CIRCULAR:

Attention of the Principals of the affiliated Colleges and Directors of the recognized Institutions in Science & Technology Faculty is invited to this office Circular No. UG/253 of 2008, dated 16th June, 2008 relating to syllabus of the Bachelor of Engineering (B.E.) degree course.

They are hereby informed that the recommendations made by the I/c Dean, Faculty of Science and Technology in Mechanical Engineering at its meeting held on 9th April, 2018 have been accepted by the Academic Council at its meeting held on 5th May, 2018 vide item No. 4.58 and that in accordance therewith, the revised syllabus as per the (CBCS) for the T.E. in Mechanical Engineering (Printing & Packaging Technology) Sem - V & VI has been brought into force with effect from the academic year 2018-19, accordingly. (The same is available on the University’s website www.mu.ac.in).

MUMBAI – 400 032
6th June, 2018

To

The Principals of the affiliated Colleges & Directors of the recognized Institutions in Science & Technology Faculty. (Circular No. UG/334 of 2017-18 dated 9th January, 2018.)

A.C/4.58/05/05/2018

No. UG/SS -A of 2018 MUMBAI-400 032 6th June, 2018

Copy forwarded with Compliments for information to:-
1) The I/c Dean, Faculty of Science & Technology,
2) The Director, Board of Examinations and Evaluation,
3) The Director, Board of Students Development,
4) The Co-Ordinator, University Computerization Centre,

(Dr. Dinesh Kamble) I/c REGISTRAR
UNIVERSITY OF MUMBAI

Bachelor of Engineering

Printing & Packaging Technology

Syllabus Details (REV- 2016) from Academic Year 2016 -17

Third Year with Effect from AY 2018-19

under

FACULTY OF TECHNOLOGY

As per Choice Based Credit and Grading System
with effect from the AY 2016–17
From Co-ordinator’s Desk:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO’s) and give freedom to affiliated Institutes to add few (PEO’s). It is also resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner’s learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education.

Choice based Credit and Grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner’s performance. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 2-3 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

Choice based Credit and grading system is implemented from the academic year 2016-17 through optional courses at department and institute level. This will be effective for SE, TE and BE from academic year 2017-18, 2018-19 and 2019-20 respectively.

Dr. S. K. Ukarande

Co-ordinator,

Faculty of Technology,

Member - Academic Council

University of Mumbai, Mumbai
Coordinator, Printing & Packaging Technology’s Preamble:

As the application of technology spreads its wings, the scope of engineering education spreads beyond the core disciplines bringing hitherto unheard areas within its ambit. The Printing & Packaging Technology (PPT) is one such discipline uniquely introduced by the University of Mumbai in the year 2006 that is now a full-fledged course with immense potential. Accreditation norms & the industry orientation of the course have been considered while framing the revised structure of the PPT syllabus. Accreditation not only emphasizes ensuring quality but demands that the courses result in measurable outcomes.

The program educational objectives have been framed taking an all-pervasive view and involving all stakeholders. It is a pleasure, as the Coordinator for PPT, to mention here that there was equal participation of industry and academia in the process of syllabus restructuring and defining the PEO’s. CEO’s / MD’s / Manager- Sales & Technical Services from major printing and packaging industries and experienced Professors also participated in the framing of the PEO’s and revision of syllabus.

The Program Educational Objectives are defined as follows-

1. The graduates / learners of this program should be industry ready workforce with a strong base in mathematical, scientific and engineering fundamentals.

2. The graduates / learners must acquire high level of technical & research proficiency, analytical and real-life problem-solving skills to generate innovative solutions in packaging and printing technology or related areas of the program using modern tools effectively.

3. Learners needs to exhibit sustained learning and adapting to a continually changing field through graduate work, professional development and absolute self-study skills so that they can pursue victorious career in Indian as well as multinational organizations and shine in their postgraduate studies.

4. Graduates capable to communicate effectively to various stakeholders and practice their profession with high regard to societal needs, diversity, constraints in the professional workplace and ethical responsibilities enhancing their leadership and managerial qualities.

In addition to Program Educational Objectives, for each course objectives and expected outcomes from learner’s point of view are also included in the curriculum to support the philosophy of outcome-based education.
Further, with a view to bridge the gap between academics and application it was decided at the behest of the industry to assign the final year project work as a full time one semester apprenticeship in the packaging and printing industry. The students would be taking up a live project and working on it in the industry during the eighth semester of the four-year course. This would have a two-pronged benefit of the students gaining actual work experience and the industry gaining trained engineers. The structure and content of the course has been made more relevant to the current needs of the industry. I am sure this small but significant step would go a long way in furthering the cause of introducing this discipline.

I believe strongly that a small step taken in right direction will definitely help in providing quality education to the stake holders.

Dr. Vikram S. Patil
Coordinator, Printing & Packaging Technology
University of Mumbai, Mumbai.
PRINTING & PACKAGING TECHNOLOGY: CBCGS 2016 T.E. - PPT

SEMESTER - V

<table>
<thead>
<tr>
<th>Sem</th>
<th>Paper Code</th>
<th>Paper Name (As displayed on Mark Sheet)</th>
<th>Assessment Method</th>
<th>Teaching Scheme (hr/wk)</th>
<th>Credits Assigned</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>V</td>
<td>PPC501</td>
<td>Plastics Processing & Conversion Technologies</td>
<td>Theory</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>PPC502</td>
<td>Gravure Printing</td>
<td>Theory</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>PPC503</td>
<td>Theory of Machines & Design</td>
<td>Theory</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>PPC504</td>
<td>Instrumentation & Process Control</td>
<td>Theory</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>PPC505</td>
<td>Industrial Products Packaging</td>
<td>Theory</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>PPL501</td>
<td>Plastics Processing & Conversion Technologies Laboratory</td>
<td>TW/Or</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>V</td>
<td>PPL502</td>
<td>Package Design & Graphics - I</td>
<td>TW/Pr</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>V</td>
<td>PPL503</td>
<td>Theory of Machines & Design</td>
<td>TW</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>V</td>
<td>PPL504</td>
<td>Instrumentation & Process Control</td>
<td>TW</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>V</td>
<td>PPL505</td>
<td>Business Communication & Corporate Ethics</td>
<td>TW</td>
<td>-</td>
<td>-</td>
<td>4*</td>
</tr>
</tbody>
</table>

TOTAL

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18</td>
<td>0</td>
<td>14</td>
<td>18</td>
<td>0</td>
<td>7</td>
<td>25</td>
<td>700</td>
</tr>
</tbody>
</table>

SEMESTER - VI

<table>
<thead>
<tr>
<th>Sem</th>
<th>Paper Code</th>
<th>Paper Name (As displayed on Mark Sheet)</th>
<th>Assessment Method</th>
<th>Teaching Scheme (hr/wk)</th>
<th>Credits Assigned</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>VI</td>
<td>PPC601</td>
<td>Packaging Machineries & Systems</td>
<td>Theory</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VI</td>
<td>PPC602</td>
<td>Food & Pharmaceutical Packaging</td>
<td>Theory</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VI</td>
<td>PPC603</td>
<td>Flexographic Printing</td>
<td>Theory</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VI</td>
<td>PPC604</td>
<td>Colour Management</td>
<td>Theory</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VI</td>
<td>PPDE601X</td>
<td>Department Elective – I</td>
<td>Theory</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VI</td>
<td>PPT601</td>
<td>Packaging Machineries & Systems</td>
<td>TW/Or</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>VI</td>
<td>PPL601</td>
<td>Package Design & Graphics - II</td>
<td>TW/Pr</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>VI</td>
<td>PPL602</td>
<td>Flexographic Printing Laboratory</td>
<td>TW/Or</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>VI</td>
<td>PPL603</td>
<td>Colour Management Laboratory</td>
<td>TW/Or</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>VI</td>
<td>PPDET601X</td>
<td>Department Elective – I Tutorial</td>
<td>TW/Or</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>VI</td>
<td>PPS601</td>
<td>Industrial Visits</td>
<td>TW/Or</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18</td>
<td>1</td>
<td>14</td>
<td>18</td>
<td>1</td>
<td>7</td>
<td>26</td>
<td>800</td>
</tr>
</tbody>
</table>

Department Electives – I:

1. Packaging Distribution & Dynamics
2. Inks & Coatings
3. Digital & Security Printing
4. Print Finishing & Converting

University of Mumbai, Printing & Packaging Technology Scheme & Second Year Syllabus
5/46
GENERAL GUIDELINES FOR ALL COURSES:

Theory Examination (End Semester Examination):
1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Total 4 questions need to be solved.
3. Question No.1 will be compulsory and based on entire syllabus.
4. Remaining question will be randomly selected from all the modules.

