No. UG/\9 of 2016-17

CIRCULAR:-

A reference is invited to the Syllabi relating to the B.Sc. degree course, <u>vide</u> this office Circular No. UG/16 of 2016, dated 16th June, 2016 and the Principals of affiliated Colleges in Science are hereby informed that the recommendation made by Board of Studies in Science at its meeting held on 18th February, 2016 has been accepted by the Academic Council at its meeting held on, 24th June 2016 <u>vide</u> item Nos. 4.88 and that the accordance therewith, the revised syllabus of F.Y.B.Sc. (Biotechnology) (Sem. I & II), (Credit Based Semester and Grading System), which is available on the University's web site (<u>www.mu.ac.in</u>) and that the same has been brought into force with effect from the academic year 2016-17 which is read as under:-

- 1. The syllabus of F.Y.B.Sc.(Biotechnology) is re-structured.
- 2. The Intake capacity of this course as per Govt.of Maharashtra and University of Mumbai's sanction is unchanged.
- 3. The Eligibility for the course is unchanged.
- 4. The fees for the course is Rs.30,000/- per years.

(Dr.M.A.Khan) REGISTRAR

MUMBAI – 400 032 27 June, 2016

To,

The Principals of affiliated Colleges in Science.

A.C/ 4.88/24/06/2016.

No. UG/ \ 9 of 2016

MUMBAI-400 032

27th June, 2016

Copy forwarded with compliments for information to:-

- 1. The Dean, Faculty of Science
- 2. The Director, Board of College and University Development,
- 3. The Controller of Examinations,
- 4. The Co-Ordinator, University Computerization Centre.

(Dr.M.A.Khan) REGISTRAR

UNIVERSITY OF MUMBAI

Syllabus for F.Y.B.Sc.

(Restructured)

Programme: B.Sc.

Course: Biotechnology

with effect from the academic year

2016 - 2017

SEMESTER – I THEORY

SEMESTER I

Basic Chemistry I

COURSE CODE	TITLE	CREDITS	Notional Hours
USBT 101	Basic Chemistry I	2	
Unit I Nomenclature and Classification	Nomenclature and Classification of Inorganic Compounds: Oxides, Salts, Acids, Bases, Ionic, Molecular and Coordination Compounds	15 Lectures	30 hrs
	Nomenclature and Classification of Organic Compounds: Alkanes, Alkenes, Alkynes, Cyclic Hydrocarbons, Aromatic Compounds, Alcohols and Ethers, Aldehydes and Ketones, Carboxylic Acids and its derivatives, Amines, Amides, Alkyl Halides and Heterocylic Compounds		
Unit II Chemical Bonds	Chemical Bonds: Ionic Bond: Nature of Ionic Bond, Structur eof NaCl, KCl and CsCl, factors influencing	15 Lectures	30 hrs
	the formation of Ionic Bond.		
	Covalent Bond: Nature of Covalent Bond, Structure of CH4, NH3, H2O, Shapes of BeCl ₂ , BF3		
	Coordinate Bond: Nature of Coordinate Bond		
	Non Covalent Bonds: van Der Waal's forc es: dipole - dipole, dipole - induced dipole.		
	Hydrogen Bond : Theory of Hydrogen Bon ding and Types of Hydrogen Bonding (with examples of RCOOH, ROH, Salicylaldehyd e, Amides and Polyamides).		
Unit III Water and Buffers	Chemistry of Water: Properties of Water, Interaction of Water with Solutes (Polar, Non-Polar, Charged), Non-Polar Compounds in Water – Change in its Structure and the Hydrophobic Effect, Role of Water in Biomolecular Structure and Function and Water as a Medium for	15 lectures	30 hrs
	Life Solutions: Normality, Molarity, Molality, Mole fraction, Mole concept, Solubility,		

Weight ratio, Volume ratio, Weight to Volume ratio, ppb, ppm, millimoles, milliequivalents (Numericals expected).	
Primary and Secondary Standards: Preparation of Standard Solutions, Principle of Volumetric Analysis.	
Acids and Bases: Lowry-Bronsted and Lewis Concepts. Strong and Weak Acids and Bases - Ionic Product of Water - pH, pKa, pKb. Hydrolysis of Salts.	
Buffer solutions – Concept of Buffers, Typ es of Buffers, Derivation of Henderson equa tion for Acidic and Basic buffers, Buffer act ion, Buffer capacity. (Numericals expected.) pH of Buffer Solution.	

SEMESTER I Basic Chemistry II

COURSE CODE	TITLE	CREDITS	Notional
			Hours
USBT 102	Basic Chemistry II	2	
USBT 102 Unit I Stereochemistry	Isomerism — Types of Isomerism: Constitutional Isomerism (Chain, Position and Functional) and Stereoisomerism, Chirality. Geometric Isomerism and Optical Isomerism: Enantiomers, Diastereomers, and Racemic mixtures Cis-Trans, Threo, Erythro and Meso isomers. Diastereomerism (Cis-Trans Isomerism) in Alkenes and Cycloalkanes (3 and 4 membered ring) Conformation: Conformations of Ethane. Difference between Configuration and Conformation. Configuration, Asymmetric Carbon Atom,	2 15 Lectures	30 hrs
	Configuration, Asymmetric Carbon Atom, Stereogenic/ Chiral Centers, Chirality, Representation of Configuration by "Flying Wedge Formula"		

