated systems, monocyclic, bicyclic and aromatic compounds.[11L]2.2: Synthesis of some complex molecules: synthetic routes based on retrosynthetic analysis for following molecules: prostaglandin A2, atropine and camphor.[4L]
04	Dr. (Mrs.) S. Dasgupta (Jai-hind college)	Tuesday 4.30 to 6.00 p.m. Jan: 23, 30, Feb: 6, 20, 27 Mar: 6, 13	Paper III: Unit 1: Heterocyclic compounds-II [15L] Reactivity, important methods of synthesis and general reactions of the following heterocycles: pyridines, pyridine-N-oxide, pyridazines, pyrimidines, pyrazines, s-triazines, quinolines, isoquinolines, indoles, purines, oxazines, coumarins. [15L] [4L]
05	Prof. (Mrs.)Indu Shastri (National College)	Wednesday 2.30 to 430 p.m. Jan: 24, 31, Feb: 7, 14, 28 Mar: 7, 14	Paper I: Unit 1: Physical organic chemistry[15L]1.1 Structural effects and reactivity: Linear free energy relationship (LFER) in determination of organic reaction mechanism, The Hammett equation, substituent constants, theories of substituent effects, interpretation of σ -values, reaction constants ρ , Yukawa-Tsuno equation.[7L]1.2 Uses of Hammett equation, deviations from Hammett equation. Dual parameter correlations, Inductive substituent constants. The Taft model, σ_I and σ_R scales, steric parameters Es and β . Solvent effects, Okamoto-Brown equation, Swain-Scott equation, Edward and Ritchie correlations, Grunwald-Winstein equation, Dimroth's E_T parameter.[8L]
06	Prof. (Mrs.) Kiran Jathar (national college)	Wednesday 4.30 to 6.00 p.m. Jan: 24, 31, Feb: 7, 14, 28 Mar: 7, 14	Paper I: Unit 3: Stereochemistry- II [15L] 3.1 Racemisation and resolution: Mechanism of racemisation, methods of resolution: chemical, kinetic and equilibrium asymmetric transformation and through inclusion compounds. [3L] 3.2 Determination of enantiomer and diastereomer composition: Isotope dilution method, enzymatic method, chromatographic methods. Methods based on NMR spectroscopy: use chiral derivatising agents (CDA), chiral solvating agents (CSA) and Lanthanide shift reagen (LSR). [3L]

07	Prof. B.k. N. Singh (jai- hind college)	Thursday 2.30 to 4.30 p.m. Jan: 25, Feb: 1,8, 15, 22 Mar:1, 8	3.3 Correlative methods for configurational assignment: chemical, optical rotation, quasi- racemate and NMR spectroscopy.[4L]3.4 Molecular dissymmetry and chiroptical properties: Linearly and circularly polarized ligh Circular birefringence and circular dichroism. ORD and CD curves. Cotton effect and its applications. The octant rule and the axial α -haloketone rule with applications.[5L]Paper II: Unit 4: Transition and rare earth metals in organic synthesis [15 L]4.1 Introduction, basic concepts, 18 electron rule, bonding in transition metal complexes, oxidative addition, reductive elimination, migratory insertion.[3L]4.2 Palladium in organic synthesis: π -bonding of Pd with olefins, applications in C-C bond formation, carbonylation, alkene isomerisation, cross coupling of organometallics and halides. Catalysis of cycloaddition reactions and heteroatom coupling to produce bonds between aryl/vinyl groups and N, S or P atoms.[3L]4.3 Olefin metathesis using Grubb's catalyst.[1L]4.4 Applications of nickel, cobalt, iron, rhodium and chromium carbonyls in organic synthesis.[4L]4.5 Applications of samarium iodide including reduction of organic halides, aldehydes and ketones, α -functionalised carbonyl compounds and nitro compounds.[1L]4.6 Applications of Cerium (IV) in synthesis of heterocyclic quinoxaline derivatives and its role as a deprotecting agent.[1L]4.7 Sc(OTf)3 and Yb(OTf)3 as water tolerant Lewis acid catalysts in aldol condensation, Michael reaction, Diels-Alder reaction, Friedel-Crafts reaction, oxidation reactions.[2L]