Internal Assessment:
Compulsory Test-1 will be conducted (on minimum 40% of curriculum) and Test-2 can be class test (on minimum 70% of curriculum) or assignment on live problems or course project.

Termwork for Laboratory / Tutorial:
The distribution of term work marks (in courses not mentioned) is as follows:

- Assignments: 05 Marks
- Practical Journal/Tutorials & Continuous Assessment: 15 Marks
- Attendance: 05 Marks
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPC501</td>
<td>Plastic Processing and Conversion Technologies</td>
<td>4</td>
</tr>
</tbody>
</table>

Objectives:
1. To study different plastic processing and conversion techniques
2. To know suitable processing technique as per the end product
3. To study Polymer & Plastic properties influencing conversion techniques
4. To get acquainted with various plastics used in day-to-day life
5. To study and analyze different tests for plastic product

Outcomes: Upon successful completion of this course, the learner will be able to
1. Describe the fundamental concepts in plastic processing and conversion technology.
2. Analyse the various plastic materials and its application
3. Understand and use suitable conversion technique as per the end product
4. Produce plastic products by using various conversion techniques
5. Perform different testing methods for plastic product
6. Study different processing parameters required in industry

<table>
<thead>
<tr>
<th>Module</th>
<th>Details.</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction
Basic concept of polymer processing, Polymer additives, Polymer properties influencing conversion technologies Thermal properties – melting temperature, the glassy state and glass transition, molecular wt distribution, MFI, HDT</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Plastic Extrusion
Basic Principle of extrusion, extruder parts, types of extruder, process, process variables, Extrusion single screw - machine and equipment Extrusion twins screw - machine and equipment, types- intermeshing, non intermeshing, co-rotating, counter rotating, comparison single screw and twin screw, Extrusion Process – detail of screw geometry and die, melt filters, breaker plate, selection of process and product, extrusion of film and sheet, common defects and remedies, Die end of extruder, melt flow in extruder, die configuration and extruded products</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Plastic Injection Moulding
Principle, Machine, Processing, Process variables, mould cycle, Types of injection mould – cold runner mould, two plate mould, three plate mould, insert mould, hot runner mould, Injection moulding product design tips and guidelines, injection molding defects and troubleshooting, weld line, shrinkage-warpage, burn marks venting, application of injection molding in packaging – caps, closures, containers, drums etc.</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Rotational Moulding Technology
Rotational moulding principle, machine type, process, process parameters, Importance of resin charge, troubleshooting causes and remedies, Advantages and Disadvantages</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Thermoforming Technology</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Vacuum thermoforming, pressure thermoforming, matched mould thermoforming, twin sheet thermoforming, thermoforming moulds</td>
<td>5</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| 6 | **Blow Moulding Technology**
Extrusion blow moulding, Injection blow moulding, Injection stretch blow moulding, Blow moulding machine features and operation, parison programming, accumulator head blow moulding, multilayer blow moulding, common troubleshooting causes and remedies, limitations of blow moulding | 6 |
| 7 | **Calendaring and Metallization**
Principle and process description, Types of calendaring unit (L type, I type, Inverted L type etc.), Metallization process, equipment - vacuum metallization with aluminium and silica | 4 |
| 8 | **Compression and Transfer Moulding**
Compression moulding -process, materials, advantages and disadvantages, Transfer moulding -process, materials, advantages and disadvantages, Applications of compression and transfer moulding | 5 |

References:

Course Code: PPC502
Course Name: Gravure Printing
Credits: 3

Objectives:
1. Understand the basic principle of Gravure printing process and its characteristics
2. Study the gravure image carrier preparation methods
3. Learn the various operations involved gravure printing process

Outcomes:
Upon successful completion of this course, the learner will be able to:
1. Describe the various components of gravure printing machine and its functions.
2. Explain various design aspects gravure cylinder and the process of engraving it.
3. Summarize the various operations performed while printing on Gravure machine
4. Discuss various inks and substrates used for gravure process with quality control measures
5. Describe various web handling and registration control for gravure printing
6. Calculate the different anatomy of gravure cylinder

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction, History and Gravure Products
Characteristics of Gravure printing-comparison with other processes, History of Gravure product and Market-Publication gravure, Gravure packaging and converting, Product gravure Gravure development stages- Use of Engravings, Roulette tool, Rotary press invention, Aquatint process, Diffusion etch (carbon tissue) process, Direct transfer process, Well formation, Cylinder proofing and correction, Advances in Engraving and Cylinder Imaging.</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Gravure Cylinder engraving
Cylinder Construction- Cylinder design, Sleeve cylinders, Integral shaft cylinder, Base material, Surface material, Deflection, Balancing, Function of Copper, Chrome, Zinc, Principle of Electroplating, Basic design of plating tank, Important variables in plating Electronic Engraving Systems- Electromechanical engraving machine, Cutting action of diamond tool, Variable cell size, Cell alignment, Cell walls, Screen and Screen angles, Ink and Substrate considerations, of cell size to dot size, UCR, Fine line production Chrome plating, Chrome finishing, Cylinder corrections- correction in chrome , correction in copper, Measurement and Testing</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Gravure Press and its components
A general printing unit, Typical press configurations, Gravure ink fountain-ink fountain and ink transfer, Ink temperature, Ink viscosity Gravure Ink dryers- Need, Solvent removal, Drying of water based inks, dryer functioning, Environmental considerations The gravure doctor blade-Setup, Pressure, cylinder considerations, doctor blade Material, Variations in doctor blade usage</td>
<td>9</td>
</tr>
</tbody>
</table>
Gravure Impression roller- Functions, Roller design and configuration, Deflection, Roller covering, Coating and Hardness, Impression roller and print quality, Effect on web, Electrostatic Assist

Web Handling
Configuration, Reel stands, and Register control-Unwind Reel stand, Control of web tension from the reel, Web tension control-Zone concept, The effect of the printing unit on Tension, Cylinder progression, Register, Reasons for misregister, Tension measurement, Automatic register control, Lateral movement of the web and side register control, Trends in register control, Web viewing

Gravure Ink and Substrates
Ink Composition, Classification of Gravure Inks, Special inks and coating, water based inks, Physical properties of Gravure inks, Ink test and Measurement, Problems and trouble shooting
Gravure packaging paper substrates- Packaging substrate requirements, Label stock, Paper board, Run ability Tests, Print quality Tests, Waste and Spoilage Gravure non-paper substrates-Types, Properties- Physical properties, Appearance primer and overprint coatings, Surface Versus reverse Printing, Problems and trouble shooting

References:
3. Basic Gravure Technology, PIRA
Objectives:
1. Develop an ability to understand the working of mechanisms in machine.
2. Develop an ability to design a system, component, or process to meet desired needs within realistic constraints for various mechanical components.
3. Develop an ability to identify and solve mechanisms in machine

Outcomes: Upon successful completion of this course, the learner will be able to
1. Analyze the stresses and strains in mechanical components, and understand, identify and quantify failure modes for mechanical parts.
2. Describe the basic machine elements used in machine design.
3. Design machine elements to withstand the loads and deformations for a given application, while considering additional specifications.
4. Develop the approach to design the component under realistic conditions.
5. Design Machine element against static loading
6. Develop the ability to design the component under realistic conditions

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic concept and straight line mechanism
Introduction to machines, Mechanisms, Joints, links. Types of kinematic pairs and motions. Degree of freedom, Constrained kinematic chain mechanism.
Single slider crank chain, pantograph mechanism, Double slider crank chain mechanism, Straight line mechanism (Exact and approximate).</td>
<td>06</td>
</tr>
<tr>
<td>2</td>
<td>Motion characteristics of mechanisms
Velocity and acceleration analysis of mechanisms with single degree of freedom using graphical method. Kennedy ‘s theorem Analysis of velocities of mechanism using instantaneous centre method.</td>
<td>08</td>
</tr>
<tr>
<td>3</td>
<td>Introduction to CAM and followers
Introduction and Classification of follower & CAMS. Displacement, velocity and acceleration diagrams when:
Follower moves with uniform velocity, SHM, acceleration ad retardation, cycloidal motion and Construction of CAM profiles.</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Basic concepts and principles of machine design
Classification of engineering materials, Basic procedure of machine design. Mechanical properties of metals, Basic requirements of machine elements. Selection of materials and its types. Stress strain diagram. Factor of Safety (FOS), Selection of FOS. Principal stresses and Theories of Failures.</td>
<td>08</td>
</tr>
<tr>
<td>5</td>
<td>Design against static loading
Cotter joint, Knuckle Joint, Welded joint</td>
<td>08</td>
</tr>
</tbody>
</table>
| 6 | **Design of Keys, Shaft and coupling**
 | Taper Keys, Gib headed keys, Parallel Keys, woodruff key. Design of Flange Coupling.
 | Shaft and its types, Shaft design on strength basis, Shaft design on torsional rigidity basis. |