	Projection formulae – Fischer, Newman and Sawhorse. The Interconversion of the Formulae.		
Unit II Titrimetry and Gravimetry	Titrimetric Analysis : Titration, Titrant, Titrand, End Point, Equivalence Point, Titration Error, Indicator, Primary and Secondary Standards, Characteristics and examples	15 Lectures	30 hrs
	Types of Titration –Acid –Base, Redox. Precipitation, Complexometric Titration. Acid – Base TitrationStrong Acid <i>Vs</i> Strong Base -Theoretical aspects of Titration Curve and End Point Evaluation. Theory of Acid –Base Indicators, Choice and Suitability of Indicators.		
	Gravimetric Analysis: Solubility and Precipitation, Factors affecting Solubility, Nucleation, Particle Size, Crystal Growth, Colloidal State, Ageing/Digestion of Precipitate. Co-Precipitation and Post-Precipitation. Washing, Drying and Ignition of Precipitate. (Numericals Expected).		
Unit III Analytical Techniques	Methods of Seperation Precipitation, Filtration, Distillation and Solvent Extraction. Analytical Techniques Chromatography: Definition, Principles, Types Introduction to Paper Chromatography, Thin Layer Chromatography, Column Chromatography and its Applications. Colorimetry: Principle, Beer-Lambert's Law, Measurement of Extinction, Derivation of E = kcl, Limitations of Beer-Lambart's Law, Filter Selection	15 Lectures	30 hrs

SEMESTER I Basic Life Science I : Biodiversity and Cell Biology

COURSE CODE	TITLE	CREDITS	Notional Hours
USBT 103	Biodiversity and Cell Biology	2	Hours
Unit I	Origin of Life, Chemical and Biological Evolution, Origin of Eukaryotic Cell.	15Lectures	30 hrs
Origin of Life and Biodiversity (Animal, Plant, Microorganisms)	Concept of Biodiversity, Taxonomical, Ecological and Genetic Diversity and it s Significance		
	Introduction to Plant Diversity: Algae, Fungi, Bryophyta, Pteridophyta, Gymnosperms and Angiosperms (with one example each)		
	Introduction to Animal Diversity: Non-Chordates and Chordates { with at least one representative example.}		
	Introduction to Microbial Diversity Archaebacteria, Eubacteria, Blue-green Algae, Actinomycetes, Eumycota- Habitats, Examples and Applications.		
Unit II Ultra Structure of Prokaryotic and Eukaryotic Cell.	Ultrastructure of Prokaryotic Cell: Concept of Cell Shape and Size. Detail Structure of Slime Layer, Capsule, Flagella, Pilli, Cell Wall (Gram Positive and Negative), Cell Membrane, Cytoplasm and Genetic Material Storage Bodies and Spores	15Lectures	30 hrs
	Ultrastructure of Eukaryotic Cell: Plasma membrane, Cytoplasmic Matrix, Microfilaments, Intermediate Filaments, and Microtubules Organelles of the Biosynthetic- Endoplasmic Reticulum & Golgi		
	Apparatus. Lysosome, Endocytosis, Phagocytosis, Autophagy, Proteasome Eucaryotic Ribosomes, Mitochondria and Chloroplasts Nucleus –Nuclear Structure, Nucleolus		

	External Cell Coverings: Cilia And Flagella Comparison of Prokaryotic And Eukaryotic Cells		
Unit III Bacteria and Viruses	Bacteria: Classification, Types, Morphology (Size, Shape and Arrangement) Cultivation of Bacteria. Reproduction and Growth (Binary Fission, Conjugation and Endospore formation) Growth Kinetics, Isolation and Preservation. Significance of Bacteria Viruses: General Characters, Classification (Plant, Animal and Bacterial Viruses) Structure and Characterization of Viruses and Significance	15Lectures	30 hrs

SEMESTER - I
Basic Life Science II : Microbial Techniques

COURSE CODE	TITLE	CREDITS	Notional
			Hours
USBT 104	Microbial Techniques	2	
	Microscopy and Stains	15 lectures	30 hrs
Unit I	Microscope- Simple and Compound:		
Microscopy and Stains	Principle. Parts, Functions and Applications.		
	Dark Field and Phase Contrast Microscope		
	Stains and Staining Solutions- Definition of Dye and Chromogen.		
	Structure of Dye and Chromophore.		
	Functions of Mordant and Fixative.		
	Natural and Synthetic Dyes. Simple		
	Staining, Differential Staining and Acid		
	Fast Staining with specific examples		
	Definition : Sterilization and	15 lectures	30 hrs
Unit II	Disinfection.		
Sterilization Techniques	Types and Applications		
	Dry Heat, Steam under pressure,		
	Gases, Radiation and Filteration		
	Chemical Agents and their Mode of		