08	Dr. Juliet Miranda	Thursday 4.30 to 6.00 p.m. Jan: 25, Feb: 1,8, 15, 22 Mar:1, 8	Paper III : Unit 3: Natural products-IV[15L]3.1 Vitamins: Classification, sources and biological importance of vitamin B_1 , B_2 , B_6 ,folic acid, B_{12} , C, D_1 , E (α -tocopherol), K_1 , K_2 , H (β - biotin). Synthesis of the following:Vitamin B_1 including synthesis of pyrimidine and thiazole moietiesVitamin B_2 from 3, 4-dimethylaniline and D(-)riboseVitamin B_6 from: 1) ethoxyacetylacetone and cyanoacetamide2) ethyl ester of N-formyl-DL-alanine(Harris synthesis)Vitamin E (α -tocopherol) from trimethylquinol and phytyl bromideVitamin K_1 from 2-methyl-1, 4-naphthaquinone and phytol.G and cephalosporin-C. Synthesis of penicillin-G and phenoxymethylpenicillin from D-penicillamine and t-butyl phthalimide malonaldehyde (synthesis of D-penicillamine and t-butyl phthalimide malonaldehyde expected). 3.3 Naturally occurring insecticides: Sources, structure and biological properties of pyrethrums (pyrethrin I), rotenoids (rotenone), azadirachtin. Synthesis of pyrethrin I.[2L]

09	Dr.S.S. Borde (Wilson college)	Friday 2.30 to 4.30 p.m. Jan:19, Feb: 2,9, 16, 23 Mar:9, 16	Paper IV: Unit 2: Biomolecules - III [15L]2.1 Chemistry of coenzymes. Structure, mechanism of action and bio-modeling studies of the following coenzymes: nicotinamide adenine dinucleotide, flavin adenine dinucleotide, thiamine pyrophosphate, pyridoxal phosphate, Vitamin B12, biotin, lipoic acid, Coenzyme A. [12L]2.2 Oxygen activation in biological systems with reference to cytochromes. [3L]
10	Dr. (Ms.) M. kulkarni M.D. College	Friday 4.30 to 6.00 p.m. Jan:19, Feb: 2,9, 16, 23 Mar:9, 16	Paper II : Unit 1: Radicals in organic synthesis [15 L] 1.1 General aspects: Electrophilic and nucleophilic radicals and their reactivity with π-rich/deficient olefins. [1L] 1.2 Inter- and intramolecular aliphatic C-C bond formation using tin hydride, carbon hydride, thio donor (Barton's reaction). [2L] 1.3 Cleavage of C-X, C-Sn, C-Co and C-S bonds in the generation of radicals. [3L] 1.4 Trapping by electron transfer reactions using manganese triacetate. [1L] 1.5 Radical –radical processes: oxidative couplings, single electron oxidation of carbanions to generate radicals, dehydrodimerization and reductive couplings. [3L] 1.6 C-C bond formation in aromatics: Introduction, electrophilic and nucleophilic radical reactions on heteroaromatics: alkylations and acylations [3L]
11	Dr. Suraj Purandare (Siddarth college)	Monday to Friday 3.00 to5.30 p.m. March: 19, 20,21,22,23,24	1.7 Hunsdiecker halodecarboxylation, autooxidation [2L] Paper I : Unit 4: Asymmetric synthesis [15L] 4.1 Principles of asymmetric synthesis: Introduction, the chiral pool in Nature, methods of asymmetric induction – substrate, reagent and catalyst controlled reactions. [3L] 4.2 Synthesis of α-amino acids (Corey's diastereoselective hydrogenation of cyclic hydrazones), synthesis of L-DOPA [Knowles's Mosanto process]. [1L] 4.3 Asymmetric reactions with mechanism: Aldol and related reactions including Cram's rule, Sharpless enantioselective epoxidation, hydroxylation, aminohydroxylation, Diels-Alder reaction, reduction of prochiral carbonyl compounds and olefins. [8L] 4.4 Use of chiral auxiliaries in diastereoselective reductions, asymmetric amplification . Use of chiral BINOLs, BINAPs and chiral oxazolines and oxazolidines in asymmetric transformations. [3L]