References:
1. “Design of machine elements“ by V.B. Bhandari
Objectives:
1. To generate clear understanding of fundamentals of basic measuring devices.
2. To provide details of data gathering, processing and computing.
3. To make students familiar with the various methods of process control

Outcomes: Upon successful completion of this course, the learner will be able to
1. Knowledge of measuring devices and signal conditioning will help students to select the correct transducer as per the requirement.
2. Students will be able to confidently design a PID controller using opamps or through MATLAB program.
3. The understanding of applications of PLC’s in latest printing machines and also packaging machines will be developed.
4. Understand applications of PLC’s in industries and printing and packaging machines.
5. Explain PLC and SCADA systems and their use in process control.
6. To Understand and formulate various applications like DAS and data logger

<table>
<thead>
<tr>
<th>Module</th>
<th>Details.</th>
<th>Hrs.</th>
</tr>
</thead>
</table>
| 1 | Measurement and Transducers
Measurement: Introduction to the concept of measurement, basic characteristics of a measuring device, block diagram of measuring system, error and its types
Transducers: Need of transducer, definition, classification, selection criteria
Quantities to be measured: displacement (LVDT, Potentiometer), flow (Rotameter, electromagnetic flowmeter), light (LDR), level (radiation method, ultrasonic method) temperature (RTD, thermocouple), humidity (condensation hygrometer), pressure (bourdon tube, liquid column), strain gauges and their classification, derivation of gauge factor, pH measurement using hydrogen electrode method, sensors and their comparison with transducers | 10 |
| 2 | Signal Conditioning
Definition of signal conditioning, its need, introduction to op-amp IC-741, inverting and non-inverting amplifier in closed loop, differential amplifier, instrumentation amplifier, filters (active, passive, low-pass, high-pass), adder, subtractor, V to I converter, I to V converter, introduction to IC-555, astable mode and its application as square wave oscillator, mono stable mode and its applications as frequency divider and missing pulse detector, bistable multivibrator | 09 |
| | Control System Dynamics
Introduction to control engineering, open loop and closed loop system, classification of control systems, LTI system, Concept | 06 |
<table>
<thead>
<tr>
<th>3</th>
<th>of stability and causality, Role of a control engineer, Importance of mathematical modelling, Block diagram of basic control system, Transfer function, Test input signals, Time domain response: Transient response specifications and Steady state error for various input signals, frequency-domain specifications, hydraulic system, pneumatic system, control system components: AC and DC servomotor, stepper motor</th>
</tr>
</thead>
</table>
| 4 | **Process control**
Block diagram of Process control, Process characteristics, Control system parameters, role of a controller, Controller modes: Discontinuous: Two position, multiposition, floating, Continuous and Composite: Proportional, Integral, Derivative (description only for all modes), block diagram of final control operation |
| 5 | **Controller design**
Concept to electronic controller and use of OP-AMP in controllers. Design of all Discontinuous modes using OP-AMP. Design of all continuous controller modes using OP-AMP and derivations for final outputs. Design of all Composite modes using OP-AMP and derivations for final outputs with examples for each mode. |
| 6 | **Programmable logic controller**
Concept of relay logic, introduction to ladder diagram and its elements, illustration of ladder diagram with examples, introduction to PLC, advantages of PLC over relay logic, introduction to DAS, data logger, SCADA
Application of PLC in pad printing machine
PLC controlled automatic packaging machine |

References:

1. C.S. Rangan, G.R. Sarma, “Instrumentation devices and systems” TMH.
3. H.S.Kalsi, “Electronic Instrumentation”, TMH.
Objective:
1. Study the classification, characteristics & sensitivities of various industrial products.
2. Understand package design & development approach based on the type of industrial product.
3. Study the classification and properties of wood, including the defects.
4. Study the different wood based packaging forms and other bulk carriers.
5. Understand the product protection principles.

Outcomes: Upon successful completion of this course, the learner will be able to
1. Effectively choose packaging materials based on characteristics of industrial products.
2. Describe the various properties & defects of wood packaging material
3. Analyze the various hazards & environmental issues related to Packaging and select a specific protection method for the product.
4. Choose various bulk carriers for industrial packaging based on the type of product.
5. Analyze various types of internal fitments for product protection and retainment.
6. Explain the characteristics and applications of various wooden package forms.

<table>
<thead>
<tr>
<th>Module</th>
<th>Details.</th>
<th>Hrs.</th>
</tr>
</thead>
</table>
| 1 | **Introduction & Classification**
Introduction to industrial products packaging. Difference between consumer and industrial packaging needs.
The packaging Considerations and package design approach, protective requirements and distribution – hazards, their sensitivity influencing packaging design and development criteria
Industrial Products Classification – Product Group Wise, Its Nature, Classification & Requirements; Heavy, Medium and Light Engineering Goods; Electronic Products; Auto Components/ Spares, Chemicals and others. | 10 |
| 2 | **Wood as Packaging Material**
Classification of wood – Groups, softwood & hardwood, plywood
Properties of wood – Density, Moisture Content
Defects found in wood – Knots, Cross Grain, Cupping, checking and others.
Introduction to Wood seasoning & Preservation | 09 |
| 3 | **Module - 3: Wood Packaging Forms**
Wooden Boxes & Crates – Difference & Types
Introduction to Wooden Pallets, Palletized Boxes & Box Pallets and their various components; Wooden Dunnages | 06 |
| 4 | **Product Protection**
Corrosion – Types and Preventive Methods, Introduction to Desiccants | 06 |
Cushioning – Concept, Fragility & Cushion Factor, Shock & Vibration.
Open & Closed cell cushions and various cushioning Materials.
Internal Fitments – Functions & Different Materials; Types of Internal Fitments - Corner supports, Pads, Liners/collars, Trays, Slotted Partitions and others.
Concept of Reinforcement & Unitization

<table>
<thead>
<tr>
<th>5</th>
<th>Bulk Carriers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intermediate Bulk Containers (IBC) – Rigid & Flexible – Types, Materials of Constructions & Various designs. Corrugated Fibreboard Boxes, Paper Sacks, Jerry Cans, Fibre Drums and others.</td>
<td>05</td>
</tr>
</tbody>
</table>

References:

1. Friedman W.F. and J.J. Kipness, Industrial Products packaging, John Wiley & Sons
2. Klimchuck, Packaging Design & Engineering, Wiley
6. Wooden Containers/crates, Corrugated board/boxes, marking : Specification and Testing as per Indian Standards
Course Code | Course Name | Credits |
------------|-------------------------------------|---------|
PPL 501 | Plastic Processing and Conversion Technologies | 1.5 |

Objectives:
1. To study different plastic processing and conversion techniques
2. To know suitable processing technique as per the end product
3. To study Polymer & Plastic properties influencing conversion techniques
4. To get acquainted with various plastics used in day-to-day life
5. To study and analyze different tests for plastic product

Outcomes: Upon successful completion of this course, the learner will be able to
1. Describe the fundamental concepts in plastic processing and conversion technology.
2. Analyze the various plastic materials and its application.
3. Understand and use suitable conversion technique as per the end product.
4. Produce plastic products by using various conversion techniques.
5. Perform different testing methods for plastic product.
6. Study different processing parameters required in industry.

Term Work: (Comprises both a & b)
a) List of Experiments (Minimum Eight)

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Laboratory Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>To study injection moulding machine setup</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>2</td>
<td>To study blow moulding machine setup</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>3</td>
<td>To manufacture injection moulded article</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>4</td>
<td>To manufacture blow moulded article</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>5</td>
<td>To study extrusion and blown film machine setup</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>6</td>
<td>To make extrusion profile</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>7</td>
<td>To manufacture blown film</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>8</td>
<td>To determine compression strength of plastic article</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>9</td>
<td>To determine flexural strength of plastic article</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>10</td>
<td>To Study of Melt Flow Index tester</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>11</td>
<td>To Study of environmental stress crack resistance of plastic items</td>
<td>3 Hrs</td>
</tr>
</tbody>
</table>

b) Assignments: Minimum two assignments

(Note: Preferably the assignments shall be given on the basis of live problems.)