Action - Aldehydes, Halogens, Quaternary Ammonium Compounds, Phenol and Phenolic Compounds, Heavy Metals, Alcohol, Dyes, and Detergents Ideal Disinfectant. Examples of Disinfectants and Evaluation of Disinfectant Nutrition and Cultivation of Microorganisms Nutritional Requirements: Carbon, Oxygen, Hydrogen, Nitrogen, Phosphorus, Sulphur and Growth Factors. Classification of Different Nutritional Trypes of Organisms. Design and Types of Culture Media. Simple Medium, Differential, Selective and Enrichem Media Concept of Isolation and Methods of Isolation. Pure Culture Techniques Growth and Enumeration Growth Phases, Growth Curve. Arithmatic Growth and Growth Yield.		Action - Aldehydes, Halogens,		
Phenol and Phenolic Compounds, Heavy Metals, Alcohol, Dyes, and Detergents Ideal Disinfectant. Examples of Disinfectants and Evaluation of Disinfectant Unit III Nutrition and Cultivation of Microorganisms Nutritional Requirements: Carbon, Oxygen, Hydrogen, Nitrogen, Phosphorus, Sulphur and Growth Factors. Classification of Different Nutritional Trypes of Organisms. Design and Types of Culture Media. Simple Medium, Differential, Selective and Enrichem Media Concept of Isolation and Methods of Isolation. Pure Culture Techniques Growth and Enumeration Growth Phases, Growth Curve.		, ,		
Heavy Metals, Alcohol, Dyes, and Detergents Ideal Disinfectant. Examples of Disinfectants and Evaluation of Disinfectant Unit III Nutrition, Cultivation and Enumeration of Microorganisms Nutritional Requirements: Carbon, Oxygen, Hydrogen, Nitrogen, Phosphorus, Sulphur and Growth Factors. Classification of Different Nutritional Trypes of Organisms. Design and Types of Culture Media. Simple Medium, Differential, Selective and Enrichem Media Concept of Isolation and Methods of Isolation. Pure Culture Techniques Growth and Enumeration Growth Phases, Growth Curve.				
Detergents Ideal Disinfectant. Examples of Disinfectants and Evaluation of Disinfectant		=		
Ideal Disinfectant. Examples of Disinfectants and Evaluation of Disinfectant Unit III Nutrition, Cultivation and Enumeration of Microorganisms Nutritional Requirements: Carbon, Oxygen, Hydrogen, Nitrogen, Phosphorus, Sulphur and Growth Factors. Classification of Different Nutritional Trypes of Organisms. Design and Types of Culture Media. Simple Medium, Differential, Selective and Enrichem Media Concept of Isolation and Methods of Isolation. Pure Culture Techniques Growth and Enumeration Growth Phases, Growth Curve.				
Disinfectants and Evaluation of Disinfectant Nutrition and Cultivation of Microorganisms Nutritional Requirements: Carbon, Oxygen, Hydrogen, Nitrogen, Phosphorus, Sulphur and Growth Factors. Classification of Different Nutritional Trypes of Organisms. Design and Types of Culture Media. Simple Medium, Differential, Selective and Enrichem Media Concept of Isolation and Methods of Isolation. Pure Culture Techniques Growth and Enumeration Growth Phases, Growth Curve.		Detergents		
Disinfectants and Evaluation of Disinfectant Nutrition and Cultivation of Microorganisms Nutritional Requirements: Carbon, Oxygen, Hydrogen, Nitrogen, Phosphorus, Sulphur and Growth Factors. Classification of Different Nutritional Trypes of Organisms. Design and Types of Culture Media. Simple Medium, Differential, Selective and Enrichem Media Concept of Isolation and Methods of Isolation. Pure Culture Techniques Growth and Enumeration Growth Phases, Growth Curve.				
Unit III Nutrition, Cultivation and Enumeration of Microorganisms Nutritional Requirements: Carbon, Oxygen, Hydrogen, Nitrogen, Phosphorus, Sulphur and Growth Factors. Classification of Different Nutritional Trypes of Organisms. Design and Types of Culture Media. Simple Medium, Differential, Selective and Enrichem Media Concept of Isolation and Methods of Isolation. Pure Culture Techniques Growth and Enumeration Growth Phases, Growth Curve.		1		
Unit III Nutrition, Cultivation and Enumeration of Microorganisms Nutritional Requirements: Carbon, Oxygen, Hydrogen, Nitrogen, Phosphorus, Sulphur and Growth Factors. Classification of Different Nutritional Trypes of Organisms. Design and Types of Culture Media. Simple Medium, Differential, Selective and Enrichem Media Concept of Isolation and Methods of Isolation. Pure Culture Techniques Growth and Enumeration Growth Phases, Growth Curve.				
Unit III Nutrition, Cultivation and Enumeration of Microorganisms Nutritional Requirements: Carbon, Oxygen, Hydrogen, Nitrogen, Phosphorus, Sulphur and Growth Factors. Classification of Different Nutritional Trypes of Organisms. Design and Types of Culture Media. Simple Medium, Differential, Selective and Enrichem Media Concept of Isolation and Methods of Isolation. Pure Culture Techniques Growth and Enumeration Growth Phases, Growth Curve.				
Nutrition, Cultivation and Enumeration of Microorganisms Nutritional Requirements: Carbon, Oxygen, Hydrogen, Nitrogen, Phosphorus, Sulphur and Growth Factors. Classification of Different Nutritional Trypes of Organisms. Design and Types of Culture Media. Simple Medium, Differential, Selective and Enrichem Media Concept of Isolation and Methods of Isolation. Pure Culture Techniques Growth and Enumeration Growth Phases, Growth Curve.			15 lectures	30 hrs
Enumeration of Microorganisms Oxygen, Hydrogen, Nitrogen, Phosphorus, Sulphur and Growth Factors. Classification of Different Nutritional Trypes of Organisms. Design and Types of Culture Media. Simple Medium, Differential, Selective and Enrichem Media Concept of Isolation and Methods of Isolation. Pure Culture Techniques Growth and Enumeration Growth Phases, Growth Curve.		8		
Microorganisms Phosphorus, Sulphur and Growth Factors. Classification of Different Nutritional Trypes of Organisms. Design and Types of Culture Media. Simple Medium, Differential, Selective and Enrichem Media Concept of Isolation and Methods of Isolation. Pure Culture Techniques Growth and Enumeration Growth Phases, Growth Curve.	·	•		
Factors. Classification of Different Nutritional Trypes of Organisms. Design and Types of Culture Media. Simple Medium, Differential, Selective and Enrichem Media Concept of Isolation and Methods of Isolation. Pure Culture Techniques Growth and Enumeration Growth Phases, Growth Curve.				
Classification of Different Nutritional Trypes of Organisms. Design and Types of Culture Media. Simple Medium, Differential, Selective and Enrichem Media Concept of Isolation and Methods of Isolation. Pure Culture Techniques Growth and Enumeration Growth Phases, Growth Curve.	Microorganisms	Phosphorus, Sulphur and Growth		
Trypes of Organisms. Design and Types of Culture Media. Simple Medium, Differential, Selective and Enrichem Media Concept of Isolation and Methods of Isolation. Pure Culture Techniques Growth and Enumeration Growth Phases, Growth Curve.				
Design and Types of Culture Media. Simple Medium, Differential, Selective and Enrichem Media Concept of Isolation and Methods of Isolation. Pure Culture Techniques Growth and Enumeration Growth Phases, Growth Curve.		Classification of Different Nutritional		
Simple Medium, Differential, Selective and Enrichem Media Concept of Isolation and Methods of Isolation. Pure Culture Techniques Growth and Enumeration Growth Phases, Growth Curve.		Trypes of Organisms.		
and Enrichem Media Concept of Isolation and Methods of Isolation. Pure Culture Techniques Growth and Enumeration Growth Phases, Growth Curve.				
Concept of Isolation and Methods of Isolation. Pure Culture Techniques Growth and Enumeration Growth Phases, Growth Curve.		Simple Medium, Differential, Selective		
Isolation. Pure Culture Techniques Growth and Enumeration Growth Phases, Growth Curve.		and Enrichem Media		
Growth and Enumeration Growth Phases, Growth Curve.		Concept of Isolation and Methods of		
Growth Phases, Growth Curve.		Isolation. Pure Culture Techniques		
, ,		Growth and Enumeration		
Arithmatic Growth and Growth Yield.		Growth Phases, Growth Curve.		
		Arithmatic Growth and Growth Yield.		
Measurement of Growth. Chemostat		Measurement of Growth. Chemostat		
and Turbidostat		and Turbidostat		
Enumeration of Microorganisms- Direct		Enumeration of Microorganisms- Direct		
and Indirect Methods				
Preservation of Cultures- Principle and		Preservation of Cultures- Principle and		
Methods. Cryogenic Preservation		1		
Advantages and Limitations		• •		