12	Dr. Priti Khedkar (Khalasa college)	Saturday 2.30 to 4.30 p.m.	Paper I : Unit 2: Supramolecular chemistry [15L] 2.1 Principles of molecular associations and organizations as exemplified in biological

		Jan:20,27 Feb: 3,10, 17, 24 Mar:3,	macromolecules like nucleic acids, proteins and enzymes.[3L]2.2 Synthetic molecular receptors: receptors with molecular cleft, molecular tweezers, receptors with multiple hydrogen sites.[3L]2.3 Structures and properties of crown ethers, cryptands, cyclophanes, calixarenes, rotaxanes and cyclodextrins. Synthesis of crown ethers, cryptands and calixarenes[6L][3L]2.4 Molecular recognition and catalysis, molecular self assembly.[3L]
13	Prof . Karun Sodha (K.C. College)	Saturday 4.30 to 6.00 p.m. Feb: 3,10, 17, 24 Mar:3,	Paper II: Unit 3: Newer methods in organic synthesis [15L]3.1 Basic principles and applications of the following in organic synthesis: Crown ethers, cryptands, micelles, cyclodextrins, clay and zeolites and phase transfer catalysts. [9L]3.2 Introduction to polymer supported reagents and organocatalysts. [3L]3.3 Principles and applications of ultrasound and microwaves in organic synthesis.[3L]
14.	(To be announced later)	(To be announced later)	 Paper 3 : Unit 2: Natural products-III [15L] 2.1 Steroids: General structure, classification. Occurrence, biological role, important structural and stereochemical features of the following: corticosteroids, steroidal hormones, steroidal alkaloids, sterols and bile acids. [5L] 2.2 Synthesis of 16-DPA from cholesterol and plant sapogenin. [2L] 2.3 Synthesis of the following from 16-DPA: androsterone, testosterone, oestrone, oestriol, oestradiol and progesterone. [5L] 2.4 Synthesis of cinerolone, jasmolone, allethrolone, exaltone and muscone. [3L]
15.	(To be announced later)	(To be announced later)	 Unit 3: Biomolecules – IV [15L] 3.1 Role of main enzymes involved in the synthesis and breakdown of glycogen. [2L] 3.2 Enzyme catalyzed organic reactions: Hydrolysis, hydroxylation, oxidation and reduction. [6L] 3.3 Enzymes in organic synthesis. Fermentation: Production of drugs/ drug intermediates by fermentation. Production of chiral hydroxy acids, vitamins, amino acids, β-lactam antibiotics. Synthesis of chemicals via microbial transformation, synthesis of L-ephedrine. Chemical processes with isolated enzymes in free form (hydrocyanation of m-phenoxybenzaldehyde) / immobilized form (production of 6-aminopenicillanic acid). [7L]

16	To be announced later	
		 Paper IV: Unit 1: Drug design, development and synthesis: [15L] 1.1 Introduction to Quantitative Structure Activity Relationship studies. QSAR parameters - Steric effects: The Taft and other equations; Methods used to correlate physicochemical parameters with biological activity: Hansch analysis - A linear multiple regression analysis.[5L] 1.2 Introduction to modern methods of drug design and synthesis - computer-aided molecular graphics based drug design, drug design via enzyme inhibition (reversible and irreversible), biotechnology and drug design. [3L] 1.3 Concept of prodrugs and soft drugs: a) Prodrugs: Prodrug design, types of prodrugs, functional groups in prodrugs, advantages of prodrug use. b) Soft drugs: Concept and properties [3L] 1.4 Synthesis and application of the following drugs: Fluoxetine, oxyphenbutazone, cetrizine, esomeprazole, fluconazole, zidovudine, methotrexate, diclofenac, labetalol, fenofibrate.