End Semester Oral Examination (for 25 marks): Under single head of examination, oral to be conducted by internal and external examiners.
Objectives:
1. Study the various product design principles and practically apply them.
2. Learn and understand the tools of SolidWorks Software.
3. Study the method of designing various shapes and 3D objects as per specifications

Outcomes: Upon successful completion of this course, the learner will be able to
1. Define basic design terminology,
2. Visualize and prepare detail drawing of a given object
3. Create a design based on specific requirement.
4. Design Plastic/Glass/Metal Containers.
5. Analyze various package designs.
6. Design & draw detail and assembly of different packages

Term Work: (Comprises both a & b)
a) List of Experiments (Minimum Eight) (Software to be used: SolidWorks)

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Laboratory Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Create 2D drawings using Different basic entities</td>
<td>3 Hrs.</td>
</tr>
<tr>
<td>2</td>
<td>Create basic 3D Models in SolidWorks</td>
<td>3 Hrs.</td>
</tr>
<tr>
<td>3</td>
<td>Create 3D Models from 2D Drawings</td>
<td>3 Hrs.</td>
</tr>
<tr>
<td>4</td>
<td>Create different parts and learn assembly mating options</td>
<td>3 Hrs.</td>
</tr>
<tr>
<td>5</td>
<td>Create an assembly from a given product 2D Drawing</td>
<td>3 Hrs.</td>
</tr>
<tr>
<td>6</td>
<td>Create a detailed 2D drawing of an assembly</td>
<td>3 Hrs.</td>
</tr>
<tr>
<td>7</td>
<td>Create a package from 2D drawing given</td>
<td>3 Hrs.</td>
</tr>
<tr>
<td>8</td>
<td>Create a package assembly from a 3D Model</td>
<td>3 Hrs.</td>
</tr>
<tr>
<td>9</td>
<td>Create primary package and orient inside a secondary package</td>
<td>3 Hrs.</td>
</tr>
<tr>
<td>10</td>
<td>Design a 3D part for prototyping using 3D Printer.</td>
<td>3 Hrs.</td>
</tr>
</tbody>
</table>

b) Assignments: Minimum two assignments to be given.
(Note: Preferably the assignments shall be given on the basis of live problems.)

End Semester Practical Examination (for 25 marks): Under single head of examination, including Practical (15 marks assessment) followed by oral (10 marks assessment) to be conducted by internal and external examiners
Course Code: PPL503
Course Name: Theory of Machines and Design
Credits: 1

Objectives:
1. Develop an ability to understand the working of mechanisms in machine.
2. Develop an ability to design a system, component, or process to meet desired needs within realistic constraints for various mechanical components.
3. Develop an ability to identify and solve mechanisms in machine.

Outcomes: Upon successful completion of this course, the learner will be able to
1. Analyze the stresses and strains in mechanical components, and understand, identify and quantify failure modes for mechanical parts.
2. Describe the basic machine elements used in machine design.
3. Design machine elements to withstand the loads and deformations for a given application, while considering additional specifications.
4. Develop the approach to design the component under realistic conditions.
5. Design Machine element against static loading
6. Develop the ability to design the component under realistic conditions

Term Work: (Comprises both a & b)
a) List of Experiments (Minimum Eight)

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Laboratory Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Study of stress strain diagram and modes of failure</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>2.</td>
<td>Study of motion characteristics and mechanisms</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>3.</td>
<td>Construction of velocity and acceleration diagram using instantaneous centre method</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>4.</td>
<td>Construction of CAM profiles</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>5.</td>
<td>Design and drawing sheets of Cotter joint</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>6.</td>
<td>Design and drawing sheets of Knuckle joint</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>7.</td>
<td>Design and drawing sheets of Flange coupling</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>8.</td>
<td>Study of welded joints</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>9.</td>
<td>Study of Torsional Vibrations</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>10.</td>
<td>Study of Gyroscope</td>
<td>2 Hrs</td>
</tr>
</tbody>
</table>

b) Assignments: Minimum two assignments to be given.
(Note: Preferably the assignments shall be given on the basis of live problems.)
Objectives:
1. To generate clear understanding of fundamentals of basic measuring devices.
2. To provide details of data gathering, processing and computing.
3. To make students familiar with the various methods of process control

Outcomes: Upon successful completion of this course, the learner will be able to….
1. Knowledge of measuring devices and signal conditioning will help students to select the correct transducer as per the requirement.
2. Students will be able to confidently design a PID controller using opamps or through MATLAB program.
3. The understanding of applications of PLC’s in latest printing machines and also packaging machines will be developed.
4. Understand applications of PLC’s in industries and printing and packaging machines.
5. Explain PLC and SCADA systems and their use in process control.
6. To Understand and formulate various applications like DAS and data logger

Term Work: (Comprises both a & b)
a) List of Experiments (Minimum Eight)

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Laboratory Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Study of Displacement measurement using LVDT</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>2</td>
<td>Study of Flow measurement by using Rotameter</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>3</td>
<td>Study of LDR</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>4</td>
<td>Design of Passive Low Pass Filter</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>5</td>
<td>Design of Passive High Pass Filter</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>6</td>
<td>Design of Active Low Pass Filter</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>7</td>
<td>Design of Active High Pass Filter</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>8</td>
<td>MATLAB program for study of step response characteristics</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>9</td>
<td>MATLAB Program for designing PID Controller</td>
<td>2 Hrs</td>
</tr>
</tbody>
</table>

b) Assignments: Minimum two assignments to be given.
(Note: Preferably the assignments shall be given on the basis of live problems.)
Course Code: PPL505
Course Name: Business & Corporate Ethics
Credits: 2

Objectives:
1. To inculcate professional and ethical attitude at the workplace.
2. To enhance effective communication and interpersonal skills.
3. To build multidisciplinary approach towards all life tasks.
4. To hone analytical and logical skills for problem-solving

Outcomes: Upon successful completion of this course, the learner will be able to
1. Communicate effectively in both oral and written form and equip to demonstrate knowledge of professional and ethical responsibilities.
2. Design a technical document using precise language, suitable vocabulary and apt style.
3. Develop the life skills/interpersonal skills to progress professionally by building stronger relationships.
4. Demonstrate awareness of contemporary issues knowledge of professional and ethical Responsibilities.
5. Apply the traits of a suitable candidate for a job/higher education, upon being trained in the techniques of holding a group discussion, facing interviews and writing resume/SOP.
6. Deliver formal presentations effectively implementing the verbal and non-verbal skills.

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Hrs</th>
</tr>
</thead>
</table>
| 1 | **Report Writing**
Objectives of Report Writing
Language and Style in a report
Types: Informative and Interpretative (Analytical, Survey and Feasibility) and Formats of reports (Memo, Letter, Short and Long Report) | 6 Hrs |
| 2 | **Technical Writing**
Technical Paper Writing (IEEE Format)
Proposal Writing | 4 Hrs |
| 3 | **Introduction to Interpersonal Skills**
Emotional Intelligence
Leadership and Motivation
Team Building
Assertiveness
Conflict Resolution and Negotiation Skills
Time Management
Decision Making | 8 Hrs |
| 4 | **Meetings and Documentation**
Strategies for conducting effective meetings
Notice, Agenda and Minutes of a meeting
Business meeting etiquettes | 4 Hrs |
| 5 | **Introduction to Corporate Ethics**
Professional and work ethics (responsible use of social media - Facebook, WA, Twitter etc.)
Introduction to Intellectual Property Rights
Ethical codes of conduct in business and corporate activities (Personal ethics, conflicting values, choosing a moral response and making ethical decisions) | 4 Hrs |
| 6 | **Employment Skills** | 10 Hrs |
Group Discussion
Resume Writing
Interview Skills
Presentation Skills
Statement of Purpose

Assessment:

List of Assignments
1. Report Writing (Theory)
2. Technical Proposal
4. Interpersonal Skills (Group activities and Role plays)
5. Interpersonal Skills (Documentation in the form of soft copy or hard copy)
6. Meetings and Documentation (Notice, Agenda, Minutes of Mock Meetings)
7. Corporate ethics (Case studies, Role plays)
8. Writing Resume and Statement of Purpose

Term Work
Term work shall consist of all assignments from the list.
The distribution of marks for term work shall be as follows:
Book Report **10 marks**
Assignments: **10 marks**
Project Report Presentation: **15 marks**
Group Discussion: **10 marks**
Attendance: **05 marks**

References:
1. Fred Luthans, “Organizational Behavior”, Mc Graw Hill,
3. R.Subramaniam, “Professional Ethics” Oxford University Press
5. Raman and Sharma, Fundamentals of Technical Communication, Oxford University Press
9. Raman Sharma, Communication Skills, Oxford University Press
13. Dr. K. Alex ,”Soft Skills”, S Chand and Company
15. https://grad.ucla.edu/asis/agep/advsopstem.pdf
Objectives:
1. Understand the concept of systems & online packaging techniques.
2. Understand the various machineries used for conversions of different packaging materials.
3. Study the different packaging machineries used for line operations and systems.
4. Study various ancillary equipment used apart from packaging machineries.
5. Understand the importance of testing, online & offline equipment’s used industries