 $\label{eq:SEMESTERI} \textbf{Biotechnology I: Introduction to Biotechnology}$

COURSE CODE	TITLE	CREDITS	Notional Hours
USBT 105	Introduction to Biotechnology	2	Hours
			30 hrs
Unit I Scope and Introduction to Biotechnology	History and Introduction to Biotechnology What is Biotechnology? Definition of Biotechnology, Traditional and Modern Biotechnology, Branches of Biotechnology-Plant, Ani mal Biotechnology, Marine Biotechnol ogy, Agriculture, Healthcare, Industrial Biotechnology, Pharmaceutical Biotech nology, Environmental Biotechnology. Biotechnology Research in India. Biotechnology Institutions in India (Pub lic and Private Sector) Biotech Success Stories Biotech Policy Initiatives Biotechnology in context of Developing World	15 lectures	30 hrs
Unit II Applications Biotechnology	Applications of Biotechnology in Agriculture: GM Food, GM Papaya, GM Tomato, Fungal and Insect Resistant Plants BT Crops, BT Cotton and BT Brinjal Pros and Cons Biotechnological applications in Crop and Livestock Improvements Modifications in Plant Quality Golden Rice, Molecular Pharming, Plant Based Vaccines Ethics in Biotechnology and IPR	15 lectures	30 hrs
Unit III Food and Fermentation Biotechnology	Food Biotechnology Biotechnological applications in enhancement of Food Quality Unit Operation in Food Processing Quality Factors in Preprocessed Food Food Deterioration and its Control Rheology of Food Products Microbial role in food products Yeast, Bacterial and other Microorganisms based process and products Modern Biotechnological Regulatory A	15 lectures	30 hrs

spects in Food Industries	
Biotechnology and Food - Social	
Appraisal	
Fermentation Technology	
Defination, Applications of	
Fermetation Technology	
Microbial Fermentations	
Overview of Industrial Production of	
Chemicals (Acetic Acid, Citric Acid	
and Ethanol), Antibiotics,	
Enzymes and Beverages	

SEMESTER - I
Biotechnology II : Molecular Biology

COURSE CODE	TITLE	CREDITS	Notional Hours
USBT 106	Molecular Biology	2	
Unit I Replication	DNA Replication in Prokaryotes and Eu karyotes- Semi-conservative DNA replication, DNA Polymerases and its role, E.coli Chromosome Replication, Bidirectional Replication of Circular DNA molecules. Rolling Circle Replication, DNA Replic	15 lectures	30 hrs
	ation in Eukaryotes DNA Recombination – Holliday Model for Recombination Transformation Definition and Types of Mutations.	15 lectures	30 hrs
Unit II Mutation and DNA Repair	Mutagenesis and Mutagens.(Examples of Physical, Chemical and Biological M utagens) Types of Point Mutations, DNA REPAIR Photoreversal, Base Excision Repair, N ucleotide Excision Repair, Mismatch R epair, SOS Repair and Recombination Repair.		
Unit III Genetic Engineering	Experimental evidences for DNA and R NA as Genetic Material. Genetic Engineering in E coli and other Prokaryotes, Yeast, Fungi and Mammalian Cells Cloning Vectors - Plasmids (pBR 322, pUC)	15 lectures	30 hrs

Vectors for Plant and Animal Cells,	
Shuttle Vectors, YAC Vectors,	
Expression Vectors	
Enzymes- DNA Polymerases,	
Restriction Endonucleases, Ligases,	
Reverse Transcriptases, Nucleases,	
Terminal Transferases, Phosphatases	
Isolation and Purification of DNA	
(Genomic, Plasmid) and RNA,,	
Identification of Recombinant Clones	