Outcomes: At the end of the course, learners should be able to;
1. Suggest the packaging material use and its conversion as per the product geometry.
2. Suggest the filling machine required for the line operations.
3. Choose the ancillary machineries required in the line operations based on the product to be packed.
4. Analyse the different conveying system used for various line operations.
5. Select different online and offline testing methods that are required during the converting operations or on the packaging lines.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Details</th>
<th>Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Module - 1: Introduction and Manufacturing Metals Cans & Drums</td>
<td>06</td>
</tr>
<tr>
<td></td>
<td>Introduction, Machineries used for conversion, online packaging, system packaging, Ancillaries Machines and equipment, Online and Offline inspection equipment.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metal Cans-Three piece, DRD & DWI can manufacturing machine and its various sections-Coating Equipments.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metal drum-Types-Different machines used in manufacturing.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fibre & Composite drum-Drum types-Machine used in manufacturing.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Module -2: Machineries for Manufacturing of Sacks, Cartoning, Flexible Laminates & Corrugated Box</td>
<td>05</td>
</tr>
<tr>
<td></td>
<td>Sacks-Types-Machine used in manufacturing of bag-Synthetic sack-Types-Manufacturing machine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Folding Cartons -Cartoning-Types of Cartons-Machine used in cartoning.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FlexibleLaminates-Types of lamination techniques-Different components of the Lamination Machine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corrugated Box-Board construction-Machine used in manufacturing.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Module - 3: Types of fillers, VFFS, HFFS, Multiwall Sack filling</td>
<td>05</td>
</tr>
<tr>
<td></td>
<td>Filling machineries by count-Filling machineries-Liquid-Carbonated, Still-Design consideration and selection of fillers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Types of Solid fillers-Cup, Weight, Auger, Multi-head weigher</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vertical Form fill seal (VFFS), Horizontal Form fill seal (HFFS) Machines-Machine overview, Types-Different section on the machine-New technologies available.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multiwall bag-Types of filling technique.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Module - 4: Aseptic System, Retort System Packaging of Drugs & Pharmaceuticals</td>
<td>06</td>
</tr>
</tbody>
</table>

University of Mumbai, Printing & Packaging Technology Scheme & Second Year Syllabus 23/ 46
<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>Module - 5: Blister & Strip Packaging, Case packing Machines
Blister Packaging-Blister Design Parameters-Types of Blisters, Sections on Blister packaging machines.
Strip Packaging-Strip packaging process-Materials used-Strip Packing Machinery
Case packing or Case loading- Case loading Methods-Machine used in case packing.</td>
</tr>
<tr>
<td>7.</td>
<td>Module – 7: Conveying, Buffering & Accumulating Systems and Online & Offline Testing machines
Introduction-Integration of Conveyor-Design and Installation of Conveyor systems-Conveying systems-Power transmission components-Transfer between conveyors-Interconnecting machinery
Online Inspection machine used on packaging lines.
Offline Testing machine-Packaging Materials, Shipping Packages</td>
</tr>
</tbody>
</table>

Texts / References:
1. Davis, C.G., Introduction to Packaging Machinery, Packaging Machinery Manufacturers Institute.
2. Luciano, R., How to Write Packaging Machinery Specifications, Institute of Packaging Professionals
3. Zepf, P.J., Improving Packaging Line Performance, Institute of Packaging Professionals
5. Dr. J. S. Rao and Dukhipeti, Theory of M/cs and Mechanisms, New Age International
6. H. P. Garg, Industrial Maintenance, S.Chand
10. EIRI Board of Consultant & Engineer, “Handbook of Packaging Technology”, Engineers India Research
Course Code | Course Name | Credits
---|---|---
PPC602 | Food and Pharmaceutical Packaging | 4

Objectives:
1. Learn and understand the types of food, their modes of deterioration and the fundamentals of package barriers.
2. Learn shelf life studies and sensory evaluation based on type of product.
3. Study the various food preservation techniques with real-life packaging examples.
4. Study the fundamental characteristics of pharmaceutical drugs & their dosage forms.
5. Understand the various existing pharma package forms

Outcomes: At the end of the course, learners should be able to;
1. Analyse and choose a barrier material for a specific food product based on barrier properties studied.
2. Analyse and choose a preservation method for a specific food product based product sensitivity and shelf life required.
3. Describe the various characteristics of pharmaceutical drugs and their sensitivities.
4. Select the right type of package form for a pharma product, based on the product nature, form & size.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Details</th>
<th>Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Module - 1: Introduction to Food Packaging
An overview & Introduction to the science, technology, socio economic needs and packaging functions.
Types of food – Perishable / Semi-perishable, acidity of food product.
Gas and Vapour permeation - Basic concepts and theory of permeation and units.
Barrier materials used in Food Packaging - Food-package compatibility and migration issues.</td>
<td>10</td>
</tr>
<tr>
<td>2.</td>
<td>Module - 2: Shelf Life studies and sensory evaluation
The concept and factors influencing or affecting shelf life - Food deterioration (Order of reactions) and intrinsic & extrinsic factors, evaluation studies and methods to assess shelflife (Normal & Accelerated).
Sensory evaluation – Concept, Human sensory perception, Errors in sensory evaluation.
Sensory Evaluation Tests – Discriminative, Descriptive & Affective/Consumer Tests.</td>
<td>10</td>
</tr>
<tr>
<td>3.</td>
<td>Module - 3: Food Preservation Techniques
Drying – Cold Preservation (Refrigeration, Deep Freezing) – Pickling – Sterilization (Retort/Canning, Irradiation)
Modified & Controlled Atmosphere Packaging – Gases used – Vacuum Packaging
Active Food Ingredients.</td>
<td>06</td>
</tr>
<tr>
<td>4.</td>
<td>Module - 4: Food products, characteristics and processing needs
Cereals and bakery products - Meat and meat products - Dairy and confectionary products, fats, oils, drinks – Fresh fruits & vegetables - frozen foods</td>
<td>04</td>
</tr>
</tbody>
</table>
| 5. | **Module - 5: Characteristics of Drugs & Pharmaceuticals**
 Pharmaceutical vs Food Product – Definition of Drug – Characteristics – Stability –
 Dosage forms of drugs – Vaccines – Biologically-produced Pharmaceuticals – Medical/Health/Nutritional foods – Packaging materials. | 10 |
|---|---|---|
| 6. | **Module - 6: Packaging of Drugs & Pharmaceuticals**
 Packaging of bulk drugs.
 Reference to IP/BP and significance – packaging regulations – labeling requirements | 08 |

Texts / References:
1. Mathlouthi M., Food packaging & preservation, Blackie Academic & Professional
2. Gordon L Robertson, Food packaging principles & practice, Taylor & Francis Group
3. Food packaging technology Handbook, National Institute of Industrial Research (NIIR) Board
Course Code
PPC603

Course Name
Flexographic Printing

Credits
4

Objectives:
1. To help learners acquire basic knowledge for flexographic printing process.
2. To help learners to identify printing challenges on the press.

Outcomes:
At the end of the course, learners should be able to;
1. Learners develop ability to operate flexography machine.
2. Learners acquire skills to handle trouble shoot on flexography presses.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Details</th>
<th>Hrs</th>
</tr>
</thead>
</table>
| 1. | **Module - 1: Introduction to Flexography**
Overview of major conventional printing technologies, the flexographic potential, brief history of process. Working principle, features, characteristics and advantages of flexography. Comparison with other major printing process basic elements of flexography. | 04 |
| 2. | **Module - 2: Image Carrier**
Design considerations and objectives of general flexographic printing image carrier. Introduction of flexographic plates, Molded Plate making, Photopolymer plates: sheet and liquid plate making, Laser Design Rolls and Flexo CTP. Properties, Benefits, Comparisons, Handling and Storage of Flexographic Plates. Different light sensitive chemistries used in plate material manufacturing. | 08 |
| 3. | **Module - 3: Mounting & Proofing**
Need and significance of plate mounting operation. Introduction to mounting. Types of mounting procedures: Double-sided Tape, Magnetic, Sleeve, pin register system. Plate mounting and proofing machines. Troubles and trouble-shooting with regard to improper plate mounting. | 04 |
| 4. | **Module - 4: Flexographic Press**
| 5. | **Module - 5: Substrates and Inks**
Absorbent and Non-absorbent substrates, physical properties, printing characteristics, Special substrate. Substrate’s surface and optical properties affecting printing resolution. **Inks** End-use requirements, introduction to printing inks, ink vehicles, ink classifications, principles of ink selection, ink consumption, ink quality assurance tests and ink storage. Ink’s surface and optical properties affecting printing resolution. | 03 |
Module - 6: Process Colour Printing

Halftone Printing, Theory of color, color separations, basic requirements for process color printing, flexographic printing characterization, ink density and standardization, dot gain. Effects of plate, anilox roller, fountain and impression roller on printing density. Process controls & standardization. Process colour screen angles, relationship between LPI requirement and line frequency of anilox roll, electronic colour registration systems. Quality range with FM and AM screening techniques.