Semester – I Practicals

SEMESTER – I Practicals

Basic Chemistry

COURSE CODE	TITLE	CREDITS	Notional
			Hours
USBTP 101	Basic Chemistry	2	30 hrs

- 1. Safety Measures and Practices in Chemistry Laboratory, Working and use of a Digital Balance, Functioning and Standardization of *pH* Meter, Optical Activity of a Chemical Compounds by Polarimeter
- 2. Preparation of Standard (Molar, Molal and Normal solutions) and Buffer Solutions Determination of strength of HCl in commercial sample
- 3. Qualitative Analysis of Inorganic Compounds Three experiments
- 4. Characterization of Organic Compounds containing only C, H, O elements (no element test) Compounds belonging to the following classes: Carboxylic Acid, Phenol, Aldehyde/Ketone, Ester, Alcohol, Hydrocarbon and Characterization of Organic Compounds containing C, H, O, N, S, Halogen Elements (element tests to be done) Compounds belonging to the following classes: Amine, Amide, Nitro Compounds, Thiamide, Haloalkane, Haloarene
- 5. To Standardize commercial sample of NaOH using KHP (Potassium hydrogen pthalate) and sample of HCl using borax.
- 6. Dissociation Constant of Weak Acids by Incomplete Titration Method using *pH* Meter and determination of Acetic acid in Vinegar by Titrimetric Method
- 7. Determination of the amount of Fe (II) present in the given solution Titrimetrically
- 8. Determination of amount of NaHCO3 + Na2CO3 in the given solid mixture Titrimetrcially
- 9. Determination of the amount of Mg (II) present in the given solution complexometrically
- 10. Determination of percent composition of BaSO4 and NH4Cl in the given mixture Gravimetrically
- 11. Separation of Cu, Ni and Fe using Paper Chromatography and amino acids paper chromatography
- 12. Determination of fluoride ion using Colorimetry and Fe (III) by using Salicylic Acid by Colorimetric Titration

SEMESTER – I Practicals Basic Life Science

COURSE CODE	TITLE	CREDITS	Notional
			Hours
USBTP 102	Basic Life Science	2	30 hrs

- 1. Components and working of Simple, Compound, Dark Field, Fluorescent and Phase Contrast Microscope
- 2. Staining of Plant and Animal Tissues using Single and Double Staining Techniques
- 3. Special Staining Technique for Cell Wall, Capsule and Endospores and Fungal Staining
- 4. Monochrome Staining, Differential Staining, Gram Staining, and Acid Fast Staining and Romonowsky Staining
- 5. Study of Plant, Animal and Microbial Groups with at least one examples from each x 3
- 6. Study of Photomicrographs of Cell Organelles
- 7. Sterilization of Laboratory Glassware and Media using Autoclave
- 8. Preparation of Media- Nutrient broth and Agar, MacConkey Agar, Sabourauds Agar
- 9. Isolation of Organisms: T-streak, Polygon method
- 10. Enumeration of microorganisms by Serial Dilution, Pour Plate, Spread Plate Method

- 11. Colony Characteristics of Microorganisms, Enumeration by Breed's count
- 12. Growth Curve of E.Coli

SEMESTER – I Practicals Basic Biotechnology

COURSE CODE	TITLE	CREDITS	Notional Hours
USBTP 103	Basic Biotechnology	2	30 hrs

- 1. Assignment- Study of any branch of biotechnology and its applications
- 2. Microbial examination of food and detection of Pathogenic Bacteria from Food Samples
- 3. Isolation of organisms causing Food Spoilage
- 4. Microscopic determination of Microbial flora from Yoghurt and Lactic Acid Determination
- 5. Analysis of Milk- Methylene Blue, Resazurin Test, Phosphatase Test
- 6. Extraction of Caesin from Milk
- 7. Meat Tenderization using Papain
- 8. Fermentative production of Alcohol
- 9. Determination of Alcohol content
- 10. Isolation and purification of DNA (genomic, plasmid)
- 11. Restriction Digestion
- 12. Agarose Gel Electrophoresis of the genomic and plasmid DNA

SEMESTER – II THEORY

SEMESTER II

Chemistry II : Bioorganic Chemistry

COURSE CODE	TITLE	CREDITS	Notional Hours
USBT 201	Bioorganic Chemistry	2	Hours
	Carbohydrates: Structure, Function,	15 lectures	30 hrs
Unit I	Classification, Characteristic		
Biomolecules:	Reactions, Physical and Chemical		
Carbohydrates and Lipids	Properties, D & L Glyceraldehydes,		
•	structure of Monosaccharide,		
	Disaccharides, and Polysaccharides.		
	Isomers of Monosaccharides,		
	Chemical/Physical Properties of		
	Carbohydrate, Chemical Reactions for		
	Detection of Mono., Di and		
	Polysaccharides,		
	Lipids: Classification of Lipids,		
	Properties of Saturated, Unsaturated		
	Fatty Acids, Rancidity, and		
	Hydrogenation of Oils		
	Phospholipids: Lecithin Cephalin,		
	Plasmalogen		
	Triacylglycerol-Structure and Functio		
	n		
	Sterols: Cholesterol: Structure and Fu		
	nction, Lipoproteins: Structure and Fu		
	nction, Storage Lipids, Structural Lipi		
	ds, Action of Phospholipases, Steroids	4 = 1	20.1
***	Proteins and Amino Acids:	15 lectures	30 hrs
Unit II	Classification, Preparation and Propert		
Biomolecules:	ies, Isoelectric Point, Peptide Synthesi		
Proteins and Amino Acids	Proteins: Classification based on Struc		
	ture and Functions, Primary Structure,		
	N-terminal (Sanger and Edmans Meth od) and C-terminal Analysis (Enzyme)		
	Reactions of Amino Acids, Sorenson'		
	s Titration, Ninhydrin Test.		
	Denaturation of protein Structure of		
	Peptides.		
	Titration Curve of Amino Acids.		
	Concept of Isoelectric pH, Zwitter ion.		
	Glycoproteins		
	Nucleic Acids: Structure, Function of	15 lectures	30 hrs
Unit III	Nucleic Acids, Properties and Types o	15 10010105	201110
Biomolecules:	f DNA, RNA. Structure of Purine and		
Nucleic Acids	Pyrimidine Bases Hydrogen Bonding		
	between Nitrogeneous Bases in DNA		

Differences between DNA and RNA,	
Structure of Nucleosides, Nucleotides	
and Polynucleotides.	

SEMESTER II

Chemistry II : Physical Chemistry

COURSE CODE	TITLE	CREDITS	Notional Hours
USBT 202	Physical Chemistry	2	Hours
	Thermodynamics:	15 lectures	30 hrs
Unit I	System, Surrounding, Boundaries		
Thermodynamics	Sign Conventions, State Functions,		
	Internal Energy and Enthalpy:		
	Significance, examples, (Numericals		
	expected.)		
	Laws of Thermodynamics and its		
	Limitations, Mathematical expression.		
	Qualitative discussion of Carnot Cycle		
	for ideal Gas and Mechanical		
	Efficiency. Laws of Thermodynamics		
	as applied to Biochemical Systems. Concept of Entropy, Entropy for		
	Isobaric, Isochoric and Isothermal		
	Processes.		
	Reaction Kinetics:	15 lectures	30 hrs
Unit II	Rate of Reaction, Rate Constant,	13 lectures	50 ms
Chemical Kinetics	Measurement of Reaction Rates Order		
2	& Molecularity of Reaction,		
	Integrated Rate Equation of First and		
	Second order reactions (with equal		
	initial concentration of reactants).		
	(Numericals expected)		
	Determination of Order of Reaction		
	by a) Integration Method b) Graphical		
	Method c) Ostwald's Isolation Method		
	d) Half Time Method. (Numericals		
	expected).		
	Principals of Oxidation & Reductio	15 lectures	30 hrs
Unit III	n Reactions –		
Oxidation Reduction	Oxidising and Reducing Agents, Oxid		
reactions	ation Number, Rules to assign Oxidati		
	on Numbers with examples Ions like		
	Oxalate, Permanganate and Dichromat e. Balancing Redox Reactions by Ion		
	Electron Method		
	Oxidation, Reduction, Addition and S		
	ubstitution and Elimination Reactions.		
	ubstitution and Emiliation Reactions.		

SEMESTER II

Basic Life Science I : Physiology and Ecology

COURSE CODE	TITLE	CREDITS	Notional Hours
USBT 203	Physiology and Ecology	2	110015
Unit I Plant Physiology	Photosynthesis, Intracellular Organization of Photosynthetic System. Fundamental Reactions of Photosynthesis, Photosynthetic Pigments, Role of Light. Hill Reaction and its Significance, Light Reactions, Cyclic and Non-Cyclic Photo induced Electron Flow, Energetics of Photosynthesis, Photorespiration, Dark Phase of Photosynthesis, Calvin Cycle, C-3, C-4 pathways	15 lectures	30 hrs
	Plant hormones - Auxin ,Gibbrellins, Cytokinins, Ethylene, Abscissic acid Introduction to Secondary Metabolites		
Unit II Animal Physiology	Physiology of Digestion Movement of Food and Absorption, Secretary functions of Alimentary Canal, Digestion and Absorption, assimilation in Gut of Mammals Anatomy of Mammalian Kidney, Structure of Nephron, Physiology of Urine Formation and Role of Kidney in Excretion and Osmoregulation Physiology of Respiration, Mechanism of Respiration Principles of Gaseous Exchange in the Blood and Circulation: Blood Composition, Structure and Function of its Constituents Blood Coagulation and Anti- Coagulants Hemoglobin and its Polymorphism Regulation of the Circulation Mechanism and working of Heart in Human.	15 lectures	30 hrs
Unit III	Ecology and Biogeography. Ecosystems, Definition and Compone	15 lectures	30 hrs

Ecosystem and Interactions	nts,	
	Structure and Function of Ecosystems.	
	Aquatic and Terrestrial Ecosystems, B	
	iotic and Abiotic Factors, Trophic Lev	
	els, Food Chain and Food Web, Ecolo	
	gical Pyramids (Energy, Biomass and	
	Number)	
	Nutrient Cycle and Biogeochemical C	
	ycles: Water, Carbon, Oxygen, Nitrog	
	en and Sulphur.	
	Interactions: Commensalism, Mutualis	
	m, Predation and Antibiosis, Parasitis	
	m.	