Module - 7: Quality Control and Environment & Safety

Introduction, Characteristics of quality, economics of quality improvement, the principles of total quality management, statistical process control, tools of statistical process control, element of process control in flexography. ISO 9000. Environment & Safety
Clean Air Act, Toxic substance control act, Resource conservation & recovery act, occupational safety & health act.

Texts / References:

2. Herbert L. Weiss, Flexography Proficiency, Converting Technology Corp.
3. Tony White, High Quality Flexography, Pira International Reviews.
5. Michael Barnard “The Print & Production Manual” PIRA.
Course Code: PPC604
Course / Subject Name: Colour Management
Credits: 3

Objectives:
1. Introducing concept of colour theory and colour Vision
2. Understand the basic colour reproduction techniques and their applications
3. Study the importance of media or substrate in colour perception
4. Study Standardization of colour and its reproduction
5. Apply Colour corrections and Image adjustments

Outcomes: Upon successful completion of this course, the learner will be able to
2. Discuss & summarize the conventional and digital method of colour separation.
3. Examine images and modify them with colour correction.
4. Measure the densitometric terms and analyze graphically.
5. Summarize the spectrophotometric terms and perform relative measurements of various printed samples.
6. Recognize the input & output devices being used.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Details</th>
<th>Hrs</th>
</tr>
</thead>
</table>
| 1. | **Module - 1: Understanding Colour physics**
Colour Science, Electromagnetic spectrum, Psychological point of view, Color Theory, Additive colour synthesis, substrates colour synthesis, Reflectance properties of process ink.
Colour Perception, Human vision mechanism – Trichromancy, Opponency;
Illuminant: Source & Illuminant, Colour Temperature, Spectral Power Distribution, Viewing condition, Object properties: Transmission, Absorption, scattering | 06 |
| 2. | **Module - 2: Colour Systems**
Colour systems & colour spaces, Basic perceptual attributes of colour, Colour Systems based on colour mixing, Colour Systems based on uniform Colour perception – the munsell colour system, the natural colour system, OSA uniform colour scale system, Colour Systems based on Colour matching – The CIE colour systems, Concept of standard observer, Standard Illuminant, color matching experiment, CIE, xyY, Luv, Hunter Lab, CIELAB, CIE CAM02 | 08 |
| 3. | **Module - 3: Color Measurement**
Colour measurement, Basic principles of colour measurement systems, Colour Charts, Colour Reference Catalogue, Colour Measuring Instruments: Densitometer, colorimeter, Spectrophotometer; Visual Colour Assessment, Instrumental Colour Assessment, Colour Tolerance, Colour Difference, Colour processing software MATLAB, Color gamut calculations and mapping | 08 |
| 4. | **Module - 4: Colorants**
Dyes verses Pigment, Classification of colorants, Metamerism : Cause of metamerism, Metamerism Index, Spectral match, Metameric match. Types of metamerism, Color inconstancy; Understanding KubelkaMunk Theory, Role and Application of KM theory for color matching, Producing colors: Colour mixing laws, Visual based color matching, Instrumental based color matching. | 08 |
5. Module - 5: Colour Management
Need for colour management system, Concept of colour management, Colour system, Device dependent (conventional) workflow, device independent (modern) workflow, International colour consortium (ICC), Four c’s of colour management, Color Management Tools: Test charts for different devices, Production of different colour profiles, Rendering intent: Perceptual rendering intent, Relative & Absolute colorimetric intent, Saturation intent, Colourful, Chroma Plus, Gamut mapping, Logo Classic

6. Module - 6: Press Standardisation
Press standardization, need for standardization, Press optimization, variables in printing process such as gravure, flexo, offset, digital, types of test forms for standardization, Proof to Press colour management, Printer calibration, Printer linearization, Proofer calibration.

Texts / References:
1) Phil Green, Understanding Digital Color, GATF press
2) Gray G. Field, Color & its reproduction, GATF press
4) Abhay Sharma, Understanding Color Management
Objectives:
1. Learn the fundamentals hazards encountered in distribution
2. Study the various principles of distribution dynamics.
3. Learn the method for estimating the vibration, shock encountered by a product in distribution
4. Study estimation of cushioning requirement for a product in distribution.
5. Understand the different tests that can be done to gauge package performance in distribution.

Outcomes:
At the end of the course, learners should be able to;
1. Analyse the hazards encountered in distribution and determine protection requirement
2. Based on principles of distribution dynamics estimate the vibration, shock encountered by a product in distribution
3. Calculate cushioning requirement for a product in distribution.
4. Perform tests to gauge package performance in distribution.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Details</th>
<th>Hrs</th>
</tr>
</thead>
</table>
| 1. | **Module - 1: Introduction:**
 Overview of Packaging distribution - Modes of distributions – Hazards in Distribution – Vibration, Impact, Drop, Compression, Shock | 03 |
| 2. | **Module - 2: Fundamentals of Motion & Vibration**
 Mass – Velocity – Acceleration
 Introduction to Vibration – Simple vibratory motion – The yo-yo analogy – Linear Spring – Natural frequency – Vibrating Spring mass system – Combination of springs and cushions – Spring Constant & Modulus of elasticity.
 Concept of Unforced & Forced Vibration - Vibration Magnification – Sample problems | 10 |
| 3. | **Module - 3: Damped Vibrations, Vibrations in Distribution, Testing & Random Vibration**
| 4. | **Module - 4: Mechanical Shock, shock in distribution and Cushion design**
| 5. | **Module - 5: General Considerations for Package Testing**
 Introduction to Distribution Testing/Transport or Distribution Engineering – | 08 |

Texts / References:
1. Brandenburg & Lee, Fundamentals of Packaging Dynamics
3. Goodwin & Young, Protective Packaging for Distribution, Destech Publications
Course Code: PPDE6012
Inks and Coatings
(Department Elective – I)
Credits: 4

Objectives:
1. To study the ink formulation and its components.
2. To study the requirements of inks for different printing processes and materials.
3. To understand the working of different coatings.

Outcomes:
At the end of the course, learners should be able to;
1. Explain the formulation for different types of inks.
2. Explain the ink components for different printing processes and materials.
3. Test and analyze the properties of inks and coatings.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Details</th>
<th>Hrs</th>
</tr>
</thead>
</table>
| 1. | **Module - 1: Raw Materials**
Introduction & History of inks - Applications of ink - Ingredients and their functions- Pigments and dyes in printing Inks - organic and inorganic – pigments for different colors and effects - their sources and processing.
Resins – their functions- natural and synthetic – Additives – driers, anti-oxidants, plasticizers, anti-setoff, anti-foaming, anti-settling, anti-pinhole and anti-misting agents, surfactants, gelling agent. | 16 |
| 2. | **Module - 2: Types of Inks**
Printing Inks for different processes - letterpress, lithography, dry offset, gravure, flexographic, inkjet and screen inks - formulation, components and functions - troubleshooting for ink related problems
Inks as per different drying process- coldset, heatset, quickset, UV curable – the formulation and working.
Inks for different substrates – absorbent, non-absorbent- coated paper, newsprint, tinplate, flexible packaging, Processing of substrate for ink adhesion. | 14 |
| 3. | **Module - 3:**
3.1 **Manufacturing Process**
3.2 **Properties and Testing**
Optical properties- color, transparency, tint, gloss. Flow properties- rheology-Newtonian/non-newtonian, viscosity, tack. Resistance properties- light, acid and alkali, heat, abrasion. | 16 |
| 4. | **Module - 4: Other coatings in printing and packaging**
Varnish- functions, formulation and manufacturing – overprint and spot varnish coating methods, Priming coats, lacquers for metals – formulations and coating methods, Other functional coatings- corrosion resistant, water resistant and chemical resistant, silicone release, biocides, self-seal adhesives. | 06 |
Texts / References:
3. NIIR, Modern Technology of Printing & Writing Inks, 1st ed., Asia Pacific Business Press
4. NPCS, “Inks, Paints, Lacquers, Varnishes and Enamels”, NPCS
<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Details</th>
<th>Hrs</th>
</tr>
</thead>
</table>
| 1. | **Module - 1: Introduction to Digital Printing**
| 2. | **Module - 2: Digital Print Technologies**
| 3. | **Module - 3: Digital Print Application**
(Digital proof & Inkjet proof, requirements of a proofing system, and latest trend in proofing technologies. Customize printing, print on demand, variable data printing, distribute & print, remote publishing, wide format printing, 3D, printing on microscopic items.) | 12 |
4. **Module - 4: Introduction to Security Printing**
Introduction to security Printing, Optical document security, importance of security printing of bank note papers and boards, passports and government documents. UV-visible Printing, rainbow printing, micro lines, guilloches, numbering, Line-printing, stamp embossing, hot-foil-embossing, embossing / punching, fibers, hologram, solvent color, multi color UV-fluorescence stitching thread, holographic foil or lamination of a page, Digital Watermark.