$\boldsymbol{SEMESTER-II}$

Basic Life II: Genetics

COURSE CODE	TITLE	CREDITS	Notional
			Hours
USBT 204	Genetics	2	
	Mendel's Laws of Heredity	15 lectures	30 hrs
Unit I	Monohybrid Cross: Principle		
Genetics Fundamentals	of Dominance and Segregation.		
	Dihybrid Cross: Principle of		
	Independent Assortment.		
	Application of Mendel's		
	Principles		
	Punnett Square.		
	Mendel's Principle in Human		
	Genetics.		
	Incomplete Dominance and Co-domin		
	ance.		
	Multiple Alleles. Allelic series.		
	Variations among the effect of the		
	Mutation.		
	Genotype and Phenotype.		
	Environmental effect on the		
	expression of the Human Genes.		
	Gene Interaction.		
	Epistasis.		
	Genetic analysis in Bacteria- Prototrop	15 lectures	30 hrs
Unit II	hs, Auxotrophs.		
Microbial Genetics	Bacteriophages: Lytic and Lysogenic		
	Development of Phage.		
	Mechanism of Genetic Exchange in B		
	acteria:		
	Conjugation; Transformation; Transd		
	uction; (Generalized Transduction, Sp		

	ecialized Transduction)		
	Bacterial Transposable Elements.		
Unit III Population Genetics	Genetic Structure of Populations – Genotypic Frequencies and Allelic Frequencies,	15 lectures	30 hrs
1 opulation Genetics	Hardy- Weinberg Law and its assumpt ions		
	Genetic Variations in Populations- Me asuring Genetic Variation at Protein L		
	evel and measuring Genetic Variations at DNA level		
	Natural Selection.		
	Genetic Drift Speciation		
	Role of Population Genetics in Conse vation Biology		

SEMESTER II

Biotechnology I : Tissue Culture & Scientific Writing and Communication Skills

COURSE CODE	TITLE	CREDI TS	Notional Hours
USBT 205	Tissue Culture & Scientific Writing	2	Hours
	and Communication Skills	_	
	Cell Theory, Concept of Cell Culture,	15	30 hrs
Unit I	Cellular Totipotency,	lectures	
Plant Tissue Culture	Organization of Plant Tissue Culture		
	Laboratory:		
	Equipments and Instruments		
	Aseptic Techniques: Washing of		
	Glassware, Media Sterilization,		
	Aseptic Workstation, Precautions to		
	maintain Aseptic Conditions.		
	Culture Medium: Nutritional		
	requirements of the explants, PGR's and		
	their <i>in-vitro</i> roles, Media Preparation		
	Callus Culture Technique: Introduction,		
	Principle and Protocols		
	Basics of Animal Tissue Culture	15	30 hrs
Unit II	Introduction	lectures	
Animal Tissue Culture	Cell Culture Techniques,		
	Equipment and Sterilization		
	Methodology.		
	Introduction to Animal Cell		
	Cultures: Nutritional and Physiological:		
	Growth Factors and Growth		
	Parameters. General Metabolism and		
	Growth Kinetics		
	Primary Cell Cultures: Establishment		
	and Maintenance of Primary Cell		
	Cultures of Adherent and Non-Adherent		
	Cell Lines with examples.		
	Application of Cell Cultures	15	20 hmg
Timit TIT	Communication Skills	15	30 hrs
Unit III Scientific Writing and	Introduction to Communication	lectures	
Scientific Writing and Communication Skills	Elements, Definitions, Scope of Communication and Communication as		
Communication Skins	part of Science		
	Communication ElementsVerbal and		
	Non-Verbal Communications.		
	Principles of Effective Communication,		
	Oral Presentations		
	Scientific Reading, Writing &		
	Scientific Keading, Writing &		

Presentation	
Scientific Writing	
Process of Scientific Writing: Thinking,	
Planning, Rough Drafts	
and Revising Contents.	
Introduction to Scientific Reports and	
Writings	
Compilation of Experimental Data,	
Communication Methods in Science,	
Examples of Scientific and Unscientific	
Writing.	
Writing Papers, Reviews, Bibliography	
PlagiarismIntroduction to Plagiarism,	
Examples of Plagiarism.	

 ${\bf SEMESTER-II}$ ${\bf Biotechnology~II:Enzymology,Immunology~and~Biostatistics}$

COURSE CODE	TITLE	CREDI	Notional
		TS	Hours
USBT 206	Enzymology, Immunology and	2	
	Biostatics		
	Definition, Classification, Nomenclatu	15	30 hrs
Unit I	re, Chemical Nature, Properties of Enz	lectures	
Enzymes	ymes,		
	Mechanism of Enzyme Action,		
	Active Sites, Enzyme Specificity,		
	Effect of pH, Temperature, Substrate		
	Concentration on Enzyme Activity,		
	Enzyme Kinetics, Michelis-Menten Eq		
	uation,		
	Types of Enzyme Inhibitions-Competi		
	tive, Uncompetitive, Non-Competitive		
	,		
	Allosteric Modulators Co-Factors, Zy		
	mogens,		
	Overview of Immune Systems, Cell and	15	30 hrs
Unit II	Organs involved, T and B cells.	lectures	
Immunology	Innate Immunity, Acquired Immunity,		
	Local and Herd Immunity, Humoral		
	and Cellular Immunity - Factors		
	Influencing and Mechanisms of each.		
	Antigens and Antibodies: Types of		
	Antigens, General Properties of		
	Antigens, Haptens and Superantigens		
	Discovery and Structure of Antibodies		

	(Framework region) Classes of Immunoglobulins, Antigenic Determinants. Antigen-Antibody Interactions Monoclonal Antibodies, Vaccines (Live, Killed) and Toxoid. Problems with Traditional Vaccines, Impact of Biotechnology on Vaccine Development.		
Unit III Biostatistics	Defination and Importance of Statistic s in Biology Types of Data, Normal and Frequency Distribution Representation of Data and Graphs (B ar Diagrams, Pie Charts and Histogram, Polygon and Curve) Types of Population Sampling Measures of Central Tendency (For Raw, Ungroup & Group Data) Mean Median Mode Measures of Dispersion Range, Variance, Coefficient of Variance. Standard Derivation. Standard Error.	15 lectures	30 hrs