5. **Module - 5: Inks and Brand Security**
Inks: Invisible inks, Specialist security printers inks; such as thermos-chromic, UV fluorescing, water fugitive, solvent sensitive inks, combifuge, photo chromic, Fluorescent Inks, Watermarks, Testing, Deterrent measures
Brand Security: First line inspection of documents using optical elements such as Holograms, optical variable graphics, diffraction structures, liquid crystal materials, optical security in laminates etc., invisible document security and Brand protection.

6. **Module - 6: Security Products**
Credit Cards, Smart cards, club cards, credit / debit cards, Plastic ID cards, Water mark cards, RFID technology, Bar codes, Printers used for bar codes, Cheques and their value documents, MICR/OCR/Cheque printing technology
Counterfeit, fraud prevention, Cheque fraud prevention, method and arrangement for processing negotiable instruments. First line inspection of documents using optical elements such as Holograms, optical variable graphics, diffraction structures, liquid crystal materials, optical security in laminates etc. invisible document security and Brand protection.

Texts / References:
1. “Computer Stationery and MICR Cheque Production” Association for research and development in printing, Madras
2. “Hand Book of Printing Technology” EIRI Board of Consultants and Engineers, Engineers India Research Institute, New Delhi
3. “Bank Credit Card Business” Indian Institute of Bankers (1999), Macmillan, Delhi
8. “Inkjet printing tips and techniques” Andrew Darlow
Objectives:
1. Introducing the basic concepts of print finishing and binding.
2. Study Raw materials and consumable for finishing and binding operations.
3. Study Machineries and equipment required in different finishing and binding operations.

Outcomes: At the end of the course, learners should be able to;
1. Analyze the print finished product.
2. Examine the Product for the entire process involved in manufacturing and finishing.
3. Discuss the print finishing requirements for verity of different segment jobs.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Details</th>
<th>Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Module - 1: Introduction to Binding & Finishing</td>
<td>06</td>
</tr>
<tr>
<td>2.</td>
<td>Module - 2: Materials</td>
<td>14</td>
</tr>
<tr>
<td>3.</td>
<td>Module - 3: Pre-forwarding and forwarding operation</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Pre-forwarding Operation -Jogging & knocking, removing Mis-registered sheets, counting, folding, bundling, gathering, collating, and sewing. Forwarding operations - Removing the swell, fixing end papers, fraying out the slips, gluing the back, trimming, rounding and backing, fixing head & tail bands, lining the back, edge decoration, cutting the boards, capping up, squaring the board, lacing in, covering, setting the joints, pasting down, pressing, jacketing</td>
<td></td>
</tr>
</tbody>
</table>
4. **Module - 4: Folding and Cutting Machines**
 Knife folding, buckle folding, combination folding principle, construction and working
 Hand folding- method of various folding scheme, advantages and limitation
 Gathering machines- construction and working
 Machines: Single knife guillotine machine-major parts and their function, maintenance, safety devices, trim disposal system, application. Straw board cutter- construction and working. Three knife trimmer-major parts, function and its application.

5. **Module - 5: Securing methods and Binding Machines**
 Binding Machines
 Perfect Binding Machines-Major parts and their functions, maintenance, safety devices, application. Types- Burst binding, Notch binding, two shot wet on wet binding.

6. **Module - 6: Finishing and converting Operation**
 Blocking, Numbering, Perforation, Creasing, Die cutting, round cornering, Edge decoration-gilding, Index cutting, Foil stamping, graining, varnishing, Embossing, eyeleting, ruling and numbering. Spot UV.

Texts / References:
1. Lyman Ralph, “Binding and Finishing”, GATF, USA
2. Tedesco T.J. (1999) “Binding Finishing Mailing” GATF, USA
8. U.S. Govt. Printing- Theory and Practice of Book Binding
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPT601</td>
<td>Packaging Machineries & Systems Tutorials</td>
<td>2</td>
</tr>
</tbody>
</table>

Objectives:
1. Understand the concept of systems & online Packaging techniques.
2. Understand the various machineries used for conversions of different packaging materials.
3. Study the different packaging machineries used for line operations and systems.
4. Study various ancillary equipment used apart from packaging machineries.
5. Understand the importance of testing, online & offline equipment’s used industries.

Outcomes: At the end of the course, learners should be able to;
1. Suggest the packaging material use and its conversion as per the product geometry.
2. Suggest the filling machine required for the line operations.
3. Choose the ancillary machineries required in the line operations based on the product to be packed.
4. Analyse the different conveying system used for various line operations.
5. Select different online and offline testing methods that are required during the converting operations or on the packaging lines.

Term Work: (Comprises both a & b)

a) Minimum Eight tutorials:
During tutorial sessions learners should study the different machine components/elements and study the demonstration of various packaging machines.

b) Assignments: Minimum two assignments on each of the following topics:
1. Online & Offline Inspection systems
2. Automatic filling systems
3. Accumulation systems
(**Note:** Preferably the assignments shall be given on the basis of live problems.)

Oral Examination:
To gauge the understanding of the subject, Oral examination will be conducted at the end of the term for 25 marks.
Objectives:
1. Learn to Create Structural Design for Packaging, understand the basic requirements and folding sequences in 3D.
2. Create and evaluate best layout for a packaging design, understand various factors for choosing a layout.
3. Using the created ARD file, create and make a print ready packaging graphic
4. Evaluate different print & substrates in Visualizer

Outcomes:
Upon successful completion of this course, the learner will be able to:
1. Understand the need and importance of CAD file in Packaging Design
2. Impact CAD of and Layout on costing and production
3. Using 3D as a QA tool to evaluate packaging design
4. Make a print ready graphic file (trapping, white/ varnish layers/barcodes / preflighting etc..)
5. Understand the concepts of Digital sample making.
6. Understand various print and finishing processes and their effects on graphics.

Term Work: (Comprises both a & b)

a) List of Practicals / Experiments (Minimum 10)

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Laboratory Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Use existing Library Designs for both corrugated and Carton designs, change values of different flaps and understand the basic concepts.</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>2</td>
<td>Take an existing packaging box and understand the 2d structure, recreate the same in ESKO ArtiosCAD software</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>3</td>
<td>Prepare a layout of the cad file and consider different types of layout and validate the area used & wastage percentages</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>4</td>
<td>Create and fold the design in 3d, understand all tools. Do an animation of the folding sequence and export a video file</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>5</td>
<td>Place created CAD file in Illustrator and create graphics + Text as per packaging requirements</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>6</td>
<td>Prepare White / Varnish layers, add printer marks</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>7</td>
<td>Trap the file for surface print and reverse print</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>8</td>
<td>Place a CAD file on an artwork in illustrator and open studio to observe the 3D of the design, Use Studio as a QA tool to see various graphic position on all sides of a package, export to 3d pdf and open in acrobat and analyse results</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>9</td>
<td>Apply Various print and finishes in Visualizer</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>10</td>
<td>Export various 3D formats from Visualizer (image sequence, studio viewer) and understand the importance of 3d for digital proofing.</td>
<td>4 Hrs</td>
</tr>
</tbody>
</table>
b) Assignments: Minimum two on any of the following topics:
 1. Create a packaging design (CAD+ Artwork) for a Fmcg product
 2. Use an existing product in the market and create new graphics and text and prepare for a digital approval
 3. Use an existing product (design) and add foiling and embossing to improve the overall packaging effect
 4. Create a costing chart for various cad files and layouts for a predefined number of boxes. (Optional)

(Note: Preferably the assignments shall be given on the basis of live problems.)

End Semester Practical Examination (for 50 Marks): Under single head of examination, including Practical (40 marks assessment) followed by oral (10 marks assessment) to be conducted by internal and external examiners.
Course Code	Course / Subject Name	Credits
PPL602 | Flexographic Printing Laboratory | 1.5

Objectives:
1. To help learners acquire basic knowledge for flexographic printing process.
2. To help learners to identify printing challenges on the press.

Outcomes: At the end of the course, learners should be able to;
1. Learners develop ability to operate flexography machine.
2. Learners acquire skills to handle trouble shoot on flexography presses.

Term Work: (Comprises both a & b)
a) List of Practicals / Experiments (Minimum 10)

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Laboratory Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to construction and features of flexographic unit.</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>2</td>
<td>Understanding design and working of tension control elements of Flexographic web threading path.</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>3</td>
<td>Flexographic Plate Mounting with varying plate dimensions, adhesive strength and repeat length.</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>4</td>
<td>Setting up of single and multicolour flexographic press for printing.</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>5</td>
<td>To print single colour job on given absorbent stock and analyze print quality.</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>6</td>
<td>To print single colour job on given non-absorbent stock and analyze print quality.</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>7</td>
<td>To study tension setting on flexographic machine.</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>8</td>
<td>To analyze effect of anilox & fountain roller pressure on print.</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>9</td>
<td>To analyze effect of flexographic inks on print.</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>10</td>
<td>To print two color job on absorbent stock and analyze print quality.</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>11</td>
<td>To print two color job on non-absorbent stock and analyze print quality.</td>
<td>3 Hrs</td>
</tr>
</tbody>
</table>

b) Assignments: Minimum two assignments to be given on the working of flexographic machine covering various process parameters.
(Note: Preferably the assignments shall be given on the basis of live problems.)

Oral Examination:
To gauge the understanding of the subject, an oral examination will be conducted at the end of the term for 25 marks.
Course Code: PPL603
Course / Subject Name: Colour Management Laboratory
Credits: 1.5

Objectives:
1. Introducing concept of colour theory and colour Vision
2. Understand the basic colour reproduction techniques and their applications
3. Study the importance of media or substrate in colour perception
4. Study Standardization of colour and its reproduction
5. Apply Colour corrections and Image adjustments

Outcomes: Upon successful completion of this course, the learner will be able to
2. Discuss & summarize the conventional and digital method of colour separation.
3. Examine images and modify them with colour correction.
4. Measure the densitometric terms and analyze graphically.
5. Summarize the spectrophotometric terms and perform relative measurements of various printed samples.
6. Recognize the input & output devices being used.

Term Work: (Comprises both a & b)

a) **List of Practicals / Experiments (Minimum 10)**

<table>
<thead>
<tr>
<th>Module</th>
<th>Details</th>
<th>Laboratory Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Study the effect of substrate on Trapping and Gray balance.</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>2</td>
<td>Calculate CIEtristimulus values X, Y, Z for given patches.</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>3</td>
<td>Study the effect of different Illuminants on CIE colour Coordinates.</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>4</td>
<td>Perform the visual color assessment for measuring color difference</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>5</td>
<td>Perform the Instrumental color assessment for calculating color difference</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>6</td>
<td>Calibrate the monitor and create a monitor profile.</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>7</td>
<td>Generate and Measure a Printer test chart and develop an ICC printer profile.</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>8</td>
<td>Measure a scanner test chart and create a scanner profile.</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>9</td>
<td>Perform Proofer calibration for a given media.</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>10</td>
<td>Develop a Soft proof and Hard proof.</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>11</td>
<td>Applications of Mat-Lab software for colour processing.</td>
<td>2 Hrs</td>
</tr>
</tbody>
</table>

b) **Assignments:** Minimum two assignments to be given on different principles of colour management used in the industry.

(Note: Preferably the assignments shall be given on the basis of live problems.)

Oral Examination:
To gauge the understanding of the subject, an oral examination will be conducted at the end of the term for 25 marks.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course / Subject Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPDET601X</td>
<td>(Department Elective – I Tutorial)</td>
<td>1</td>
</tr>
</tbody>
</table>

PPDET6011 – Packaging Distribution Dynamics
During tutorial sessions learners should understand the various testing methods & equipments used for evaluating inks & coatings as per IS/ASTM or other standards.

PPDET6012 – Inks & Coatings
During tutorial sessions learners should understand the various testing methods & equipments used for evaluating inks & coatings as per IS/ASTM or other standards.

PPDET6013 – Digital & Security Printing
During tutorial sessions learners should study & understand different digital images, file compression techniques & their effects on image quality, digital proofing, security printing features in real-life examples and also various testing methods used in digital/security printing as per IS/ASTM or other standards.

PPDET6014 – Print Finishing & Converting
During tutorial sessions learners should study the various operations involved and material requirement in different procedures of print finishing and binding.

Minimum eight tutorials to be conducted and assignments covering entire syllabus to be given under each elective. Assignments may also include objective tests, live case studies, presentation, etc.

Oral Examination:
To gauge the understanding of the subject, an oral examination will be conducted at the end of the term for 25 marks for each elective.
Course Code	Course Name	Credits
PPS601 | Industrial Visits | 1.5

Objectives:
1. To give the practical exposure with better Industrial orientation
2. Experience the raw material processing and conversion in print and packaging
3. Study Machineries and processes evolved in different print and packaging industries

Outcomes: At the end of the course, learners should be able to
1. Analyze the print, packaged, converted & finished product.
2. Examine the Product for the entire process involved in manufacturing, converting and finishing.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Type of Industries that can be visited</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Paper & paperboard manufacturing/ Paper & paperboard recycling plants</td>
</tr>
<tr>
<td>2.</td>
<td>Label stock manufacturing, and Printing</td>
</tr>
<tr>
<td>3.</td>
<td>Offset, Flexography, Gravure printing presses</td>
</tr>
<tr>
<td>4.</td>
<td>Screen Printing & Pad Printing Presses</td>
</tr>
<tr>
<td>5.</td>
<td>Digital Printing, Proofing and Large Format presses</td>
</tr>
<tr>
<td>6.</td>
<td>Newspaper presses</td>
</tr>
<tr>
<td>7.</td>
<td>Commercial/ magazine printing presses</td>
</tr>
<tr>
<td>8.</td>
<td>Binging and finishing operation houses</td>
</tr>
<tr>
<td>9.</td>
<td>Plastics tube manufacturing & printing</td>
</tr>
<tr>
<td>10.</td>
<td>Plastics drum / Can manufacturing & printing</td>
</tr>
<tr>
<td>11.</td>
<td>Metal can/ tube manufacturing, printing and decoration</td>
</tr>
<tr>
<td>12.</td>
<td>Metal drum/tin box manufacturing, printing</td>
</tr>
<tr>
<td>13.</td>
<td>Carton box and Corrugated fiberboard box manufacturing</td>
</tr>
<tr>
<td>14.</td>
<td>Fiber board drum/ composite box package manufacturing</td>
</tr>
<tr>
<td>15.</td>
<td>Thermoform manufacturing and packages manufacturing</td>
</tr>
<tr>
<td>16.</td>
<td>Glass factory and Glass bottles manufacturing</td>
</tr>
<tr>
<td>17.</td>
<td>Blow molding, Injection molding and Rotational molding factories</td>
</tr>
<tr>
<td>18.</td>
<td>Cushion material manufacturing</td>
</tr>
<tr>
<td>19.</td>
<td>Multiwall / woven sack manufacturing</td>
</tr>
<tr>
<td>20.</td>
<td>VFFS / HFFS filling machine line for Solid and liquid filling operations</td>
</tr>
<tr>
<td>21.</td>
<td>Frozen food packaging facilities/ factory</td>
</tr>
<tr>
<td>22.</td>
<td>Pharmaceutical packaging</td>
</tr>
<tr>
<td>23.</td>
<td>Bakery product and Confectionary packaging</td>
</tr>
<tr>
<td>24.</td>
<td>Milk & milk product packaging unit</td>
</tr>
<tr>
<td>25.</td>
<td>Edible oil, Lubricant packaging</td>
</tr>
<tr>
<td>26.</td>
<td>Aluminum Collapsible Tube Manufacturing unit</td>
</tr>
<tr>
<td>27.</td>
<td>Blown film plant</td>
</tr>
<tr>
<td>28.</td>
<td>Mumbai Port Trust, Marine cargo Handling</td>
</tr>
<tr>
<td>29.</td>
<td>Aseptic filling, Vacuum and Gas flush Packaging machines</td>
</tr>
<tr>
<td>30.</td>
<td>Package Sterilization facilities</td>
</tr>
</tbody>
</table>

Atleast 8 Industrial Visits to be conducted. Care should be taken, not to visit similar industries more than once, since the concept is to help students practically see & learn as many manufacturing & converting facilities as possible.

Termwork:
During industrial visits, students are expected to study the process, machines, consumables & facilities utilized in the Industry. They have to then write a report for every Industrial visit based on their understanding.

Industrial Visit Reports: 20 Marks
Attendance: 05 Marks

Oral Examination:
1. Question will be compulsory asked, based on visited Industries only.
2. Questions can be randomly asked, based on the industrial visit reports generated by the students.
Oral examination will be conducted for 25 Marks.