Semester – II PRACTICALS

SEMESTER – II Practicals

Chemistry

COURSE CODE	TITLE	CREDITS	Notional Hours
USBTP 201	Chemistry	2	30 hrs

- 1. Spot test for Carbohydrates, Fats and Proteins and Amino Acids and Nucleic Acids
- 2. Standardization of Colorimeter and Estimation of Reducing sugar by DNSA method
- 3. Estimation of Protein by Biuret method and Lowry method
- 4. Saponification of Fats, Saponification Value of Oil or Fat, Iodine value of Oil and determine the rate constant for the saponification reaction between ethyl acetate and NaOH by back titration method
- 5. To determine enthalpy of dissolution of salt like KNO3
- 6. Determine the rate constant for hydrolysis of ester using HCl as a catalyst
- 7. Study the kinetics of reaction between Thiosulphate ion and HCl
- 8. Study reaction between potassium Persulphate and Potassium Iodide kinetically and hence to determine order of reaction
- 9. Study the reaction between NaHSO3 and KMnO4 and balancing the reaction in acidic, alkaline and neutral medium
- 10. Study transfer of electrons (Titration of sodium thiosulphate with potassium dichromate)
- 11. Determination of the volume strength of hydrogen peroxide solution by titration with standardised potassium permagnate solution
- 12. Determination of amount of K oxalate and oxalic acid in the given solution Titrimetrcially

SEMESTER – II Practicals

Life Science

Dire Science			
COURSE CODE	TITLE	CREDITS	Notional Hours
			Hours
USBTP 202	Life Science	2	30 hrs

- 1. Study of Hill's reaction
- 2. Colorimetric study of Absorption Spectrum of Photosynthetic Pigments
- 3. Movemnt of Food in Paramoecium
- 4. Activity of Salivary Amylase on Starch
- 5. Analysis of Urine
- 6. Study of Mammalian Blood, Blood count using Haemocytometer and estimation of Haemoglobin in Mammalian Blood
- 7. Study of Human Blood Groups
- 8. Study of Mammalian Kidney and Heart
- 9. Problems in Mandelian Genetics
- 10. Study of Mitosis and Meiosis
- 11. Study of Karyotypes Normal Male and Normal Female
- 12. Study of Interactions Commensalism, Mutualism, Predation and Antibiosis, Parasitism.

SEMESTER – II Practicals Biotechnology

COURSE CODE	TITLE	CREDITS	Notional
			Hours
USBTP 203	Biotechnology	2	30 hrs

- 1. Working and use of various Instruments used in Biotechnology Laboratory (Autoclave, Hot air Oven, Centrifuge, Incubator, Rotary Shaker, Filter Assembly, LAF, *pH* meter and Colorimeter)
- 2. Laboratory Organization and Layout for Plant and Animal Tissue Culture Laboratory
- 3. Preparation of Stock Solutions and Preparation of Media for PTC
- 4. Aseptic Transfer Technique, Surface Sterilization and Innoculation for Callus Culture
- 5. Media Preparation and Sterilization (ATC)
- 6. Trypsinization of Tissue and Viability Count
- 7. Qualitative Assay of Enzyme Amylase. Lipase, Protease, Urease, Catalase and Dehydrogenease
- 8. Enzyme Kinetics: Study of the effect of pH, Temperature on activity of Enzyme
- 9. Study of Effect of Substrate Concentration on enzyme activity and determination of Vmax and Km
- 10. Study of antigen antibody interaction by Ouchterlony method
- 11. Biometric Analysis for Mean, Median, Mode and Standard Deviation and Data representation using frequency Polygon, Histogram and Pie Diagram
- 12. Preparation of review reports of 5 Scientific Papers and Presentation (last 5 years)

Scheme of Examination:

The performance of the learners shall be evaluated into two parts.

The learner's performance shall be assessed by Internal Assessment with 40% marks in the first part & by conducting the Semester End Examinations with 60% marks in the second part.

The Course having Practical training will have Practical Examination for 50 marks at the end of Semester, out of which 30 marks for the Practical task assigned at the time of examination. The 20 marks are allotted as Internal Assessment.

The allocation of marks for the Internal Assessment and Semester End Examinations are as shown below:-

Internal Assessment: It is defined as the assessment of the learners on the basis of continuous evaluation as envisaged in the Credit based system by way of participation of learners in various academic and correlated activities in the given semester of the programme.

Semester End Assessment: It is defined as the assessment of the learners on the basis of Performance in the semester end Theory/written/Practical examination.

Modality of Assessment: Internal Assessment - 40%

a) Theory

40 marks, 40 marks

Sr No	Evaluation type	Marks
1	Two Assignments/Case study/Project	20
2	One class Test (multiple choice questions objective)	10
3	Active participation in routine class instructional deliveries(case studies/ seminars//presentation)	05

4	Overall conduct as a responsible student, manners, skill in articulation, leadership qualities demonstrated through organizing co-curricular activities, etc.	05
---	---	----

b) Practicals

B) External examination - 60 %

Semester End Theory Assessment - 60%

20 marks 60 marks

Sr No	Evaluation type	Mark s
1	Two best Practicals	10
2	Journal	05
3	Viva	05

- 1. Duration These examinations shall be of two hours duration.
- 2. Theory question paper pattern:-
- 1. There shall be four questions each of 15 marks. On each unit there will be one question & fourth one will be based on entire syllabus.
- 2. All questions shall be compulsory with internal choice within the questions. Each question will be of 20 to 23 marks with options.
- 3. Questions may be sub divided into sub questions a, b, c, d & e only & the allocation of marks depends on the weightage of the topic.

Practical External Assessment 30 marks